From 8ba4fa267754cfd56d902d9084f9b11636e2e871 Mon Sep 17 00:00:00 2001 From: alessandrozocca Date: Wed, 22 Nov 2023 13:50:06 +0000 Subject: [PATCH] deploy: abc2f8c3c21e2a427f56b96e61607b7deea93d6b --- ...dd7c96753e835aecc3877520692c5b12a62e12.png | Bin 237559 -> 0 bytes ...3f581473ce9828629f186e89c43cc0171c96fb.png | Bin 22709 -> 0 bytes ...b3c24e66745d422b3ac6b5c9a2b6b8a1792825.png | Bin 25062 -> 0 bytes ...6cc99b1ea2b54ce303557c4c8f64d06065de6f.png | Bin 11964 -> 0 bytes ...5b60ecd1e2197c03f5caffca7b217c055890a0.png | Bin 21768 -> 0 bytes ...9b4c4e18ae2413d5be05b7351d244da16c67f2.png | Bin 0 -> 23607 bytes ...8907c6aea22f61cc90ff0c0c3f2ae6d3f4956c.png | Bin 0 -> 19240 bytes ...a1ca7dbddc1bc1d46690c87169c8f7b74bac00.png | Bin 0 -> 329540 bytes ...de2b5ead8aa814aa83c9f427f28965183015e6.png | Bin 24028 -> 0 bytes ...c37fe2b34c63be871a38835736191f0a92e84c.png | Bin 0 -> 23566 bytes ...2d99097805c028a954604c6b1efb25fd5a807d.png | Bin 30585 -> 0 bytes ...1950c647421ec90304ad32a9e55558da186dd8.png | Bin 11786 -> 0 bytes ...ca53dedff4b75d713ce9700847c711f9a92a46.png | Bin 30911 -> 0 bytes ...28841d13ba40a27196c42a92e863c5b2c96193.png | Bin 0 -> 89230 bytes ...d7eb0d56ee41906dc25b4d0a38345e96322db4.png | Bin 30225 -> 0 bytes ...eaf0b1b89c70ea6d0a85636a61417b2d0a2ae0.png | Bin 0 -> 30437 bytes ...29e5a36825c10a56f6a2b06d82951b6a8465b8.png | Bin 0 -> 89689 bytes ...f586a2038788b3fd04f16e0d881dd97baae928.png | Bin 0 -> 31176 bytes ...e85c0058b4a1258ee3a0cd5fb1afdcf95bc9ed.png | Bin 30643 -> 0 bytes ...fc363a8537ac01c74b81c6d0cee8f668e7369f.png | Bin 13657 -> 0 bytes ...47f092b6d0cf186c70fa76c8468d6cdd7559be.png | Bin 0 -> 21327 bytes _sources/notebooks/02/02.00.md | 6 +- ...ing.ipynb => 07-bim-demand-forecast.ipynb} | 0 ... 09-production-faciliity-worst-case.ipynb} | 0 .../notebooks/03/06-facility-location.ipynb | 11507 ++++++++++++++++ .../03/07-bim-production-revisited.ipynb | 1808 +++ ....ipynb => 01-dinner-seat-allocation.ipynb} | 2 +- ...ncost-flow.ipynb => 02-mincost-flow.ipynb} | 2 +- ...n.ipynb => 03-gasoline-distribution.ipynb} | 2 +- ...ng.ipynb => 04-exam-room-scheduling.ipynb} | 2 +- _sources/notebooks/04/04.00.md | 14 +- ...pynb => 05-cryptocurrency-arbitrage.ipynb} | 2 +- ...r-network.ipynb => 06-power-network.ipynb} | 0 ...bitrage.ipynb => 07-forex-arbitrage.ipynb} | 0 ...lk-pooling.ipynb => 01-milk-pooling.ipynb} | 2 +- ...gression.ipynb => 02-ols-regression.ipynb} | 4 +- ...lio.ipynb => 03-markowitz-portfolio.ipynb} | 2 +- ...ynb => 04-svm-binary-classification.ipynb} | 2 +- ...ion.ipynb => 05-refinery-production.ipynb} | 0 _sources/notebooks/05/05.00.md | 12 +- ...ing-stock.ipynb => 06-cutting-stock.ipynb} | 0 ...ipynb => 01-economic-order-quantity.ipynb} | 0 ...iterion.ipynb => 02-kelly-criterion.ipynb} | 0 ...=> 03-markowitz-portfolio-revisited.ipynb} | 0 ...ion.ipynb => 04-building-insulation.ipynb} | 0 .../{svm-conic.ipynb => 05-svm-conic.ipynb} | 2 +- ...-wheel.ipynb => 06-investment-wheel.ipynb} | 0 _sources/notebooks/06/06.00.md | 14 +- ...ynb => 07-optimal-growth-portfolios.ipynb} | 0 ...gnment.ipynb => 01-fleet-assignment.ipynb} | 0 ...ipynb => 02-bim-robustness-analysis.ipynb} | 0 _sources/notebooks/07/07.00.md | 4 +- ...ipynb => 01-bim-robust-optimization.ipynb} | 0 _sources/notebooks/08/08.00.md | 2 +- ...pop-up_shop.ipynb => 01-pop-up-shop.ipynb} | 0 ...tz-portfolio-with-chance-constraint.ipynb} | 0 ...b => 03-seafood-distribution-center.ipynb} | 0 ...patch.ipynb => 04-economic-dispatch.ipynb} | 4 +- _sources/notebooks/09/09.00.md | 8 +- ...pynb => 02-opf-linear-decision-rule.ipynb} | 38 +- ...=> 03-two-stage-production-planning.ipynb} | 15 +- .../{farmer.ipynb => 04-farmer-problem.ipynb} | 30 +- ...nt.ipynb => 05-opf-wind-curtailment.ipynb} | 155 +- _sources/notebooks/10/10.00.md | 10 +- _sources/notebooks/10/airline-seating.ipynb | 3061 ---- genindex.html | 193 +- intro.html | 71 +- notebooks/01/01-production-planning.html | 71 +- notebooks/01/01.00.html | 71 +- .../01/02-production-planning-basic.html | 73 +- .../01/03-production-planning-advanced.html | 71 +- notebooks/02/01-bim.html | 71 +- notebooks/02/02-lad-regression.html | 71 +- notebooks/02/02.00.html | 77 +- .../02/03-mad-portfolio-optimization.html | 71 +- notebooks/02/04-bim-dual.html | 71 +- notebooks/02/05-bim-maxmin.html | 71 +- notebooks/02/06-bim-fractional.html | 75 +- ...nning.html => 07-bim-demand-forecast.html} | 77 +- .../02/08-L1-regression-wine-quality.html | 79 +- ...> 09-production-faciliity-worst-case.html} | 77 +- notebooks/03/01-bim-perturbed.html | 71 +- notebooks/03/02-shift-scheduling.html | 71 +- .../03/03-recharging-electric-vehicle.html | 71 +- notebooks/03/03.00.html | 75 +- .../03/04-simple-production-model-gdp.html | 71 +- notebooks/03/05-machine-scheduling.html | 77 +- notebooks/03/06-facility-location.html | 1190 ++ notebooks/03/07-bim-production-revisited.html | 2143 +++ notebooks/03/08-cryptarithms.html | 77 +- notebooks/03/09-strip-packing.html | 71 +- notebooks/03/10-job-shop-scheduling.html | 71 +- notebooks/03/11-maintenance-planning.html | 71 +- ...on.html => 01-dinner-seat-allocation.html} | 95 +- ...mincost-flow.html => 02-mincost-flow.html} | 97 +- ...ion.html => 03-gasoline-distribution.html} | 97 +- ...ring.html => 04-exam-room-scheduling.html} | 97 +- notebooks/04/04.00.html | 91 +- ....html => 05-cryptocurrency-arbitrage.html} | 95 +- ...wer-network.html => 06-power-network.html} | 87 +- ...arbitrage.html => 07-forex-arbitrage.html} | 81 +- ...milk-pooling.html => 01-milk-pooling.html} | 91 +- ...regression.html => 02-ols-regression.html} | 99 +- ...folio.html => 03-markowitz-portfolio.html} | 97 +- ...html => 04-svm-binary-classification.html} | 95 +- ...ction.html => 05-refinery-production.html} | 87 +- notebooks/05/05.00.html | 93 +- ...tting-stock.html => 06-cutting-stock.html} | 81 +- ...y.html => 01-economic-order-quantity.html} | 81 +- ...criterion.html => 02-kelly-criterion.html} | 85 +- ... => 03-markowitz-portfolio-revisited.html} | 87 +- ...ation.html => 04-building-insulation.html} | 87 +- .../06/{svm-conic.html => 05-svm-conic.html} | 101 +- ...nt-wheel.html => 06-investment-wheel.html} | 87 +- notebooks/06/06.00.html | 93 +- ...html => 07-optimal-growth-portfolios.html} | 81 +- ...signment.html => 01-fleet-assignment.html} | 81 +- ...s.html => 02-bim-robustness-analysis.html} | 81 +- notebooks/07/07.00.html | 83 +- ...n.html => 01-bim-robust-optimization.html} | 77 +- notebooks/08/08.00.html | 81 +- .../{pop-up_shop.html => 01-pop-up-shop.html} | 81 +- ...itz-portfolio-with-chance-constraint.html} | 87 +- ...ml => 03-seafood-distribution-center.html} | 85 +- ...ispatch.html => 04-economic-dispatch.html} | 85 +- notebooks/09/09.00.html | 87 +- ....html => 02-opf-linear-decision-rule.html} | 135 +- ... => 03-two-stage-production-planning.html} | 104 +- .../{farmer.html => 04-farmer-problem.html} | 113 +- ...ment.html => 05-opf-wind-curtailment.html} | 237 +- notebooks/10/10.00.html | 91 +- notebooks/10/airline-seating.html | 2773 ---- notebooks/appendix/appendix.html | 75 +- .../functional-programming-pyomo.html | 71 +- notebooks/appendix/pyomo-style-guide.html | 71 +- objects.inv | Bin 2163 -> 2267 bytes search.html | 71 +- searchindex.js | 2 +- 138 files changed, 19878 insertions(+), 8837 deletions(-) delete mode 100644 _images/133ae3d32ff19c43e68cb11078dd7c96753e835aecc3877520692c5b12a62e12.png delete mode 100644 _images/1813465705cf13f818ee5ff8163f581473ce9828629f186e89c43cc0171c96fb.png delete mode 100644 _images/2ba8784408ac99124215a4d8aab3c24e66745d422b3ac6b5c9a2b6b8a1792825.png delete mode 100644 _images/2ea558f42b3d4c8ba2ab1c80d56cc99b1ea2b54ce303557c4c8f64d06065de6f.png delete mode 100644 _images/41168d302d65513a23b33648085b60ecd1e2197c03f5caffca7b217c055890a0.png create mode 100644 _images/448a994bd8731d95a6a94d81dc9b4c4e18ae2413d5be05b7351d244da16c67f2.png create mode 100644 _images/4cdf618b7615a4d716ad49e6b58907c6aea22f61cc90ff0c0c3f2ae6d3f4956c.png create mode 100644 _images/649b01ceaaa3c4f3a92932ee53a1ca7dbddc1bc1d46690c87169c8f7b74bac00.png delete mode 100644 _images/69b9adbfe76df9e2076dfe66fede2b5ead8aa814aa83c9f427f28965183015e6.png create mode 100644 _images/6c183a43527ba8eeb8f935c343c37fe2b34c63be871a38835736191f0a92e84c.png delete mode 100644 _images/6d717b9c0df99f8d8522c0745e2d99097805c028a954604c6b1efb25fd5a807d.png delete mode 100644 _images/72ede3091c5ccf0068d1e972481950c647421ec90304ad32a9e55558da186dd8.png delete mode 100644 _images/8e7c42c6f90ca7f835e4e98f0bca53dedff4b75d713ce9700847c711f9a92a46.png create mode 100644 _images/934e12b9acf4efc9643d8116bb28841d13ba40a27196c42a92e863c5b2c96193.png delete mode 100644 _images/aec05e4113b7e50cb309d28650d7eb0d56ee41906dc25b4d0a38345e96322db4.png create mode 100644 _images/b856c5b86cffd874c3342e0e66eaf0b1b89c70ea6d0a85636a61417b2d0a2ae0.png create mode 100644 _images/c2c525369fe62a83e70c49c29b29e5a36825c10a56f6a2b06d82951b6a8465b8.png create mode 100644 _images/d565860b1415e9cc063dcaad44f586a2038788b3fd04f16e0d881dd97baae928.png delete mode 100644 _images/dd9444138203cd364755cc3cf7e85c0058b4a1258ee3a0cd5fb1afdcf95bc9ed.png delete mode 100644 _images/ef992eaadb2a2e6a9e2ff1a45bfc363a8537ac01c74b81c6d0cee8f668e7369f.png create mode 100644 _images/fab268c87be4d07cecd237121b47f092b6d0cf186c70fa76c8468d6cdd7559be.png rename _sources/notebooks/02/{07-bim-rawmaterialplanning.ipynb => 07-bim-demand-forecast.ipynb} (100%) rename _sources/notebooks/02/{09-multiproductionfaciliity_worstcase.ipynb => 09-production-faciliity-worst-case.ipynb} (100%) create mode 100644 _sources/notebooks/03/06-facility-location.ipynb create mode 100644 _sources/notebooks/03/07-bim-production-revisited.ipynb rename _sources/notebooks/04/{dinner-seat-allocation.ipynb => 01-dinner-seat-allocation.ipynb} (99%) rename _sources/notebooks/04/{mincost-flow.ipynb => 02-mincost-flow.ipynb} (99%) rename _sources/notebooks/04/{gasoline-distribution.ipynb => 03-gasoline-distribution.ipynb} (99%) rename _sources/notebooks/04/{graph-coloring.ipynb => 04-exam-room-scheduling.ipynb} (99%) rename _sources/notebooks/04/{cryptocurrency-arbitrage.ipynb => 05-cryptocurrency-arbitrage.ipynb} (99%) rename _sources/notebooks/04/{power-network.ipynb => 06-power-network.ipynb} (100%) rename _sources/notebooks/04/{forex-arbitrage.ipynb => 07-forex-arbitrage.ipynb} (100%) rename _sources/notebooks/05/{milk-pooling.ipynb => 01-milk-pooling.ipynb} (99%) rename _sources/notebooks/05/{ols-regression.ipynb => 02-ols-regression.ipynb} (99%) rename _sources/notebooks/05/{markowitz_portfolio.ipynb => 03-markowitz-portfolio.ipynb} (99%) rename _sources/notebooks/05/{svm.ipynb => 04-svm-binary-classification.ipynb} (99%) rename _sources/notebooks/05/{refinery-production.ipynb => 05-refinery-production.ipynb} (100%) rename _sources/notebooks/05/{cutting-stock.ipynb => 06-cutting-stock.ipynb} (100%) rename _sources/notebooks/06/{economic-order-quantity.ipynb => 01-economic-order-quantity.ipynb} (100%) rename _sources/notebooks/06/{kelly-criterion.ipynb => 02-kelly-criterion.ipynb} (100%) rename _sources/notebooks/06/{markowitz_portfolio_revisited.ipynb => 03-markowitz-portfolio-revisited.ipynb} (100%) rename _sources/notebooks/06/{building-insulation.ipynb => 04-building-insulation.ipynb} (100%) rename _sources/notebooks/06/{svm-conic.ipynb => 05-svm-conic.ipynb} (99%) rename _sources/notebooks/06/{investment-wheel.ipynb => 06-investment-wheel.ipynb} (100%) rename _sources/notebooks/06/{optimal-growth-portfolios.ipynb => 07-optimal-growth-portfolios.ipynb} (100%) rename _sources/notebooks/07/{fleet-assignment.ipynb => 01-fleet-assignment.ipynb} (100%) rename _sources/notebooks/07/{bim-robustness-analysis.ipynb => 02-bim-robustness-analysis.ipynb} (100%) rename _sources/notebooks/08/{bim-robust-optimization.ipynb => 01-bim-robust-optimization.ipynb} (100%) rename _sources/notebooks/09/{pop-up_shop.ipynb => 01-pop-up-shop.ipynb} (100%) rename _sources/notebooks/09/{markowitz_portfolio_with_chance_constraint.ipynb => 02-markowitz-portfolio-with-chance-constraint.ipynb} (100%) rename _sources/notebooks/09/{seafood.ipynb => 03-seafood-distribution-center.ipynb} (100%) rename _sources/notebooks/09/{economicdispatch.ipynb => 04-economic-dispatch.ipynb} (99%) rename _sources/notebooks/10/{opf-ldr.ipynb => 02-opf-linear-decision-rule.ipynb} (96%) rename _sources/notebooks/10/{ccg.ipynb => 03-two-stage-production-planning.ipynb} (99%) rename _sources/notebooks/10/{farmer.ipynb => 04-farmer-problem.ipynb} (99%) rename _sources/notebooks/10/{opf-wind-curtailment.ipynb => 05-opf-wind-curtailment.ipynb} (95%) delete mode 100644 _sources/notebooks/10/airline-seating.ipynb rename notebooks/02/{07-bim-rawmaterialplanning.html => 07-bim-demand-forecast.html} (97%) rename notebooks/02/{09-multiproductionfaciliity_worstcase.html => 09-production-faciliity-worst-case.html} (95%) create mode 100644 notebooks/03/06-facility-location.html create mode 100644 notebooks/03/07-bim-production-revisited.html rename notebooks/04/{dinner-seat-allocation.html => 01-dinner-seat-allocation.html} (96%) rename notebooks/04/{mincost-flow.html => 02-mincost-flow.html} (93%) rename notebooks/04/{gasoline-distribution.html => 03-gasoline-distribution.html} (97%) rename notebooks/04/{graph-coloring.html => 04-exam-room-scheduling.html} (93%) rename notebooks/04/{cryptocurrency-arbitrage.html => 05-cryptocurrency-arbitrage.html} (97%) rename notebooks/04/{power-network.html => 06-power-network.html} (97%) rename notebooks/04/{forex-arbitrage.html => 07-forex-arbitrage.html} (95%) rename notebooks/05/{milk-pooling.html => 01-milk-pooling.html} (97%) rename notebooks/05/{ols-regression.html => 02-ols-regression.html} (92%) rename notebooks/05/{markowitz_portfolio.html => 03-markowitz-portfolio.html} (90%) rename notebooks/05/{svm.html => 04-svm-binary-classification.html} (97%) rename notebooks/05/{refinery-production.html => 05-refinery-production.html} (94%) rename notebooks/05/{cutting-stock.html => 06-cutting-stock.html} (98%) rename notebooks/06/{economic-order-quantity.html => 01-economic-order-quantity.html} (97%) rename notebooks/06/{kelly-criterion.html => 02-kelly-criterion.html} (94%) rename notebooks/06/{markowitz_portfolio_revisited.html => 03-markowitz-portfolio-revisited.html} (89%) rename notebooks/06/{building-insulation.html => 04-building-insulation.html} (95%) rename notebooks/06/{svm-conic.html => 05-svm-conic.html} (96%) rename notebooks/06/{investment-wheel.html => 06-investment-wheel.html} (95%) rename notebooks/06/{optimal-growth-portfolios.html => 07-optimal-growth-portfolios.html} (96%) rename notebooks/07/{fleet-assignment.html => 01-fleet-assignment.html} (97%) rename notebooks/07/{bim-robustness-analysis.html => 02-bim-robustness-analysis.html} (96%) rename notebooks/08/{bim-robust-optimization.html => 01-bim-robust-optimization.html} (97%) rename notebooks/09/{pop-up_shop.html => 01-pop-up-shop.html} (95%) rename notebooks/09/{markowitz_portfolio_with_chance_constraint.html => 02-markowitz-portfolio-with-chance-constraint.html} (91%) rename notebooks/09/{seafood.html => 03-seafood-distribution-center.html} (96%) rename notebooks/09/{economicdispatch.html => 04-economic-dispatch.html} (95%) rename notebooks/10/{opf-ldr.html => 02-opf-linear-decision-rule.html} (91%) rename notebooks/10/{ccg.html => 03-two-stage-production-planning.html} (95%) rename notebooks/10/{farmer.html => 04-farmer-problem.html} (93%) rename notebooks/10/{opf-wind-curtailment.html => 05-opf-wind-curtailment.html} (81%) delete mode 100644 notebooks/10/airline-seating.html diff --git a/_images/133ae3d32ff19c43e68cb11078dd7c96753e835aecc3877520692c5b12a62e12.png b/_images/133ae3d32ff19c43e68cb11078dd7c96753e835aecc3877520692c5b12a62e12.png deleted file mode 100644 index cbc484f9049a0501f9312bb563dd81743fa08bd1..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 237559 zcmb4rbzD_nyC)(TgeZte36e^8mrAG7-67K5ARyf!UDDm%(%s$N-3_z0{_Z>Py>sWz zXa3lraLzt^uf5jud~4zJSzG`a0Sf^J1_oJ3kXI50=HV=KJb46u64{673BIvf^2u9D zndn;DXqfB3h-p}w8k$%d>TBX#>zG^Un;6qmF;me{;D5EWG__!(rZ)Q53#d%Y^{6>8 z@}Gl~JT(1g%|7_of5A@!rCZXK{`oER%?;r#)9n9#1O9XACqy2$kW}f+d*p4T`6st3wE;i$^UsroFB*JmjL5Mcn`zgJuDmqft-bX8t zRX4dt^2=DRLUTL!-C?ppSy>s{NbEyfjyDN*YnU($Vp`MXMl<%?c@(O(QRj0GLHgiy zrYP`kMK6w5Lt3SysDos|pnj$m=ek_++50%DU7|oF^ihViU2b_qN+K;k-#EGE?Q>B~ zRr^iiyFH3w*RDB%BJwAKl ztxnL04cD{#7uOB<*H3rid1#n4>p701$c|SBy-lex zr2QB7Ry{RLxAQ9KOy)Q^-k`|H$i$g8J-xYT=YC{PHOf3=`Y^a;ZEaTk4*cZRoJ%{d z4UNm4qcRl+GBUE`rihwme*!1pZcKV77}+RVtw+WcvBTo*0m#@)h1#8{5floN?;>ql zFITBuI<3Z4+Dr9^O{aFSXNv<*_hwVVh3p&oe*TF&-p%)E zlZJS3S4)Ss^2ORu@f;5xOd3X*IBhGHmX?CYc`=f~#V02>elc(8$^)|^en~8}RDZok zuE?`y#ul$^znSLIu-iv25<#J{*yK@rwUy(zqlMSJeM;wWW>|lJyRY^75zOrDEK9t2 z{c-&M&(iC=>wQ8YRPM`82?U+)Xsx}<NB5&Q_PD-b-*C!aGP9<@ouwr+;*diSy^daFhig#9T^!}u&!afTnW28EpRb9jUww(v6=NC5&}b&w^D{} zQu`ufSV%$w1*V|kj;%YAIwL9RL1Z_dhzMfhMGL8LLW9atg3vRs<%P%i&v8gv9N({X z`@~TPF+ua~)g@Z zL&x1#!JY5@-TwU=-rXYJMVDNC(_=hG^~r)*<7yw38f&xty7Qxp<)Gn#fzRF=SCKB4 z7|!Q4^F`LXin{#?y`jV+2wpIsE+_k)+x)2OJNli^=$#M!)DFONvFId@G+hms8=9T% zy}xa^kA&_dBhfjgz;TuQu~UPUO2w_J>%!Mh<5tjO6z4pZo|>96tZUz^g&mlj>|E!* zx2r$!pgx$;3Njny!!R2bV=i*OwTIc--d3o0WJTe+P}k6i*4v#b1M`9F{<8n!PtNw6 z6;kfSXuX6*m;3$u-us*WduaA|AMQ+71WipTLX+qi)Ru#i#9Jg88P;WgdI}7$`Ma}< z$tnxdhKp9}%KiH5i-TsAs+CX?-?f;>Z*0GVJA2(sgK)gUTz?pl>@il-&($r!ef8zh zqeqpXXk6~!-@H>5xSvl1k_P?iMPYTFsuwGhn%iCUV7pW%!n3a(S03`F_rB9oM*W@lke8 z&SeWJmxhBQY$GrJnh330Q%g_eCl^odYeFn3{KCemG6OO7kwi>--IsNGZT^^RUE$=2 zF4SuEGaQ?#Vf;qxkGU^gpGNKO?(&V#JM43!(G*l~WhZYJ)E@ahje>4pY?z_9zMgA% z)jZney23?CdM_r4ipMR9Xy zhvC8T{@vcbVR!|5K~%bag2P@FiF*A}7df9!5U4T7O^DPKH@D#FM}NNr#TGqZKSsB_ zv@|O5vPX}9r(52lhqfI@OP4M>`Fur9sm6LY^Hi4()1ohqb&dP}m>VO1eZ2uZy2{L( z0+(9@G#WKfqlX#9=&=G~8r26lK*benrr|f#ySuqu>m*Gy)Ge7z-UbVmIW{)dZ>=44 zk2a3AC@ub616#a2XRe!r<}dTtpxjLv8W~Z3J3nu@uX`E=uC!7=CcR33m;{Xm&*@~4 z_L?p(oLo-vET^h!(s9uPqbpwmpJm4Ta;RFBR&9+1=a^VM!R78!XPjB)MTGGOg`4Sy zTkL}Rt8bnCpk8sVIY@BdTFyBhi$TRU!SP6lAjEsuI??G&;X5kh$*=@>{Bj_BAotB8 z3QR5NwyDGVvbpkKr1yI0`*99a59kvw{Z~&xM~svbXN3n1JUg2O=h@wX7x%%O!+!YB zx{D>hkkyB38Q?6>ezi=6G}If6=fB`r>;b1%u}pNizn-7APvpUWja_proRFSQBF=q# zl59X4X9~-1vqy2`1lHo<$VdyAbBN>6^_}fbw?{VItR|mF(6>XSv0OQVQA`VTZXB1J zL$EfbWm-2aj~2b~0_FD)4q-fKjX=W}Bx;h8Q(;W*+9@}hw!ObSN0iMx=Jh#Zc=Jp{|pbRe^2P7U+r8tj8(1 zG~ej&cey(*-iq!LeOC6a@#kXYa^Q05usC_u8w8JuI*0Sj{kqNc*n>+)X!U~AWAJ@p z0ZXCs_H3GR8%Nm0ggRI%5l37^L`0*hJJP_=km9|bl~F3&e(kY%e$5^mD6Ds``=D%& zjE*L~Lzutpv!NheiiwFyZip9O&m5P^`l+MlX|d!(itv`v^*4!?m6dIs>eTeK5wtQ^ ziX^{VRVfpNbvDgsXCJjvJBQTl*T=fLJ^)Y&fH2(N-d<(fMGp`2)jnETr_!Y5j^J^@cV!%rF3<5tdiE+&jbMH{97nM>k!w zibS`@+0LZa9Ug6*A62#Y+L|sH=cic9dg4%Fcx9=2W z;&MHGa(+HMGt(p2a3ym$et)H=MKz_PK(#sUfuSm>q=Y@L>X0{Ki%7z#S^x4_C&4G? zZ=*Av_$(7{P*4{E9pIJ{oUiojZ+A^Bz`7}RI5)0U-S^(_m9WIc#U&1#tarLbz#ew2 zx=CgF+1Dp7Vo))vzjAfDtpKpb`HY3cpjC|-Ijrl#0l=S7=LSXKz8OpyewB;ww{~gD z`ISou&Ij&z2cWzkSAa6daWVKeGOW7$8O|%est=^ow{mFiYHApbeTB0T1on%mU_rx+6?3AOx^L@Ek!f5D_a6Uo<&A@ge$xAR}7y{3H ztFI^(Tbfb0{qvQ=6-pHT&aNJOe3Ll-VnWYMDOE2oA`-OEAT&n6P( zx>lh{?@!;S4!S8Jl`0uyyZq>N&HQa3nE!92o%}GUNnRpAU?A{a6e|Fppv5)En$&md zXTiyY;17X6%&c}f*W z1@~74fC?Fi5(~QW(3r(pjVXY6!RDideFm30F~oDlI91%7Pr(baZ=#k|vb5x8&& zVNM@+H68#M9bMqGYXISoRzHkLc`7ir6l(QxV1#G^G7)E4gkv(9>p=k%lQvJDaPj>5 zauLO)1FTncs>%h}`m51`p^1qOs7N07GGBuJgYf(QlKb8ZTAqm1wZRZ;0<>jte7qeL zr*^QC+Fb6|U0!WLv-?4puN24Ywf@9@1-;C=?(g(EZHG2X?QT!UV*y~N zpEa(q>w2FN6~uLwS!KT3m29>)O5*}*!OJ?A)av%?AiJZjRlqD#BEV!Gt37PPh9Fe$ z=5R)=c*gL_rQ;ujaOZMAf3Ih4Wrf}~886qzd9G~H=mt-`i645-`JsUGi?^fTR`WN=4=(wwhz=DBDwB8bq?0AOh^ zm{sH8lhVhx8UNrPsPT~|gkjv)MU}Is4g0Wy?WQ<;qw@I)AYw=ZhEUlL3DkpZ| zSBp}Wy_$V4G#bt~5<+9%=kqS}H#6&8dT#(oN^f7L{gf1J2ij)r_E;Wvi7GkcoTuj_ z2-`8@*{y`Q?-lUSyzsu1?1@abvt92_;?~N_!Fw;5u20xl%tOgwv>Kfh}MWa47(yq=V4=6|2PkbvU9s3;+HqW`1J;!VhvK23uJ zK#2hUbDq#tpS?gH{3ssLVIr)6Au!L_^{xlqqR8Q48$Y)=veJR7`vlHzr!QRKCf#Aa z-l?>#Ow5uQ4z`g<^L%f%w7gv0l9>cuGatN4*88&fC9N6)oZF&5quiUr*gYP6m=$AQ zn%6ibj!dzuSs4kMlf^nLIDx`81<5!RbM#s6GQ@W3o{gaF5^FK<5$w zv>pfZ&&fEf*SiRvhvRLopFVOgXP#9ph*YOx$zn#aW(jSB6&SM(OfC97f*oY~m?CYa zN)nJo-2ZeTzWBKRPgUrD9I^ioVd|MHFTa)x5g$Q{n57($p463}A5UEn{7dP2+*zLg zdRuj-aSCHv;e6>?xm7DkwTJ*w#jG_p-erdXm;?+A3#4{SLo6pDY?%sbh*IZ!^wxg?^)lBk;&av>0@n-_B-==P+HZ=#ca09XcVJ^&0@Bm#^O-f5kTPc&tkv;4n4Eh5V01l(pM>#v2H)-{<1jtgoGRd^Mh^&@iucBn?q?gz4JH7 zFg7!0kAYl53KpQ&-b~dW%?ZduU=&cFz>#E6!#2K;Wo8 z;BEj2j1@2+767Vf#lmX#s{KH(kCt$`8m3UL3{A&et6FZik55J1ut=#=m5`oSG^>Xv|k&o#|U zOY`tR#3(jfZhJ9Z4SMqvkB=US<>lpOI6gcyRnLzVb^gkpQ6IJGFvlQ#)^MXkB$QlN z7vI;{m&}(6bRJO1aIIcMi)Z-o67X@uy8hy*6%W@zjLAG?-3UwrU*+u`!wMhCydGw# z0uX=|P(OuAQ;o%|-HQ3Z>}oNAVSN_I?;tqnEr^Mu`4Lymouv)ECbVHIhr96iHT& zjf}v3UczD>BN$pWe}VMK&lwcXk;Si4ubITc0O{VoSz~U1)EEr_sQC(9fHJg_S24E~ zz&!Wv21tUY&B)9LD`66_rdwGVOQtLng&Ln0odDRcJ?>)%lI%rcASmKED&8rGpu|NH ztc==wksbBLF!}*n3RdrLK--a4mg*D1qBd^0J@eVhUU;(n)lwrtaA#&eMNH#jE2m&B z$?MG$P*WS8!ohmDw|##1qkTE4ygUMkP08ng8iOex#cZOQv;)>Yq<9JdcF)MjsO)lk zN}*Vq`Ae4yEROJnj@WRZ&M!P^p+SNe5kLoDMjuL55D5VS;mc?+Mx)n<1EFF76%Xv| zl&vRq&?dARLz+NAgz6AcIPr#cq2UKKFcC{iP_s>6jET;d8?GqF~*btO?T@Mfe z43JHQ22a64f5kwxbC7~}`$R@Yp-24Y>FI)DVQGR0 z@no3+hT7dxq=@P@7;_=I=#}i8{A7UG==)gQGZO5DS2kYZ(0x*gI>xR+R$>El(T-P9 ziZsT2&qh_lwmG6N<)g*~LvQhXiB@}Hr~wd#A(jaa2ON81FaT#P|M6+^<%W~qe&WCZ zsIzCxkt^V;jYq{f#POl(2{#SLD`4xcoByaG4=ynMk*4)u$3wj{WUWd0sodpZ?y>q_ z#rS)sY0%DpIsrXn&OW$qW;7VV+|`&tE+}a z?&GdQ?KVf~-XBxt+22j70Q+C5ooSMt2}&$$<9Oj9dq%-^IyzIb|ya1SAL2$VcXq8}&K@X?upb3$D)aq}W{`A@eW6ekKgDe;i z;i`GWNHgdm7Dp9g&e9;&0|n9?tcpVQMz_#$W|KKlU~vFY;bA~YNeLC-0Bq*K%1wYt zQ-?R3=0gPGz8f-$Fva4Qs9n-ocZpj=U?GGt;pVk+u@mE1C&ymaks*o0J)B#LtB)}F z%rdYnJ}5(Y;Botp+XB<;-HMcKviXZPW(u|aot>6VOGy4+52C8lqu3pLz#i^Jjx^(joX1J-LYFw48|?#>$u)Fs-yI`0foeOh>JKH#%t zM{m5;4mX{BwYLBPy4QYBFB3KXQ;AD0o->G9%iOO5`bs4z%!n=m1TVmtfhmUBsBYSG zRWeC|&19$!x+p+Z#aB#||3IQ6t;;@==u(Y+_Jh8yPHah9nFO)9V?O-nqDWzH;T4FL zD>B^JFL*0YAb$+M{YOvrzm+`?gX(;XS*vjfbrfl}Lj|Bin+^yV7z#Bt)ztvO9(r5V zKt)%s)5@#)%b4!3nWM1izqd1p75Az666~HD;UOEGiQn~1fZF|&7`hW$Dr5Otj-(L1V#V*D8AMa08oL4xv zS%O$H?J1mFbMt=(r`+6AHSfDyHE97Sl)b0{jSxsZ?lCb~=@NRC_7dh2)w#QPk?NmB?0kACiF>DmV-Z0u| z`*$VcoY)%;5e#vFhhyVLWQl9tNHCZ5|1zDZpB%@|7~86b)D)W3_Zt*_vGX*8vjFUQ zg=8&osTkw6tDN*O(28|zJW7B6;H)(l-pi}=Pze3+yI+5lplGeenBJ7o)_+#D`6R>E zREwRo^ikGv4QaIl=tDHL=)CCNo6ELJEh+B<M83{dGe8|hU{VS+4rPJ+6uMX`SV()k( zK!-qi|42C`NeiD3An1=8?vzQ5TBK1}wv=6bj18|cK(_j(}4RNi~+TH2%^R7+E_J71+*P$nY4O29Ts>yfR*R1CKZ zr+!4Ll+hirKdjWw<`91rii!1bPiXZi{__av)}v5&W@{p;9TyQt#>SRT?OA~jGEr-1 zv1m2Spa2>dD5t;$25x5)=yB|>oUfh;zi%(23mJSuTH<&zp-9E4kA=rs9wA7^o|W4f zZi)^b%$R>TTTbZ2sV-(tkey%Ud|F`&v*&yoPVp$0nqFDEkO_rYSvxCL0!)*;p5u!@ zW_{EOs4K^VLC!C|nj0ZEs!*rX$w5iMTpf6y?1x2&O3U1LoNOg%PWWv|>E_pe83 z1wJsB-TNOnLt`C=C_l-!4>E!HlEf`xZ4NUJDuiX}ZFRSu6YhV->Xq*a3?na&Dg0ll z+A|)4kOcsdmmzhppzaI{az8H?+)*IT=(nX%_6;417NBt7&`{SNz!u5-uXabKY+vyr ziO_UnnwUg5Iu(`n^7D>0LE9+pAg!tcAauZFrL*L@;$jz|@i^1TotjE~HI~BTI9cNK@zktOPlu;LttybylOSE)hJU`qPz4f*bxtq72S34n6vtj&Bc_%{US zU=~fIAo~#ym^Y9u9p`w|30V*o^Ukqg$n6QdNTX8yD-INhe~hGm#Do7R2v+qI63*!g z696Um79k^Gdj5_HxEqO=ZOrwqfGLTnU7>=TfMH-_dR15Om#Zj_*-aZ&m~~TDNZ0NQ zko)*EX}ED~m2nQTnsmS5CCf0Bpy1PE5tHiBd0#GT3V+Vtf%S;d`SBvJb&J`wo#)_B z&rcy26LD;GF+Nh^g4!pavZd66Oj(e4#Kd|t0aYXWv1B+`8*Rv>WXS`RzNRJ*#K}rC zLWuI{aBf=0SYGjDvzZCnX{)ba%jX|V%3H|_3mS23=knsg|MOJdG}Ex`mJZ98=pw_A zCOXmq0h0=lQxvtUp-6<)RE;9#bo~hBZVO-$o9&j3zq$+LB>+l}%&&6+JhUubqm13o z!e2*hyC!VAKb_WYsmAIiR9~O3;>EYx9b@};!Of5<%&wp)RhyEbV$QClmXmdxO*?sB zvL)XC(wo_O=^vmUqwKI-7Uy&}2|(CDu_#&ilG6Out4I}V092lT2W~{1I4N*i_;j$b zu@Su@WxYRj5u()0x7W7!0_8!=er6)8B<^Y_wBXprWLHbT#GkEUJ9z8gZZQE^Eg)KP zk!%2p0?z%Z+C4lEXyU<2pP87MF}f_Rtit6Rjv+3X-x;}Yn@vCB!P<~CTbLFWksXb$ zRybjFEvWSQv_&%4p(q}d@U`IBKvUnx%;gpz4GKq=jAGp97EnXA&3_Z$!02!{3y-{i z9S%`6$epMK_%xzGuS5aZv3Jj!X)Z4NUAT0eQgA=Jv7~Ygy*t1D+P<6~$3`A=XBY=f zHsA6r&q{X)!*^b82yiQ=4j~>iKE|WbYD0nn*$X~!;Q+TS0BZLLKdkcr@N+W&H1W>v z-t>y5Zdkg(g%us}4Wx%K}WC!xf&=s24lGzz?}e5 zD=)wY7f$V~c8a@6D$fNl&^D`8jHjhEKIpWol)PUd*svaWA&yQl%gFUuENMwh@^{`* z79(@%FTp998Gxl7Xo11Wh6-&7ViL~u>*#ER$d;Z{Vg!gTNh1V!i~eQv9Uo~EHHZ5 zpLMgqp-H4IW$$_x_%oyB4Zkh)`b-VLpPNvh0N2rrH+Cy8oKJJqASa_9q>;=4Qa%K8 zqW<$*?EDQ$j%?l%V3$k4B-H{Ghy#FG0GFQbTn@I|k{e5emy^4yfbnaH?dE3l!%B3| z|7tu#j?qtMM!6r5W@lpp*GuyS9kZ9l&PMIWoP2erGV#kXG|T{8&coz#n-h{YVzGh2 z(6M#E-F0uTPB~5nKEc60U}I+onE|3`QP^MlSc$hgdXuI4Xi#z`Fn`;FE?V?a$NM-n zyVY=IU=#sw+-2c(Tx}gu?E)5n-6c0fs;G{|r_Ts4_wz);Cx&Rhi-fo78e%FGIvIOBB&pT*of16i|@4Q-tiS z{EdFPX1OQ-JiL~xc1QlamOhT3S?m>qmuWT~X74ZR5GpfQYOj>uYO8+Ea~P1w3QgVy z{`~4uH?%RF0Dnuh4eD*6chs@X?B(3mlf)nYA52WG~Y8ECZ7ac*lRX8OAD zI=+;?VWky=@O^;3Ou}F*hLI-oNQ*HZN{kt*B$_`rx&<{bIM<;#&R2c?51~YFK**xW z0OZO*#43c(?-dY>!7mn}&USsaOP);#ET&$@@y~K{Uj6IKLn72VVBEsDivMy6_uu(B z7L!zi9`M@E^i~ImU5X8U@V%~X;Yu<@uS(%EPccj!y|R;-;mn;J0p#W^8u?IRG!9>n z6If~rus_j`GwE(0wcTMWRzaA5#CdY3LahKn$lwH?PymZuINCS5IgPg-Y+;z+oW!rf zqRpN%VjA?g9c51R-~_d^f>dMGk}vs1j~PZ7|0>Ly}gB`BoI*eDHh9w-jxUb z(~jp7=Y{7S1(Hipk^nL&0XXo$4*qj9VQ@A1eLCds(hnEo!aRBd+{1$DXK_zh_G1yL4nA4>iP{_#g-{yNFwC<0 z7n~A1is`$Kc;qi$p^EA6?1&AZixtg!r*xopT5itBJ`)HNTwYApEIH=GP-y{&_NC&x zmzp5D#5cZIe{BqcB9_*>Q>`bP!%w}MISzh5yg7<&pzv0LP)m6^6XfnwfnFnQr2+{M zupcm2RLE`4Ni&aFUJL5#BUSTDKf=qI87OwRLbJso>&)dh2)E%q-z?H3IzBxmEiOe) zA1yM!@2PRy-<6Quwi&|i{)}N7xP@TM%w<7=apA5(mN|eJ$kj%#TNQ@{zxqQtisW@v z6p0|Acfx93hsq#>%$vt5gC}p(mdW&<;Y@iA?xhiY5?}!)fl?*6r+%{kLO+MBp`&xp zb(0WBc2m8nxw2&NBxZL=Pb#Jn3l4uM5y)J?02)CLrk_rC1bP<`F(IFt$#{lkDV;rD zJWL$V6a}czJbh`LvAuzlL5`U0I;8Bt1zPC9l5j?%nyfEg)qZm>ZO0T==K|PF>$Y_C zJkHAMnKeNt#fKnwi?y*xitL?;?nq=ioEv*7Y9G-)&EwG^4~p)oqOO%$Zf3(xoYC8o zzWuc(c(IxLChKZ;DO(k?NL+5GmfqsRCr{y8{m*R(@DdIe+RnZ-)9*O9TQqro#xqUA zCh?_6!j!i!;g!N-zh1KB8!}`z$DYxaEh#0Kj`!N>bG6Q5=DYIf+{8u4KO zyabsa5Lxr;ClYP z-i;FzkL0>UhzJ#J7T$Hin;V${{9&*FarmfD8Y5V=_RE+=?`@n|e35V;X3^$#ShuV6;m8*jw@XUf z#aXuIZvP>j7Y8gOU-H&JX)PaX6`=-qe`VXZ;`QC@zm9)F7sGY*5bGhWoVc5q4Ip4p z#Ek~YJ@Ni#T`PiF3{C%~PCXQ^1U`NFfejIAQeIvFG?kc6v`+QFQUcyP;EEb1&%=KH zqd0L#>>Gv(VW0hQom1en`$U%BRnqBD51REMF}vC}^pi@Qls3zCIR75E?;+vv z#CYwjc~kD=SxeUMQrgU};>ny28JsiNG~-wOb*znGf~4L?4+;dZbH@x>KZVo!(g_WO zf6+&(xa=mg-UsE@{5~00ZpPtuVh`fJWvTu&=CSB-&ldbk+fSWse9$M2eVZMt+J0d_ z_2Kt&;LSs*DVq8u<$2mNM3|0Lf{l$Q{;d+1u6PGO1rv_*S)4B~OV%LM+H3`XPdHlb zW}j{e6b?T-vj)k}=wvZ7fES}hJ@4-B2n=lGDmcB~^8DdI2Q5~!Bmt!(7Bm=JbP=CSWfFE7DXNzVX2=jK}weLDilJ)koyom>H%*tdD{ow?lZ z#>N8h2r;exiTN)aNQzg-#n+h?gEbc3x%H^VemUa3{!aR&ur`DB3GslxG8RoQ&E#M# z$A+cOYU&cIehr+PX4kE_Gy!G!?1^gLC@Z41L7869zOB}8F|wTD*QP-nZ))B@6SFAH zWVo1CoF~Q0QQ5b7rCApHF-`XDW@ZdmWLZ|bT1&sXs&_AL%PPAk^K?-f9f@!qlcsLW zM({W$ik$rGW?-u(lxjY(0TkGz_V5v~M?m2_0IA;y5bO$oG65Uas@}u-Sy_#nmZ%6G zl_14gwO75JnU|NAp6-aYSv6~myW=^1-gp-=_KYq5 zvonRvoUGDj9WQvIzh2kO`v^ZV2+*@HFz=cYGkYzj&mtXtyv9f%#0r0EnmvMyyVL$H zlF(82PgToAsgyqqk^L8SwT9=OTJQ1=u>P;wConqJK>Y3DLTZ>enf*Kz0S2Nb%mt8k zeq?7uvss(2^Kw10zuIb>H}J3cMiJG)N8yhv5^ZC$1Cswh#|uoSoW;(Ya<)-xDc*JL zn`J&j!S7aoO*7ntUW{|zX1<>yI8FTgCHX<^`xpi*w<)w}b5o0>G{lG2& zh?o{{$XdQN)CDETd$KhQ53wmjoVn=ml51@^^|ZBJ+(0)n#V$WL%Hi^l>{_y-H(PB5 zwt);EF%B~zVjII$O!oqrK@0>JeR$mnty%5JElKgclc}SjpaBm z>~K?F2@b}^VSNxVR$r6%htyv(~Sr9gr)gT~xajfTj2M>vG}qSW+u(8T=SU$ z#H!-QDtR@@`rXAI(&`VGL*W9l>9!uE;WBSGC1uQi7^BHNWT#keId0Me=-g8y@SUTs z&5TFU1!omFyc{RkN>K>@*;>@7k%W5aA1>bldxmajG=L^jwAXr;{E`L5*l_*F*snCV z{P@Eal`*`T39j_6s(6Qlj;}i#J}HA$`xh_g&k-la*zeWBRT@0br(|@)wEzoF< zyM3Wr%`~1aVp&1A<7Ub*R+ctoZ`LQsqIesWa=;$f6PT%LZ1crfV6_&<#%h*9VF0Ho zt4o`~y}qRbVSClThIOTFTN+vuzUj}h#6c-;8_t&ZasT*ELf#ua}$5(|L zer!HFTBGHTuw68WKDHZNP(m1oH4Lwc{~D!jI$Qo}ueW(2T7pJJ(5fvwq-2|4)=DYF zUwsd=chS$^`6{e6&lBp(8&R6REQx;hjEHhSXjV@P4B_nI1f?GHtpcm)$+{k$sii;2 z@PIkj>4}WU&-!zjOC_RJ1Lr!rXM;BsD_x&JL_O-cxIPj6SeDU_x(&zjZocZX@JuQE z*FM7X=;TS5A^Y3%uheQ5F#&(e#}NCSN0&0@m+jV`6x#ExRMt*pt0!aEH?elvJh-D%|>84!ruB~YTJNz z`|6KZljxr0>#9@lBk_*AcXxS172MuDUhm1nqu;;!+Rx4%AuvAyylI-=x91mM1O4g4 z{n-^y<)Vce7Y)+)3v)UPa9dXZQ)z}&CXjeqZZ+a0qGvOfA&DNGtjx#Zu1NbzyNFT($7uCFk!*GA+vSOvA=beMk=4LE#FF$WBIC! z(m?OUwCwV79P8LaAZLrS05UQ!fm(>IhWPsJyAO zWF@jbZ$GS&0V2n?U1QhYKbl9kwECsFkqj4yxX1Ty+NF~BsnULFfXHq7DxA~0^gj;8 z{B}!azr5L;(5R8?zAfAy@AqfBqo}!Tfod<5i?Pi6<1vfFfZQnv;Vy!WU@8CP6(D(s zLcUO)pqjkUN5xN+HDlj;n}Sp(D8ASlqlmNUCAguabW&HrZtgAc0YAs`r<2piloqj6_!t1K^d2}ZMI;apq?gfM@RLlUZ0<@q{Np0Ii31jAm z%bz;t1seWotrYuO_4VHh9?C>yov~4DlY5ybCV_S0ziu-_^@*9P(_b8fzB;6;%{rBq z4IH0Mk6i%K&tv$bmhlic?`_CSAOF*HgUlLxf|S7*eW!z6Dzp2trtj$Vd+~ENQyCv- zWG~o|^R4QRU4G3n4`UQ9t_JNeT6R@KSLN_S{2yv=!Vw@Mvk{Q7=}$x{6}-B?x_1W$ zW^>IoTEuxVbHv(g-3x|Uo(P^{8U1hH$f}HE zNTB#R^SmQHl>dKV3&d`HL&Fs)Sp>2wQ;U1q>T%IuN9EXGxupjq@&8+KCWI`s{ zgPZcYQcL4>3^NkfXesmu{?L(1~|^SzbA$3L*;gfaFseMr)ek+#DnHnRB<#;3s(`a@@0eSZ@8 zRrKE+ZE?0TH(NpYG9uW^>EV0WM}l;sIY&4V?(OC%oV(5>-F%giAmhPxKUjs0D% z^i@kKCGu6aYZ_<^SX2Yc=7JH%gM&Z$od$X{#0_;e4+9*xT4c9ijYWV6Uj7Y_{+m;& z%r%UK^!VGCc`5EaRX1Hqz+VZ#`Ec}vN}}hDWe&x zC2tvk8A({dzLqbG^N^#FThg}#y!J)lx~+hne{eil5#lWjy`cu5{!^H$=rCbLdh5iA zp$mOuvbMrS+BLzkt5A?kB(EQeBreDbSk9KG5F}J+o&bGS=9<4$b47WYv3y5l1vO9v z70fd5K&-dB=@Tx^;0d7}17@eAa>pS-j&Nebm6vO=3LvVbRBqU~-tFXkboJ`LjW@%{ zLzX=E9Sda1gDv=wMFW{Ey|K(G@4{`Y;RmCfR)-25-URwf#7dbP@$j!~p8mYj{dDcC*c#3u-)EF%o-~wuHya~V zWgf9@1Z8{)eh@}hFl=soT!X_KO8fFDK}=(uXLFb^6)ApX>%Odz9&+uo=&w_3+;+rK z?=%{dz|JEetBcZtjS0{QgUwqMEp{js-)#O^uU=qFKiD4*;>C@o2(X-(YcN zrqF;{lumCctHa6hRzXy*lKuGMJ+$E*iV}m2^a4l>XoIa-J5yzTV3Z!FUA;oYpjrVB zng_U$hWYC*ms?+=IcSyIw13?X2w;f-;eI`nxLjR)5mbd+JANOSH}Qta58rS@rv01UjGoLc)-S#>Qj=B@}}?p2G6DZE!ldZtxN4( zXSDx!_gKPI0$wWqA8#!Rt!oe|OrFi){lM~PqCWQg2Tz}(g_$-@`5s=<>kTOG>MpC< zD>#Z$uJ@I2;dJGAdvTDZM@uyXqzkvY;_J1VX7w8G2h!Kf=~em6&*2IXkj|tF(pBsG zD<Ho^C^8-8MV|Tf6&2D*UX@CHB_yBR? z_N_*R(d>6EtecBCviH5e^ST&h!mA}5;>q3yxvQB>sjTp6F-Cw?)|~C5UWN{BB<<)K zPkZ@n@)|cyQ2Od!;TE;a@pa2>@HJR5K$bg^UF%UJ)b2&3)@=@!{ zH;UNFKb=7n6S<)~1kFQACRyJASl9f_zgSm3$Ph{XrKk5vRpk34r3a{??-0x(k9 z{ONFpL*HGxCUlNOj*1*|iiJF$iSz0h7`!VyZ$%n#IgFpoJZ3S9T$%ITPX@usi z-!30w=Rcv4uMgsFjP6?zr`s)!D*R^6B;et%vRa@GC3E)Ml&WCANa%RiXhoq^+p77Z zIc}|e9d3G4V~6b-?f&hTWt(6|b1yqWyY`i7=aW-TOI}Ha$Fq({E0VNLj=p)3(+)mF zB|!S`Ur@u_PCMY)ET{e<^=vXH!~h#ShDRbpHSY%`x@E_Zc3vE8Xz3a-O+@kdd}z3G|>i@l`CtChFBDF7not2a*13Uk3L*$De%}pH3-bVq+1SAlqe2Q!jmzo*eB>xQlIqm;pL=4E4dxn1dC?xJlsEek%h~L?53Y1 z*h$mHd?3qN{;Vw-BhD`;y!G(f>nDimiG;^Gg%G8)lNQkCRgd__p?M5nirCbe4vc7r z%psClJYm3W=^+VCF(~~L5yffrKmYjtPkhDiRgGS6KIaDC)M4+3IA2kUc(k{^X^b<^ zqL*VuJZ?aYv^b`*{Pw9fCelOQ5j&ArZL1W&ysDG#7wf1*m`@g0`OW3$ojc}m~u3uf$ZS6^$8{Pmqc)$J%)ngAfyaqX=!=T$G&e0#j55W zAZw7}_)Dh-@g=L05c=5f?)V(9?>c?;{4lUf6xwwl?10Dau!J*?O17z`H4yNFH>KG~ zpYxmz1Wm6d*n@kFlF@xO%ecDDSY$kwV;&mr`iBmhR~4)?!VBkiT%M>#u~NtL@>8dt z$0*n=T<2gfSdsCDvF;*zQ7l>jyJGF;ZCZcYFETnVxqQ`}PhE~|R9U7NBAm>CF5@~q zwItMI?B96AZXf1Rd6u-AVE@1PdJC{ByLao?1VKOr1VKP)fkmSIB48wus-h? zFUIeD!$TEnZ#Yl$zI8)}jDf2&k|Id#l~=`v6HH3s?_}{H9UFZzD6}Iy)fMJ`5kA)@ zknb>Hg>HYbqz**618M8l#=`>j%*S0kiU<4!M4yfxn+A|Y4}rDCvi1|nmjB$-u9Jh7 zuwCR>MY)J*XG}fFghSo_7YQvgbGJQSybcb&WKSOfN{a*tO?4Y$e-)o!f{BqVg3-hx zaH=p4SA!Ur*8iUyr=(O_lE9OPV4qJ^i4aS9t-&oUnYB6<2sPhnS%#pSCcLRb5@uXL zhxR5DqD?Bt?F=v?d121${m}v+slsI?!8aSR35WwAQt~X`f02hWjvYur2>Pk z^L#&Ix0@70SzHv)f_fTNu&V*zUWgkitPBhFm`akvhktV`L)8(P6jElC%bOVMS}QjUs8}K$`}R+zEFAqu zC{K2GLdwh85f=3*6O%7Z#B62`Z=qkTw3(6i*-FN$^1XIq%k5xdxHFwhdsF{`Ych@; z4~(v;=F5QR8Y^XSh*t35nDuyvK>Cs3sfs(_2K(3r~2e7ReAuf2uYmyD~K!v zzT89D5(bbtZ1pAnth6nIzU4?9{vRS%|LPX;obw!JBWH{h!3dH4$a9&njUqmkS|BZ@ zaM2kZ@LL*^WkXJVwVmWy|!O!W$siKik0l+M<795Yo zAvm&$JJ>T2@MMM&jNDIW-T;GqFn236j2e=@woVZ3{iRNos24f(9^PWknuNm|^0aqD zsI89-u5Wx{$A8&D!u69TQE05RD;T4+LROUBjy7`0A>d)FNYAzP^8i}Ccq&;Ds!Re7 zWrF7R8cmCaWG4Eqtdtwmy3b@%;K#yX;*qf%ZW}eH=C9ElJ*S2u@jYWVc_9(;o+oY$ z5<8lE%58;KM6kB_Oe+Z;+#XWx?%w}qbkv*P@x+n+@Oi=~ZeT$Eg!lLQ?&=37K(W=vd2Nz@trhia*+ z`Rwj%qU;_MtFkkIcfmajnV7wQV5bydgc#G4JD1u*j92F~>ZqBrqs+qhwgjqu8t`#c3mi#%eB4GbmlpKyeAV{e;=%rH6G*Z=^IVR5D+>|Y7kFl9pI}JE4B3tlcS37 z(?BMkqW{~7*T#4dLyq+60B};pZ!iFYUi#OWD}6@TuRGvN=di{`G%T12 zd@_d-h$XO^0ek7=<=7CDST)aH_4m_Z>P1KO$U)5ZyQ=bXetaL-#h+BYRotyKAFsxm zer9>Jn~g|KA;!-ZI-G%l&X$J7yYg#oMiZEDKE`LW`;%5RLL9c>l&9tFZdSi4A9VGG z<1ii_mE8HtR4j1N8ojI`#AR^zJ=|VpDZ!};HeyG~cD*+vkfO|06e-ru=J3U!(g)S{ zVq0Zd?M$B=I9n=jXGoKkoqau1bg}KZ1G5Uj#M?>b_GuAaVix5JG0z(aZvoUWFxyEh zSkUV=`<|~~Y$I#3p`151nk{YQsGgj66v8&D<7<7+EZBrXpYveF8mgpM_Hb`4rfDyB zmvY4Wbmn6J;U(ow3e*bjh0~M2AR;xkd<3jaNDsQ>rXmqmz%H|lC^AC!Ey84Ri@KNg z55j!gC*|PvzaEtIY!*(U8%}6ej|u($1=&-gAR_s_6MRUmN>Age{oFN*tSRP{#`_4P zhjg7zCDibxO6?mE`S9hby`C!G-vgsq+O1a9lxHL!4vfeb31}+^)u)Gktl9XrMeExZ z=E0B3G2u1HSLNDQdN>F=)b_#)T}4VD5oMV_Ho0^ zq^Ww1PdNNP$M1@S`peMgQ|3IrXT}>+hIVhjDUv3)e4*&}lH~N5+7vxJnQQw!dc~{Vrif+QKZa4MuT_o*$ns8es!qwV*cMLriC8yd|xv!B4KXv?BmHbMX9x{jFRIe`RRTqA?D zcYIuB8`#Ux+$t27^YVFR^*3ksZS7aCTXg4pz)^C#?4HcSknDvnJ@8cpnhL-7sgUy- zB?zCpe`nsiSPr0sFWO@*fY)Nau`(jX3k_q0B5~~EM)OJ%3pWKgdSWRpJ_-33++Bp? zWh*uy(81HU(mw}{qoZPFZTYK#S(rvz^qesKlV)Y84?NNo!#(FP2ZQ3Rp+s4z&)jI- z!in~M3<_39j0_GV(cF6Xk2B7SUsoZsge2M0`2#|K$EC3qy!nWLyBIRe4468v=895| zO?3ab`P>X7%z}#<4|y>s_SEA3#b(Bb#w^2C5o8`bO4_j_omr6~YLW)MO^@6@3~p9t z(zIf|xi&^Ovu%*A6ke=OuGwmK6mhFr)KTW{8^WUd2aKY^Dzb3?zL@3 z+U26xnU!VpcZa9?t}epo3kT!GmtE+{Nvv0u{1dVy3I{|!@K`0VK%$1_jnD`NF>wgw zje@$EMt8rBt$~NuTBOM@*F)r1aS}h1AJ)DOO|XHnKwhC@Mvh?sB`Fc2UwO2*#aqgz zlPxIMH>K^h!AnT@FcDa;Vm*Gp7fhep&Y*!3`s_jtdGe&C`4_DB6^xQwo!2jpO=Lw7 zwZA%t;hO^sKaQNa4X+uVJNT|^pC`BfV^$NLe?86V+BcsDysALLT6V&gHKww^6K;RcC{Zsa1LLR`SGrZ0o#r||OMUnqQOUdJd4gqd3GHl^k9nfiC^umF z#bg-}Qqjl&IZpBtxWUe6X-g~ojbF44bJFepwg>JCAZF}rNtI-h|14^H;Jq0fm$BP3 zZbto3<4585O)Brr@S&l!6~fxr)1(nfi^v|8G+jp#L>SO4{IBG4Z6K6E-yp&h%(mCYlW2S5ko-i8Y;QUUx3wQ7aP6bImUML^<>nR+> zH@|J&X8=A)eVVYHuOgLW`x$)lI|@<%rKG&A&Yc}fD)}WFufCp1xuR$C;fv$DAnTuf z8n0Nl{WB3!6lMMi^NjlU)Op!mFfxfO96&JBz*cC_i6(>1hqzI~A`EpzI0~gY%P-8F zxlRw5TwrgdXUrLl)Z`$3)}gNpxYek|#iPvBO%`>wP_WcV^EKytuf1kw)830vSrAGW zGc-nE3gAE16l`en_*5j0em`0%OLa&W_T5UfFoM;1{CCf3Qwz@$cJ@G#o~YGyQxTwniE@>c*Gd*JlxYiP_2XXpwi|o_bA&o7hP7F!Lp8$0?hHSy^tDkUAhDYjv-C?s<8H|Lt?BUaRPqSCYpsG3B|%}CW;2_tmHP@DHKX6dDKW_L zKk#1jfj__Kke^|&`31$#+gGTu;qfiq^c9mdj(QoNydy346-rb_<;+adPYTvZ$g@Z( zLpGi1(TJ=hju%L(k zv$javv!HWW$Jgyht(GIyF0ay^nyq+faQEgh5|VMRMbEH7?#J$!YEZNbx6_o zR778+^5yIUksdT$OvZW;piyBrMXwWJX^9CmDcFACA-SB!?|=e6KT+bN!7JA6md<}t z+T=teF`dGih7ZJ^2+>C--VM83o%zr{=cB+}z5zv?B?^0>I2EcTqCLhz_e4i5#+D^y z`rCpNm$+dW21QxJ_%r&;CQM$Ykj!#l9<1K`<=Txtx#cK-;CEWPv|lB1Jw~adj3T6} zEqxL1tK=S3CG0{WW5c$d7-6O#KloB+gqWu4-T0+8#1idrDS$VloGXv4{41q!Ve@eb zDF}&7CMC@S!;GP*3D8#Btgc%Tj|d9SNle(HpKyn;a_sDc9rc{@Nq?Q%CX4Dh1am3y zD-K!?ITguhm3;U&cH8zs1ih{18+tabwynGxv`pL+yzf&XwCnm*NLNvdLceR;r|H6C zY--?_sn}k^wEge7{HI~WYKTdx`R2@bfO%{%nw%m7@<%{k7f5aYC(5H|wwj>5e;
I6U3TLBqp!tJua8KqI~rdf2qaXzmi-Q+8^+?n&aNOA#fjbN}n;cJHQX1U=$Q;y~KjaQWqoy2S1nU`FPt$0H!_Gzl4~I zl|h2n;l*f4O@r?aOD zusVFPiKl8jI1WrCOw=pW)p!IZSfiMikeQCFXwQcX7-ZS?$Ej#VXxJ| zzY$tuZNP2T|6{+0=7{fHksF`UoVM)igwsLMNxj-2(ZcHKt)S)F7x<^lSfKhoa)+Ws zO=?+YJs_ULvT53_z0+5L*=)G#OQDl*`(DEFnB)rQ{gmjHUktET)4cx?o5YGi zUaf#xN7QG99uq@v%G1Wm>2w$)+O_m`@Y{-htP>9IdsM~5&j#@!U}oJ7hQ5YxaRTnC z_pi)0>H#+%p-+1NmY>I58pVck5Ct2dU{RDuQ_fr8Jn>qY7)SDWcJ`#mBnWd0T98xZg{c-@>gN-#Ur_<%f+HMK1mMKIK}?82?a)-M7{Y2Ua1nj{(&OZ{Q*SUvSi zj~k>=9p0-Rq5R#axwYF;qW1bG_k3or?OT}e5J`gj#%6)UZFG;@XjnP~`_^^ySR!R!9q5&A2$Y%sg9 z?bsoln|({jL zQlBeMQ#qy<);Mf9#vG$hQx(Tg!4v`PO3J~7#eIdD9Ng#kI7xEPO{uGO28CafJKaw{ zxfb(dBFd5f6XG-Ao0yY*veJM8O_)5njj|iRnAJKt;Jls}&<+_hfAWFP<1}V8?~Pbz zMpPidU+je#{j%3R>*^-SKSqu%w^JW*Tj$}iWu`evBbLTl%G zcv%f}=X1BhdLve=ODU?H-WE150w5!ENiP&uc^Gvo@)^}@j45?vs!=d23)IyYcF@UI z=`|Y>r!c0V=jMa3GhH>5cuxCVG6Q%E`>`;NP=`WXIcuMV==K%yr7Oqs)i#l#&1!Q#W zM79s(D9~`s2HU3flU`(`g z8J=)Y2=l|4t@y1~A;0isbL-M1d@imRvmxNRiSgpb>P^5xgZ)nIMfpmklx5MlqZ4jsbSkTW$!aV5?)n?GDF%Mws!6B=WK z^a>yh7MkDfuWp{59(_nUD=VZ^(J*}kbV^qs5PA+05L6~>yX(`;O}@;ch7-nJ>h284 zk<`!o**`1)XTdQ4XTiXsq>Wa37?+^1U7mT`Xuhe%pz{kV&-JQl(O-{Y&OeAuv)(l> zTD9`EE_7LlSlY&bQuo0r#1@=(eoTB3*Od#U;kV`%6kBB?fUtZ?4>`cwFFztE@>LZR z9hqz>kGM5NAqe^?4fc1TDzta1@)=vU>rp@eapQ%!T~8=sFEjV^pj+20@$sL)PvfXX zAY&r;A<9#VtE8GydDz*ZD@+L9{WZM{*WT$#b)XP}n>wGMp(_2AI)bKPpx{WOV`zUX zWaMS_rRR1mRJ|BoJWm4-r$;wrBk zQ)^`e_}uLCSN&i5ugrvHh#NW8k<$pKD&p^73wn5S$k3*j^CwfSl1P@Tb9`{v5aOow;W{w`@I(N zi3C>vI=AtwS>P11oEYX@^4LKL8T4DBE{`&+Omll+x3O?xe|=MHXjEF!fk+irsBOqu zLY`#?+TWA)`n;T`Z;m6F&6rwm%Usj{rJW}nJ1$`yA8|fikBW|Wa_!6$g*ZIj`~2Nr zR{7i5z98{TMSiew*nkm%Txur;ewo3~uW7Q(vqNlP<%y>XrdY=vG9ai+&%`@ei_CsK zG4{f71ot>bt*)NTY;F=CMXAS)E&Jktqu_UNqgdi zakL}E5)tQ?9ZB}hk5|dU<^CBXt%RBomH{_U8jl%LR0kH_SlL=(}`uchpE%S@` zYWTEukzW1SOF%JYBAK`$iY1?8e};EZHU+n@Lzfk4*;W+K==LiYZ-2Q093n-g=rRG} zw&)|iH?ZMjlSpp0Bd+JC0Wy&kj{R-hP${gjOYDR%_BD{zr3y?|m&O;-fWtUdyzV@N z{a_ZWz&^pne`F&|0*KSrFW!`eTE_%Sbc}G($cV8D3~a?m32Tf}C z4}0p-LU(&|-04u!M3(m9-u0rds2H1HsIcVtlWvbLhFH8Z+<)jg`ZLbcR^m}@fbfq# zELAYvwZ}?8ReSvhNCTOl$^j?4wuC z%T9R}zC6I=;ypFizt`j{G5wEVZP49-Vmy8|F-1U7x(klcKHgV{o7W5F)Q2`7_-0vD ztF)!0be@{IhehCI`2oiz-6Jw$^!0w5g#bF)l`%PnCGfstM*NA4>e$mR-j{USGMV)B zU($W-`NV`~8=?tP5CV*`FyDc??`AW3f~su140s3jAcQ2f=={d9T@h|IV1orx6+UPb zEL>Df>0`audOssbBP3}p24BiWBerVi69u|he|FH~`}r6q*3RQ44TuyfKiqbjd$cD{ zfmf;WJoczwnaG?$3&p-?RaUvfW^p%q--IG_Q686!roSvrpgOoH2?$&?pR-gxc>FHSOVC&j@s8YrsU~Qb~a2HQ{+CAG6|x1t7V=$VVqjZhwtWc zYpBvnDn(IFct1!wh})a8FVBrA4wS0JdLn=mc54!M)!QjdU*~x#7TJ zPznbA--k9HoIrI^xgRUle-XN{2UHjJ)~_A=FDhsHxcI?>&{uF2L8Hs2!hd8|)xhwu zpXqm9j36OPe${MnU(;s_YY~!is|eQha5I{oj=NGJ1G!&&SopF9HCQKx6+p~01iNy~ zHTQ|TY2krJFg7tptyXK%vqI8~sw5#!m+7_0>9Sp)XK~ol*0hv8Y=oQQ z$fM9y(Ou`$j>(~y)ddcks-aGdd%C+Jy9FM0oq=Rp&b=bw13hqdb|ijJAwD{vQcMg* zzcH%^dQaJi39##b6~`XcL5)k{YitutbU1KEj;LOWgYSQxC&L-$z-%I@AY2I!GepaV z;0$a~&d+8=1|+mL7=vT3lORY1H{IDayFi^F>jwCZ2ZD)SEaWz4d$x6+6o_S+Ca-R_|Fc zeoA2WGjW*6`eepVBaRUDM;^)O>aA_dP{`~Boj|4^#Loi|%brR<(=UC2j140lyS0GQ z@_1ZkWCdUVmH-lZ4G^Q)?tluE*8o+DBxHE*T6{>#VR$UsQj~AZY1UO%*Zr!>aS=+v zQr9hErHrawl>8Bl31H&ejv`NL6j73cje1I|&wSmS#6HNzYDJxQ^}&=ZC+)iVnm7Z= zBrqt-Ibvo6hqs}U5PA@o%7Yy2%`uT=3$moMHde72snt%@@?T8shufO}sxT%qnt-(n z`=Q5Nah5Hw6(S9Pw37WM@mZOV;!>cxs~H$dh8vHlttx@qDOxx$5;pEfA><(kae2*= zfe6hSnIj&slD{j&IyppKjjQEAi_KdqjSv!tNo;Y6Vn~rzf(yN{$FCwtLWVAvHGR`^ zH!!kmW!TAxwWN~Oe6oscy<Ccpj_SXdMuxZ$Bsm^n8a2jZ z{{_;1X%*w#OEXGoN?OwuWib1F_Gs*G((2A>Ib$jg^-D>X{1JS{aFdylxP?OA`!BM9 zv-Cw)_p}G<#E2@y@xiHf8B!D<)bJyd`m2dU5>-TiCZ3Z#o(mSK03jF{_+g0{yBF?9 z;wd|W)Y(5TNUN|vI#J)cDP*y{;gM=3`?`SAu9I4@ZR~Eszu*$Yv%&+UbAL}T0Vo7n zksiW#nX+k>@NE~NMpAc6o^YiDQUDbvDJxE31{>c7i_lTQywltp0_jw67>)==v4 z31>R*@oJT$FbIUDDcv(n4we{Wq8D*FWSC@7)_3u~m!?EhWB5c)s4C}e+cg!x_7Dc< zU1}`lQX&_xAMJjR2}S8uu~r}LPe@pxtZHgt6Ub!XC;37(V$2{N)B5=Ts2L2H5??H* zz?hMq*UZvm%@iptM1b8WAqsVsKcw*BZguc{F1Ac(BrI@CeXYim{Lv=@U~)X>Vlga7 z0Vt)`C(j)Y=8O@CrfVOQ;we}%$BfgIS~9x~DbPeK3vjRE-xIx((OOwTuFmlTJekad?72+))btx22839VZ zE(;1;eR`}oWolZc70<;K>M!WpXUhWfNs{;9&i;@#0aJkcqb(yd_f}m$Or+3d6aMAI z0`?H-Cb-Db&) z^63DB877ST>TphnP!B%5)w%<4Osm3+G~nIl5#01VjQV2<4qEc7c1)3dAdE#kCV#g+ zjeHtxSs~BYFzKEoG{ky=NMmW?j?c??LgT0wgdz~BD3ob<7vY%E5t$KkcZR{%s*z!- zqjV=b@i8+@n(0nN9#b)myrPNMph)37Fz$=6+mjbz*5o|F8xZ;!7tG=+Ce6BD#UNF? zEtH_J-ny^25w^V{Y90MyS2JYTjmO-<077W6|EC%0yWJfF)el7K@bj)vLc%ZY4pH-k3yKbTt6=@-N?*3`I-kvC z-e)y$JWodVLL+v>nf0ZO`x!c=C`Ue>_IPI?RtarU2RRUqMq2zw0B8%zJjlxf?jo=@ zb|TwSpvv@WHAi^+JODOJIkwLOmQ7tIwPSJ)Prz;Gc3-MJ)(8$Yjt7xtqPp!|?X$z5 zdeXN}+wDcOA5$k(`h!QZmLn;LHGq?CsbW(^WlwOV^_Ikp^f0dIMPsYI^;rkYb-Scx zcZaJx5F{t@3A6&~09l~^>gRC>mX5d;*=$RMXyy?T6o#zh0x1y+i6y{)r+4SY3;7G> z2DE+<96@>pLHvPv=gX)d{~p9#Ov7Q+ z`0S8`Wxd~GCAsz_nZ5X#GK?PlV^+V*?GL1j&Nm<+0>i1FSEeS}x(`(_;xy@&HG`jk zy$qJfQo}MKhl$R8B+MsIoDz94sL#HR8beR&ShU_CEsj<)fj+aR12}_7&F-6BCwN8S zOZjD&C3z$1AK!YAP9rD(XhJ@)2Ba_9uYJ7Is*PXy27HQNJAMh{)j)~OYY}gr)`Gg>r!Rq@ zed~Uo4c6cbN9JbEA3JqF0`+Z5#2IM{q42|$k#QKuBvH8a%Bq;mM5)uaq z0P75O&Vay-Y+*z8(Sg=Dng5**Cnp>i;of0?(ZBvddyuH7{niY~SjRcF;vV|B3bVV1 zAxlbAd7E+>xg@yQWsZ!h6nyWp!$Xaipp@8n)*C`sZkCO&TKiUigqg7Qe!ShL#y^B5 zkfzQ~wRWzL+I350rs8OFk%1J+V2TTjZAjFX@y}5>pY(fDe3#r!s*Z&dq&mTyip&?x zekENHq^b_=M`LWKcW~O@3n~ALpP0|7ZJ?uRU?s%aZQ^;>wrq!lIU-Ai_>K|=Vj6A- z03;4sD~7}!0i60FV6WMYDyt3w=HUkb^t)eTK1xgCeQihb@m$Z`!U74%K$Z$5vD=6$ z6g)qC;{R>);E)pryt*6?&iyf-d~Urrx2EP=kTaDf(l9FAJ;=d6(ky87vUj3_!E#Plwx!{}2o6_%wK9{g zC; z)Tg)-p;z)z2ZbX3L)r069atxp%WU!eq-1QIGJbfw!rPrBwD)se5MG!@4*hYZk8bA} zt^o$YSx-N|{{$fac-lu7o&d*+S5*A}$xI(wO;5D{RZwqW257YaOd|Dmo5va20G##z zw_hVi=l1%A^~S|VU99K#V|R49$hjcx~04l(w{YT_helIzHdA@DX7SlkS-qXj@Crj&x;`F-a7=j=M|&yn{8 zz|$ccpJX_Q){@hl4ME!Qke-!_aW1_+0lc@&z zf+DAvbIPh3IBLkSOBlahBEVF?mzD+p1?=-%*RotF*dW3goXj2h()z$^Kgj2SZ1xun zaakrApVL&=AQO2qix^=oDIerDkY2p6C)IhUpEP3iW)mZOayIQNf2sfgM=gVS0?~K( z6k0H^<~gv&uR{xd5UkJJx%%)l@^v8r$e+URdEEQwK_K>E9#jD!$*ii{PS3MboC!V7 z_K<}sWKZ9ODd0fE4^+xgu4v~POWF3Fg;BLzG6l{yb1JVYwAqiB*kK-GW|L32$P1`4!vUC$%)0~{4mnO1k*ZjMge4Kh?2k6emJb#?_Kmz_YH3! z*+<}E4)`94*xK-iNu6Y>z2X5AU`o~mPFF9E`b+GFCJT_rH9)@8#v>pFR3=pl8H!w( zxCJ0jXu}-4)#heq2cq|#b?;e&$@*=#3%9F-i?>9|!_SQ|{_k=MtSL*V|HUguA$xxz zmzq%&$UHx25vI=I4~XtA7_&@4p>_~AA9H)Yzb4P%C*jZ~qspeNpVCz?$Bv@q$5X1Z zH{!;A3|^uYecD;tMCaqIU7ydyIskV{KqC+qc z2D=HcYLNs;7CyPeNq9CpNF5bqZga)z~Ip%xiC!nC@3xN8(?Ap}%8!-x@ z4+bY|%ET8!obi@VR?)>|*bMsfFKP>!H$(-$4=qw9zv(yBb-|MUi)Lc#o9ST4BmmnL z_{uMa0C7nn7^Pu?7Dp&XFf?&)yT3&y*X$EOLv<7G>_i-`72QSfH|6G7s#5q_Cw3|B z{ZSub8M}bM5zXvP-OZa+^ebecJNvU+1+8?&@k&nN0E@u!;ZbXY^`mpk#=wF zNtGvmTjD;ne6)iGrbSHMNJCNBd7>0^?Xsg<&85U}U0e9R_Y%{orKRZhmF=McsJ>oh zo*Yf=mGHTLimP!{v_ZTGB|RPLdF}<`>e3U_X>TBx=AH=bvrYS$kt9Ke%O!%-Q)*_^ zkv{4C)0he`a9L)P;Yh9Hr2s?LG-;fg&Ed)JrX1dsb$JfsfIR#DxHINc2?9#%IcMeR zqcb~Gj7{;gp>619m`TowfDMn(k3x;QZ*nN%YcIMN|Gspfm<)+yG5}qtJb$i_kZo*i z0Fyh@UHF22$WbU|){ zdbwoV(4{_s`}c&OKL^>qO@HTmGtxip?@>E@H348HfII@&Gs9_JRyED`r#liRt9ZE4 z(o`3x)y@4#LIvpb_=!fH`~#UMLl)!0|J*eHVZS3IBLjMTF0Vpn4aIto?*zbiTL1Ty`xG+YeB-lsrh;ngd=)P@ZS>+R0hPaAN|l9s;S&iG z>HW9o#20d$QGeW z0aSinSp&10Df!Q!J=Db8(L6u_8im$K4xk*|XLBBm$Uz*4?dl@Cp+WnjuOKOC$-G7T z^q;vavh2@gPYYR14fyUopfN$D;5(S{5s64YtX%t+YehjJEiHxLXJ5J;oa&I~Y0W1O6$`dV8796+7no*jAwOln5i>|yZ< zEwZm#CFrXssmA%y1|7?VkELNoiC;)g#iIP~w|9I(6=A3p0mox4=MIdImpcJ%inWpP zy|QUK!vnX%Rj&utOvQS%UrFk;?JlaiJQs9saz-%2|L_AR4yPB^?)%I3xsx(v%U6b-u6()?0$JodXSwA%&%mF8r)8TJl9der%S#CcM`d?-|kNQ19I}*wQ z$XRCqI86YFdmysAki?xrmHB(Bc}Z5RLVla=lHp*$!TLFmA|E#cbP^7NXJoI6H45uXE2KnKq=g zTM~kY?7a7D2184?PzRyhtUzAayIFmchL&)AhT?0}e1C%yj;*Q zUAd$HaapHtXVPo<} zIQ@6xL{tKkCp42Ayg#9Uth-d(94-MDilQN=j{)I5M_(mJeSv<_E=rqPs|8iSL+EAy1m)==HENnWKy#)e`yl$pBU(Hr&ka2bOGzL; z$9C(_{|v4;YNXirfEy>7r7_Xz<@DsF%>vYrK}*e?lU6NWXF}G+1ie^lwQO06o;}jx zW!m_Qg;?Sn!;#txb8Dd=!@*Y6{VEDx2}9c!`3JyF?EbOQ41Wj==ioIfzHsdPa)1dU zkUglc=C)@zDr-ZJYduVzmS{9S`xvL`OiPbNO@}OITz>V(b#dP_`2-}x)j`iN65jB) z0T)OTo7>ySN3Z9;$NVy~I39if;(r4ncDxmH$tTedY-f%;;-sY=PaeJbM5POZ6s3x5Ai@-~mg)`fDo_rY8gHfhAmZ>I!%v7i!@5k5p{ftR|gpDmXma!c!jrhOeR7V4?OG z5TXKhe#t2;YJ1M&Fj5bFbp%*+EW+Y&vK|8YjjDQMPP@M+)q9t~aC6QJ7wqPaxuWqBvsB5Jl z$xx$zGdEj@_B!FnHRWQ@3}t?jBKjQ`y{P?n&iK+8@T{R$TJYVqd46BVUyCH!~OT6w}6tQTMDdQel^_ZEbfi!J^_a6caWbVej-s#e5v%ct>}dtDrWmyQ+44FkDP z2R3$gLgGT#eGrc#8f)=!g1(ATrjEH?7dCn>_HBwdVaYVY@fFJz&kNhi6U@P)(}M(2 z_QQDFkhm&jQM*&ktTmDt4c_*Eu%y>gv@t2*_Arc$3iWjDL%sFJYOw5@l0N2t;vr$} z-$upL!j`td^Ue^pu>L}|jNG@jja6MAxC2E&NRwF_r$3>dFQ!R2m%(q;DNTtKKK%H5 zbYuwUnYt_LD5}<*C}C&uKhGt;e^iqO0k~(!9Hx(I9y4qUL}=I#M62I77$i!Y=YQ!h zVXro~|4CDX6$8xm9B6+>2|IL68PF}LxBbt4%6JXXVHFW zyF=dBo!-d8FB10+Qap&-kC!$LEkGLwU~;|Ho>)Ko*5{OBN(qj&S~Xgkd!$$a=>`4o zYgegRmpS1TI&;R=GtRre(%xm1T`{ZEm_U>kk2ofq*>Q%d=jL?4r06cFA!i4juKb_| z4mo>_@Y*p5Xyg~W7p-2%+5E^f|8&WY_Q6c}vt@GfT*%#OmN#RWp{B$o^(9@|c==E2 zz~DZcTy_1o+ODS;Cf^eRZR&;N&nS@-UO|-I>5)QCT}iSDap`Zg77AG1VPNr%Ft~F?(DW z();c~0V@+mbLtRgRHBX}M&z&~3!brInv@73oK0HrC%g0uhV)Hf=LO?2v>GTl;Gc1) zQ(7;BV1No|7Z_=K^@UgwW(8>~i<`L%SUQ}WEVbS!0D>3-tq8Mj$7b`<(c*26k$Y(= zWa46AdCvA;gpiR9hh5h{FZU=W`^*m{^ZIXJ#wUQbEp=Fz1r(5XDn(inN=gi>Iv^Jf zirM|n!ZKNq97>%2X`AMLJ=?mpzsDZg?1qG-O0p$^Y-A4TDQKmooxNIbn^}!~bSmMCmV?HuQ zZ_H|4{~pLYPkwQ)9Vb(4Ht6(HJ( z7w_*S^y4vaf!|{e({CY*Fi$Chz;Zv=>QjsoHxqB!8#R9=6O~uP zfA8yqrKJ$YHBkBf{G0rvPy1f`9$H=}qflk#yR|~y$ZOORtaSH0IGx_C|L!PKmFEP6 z$@f#3rGSK|PlMSkMOpZ=1~7E6$Olju<~k1-f=$vqHwWU~lCq(X0Zg{b?mA z{MBL89!ojc97OglI6v5Az~q}U=@-~aN^q6P!Mixg9eqQN%mbnc6Ro5Aw!n~K@3(@I z)Pog8_50aTFI`Bo$zX(Io%U_-<|lYR=_R@n+Y1n}7HX~^R~=n|&wp+X$9VfzTp-X! zC;jBxI`k28-*8F`6A#T};j|cofQ1fh0`4QbYVH8CHR$6B2N%Fi$(gD=-|9*c-lK4e zCeT_`W;#TM>@-D|*n>$h{s&LyW>6Y;rv^Z(&Oz9f@!hQ03upYhz%YiG<4~Xdu?!VA zc62`Jpr=POVuYX=(7@~^t6C-g;X`BKRMSQeV>lmE(N7m0aOWOzPDGDBHf!4Q#4^7| ze7E;Hz{s^MRi=#XU!5g3-$Z`M3Fk!8=;ILa{L4Gw#16JrkA+x1gB(WVP4{=dw9ecG zC}osT8EP#wSGbQpVaVYi)F*(*-wd<^P_VY&%mK-I7XbKL+j6@M9et|LgeOMg-jsGs zd%aV#vg6Rw2d(`pEwx^9O#z z1r8v9pl6mj)Q$Hy3JgO+0M&8#NF~&Qo&0!cb1nC-lAcVXxj_Y6hwV6HXRt1=_9s)$O?H`u1yLM{^kP!8Ni-fM)tx0 zz6@teBQErd!OLr?n`WomS!mYEf^f=E0sMhQC+q$2W&1bM4*3sH4hyW|HB~nIh}ARe{DW^@oYi9h+_ZVG z_$7+6j)~q#N}nm5;rE4!fyoeiEMCBJ`|tDZp{3G?21-G#FYA#`@PFG1Ug2&_8cWfS zxJj*gq&yo=43|<4q>xnd2QXgMT5t(~mLZO11{U|u~eoM7%rB`_sS`y zs4d#`q;qX707WWDO`7&ZDCRo?_p5@%bDMpF*Xc>FDJ+k(m7g8LNp3lnA1Z?!Q>U=l zJ;Hl26};6nU76If%lz+l0pU>od61NByb6m6Zck%fh`3}csb-u{vXO=g#S48{96e-& zV76^tQNs9-_vtNPD) z#akNtmsiWqv2~6%PV-T9qmS251|v2!vj=$B=kk=!k_WCD_@ARcf2{7jzny!dVwg~q zrN|tX*uYnmn+i2kF7NM5bxT^*^7GBIy;|M&YEELm5CsE=_LgT@$orU zFwpz}lr@%w=&K$LP0fVVRGqvvG(6aA?7BSM>sTBm2g#QF2X-j?vh`WqHeqWPSHCYc z8lA=vye!Hg=S4OlSE=>f#A_3Vu%QOJS&|-=4RK!{BgQ?87P}vBDO_G1vHji8+D-;?;WJbzKoD;dvWb zerENAuSV|9mhmWT8VYB!5{N1pQFN1Lh&yKeY+5Hlz+FwspzG&12*aR7%b+4?<6VPq zOW_w;n_u&=MP@DJ)qlzO+fza(!?g3u+6F6{hu>gFm6}i?&~@)t$@P>tLNjwTq0*rI zdY9JYI_3_1`Ds)xO@SqmoNz-<5=Q8Aak00<&s3M#IM#~W?$z8j$m;NNwVO5xijno5 z@DY$Yjx5Edt7iqHJX5C9tYR)GSoa!A!5T>jWl9}imocjy{{74@nK!DN0=dfxc=9R> zN_%iRZF2;QaS3F&YlkT$u)!%n-_$hFzP2xw*JGl}Y8tx=DHVRP%Ud)czc1dhrB^ki zAV&7na7g#;vtDrBCcW0Q;D#jGO~!)!KE@p3NSCT~)5XjkF)DPYRsF;s|5J`UGCd9J z3?m^;%hZ6wJTI8{gTq}I&$6F;+}y#JmTB^fI)kCepENDlxRbnmNe0oB9q1=+j-8LW zI;o^m9g5AuhDn}`76m^5uk~1k==MM%O$K@1OI?tw71<2jg2kN~EqQJwevEqN)X^Zj z>M}pSFCkD>%iW%$YDIw^MYFNzdlgQ{ekuC>fdjcj)C*Mn&+%EqvB8jydk9Y_l@amE z4lRS0F|{uCuwOx14`(ZeplBlSK`7d62`4OHF6C`%amgPwtX{inJGJoE+hxvS5k@+IHznHOm=1N7V+|8FVA`0b@0yJlOXrmS9imnfq~`z3Ps2 zyHSJ3XAO?yQD@OKI752Hi+0QmMpqCeR)|e;-HCT{JH&>N4i9SGmmC5o;|*W zfw}cJYP?XHAQooK*0Sz4w)vUz)=6|yk+tEILUC~pjwabD+hKwR%B*i)EcDD_S`uen z-?MwEh`X6ott?l63n!c;JhJL8`BST$5OS$eVuh-14Po>?7<>@EEUIqU-j8p=y>~F_ zX7dDN^$`urv-an@w5)>v4_9v;73CK84SQ59LP=?*rKGzK9S+?sT|;*tK|s2@BqRo@ zpSU)Qg$0aco*GSgX#+yJHqZ-!gy*ozI?{Rm^s@W?kUq6u1TLEB4qxxfPD_BFWG5! zSrGMTL^Xpe#8TRUK&LyKnv98W)+ZTlwY~ zNNejiGmg>2=DfN_&0m`e3=2y7i4fbZCQ^n#eDr}ZDbQ4)EH#a3B)Qn|rsNwzNqvD~ ztx){Lb;77|9+Dp)`Lmi71JUkC3hgm+nND~5-bSV1O$n*Be1*gdYm^L+4zu7ae}qMW zW~$v?YfGAux=gpJ5CS&i$n24%dIdDSwm$o}rTNna>cvs+1kL-xtUt8wFO0_YGvp;X zoy^GOmA{0v6#pJKGuErF4O-L--BU|&EnFcnEdC;kO5S98ScN2ic++!#@kYqZ@4C+a z8p<&60C&-;ZK(VvN2Ivm5LM+1jb84K}09Y0Pxm?yn@OB^Q{w*%vB zh6a4LDIid3W1^#5r>8et&TN^viz=l2`(uY6Ox<98YCBUe1{ zN*$fd0>#WSJa|`{q77Jij7jx$);2%}WxgyKP&(2XflF>Oz8 z%V0TCW*@YY0&{y?t&4`#QfynS41|)*U_~ZVSg%Xvy;Z_R9pal#Z5?aREhewe2;(I) zV<;Ux{ew?!PkoDFT`q{lo2(=b1*5tQt*KJfEJ3q=&?1+9vkUlGT-0Y#@-lz^X#?!@ zUT8~T1f&UfPYS28RwCutTlL1}V=nEmKpT&wZtmSb8#Q^V&7PEo>n_)8p;iV0{OYe0 z%Y;2J6_eK!bFz`CUzu~pBq7r{#OoRC|3q59NL%7R99KDb2bW%IDd3WmW*=~dyRcfQd znkg%XpKhsTzMV!8{oSCBG?yY(1r4J|KO-X8)R3b}Ldy(p`Efbwlb^Y{dhL0gqet_P zkv>WrT@&cO{c(b94`*W>v3;^U6QZ<=vDhe8a6&6&`n_x>KA4{*+OzX}jzbXPX zRNNX{j#$-SKYFP@xh-&~F283Wl4NGuC??ZBvGTs4xY=Ewkp)XZi5rqj5p;f5b47fH zCT~>t`+qhNh`5;84LL0vp*Skk^KHex=7xC?*>mC12eS?abm{!d$8wqAj9qu3)|wzj z{ZtEfh>W_RYpaLlL+>@Ca_gZrI<)fsU-m7gm`Jm5Q;GJ9jNnVhiE1hB>`;|owo7Rd zn;tatWr6hrjh5Bi%Pi?h(hU3=rN0uxe#JhUAU`nEw%*7fS1}vfmsc6LrA&*k<8M7W zieYd*Y$RZsiR@e@>0J$U;D70Ba(R?t2g2|}1z$Wa{J?=OEsD@k4VT9|^+YCS&ZPb+ z+aAt5ZV^smakgy!aRrH(j4)bU41H*F3E#Ka2tEc=!)&eRhqYsz<~CWuJNVN&D5
|AzUl4)pvE}Nhh$UsXX#VW&AyC z*M2L*S;WAy;O^n1;CWemx+{`p14e{MsYw+wHnXxSa0&XD`KK2SA$UxSu6$ zdua0#-o6-$6Sw?F28V=Q+0e6r^25!RL@RCEK7unTd04vYrLTye$>*NzH{V-W_L{w@ zcrNPCxp6)5o(+9ACx{A2vgOvF@=>@2H+BQO{p##7oBX$;^ax1ux*k)w6$6>;y@T(h*Ous% zLA5ptnq)RKv1YxG%k86&rz>S$5Q8Fq?P(fzzVy=>eg8ad{2iM-4UUS>{<(2}m+t%T zH{@W&L5tGMNyCTrmc^bM$JO%te^vrDLX#og;aMllu`w#~i4$q;&a;8b1DvX2aiql0 z;eq{sO1xjT@lkCWo^1Z2;?X;2dV^kj|u}l#Kg;0p)VPU*jL>?}4An9A>ZC^|f6^%Nazo z5fcvs6d$H*&pJ`-RaNj|oZ=Imy+Jq$YP!*!#(i?aSa30;kfbG6(d%e{hZgi_wG3_+ zg&9q`S`A_#4ig^n1l%6Q%E|>x%Eb0*LJj!%H$y+3=TlAcZX`uAd@^dn-OqBl<(UFQh?LoE)7wWLCYj{Pu+MGEh`)({d+yEldx`m}hBV9H z@lIM20aAgmqa%`er04I%X3L8tbmCCrA&m;skW!(|>A>F-BimTlN3ryHQ?5&;c8%4f zfCW`$$H8)^&O1bgrD0p8;&%Kk5chmiI(F2C1vD_WxN{aweI^6}CVSSxhCxFFeHtr@UhcImkKHG1Q?+;85FUKr@#r7Ew z=F~9apM77`L}d0hy!2J2$t=rvA8XUu)1-5ffqym;_--FPOn)fMtz877CF~CSzk|M5 zG?4~lh9XxcK|Umg$upzf#x~>q@Ko|tf=l?JPZtj{5<{KHt9GUTSCu4EGg!E3N5X(E zr+CFRe!PBddpaxZGcUI~C9z5h1JQTe$gD)6|3ve6N<6c3KYBXpjQm9F&mng~bTvXE z!mo9#v%{r|bJDa=1O*LDO&bUP)BiV?Mh<_5$95^Uk8&!mU1=y2>@Y%e+RrriiDltm~)Kj!vtWY+MC&CVm{_D-{uK zem`MSdU=zQW8ONMtbJIynnWH>Ie&jsTQ&@y_C6i>6@sI9Y33+l^hI$y4Z?#Fn&4Qv z43niK{#i*@U9`=!Des+z=ig+`XV#sZiN{_l7!j+Ned$!-+tlyOBf;MB z{z$xwzIN;XD^TElA{mvZadU4X3pE|g|Lmpbu&6}B@G0UKob&snp(g9 zX*IW1!>$QRMxmW+JpI`;bmqP8dLJ8EHH-S)RZxe|4U6H*%X|OwgTpqT*fzh#1FPhc z{$KIft_nn6H9L|vy1mKrQD%r01nuiGtHXpyD~3(WFY61$%iiUr%a?WCGLm8zc%ptb z)WgfeZ}ZDe&v<1JXJ0ZX@r}{?j)WxU6|{t3N}8%sRCNZj&QpdS>?!?`yIa&c83wSA~#6$ zyw)CSf}k%Z#KjJ(*vdj?b_xJIDpbZdp~cJBi6;I`B1Nz7qy@F5c3>!DQnZjJdr^v8 z2io+R#AjQZ-RqB{zq0izamm}t*5zpDCQR6Y#*MabV74`X*BmMw7*OT(aUN)_Q%e$Z{-C z<0?+gJGfy36)sxq@e!M;b}k*c5zO>pPBZE-J-O@*TCSQazihlj37v zOfUx(iArVnE}?5>?PIzMH8+HSfr#&5{S zFUkHL2eTxBfwr7H{ph4=D~#kN<99?SA&Z)izGL9;oxAO?Bk5y}ips1!=(}3?<1$(P zUaKC14|Y0UpJplJIsAq7n4X3djxYm2B57~M%HEf7NP{r-y@`%`APaBo@dB6z#G`O9 zJ;Ic<4BV8jzsq|=e!i{On}^SZ9y*i_#P+dMbY-q^aSJ)ujlEMb;i&T9mCzM4p)5Cf z^dd&qva{p#vJN!V???!e9*skUXy%rFD3vL^DAUDCW8l!Qv|bepD*0m}i=J}Xo=ORw8L zf*}=x7k>g#wn@Rei)B=-KMM$io%L9bBo*|CF=cP)EHxxkd-GU_%E$$o%Y{R$Yu&8b zRL&)(rYa*P*7_3TQQlrw9eCa>WhB*2X~VrbS_UQO)lMsiKg(enYDNZNGY`^$Xk33cBdJg$CS_S4qn; zUxIzMzwedo$w@w^XV(uKkZ5mOZ|V2(mM@v0!&Xjtry(Pe5Ij*R$5GbLc-yZ0DkCTf zl$r5umzzeQW22!)G#e?#mlMvmm>{g$$^llFEZ)$FR>c#1i;S6CfpCas0snwv)wqZ?(gdvZa~FQ7~_=J1cBWa&(VTD9(L*Zr}wcjtE$ z-&56Mk{;cA-@j^eHWi->fZ6GgroPMV#SwBG+&#~)TL3Nm6(qw_Cez(U`PaD}d#+P^ z8mH~^$Rd~$JM(yT#@$)gSTnxG>Nx-ko@wy49g?&upI_e}-`|J`UTx%osnY1E%woZt zgN|7+OJde*yYxQ+`u(k~B`_Id1-NBTR5(4yVk3$o*7`w5&cSu26mWc&R9SFJcoCq zA+W%*1g>-b=EYD%m&5lred->!9t4s}mZ4S#;esTC9U`6o$DZ4ma>4i7B%ECLqTK0z+B`g+e)(3{L`xe-D-&3$*d- zT+a){mvWTwnWaqron*`S3<19YGEn&(r9b_Q<)#h}F^h{vZab68jJQ}KDA&tmle>L~ z7enHU2EDR9>0c?ic21VLU#tWGWN9TpO3dPUmWnoqKCv^u_SVeeL$j_4@nu*aPd3S) zUWuHtS&!DApO*PB5UFgNj=T`^QrOYi!EhNDYB#m=fi~1(c~t)xJXj~S z60$vFF4P_QCKL<37PJInv9sd{j(dhU?;DrmGqXnMM;&gYS)QmNwT=k|w=2zLE$v`I zStmrIu`)Kpd-dCsKKvXX>y)PU!x5`}-kFVy1~OUdS=k1==}8V|!MZ$yb`6kNrO(aA zR9O4#_XasX_aEN9Heof)O{{4A%gaSs@QsgC19~yTCF zFoMAGqM~gP|Hq@3f2djV<09uid~tqokUfkpVGH5-U2|DeljY^>bmgX zZJFT94Vo5+CM3=Xzr)RkEZo^F5CReBv1MnAg!XyAETNySb)k!;c|POVn~1T%UAA@` z62M`?W(v=wpZL55Di8?4?D-}rtTqHCqvjw9zHV9G&}Ts_9R1EO|66{gVk!oTbxpFG z?S`8S?!U;Kc5b6VT`f)j>UuTTcemD3im_Hutj|eGcD1o&7PHQHA$Pnj;x^+xF@4bc zJt1b%FCbg`eq25ovrz@R8y$b)#8`JCUl8%;H^3wHsu}|Ah4*jmTFsq9)+fYfmz=QOAcPVd42@k4!l>=%Fbe6Uoc2!l?o7;tZA)xbp>V39T z-10s%ZmY|YbhvT~40sZn1zTLR;M_p!>sv@g>*KB@kIBVfij0q9|oz zeaMQ7bmE`-Zv@P9^j9_i^4tSp6@~g*FtdKmA&u_1&}j`FrO#EP^To0MrMhk9&b{*- zA0}o~02DJ7^a-$m?lTG7@W@;bRpTzs#Ji}+P5zz%0efERP^jX?*#uW`$w!^D2)2xl z(2NNVN^-0bVstiT!3M)7E`lS%vdoG20y;ADci!yqxp*vR1I1ejV!h=m&;`XtDX5Gx z8>jsQkDO4q1?XR6^@8A5CR$jvCLD34oF}BI`@YztF=bx90q^r$XX=)od7|!gBG@SF5uM7X=WE8` zjaql3y+GZXXOGs8ifyh)(sa>eE4iAW20VS89V@O?M%oTk>E&+_S9Z@+^%q8gpeI@6pb=m6|h4gQ(5#x>>-i^J9m0+MLhZFAe^(Df-FN%hKv+(JT4Q}UMaX)l z&HmPk<&6^mreXxN!7lFZRo>@zD6z)_7kw~pPRM7K(NKFyqwKvMZ+X0Y=AoymJ}Ao^ zdpkKXw)00lfvQzPtE<8m$EYTU!$XOv5!QQB` zrFtpUn3S-;VNF5#8@K2L^9&V>{TjbQvOIw4dFwd30dTj?p*)R)y|5uKlQ=b>O<~9l zSSJX=&;TH-pw(!H&pn;?={k`&8;uP+82KQ1BgKv|a$z#5i0CbMSocc{M$%L!cI{t$ z+?#%GbAq#{+4=~#WMps^O%$a54h!_rz z)1PXX*`nDp3P2hJq}9pEcsesqXcbO_+W}`|F073yPOmL@%rp~Mc#JYwy0(DY@xgHh*1Nfp`1g(-O!5tmNMe1Vy9=aalM^lMPU;un6p8n z<0;+qb=?)D?uK`lLi2*NHT%sH&pK-RsKrdfBdf%iTwpD$Kejf4P%oeH9m4;T1=SUv zoSw1?2@Te@-P-yc#b+OMyt#WN8#meDOoviv0_C(ZaDmMF-`{o`v)Q%Xo_({sf*IFx z+T9<{63H&dVdHmHUmmvO*7!yPT7}2u6%TW|d$(d5vbuZCohAE2u$>N;3G%A>=xEO+ z1$T;FoKN$Gr^^d3RU<{b<(n+LG)h&rImu5dUA~qA>IPWt<;%tIx9u_HuN%KVbtNh9 z@Ah}46e)xX7U}tNmpI-pI;{X9(Bkmj&hTWN{Tp#{aY5kvm~}!hyPEldAs9!}{wLC4 zGS$(bZ(YW!)1|09ssnX*NRiP)3&0dALV%}e%4T>?k;c*3)Uv_m!HvnQ;+K-8?a}Z zpa!AQrCU+Ka-Uc=7W!>S;htj7`>eBkGAFTiz_pCg5v)9U~drJx1;Y!&&csDf(yn zS`LR}t!o}GYPL}|?5Sd~Hw;+Kyu$jRXaW~S;*7yL`n_grDnN6Jy3@_N>ottvuG+2f zKXKK5xy3yn0d4kd0BEq%JG}ah+;ESTSZNp(f27b zD=YaH>qD8S-S@ekSy*dW&!Wm6J_hpx2@(7)&7+9aziNfYI=~ zvl0d&X6#1fyybDLczj0OkAIME(G%G-60tOR+D^mFAAo{;sE4T8D^kbA?(Sqf#Xqck zdOWv6tQH!B0j`H|*z*4WL9Kjx7Ph#*p5;rGL4Re965BoEXH5{Vo9!AeDu{blq6X1i zU7`3<@5R4R^B4YV-ubp=tgQhW%OpPk%VdAP_3b$7N}GxIZoAX2Zp0_=^R<(=F7qA1 zRShW5!2&lIq^K%QSmT(IK^X&13v+DhQ^n_V)xP?DHta4{l^87yEc=K~2T~H*IFiQX zHXqX$q#+d#$13VqdC8wT{+G#PxAth=_5VOUgEhJ>QDG|%2NF>bCbbWFD--q|@J$8D z80x1zvF|p53p3U04pB(C_?g6rjSJo=D?<@>!k-=I<3S$OhsWo3-g|#_;U?X`1Nf7* z1jZK@46pB@+z7+FRl_4qpfU!-H*Sd^+;98evRqwVU99`xS=cph7IfL%g!Lqfrzfdj zYpUZZWb$&EBt1JWEO$be1%ba9@4`NtH7vhXxLq<4{Qk8UC&`Ygm_5lX?=#-gqF1Q9 z9y-Mbjwr0CKq^q@c5>M_!c8U2d}$Rp^MB)DvZ=Fg$OQ>uPgiWUS$b_9T9afFX-5SL z917P&y3W0Hi2VQ2n&*u_6qDsqFzKHI&PKC5dUgQmw3^IduDd!dPLF2T9sYr3;K`c9 z@+Z_DvB{qnWduZ(4Ejx!!hLO{L1& zkZ-DFoh7$^fb0*3n`QaiG#j-U3Z$+23;Ta5^z%!&zr3L^5J(OV#=!q#vw&tHw=blyAD(r<_|O{uL9 zUj4Vrp^CYhhLb<;)I^jr_bp;ii?$DEXkdOzq7$fvh-|Ug00BpQym0Jir}=y0!_lm2 z#2Z{Ad^4$4H7+ML(@=>?|HHG*+YU&g>oks0L4V^u7c9v+rryPu1S`&-Z?5`cRVk`C zE?ol(P|t3Mp^3Mp)8|p99z$K-HK~LEL~IBrt8MzvVKEKQhU4^{cB6iJzI$EnpqF`@h1 z0gY-rr>|Zq{Uja3`;9#oi8Z;mkWa;+JjlYnRDaL6cYoF3Tu1X0x-Fl>fYWFNzUX=* zt7(WOax)tI?F$wF@Z9X>@?ysE+n?Iy1E6(`Qos{(mEsCgQ5Qo@#E11vt2QNAOHi!}pL6}03UeM!WM;~0nnOD#e_&#M36M!5W|DxdMrFN)WP zs5!lmWo)MQ{BkyW$3g%vS~>8D{S^D~o}YE-hs-B&6Ukw&qi`%ue2K!WnOpKoqRg^C zlWw~g#m!uC>y<)}1do;t4=1z!SvZ$Coqb(qyNIi4|0i#McNO(LpoTfi`RSa3660$P zUd}8!Y`f;&x0Y=sOf?w3vTdTYbaV|Mi}3QtQ{f*d??d{~kixv*wJjKFXKhCAb0CT` z)1dNFxb5c$P@-s5ehe15;JY)%7l8Kq^Bubr`mTtxjOh8XL#-Gk&e9R)NLq9AS8x5g z68NF3Et@G3bjG)rS3OEdpL=s(rs5l;HX_<)@@{XIrp(D?n0##AwovD&(dIkbO;L}>Ueu7_KyBzb3F6THLdom*H`)Kx zUo3@BHMs*V*=zrHAbFiQuqW#gP3zFw%JSY@1d{Bs+bqPY#$c!SS%CJ~FDMW*dg*eH zw(R3i>0fNg4zlCLQ%C1$C7wx`4kd(*ofyPR=Fy7Rk@eIGO9qGfpds9pXn1n@wTmta zhP;kDIoFut;f9frc;+ovbMwt2xg4kpC)D)EgIs)M{CtU*@7-Eqi07$RQVi4akVh=s z$niXi*>!>rCr&8d+a3FBYb*e79p%k(zv61(0nS&NeTlJ6)6~PpB`pv4TiT_Ga-HBU zmbF}RRHJSbkd?q6(>&!=KRdY|6>j^BDrX4~3!ei~<_AqL1#!V=^_gG$NwfRRuP_nf z!L9iVl!ll6nj72O%eo6!8oQIhm?YNs`@DbME+{``-Mkm$1Js;j5c`BO2cYb>XQSH1 zYDH=a#I$NO{{|aAFD8w&Wn;#!#tvC8Z@@%PvUvKS_zA7va^2U{SpKvoqo}Ia=sjs52GJ(6S^X3rX^T7IVZ_f@i zdQML8_tQe`>_62t^~Wmq9C#tTKIZ#Pt8%~4s;sXV{tL50#=byihI!GZiKb>^l|Z#z zsJRwgv>xQ~&2cFu{2OZqnK5TFG~z6rkl%S3iEmCj%MN4u2P=5f!ScIOT~Ts*iWWzl zlXhHtB^w!dmm^jfn*9XP>$gbqpg;)0MAh(uWLnW68`|eUGoEDQy!ofUyXxE3dQ?gQ zJV$8gz=deWO`ejcy3400(r2oZm5fteO4*dNN1i2#CB2$%Ya1i(jM=bu_VxhYIk4Ie zCp}vA^7O134r3a@K>`xO=X!Rap(I=YZO&L+H+OMKp+>LOxRL_bUTe=~NNC~bZ{w=` z1q_r8vVOB5{lfizZ=up+m>lJ3(08BfDil7YfAHk#QzCNmvKjCHiwl?U=U=114PXpB zCiMs6@X#*ftmQ~xfIGK3vGjz;_<9~3p_Ob^U)m>Uu03nRuqt2?xoCe$P)UQ{;dDQX z7jE#p38-jp@!1$w0z+w*3XYV088!TxCKX%*Jv*l0M0MP}Wp=?`UJOtkaq52bJN)L#a^@%O7ZYek7&TjR#NJ~p(` zEihZAb%Qk#2IrWT`wj3Fo8Efy*v@}THjsOVXMDalhYHqxfPsm5c(q+Vky_r8{*0Iz zBBh3dop|$wQJI^8yYGwFw82wRq|rZkE`edI093Bs1;qwFGUw}rqNPCGVk+b*H#Pv@ z*+$f+stTKwDu1bk4w)t#K&;simGo*iXWRk_F6n&%L-jiCtYkXN#D#WGw`3%gOrK9V zMSu8@;e*S?O39u~aKkQK_=KqNROJz_e9RYX_C=-7ro5dlT@G{z;VH&|BIg&4p9oYo zewk8IB*Kl1hY8iPrq@$BiR>z-inEX+O4Yv@D$FBB365sN2jdhPpFVlwaWW#^aJ|=b z$#TEib^vboqo@7{PXSzoQhPSlwiT3=lf|0QgNWXMT}93}m`tJ2=&>m|ND+5~(pkiJN==e|O!g*En-^c3*2 zE3>dHI3GM_83HoiXk`}iG}GaBT)nz)ch_f$RPoIm+AjKmW<30-L#DBsQIK)@W7CvGBb5p8c^eRH|?&hPu#0?Nc zX5F-hx664bmeGRB!XBhV?4Gx`iyHV{nz5&10J?Jd<^91+5YuwST-I`?BYg1bB?@+k zLAg#>=tM4`KiG6h1F?GXK6}pDd8MV15ZaD)k$cbg^?w4=(l47LzmAAKFjvu2*M|*L zC(iF2n}2ws-zU>?TtG-Yj6NFJwJDpwBzpsD?vT37$^J6UWAgO;y_xCsk)y9;HB0;({R<`vQ5Nb$>-teejBmCB+nv+2nj(k4<#HU90Z-i0A&ya+d5lLb`y} zHY8@r?=>PW(8^miSbaD%>hpsT7ix)|CHZ}IGh13I{sQJ+aYZf`2U>D5z*`(DF|!;P zD>jy#v&BC%n&eKE_yTp@1M?+)4ZJpKP@6yMSN=qMuYMT|RUHXmjYJ>42K9&F!H-8b z?Qd@W(XE9p?%&_-qmTf@>-2KJ(~=@szir)|)c+zm(IR)eVZV9Jkk)jT)ebqTn`oyB zznDYRI^}~bm%q~E6n_b`8&kXjFuH5Hz?4V=)nCl8>{$5~3Nk;5s}VdKm|0;gE1qV4 zU4BZ&!bD)*U|bXuhcWc`HQ z*2%6nL={z%T_@AMQ)5~(3X0qfMYhfZWo@0tb*U~jXHc{OynDjsNJOtSN=?m-sT`U0 z>*5z$iv?!^SKdSP=4Ydw4X+!AkVdj?*j`>-bx3(6X&v*B~0N_2O`$O-4nAK7(-i_t_g^~B? zsiHqJ9fpPd7+#;(e4P2S=i-8n@K6nI*zAX5MZdQ0(J`KP7I!|U{Q?CnO?L(Kj4Vwe zi3U1jDE(#40XdVqr~mIS`EV*+8fw{G zW^&_3V<#8*ifq+4dYsF!Pt*-|8-O!got5+b_zmW?h3NbetVdNN#ZYMNp9>T7*2`0> z^tt9}+G`+Sh26F;WnjRmO$6LJ{IY?j)?{V^tuaJ&m`rW1hEOUA(N5|t+lF7(dbP!O zJ`bI(j|F9r+x|St^Zf9?vTXn{hLi*3+oGifrK!^5Px{SCW0^TvefUcYAU&$n3G(6M z%aRKr+2%11`icjaV|~uEhe z9*TwSgm!DHe#4Yc1em4K7+0`OLIV&=#6m~@NX+XWjM~mm~;BE8drtfPx+ z;s8VOz4hwBTznL`HNAdgOBEopY&bJYUjb%8XNKKEuEzX1TquX3!S|kzY$GYC;9UYl zwHJZL7;H}PGa#Z(^fe+)Tg@4nD5}XI_Cd`Iwo=f{&*iECs6K`dJ0eLmFnSVT~vo|-~M0$Mnu*L*;~yW6QH@eI<^~5@KzvlWfkxNUb`uVnE>DZVVU*%32lWf ziFQ&$?x*jqUXj7@RX){V*TRl>ah8OCB$noMspnvIJFegBOk~sCmm>HW|PrRxuwRya7uO#ZP29-3ODYl&O zvuUcU?O||%LxF8xy4{OXsTYZPxRNitS`wN+rjTa78)tsEl_YKh5l_N|k}P2-x=^o# zx~wAz@R3~k9Okr}_#N^yV}AXw@^s5oy=qNAYGEnMQ;?mG6P=JpDQFV1)SI}-C>Ko< z0CC}nl|RkDG3T8!Wdqwi@FKW`jo^SsYns9LfnaSiodMr5MjEr_xVjxs{jk2dI|w0Z zeg8jRLI4k0lq>&z5h^*4S6d0;hi^~0;;|SlC5rNOH_UH4QtbE>T<$q}|D;i5-VA=2 zs^I0S%n@>)Etitct<9b-A3F32nuuOE@7uCHdo#?QRsIU$F&Gt~mj`TN@(3yQ{9sS} zz+We4pVQ`BrRsoNwXO^)H#b%2#nMhC-d8!HhY2EUWwW|3wv_!kWq0{(U4Zk zqfro%DX@fm6B1?xwt$yo$*u0qJa&};Spm?YX_byr-sl%s_^$~65MokeqJFM}OI#Tv zH^R!sY!9nmo5$rqCx~0|%a(CC^54>q0P98%)=ly6JejvzmH~bZJXN{=b`}8@(;Yu7 zKix&umovI^oTABwpwUr@k;!6e$8E@11G$W%#0CIHWP{Zt94*>76qcU`JGojl=+V~? zT-9m~2Gs+!W#}IRK~80F7nnjpNl)E*-NYD?3iUKDL*wGtAZqI7xKnVx6qq4XF{nO# z6xgG#i$!?G*r*M9Ujwpnlr(&hD0F#KaFlCVMp&QwIX%w)!YKLMbvp+QxfQ7jxfp7u znfA((aA;whgPK0mbvBSfLSYg%1OAoYHTI_diIOLR*)Qf*7EePo+wr*q@P zE3I5-8Eyj%hVwwln3AQASnW5r4cGxz0ZvmmlaUry-10|(uf=h6nA$ZW{)h2(gsEk} zvYuU^NypM0nc;RgJ?r~8iFFwkO6h&g;l0Qv5N}+v$n~P)LQ_7`%{2EjrS?YfU?cav znw98l+!Cw7|JN&(?WR*@u4P3}l580MKN9!{0Y0b&em7PQbRQlM@ z`w}qITO%}ueSt)x$E|mh&IGBfzILNZj&&`d*Rbl+^<5~1mI_whd~<|J^uu=tCLASK z6*XMOVaQES%(4DnoQe8cZpIOy&z0PpL!Dd;&YG$F#F+^m7O$yQCIvQyfE~v}WC-d*bV9JH)GUcU!i_E2FZxY4RWkeVD05 zOG%-p&5T~#j~NGL*7yU(`6$^&Pq&MfMAE~Vh?z>*(ZF7?3jEO|fPM@KD=PR}To$Y8 z8e*)K7;1fr)#jVZo84HDZ4Zn9rX!gS_j}jZzHipNbaN%dkNWyJUt#v0)Q*ZckY_U} zvu_1$&~&U_s1=vZ7Zt>W!61nk6ApR-rqnA|CP=30&L$%1BQ(Ktxp1)LETXUN|0)+; zP0~M4XK{~AcWb@_{QXFFv-*ehi|zx?hPb}$S@BxyA z%hQWV{Oze)+Ah!^)z_DQ8w&N|ev}7j#Kd}Y)r`;pS@=%zF_4Y@d)q2KbJ+hYqzWG= z_SL@roAwH*SQzkquDKAuTw+=n;L47MQC(u{Hd-HDL#O=1e;8+Y(@5GqM#P&F*fWuM z{Z>|!%>9e4@#A1e%WD7Pmv+K85Xq8^rO`1a#_fVtY6M~K(jmym84s3zJPrnKlExVa zKYrf!#ma~KoAMKx*AitrQLov10b>b-Ah-=qbG$A<#3r=KqCKG&bna5f%Nr-o1JyBR z(B)Un!ZT%^8GZz(33M4<7&iG>{jV|)P`2@6b*5f$jnRHj4@$xhOQZ$#KTYcgml+%Vy0sI7JY+I>i7==2y>#9)b$MvTOi7 z5VuBeSo6$6ka1O1-ajq$)y*k-$R*fZFys~W5Ca+Bd|hPl>cQ`vKEBl<_0Y2o7c}j- z3bMi+7w=lNyZalbd?UYERkLNZIobkGv*l#_-ueb8S%rCqD}EoNc)8r_Q)zT(xz!TR zWu`Zr3>s+%Csvm~HB%Em;}<0z=G_`s2QCCZ9>GA__IkW#j@CZ-Vj>dhBZiPeA_ zEB3xuBQbJ)tlBd;=^Swa+0rup(xg3~+-bw#ahMo&(*=s_sVWtDMauF<1+qKesKGpI zz*atiYWga%->Ble2MPUMtU|gN8gc^dr;;GE7FB@BD)aDhDtA_ssY(8L2KVLQc7BVA4Nt0vm8zqicHEPggKo=;CiAl;3gfDw*9p1%nhi%!%pW~BgHKvD?8adjLf zmK^<$rnFq1Q1L%yFCYKwt&&Ie?ea{dpcn{JF-3UBgv)J1!2}E&UE@!b4f@409qeN+ z1~?yQuyA6|rugH(6xoHbTbWaZJ%&@pA2jf&Z{91_ezr@)F#CXEfoT1G|5j~(@y7+{ zBNNXj-GwBrECDB%E?PxE?@f@G8Qy+mmx+2nABXok)CQOdKzHSH=wCFNUGfKtJJcP% zW!zV%H`djoB37{q?=V$9PYigPD4_XmCfPp1m=7zAI<`E;BH@jDEmSX7pWd2k>LLvi z;cAN$6ecV9-Iy<`{HB!(f3fzwOuUYXvuiGJUZ$}{O*z$kOSj({UE?LX)z^vdJKVjf zwF1tHgx~ljf*JLp=htv$2tB&bt5Z%@}12>vU<1AG!)mTr1 zj8c6H`7_~|BVqxxRWQnt_^5jHu&~d$GFfb_y6k<_oJ)(ZK;_%dz8EvHQ#x(`6sTAn zpzzPIUKi??-}hf{L9GltIBnimK1n|re8;;}+?!dSvd8o{>VY{A@ZLdC)MC$Ow(mx8y(qv z!3^ALak3VHK5+176IB{u?=6mNpB~@H_`Um8WjknIm3Ki%Z@`(Q>rSTqcO~HyuR#Td zz~*(J5&ngvE3p1^S*vvb*qLxA)Vz?`aGH1^u5(7#mNg!M69~=bcc(ae@FR-nLz_p$ z3F?Tl;m*+DQEk48jx6}twg;0gHL(g`5_1+8)lZN#0-bc-?8nnSN~s!4Z;@Ol^>+pC z0txKr)?r0?@siP>^nSH0RP7G}i`ZfFp0~aEM3YiD&QEF;$lqeM;>GjE+7-v}N9%@!CfbSo1Yr&n&wt?^$Q=>reCpQzoCF5w3=*-Sk#V6de__ z^wt?XTh`Q;?U~a{w16PvN{kZ%uS442df;hhW!G=7hIXSriCT7`)I5~%DKTmPun!sQ z4)`!`u||dtyM*0#2W-OoY^1AD)oWMvvl8GZJmcZ^0ZuNF7N-m#d93wFd1*N6Eu}mG z09 zn3E22%WgCDb3!mfp?SIDs}6+u{4zS$SL;^x&k@n<^4| ztl{a*+q3Nb6hJ1S6>_b{N1bh0NA~YG%$?8s1SdsR!-3x!aN8BF%nA_IcUuG@bT1-S z5m_PG08&57yA|jCmzp{+om*sDq?1vad$b|yP3pUYfpV$PAQUI!Gqv*9LZ!^2U4H7R zDxj>MV|sPoFufn^gNCmp{*jnfr|4kKVFcFw#A=>{4pCmt2`KR{KvlWoFR8 z*2v;iOOh0FtD3sU`MBh&aTGCWFb&V|e+~XRXpn7=!4lZqqgjHXPgwjMWlZ}k7G2}W z27@9DJ_2eerJyg0OyC`!LYke>|M4#!^-|sJScv2`HT~sAHa9nEpqIau^p&GOQ%6Av zLO)Z(X?Uhbigu=x2zNtS!TH~620U56nB9MpY2X8FB+SbB<2y~wGGbYfloU%78YPhe z?fb~9d&peZ$~<&c`xwxmt*Z|VgxQ0v1T0|@3<&VWN}$=t6b2+=*&eh+wAjyMWrOL} zAWx*W2d7}ZcA-J6P;V)$J%3;8+b9N!u~(sBo>tpT95I}FBx!VQ=R7Tm@c-lOt)r@1 z+qQ4FqM#rKib#p1k}61tAe~A#BArS%D5wYs2na|c5)#tg(%rD6kVOGHJCA~kn&*pEz3w4b_LJ!dfrnqc04!( z(OU6cFNQi`d9^_)CM191x{tgdIBMf*#<{rW!@WFJx(RtE+WY?#qmz*n-iIS%>Dxw} z9MZRFog8k-`AAakWhLrUPO*IeN@`D4XVRt{MRrwMxV<~;^7Zc9B-p#c?d!1P10K&! zy=g81HiosSZe|Rghf5LUY~{SzX7)F8%Yz%%c3BXaQDrDncCe{%TTmN~%gG6H+268& zw6XF3y~nNTt7BKChX0w(aL%yPRUA*gUC0^jBP$R}lf3fxmro_)NDFhV?rJEFF#Gx_^D@2NnX=dbak~s#>@fSnMAEf&Gs7(_e9FC>sB7dY z?(|~uaknk0&PWBj0D=z+bd7O8?D?Sz4z`wqYyk|aZ+B;Y3rPaz9-OiLODN=y!s5HR zA@>AUs~eZ9Qp9Of0_nmU)+Fci<*@Xz2b}wN1%|OTKBQ4bO;g1CE zZ111Tv$gh;-YLBV3LCj0hhAaw+hOi#>B8kgOP#11LVelidG*5^Iw8I(qVN>hMOWZn zwK%2RO_)HT8AF&vk)D&8hsPTak811wSZndNVg0>fN#mTi@nNhNFt8gfrCqME$f`)x z_Yw*zQ1;~uyEH#s=fEaB1gX}{+7V6)?bEc+-%@I}d~fy@pqRL+$!TvZ2p52#&enxf zz7{rui>xid^Yigx@qSC}AEXz+Y%7Ez^zMskGX6u-Mg_!a+xawo}Z z;iT1eu2Dnsk)?iD?k{cx4QzfJp_oZ1BEiiY%u??d)(YOkCc>@H2Txi8F6p%E~>TvZ3im!)gV77j7<>I z3i{CSabD#qajW-%aOY$N>+6Z&n-VlZ>p723*iapiA1wjr{dlQwht z%`hN~6gV%G{3@01%NJz--6u6Tt)<7V_Jxk*O97RvM5qqOj_?yeOLYWYVE**IBM27{ z+mm~Slz`#c04u|lx88FdSD)UaAKcypJ^YsjXksl+AKMa34*sfqau|(<9Vq;!pX~4( zWmfu8PLD**)Fv5b3tw-eATJYLiKDq8vcgsAkCtqasK&%LcG!$Ufwugd9oVCweYz7n zX)=rR?M5~Bc|w~zQFg{59l>G`Nl@}nlNi$PEA)s7_i%JuNKN`Wv})*=gdTUNK8A5} z8fs46Y-J@fme+bRXRVO!YMmk|sPLJdusm=R8d{%r-*2dj9#g?7_-m+K>m8_5%qL%zLJrQ;IuEXT~ak% z9OaMkAXCtc%hYgti^!d5Ia0dlu-+=Qu0e#1UCx~|4wK=AF1=yhn}wk^3_A@sbR^!9 z@r4Hp0n-6yYz8eib#E&Ke0h@f{+)bZe(_x*pJLQT8hVIoyTmj*o{f9EDC)eq%X0Wx zwL9De%s-OS=Pu=bEb36B2-#Qk=@x>f1E9s;uIyJF@1Ic15p67>sLht_!9DZx!MKLr zNxLu|7~WzDvNn9FZ_6bkWi+~FfY-;t{Of3Vdz($N{<`1;j=?hS^df3wnS%wg7q~Oh zspb0d-TYJwFezj})#P*fUFPi7G!a(bd*K-oFVB3s==r*{bY{qe`97n1kU+q&6!j%+ok%Yuf)FX{#D^@=2jJImo-5hk z-IE!amKYsw_a7x#{gh>@bfxEEj{VPI-0r9~e`}>}w_BuiYwOiPpy0POO#8Vqw9UK8 zsdYHRR|cqc=w0{BGY1`t{BB; zJ|qf5Sz@<59Vo&0*CUk8)?$CPQu$hNg5g@=Ivpm~z`EeH7Nau;yyfN$A6|4j0r+34rKdN8?ou>5ur>_+h{LPZI=^oV_ z>9gC@=Pw!ObA&LhkH)xqRO<-os*LaGdV&3cUnb=TqI_2SV5p2BLlnB^#D$%|F7_Ud z=5*f}@SE`R_F?g)JF~iU8%D1=vfX)_`9%A+T{21)CfP?m0OAcp7H>+i#i630{pE@n z=wwG=t$b{1~n zuKOBb8arh0*+}u-DtYdr5f;lhb9u@o87h0bOcm%^b;k{c>gKCdl^(cL@`tAEF!uC*qy+7$ zsp_4;H!)F@M2|Ue{Y!LSsLM4f;Xo_hLFZ2WK3i1ePTNRMBtwyz;kCR1(^(@gvR{d1 zEj27))sT@d4HHuT(RI6=AH)56)jK9vzL))v-S)l+nR<6NMrKO#OuC{_?CrVNSm)CZH`oR6@ItW za`ZhKY=HqECv%bpxmFqGsX?a84EZ=-%Ulz02iygM`_WSm%%3y!ZLjH*u7H|iFQ2_y zg>BnhG(ZJ~|6=Ef`l!zGV~Zyq(Y>aV6qh5LWNEqF87mpAi98s46xv;!Q)=WpV*wJP z5C(hro=JIo#qm?)pB7sSw!dK$gm}(OVLu>HyCGVd z8n}ANeD1SczQ*_NOjFLlbW`sBM=+(SLJQqdjoh5`o{GS>1=TGAhL7HF8fqxnzK4@* z5BOzt??C;>h-<^HMuTlD7mPIAS3ZS1IncUKy&~uD--s@8EUUhaw2rS{$;;v2`e z==5Y-)Q|fX>8}I=Y=ZOT`Nh z$ef3vAQoOvP`y_4a6Z^qshx-QJIXI_r=d9&jn276PE=H)q&I=-7sK*lJ;*oaQ+^DK zyNQ=myGC$R#l3sK2-6#{DsAm=m(ZHIX+ImfNFw$!!Jo+KLELj?-1btAcYixwt){&+ zM7Q;R^iTXBd|Tyue1~%~NHE=MZ-#4d6qj9}pAzkL-s9bNFl()|eG;eQ1wrK6W`LoTOE*Irc1&NAMQ=0t5%@uxl zt(J$EYgELEylQC>wSL2Cgj(yq=$pp}p3SKJ=wrnByU}C;KIVaOZC>Z6FRHQJL<8)P z6Sp|zp0Ea`$Yxs86K$_ylG?}SGi7;CurChe`9O?8T<0B>mK)Fh_Oe#7Frwdnw%PfH z#er98ZD3S_xmSE_r^n7Zt|3(KP$yTnD_)PT#r*i1}`h5U%PAeJpU=Ncp9GNENk4~QPS3Fm zU7?Zu-r!f(w+LN{b0~B47~AMzJ;+uOJM1Es+j@63_wg3N3;%2OM@#q15687fExs4u zIT*^Q+o}C^H+sL9AW@G^{aRZn1K2covmegnU8BF)JZ_GZ2qqveZK4XBDUIuB%;VBp z$Ky+@I}`pn4(s~m2UAQ|Q1G!_8RO5Ad5RQr4J021zN~iQ4A4&u?vJY&;&?y#GuU1N z05ir<=i<=8p|=Q{;9g|tynI{eM`qeP^VvMk!RHNEfBLya@wZ?6F+201hid;i@6DUNhqQyua;QnD(wgKYBh*!1+%YRaSYSq=KxQ-3vWlI{784CF z(w0zaeZ;61U42a~^Lf$kbOiD>LvOYC^Zv;a`0K61_m^D0jf_%8w62AMZ|k5}>+pKT zmPy6A%Hut)W1sSJ-lN@^LnDaL^=JT58`3ZQc!0Yoz~_{gsyJR%0l1FFs5j z>P;l!X~$&vD%@BGN1$3&>+7YNagB#}=*m_*WWXTtpy0W)Q&wll()Q>wH|G+%lDlRnJW-iq|*qP5eI7+SO zV2MuRxq{Dot@$HW1rc0hNLGUL1kvaiShg&e3MbhA9b=u%a--1f4#e%8Ka{%8f=lvU2qAPxJzJOu_2 zj=>=vXq1&m|!75&k^EcWH@13)x>n|{(|_FTIkb+Jr!M)xTV zVc^}HtYL+=!r7~_k=%A~PvpO`RDC-`{ZJN5d!TWD=2O1RwN2HOXzSdpT%POaEy$J9 zc^(zeJk;7=lc%ilnzQ`gmM*U>=rHp3XMSrv-;u@9%BACv-_;5nHAlgZ`c6Ajr`~TM z3+_H(K-Z0wIT1-0-?AV33!D?>LMGeBap7u?|3ZcBf8fS3rRs}`5QnClZ1$)G`?{?cy@vK3e^h9BP-h0D~Y=0 z+ZM!DtH#KR!i4-l3jh92d&x&cvu z8>P$c(;?~EA4krEN2NbghLIcpVjw7ka#u-L7hB#ql{dU}B7b18_dPaX zUr>-Lz6oH1^sk|ipCUm1EZSVG%8J1tqARbKh1#c1MQWcKt1fWF>xJ9?;K9KR-;4p@ ze%MUj{1~dYSHZ3{HPxru^AcNHPG@DIPCc&d-R0_*WP*1;AZev&wT|fgTLJ!(Y$e>I5)BoshdZF4Q#iB5c zYF`!(q#_=?O&rK`H@|L84+IiKgA;EaKe%2ECPn5DCa1Q2@Dw9eXVC!TyVb51x`Aw- zWwIM&a4#9PrYv!@Xg+gMi#)NW;L2R%UcylY;sfY7eLuYMJ>EBv29FSEGBPwG#t#OR9x|H>vJ+DiYnIK0x+kJ9 z2rzdoy%mIse{I8)%kk39w#`&k=+pd^l%Uku(Ts^j zSr(gG+Q(IjrdPdMl5UcynzSsYT;gJzA4J#^!K8e0lOM zx$#lXR46mt4&HeiLBrk*3_iB>7(TtBQf>#XY}?uFyiP3L#WQ--1P=Vz`TQ#+E<$Gz)+mgby6tmsIfL?x|7qr z(e(*5+D9LsGn9DKDWC8~K0Bn3J}xeT)$6^RYEJ)>sgLJ3Wn8n>k1x1PP+3&0%SQ|F zUM^0~BRm_u*+hfWBNQqOs9V(9UUO*_vX!;+QY>*c{(9_t3~ZDexA2n zKR@=w?HnHVO<$0dmhKZO0lr4zd`fCaT)%`gb8?CMlVJ1IY)O{*ClBcR@>xf+yK&Zi zD^5CO-8EHLPxO*Awux=?ib1>N+pVI59w7?41mU!piZ`%A-cjwd4!{gZK|!JJIG1qp zwk^!FX1^{>1)5evC-265eoKkqlm8UawKlAOEo}Dm$adK?XY#xW5IiWXWb*u zup>(8#U#vn3r(Q=_*(RU2}im`+-ge7t2YW)N11gWR|@R;`AeDQJZPs8C@+sy3U&$x zNYZ0I4+oVv*_Bjd$Bb&7+VJ~osWOfk##}TPI5VU|)Mu>ELz$9iX;IqqDW%upV-@lg zf&ScClg&i@)Wq#QK1|_hspad|{<_RI7ZjOp9q-heOdBeIv6!0oXw`q+OUC*1DEV<)ai;W-CTg(b_o=<;b-hJQJP84})Ip7z=EIx=0|WC-o&vXvOG*%c&;Qx# zak~A@;jqBVGnvom>umjFCzhdy%Xct-N3WVZrRmc}pCng{mK=?5{aKc`r?xvHb9qGj zVgGpLX`}yV(O237lw1l~D}^n}*(Cvz)cyHpYQtIf+|p`lYD+tiTvv2_wBHX|nZUOg zKiXfW!S}HM)&P@G&`Fou9g8rm5NfxqHgz*Ym>R({c9c~Ofr0?xri&p3)T^oIdU23d zQys{71X5bgmKmW$MFQ@Ig=CaEv#Z_4LxEK9H^IqZx-iDtsrz($jAD^n4&Mby80(1>Sj*Wzg&G?P)-L*N&Wmi7Zt{+)(f(|IK-+uWQ zEY_=x+atFV`#H}-gICkh>yq=>nY__dQeK361QrPUSkCgj-i){u+Ja$Qq6Aqlgynz$ z0q=O*jV_nG?iL$2AQc@skQ>XHi@sp=17?Qjq)3OxF9%j`5i*xDC-py|0!V^j%T;9ByagE2YCZ(c!_ytEG>O9?p>&?^?K_l4G ziL7+<(1YE7K{*MPS*j5xlJH2m@u&~q2ohV%tH0)XR{QiN5((?Ni|<7w%Vk<3Mr(`6 zu^=y)1s(i^$ghA&A!9W!!^I37CfO>Ya#`~;tI)fm|2cDimNm8zUm*BVfth48e}S1m zwxD|Iwv|z$FE&Gk7ETJbKbz^CK;Te@m+5W`J|_ltdv-A%-)^JKylW_>mqv*#&=%6E zjM__HU(`A{l4awEJqZ3MeR4eh=5xU^px*=T{JWg%*4@VZZoh z1X!+WteJl)gxoVA{U%;K#bNjHy@DEfOW(u0ngpL;?vqP^9Hld4MS6$LE~yZFdfclS z9)SB16`e-nItUBThS;N8o}^~%Z*zT%&kf^*E1C~GtQcFYDw~9OuxeP*SwE&ecJNhS zL4BdK&bu49QXlE&?mz<%>D27UkS+&q6G)x_q0fDKJ4;R0gQ+QK zK~Tn0e9`{QdRw6`n?#Fa2d-(==O!~Y%6v%_KR8G%pb;HrkM)sISjcvyFl^oFD))No z{q*6UHb1kna+`PZVM~WM*Yr>~hfOJ&l#q7JOeuPbpX#u+=RCH-d&BPjqoh*X!Mc65LzH?U>%*C!pqe=9#$@e0>f!N4PJxzLy-%qc!$ zqYk@wFyG~D#8X%`EqiPk+^+xfc7&WvnYd;cKK|(+DRJ=mpUf;6N99nATX7h*)8wQ# zHjAtQU1Etn?Zvts)AI6rxwOxdn?Z`X=cQJIJum}$l?HcCwD`}TS(_Iud)ierf_k8n zA;Qhk=KYz+4)96)BK837{l^BBw2?#`|U zT}ooi^)gB2{UG%y4_cD*GNLsD*PECDv(C9nxLaH;?7frY+E(Plw$qz;@|g|Y@O6k) zKa@_mzZKGbiTC>x6wk+adAfh!LqV5Q27g#S>aTgOsY@><_Cq7?%zpCS8)DL{ejXQ# zB8gxKUKSOE*2yC8J;|qRG9|vy97EVX0+W0I zoJT&~qdL*&ce2MJ@dIH}!Z`T$s&AXSU-rNj}r7iYl{@Eof>6yWirz z&y#emRJ_B9Ih=02YOIF7(Q!IgZ-VZ}Wic}4bd1A;mJzK;hMU$@hue?X)*Wz+?dNFB zz?`o%plPH*VHXCXty}@K#D=bB;M8uoBZ64bc|A!jgU% zH@>IE>jiEIX0SWk;}bPwWI&n((A;Dn7fm}aHzpR4z&Rysb$0z9fX8y5?AD%{8$xX% zz@6*I2+n8oNTe-I;u4}wk^QC|A4fZ5lh7f*Oh6FN=hG?tqv?@zH(c?r$?l~-jUy7& zSGMUwi3(&KnEnYzL9I;aj|M>-mUInn{#EnAfkxT=jG#%Yv5ln5w67( z92mj*y=c}Ayd8HtI8Zw~pK4mo;Nua!Fwt4MGgsyi6CeLGeZB(_8~joav$o!puuipH zd933waZP6DS zAK*EB)pj`~G51?7HNP52wN?x=L&wN&6Eym4L0hB11gEy^V@h_1RvBG7^IcQDHWShf zp1UpYFxMM5A+^~5n}!;|z6iA~OvaSuuHiasY=YRY)uIEUF7j3e6# zzDhLvSJwhi&FAJtyx`@koP7z2Z`l(EHsvViyfT`z?!hgxi8U8g)5BO9t)m1i*3p7P zdT@-&)7un*adx^Qp()PXHfw#&Zl(Lwuh zB-C#h#hnzp&pd|a1&C#%cYE)E{e(O&kST(DzweF+^}JpmL~}XMOzAXaOWJX_$TyCa z0HB3ht#b389xqOS6+Hn{hI1qj~;4@w`K>m>oY=j&}DN5k8(%(~?74xDC?*FYXF(9pZsS@Zb=bZ$uG|z+*4g)2=y`%6aWt2v>M~Ag8}L$3V83g)03_G zZYt`6&K`@-5@zQz-m>pcp-Aqi_O;wbvDt06~VV9rO?dUT6HMCgFhJ`tw;kr*}T>^UB(oG9X@MMJ%!UJkW zX86ikHu0NSS*gBcwOqDsx$wQ<^hyn$Oh<2TZIBFaBjoSR<@EOm8GO<6fsd5p6mbGP zCSaPSq!=k{g|`0xD^N+`;`Sp_%iJ!tWf%4=!HzS~xz`{Uuxm={O)$FmHm#fMk1MlRCpUvv1Pd_HEd z)^I|0t7NYn@!CN35fUtHm$6@;@SA>k>;H=r%!U7NoZyO7dD=2}uZJh)CBZP=QlG z)9N}`2IXi;@;BNg0XxEXt6|Ly`j^t^$;OT6R1>*!2@iwP)51)Um7ntYr@G2Ff1i_0 zwE%6ylos7iDHD!Q3_4u6-dNum=|V=6PDI^O6k?m50-)co*9SW6HlhkbxwcPP0tk^o zbsyio)^W^KIC~^?HO92vT<0=}Z7`WWCp>E_0~&(A59o5H+(oadKugf#)z=`ZYd7hM z9$2^;m1uJu#GIip^nPQ`p+1BfAFM-L69|Ra18I&r6zFM$iA&)PMC;R?7iH7?e;=@z z^da3Zs}ce;b#GTS){XeD-vB+32{turO7a%0c#P&ZQ-?+;>&{4kZk{o(DFGX}t@DYl zBU%b6h~ct1yKrO^T#Cdl6S2%E=0fbHsnqqn!?yZY375ot;rNK_6%6bsSstAKo~{nG zcMlxbX4sJr?@%BUb|_U&_vF$owm_1viB@>kGrcJwCMawmy{A z#NU%+w=u$l?Sx6F-b~sV{DGe9Y)uKtNdxlP*&K@rVPsPe+1{b*mgi3ur{@451q2fr z^cD;F(QjSH(!{^xg*OR)5fG3waiTn&Cv6U$`Se9;>L>7n&)-Fp&Uy*dQq-Fx#WYFv zuUyv?b$<#zeo#DRKTq5Slz0JvF01-v->~l1x{%&fdK`&s-7Fw?O+0aKa0YrTBD7Uz z%NlGi`ro#FrMrxEpaNIKkA9u4=lamz2>$TCwnguKArY*!GFuvF)=M}0)bd6#F) zr$QTbAEc=j_(AW{5{$?>AXZ>C8>l(l9+d%V7bHDuRVgx&V((Ul{mondbx)5TPm9+Y&2~2pvw74JExwr{`@;m2Wea6VKBQVu@9a$p0ta(1YCSsa(l0Mc3wWk_z zpUe8_!tFMUFd>}hB(zSCVQcN2MjCzTCFpU4rTa5Whx>4&n=+^|!F0d(W)m1xQ9X7s!Z=~6$y zj@NbRxZ1ngBeXhSgD>v+LsogPur)_O9x!SB>ZlcVy4OIuM#;}S6I8!R53M%4+K+4! z2)QE{yXrTw+{P36{UaTb^`C-Ei(sb~tLvZrTLuwlWq?;zr1|VUidE@%yDM*pC9fe- zHll$UHTzI8?C-f5gVN@S7gaAVf9vJWPYwBd3umtIgL}s3F*9{Y>ysX-`RNUaRBsJGdfCX+n-G8 zuDEPHKB;4P{sg1XQYSYPj%49GlkA=+vRXn7KhB>1A&}ic9io75Le6wK@~#9eliS#9 zOnV>)i98642Z=2#MBaK}Ug`_BAohe(LFeG01PkF5;BgF&j}9ezo+GQQH0l)ePzr79 zLR;Av9<+D|1Cc_&&klU9CC_SDo*>2nh0`S-5I zMe~nMMXG`;m%*cRm+d5o(_C1V2{vf^{van+l1^npb{zByc+F_}H{TLFqP%+~>19G= zbz&c7UZbCjcS5+n|4pjRYyD5u#D9}&BVcDN#WOj>MK6kUFBX*9kt{X7pZSqNyNc8a z%pH~q%}dh!w{&-MZ(YU|9u~9ubc}3VtEkDd(L<8>(YWNBE}IiFrb0;t{pHuajz zj(g;HQFg=f+xz0XL-gBQWrHf-F7|L`M%b)IXD}U-q+c1Z=TBn5h14}j&#kB~!Q}cz z;h5+9BD&$W#MS(XOt?mjbT)?|At}EwqC2m%=&bvcAjB0QNNuEeT(KKbp|Y)-r9253 z9S#Ju(}FA=!QhWf94A8ovx_`kfz^!k(dw<^0HigQo0oUeI6xEwi-QH1gjO4kn3S*S zCl#sQ399SI+a;UGee{wwAhKx4q3r=se(;fEY92~cXE5Ik2M6b68^_EFKzB>02e4NH z{GH!~gy16sB|`$x-SOW*EEq5VV)+cX!mM0+7vE>db$>}WM@2TdN0!Y%C7^jqG^ty{ z)-1&G)`%L#uBvOdb&t!+I+q>ul>5e1h8BAZxISZ_-1qWSaNRyUaw`5IrLzm!X5{=POZrPw&4jtEgRH&UL4CfvimGQ2*yuZ(R{bKah~OFlru=gx zNpQ80&)R32hCmo9g2|f(ASNG-!?=6eQL~==( z6*dN4uqmq#rC4rm?y1awVLBg_onShBfl$U8Y0W14^g>(YTUMiM{rDKo!Fub`i1wm6 zHKV)<7Edz{Qi1a{RDKioehTM3tKU>>vh_c?)6=6H+rQR)wxZ`5u!t1yRx8T6DH>}L zy0C`q&**a$EDe7c=E0(AxkR)OkLNkZx5=xAJjLYseaGW$y6 z>)aXvjp?t|8BCL_%Ul^-p*n1jF9UVn1!}0cwg)mxpQhq}g2@T#QhWB6EpbIk5e(8Y<%dBLvk=2D~Ihm4K7+0;v7N!@~9pHhlF|KD&f2EPBQf^*a7?zRe`tBKkaVY>?pBv?Gia8@FBTS(OCRao7=DRN2*U#>MlP+}IOx0RtI$mRfnXI?WbuJV>yJ-eW`h zBc}izUJ4xnb_M0Un-d>|2GZ8GSFm6yNAE!BD+9W8UHVk{%3G!< zw84c7=_Q{dBX!|X@MoEoGo*@KHI?HoMNB=srN-XhznF$W=;{~KezsagW)=#fOO`Gt zX9m1gn|k9`iG0lTp2t?tFr)$iQw13cZK7?XqgO8wN9i1F-LPTne?gnEwF?&3>W5%nhuINpp4lcnlUsnp$KYR*==`=#%3&h zrL~`@rIup;oi=2EV0{?QD4hpYXz2c-Jk8Kp__rkxwSD<=8#1bq0F9yu#2PfVm`%_% z`8JW~$}d>j26}lCKvOXqlwzy7UxzNMvyyJ?v2@qP>O}<3ap9uz6^*7xnVU%mLa=gd zq%J`F0@f_B5sX*^tC&0UFCYSrgOEBoA)pM1c}0_f5<6X?;T*R-sR_P*!f-1ITiAGIM#X^Z>u^MDIdShdlL#>sP~7opw0#WLk6Yi#BEI4-m-e zng8s1OZj@@QGQyx!=;%LHjoj*2Gw*<8mc~&9 z!XG;4(-+%Y=pJ9{f-DZ*5knUc_u&cgbnuuaw!w;A%S6Yh1j<*#^4Hl)F5xh}zn=&Z zzYifmu>_G?yI0cJh3*S1i>Q4#G~-{O2YoIupYtCJ2H%Zf1>{#Ai)!;1UnsBDev^Y0 zq&a>Uf!t*ri`G!SaX+L?&e5yDm&VR*&jFl43fd4h)Z7=o!;XIA@G<(#4lOh`g9=~N zo_j+Q1kSt^1rF3}!5S@A-pKC|SvX@u6F_;s-l8D{M=NPnpQNUKZR!y;uW=Xn(Z8Pe zz|5w|hpqSFE|wq66hsyVh#<9t1$%d@yd!W^e*v2|#?^_X9s3L(d%g#yM0xh=-<#ub zQPD)xpBoT&f>21`AA`0KwkMf=b+8+0fb$srw8G=h2SS$XL=y8S#jn%+a_NKE>RL|< zR)KPJSa10`-y@~rbN=s``RnaP|H|{Id6z$XljHqwJRw<-kVjkmVBMeAf^CIIHh~Qy z-h8xT{@B^%M8?^uVraA`(42%RjQu&kHQf4BCM{5xEcKv{ArQ5&0|1wXFqtq%)@%74GQfZ%WYFFk}|Y9u$PMD?_W$b|kb|Mt+upij`QiQ=4z zX3Pp*u$)26I-65AK~SdCWOG@FSRx~p)ur|>e!=mQYT?8LEd&>}pVW0Rk;kNsj={Bs zei9ZhkWWIU%5N^1_$tFVzI*A-fau@}td+bpy9810Z{5*(@j`tKsyb z>F@;eK9z)iYjtSxf@q%yBbE=jk9)q2`nebEcCi%CU*g%g90PXb z-Qm$gjZ?_Sb=~-SYZc`BYfu2A|LNc!|I_`MQF=JTK8lHWny4MOC$97lyP`Z@5(atW zNc&u!v~=wLpw7V$Ot#(V{r|Q&Rh`lNUk{SARmVFoq3_dCJJnuz#8`}o&dn;v*nSp=(S++x9W^a+jwtc@8-KF z78xfl26&x@{KZ$!web%Vfl%PQUi6nt&Ax%h1dd;?NE&9n_krolAuBYr^tj9IK6)F0 zkd8L76%UH^5!IV0idou=v?)1KlM)^rc_5J6tg`B>R^f=rVDu4bY z2+`~OTh<2ELz!JrQopk1)YzX}SirU>t+=MLQt71jh3$e8{JHx3D2qj$M8M7dwFe*>RI)Tii#d7m|at^i3QHP+JW^9XYAiKfTyKO z4U&GQgn!Z-ACXt;Wl?(E{{SQtk5vjHwZcX5iSzYnD<-sJ%p8?~0jt$b*%L8Ja4y2mKW=}YrpP|@-rfBnlAtNNURrGHG@ ze;dn_ev!MvBPS;=?>PIo0Z>>)&$2!GvrfafZJ3h!@8uf?J4i)y=~h3>K*VB(vQaDE zsSLrT{3cb%mzm(PkZ+$+J&nF*rk>D6uugK3M6+dBcOZBBdg9XQ zpFp#90=sF7)qpdEp(4(Fh+BhFEjJ#zn`2ub^vup&B>{kL$JQ?1Y=7g#%AcXb42b?i z%~?zL1f4wpPy_cu*3>g_r{lZFPQ14FM11PBC;K;8n6o2sCrX+QRQ^0$1k0uCxE0$@ z6$N86-bO!2We4yA9B8atLzbFb`1sGVjq{A^mNZSHi)aR0qv6cHCR&X)$=0CyuanAn zRQ{>=JOgkebF8RUY^r_m_g|+079TR1nhmldBbe!0#&$6nsiwgFKDJ0keR8XNBa2Vu zE2Q`)GSwrif}3vw!vFl-$^U$6ygysJ9WH1YKw6U^`4wbfqg}T86U+nu{m0g`7iot7 z*QvHg3Xu%_eit}Y=@4+8dXhT6N5H%X=;b5EQZ7T|q@=%; zr^2qv_{=|qf{Db?RhZR?zxkbgUb;bEC-M5x6RKI|qBNRe*oweDwS1?RsgGndO9vA% zP9H`f6ACOT+pV181N(Hma48J<759O7In`cAv`Ie5$iq^WjyW_j(YK>YhBovc% zqEH1j3{Vw>&|FQ&D-#Ki$k>B->zed<=17T%szTJ2pJ1z1Edi)z3EU=Z982+Ru z^5O-Ph#&FoFv;?TI&o!)3b$a z#;bL+AQutH!!_)jp+7x{q5 z>mRYl7qpH!FY)e>!R`&RM0^nzu)5Pyp2RTy-xn%!kx%Oi{l=~QzJFj%wXXY0I zj7Kn?jklsL~c!Eg$*@ zXFAq3+YKt;r5 z*34w*y1eb0f&K|YGlSH5)Z_4@c#k(Lj+ADgtf@M$A9?@PdXJn;uWNzX;2auli=-px z+NP;9a?M!}?D|yf_)r;YTSX4ss<(*bLKjx=Hi+VNap!JXX`_bxKt;Udo=l9#MNPhd{DrI`i}824QO5 zs2`Nt_OI{xzm}wa)9B-%{c|l)n>6UP*45`+)sF%l@UYIGe^zz1^7Bvq`>9zv4h3mt zYGrl|6?_B3)&<20A@nNQ*5xt&i|7=!f;OJ*zNO-34uh19;E;zld(Fu`N~(Q5^Gr#O zT6gJ&AJGOwpjT^}a#q~fj`wvsU2w3^$hPe2MqT8PI3}fxSOr5 zAy+A=du|fWG?($h`7ubx`ugR|>$BMSFE@LYy8HV%I>{9T?_4`gMu2l#uE6z;K%%M} z$Mt>j&*AM~H-f7=YvdQ`w2ikyZSCo%P%t}iSzvE?AMa^ESFU*eqCJ5DX&1nV$ubpYG^xU zShKKcIqpT14U`El{He?a$HvH%O^lAAp_Vk29BLa44Y$KhM1aD*znBBolW9L0&%G;& zwr(5>d*Yw>PKICCfOb3h9$W}>E8NmsN0!AK!4GE75#wSeMcEPpKc9}h9F)`{3~H=! z0!Uz*fT=fhdU_gpzt7ADxKdJ5XE#5IC)gkD&Lj!){I#*MkqPu2F%=~+10XXPl6{AW zWLmDgzgekl7<$?Uu}cbR2A^-r7sya z=K(f*AMD3;hF?}+3_&gA*`kNwJoxyhgYzHgejE;R7SzT;NW+I7?-}i4o_a)*3b8KWJ6}4G!qV;(=^B}Y2$o3_6W^{ z?=#g!Y_>`9!7sT>i?r1xK~L)Yk?dYmqZ(V)Y#1&4on-iMN`9V>!DN0TwEKI;Cw@Cp zWK9F-N?!%nvzikE=ByYO{8&pJkf zl{Af16sesn?JD*)Qj?P#Ejgq5;NCMqJ`Wz<#$_CZXk~i+@5)(KDH$0Bi?$^Xt)?Xx zAXPdSo~}Hd&qL$oIZl~u&i59vh^QT6eKnxn2ouhdr;!*mNVO32E z?ul#1|9xnuBBg2ILdIiw2j7YpKKa&`iB2@&&+$K+u3i1C;}>Rl9|nZ_VVBYc3ZeYa z|NBvSt`hRFQ{Z3YR3$H{_FOMD`)OJg(F&=Goui|Cocu{x zsfyoeXCq)^3b(B@lxwD-2pw*?it+2)qY*lPSHG?8rt#6*WN&zmUe zT#wdcaxACB5xA3<+aZPorqxW_6yNbWA0|o6{3bb;NT3L*14hLtUz|x_hF1Icf{~`C zV7lb=bkbWt{K%0G>FL*}5{>o#W@L;)O=&lJG?qoD#a{ zB2O9laX*;l6}JZw%Px|haO&aS+@=pZMXRNY^wuiUO9VM9zaU7-|(rbE|Oj!^i4h zWAGn18+P3whJf%pIm!;yzh4Wf)Pk%n$72FB44%7Aj=zMJ#jxbL zqGAkmSR)3_OME%3rpK%~k%hX1`I!N5r6_6GTwkAQuZQ>0sl(yj%JN^Gj(CAT83D1W zh~%)Dp`fFy%YAft2HfSk@U-=qbc5$PqA7q~kv%u5A9!sbt;Elr1!;IAg@PZ?E{8VP z-c5?ELN+9_0LTAn%IeH}%eKU&!J2L8W`nj#u3@{A=)scTy;q;{!bv<>c(mqqHZ!hB=1(3j=BYYEp-v_$BV-0=k8 zkq11Yy>2q=!=QjiXaD{F{<7Qg{t#rnwM6p}6%4k*sc--l6da>70)W=(EZ52{q&VK0rHU|Z3m2?-=<*Q3Lzj5Ps9X1 zjK%NkNu53{!=45)e>EKFe?OjD`EQo9j*`OdByi@R0Kmu^mG)h=e z+WIPGjt_A?J(yfqeNJ)g$1J;Ummt=rG|jT`BCDBf=iRj-32k2Jx*lmoJ51j^iJyQ4 zhT9mNCpwkr!~JbJHMM5IsWjrraR2ak-JoER(wXZ@pyDb+v<}F|Eaqq<>0qaxPaoR$ z&Wk#?s_%VJ4@Zg%@Y7#`RS0shcKBJfBdC3(k6}*s8^lbd<+R0BRKy^Zo6&=5wn*o- zM(3@Z7!q9~7T674=}-8a=#{=OTio`;1G5O$;tnvAA$>2FNgJ)BwNTJLcyP`h9l5%$ zM~to{Fu9yB8E!*L->|i`U?)Do9KdpRtc`0KR+WL`3ABOt>9n>o3Xjh66G+xU)*#7{r?YT?*Yzr`@WAWNo6%eGK=h;O(Y>(M#$cK%N~Wu9@%?@ z$R@Hw$lhe{y+X+TU$1&TpYQm8zsK+QJC1Zbho|E`?$>=^*Lj`id0lt6dox7%PUtA_ zMBets8gHaH!tH@GjR%rB+}!G+XiehDoEUl_?o`lWcz=p6Yp^Qgfuu87E$F`W%RtSibIyxxmL|kZr)3*HU-gZmQUVeG`MG3>R7` zY=Uh5LP8>74~7a<=F(T@t3n-E38yw!#%)!;Vh-veJT17Rv|Btw4sBSkJ5Qs=`Maxp zb_Bb}nd=&24YF-XcH39MC`7Ix!uxOz<4E)`3<1tFQ;E{Y!o*Z|ubbil(9Y1$);_re z8>>W`djXd&Q5v794k(Y@#YKa5=D_hH2#hLFuhGRT6$LhVaKv|3E<~yN)JzuBuR*=~ z88YJwtM#e#(8qlnd(4oQ0hh-<#t%d1#)@;)^CklS$&gD9}*f zsc1cqXE%LO&kh;0IKO(QZTz5}v8sayZXNWk?mnnHcf%+INQ@DzGCvM+Y0%*KhxImg;r&;Z2Etu>C4p`;ad)px%)nv(p7GLTw=E_pD z&7al+qKXbF}+yAc-1a}K~;f^{XHoq|NDsjxRF7cK$*9G6kH<`v< zMA$H6;RVOk><&r=YaXP2E3OVm2mxu-FkA?>9q=AC<7TF3x#O^9pJNko$ubjG!tcv~ zL^M+=MnWD^g#w#X4AoTaVW*`H)F6vx!Prf3$zjvc-WtYco%5cFw7{ty9>dE^U%~ni z2+7RyeBTlf3Ik{@AC)=2b4j+hMW4bYc(t5qe3!I&kYd=irv$OXcJUvtYZpA43w($S zp#8ExYU%`zCkcxKI#D=*aGT^a%J*v4O}Eijx*&EIf1*WVkOT>-n8!KXz=|8c;WZo# z6)FkRcU(%QzW*Br{B-Gsl?cM2GK9#Ov~q8S(J&X4Ox3bj#@j7?5@_)O4U zMZ8tnAGy#DvEsSHAhmfow+sc$$HMEn^@ISj@Jhwtcj`Iqm&W@V<{I6FPI z)zA=aLv|x_!Xf!-{)8wSg=AAWtQQm&ZH2hfC3>4RtG1RzD-<=sBh)%7^!b^Z^X2Wf7l+ zE`H3;o2+6z1k4y6(Cu-y3%iwji3s_Do1ObJrN)tS20Q>82geRf8nBSm z$Gz z4zLp*quO_m(_s&|OIl1wsL{KP{L1@(7ID7D<^+OHx;H#Cg7)GsaOJK94;}afPxi~} z(5B(?QuOcKx!;RnOH8^Qs3Ug+#P(?4y8frf|+;xIeEZ)_@09!LBC+GP@9T7xq zp2xyWeh8?9Sx`&xm>wbUCHZI|tL;n{CXGNja|nm|(pT`z@w~W?0mZk1lF}}6k2$hG zz@u6Wu1l?-*Ce9EkI#Tio3-OX61YmJMWYWE+L(Z^ZuQY|V-qvxr0cF!g7nfm-4u)l zI{@4ZHN|(F3WzlIGLETdgh-FBLni|%a)uD3jyP15zgXP^We$E7ghXUu*4`nbd5B!r zi~f+q$Q8C6@j)<0z#FXZJBeGazGY<`XJ=dI?gKWihwYk+ai;m&;7SI>X4Vrpt{<)5 zd{BGv2uTh$lTJ&B@_z=IYYJ#2boF6Tw<$;JPq_g|^6!7#6R|Ne$#l zYPjtwo~_lL(M2z@v=E`n7M*rN{Qm(l2qjha9TE}|u!fvN*qWFwr@)jNnVT;F{2%H#O^$m9VP<8sr4!*EHDa@iI z$&!?LmN2quD3IVGeRR8iqVsC@5Y&-8)OER3tw@33wL`t2UtCboeblB@tHaL5rc4sj zf}o*1sJQBRKvNKR9)-_yRG__EO5c72{#Q$Y+fK-bvMfW96(r zU9OMM<#vm5Re%XYhfB$p6CUTMXe&U^bK_vadhdbg1LaZJBgM;)m+% z!J(lS)7yQ;tV!<#_OfMwrt2(Dkj_$6RW(K4ZwSgI4zt>Y(YIt*7FwN|roLF~0#~5n zyiz#X?g7fGGMx94)zwvc-$rd@LH~T8jq!?-=}L$wBPPbiMP?lFXv*FE$GQ3{kq4)l z#xKDz7(X~VYQjx~z4qa~bTL#PQz`-YOpHITsO8Ii&TZV%*XMn`(oKg8Z0UA>I|LjPSQp!^T!>i@v-$xnvG8OI^lk>=#k z;tIzaS;I$tOy91frS%%r2s4gY+YZqqalz|5VQ0mBeVW%iLo@nnZQ5`u54NUcR8_~G z2Hd;SK%oO22Ecwxm)?1QZG{d^koxVfXs@s{x$E9KK5KMYCn;4qIoG~ZH*6iq6ta1e zNm9&M#gvtmsnwCWetmY_2DhWg%RFj=GY-gMj$!hHh~4&uv;a(bL7YC#DA7pG{9YYLqvMBD(6WJe9?hjh;6Lt;jZq?LZf!9}Mc}Z#otc}D^b)xe$p}*b2ntg zj(X0q2f9W?MbYVA{x8>Ls+Cp*QrmGT()i041ufbxgsEQEXsV&M4r zHW<482sMbPhJgR+xb;g5NaF^AhcEsFaMw39)C`rjdT{~nCGB6|tESK;3;M1#P-L`a z%s7m!T%j`Bsan25b;Wr@p(3-3oQJrLiv(~MO3#lU%2w4yMPZQL7W$xwGBGi^oYAVG z*+J|uUJq;}&+>0LT5ntCvXyIrKT=Hi_Xkc_!2y0MP54f@EcKrO0Epv? zxx~c8iovbSOiHfH z2fLgI{#!I07VW*tCh#w7W+TOK@ikpp9LxX;oFGW10IruUycOPr$?2zJ5e~6$Cd{D@ zbM~3kb;=tgz9Q*U>>0ct-~<=xbtQ1Kv9sSclb6bn<2yeA@7|tqR-(^@1=BOz>8}?i z0c;c_s*QJg7}(a6kOBe3u_!3A#t4qgT14*Qr#E*!F4g0V7Z z6b3X<{khlGP0L*OZVPh|P(h@l7%MpZfQ7r=EFnR`m@BF~n5-aIS$vtfY*BY=50I!E zFmVOk*$Rat4FAzY0e8jE$O6~52*n7zre{4FQrmF>=V#mH3A#$K0e$-{bh<5tiIU8K zE~X1#3vCIZG@WHV9H2DV9R}2o_)8woTw1uTq;|oTS#N}eC; zrKMWKauyAzg-9SgeJp{*`Zi~cTqu5YbfjEqM}ypQ3Sp|k6lSBJp-J_B0nh*R zWsqID^#(++)JsJX{O0B|l)58S>5{swz?&A)e_D3}RRe-JqCLbnFW6WE(6fP`U@vdT z(zn{7OheZ@YIj8{5up9)xww${FdAXZ!)@xhL3(3c1g}vUbV_`&dCAr_p2>C$&tubn}v;F3Xu%omCQQv z8#RB{n0d%-E3j}eBQe)KJCU7fL(j!fFHQJn<_*>+^1!$^-qKuQnXOw58?wd_xcw>a zJX@Bx*)LRc;(gNkd_}u*r9kc}Q-ht}emM#0^P@xu4Ib%mcwNayJ5;~oPZ;454At}t zO6-|Am0u6OQryQ77)KlJGo_zJoNG32?Qp~TGy0G-|*MIp=;c~Z*QXSz_ ztfvv;d}Hd?0?{|{ZitX>Qv;=^2CsV9CBcHk0BNJR;)gy9ZK_MQLEM6Oe*&I_)DcelpKM&D(E+S3MN%YfyS%nvRRKJF6`tRL3ntKQTzWWzr4KpP? zRa04o{Oa_oBxt`t=O1f>^ChC zc}W@gYB%Y7EY@^cmw(1X-dGk33Aae4o&XpFn0y4B0PIAJZ9koBP!L7y1c)&`V9Mx~ z3tuCO4I+2|D3ViDWDlFgxYc1~u-2^OQ*bOBQ<(YsJx{W!f|Ek{lx#8ft4*r~x?1;Y zL*c)YdUIS+G1KJ#eQ?q!vhY*K#u?#D}+a`Tf&=IqiN*WRLBx$K2fT3+7Y+glHdWn&Ea1s041j2lec z%hHtZp*wy203@+4ISkRb-VU|kCNr2*P#+gPx)P9KjQxe{x_F_z8!y%8Bhi{PHQKsE ztjXfyi~8M7a!1;&O7z{ewOj&D*64=B^6lfJIbsK1_pdbkMuMYKf;~jU;B*T3!0Ed5 z>jCXp<8Xq+Hkfn2teLdfQ=aWeWY{R(kH?-nW8Tqh-79UfF z1k2j|4iF8U3eGoDQSqg1nQ2pUb<67(q|cr!Gff|g{S$8*o-*UXUYm8{L`!(jv*}z{_}T261;Q$+ut@ln*916*CUhtaw$ zW3d}rINmoaBIi>$`?rIAYz{l~4tDm>tW;FmBZWR&EAQNH@4qEBV{P)S-+2>V*x>JG z<9f-Zc09X2y|>M9JTh`CwQFg9{c!INWkN|x5`OuspcOKE`jch7U88J!>xJTm;$&`4 z>aw9*-#+y00~Y9pGP@brYO0s2s@W@e3haL(Abe@K1Pr@~;^N|z%Pokr5^S!aWGnbDC3_@QZC0Aze~L$W zH9fY12*c8UiFEj@Sl$`Su7(CNq^WRp)ID#8xB8hU|noaHu1?msQmSqGG}; z1R(M(G&FPyoc0TBA5Wbpf%6G`*`QES53n9SA|+w^_6)(q%fae^Yt?X_KFWaBpx zpn^{78j64wsJ=lpgY8O25`r3QzJSQgi0+PjbEFxYPAUJ}+&1(qx@zAS#;3gS7f+@I z>-~8OwnauFT9OTKu_FId9HO`TLj(8MacQzR`4(lKZgM4i{~mgU~+S(~~u` z)}p!LphtQBULfhMBRn@4XK|qr6kN}_Pf7&{>4)M9awr8!h%M;*eb93a6spr|b{2)m zU#n3AoAwvxk~fcELv?cd1JWkM4GIg=*a<2+1@5(N=*am=dcIAH$Ra36gD29;4yph` zK1WxVKW&aBi5MM;-nvD-Y#quWg+iapviIsCUac=}tB^gDG|{cv8dok{VeP>j#oU*l zO-|5miU^;fVn&>-TN|Z2_xM(39?O3B2{TJ4ks;v2HgC`;z8blxX?#jTnk`BK}|!AJHy(xANSi?W{|2e{~BNtttmI zXR0yMvUDMm^f~~#713%+e7k4M4UrC`XV zx~!wg!(0}Ct>Ux$NTKzCn%}MTM>lgqaE4nX4dv(2` zFdZuIClHg}vhBr}D1jPKCwqs3^3Vxiv!7TD@R0qHj`7_b)}^6*%PijTJBseUbV5CA zdNP&?O7_2Itv}wnzxM1S+qvh_EAAh~Oy8nvP96PM53Cjl&7E3QWsvAFPeEv~KjTZv z=)|8Wy$ccqc0b$U0kEsuyM(m340`wHexIIs3TV%NljA{e^bgji%Sn#_VN;nhAWc4F5AS6tvb1OYB*vQM@f*@5}TkC1+b4{2o z5R06Ejl_7zJavx7E7;2OwTqeA=N8W*Wxben{RC{_3Gc8U;uO9WZYz8iPl??bb!?{6 zLn<@pFt!qsMeE+PiOt$B&Kui@v7l*hJI7Cg?ySo73=F5ziK!o3q?BG<2|&%XKz1PxaDp>B2jLl!Hm} zOYGj1GCgYq?VR#RI!5HZI6M)lH@1Gtaqq`+E(AEXeRsotAjfu;m{66Hlt(<{Px>o0 zK@i~-y5ky0_crXX^}5t6%(_Cc+eGG4(&Px7)5Q#iDq~gF9z?NHJ{<~^H9lKN@cs7R zcg+m2M02UWB(t1#hf<6k^w1peb;CY=jR!F*G$A7nz-GdW+4w!<>SZq=O2C$d%vnZi z=Z|@L5AI;@1X;Rz0e{1?)TwsI#UDK=2W!Z3E7gTe%=YUenvu!Vx{$cGocsw2&Ysf;oMzeKfkU<1zEeDMtdgaqcKTzLb<7$s)S^@`F(&KCZ z^xk2t&%?NbpWcy%I?6sVq#duE=((@PVQO1(GH+vRxN|TCW+6T6jrj3)#!XGJK7pGsJYbs8#u_>HPJ>I2c+07@|%w&G`-bMT|R~qJLv<%*GYSZ@#9>js;UFE-P52ti#+?3;2X7oJj$UAt^ z8xnffv)Gqu;w@w>BZ$?XFAljFV>r`=*YvIJb`KsUps`|RjM?a~a}TUURw}u>N3POq zb_)$|=_Ly%MYQgPK+)~iLbL0`O%Nx zn0k0^RPX`a58daZVGDtSn;n8vI&iE z+WKvo*%TWJU$djiZ@(JN^*q;}cP5}cmkV?_BfqB^wKBxm#&Y|Y6ait7P#X2`1d}&OgeQzAjJ!2P1EJ0z6*Qa1QXT9>e-CCp za!jOs#ZMLQu>a;_fa<4};7mtr7fyyji~Co-ZW&(sXk(1FbK$mm0ZG6SePI($6Bk!# zN@|<1?bpOA%gNlmtLs=-T0gzqb!eG9(&S7l`fQhFIDKi+~&aV;-Z_YG9@j?xy{9X zq)WrGwL14<=&>Nlqc92qCvEhw57K$Vf--DPGMeM{6&S0uFSjTA2^m}-h4LzG6qOV( z)%)!82b*IS76>G*IT|XsT(gU>8%-#niq0(578PN7nDcP#ZSjE(?|_>6;Bi8=8yQ<} zmn&l=7O!)URKVNL3zhd9?;QKRSGD3T zz4$1EEq7IR#a}65!ah=2+|Z!M%hR(n69vzHu$ko*zx}VLKPCw0Vw_3w6MLRYeEyU| zOoT~A`?8+o(@{rR6NC{GH*?a?3l5vLTckwOZ}9DPw6ScSawhRo(mL@6&vylhb2}$f zXm{Mn(YD9ZGt-FsTRFcD=z7z!zi>ngchLEmj5i(R*^gaq=~t*C{$PhnZ)MD3=I<#X z-;4D=!UAs|D`7zAeMO4S7aXc{p){mVVQ5nJi_ zrh}*$SHt%~AF@$?4&?;2(Es-{89H%#UlQ}yjaXg!%g66qDe}k^Vp{}{LP>Ek=*oA- zrX8@tZMh!lwf~UYn0+Ym(wFT9y@qvg78Z~aNk-v3$+!ATA7AJ%zC!hCaq#f>s)}ul z;!@{?Ln+;lj5e0IqirrWi2hfdi7SpbS3+#aa9e1V7$VTUTE zXk}C;=oJ0_)Z0J+dr*WTd(PVA1Lm#H%nc%UpB;)3>kyydclq@0AiU{vw82xrAS(ped=8OLT62N~J`zK40_iVhz_ixjXjg8_myTDsNIwN)GG8B+mX zN;=E7#~L0=nqb4Te$qUOpgw2%XS%c%cI1O%4-S_eP9BDM%N0vT+p`dfmXHL$sCetA z>tg8LQof$W8<*C#Hr@CBCFKAGgU4r1T$!RT>?qXUIxE^r?(JBs*E(piFeaE;Qq7!7 zSozKt-R<{9jDPZ093@on?Mb5p;i~dV12xg`HS(RNi z3xv`uMuk;_vb40Dnd!!8m?tHh6A5?r=`lx`A7KXpX{Wt$WY2?svjY1bZ#?H{SMGot z;i+_&x@`AQFf+V9PA67z36(TgQf6Lr z_s2B!y3D%xr~UX2J^1aIF?G)Ssno=Le%hKwv( zzRp-%QzsXXcd~qsmNiBySA!nV^{I$-e_mhr>m`(k%A0EKgDeKx;Mp5Xw>4G7qKG;T zlYI4t^VPv3M63qd4I8`udNnW^Miv%baG448(Cz*4CWu>ec@-;*FU<&SEe1V0LQ_aa$-w4Q3_LB+UL>EDm0pws~u^dM0{9N6d}%z-4N61 z4=+4gv1hD!OXLn7*;-gVoox3FKlKT~``LRd-e*tatm&bl^`>X#a~CGk)uUP4rpfkQ z-btH8b8CWjCnlzRNaQcNTn_ctAaoQdW5(w(H>Bs}RD@~+7nPcw?FX!dbsJ3r^0&O|5>xV`33`sE@@7W56 z)-W^nf^Yk7_dCeNSybjxpy$g8bC7w>HNP0Op>d-_Ts`@`XK~8m!`N#SJhnrXo_VHc zs{Uou%TL}a+PH03xDxpEne(GLUp3L+QcTc%zynv{R@gOs`&ks?7U*%dTYD8uYpD`LKu|XG9s!lNT5Ap_+ci%I zHIYl~ZNT)mibuql2=$1B^0~NEGb2kX*Y8CefK1x+HSjE5_PN;j z>+JB(7>-wh_4sTxo#iB&hGpz`9z|(Z(3ezJIVq8zS7_s(7U2$(ptlDTSA;r=Klcjj;Y=NglQ|Q^h35V}tL)?x ziYz|f8vGfsHAXBJI9lQP^B5Jj* z77F&p%k!S`X>HNaR-f~nJst@j!A}Ea9`r;d#O6@Xg>jChNBrwM5L%5nu@d?Vc60d^ zn{oh*MRz6QrB{0KD{=tLN6L0o`n1(KA-Wi94| zvBKW8Sv4Qh^JXrqHXgnq2&jMQt`SL3sn_oCg`|CVp+@g{KbhMr;hV5=zYxC^4({Gj zst+i4-C7R*+4bgvT&16UNf@i7{r)%Gt+&37&y=PlM)pbbab6dhp^IY3mni(l!Kqbd$gH0=|p0POei$B4u4btRNHmldA|RIAq%0s=oHBhdp#! zDc=6!r=j*h6C6v@E4?hC)BX?4xp@|!cvLs!lZx3cp_bA+NmHZIfyLm$YYHH@i z)UHzfZZ?}bcXJLgk<>f#&*`CZSnQ@tECf4*8*YC9b=J_@w@m6EW?J&NxM*>x1hG6% zTK#vYdT&39NJbsZ)RJc~v9`^ON}cOr?kQNdYykqVy-10#O`R zbf)K3nhE-kpKSJGYAmylI_oIIC3R!*q!sJ4a}=r`20tlnUWG{Oc?ud zA7PuWJn<1HHpg1HgX!b&HL}KCv>S!Dl6-xc;Ld!Z`4>LgSC8?m{>92(;@f}DO-`pY zdAaUkRzd!=i^&pA#q?=3y5EAk{mWfjay}EZm$iYKTxeRosW6rEhE(ni`6yA5)Xd4|P@D zEFMdBPNRY2o2j2leJv*qv#lFAak7Z7TSJAoX#E#&JzJ)XGf8jD?!}ie+zI#qd+!2s zkt|tsdEV1WmAH#t<8DxZG_Vl+8l(#(!LGF(P8@%c_`Yfg167O|K&k}62fO#)7Ae`+ zusb06C86OE($pI=F7x2-K5Dll|NC0q`nY)GhXqx5~C~EV(uFpNG;P@ zD!_xqs{8RJ-g#>Ig+;)Y{F1G;j_GSRH|sPp)H;c|ADOg7aWBKhGwhuHN&vnS7i5j8 z3mdNza71Wi(aM+W$;bRF+Ks)OTU@nW+!^2{20Mqruv4Mzl?QT{YV7mXI1Hbvnv8mC zAUuVDn>BivUR=tsV59_j_yGDs`A#l(uKH9`g=LQrbr@w-U-tG7l^-|B%wKkVWQ?$U z(IZ8zeO-odz%lWX8g1{ubae?3gB8bi*c3)rxGEf<-zwNxNw*~ntFo|Gm6G19RrY_~ zQm;=nSn`Qe+>%~QHOP15Gs!HCuB>`wP79CbA?f!M(4xKDRpw!vz%+<8O?BTW{&(s zwql&|H)Zq>$sbV;GB#bd)0#m{{1;x-eiWGOp@s^QHrm_7BnAswsoNROnk^`Ks-;U~uB$Ymyvw?E)Kba^`8%}GET4jjDrq*f!ubbq&R ze^c#QaR5Ghbcf}CuVWB`X7BlieGhk!P#d#Yrc~v9u~paoaqQP}(z{xPsMEb%?D?hD zP0j*;)mJfgnpa%k<2Rmn%ycjk`<;lmOz|Xt(&};kf=xc^8CySRb$EM<^E@tf{u9Mk z>ZbgO8+Ap1p_0V&Ki~GmHYtVU<9d^T{apRi&jN_MhATWU61CSRHMjZxR+zMpk_qh# zGn4WH0g?OWTFQ8NgCvt{ceHl%`GGsG39}m+oDHL=e7u6@CH^Z~{a%vlRyve9F2vdp z{|i%6{Zocna?D2}uS={{m)68Pj(%N`^~*vydJ^1l`lvpq-`!PCx-tUTiZkksI%KK4 z0#V%zA4AsXg=Hw-wp*kN#Es}A^fG2zjj-^K=KfR(ex9Z!D{S#kf`>}0Se2-2=`|Gf7i zZ9b1F2i9%OkG^y*&k~DnuK`nL-8@DrgW7XT>iLqb>_*X&j;&#NU38UY#!Tn6ZkpF< z{+{~!bp`_S^86DlSd(gQzeMB+m^L#}>r}~!hKrahmc1!8jJIf3*a{q#8jKR|Dv6&x zoOzW)@W_Q&!G%bnB9{e&iX$ww4QYc(?~5(ANfr&aU}IhI*bLS)n5ra?RjHWWQt=N_ ziqovHZCU~3>f~-p<>H)PJ#}Ldbb=jsQO5!2)^6R8HuF=Q0wJ?&zO=gBkD}YFVp4y} z8N1;;c>m|IlFwN+GStha=BlN)Rgn!uwR91>9E}t+J^i|HCwlNPWU1OVzp+%$aN=hM z4Mn4h?3~jiD^z~mh3;iZh&ZHb7Y#^mfJDxxM7D$0f+5UjWnj0C$rMRCID*% z+{xVEYF<;VX;COX#=WEx+A(-kT~~Uh9TwZ1m=mrlawt@;)1K$@-~_z9n4%1_9W@?R zxuWfA?y9G({-HkYWF+(5tmeq@bIGSSc?KZ zRnBS4ne5c+|Kh@lD=)8`WD=E_)|?ot;ul3ovzmwYG2jw@IqOJ4GAj@U)wbO6UWu=sTG>Hc95`%{@Fk8C;Hv#&CgsL-;TrfjiO>)t2@F z`&KiZ;%^O(Px@4TBV1DW2e9A(mn5G5F`2!Nq;8C#THV@(CUVN^hJ`pc3JKHBnEBG< zaKxMAq!2$tG#QjtQ;t~~a?{7A^1^%WA5gxKGOgXHKlM&kgN{PqAh(}$=X;P`GP0V~9 zP?o~E^e*-DsN!^rwx(u6a`hLllHlwN_UX=6hs6Z4g7xJG<}vgMH>S0?xt8l`Io`_0=k~47^RV-1e>X_SF1S=6$ zjH9&tVfmy)dbj!uCXbc7(+;ZpsIm*ix5QQvAzwLS3nLYxdakFeAH*y=`0pIQUcXcTN6sIg$T8;j2J8ZC?uDkG^h(e zow)?x(#A|)(ZZ)R!HW4JtlkVh}zoIBY?CjI*goZK@V%GIv-MEldpVAm^bHc=S~ z{u~s~_uD=D5zzM|o~+Wo)k5W`Fee9LvWJ7yT?qkvi9> zu>VW+Z|!ZwH=oB#H-+Dwpu#-Okg=3UtX=E4D2e%Aa3h85mx{Ifp))n7n0(iaWj2S^ z7wP%pjk4Y?9gUiUcOo4Gbm+bd$OwoA*@q5~TSr8u!+kqm5n&Nz zB2qG*YebRig~lia^!i78)AddE?WzrKQB25*lia1n39ou&*KB(R!@imiUz;a$(GJVodQ4Hy$9h?V1GB%uz$>>Vpd~de9#2skDgY34X|&2|?oj?}3NKY~ z0r&{=fzYZjXWlq%seJnhv#30e$K;5rEOx;|Tg_yN#?(=(k%zq4`}+@=rK~<8IzoHc z)uoj9SeJ!pmQU%yvf)QLII9janz-$yRyiDO@t*RZQwb@<&vcrW7>s8 z$3iUk#k_p(ZN{r}pLascUZeCeE-K*^PwcKQl5%(dY;D=99=z0LNv-_qbb|1B#g7uC zmI|}&X<03mnmd$iM;L4R6sg^`8RK7_S<5%XcS$T=ETQfE0Vb!dl8Jp^YR-qw4z2zM zTC2;wAKk3FQfbJOdg-HR&TILjFJGgu^NO(OBOQj)9mMzx^Rte%wAeH9b}B-WCB zLuO4m>LHb8qE5XVkSQPQbK>p6N%7 z?g}Z4zRb5K@*lUkzy$;QES5kdxhhu!9;Jc&y9_(PRiH=|k8$bRhX!r9RoFazAA2lv zlLxy>{Jy!4((RX~YCp_EStaFs#OO1YcI=GA1qmQiavRmZI#t+(Q zBe<@Nc`1_$gxnLCA7M+j^C;MVdhDU%5+&Z?9GHcQg+SXoS5sxLyw+mAf=u#-(I*f{ z?ngJT*!}6Gbw726`Pp|NFi7$wGCu3?>uW%|pX%J*Mg$#LV<}=!zUta?5i!PEP&d2W zHm9e?H(480uNgmXF&B!9!`e%V)7+2xI$fv*3E9;^%(PzIoIWFD^xn8pLt+M2fIw}( zpHOG@F%-CumWiucw`TvXjMo<5YxGy@0z7M*A|S2WBSmYz)3MzYFV4Irz-O-VW#zNQA9jj=xUM^ z*^FBcGO>hDu;{Iy$5w9wSJ4%>RVw-tLAh{YJOY&pka5$=TUhw z&Cyb29;WXdFF9*^1Bu%PmpU>&H%qAvANGusnX{AJ7fV!mMFMs2l_q&MG&Qv%JxX9h zw@alzOEl$;05&1`)Av$lXtBLaX{3ULkZ*9p5%&{W4imH|Ye}d^2p< zuC?_lBvx2{HKihwx$$d6g@@_c*SY!95%$;%mf|3rRp_)zF0%iAml5d6y2$(K`>?G@ zxu7QrFH%>xbonk`?#23)GP#qe>3x&NV9+^MJzk}^dwA;Ef9#QuxX{rK0}HvKu@;$! zgaZ2n1^VjoKA4-CbtJAWFMpk}l9iX2=a8a-5kz1~dc0YXmzSrbQX(BI{&r_Im|_Iz zr28}ev=0QTqgujZzj^%bc3B2b^~W}@T+Vm1xMcehgsJ0=I$XLOoy3*ADJHZ}` z!^u(nw6=_!Qg=RbSebA@T{CLJSMk##afZTj11EJ97n1XU8Z~qJeNm^TPh|^FlDRiH zz#XX17w;nOyX2o?XKyd+5}qAreW z39pEd%e#||-0>L6dp6-qBtCB`MZ1u4&tt7k_HZGqT>u^T!&pC|zNk_}#h%72jh6$q zH+SlYjA_q9+8WoDj@Sx55H;GP$j@s(1Kkl)Q&Z%*)*eajVWkS=0)+$ynw*w~Rf{B> zoU^~}FFxbx`P1qm{u^wrT`;i)(dN+;0dVPZrOW3zx}q> z$X}p#%n$Bx(bV+38{*a@-R~%l9%05-C}fKgixZhUkH1!}w)`+_;)Ry~%WRd$?v>jb z_xQt!^1T{UxsFO%ItkipQ-6=kCew*=zKktSE}_d;Y2((R=GQQGKU@)?pp#JTfj{xb zNyOAkOOFQJ0t7%X#GikjPtmvu(b$@)WV8w`zZC6+6pd6t^*G6nchP56om3zj@%6GUFBfVxW z^+p7@Wb4SADY&eEA>yb^zq;z$HQr|8HPw_xaG`8{Ba12STOmDO`HTK(rc?eGZGxJ$ zU0~Qx;H`TD7^#w6Ea#EErv{aMMi1^Q3WEzOzE-GL6K(MZLITRS{j{phT0^AG|BwO{ z2GF^aY;@z2wz&5HlSdunb-y$(77T`}e6@zOu%U2SO`{+VZy1zx5YwjGMbl3uZE-K0 zjrJu=BBq{HCvfJZk=ZKt%!nhPO}_+(+ePYU)D%we4UF{T192jh*xmZxiEcDmAU&uoB^t~FQLmSJI80n%Rf{az-;zC)G|IP6rM~W; zg(F4#g&F&Bn&C=_>O5}V_>e`Ffi9F0i8GgqK1fq!-;!EUaACu2pUu@>{b*yL^kohf zEa~k-{&(1O)<&*pfw4v$KgRI0J~ww7Ms?6DyODGWzO3yEaCl{pMd7He%9-leoO=`Z zNzt!R?VhNPYdfo(8v6%SMpwUFBWgHQw+De+^z`1=S`!ZeM)#s9@2!`s$cA$T_lqH5 zEg~+f*D%1w8yQtzu?tRkJ-FZoZJ1uYG6IW`gGgKKZ@Z1R-|T;~fMP+fAUEOqW3ty{ z8zRqf|Mxb>?-{2s1EE2RbKhau!uTKYVMthvo|DRkjaIT_UA+EkB)K1kgP5z-&4e`fG@XhTaRD1LvF z+Tl?VT(xB~GKNn@G|Zh38IP#E&A5R2l1ijR<5KCZU{TrISJo(Z2`?Aya~xtMrY)c~ z)1K0+&H#_PQlw^rH(97|bci);%s8yK#v9>uX7$nN;k%r1~^fwLT zXSH{y-y~d@JB&;p-)mZ$r6D&=9tWXtzHVb0rC@7iX}-(^jCz8VuJOj@LJX!=C(TK< zY9tR$#`U-2yXkl<4|lsXx?+g+G`tGTxZ7G~&HAw-q@oJ~Tt|Gv3*>xqKG|%b(3WhF z=BNi{{^`1V!VM)FKMD-U(XeubChJ_aikq+h$5v4VMiI`hbtmn0DaLn|)U46|Ap~HW zNuX2U=KB6*%hb50jiMceb{-`v5}1~HkHUpJ(LQAz-fOHxXH6|ihRCp^jwiol5l zI(p+(khcJLSR0j%(>mJI*)Ki5Sf`rayEQ+KwpU$IQ1^IiAf2K~gDVWAh9b`{$?eZ>UsvJ5taOQ-Xos{W|NPB^}E_?6~ zdJ-5@*LR(BUSCy+UX|S{r?l;6279)kwe-og+AvQ##$aqH@HfO}$f@9gUpT+S5i=Cm zeY>AXcW#c$+GowQFx{ghhLgD}0i78PfzcAU5j&a2r2GHjJzu9vAoltBd9vQm4UQJ{ zq`9G8u(H~!WUljbT-(t#;Mj{*5$ag$P9 zk@AUUy!+h6px%JQ^Cbc5|A*%n=Db!W!vnd$na+ck>zsunW18+9 z0C4YTvUZH=$^Q7TYG-B(l_t2qL|Oe|_s`5?kNhTM_mEpB-Q3Rod2a6`Wm7GA5i_8F za=myjxr3~AejWp5;DBsWizy~Wu;9raUB=&?b}1$$HJT^uG&v9_w-u)oGPK^w#Xr2GiN(yd&Qcpq0 zk)o&&@jnDONd{a_kD&wnEP}ad0k9_s2+E#69H97Q(r_}kgC%{_2nYDDUZ!gLr$4qu zX{a~a-40n&e&Kr22`2JEIa(kAUrB+op`UsYl9HL4>0Q?2{}1JNX$jB0Vvx!PCSb-!Lcdzf@`0e}hlyq13}dJaZu%5#J$DFG;8 zYJ%(sS8~Wev!Ma5U_x(mGeJ+KziGvivI-DCY!OIchvZI;aJC|3yu=ct#P*=}uHMK( zS7he<-Ce4%~}z?-&N3K_-vt3OG1x|%G3blq!NV4wqB-uef^oamQG9O02rNW}{{U*vSS@*;`VZ?%Uo0Rg4$9kGj(!5~ikW*0ko(&z3c55%$Co zRDgHNyjkHH&B^n7=x3l&n?`i^j3h%;RLMFIS}GGJ*2`bXDIxsft&)wppN`6~GDK>+ z^^u4J$8`!(fn5ddJ21Q4S*|`q`Pj2H{jiIT1CICvxc&8;pE;tKYK1R7v55mjA~%TXr%_ z(=w~Yfa@|ksbUgzN_66aXt-Y8HRE8z=s8!K85csAwbfy)x%9^MNziwFwK#`4|8)m* z;)z|ec4>h?+&e;XtrG}ppDtbw7#V?XPSKrsC;cut^#@fs6=updkAflBdf)tsWW^bvp&4PXOF7h&*6mz_GxU z?X#}glFvHi=J2GT({|;2IcQ+plu&aK?4%{MTpuN!du8)a2m92MxULZ%BuQJmqHGgr z#QU&D7uw>eB^iXq93`;fW>(Bz1_a{w?nJqk?Z3andi`Y|wm*TJt{$tt_$)yYUhtMO zd&Pc|rN2L(EulTg;!)^l6Mx%8+PBlC3V1QQot1!y^KJQLV2a!}^n?dnYfo$0)1>7&DvG-J@x(t=Ol?Y=s&>AXBx&JWNn(4`0KW000K=1lY;)?x zFw209NR0ry;shfLLyUsVP!CsfwUV}4!CnAw-UW}-9vCyD*%)F)uivP(ba-^ZJ>Tuw zmGgxnVgLfmC~mase((W^8Al#cIbIuiX{RqN!4w(rkAApafoz7O+nn%eH)kVjO|2AQ z%=2NJ+BQX6x|!ab0KF=p#+{DGJc*H9yEM|yIu$_z1#M^>&&dv&b7SsoFL-4Hv! z$Keq-=^DEMoH>n&I)nM?;q<;BdS6@N)E6p@XwPT?@8=QuSb%m|DKAW&RSmaAs2qOY zd@R||&=}?IrirlZOXP-L61%4om1RZ9_QW##qP!b_f6XqgtMV!ta!6ex0Waj}C7=wC|dfVm-^9OAhMG!D`mNKH&cL~h5yREL zQ}i-4H|d2lt`vb-w8bOaaCwGwf4J>yJb5QYE6xMrrzX{prdo@@*$=SH2ylwD(eG>a z0Sp$1)~8fE-%Sx6;vQ-8r(8JMtws}s$v>tDPBgbIzB5|}zJx2K$(9IBWF@~O<= zHm{A~MJeN%j@sUX+CJCIm=rx6oVq9v6W&uM<>XIyjMh~(mNtc%E9OociT|R=hdl8n zOgWHHWFB^+P3NWLqr?c)5N3vn(N74Qto<9Y-T=1dkFXD)1O&lpKE{WM6-uZ|5*s zbese+OWc)M#BozLQ1DXFa3Hzgy#3PDZfk$~4#T*T&!q{U%zkdb z00tv4A{z7mQuBIqj44PIxx51McI$a&(uTPfB`DiKgr(EM%*>1jh-m{>(I)}IszsU| zAmGgcyfssGPBe&Azx=|&6(tZ0`b5fmwI_q*n7i`RAa4sS0S&P_DW?`|&&RE+MZnsm z@iO|zl-D;}YKww8Y&falCTck+Ck$tG+>wqK17=&ZyzzrYZ#-lLMSB!J+R|$D^$1QY z7-;<4eKRkevOUObz5ZRs`6A;j17Eklw%{h{3|xICv>evi%B&t0mR~CF!3)!R>?cAS z&(!ePChwstoz~eLn09B!2S7+&lCYia0|NQvNtMrgI**ArBjJjBo%xo5xX3}zl1)Xq zWHAF*tak{=6>Sc|fGrk{%;@9xOZ74UMhTgoNg_POwzs(Ta3d>_CFD>aSg@HA`1bqB ztSd&Y>1$Yub6^b8VD5Aq|M}cr#)W+)gv6@dne?hQfTe+DaJ&IdbFgU|_6YW)LbSMM4Tr*1(9Q zWS{xl@R~3K4Ce2Fx6I+%RGkAkb?io)o1;qqC9DfJy6Xm4-7A`OYc;>c_*xbDX^TM0 zT12|)e}koL%0P0l6aqXz^ zx?&3@3(FrBSL}NC?!ARr`l;+rtPSyb0W(@_PFfRSQM#a1fNTX2I5@VVs+PwJ41D$_xNM-V-Y&f{n4KDjaJ=G4?R2By1RvS^!M z^%DvIasfH6Lo4A%EwvCeHDALD@bgSg;qp;t1jI%iC5%BN%PiE$u0;7pd31BtU+F!5u`ybyQm z{yeQ` z%|D4vX9Dr(j)LSia1cG|sgxAw1{C5X90DA)-Gz_4VAw@Tv;ttNNM)*cQoes6*TL#unX^E z&B{o#e#)95JunrSfch+>CNxT1UKUUqxy4zHGQ&zYa5w#a_WyY8Rp`$X;gZjG_}jw!cdd1bBF zp;k`!eVeiSeBf5kuAPA32qM{_gRr+nmZz6Tr0AqBBGGA7s*PWR`nMwTv$@PF>Wa@k zz_1J45Qw;ypPI}FovUA0#HY3%n?H@sxseg}srW4*NsDOiQ3mcuCO#Ws=7*7K9%q8O z)8if2EvKNoKJmpVc4#&bE^s&3h5FYD>v70RSEW?imNzheGDzIrl0RHNw*|uB+`*qq zf9AaFuq{GGY?oJ@a%&6{hY975*PDIj1+b};suis91%uNByjjmrJGslUlPe8IHTPiS zJNh%f9=aw`CmR~+HYMzvn_6AWdXnMmClfZEbtncJvVu)8Qs)O>^!M?d*1cgcx_f3k z&W(S@m@n_5;5Z`^1?s8CJ>di;jE~bJfXIZrVd%QK%d5u)j@4tKy0qRm+j~+4c z393;G8cn>VCapD9Qiqmc&Q$`R{^|SZQ!zLoQcO)vRg`SFl_499<{;#gK5bt?7YM$( zUJhl_EfW3Qpa>?t@*MPJxLZ!D2(mW1@^r|9sxqatW4vS}P}Y6W0wC>jGiRS}NY4Kl zCQ!D1swcc;wx+<7$J+X8Ou6UGG1LoA8REV*;Q!C@!my3VavF8K=q<)JtBzJX>P*K5 z>3Q6H^g53vKk1^NnOy>F<7iL^*}@hOZw1EiV*Uy0${!&*b!oR8)*Bf9 zNBMsA1#JFcS=1>&435l6ih__GXGpI_bSa)cg}FJX?-`luj>dCEZ)E$+X%a3_&lzGydHW@&Zy=J@PK{q zwAu(W>tDUPXaG8feAk(+Q0hrIt~ghb_S15Jkvgr-*-p^sWe^`F;g@c+qR*-B070AU)bW7`?7 zgRV5rz`;hbkl8Z7(c6K+P&2SB(LL;u2Xn=w434GyTkrSZ>c>DW_2oL*b94j%kg=S;5B%yJn zT;^SUUs_#-2*17$9~#KQ%uLw$?GQ>~77e-@q>r^lODj~O|MCel*;C0=C2&toL@d*I zYVc)M07XW%IDR?1#m?H_f50FA`MaM1xb5Ci*bFZ^jVP>9#`iWJ^jqZ_u4y>s9ZgQn zzvwJy7)-=9ejm=Y@|DqK(bYILX>T{&Koj3p_EkD`GX!82Hb6k5zNlbxDL_QmPPsUU zz6@*-%NCCl<~lpi=V!gTK-xy$_1&NS{u{ljnJA}z)0!#A>V05e^$*k? z4dNAQ$?OuIW_jjG4A>Cfc1cXqLH`t|4! z>oJHzq54%bf>|<1tOT-PI(mRg*G_9MVj%j;B$2}-jhho9_b13U5eQ{%IOn51HiQ^J z298M$41!PB-U?hk+0LfO0$Jhx%`YMPO0C%@ykY*v2J>K(j$!MU$u+DnP{TlQsPXHQ z?|qqcCR!JRId;w}Xrd{BQR0lZlwlZ;1*^zZbeuIfREJYyGwIK6maRSsuNj?G`nU=| zW|)F@SAKpL273b2joo@oXxBp!`8ikVNCKhFI>mA>rqx#}_jCoZaljtU96wd8TZ}k= z`6fQv-}C#Ah$4SvHiDm**IDp~6VgC@*$r@*xr1DW!SaiN?eg)B%);0HT1sfWA9@KT zss8)&49pLGh4SmD-C(w&ME&(0s^g*J$k? zp$6N5#5Wm8ZRJr7-T4Q#-QAapnT?;#-p=3bIx_81HSKaF6o$SS|{u4*BGuo!*3N8 ziV?%fkK{({HOPm4W~MAOHb=TobMK~o`Qbv#{lZPOSL)&wb%3yM8Tx+*2YN~*9hdYC zj+!7Z&|AR!d0;GMKs^Ua2rfzLO?l6J=qE~Rm}%JZE(}6^l(tc z$f$n~v^7++QRYEA5rj=eidH?B+|I)CaIT!f`$Xy`4DPs2#UwfQom)fOri)>3C4%@6 z+lNx7H~fA`1UbS0?t3uD!XCkgnWn_%kBemhEJ}G&IX|ijtF`NQTax5EVT@Nv4{iO^ zIkomHO#CfO&QdAT$G1Xq4td#4m?t`q&!WdLC?rX8O;-XR!W4}eX z7%6(bek{xSkO`KTiuzq}Rq%2w*MCrmutpKk{(s$DB!reoWtZAVgOwmkQKxA{l-hk5 zsMVA4opze6_r9#U4t9+4qFmz=6H6=(Tc36+@|YRUMd8gwDcdfdjm>~t8~J3X5CjXt zfu-*)t*-t?iZ?Sqf!sH!435QPq+#XHbuOeIi@yrEh_?0s-8djG&~|I*FdY|D7K7amZIuXbtFJcltifmOgd! zop5Lw*gQq8!czim!QF&EN&E8W<~qJ_`9TtDl`aiU<)yH{yOg-fi}*nd#RE5Bn*TJE zk3V^CMv}~V&Aw*y)A4y|Hv9co&BuW_`H$`}ww^M|leSla&FKeoI(;3kLssF?4+mOq z6>w}I`>*I7h#ay^00$2opvcv(fx)r)D2aw7Z*SCI{!gc;!F6*i1 zE`#;a4~Xhi!c!aeAXCw#%X-qHeDY8mVa2rdf%UBgB+i;nsgbd^t1 zo!>=gp`$ef}-mdZ-hx$sZFF{CTdCejn|VnR#4owTlwwqej?p8ED&&Bt7BFiEqz z5eVOiN@Dz^J6a9@;}?@Ol|f_T%l`}x&7(9%pefoc2THzBTvHsmEO1-R3ad@aiJ$zG z3EGfFEY>*?(IWDAUbVGRWE-<_j4+@-@B2#V=3ijnjdu``<}}4U2QH+y2PJq&xW=5z8~t`rv_WaJbOHZpT6Si4e1T zD=S8GYJ2_9lS%jK?kNY5*ERJA7qBR|wtO#17JdhvlU{$PvuwmHz8$s(_Ai{RuNBo| z(|~w3HZ4j4HdT;sw>S43AdKK?z_^*yxwptJJ?&VY4r0BmxuFdO_V-5^w6usVt&Z!r zDCA608kFOFfPqs-|%VNNf{WGxTY5Ysp_SwZ-V9jXPdD}}Y9-(DVcI;0U7 z$7SxS)a@s(9A%&)>tA;tqLv7xi6LT~5ZU`6a~#-bS169mdWg!S$loPl81+zQ1018M3TkiZHa53{au{$i$lP8`|r zO(!Ew{2U}qS;ERH57)F{Amd-x=ay`>p@|-KV$HSU$6TfZ^EgT6UftjZ1A)ES8de89 z)kTIRx!`cR*oQ-93FyJV@kbGH0J+T!1XV7pcYWwj<-fLVs-8py{ zaQ$t6lmpKbKuq#@%VC^s7j8OJfuY)I<~K8Uv45HXD{vK1StKHrRfL(4gzn0<%uBq_ z;W`g|0Pd?1h~$bZErU>X`umo!g=PmoiBWymVZQEP8uFA$UKb}%s)R8IdwXIsnBqr6 za-Fr4rR*q`4$88kW{P#!`p3eQlqOy6{XiU$#J1`?%!$w$?`F|ojw9ZJ-{_3mG%aKf zdyc)y$*rcpDzgwpW}I!XCa)K(BfyGZqq4y>AjN7=iz-znTC_{qJW~v`#QWM}@d&BM zKPPAJUf$Oid)FX5fp}(hqsET7`}6)N9wemFKWFl3*XXU`%D#41`jV@QshW^hp@5j8 z#jLB=pn+C+SCSKf>i9+!BDSd1=)+pIk(v#F^kve9Bt-!Rm74}21rit~NQv9%u+a&` z#HhVv;;Rw3x1|n^{LYd)7$&V`@zb%)*!3F-DgsaaYa>r#?+lQ6cTGQ$*%1!j=({^s z>(Dkj_QGei#DJuOxSiujZ7TDyucx39-3F+7k$Jf2F@2Zy2~3Tu4!O+}uQw>Ipb<%9 zuFw(CB5Nw61R72L8(o^E+QIUxs{Z_wcyM)N`hd;8QGxo2h7U)&;S`$js4U()LRYR; zV~I>xIij)~@i|NW*f1ugirl3X5v(`W z5%2xVns#?TyeyY%5F`!cn1CpnZxFn7zA;pq(b`?Yp~aoQqXDK$+{Hce@*F)@Ue~pI zF=6)RmQy;u1sDi{zwni}TpV!9dmI-9h$+1v)R+dG9H75K4HR9g%6qfdRx9XGXLw(O z)C+GIHxx;bgNr+B=m%mp@8_1TC`BdyroyxLUn;Zz#B;18_tVWSf<6}dryhTR8!WD3 z1H5LvO}?}5xuZIFhRu)po?UALo)3JNDNwGhb6sQd;9Zk{JOJ7EKx_sDLgE$=Z?dQ? zVcPgXv6EL7+ukgxi*J1&)#w1lVvN=vMu%eE7ig6(ioggS!o$45l=r4?SgBZcwPxUg zw+%2ZNre5Al|$&B+)lRNbOb)w-pnGD2w0dm552&` z1ml5&c1%m=+=W=QiAl*B4~hUYSnz?!5@zu9U_EAuurRiVCJJnD3ayA3WYG4}Zzgy` znC^S;VcMVg3sFk@M@Q@NS*^ZjTp8*Kg_&s(3Bl}{-89k7H(apV8 zVtiN2NrFzc6S**LafNvhms$kF6p1wo)@S@a z=D+s}UkB}@{f(33{c_(jNBu^D{pyX58)A{%q6V&d{U|5{A~ga?+{%BdPyPl{m5*RlCWWXny6cGD> zlLY@Kz%mGWDzc|7aid(XfMw3PeR;qe=nct|AzAFvgao?aEe8>M+91i~SHZ=1LLWS7 z*vQ7<)bEXw^ZlK$HHzs~@ou1SFLEDFTY#z{oUuKiw*$z)qB$Io2~DXL<*IkP#;ztu za18*eVzlk8?JR=(fUn^PPX$tjH1PSq7lswRXP%S=>0nX}*-Cp3nbSb~OB}dDI7O1I zdF*xPP9TCL*?zBa18{5j03pSmX}5xHL-k6Wt;)EfYreRx)-LRA9zH?N z=kK&*wIr#mG+zwbQf@@}50^2)pab|#L>3?=40mDtoiE2g^&mmL#Ry=_B68W!M?79- z^v3B0uqGeI)8)l7Fjdyp6!I`sdBEsIq2JI4&Xgm z>;t{wlMffiVztFmG?`Du*fG5-4(8&%>2c`>OUZM*OB)id>XM6t>sIeBWeqm+lIaNm z{&AZPHjhXO22Yv;vaj~N{gyx;H=7(@gwie+!y6htYa0s07rO=FAgKXJFhVLpiYb8K z+$J|nY8{n52gKNTvXjZ*!yn@7#f-|5dV4SA?Js8drr{C3sTS zbU-h47?Pjs_s#oIgm6HS3YuIS<-&!U7Q(;3m2PeSCBa{lR@b?gNfZ4{NpqzPzEO@V zl?Ad0^Uio2M~utYHi^5rNp^@O@MB+_H4uk7*pmx`Nd@HE0Iw!O3(UuEj!N@0dT{R8 zC5l9!1f7cAplXyl2uV&QTPVE^P*OYZ_wV=?9JKZLKWkMSb)|V{VZ?yY3~-wQiT_5{ zxQzMuv}jpr7>eDLIj@kH14_eIWJSds-_@f zR{ed|dR-?ud|!fkS6zyWn?P=Le`FCwcHq6^J$bBp*#UsG6AFit`Xc|Hz68k5N4dC? zbb*>(3cWg{RIorCwN=~xkL@8yxTkzW9Ors>i~Si$jkT$zT3l+1c!)TEz-$cA^n!xS zX*O8ktCI%xoxZ?#UMAwq7IVLg>A?}q9p4~UQBL{6h%>kvYx#&k7DfHzz)jk#^p88_ zAnea`p&Rkxn1Pd-0Kpj$362ohA9uO&e!x@bXj^{(WY#{%%b0__Iq~Cu z3IB9P{okE$u8nT%now#)UoVzb6!HZG^}2YPJe zs>!}Su%F%~a=j2UKahNoIrWz7RXp^lUgmm*Hx!B8N+8gXj&z|sgFYc`y5OtZ5zw_d zYAdNQo$G?SmGkpX1Qn2FyF6xnN;X}roK5!|5gWtSw?Z8~=H!Xwc>apCL2BbIsvlA0 zdrDY^i7x?U5%5E~vJ`YcjnhOP2@tP`ZFXzQIOME&w9mD12ds9L4s$;k$Xt ztzucI&C`_1-Tn)p<@oqEoVwswL7ai*ce4EjC+pjLKz|2>l0j#9ntK+EGnkgMm_SKu zx?R~JKhcUJL=;!-zEM+=Ii#!F+%s(t>zvmLenljY6XQEZ zr>X#HK%Bf6fUP(31fVds!5DLk!%|rpeeyO&OJA|(xsY)@sbws)@1rqTl{G1zlqxE|>7BCO6UU`=W15~v9Unfde~ z&Ykco9ToS(p$3b>b9+TC>ap?tW&$m&KnDx@XLG;{^Sg4fDc~`{qyb6!I@Wjued1d{ z4M>s!DYg~|5%%P<`nG8=LF$u}xmb*aV!gkTN~s?YhR;V#jP~*`l%v3Q?5;x(eFw;d z{0km?OM0xPaul>eat)Lw#~oufH`X1 z!@>(|ZUoOo7lo!;bpziXL0%3$Tdppo97XIQaSS&gpNysDS08YO6<}2FVpN#e38A9? z74q^WrJ8U_cl*)8o{?NwSSX$e38#LjnEEy}R^kKYyAT``jca_)kMX!8Tx0qjA&r9K z)z(y@6HU^N#&q$xT4gwTUD4KT4h%Zp8M0GsBq^21n4ct~Kq&xmD-81X2a2=XKzq_q zoo{M^hzhK5>P`ewMthLsrW=@48@ zSS${SnD1@8$PMqBN0UixvTLrcEapiFQFR{{R#8o5{X0C#wz!WBSjrmPTM6%X?B6~y z{y+{F1j`sr!^8~t{k8pSf?!N)UJk@;WfC1s4ARjt<7U#X<@vv*yfOkYUd zFL^dC71?>e3C1MZzS>3fqjg2FC>m`HrhSc!bOLTKhd(N65A|oD7Yn{ZEf-!b7v(dM zS0aH=OWZ24YPq66@{$>pg%Z3+Rn>Ymp0hGqDxj;4)pTeRQleLD%I5-Ku{&p0wB!{i z*RY#T+R=bWP%tD6kVdl#JvHaEp84SNIjG~-GazX1C`eV}%3g6VP|PlyIk~#8qEE$C z97kI)X`RODU1Pk`mYI0yn012DyMU`IE0s33>j{7Dew$>IJ%#Plu4Jla$MLly+ zF{R8uj@>y~JlWB%W^5l*NHtR{;OE!Vzc3Hg7TGhwe>sPu zEoA(AjPiL#rrGRtecawTX0p>BadP;&KYdl#7?x8sJx%%)ef`c{fAiB4;#*MB$BSs7 zMYIZoR+X2ReJ!`r_owoIV-abaNNorIovtdg8=@0@sK#+mM&^HC^11^Uv37e=r5)El}$M zdo>4)>kLmTYvx`iQyiX3WgB&o_mt*af3gvMHs8n|Tr9z19UQdBnmR@xXYMZC8YPlg zQzStljJJTP!mqhrUEA9&THL@4%fd>i^hGCVei9Myo}a&4x< zc!j=ijkHGM?Vg6%3RG)Dq&2mhIhDMcYWC*DEQ%XF+7(9otB!>yecGnN%I`drmY zwX0p*T3rH1;KZ`Y)^Q`UUE+akJT25ZLQQsAb21@pjoRVe_P5-)6ii8-oH1wj!>h9x zObBL4u%c6Tj;Ivc1Z>YUH)t7L95@BDN$oX_2C>>AEAi5u65BYzVHnZ%&ZFvf&;z|b zckfC^G;T=U6ZUpVK~L}077xQHMRrQ)B*W0M@>+Pdv+XozFD#BeE(bm$yQ}AZp_bf6 z^4?Yd>dKS19rlT&a%{<=pLyndHVq=^C>~LWvLg8(N~g%?%~pEFJ`OV}2$E&Wx9>3~ z>O%9p_PB6Qj?`_5Y491vWVL(l`vg1Y9fwAnePhh^Sq#_Uad_~$xjK`EPUrD0i?Vh? zQg0B?T*SufFax=oy-S+7k>VNyP?6V7VmHpRTUkT{j{yO4&8#CDqV2UGNK1zbigJ%l?eOuvppxVDTz|7o z6Xl7OsPF*OtzAIC-=v)l&dQ4O{;DVP;it-(S|e^b8Qh*u<=&tH^**io51Sr>`N#K# z)h@);HpGljk6Vc(N4ROWwXM0hudk<|w(k;)nmj0Wg?@WiW@5RCM?Xf~D~rPQl*gkJ z&YK-1i`^ zMV#tDTSq!(lR*B|o}aA!=$qI>4Lpq!t-NyXZ~TnKy=l$r#mW3NifiF;o^pq{rNCa# zx&1Ld_S8*@rlN5MQgaI@K3(i%>F3y|M`6v$ZNG+~x*__SQF;$%Gisk7r6|e#thRFo!fXw#-Alt_~XivI#n$RXcU+3Yrh5S&}v? zpC8{JqfEVAiVL`CI`D1;LBbGs9qcE9f3Jp4t^g*p#!e3&!OwNya}Z$w@V326@SIif z6o!@Ne1~W=y#fe(x87}s9t%5rJ0hMqSMZFEnuexsuX^Uea{Y_AouH^;0y+^erTl$oJ5{BkS;O{ob9GGSpX0)Qd!i0fvbpWg zan;uRVMhU!b>lnZlEw~wCNWjXlDs(zoW#UK;@dL{)lC&DaFZE@RPf$p2yl0aX&Q;& z|6c#7;45e9axQ~$bSV-NS0If2l#=t=jLY+n4_`gS7JDw_7h9~)O`5a!qnpAmeW1*U zyUZfvG4_)p?@~YVC$!P6GJ?WPu=B$M1~qh3@n~&ml1Y_oDosROoq<|94L&GuYeo7Y z8R~)}j6G}&3)aUXnB3T7x&KxwNA3LcDwYVkLfCZD2oJTinI@g8MSXfH{1)yQMHOY` zwmu2P`(erZxCid}bhMmzh(X0;S0c(yo8!G;{u0VV7q|&`zH6svmE}=@S%gweBYYjz zlgIc(m(Ja$W*^-i>i8_j(Tw^9G_NsyzUJ@2yuHm?v(HVvo}H`SMb-Yq#Nc|JE40PH zZlx(&XRZY0%*uCaZfG}&$Z%+En67WL#I0h3Yo`K=94;<|JWw~VF8nt! z{aLl89(czo#J(I#wR+8;kj|f^U!XVM$7I|FA`m#xBTwk(d&T^h>hE34UpG>(T~^zM zJt%z~Dk6XSDg)G{90Nxhu3yV#Sc|@;WvK6UuJ7{PfgrFRn1OHuk_cFl`){xBGw8uq z%-s%^!%s!ykZScgB$;3?r!{Ky_^L4_60FVfS0~;+o2tU>#)Z6rsm`A3YnRsV>H>_rZ_*y(7sLhd#v|h zvc`@qV#R)^sKzxtDK&MqypPEUv?e{~nu|9v&`{mD+v?6wD`qzGAy!R&YyBpRWErh{Rm#?9@!>a1BdY)xPzm*TE^DUsc3A3 zda|Q}$rOL|SRxOHv#-NdfQdMy;=ml~gI^dmJT?V-A=uOgZY6iY-+1}CO_H*0r8?0? zN3_trK~7nGby{d*4^8dLb*UcJ^X8MyGC9IxGW#{>_&#bjV(o&(t5>g%MDlwaJ1BFc z1W5OwQPc0eb@Q|s@KT;W`kLho9t(;c- zuk9I%*!iM&Lo)em)wjNi`x5y25<(<{?wp&uIr)NEh{5~It1Wz|d-^B&ok-l}mI$FF zI^j&1OYVCr{_CWd4eo+`l3W)jIya^yQqr03E~%y zXwQT9s{gup5#>6;@Wu@5dKCD_79t8ABO{z%t(WUt&F&?NAv+ERo);?hnuqs)&{ zZc_5RYH0fT!y;{^>YK36+g4|hj+aBh0bwdc@#2ax3Sv=Z%3rfXfBn4>XQq&(pvaV< zuyTnZKg>^lxZvaLUs-H_B$iAQ8ONiYr^K#V~d^l3Gze@5l@=;Uzfnr$M zT~r-KIc=#oZN!%6W_h<5Z>Kt2(8|^7GX0Ac;~|fW+95&==XYYyIkEM*i(g49uxf)P z^Gv3Oe^-~hlo1k?KD5deacDghLdM_F%SD#@!+O%#h+fF|>dB|KktBB}r(WyK1d@o~ zb@uNp(KA_7ai;P17obKL^dqE+wC7lO{hVNQ3{im5#p)Ixn_-c3Vtty(+TfdZzAz}P zLo(w-fi*M^I98##Sn2OOa;0nKyB4oSZ^t`U%?MTQL0u9a(l{1M%QnQcd+%8{=Qd`S zkJRP7QIuzLcC+OyUD^>)5+(8eb@cUpnQaDJE@abVz2lE(q<28?jxBuu$a%=Swbh3( zaQ}XrEONj6roFA9#AV`-!1x`{@*R5aT!tN0!tEcw38i%Te>blC*1yw4>T_vue{T0T z9+Yh!BI+Iy(^yDIh#dFTdqB&fx?l@l)D0a$T8}3`bL}#AY`N=ze^@A8Su$!yCj2WGw_JHTGmT!3GSb z^m7s>m=p#3)svGQjP(h~ZcigF4G$d;W9gSPlA=w|ne#AojvfUv{ZAU#FU1-+`xB(`7|9zPt&hRna_v>g%2 z6@VS}Dz@H0SwyRTr}_;Iq3lkswouW8?EPi%P=x}=mwcR^D&B=T->*WKhjDr3l~l!k z+S+T2hM&p(YKe|1C^DnZcmYI?60YrM#uFs-S1d5O)Ym-ecZ-i~B`8%#ydi=nqe=a>v<6hOVyT zk75s%C0Bn;9IV0*rZHO84!k1xE(VRf1j)b27p&sYTj&^=a{qcfRPq@I?_rh^o1~5~ zK9Vas4S{6UY5_g9@6B(D>J7KmYRV6-t{)qj^2?;DN0k{9a`qItbkJ#JGM_y?+Z1CR zD^4d3b*dag&#u-k6L=hxnNi zG|teOAH6im3$g)>iNbo~=-N76iQTv{6E@b*itS5L zR}^-2}>=b3vdE{pn_?L|yiC!i2}O#TYe^R{v~z3jzLTR@Kniy$sBZZ;frP zkJGiR9%M@ER~MrRrr}EHJnBNbT!L|$iZ6f7=D@_mctld*Bd*g-6H5BVKye_IQ7n$vfdl}lp3l}a$5h80bz=Slkv`BS+@ zP$qVFUQR9HJS{czihnu2{c}u4@Z-Q(P~AIh&)OO9^fBY@_!+`TZNEvbdvdI%!>UpO@S*@&`+Vx%}P&F3;2JY85Px4{!M^ zUO(#`y|yS5Z;rOFZZY~dlq^+Ybvf7*qkO>g5=@}XuehoQZN?w)KHuy&L}K|~wm(2@ z?Et@OK8`DC+=bd91z^G;)dA$8#zqv9Ixt&aci~#h?SyS!UCz8Drs|!O+aq3;b`ve= z_-hD~0%sqX?pResa10L6kRtF?_*)cT=k%JF2X5Tp5#igVl2Sm_Cga1)R4c%zOT9$P z-KUjZ`pnS zi7hrO&amJORBXQ$6m%M8W7gPYlK+RVvka?p4Zl1fNQZQTu<1rh8k7b>x*O^4Mmhwf zOAr*0mQD%j-gHQp2%B!C=HZ<4pP6eu%-0jj#eVkl-uGI+wca;YAM(|O#q_^6iK^>u zT9O$2o>Aykfg}Wa*&uPCpdfVi*y4OtNuh)uOOC@K6oz+(L?^SWIS8s_GAzp0pRBg@ zF+*rwxw4;bkYrb{eVnn7Rx>#(fg%4m4;C&?mlPK-AlbF!NEvw_mkdUjz}5{(Hz`pj zn`$9$)ADy0ujxJwS|^M_{HWv$6(+IhJl%CxKj*w0eZ^7cxZ7bpdvm6mLZk`nPn?@f zqdp7GQ~1(h&eyBEw2rx9{iy?-b(e*dB#3(x14DpHa#tzIdaeh4YTrVNPNB&d>gvYv2v>--V2rtRdxwp?t49EIbr&ER~T-6xs z@e_pgl290Oe(hKdTfIkLJq#SvTj~yvC!eS>hUBc)ip|Lk)0Pq$-RR?KqPz?Q{g#sC zabD-oAeZ2@i8+^Fib~<4polDM4rNo~Qb%XU`oV!;Hfid@OGc|2L%uycY1zav!Fj|y zx^i*x(h&w`LKJuAR=C<3rZUE0#!znbX4dyq7vql?zpK&#MSOtfXq2LMuYAvLQ{kZL zw~Fb^utVfO(UHti;K-!HXwgiepKQfea$@FFA>fkon4?Web=XqK{>H&Ddg00X@7lws z@_lx`Jx~nX`^d%t0XcU!m#$}j-cIcBIQlLuT$QiNwiIcOi=DixN`S+dFIM5Ih8Nnm;PjrX5 zCPSgzrkY9QnXE2tlFBowqAV;FFx!4LohzGBBpk#%kt?rRGyI+fhNDVDe&4@aM?SRr z3-Fjj1#^`dvV9UbDi-i>F=kUlO-!4Z6{v%D!iTp^0(;;Y`R#?pR!{6nJT^BLf#@t} zukB*R`n80zQCwkN4yPLwyPttK9FG~E6TGS5kRWMzGiftP@KIG}&$An}I8q&}HHgz1 zQM%dCU$1lZJHoBfsP8Xd245C>ji&RERWo18ux2I66fXVvy!2qk==2KZFDV?)-~v|1 zYr8OYg_LztUhk$V=o1|4k|`vM1S=#==U}OFMUkab66V{IutG?U9v>C zudbcW9QZ_)m_!l>_33&?Q-1ohwEnamn_bODP_c(VG@y$$qjB&xeK>2_Yt#A0;8_%6 zxlrVJrJ=2i6w+#xW}1Xp+p=k;UR6QuwY-(Pp3g%2I%CLu3YR zrn^rO;s`Tkzl^;~o{e=-ZDJrC>{drrO6Bt}#Dqo+)mseEcaC}M1eI)YCr-U#dYG2h zPr2TnJ)mAHm|b2j$t2{Okw(?*fa7NPKsZk_}?MT=Gkci}R_)zdL_SfgQwwxD#A z_35yDn9+}SLcWDH;G&xy`K?`^>34ZdM_Mm~6Z$Ony0#a{Petii;IzIwaW<{)-ascv zWqu0&L$7Ysmk}PDcsz<=$4i)^JCVz-svY%`7K;+7XRG5CN`#Q1i|m7QyGN?zv>m_w zD&B<^gQ4B_(2vDnBG=(%`kSKGeXms?KJZ7+z)Xs6*oY#KQA(#d9Yx60yaLLl`3jHf zW2BuHKZ^aifE5biYQROzk}bMY+uaO1C8m@N05h#YUwCj$GRa>iI+DgJxIf-VyYKP| zc)l=B*~iT)PB=&TNp2@xBUD3N<}WaMnnMav7Jv9AXZU^cQ{9f<-^ppyF4q;Qwy^S!O@liC;mOeL?qURIJMFn`i5pdJ2zu3bzrR{%GAnekzusJh!r5Ti@O zB5J5UTO03O$hF?W?8nAB7go9Y%SP>=r%!q(NaZwo&;4d>2m|k~Xd>cfg_heh{1Pws zGwf1KYAk)9;v5ABDJnkC8!Xeb2lrF4Nsq1BX2P=*3dMkP0d{8b@{_KT;axeEs)Q;YyEk2avgs9L&;^dBwZFi z|IikYh+{zk<*-VrUZDXYMd*0Un55D_8DVK(Vt|Vn?ACR z6tiEm(aHz&WQ6h5yt=$dht4@EJ}2Z4%IbEV`rfFDuO2<(7jIus*ztGRNRf5pKhwa% z7F;h`OnR|=KqQ5$U8+OQ#N(s~83mifx+OYYj;;$}3hYT@3*?jhRLTAz&JQQ~iM9^g zTeq0fDt;IE46*;FF}b)%F64QzsIIv-9ao-H`Ds5X{c+@2tl@$+r6&3EeY%@aU;6B6 z1Y>t(o^7$-|8A>7vh@9X_K2hQvO4>?t37l|1q!>rBx@aIIFD1h&R?pfhm#)3Z!4f|rTHnGdqy-J?(Mhl>}TcG*Ra|+@Of75;*xE>G?_a6ozbEo13CJEB)*4yJHb$ z4u6j*h99yB>5EUjUdz*1=6Nx!ExmD=qg}XIJ1>gghmF9VA$zJYJK`4E^NaP&qRWJ} z{CqPY{+s*n85p@X>xP$TCVt6ze{e^f{)hAC5%fOT?Mgh`M};Ew*pF76L|WHB^ETiX z8(E-0M5o5_f+2M!D`kDAVB_K?H-o(FUXu)|%al@7dpdeP(n}=ZX!!fWvuv!=>)xxs z@;?0d%v(WEn2o0Hv8biKe#ZMD23S_)Vga{hWCZ^jF+k>Dn~r_-s=KSpMsHSbT35bm zvwAGIR1D?4iWrTs-X_m_R_x)ZDxLT@98m*~pi4>%;)04Kg-aq=l4n`xLUWGx=i@8) zq`01GmCL4uJlAQrIHRT=1l4B6DwD6W2#)hF6(zO$=~9wp6c&T1IDfn8 zG(@97TaD&t__fm=BDwkhuQS&}5| z^4s0kwBfN&6IrN^L|{!(B8Prm{^c}OF0c>h6av?j!lBckk6RMSiq@ZqgZm5Z`A@y# zXM+()65@gt>wiUM(4Pk5sFVn)XYvJz$H3`;iHi|#ZV@yOn)0apZv^j^MUp`L(Sq3H=5+$kEx!Tx$ z)~w~g|HRzhd574z9Yfw=G~~}(UZeR!r-FE!&HlL71_u3lebfHn+XkGK&l(}4{G*V| zLNQ@0l|~g$VvoQ^&dP$1s}j(&*#(MB3_Ie~CC5o%4YYC)Hr@xDEPIS=L+jS^`8aR= zRY1Yja^N4YZ@2vWpo(p~9?X6G8ey;;&<=HJMk6+6^En`c~f7yinXIRP}saJ;pL$tHpJ+nMaWegpn@ySmma^@LF#yly~kF zcDRLHP)(yhu%eb}Dw@BARLJG)gLBrHPlwE#Iw7?6vI2^YMIrM{ihRWqdZDt>GGYhfGi_Xi!^^+c)P;7y~rBrAq08|Yf zyQ-gIK6(u23YVm{Lfpo!4$o1ak7uCtgVPYDFOa&LVId~`A(F)^x<97W9e7M&3>07^ z5z!zl%4DbOav1o2EnwIIWZKt=aVc3~Kpf~LP|d7f6BZ$WKe(pu+kc3&mx?~nr`6^4 zTvKo2C(9EPE;3U4PQiZGPAS?s3;ZPO2)y$NBnR6dADe!f z;Dk*%Z>lB#DT5r?b>AD@pBtIM^FI~91j@{> z5?-@sVA%h0bPP0MoXGi8C)hmnT8~NRw|t0R`>1TQ=zRBPnKNVOc$3aO3aDz0 z0UZT+Bs063%8Wv1l$pv~k}|!tr#-2Dr2u(wD{bi*7^M+Nco6_iQXpsHs}iO%NEM8G zHgpcO@&(u9IEH{ao3*R`>aGXOzKxv%n+R*-J`z1UaSN z2>m;&xrI#Bz>q1E>bmD7~R`$ zz}uuQpr)l2IE_%LL4x51mC&i?YD9*td^YeWbMD0|!Gj<>FSOIC)KDWuh3=WsGaz&T zcv7~L0EU(3h>k7D{5wkc&W0t^6oo(z@teYy4DPF_)$n~20m`1{n*V*Ami|!Z>O~*; zt=8HQAg<;69n8uHTo$`H@<|3_bpcbl>-2ODmXu$$E1^oa^{WmVV?`nqfNiS8cg5kgw6xJ*?f~JhTuF zfQpMg+$~49tXh@VdxZc`ba8^%6^ejoENxjw zD1D7NNTs~P9nE?Y7t@Oqs?u9$`ip`C^t~4?WWeQZH=FoEcrx;t-*Qm^BCeSrTw@^) zI&NA+YjM7KESUDDP}YVSy@39bO4ss1GGi@t#@Vm-u*FU%E{K-W z)pBb6XyqVGme^Q6YtK6SD&@6l=J3Uu0Qi&+Tm4*MFlLDk>_1bs&7wjsG~m?BR4lEIZ3U1Jy-&2m3aSUprKtpz`Dr^u zC@xNF!nD5Nj#@{g1p@t4YEsg}a+2p->tWX@LG~y9$VR zF!XHQDpXoUwo06P`5hk#2Z8uaQF109_(6l>lzPIKtdk&P;|-~Z&y)zqAEy8W;tL-SFhoyS%l8K2!;#5 z*$on^P#!t!@6{-Imtm*4vsoZ6K62)B{|BheGBHXM&LkR%V+7A;(ZL9ua}%D#Y|BE= zC3V2`J$u__Fn};PuKddwU=LaCnL_szE2ocYYu=~*&%^vzNAXPT()IFp4GbDp5sH+! z*ug&+;QB;Gz##dLpv&M`FODLCoWeIkWBpZ&)9 zhv`Wy^0pVOLU=*<@~-P=%14M@`TIw1>2N1s@cEH~fwpB6^ z*tlQ)M(pBJXVL@UPlJFm0t!R{?%?S=NJ2jS>7G2nTm1fB0xWh-PP=%?E@|-&Y=qty zT&5-cY6=>`;?$p~z~)sp!f555T%UQs`94wNgvI?x z!{y~!`JT`1MBSu5PmbtTW{F6S`;ZxZnsMG@u8Fte*7^rX9oCxe!dD@oL}BYV_gOBX zL}P)xw`CEhU)Mt45-Sav0nCHiGVl$xl7!xmg#pthjtMA2$%SqK9qbt>?XSbaN1PA_!$as}uHGw)2kj%F zNCq*>Ws}DQ85_TO&0g%5gNop@tF+4<%xLT#z<|<=O^uT~Rw=jR!tl^&pTwLk;C|6e z6Z4~^&&8h=Dnp1Qtw#EV+IWugjl#PxOEMYhi%c8^1Lb@{*c44De+`X3Dp#uTa2il8 zoC0h;5y$4KO*LuivmnOE^tccj)O@$7YLlcHJ;k__C{cy;yKyEmtW1cieKVx?qtmNY zq;Omts6P;_^^>^B)2PRMPW0=ipzp`3rm=l)uGPKSIgqxi_fB=R{>4D-jagv5fyW&8 zJwq0w-ap^zOK?aPd^IB7W2@;RXXjz!E6-86sE24hn1{gXr0OWObudM^0-G$XT~x|LEJM+tWPJKXk^eZmpPwt zZ(X{M)n+5B&8x8U7ci-3ny|Z$pzw!uF~!PH{&W&Xl%THYpJGib+~Uek;xeF;O2mOL zC3wypX+r5vji?5 z9`b9P5?XAB(1oTm*@8M-FZlhhNT(T7c9usN>Gsm8DShC(tj$vjrfYfC&X;T~_qWi8 zTm55Bdtd*3{f588PIPor$O=vao9Y5JRg&y&SQ z-4BOFw9!zOKW<}(0}GLVJZfH@R@E+_`emitS1kfJKW>(_SG9FCbj%w!hE>va$Ypw>}4KpBpmto9vyry@Fa-a-nbdFD&Th5)X5&+WjOC5P$L2J zAYxxB5XfrGgj-a+9@BkEUkwk)3d)6i;K~1KWG29I}cA%2?l|D^mblJCy8^|N( z?V=-7BUXX|l#!iO`FQb|w4iWAMbczJg)xgBEpN8b+PgnkRyVDZP$6k`)BjWq>=B7N$^EjBL4@&>Zz!>c!eag)W@~eT0Q1-Cm*tU40&@9up z_+td9QmHs7Izx1CB|EwtrC#dB#Zw`I^&pIviJZf@{9WQW0h+sz@M?dz4kN!fipUjW zZa>Y7u4ByU=mUS7u<3uP(nEWh2d|6x8%^QiJJ_23jabh7aKS)&-`_YzI~Sthja ze#X-8s#kcvs2_JFYZcWnATx;B-ppzKOIOBMZOxpvYEKkvZ{v9LAmKmtpm+&uFyNU{ zyMI@Y#cWm+KxuCDkdD>tSi0d%f9J>E_3yz}{qJA{Lb)fy2`QV!Zfoqv3hgx*4bw^D zP75>0wGN4QO*kGNJr#fBsPpEYo((2^xeg}-`WjO3vC-#n|bi zUj<+gai6riFx;E8n4gwF64YOHHj#P8 zk8v6hDkwqT8nc$WmQCfG_yXN*z^-2*S=pvrJ&OOsw}D>Ckz?c>BQtJ1$78W#z%Adf ze+JYKP6yv^T4{c*2L z{=a3c=bbORH5-GUO3m4Cp8FNQefLd}XQiLE$)7RVb3gE)a~$&dhjo451uabJQSk#~ zR7SdDk5kj-4gvc@YT=?Az?+@=&KVr>7f!5unqRS3xHMXECXRazjhc|gDX6A2U4MBC z^zId3(~PEb!D{MUCK{oCnEBrWJKO8Fcu?Cz$%7+440-1OvKC^#q-_WX! zO%OcM984ec!$dfY3bAa)9w^ZIsS-Gq`k$#$j-JTca09^4=?<>W=Hf^YlR@Kg&n_+i zFCA0sSJ?D|->|mN-PXc20l}!(@>ddL&lyCMj_qbA_mQAI({VP+?Jg7ZzldcL5}zA> zE|2>UvHnCbeB0tH_??$&mBlf9Nc16Idl@D}3c?NnwN1hIdwDN`{2sn;gN;3^DH039 z2#??Z3^U75a;sHK@xtpl)O@3D-2dB&?1kg)4ZlBdy{zWa<7Adx5?;Rt?A9&pp$VHG zRH>@6kg%9K{2(0x`3ggtdJzu=K!&w-57(43!AZZ>&A#hn22SPd zKKXB;n3sfy(4eVf#9PMCQsWT6VcaufOo}bNz1_kq18+VeBHK)|Vc7Gf{Zb9UT_KYL z{yowiuk{80-D}Q-=>#eG$zvc}V$k7hGS8%b!Qv-_I=G1Rogyhd0b<$l^Zn7upqXrKjH_oH}X;tR4r zTZvJeWtJ>WzwXYls_Pzp;i1z32(`(DIcCS}_RJ}PAG+D-=Ue}6f5{)+?y9++V#y4t zHSp7@xiBADR+>++f8pt>T{6{wUxGPeuv!5%O=!7yN1xnyC`US%7Fr;W0QG_g-zR>D zC4b%LoqC`-LdJz9R39AwDu=h+cCQf^QyBzG2R^(zqnzg&!hFMg2(DIOXWfq6OYNr0 z^wfIqIiX4f4Jdvx+oBf>Fv(7*;mVFtv(g58AGYDkfu;B^yuLxO32xl%&F8Fb@DHEi z#PHe^0ru>Evb0FG=#A@^dVS5PZG%66=p!yEOv`Q7>QJU^3cFG!b#UdQ+l49>B@^ay zVq65ZZJ^<2jwc1e`_~N8>CmJWC@{Gv6};)Voy>pZNbo9Kb@{> zm%MDRCidY7-4t6`5H=~)fy0Zv!lC37{@UK!j|;1>(&#Sw5E^8;pZxIUKmDqpp@#sR9SL(hM6ywi5EZWH@0)fOO&tWo-c z3G2b*Q*uzZSv`IV=E4|pFXpp*mWI5+bvbwY>F|5o2iO{|-`&rbne}AcVz|@|ZjBP+ zsi8@`{?6s2lM2&u_a3@wa=Rv1Bg0O?;Ntsg-2&#reIJxB;;RvfdYQQL)Zmx56=k+H z8lMB#pXj98y7Vn~ss6&~=E3ihdc}K>v4Uzf%se%Zy%DaZFY(9zm$zUyqc1#)UkbEB zkz?r;6U>!em)rkCS$Z$_hDbRdtV%wh*J6H=M15J)`Tsd6`?2RfBa#WPXKXbsUo2%i zE?n^VyjSiz^AWBL-*<7U3Wn=eC+TyVYgbv{DPVqaeU-|8aChk)(4qIvmBOVWz@@w{ za~jpmuv~W$L?@cJ&T(8UHW=or;p6Z#8w38ZNx}WZE>KtFDxek8w41x#>_JelNCG=f zEK^zi-z{*y06*sis2H~I4FH_jO3FjlBYYK>4nlwWlCQKNnzr(MeKH=N^TFeeWf%1ZSplXkQPC?z`dJg`3VP}(b>`z(DKt0hs|Q8YK@(D5j3 z*>jlAiA_!##ZTz^ZT@N2&Gz4a02ONdKErM6ee~67e zP7AzFyB+*~I~WetNe#2md1Thz73%F$EL>jji3=Qe70S_IL(@QLIm%6Yx$BgUopeaW zCg+NV&%Qy;Q8x_?%kprF+ok}o^4!nfo>Axnf&7E(yoG4YyIDZWeist}*RGrmH}JRN zK>7y8OBQ;hUjI&T@jA&n;2_aidV&-Hm3mDKf_?IsgGv$nhaVnSZNQW|OVN`g>6FjI z<+~@8?3*-J(pIQi3qF2k$?OSAMda+nDDZZ$(gug7Y&Df!GZ;wDzkJTdXV-Q*_m*5t zoG@1@_Bqb(2eB5_ZKW5lrdT5mg*B=31~-#PZ{i5y8%^~xpY*}t^hH3zV-aHk{EI~9 zm;$G=cc)BPteQbb@pH$~JwQ^*n-$5LoA5gG?QA*JW8~#$bu1P8qL&?GSrX&bR!8tZ z`YsE&`jvm90Zz>A6Gxi;(9utR2eE-kZC(mMpuI<^Q0{wTJ4dOsP_XF6$YYmTj}Ct; zc0))UZHrIF*V3n&6^`;mgv_rGopFYZQb?D+LKYm=M&?U__h1sCCt|1=5cd2rsxdi_ z^?cT~R0BK%yRIaHHjr=-^PV=qzDDNC;>NA6x2SMYfR*sLBuu+=CX_OBJE~_aWXVbLn{1v*9*Zi2jA))51#ay}E#cLUakTd9K&lRx);PTV zi2)w>A=-hNmYIde^$o4Dt-hC7eg{KF_uLtZg{O`-HZ}_9 z_TAh%T;!U}noxhTDtOHgN3W}IbeCLEZsC;BS{pN2fd%e9wBudaVkm}!6AUK@r-K6q zdY~oXhvqc@f_@qV*B+3*GCdlj2wqAo|M|;s)+F_OO0U*{N&>$qgR+e(mxTre-W2wn z14Y&fw}R^9lm&|9Aurs|DB-rCpho63q_u%e9F%OiZMRwUM>#v@@}sGP7*Qe-w80J)%oq;s<$Y-vLH|`w)v`=p30(^R zZMOX^Vad4-2n#k_lG8lxm|tXq-tf2fPWUoNE{PRW~D4JBv}8VjAosv6#;p! zVxIlDZ(M0A+K%aeN@V#esL@Pqb?|(QF&ADDO4-f!o%`<=#&94i=5G+k^|?#~Nr)N+ zlm?KC{Ru_sQ%CK(`1o3o%x~yer!+%5M_DpO`};zfIws^e^t4!|L9PfFJ&Yckial{$ z(v;p2N0*k(bYfnL`A*_Xz9g=(Fh!S}-)?Hm z{@*>~H=IezfRw6erS7YLo*iwH6g9M&#Jp7)3%h2lmR&j%Ng+KQm zB4*ZiWnPU7SXt#$H$I&#GX{0l)d(GPbK1~tGcz;tmoDb3AjG}6eHFWM6+3!kQ`cM& zd#R~Szc%ILx^F9|B!Pp(%F%I-z{)S4ikQeI-F5L|pQ>vsT240&6%k$xj{k^>EU#}7 zJ9sp$%zjeS?oT_PP$G53AU-LdoD#j2)LMV}h^2TDul5THbsfkNcxr^s(Ku7%bcVn` zpOUoGrUXPKzd<5b6W&zFn0J^sF%|@Mjp(h$>&_q-m1Y3PnUa5Jc`p$7n=P(1eU^re598eCf^TStcD(O)}cUabL3b(@dD?~sUMJ*=F=8n#k1U-%p%&cvB<`~)VExV1)zdPej-84Woi z{B&Vg1C_`xISZj$Rf}Rf&QD`w<_Y0j2?~tn8;`^xnCz!BqhLQ(=esZ7Y+jGXLFR5G z-&0ZO(iIPF;*zS(BgP$ml}Fg;`B|JNFhuY~DV11WR$n-0-Dp{0D8V%8^C(f1F$7>0 zn`+EG;YwXD#B#+SAnv-;?mzN}G?KP8OZ2%j=!*v^tjj%(1f{2)o=Ls;k5Jh2uM)4b zcFi{j;$#Uvr9J>RUP~B5ir?DluKjI`Nq+=Ai0lFcsRUgR;S)=SeMWZ6UfDy62$ge0QT)4#~Q62krcCw%;(3c<{B3 ze@kTc71FAAZVpuTiXbX7=dAdx;C$2`JW! z3rO8rh7%gyxWmYUy)}Zfqgbb_=(aqp zX=UtYO`;W4po&3V2lzYHs9{+i@lM87*2EWrB)Aw-->+IQh z_j7F3nh>el-ZdvpE?qbv2SGXxs_>oJhPUrGV@VF|x5~g>K#eoz<_8FD6!D%)5@>Iu z2Ol(qqwFp3n-3|}6Q?qEtmV#=2hRW!rfe(xbR=71%l=%(y43Yp(ft{%ea}Dm0M6Pl zjx=ZR)?Y?b*+n`98oUfV*q{T)yDIC5V#}?kLj)n|%v>2!r&r_LEE+Kh$?|YsIm$R4 z^3&!ZC&r;anWfjN%X@vWp}=DopJ47~9AH&2$e~}8-Mn*b3F6TMW(4`v#(D2fI!mCp zx_C;@nE3WS-m+F0H^CdOZafv`sNe(6m41V3dh|}EicPhO17|80_7lYC;wcbSE)pd< z5WgjyMSoQGzC`g5DdmF{;M$tMssy2wv??h;Vy))b&6w^WOr-;5qZ=~vx05gW=5wMp z@G5DEHr{W~6lbuQA}I#gC;L|+Kyjz zSp|3xIPJJZ*JP~MAhZoCzcfB{U`F=FE19|owv^H^P#5x~eMNLiKPj!MH z^o4>3rI0Gd)>!66c%q4=kUyu(97ZooJu+ZG-;ZsGaB+=a`?sGuUEd2iL+UuEe1YTO0 zS*Eo9@c-2`eJn7&IA8Rmd|h$-=RBj>zieS-C6~I6xj?aLiU9(Gc|xjI4S!toLy%D3 zprW}updDnt;K&@|>Pa~8O+9t+Ig^flDkvK1LJbQg3>Q|Q(QmSkbW?m@z|z}pNRn4S$ppyXr6B*z+eyUYl>#AK1r1`QC3Dx$9%h9U zr=+&GVxKGc|EeQegUOH6uu7!Tb^9?y*mT%-)3{qw3Rh{Lb#vJM`4Q?8vONEt^tVve z#NG~kzW!`EfE$bn$=Uhd@Q@*a=gY!(_I00axu`-M22wVE@+)7ck`2E+Z}i!9+R5cV_szgj`CJYWNU|)xmw8fMX>!KiD^P zkwkqV7cOwJL)ZS4$8_~0y^k1>}aJelBjcMPyTvwdY?|o3Kz8TNT$3cK-Iwo z0h4Mj0y#JhT<2TBi=hU?y~W2tf|tU7hWNh0h(}Viz_WA0_sR+pUJCbZ!AA_n;z1re z;E;O%33CtdY3v8fa8@BIb9K=EHDh8VYcvk9daqW=8h}v$xLhy{q@Sk&g)~Wa_1EzE zQnyD~xKzQ8OBZlI!`<9;Hph-hF&Ct8LUXDqX19?e;yia-&ACVVDpm%pbQdZ=EBBGL zPJcY>H>u$oWl7L&HMD%VzuQ}Br$QN+yf|Eej(?Q_Kc{lw-$}n61*3mDZ&rVX_yPZ$ zjxzoMD(FO%Z`(nrN1?x<3@$9JHE?dT3pBUN^Hq7dqyR7Q}cNu0wTh0&uS4~Q*Y z;=Eb5<7uT#-h?R7Cjc-s;dV{hVuc^DL{6WnN&`2YFLSjd(YBGGDJy>8oBTT|7zy=L zWQ)LEFf44vkzQ`c|rZ+U)ct66jowK+{Z({s6_wP0u5Ypn+VRJ`B5mK$iilfCGmvngR^saU|ArgTPAPg)ug&k^=4Z2+*3aUO+A0fQ%$fZFw zwATE?g0F8aSfa`#X@a28)wyDhFO<5&XK8()hkNDfSQz?!YTO+DEq;Op_!4Cp**n#a zb-M{;^jYRjZ8oKla%o5>6}(T>5s&B5(VKuhwi=w_47XP5ZtrX{+iKu}CJe{5HymK09nE$?0DrC$AyR6qIH)1|i2?-LTDpz-b$ zwb~hT0sY3Wz%(2G?$>^gL1~8H!@R}}3=GDDz8s(TLLE6$Fqp$bw*E#UJjz4?I2aHO z7b9w2rG26*QUQJf522`yf6^s@4_PknB`MR z8(f>8OOYzt@ zxRz@-2zie`-gmCCpT!Jen>>f$vTOP-bm&ua67>G%_RW4Q5p!!4P64Rzn^QK5F zqIIF|!0GTF+A-&C;O z>u(CGo+junftD1IZUvn?pv&A&G0!eEzhcQ;yOcL3ncb`fUQ9$E_<`W*4Ki-*N+%^Rj%c_ddqcyl4(-zu!j6oZht?Op6pHdgaH^{EoZF|G*Sg&nTo8# z3xtU86V!{YRITQIJPgXI>uk2fbL0)-0;keR7>uR-MsC4ZWr0c!hWtW_CQHmx54TD! z+T}X8vs7*3T_>`A2s1Vp;b_wKwUY3vwyU?2kd$mFkoF7 zVNtJK^PQi+}Cr#ec%!7|1TvM|8NyQ56lmpx@pkUS4vB5+)R0$-|O|;T>0`HWj8R@ zzec~9k$U6t!^S0l&KTg5*Ctn&sxSRUD-8e`hmz3oN#%bA-=ia|ung$jhu^<(Tgu;!JTbn-vN`20-fEXKfgGB9#|!6-t&*Rn1G(0| z-5RJvjg``@%v~T?C2*Ga*1%k$~H<&fbojecY^3QD%ogPX0yWM224Jsj~8SRV!@_2A;?E zi-((4ZV8t}n$_%~j zoF@v6@QgG9qU5^8r@ymbO(~`w3fGHECV`}GjXqbC?V+%io$}|+0f%j)TIF;QCxc#; zEuUVS4y=-4j~>q$cmtFNoKR=s&lFu;aVZ$VaNuj{KC~7QG1K4O`7ytz8laj|fE|6( z*NN$=_^k3%kPKE@zZEVBVI_Q#DA)lkM<(e1gzN9Iuu1I$frx~-0r30>nLb1WMa&-U z()s`J$e0xR74I@}$&@Ht+#wD0pmZ8j0a0bj(xYAq9WXXyLnFR@d)3?v{x*HFRiJj- z^4=u-C(l@bq#iE7F^LN@M?{dpq_MVRl4o)XiUAv)cz!-&$qr3G?*p-+M`J_C#kn4n z&da8$Q+{M~o1Mh=+@hmCk9h0d6}VVVF&OIJpP(o$EIBRywHHgnMc3xbazgl9wD| zrO!pA&^2nb`M1B8B4_4=ukiYH@~>l2Dq+n>Wsos=1Ic8?%7oH$#N`=Mo@MqK07D#O zBVriE=g+JJ*v&|?i|xL+%i?bQj**7D+VP8e(l=qFAWm3Ja&eohz=MqebQC z#ox|IVaA3Mq!08xww&x-<-3Pj-jRY23anHh8SLUR*>qLtN>eZdjyai>^x1c+z_rYM zy$j=Z_2Ams8`6s(xW%oBN0VJrKW4)9QoG|WPF?0{3S}Q9+}Fgt!U^Lb+r>gq`t3tX z^mJ0-c-!GlDnsMlwG($TVdMaAJ=rQUJeNkNlb@CMyoKCrEeL|R)@yY+$uucH=(cQC z6ji8LV>RS?!@YD-btojV9{~q(s*JP!6|Oigof{pbCz6TA{s1ZA$j|_FK-8vCMiI6B zQ^PL=Ys1HL{zBgabtfVirB@ zBw1k61dQ0K=?7+@tQHS628in?y|s8|klGRPPXj>tJ+2TGTF%QSELTBnf;F7$3~TVO z;WlLdKX>ye@?*i=Q4dEz!lP|OX85qba&I4Sza5zK-EWIU-+fwRcy#mx^aiGlk2|TU z7pq_W=5HSeyoWwyc($EpKmG@xfbbScS@aqL%;yK5O2eV*BF$2fhk8Vbj&py~xER=t zUAKPQvto^QWM^7cW@to|;)lFY$)+7}lYyB3vHAyFOV`NY4p7nt(!8LW$DFm`G8y{} z$E>{m6Aj2E&01v+*ntlNyc{swPT$0aF?{U`;!dK2sDmJe0=gPjkadz(=-|7Ki}cvR zWk-!7=(AQ(*ag1aV6vR&&4f@SS!+`=DbZx9fC*ioO_{wIq-51~*1tL~$%z)I@=}~I zr3h85$cYx$Xx0GthPrI_6zI(n>V5c%?7j|J9hgS z+yexSetqOD6XFpqXUQJBI&YqTQ3zseRjq4{irct9tYzZPn`4>f86ayA#wj+yOa^sS zB}(+T$@X+Q2bj0X7Ox$JA7iAFIXy!E4pOBKJPf~FLGZ?;*-+WMJNNwSw(H>ate6or z8H^Nd;r{znEOyTva|WKH=0%X*);B-F)4}XQMdd`pL^ntf^rpURqTC=UXL$JHze0z% zlLJL}&kAKWYoshr|G(BxrPm}DTFBtmaP2Xp< zua`dtb|!IvZAiT@+%jzu{U@mZl?k(oKo#WhA1_%@doY<~E@$2a&hDMv@0w3chNyi1 z6~KMxxoU%oTrPH5irwfe-yL|KUTwtJ0HNWrq03!z>~eo0Vng8Zjbho`kF}V4)kAYF zo*ah(mo5CPH;;ak5x9ik4CQ3*oB-GhIGE%d;t7b{T<6L8ntJEdg}}09S2J=yenQ28 z;v@oi82-&!BZ0+%g}72~kW}>ldB#o-f=m0q9(6U0)9W^GvUF{ge^ z=`g$pzf9R(?$nJW4Zx!eNft*jGqfC_KMmLWKK%wO7EH4I5Pewvl9O=2?X6%~co;J} zM5Bo|M$>9;6AzSMNu)@T^P|*_-hq_u00Xb7jjST5#7BVfmPULir^@pFiCj+AH}Q9f z=J?#ls7pHMfUqKa9T~G_Q z+m<%KfjnhO0TXnp{r@8Dt-`8oqjqfr=@gWb?(UY5Qo2*RyStH21*A)A(p}O@N_Ur( zba$_N>iey49skb1;SQoOpXZJ-t}(82%;Lz*ugxJj0P}lAi(g^ZQRko&|I3ttc_uu4 z>MTW;Hy~~Roi&t+6WAXfbK!AYyMiAdZ9Y{I1SGvR!K4TP_C$-MRmmSfE5VYn?2Eh!uC2lED^y08)wGTqm zWgB$k6t6UA0oM@&Ux?g1mv zHlj-m@ZX^y0k&&KZ?A+wB@Q$nl;c02xMpL8YLYtQC1qub<CujDM6;ch4O^sCG$>g_4QZ2UMQzm>lX?7aK@OnN zxYuKmw3M!7k|Fw4D(IINva&XaKnVeqR+^XZi1m0$n7+_Pz&x8N`@He}O*t-TeoC~F zVoO0yr+3_S20HsJUwt&uk2AZp(Hhx7CxlOay;f-i4ctEH^7YNCqCXH~H-IO-$~rlN zV^&&VsLl#`{@DKB4^ZD|V@8B~MmOeJBlBv(S*w`XZg(e6-LC>=67FfpwV0cPf^(D} z@o(i0D0MDI&2w4Dd61~XkjIZ@a+EFx1E9t8xM=oRoQfm4g{j0fcLJQ?!~i-=qjlSj z6&$zn^Mj_^7g7J<4ZkPA0uKz||GI|+;en1TM>EY~=3`ywluHITlpRPpEuPsG9e!ZSk+H z&|%=)d$X3U%~FCP)&oZT@cpka70^Le(Mn{47(jgIb?J6f(>Djt!8U-|y7CFbYFH$m zyeMJtwtPZN?`q>P;vQ# z$xaU#m8cDYpJ=6iJ^RY=c~cD^bWakwpSqc%#D~#%ZC1XpU?{8t)Ne9kaN>Omq_rO} z!vGn9?^ysgHCKA{z@&k@BTW%l1WLBcU77ss?+eZ2U*F4#OF!82?e>_@Go3H1uI_ZNTSJmj?RdC2i=4cX2v z#oGAq6?FsVrk69H9H%v}oZi=E^g-Uultd;XmBZkZHs2LY??S0DUiZ7Yn-RKq2Acrw za|LCD+df{{x;hXXHtsTZcX$8A`E2A?(f7Ak$sWC~al|6%`Dve~G&k1z9uux# z0M+A<*1Nbmn|_Vb`boI_aqM!Hw1`&j>C-=2->grIM=v;atm`&U-HkN<#7Z%4U*DnF zx;;nZKSO`Awzf7?CsU}rbL>)HR_1VjKAoxJ33z;4MWTiJIlZLdf{`j924 zOz-zo?dXTEjHKsEyT8W94WAd*%%k+q0h#55c?ZV+iWBV+Ly-bjz^?KY^fq7b%jtd#7 zu(PBJ4ZbHPE)3b-0Mw5cWMPE86+S&v7L!ofX|$px`qDe6Vy_fE-rD%ytqiwYw;Y@t zx)IQxp%s;I==_2WC{GcpXn1lio}Qk9(ns-Jnd7T+VdL8o)4W3_x@o)aj*RwTUPrnu<`B-H3Gfiu zY09g_bG2;Cyy0~!*gW0L@Qfzl6W$&vE^oyXQ}_-FE>}k(g2+EkPFUg42-m@h)2C5u z%3WwbYs9Mz_=H#*>tnsh9lhhHNw(q9uC3m`DCD_X7$k&hB}zdNES>o*KY`ZBDOp*1 zWoMfnSRpiM@j+7+sL{(?sYjXsrD2vEd{wf*9$8)B!sklkpw?QZs&2EYJ>$)))^Mt$ z|Hb8+_Mr!Mcy^kt;}HBulPw=yh4N{4FbjkCaC37L3T121ir(Hf_t~xY0Y^fY?m8sZ zW)(1|_#ThY9)Cb7?@%<`(=WY7Kv)p?2^|?391_yI;c)kNzL~BM4|E9v+&_S013M}3 zkXR&0NygdV{jT8@%BR(hfmu2ZRtTK>Q#R)GE$`lowyMZSvA7B&Sfw6eu&DINSu7z* zcK5EWY~H`@S2|WR051XWyl;zb%;xkCef(f_eT$6Z?soyuc<2Acj0;=IZG4C%L#Ko! zjF`BBjc9Y!9ajS#XLyS~9_5YTZ@A&IlOLzM=rGh(Zm~V*(#@3t!l}1mU(iY?3UD}= z-Rv^j9%e}oTbT>c0yKb1%ay&&mt4)+_b5>6_c`VWSG5(fI*!k+8;>Y`fM z`aY&hv{_;KIML46-wZVL`SQHF+2z-D5#@GOS6BbNe3$AAW%1AFaLs>yNb4Lt!GhbM zrVV${Ooi#ku4pc`E*m=kV_58xR(&Iv!=$szo$7sTu~^f-?VG71;YKlc|GzvjZ#%dD z;feX9dHD%m#|f@LvzE3C%eHPYZ0%0y0Rx4VJ7rvV2;PZ+W4wdtfjL;;uAiYEiXqET ziL&9Ye5zThQEK-GGo=?_e`M}hc>{Y_b{N)@z0~z><03ew`M%0qCoW&yEuF4IhkdX% z4n%9E zZ@9jh%&@0@k-u{5%3Y|j5Aa(wqyar3P{*|(JQN`YD6nhxFJuvO9u6K1|M7{ur0%Dq zII|A4JvTMzISOljxj7=l*QWFW4Q>tK z89g2y>#<=+#7!2B&s!!^v-Z8qJ`%ENYyP=k+O)x+GxY5!i-{(mR^9n3s$Pb}pLOAb zPAoPt&xAV~-i-8LKXe1?+Ha7jY+URDU6RlNW*Y9DP)uN)?6l9(9xZ^=wmP0%{72Nb z(Y!Fhaf+SR9R|}Uu4YFSBbrGjZdHvcjp?Wr-6XlO)EXWeRIGq49;R$2W8-8W7wCro z0u+0ciQM|jVXe);(_GDe%$)k1dnq2uwmW%E}oyeaJ7Z^ zhhDa8C(nuCpV0&LKy1l=6vw&W-!GcWQVFP3=D@ms5@4#9JVasVMKpa1nh7rm7%D#7?MPsQ~XA~#O}9xvb5HA*1m2zlp^8|YSN=$ zWed0MfFU1H7g6Xv*_@{NVkh{V8L;sA&jDc)s*eL^8Kx3<)zbQhN(t!%ZbdV2GLd5{ zsWSr1mmX-%45NDqJOwi`q%!?0D-F-U(`xuWRq5Gcb5TQ6*b6GEG#mtqjc+Rm?(YHA z66*1PO(z4APyn_AzY}`gMny0R;77c$)q$u`X(ew znE{D_Fq!V9TAsfH(qi4_DjxVjXv5f{)+az1Qp`bTWxMF5u^(!8U=L1_ zqxCqsD&NP4p*G91hTwVIwse36W#i-Pzq)dhdnmA;U+{grH%)&-{kNkg4bM8es!%J^ z(!@b}!vI{^HjM{cI(%i*gGy8OD`v5LWtl66fO14IJ$z^!~p@=rdIwe<_tuW^VGbAumUmw8~C3ZfYB=;$7@sdKp)i=xQI9C7zZ8~(<&uQT|!jEXal04o60o?@f>;o(EG zp9HeL$cA6x$@7DRx;-UV!4Qj;Cr1Nj|1$M|M2DG5&%Bqc`1QL*$*3?-tEh<)NIMw# z_a9tJls#_sxeKf63|=aMHqiB#b(`mB#+(pED0f&=&NEY|?BYz9^G~%F2ZpHrxQ|2+ zRy0#@Yv&NA($nOaM1=qRwzo;9y^G9n%#N@(Lw z`z{{Tc31h+VzT{Iq`Y!BJ#Bok&16R>pan}T-lb?(_}D16Vsb8wL&+0`C0<5PT_Bvi z0-!Q_MG?hf)r;o=vnu8eSpLQ0U(})CDx)O&J?S~efLS58^#u6Gt&gr?KEY6>x&_$x z*T0t?%!ppOZqa!F zpy{i3KZ35wx0626BkR?)a_bqmXBShTnPll!TZVeuEH(*@{Tx%&uAfL7z0|_>A@MxVe(a z(xaZzc(kQ5I?T9t=yuPKo@GjoFM`u35bJ+D^-pR;w6dF+`oX|DHEMj+LKj~uEC3g~ zJky=E12xniXdbzkH@A5ff%(P89Ta6WVBQ^RSV0x@7p?61iwllOsYumZQU!v;98nKu*p)c@>lP+ctMU(-q&+}~+~N`Ja9 z%9H0TdoJ+yq(@p};sWJOo7(PXV_@VMR6M5`X|#poy1tyzXF2raivuW%0Le4V=2b>s(fC((2m@;R^IQfbjW0QE^Pzr=V+}o(-r{rv|MI*UYef}d5 zsOkxMfaM&~fKKbKhp8m4fpj3qwmhbh433J;Ub#Vf5*dJbjU;|&S7H&h>BA12N|DSj z?pEj0R;zLWoh*>jnY`o1xSKQ1b=T%lJheND^B_*+K5`mTF2=Bb8V@@cMcv#SRH*d{ zh?Vn*_wZa@ZC)MpN)4i$6I6-vfSwE*1^}E#DsTHNjk7ik#{nS-Ks*}`zxz-D*#Z_U zlE&SAf!UNk3XdIJsa+_)NSqDtRfqn2fu93*Z#vFF(QTF`?VAC&G-_A-0;Wvvwi|$h zSh}o-S|Wn3ViOB$*-CTgJ)2!saKe0K1l30e`@B=Jg#vJSeUU5lItkXOGhHKa2;-k; z!zr5|Pc$q%YN)K48ef8H!w*tDSOPZ*P)--;e&T4&(ED<YowN6(n%%+l9~syU36yWj5xZ!mQ4chvX}U%dN$n)&#)zrQ~T z(t8gC)L7TIfA6a1w?|&U0}8splVqu1ab!d*aJ6K}ufDVF8K-z|nIm{UaPiCqwFfkQ zWSrzXgk^AuD#pR1S1kA?YkdOd4KNatVYo_EQw^9%b7{%opV8clDjQ5X6?|L@cA2nF zJpMXVP3H`ZMnHuFrPbgK5-HNUU8REg^;HWhys=CDQj4q)q#3*V-x)KAssdd@40=?O zxui|5I-{!bFP1GPSAQ$Mkif!`wE%vm4anfAaJ6aF#Nn&xdh!V{vn8fIRQgHB#nl5_ zaX#|w0r1vxNdq;6FJ$ez&PXy`Mw@-EQI{RB`|iD2KJuC8cP>eL7@e^>r<_KeQf^)I zZ})EJm+Kmx|FCD*D9H`Ca^8A|7blz;B7)C1OpI-V-{s5TPdb(XRdaU^(eqmT!aBa? zu5orjVt=vVkrNS= zx-mMAJ({fprlL(hMR7XB!e@S8dDcw4MbqYqqCdk3ooW+fWXtU!9RHz!wM!fmxO{%I zaIC*zwfYQZZoVl`2G&Y32ZY)Xqf!R`$r}DC%hwILl7q;O9gY(5>DP8B*9*tAr@JyP zpQ$wHap|X}ff!xMPo(k^Lkv#)n8&HPn~UhJ^hm52pYvl7zVoLq9rTb7k$Hw*TT%1h zjabJu$ecYPm_>oxHvq1(x|2+T^={QJ>nHRdEjqXzxTS-sR39nXKmN0xN(L_`!!3f& zWsy}&d7Nv@QA2Oae~;Ds;(;=$4`u0t4W-UeN^#f*zJen4vY*H%ipK9>=bnF|uj4DZS6=G- zPJ24M{8ondbyenO94!)cjJMHDb-NHIHjf z?zztM$f*~uy71_s%ln*-@gKDUI(B7+KAYi%DyLO&93F`1&c)-kB=udmCy(o9%cf(_ zEHKj-Yh5z{LTs3NpqW7hc!RbA*@!d?9l)Hy8m^Eh#VQdX2(}1b8O<}nA>>b)!hPX@ z;QS5F9vDicV?ag$BKxF)?go<{bb!Z-88LkYX9=B7(PeN)@ zxozx!F5A>{?+XLFVPQLkow~>cfA8He`R2HE?np5YW~d(PXG6PXt@eNJBG7cxWl(FP z&&#ON@$RL_wW=7FXS4OI4sVHA{d=>`a#>?cu)@AV(o`QTJfF`DUNoz6@F=p|-H)t! zjhBu3uZ(gX^tnzU?^{Y4gLbY43tlPCvX@GtLVBc_A~BuO-m%oIX%hhL(o8J$`sd|} z`Y17`+IRO$>fthFx3dp1fHweHY^rP4uwI_NzgC=G2i;L6TvjIt@s~O*v-&j$J|<*L z+tLqbN#(;v49>if^9nfEh4!tt)OhKPcjY0UkIvyXc_Tyr&G!KVtH(YM|D8?*%23H# zX)!fEW7r18x(Q&u)*J#|te8JR2ZFewW(dtm(=E379Ah}vpHVI5SU`w@e}<(&UP`C+ zHs;UlhJ~5#-!8!>fA7VO2AwA`zhb|;ds_a}8|)NklrFvRIZ<{Z1`qH9A6oZpY+c~`#{r11&fqpFqEO=y* zxiC63iZG`5<&!Q@(HVp!n|RLS9hdLOf1rJudd&K&UXL}dO5V|ETqPT1(@?}VsJn0C z`5H!E6r*KhAPFzrmfF%7+?&2PSHWW{U~m{XQ(3<*SxfZjuqK-nT6~$vi_3L=KZYmM z(}AS-k+WM`Kmr|xJ^}gdGF2W8NL9#AU!XFmdES_{*w}n`*?#mYv^pBUCVj^Ibp&vq zsj%rvR0sX8=bN}8KpycjzMalP&S{BDo7wX zTCSKla%a6%G783&x0nN}zPxea>6(%iH1mvr|KwK|`d!Cw-<=BMgH=$5Po9BudpLkp zK_tO}y$>4-|94P30P#7Ab=rG}%iyaZHW0jcT2=W)3wUNL7ms@QA(HTCb5xe$s*9ymrAkzaKAeTuHTOPVSr?6@7R)!(PC|**_h55=|Tk zL-er{q|=@9t_nhbIk(1Dm8EfxRwm2Wv83GdZl!f}e53Evn7iP@b*t!D@@D)k1hLBzCX0!FO!z5@|r?pKJNT#+S`+RkoDF8a>F|Jyi zdVH+itlCUTX1~mp zNj*cwLab3V^MC!tV1slOIzeWJ6e?Sy0_NV7LxpJ2QdYEWl< zk-MSzt)_;(g-XUTwRgex_Oizb!qzLz8fO$MapEID=q+S&*mB`no?NoWvD-3@2$_tL zRWQ4RP1e}>5J6_&mi|4zup%|I(?GQLDwGfL&245@+;EHXj&l-!U!UHW~0gnfi0u5Q(Sx``-7=7VG zcv?%ubq`g_jyF8LD)EY^DFV@ju{3KtB9FJcC8Q&kiwj^0CZqSHs)v%d_Bh)4M{Zk*0A}vkI^hz_Yl<#x=xA+F!SulWi6rPsXQ&b?cojp=!0-on*W#C*vtHS6RC> zWb$=_v89$2X&|trPI(iyH2!C$*A)#T+#*d;SG++cuLBdZi1{OXrxNEpFk8VZ3*P_3 zSH;l8`RG&0@kz}((VN&rHI;ZWmdZO10iY71qI(9~t$C52$dcm&ck3NZtX*yhD^gaSV zQE=dsx$&Om)j?eg!cy2;V;_~ z=~)~vcvPBQzeRA$eL-vrLz3%jPE#*Ck2jy-oc1h~)=19~`l?usAv4O1d*%d}ecyUH zYd{;k*JTi@PabtoH_(wNo7q0gM#nnzXOT^XDsi^oQRZ+vS#_eid3Z22X?$-ZUyh-l zrgh?k_;hc>TibT0z9Kmx@mC&W)qbK3q*1zMY2pMHPsGCg`r!n-LlGv3S+!gWo+OZ( zyoFJqDu2gWJ&G4BnFl*8Z$ci32n&s78LP~~`N^sEqy~y;g#I zywR{{^4!<`^hqXf7OYr)XEj$8?-{Shq=HCL{P1vQAQk$`aXs1!idbPyPyMXSP0dCt ztjA&Eu&8Ong4DTJ`DeH1FzpJBuY$rb>Dil}Q6qZ$_}qk>a|=q%Vu>J=nR{s&6YlhT zFr~+T;hpp{Xb+jNz9$$@L~P=*bmupeT%0<6bPOvub${NlWOaM~c3SA7pK|=zds3{G z1=)qhKSn3~n|$|2vO|?7V6py;@+)5DL^% zOQlur)_`mj!@fltnpXjqqta!=;uMMySoztn_6(4sW^Yhv^;2;dTKbYMm*aunbVw6)$eCGK47 zBx)*07c-FHL<{O@nyVE$C53iZy&g4{o|3ySmhfyTc zEMDe1-GhffFz*`u$D3mzagwIz7?H39n?psivO~Lwfw7e)bmepUvN}p3RKKR4YulZ< z6)#p&ydZs8F8+1 z&G^qbVpI&U#%!jl^E*=OzN&GC$u6xN0BX_7fni*rG3{Xq?kgua(%w@Qz5(gN3YPpK z33dnt6+2(UQu5S_?8Lj)<2=SpmtPxecCLO!FWG8k`@bbd5QOK=R>gnZ4>fILuVO}606`%kvt-xdFTArEZmBFh>$6@QjVb#mK5hKa@-ZPK+Q3_-a z0jfnc>DMZm=SdSM)%*dAN;@oYyk1t8E{1uw)MLnVsvQ;>|2Ft`F;utO}@rvnc=)<*2*GSlWAVJmO_Nf(Rkyb z42@)$sIZeceiA~@UE=PXU2iJ!_|wvS>Em;bEDZxA=SvKx&u!jcH1jvMM2!PJGIG}L z2`@&V=7MR6v08iU=^u`JrY{{H`Zj|<>3_DRUh=<1)dLgOdBCp(ntZayFB@bJKKmOmM%=dS| z+lUKy`z&N;dZovNHJ2dHLnoqW^L%mt&DM#M35PKQ-#HF@6xXHGZ?yN7c;_%=EQDUA zVV^Y@ye3vn?je+)VsJPoztolPn_0-_Go`r@-10T^ly*$3r6^g<8gs@!C-Bi(9{2Ck z!*P=Q@^9%J1(CklMn%2lmxR=&ctVIQHIZG3+sSMXHrsS(JC?u)p#I)Z1mPRuJJ2pA zoN8+ffzw&+uxy%V-ohFX=bxnM$&D_eqZTz_0SB+u+~m-KDwF4&m$`91*o->m>xIg$Px{3^jXus&hdA^2NA=b!0L++Hf&o?NoTyIqgTjZ&oQlfov?@v=RjM*PlHG< z>bU+Ab(QC}vTUV`$M=fk)k=nA>?2v%MpovNe(@A6h6#WJw;+jblO#Q{nFOzh%U$6nl|;o$TX<^ zlwSP#IcAB*dmkk@=^e?z=9cofN6+#giM-d@cxhU?DQ_uRigXO791HqCGhvA-{Qg4s z@R*#?CfT`kfKqi@5kec1yk_x6W3AXe#UW#)q;10#sn#e7ojCmM2YR&H@{SPH7sV2vWfj0RC>%qb zA;fNdT{AHwC4GGRHbCcHIhCbX7($POc5o4RY_~J9JMt>`PfRt0?mD zT5${UyvB_hC<&8GsWSkq)Erb>>e#x{c0##9nrhtfvYgg|gz?B|@4>1hO_vZZQ4kQb z;q@QAC;e}sg^q6ICF-oMMleCj%234=-0qHhst<0@%Y6wz68;Cc>0wWN=;)q`VHm=}eRz zuj zRf9Si)>A*E%XOLa8<%mrJu|rG_cr+ZhmFDC_86tM+<~j$WE<0x)rQa2q03g5j{$kBsCH5r&VivvlA>7X6L# zEBMe?_L5&UH&>TV3n}O-zOR_)Cy`_jr<_@vO$y=nDUup6Cy)baXjXf0Zvk1hISv*- z21B^Ti2fnf^Qv|mQi!?RGmO4{i_Bvbr%v9)dp2WKdfk~X)9{|Y8xoo~Bh-J8KdpvC z;K{}79A^_OcO>hk>GuAlDMor^a3#W0v1l%2P8hxKgWtewfpL_E6bHn{RZbCfMs!;(UI`i+FxI#gY+bLgAQJChb#i2q0 zX*T#k!0c{mOXYjBDR5EaZl4sD#-CH9#xsf|U0!F%g^M7X4N`UsNf}X3dZ{V43ved2 zHdc^WdROx5!Z};mBnQ^X$TwCMpJ*A|Oii%kE+XHK+i;IiR&CPo?59Vqu z?RnFCeb3L&d3uagP?QsrJWBb~`^Sm`V$?tNV}_nQkYIbHf6|y-K@&R)&Q_0vMdl5< zL~S&4hPz>64(KefzK5YxL1hEChd1N2%04qjsA!=}(oOmveWjN=<@3TetxV@(EGfoQ ztc{|!6IO%ciSzk zm&c+gH{_7nJxx+6R;_f{=vyDQsprd&cC8!j{W;{7PJ|*a^gQT_qdT8@Jo;gHbpQF6 z;evf3#mZ{j5BDfef$jx{hsDjSSIv>K0q(vbQpcjPK|l3y>PGkZxV$=VWMl%fS(IC% zUm@W)JlrM!_&v_+L3mh$Eb(Z27nBt z*J)bV8J*SpT6cq)%``g>M6mFIr0OdC-_YT^LbISE4Q{1KIe~|Zr*#~z3cEFS zeMm}7rDt$D=X>g?VJC3IyGgLtt@da_BI*0 z*4$E*aPRE2DbcmsO#B5V)!&#n{24g?AsyI#ZcD69EDg(_f*o{hcZgq(b7u|x)OYo} z)m<9Q-hL%b+pnX;;{6**pZ)E7Qs}8{40^uRV&ifswCsMq02^F)rH`&0MsKOv9Vbeh z(`x1icnzpRj*e`HZI1%33-&!iuryW;A}bnM(g2=n~c7jN*EHWV|pwt z@@LB6#0}{ZN~P*7$$-aoj&W_ordR&~=0)FBj}j}&^}9^48)6d|mj1_T{CpJxWzF})y5tcGAYjvXNPeYK z-eWa^5oQsXJz7)cAGs-0a-ZbZGGWlUkEUdyFn%%b-I-b^Zq%T?@j>cI#JkU*J{74w zc_Bu!>)uhR?jR_~jEt9r!V5wqhtx2#MH~9=)_%G=w0rru8X{c&i7B@? zsZT`Tf(j(P8c*S`^D3H)BnBzL4_j7}BD2tv0Wcr9l<`Dr*+D|XnF;qn=d^>52jk7=eRcdUB2_#+a;oC0~M4S z&j6e=M1MQvfOqdEcRl0Nx0}Oii7?AuuRFNu#T)NPB&EC8eU#{|!Sby06rNFj{_p_{ zB}!gdM1h?>s$`R)8b9uKRz_SNNEsO6;^vpIAnCnZdFaRQC*OY$c06_SU@Dj65YHyL zuk6AhgKlfu`R??layOIjwG=Y!b1*QR$EPh5L{6W<*U_%i-i_jb9|A`z;6j9ugZHXL z+;WapLuB&Zugm^NtIfeng@#UI`O@)75OU(5iDt6^QnMc{@ylripdP{dwa+o$~vIbs;5!lrlm$<(ixzKe(Ji6M&K@NvtOTDzB<0Ee9 zz*_rL04~>fXvOy9m^B3hnG#Rwm`6_>MU3p2J z6EA}d103$+O%zfI-^?|KZVzXx^QSFMs*{@z8Y93TOL%~WFOM*l){OL^j86f|{c#Xk zZ_Gi~#B$+2*T<=*jM7@XD%#+aqucako!hDt zP5Epg({h=bQh4+7^Ed4q(zuQvRVSIhopke> zQwM=0@#(R`Jk5qGJtaZj>v%@r(4Ci#KgF%9y|0(6Ma)NNtZu$XaoUE?^MTCMq5_x{06~5As9=)!OM_BGzCbI8zm;BN$4}aq zRojzv3RMpJrbDPA#}%)JY*$#Giz0A0@p_mVVS!KKUAhyF7ZG%H`2cJr0zBR zls&SJIoZ)o5Hfpa&xe#Be;U?(@|2-)#KlRYypwIX!?+-k7YK94K=%SC%-4At_eB0! zDW-p+DV8pEd*;$iKZqpbQ8^{ zwdZ`-s5?MfL3sts__pw1tHAY13#x3oR`9rmD908ohr2rX-Op=@epD0H02!q)Rc{5T z_0))Ie8s%ic|YuisTn)vX?9E-L&m|2h$FBeIOf50t-rRr{^WGiZZ$LYi3v;MHn?oe zMs_~oCdx=f!fPG~VmIEfrWHVGC%$lXYk1sPbo+$y=5;)(Z4#G@tKI}1Pdxv`F+9ss zsdiI>oYyMm*RNmYRaCk_Zrlf~Xk!`{}&YD#KqAzcRgy|ENtM?c}nuqr`d;)?gp z&&5gDChBT9Y_5dRtP&Il%~tOZCmsCq{68n8qi2(jl^ zh42!RbT>uebDfmhdPhv_`lh4cbE1cdsy8~(=#+Cc3=_C6`~*85$>%h6`RGrot)h}r z$Mt5WoU7|4yf|YZ`kGQanLvZO^7z&nY?uWem8_HE2D8!z^FL90bOQ+^ilQ#h6@n?{ z5I-AP0IL%h-CH z=R~{t#=@l{CW~KEf|vJL;F1)a(MMIGaBGCf>AX9o0Nz{z!${t-`TY&y+}w z`zIhzXt^nBcca=4Q#1rSlzq#}cuPNh0;*EH+o}E7f7Wjlg*slr_eQQ7OvK3@C`6d5 zI1ZIa>MYm?;vB&iDPN z9WA$1;s4)CWV-^xzxOA~o7n$C2*hbmWMpJ&YHBK+w#U{5DC5GqBCxALIve>v=`2#u zzRPoT)DVP_j{EK}Gd;QEH?xj=QWO3YU0Wp)S^|fK(l-y~4EFce3EI-)j-WW_5ua{3 zl#)`3$qV!t4pY;mDW#yrwC2P&I}#Rfyzc6C+#U&uyFLi~eCvMFeRSP0V&gTVr-}AY z7Hqg=^Dz_qgF05WTz!*U?r@S@v?4jK>)^URjI#@zCJ&Fy&i3{*wITn2$fT;*m|+0( zW^P#-W5Z$F{d`-c>!A)18IpB2N_1LMKH9d_PVb@#-Z85d*VHed zY+AJ0+1=G>bTXIaidnHs0z2g>XOQ<(<-jHmlQeHs=D=qOZD!ux)%!{8_1ed@$(FXx z9U29+%}ieb@f`baSy2U|7ZKFWTDVlf}fUEk&4;CKSwuKdT3sa`E0sodGw(b*7sd%s|`!@nFj zYBo?DhaO1-larIW@@Bm_7t7bno9VKx z8DE$BfnkBeRAxgeUk-N)r+ep=smn#X>-A@J@9U}h)~*gT!2#XJ8#PHuNi%cvr$4rx z3@X*-v4VEX+cG#Trz>O$!iJtQ@qD^VBH|WukHhF>@y@ zatBOE@hBKBwASL;omg~!CPt3s+rbDZK98bpM*HUxM=s}d3e{w)AU=^v0Z{hzbO%T+{UaDKW zh3_|pGZ2#8#PyS6hG$m*(MYviNBhbTq{GO`UcBR7tP<9w(I7l6jK3(Uyu`LGBfA%l zbUBf}Q~=QjxMKI0&>!pqU2Ne~dw)#yt!&$g9KS7RoA~elg=W>ZVW?ItP6ekNNi&#a z_r{!Sp^!l&1v4;%u&8yQ8~Q?A%l9DT*x8*{zjxU3QRk_-u!c{0MM`JNif2}#0e>J) zc{qi&PN;CKoO3u+xOS?cQ(Z0q-Z`#?zdc*n?OWjpwNxl9%9zdDop;|`%qtp{vv=HIY$ zYaYP;Iza$0t*uQEo_z#ZJyi8U9r^$}MP#=cMrBYvTTooQR;+tZ8-hw8Nk@i*>;U$- zf`WoSNY?nx~{Hq00E z>Nf(2r=)I{EA z7>QaA5_3M_mgoP>e}VJ)?FoE&^9ds1=Mbn!ZN|>4mB^y^Uo7&ULZ6Ry>>vFFi6l7T zuA5+T6>$|cu+TXLq`iLww&yk9!TmSbd+*>4F<~BF`WwuKIssMH5NO7@^*rgaKz{jh zF{kai*kzud-VNA>NpIa*|9@0tV#C>=dSCRIlkWZxac>z`Rok_VVh4yQh%^F9h)8!z zi8KNtAf1cuMl7U3N*bi4MY>fwlvs3%bW1nvG12>ZpJ%_{@$UV7Klc8ChrnX3Ij`%Q zBhGP-a||pwTi8D53U=g~y9%B@n4G43Q7|wO2HoJobjbt^#j^QwG z8JyGn1H&v>y?KTMYtS9e;orPjy5UCzRTI=wpyRs;Ml)&Rskg%k8HBS1 zoPQ3F)#;ZQoFjI);FZo{d!2dl{yn~uvcb1Emr(mpR8-JiT_Hu;fMSl@l!Y9Fg0NOc zKjzm=qK^)dQvyof*C=b8=^zuShuRb@DNwwsc!n?i`}XEpakbSPE!151t1sPOuGk;Z zLbKtCHA90l3!rwNEmk173*HxEzTae2W%-zjA9h8RcPIn)g?h}$^5kKu`vOq+{h9-t z=;&xCu-hTY!x-RG-Uw6h@baR?E7aB1RZFeL-!)P$==rS*3oIOlZrGeWXUy|=c!qf$ zmnX|+;*%>Y`ONn#o!6O&0#LZQ?3|qINBb*RozvByh<96il+<-8he#l1Yoroj_w?k3CPu-?cd#)mY*iQEiTrN33`!;Nm79o_ zb5oUE-T&sAYI{I;g96x>1ugR=^iA1Z^x>cE?AXYD|jV}y-^Lzg2aiqn#e5suQ=A5)lOT#JG2+L}#z z=S{fU5so3ek5IFF7LK(Tj9dg6V58icBbVjseG7aBwK@+F`N=mMU@0~qY5=6eYvUP` zqVGSz1USiSpb2u#NKFIsHNCg20)MXlZOm}VWozk9$8wKVKP@ZdglzVxoI(2k*VWlsf8q6mS6{W)j7o;$(9XazY=7P%oX#j6P%G`n`{k`U13c0C8nf=V8nL>q z;t^&T&TCGiP1du?l3!cK)(bE(pA_S~rr6FAPNARQSd*u%gERrsAk^T3RK$G)KpOu* zwX*4~yLr{s0_nE)7br{5tiJu4G@oG|X}w!(cj0q-E!Je@OQIjPCwAu|v%JmNUD5KS zWxJB1qH6)-8M(Q#u2tpb(eK~C_ixNrE4m!f8h%g$4al)Slyy0NG7+P!FZ}jODl9$2 z#UL)(Hc%5l+{Ao_J$B~$$(HGUn5B8{!!~(1dcqy}g+IU06 zVP-n+O(PWby=k|xZzJk7>$`vLi}$ZT#4pCVS>4hm*q}Mzy-+RiKbm@=<4#v*mtSI< z>0$a`tiiL+tj-1oOu11#P2Qbhi^YPiikrH!~{Mws_k zSW>b+L4F)LJ#9GM7F9cTeB_uW9mUd>_-Aop1KscL!Q|VbKFwD6;_cG;dyL=UI3pkc z5_-=RRksCVlKPd#?j|r3@wq3OF(6Zp%eS|plAN{&6=HaDjN1TRJ7dLF~FkG zwDYZFZ4cXCHSNol8R8_sx{h@oGKXjPF?e`*E<)ZFPfvn9vA)an#$Hsf1xK@fR?i!? z~UidtIj@Dpn;l3E;{)sS-U zP!}%4!amP5l%1m^pdFlDiCAUD#T-eUv^_mNs63SuH`ir){I6mi)LR1sv7thcn$s5A zUC;dZrnO!oS%Zx$_tV{B^+3<|Z}P$AT;lVT7WcYEa?PhASL_z-c&KHf!?vxlz4W@P zcSU68DP`x!BRikn)N`*(o4N8K4Mk{qS%w;yI+SjysH>~1vYj(p5EEYaiy*_Vv{Un{ zUR4#z$CvQ-Tk!TFf8M^ZPvpLN>IrF2Pe@GcoJ&=8-$w^iQ`5Z8KX#ef?ZnpUy~xaL zi{T7{JSL^8TBr6r{{3fM!U}(a2<8OMc*fA?I);+rF8U=KzCSA>KA%*Y^FJKyruI7t zo_Z;mt~vZaHv1yQWzqP5{{}h4e+;GQONsP<4EY;c90(o%{QM2hIm)33T;u_Y1F9c(gaGUv%_-;LQ!pk=iNd;!N&#n@r4VZlHlXuk#8 z8K1NNdhVw2LT?Uw)Z^HF3FPBCfp8#fzBbt$-8k`RdA%UvP@0~OuJZ__q*S0;db4LH~w|QT#Mzec^l!kX(gPtp$xq)TZ6G?TtJ!TTh6~pxGGk{ZJ5A4YohuDwq^_DI{de6E_HoIlPZ` z@TDCcOE@4OHLrbpW$;(MU+9$yr%W&MgP#`$K_)rMe%~n*GdQX+;^d>vQ)d$j!@HiC zL>ERxQ!k~ap`ueF&LqksY!U?GDeQ~5uh9bNi8yU$FvOJ@wDk06K0v4i&ZV%NIZFDT zW~GyK?{`FB99cVo-DbJ8D%hHFADVdWqk~K;2 zg=|(>@#77#!Isk1(I+78e{1PZ6YB^@;eT^uK=a>0MK=II!VOyIQ4mfGt?f06jPL;> zUkN5CTce`5uNaO>h2zRJEVNF8KOv%u?lwU@_LFyP7aMfaS6;3v-%R2}F(RMJA`8dm zCUOO5QH;1LRcC7@F33wGln7OHp=Mry0fIdYl-mPLvnH8mt_M0IFp$HsW?v)TeM_~? z(6;xm!G#~APM3MQJ)s@4ehjXuFvXppudkK@DFsoQiypS*>-KE2;Hx=C7Wz`x6W?L~ znQafglJHwg26s`61}VfZe0?u(xVYz8K2}p#cXgj&c>*bnJs%)4l{>%uq@&sBc3lAP z_!5~H1KZItIEeT|CIT!1tn(Ze!%cY}ho)HPMb^|B;ZnMLdu@O^m0sllrRRLhF#+uZ zH)>JCiK;4C%!<1U#zZ2;Y0=WZNbIB)&~Xu+4$p50Gj@j70|Hzg5`4Fs9`VLU7vSgxI#1xg4c{jTi zLtBac4TKszz-&k@hhAYz-Khf|(d?I>#^V!r?!WK?dij24y?l zhWwhtb<1q2dVg7J=-+Ht!HMk(jzgZpw2&>EgW?F^G}NF~Q0~7>>%>dGe+!bm?U113 z#2$N}4wfzX`~QmyxBkO`|G%`^e?gA_dn67YQXg5YTYnjzi6eSO#u>$gJv?9Jn=>Ha@x-~!oUm6ZY-o^AokUYKR6?oT3rP%-FEGZhQ>7w4 zLv8@VfxLgCJZ}ZjW%_!dCW#V)bu$iPbh@0}5ufEKU#u(*q83{+;xKek{7>ak9JeeF z?+gXii0-fg-nlqgudx;KIr+bLO1&LUd6T6JmIRnxK%l|^;>`g_eSe);wOXye8Dyn@ zvTeF-!TXZTIIvrKqi8un8Mt_iJ9qB1#q-A;?N&1JJU42!$^}gBp{JWE(R75d2W$zqpHi*raQZ)07x>6oJd%inW z3F9%4UnPIt+gwn<^8^}&(eU$5v74P89q+c(L`2R2tlG4|2hpwW=6sKxz5SJY9n8po z-HS6$><~^PA2^CzHjc-K+qO$ZeJrNE_o}z6R;u8yhZFpxmLG{~HV}cz~_N0Vpi zbs$n0b{H}T#@0KiNxbvHr3tipBka$BU~1T2RC#(F=7V(rzqLS&LCe6vAg!I;1cxaA zJ-4{&Vs5^4QIxe>BHcC22`=+QZXW7s?Gr(QfzA4o7QDv?>t*9_iJkW5(jPK?`wFZv zQOax5)VNT=+LQ27v|=@Eqa9r6p0g7pj=>p_;N{-(Pjf&rVSR{=5Kw~;EaAZrR8cO9 z)716bw$P>f+g)_V^s1%xef3qIL?hREeHu_l<}Mw7sSr&8$!yhv^M8aiyDVFeI9Tmpa>&fg#}%a$hKA$AA;!~Yvs@FyC0>}}Ve)YmA6di<~*AX(~3n$4< zM8y(=h?qDuqx%@#Tu9^08mADN4d_(0;DecBz9VTdBp#mts)7{`8D{J(J{rI3@$)UQ zh4!yHpGawH1Wa?RI0nI&SVXGq?c4MB@G+&{-x~)POG$!li;uS?H?y!#tguE1*i+vIm~ zVK9-1O4ZIWZ%-&E zc*s@*p$#(u*1e~nZcWJiy6Ukb0*;^+xhVmyeQW?)pB~-0pJR zq<#rrx+VQ@5{02JgM9w%;%tYuj zCyywCJ7i|%N($7t1E6IKwSZHqjgovRuE z6D#U<70aj!P?2~FB%C#N9*mZ3a zu2;>|V8raZnppyNBQE5^Q?|!92G~PL zQM@fGwEkza#5TbOK-;G`qQ_SY(Xta@t|t&?hHF(?