Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

运行deepseekvl报错 #3064

Open
learn01one opened this issue Feb 11, 2025 · 3 comments
Open

运行deepseekvl报错 #3064

learn01one opened this issue Feb 11, 2025 · 3 comments

Comments

@learn01one
Copy link

/.cache/_github/DeepSeek-VL2/deepseek_vl2/models/siglip_vit.py", line 16, in
from xformers.ops import memory_efficient_attention
ModuleNotFoundError: No module named 'xformers'

transformers 4.38.2
transformers-stream-generator 0.0.5
triton 2.0.0
typer 0.15.1
typing_extensions 4.12.2
tzdata 2025.1
urllib3 2.3.0
uvicorn 0.34.0
websockets 14.2
Werkzeug 3.1.3
wheel 0.45.1
xformers 0.0.21
xxhash 3.5.0
yarl 1.18.3
zipp 3.21.0
zstandard 0.23.0

xformers 0.0.21明明安装了

@Jintao-Huang
Copy link
Collaborator

flash-attn安装了么

@Jintao-Huang
Copy link
Collaborator

@learn01one
Copy link
Author

https://github.com/Dao-AILab/flash-attention/releases

安装了额,

absl-py 2.1.0
accelerate 1.3.0
addict 2.4.0
aiofiles 23.2.1
aiohappyeyeballs 2.4.6
aiohttp 3.11.12
aiosignal 1.3.2
aliyun-python-sdk-core 2.16.0
aliyun-python-sdk-kms 2.16.5
annotated-types 0.7.0
anyio 4.8.0
async-timeout 5.0.1
attrdict 2.0.1
attrs 25.1.0
binpacking 1.5.2
certifi 2025.1.31
cffi 1.17.1
charset-normalizer 3.4.1
click 8.1.8
cmake 3.31.4
contourpy 1.3.1
cpm-kernels 1.0.11
crcmod 1.7
cryptography 44.0.0
cycler 0.12.1
dacite 1.9.2
datasets 3.2.0
deepseek_vl2 1.0.0 /ms-swift/DeepSeek-VL2
dill 0.3.8
distro 1.9.0
einops 0.8.1
exceptiongroup 1.2.2
fastapi 0.115.8
ffmpy 0.5.0
filelock 3.17.0
flash-attn 2.6.3
fonttools 4.56.0
frozenlist 1.5.0
fsspec 2024.9.0
future 1.0.0
gradio 5.15.0
gradio_client 1.7.0
grpcio 1.70.0
h11 0.14.0
httpcore 1.0.7
httpx 0.28.1
huggingface-hub 0.28.1
idna 3.10
importlib_metadata 8.6.1
jieba 0.42.1
Jinja2 3.1.5
jiter 0.8.2
jmespath 0.10.0
joblib 1.4.2
kiwisolver 1.4.8
lit 18.1.8
Markdown 3.7
markdown-it-py 3.0.0
MarkupSafe 2.1.5
matplotlib 3.10.0
mdurl 0.1.2
modelscope 1.22.3
mpmath 1.3.0
ms-swift 3.1.0.dev0 /ms-swift
multidict 6.1.0
multiprocess 0.70.16
networkx 3.4.2
nltk 3.9.1
numpy 1.26.4
nvidia-cublas-cu11 11.10.3.66
nvidia-cublas-cu12 12.1.3.1
nvidia-cuda-cupti-cu11 11.7.101
nvidia-cuda-cupti-cu12 12.1.105
nvidia-cuda-nvrtc-cu11 11.7.99
nvidia-cuda-nvrtc-cu12 12.1.105
nvidia-cuda-runtime-cu11 11.7.99
nvidia-cuda-runtime-cu12 12.1.105
nvidia-cudnn-cu11 8.5.0.96
nvidia-cudnn-cu12 8.9.2.26
nvidia-cufft-cu11 10.9.0.58
nvidia-cufft-cu12 11.0.2.54
nvidia-curand-cu11 10.2.10.91
nvidia-curand-cu12 10.3.2.106
nvidia-cusolver-cu11 11.4.0.1
nvidia-cusolver-cu12 11.4.5.107
nvidia-cusparse-cu11 11.7.4.91
nvidia-cusparse-cu12 12.1.0.106
nvidia-cusparselt-cu12 0.6.2
nvidia-nccl-cu11 2.14.3
nvidia-nccl-cu12 2.20.5
nvidia-nvjitlink-cu12 12.4.127
nvidia-nvtx-cu11 11.7.91
nvidia-nvtx-cu12 12.1.105
openai 1.61.1
orjson 3.10.15
oss2 2.19.1
packaging 24.2
pandas 2.2.3
peft 0.14.0
pillow 11.1.0
pip 25.0.1
propcache 0.2.1
protobuf 5.29.3
psutil 6.1.1
pyarrow 19.0.0
pycparser 2.22
pycryptodome 3.21.0
pydantic 2.10.6
pydantic_core 2.27.2
pydub 0.25.1
Pygments 2.19.1
pyparsing 3.2.1
python-dateutil 2.9.0.post0
python-multipart 0.0.20
pytz 2025.1
PyYAML 6.0.2
regex 2024.11.6
requests 2.32.3
rich 13.9.4
rouge 1.0.1
ruff 0.9.6
safehttpx 0.1.6
safetensors 0.5.2
scipy 1.15.1
semantic-version 2.10.0
sentencepiece 0.2.0
setuptools 69.5.1
shellingham 1.5.4
simplejson 3.19.3
six 1.17.0
sniffio 1.3.1
sortedcontainers 2.4.0
starlette 0.45.3
sympy 1.13.1
tensorboard 2.18.0
tensorboard-data-server 0.7.2
tiktoken 0.8.0
timm 1.0.14
tokenizers 0.15.2
tomlkit 0.13.2
torch 2.0.1
torchvision 0.15.2
tqdm 4.67.1
transformers 4.38.2
transformers-stream-generator 0.0.5
triton 2.0.0
typer 0.15.1
typing_extensions 4.12.2
tzdata 2025.1
urllib3 2.3.0
uvicorn 0.34.0
websockets 14.2
Werkzeug 3.1.3
wheel 0.45.1
xformers 0.0.22
xxhash 3.5.0
yarl 1.18.3
zipp 3.21.0
zstandard 0.23.0

同样的环境,运行
$CUDA_VISIBLE_DEVICES=0 swift infer --model_type qwen2_5_vl --model /model/Qwen/Qwen2___5-VL-3B-Instruct 没问题

运行
CUDA_VISIBLE_DEVICES=0 swift infer --model_type deepseek_vl2 --model /model_deepseekvl/deepseek-ai/deepseek-vl2-tiny 就报错

from xformers.ops import memory_efficient_attention
ModuleNotFoundError: No module named 'xformers'

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants