-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathMinimum Path Cover in DAG.cpp
167 lines (144 loc) · 4.65 KB
/
Minimum Path Cover in DAG.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#include <bits/stdtr1c++.h>
#define MAX 505
#define clr(ar) memset(ar, 0, sizeof(ar))
#define read() freopen("lol.txt", "r", stdin)
#define dbg(x) cout << #x << " = " << x << endl
#define ran(a, b) ((((rand() << 15) ^ rand()) % ((b) - (a) + 1)) + (a))
using namespace std;
/// Minimum path cover/Maximum independent set in DAG
namespace dag{
/// For transitive closure and minimum path cover with not necessarily disjoint vertex
bool ar[MAX][MAX];
vector <int> adj[MAX];
bool visited[MAX], first_set[MAX], second_set[MAX];
int n, L[MAX], R[MAX], D[MAX], Q[MAX], dis[MAX], parent[MAX];
inline void init(int nodes){ /// Number of vertices in DAG
n = nodes;
for (int i = 0; i < MAX; i++) adj[i].clear();
}
inline void add_edge(int u, int v){ /// 0 based index, directed edge of DAG
adj[u].push_back(v);
}
bool dfs(int i){
int len = adj[i].size();
for (int j = 0; j < len; j++){
int x = adj[i][j];
if (L[x] == -1 || (parent[L[x]] == i)){
if (L[x] == -1 || dfs(L[x])){
L[x] = i, R[i] = x;
return true;
}
}
}
return false;
}
bool bfs(){
clr(visited);
int i, j, x, d, f = 0, l = 0;
for (i = 0; i < n; i++){
if (R[i] == -1){
visited[i] = true;
Q[l++] = i, dis[i] = 0;
}
}
while (f < l){
i = Q[f++];
int len = adj[i].size();
for (j = 0; j < len; j++){
x = adj[i][j], d = L[x];
if (d == -1) return true;
else if (!visited[d]){
Q[l++] = d;
parent[d] = i, visited[d] = true, dis[d] = dis[i] + 1;
}
}
}
return false;
}
void get_path(int i){
first_set[i] = true;
int j, x, len = adj[i].size();
for (j = 0; j < len; j++){
x = adj[i][j];
if (!second_set[x] && L[x] != -1){
second_set[x] = true;
get_path(L[x]);
}
}
}
void transitive_closure(){ /// Transitive closure in O(n * m)
clr(ar);
int i, j, k, l;
for (i = 0; i < n; i++){
l = adj[i].size();
for (j = 0; j < l; j++){
ar[i][adj[i][j]] = true;
}
adj[i].clear();
}
for (k = 0; k < n; k++){
for (i = 0; i < n; i++){
if (ar[i][k]){
for (j = 0; j < n; j++){
if (ar[k][j]) ar[i][j] = true;
}
}
}
}
for (i = 0; i < n; i++){
for (j = 0; j < n; j++){
if (i != j && ar[i][j]){
adj[i].push_back(j);
}
}
}
}
/// Minimum vertex disjoint path cover in DAG. Handle isolated vertices appropriately
int minimum_disjoint_path_cover() {
int i, res = 0;
memset(L, -1, sizeof(L));
memset(R, -1, sizeof(R));
while (bfs()){
for (i = 0; i < n; i++){
if (R[i] == -1 && dfs(i)) res++;
}
}
return n - res;
}
int minimum_path_cover(){ /// Minimum path cover in DAG. Handle isolated vertices appropriately
transitive_closure();
return minimum_disjoint_path_cover();
}
/// Minimum vertex cover of DAG, equal to maximum bipartite matching
vector <int> minimum_vertex_cover(){
int i, res = 0;
memset(L, -1, sizeof(L));
memset(R, -1, sizeof(R));
while (bfs()){
for (i = 0; i < n; i++){
if (R[i] == -1 && dfs(i)) res++;
}
}
vector <int> v;
clr(first_set), clr(second_set);
for (i = 0; i < n; i++){
if (R[i] == -1) get_path(i);
}
for (i = 0; i < n; i++){
if (!first_set[i] || second_set[i]) v.push_back(i);
}
return v;
}
/// Maximum independent set of DAG, all vertices not in minimum vertex cover
vector <int> maximum_independent_set() {
vector <int> v = minimum_vertex_cover();
clr(visited);
int i, len = v.size();
for (i = 0; i < len; i++) visited[v[i]] = true;
vector <int> res;
for (i = 0; i < n; i++){
if (!visited[i]) res.push_back(i);
}
return res;
}
}