+FP_NFT+w%s4R~U> z5Zu8-d4G41wVkgP9z8@2^S#3&^893^$NPdu*JjdYBXU04ok2)*uJtbP@snY1Zvq>n z!0-yJ4PRy^;O8L69LMWu$WSt~iP3C2Sct;4D2ai)!533tiMItSYBpBQ&&?CQm-91S z@DLRp6N45HLQEHP9CHj}w?Lq?psxlh0Rll4Yc2HLRzEQS#C^6_gwQj9UIMlTBNBp3 zTxw~s#yh7FzYTduEBAeGIh=0RTxdABmB;di*04)fl9xMdX_DBo@++9YmbNI?U1Z7- zQg&5Q74}y_a!b~uzyvrghh(mUsPt8^BsOrC5P$j8p~6;=&yLZ7Kvaz#I6?(Y3^1gGX{#IUIUKk_#Vr^|rb3aO&`rx_8n$hd8UsS5s zZXgu|_%#Fx28Vl_NS+9&$L;NXm{;@l3g_?_&g#`Gh-H>P0cmHToTtzrey4BXx=QY| zW=oHKb)>lX$!S%WS~~KDZ2H7}R-UXM>k#{$_!a3z*U6@97zmiQ8S8bG{QOUZq6=Sb zrE=|f-EN4>-d&%WaUX`|{+N?vFj8)RPoq2x%GHQJs0PcC)VJ_*$JUdW(_#`fk`C$d zm|I*-DK37Gh-Jd4vg6t9^P1`CE3_OG;=YBUU9xFJ84hc&Fzi@^L{UA9Y+Is1)&bXNm9{tHW+-4aFme}Yjj$^{lb&pJgxR1j{`mM*ia@!e`;h9 zrFevRkIY~bnw%%}2$Ollaf~!m>YA{=4imxCGMhW}D!D1($B|2N|bXAlu6f;WfglfKhj?2fOR6M}WlPo6RV$0`|d+ncpkSLhf*#zHT9si z<^XeSueW4&c2>JRo?mDMEB+1KG(-m&0Ky{EB?}MX$=%c>RB)$Ls$dkqN;pS$=LgpW z7ThLTZq=3=f^%}#?8+dWDc{DKENc!q0B0qKjDH;LrXfULNSI6vxXw+UxIlx}_xUi* z3=tYv0OT8SlUKO{^W2wAPev7VB#J=5|Ecfdi88g^^EF(HvMGFgM$I;eI(JrsJfvY- zNe%0dttrT`b>V47az@1d0zC8^BDTu0&TO+q2VNwNYzF`Qokno?QEu5ZQD#=w0BC}O zj{W@_sNQ4j;s_>Gv%pbb{wyACfF?jRYLspZBYGbdf>~>~}_X zw*Ja!71GNB6&X(m(J@xd@LwRBgiwGbN$zZd2gK%x7@}{`n+@kH;8yuQ|LhGRZ{LTl`->+(QBX*9hdS>v`@{kOtVOu8T#0?o?-{j5 zO?xE(osDQsRlSFQrDM6~_(*f;_16y$5ZsvH(#UqV85TG|$Yp}q^Srg|1*}Kly;qdQ z(^Q>#d3lSna?2&NGBdlfpJX{qM;Vzw_49MF)9NpO)`u`G>_D!@z(mcBV+bgBrW`Rc z1!_5itBvG&BVgB1`<1ZxgV2ML3lKX>JXryOq<(PmNVHc3P zWfR+(A2Kn{eCk7)sMnU;1>qxF{L~xluG}BY`#&YNPt^aUi+*1#?DS8m!q~(_7f$Lh z zFahc?fPH{naR&bN5drGei$X7W7vG*pEf#6-#Nw=;T7;C1{RVnA?}0qUobr}6u@}(D z*icsip2A}#oWrNQS}p&^NYFSDeKW1g0;pq#wZ-ps$W`gybG^aQO?l)BjE1ECN9pR` zd?1fedPc{D#PD8bJdqb6bXz%UJ6SIK-oa+(BO)S_$4l+2v28&V{?PD)Rn z0F65IU>hDC7V|+i@FM^hUm}L`(&%E;3+x(K@W% zeB{jsJsbZj(lhCDI@DkHBG81=kQbSYHw0c#qJwfvT575%Aga{ce`-OIGBF&h(7esB z$NgXIs+)Wc6qm&YMF797mliMgB*1_^<3Sy=RpJU{aS|ZvkA=YIN%qrILI`Y%RC@Q7 zRa9t73_d$7sm00~t!cTtyMNWi*X7zUyJ~PLKY!-GHI1W-^Pc7>^$p)dg6ly6`1FO` zia;NFmF-ViJ*-_6J`_JUU7~m$PrT{p<@F3Xci-vh>B$-- z89)u?LGgmjb&(kf2{oOkZUC5lQ^QVSu#ynS0Nwgd&?_vCt|v1A=<#U;%}Le`Xur$m{i>(3C=NmB4A zeagK}g3x@EkLcHTc8=Wzs<+{cc!cZi!#CE58buC$7JGBlA1W)~xT)!6wuNqJ5H~R~ z0ZPUhNQW=ucr3e4Gz1`VHPwyG*;?ZrezGgfhM}lS`5@mk^0Mh;1%7Z10^=(wD=Vm} zwSceK1w=&>-VZ~)*o=Y%JN^4h1oQ%=ufGtb*ekpJFH*tLVnMrZks78gg@`tksHjMV zN5%Ep1f$4XoyX#%Zc-T(_SiBvF0Aj`49XqtdFvGXFN{MlwyDHF_o16l0Lir8?%EUq zR%5gUfRRUg3#yQF0@kSw^+E)p%<5^mq4JFR)ipn9@!FMDWAA*%&u{v7ieR+`j(6Kx z4O;M^3bxZ3^t=x8GGHL8Get=QT^cHB5P3-O=GJgC{dXoe9ky4pb|0(!A2zoYq`rD= zL=SmlWBsQiJqlGHGQA%P(OJp+aZvxm>hDh2Q>yJ^-hNx}B(Y6D$sXvnhwBbq&olic zmgHJ6W5UIJ|7g1=Xl!K$Fr3tag3xoA_`hMjT8Ku(4A~CIg5DDBhdvcHgN7VcVYAp> z1PnMhhQ@OysM7(I@J&&UzaCJE_nW0h(_fmlxB@$k?+pfG03ABYzajE9^PL&{a=)oT zadrNiwv}ZKcRXI!eImFz_uR9xVO8EE$r8v)VrUjY&NSM~St@yk5WUqBhc!v%ACv71 zUjsrh0QJxxjA!6qM$~erPTV&0&`CvIy%q3_{xVw{oP;w}c$Yf|2BJ6yff3XK@xjBp z(iC-Ew+bTsbb_OoXRe9?N6AX9;Yqm`MV>WZcLI){2JQ%qheIyoj&fU(`($WZuNzIR_XTHaHbs9^%3KW)=MFCu<1&+x3RS49S@O|uRSYoW( z()RzHiA&7AHx^c`O(dP;(4cYD2JGnX_dPo6xUN55Nd3ok;Hz%Co&}B}fW4&17Y0IX zgoqK@3gEN?DiGYK=^6l4iQkZUz4l|Qjs%;7Xsw_A35m>nW>zTzw8N%5Lj<{tK%IbN zMaF)A22N7v;PA!`DnnZIp|A4a`>aorr>n2uaUEt|a(4(g<5mA9HCsIRnh{j%3I)(OBpzR>ux7$y8FF_+riYE&^E36 zu}KRX%>J*BtI?02`J-0qh33V8j3WQ8hD^6gQUBMq%+swwh0%y3dw@U|ZaK}BNT3KGvU3hR)wt(k;JnjwM!e~tcqup=kbDwoL zf%Zq20?CWj9kWXKs3oKM(glm5#Uxe#h-L{0;0y(p5c%lXv}1)OliW|2McfNJ(1v!&}>} zl|+Gvdv|D%@5DFg2mk5qLOR!=l4Mc6YY2K5Ex@_?G+>4Spcd%?3}w_tGS*n`&>@S8 z0H_ovkn%dnKYq*-G9H9kEw3+;(AcV^DKIl@Iwn0d$ahNZ*@Ia8Gno$rXBQ;G(&ujo zD+Caw`&_PY{xWsN{_rw|Xg<-8ff`Kv-29OHjBp`N0kc|x;Qap&TCgS>(N z^RC;=KNi|}le!0LaN9-UR0?aLYTr5PdaXZ$%@MutJ0E57|Ik2XaQ5|sVGGAW!Qh%i zO|m_b-ZW$UVQB6>UmA3A(_34 z`R7_)c`84k*usYP`5$VnVpJ8In=U7T(AID+BBf-ZxOzVMssG!_08IhtP(=9s)@oR6 z6<;k_Z~{?W*{f@6&%Rc6wHd&b))|LdI>^o+8NQCUQX+moP@`x>#5s${v9ctTPJ6H! z_Zs@(;`H%=El1!W#@Yqd9FG_%8Lt5rl+ni_rqK1gmo2By^wNKZae?+3oD4_uVfc<1 z=>|VJC8AogK4pasNpr^~=Q**MXW6UK77?Jf-*iB`s^!I=kDy3)-j0-A78kqVT7=*$ z*;8^%ugK1oFluTBpxI{k2&9qoM==!>hqm>wgp%jmk!;4D#WA0#h9zo#%cTX3pJC0Z zPOlW2X@OJAOzE41cK@f<3Q!@IzpYlQM$d7nMlS)xP$gc23*}cR>@FoVjma|xg=AD> z%4JU^mD&Hj#EOluN6+kgmF`L^VYzsMz7uR5b-3CEJJK5ttn~Qo&=5IZNWe^N&y{^X zGnN|qaNAs2*j1m4PcHoY`q~Z9inPi~5(sdbX%gBHC}hYW^@4&#)Mwj0$*b*!H4pM8 zSZ!&rTNlTmFTrhklE<)@i)*{|E_KAf<>)Tx!4%#w5MBArE;9jS^ojgNG9bSgr!sDT3(#v^ii6EDjE|v~K=+zBcaig8UKuY-;95 zuH<`8yn=|U_J_XtSrE#I`QclGd;9HiyzK#D<0>E=ifU@n!w;Xh;CO~b$0-_eey*vN z15HA9UK;!3Zo9R+UUa7FoZVU6O5APTJZ*MP-#+rVt4UU5lOWcL3(P_^lEv{I{H{HK z)Fd?}#%V-lO&Xwh8mdfWQ^Wtal!X1iweK1IaMA^p|fimisWl{FDMqctkt* z-XJHs7;KNcl*=Yt_f+#5E9K3SvFE&yT%XiCfIT3xc8n~kvCm@c!=thw4>Q5j#!s<$ zuxrx80tO|bygfgXm{ZS$QA${)MA7ONrS#@ z*BrYaJQsw}f&oY*fJeSCN^pN7ZUMcp4M?dJ!R>&1=!~p%oeypq)X>TRihXgU;?mST zhkgF_+1HJRw(rBqL_I*EtzYJRn(|;qf;O~C&)d@FJ}Yp(Tvn&jPJjUtcn{y>0xg<3 zTYMwRLI%xpBxP4hA>cCz2`|dRf*R-IC+mrZ$;D}S3EARkRSaCL7eH~pp}6rINY$^A zp@;_%jb7N(oJ*XECAb8nWazS>KJMx3ySYW#;Nuq2efRxm+fGvNpO?fVwb^le>S+sz zSp}%#h>R*|nzjr%m*N*&p@Fc{srtmV5@wmu?v%la^Ol}8)d-GoOL)Cd=8-mGJCM!@ zZ4c0GytX@Ex0)ysR=bSB(bE)mdEtXN^ZE4ytzS>8u#=eAax1zgUQ8C19RzE(hs_YB z^R;u8|BqBXX#F93lKU(QX$6vMbbWU@n3A8wU?#JOw`pjfm%D%NVb6lqQ~y|jBEF@v zB@O7*RxW`R+F6Ds1rYk!>N7Mat&C3}ibRDnST??#ZBDRa|ecHg;9>x42ru*yg zB6Z-%(0FPYeRbGCn2qTV`;wB8hXt*2<{5+)%@?B^C?XQB##As9Zz_dH{_P`~A~9kf zuJk+j4?f^30yGQ3gO22v?tAKUU-eroGkAkFC=^pLRUHJFD}RscoE|3-uL`u1PDYbc zk^~s|qs^3@^c*jYe{86`gbymo&$nAFK zDBBWa^m0vG{ zWv<0>e3oX||#({uF^-xVCIMmH@ z&t+N5M8Wz(Ie3@Q#ue1|i=+;DL*DYBYbAox8Dih(NdBuk2ZU?_3(tDjv4QL*_3Kv( zd9^x^LG+WY;=p+<1$)|%)7mVf9)yITiw6XJB^gZC2)|X&=XNK3=ABOMCG?n<&l6(1 z{8hr=CPq^FwN1<=5R6`?8jbyRPrp$J?+0=MfOjE`P(c7C21>@R9Kv`&zA#kh5-;Mh zm^;(9E;FLG3G z0Qx$eyef>|Kc>{9QRG$n81=moBzFj9!CZW9XxAcPrrjOg*c`5DCI1HC*wj@;n~lxO zu5dE?1$0R8sWgso?ojL1%zXT(`v_@LI#I!1M&vwA>K&^d>juyYn6QX!=_7~seZZVUm&+~%aTB$uh^`Tetn(-^KQ4;&hl>kl4v zyLxr#f)WIGPGYQz0~vR;Sjx<#3(d`Vr3im2cG*9|+-AI!4NF0erFjCjcQ*}+HB}|Q z=VDy7F!`18C{R<1MbhEN&qt)btJ&je>1%@??d|vP$=}wk4DEd~d3!9TI(}azB9hxx z{06VuFskuP){PbqK)3ndrTSp~skMFUy#)x| z-f+Ney~*)d%dnMB);ZpKqZ}9orSSFHLN0p)T7BooF(p&z^apJOS}hHR(rct6q=&Zc zoF1T!X-o7JHbI_?XUoB92b7N4l%D!D{F;%DHHAk0#|tU?gHB#Fb;X99jeR_ksuLJ4 zMsz)YJI`Dl%Ka#Kjkvl#V>$=weymMggU0h!gldHFn}I*77sTHH$lhfkE|O`%qY1$s z=yCo56P`hK4pIJ_L|8mfFlc5$;P-|AVsy(PU>jekg7{csBPibx7>TQx(u*rqbB0B2 z3A&r8=7H0oiGlVy>#o}m9~d!`w*}bE=kK;@#xHR-3Aj4vS_k&c5PA||drGS>=Pe#R z_TF!`Yc8z%mYY-`XmHzpM_8J!1T?D=VRM%_diJ+}^H1xK^iT@da|y3ffs-GT-Z0>* zTNC`_2Vr30qHuy<%7PWGbCo7ijzp@%GcfD8&|DxP2o$*d$PZ^9w#D&AKn)z>INvXu zybjHUvBfLwea~tELYSCr$M-XM`s=2!zgBV{G?L#PBW{V`H{ub9aNm2Z!uu7xldPzoZ2Dmlq!d5e@V@~S&2N`a5b7cdf;@O zK@|8O0W`@5G^#+6&qMTs`8`W4goh1KuxGIVX0=)WCyJ#aL_!JJ z9s$rv#q7K`Il1s8i@j|AHKeg#ogjn@!FZ28{#0Uw>1At=sQdirT3picI#XG{QxSsK z6Xd=bQj-LLoRsyhNOR#TAnlg4r=#D>b|%tp_|ho8f6P(KU9c-OU)bM%YJ#&CCN3w^ zUWV!{D(@Ido|A~!BXqMt=@c2Jxxsxb#zb(N0E^ngp<+acFO{DJ`{wPfuM%}i{`m%q zA0uU4%!RBc3-TUC>~o9n@e`US1a#t9=H>?kJyC&7OyQks7$#K$-mhvF4N&YnTD-sj zn&MrfU@Q+X(DNQ^|RvIJBX^R`Z{sWMY z$+$xeP~>eH-n)dFIp6h5!c2<6(z4VUnXo{Thhm{irG`S!0X;;4_Grripn zGJdQ%3q14Ir6{1i`9nSh#|WgX7AP=y+;u=*hsS-@a^rBEHdlxsCR5O*@Rc&V6{umr zY>4#Mn`w!|zMObdRU#VqVxKTi(tYT$cPLHiFrpawCsBoS#>!trK(0%xw&bft127O=x zi9=A|E9=&E?(3`=k9M50w0v^Si$l&9wa- z9#D3!A@}J_19d3S*dnCEOKx}?EmlTwg~O9;VsUDTOdhW#=Wc}_C>2kvdF6j}k!%y6 z=9K6iIk@Od74``F_^jVI8b`vj7gKh_|Zv%w4Zz!3Sk^`;S-ZJ9V z>#%>S!OWEOfB3Lf#?7rxnvN-e^d(?#t2DQ6&#{d*-ZPGUXjtu&PMC&Es;%f8p4 zUfWW7-&||uVMcu$zf_r&yGI%_b7-DaE+zgH(^Rhul`)7zx?vo`Pr*I5b|urhXW6S4s&4DM9*~vIV$VlFmUGVJ&ViXi9Y(oTT;tMpZ-MFDnG!2yxjGs`CmgQXr zwg<4b?|jT`0VKFR@A)P@6iES1c?LEJp=``Bt zG95{84?jwM=A^5UXJ4w=8m~F^b8Yvo$B+v$OQt6!eK_sc)rX-ACA|>?A&qUBbUI*u zmGhWVzqL%-5T6(GdXO$ZF3;UD*Z2Xgpu?H(HlA-({yLaI{IJug+*AtG2*G1sHU=0z zlav|~-sV7j&T(&XY4pd!m;vkl02*Mg;lX%@s3)r5qh9|+0Qe>m8>9&K?s)KvJ~=}e zj8s6Tx>SLl6Q8ljm;fZ=fmX$!W}~e&2$WaLoN;aAs}5k0gouFaE+BP+yKS)#K-=8q zkj1qOXJSYqMQ}U(R1uV0LsuGRT6ccGi`l(`>)r674Zpo(cZ}hJjW7FBuc zu~gpXX5023**MpI6KW;bYT(I8%<|NX2s^@{n zz%wbikK-9RUi}-^#2AP+Bd)(>G!(PEPX*TyAs`*?xOs(Z|`VXDOl3@f+PdX zPFaURC7&z4*Dm;ei(31b{nlf6^f9)PbZT~awX{* z)o03Dbkcft(rR(Vd**gO)yn|Bp=U|{Vc0N)@H-TuCZ%~slH`080-wcGEH7}+xwV+C zpY2Ca*QU+Gn4Hhc5$4wurDq`OL{X7OZ4Ee=@=n-}xsW=YRuHPS;J^t8=DUx!zb&qO zQmaWAp2ie&;a`ZCJKR#4$(S;5x%#-|&U~_w{~7KX33^bnqAg6+bYW0b+XfX*VZTnJ zJ%?YV(x|BfaTYN`d>6zr_sbq6J2Rf|YqRESM zzrnF_wTa*7N<1GS7>nN+XvjIFR_;^(t2IKyN|>R*M6!Qqd18WU1O}PleKGD(P}b!s zuZ%in$rJ*kOL*Ln8Vv*^&P{*n1-8Zg=p*q(a?sMIjt5emqUjYij7!&7VPwfve#uq&nMFYvC`!JWeFRJF ze?9q94n#mBh_k@rIp^2;&b}}is8?+klmDn@Mq_JvUm1c5i|l*}A83$55o=mV#f@QE z*5jfaEr@s4>vnBcyfs-P8F_G$V(92bH#9!1tYZtnohKo2I9GNYJ`y|nRNU0jjok89 zi|d6EQT9)nJg>$HuP~Dh7XhCBtYsV=xf14r~=sk5Nk{&-YzCuG@dAX>DD|D`o|W z{UUVO78%LbPUujJnK%-j(_XK)V5Zi)SCVxY@0dbu*^&k#WV#<%+*SM6{Tig->gv|V z&yD*qGM=LBBmn)d2`1u8jk;}dlhTHrNdD2?E8=F?Ukeb-v>YAPb@WI2BKavMovZb{ zb#SENU_a!0kWI~>w_-69u3_%}{84Y8{igJTmEWErGm9AwC`rG>fg9xfdDhV(eeYT$ z9N_uymL#6yK)*}dfZ8m9pdA(I3tCy9&Nq+!B-zpw7T9oo9%R&ex01`|8bp^{LNtI# zbu-P|(O&N6YAZb$pY#^dnkp)NWw$E~Ll3euPxX8hNvDOmbbv70)JTUer6kl!u$_lX z8`VB5g9d~e1`$p<+|Xirg?)$cVT7QB^qH#DFm|Tr16Ae&M<#Km>-9 zP6rdD;#0vqLYs={%0Lh@zpv$OQ{kH=R3?LDK(ly&E8EeAsmg#)QY~3(x`$(4|OxN$B_e+WAU!&Fx#;?h}cp`To zbzAGBRl-bs#vl<<-lCZZ`sZY`EM>HKx}YeVgB^uMSm6ZUS6VRf=YHn6llIH(>H9i* zj<;!~sR;fn>^*5Lq+6Gmx3WlWWBF1d zs$&^*oQb$omnikg4J656yhvpH<*eT|53VlD!>!Gu+w&h<$puxQE?kr;7Pu87l>s)&9$itd@SZ~lZ#%=Zje%1Os)Yi)^ zrU!oCoE52m&*ySX%h1&ucj&OrGxOdfQJMLZnGSR=HjsLQ+M~8j)D^$XMijfvNBS>_ zYfStW&o_3-9^0bA4*R|bpZO7l3ExlwLD3Nd0fmlU=h<+bOfI`nk_sx8yR;KL1~jh; z>$gZ$7gGFp3$7ucOzys~Upr%_?xz^6u!zV=C6mQ_UpFMKnOzCPB7q81Ok8eMToOqXDD)u`O4@BOFr@4zvJ0dqkcAJ6lL-?>{Y&&JKI zI&UA#Q|1q~c7B-Zi@yr`VdN@z7~S`ygsrkw#8?eB-i1VX2SkY{Bz= zR}TmPmHq_>SB<_dG(Td(ObdtXH>T1$R$1{|-D9bm8PfUYnDdATqVBB_Evqy))u*aS zTYE{&I=9vd^m)_j%x;nRtbPluh5QeuAYni-q}#nkSO=PVbX+t_lEJn2z)y|@>4p=tBi^WXQ_Y3 z<2)!-Q%LL^_8gvriJ*fi9907%nOV!vQPqZwFskh@=88z46I(Yq1dc~nxdA>LO3lsk z1MB%-_h-$5hy;NmvoG+1%-5pMQKPTB&CkSDRrZU!Afl6N;alfsIvFwPm!>tf*uH(4 zW}aOjz`&cDjaS=y8U0rHz^@tG@*O16j<=vzqTLnKvG6mwb_9%CH&;-7^paabf*_q{ z+G&WVt0<_SD&IAmo*X9MZENfpv)@#aTT6|D0B`)ZhlXgv+U}E@nd*V}Z|3qULG*lP z>X{Ay!(W88)mu^Of-lQ9aaooXgB#!U5Bw_0JWq7jrI9@{rc&BIehF+-Z-Kyh+aJMC z%vSNfLB$l&Lqcn2<>mq{_8bPZ$H4bx&~-5jEe>B_ojXAKCSfQHfsd6~yv^aOf|{^d z0mY`J#;$UWYCT(WkQ1IEQ}KKyTq0PPMP9<12Sqsv|BvT8pJItAbkP6S@$-7@cMUIc zwy`*C8Px!538~=^_||_9T6lSv~pgRp(MEYHT=a__z#$iY*K(1QLuyl#C30K^~qx96a5RAV)Nr`W;sy z4W+Iu($MM6A?K!4YuKfz8WK+y&ozo-{&`6hM$y24fvU%`1p#*Yl9=u9?~Y7g`czd$ z+(FAs48$v7O`QG447H*S9u2-g?X#9lzO`nz@OnZxtuiuZGpHyAeyyIReDO;2!hMh1 zdVD^GyHNdt@>s)VVs=@~LX;MB^Mc}#$6=lR z(Li^U!)SzKF``qf+5bFJreaV5j|&o_uikHyXu<7e+j?x+lM)VnCdplR*V+gOxAOnR z*IR{E8MR%bDu^f@D&0yd-3`)R(%s!%N_Te(NDD|eNOyO~qPrW}bNRmCxA(sf{)6S^ z5wPYnpE>V)jB$_g!N@E`NW*IprWb1z8M3gk{DFCG zw$;eeX;_ilW3|X2473L$Xf?8P^f|}Nk5a!;gTK!e^cam#$QpJ1n3*^@Q&2ZE5>E~X z;X7JOu71}jUF3SHjAMNu1jfSJDSt|#reWZUhhtC}B(-h;P`2Y<7u|IMpl^VO0^{;f z+g+%91dKfWe~htP{$FEkkn;rmtgggW-*?eYaKQoJ*k7jG;Hj$1@lE`B3;#i(USZ%o zkc8`O%PUWLK@Q|0m>eSmIuE1Jw!4*2>d}V|#}}vrE;+1~f`dl}(?vmG07pJZy$IsP z+zcY;>8KZCHb`^M26>WkW|;$yhoDS{2954l8T?B1Fs1|2KVmq6zePc5|Ivx z6a(fNEMBX4X{ zkmBZ~99(>Xi6v9Q0>Fl`9NxgCM=0}Jbr6PR<2d|iTe#-{^@ow0<7*H>1q=}XN1?D^ zAhma|vd=W}zflKKXvZWqI&Ck!zyvp={gxy$Ao0ZM;K8T`F0vqWh(p4eq^CRV<4VjVQzWQkMHt{ClVI;M8TnsOhDiga4+J0{8Qc!N$%#z_UHU!B%I*m+bqz0$ z$J0B}$%zan6pA-UA~VB7OlGlnJZk?Fop~28?R=_MW1)KXB*S(31v%o!EA*)Rf^Vheqc9|FmCjhQiI>e}o#z{jz;Q-1sn0K9%{> zV3F-l?wpK$_oNYb?cR}KaOSR)rCUYE;uv#Xb8NU-O?jWXqI=wOi?4cl62_SBfk{V&}Vh+F#q>aA%{M1&L+hS zc5Yf|CdPXQ1IIl(2*=T^D^RX7??~qLre~dWXnqXq0&m~%zJuQ4BX^4|W+OCw(&QSJ z|GSAK&>nESizG*V8YjXNEK?YL-nKIqaW*DhF84fDEE8{6di0wOlNQQ%pb_cgqrmC- zF{7)5B(ks8MHnG(rgR#Z?QrAsqbo99hyI`P!{KLMJHavEC9`H;VU*ON zZU77Sf*Dij=;(9cuAT*^HtS{nW1J|*2BSJ`4sb;Z_}Nwhgw2qJ6u*TCoFr*uDiOSxQW3(FAQm397LuQ9QG>gGry_yiWd>Ux z{{TBqXey^!AT~%VO&$uG$kt;3T`yD@MhECVkoI6Zw#dfIfF$X zBPG&UtMT`a-5Bs=OSC{c1Rfg2o4)frBjJ~%a-g{>(h6L%_){h+g*hLwEcP%CKa{BU5Mu)4pW}h=KJSqQ7cw&xLVPfF5PQ;Pf`<$GYv*&tfzfb9D#M06d3@_RNZ>n=(nF}4dde#DD5s>S9sLT~QEe={KE|9HK zA$(1@cU-?GX(z=zoO|%Mf6tt=Q<)po1ZfQQai82dUCp&$A>=DvxFQuAswv_}TZJRb zM1`PZoW3#+C@rlJ=c$NIq7@XQZskO6x0uXQ0NL$8=82^+U3W}d%4n>3HZCG^=Mj0< zl7UDMh1VAT8Mq1^f#lU)`^IbvsMQYe0Y{PH%YLs-k)e5ZdmB5>pm-NU`H9_;y?8P# zUNV`-GK23-W9d8m;WE*OkECwtTrck5k3N$qyX|A4yp%pI7onj{P9J z?!#0cG48)Fs{NahI>Kt?ng^U(yFZ(*L2G*c-ng3dhM&qTbK^1UjlK`Z3CoNo>Pj$y z4KMms>r)$FOmchzTBmUpUBhi%6mYj}vc$h>3$1Drglo5|q~)7QC^fE?2SyG=FY+u^Hp4VFQSVHc_Y;FMFy z&=7^quY%Hr2i%qZc2f8<+*UvSt!%1rRlN6ZZsH9vEE)#-BNHpDEg&+N816*)4O|Eb zK-^K4KD5>bfg3!7(O1?5(~FXE6X&kW-@C_@T>(A7*}$Z{S0Fe7xeuYP=K8U6*Zb8N z1crOeE=uKU8h$My{Z!LwKYnUlkn>HL0$pOb`>?90&LeAMWGpFw)#1SPFk?j3dvbj% zQ|b_8-btr^&0v|2!O>o?KkYnU4t~n(!SK#o*hCqd1ZqpuZX<>~Zqns**F(w6l!C^| z?I!92BOq&Co|_5g#e{71<${}lVOqE5x_Y}BSON`P{k?D;mYgBp9}OwDpsSQK7MI{L z7Z#d!Fd|~7b_N(dP_got=`c|=wKS$Pq=xX9jc&b015TU`bk~?W;6gY7Dnyst98w22 zK}j}_HsxO2b|VHI`dzm!+fIy5!Z6feQ*cg~n}m@b5rKIWd$l_qk(tkk0qJ|DVdVuzQa^g-ktQ&C-{tq=a93V#lIrZuN2It>yKH8P0ThBis{? ztV(lyaPb<`polKan9`p~_KyJh3q$>23QM*gBR0s1#)bgqi>>H;o-Wf)#k5Eb$30}< z{q``l(dM=Tl;QbOpY;0%sWNVV`2U9kxnrRIE9VV2J12qK> zL{rJ-|JWfyf0^GE#9wBkVfmU|nkKjF?dsF@^z(-`3Jx8;LjS4E!dq z9U>qNFrU@0uYepYLXWY_xV?n7avebk2zckY_~)DWnUJcI0v=7a?ZMp6U=ffGbo@{r z-XT0RVj-KNbc!BCv4LJaZM=o2|XYr&sHwSWt?G?uVlQXhd9^3xoR%r?ob@ zFPDj{uv`S?z$m>_t@C-}&>={i1c9q2PA_kcm7N%!Um{{EWj+bR>vC4qM zJ25XE8UhV{NN}%AS5clW@ zQH((#Yv{BPqc~Z0^Jf?SDj=8F4Phb2<_e90trp9XT|datVW6#Yf)z;AK4To+M9B|N zQk87b%8cv;le_mUm!1*{81Nr>jo*yogFd+{Q~lt?54x|6HaRhzYiRN8rHrKq`%C_- zf)3$D@6wGZE7sIw0YW}XKu_iI<#$)sb_{$+<^>`mAUR@^3XRm+#{`;&|42T-<8<{} z&;=qX48)#Q6L;pe?D4}$SvkGztoC{9bi>rPM&rjc=1PW7m!ALNIhTh+K@g?(S=E_) zAz^ZV?>2XxujSdGp-=zh{{Aszw2bSM_tjr6@rvS>b0J=19(obsVWni|!Xm|#SANfQ z#fWGM=^YqvbZhCC+MVoo0}~Tf>j;-tH?`I^5m`JlrL=1oiraiQ^2#N7Yu9u=!eKS| zMB&M@vX~T!Db0KP`{^04?E0z>Y^=x8)(qIe+B1@XIg?^tM_=0>~{1hPhNS=r}CMD7mO;x~*A zm1XF2F@$|ieZ)|^I8)RMtsU{Y;)I8;#0vXU?h`EIq3EK;|GM5Nk*l-11nimC4Pjp0gW(6(Xq?NhsScI%*?u zX8KkvWZ|+ssh{G@gM5iN5iC|p*fT^SVWP{MHnW&7WJKl#F5iD_3BjWEqMH;=7NNYu zK~@MIlJ?NT@_D9|5bQ^k+vUxW_Yngvdiw1HoflpBmxr^@7_C^fkG4pfA46bMeh~@$ zZi;FP`~F^dW5SlpR~4T%D2goT%Yy)K(pWTEa8+q1N-dwb5*_nf)feRO(I4t30#83T zIvZ&yy&OQ`@MKL2?xD-2N@pJ>Sb;9bn-EIRp$C&l8P03V>ucjZc1G)TqL6!~gs3R3 ztCcT4uVAdX9n)`j`la;S9sV2{1f%BkCyN_ox)b`n^z!E*9|ab)-S^woe< ziOiinLhVk)^8j2~N%IXyY$Z5aSYA~4b>lzLzxrC%5Jxgf>6Pu(m`vf@;Z>AxZ_tKv*Mxidk^ox+)`VrHEXWWR~gXXSUT4yzhp?E-;MCg zhd`VoEh~0GYc?@pMJn3+gBGPazW}iebYs9S)&1~(>2;gvU4Q-rOw~THF519AedK`y zKOEF*^FBi#tGj`AWBY~i0A_9@!9sYDpAMTfT?%WB;>sQy*y6Q#cw0LfNW7@#doUb^ zUS*_qTvZdk=->!N%NiC=WSVk&xe^ZK ztI_89B)<(LJ!e)F(qpndyQ1#74a}FZx0`#RLzi<(&3e>5x{<+iKroZug-O`ps-1sq zm)8&eBByr>+=dGf&NOE1p=9$t(;4nK=KBcs{EX=)eCi}TIz=Msq1b~nGM7&})DCNh zG~-r^+O?s#W+;&*ZlP66J>DEEe^5x7g!0y4d*x|Dqd%~Pf1xiaFOJhCBYY}#>S?ub zJ)p>|bKvUP4e6N4OgS`t5>YU0xmi`*{_r5kdJIusspHH`4D>mEawybiay>LCH`cXg zj(@OBjLfEH;B_&zMf%X}$$j`&)bx!PYFB7Z@w>OI_DaVyGPE<5AF`q{JuQs>Q2VVy z&Cj)O+TW|Fs;(hfyTEwg<$FV&LdGZ|4WFNmRvtP3Zdw0@Tc~keSXl1%ek^;64-O7K zw-Ew&kxR*H_8l`8A)zribD;jX+njL(X(ewDyF zF4xtTSS$`Snzb??_i&x<2imfjk2Viyhilw#UoF=am$~2W-F$|_6n8BU# zI@-h?s`Y|YF4tWa8&|SN5w)2k8JkBtg$Ih{_K~8*&#|T%+7UGu){5Rg1mM~&m6Ake zsai}<=dsUG7C8l~ozWn%a*RUOUdlbZSCHE$lTn5X>{4GC!s+JL{eD0y|8 ztEj%JFn%WVgZdbfsOf)iyVoYT9`x!1#s8*nZ@kci){N z)KzkIJ$GgyW^?sB`S~#zg<=1@6Ztm?Iz|dC|IVNWyHLN*9FfSFfz4+(z|y%N`1m?P z=hEO_y}C_bxy4_;9dRVZz{V2Y# z>iO5G@xxM2K*bi0_`1{j?#z`_e=WT#hoImhMNL-eP=K%g?eJ6N)=?%Jw~*HXpO zX|AKALc>0=)nj_Bf#3eDNrcJ{t@=CtUA zdJ>O~$+ZCIk8`M@u32@z_CuHU$;#8c_x85;-|go&Cel<9FpW}9R)*=iJ~qiScm>w^p%9kpoeA$md1#pUTU+Tp@E zZ2-NRz4bVlrH4kXiRYr{$_E3(##HEUH1P09gY-n6_sMw0WMvUApJ!aB^%Ov#AW_>0 zl~#n8bK_2}Xth@3V~e(wg0@*5R#CfN$A_6a9&?IWtGFY1Or~QyxW^b(*5|=FUcy>U%2n>esHh^9e1VHh;caD9B`qfoZ}y|Jc^e=5&As z@+F|273s%_9Z(y=O(;nVtd;11Z6909@par>x&ABYRRNsYPa0^KpswUl=j7_Gdk}Gw z>ENbc`}aH;ILNMg1pc;6J51trhFtYOLBK>?&BD!!br1{f1;dG*-W=8EntEH}9&^>{ zgnqD^0l-Hu3?!+Pq>os_R6%F1c<(EDAt!5KZe9C{IbPiV^wf44JhHP|@B3Q(5Luu9 z6uUJi;unqE*-PQ$q1C3#yy<0(>eZCFj(N&7J`^Oz1(SGfo{`em%@LO-NBg%d4y|9j zwtHV(b2)_hH~2zCBooF(`MPCI8i;Ff%Z(|94ih8G&51fPpLBpRq}SSCR^HmO4!!w; z^viYMYAp=hv1RSuf#a{6&$i8%$#%LH7xA8fI9TqL$cP9#U?DDztvQ2@g{7j9=jp}! z%Xr)!c=tz*Scj`#o3&qif;D+=)%xhfB*nS1X7PHPYK!{#?^aDeuf6k=f1;O3&x3np zUtM(7?dye3r~fVxeP`p;#pL#7?)@igR|)b%1zwNy)P;LNvEMv2v^rVuaKBe8KPi_D zUQxM6_($F~Eo zV5t*i)MCpYf|>=f-%#QQg^#rdF}v+wT}HfBLtfXMzd7=Po4#?|}I{}Aq{TiAdeeQj7GF6UiEPh3w0i_gi?r96|N38yo z1HwK~6hp6z)auHy(~`P|%pvzdqsxyC#|S7fllNz&ek$inW)@$KxMQ`XCO*%;e_nS2 z*$=G5uf(-FHoWG`=J%S?0Hk&=&H4s zgO9Pa^7CM7=XWmWf3pbk7X%@$1a7+J`GaMPb;ZWDn68eM4k01y+h(saC4sYFDl^&7&-wACm3Cp0Rjw9g1cxqUlD zi>_ipUhSrfig-iZh693LOUUYudL?>M67vdckeLQMMA^w=E z3NMLA6uNdI7uVf z+h0IEgNt!(z^S68AnJwY)vfFL{OM%UG$W%hyDCPRm%h0@dJgB6uzmVcbRdC7`<0-B z65Ml{%%Uin!iPOvC)=k=`$5G|8JWf1g-w{jbYUiL&tZ~h$?}^ktX=s--FD=wJr{|x z&F*(9I^Gkets}Wh41UGWOSE*5>YfbCsA)O9FwICQB@*)q*&K85OemS95Q%L=fPFf- zFm?D8q42DR(9XrkA0Gw|w3s58;Z@@iFFP~pN?J}xo4}7{l{Gw3#$CH2*7SSP&PS(h z51$QB3<^jCRpD62tzzWshZ8J)*VwV9K1h%9Gnb_dbP2~qUT>QaRzfU2W8xv_h+!C; z1w+!onY4(7--Y5_PI~@y=$I2YQmh-xganY1zyQ~sE(Qe0ME{h5khi$ZOz+lTje@J& zaPDmSAS8a=O-6kHsa3(~Qp4o>G0arowuY~Kyt+}*rOn0GH7V~aLYAD#N%v)Vl4E}R=*|z-<1%<+aQYzQ z23Yf|9lKdAa`G)tQm}IQeG56vqGEWfCQed zn{TFHRa}nvta@{+SQv zYTtc$W@Ky(jL?m57Ponvm-Rr0)i%PjagNUi>XZfy&~KVlNK#tTB{4^R3)yr`vkEO_ z^Dd+rqs-|;mq043tc)I4)X>%`VyGa?qGYImm7@KbG+r=Y9%|9(L7$5*6veDag0}xi zL(7*ywn#*hOAUV9@}&E`nwi^92&Q*gZ$4Clz7(n-iWHb!)WwZL zsGqe)m&UAGzTQPUu%CXtU%fD`Y>ecenWh1^+Mp?fW7Vsi$p+maLPM`-S>w7;ND16* zUkk>&^h|L=KOC2aQZI>N-!2>nTW76Zgc~>StD3NJxq0||yFxw(*l`rS@Q>?`=R^qG zLJByC%W>70%5sr4U{=Ykx4(gJ^H@ArDE1u-}4>^xl$=r;caSH-hjoFZr9c6 z3;y~w+vAR&BrU59)t?{oFnPHZHgRP#c@$)3m_&~Etj}!FVQ9j-bLbR zf6Oh~j~H{CIsIc_4tKLTmIGrFfwltwlF6Wn_1{rEz5%=BB8X82w29w-(O1?! z!Up6GuH!M zcJm`1d{j2Yu<57oMg2@mNgM=U&{PG9(b2#HZ$exv0>qb);oFxF&3Q3Je{bD~qdtE_ z|Hu^tn?fR2?g=-+k$_tX1AwH0Jk%3BAoLK zRohWWALxGW27v3TI#wvfs%fI6mrmUgOVs?v%5P=f@wk@ytN1?me=i`2$7g3ltv+Nu zAK0>YG_-k$t;Yeumbr;$v{Y{ua1=g;I8Gpqk|n1cDoF08jz_SLE4S{?av*x|sN)CBn;TwgLF3uhl%Dju=b!BHR z^HTEsi3X$eM04qf? zzm-mWB(i}~v=2Hm|nqeLmhSg?h?jDG|iLhMo*dQg;H8k{R zZCXPD2^^2ya82G1J>Fp;Fle0i5xvIpyr#A}95kThePiih^Vo-MD6bmhnQCsP&m8<% zyTi)}c5IrFLAIIrOB^vgrDDMrwk2uBPS@T+``M{qgHdh+U-@vywzApc*EhniCqD2( z3RwMn2Y8~F2Ub5F<55~%X|H)a5Lw~T1Y|``!`@0A)p>-aKzw0q2v_f3sK(Tr8D~vQ zbCxdiFTG~tQZOXKZw*RJDbM3X|50oy<=h(?5r6s+R8?v-HT?Vv(Ww6MED7f(y7pi@ z@`$%R1mD2~LMhcfY5>RhaWl_%-&%X3q?mzHb8RxjKf9B?ZN+PfO-8azw%XGPrAxX+ zX+fVN-@a$Fv4EXNX#tWF{DMfX`awFAFuho=+S6)QbA2}v#H&y<_$TSfe`vi*}ipo09BfpBQclZfJ{?)XePYSkl)(6UY)w+U@NR2;$a zJu5uBnw1^}Lj+;XyB#jOfSO&s3Aekw=%(P$5?m(-T%gE8AQ3+Q*pLm~z_dxA4g%$v zd%(E)US-n{3~l#QE4KHQslxVKDK2hhyHUtY5lEgf`&PefH5mE`ab08-Gw%Klq0RMzl`Xk4!8M_q5q@ z#U>zY*Co1U(T3lL4js`je3-;w#K-Vssd@tB{y}m|IFZ8V22U>rNtrv$ry$by7 za(#A0zq75iymXyfpIEkRsahu4T5nToTbkyNLFSU{lA8f@D3oi><%zR^Ap160o+Y8@ z;BzjP=zf_?d0!;#+X3=0J(w;!^aE@$1uGYtNl3$SgDI`xTs6YWrBJQIuEw=reI~;P zxH8*r$eG<&B#KJeam;#zLDO%xzT(YDsD@kf)_x;vo5FYry6jDI@wz4y1Z3<>(%nUnjA#1B(uQqYaSc8X$UFG-f%LY?=!6eNqAZexhIsF3w({)Pja2{0WR<&3Rc&c#QarTZyV3jJ7%PIK`2 z)W`r7>PcBCtYpsz>=(4?dKc5^{SO{+8Cth+MGo7L>OL=T`^w@SAk7oQde>rN8Sj%*zZ{z7qf;Ck`9#oglIIEtUoA_^n(D5W2YyZqQT`g#1#)C z0&;lwwBgpvhZoE}+jA4u87&-|wl}SjG*>@c7klYj+|$6zE3#!aID=2%p=&C&^bEk0 zYwo<7KXEcNVkbKk0Ry$-NDZBeoW|JYq{=#e26W?NLfYpJckdHjOp7$2~J~ ztmfYIfhN~-miQab`f5=r@>_xxZN2cExM7JCp|6g^GFEQXQk84>sJ{bHbMLlCz$tRs3y=7+7PNKH5J*L0~fa ztEST@+MOMjg@%pr9sk3I`|7c2+FHtROHcdSSWB$eP+&vD@)NB}ZAJ=46g}oUGh{G= zFsC3MErShumk^rkxIP>+nR{JKx$=hyuSRv+W@m~H72>I!KIwfkl&DMjw%-@QdqgLi!JOjBEPDcc6apdY2-!^K~&=0*@tgh z#~q*vfjUQHS#a(tz=!kfGIP3YmtMM}`P%IGOvhYIji!YYk4WM~FM8 zko)uI<58Oz7K3_qUp`a2Xy>-u^T6)2xC)Nr7Atan|JjZlDc$4ki{+8$URhgb?|GB- zM2Mw`OXM86z`kC7x)bY{N_;woFiIxK8#shF?4OT@N&tG1H;f|JQF_J#)rZ@6E~7=Q zpq^=w?ZcLAcP9!dLqo-fo|`K+sZT7odl-yi@8vxQoOjM%Vi4=F;d0ie&Tn1Ub@q@z zcO|+5>FwLP-rp%N*tD4DH2W=f!tT}ud|PkFUT3gtc3rKfC$>~Q|mck6q4$3z+ zyWzKx;GvHq3Hmc>z!1=%A)m6=ggx=R82PC+-^j)X6;=|_pkR&wiIv530Ea3uVmta< zSn2r1ixjOtjQK@%B}@iIh%=J!ToRoc(MT?uu#h3`xuKW*3uUR^O{J+r!S3d{DMhPFeUTHThu1n_PR1=cb`#{G9;aK+MUb&ls2T^Qt4iZq!-n3FV_^+mpg;&oX> zVX)Gu#Ltmt$jv(&KVoYN#Tyc^e>DPi(D$lgQU${Yx`-U3+WlaKPS`BIm>>I|xIy-g zufG3z{lFHVNJIR^g5hWXsjtx}2YHYHrs`HFY zN(ZfGYiMB?2LNekqMs>6+df9Ue~(*I!w0WY!-XuPjPaKI6#$nV z?CFHfRfzBp6i!5+S@pNCTOZmm0T`=)XgIYsSrJYm!GuT1i=LF?LneloUK}e^$aS%f zUPGAOD{qX*7!Xo4zB_Zd6St%|Ew8rCDYE^%?yv$4P^FPvir@>@2yQQ$d@jlBwEFTW zNx(9~gA)$ddRN@q4~@6s0fC;*E$;`+R36W`F;N&|iF%7@7NlKGwXgd>u&cczxE54snJ9>JYW% zva)%r9h6oT;h5E;;1@C(zevPvhK5N1dg`)n;6HPWuXC*v5IgYBGT%We!F6FX=V8@f z2q1{6f>~Se02I*a{&T8tq|hxZYY?pIYYHc?ZXdQX&L&#oElTwI%LDPhgNbbRT}=LZ zD7+<=E`2WJTV`z9B(OK>b1z3n!ylArdnc&24n8>P9om=8O64I!sZ*irouxONrh=(HxB&bz* zUXUe70B+PcCJnE2J;eX<+@_xow&YbG8#%cE>T5ct-@Wvj^kLk3w|a(fQ`Dm?XqO+3>U>_P(^!f+428kPt7#1B0&W|3n!frbDQaEwUKAc~!dAO4MzZS) zP`&JeIlo+ciR<{kh%2z>DqP9RcEC#|WHAeL#Yqnp%1WB5XV;hJbrNV>UFCX#J8c`T z^)|J&k8}AH+3WANcguF}{cO4Z;Ls4@h@2f-7!iHdt()V4mc8y+;u=^KszPtOW-43l zFt!=w$%QP!$PGl~h>hM9s;(+wtnpw&M{Y~!qp8n(OT+5}2?!)DGw{S%gPm2of;sH% zbnAJKf`~>)us##iED}snLCwskM`3KU zkeicMs@Al*3cup!mGPLPN=63jQ?$t#!&tYUcY|X|yV@d>k3HOdUD;F^&5UU^%P88d zSfIx9Un;RH=39MHXkKrV)%Blb7YlHNEUCe-r#e?@Dr{7=O(YgwW8dJIWds z%<}k8-c5D_nGvDTC$n;ZOG_&4vRgYYZ3YCEc0XB8Ty`UT>~fHVc`q<(^8!<>{c@q| z2vs%agmlb}>-ho#y%P2UN?-o^oud-m>qWXRF=RNO)anj=c0mvvDvw=%m9Xv;7i=OsxGiNfe}tz6kv|NnJ~n4A#qLtBV(2 zu$?Z%dC;(4=y{@zFT4^vhW33}O~>!7-f}qk7vw=4k4#b1*aNAG7AS(zwh!>ceCVrz zw)H@&Q;Z%R1mJd(=Z-Ty*Q9Ag?XrdzygL`ghyH_8Y0UOnsr^*2H*$W2uVH;c4y(JD zw67n$E~^HR4ISYag-4wC(=%7&*Fb*=0SPRxp`73hUTSJ8jE;jt)%N|^*w}FS)J-Qj z4}Z1V;X`Uh2G2decIOW3N-bmUCt7LdscAmzT8sO}+yLLhmj+1jdAR5Sbj^CiAXEdU zld}epJyoSni}kqDL3zD2>ID9i*v6;3ZxLvNf>3Y%wYjMT4I~hM;()y0;|{h>QMW|{ zveP;gIgFa7^0l7e+eEJ4PdVfUlSp97H+wQS>!Atz09jjoUUbt~R&r>KyK8aAZG+(O zWN#`}1z8tmgF*6Uck)WX6>~(@Prixxk6=~KVA6;LlyjwT4_Jsyie`k-k~k==S+J6z`>Zv!0l`#M%FVF3)2NLn@`xgK@6Jxqpo;CG zYw^DHJ|zvU0h>8P3M0Td=t14Rz8n}yuWe6Zz;tEAK*P%2MAUvZeDKULJRwg#7K=JX z67i?Yf?*E07XW^-TxA^vF$@jZR}eKnzz105(y5%mYhxHG=hXRlKtIet_RA z>&&$$EiqwfrooXQm_Srgs8W)+Je6_;Sg$%Gy>Eg!FI%oA5eJYWMH8?FvBKU;9yL%- zJJjAUKs#g-a|)(M)aFYj&s~)WZeP`-CcRfEt#z}E0gzivj4mc?PNwd$`uT>7-Xm9q zYVOixif8Cb1IA3ob_3s|kw%V{Wt>%sYP}gjNLN3Ri8T@ESZWmlBt;?NaJXngGcwFalZ-Y;731E8?aRHyhkkX&udg{?b z-Qh$Es+;@e5#(?%tCGclaOo1rZC=22p_g3j^sdfEDh`c(3+KOxjq_ zwoUHI6!FTgXMc!Khcy$(H&m1ccDUK9YyAQI*nI#arUJ*?1=8Z;rp<9QCZTo4ryDLx zCH{DDoREaUa-Mw*G^PrI2lXIj&A5>v(uaiF9pfe<05!U7PeC3oQDjhsZ08wZxjc&m zcyiCOQm;#b2hLvnJ$uyy8rcbIY4V}D4V@65!gIj-PB*RAlbW^hiHhjXiPf#)8vP61K3%Q2gXwY+s~3*O`00xNd3fjtkOZ0lzTgbvOeJ zzcWSkhslRxjV9djf zVZj7STzLLv#qx)!wKQo|0s34ytA}z;CYdDezVXI@u?p92Q*?(nn6d>lH?BA0fRi#k+neY@; zh#@Qmz)dSGCzI8bqTl&(a|y`a&GhExQ`bmcGgj`p>#F}jF0|goXoo`&%DO+%1Dkaq zn%KQ%z<>b}8QH1j2`YXv<~hek#$)^Q9p=@|pfQgiNBY(y*p|2Ox6Gj>KVi%h0jX2R z-#f;RAQ*qU7K)}UgNYi`39uK{qQ*LY$;#4MP?`GbOCYtJKX7@W>b^pQxW;DvYE#1K zLQ;4tiP-Pe2)}LU(B}3COMaVrThwuChoKsC+Mz=Fc;Vm=nuC@#7v<)o8?Kvn5`Ho| zMZkVkI#W!D!CYxFvN&<(?bM+Sbld74Q7D{OUQ=6)UcZz<3{?`lc z1o$qdMS^%#D25MmldN=%i~@kBhPQ9*kt(O8@Uvl+l;=CRagLhz*+uBNVc&~H(=p*g zXyp2F3X1#=g%Ayxtmb(;FDk+bgCh(JqHpi5u$GW+UcT2xF~#x zDH3hi@8)mv!p2Qe0tyBdc@>}V|GMe3#4)qt|IeLCE$YSo+2&Usg4N}$)1HRe*v@>) zj@6Luy~;f&(5IA7{@nFHz!qnWV@}qxVyK=Cvlps0nJnHvn0DVU5|}yzhw;mAeeyUx zk$QQ~bK~9ab5-Ta^e+m{L@a`TpY2X2J z3p!@#VJ>Un8s6O$6{3*Byc9Lo^u3g7P{}gl6Eo)}raYAdQesy_kIC{*VZQo%lnaxs z#szrNXKkVb{&n2ak5%`Fe-GcA-={2CI+}CLOgLCGiLg++vuqjo96}mb9<4@<#bWB9 z39;ZaBEj`~SO>h^M@(vh*cgJbXfFW#!gpeyhzLp;babU22$27VX><9n{;`ReP{I{T zuzf(qE)-Ip0c}oLDV?$-$MvSu{k=#9<^%>8rvfSbOBn2QJAHpWHNeKRF(u@#`S%J4 zD10c*7>s361n7@d8pWCK`vE|Hp5;kTPl6@YAu6%GG>8VsxWG~y(m!sZ2=owI6ee|E zfiG5&214(*6JP{E^Mh#U2+$Q}%!CwV2`Ln%gx`5LEvp?1Q&`HK*Wub+&v)D(HD z7Xq|E-4_*IA#d~HL(}W46YlHUCk0^0gC;!1I$f(CWq`%6* z8Y(1{_>S)r1G-A026H z(;-K2=*GZGkrTlh0O4@dxT16k(`(Z2sDRqCbz|ZsK}UOmC2IQ9A-?ZBQw%Ir7$f*x zEPJh!Q{hD$cn>GVofDWb;TYhQk7!P|9tH7|OKkP(`z*S2ffVmrCxx>V3$jr$H8*AV z5Y=Xp)?E@`kv7nM4s^YI@Id`4!?u@NNVh>YJT%PmW@G z-N1B1Hy^jvj!6vDb37 zfp}c!24MN$Kr|%%X#ub@7kVA+FjCRrU5tE|kyffxPYkphWH}0zWa9xLgk9IJVlQ65 zR*F|QMI$}(w)!lsP(QRXblFXF`s=@FH)da1@5_*IJe%)QOJDDOR?&8X*0;vJ6&nHMz_Kue%?T3uQ#`zJTb+_YBBs{@#4mM#XWee zNo?t|ki+(9I{@QHudTGXW zP~3|M#9+hM6o!ra)GGKhP7MKOGeBe-{K*9Rt{7q=`}{t?N-JcYlgs8x)X4C7fA01h zAcd1lm)bbgbRT6QA~4rNc2XG(TJAb2GuTwK^xR=}zYJX^7tjAce7$8@mC@Gyt%wK+ zNJ>jeOC#MON=TPNVkY|x#>nE1?iTOmQHEpomD#p}{b1@^t} zwdNXgjNkmkOZqT8Q;7SCS*1-TGk2ANP?yj2T$EV{=rSf?SKnN@9Z6rkIj9Ybe`@#bSi^hZK>j7$bYKWpp!w}|foYb3M%8xSO*jm0%+^;$S8`e9>kGZN z0x9MRPPilV!gZ~mA7@Btn`_?0h(E6dy9sk$FZ z=|yH=z07Zyu~n+#0%}t@@y|DSaM#GF$Jof6Kr_bffzg7+$^3G#7>`{FE?T z3o}$)WQ>mX+>^hFviv<=Q*O~W@e(uLcm8tyzFWuiqf}<4<~M&11?Z+rrhb>`}gge0ktknlGP#I7~60jt( z(LF@0JN1O8zQ6ma`riDyuBb=tN-&k&(^9NfVJ-5WvLb=|jPj0%1^vz!T0`;c$}h9! zk*zd*d=$x%Jz+nEDoQfl=t|Wnlj1dQRYfjUc`i-+_9ImOxapMQaSEeSXs1K}Yw3E} zvg=n)T8I3p&mD^=HA47~AMFs{oJu{1POo1|bs6VYoE3KNkc(Hv2iA6bgtL7vSi-l@ z$7Iwd(?`&C&~l8=4?Kw+g}Y(NHSGhe*99p zH20i_;2JZxT-+1v*sP$ACa--%_DR)WtgjFaFVF6zS_;(tp6v-tQh0Rhw9Buy11$Ge z_!!Da6{r4w)YLAAirw7sHOPH<+Gva`UF*h9rpH>xRZ~lTXn6Qj_DgfGCNmyMsxO zS}-D?)U|PGKB4Z$hw3Mjl~+Ig>1Ml^5j^d6_U`^26b%f!tM7yJ7FEaWg;OR(whWCcb0;n$CN-;Nq$^EP1{`uB_gb00x)3H{2U{x^|#x z=u#n&I&Q`o7j-wpN_p(5fY<{|+vAL1Q#Y-&?CK>B^xsg)oO{-ORcmS6rFB*MXxi39 z6OpQ8k~i1Roq|p%YszNjd`6TB|JlK2*?n~@;ihCM8K2E>q;}#Po%UpgpXCOxr4X$u z(l$T*n{Q)(&p3aR@Z#y4>Eb+c%1N74SS(_$`(kj8;BbWD{+3be#MMY0AK#4gZ~3bk`4p$Jx&Nyr%=z40GQBD%e3T-8nzq+Oo)x~? zJik}5p!ZZDhTL%FkJTBCA&J{m|4^+|+hL-fom!>-NAzDN&J5 zlZU^OWN@45)Vu3fPE&1t{gFo2JHFN!FW23PtgEjQb$8fWzoM6r-&rv0uCH46>AorP z-t^63Si9O{^eEw8klfJCSHZE_4+zg}@nv4u)Jjhu8mZ2@QLSfxj4vgd^|ilBLv6++ z`aaD;gi`(DOm(!%);Otu@^2KT;_afc-&HfZvElgj+#lQZ$Q;pFL%oujo!?Q~x`+L@ zhWZzV^M-%+rn`}rl=!u3Kl-{L!&)LZC0-;8zAs6mBafY4`}Y}4#GTp6srMzaY}Y@p zUvYT;yyoEu&hxFl&FWC*)V$np;7wo3R)AguJ%()5w_k`2IrLY=0a)2s=DMbBht&82 zlC2fd*X_jTi*CF*F?#%6rRrZ!!87s5qU%!PL7YJ`r6op!a#1?hvX|WiV#(bvR&(T(=d2p$gkO@J`w9ALCDb&VD;IJ=YrI(Ds{QYA=eLw)tM78Pjb68K4-ILb&%;pHeqyBJ^Fhe4&n*D!twY1Jjc`9q~z6mRL}Ne%D}&OTHu3&(%{e z;sALE@I12}n3o^N^KY5LA585GSX>uI9{}DT!Ou4+Ay;IzNO}@CNV{B%x3dD#BGUDn zRV>^I)uBBR%KR=pCD+kr;^S&iXK4UID^7yFt^e6@X%DzmdxT3S1{T^IYdMCVr!3nw zm=)yx`s)@6h(!MyY-N>ClJxzS5sS-6uSix{oj5SW%5-UI6xS(l2 zzTKHsew*VVtpm&XI{zj^Q2`~(d8u0vX4AN%8UF$G*PGYJwppSEiO|$o9*v>+>1i`r zy0W-WSt(#!4K;3f6wW48TJURceP0N~OQKcp`o&Zlkj+%TSsHck-L~Aq`OljQ(4zEw z@*8Obl6;*`X}50AAye{u1o`poLH7Ny5G@Ajp%K4{v`hACY8$l0Hy+$=JjmkM?e%Dk zHaZS8`q_7R-gou5X!i8ppP#q>y!2=~n_l7XM}6{jBJ#{GFxybkT2U6!)He| z{$;Z(^*T%3n@K%%*z&EhiF~(Jg0jh-Cp^Q0h^cW?eZjHC!9Kckew=9byzOHQ7dovZ zSC(7xWvtpC?TAUK9vYOOGNI=MR0VN;j=dZD3tFFe*5B>R_l|3c{#8bQTHW|Yc}Xkt zgmH9q*WLEKGCKTIQO~6OjdSPuq=Fw5sYP76k9brc9sRo)|Zx{ zcPBLCG@Af?q_Sa8`R(I( z*EzjX75wVo%(;f7xhm_g=)Tvn6N2x4Sj1H}d$mm$m!+~#LN8}(hooyYj3`XG0n+=s zQlVfkOpajw4i&}ib#{<}fPyfM1F7~T0?x=$+*aXnb9nEUue!5z7l_8Eg*=bqrTdv6M`oPe7p9HFpR4ie;wJ_X(9X zlQ!5b{Idx4)t^9s^4nCGA$`1xdm+uWzQi#u&?urP9GUK8s#a5;Eexe+! ziumqwtP#spdB%{*8dHiU^~IbyFkpCqIhXSy!2j-^(()OKn;@?yftblJ9=e zjq1&QdB$Zr7rw4{<3&%R?zZotX>YLgyS6A#FJ*V%yovo$h5F&{HK*R;r`2Ml(z5F2 z?Bsn>qlDoc9c1mX*>5sfswL$|`@#14O)V5I%{6m#L3on%;5k;r`BdXOb_FRE{Wn#W zDX(I?Sq?VjCpcIx^%UE<%%!bqYGmEFynHLe^O(aH!_pAKBIa;wjai+B2WMdq~_}GcDduX{+BLv zJLuRnBQ>yK%JH~8DCf+O!*V;H_CHoq+xq*bHSQ6_YUd~Z>TJDjZZppv19Fr#6ZC9M zbGh+f*HZpOqsazux=Y9vag^D&=u*vDW?sm);gdcN&d3lW8L(7A_jDkoc`Pl7=C6F@ zVqQ7w^1_4=w4HCa40UM#scY|1_le@$f}}Gkaw1dMC+h7zLf#nauO*~4oc&0J4IE@~ z=u>N4myS*}M4*2qH1e~FgOuApLpVB3uCCaT=<`y7zJVGtNL+esxfppJ3D9U& zR9@`-RHP4b*Li}mIzumv%?(n$;Owdl7rmS#Ul9&~qT_a@636Aw8{)wxt*jg23p);% zn@xA4SNS4OjV{;yQX9|-T>D2udNl5Z_l`ZSzM5aCYVUczG;UWP9m7BQpj6&# zciyh|XsZ^y8K84m8_d1nSBxChgdhAk$*jqF!TgqRE|qXL`9&!X#D_o{qRnD~8evHD z4gbbH6C2FOY58ygdDM}#SvKy-r2%nG;@^r&mQ0xh7@p_HAS73t98p7)0{3-c25lrs zZ_+=DC<$~3Q*Ez60+qp#37qiIGlff9`0PbscS1><@Vu^cvkDR1g^j%T2+aZs>mGT* zu50wdIf#FoYX07h2e2MH6EUN%h=&T*{d%xsQ@Mo_Bo20!-sb)~Ur*K?8 zO^PYz6pXYiUUv0$NHV-6G`6C<>A%$0ly??X26-o<$(0?&z?>Y`^~&VGu3Fzp#67yd zvmODOgBgetChJ`GhfUP@`S~+9tweO+?*hm9km3ww?KvvjbIb znMHx*-`C{vu`FFvsA*+BeB*xK8njYEtc@$x|52oSFERctHQ^!_k$6C1#?L@Je^P(y z*QSrm^5&q4_ZK))H@cRu*xt{nnMl;VQZqpYiGg8rT2pNU-Ox)6ye7_-A)AzBtvGbq zl(8pK3#GU#$I8~+cupdfRCsc`d=FGpO0>{9c|+t|+eHnTAj2gaWy)wI%Ycs}t?u|l zuOs;QDsS)=8aNrP%CaBfwspA5HV>PBRrz^rBH}KOWf|5xp2d5eBe?rPkq-h7vS4KP z5`=B+-;!8Nm@w^e!JY|<*dt9H#0x?Uv@*1;@>dMq5K&3v+8EUgQa$IKy7Q)|y)IqZ zsla8iBJ`H;j(`18!#2`i=3o_7dT}xa;}82hJTdNnnMm0#SSRaAgtZhzpypv}iG#9i zd;c19syw=@rU@^V6*EasGSt{XF6#<%)H5cO&$1{)5W|aES!hT^$EY!7OQJaeGx z=9$qGon@o^rb9D28cS}-Xrb7vq8hoADe&&Q`(R@Ef}R?M2I1nl8 z52oI#GioU6tKjZ(I#v457wCxsX(@SgXn4MaG~M`0{1WfK{JvgF(bTyf8bB-)V4@#E zB?qp=^*1C%6y@9?bd4I<0ksL$g#M|(uC!STHd7EyI8_D{erjU+OIZubU`^=IYTea)OX?;}3Uv7-XoQz$b8a3(7(T_9qF8gd3E5zQt zBa8@Rdx#W@aKbIU7PGh+gqJwNDeKJR%d7>d$}n8?@c4zPDF|?Bnx~0q&IO*J zA+55=L2jeCKzHx{VJt{*H+&9nQ+?~v`%3al@G>Q>$}nN?G@Bu&I>Da$7kF_GW0 z)y!)`f>3cm&(uL7l>O;RQxo&3J=l67PyX|i;{aiz>7#`&Ps779Omguf?iiu{3=+Ky zea4$^Z+sqE@H#klH_wGP)=q1WZL>q@6yYIHLuC70UiW~r+0&R5gfT^)}?q4(ihqNU#_*^QdgMs%hxr!`LR_q_P+ zS;+74a`BH>IG2dX)c(mWxZ+kXzE?ob>JXkK4I0>;lz03yF#41{^rs8|*H{lf0)E9$ zIvBo(kyD%CMOyDUwLY)Rm#zDk=ITrG_7W~WG8Eq}o$j7Qlt74!a=-5*Kzf{B2yQJo zOlkiZZm9Rhc{bK?Zug6lfWBJgb0WbdoB^PP)&I+1!bJfyyEiYiO=?;a#U1BUWI({u z4NsF!a1*tazojin|C9e>d#&*SG`cfQy|66Z>Nz2>E<3a@$eXm1r%vRm$xy_~I~~ax zszQ{Qd>AVccjBktM8JXTvl*gJQrp#Q8XA*b3OSwbtQL*b4+Lk9qx6}qQ_jW-tnSNj zU$1vE%6p)m#-k~AvBjGA<7z1VZbgnIr{;Ba^%`G~kdx4N1Obcch=GLl2Pyj2J88Cz z$IS`~sRDtx)%P6U9Zho%xNJYM5eUEo?E|WjkhDJuC4ykG1D+5yjhoubXN+!RHr8Kk zST5EyEH;J4l7+ur?2q`bcp)dQ&m(bb5$Ww9G8o9o$uZr2JN10M=={(2r5GI@9r@@| zEqn30yV#fw-xZ(Pj-v|~m#ZaLHWS!e$F*8i=C5-}Z(VG+y}WsExhU+YjhFxDJd#cG z(9~^jGo5SLh7anP5t~>aF~7zZ5XzgqWSqrys7fjt1*w$JasDP>DZMR*m@==#SDz>gLU|vMEpPi{!x979 z5+2j#Zu_NMT(;Y;kMHq4cdu0-eFunv@BZQj=ZVe?P2<}bMkig`o)Eb10~9q9aB~Gr zhkgq8lP&%aD~}Ex<&NL^Zumn-@hKQ-jReQ)?O((M+ zvviDyTTe5Tlzp0@*ReRa6QOY2to$!$5nYx z{QX3}Rz>s@1by5$^=<1#iOwP%>b?)Z=4eyIks&DZi=>+%lmPwZr27Sxk7{A}IFOWr~ zL6v?}>ejb!598wE*gG3{U!)^p41mp|R2u5_5FnrLs%ye%t!ukH!^UemN(du2pg7or zH^OSG(PfC6cxdY7Te=y&qW1p&{_LZ!{Zrc=u#}}=9;E*vKq8IG%F50!W-mpzeUIvd zJAfqxk98iYB(buxLWbJm=i|$R$2Iezti4A4{{*s+a^hBd_hmhWIUbS^3{7@uDF^_@ z&TEWM7+h$O_=X+~$RYLR8Vljw?egR-mmL=mNWY~zT^QyHBTbPIIHyJoJLU@dc97OX zC%0g9*FP9USO_LT%sy2+4B;T)U(5p6@D~wjiwz}{-%NYvIy$tFo)ExP@Ir^~cS6Ag zoaIiNi&u!cGq+B$R!rBP_iA{7g%a8ZyDh;6S&BxXZcU8_xiyQ571CGvD+sQD7FjG0 z?E=VN#z0he*%k+-S%&6azWjHMXEKE9-_?^I0rb-vQOM*jdlY%M-y8!Y&mnm-YM@X~ z{9*41!HIIJm95xa0dE1Pc~m4k>%NkSu$Wly)^wfMTp;m%HY*aj*;L2>p>?i}{;Ham zul>b4P5kKlB`CFEK;~Ud&DY^Jjvir8__^oZY-N{VD>{4;h+FCF zrRy7H-#>IZM~Ica*a8C^EcTx|#f+m{huTNdB(jh#GSyqp^C%Nr&l%DejhhzQ9TD`d z;+IL(AqA8}URNUKA$(srTlbX6AX%Pr~sDf$+ z_UoF?>L|PV8jfbVfBj-I`m+~*vhzmVXLLc3ima&&uMciJg-4v@FT$y0s2@TNI1wt{ zu3}w#bwM_II!kf(6em4@?_3`{FP8tT6aiADWkh>%p=bt$WjL=l0X|T{fn(#~m*ulps zpwvbvmwB`O3q>M&J^n+iDP0mAA}!M@1lbP)E&ue+L3Ib=|E#*QSK4cejZv8bUoQH3 z5h@W%QQ?O+464x>0|9Akz*-+D*R)UDfgD&x^~sbQwGl9 zHy(y%{z2dC8Cm@A*8(A6i&l6ym-qkA3%|v9Pgs(~jy_MC4LH$r(doA2$jx z>j>xK=ZA#S)WAtECzgG~Z>>AN$8&B*wPP*`Q&^Kq-Oj~`5zo<2JbAoGdp?LlaPhA? z;LOd#k5Ft|0q6zX&C)nSDNDPR;-L;Ys%EbJq{Kg1{-yZ|FGV_B4j>c`s$xyjwWu!` z^V4DZn`Zg!M(2MNAX<4+{6owhR}~=wg4RK3;DRiKF^Jm_uS=q0GybGX6Qi_>MtaPo zb?nB$y22qQ(8edcFCuCHy#RA+85M+2T4EmDs(B~Cfp*+YrRcP2p7Lh}I(+#{>K;C{ zSEcafQ6K{xma!8ro-m&jLQB-K@XP02?E)PtD25)jq2#SzgC*m-#*J$`E4P$)m#;~0 zP=4pub~#=n$Uz43k_cSgo3~yZlK{x!;rd#(OSY(yB@3d=y9FBr`V&3T2Y`eb8zpK}teld~0Yvp%n1<#A(C2Mi@>&s)ROEaqh?x=Y?s${`vht{2^Lm>** zlz)@R`ITeRCB45Mr3`Xd;RfJADsALYIA*~&X30J2^T@>AeD^PO>IyM~Xh`F;jeun5 zjTz4G{Ar1dwoI_>3i0CUL+Uf;gYeYfV&Ar5_YNAy5v@zhqxum`Xix#E$wqq^RYfCSOOiAnIG44^Jikc8CzYnjVxBts#T!^2 zL?vs^8@QDH1{JHaeBlc1dwJ_eIT1*P?Kow;vukCqX^Tmpagdark@WVKrAb9c`ytAf zw`+HJHcL`PG^8nF{F3Ft9qa9e7F^`6q%`kV2=S$ByoZ!qpV51)WS>zS% zmwrMDan$+xiXaxq0BuP8tl0BW!0&u7gNyl9C6Y%Y(wMUV(wP7o2xX?^!2R^QTAc5C zJ+3R?%%(Cj=h&y;V@Yl1dRl0A5~D^2zAJnuoF__Aq~F(|b+Y_u6XD}q{HW~^+HXg{ zL|5|JTWWr*->g_s^ltnFN+&KTwX|1B4Vtm(_N*(^w}EU`Z0U01x%>J!+4G*6sp)I+ zV}Ehu%Rd(q-%q{9>So#q9*Z;s_SVVplYscmr`uOb+AYJPQu5|+;LQpOMKE*&K7o%Q zu=j2H|Ex{FkrAN0@jIDJwC`)KkD!-oC{*Yujkax zSq+qLEu>)###Iei2n;|E=g>n6S;a|A#U|n-sV^aT3ohl@Yy~D%Y+;G$yFd~8gcV3t zU){N1#&_FxH~dtsCCjqoC=U|I&;;_Q69g;Dj$-VJm91@pJSh6?=PEnk2kj@q$ca7e zK9nXilpuM9N;nANV(usE6C_y^FjkC15&pGLER4qpC!26pffwQ zqq5}5@8$NQlIlYNKGEa@`&cf%>kr=xkqHZ<1FVUURU-B-t*PDzToBgtvBIfn6+pd| ziM#uiNhV>6Ui)#DnjioGY+CpVyWKq|XH zZ37eQn1=clF}gYPA7APsuDHj)4@sTUvv^6tE8l<%o7#U6SE&e!?qoUNPTeC`o3x&OORGzM6&Ww8@ao23CE$QWX`lXBS9I@{!panbc{FL;) zJn~DoyWdS0AyO(A>arB8?Y!M^WU6}`Sv`#v4Y?WEROt0Jp*Cz}fU`ezY5$9hi;iLc zlh6CY!@kw=&%>FE4z!bK&AjohF~7iG^31IK(E*fw2(D&#dYZH%vKUxu1^y5 zFIr2lw;tV^ytUI3T%VWG#eMW=2UY#88yxm|6L-3?sU{=9to_z4{&F{yK)|qntyssQ zmql>o zh(1r6HhD3_MG=FFUW`DWZkK<#8hzJlaYvRwIxJU<=vSk3K= zI^nss`9^MkgM!oAb^|cqKEIYBo5R!PnJ-ugsjGu$&C_?YJXHF+TFx&$h+PST7tq69fR5Jr0SS&F=E> zt8IPfjiy2rXl2RrEA%ye+eS7uKG29HlML%ga=+o9$#Hx7wno*ENs@4+En~%Iue|5d z_;{PZx@`|WgDLk_Ak4Up{q62|H{+R;uDQRYl0ENwR|lN%)q`FAkxi$kRNqP1Mr}Xw zS}1%^E|WYm6cq#T4|6u}%!}#XG@ZWN?7Zy;NIw?6fOoa=_Wb`3Br+}feqT1j`bb!g zQ4RkV>u=GL^zhHKf}i;SdUaYkZ|J)co4NA6p}y#qNb=Uwc7v~J_tsLunF-y|-n&yf zo};}Bx{2P3Vt0<&u9Q`NOY)j{BY8i95(^43p9KDfRV9IN>HEn`+n0Z~YtHw&y^iPJ zyxLT7659=Vyn~2%QMg}|>Ty^RUL=rQ)y>A=d(3FwBXCa}01e@>lo3Fdj$&Wg*xI=I zUxxI7+f}2d0+cy>Y7D+t=s5y5J9VRQg)x?j4_)7_v~lk+QWL%mE|-F`Gw=x1B!OM6QjxzL|E;ZXr#!yR$I7f zsPoX>qJr^1q|1GlF}uF5+nc|#CKp5?;H|hy8S-Vqb8d^cW5RI+N!_$1_WsktfB&8t z)9b!zl9dPIr)S$fL?0jZw|g~2^OIp4`s}v#uD~4u>7P?$i5;)7C8oOg^#CZ0Vl9w8 z6ma}`1&L&o&l#$}yx11E;!4F<8l7lGDi8LV`=i36CE=UxeN!=yD?97JG6A-8^S6kNX6({cWCLsxa4$~c4Jc+f_jdcsw z@diDSHp0pNKUdX>!1;q$t~kLR6uR(0z_)WQ5k&X)Nt}1i04=2dV*SnYqdcz6?$!}( z16K73Hr8dVl+O-r&>o9l9O^VL!jsuA(_}zXtG{fYw(XtlZLqF;zWP50h%jQ-*?2K! zwUXoiy)ObK9((@}^}T5jk3@YVf%p-A=L_SNJrBh8qQdF6FOFu@Nv_>RIwEfvj0wxx zASY8qh@CQBo`_#s{kdqmJo<8&C4e#7;Z8z#lkZK5m{U?VF?Y&455|bzk>~nfwXJT! z;1agsR0010Hn6Oz%UdJWdACH?3;o(NuE@%-=6VK|Mv2ZXOS2b!Ib3{!5^bmpX=D zF3;9G^nO@JCx*5m;l4d*Z#-wQ2`HYFj_dMz_5BtW9&0pM?&CM7Vp-j=HtEj49x`$3PdR_-Q*h|lqWf%uw>F$2J!|5-2HWuLP zV$#Y;gX2vUDRlj@&8YeEfw=i8*CC}9uCH&&pT%{{afn(Q+(q`T$1_`seu!Z+>Z>;v zP29_N{VLCC$caHq(%XKA*reQ-LV9BSq`v6L-jDys$07jrhhLpEo!*SG?wBpksoPky zwezd2e+j(0epfhz- z17Dn}d*o-#ovD@J_Ewse*T(R`a^3b|GLHBqF7#^V3d1+wP(IsVTi3zvzBx*<{>iJm zJ+J%G#Ec@vMZcJp+Xi`R8R_Y2rS@1&Y)$-Mg9bZ0y~lwzo)znnWnG$Y9mTX>vwczV z(sjU+4IW5ArOp4z^T@U!{m}C_U-|DZPX-vZ??nI~VXm-u(YW?OiGh4xfNILNH@$;v zie25h;bXH#q3|Gr!2?swbYjdT`;;@`qBiR;V0VPFMRO6B2K~q+-nK88Lwx~neWj7e zzqu=6#EM@>rOjtF#!_xH2n!T+cxBoeiW*)lx4QQ!IL`fyPCuu2@H?AKOiB4N z$*8c7!pH_6Q*vhb_-FEw^JGSp()zD_CS}F-bxbZ@l-Y9BjiA{4o#}vpraNmb&*?nQfn6JS}^L?HiG=NQEL$h6&Zqm!I8uey9Du z%{t`e`uav9KM72aT7Y>iiRnOJ`b_d!#@5ecy!eWg>c=t3s8PSZAx>NJxB&=+D}xtG z&!xpl%8{L5SPB2kLR(9lwDYNcP3D)zIks6J_hR*r|V$4h$Z=1KMv*|DtNr7@txo=ZdyE~R;9YqLQyqD$vaurAn&Q8=hz60I63k9GtzXb{k^wWjft=tq~{aBzA+-v|1V`iUG5GO~KFGe*y&GQv;F^WkzfG${bG-swS8nw;lX)jl@r94!T znecJz7>-cgIMvwWKRULXKRdcVIyF8sh}!+C)0e7dX64rX7TB2e3;C2+M1_{f4`Ys_ z9h&+xqB|JkcW<6cO@|DTJ*NR@t!^A{lyTnN-s8US@BstL+PK9GeIT~BFqO%9-OT$w z?`Vj<@L$Vlvi#Ow35sEOoL%N~t@W$wNnQLn>2fmg?FkBL=ggtyhPDEtt?9+~UBKB$ zNoiXsYl4xkIj^^6T<+OF8=qbs<*wQ2KpBW;*h`+BsT{Kqd2 zLsPENse~bdIQr%qP-1lLTsFlP6{XV7HT?>pXB0J|I)&?}_ z*ZCNKCJx2M4He6DMV_^T&cGTM5g>u~8vUzgpSJ3H*=At1VKBWvivriPu?SASz)(#| zb#q0f=6*$Ri+sJ-*B7lul&_T%F^a9PmS3A~)b&oF#I9!-ugKjFgOJ&G^~nEadG_wP z9SmZ+VSwzh|ChD}HiV32HG9t#Og6Qo(&Z#=TiLo59dBjchCjD1tz7IG1gegaoek`W zsw@F$W*rp}^xINgaATIcRd-{@b6g(N3uCS}TBo0`mQS*!gX#V#P2U3r>UdpsS=C>| z6Uqg#JVeSxI;bWA#Y~-Qin{3~6Og`xSqFgAw=6iUb!txJHMp*xxpl0FW8SX`<@&do z3|{aQG#fsJEZXL*KN9!qrd9Ydd`u|bI0o&mU9IIB4M3+1sY$;7N)^d-;k%*v zo}`x?RG#TwU4+PT{uYc7*{oDc3MEE|RK-#@u{iyS)7Dre&NIXvaa3$eH<%~pPnrrQ zYNON*VE1w5Mx%7Qnzpp zYJa~n2$O2Kh4!(9dRu@+xG(#-3HoY?dTM1pGp}+g^{c$PwD?Yqj$_2Z=)6i&Qov0I zxedNJNwcw*mCbY-#JapzzL>XdHD*>{_NCG z{Y&yi1c^UkKCfF3l_;F<8Fi_Dka6gt6Oy9znAZ)^A z#UJ;585XeA=DI_Te=I38{X1%rhvNr#>t!q`?m9ypoBG8>lV*HT0}(PSBGS>3i^syR zKA3tJHQrJ+2UQ1xi&L&+`ulP&g`$l2lRT_oa;*H0o&-M+K%GiWPoVFi-|=PRkJZZ4 zYMQZ478E4(*Bslz;M9>n)tjDp%mZ%zIyM5L&%}<0+QtR$WvbghXB(x2fo`Z@LYxUW z&@oV%N>ORytH4hUw%dWHTraiQ{D!LSI6hh4Ku5)Y&4e#t*lLmKMW{;~M(vQF%iYPH z%MC8Q;x3XT3iT>s-L?DK_UX)wzkTVI4UWnAx6Q_kF*(9Ot>@QQo1Y$2YTZ5TZ|y4| z$+nN@{z0~ODAxgRGqSdHdAB&WtodbP(D7OJjQ|~f4?sE5xwruqiQd5xklJ4Ji(eZKj_Y2(7u8H;xLruga%|nAWbCEF-5LHUQthaXFGl6X)IX!(>dx zZl$YcA5EK01W`7{v>)XLrzlGY=H{XiXY)HUjVpOBgH7*Z%Y58u1Gzy z_?RFU=e<8v98Om#8#Aa^I2(@YORq96F;v8wi+}H)X?=G=0XM-lYdenCo3!Q_hD}x< z2qK7O(NO^cslHTkp{91y-*a}nPo=0@fudIXI$K_TkW{HE`w?{05#WrY&ySmp=HU;X z2ONMko4AfkPjV09FlF4Pac)tPx7n7GJQ35r73-CujSEeYQ|&zLrXHWIa+@AVC9{Yc zaz4qc=G97SVEYvA@6IgSs{!F1nR_-zyLaDG?|&gJeNM@b*@cv42B!ryC^m-G`L*CYuMgsiAA~;Bq7Wz@2|*4 zd+o^t0-Y+Eo|K8lMl$OX*=^(LQ(bkech@Fq9{LRUlXxbz`q4Y+oVNbH$ku*}(6SC4j2 z)(UN}*&OX1={LDdZY@ned$w#i<16ta)ceG{Bz+uav!!Z>L)g;Cjbf#%p`NnOa%-vS zw0(NY+3}Y}O?;Khvi(SdPlI6Ph)+vMBPV=}$?!2Qi%h?;tC=gyH0Fl>hvB5<3bN#_ zNDzS?cen3TL{}mUXoOVtp97Wx1EeDP2+t+JAp>v15G#&5uBkUo5Lvg$pyY5%O5Qm1 z&321me#2AMK{us2Xl-e4hGA1rZlu7L!zSJG&S;y;*E%F!QComFsSN|wjUR^h!Hp1W z8H-+*wul+_#=+X}Rq5%F{yA>GsQ^6t-I;ZU+{!(d6{RAJ!P~%GVfy4skAcbj?((dY zHbdvv>RE=}hSncIj8)J-h5>rd=5#pQXtWjm= zPUw%MsZSd!qx$>Y>7yfQ+dqE41K&;f(%3McThKT0Nc7()_k@dRDvY$$V6;bpYRIdby^O~1!&#BiV4qPiCH&%BM5n(!0kH*#>ICyZl7j+ zSUm$m33$D|e%1(X)mq>3Xt3tLT&Xhp;%v4W!Pa3&Y>4Y*-q`F`7fO=d2_d&=eh6lwAQ}^hf2w+HPiVwhLdeC?IjLn27qwnCuV0#GoLV zpBQp;&VEGy)2$B8u_Y4OPz@ z1R9OYja59Z4F-j7-Ux{Luo{RQSTK7EQ!bB;bj;f@^*E}X^g2~q5n^8XUm-x2Lj7s( z_`GGP>d{ z*_F~-Oms5C4b&OOYp$B@H)+9M5`As85#ca=W7F0sS9mz(W#OG64sv^WF_8Lsgxu_5 zBj6Gz6dmI+lm|@4bQL_Hi=8ZP0OCPCESBZe{mKMsEpZ)@i#4~O(w;}oMS`1V3l9;@ zC1|@ztEf5G{^IVRbcYETnzo@!we9Pfwc=o*4?MMg1d)2PFX0k$NJ8*77fgC0Ubcl{ zj5W9Up0vA5gH=YQLKI7L?q5Xej?KQ@W@T#qs6a>Ig~~lB;(&;-esKieMQ82-zGT^P`K$CVeQUCjF@y9x(rzbOr>G$EzT`w#r7SE z6y_L8QM)a;sL)D>u^(){HAX~MRW4`i?zf=h@M#N;DPO8Rn3yz1%YK^^e^^g=JUd&Z zO!{_Ucke4gNqQaoYOE!!AHK_*e*iX~bDTqb8-up_t~9BQ@)sx}7LX%zZ(|btpRMAD zzRY+iLy_?H9>D!nt`(jc4<23JgIE{LPSV$YQuWsl!#1kFymlY|9=Rhuv_legouK$B z#9J9oD-ond&J>degEn*o+HTOlW|Ar&e9kv@MK&(-8I`o#SZkvyl}^#H0QAR*(Y2Dq z_=N502vOA4nfMokZiShT7UjH1g@Jg?1-sB!4Gy5TeOjpFlwTS{Q?h#IZpRo$F5*%P zZV(_Q*bFVOMx@f)+I(_@l+E#+Mk4U%rv0sfp;0zvx5O9^%pMD%+ECS7_vuppd$3ke zO*&?n@%(+T3rnz>dp{zDnuT7W+N9M{uH*2!u5{a;^lO#Kk%e--g1nyOin_Gus?F<2 zvjVWz<>fskJAoTuFt!Cs1EtkLc`-#U8^RT&&mWt1Ooj+%HcHUrL z)CmYkz(j+@)cmIr^ibawa0}xgII$ zO3G0^o)@iht9PRV8{s1HH3EGPRpD=++f^F7`rm50d))0GzLKWhS}ICNczAf1IT`0h zWtNjj()s?Dg7C>ILbW!U=DkU3wRQA8GNnh`E8afWC2>(rDk4RulY_PReNOU6bdJz^ zn4f;EO*dpPsvzkdyRA8^^Ub_o-*!Uo#igsv{(gm=zYb2T^dF(Gt}-p3^>;*2m|$4M z|Hsr@09Cn#ZNn;pQUcN`At4>oAks*ufOI2l8YH9?X#oZ4lG?zgyFt1H#4X)yYSXpp z_!j4V|L^-}&dkx7GiUbmJnLTfbziZT`}44!vpBVhqpN^}tJIRh+t2sWCxXgJejU+f z7uIv;GPLX0j;sgyEX*K8GS&&OSiNWheI^M?wjcC~K~@Aa2I;lx>u zk_&jd=~cJvJIJ*K`*fUi>PF=HXLyKxX2H2wt@t6XdE?4nJEdpMR^a@Sf8IQhr zj+ewtgG})$L+bOi#G@31yA4--;_fq@ogc2Xzg{EBpomx;du_WX?`Q*e&UV&etx}Ee zKR$ebr6Jy@&?={{(MKszsNlBY>B*~1Ph`ohYn5$?n6-@8mdRlze)snvWA6;>GwtIJ zJ38HTl`iw~+%c^`;C=L@4k{O)_kaVlM3zM|2Af~FRCZI?-NPcLR6#AMJ|gPV;n4g} z%Ywy8Giv$`GMY5tw}Y=vbZg=(nf{aF=M7Z!XQ0`+U4zab9SK%!(X>0Wv5NDIWt8P*gTpI zTv}I2-3%X^iR&R(pP(+72AHISS#<`j{7}brHWFP26*L-egbM1|q7z+C3FF#<;FSxU)BiAH zZ?GhpMRc0shf1iMH)a0zmhWt3eiIK*>7_9?>(>?BO7u9(mwmmQ3*%m7w1Wl@CGo#R zeVrw6q9>_hDq)~mE2aE!xM+3@WhaE!A6=w#bndOe@btJDRmUn_#ABjm!m1h+bB4vm zF>7;k0y777G{i&*>4sI`ay!IFoI^Ds>_iVoNLMrhE8nY?(7C^nec2e7^0GztTt3$Fz(2=U0G;ab+Y;Vzpq)M556XR zt0`Ah@;MPL^ipvZwV)^t(Z~I@AmNu_G6x?zfP9ZYev95n%V0-%`#)6fuNF=$a`vJB zy)@CwlKLd;=dH+9UxQdbLy+(Cnh}RA{g#p~RU!I1iB zYl;Z|I7qu`f$5*blSDO$N-r4)xt2we+I9Ovf5lU2^q^hKFi3@*r=}H)Nq43AXV!nv zjuMr@PL!dX5`T81B5Srq6K7t^kY3?9Z~WLX<4bApAa@yyYTG{~WBX$2#QTQjREh2~ z`KBxNJ_eLV{oLmf-CH^6)jt*G#k%?ru#g3E{sRhZ5^>fm|r$bQr7r1>{=!%`NSSg^S4BmBu{2<+jeV4pW6K>t0FT%H>-K` zB}lJ!kfB%Z&x8By6ArmQ?c$S7ttrZo%^4gAFh88SNKUrFnmNPOysEQo5N{e75963rnemHjT z9HzofWm&&r^W$u_@C~m^l%*bnZcV`yXPX#552GH^OplYXv!|Szh$uRS2y=^72Tn(% z&Fv6SS#q!RQF79}7ekAt*(`i3+?F+`o1#rjc*<+TXKeiClzCKux7C-45bUJd(49uh zNd5;bX~_kD2qw<`wbyky_cA=aBfn%|gO#@x^|%ld{F{^}f)^!W>?f_2b~i`)jRi`LmV*W%He#QIP`QrB z!6x!rmnDCo7^peKL>5>Z77c}QG-;bW`TPA3ChS|p!>Kw(*^kP-)mP0^qSHAmFs3-G zxR_Q8N(YT78#T3i&ST>O$}E+oE=MzP}J9uJx2T?;0ZI z|1r3Av-LI9-~z()8%EE%BS320%%=>rca#SiRaQWk?i#UCXVyWFh*MWv( zYi^LTaw=c?)cG{~UCpfrHOGR9A76m_C>Wa*mr_NiezlU5h)7KAkhtgtIQOS<19m&# zphHpSBM$FOxc;_=<+;7k5gn};$5DnuA|$S1{gFwPb+gUN|6ulcG`m838_a9QdMqpnxy?;aYuBW{-IeM|8_zI`v<99Y@$%~Uw$(#$ zovBD$CAFxwrh=a^$9y`CjDt@@0I4Dyw!wN(KCqR;s2UaDP|Q_RU;&3^BtbQ6s7l)k z(oggrj|8<##UHpvQSZ1&5L50K#IM2}-W!i3Jbn~JRx7Qo)vwDTLTI+z-0F?gnu`vv zd?Q9Bqhs*Q=D%ulSc#~5Qv7ea@~Fh-#cHpjoW+onAGL8&%`E&#exy#WK7;-dQDbbD zzSGyu4?4;c#Ci?ZJU;{{rw9NFNv?LiYiolp1; zuMfU$O>J1voJitaB^!7rwd^J`q$^jG5izi1+ybo_zHdRxhW4v`~9JG z)rcymS=^Q(*3t1=AO4`KqV2Wo9=*loxZX3DE_O0)+u3Hr#3shiy@)LZwIG5C0Avqd zpJ@{fsb|*?WK4qQ^t!yem0v)&!uYS^>d#|Ujl~iXeaT{yI&_3^4K$R_Vbw?!UjwgNIvFz|920}6XMm}6-DLtbvwA<5 z_VMR(XrGP^u72T5fpvos&4CH6e`i}uQq5vNY@9dO%Cy}~?Mjv_AfJ?_5SJsFs|{Mh zSRr$Lmsg8RpX3^oBi0C0MK{1bh#XS})2MMR`yg6m<-%KV$>w^*RM-Jzl zM;8V0AP&WB%JP?#t9%;i^3hTEs+%i}H+c+^)o(tR6C{xzitE-p7b#;C!;QIX#+28z zR=FqyK!v`eeJuim(_j;57P&J@Q_ao{bsM>G?nYEKvGs(H@|q3lKJqk53^k#E3X(IC zjB`7LW;M4vT>9{^hi1|Y#YS&}P6!}5dgsU~^<$|i=g0N~#pSz=>8QuqUV2uRim1!w zQlYy|UavyVgf(KP@oHO-B+yF_(P%{ON*pPA;zXBSq;jJo{}M|lG6{@th8KJUSRrp@ zw5AfmzkjvuQci`8E_T^^k5`Zn=nC_^W1_Ju^;A=Ps-sg533YIAk$M+c0Cjb3?uz$o z-AJbh1TdLfoE|1fzI-eb?3pJL7F;c-aOIwN)HrbEj(%!Ndk30{VuoeBR2aHJi9eJq zC9>}`cOubk%EY5DR+_7ZZw6vNB)&CK(Q!5`H;P&MELmz- z$+%NTjEi1j6ywFBz(QvG#U%kJwblJ$r)${5Ysxk-)Vovd(^BF5EMf(tc}_PNhMjT* zi2)m+PW0!&r-ZFn>qo1$F134*-tOwT9)A^kWol9m{9lP&nrq^mk-{Nt9<7)ia^}{3 zo<-&RA|)MBTcb2e{mR^ltO4{?x#A?t1qPPcnxL;K|6ms*^1u44AdT&uu$HL=Jv=Zy%8;FC?n5^iMDE%^Uy5zurbx^X1gBW>Ja5 zt3o_)p|+D9MiaG8s95XrVAWf9F6o6$x4CNHcbwV{LvkB(E6BcEU@x^6S9)P$f+qY!klTT@ z^JIZ6G+)~S?d-k1yGoYbxl@1^7v^m$>(8Gp8O69;lKc05 zFdx0@}dm=q)!&WUI~f_Nf15&%jtZGZsywU6>-k zV`Sy&ndT*=Kwlio@voe!j4tT}bd(-Nxty}8Sjk#jZv6@}j(>e5_EbLIna=;N1=5aA zCm!7BISO;;_YP_+e@qCN$p(A?kGg5LrFj!ge^}3MsZhceZ(3Pw`1@J!Yt>p+m1sVm zs4U-jNc&Gwawr#Z9ymnLtE2C0~(qI2lkmclivO72U z=Z`vKubb2a;(NNv6_8x!yUKReZE}SU?58iq#l`Q=N+62t_Ndmw|5EqB^|U2~y?WQN zWK&=9+$SRC5gs15Mqxz_$3XOlTa3*O(2y7MjNV+pH5^--LyPLp?a8WSb6oh|l4?b6 zN;Kr#x>D28H`Xy&tm-2*6VB(=GOn88nYxQcQR1xNy6@ zK0UfK5$4FpJPntrzq!~t|C`v_m6vEdJ-J?TjA7IIZ4X&2Qyt26p@$~6yhIzV6xX*5 z`pB-Z*9(B_&u+!tpjpPo{M4$^iLW&_l;psSYx+ygpq7!Ej^<nplR$IORI5Ar1Glk_ zL5lgg##-uio)~`k0OpF2^O_d%?YUUU*8@_|?l^_B@0o3OdcxARV+rCG-yQiH3_QP;Zr-yrB7hOMcs|2qnl{yS$X=DM>qXI`x^ zdtc5h++E*(mw{hw4{8Q?<8+y~e)hP=9Y(_w`^A`O*a4!iy(M+?0~Hp%3eTTz%?8EW zl!6b>&Pdck>|u47h;gK?@(9!)8$q_A8%4)g)Su@=Ii%>t7mw6Y*1-~A0Y$h?)*oMvAz}7BUo&nh7_zv zE?SJ#V@bt&U-;t>V&A+Z%C(z{di*mljSxOkX!?37F`wx%3zme}4ON}V6tmeHWgwzA z20k$%&qB0(cXsIA5yVX&cFavp1DBS}p3sO*P6`rX9h7>uM0SSajff&k$L#*u)%2`O zwFe+g^+^(}N{nq1-poOxY-g0EV7Ja(M7B4ceC1OP^Em6h)^J~Id36fdr zwDF4HN7mmk#cer61A?M2n3v{jboAe`vF@ChR|7+W3t!j0k5MR>(>c#0`G8~jz<{{P zxw#>5Hf>&lU|fkKeVyZ6BhrsAZlWqr?pT?1S^gutwYfHrL+kklW`?f?j#%)LRD8+~ zern3LXTB7~KIX4@{4){QBbyoz#I9=V?W}Ng+E5lc5zb7WItsl_jP@ssVJ%~OYb#MV zZ0N{_sZgIYygbBA^dZsYM5ejDNDn{&a*-H~6pN_Qr&*?ffL;ay}Y{sjjQd7w>O#^T;=JwINRU`z7GGu)n&l#p0LLzk;KhG%zAO%*gKcN zJF~Y;&ZrJDlJ;?G5QuN|zB;Ku?;XHK41h6bpM*Yh1npbD<-G(H#`?|Wo|8ABcUHwL z*!~7q2#lSiy&oiI$-KL)DS6-zodsdfx zlRiIxTz*JRUC~pKM(*-bJo|macXLm}v0l9?$d_te75Oi$g7@m?J{TZw%j%c0=Ff*c zT}Nd}4;F*)T<1I{?w>Wx=P!BB7d!BsZ`()=il5HH&kO?;y!RK|anE0ORI)#z7U=@p zUdq4ZlX2$4Y3(8yK5eAE0IdmpI9t?yjebh;Qo zR8aY{?mg=^B0lSdh}xd1!~2=_duDEKuG-1dQ!rmO-A*4c(%&Pka`Kc@Ml!m;WRF-j z@;2z8%Be^PU9Q8ev*eg|v7=D=IZ;-usFS8Rrw{|?PXFEA49g_nvFF8OS~lp(ESFge zM*aA9n2=rsr1f{{$wR_;iuHBNo1phVfT6oC}i&c0tV*@CU}%hu3YVzdYs#T0;>vNA)>x2 zW>5Kc7)Q9Qs9Y_dfyNOl$YfZUC%x1%Y2Gp^JT{m{J&_8^S&Unu_w_EU54Oo8a1!Rd z{ocX(`T3q#Q;-kilfrT8EHW%FFPs0qbm&xlXo{G5r0$l&T*R-NT;q^arSCAmvEJh@ zaM;kS*R--(E>%2^yJ5bG3ieN#kRM?eG{PxhBR8&$LS1Zb)#sO~Wi%L5TwTq(l^`=B zkyh5FevV@|hA7nq&s=o|Xc1&DYzUdyU7TmU?P9wcgPf6%ghGr?=gr|OJd9POcOMU()2h7c<`Lor> z?Ts+kqg~EuT+);-(ssP9SHkbI^lHd{Q>OJLV8XBxkDq%X4O_oY+p9TMYRn&rVG&1$ zX1oHrKt;Y_I4=&vIfd0=&x@viRG~Y`WPqf~l8T2}RRP*6PyEfz4YG;|2Yc{?q{bg@ zE7jZ58ok`dI*w25YADKDFIWZV+zCZJcXRXeL+?(DudQpry$65keRt0|K#ZB0E5IE{oiyK~}sZEq>LbnXr_(WQyEyvY!IH2|>uYqNy}qGx`+ zwX!pMb%<^^VPk66r{mh@bn(>5ERs6u@pva->VK3$Wm_FEfh$VsZMnYuJ!eXeTt{Pa zlpu$Xz-}_Yz2H~m`eCz(Hf=HbhT<24@tJZIB!d(>E)WvLx;GiWbi#INeV%tS<$9H7 z`Hq`=a3WItNy#B%dt0ZhZuI>94+<(~ zhnikWP5z_|NYzBuCS#(_}0V>khxAg0RrjDq~-d8E8?K18HTiZx`_e2UY_Qt24l@emD* zfFmrM=xqO!zhcPHY37lZuSbtx8;~6LTiHIo&~^aRzPrr&y3MXQ?j^ zi|)y25bd^JI<}s5b5(vkb^Ne5KXiACc=jmEv&+fe@fmkXJ+}|OYfFqf0f!@wCX7n+ z6bc!;N0v3NA2^}&|CghaZVwnlT}@F1pw2LX3ZH(!Jr&z-BJTegz(I8)baa3vdONwE za1Qh|Qm?z}fHHY81_4v@CU366seg}<^*sliPV7E9O)hJyc zVo37;N)BfQ-!9zyx^ni&oPQ8|>+TT0yW_&Z4S$?5Vuz1GsX;FMFDTPQP=Z1eCIQzG z(|=iUb^VNve9Fl_vOj-gkNb88Dib{can0QsO`(}72z_GQ7) zM*JXmz8{nVLBQZ?^YH_mH6AzN2GwYf%rrAttoDIV^BynbvR};TWMQILYOAs>< z{C)gLr#kTS=Z45y3s z-W~3P&D$9S#ANIS#WZHN?~gt-ph$32D=NcFS*yFHyl5;VbzF6-=)S~7Zvf$qK!uSI zH;aW^zm(@KFR7KqTyz+)!qDvSP{UnD$L`f`Y4GfX(5i}LyI5BO6}tkAzpzJ06+k6k zmmf5A6owx0V}-~%u`0jT0FQXb@?DEyYoU^(m4Lp7N;!h7l0H3jz}2iWlClf@3H$cd zmZ*q?(5i|~QM*i#dQ?OGj}E%JI#G%*F8ihs5l&kv@_{6QN}hU6nC+diLVGU-_H^uX zK}4rzciIHkpg7mts^;=nzK3y{D>Dl>0utb*fXOb3f3{FNLg9HO)X8~R5O+ec>YMnH z><4!K%^V#A6#odk&O4*`G?TLHKawq#3%NhRM`~YiA1M3oOji{Rg2dKBHrzi1H^77G zaDZPb)y+hF&^-%y@6CUWTR8yPM_??7i2bt78Yi-P_%b^-I;~%;czT7c^;gR3h0|u+ z`5EQ*rh>D1@o&qiT!t(HoC3odeieEuNJIuK33w2sZ0KdO?D+HxH3X=Yd%Hh~1AUW7 zn?;+$N2^^Q*>8O@aAfHJfqf8gQ_)XIr`i~!RxkMc@SH|3t3?)uPlW`t4j+s%J_3uf67YE~r7<~C1 zp7ik8DI%+5Fb>hY;++grgiSy3;SR+9M4w4T%J{dVDn z?9llFniT*7SSSRzG6sXz4{A%^m$ubc(OH5=bOT80N!zQ z)jsER$^!R}Lj@VI85P`*Uy`aphHP!_kkg25M?N_BR`MLa6sTj^EgSLQ-@gaei@^+V zNyKRKQ#a;+2?1RPIL+iku?tw;pC9X^RO?WcG}wdv!1d+3asJHB; z(GE)%ic z|AtR}2@f)d!q-P4)~q-d79qJc#l-NsrOrneHkcyAq*M3(iIl{Oc{K_N@QPHBZEH{U zi_1nclKnSp{aOO$$K20PxKu|;ogAy!2$nm+bu5Jn_~Hcukd}J3;oVX)X1PJ24Oj3Z z%2qSZ&y%&{$P%PQviXwuHojgGE&_{7u{N44T>+~$N1~+=V61NdUFOa#_2nh8y_3>ewF4#6nv}o41NW|4H(kuEhHH-)>>J^Pn!IBocpX za%H~w;xU|2TNq`<(tH4|6pb}fg*gjcr7HHnfh14^ob zIuSATRJPN+SPu=ImH*L1koNOFum0yWZ@rh#$hu)|)$dK4|KhKvDJfUdWEk-{u+OZ1 zw_vdSbT45`?F4ARhXBC>O&qG39qeKlkUS#OpUp+=Xjru-vOpp-jLi{Rkmy8wvylE+ z>G?N6M>x;-#ajmJl~Dfa{ z_Dllno^F1|1;gFdq7x@aZwPC(KZ2G;TPzr{|SF$LC8BYsikXYjcNJ z;dsH_D^zIh(LzJJnOO%Q7l^>(!o#J*LUZBH77N$c?~R305mRtN!vKv(V418`Ovo8b zW4%OK_@slHOe14EIBgS?X3zbb9>$$iq**)#8IegYP657<+JYVcZI7;PMxOqC093BD zL0t_rtZ?UVM&Uw)R)i`#VYaM08u5C17P)$i1_h&WCkqb}?VkYXygpWt}V4X;vvI1-y3&ps3LHU;Z8QGph$RWrtKY~go`HZqA^GcEiwt8eP_=rO))X&*3d z;PxI(&ZJ7=VQ@PnhDVfP8JA7C8dkr)x38`qhGYdTOBeEn{|hU&T(rB4eE}p$UY@=S zJR&HNdO+RK`;=RSxz(Dg!-Ro;;G^|j-$TxwcqG_&44`1PsL;=>cE6SmTc0Nv^yp2k zEY3UfR^Y$m{uM>)0i>x~1kYQ6vjC%}pjO}`*l`BXu#Jj3OPr#|o$8P{(j+a#6lfNF zggTm9OaFj{uXYP)k11dqHym3tYMMFUbqkWgy5IQpJCnw6BiWiVPk&>IxA<=ZEn?tA z`SkwdhNMKUZ?)y01rqzG^UaRBqR1CRk=?Hf(zrh7k9ooq@qR0d3-G;rbLZn2CT&Q$ zGbp7-Bk8*B?)iJWKIOl+5a9UjbZ5_AGtH5BN`usyien5qUpx+)*9VUtFYofjP&&1| ze-8rE53BM4niY@;ut>A_lp3qemm%V446=(GI63}fYn!*S!qZjgSR zA-VKU^q@={$}GJq?-Tdo03lQFhY$9*3o&s983^I$2TBZAo2y2^633S>m)cRswWIR# zVx9)?VA4KE?4XAwVTVVvc)4N!&=gozOe@U^urSD2wF};H2B&~MwIZK+_{iqa5}O~O ziUb6~s5aFI>1y#MuK_QGd2G6iUqVX5su$QT$QogQw*Cy0>UZ`!H_QMV77-4h+xNka z1DP=Rk$vU97P**wGiPYG_VoVq$84RNM-tc_2A^k2v8A& zALGCz97CaAf3W-nSU#%qnQbFCW<5Gpfo-;@wM4tt=7qPKme8J(ED&zUIVf;e0VU|$ zv`iPz922wb{q0Gi5DghLGTVzKLaNr*eEJE2`0HWr^TZr|_Bzgb-CNz{ITzV>muvpH z(noWEEBi%i5*exuOHg@zaO5Kz-77P-(xn$1``*n|9@yy8!(D-woH9F&`k=f`PMiSB zMsPAVWmAxRY3Ip(*d@(6!^>k=TW2eKo>xgV=5yCjgiHjk z80Nq&hlh99yG4z_V5K?yl%aWRiAKoUK-oHps;i9o=W4C5dX&}=l@siL*gd%~3-n)L zas%|WDcAr+I$Y5`ysgt z%ZE>*Z5iBs<>h^iC3}3x+)PAf)wy(u!6ARn(F)vsG7WN`^j|3gPj|QOsvgXKyv2ub zi=3|Gdp2$uE~JoN#;iw}4}YDQe*B1|9`?Rfs==YD*+M=9gb~o>l&rPt{YLlQKA3>u z#7J7&a}v!8>KL{QEg~36TWwwHp14HclzP0o_L20zNQ}IcC>nJId5DNTR$Bk;Ijs=c70)!d}!Lo#4nO1dtt^0sHW%bQ2Li(M!3xTJodE zhW9OR!t-h2%)brIt0Z76cpHfu5R8ctq~z0NR5VsFW*0RQEM><3`<*Tc18sGRgZR}l zZ3ea#T)+G}d38kjt=C}`A<(tNz?jKRO*(P}c23}lu!{ofF4(VJH3T(|YO;#%s}n`1 z4aSM__Axuo^Ror)u~+1N=24>RKM-36>gsFtmXZJA3qUpV%X}h%$23ISh)lO_Aes}_ zztBRSH^$QWXb~{6GWl@-(M0jzG9l1!RbjD zZzjH*H4@T&whJt(g{CsimiS@};n7+6e6v-ss)S_S`M_eskzQUzxS^3E2!P{US0HA_ zc?U@Lb-Hya#dWanelDkgZ0x)KujbVYhU@dY`whX_p*(vxrwaiRh1#%#I*%=>cN3{G zZ`C&QBgcwA7+5gI9k@DZ?2NEy0(F;_1PgymNBuQ6OZ{v1+~vjZUon8GGUTX6AH~tr zgLJ6wmA1^Lt9~6=p;=;vIOg@Z|D5CJ&!5Ve1c@EP z9&kXPxlxb!_zfN$*<}!ZF8`iH-q=FXu$~C-IeugY>fyVaH_)xVM_kxvnvk=aPnUA} ztoZ$Co{I{qmsSi2d+mXrm%XE?4Mz~b%`z+#225Oq;aG9RabSI`ES;eI z?-UD0X@9b_m+`wmiw1qi0x0b>F3BvZme~}5uPO=-&LOKrTGCcqoF6Fio4J0?|K{G)F0hs`?8jVw)51s zrC24-yE{5Bcbj6i%Gxp#P5hHjPEHc6UR_R&xQ>XQzI;WB6^!k;+>)TSX;3ppFmYf= zGIsO(5O^ScSRYpNqH1Sc#UH$GSi_$PB4QOVD#RBr{8I@@oA2@J9}(QDr=dO&ME8Rx zCUYjNEb(KKk9B_++eZ&s!+-o)FgQ8nP!6Hu$pqz?yj$ljt*dAH^Yf3L7{}>PuQX?p zZfGG;EFT$cb74;4SpFKXtgX||ZAAaB{Gc3CttYL8W?01_J@i3{Pouls*Xlq?g>G@?RomN)>g>4yD~r;Zygb)B^3#kpD% z)7(NZzbS*Fo$KF+WgIEJ&$*%9RxVYpur`}~lCZV3q)~H)XZA2^D!`_ zvwOj!L|WSD$eo(+5E(1TPStCXYl;uoVNHM+IK4WMAN(+?eaBP+hS94*P8-ksBTWj0 zX}0-a0z7_|`YqIb>EVd?d_PVvr{b`N*jO5V2;7YA-v6CGNsTmyJ7BI}$v@UfqBolX{nX@XLkU z=J$)6GtXO}2w;)`o^>mD`+;F&oY{YNoRG1@_C?KL+ATccXJTT1j=%BgR-A+IRBf?* z7ZV5xenFXQ&BcQoSd9HpI*yGzl1yUG8ITc^i7u)441AQ)tOq~_ZylBy%jST&^y>JztF)M1gIrA-Rgv>XyjcW) zXi4&8LdGJx+@!L1v*k@e3hH@wqPaN~A;{S9E%zSjuL*Ww+I;rvkD4~#;qnv}sR!d^ zN;r4yY4_h(zCQ!Tz1*#{f8TmtJ+*0)V_)(IqcgfoM_~Sq`pTl z@B(ab#gvp6ibtUVXQ6jzBHGN?CsXYocOGqpgc`4qBFDb3Vvdvs-jt{U)?JOETKC*NySMZ zCLqW($G3xrt^+tO#Splyz4denu+1O1;&R~A5@4E(wr;$8jk{QHoHH`lzZQCLJ+8+d zR0LRw?fZP1deKTuu(+}mT*>~o4glBF`)t|f#|!D+RmgpTv)s$=sVd*&oM%=L$k*Xv z)zYS2kqn>B7qw0ctGOY>{`R^74l3iOkFzX#3ae7!B3T!&*ScvCCeL ztU=y)oSz%5PH1wx1h(111F{$68>)bod`|EL{13(_JsX8AxPR^sY7ssp3VtRQ5DjGf z46UmQ;58Ly=uPg&szqdB5cy~l01F6h$WHY!N)c0%sYCMr$0Jm>NsJZPSW{-K9|oGfUME zKN5J4Ucc?XD)n@wYyV=)eK3{SFbz}XkKujRw^-a5sJ|TYKU6?Z%E|TJm@p%$agPYJ^A)e;*!M@Z4)3W(5c^vQAePK{ zT5c%GlMU;ful8g9H_FiI)_Co&=l2Ob92En(0Lq+rxlHIxYY{{HJjV+nG2l9Rx;OM25#sf?ZC&v%(In5+MwcWgy&sYRa{*Hp0(B;~rFGlz6KKUudOR)lggrSF{ zNm&7Y?w-QDvOTmK!a$>Wpw2QzrKu4`I=mv}%BjX$45oltH`%)(7h09I;EuiCYo0Nj zxkq^AbFPK(XR&k=Q5MS`I`1*%aTvaOMLc?TFxY7siSa+l4B+8h^X;sjd{w%VTG}uz z#;;+`VuO#3{$c{+12?O+F+YUL;E#W6kZMb$7*6B36Izf;vXra;`S>QkhY!K*q4j1( zAJkNTR8S>)0^`PCZ5;U0emIZ$yKgcwh+nk=8NPmB?Q5+RWM9Ub;qou$ziX~%kOUMQ z_d9EDUGxzPC4-0ES_OInP{d13+abthf>P5IaDeTI@*2*kJ|`Zd%(n9gK;?DLy68Lu z37+VBRRx^`u|8cD5U0757ypNML%@_^Hl8piS)9P@NhcF{QmO1>WgRmtJ_=?J7C_yL&UAG>6tE zoxh*d4+BMUxj|hZo$-{1ddKALLgMlShy~Uzmbr+D>N92+K1B16HYV67_)?QKCS3_$ z@H)1Qzqr9NFx^Id+xw67lb08J$Zcc9*NtmaTl9dL3D(T3ohuHFi?#)Ftb_!Qsu0<) zawBzc`W)exAb+3o!H8~ZJ@49=dovi z!H>wsr&mWsQy~HW6RNSr3Yb8{0=`LmtSSGsf6wu*m)$Menj9zlfs2%kgCdRUXaQ2! z>#nI$@_m?{2Y4e|UzyPL`8;D*98c@5nV0LXro8Fv;#cmKzRMBmufC-}zN=j?`>L$Y z!QfT+W|U&99e>6w*N4pR>hIATLZ$K`)&atcShk;DBcj@mMM&-3)=mjjP)^bG6cG>p z6U@RN>hvfwAy%g=FND&{IEwa^4(vs;m+Jq}V4I0>?zm9T1iQ-^#NPEd8nAkhZpzZr2v*Nl`-Q!Yhx6{s>v!j)lE;pacVkWYXTkov}0OMma&{)kU-e z7zEaziL~BR!qm!abpj0tgbM-dy@Fd+I2#etdKVyc(qDnOe5xcfOF1Gg12NSE9KeC7 z&vTiS8-eg7DCH~x8-J4;Dgbk&#yXBno6YYs><*#BGLJ{nFLB|%JE&Z#!Ocs}s}zoL z0G&9-|BT&3FvfvsDxil&$zuf>KbH^u_Eks--^5vCwZyIw?o8gw8ne4cm6%|*R9Mhs zI=l$jJg{p4Zd0_(#L(8=Ev%{&RLmMMdcm+7BDxjkX~}TP^F_n6Uyqi98JTCkflZn| zTTlur3hL7DJ+p+kfTFx1b2fVZHtaCdJ ziH~O=_00kPK}f*R5`;VLnE-_ROEL!ZM6m!7`S$YqV&-r}0|=UcuCck}(ClYpz)&+` zuEokJ&*S^TY?JS_B$JPCuta8~2?#mXHoZ19#(!^^Z?{i$DlOgUb)&I=T)@wz%Wy`{ z-Tiqk*=wWhhPqK=KAL79Jl_WjZbh|&q~Ez;fWa5F+3Lv5X5Lu^K{uf2a3CMo8Sj=M zja8qCE-zW3{0jX`-U*bh^LLPo#?gTT9lW*ZAKU-(#hL}HOc3?KtG3b8C^Acs*zDuS zAE}&3h|i>eM&;we`ygr2mliR5G|Jl5z)TJ`blZ4yPWU%G0_ns@9ZL{Zx%w>}J%#3Y zXCsVY`~lUSrR4!w#bzA8faQfo;?;P0K%>J^a1%i3z!2Y-LAJi(Owj52xDaasGJ^jE zR&f7pwf_z9bVEeasMrW`3!7gpm)YN@=Brk45Lz``^1g-f7z@0S=g$!5Z~vud_2z}U6<`_Sqqsk z5MyRP8iTqH?jT$*TeaK9uX*PrT#uL@7pYy}p9IZR_^O9&ANt@_>K#rTapX@JJ|;Sa z-CWGGXZBx$Nm<96eV&5riq@pXypGJwJ$btTJamQB|2dRgh*tiw^!XFgD=At@aO2w3Bx_B} zb2V_*g||SCS~<+@*i-{2#<<`t-|l>67vg`-`VQ`#HU3#8sS5o z;8wk)f?clF}lNQ}7%r(YpUVSya**h5(W`~%w{KK6Scu_|N@oSd*2{59)%_buD( z0Qk`St~ay&bRqAx>EtlWLVKo2-hZZ8RvdIWARQrp>!R>{%%z#U$TaITJe?qPO zZvVeZ#=E=o?!pmNq94A>&{sSm;mSNxv6zgwGx-&k@B4Ny|6jQ2z2GnL zTa4fd@EWxV#ernE`b+kwcL$ERqH1eclgjy?CgAcP7}4vXJiXQ|7J z+z6LjgJ(3zKk0IKm@LRU2*JPzMg*|Q|0Myz;PZ)3Zy*yux>>5HkqGbubicO{C-wy^ z_<6!Kw}*-(MmpToF@Oe>eIyMU++=l_4|q2n80)n&j)>OFT}05ctHt6yu@OX($u(={ zJF8) zY%w8(M3(H!P}VF%l669|8?ubC4KvUCqx*aRe$R5AbDsa6jyk6^=CfSO`+8sR*K&Q@ zm1QK31)6<#G}Us+cYiX zO@V$uv6?7Tmmfn(t0S=;fZz~v%%t9-z4kLUXxi4cWeuZ9L|CAG;S1r{lUG;WW=(VF zvim2=wrK;$a?}|a8Cluc-GM9HSYjYnUpYjPMh+C3-x``Pmh?h&B!Mzm+xKmjT<;B+ zq!e9zML}y(Zbv`R_^kN+6OV2WJ__TlceN^B_G{zQ0>JxD75`)- z4j%ZePVcMoKf#9rU`s0QewtX(ED(ZVI*7t_kPPYGy~FDAU~7S0c}bo_az}93?YMjt zD?8OEv$C=hSK{U6exs-! zEKN$9lj14g{k4SViNlJm5jvM*%3e%<(xuA)7Z4Xhov%qQt=XD8x_?haMFpJct^N_T zEeR{-q})mauJq}7IPBZvcnD~2vJXdK1CJFZ2*1|J@>RMo*}Kv`OJ2{vGPl1cJV{Wa z;oHK3EFO;!n?u;i#CgI;?Z>V%rL_1gns!hfdy)o_I=}GRU}oOMXXUkzwWw0YysvIZ zYCWW?=SN_>Gmdi~dAAF|n<%L+`yH_ULopIaV$ZY9fnSM$3?|Rsd;j(M5ViD646Brc z)y;+?L<(;q`pnK3AV-DPV-`6I>(_HJ=IJjiTM8_nl202(;3?h+&35d#Ml*1`?z<2t z+>@ySyVwQCz`$SlfUmn*o$oN!x|;GHt)Nb-s1}@H2DN}@u5#@QGXlq#^lx|pl~`x$ z?O?og95Sfy&wekDN=gz$=PR*I4HTp>Z9XjjzfUrK%<>gG0+3jzNO@^!9sf z?_vvQgU#iIo~4T@Gl^VKPF3j6+-1Dtx_JCg5hlC#T~5Ybpc-|}xrCHV+_^!I;Sj^y zc1^6?rQ)T^tIDC?f)}4aeyo;dAmUMV#}~X$rWctl29AJnka8+P`%KS__xt*js>8}- zDPtB9h`asmjZHYLEF?EqI>~2(_fGZtMB|Eq*f;O%M@(%DS*g?ucr>*;nGq538P{&E`*@e!Q<@rPurfBI@b9 z6&>L>Ye%|8X>=4;drbCwt5Ar|z5Rlfihj#^mB>>$gekhUAd~0d`( zojZMHt-nArb`I47i?yubDG-rQey(5k@f4iUHZv&|v5+%hWClHQd)ejO+ntH5uFrP) zE*Thpo+LBel#9=p(||hv)XdD0#LHwvLqy-Op-WgXe6$s zo;=Lqd_d;tIXrgsdzq_IC5jK{sk+wR;os;xL{2gz&R3By3wr<90V^SLmhJFbqvFd~ zuf`CilMH=HroR+DoJ#D=sWy}5?n>froXg9)vsVq-|9+9E18zjt6S{%(3C%$HR-1vS zvA(;uLmLjU<@exhjT%%7?8DhU%Ip*cV+0S;x+*)zolTV9h2ynnK&!Io@-+9{%T~+_ z_Z61SX!}*{B$KFwNmL{;fJ#8jkl0jUs2!9xn!XeWRR)U>>^)IrHGi}{iuw`^(U3#M zK>w>sTN@3V8wO>_6Od30S0_GvxC1#c)Q*ViP$jdb7?3_knxHE{6V=k!*B7)LW^V?~ z_{0K@=ho}$soL^erFl2oYwn29Q2Vj8ZnN`kxjX5(%hCFYb)V@W8_^u98d;(krBs#k&O% z8P)(N&~INnbsm#2X^ou0w0vkUOTJJk50oK8=QonLJHFL7P)0p}?+A>tOAoreao#>d zW*nwi$bSs9Aq|x<}C4?SV^Y@|z~gVb_z1einw<b{sq-WOd<2FVMB4JWSBOTu3O5fs!= zyWc@obiWbz{h|vvtSrjD$-6wrNd@pt5iQ2ndrH6Q=y%Gv0$*q^z7P4|Dc+X(ZEI_P zIkvxYYM~*}>Q`W@vOUY`q-0TT%bgq@ddMcLnUJ5DSP*TCyP~85*Q49HnLrQ!nt8`D zaC@*-$h#e>4r~{As)&&DhMj0OX&$j($G zXEJo3(g~bSV8$Vl1VI>zNB+pGxC?v3Auh+_@DvEK@GTM zU3m12-@e?7aNKkAp75<{hj*o#(|X1cj_eQ8b=^se;f(`cgPuI^-YxwMky%mb$DShxR|MS2mU0U2DNq{)ekj71jAu!c8P3%iNE5vmW5|jMFcC4>RPlDvK7s$$0TPh&OFP4zp=R*o(=7uqcqcAv;g1eWoXBoQIMpxala(#Sb-hgon9J zb?*b~kq3VWD}0PC5u3Y`h@kP#q9p>oZLPP%y7=v;4v zj@910F_3e&CH>n!6D)SAG7&vov9z+S3duIr@b-RC@S@-+Dlh%UeYEL*PPbcXj5cahK>d@Ic_bsnhsqB{YT=K@Vy5Y77d*bkjnx^OA2fCPjpHK_Ary zhFf-`4nrr&53*0DSxeKn9ut}j{Y%~FR9>x;wO2DXWv7OWUb=L$H&{>0l8Y@{mL`_? z!#Jfuumj?YD^|z2SYdy-PwHdVqBv47UA%Zv0hTaFCxNS~97+RpO_!_2gmwHOYeK-|6 z%mv(kzO9yPQkESe`s=W=g<1@A&+fh4aA(5>e1Qr&?FX3V-b)%DD!k=_KBYDB9RY+s!~--BEf~ zMzZ%`WpC1zJOdJ;z}BUp9JP_NB$4>jS^kY5krjnlfb#Q{8}8Q8)Fhd(FTOu4nb@#- zNBQT7u|Bs+rtwRv=84wWgs(1`NEP1e6JJyBusQt@)u^zcY?G|j?Pf1v) zG!wJ$H@uoa=yrSnHOrfCZpm7srk{{NrxUQc%=_V(UBg!4*AvyKvn~0A>uJb>bMJX} zV7}PVqB|6hVdmPeW^MBsfawK>>#LE+KOJ|t?? z{zd}C>zhCM)>}4D)Wm*WUGK@0X$sb{Vy}rtnasS@HkXI)w=Mt7eb$ug-M#kCva()9M=%OjNALq}O%xXq%OMi*{h4C~eAw^-}3!G3psF{0*UTP4^gT?$zSm>o(f_ zI9nt!c(l-S`qxaLmPm?ccJP`BM{K)g4GwegKB#_b1GhEI7cY1$b@vGOWEZ#D!L^N! zJ^}ZXm*}2ycpY*WcUMhz!d`YYzl4y=7h=rbf@5s%#?@aOI20Y}K{)$e8lb}6DYEng2IJ(G5LWE=@h zOj>H+DpYt=B@i;pRA}(@<;Rnj6$NmE9+5Vm6I*6k)p-qu@zY>RlYNtA=U}s}U)Gf5 zzgNjWk*jJ$9q3&nYtY?;f`a-gy<}{*X0DY_XW)8>lD2H7myV5$my`>lcGtS~vyP6N zZ)O0&Eh>CP{#9N|Hgm=(fq6LhC940?4zc<=ptMA?3r!`bd#IbpO|a2dNLf1s7w^I% z({=yzHCM3N&1{qq;6H)D)m#&=qz;~2z8+Pf{ACRH+cgj5SC_OX8GbY48FXKV)Y@B} zH!t``8yO{cCzo%?shz^#p_(?Ee&t_7thR(dUi@VGwIJz^oe_Jx^0k?!m2r0_a7FSJ zRd-w~lN{U!YZ>Yfe%cJEX|TbS^VPUKzd7gcck9@&qx{1^kSZbUzHNcKKyppWf0k1; zGwU|+eLLB;)pO-|JpO^Vv9)-^O7UB3lLWNhaz>p?M?K#h9&9p!X-@!dD1JeNM9a-5#Ar4at)FCI%1O2#xpEB%4Mj(Qm69 z^^Z5_heKLPF9%uD`MPTFi`#hn#UKSxJ%Za=nn5w(rxF`omR}PYI?`?qfGhfql*8i* zdXjJ4ux~!!tqvOX0jo`L+afMe&5alK| z-@Uqyu>j|fC_CLGz#mzeyw_mTOIri$dxtJO3VBG_E<``jXkO7 zJ$8#^gDwwvZ<1ypc4})6E`qYV=~cf&$xSFCF#;NNrJ5VXq{A!IYnNl0J?wcFUv)E5 zimw{ulX4z(n6QzAJH@iA5@H>FQJt%iSFvj z`io%i$wR{v@5UK8SjFBxWT@c#=%yC^K(qQbXiHVmHV>GnmC>WhCUVg4u}BN$WsBQN zF-X4*?-H{a&a|GlSGxpe>}z4A6nDrQj_ybJ|9z1zQ^{od^V#^lLg5*X*jB@)R?0z% z-We||^zmy7p#6Xf%ykA3>=~US_sTbU=r*NYe+g`!Zjaqyz2yf0s#+EY_%?zX{{~E> zu=DE}6|i=TB^k;}N)qet1NR`slw6l)#SR1F_P{rRILHWEF`R|7EY3Rw*d==#-~??o zkWk(rG&ZCe6?PhdkLKOQ-Au-y?y8s}3UnGVxb)WDv(jzSViEJsy&#@ikS&k;Pcsed z>vf6<+-@ec^4_3vO$HBR*XX=?dHm2ynYx74OC-&8If`oF*1i&*(UCMs7%(}`#k`N1 z5b*b57wpWtLKvIY^4qP=+`e}ugJQ$`*z?wlVX-@7>W65{&4`-sn&O6cP=9TmRG1|A#zzI*rPg=F-tY?Wa4luhXOYieX`XyoM+RDu=mA5*Ct$0UK+a==! zGO}{^k3g#^`=Ftei7B_~NGHFGi(?J`;8c(%(j%r3=l3PYnwH{R@+uCqzKn#{hF^t| zHJPR5-|W;1x5~e@YCX3^hP1BBltfG}$ml96h;yof5cy4W4)~%f$_K0&zwZN2q4i}_{9wCg_SobH^hOClMHcb}KCAIgB<%KW zyPlbBnY9-r_0ufXU)(c8ZYt@rCeZ_yD0TCj?emCC8nI7VBB1@Fx-#|2)EYR3)-?e# zgdojE9i$P#MZGB~*&|>~M93D4eWkG;rGWsce$vGx)>vbt{a~kE#}knIFMRd}L?XZ3>6qBD-L(@AXERwj5l9zq z6f@y$L*)Yn{853u&?dbLYoif)rI%n!^YQZ=3*=XjEylus*5wYrU+$`_-`$Z@Yro$o zy1r8P!{GHe{~YG_Yf|N+) zt|peZM#ujTp%0$kzj`51rfs0weX`xS;NG#dJ`8_8YyCvAZDD_v;L82Y()2j9Tie(7 z^YeS9Ne5F`=WUagDX6YBUp3bdY^^eDV+3y`)_P)^bn)j zf00@VLvp;zX%*4O_zH#f)cR`s2AvRC(?`}59P z&6@gr(yw5A$gs7wMRILS1$c>nYDJQJOB%Y(qHM8OrAONfVpvKb7uz;-5j#y_KoV+L{XfeEm=ch_ElA26bh z4{uH=D*0`kf(cMlGnBFC(cOnfqJFWR26L|n`dWlzptP$I3Wq<8%Hzg$I@pr)c{^kZ zd?@`cE433v>zY4Bgw}VDj*f0NCvWaKd-g0i14SU`fkW-t53gsj4>h`e43)=*BTNt+ z=CNW!fw3%_zehCkFKYLPe;*D0YqBTa5XW&arB}R$f+J>c!?^`T-kV9v&X>y)}vr-4lElDy3K2i;8KhlL55J zFu$IGCPedrI9FXdy5GaobMYZN_5mD+t}r+1BZ#^tBm4YVXVLP z=ZP?kItz}GSK=C7vFadBalre8U3zGYro5a4~Uc#;KOlg#mPb+D{o8 zc=5z&2RbJE#dZYH$g0%YLhNeg@OW{r^=NOvRd|nODvLYi=}tt@uO(An;2>weg7d|)$3aTMv1!&Og1W8_TQ14Co@ zd3?I?X8@A|8J=?DodH^D0JRiGM!wg)HRAh{KMjFup)h$X6kt2V|4e=HseUBEfqz&H zf~09|12i2!5u!<7DOxC)UC5f6oeWVJ+v7!=9>uD&pB9bUaedo4Z$wlm zNK<%-lIx{_EgSMraw1z&U4qDFeOQ-RcjvPw1e0U6oNf#HuV z7>GE+&5;rI-K|v$iSLg!g@b~FJ3SLiN=h=^Ams#BL|zENQxLmw2Fl_<64`|-$;*sT z>lg)2z(^xM`X)?u1~v^aq*a^)M=(Ox)l5EWPF%7@ziJf04aR*0!R?OgM8SU4(C=Yi z`?XJUGBz|uA_UsmHz)eis#r?y^com4|}_NSHx;O_qQ zy~t0^Z!=5Z@0rMj@P&F#{kDxe88rt+>xvi1SXAAFa&jP{!9lqcMK;~TkFJU?fI(}! z=#t^C)7TQD)z}iIW}@xAu6zTY4wOmFA3rh#?>%%IgXwyfomb7L*Y%hG<{F>bUm5_Q zL%_q^>g(&XXE@0zDfJiGpm2$l$F5R7n~P0K_h%2n4zZ^4N44|#C=z2f7lJj$GBvhN zzyc9A2ji5XFiGIi1tM;b?RS%GdZb6J6I4~@xRY=mxC99oxju|!eJkJ*hcJuh$@ zP3(|=4h?rj<2m3v?FiSaYiOwYdOXObcw0YA&COXcvhX-S<|6OdermRSBEk8~srM&x z>>!7Uv&K9HWtBg^Z7h#AlUD|x_0A5n8lkZ!%2yumdL@yloI`Gvl6cgL<(ifsI} z`YFAr3qpQHBXz|qWKC3E;5~H~{wS7_?*o!{$6Q{)bZ=4YzcpEyf3lpTU5ZyCE<7{_ z{h_mc(kv&-g=q2QM!^(hU+zP&{!H!|LUzvc<&#O|%ZbY4X0hX28+r7K-r?bSHToub z2=T7XGs*UWS)5lxt5^l*%_rZD=}bJJne!vTLMtn?{iFCfS2Wp$Xzh**X-Hj7rjr9! zAS0P&V`cT$07EN0U>k`;u~HUQnkir2j;;pKSMfBO|9moiJsA&SwWo4C)}m^Qx|;Wl zK<>9Vp4{QvdFvZ>qqjyqdlR#^rm-1J|B-HZV%|}MYSwix&qzGXk2c#uYeV7)c#l{i z=DN%38=Vmt=zY?}WT4B?TX=n?$O1P?KpjiJrK3n#91`D8oDxBT{d@R;4B=(k`k4Pl zS2E^fPL0ZZRTuxkgSXZX{n%R0)S#$#kS`~z&kbV91Z&Z#MGvc0>58c%^BS}!`czm% z1Wdyi?FJR^h1cNXIPH`$;YutaRFd0O@Q}hPc3*jKf=94Ui3UrOys4~|9k|xnEi6oh_Lnd&tqdv(ZPSe_$Xid-{cqhh5y&wAdn>i)^--HD-K)u zRs6gax(hCX;*zu8KJ;pa!xGI1XPEiS`wq7vZIR&$thU4)sDeT18p+fT@0N(rtq5dE z0=qta{SFLH7_#?~=Zi=ImcvAFj||W6r-pyGAH0^SLxVP|u|J{-N24w4(>?G6I8UVS z?!Om<)SO3k9$>dM7-K_4Qc=x0Q3`MyexB_O#Gkg~&o7nU{lpp4P`36nq?ZVQ!eh3G z&^V+;@|P}pZ!;Nxw`$J*r3{O*A6ebEAvi0#vh4gDR;HXNE#zvP|I^jT`t)Ue#3jeI za`~%{5@vZy+3YA>@8rKP0^NtkhyAC6;GQh|{{QH}|I4VM2YlCE8XF>!x*6clC9TWn Jay73%`X5#?+zkK# diff --git a/_images/1813465705cf13f818ee5ff8163f581473ce9828629f186e89c43cc0171c96fb.png b/_images/1813465705cf13f818ee5ff8163f581473ce9828629f186e89c43cc0171c96fb.png deleted file mode 100644 index 83a42ecf0178490c60fc64f61b6e444b68954077..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 22709 zcmb`v2Ut}})-`->+bp832!etE0~rNGK){G1h>|2o6azs(vSiwT2}Dr@$qJIAQwE$_F8M#ozpVMXqGcBr%)&~lE;t8 zQ7FHMP$&zwEM1JB9DNkF1^*E;KdNjlZ+y|*O55}T<)pUxmCMHFm-WtVw!C0!re|!# z$1TXs%eh(C-294}Fb|L6uRq{6Hoe5NpFU)OW02Ksl@asGa2^TC&rcNo}orFLzN->9(pT&}|DH#V;qZWh1i<|J`I zHMsf{?Hw(l#800uvHZSnjeqiik%#ODg&uD`vvpS>?Q@A$-d>D{4sE`?eorY2|2C;V zjvv~az-QMSTa(@RH0{!8_MUEyo+Q4p-aRYx$iVRW_~vy~-~5*pZs~QH0P@mWwp@Px ztGM59vdw>`eC_qR`L8$+YLiLB>q#K*qWQ0+PJ8_}_m$K3UD6BYzRLaMUoPhqSf8l( z$a&?4=WpH|NmJvF*2ogp$|!7$7#QeDDD^g+80*(GobPM%h zrkvVxW~ciZMQzNJl454BtLEwo-paac{Y-nQ<6Am!7NS0zlzoYMA_ zy(uS7oOqeeL|HAjYU94Z(cXr$O|JTT_Uw85@S$wCWo!*o+*C@=^hrHEz4YO7sfE?Y zjviGsIIHxPh7!iDFeI^SvoYm>#j6kGYDbS9lX4#%99+l5WME><=+@F-Q=eoYaOKm1 zv?im-j0#;}M$fN}wYLj3R&5dv{`&R&P(oQr_GF(()=2eP)tBcblMG|CM!lbKt4DnQ ze)Yon^PTT^21E&53@F_hPeA|!+w z^vyI!9jh+2v`U(ogi>%EnTptyJ?nCHnVc7rJfeG89tq2)KpSuIo8)SI5~ad z_;KB9{$$}VT_5B1+aWJ)24RygH)QEch{gK;6y{i2FBF4^w4If8*PcD))R;;9u%8o4Dtb@0N43)nE_u7b^BI|Jgx=S8DK9RWNXw{?>hi|PCNMUk* zrdJWt^}7hF!*@HelivK2u{ks89|{Wvv~nq;vr|L*E!kOh zA*rd#wBl27%~xA#B+E|6Lat>Y**hh~zA#;>$ySs?uA!Mk4T-W;E5O7zfljQub}K-nOrYQE69)YtS*bh_fk1 zi~{5OOLYW_Z|~EY`BJGWX!3BI&I0b|2MjyR%NlEr6l}3e=(@J(5X0OjdRAFq zf4y$?>z-k4=TBdPJog&f^%(^h7@VgZ9Fsopxi&ppeN)A&KDqN&M|e(s!S^Kwd-gq5llcZKfdY(IXF7ZO)6UG(tzrtB}O>D|neRr+G_wVD= zR~$U3Wgb)?Ck7vClJwl8&XOyuidaAe6L}>f`NRJzwp;jd&ceUi?#H4;% zjtj=VpIDST?!EQWacp_ZXC1D5IYk?sO-gvKUP=xRpRT*#`nOQZZmzI}+jg0R+Rjt{ zj|a6R*vgpmH=>)Tp13mR7)atIW2yZL%9GCdrX0^bzIC zpIePTNo&L^xksp1DJU!JY8-7Fu_5sgyC)%eyf33aV$*EP?2J`XWIUyIiFICD>bd0y zg5H&u3I@a~#~;d>Z0b+ERLX3oKGa@Z_40xgndQ5E0>`o6%PT4@5SI(GJ5TM*7N{JH~TwL%fyU^)lVOYpYv9(2X0vyD|yJRM%XkhKH_WVKLV5 z&bUyxex$cSi7W|(P-chk+M7ge6w1S;6vuiSLXWZ7S5DC#bsz0-iS;o`mo%(Tl)bl} ztMY{ueY8qKNPf-aaK)*SDkaUX@s0qcSdFa8XNQ-l+mBS)Omu}>R4FPw?X~P{4DXJ~ zkRhL-rsnG~5~&#;6%|#z?>@6=#AIK_DXz203Wp9|yIAV4?kT>TvTwO{>+2#W{nax}R;rJg>0>b+aX`AoFx3-t_3y|3>cVhNXj`<%C3a`*1t0C9k zV=5^|exxY3-=x?0SR1c{fli+gvFfX2GR}O)GW)%tsveo|7_;?}74+Pd?ZrM8Z|RhD zJ4*aW@IZVFIVCoJ1Q_BYepP%V!L;o}l5va1DbbO~gF{2bn##OtzFX0I`lg~K1-h-ZLq+T zGu^T`;?IRk^grePIZ;>Y5Tc}MpQLwvk(SV)v*_UBl)(jYMZ;Yc0tj%TgYUMrr&l;` zco4jHr%Wf{YXtzraH->rJmQ-ttLS7;0;8B+>K;D6?UG33<(SfABi%Kpcrw3TJEx;V z$IKi9Bx+W4_rr%1oAzHlozi6KgO6vIB>38(x5dq2c-!=Vn`0%JCc}DuU_f>tJrV)Z zS`1>dLIwv-vj#tK=$Ade$*TA2+9Jk1=Wkyu@l`S8yoUhI1(+6_Id~WQbi1U~6VBbO zzfmghXKK%8mgP7)Zg2*u_bhx76~&2_S5+UPl5o*m+%dboG(gk9r?ys^OFezqE`53K zf_F@#@0iqfFUtMn=FOWE$gThhP6^4j!)3=tW+wZ)$!+D{(nF3}&!cg<`B*c;1Pvqq zai9PoipY_x$UtQkr^KTpW3yGUWP-)UzdlOHp23P!JbgM4IW)qmzjNWG(K3!LxNXxmaR`WW-u*@LMiz(^I$W@X=1Z+?M?zk zwC-Rv)`Y9u*raEVw=-o8m540p=HTEExLCws=6iROh-GK1n|L)YQ5COKpz4O%9P7Hr zll_sv1wRohb^(ErsGQUja#$-y>0LWSr-v&hzPGwr0DkIE40pMgh>e&V$}29UP~9>Y zP{L>jo$ar1uu!Cq96Q$SF2!92{2rN@n5f#&WL|NSJP~JFmY8qft~6P9__+rYu$^Jm zA2Yx_zz#GifX{sVICu$*-Dz5}?|~uGPoIlVcb#Gscd+xD=rv6T z)8p!gpHd}XW zYHMrjA{C2me^zL~)YqK?qsGAZ=|FEIo;g!T0~{v8v%h~?K~^b=*hbiblI2ZSEzuW? zz4hMQUIRSfN%lU{dv~*Kf3#&z3M;aY93W%0j+t==M5F(iv(qf#-73$BKabsYpEK#WTN?99Y()z`?VnP5LTn*P;YiXYq7etM+FG)=925VOH9Nusw%e`XK~t4it? z9?zdYH}8&4(J%28O3I%G6M#BFTCmCd(et1n5@nE2eG4@Ipy*ex6FR)rSYeAXB~Ao) zo41@h&slKulP6EuckGa8ah%OUN~bzHRTvi>-&A#VlgKHD98H7js4^ahffavM-Rm-I z@3V-(%m_tdG$%bd~*)rik%FVm`@~({1rI&I5AQ_IkeZ+)HL8edbVBL}39|b?&>?da zN!**80vwvWOJe3(lml5;-u^SkvNQr~Oz+);EdV;ePvyX?3zOY83dwPMa(pTSW^>vr z7H|p$rV1~Q6k)E`XAdQRoj20lzisRzf$$J=#KZ7*ox zz|g~&X^=)z1I1facbk0YatA8T6ou4Pof`TA-y4q zo(>w@aK$CW`}@sISsLqwPFxQKInB0opj@OdRsmNhoqzv_q#O!m#JZ7$fN5!~CJRr3 zN8@<8E00((?Y(?D!?L$B-NJyRl~dx=iP$tdB|j7wdw_At{c~aQ=$$)vPDo0YJ>fd5 z&nb;$jDKcniHQpCU&kif#wMAn-+yrKJ+qUhM_!SW=04jIP!()f>%Ww~=nG$}m}*HV-A%=?8)&Sz<9)3}$LG(6|-yx-9OkQAQm&SFhxt z)Lob?G%(9Wpx5aWSz+kM)J2-Z6amOPXDWiYSgX#ko-YVC?IRRdv_doVTV=@stLMv>ng7n_4HiE z8i}r-z+51wNBk-3YWT^);z3S(qhZO`ojXGx3jd)B-l_6?{Lv#v@Oa2Zqobp1pLo|= zz%*h}(uNryX)fp=GstyXVAGe@LB=>e*)m(5ZqYs58RVw__AZ?bHZxZ#6OC*4n>%YS zYG;O{3<}H4RP)(uSPnwsw`3%kB6qO`2XsD9IwxF7rtqg%7#B{IxjD>*{w$l3a;F6g z6R!@Oo33%3_5_14T&v@zhvGumVJcNlUS7bePmPq=?vD|it0I-UKi^_GbLPwwLX;tt zDy>-0`LU-iLEuu!M#VE{s1J`Zmw_KDuJPx)bbmdUYH)1!#EJO$_&F$mS{e`jgggE( zq=3ay4Os2;#fu??-ZO|vlK`%j0}f>+k<6wizF-*Xm1F;YHAL9GjsnM8Gg|M96m_t% zv7I=1QV~yLxcaQIUTvIqQr{&8XEm@S4J2PJTf4)n5J48VBB!eAjVQ!eUDhkbl&q<4 zo)da7;};{PZj_SoP~^fUuxyKXlCf92u|oChUcT@aFc{5qt_WD-0gA{Tgj>wWY+-$B zlTngx*&zTYcUEnBCsIgH^-MY<#kypzJ5Bq%IP@AVFwcl|zquF87Fl%O_+Xi63qSaN9 z`svm6`c#u3K)vu5+;M%nMP%A3f~mh3i0jwHs1uxklqm`nEELFttXqN0*pie^C}>jJ zNIu%}wBb^zf3&BjgUU~IkNH9xVE^vOdffewKmH(<4N3IwUw@U1PL_axcir4#2N;;$ zj**;k^>}DDMezHYkWZo|L7E+#lx~apGAi-vn5C&LU$J6^U8>s2!3Q#QLHa#;Ld=Q@ zCjM!-kys^Ahlw^L`k=vSHtab92&R6Z`S__*HJ|ft6}Q^qK5aVutco(@b<4KS{ej(( z>r+Aht6!D@h|KQM+_``M{>{cwnmHOdTPiZV?=1mLdg_U98|gm?29 zucN2;nU3ji3EIuV?b#jGf0%ORk8I;wrL5(I=SZhUM1m}cw(PCfLs3u<+U5XL9xvH^ zAWH;{o7JW#$7=eTG8WeJ_6lCnPRAM;8L81Un4TD^PcsW8#R`XjfFi;7WRjDNnp6p- zC?X^nd0-lrh!p_ps_#MeIWc5#mC>D8vb&R z2S8v)rz4B6oPt8|!X>M`a(0b$mK`=q5&2Xd3N{c0l$8C%aD0Rh#hU^kc$(!ajcr6t zv>lV6Q6+#Ksb0Gf)d>5wc-6)*s|!=* z28^=ZPxv9qr;sN+nlY)V`%e1qlLZ<&V`OBM^lHO`eaEVzl|auSCq!CGDOy{nWls%C znT-P|?-myfme*N+^VY2;D|H!ISb)9`nOS36Nx3UFJuL6>_ok#rMt+q%T?($xHaf zC7e8}iN`Ua@~C>S)d3UvjhpwM^b@YyNPnKF25xROFE14Gqv!~kUd*i(U_biQ{m~;u z6_xNCH*Pp-GDjpDHPzcWv_~&iOkwp+i_y;y0%Yu>&-s3n+3wrHxg~(CpJY9B(UnL83yrbaEaBY9qm_MOB2%tsX ztAuC<98Cx+1rdp=bv25mr4~IA7PAvIIp$y9EF)EMd+bJ}qA<%MKDV$lJ3P{O6sy+ip=Q*?Z#q@`UD&k`-V&k*LPoYuPa14r!T#O&WFC8&or zX}G0*AyXKqNKs ztaF;MHKqH9TpWgjSi;RZN^EAvJ1o9`)5d~x+B`6BH}@z1-F0gM^$iMvNou@%B?CrD=vFr&0ouP{>v zG99BA(Z5)xY|}~^KjwyT6Up_`lU$NY;DS{>Dt%I%)6`;|bQIK0&nEQ^6tE~k zBgwzNDH7A=$|yh-6h%qNWfcw!<2);6PYww~-PpyYm|&I?Rfg${#(v{7HV0%QW%$Cu zd@`LDRD~wT+3AbTonYmn6U?f?oT)t{!bW@1Q&J%#XhZ_BqTaP15iY^Q_Xr4xg{sTW z$tjI8I)~KYLw&zd;%El*RUQgn%e%n;NumI?FyWy|7DqHG9?`TP@esxX!v;9slwl=U z(*p8WzbQRQ$m3kqI@eH5fhs@^noYuq`5Zwd3aY9RUS16LKrJI2(uQXh?A7I`-ISL6 ztx!BhcLfmnUy4K}9%+F;Q3@a&lWAVCaJJ6RuT{9g_IX&?acFT#iC5NB8GQw1l;l_G zanckWm6^7)&{zAzI?t$QBfWL&6#t3lr3dlD?J*PEjDNr7*ZOjgab-6TY6P&sp&lGc zR8TJ~cAb!vL;lOuFwQkR30O`5j?fE1%sQ#QC%onh$12t}jr>{KLW|~Go0f=1H1|Wg?3-$;w z(qH*gFSqgcE4!LkP^i~Rmn(e!p)1jGw5%ZNqk=$pKA0xXzGa7wR@uIi}R6@0j*I@~{rl0I#Ua2nmrqJK(16lCrY0;0#WVPRwg*AMxZ31&h1tYIk#Ezx34Z zrdz*00(FAR+a-Y#UtK@N>8L@7xA>t1E}zr6o+Fa5K7Ie34bcr$p;_|D&^R--=(8z% zTh>xeubo#X@ve?T&AN7$_X|H{!q~7>7NqmCWy^pg{h%2=%1%Zp8FJF6GR0W)SkrG> zHK~n8f;m?g?%PS;Z=hyb!n9My_cS7$hHb9^O0ivAwjA7c?0%)OP>Oy2ja3EP= zG}}2pm5Pq}f|@_aT+lJ3R~{@$s;Od?+yKWJYf#6{5g(l%942FNEu_wk#e}G;Gh5bx zDMd^Q16`3kaX^$lG=I^O+T^fN!|)*Q7?vx)VI8FaSyNs*$8Q?lF+=6%B9@#xtk?{ zf@o`b#KbfvM|=4ijz~xl7N@FSq1Q2lO+G{yrB%Br65d}DpTxaVeMBQ6A)ynePFYnN zO1!xsF5_ApZi0ZYXyp6Po2KJ9ql-yHx%L#R={ZX7U3`4esuVbb1 zC4;|faPxMCx5z#vuElyLi$vDXn|uzvCUj!URJ&k0$l~pikXfp-?I$1m`9*^@^pbz7 zR9vg{0#=*MyC1+BJb!)&^y&holVk^;3J^QVKm#H9r;F%#X#VbHD^^V1{R3+jQS(<& z`_A!RhS~;$;|;$86elD&(2J4 z_e;OYgB#_$Sadp6#*f%SioJFpMyMb%11lSNKthfpnUM7h3ZDr3xEp~>T?;8UR{gx& zsqvwaH)~Hp8ex{x)_(TK+O>omC%Oq=gEVv#5Vu4(QBYHh@)xz$2g=3v*xOL#C!z$9 zO=J^A4UL!u3l|fS9w|3vD<>saW#0d^`VT@|0typ>w0bW>iHeHKhYuejl1@UNpGAt#HhZS&`J4TCc9@H-NJZAzAX&{(&1}6P?>g`HirX z28usK-;m|%rv+^t9X@We;{mgJcl$`rS-N$x_!7$Riu0VFe&c$C5no?lCySwu(i+h3 zW<;PPPbp0d3X(=_icD$h~TfBMCkeb=p^@Ov>3TpwNl8JPyxDHHipV zg&kN0DU!&-XKs>39=L{VkKe2C2lECaniFC$7@f`8}%tGdZsx&@Qb;4@I_DB-fr zU__=r(>k684~_6>PFNpU;1sT2z53`a0VaV1vgC@2voq5d7$l+_N|R6G@7xnjTJ!V! z*5ePHR_A`|z<=?IyD=0C%Lvhc=3aq|$)wD^r1s6;g}-s5Zrzf}7atz!Yg-({&z**H zArH;H{-6AhBizzN{3YxMHY`BenOKcYarQu6SnUhkG_q_KC8AJ)+Lc+KY#0gpvNOcT zs2om$QjQ<~%v!0e74m=E$*K*FSMq33^$W5<+*nrY|MY1%P^sSdU>nMg1Uy21u>O98 z8eB7f2f0tSQZo+!Z<%@f46=OiVv4ZRj^N&Vxi%0KQ8*A6wI(*e-(f;8$)HBYeLj!I zk__9scI{dZclYN=^Oee8gX4DiH<#X6-}jFd_K(#x-uWPGnVdY$b(&5pdUxGp`Bryd zCMJ`*dlg^E6TR|Tclfme#%Yw%yVs)g<3X%Kn=f~En#140CMc)`!fnx_MR#3X6u>qA zHhRy^4W;%$*Mg#wlIldgiU_P8hb-_T`dyNjn}mG{?d|@*Z$xiSg7k~%4BVNmn?zngMgf8Lpttn9-o zbux=ii`y`?thtM-)dhAsFjW=AOQMIf`s?pnAfh0rO6PnjAp{j6_+J-uC1y z>)$OFAh+J;=j#KtQtOieNiaBvCTKb@%Qjx7OTZDP7>+T=JQSZM6(VVBF>{o zjzgp&9wxw+UBbfkjhFfw)9&8B{Sj8N7~pam2Hpb%l45UfyYXYyiG*R*InK`PSs7H_ z+n+g9BIH&UrNW2gsfqLx+g~_e73FTZCYC>^m{nH6>K0_%mv#(BP@*xCdJ~MYS%x+P zHiaDaA24am%=DxIsD}jw-~Msi`3SG09N07;tAP3W&%ax}eaDUuZKgz^SkN$j4T85E zZ~@WeVHqV=_()f1fIf&#Qn}P!1dr`aga}UMK=ACR;XDFUC~W%mcHIsDm&h~G1>N{RDa1SUM6QBykcG6)!TtXND5`~ac?GGs8SwXP2F*);C7uYZsU z1Lk{dPAzaDgbO$c#=V!l`AnE1p)W}D6}qTg~CqRw2Z@!#Wb>%5Mk_Z>q|iJ0Qf3JWp- zdejvkHAPODyOLYEMNIWC%eZkU6D5;VCz6N3gQlT3v#Pq~!=q4U(>`$r-}OH{)rW-q zi3&t)COf3P0*UfN*tg+td9;PC1H`Bz50Z|RO-xK|PCo<0JVgNe4^b^d)hA-Ql)ztj zMitNII856dJ$h6?LU#)!;{q!8?~6?8+~jr4RMns?te_6C%?&7)hasM(v44MCY`BTV zy$XMkUKVl1UupZ=^rBWfg)?X1u22MgeZWed27D0JD|j*kfkH|zcbKOAHp;g$s6L&~ zFS__Kn>@ev>)+?3N=ZpcLXNAcsU6N+CiJU3@NDQ!P8V@?{%P+<=nG^Hz%t4;P5yo@ z-d-Kip&_AZ62I_EQmW$1*mJxv_-K1j)<=5}sEx*G$B)H-|yd^J_Joau{4Y zJre8a!D^kQAsOnBc>MTr-iCGS*L#bbUd_@VLLXwlr(>=lszlxR8^hP zWOU4LlKssEp7|gpbC07op6nv!{4<)oQQq9a$urJ31FGMs%zh95QklxykuRY(y81)B z8V~}J9CFi3#b?zv37bD)#T*xQkFdi91474>6`!gL(x0ePtl`LmaM1$nlp%C*OCk%B zD2K8(YKO~W%4zzd4@)RL&IrIX4fDOs;N>M1Nyv2Z>wd3KB9lz(Kd zwg61?)MiMUi%}$XpL6-|xZXMW_(KyDDa~u2@|+ z3cajP2GUb$G$12#-SV2cibCPOOq_n`4$$N7hb)C8k=~o!P-G$4c;z}^;Cb$25)ym$ zSja5>z69fSdcmFE`P`}PlE1YC0=xo(QjrA^5z4NTg5keoE#u=eABK9aY->o4t+n&7 ze|FMuEb_6GhpD7H*sP$j!V`)E`?%)YF|zh?F;kqfsxo+qm4FBnAbS)Y9I}bo^4Z~A z-VHDl16qN*;t7WrUetE95_)ndw|cslAza+VNCXDw=i)}};^4?Wp21W1q!O$j$z`jx;YwSJk0y+6TWu0sDD>_xGw-*}P1 z89HBRxO}KSj0Wz(+ohiD0)K>jUIEsMn1FAtpr^uqTLlf4M^ZK2oUljG(uCnS?A-r) z0j0L?_01I?4<9~*d~4RU$*NIX?3ARWEXqt_^UlDOW}CtyflG+m0_&q2x!-R(SK)Bu zJ#RowsPTfyG_<^wtIZQcuBkn*B;zTRo>tm!zNL_8OuN6(}*n%=u9x)}HPk%2LZS5d&j z3Uy2_PaUiU?TQM3j2Im|H}|Sk{fM}@(@?C#2U0Pkrpc4j1`MIwq$O~dhrShtSLE*w z`;|;T-B5d6o=e2~QX@5!La=|My9D&0rWW(X^&>ZLEOsEOXcXF9M4 z?^$^mpRh`~1#%a$nUWd?yB>;RD6$L(8{7Nm{=ZSYK=PV*) z{jtdLOL{tn#`ztlu9C?CxAl=U+CZ_}Ytp}fVj+vofw{EoseOjHcU)ND(>O9~qT{Rs zpI*`bK3l6yAlTod9bEO4mU5tV9EflP!L93(_@qki#LxHOG5ezQ+ z02{#VaiY+Zrw03zBzk1ZZsg{Zn-)_(ZKT?BwEW^W{%W3rd+rP*e}ad>NJheMqMBi8 zn9D^EwNeoxpHa@VCFvM}---k+#380Ftau<4ODLuxq!G?>q9TAFJiS?#Hp73%saH*X zw*8Ax*Y{lnrpV8RJ_PNRJbAqOO?`jUae$np37ZE-w0m-pLb;Jy5$k_$KN}@12Z{|9 z%zh=p49n^NbpU`DQ7oX8uxB3T`d`)o$h)lOlBK)%=$!lQ!u#m@t7u(LcH9zjvo!H& zF|!9ao516UH00Q|>jA6TxfkpM0|RpnQ#%kDwVuC-*sC}hzy>uJ>}X`N1B?WU50X#GZRsJftt3*zIKF9jq%qw*_g|Tc&%0)0_k%`01m^>ks;Z!4v}R2p#YhU} zQjR--bo0=h8WDzqJmDnhWotT*e=GE(EY@FfE7;~%Aa9rjt+vv$@ZXSgrR_WhTIx(l zW+*jKj!3XFr?6c8p%*MUunH2Nh@?UdCUiO~RBu5t}5 zq6lqIyJ7qMXW3B79sN-JHp9Ba(L!o!G$sa1KB`2QlGzh6%7M=L*5BN{J5KpWp^6tB z{&*Ns>kQPSB+Fh^qAMG=!(ev%_R=PY$zFCIo|+%VKR8~_)|yccoSb*YE>(e#bE&dr zni{FovGAiO|F$l#HwaO3t#y9E%P-fsr4?Q2e)JlLSRJIF>#qVN@LTbm*P`7+mgVcF z3GJrjqoF_8K3zF_f?4NY&pNKLN$>Wb_t+lLP1Blxn1G^OXg0>5_=fgM8O(;WStvZR zBzQE8wm@_DTQ0jFZ+}1V3p?)k`PTo49ktN)!b#TKt(xw+7DRjtHX#BfI~9z*Wq-4w zwi`is{BuG~A(8Cn{J7+aC;!J_w0@KU?>V4D=08piQG|2>rFK5Q$Lg1^in#i-doKjE z7MIG)BgFm&(U>|d+(5grdWrQd#(6_8iQHM9a8!YPKt(#o1mQ$|VZFFNs$nQV=0gD;x?7$x*Vn=Mk6z^w42Itq66)!I{lj42{&NP#o;e}R zOK7;Drk%0cf|hG=jd_S`QLq(I<{qCEI;*`(VIht{J47TR2Qd!Xj8L~r5`K1)!CBU@ zsq5c8o@#Gv?%w~lE9tP$;t`96>~oUKYjgC~4H@f`x$VOrOSK%+h#3BU*tEvd%wf!y zYFBjn^WTI5()=AZH~)MIYE`^p#}&O5mt&9Z)#S zvg5G!9(|rKzK6Y5N|qm+T;-SC*CXQ?9WmWqo~+Lq<^Ntllg45qzEL|ubO)2;Q%m$Q zvoH272}k?&&n9NnV4H){_iB$$SwNuEKWzv6KVk`?-J8d*w98PN9 zv4FBP8>yWNmtQ$t93xNHvrMx1B?E?=N{x z-+L7quI`?{G_{{j`UlBe`n3+>L5wLZsey!(__PucVow0ysx5fO>is3`(gKO3Hykgg z9UW1Knv^Z=!;!I!30(Nmr{7mPkWa?zACEY2)$l^taxZLKeia-!5AS32+=f%id#lOGcMa{qFiiZN-FVCGK zJd}@E$zI1sA)+umYx1oFsL+14+Dbx-!#{EUsFjVeaxucl>TF%Zt;)gd>m8R4zu5gt zx*`=JUi9|^*M*Rd7!(oK*#13rM0EX#{^++1%0*aHw zL$Gbc2{SvLGaCwo6$xRPa6a4_J$n*dfqmd@*0AZ?{sTr4cRFcFOmHpjs6bX4260V1 zEDIN}{5Vu99!m~yShJq;iIXvlml#?I5lz~uLH&sk`zAnj89c4?LKYF}ch1)rkt1IJ zO!$lQH)iu|NvdkAKK~@&J_Re|F(;?AIEZLjmpwm9>@N7UsubfEVHz5ga{p7I z8TOvE(sA!f8T5+*F-`OUvRFVFoN!;heEH)C544imI60#%>FBVSoK~FuX|Y_r$zlT| z>p#|v7R(jZ?Y?5oJ4~jJwWay+r`wD^G`q<2>i*8on`{B4p`~Jz(vXIu;rl`hFHv6c z0Hxg7+1a7_Nfi4E@zts?paeFjdaR;EX)`zz=9id5;O=l&2z_=C<68Gu!}aV_s#r)g z-#)|4V)i$RFN}1!1S1yTuPYKtxTWQ$*U))09QIezZ$tXY6qS|3KqjE8O<|ja%LBA8 zqltjTIT=4;RO&J$X@Y&_xBLDrzi$p{_%I3@`J&Blts%@=^~n>fXiQ`F&flRh?$GbE zOT4Gg5z&In?Y?zVaRrHn!>=n*P=H^s>VgTh<|w^-FdnTQ8rrBIpIv9wgHMtmsKd0P z=S!Z)17Dd19^$ZjV0Bzn{>25Bo|_@>KM9ktY(4h1}=_YH^s1#taX`7Ssv*L8Jr9 z5$^_dZco&ofa=Fema)Hr3mOaYECgeET&_Y_+?=Pc+>j3efMo;&_ zUnDH789xbB7$T~CU(ixk3vWD&;0_$fLwJAIaEM0>y6Mpn0#o4$vcvvk&E>;RL?0q2 z=e`FoYJZj*7J`EXD*x1G=(sE|z<-=zQbV{JLqLKWz!&OTD?&NItGt_2^|z|vHSNWX6FeI(}V@XJ-D_uSF`M&wceO~ z9YBU(?NcC*+1uQ625%*UT9k9`KBRuqK9)WwXF#~(Hqf4@_>oB~bVB@;cWaq$hR=4U z&X$Jy-zeB4wT7bnhIb_#76)t8%v=#|ibnoNx=p{}{ZEzm7xHtg|L{(JQJi;m-O&;& znjYgB@BH55+kTwX&{~PZb(p~vT(qF4P%Frm}r5Pltms9$8*FiIyicegLpCd3BiUKFsnXKeBOZj}>SHd)E= z??SML{68E%^SAwpQ%0s$8g~4}eYrM>GM{o)lDql-w3mz1RvBQt2opc`)V#{L*9x~C z%l-k)ky}&#z`N3wMO=eO7wAjJu>*D`_NZ3P(G3D-jsGAmS!chm(3xCF;S?ZyOg&uz zSz8{wDB>cKzEHtQ%7JJhoGy@=CSk0|LfCTHIqZiT%-JW3t2hmj)>(?woRKsbdg_uW zO+tL3D-TV+|Lntue=0e!0B@!+u9zdUSGM-F3X$d#NV_s?M+g~qK>o{r$^7rr`8H&D zuP78S?q%FIa#hr69P|D$jPGyfPnD#4&|<)EqCeqJ4pg)fs|R^0Un6=AUI!`~vJjN@3OR>(tB z%S5^a@xezLVQ`> z^^kzEGAheWA|^OY>qDF6qR)%G_tBm)q0UCmAL+EkxKh+uVLICPb$EZ5&D)WIyCGc) z+rBXg(<#LbX5Qp<<+?qajX&2pSjyzQ2tXJnTB9hnv^`qWFwkEfhK8p)iGz#EAG|?D z!o0s^@H?#cK2)8|_YVcHLYfa6VEO9G@?h@k)q@Sf%p=FZT?U6i<4-M5dR#c!05gc zA0G(nw^xoO{`8Klu)d!8IdP1CUTfA@!!cz~nm+85wkXY&CG#?gU)=bJ*W47jfL+w35e<9<7ZNgDgv0sGdu~UnS8@pi;A(2BFvnjS&W!jnyS{$9|E#Am1vy);dUd zj$I?HKxJylk>;@bsXadx2*&&i4AsSJC(+3diC2ZRI-xm*kV>$ps#a~H9Ju|Xk!Jzr zS!wytEyJx=5^#5Zmr=Id`T5g-JhZO%CGQBX&LJeEf+jC{+~zRO0?4CsS4qLpO+1x( z-6KQ>BmQpKF{?mzkKimSDEG;61p*EK_knh{>R~IoD7^l6K`!y}@6yEQUawl5~Z6M;rJ5m{;$U*v7i0!1f7k_hR ztMQG+IDbLx7S5;;*8J*{f2?^a%~zU9yHyVbdn~dKaT(Xf@FtymyBywbeN^Z5+4dPR zS);1pJ#^umJ7X2CK|Hqb;SR;auVdB#j+7srwS>qd0wt&=a>~uucWYMIsx_4bp_}cj zAbuH`-)nJa+kbMjoR_~TTb%aAJs2J4TRu(U+?X9&wqb9RfYV(!iJZZ?7K&h3NskYF zV?@Tg$Ry$)oBn2dUB8{A9K6yaMSP{YaIX{bnluEGBYiF&ifbKzx!ii2`2)e8AtAKi z*Nkty#Lqn_(TSrkI?QfoYR3-InOf(?Jq?(h>d3!NE5;Dlhb=AWFyzysTp2WBixub! zcTH7l^vjp!-)yq-`AYZe#E783Zq3@YI+;NFCoA(N9-WU;P5Ph~BefAy;9j^X2|b+v z1Z<~s_;0=3SB<5&w6wAIVfsowJ$;L8X1Vu!SI|6IdhwKRlg_3*ld{zGYo6h-j zug<-8F{T89;Or>v{rAj6TYEwk)*8#->`APok;ndao7 zjt6)i730fqV&JbU3A2MMuoHicJ#4&y7@SnaX~H6q9zAk62G00!l!K%QCMgJ|GT*9< z0*v^t8m+Q^$2xNCA&#J^AO~oWQ#uf~D^Vfg1jLLEyEHZ$2W9^icg1cD^Zf)f+JEScIL$PP6@H%9!zl$uH-Nf2EVE1 z>+Qw)T5O($ba9s%B$6ziacgmgaHv8|a&bvVWO8bcT{hu02#-(HX3g0NC0B;sbDCR9 z!?>M*K!#(8yI{|B_K%4zoLlHWe)umVr8%p<8>ZT`pwyKjb3x6WiEOWvB-lbZVcRj~a0>}{6QEf9e8mNk&i1aoi}^cLfol*#c3t{Csy zF1w==64V0mnRvA2dw`(9-sz%s{C>T+R7rj-<}!apm%U+V=@vww5_+K^6Ku@2tv838 zlMBgucz{K6h|Rb*f|m|;H?yb>PPW;pWsjXt_(j>+k^pcwmjdiVpp?v;eipw`#^E*~ zOX}J4)88Q4(85{mv=^K>R;_3BIWBhga_k1s3!B;a$pRqVz#lv~Mo?_Bf#uc8P%o`X z`x0?yQ;Cw{%De}q9SObTFMqSn6WgtEyx%~CL`7_{A;q<(5_!J{o7b`0x^;;q)=xaY zaiwjl`8}M0(Rd}JDIY?*E1G~S-xU?{gP+y5LxT%KW(f|Q(uGO%)pu%StP7|-Mxs{2 z_g~E5Z{5CO+m0Ri%BX-zKy5|z+JotK!8w)pY?(U|{qw<1xdMDJxx1hpjsfj)f~3ci zL89r)RUDV;if@=u_VW=_cx!rh3?JHJF8b~>c^wf~!dQc1)&-3@jA&!ojqVl~w6ri~ z*^cccJ&-re)n>aLr+LT#U>>;sFd)EKjFdph@vY;+N@|v(I75*ESYRabo-o!ZpE;vK61U=)|*KF9Jrw0G}0(pV@SHy9^ z%F4=Ml+tiqTACl_$i<%KtcFIM>Zi9K2Ol{@4B5}@R)%&e9gzO(M^i6?F%)D~v~^+F z{hHS${jIEqhLH=CV99M)R{?0AMk|^3*VY12Eh?M(blC*^uZRKB(4_1r{RVtUD#Era z`cxFU&BER)%I|k~0VDO)u;*%a37w~UDO^hVIJn2yp+w!h>}WnDsG=j<45R;5?nET! zr8@c%4hyd<4wnVyy{3?faE#*oPyZ2C5Sp31{$7jB_wM{Jj@JD?E4Lx$vKA5txs>El LnIkcWw66UhKzm=} diff --git a/_images/2ba8784408ac99124215a4d8aab3c24e66745d422b3ac6b5c9a2b6b8a1792825.png b/_images/2ba8784408ac99124215a4d8aab3c24e66745d422b3ac6b5c9a2b6b8a1792825.png deleted file mode 100644 index e2402afccb3fc6aeb36b988d99172367d40a45b5..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 25062 zcmb_^1zeTs*8Q;^I|dstP(%cDC}|7fh;&JdC>=^lJ9eXhpfrN?A*7^LMo{S%5KxgW zY3cuZ0H>~Vzk9#$e}2rUaCpxf&$IX1YpuO+%1DVVU$SWlg+f_Q6+bFRq0E0uq0HI7 zcp<*Cd!P0l{K01_deTzfOxMyz+x#p=Qrq&Jv6-c@!Rf8mXU#1P%uG4idD-{v-KuYC zdCr2LgTv(aH?W(T>v0IKk6wj?{B%xS#ezavsZIWy6DAUBK%r>MQ;!}}xZu-OXK$&{ zlrhy?#Ps+C`<2CqexcsEAi*^cX3vG z4;#_;KGGAhAL`d$*&MU8!9UM@_tiZr%go=d(7WO0 zkk?{?UART$waWU$@tNP*+WE+R?)3K#zTeNXVES(tV{hLapcIPP+ouVSw(i)ubLZPn z=Z@MPpcJ!iycU>~bL?qoDC?f~&toetsm`J3iO~X-C@-o9&d_4N1ec33ItJglb4PsT zJj&ir#eqjQap}thUteuqzJzkX2LHnwkCHbk$jP}fwY~UtUVB59^A)kRs=ppQ=*?@U zq^arWBc&I7eXX2z;jU@{#_FgxH)&y6UEPooKijxKrIT*H@zkM0F&?8QN;0fbZwjlK z>|1tta}Q2`yh3hZB9%&QuT3_aJ?2k8{e*wTbZNf%ems^{i^WSt?fK^>zVhnyk$h$& z{7hwS;w4pW(eLjFXEu8M+UE0t>AOMM{=-`-p((%QVtHkyu3v3!+1y_*o<4ora{Sx* z#Kgp_XT3k2ZZeh%l`knNdBCvnqUIgd)ti(GkI^XSc*<`T$C@XJS1!S$xV?Yb5n+F6 zf2UD{lgVw?X;!Vp+iEoySF~5Nr+itHQfDf0kN#j$pwbnOig;O8ise<+)v8KG>%vuE z2LF6&KmApmk1u{bE-t<}&-)l2m6w-Sd8jm_sAzRZlvboJ=dvRO1qBf_+C!$NPoIij zI7+cwYbdI(!o4|h?u*AVtcUX=s<&&f;_2@VrqK%aZed|z(XKVcfmGGh=+>{-3+H`r zq1|NM+uQ3JTvMaEe9M9RWt9_Qk{}}AsXGN-gD*3 zmBlXeGemQZwy9Ump%jnFvYy*xxZt8Z{)`Z>AQ!##*=N3YtsB$VQG8bPtZaQ@H0MRz z*U5`39@w$%!}>eOYy8cBzlHPl>_BBL z$Hd&6wd^Yezh2xW?dOmqtdo0BQCnO4WX?QF#>T|Y17UQOb8GOYoe}Nh;g*Zb2L^aq zua!i5H0IJV4u@~Kw_B3_d^KN;eNy(pP)Y9)I#wn9q0Z{{{P`Bvuj!P-Vq?Evs&^Op z_HiDY`g0jNI=ay>Zqi(*UQm`Z3ag8Zmbh?T`1-MU`8vwsE2W+du(EH# zZnIO6l)O7K?5Sx-of`3<3ZEDo_BO$dY%dFS869X_d-Id8XJw^QQ*(3sZLRSqnzl`J zct&ksKV{b>7`U}}bnFlkq{MD9TtN9~97Z?vTbn(_&b_va$Jy1*t?AqW{zNOQM_so$ zGQ+kVx%Q^XoP~`|(gi!!Ai1|(UYdoQTd^m-{~lBLvuAR=4G!_28yg=!co5j*G@Qn7 z-T5fk?K+J?@Pdqs$mH`aE3Vt7m0e!6vi+Vww@jAPg!`jMUxA(9%VJ#{t>6^j@h z0{o}OTT**-Hd~D}c^VD0me@5v*0aoB&iiO0A~Mn{k1ct(u&^f9&*)Hc7A+(sq^$V> zKBzlu%4x8zOw7Q*z;38ouc*m?17)v^>LD8CVtk;|`*?m6!WLL1zu0hoX2V- zqN6K~VlqNF96l}e9Yw6kWw1XHsYELs>Z-NEvyV(oRb9(0RqoCrpP*O7kTFmyQIqMI zrs6>E;POpe;?hEc?uLejmS5hirj`b|2=B>ih%u>63diqBcvcnNtv(T9QxPVy7PahO$bUnxdv=bb&W-2i_&8 zsHkW&HL|_?7HjnV>`$!&oJN&#fOJe$rIsl z9+ANMJ?>f=tzp#s%+*)GW+7cghW+p!US4IJIxA16@ZjL15}xc8Uff35E2r2r(@&

=6;s!tHHNmZ7klmM<}?T0&X8$WXK= zhHeYiiE=oNRzY%0Z)2{1TtlOaNc7ZX&r~Jj)VJIK-uDp^duS^0IfDM_(*D9;2hKmi z9k4=pEE8_PGKe6zm#o{qx6FxpMSh&7&XrLreIpL4Sxy6$T2 zZ5hM$WmZ)hdh1qDHwoD#;7FGX9echGXH99)XtYgy=E2pKSf)!Vkv_qX7A+^%B?im-_NW0skC>w7kxFK zcX|8>K+6~Fw2JcbV5Fn?jHYkB47JUA^uzuiq;h{dms};{q<&4?Qndk(6&S%dtMggj zz-UK|(YLRkLLH-jTDwbs{9CWxw@=qAYHA_`deY@x-F-!x&Pe+5E6RsTRXh>BJ%BrMc(}oNimzpCyhS7?xxqRD0Ae<<%KJ@><%ppr>P~k8)=PsF}0ORi&SV$ zjVjk&XuKOb!E0t>qKG(_WKtV~gfXAZ$kbH0C2rouhhI}(ZSp6mr?}&SAcIifn;n}D zoC`2b>*C?&;b}*pl@I0Zi*f8SQcX7X?M~|ve*N2TtsPoZshLv~Jsmll&B~)x;s?HF zuVh7d?8zARL&z9ej-{d=h(yzd-|#4FQ!qA;VsIWm@7TnuRr2xWWkqG>P?7OZD^o|? zBh$7t;6?>8`#Z=D*V*_-r!;SRos$#s4j+&f?%Y{+cQdaP5_Ze}(dY@?D($+5YpX5#=KXpR zSA!VSWXZpS-$N$ef`>(LfJY8-=?bbXo1Yb7?!Hz?`o z1YwgknWqc@i?vs(nQInQV$&?V~n?1CSNP}HmaBlgHX)Ge2UVGmRt2xDVG3JGYWA@qznLpIMLr+ zPsHI(pyeb`DPT2mkJ@%`2sl#)=@pmtICD6o=W*ia_ztV_%|HMAvpBzs z76R2JL($y9ZhriKR9a*rK{x+VU{q98fa-qxp-!p9Cy`N}8rF}0;p7|~D3i8PVFkz| zgCd(5MUrTsS@#s%eL=Kyb>1|*Zje@_J;CL=PXB3?R<5h;x^}rD-nWgr7ppt({+aTsDzQ^%uJvN&ZZb`-T|9rTt{Q5s zPu6L7cS?9XGI7dk5SNnT@w4ydLuucLaK`N;71~=W!SUFU6yZDe?0JXK##?ARCZx#f zl-PJm+`q@+{m4XlVfC`hs@jT5MU~!0qQSi>C~7^rlm%8SoNzisi`^BecUyt>QJjTx z@J(WJve96BMYHTr^Z@=#mM&FPPza8S+I#lw+3>J1aa77){8kZ6EPQ+_WueklSQHNd z%_b+tjOx>EH}PAB0j;bG7bjKm;X7FE2j7r|!szrZkio7sP%5vv$UnxzV;$M`R#sM< z_Mg7OV^$v(9LyA7^z3Zj&uiBPUAif)NUYq5}- z=!G4=y(*(n?5?J#3vRqt(nNmHRjxX z_vX#ws;`6(xpF9Z*HbKRF1rDJK3}Pf$OuBfP|Pw5u9TNFyHzo~C#@|m}5&Yn4= zk7uA;i;ST?S+{Q)n^va!()H}5reUHQRYfZr8bSVYetyxNoyPdCH6KgU@EE=da*>H$ zgAZ;EIJmVq^|RQ9vG@M>qu*uh*oF!Bz5A5gD_PN z531NMJUpEL!q)(%w=MlFJUmJO#vSFMIur7sBuKg9Ta#>B7XhB3`)KU4n5xZf+XglW z=(*YPXq`B52bB+DL27DhbZYs0i~Oz`@hTNm0-9h|B0Eb0JSgf&F zHf`Sg(B0j#aw<q=E;Pf?GS>XHgA z^Kjd|raCH$xgXRNc)Ze$&%^CGScE-)n6pS(e~xRLe!3UUUEuG9?zaV zQ$P^Aa%Dcjm9FkSK2dFDp`?^PPNm9DO-^u|)eA1C=Pys+%y`kXCULaWk^PGH?xAnz zS=gn_4+Q%xD(WyW%@|aoX=bP*e2;!>bQuK7YmLigC_~+$mN8Ugbn9kYrP>-wfB-lp zLS1alPqhjzU(Wj>ps&w-Vzeqt$=W)}4=f(p%flZmT&ndZ$4B<;-CLgjnDe2VThI=% zd-^~FSS-Jc?FBM$W0qDrbm-S(E(|oBxygs;ab>%R>O}Ee|JS1e7#R%$j%eOl{ zTMKv_$}5z$Xu^)8t-x4{cz)HPz#mxpB|AOUpCCLJ_=_~8+cQ$Oa?Re6_hQK$0j~c3 zG41V!^e7q#Fh=b86wtKd`VpWqKn;GU@#lDGs1NANnc3N;0O|Sd2Ex3&y%Wzj9z$4E zKe>kDVF@y+6;Z5=H70#~_CCw8uH?Lyegn`^h*hPYnFBlTGKy&WJM`U5DQuXUw3&|3 zNQ(o2=&A%jn`TW|BNLniV@Eg(r>~b8^>gphH}eB?P17ErC=5}4jb<}W1^^*0y8ARG zMMY$?*Co-kj-LbxlFyn8y!F_fL0S!dzRh7+5ur$ECgG7UYae=g4v&khp{ReEz4DW5 za}(y=c+TO}d%GrH&m{@L3HP7^Ta%afTd#|A6qrgyQlJiYnK`SKzP;_1_3iU*g1NA> zgU&bR7+{eS)(?2avO-bW;H~RUpu1#CT-0$_B$a|L0)N{={VU1yq@9d=WxR6!TsxEq zmQ4?pkGnEB4#)}tFgEuQ#^L3q1*!do0z0XobA0L@`U@B)lIKu-j?yR;pXG_K>`?fu zI)67qBm{YWcm5GpU88@o#h;3Vq$u9^$5RhZppotu$UNSEEsSq2J9|?)lyQ0qV{2I zlq+i!=MwgNNk?2&M%|o~rS?4;p$Hm)B&=XB!B0O=sJ?_mtGw;D&*_%p18fq4Ik6Qys>_7@JMuh-G0T&%yLs?9+tvz1O?=i!F! z0ahS{7jBI7f;zsuA7Y5yA7O|CAI?(-*5E|7LAxBC__Wel#>y(O8z)Hiq-#-&JQ7Xj z*Q*@!Czfs4_c1*=&Zvsr_rUqXgw8Qd?>)AhLGUCa9!j#`4ge{TpNCr9{PA;eTP;HD zlou)BK8sv;N(_9kC^C3`i_Q+41!Bk(#)(!j0B!F75@RT}n%KBaY2;^)s_ z8>S{2MnN7%)S6{!l)jbMcbe$X0-Diqm15YL=rCeVSakW26AzeZ8fi)h{xz}MmkETQ z<-$5DX=PV_TFXT3sEScWR7x_gesXgy^RZo9E;5MGVpl>qxKgm$EIlwGfeRIRm{yik zYIkbKK$-uf0)hi)QEff;&^mVYu4S()&5{MQWE*{p*HO zgfDAbM$lDh+S5EZw4xClABVo1sB)h0B++hu#Vx|=5uO`hte~t-O337SV?$H9Nm6oh z2XJCVe37tG<@B411pDvcs(+OVZE+mp><=b+oXOP(A>X&zj<063IrKrW8>iKmo)M==4m4cFGUDlDfOw@3MP?YhP4LW9(qT!jh(=)Fkyspi%=CpYb>zVkAVQ!(v zeZ8Lk30dxm61!;a<5d}FA`oYn1mdp0`?5yHI(y?Zp`m?XG9=XL8yno?0w0og?0eNy`VW~A;*UToqO3d&Z7*NLSvvTP61GBt+(${1gVB!BywY9M8rFF(+$^9N8$+* z`Um8JAy(+2qEEwP-1bAp%Qx&hc=P5>FD?Vu6^z1Lx_479GRUZ^Mi5qu)L_w>qlS== zq&ao-i&55_3_TWc&O~D8wrD;<*y=YAcGRTX#^W*O3+H*Tm3?{ZrYIv5P!c4@3JPa4 zuW6@c%WlfSp5Gw)9$J@fu**)|%z>@EqQU?;9Q6i4hlAi9+pG2bD*(_=58(n!N}oz3 zLc8hukRlK8hswmz*qCdK+@ADwbwnWoXizJ;1G6P1B`pq~8x_i%DYEq!yGEmJEG$$+ zwJNa66|=xVHT}Z*VvQF+s;65C@uz_6Mez~=D1{RStUUI-k>XLYxq)%jMhLs-Mj1|R zqhJ3BEUc1)gTocE%k=?xt6Y($Lu?vJNMIxZz-x@tKHp-^&)WPK^@Pa)a1BtU;@a}f zTsk?+5SERA$Ou1cyCetYArUvhx9Ow))h?KS@~6bPq3w4Q=N>%sC(-%ly?d1eyrMv& z${jv@_@pUs4GLJSI>49@t~Ra**8WK{C%3UQQcC_pS7H^{`Oin|AO~St6%%Am*o~DU zrjmQFLH`mp9&^4D51Ef{yV=uQgTsm$ZZ+S}I9@D9WWDxt@Y$X^9Pp@_w#fL2ysZ<(NAVnV|w zS2S5`uzRYrD~DQ#mTjzY+)P(zq{+IisPguEkPMj)pT>D{tN71dJ4sm7lA)z7Y-1?Oit($_?Uy?o*RmLg^7Iiy%kP36D4VgF&`6@u7Ztylf* zEFthwPh+2OIgMX{5FDbcDYg`cJ~%vm=oILHO)V|{)+yPa?&mf>$Zg~^@qhmOz(Ws@ zh=hcMMaLH7y<1D4hy1H~N&|!-Vm~2*q;qK*JKz4WlK3GTd4S6RhsEpEPj$j_hHvg~ ziwF<33!;4<>lS_`ukB% zuJbxNbFkLIRL8*nM~@x_1O@SL_>Uu{M9*MH6)RXPwIt&bpnQ&fD`t)t6;La7oNUVD zh*khY-I-&ij$dCcat#J!@CGCt2S-t7$M3Y^aaWXIKQEqtX*3v&tbjmmCn0e08tbTh zAh+Y#onqn)n67~k#ny3XMq$YqAYYQ05?o$h9$*Dwg@7?Csih#4A%a(hOXrSikizAA zgaj=qvvpOg)D_K`9WHg|FnrB;!QS3`Og;>J!>*@9wCnGIG*y8VYK7{B)b+%svXi>v z`VM{i?0x)+zU{`2P^}X6OP)w|sU@2#BKF&CKY6XHcv=~BQ)X>lHkKTIPgK1oX)^j;=kO+d*;n5 zNbZkBAnd_8&)$+`Hx?d+J4E8ct z1x3ZD2e+;&XBHCDsIIQoWhBR`%zYq7xp_xpGET{m(80txdX9+`eQ*BIAi-mID$01nqDFd74(@NhcodZL>aJKOu2Y_1MGzt z86eOMqE2ZG@ivu1%*Jwra1VUEi%Q~>sOVLI>h07`!Vb?NBH~9N(V3_qVQbQCV!%C0 zrP2RU&0QNhaz?>2W<+LFpK->G?-4OhjRA?7I5HQ9+x9oN!5>(B)>9({0Gc?tP_L5O z@qZ^H+VTp|ER(unYzM1vU$q_ky&K9El{KES$cOBP>LXy?Sq!~{o$B?EwNlGTD8+=I zfTnntK}Z!9JMohNe(j)JN?CRK|E?xZ@7k7|JIJ0T(pb(cna$wRlHfR7^x(0ta#=ws z-aK26ZQ?cc(R7}$f?HO`d1|b|3XJ+AN8IuR%QiUxlVgNB`uzGf+2q6(s&xh>nIV)U z6bZ!2(Ol>o39y0+qE~bwdgnEjKH9INprXP;MfU%*WEj7a5@6E^b$R+&FBdWDH@$o4#i@6X zP%{}5L$#ybHd(9)7-KzIT42ar-MzdvC1}pp6;yx%cqJ{Cg=f7T{15RMwZAnOjt&DXb>%{;M6i@5wGE<} z*^mX<^ALl{o^St`J-<17&G((|%GT>V^#K)(OqxcY)m7ul(hna#=oA&q@(%w8DUSWe zvZ4N~!8N~EAK32GvLRconYC}a&KC{7%S_cA4SEj>yzVgw)%}D)4*6hM2un6 zDV2qjlY|`TkBIedOhgQXnFw~*2TU^>oIHL6!0sB1Ti;ceri`egVOrH>{uX9CLmPhI zq_I`izZ$PwWz{G3AXGO_GL!v&fvVjvMGG`q)8QjS#RI)f*IRo7j4=cxLa)rZM<0nA zbOEj9M;wU5wj(4FpIS|fDAt|t1D`zE4h6)y3=wJoC4&*nm#$}=av(*@+1jQ+9gJMW zaN*z&{0D<$4O5zFHa(TZ7w`vJ(;~!@Xwf1iG&SCz3VrT!jl}E*I~jLaz@{5kX(jMy zP+ALwiB!nJp{%0vILWLb8bTN90C?HD#@)!0jlD8kbc_P7&>(>mw;5h*0`Y@SDPFlo>zjwELeD<@HviF$IK z(dmHxOhF?H_L|tVP{p0q(_1un^Y(3d1A}lZorvaUUFeIlFb;gWGl%k=f-~cWXSvR4 ztjl-BZJ|GWojm_jRtMHlOXjfD1RfEY8Y!wtvCs=WOSW{rz-deIKe-SOiJi0>_}gx7 z`%=+0@7IGiI|dBtZ96?Ap4t2V>|Cm6qWIh}Np8Lz79YVNKTCI4^-%|AV58ou>l#T~@ zxdvqOAxALGUUrgZxD;%LGyOnEi0K zBDz^TYpqh$%~RBUYkZ|byM&KgZ}qmS=0j)9Yg1ctvF{~N4S_%8uj}0oS0d;?U3-AX zTeohxKYaKU1|L$FgG+?%@*&esW@aNW1zrL+(Qf z^Iz87(@>pZwyLxXTBJp}fm9XBCZU(B`F49<`%|Pjl#9NhVX4sYhoJSE7Y@O$!dbig zFHjt?ST)U>Mucwd?1j@BK1t1b{*Fq3;>B172{2lt8ZrX=``{KDUnpCzK&Pb)+)#kmBI-%5N~pmI@9Eud#pR8xzbRxIkE1?j_YG|jmZ-_?ib=ZV~{lG)J7 zAC+dlkf=&xTUXtmkz3Gpb~Ja5;rAY}w$_rM2Mlv5AGhaV$!rbIabbkJp*+pmG1u&UH0@Gb{t5^U3Z%X`8sU8hRfPlTkD$Pjfi4pMo zk_HU|!7WmLgjj^GH}q6>R>yOrm22m&U4}5g@;iJxr(a6$4-(NDBqDD8;;j>3uZxsN zYosMW-LEsxVXPHJ;~p|^sca@#t>^a5qS^}2+$=pJeE8R zff6qBN!S42*<(>(+}V^ z1+c!QZ5z3Q7Y0`La(hrhYJGdPo{0))AAm}zQ=glEE3jlHG{Pf_ zYeZGRq08Id=TnO5>r#tHh|7%lpGI>hNZ=1f{pEhSLtgxh+@7=rO1&{V0L0(7sd&m*0 z^F#F1Al$PvKYbpVEcBjTZS3uiF{y$-D&h4GlBmFijZk~5qMZ^C(^=dVZ4pnV#*3!P zO_J+&-88yFp-6#b_!}H(Uhc*p91_xwCKX-(_wU~aY~DSC-9J>+YIgo>QS4?js7rE) z+~tMKOIJF7JJK&jBLtgr)~F(R{ztAY+aI&~8O(}A0>Eu0g%}dHnP0aC0wmf_09sA} zp%VNFWdm3Fx~-maY92flr8+J`ApoPS?CjkM)7D#^84CY|)$Bgok z7(>ZFW=nt-{L4dNvH&!1zEUTj{-dA zP!V%{6qXEf9}eE9nVyuv_IZ75`Udu3gIr_RjDBzi+aKZ%Qvo~=nSiPU=GkAn^uKre z+Xl0N+#y+amASHp)x+tNCnjNZ0TU|=@oVHAalE^V#bJGnq(aNm2gh#Fa|Bnv{9cX? ze0goeQH~;-*a%QWd-3MHM{Q?2afnLVJkZmjAR}|CeuGYd7q`0eD#~8cLUZs9+M&GG z^B18nl|&9V|M8=6dJgZrI=N|^+&6a3F>j6Q1?01QIf4yZX0O<;?{i`u+KkK=2w5N4 z0-^$6p&EbE2C84qq1erzCQs3Wh~8YV+XY5fmcj8|nuQfhbd{G?i&=K>zCX}obOk1Hxuk#5-yk8Vf=4F^BNm2*vjb1f0mgx_%?A@yX zCJ8|@!EwwQL^lhXiDBmsl=v@F~0se)U*-j;;8tJD) zsYask;NYNYqTxeyfrlccfo6@-ih)^$^u0jdUnV;p)1mArt+$j6hnJBm2RrXh>Y^1} z?nB+gEQ{*g|DjgHl@C?Yc03h^M-?4ydtZGQ8LRiNCHHsiKo2z>Ez}BVm?}ZnssI~d zM_ra@x0YK+a1OGtvscde-|A8o!Nt{Wu$n5Ai76DN<%jEkb>5xlAdPtCIq72 z3fXZbBYS8W3w{LsfGP(_L1;+STI|UXyJz87VK?Ac`x4cRfg}3K@hX22NAR&jrL?8K zMPA$zFs)XB+eFYHUAZXI(QiU!mab*RvV;c>Dqf;Zk0xo`C0%&s;qp7F@J*7&M8fxz z=teq}yEBG0XIm90FH%8sSYgD%ZUk~--G?hI5zdJKVVJiYdv`-_gRN(ifOQlejNkq*jSV-a8<`GA z)rR)?-uU*ve^(D&K<^Z3*hNyegu54e=0EJ83ety_@y}b=o*hq64UGWf zRRy;DEE`{lwx#!EE`mQB9(GTr!5-(n6=6Tz$K`i6a{f*C1gPmWmwVSUoYyn#O%y&R z-}Fb0Xsyx+7)mM@Zm?~A?-ZO{vi7^6=tj>uhZ1#}}8iw)G_VZLcd) zn>ADf{sPO=60D~wRd_a46ZB<6hoI!{*|zP|rFctmcbIPd?h7?s{c4x-fZ?!9-0TKn z1HJqQgAtG`INBOC-J@XEP;c-UHdH&~4aY*0^l5s6BM5kK~!PKt!{3{<462x>wmwT>9p%%TIX0KXHCnD zU79q9Qg~Z?gWW)h*x)9 zA}+hJddK&TH{tnv#X_umz>rnw%RxUiee`Y;>Fn-LFhh^jKD!}DW$eK3%<9lA;}4nY z$bo69Cu6~EPCrSn_tVQuo%Vs4VMSg8s^4|9&!10EHwL2@1^JL04Y6GfSt4OBKcY>3Gkk= zWnGLVXz3C|3>vi%5U~Lt5^vyNCvE&2uPAy~w^E6!0yAI&TFWJU4(#ttp-}3wVOGFv zdjv!nSHg$?xnXkX4`=62>R(GTlc71YzTp>bmgl|d9x^&@7aewaaf%kH0c5As*V?fW2`43|KF)5mOAB?p9bxA2wh>&@ie|UHP!+u_EJrn zKgV1xuL@)Sn2OG4J*lU2jS)M9hCa+Jl^Zvz!r2L_MGEc4avB|9Kus?l44+mS8=^Cy zy*r_i?P^~9>m{Iy7M6J{}MCj zAvzDgeY@}nVe&5)^!T2CHbEAr&CFig8l@Di&O$|+HkKKK*guGVNpaVI?yH{q$G&R1 z1(b7hh>CzBK#6!_U4E2Wxvm7wqg;_-D&!{%3GA8ZJz{sbaYZAtC|$7S<<~pJ-FIUZ zF@TcS!T0B<1#t?cH8Y-m#4*B}+TO5s$FHJRW8&e6_{1h61M3icA)1bZ6#-5EIa>L4 z>C*H^P+st-ItG^mOjyEp-3CiRIXWn+4Qywl2h>Y_7>bB%4d@@3$fns6|zdn|4$(Vm-egq)Y8BD&DXCYatmHct4fWI z|Ir2XC(A@QY2-$)-LD6?hDqbrU>K01ib{1;u=~I6`l`zYBDshBO(zz&y|JiKU#I)M zyzPAS6F%gk;}uJ}cP;%?S5zpMYtSJq?)e*v58YV6rzuF&ElU|(%J~D< zG|t2fiJA;FBaj9T0hmvTgQjlZK{W9V%?d45rY1~9H}Alse7=6=e_o@pIX+we`}LGUE4f*ncVBbUBPa0 za6EjsT@C%S1~ih6ZY*}sNcps~Ho=MOZ!9vls&h=Nvdb}E2cPsbS)#iA@%4_CWO*O( zzAtrr#uc5{F=z-8-j$5SA@wNiH?F}LzLD2v`L1Iy0;t%Pl=0|KiNJUR_iSW>!x`

sNL(q zMMWXEJJxpdpA7ZM8?!3mbC}!ZI@~y!l)lc(H>Q8)dRcz|K(J%r!$UQGY}@RH6uhn~ zGFs#UkA}MczT?+?TI}jxG3e$R1zP=;bMatE8PhcD7g;1+awDHz>gD}ljY#zA`z*@l z+zNBv)rrx|&bHL{&5WhfnhU#67xUA}mKV$f1*=;=pWKS4d@(+5g6L}F-~UNSl~v}1 ze?t7L9&nXFrz&}UJWces>DP~kY1(VFI#jibyUe_Y((*!c7IFpH)MiYM7uCMA-4}f1 z&>3`Pem@KeuCWoEj(KmAZ{T~aO*2hn_^USYOp@1?e!sNo-z$7&?IySWOjWz7{}i#l<4U`Kq?oZ!+eRruAB{tUS_C)vohNS% z)pnt>M9+h_QG3ebTq!$*I~Lo zkJ5V8?un8mclAIu&#oZK3)OGxb10QR$L)BkY1g(BrRntVkv4fExRRJXKpLIU`z4Uf zJd!6N*YK@)Wp_MhOn%7RgTGw~R`NNN`#O)~9d∋i4D2>{68|f!6I0s$aa`ds^%` zvDuQjCdrwDY#PW;#OFi6pn20fQ;{ms5$(AY_PK%4bb11Zmrza#1xC@m7~vlrzH={E zV}kN6`NkF&Qnf%fo5*z@7n89Ey92~3FgQG`dJ+1klv$Fk#<5kNT3T{#9aT;zzG2)x zx3P%5Cn-p*$Sk8D&iV2WAEHoGziYF+W>qUx@SUV_?0frG%Whfrjj!T`(z}hW4)oZ? zp4E~p_HSuSH#&Y}{xV;OI-aCAZLNWKucS;`#r988XUwnVx29-x{_oA6yeN#RH9b3) zCn3b|ajz(dKDB@Bb-1H|Q`TY$UzhtgbUQvZm~@UiM>89V9>wB;5TVPq2@w?!R!(w|CD_%6(dp^6RMEbF=HKSX9;Mw7 zAH0d_RD_ftw7XoBp&5fd9J-s^z#wm&oykc#WwKhp(G2baLg~6=#sg7W$&3ovvckj| zY?BE%^Z$^wW^Sp79yz@<-QS`ms7|4@`_TUVY0-a+v=vk zWF@g##m|lYnJjDSu^;|RURu{;gHpy626K?t-aId5t{D;d;?o&0i3kw;qXLy1V zTo0!^a;FD%IFC0n?hpz#?Y|&MT+$+#Q1rv5$JJYU+el$=^Wpq;2vhLk44|25A)AQj z-XFVePLw3ZpSAz^>mvTHTo5?>!=%mfm0-OlwmUeR2$e%Tys*M98jNdq67V!usx$jX zL0@rLMLJMvfF0fW87&z8o6-sNvwZ$b?Dax3li4 zr;(26t2c=nqXztx-oC(GO|m4KG*Qpm9NmG@4@$<}G$le+iF& zYR`$@puw-kLnWimE)O+^NP1uL7|t<JTtJu3rsZLMmSIkRY%xrjdaA-5eH;hFw%dm#geZmCg zdZ!?zD+c}>*Y!J37ESHPyuk+nNn{K~j`Mh~^HKeyEiG@E{kfvkx>MObF=k;ip6NGy zj(!s9c$}Rzm9p>d*KzS*z}^+)wzxLUPMwlfQqmpbGyig9H67jAbTrgxZyu}m@haH2 zOa}se4z#|CvS^)$#;DM*F$Fz&@@n5Q`!0xM8?QMI!6tePcHTQvW6o1Cv>}z<mD9018v+S~ZwGR6@YPZdG*B6o zhslyjCy!sR;49jB`}d|Nn;PMa3TU$-T9~>zJ&uG}!eC!5XG{LDJ*$D^?WXF#@d%yq z4XN*Tsn}=1Ek=wP@C4d@c_8*(6XY4&`!jYzp22Wc%)<|p-j@6V(%W|TP z`<4Bws!f}yR5KLKUvTEehU?j@2j1_yBW03NhcnTgbi`a3;-4Xt=U`B+OyB24Z*G0S zf3MP;F$AydaeLTO%+1X$Apv$wO=L}l!hG&yol)=JRU*b%;U{Dd{bfihFDkP^%Cq3z zSXV@3bSW8kh-ncDWOfHOMhNLOOsN=F*eGAf zWYibj{Q?E)Xos`*dL8ctA_{!D0$C@v$;$-32zu`Qz4t=EgfUVa^OMj;5RDO&T5>%_ zJZRP?<9uq+@qtq1Oj50OmM^=Sa#TVC*qFhq91e$I7a;`{+I>U)$G0 z9xmvOXx9*e^JK=YEwEc}rk`uCXTSQhWq%!&WR#Llk_7C|?j9by!iUKyZ;WIJBSVg- z=aJ~@>K2=`_9Vxj?YN~lq^7(q`+h@D@__JCZe++O$?@;(S0rwKM1B%R=PQf-m*J~e zZxKfKGU{1F>Y6y!5?bDq;kj7%*UH+s;6*$;J;M%;QH)I0M<$rMF;JX(7BiG`)XXx@ zVphT;_`L=0fRo$7!tyr17o&5ENdO@y6od%+t(iB=Ao%Iijpzzl&0wpCKE|Bxy0p7> zX*Qc(??AEJ1PeD08j1Bcpi=tSH<2|LQ>TjXG|QUEiMv{{}Al1y&h10COn$Ou{WQhsMpvz-NE5Cc9Z!=GJRWCLxcY1YX5pjh|8(IPS^mtmkI6l$F$?MPh^S?jf@YI|u-Rfi8 T>y{lRzep98IvRcW)TRFit9@*B diff --git a/_images/2ea558f42b3d4c8ba2ab1c80d56cc99b1ea2b54ce303557c4c8f64d06065de6f.png b/_images/2ea558f42b3d4c8ba2ab1c80d56cc99b1ea2b54ce303557c4c8f64d06065de6f.png deleted file mode 100644 index 8967676c518559d17fe8833da6bcdf8d0ed73b03..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 11964 zcmeHNcUY5amXH1F6}filUPTcQxHRdYf=H;+k*Xp!G=b1U5gQhYMg$2UQY5s1(n1SZ ziGuV{qy&&oC?cVSw&!zZXYTAXv%7a@{@Z;X0Rzd`-t+#>ubg`qbkDQx;M{>iq1ezG zY6d9O#xxXagZEEc;Wu*+g}LB|ocB31Z$o!`Z{N$Fb|{_8-X1RQ-Y!m84*S@7dO5kf zNs7vd{&w=Pqqnz*m%Nym>tEg=>h9?vrg$*-7dXgv4~>gnC=~l;oNnh7Pq=IDEP~DP)>`Q3xjDv@Nj2!& zk3*#@6nGbPY70l{m)n(QXI~Pu8|G1VbtWmr*`0|#^1Sc2*Vy$YdE)kc>Y4*$j7%GCOy83kr4J_<#RG=gL^~3r|^Y zdQxBCrDOd3qr>s;Z4OC6_Bj6ynC_Bm&h5E9*OJ`Za}%p0xJH6jT1{;}^?NwNhk|(= zmc9=WWZdbWME0Nv7hg_pLCI21Ud&e;NeZcq@0<8J4sm@j%U5&Tf5|sB_*|t(S~Ae+;AMh*%=uZ)YNWG+M#~B(4D`nF(>kN%XHN` z-660xMubz&GwsTiEBg){NPnh;8!u|No>gAY3t83L6{h;&pjfWth|2nso*efsl4WVL z!u%J9Bq!!*(|BX@%>-SdXi4A3)uo1zdH+DJi3o1g}WAJM7@cN9tBbLukIW zYhirBjXb{H$!Tf)a*4W$LGxe6+w+pzNERbjvsuR3h3>t|Nn~SguWx;4be{fp206l6 zRn@s{n^jFohx+KQ$$7c?WYsXK;1$0Q@84%wmHU* zOLpxl9;@bZH(H*bq$reG6uUIl$@J#H1)oq;NX1bJ+hBCpNCVlkT}8x&JVM;(U-2S?N6-3-p1yA3r&d>~e7ri7cP;g4w{ zm!BjTD{7Usi${KxfXRKtAG9(<9q%IN$z#XU1fKbw6^+%xwCA?2uQaTWQu#t?ITs58 ztyOHRcg``|^%_*xD{5+Lyw_J3Fz@f~W(_{p+qZAuVEdA>kx@p-`dVjINR|EPr^&oZ z0gek(J*<|bwX{S9U+11OtaAUfUsiVZs{B+#PXL3|S?n6m8^qL4#7&jTdyhUWcI`^v zv~8CL{(z`uhQd^ds!ia`ZIc|c{@Kpd^HI)yuR~d1ABaie=3VASn^dPM3(xZN^9yaM zyGZ6mns_4%i|pM;)g7S#Yd(H#JQi!2!mhk{S~YB!(o|Vgq-oyZ7dDNZMzV zm6_w_C-lwD2~#BlyGRyf-6*B`r+fD9mG=KW__#6>by5P=xH;zJ#Vh=Ab@4J>QB>QS z+S)pTG$y=uNW#<#`((yXk={Ampwi2n_|oF=`H<}$c0RW~d-iDS=tPKDKP4swcWOw$ zIcD0p75y4z6Llr+YW7WcJp5Hvn;OZZCN6ABV{; zttL*vMw7&U-o_W$$HV9@E#Oe_aY>w==&h<6gRg~aCMGdXE$I=0Cr*6JT<+>!v*(X% z%{EOM&5wI!OXWlhtSl|b&rkJW_~VXg#rRPH9vol;>G>sK@+fWIQ{AQYi%?v){BiBp zxH^ZGS5#g}ytbQLE?l^Awh0H?zA5FLGWO!di|Y6|X-tf-OIr^7cL~iyGtu_{0 zBp0~&(y6PM{;GJUr2?bG;*(6Ee>8N?-e|9B&9y^d=zi%a9w;*o2=)c zMiNyifcY>@o*cn7z_-2_hJXBcF1~lAdZa`3&dx{g`Wpd~I1`S-F5a?b%iP+nurQfL zR;_5cwpOfY>(MC16j=6UEQ6KkOV{rzcEt`v$gslsaOH2i+^a;;H4P21{1KeeHN>eH z3pcr`ZkcWm)x=lt!q^#W%hT*96>T|p(25@|@6mT1wx)E*+KT)vPx*@w zmr7f}qaa>|L|wFjo!yJxk>%BeUPfw^a+cS`$B!Buw&UF8%C4P-`hY`>Rj91~5S=R4 zcs8ekPtLQDHGivXANJqBcdyBn+>@S?lCsqX*Y|ousb#LbyYMJL{f(P9DdbglZrSJ1 z17Q;`(mqhBe7;k+Zrzf%h3(#UW6RIp%addbJPX#hckIR&E<7)2P%fu4)@uiD-?_u< zyE598Dj;i!3JqU)xY5zzpruFX!cA=e5F^-4$Q7(kx`(tx$k0cFqWYL)El*-%Os2V! zeGg#U&mPifv(7Rd8XC$pBf=zp_)v9vT z%aFiou%K2`MO8<Q?dO{o<-fKx zLQ&{L)oUYnk_9c0pd3_|t`na=R2$1!s9L8y3!1;k#&t>?_FGfQwE^#Xxsg$LJV;>| zx^|sfoy!ZEt5iO5LWA7n6F*#^2t?$>ix)2h<>fm^4(Tb)Mdwz0*Ib<^SGD%|_L89G zW>i#ICWWk(uB|OpF<@WL;CjgPfb3wPMwqv^wwLwa;X)d}or42oqM%_uQ%g^;osn0S zo1I&xxzOXA6u=x!?(8%V0+6byt80xGG^7#rk{*})MO-j9&kEhN%^A3h{QAo5eh!Yz z8#gwRE*4ZfY%9YpOa;L1FLZ1=GB@5@yL>7XY3m_tvq{oE6J|kkt)}C2O8F_b?u^f$ zwXMABq&3m#NBl?=UuDg;z*&q;Owz3>0b@7WmA`FmudXOMEF`3f^bp>Vm1|H|nE*Ke zDD7WAJixYHbdau{+t4Wgi^c}2a`fZlPH%2(2^dWd^R5*kJ0g7(HqhK?YLt+YlGU+e z$L>c&wB9~wZ8oAR*{nyNEXdDizGGLREf28{TKgp0jlS@R zg@JozO_fhGKT9?^e!?Hq)YWZ+ZG*Jrq%!#2IAwv}k|5{B?DlGK0$kX^&TdN7O^n9l zQ(!3)Xfs^GCr@f4G^JLoDhFx9yiw;9<+05GEqMST{){Qgg7qYwVj*e&`2w`NaB+$1 z6Yvp6dtUqJILSG{F$O~8txV!ixiX=0tPIn&o8Z(&#>Ov#S6NP9^6ko2 zzSnZ`oQM^($;C}mOk2`*450_H<`~3^iVAr?gN+{c*MQPbo%ylxT+lntc9hl2x~P^i~J8wKH2&XI>3;YF6oQgS*{ zVo+}P!^3lCv&Z0%my*QQ0i1yKx_pauD6Bcnf`S$l6#O(V0e@}0?q0d1&ZFR?cv&ZV zXWFAjkMP0rZ(uLfW^d<)XIffXs;Q%6tf6sta;Q&bRO?cTSm*=#=HskAB^!%m?Ck6` zH8sBv7w>g?63XmwWx)qGjy3ox@}5&uJ0T<_^n5K;v85^YwVKVwgOu&s%wrx~0^B)g z=QWjSo8j!)pcYW5m-kO20`OmWA=EJs4**qfWW{TSt?`n*8J;ip7%$mYV>KXqdD7G? zS7~TKdYccd0_xKK(0%Y$6J$yL-7i`Nw>0PEoCHDgf=I+s!^MF=Ubu241t4Df(rXly zW7i1QjcoDwxQ+oJKhV}}XwJ@nb;Nw+q6!TJcr-04OyCpB17E&;At?Cf9yn?C z93Y|8Qk0EX(F|6TPGB;=R zEI;3_w$N)t7Z_@;Q$4aqB=v8fDn_5-rka2wW=BWwQ~Lh#D1C;4Tgb}D(13nH7bmu4 zuB|R(V3U;1)+-cY87BUUyh()j@73Uh$gepiu4*I>l=is6zv+Sed_Ux^bn3!0@ z{GJQ!tUXUhwfa(ILhn^dktS*hZn6{Ob@Sus`dtzAOuH% z9!MoY8&Zyn5XV*rkEuzw5cS#zKRu>I)z;KRM@Og8Xz)bOEnVA6l!>CIR#Ye=O9l+8 zIQHiHb1^v8X3>DXaNb#sdNUlC=&b=cfD-P_mnoO*%Zz0#aywlK+ zP4+{RH_fxAzakJgDa%vk<}WXW&QE+fI!3f=ymf1{yUw+1uYB8SL!OygS(*UK%H?SQ z>mbA2DO9X{qNjW!wp#V<*+ngV_S_%)_b->w;@O@cdzvL}N=kjRWS;N4#$B7oF3rX% zrJ>+EMT_K7s8E5GMJO>Mj#kG_tMIi$-@nx7Wn~!z2Up6t%#XKfA>>f{_U+q1^V_d& zLf}Z(CV29py1KfMoZJ_O9MG`PCgviEM53^yq#>v`L$X^>bX;8K-Mc?U@G6<(_wn$M zW(KI3nrK0Ir?IwnI3mBNddh{59eZ(4_h+Q;KA?kY*3^&&UsI!rh-$de@fKo~r z%Q2Gw_fG=*xw&)nQ`Ix`^9^opWovGJp|yYCJ{qkSHu~x73PY#MF2CEFL>}r8Xk>!PHcR~TO(Afi~ zhbKE;rGn9uDq>NLsQ5Av6WAVXyT7V~k54he^|t(cAmjP-(_l{kBR28(FZGT5M|hg< z)UXpNz#BH9-r!P{4HGclQ>7#00MV_8hVhx~bebKmlc;v2SNId;ywbrTh)zhzIcO88 z47NO3D#XJ_v2bI>QMfaoXfA5pvgL zkfn*qarAdTMfisRC8MLLkFfc`?{Sjd;i24|T<4)A6}_}$%Oef1R(7Q!%E4!%11zmw zV<5rXJ6_p7NlKayqW60&(ztBL!&ePdr9saVlyE+YGu_>mzz!Duw-T!W9lNwnEB%gE zG#BQJVaiH*r>wdz)s44i$4^~n%gD%Z^d`3=F;&Xqj7D=2QkP^DaF72RMz}K@|DpIPJc1s^*Yq z4Hc8~1E{A@v$U!YK|jMzb{a!f`TP5ie<>jHBZ$1Tv=lJ$ipr0s1k4!#kNW=oyOcBS z1lj<+1t^{u6B82yyzj=mYsS3WIM}yu?-x6#R3eJ>34~;g>Hy=?skQR@iW+OTEQ;JZ zg84*W@;X_yaV(reQp%;{Hvqy+kR}KbczO9ISS3fnID~4pv$xLzwmsfPibsUl?%l~y z6k7O{)KqCO?sVcL&b@l|3enZHOv6?R&i6%H+M;g^Qb{6<`!%Z8*KmlnCUo+ok+*jt zB3`61ZI0ji-r&=KUn3X`hQI|h`W}lpmWnK?x_ZEf-#?5$d-H6Y0iDbglXN=3zHq1!9!lsi2K z_Bq%S!qU>l;78B2U3GB4fDMQcnH@WJ40@JI`F*?eBsLa@0iUqw%7-0bIy(+jN63TA z2gYVDfj~%Ckc8tF?s&7dFAs$A$P5_Jv}Dz7u03VOh?oukJ+nnOgH4^WxacQhQ)%f- z_a}n?TI4r#g#tS6hdhSHpp8bO&B<0TR9hFyJqSvXk8ZGXrizZ)?7{S703aPcxYE z48;)-*+AYOK-+xJ8N6)J(G&6mpxy4@z5C6!)#1(`0NP0q4v6v}s(BIsLbCOh?fL1F z+95o%Mbz=^*&DtUB_$o@m~qciL?Gkwdy=f0zka7xFrZTMNXQbpURK^6Ge^9FDPIr<+hAPw~XaT^6uI5*5-bIhZQ0>5OvxV4^ov7 zQ$GBDLvvoKGY?yRJDxH-Vivrm8M1}*wXtID7VeZ6U|UY(lv7hv_w(|K{x@)o!%(C6 z@&pajPniAw0{PdO88PVjy;pFDZO3HDhGVI`JX+5zcCR0|HXfCRQ}Bmq-xVx z`E(@`E}a1I03ib2OM1g>^&z{fSCQZJ_xB?Sq|Y>c(s011T-vFbA2H}aK_N-#{B&=K zrU3XH*V{f#pAJAcV&KdN0MRp)28Tb6sE<|lA{C?gX07s4$IHu{r(Db^4IH*V%;y9- zLnkLEd>TSxK~y6ocB*1l7mRP`nXexLmWE=V;PFS$=EW{?cs#z)tw)}XLt=2B?lw3g zDWW%&sRsE^Hn7YW>FEJf2xD0b(|J1ar^f0PrfHCq4$b%lIz!&|1c);Hx|K_#$Bo?W zMqaoE*(?92ftim3Gg3o>h0fI6E$#d-8~1K z;x_~cv}AfVa9z;XZyN19&Xz`%<=&Mx^NTFBeMFdKDtc4q{|;;Y6LpCRx(WP z9tPJLGaNlCV{`7+30+fcV*CLMw+2u6JF%vl|a~!>yBe$U#WT>zy87TjsNs?$Kdw7kb#nKO4V$;R!6g7r`)Gu={6v1b0Y%ykj&A*>Q}p8~RMmTtA8Y(KlQbW2 z8vP%(U4eySoA_ar3uP;${d`cAHV~zf`}XZwEAOUrh%XupVRonG9`j!m@=1J2jayMt zTQH$an3*w#ibqBXAPyLVA(PgZm)|jGsC?Ow_Z7$Nzp%0zMUnh?Vp&2^&X&|I9cgdA zAB>2W`~w;z;5C4=#hCAMkL5=qJ!BdJa*pUHPwX%kWg}k2Z$q8Fl)pzKJ1eUYtUe^D zQyu^twX@L4FfrgiMLEJr<^8@rhp~-W(YBPn@uO?4?VQF&G@*_bb?Ksshg*02PNHuX z4GHjqtmc6E6C-PDQM5$0lo{sO!!?LJvNALEfr~cy!8g$T<1`05J16iGvDM`uMO`p1 zB=s(9)cCpI*{`o#JLvC~nsRD0Ou;7s^{8iNJEy9%E6n}AOf`+;aoS(7u&AgAxkw0m z86*`$*v=3#pnC&nBLEs*#I~)U`TbG%XHdkekx1>{y?bnJ=G)U?Rsys@Rsk0%c1wqL zBRq5s_}9>J(IK%lLCd8Tj-zl>E>9GK#&BEOnvLx(>{idU(BhOmeZ9+)pQ)RVnczD;P(4x};Ejlt| zuR}K>iIhy(*H}6oRsK7u-BY3)Mwf*x@c=OnrS|@J z^vdZv4k)$smG?h^r3JG-qcG0H^aq=Swmb{VgTp`%Jg!4XD=CpJa_urXdOnf{Ub@Ai zwyqf4+z{X~LH1gTyw60&w{IR+9&fgo7dk%DV+(TPWt$sbo~~+#peXw3(+n_HkpM6$ zXg*Gljp7vWhjiT?x)iCJIRtTcBaDmeJ9tn4P!-Uh78h12MY$6&Fyn`e>|{eQ=?oJX z(8aM`u4IJR%*GLmn0HQd_C<2br67YsKOZ=mv9JU?EGY?Gs53x#U{K*E`8b4!!X`Nv zU?K*|Es>OB@moLCrc-8%?4%Se7EEqEOj}M9#1F{i!f564R7)EAF%uTh9|O+0tiF4= zc-b0@fs9Oz!wg3=sH@geF9+~2kj#uOAJD>t_J#!Sj$qD#20#KkP$NOPxPN2;lK*_; z@OfmK3;aW`ZvRoO7EFc=Xc%O~Xbs|YxMf!)k7bS#lbm5BOnJ7DKtEK-iT`|mzp$>E z7ubw(*?Ek{H-wzHB`cW%a=Pe-l;DQ97Fl;`~@uITQ5ocUYj^W8-B15s1FA$(Vx(fSoh$lNY_Y}y6VX=^<2jX|=h0&n2j(!>(8R4=G&m@tg zMPq9r%%oa)F-P_H^6-2`$^k*qElL^yruvWH;m#)Z=Mo0jh_UA}SWYK7b6<2xg>wbAa9@CnqBV zh(Dw>AeVW-J%@0ZaxzEUO=LqfHeNtV9zpddrq+V@Dmy%3L?GL1q#hXz08)XdRXML= z@DepZ3F1d}w0^601P)gQcLp@{B$|%l0tRWgJj>8^Czu8WIqhUMuW+`+!wAWE=r&%2 z;J_^$%f!xAcjoOn*MjT6eNf8&^P!}kqyh2jkNqBnue0j4^;A|15y#_+uxS>Y98u8H zm)~xN*-XgPhD!2M#p;Cl`PGoQi)xUDFiC?vGl<*X-C@IgD`KXPX(!0)^93;<`I@pu zg8d`7yn4oTT4eQYbhidM$+OK>56mD_o+hrYBxp$;eSx7JTs|6ldyy$NK=M=wn0p+$ z{~87jfP%pK9BGt7*b_|N)g>yJ9#s#&0B*a~wXbSD-Yq(;-t|=*SVv?`zzN2~kP$jq z&LaCdP99m0(=eX+M9rPh1v{`1N`PcjWesq^j4ZblMQ0UYW`8`eh8b4#A?6EzX&Owc zr9ujWr1r4yW~U-Gq0}}vx4egJ5m>btB3hIO{%VF+*#23W17LSG*D4-`^cWJuBBz1n zc43&$fVP4k)jE7PGO`VNFR4L!SsNLI#I{=r+@nh!1kXh`Aw!1lr#f9R8@aHK;%@nq zDUiglh9zHF37p0fWpwhAE2ZE8@&X~morhv?A0|LtwM93YruhD;u1o^Y`$n6d<;h@a!# zE1l$hr(7UB2poPcqcaV&5vPDn+e2BTzkJ!aY^bl_Pl}Uth`bjWdCI+F=FXQ=FJkFX zjD>8(#Ixn(_GyYyD} zk@m3E%F=G+E(JZz7+a{+Ygk#jM%Jt(%$2y;!H5(Fa_c%U^~V!a^YfdbE}P!JfBzI( zk7VGY$1E8AM73L0)(2YKVw5UuS!AY^nOep zf&o58%Y5wr?aj8JwINr)s$Fw)YWR!!SMQP2i;LSn6QpZPEJX*r+UPC^C($#;G8j#P003K9!q5uE@ diff --git a/_images/41168d302d65513a23b33648085b60ecd1e2197c03f5caffca7b217c055890a0.png b/_images/41168d302d65513a23b33648085b60ecd1e2197c03f5caffca7b217c055890a0.png deleted file mode 100644 index d1f180dda30246f9fc24056ca9f5c1b027a7cd3f..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 21768 zcmbun1z447*EYPdFbPSeBoviUq+0<&Q9uDjx$-m{i7)3e5ETIyn?G_B2z&8&?Lv`*RTT3Q*HnXG_B+=}nQ1(QGDz-nfxe?fpOg#f0Tsav-B~iS2UwX5^H^Ry?@$^~(Ib2*nKJ(LfVb|# zgRBoWm6x)*t9^`gYw!82(kfKkFJCh>^%8!ln?oRGPTudd-N#Nec=Y04tC5C)*7?~m z&mQ)X9{XskY04j6G$Us{2=<8WzJ|<&EO9UY`tQWH(KB>Aub_kc-M`*(Tr(luYv*;1 zZo-;~aOZX1BhqyDopj!5O;WpWWgxW8_uhRg!$)cE-FF6xwT)(ry0{1tAKot=!K1mj zIW(km^u(nKW|NwywD;099;imk$;$3YzUx~TdSRLQ7JiOK*&bhqB{4x>+lX`)30~|J zCGp`$%?c_i5ncU(RBc@O2eSRwMM_i zg|X}VD|Se6cQeRw3^5y1c;~mIn-n^&URs*$^wf`bCM9E4DP>A6q_eVS;LHvbQ_Wmj zC&V1UqdY6h(XE}Jtd*XgZt1DP?Ouj?B!VL>Oij&DbjAHZe}eF4VwdLAXXz#kV;z1b zgN-gr?DF#R8m%d+6V{G6=$ou^dIJiJRJ6Ezo_}p=dAvB@s=YGPfAHv0vEE{5i}lHz z!4Iu!dol1Z0?S=i7`GTv&zGhlJWeZV2AdNT#!txE_M8tny!XJ-(n9-r^Vxx`nT;eO zr`Xwv+;Q>6FJHzC3=F(#8YQ5i30PUNlPfOw#21aZ)i;^bTa}?(XI{sWb2(17f1*8e zWw~VAuhN%nFuT*V97e(eXYYZ&;`OQWglHGTCB>>v0WQ-nuVWNk8Zde2_MDsq8X|c2 zx|g}#NxFL__UkDQ4q|+vl~aaBMken{Ha47&(g;z)t2j*yxN)QF|eYZB(=>-HRGxh2}VtbwSpSNmU z)Ts0!xs}v>@bKY}-Pm5g!Rmlcd11_}*74boM=od#)dU_qc<{2F9nVzJvRZI(uyuaJ z2cy}d^f3b+GUx)%c@cEBKgr3*X`-;7f~hl1Kx}?<@mymX8phepOZC#H6Hj zLPFFut{dr!gGVr_C0l%^C7ZT|TWjOFup6GUC_f%;O3;QOxOF~cr73#Lv+&LIu(l6B z+QX!fB4%lM={ysY)Oa*M77rG7H7sL7Qqsp`V}{1<8T+w4_Kd}AV@z_J6oRuAL}6Se zCl4P!Y~KHIKiWxl3tuH>YZ;@%<^)!Up4p8j=cGBUS~4&&yn6k54_ZPYObYq$X)w7i zn|wh*K{Ig2bexcAna}iH z`TUaeNN0{&HS9|aCfa%F1hvbGrohHb`4__vXxZJl6Qa1$P1V$GU}TiJBDA`;CK7Y2 zElVg54=tm1F3BdYme$rmGuL$rp|zj%?^W`?#V^(_?yf1>j@|%_%Chv4D_ot$&IOn+ z!$vcGWqRXBsRizRju!6Ciin6{uJWhq93C<5%Ds&t2nh+%8&!AR{D3({dO^+j`4;SV zRSZF+@OB}Ah!>5^%9XeB=VxK%g%7V!WH#=@u-VV)$aO%t*@v-c6kN7e-WqRBJ>p(= zD*omRI%=nxD{>CHx^b9ORZmXPD=8~Wjq>vH?r{ra(|+7;D=R0rA9Gt>y?0dqLw5FI zKXLl0+(A5uZ+eo#*r^CuJbH_TMy;$kmp5Rga(0Rv7$jm&ahdfPOHv5frNJT~CcB`< z5f>5~dIUpv>5{BUkwbHEF?L!F=ki2nPHG*Wfw3{M^V$MoYSGfmbKQ3DyK+-AGBe?# zs;Vp=D;Cj0@DO^dJ@zA1IHeP9=|7TldX8f%An>&77E=U>8V$pi(}L|m$HmnWyfs&M z;Rt46Zn!Qo#i)+W#BVk?ed*h%wXIpeP*YxZoYk}JsM z4g8*BbcO4<+sZe3RJNhE3+%GpwsMTwJ3SaF~^P_ z<8qyXamAEs5tq#lR%=5TT3Hzkz`<1eQ@N|9N=QojC>BR=EhI$xcdYoTZ+tXdqcAIc zz(19{7Y7GtW`5pXHnF0b#`Ov8&knljM%OK?Om;7bmisU_!@262quDlLX+{PU^Ej_@ zKnUlD9alZ!GtyV)&eBj^1flk4XU>IqnP`8Q(Qq|b%8!(ixw@5fIcz8Hby?Q2kj}zx zq(6JMhOTHZS=i6d?_Qqe>8CYZMc5KqNdtt%4aAU5H$994o zb}|7qwf{M}cxygCF^OK+Z9z4~vxv0uY_xVI<>2{i*7m6Y^5yRr<3T-G~#wIJ55 zjH_?^z$nFJWf2Rnw>N(2>M{-#W@i3u+}_(;Qnz5#nxg0zr+wnP;fG2`?)Xi3`^VwB z(EjOZ{5V;IrFV&mWpLj#o|U}%4U|K}!~NcjQKb*|;+k))SOhU3e=g%K!WpSt! zJDtGAr>>Z96b?v~OBjGGqo@DLRA=M(9R&sDqn_K4YhOg+vi(?ZE!omd_j~#BWRgBp zvY>E*)rd4KE$zDJEPA8a0!-hOt1f;2{{3DdR{N#JQ||zwwVJVP%H{`2sj1cL(LXi12>Ft}l|>I@p%3UGwSF#|U1livS(EY+6-|_~N~vv~hJjHi^aN_*EsTsyof@ zkC%=#TwWV0ZWD*!zrp4NraV!|*ZrPjrY^AXMf6^V&LI@!BOuqf4YxDL!sf=mypGd* z+rZ#l@z$Er%@>#UV=iib+y`;A5dNsQ>QBY5$0n(z02uZhX{_tUAk7LyR^uLVnPUKr z0s{ll{Ip}}@7%dV8hic>BjX@EvxJdRQZu_6q%-Wbn~>*34*K$~4$^FUwY0QQn>6u+ z)$mUjYCqo^5#DYe>m%Tnl$87k!}K&d+N^a1Q18n6dN^koCnx7!iD(YlMENiQ`%7HL zZ5YhT#(X2ooVD#uqIP!^?U6Pv2W;m(H8ng8`9+P(0WFM;rCb?S#`Hx6e%88$-zIgM z5@aN9-aHEU(R{w1JNDhX!w}%f1?(=qj*Z2^#7YDlz!WZZ7=;PD3I$7^evD7!-(T)I z2oug}X=T+vIOzW74MWq5o1%P2nKI?<*`VAHC_(E;tVNe2?Ln_l4 ztn&NWTO$1U=!u5|16szN*~gsMmnOe*NdWYepm8RK2Za=s3xN{u{z0g^%L%A9x>L3x z@MyprSL)4N++lbIdmN{)Dl1cLK`uo>JWS9ryLmC_*|T*0MrvlYLUMe;1p-!;TsNEX z7TQafj`upv`$u#V%iV%N_LRujnaqtc3Jb|H**z zsyWPr-Z(aUa%wC+R(NYRfR2w(30APLX8B`p;muJQ(&!5w1P9!&p!luzIgE|&)Tzr| z)=g4c6<&l|UteDxfQ-&Ij4%VhyO)(C7=jzmnb~e+-c9i(yWpd~F+lcOy~Kr%hv(kL zguXBl2?+`5dS2$Glj9Y+!jJB!j_B4s_l80TC8}9~v+_=`RJ;Aj4Ze4EF}rN9_lA$1 z6A)18f^y>Zn>Q8jySPoq<3iPri#|R|cs@k(2_>&=;p&fYt;voLueCF0&=A0?w}7hZ zpsTAZn?@;Sc0PK$%UI`{a=<8sjcwP{b8 zJJ6Uu&V-)7_(wxzr%C(pD}s-YYjJAnHY=bfmV_`3i-Q;4^N$~T zD13%25mix9Up=c&;itA#sGag()lk|kwV+xkO zPDx{BWsd`l$p36L`t7v9;&(Y7^FBki$=K_25nifeiY`tZK|}U%AFFPjZNJ^9#m61 z9))4vJ(E4UJdIR5!C{zGv7Q=3$=KH%CwdC8PWZ!Lq_OZ|YL1hfQ1pJA%8U{5l5V{&BO{@t^wOZ+?u0NK+t-xLV7^Ga zLx&D!L?5!?_oX+t}FXDHIqP8L?Rmh$VI2NtC~pC{H>n8TW09W>HYFTGh_5UEqTXrtZi2uG7-! z{w#&@BA5HqtEtN&n&AhBhK8%b*rPcCY=yy)bDL7aY_}&TG&eWDef#!j)*lSokpD#S zx9+w!uT1^Mm(Q7)m~N}7`KP5_geZLwA;Z-W$VT zR_svBJp`^M{KwBg=HQgp@pLG|CptdVE!YkGs1HXeW`y`*p}*i{+9!om zj)fj&Pn8ElcCH=t9S8z8z0c%;scl}EP4^V70A9xP6W5+qGc-JZ_{foT$7NGWK?hQS^ExRRe<0Ud6eT6?~{|9p9VJJAz|Av zoH_II8^_6GT3TASWMv0F-}3gFsAAgTRvD6jM=Nb?#Fr7?%xYdXGBoU)o(^!?Tze5G zAtv@JK0dx_a%|Dz=b}TCCByJRKe#R&x5|d_Pew&_FEOcB)SC^KazMQV;?c0M_u3WKo zelDGm$yAc0(IwdW?7>$R+NmhZ*0$j%1&N8Z@lLypZ=kWz=7QY!mKLoqudc*rwY1!2 zR?a>O0Eq|4Sy+(3b=*==(6{|ikey9R#3(&s-8nisdhNyyb{1|9j#KB)ANKb4Mxo=J zkb4;>QrgqQW8c}3Pt?J;sGk%pYh~dYHzdsw-Xm-MaonP_E@Z5WI)xx-cIw5{FK#)* zej>g4rhDuOsYpH&G|bel8y1+-T#Lb1^5S&ZB z@WX3_V5RUlF1p=LCFuAV3_l6)7jvlutXm4KZHP!0k1@Z-mi zh&*~iE!gq8Tv}|%@E4nYJ(9;_&vK7rDg>swWdJ>afYO_|)SMUZtgNomLN!-kUmtc! z_wd~OeE;}3)72U=F}(6!{`~rRAmT*YgpM!#Z4=^(i;FP`HvADd{!YCIx>G{_1$62u z9{WHfrWD{-eGi$)<)mg2;Ak&iB$%C@<*^wHR-`Uc3y8ZBis0bSrUZPw&tVS$Gx4Pp zBT9eh8k&CIn!h%fqO&kRKSel~iHMpSwd9Q(F?W*!pFVYiED|>NCO-Z(Z0Q2*^iD|z zQ4A_Nkai!?_Gu1_hKM4=q-j^I=WkT?&y9R+}(PLLu@H#erl0&UDJdYj_%}GBo-xkzLl<4FdQFU#Y{`1!46ZWxp+A7(W@+v(pH_6kfJM0}-y}cZK zkubt2dzM(Q4vMxc3Y$2V_*l&Z&zKHPE`Is`odJ7LOw80T(lo=c<{kco+DO-pCI&B$8uqu%hL}l( zOnQ2HsnHJ~KEx;W8h$v*!ou=4DT%$HLsePX7x15L{v_b}H*s+QDWNdV(lQ6c8x z;bBb?UZ&wDoggYAvIo*ox2_eItz&Qec9PS+mdX#B^@nJFcJc{-y&V&>wYuhS(f;YS zh5b64W`)Cj{X)mbUS1AWQ_{I`!e)+I^)D@R-O61DQ_nS)YYy zV$DaTrLB#Ffd@Lv%3AgK7zG9cB?9nW9&p!^l7}&`;F^HqYZ@A+tUG}%IUn+gPBl@! zqxp6kcS*vR93|V7MU%rxqv8#36H>UN|tlGW3D9ffEe9wP*JRvdh z5Ti^~1>(==hOPr~j0=Q8*^?9OpXV$jDe30KAP}6ra6!V}p4V-utm#u-oyFFM{aNC} zu-55-h=S*a{9XER{}BQ}M7&l%Fc=Y0(RA~E5fmSRKxY%$-mnr_`x#3v=#XW=VYPz} zF4(G%P8mu@K=|+-iGn(r4YZ92VOMJR1IGq}dBld&k;(xewKdDQaM*EcW3{HSvD$}( z2`Hy0AkM_5q~H;qxq12aZ9;&?QsaedV@bfr!N~ZGO22|UzOuH)S0sQo-FL?z;U-me zb^J#n4~m`F_xyB`q%?}0>hb?<^tp3ZU54&z`w%7Pa@C~$oY1(bhmO&BE+4kb%-@F- z#U1Nn8Ir^Mvy@n}luQ!r|3Uzs73jOg=7O@CoF_Xt-z$AMZ1v+a+p!-_&(2v;a$dU7 z*G~VGFT*(HqG3uP<8}F1VEHAI`ndUj|A7~*Nk@6$vG@3X7cHA&^ zrpCq zItf(y1M%20kRoOfH)kT6+Nuq@Ct^X?7DnBH#qArY^p$2kL>Rb9xpi{~+1!>;NL8x@ zLjP%KsQ#>)oE(vKlz=zl3gLm;E`3%yQHC#DV- zbC(T*hS)cIR6hy?7RB~iS}V=jUcY|*nxtgLn%e#QZ`&~i7=$i?2Ooq4NzQSfU~GIm z-K3MNaC50Mp3Mz$op0Zsr4+CukW0v~&Uz^}6!|N?hRXi6yfIM6fy#w)!Kc`-_X&uI z+=GIS+veAr%rc~4HFkw;l`5p}88)8>LL3(;9gG_=lR!7b0!N@{4+-HW`|!Qk*72Cu zaj81s=`kJA^xWh}xhl0k>l?W!l;zeZIz1B2(NA}#(OgQEf72E%aMyuG6#K{hAers= zRSju3=9cxE%iX)Amo8mm{^slB1JOc9!I-;e&onDJwqRlwuUjPnV(<0*O^BQ~vQ4O& zmH-ZBoTJ%Q;TiZrUkwf>hWdZtnT!yd>hJ*!NOjMjlYVb*exW*ORVe!EvwKxlcB>$umITkf5FpRVBcH_aG^slo5>T3-%k`eOf3LIh2;)PC zB$4qIiF0=E7b1Q~UYBfhOICkSAPNmtAkzU9+<204$KgBAojZqd1C{I;w1x=Ih z1z#i_j15O)ce81^Bx@?o%tiybYio+KQ#YuY1lNs~cVHa@nh0^_ivyp zrr9vvtXBwA3OsOq3%~VGf`P$7987BQ+Id822L(O+ML)n^n^|16kvsv5)@Rq{5F`&W zx5rN>`H_?!_QN3BnVPaf*rqyhk}z<{X$a5l*M^l#|2I5_@CqTaLi|CI{NMR2pqvAC zvTR|r3Al_`x6Y=47M8jEhyWN+$gjWjc3qW|^s_AUbw9Po_C!-sn?mw!P!1vUHq zh#!GepAN*m)9P?2L|%<)$PPoVk+|BsIfW$$L;&oB1&C<_kI2+6D=UYe3t++S;J?6i z^PlY9plH5LOuV9{_4=GtoUG>DP%RJ~I2ZsXWf~X5hQHqDfa|jj(?T)_5~37IXoZCW zPMeFZfF7!<{3rs$!;L;^*L91a*gPb(L7A5h@c;v!7!O4UF|mE1Oy9KM*xdY@sxIs+ zP_=0G=C{y*fpW&ZOheAN$|?H?mQglXYM9A^(lgesTu5%UO|5ZC7Jn+YH-cmw>?4ms zh|ucDGQhaeiati>4<3tweVDp}M;Hx|{9p-PzH$YJltpPMmKa$F-JcJNQk^Un=AXS1dxuixC3c()ef!#|k=%t?Y%1F}AF_t@=4 z5GPHudgc>VSCpOIV!f#Rk4%ZwFFqzOCI$y6^lLY7ie0{9w<@s_f5utojwhpEJfgiMd>(3aE0X7F4b7Mt~Z{iqaRX zeIN!7Lpga(O6n0rI7oC-s}n`aZ*v&WbkB-;)7uDqjo+z)^;!?HDGa=QX7y|2dB-al z2m=!`3Yz|f8-gub^ZB!wwKWIGGJ!8%cmsomvKxlrPQCZplE$#*)JI&403@A|GrMBzC0RX4*?ag)M%>l%VtFEq&OXBNQv&g~8Syo+L z*bWp7r__m-SyNj2L0F`ME}~*Xc>a{U55a;W8v7Mes|HX$defbkR9~y5R>LK}mbkh? zgv4dn`&J z{rE9}^f$mc0IdYYu3qJR1EC6&k<7Qiv`NCeW_H797wdQo?KB=i)vmrdBMsC#t|qO+KL>x{iy|gz-Yt3$Qb+K zL$hM#DY`Mj>*5y}>F93c<>lSW)H??5j3*r(O7}TVGAm`(SSJvCaml#_H52-Mem>vL zu#05_rnGc)*k=%TL2XEyZoj0e^;^}vz%%fB)hxeEZXE1Y_^cbT_;2;0ZU}@34Za-? zZtlV8?F~loWZ{EaAxEt|MM_6E$IvYmdhj1=XcdxQteLU#3)b}b_yY*#Hr1b;CvVLW zPi+N68UEalJ{^#G_y`TQb+zL}4sS@R`OhWh>}jZ)LwtzWpH)jvYyZUi1KKzy+{ijD z^LKFMG{vXRKWG{%*b@^z{vB}2^_&vdZI{~YdhJRVDJdzgVeMTsr=wkG?ftjvw{v&` z@89?*Y-DPrMY!)*YV)@2_qSIMzV|gM-w898a>X96x3bz_B0f!va({cBy((jsFNd9KyQ7@Dr zMLVj0J@113`-O>2ld@mj&O3m}`i)VXEDCq;zAh}J)YQ}j3$*x z0=T@jwRLou*8Z5{;sfBq+aLW6=jabwdn+YpHwl2#q^7?9s;OzpKEmUK*FAUMccHnx znJy&t^3uxE15Z;Yu34ZZA_z|cz^R@I_#H7x8&s9Yih1B-%G=ktanfM4L0>ulZl+7r{AlbV|rCpl?v=7 zZmsIBRI%cImexE&1NkS1ZVod&6{Pn1O6^vBr@!K@S52hFj2PU9cZW6_Oh+OZ=u z(#r+Y#lDgJ*w;Ys!GMbZp#pgUK}BND=3xPX`Vb=d^6$ZtUErcUsD-bYy?5U(sRejO#KN4dnC#cFX?XbM<8`} zd=ek<1*am-^&RRWT)8o z|1l$tm6LmBV0e)pk{fUx>R&1TjpurAD)&ziV^PN^CCVwAB|6qjE_WkXQ!p9p`00mf zbuzzm>kgqIQ)QsU|=Hnp9!_A{vnSW!6gIH|o^hawk zu}EvW!k~liDRY99lJZGJ1f~3)J282AC$=|6gpo%9`C;aOw*vz;C{KgnF9Bvz{N~Lk zv7(@%p96_6jKknKI9P->W<;Gpo3zzgQU z@%Ck9iVY=Fy2OD!{(WbfCQ@tDoY!sTI-b&s-rOF!0|cU8gl$W@0Pj@PO%oFr*g1^P=Df>lo%-wCTyo^=LMfgx+UfY^Wd)12(fBEIH7iT~ z2-~|SqsXx`@!2+{3K3&1Ee866v-bjDCO0)?K+!qG0PZ`MY~%KaV9XNO-k9fc+2BEH zE5w1%;oPYb3KniX>a`Y+*efF~mYR<$6wCJCRBd)=qGpt}7@mI2&YQG>Znf*&l)qd} zep7HdRi0&6w-o=lbhV@eh%tX&$Hc_M%hy*FRt{J-xkwYFBR_&6_#)WN)(%@X`q;e@nciY;inFu#9&Vf4@+6vqdb16_+wl`!KqO|g!H_;c}>gqBq(avWbO)J zT$#%ZgL$Fx*NLIz4s@Iu722tQ;VTyR{qGw!%oi*nmmPMLC_2;l<=JKfVWYQK%`>Ek z?7aR@=n1hP>1B|OW`4#7(1D8rbVPD~TV`P2ZcZPeebsCTk)42?+zXlwBKT}1eQxb$ zATOOk2!<&4O1<0{C+m$byg{Juyhx&EKTNU!zVTqje-W2>_|HmO9PSb?Zn$ROw$GiLM5|auz(lqChHk>GXS4bYw;)Z2Cl ziVCh*^#`ADN}k+%biYGtls%)SMnNyXRe@wjj5fLb{EruN=ZFtyE_x7< z8i+%+R#Q`xcI^TbSGR6GRh=ER<|~*hAd+~_;#gSD)oe6A&@qH}<_ght^VVsJTVt03p7eXgk~1!?}af`aEEqBDJqt?Jcp zZ^!ERM|i!p!kf015EmbSwgmPY6ug!UTWhT)doUp2U_iV+0M5pE0T8E16-xZTv>*8V zxt@~g{ri`9iAloa$F<~C4!Gm|Nlw~^)HYwgosGyz;{lQQ3P+pXWLckyE&Mc?lCxWuhD@K1{Y$&R`pQ18mmFEPO1ltDrI zA1QW0KpMm$vm*#L&dE|fY269zdsp(uFXyLFVzJe3{8UU-c_N^JXTum^o<>AG85$ar z?o~KTjJQO@53)`IC@AEez^h_9hV|;~z!XpMJxyV%G8xw>oHBoZj~)bc_}lf}>Z6AG zzc1oGo8OfFEf84}Gzx$D2qt*QQ#rb5O^w_??c57_PV#y$l|PBm(38%VM%`Z}-7*+t zkx3D88X))i(+K+~E9Yo|Z4C1nchC=j3osq9CwR#(5atO$4DG6TdWWX12yf&z08VUK znH_+kUtBEf1NYhEfsB?b0)I5LefLLI%nR^AyokEZas0nUai=RtVY;0c3@XW~Li7oq-Zc8!VCcN?ZhwA3tuswqPKXiGqynxT(si-O4Djb0PV#{~-n( zHIzm&pxXZ&$xmihym|&|6n#l3MHm@z!98E~UNIBt6jc1SuRxC6zkmNF@tbJ>3sxeV zh;+72?Q!t)A460r>YI{G{R`zAfb+x^YEv0PmyDH7ms%br1SL_cB)c0; zV{4msRpkeJ6Ty{G8+=Y~W;j$GD*CPkpq9#Eb0QlTbia`pe(0FE+XA``F&UXQEbvR> z(!Wjhae%I2VdR-vV97isAkY;Y_41|9=g&706~M=L5+Vd*$)NBXI`{%5R0nUgkjXN% zDh~sTqdhxN3HpDz$04Fy^70kDJ8sP`VgwH^@j;_tdxl7i+ufu`cauU+Q=`CO$t?7j zT!B_89bM=pon~CyRI8~tgX3aAh<|r1{PqvcopkmI{9tMTg%OCycn;cqAQ6Mj0@()N^ z>iks;f7I+8vp9-MVVQyV8MPLL1%uf7NUhU!a|a+l+ik6mpehRO`pfIxL0|}J%eP?~ z8yiE-0;si)oYOG4uJx6A{rvpV|4FWw4Mn*=$h3s% zw_Lv_-0gQLI6682Ra!8v*REYFh2%#_Ny#ji1*2ePmr(Hj{ZYu;P=iIBO9pZs^d?|1 zsiD*Z&ff=%IDZ)vljO=~v)F%hm$VUw{^l;xmGSwJ@#d`ZlO;FN>?VryG!JYnOzv5I z#9iYWXVmEm$^3LTCh~lHHvixsB{RbX|3hF>u7N>-{+zzL3nd&k95-gG5#JBZZ^v_b z9GL#mBl0h`^Qf|F!m}i(o8<-k8Eo2z1X{XB3x2R#fDXVX5pZazKH%&p608}`ZR^(R zBi)>)rI&26ye+Ez1qS2#{Dnak#r5uDAq`#wt zyB8OaBQ9yj!dCc)g$=3%{(s5*vtXkIy>KV4!lY!3;(xzFD$`X^34$SnIgO>cZeH~f|q0jL#7|D!{nK7@x-(6W*30O`v z;df{EPR1`I!ft!od~J9(jz+Gi_q5Dly)Gl2 zyn0oNYKgp~v>wf^U{||o563Y;)`r#$3vh4&90?caW~7_bDO3*f5(pV;wC2~M?&y*B z)J8TjZ2TN&^v6oM1l!r~mN-#&vMEaBb~#>ec=N1jEi|JMwWg|9!=?%h3-bbP?=X0c zaApR(gOGKJ%a|OXYXFeq(9!i0yN@ui4yaZ=&+ooI5=3CM|>N|Y08PYlQBQZALt$74htDCL4oP86dCkGOT z_XxxqM>-eNhf$=aA_U+;i7M zu{Tbhn0^kV@9WI+({vdx7;-|f)jasgKx!>iqa_zeG0+_Zfx8M7-Gx#EL+_!o&N>vJ;q}iANWZyj`Y#)z$K^`H z5}e0U8-#j!QF{K?$@GsJRrC%R4st7MbldBM7vWVygwh^sfUpX>YK`hFDhzjC-gey~ zQ$Sh#R3_mX8EL+Rerd_s-Mt^Uof;4<%+%>D1yaYYJChi5J{-T@x>B_BF|%J1AQaeH z6c;+$EV(_Cx;}i?-@)vEdn%oxA}4T1w&hyT!)|2*Vjl8NU&;1*$?#F&?@p&VGt5ah zkk5a-W12H@4mCoV>Wo{LK<_E|3@TCcguyq4jedOB%h0lfPC`H}e<^8RUOLrFfnGIy zGNv@VHD?0{+t-VN#@@U!&IvW^$U1~9Rzxxa55VV32apx)8*Lf7zAChE$NS(KVlC;; z40KqAx{xWTX25Kt2@Se>qkyncdr?j5FN+L__ZT-gRRHIJds%!V2l-Kuv>ry6;U=3z zaVo^9hhLVH3$G5Tm#f>KX526XR{cWG2o#>}C#c1thY>~?FN(jYx zOk_ffyWk{!AD_t^%1QbeZ3u2|MUMpT1sN=nm2Mu@u zPP3JvNyYg_G`dvRq+%`#(?ciBwY_eCK;F)dj-BHn=F#tYpMTilL`X4I8PL#;ktg1C&kY? z$N9|ZUu|RVMp=QD*#U0r)VNPN^SS`)I%|jWn<{rmC?1fVUtX?8?G#O;pTF7gQJs;F zI4c2+2I~W8c?+~Lrtz*(t+jQuS5i7j?Kr`P%p55NQ>bYN8KO6SaF+x!K@k>Oy0fIv zBJ_tvC=AD3tUw8ds48UHM$PCYuEM~=GuMtJ%AbF)TF^2;N-xuws5=jdg_**}Z!*^D z9@*qQeE3PJZiksJuEzPZ&8_>K=_3NxixN9X8v+t;(D0v;#H{omxAI@?_^glgGTIH+ zKW_o!paBd3I<8?DFR>N!AT(#U-$=e&M|C&gf7du6P}Y%Hkil{I50*u9)IA9HaAeMb zvt;0?4qwP{P3t|f_&pVbC4z9K$a7Xz)OQ;z6D(h*QMb0$}@^AVUM- z7epR>=v|C#=K@WKduKchq>maKq@ zW<+&%Wmla2{#_m&8x!ri#k&PNh63!lJg!@XT``LtK=|HLRW)&N28*7h=Xd(w48e=& z^dV!27eJz%WnlqiB@VhEv}g_tU7KuGZO8QK3$MRucj*GKNJKyJ0vfHE6*KmMxa}^T zP!4`U1Q&n>dpVao?=pWTs!QDVadm1OI1rJ_0xgsUiuv5%MgIrMpc-&(C(l5R#J}}= zF9O9=0FgZQU4^ zaeWB=GtfwSB-5$ky_Ljf#nyHG)cm`ngv?snPN7dv%Mqw*Jw>?rpkVuM% zeK;bj5<0#O9D0?<9=Pb#30+`f0u$!Nx?RinpltP3FhZd%9Z7+ifgSk@x|I-(NSVD_XaQy|49V!d{$R(b}kQMllB zg~)sHk6zWAw|T38WSePGHq(T{VFlF5N67gKd>+zgpmksvuTk^KdToc$`*-hx=oviG z=?u^ce*=!?AqT%IT8L8x(?XCo!A@996(!|C0KIbM$e;=QA111#SKtw2PGI)j(jfMC zGIsvC!^;1tK&i>$FVHJ5*@Fw@PseJ?Hy5=6+hfQJ0n{M@=q{3QQWEQ~%Hap4$(w|P zLEj6-&=K^Er3IFMo~ZNQ9c&HM2b>=DBCbwxL~xUT+S1%^3T_=RzKK|`7gX3*2)L-3 z0-fW~6~hy3A!cjV=7}LVal#wqqk?)DfF0)`H+w>*sR^x3@z!RYW>cTSJFXcOZmzH} zF^NLAF@$1VVPRqD|BC^3VtZbAdoTR2oT6Y6HB=)OohCUi;`}Iizj1`U%Awqu(>w^R z;8F#`kguMe?9YAxk%Xofs+*ZV{Q0NcWD~6ud#Sm%s4a)rxYi)KSpYwR4$J8NVRJWf z`Nwobmral2g!q(ggrjvrC$wNgS5;=N-{piRO+-dtJ$($i0pU2IlfZ*pdJf#G>J;Id zD&M869lKyAr%Se}fw?zd-8}12DkmfO2*pz9NGOBemHM9L?9Cr3g^7L>Ue#s=zsNf= zd;7dm5;8JR=wC!0H=ys56uy_gx&Dkf{u?w*?MU*aj{dl7fh_Azkd&cKLC+qY7;yVG z?YM>JgqPE9OU^5)0Lmyno5O%4<6IoORvc^Yj2Fb3bY^S9hu{prn>qGzDOM62k7w8l{w5=+EAcDih zGN3)*w$4%&!mSgKwgYgy4H*V`Ju60{T}@9um_bKBz@czjjZuOFKu;0}2+VoG5hldY zDsoAprzqu^<5DKjgRU4F4e4x)mT!Y(SXLc9U1-bSM^0EZ_<-(Km?ch z@Ln(ISoVSLNFPvxd;s~&fURF#rNl+`dG4_T?kLld^O(PaPBw0%UO0^dj{1TIb00W% z<+hU2d31}oG)||)pODkS&eHYmZ0QxX{Eo$@Q#7}>`hpaRByZov;kW;h{Zj0l5|j_p zs=033uz_zMod5#Id-=0^MqtT6*iS=4A{i$O*aTVH(0G5xeWOtks)~pl4xSK%0bfO z(IfBD(#wHxKH6&UOv*sY`}Y%B&d?U}6b1*9u`jwEc+(;9#Lhm8-VhVmTxdeh;7}G* zWmg2Mx+_f=JcT!|0PW}lo%hP`FGxi4k4;BV+VrSSq&P)juhM!D2$o3iC_GSsM$Z2H rv%VXu`2PW`|Ltc=+CJ9 diff --git a/_images/448a994bd8731d95a6a94d81dc9b4c4e18ae2413d5be05b7351d244da16c67f2.png b/_images/448a994bd8731d95a6a94d81dc9b4c4e18ae2413d5be05b7351d244da16c67f2.png new file mode 100644 index 0000000000000000000000000000000000000000..9366f5ee64b1cec1bdd29ddd37687240db98110e GIT binary patch literal 23607 zcmcJ12{@H&+qT*blqOQjR3T%Oq09=!Lgtx8GS6h5?Fyx$R)&&!o=GT{p^QZ#^Gr!* zGSB?iy=cGt{lEA9zwh|I?{^$~=fGO)dG6=Fuj{pZWA3UZQ%4xBzfL_~B5BPF3k zM6{QLh-jA|@jm!Thx-0;_=n%&x`u~ud9bj>&Dj1(oHUmF~*<&;CkTejCoZDcKcf*BKKotySKkr419WY`@08s?%&`3?rJbS z!_KSXsL!6={^8LfVv=2iZ+)00rHHqGC{f6VKgg$g_d`tS+LWMbs?v2o{SNHm?O)n< zX@(|ltSzPMmbe8x(pK zx-TIip+o295cf@GnJ^C3rK#Sb8J7u;{c%ik67muLQGDc{cC>Eah2|?=M;>y2Jvki9 zR4*Ua<|K5CiY)ZzB{>Y{VaLKspSIf>< z!K>#Q$>vDrbLz7?u zHh+Gnl~c{s;!R9UR88^v{W&Mu4iYOXD-X@B=ukOyGE$O`z5nwMX*oGH*~j?$&nB9o z2M!+0cb?Y8DD@UO%CDCGenL8Fd3ij?kG5rKHc#ErVWA{VOGuD-`0!!YK@!GK;|tQb z#i`!(mX?<1QEn5Z^!o`n<-_1xe{E!L#WHJ;6YIG5^?D3u=P3`|k-ZdX9rD%t_hp@_ z{k?tOU)o1X8Piwd?$2RjWMsDd>sxHyA*#zQ^P|o3?$~F6zA`!=bJ?`_5RMAvnQBHyx8 zNjF=a*P>0OJqzpjYv4nC5*6L($IO_U3&<(Ppr&sFJ zDb%wStgW+h-@KtXIb45v^$#zj3!iiGq=dUX7ht40`zo1apX%NxYF0h1sl)+#IPq}Dy zES=Z7hYxH2g?Dv%Flb>|bW0QNu*GNBA7V?~_CIBBM(`;v^|@!G6*zQ?OX4Kf;aT`) zE3GWIp3jk^O2OQu;(dJC-=Da+4i?Y42swpqA9d<-o6xkC4jpY;_qzL*E8o2Ztzmt` zcK_*2D~?GEpoJQ z9BsOOLA#(uRUMmX678uby0va!IBham{UlAV%!~PqP*Yo`cI#_{nw)U~r->BKvUR1z z#4ReT&baH38r%K!nJ-+p>Ao~|!CBb4T55Zn_z-_zs5FPW>84$isI0DL<>Zv7^Im@) z%7IN|igFP{tE85#i!H60bCXZ{98b+J(|nP1@4XMwg*I=`?1aDvXZ-Xd8iV!lr~G0A zX#~>@Y64FSI%S;ZF^y^0b5U3ZamVdSg0bB~>Wz37$)dd%%Q_D|HZbW)k3J(T2y7g|_^ z1f0J|>_luZj zSAx#g9YgEu>p6AZZ*7j?b>eRv65d*$tMSYb@mx)jj~1!v-E39YOO1&+Gg0(}>I$v% zmQ>Zw6C(OYC?WbEW}?4>GoM_A-yvSl)p_MrN=;48)0b{nvUrldeeedq9lVJKRB9U< z+N)0LWkh>#YPP1S9>i{qrDwBVzN{8%)TtgJei65m5*1T#JUN}Flo-%!#JBr*B9y~t zWUxb!lZB5_hF7bmt6g|og_|+u2$h6Q4+N>-rn9h?R$;K z_ebPBKM929^s>!`Y;#!4js^M~j~j7}GI^$7&p|#^g*9#tQP)kSU{jOANz2HzzA=%9 z9634|B-)mR#RorsP9Ibg?@#L{g_~b!*Go5Ph&nCglJm16I(w)tY&_|eHA;;kk&)Ox zEA|rZ_JM6E<4fN~p@JHwQ`IEXQBhG@X3a^TE|T(Eb*a3%Y}EvJx?H`t|45s%yfEWvV@w{})<$)qxP&+L0&IESPfqhPU{X_4^@kaRdQR$j#KP%8 zkp>n(cueG6FUI%&{=?J?{iU7@6K@*E{@hPXjNPi^EE_2tj%vQU_h3t*y$Pl%g5SO+ zLz6pGD_@#Mz@f1zQ6}H0?gRuxS;w&!MYt{=yYCWDXoa;P8Yp{s6i0cjn!$;cQcjY6 z#sH6BmdCRHvAh3a8bj(6tj5O1<`4u}FI*5d z?}ytkYf8YZuFo~70&==~CI&VX#fcNO!*inr-PX-d&x+?cj4C-!cB#UF;y1VL&hC6? z7k}Hp!13$#laary&V7R06Zb!?+7Kn&ns3pb^VAmBo9iZbaDj9a++aF)gOD{YMK;Xkt0*tGjdT17& z%P#ZbmcoZyzZye6#8^F2*mLh%YDOTrf|`5BBzQ}PriBTq$86GNx(I$f+;UxVEKi^)PUwjLU=g)8c6p^DK z-Djj3D%-3Ac(0>?d_$AXS!x;LuGz-wf)?IsQnA}$d*lMCo7(9r`CX0Sx;dS;t0@p`>wY!@y>FjW<*t1Rk1)?MB5MZ$=kc3fZc4QO}cRF&fNZl zxVz+Cyhn*m;nc4nH}*P)$R#S%hJjXK4Dr zQ2jsPzKWB4KtMpA{jeM(6BFIDR+Y?Op3&w2+gIV^dA-(M4xQ$a8gI{Thg_U4N$07; z!om{p@S)=E+i{Ri0RhRpOiDee>vAm&>-17BL*tm%j{@lsR%s08>w{zTE%A~^c+Hw5 z0KB|GiTT6@EoMf>>t9}73Dc)^+uB%i98CF7!up0S;q z?tCK&cUMDwof$(yLLx0C#W&^_R73ui^S-r6X+`qMnyRY8MZUlvKcggA|NTK5Lj@3N zg@UZCYzHy_+mD|xEQ!%?-(a)GIW3h?=Tt%z|$AI zlq|Y|f!Ac+2%^n|H+B`Gy`WdB1F;QYtl21ypc6AUw{lY~xdQCZdtG?vY)GGsG^cNC zhmM6#&b4XV_zKIx9vu-OeUkL)eg0ysib;*L7k+E?a#9Lefz{hmgxu0Y0+0p0aqcVE&&f`#nH#f$L zi_`Dge}pyzfx`G3Pnw=w=}U3$_f$W4lA{GOE9>BkZ6r!W{WC%B$|kQ-1>YLrhVS2R z8=07lrzS@ounKzer1h0eX(|M0v>q4?W~{%g?7ZxYqg}}W0JL%qAKrLO8GDM`I0Y*A zaAEfXD16xPI@^nKW=xfj;d4X75q!jp7b!2fP0W9Oepyp;^WMHgf#Gr<2>_q0I&xy; zhPJQc{hxuKgKu$~L^~eae*JrvfA9-`p}PMeP$XB-(n`B^(bV}=@}7SHxmy=gK0Rkj zw;Qa6&EJShy8Uz>3OIym9H)9Tw`<3im}~bO2HyYKXtjU4*0oq)o=L;v3m_iwxcs^W zXYKytr`p=49Q_Kk7ZGg9H*alvamm0?Q_VCQ7Pc1TuGXK9MMo~J6LlOx?GeZ{T;j~+FL z^IGs2RFmF}6i|I*(s0;{?y}_zwM?zV&Nn6&04|Eg($Y~F^IRDUi}eJ8Vc{cvkm=$? zXIHW78#oQ}lUJ(G+c}*ilER4&yv5%?aB$CV*4NTdup8Cp;Uf;rRJ$5c`t=$So~7Jf zBh7-1D9^Yu`KkUgJ#ORAgb1~{u_lA77g@91m~t*_Mv)d^N6D}9gVNH{I0oUBAI}k5 zMjxCa7b$>CSYCEPCB^KD2dd3sAI9LPie$){5_UI;2#U2UCp^(ZUshr(1< zM<;^=TSRTI4NEV+E0)1=qC*j|2L$JXzV|b=--b3UmDSXK{@n8CANx`E*)FJK#r<>o zt+=_ld5vn1Lku^E8vtb13do6SaTy?X8dQ@bcL48c<(oU+?ccR@j^Vylv7N3_g0X2u z-yx^4yY!YF_-mU!TlaN42gW@a^wgy`2e($Z4%Qk%(rJieJ zn`_hRK%XF%#1m33N-M3|dS#6&1{kQ!z5<2jh$>;&6h&K`YrK{nIXN*lP%xe5zms5H zICLUYuS{27Xy$&B?8|c)^QMG{tBaHAyZ+c`3T5zW+18pU$~Ic19)<8s5~GCOqZX$h zMgFGVY`dTqyaBl#VJ1Y1wq|OpL-i2aFsux~&AM#EDbjm$1-9~7b8--5fYVNEuyIBr z?CTYi8Pe6u+ zqI6rwfuC^jI7sdLSNOm}0XGF?ORxKMiKLZ9XKrGj=TdKfanQ_Q4T@qly;CzTJf5o# zU&49E-*wkKp-O&6FG*`(Gy`lB&#m`9{TcLR64MeEXzAe#_xmn=QfeFwwtx1nwx`hE z+ddi?0A*cC27QLJ+du!;eDQxdo-D5`#6UWC)y(zH5YAqdk6aLCQO^2}->SpWJ~!H9ta zRs_MovHFw=Gvr)=b+NN^bK-BK1)Z~CRg5Fsf1>-`@9))b-GMhp=A z!T8#AnR>QvNpM6&287X3Kwu=j?ed}<3FFyix+W2Jeo%x%bWVlR@KQz}B)?v#ZmZM0 z=E19&?7p*(|J z;%W{l6vh8;Yy3^9h(i`KMbGaLv_8bQHACJ%z*mdxWs)+V^Ij;*R=U*r8tA@(+k`1<;~{dgwHVGJ3aS2c; zrvm@gm7{;pZE+$Maz6`f(JMW+_uvh)5mkw>oZF*-fR-$*;04WGiLKT4G9J^$GYjMG z@)m6wBmwg#9suu7;S~<7= zEOHnUK9LCnDb^p*NIW3D`&oE+_6zlb)28(i{B9$${tTETGsp!|N)W>T@=C&|48YnnLd{ea)Vok`aR|Ep> z?m-UXUYm5aOa}-;knZ@0sZnM_fdlrTQ&T^8GY>>i_DIjgPF#X0Fej_s{hLX^-!MaU z03`!~q5_Um9%#NV7}0v0vpbaJd$R=~)IRZi$sx)D)&#b6Dg!(klsOR3S8lBiQ3TSw zA4g41O*-&XlD%8s+7WIbP`L3~-P^!c6)+JZHy)k1(B!>2M+ZkF<=s1tQu^Hu^mOUg zy+r_kZ3+W7q(q`Qj~@+fZG!`VG6`1wYt71q-^cG*?+RDl3w2y-He1&kyZ2aivYpJ-Wj`N*t}YC}&!m9f_EE!0?$^yqZar zYZAj~n4Z^H#K8b;V4)(zPee*rdX<#2vn%^Ie5qXS+k@)0_tN9m2m;MdKVL@H`L@LX`+4JBT{xZ-%GX z^p~OvEFhR%6xvNh7RGfqM=ajJfNu#^dfFM1n4J# zpQFGBA#l!PR2wXv_HOofe`O%=m4IU!7dN+Kr%_m{MSIp*$Ln}_vPqSd5*YszT%X`m zX`Fjvf%r*tp6=79Kf=}=>D-t4_%SJfc{VmS88b7pF{llErKHxZ^3i@ig||TZwP-vSmk1gXoqH%6VQZLnl#uz_p~SbG~AGB=`Hz za;gvoW7S>2A|j$Y*_Gc62ss6kaVJ(y<=kIqBn+xesHHox`!*l_Kf8Hhf_GH05@EF? zqC1s=j|}W7jFP^7?3a-Daz-1RYp#5!e(#3?CD`C;YMJ5CLu1209_J#h_?gxN%{kO$ zyMFz8z(c!s7lFE56%CD)68EJvxG=yv!lP@yFU|HfD##D)^<}23%l)ymHniY|rOHtQ z8hPH{Huram)%kpp6k!Jlyj(X?8?T1vrsuB@`^TVc_Dve^sv4Y8G2Nqo>aUo8l!{85 zMPD)RApom0M-`yHWD_s1{hsx(Z6|rM0_yu;$<6;+dssc|sV#5~5Sl`uMheE^;y!UpPF z;eVw4=9S)ro}M0Q0mGe@^nb+GP!FNTwPOesjBkv;Gyz;tDf99a2ATq89RcSlc0$%c zhZQ1lD%9*+MGmP2mYs1B?ouH>0oH$VUM?c#YrLdI&pY6Pg4&zqMKb}^q9zS40X2l; zgG3M?9Sr<6#{bavr^kH8L_g1gTR?gHFs)DuEG`rna!F=s5Flbb>xGweB3*yJ)GEA_ z$Y3^98)6Q)4|WZC7n7i%_TIgFW4}HCMwS#Gl0uss;8uGXVh${Yj?;Ca36>M~gz}wEQZOpor)MNm6s{z0& zwhn%VV`%0v3O9B=(mYce$U+wMCG%V?lYcZF&p&gx|E3i$HT~%!t$Lw&IfOTJ2pX$H zVS4lM1XH}XHqjHU!`?D_#bbu64x;mJS%CHHLekqHdv z!}+M-F9jPHh7OYi9f#lxSs(J)r@ z9@$UYQGfa({7_}S@?X&Ih=6|9^_*Nd>5lJxAf4WF6#gJXo3X3RyX*wJMhu|3p`Sm~ zAT*rjvyHhCNSz8u7*V8e``psuDqCa4_hXb`f3+67+9S}2dgQQXgj#2$F*er62HN;; zv!9rN6Jzdm8GPcl)a#sY`%MhcWit&~KC2aq(i%BQ!Fvd{D52F^RLC7QVYm#XH!TqXTyk@$a~Nc)@i=l{c1A~_M! zfb6DE{}dT3`%&VQO4eth17R$X|5!f*51>!!6h>ID2Uh_M1hQD@hxRh6gp(X(>cEO6 ze*8OALlhD?T1_Oj&6RXu_XQdNUvlhHIXPPT0inkXdyd}TWmwKZwOwjv1 zog%#;;e+Z2`})IoMUeUFe;l6a#NJ4}XvEt0AnZy#8=?I`c#eE0nxAYx#ebs~`VHs) z*LvLlLpJpP??e2r?+Z3{DL%6%21JOUE<3P`tx$0Qu)AOx{jWRQlWz=a4lhh}DvLzR z12O{X0{%Ghp7O;{4GroL>q4GBjj4V@Wii!L$mG1EgGg}*HA-z{ci0g1exFU2E&)CM zjSKmzI<8J$kVAMKMikKJAK0^-(32=}ced)xy$+N&F5wvc4bx9JMy)*4X8`!ppy!A1 zLrVY!8v_O^3j`CInwki}9%vY-0G`zheic6=%z#;it{7@nAEFh~m>X_rpB<`mY`%FV z6>6&5`ueONHamyDwj!5(s5mnINxw}VK3MuWHayd%svGNP1=yw(s#E>2;rd8WYN?NukoAF!vVe`DV-i2d7ppV>spB|*H(OU`t6e8K1{3z~-Ua!9_0r|9Q%aVOO=tBlQntX~g3d=0>KIo7%3uSO58cLt z-DnBA-~pLNSNu_)J89JIWfcugO5itLOC+}j{zc!ov%(=G*C3$Mz@80drl#i=4V|Zn z_ZZfe)R40XKjit35nU%6~>uTK?Q2&;OvagmwG2bbN{VmDQRy>{6}JL~WZA)$EeRaG=g$XT|4C zLP-XY<|}Oa)?|4)OcTgK^5ED)>q;62Ier1|$$Yx61dx7+19R$43`P-D0OD)KK%VF? zMTUi)EDAEfNJ%M(iIpq1y9-4kD0tu;#3|If9wi>pzA zLIgkq0_2-34c@4bkF_U;>Q@z7I{;@}feYrn^Fs>t{b6YkQylX0W$IxX0Vy16Isg3f zDjmdU;X0TX6^x z3-?LL#nyO0?I9D&t_XVz_?1i+P#?_T3%%E1MU99uMcYPXcDs5+4y=g}ggNgb)42Udrvid2k0%2hquy{p(I)3TOYkdX-V_A+(cZ zUpj>;>w_kf^aK{+*Q2|D19*Qu_k?jLfSMOMws!&J1Uzmb{W5+jCe8w-qds5d^ z4XfTThhEzN<>iUqfz_{(=yT3o0{I$s!$tJxoaf3@K-2?@07M6I)R)*mt4Q?r4M+4j zJ`w;pvu;uPdC*4p8mYWsQJ%R`40y>^<0TDxBkFrk8-3a9lyY(uZeSh)pM0Qb;p8M) z+3|~pm0I5|b`9af=`F!qG>lWM z4@r8u+AWEnG|t0)XLmoCb|xsHj$xGh)xlKKQJMs*{^Kfte-Sgg!FJ*~AyuELg*!MV)*Oh1x?b;zd*c)r>w~IoKH$OSOHLBC&|mT;#q@Jl;oS}O8+nX^gPDP3 ziqV#IrmgoAPWj#fX*eIeU8&lX#$^xFLh zVKK{r$Mtz6QJyy_r78Q<1}BousoAdW6hEUdAgI4do74M)2Ay4RyF1@_BS9G*H!+K}EL;TQ3zrRR&O2nCyf&O~^Z7#pj z&G#qJ1t0#aZFQy=9TT4eIqP0~g?*jE6wf}(9m{hVp^ich26T4=0AFqoB@>-J>to=a@w%5n<%MLE5pMqF7hjdo z`NK_5rjH&ctS2kY!7!p_x}a%=qkB!d3Z=Q|Z{25twl*%V2i344g z^^}s43EuhAJ|G~xB;S9OLx1LDA0o)G4k>$nBtFO-*b1Zy*L9!dU6|?>%j4?YZ#iqO_^`|(m+Eee(BOBls3`bT%lrSSspuRXD>w@qjT4*4C0{1Kem0HUKvD+ zeaRTOO55T){`Zk80vLA3!6#S70H_O@ul@M+95t0tF9_cJ8Ax#ACnhWrz=s@(O8_us zj*xp@-E*_>)#m8UglqTqnSHps7l*`e2rvP6(27_&=)a*vuL6P%DCT1h&~gzGJuuXB zT8~7r*`C3Z*Ej>k(6?6Fyf3z#331OKG=MIk%c_fx{#;qX0db_m`G1jDmEi5xQY%HMH)s3uCR#>nn56ABh73Ul)Kp zQbHhN4g^GG&=&EDr_{|Zw(71e^D60093X}RZM3q%F5cF;*+nOujCmb@ide6a}Q!tawCHRuJrQI)ZoM5(w0|(l4^Toc|#evk2WGyRUau> zM?PGyECuJrs-Z}uDK$=Z_X4en!*uDIwZwXZKT*745nq1~~t(OFEaxv{_E)ur(eeh1)IOUN_&CQyBN$Bz!Bf>RGRH z6!A*M&u_KH-J7A(he(>6niw#^-z!2?5N}6vLZ~-MCf`6ODyJJNI}qr}$95+tCYpgd zSbr@T%h5e7MNk^@2}~}y2xWOSZG`>?_N!4ETj{-nGZK~3U#zD;eQSO+`2D+%C%eDB zyWY8HuiWn}r+t3?r_XpYRahn;jYW7sKK_ODQB1lVe#MpS)3yTG&RzaW>s zW4%ihM&YbaZa!ra>1!3{j{;H>u9=G09HDJc{RtgEaN_uJw5O3hg@FZxZpan{g)Sm} zG5&t``|e#s2O`!JX((PMof3FjTr33omiZUTi0>KD$>5t5$`AlvKJd759~EkTQeClb z0Rn=NMk~V*7;D76LLPvMcH#XWM@(nFS0RQS#P2HEy221ZwFxCSvUMQ25)^asAapnF z$k8tX>RlE72Gazp_H1CI4^i_eyt-o3293fD(B0j?$pkqHVsj?nArn?@lrUms3nj_C zfEg_UvAuX$-CaD$tPm4|v<9e8fMOd6Ay#{*y^^7}mV^)(+xR62X{c(>C^jnhFdo&i3MxdZ9sb8Rhdfvrx9$}g6L{5;at z)bu7p;{yt{57{De&@-P$CWp7hDFatzTHU_mao>5&zu*x}o}^M~kNfa)k1r9C1ZBlV z!*?DZa9o#?SlC2#FNs9o)}cl%Vru!qWU4QdCn9h7HXBa=X1S z`l7z}3pQ=Sa!JmWg`GupZGY$v!XUcZLJx?x;^L1-LCRto@c-vE;#Bas6-2IuMRRhQ zhI2_vA7^J*X-xFy5smn^aA%c<$R|@O4CPAZ<0J=PM9`0>Uox2Fh*xsyE>H!W!UW*7 z!_S`3yjCp#!onEj;up@Y9N>ks%4J=J3GMtKFSE#9*~iqxd&Y7$Fgsl6!gfA-y338oRw%L_STiB3uw7MojXJc#=-T*qJ1RK`y?n z*uwc3MO*1L#|x(;FbX5b{m%9-2O1W6q`lr0WT2-=hFP>__q|X3uv2z#KB_W|@UJrTX}-7fRuwrfNPSEze`}ZiiRA?{8-2Z} zxO>bt>tl>rEo2p_%&wi3-*selLz?-u%0!>|`(r!pV;?q&+TG`erB=;9YvAira>_8P z#ifQ=qfYDr)?GVnwU5Cm0%Yg{a(uAIhA}Y z3%#E~0eM+X`I6D_!@P`bF}W3Wl#j5bJ;esfaZSXhJ5g16hD;-r@swY{ zU}C>$sk9ec)fA5PWAaqk{*b4)oN1s^-gC72;^POWQjJfClHF$1^N0|N`p9>lPXQBq z+_`az^>2rNY2O%*AxQqVG$_sAv#1|Gdr#(<=z1F|(bempO&JS4D0u!=1pj(!Et_^B5keQO|{0c*VoQH zo0>dBMC8Q3UQvPFYFLQXmxw5Plc3-R<%KHzF;N!kP+h(5;^Dtp_)wd9NG1J?m&>7bNl@0L27kV>}YjiVIeSM zYB~{uqNkTPL|Mo4WhOb$=hJINPC*k;_@!TuFqrL(iQ7k}07 z@XfWr$BG1k$CemQ+&dqA%GoOX7GpOLJ7cAE=`x?I(3B`Gy5tAPf9rXO{xkdje}`rJ zmlFX_nr!zmkA7jVBk00`$spdNaytY}*>%BY&ioYLpUl->B*oVe`81;f-RA)F_KI@< zV?_nMPtAtync&z(BnOV^T310ysiAXt9oPS%nl@0@<=DwmI>(ThV54ZTJIm5&%1a2m2a(8onXzvGz+dp z6IY1I@?JO)^;Ng3y<}{4>3B0wzNkVR-NB{0K|34UwdY$gy^Jw9{#8|XP%64XdnVs~ z$r=fyktmtt-N0^q-EJU*DlX=k+9s_httFq9@fS(?`IAG{$;r9hOJQSXzzbWnd=_8# zUY{Mq?>KI1&|^JXbr|52**X0Ki46H^tv4DRJo{R&=`%#IUc;^bxm6P80&Z|u4~Woq zNwQT`Gti&Gu0@@Db8+5C?cVC;6L;e$pXrX8Iv)%9`K+COPT`xs zbg7`Un+MC|IH&i@qc5$fJ|5#4q}ROmc0V2N$Fnw1xJ{-nRLU{$&ij{oWiOGfc;ru9 zNV!W`yp12CF*3U2=P+Eir49F5aS+45VtQ}AZ)xt?^A^`#p`9I&$7q+m?ss;)p3|rj zFS!2Temm#Zhuy9w)Y8q~)VZ3aKaRg*OQS@$+<6DAl~wuPq`?fZW1XuDXSG5fzo5jY zUt_fW!6pF$C8TVELQv2FX}O{OmIh6?E)58LwsDp3wmdK1w4U{O0>~`jaPY^I<5S%F znn|fId?1%g%)VP%H&pw&wff$^%C(pkCvnH(N_2pc)U0Nx7js}p!{F3F+kw-$cV}|% z(zbKx+}=Al#3pzpf$2smpYwjDB#L-*zr=96OSA7*H157WW>+t_9z-u*4(j1+(ECgS zlW@lZkN{ty?)UoKef)2p&8FDY#b-?ocS2vmajG5Oed0$KTdr% zK1Iqzs9SC-!htd?h+(4+XW*TPrcw@%c1|ckM56KXn`;)( z@`BhR8AC8kg7W8i_u8!Fc+i+?i2VS+FGXI=JKZn(o&_1*YiMN<+N0ea5r<$RiGQPB8BK)Eou%BdC|^>XhGF z_x5-mzDF!Z7<2*?Nf1{6)jS(zaG7lxa7+id71Cf}fF7FbAY}I%6-AIy($z1A9=`B& z2J}X0AZE+LI0R?&T^H`ZxkfJ2rm+!H12LzrIFWwTGa^+vWVH%6jvCaXm zXI>uG+XGpCUuWa+huqvtFRr8cejamie~8^!eOJei0)P2EG<=k(%Y805xSU7F4YkM1}~sT*OW2%6y0XkN3O zmx);Y4aCbWvI=h??+2<)f#OLAp3V)Xc?4>GCO~l_qN`PWml=W+pm$H>>~?AUr9QRC z{(s1BzE5xrsJv#E!Ko-H+_Gm(_A?7-g*x%twLgVugL;Rq&R0GpoP-_D3U=Vmsu9N6 z%t^S(*XF*?&6sdGcbTCF^im8g!os~j5llm0?qIvsgPx`ElvBlOCgs<}yZ=0NM=p_V z+biod)sqTdS$y4}BM-^H{_}L3|64w$@lOMKUhb!NV$g>;1ExY7aLVa`DqCWc2!Bd= zrwjb=6kk2h^{B3C`28D|Z5Z-TY%KL>gNzd|^TB)jn*OqCBhA=9i^&c@?D+jwL=lv~ zhfe%^@r>L(aOb1|>qH>c<<9m^?;`Sfb&O0v1N5UnzW~iU!NE8dvhe+*H>ky;dlRo` z=0*Vpg9SONem4vfpc*?iVLw$k%nIWcz?xlv4^FAHuUv77cD}qiNL?JwSA$Gy5R2JB znh&Q%8JtTX{5Evfe5wK>dgO~hB6e9>6`+#{^INI{D29rnLF{D?Lm85jJ~AsT_JI)f zAeg-TtbpJM|5+btA+N7E^{ao_;P!1GmQ|5nq9sKU@$0=q{0GjSRX7ZZv>6;PVq2TD zVPzdyrIvJ%$pHDDpEDliKE;oebrhx3I2`UkzhoW=5`sWZyig;$i5lwZ!D~D>-zZHn zbw$(;6B9+4Cx74A!!!(&MB0Ima_qKxYX%Gzj4JU(J}Q_~(Sg-!dBZM)rkWs&UAIjc z7G}4o!WuR;H-mpWv0cx*cZw{&9xR24;Fb9R9L9YR>x@EvYKE&uDibuY08P`mY}IAx zY!-M;YUG^g=5l-%eo7$HuKE<{dyyJd7lvNsc;@EjI-sk7drnh~_X8;n4_LO`4+LHX zWe>=T-)F*R2c6A}qiJOG5Mn_+ z?lF?vKiw|FS&{$@nE#}6TthURe>9y4(O5uO%hz3!AjoLoj!KYEw=J3rjV(f^D)4H8 z6aa&aJJ3KsRS=|43G&X+&0qea$RmV|>!YlqaVl;0KM;ct&MDAcQaj;6Y>2c1$%|(o zG20EcfMzvkJV`z}3-*8?N7zjh&xzMHDsQc^tr?oipdw(D5IrQ9Ae!P)w%~P}vRZN1 z$7k`5NRA8!#v4G*p&o#)_l6@_3_!XQ)%BhJ^Y^Mpj^O;T05ht2&%4*4ONs^k(^SgR zFnBl9!6^tEumufWNRD!2&9j1J14R*132#nsZOX%Y3QQNz&4WEIdaB|fGx7toWf#XG zGy9cZhv%@i39!S*LD}<_Zu8gvUWewJ0xrL9nQo!}4W#)}GIDaH0YaexV51<|{t^;KV6;jbh-DctdLA>ra2nyAXq{fckr@SN zgh*n(WNvQ%Fvxi0EV4_~(99fYfbbfAe44Z2HR&jeE8SSs20geV+9I&gTS`6MGj&T= z9cXJ=#9?>A35Goo8Op91=e;qm2Wp3>@IaHnSaW~!icOyoj9W2-Gl?V|Xj21$`zkHa z1F{dmRMj+bd;Q9}&6?qhQ1G zN0UL&ER{+1s9||9Xd;IdG`v>xXe1drk=pfwRsxmvyKBIWHzNTE$kczOY`{z;MFi!k zE?YM0ZO)!V{&>j}H6+eb*Rk`3W0OE-Q#|89BPNlWG5iq?LjrT#1>IskhgV=GKmwEb zpFCjaTbiHt-qMDDqd=sRTxdVcn0=|jVFIW1hougOghAk#KUK2FIFqcJmzEK=}>Yo+kuTF#0rPr>81{u9Tu;U0;;PDzd zZ=qKIqpy*Q7ee32Y#pblc{ehjz(}P_^QSD}(ol2A0VW)n1EY+5PN-PHG$C6IJQE9` zd1GHH^YMeE9#mD0UkJPjoAo*Bgf*3~Iw%i=5qmUL7e)&nl`d`WbE^Ctme+$Z)M022eGt z86*fkTO!A_!5KW^gl2nWf^S+Q)Ny1^4I6FY4KuV{U1(?8g!4if`1AW%f!WsR@+HcbPYBu^F8 zh!)Vr2sQF8yL!5TpCJgq&nr2Pv(L+}M>2&2jt=4lk} zFXvkh!GMVZ22Hr>0`~E@dNs&Ws0D%GwHJ&hQr3M-Lx~wV2L(nf@ z*so`ez{^A7R0t~0SQToDIl%77mJsXRny%gsXFqLgX=^hYnfzfBfKe_THXuv`Y%1H@ zm~OO!TzVn8;bc(+D9m8Dnu2`OiCS8saHg7y*Lg|@Mt!KG)+?Be-CIPMR@cqivwBBa z1#ctgJ94avh1tCOw(o*go)kD*k92c#bI+yJ!J8h!XL+tICTBG=D`_@7gRu>oNCb-f ze3&M%=JMWpPn1L-X$&t^fZ;SFT+?$8RG3!1W-ZW^CeXscl$%Qq*v=G|VB|%}hu$u9 z@i1r~!t6JMz-fium|^rF7{XSU%C<7W!0snP4&LN(G|FgAmfhET--AbwQ1dKkmDFeU zHF!=JyJ1QYI4|!6r2ol)T2~N{ThQ}vDF7uatFSN@YM735Kc7^;)C7Ec!vpBqJg z>eMNaM&#?deA|mu1E^649E03&tVG_67cb(yJ_)uJ?sJWPTk~*nf5;$2Y0`=q&g4!s zUky~g^6;>tc_GzqY%Z0xLmJJ7tt=yuw|f>42Bp)himjYKYumw5IOvyQ)P4o#%K*h0 z!Y2$fyXKLW^1aV4$VM84HqkIm5*p?fpkNqljJ*e;+P0-|PQlKo;Tb|9CvLCix4)M1 zK70w+cpU{#7|c29M`f*mL=$bACZmw_a_|``?FClaX#4{RG|}+6icK_`@-I(+Q88$Z zkqvZXftZPjgF}v=pC5)zh)xxLb=i!d1@}V)k~G3$<*{s;1nN;0HGz#374FlyY`LI&Ev3CkltyW`ts1g zKd|S-)~GH^G`l)#yjw0gy56o8CqaGYV!ja!0grlth-THz5#bRD-HhLvcHlt%(x;n;&1z?_>xoA27ApA3TLke&ta7T+I zC4nFtkw&dySQJD1h2(u_V;_OxpC9V|X2`10rTG=r9PvkR?kqC!+~qkR(tMQo8b!3Qa$Q-Gmy> zrmMeTsuU7e3vVtDqS=aQD$AFb+-M}?A$&HBl^M%#*KLNRorNUX@b6FI#N9}^g77KI zN2o%w>MzA2sS%p%fM5Zdc=DzG9n5`LfVV`WBH97-0_0B08O=c@0QmW0w$_J55iv6% zknmvkSH+QWsF{vv>lcB&4#gNW4g#!67LXW`IQRNV>~W`}NPyBx5SZIR{O&MQbrKD| zb)pul>;U^Q(hj5Ti=a4~U5Pj}2r>sI=d`m8U^ZVQls+v06f!kli|KhTgrFgMNICCB zqn3Cs(l#eIRou?b-`KYwa;|xIK_*l%P>xZoez;!(vjw0a`2!V#MYFYRP+M@La0{qd z8iOI3Y)_OqiH2=}@a1_{;m^|>-;Q`ULUl61CRAPt-f#&2H5>06=7w9ei(OC(lthaM zqat9uBZRvXQ2m0jy%9zU#et<54L=Bnvu*bWyNZsHup}}?fP)J1+{}JrrhwJP>x!94yt8li2f)e5~hd2Z%GCBJHTX?K9|8m$Z&}) z3*fR&hgmq%N*%5TX1WpU3DJ8rEj>#K?CmX}DTk?RXbeegvqle8DQEx@GWCP;VGLnF z$a+DiG0W)5!Ba$FXyL0Qof)VvQ2j^aPjL*&kaFLHXj+sh2r`g?9$Cc4A$cl#d3klL zIjX6JA^?vDKtQ}1>nTLy4Dv1!{qj9%OM#X7G8}FOi|{B3Tz5c zRw1`2n%xL+It{o5^hfkR^A7kq#+mR{nW;OKhRjApoFeLpfzlRcLB8`lLTByF!bgHF za!>?A|2)Xvpk10iBQk9{&vXYo-Fn`jaGQtAkytNGj4+0DjU;jCtU}d+hBglnv+I1n z3f4_RnulkO3rPlP%M6S?U=tP9gP}#pBsalPlTYA9$X!voL(o%T@G&=#9MR@576Hwt zB_ZBL#J9Wo3C#$AEka))A%WqB8R#_7u&O_1sy-sxC_z@p~2X8oU<Bs0K=nx3xv8;@QDg<(m5duL)6NYyvYa!Y-A+h%uFhT_%h9LLp98&f=_X!FnwVux;)xxg)GCpqoGDBb1hfje`^8 zA|Un@Jlu8&5C;#(R*-|h!(6rXGc;|SNU2KyJ3kC!ZshkbI(Ekq?w6eBV zQU3H?>dQK^+1)MtYjN?()iY4BFQBfDFU_%sSSMP=DS+Fw4;xbXh?Rxq+r}XJ}s+jT*%DK?5`P2J$=U*?6GwJUrRdC&~b2ZWIz7*5XSN1`Img~wDesG zfGIer$bXIpIT(BmQQtQoG(F7QAp)` z+#5wMPsZbZpy%`F+e44FNd7-pyX9-c{7YQ{4<3~mJ^*H3%Dq5+%6hl)0r?|u8t2FKUZ(&0;Ini$l8Z&cq`IQgw;j+O1z-^^twl8N|WbOvK|NuCifvN~+S zwe4s%RTo_oWn@X@m?E4hwp-*AS=#?fatHWGslrJS941_lT5;_x7E zZEPgO#E|Oj7Q(E{8uOR7V5g^91qBR8cQGKffuT?z6{?teM2kVAwn|ss_aNDSxLAGcgu$P()<>z&|Fo&H%c&ogXjk4_aS%8v z0At@(qaM?=S6`Mc-DSwWFl#ogy9Kmrk6VF6e))+ zncc^n!`1Fb$`yzqEppz*45S$c%L6gQek(D<;go9ww|v}Xc=~2AGSyDmbX)Y zr4uTb`7=k_IXO#-9ru=gQnzqn9YNUTLh*@OheD z-;HW*_Iw&fu%Iz-4-RkHkM0JOI37ZVQu(n)MNTm6n)mt0o_paxdcyibON%gHAtm5! zcgkeBLydg@ax1fUwL9E##w;m2D+^L>KKz{~TEw_><12#}JKsBPcGxl31Z!(`h*<=z z>1*3Puqsf4qVx9aksuS_w1taLt8ZQ;w6U-GYQS|$23q-P%6*kvRttQU!L+{_*O` zgvCM=owdwh$)Y4h7rN1v>}`&!Mh^Ju=U*4CR%>r~+aohDQp9l)?mjdhAToP2Rg_yn z^+x`hxIc65tolaktS#f9?X|vA%%~6sL1uT+(zTv|*par87{uL>7v)jrTohz%%lNR( zDk8SpkfV^KY$8VP(wX?Ov|M)|>k>u->i9LE7dD_s-mBU$hQH``D2=*FgSv-jUNueJ zzR`lJ?(6IocxPhLFvfmjBDCfYwqD3lEzDN9bWWIMOPFb6->rSUkL7kwlaSHv=Re{Y zK#c?4oF*=FjkYSp)j8fOs?}xY@zvk7uAQY!`z>805)QvjGYR`h*6C2{t*(&J_X(<1 zxiH2xHf7eXSqv8o_FJceLbr&-`o$-ezoHX?h7<~Md0Iv?i)ZapOm}yg^@=BMmtCQ; z?+r7Z)3QvdoEg<0U`#bhC#r|)7;KGd*w)){pScp0O<4K=X`<}^9z80U?=kl2IeyVS zgz;9X-6vZeg+88Xq?gVbbHnKWE*ax2ASN5bf{)%Mp53alVPLe*j41Dv>X`!7YFrpn z-FRIJdk8J>{6VZH!laHG)YKi$Z5V7l9M?MRbe6NdX2t2MPT)6l!z8-9*V7lK>QlX< zfKMoReaJ8~H>}94Up#S!@2CIKh+$$NU7xz3-mF=?%XHI#*~!jaR%{x^5X79V%;2fNIp|R8$z7Kc`@zUrMBb5*7@Ic>TO7&MfGQ%A_c~rB3+3!0A zp>jQrJ*aXhO=YNCBxF^A>F~AFaXFi7*5hDw;hCbZTB!K5r#jrC2q|wVqjyj0(9tlYSkM%V51TJyKsvi2SbY+P$f=F28!N z1DUd8>UPvH`%<6rTw#j@e@A+YSHLt=5B?i$R>7juJwJF-XiRpd59&(`?AQ-_WM&&-&n}$zeqzt-7#y%Zh{xvrl z=@(Vn=7V_I?hVe+o<|Bt*fGas^4>Ca*X1P}O+}&Qp-76Q??ZWx>&{&KIS8gyHll%F zrTV(8<{`Gc_i6s*duEv)Cw+|>c-`4AK~%(ZFcd6p9hPiWox)UgdGB>+N;8%zjr0j# zuI<|lLgD@^a$pvFb(N-gZIvp2VLYtwTy#LQZ1=zg(C=872jQRA6m56rF z2n>{;?yq$D#%JqkJ@g6o{K!P%grSDlUs95wZ0Q@61co?WqsDNU^BGiqLc_R@nooa) zFe%}TfZKs~-)Q`xy(M~Qg=fe+E$b7_9;)Rv+o82t=?C;(7SmOk+0Nhve^1JZ&eNjv z!f1_?Q4+ylKBw9;`%rJvzkLXtq;^R?bL;Gt<28liiHhg^*liNnzVD^Jxj0S zjlrB3rv_f5B_>?mKg@ZZoOojJ0yTU7b~Hu?`P&=p6$c{V=o(~V=KUlkNUm}+8Tka; zoGYM*7jxa7a|dbiz@Jb2u8Aut+S)hdqsNy-fPPJCI-+1kq4Z{* zw>X^^DsBo#pET7OZBJv<_dC_e&2qf&ma7^04`}6Q9gLG+LxU{#-)6e(BX#iGO2AIW ziR2QtXNRJAp|v>fv2=2s2V+w0K^7;rl`?AfgO2!W2YFIi{L*& z=8mde{QARBZ-zo_dw;(>-F-3i>dFg)jsay4^}44X31gzowY8P#n}^ZvQ-+I(i_YQnA|u#OVhBl63^{?^mw=?8WT)q{LIlO z%MwRDK~6E9Mkl%qk5x1g*tE&TpH8ewrwuugi{(I%)1T6Ky?=jOkCCphnqanBXd(!F zh}BbLIqtBReBSsBF$FGjO(~*dzJx>SHdtTO_DHarqFLtDMDE~Acag+A=F0;t<;ajU z&&?E%l_0_j+c`c+Nr$t3Yv9|^wl3MjH{QUVdHU+PB09Rc{IWMfpX()hvm6^B(N zUES13i}_4)Pv}8eN`{)CMtgiy)e`n4Wp5)_U4cj2dFvtF7eb{l1D-ns+x0P0rn&A00jRK2K0kP>56xRMVRoxzVo(PU|HzkvX| z(qTosS&4z;avgpX@8l4$AgIyo7JBws4lXs}$}M3a%Wqy4W0dCI4<=GWOF!uPpc(7# zGV?A}2@1zY1lljLo__!_ED8i06}iG?TXo+1u+`&iLhI=E`fv>d>C(2gY~~|rmgn0Z zJseCA6E3o8l@k0qZv^bobTGRQsN9fe%%5b;Irbujd+e z%bIa}=iTOP1-wofpRj5p;y#5G?gxliz2p6DBe9>X;8&@H*cOFC9D=LI?z%82znZ&U z0a~k!yg4b)wg=xx^X$6=%v1FDz}xvT<4Z=6*G(kcf)Vr{qWl^yURWzPmYM3x?x+ZX zkAQgHK_H^4io0BiA?G53SSHg+dBgAw_$P%pGuN+94lu!KM7QP0G1RWTd(&7nudvXV zPJhbGX6Z5np@=#u<6Evo>*&uI>cvlhgzFxE&P~3A4<|hk>ce7sSd|p>D`XEYmFLQB z8kJfoTtEK7AfIkH;=yQ-r@J()9}WB3&;6tD*8MitAC5)2WPP6Isx;i^q#Bd`p9Jml z59Sr|ywVe&2|YPzaeCIq+qf9#xX6NxZYwf^8IjdMl}R`r1L4L5w<9m# z_nH5gB^3EwUXI1&I?Yr~9angSZvJaz-+e#-eggp13=BjP(~us0x&mkYrtiYM06TR1 ziW+i2TTDaf7Rw8ccZ74*N3vNPo@z;`GfDVWCU}4W3}mU-z+hna-LcSLPi~5#6CVpl zuw%GJ-p3c|o!_;>*QUDO$0a`0GmZeXt8;EHiQ9cN)UR=g+{K*P@RQs#l!=1UI4YrK zQ*u^v6IXGj;+P4`uxz}qZ-f8#3Y^=bG%poX`iiR*%Q!fL6O^7bp7t1q8HM#qC#%t? zaPCuc5W8t=#D1{9IpdL1_6caV+>wR3P>i!X8E@bfzQe=Me50rXEy_Jfc8gIGdEh?o zJU8xV_%128wyA>5aSj9&G-om`gG}d%xmnzch<^nxpJaVyp+XB*%4!*=;Llt3FbG*4{rOn zs!P=S;&y+y>ceRJpcB?cm)$7KJUr-ov%e*2?o6^?As4Km7t?l|(aFgpNtZJz?WU zdd}o=%{LA49gk-VJXSA#AaEFVf8wY`LsXx?3-Od@rnl*1HLJe7)BIC4f7q+mz*~w>|!kSnuB(e=fA~&=1t2wHF}oGA>W|*QBN>N z*OYk5ZcT`O%h4KQoxEE4BG@6Fz0rxfzK^r4zdc!%CmIL;Q48i&rDhLNlUKRG0rS#}qgZ9CC0_fOvr-}lD_|86tLz(eNG}7e6mVfE(PHI$94~7$ zM1jv+rX*7k@J$ZP_KXckKv$e75(V*I93jhc3JZgi=1zloH(7s|oWFV{7EgB$)#gCx zd}o+oY-qymS1Za*WJ#5w1Ux~d`UNvtJI$+{0pDaMiXen#Izk8R^2b$Ulo|(}X<3X> z%`b2TKN2|8;<3P0HbjTO@>fAANv28B-i~HIHCSADLKcYo_svQ0|bs{07HhyJ&R0VKELzkC8L$^ zK^G(LZGqqqPaxR;#?k!&j?R44`aiI_tEc3LLF@hh#c6)3=ih#cOtmkg zlQX+UrXz`54S2-f0Y6`gJ{g5l0&KVA=JKQx_}qh;jmF*RA39gMG66S3I;w35W(fi7 zZ#(%MmBWA6rvHv)uAgyuEu;@Rk!v*D#hPij+_}e zK!EdhA2K^P7Z+t|Z?ELTp#l6s@ZE^LRlcp;-yXUuFKjb1fd1I_a&6KS%KOiAKdKA) znU=rIM)%*B-G*Xzyxu=uYppdlC3^LnCW1^57oz-s`9Pd^i76YhCG*avDC86j`>=e$+) zH3MKWN^W%wGgs1cM=A>J|H;xGjF=Sw<+?DrSen@c zWV}+5-4l34q%ZBVxgD5yh-EkM>%6H+iT0J^yY<`OgU7zITmh>w5i4TRw?SWZ8&nH+ z6V6`$dwbN6b>vq&piS+1i@XtZNr*UfEU#bkxn(++wIwM+UTEl`y@QD3#Q9Eszbtf% zjyQH<&>3K}_V|%QhZOVxsnjjv*S42gt0qt057{k4gMtZUTEgnxNYj0+6oD8;E?u|B zT~{WIvCo@qdof!SDAT{=M-Ms$J-qWie;Pd!(WlQER44rx!Y7#XWPEd4g zQqqC@q9>X^%WqA{S^#<6H*r3;-Hej=+}JWtmK~fof>Jhn^|z z-gzTYz+0q2Mp-+zjRAP_XDV-j^m{|U&Vv&%W%hz_r|O|X6Ba4Qd*HYyBu29gUna)p zZ@upmvq5J^KgbBztCBk4sdC{Tb-vG9|Bb@3i!6oX&&UCI^3Ctn5~hAURJ z3^-!^olp0(c{_gK)ZHi~mc%Ti^(9<0@n#F@WDwisL3qwu_254bL;H=Ui+anPgiovs3H{R$eOlH9e&?URWto-`W#y=D2yIv! z3GUx#7^8UDG09&Q=kNG9ObK`@ipFL0{>Pr?r~1v@&m07<*O4pEBKOt}BeE{yM~pm( zW!%*_%s|7qI^1rF^PF9wHvXfC_c#=t@gWy|?x<<(HdvH2Sw z55u!={OIWIC&5Xj5~}WYi&%@^-rAn#0*z6T=Nk5)>G@Mf-ejR7^mdzD{7hFj6H`g1 zwiyTdu<#pR{)AcyRjq&Oq_8==T9K0;vVaM8-u|A0AS2vYR1!4?yN9p8dD}yI%*r$u zF>H_zSuS@of5uA`{9zm{+E_(cd#>rTkM3Yq8b4d_rpiEGXF zqoU|y?GhVz^;9|H+N`w}Z7Ac;6{}jxyMWui{e)szlbU$ytQ&0zeyRDAF6>qNOz4FF zd|(?={gp^{;ok`BQ1 zu@9X_@d*i@zCx-y|Dsqt5EP5=ImageFC;FIYuA_yH?_&MZ@A^}LjAbIRNQatmezC2 z10a72yxTH(7x3)w6fF7F_Ln9SeRUn;I1HRq^$WRaToekn-OpCT38+g+9(x7}lSpWD6d z!DJ>_8(^f-+hi2AO(XCg(Shj0XK;rkjX*2nTRlhN zA)zc2DrBjx>q3-Ks2pkRdAH=^>J@|kG70`b_}+%U=G1aYgE593{945`sduLdC8YUX ztX9KqKNO(hgX%MM6IP+djw)i4s>TKWZ38as&J6b3u+LafKuxk5p-#}{B~mODwn}~I0FU$M3=q%f`mpomxM`Z+#&eH$*NjAQ3ZKw(>vY^n;rAWXWh@$k7L>2i+;6N2v>TMF3eN&2mwo%Hut7R)tlA_pmq`zEOqI5239B}|Pn zfEspxYrHzwSJgnYHn6)D2l}XY97aRe`HrjF=t;gwe;k|i@3I;qro{3x3ugHxpM)D@ z59a+uyL&AdoiG6CnRW6zw5E512j)ULm6oM!pe??GS#1_H-=EOex~0~1l%m-7w_$v& znDvrG0`AAs>n#dvJmkVXz-%F^56Wc}O#ewf0y&P8!oNTUO24B|2LNO+ztM`r6jsFb z{ML6-LZlZ#sV7J>@l9-A_Q|H7KTr2dWY34qcC= z^Y3WrmP(tpIj$@$v~t}?mRKosTzF+-PfPpTY-{Yyf+Tz$eP&<6+=f2j;g2QO%t^V| zB3>P!#dSFf}(_0Gr)AEY6DL+qh)xa}RGqx?QOTk`zEX%>&`V3qZ z?wsZ-Cm)i6e`cSftl< z<973`y=SgJhK&mLGB9F^{DB~xMLPM!<&}?=C=fDXHw;89Gg+n|o{>R;kQCkB9^OR( zhrdASBO{y6NpF?1BcYt|wjbP%^R=YY)hFC-zrvz1sJi!v;OAA(>;3wp>P$GsR))9T z*i;g5cc%=zA9J)_Q1jW&et=(}ugzMQyB@2D`~s*Veu63VFZn31z7RCV-elOWt6s`y zbmtIdf)h_89rfm5zEQi?ix+sri(ONlE1Z5u;f8O9KZCQ(l^L?UU69!WR8f^?gHQB) zj=B}oabs=(B-PDU30LN3DvcoD3eam-M!}v7ItFyb7`%8Av&qn(&#mCud=X#eNy`j0 zZDShQ?B^HBhT{R2pVQOH&%`V(Ex(20G5i1@E@r=~bhZfgyrzW&T z%V293xOEBc*)@R&Q<EA zaYlT(YtMhHj$B=xL|Q^`6gTu4_p`3g3f4^JI{U5g7)DazojP^W%Cobx6{h{TEkF`R zB=93cZzYU?rNZa(_%FDxs2ZY|wbKM?{_O`ZoR_f_P_bS8*Yru1Ix^?5b`XIF>Y_b5lIo(DJq zan1?|^pvh+6#vqVLC~d~YU8bRh5ao862K7hB)HeOqzu62geZ z+)_Fr3*J%M&;6}6Q+dnvxUl|OyN!e5p5^?lx&pWe((|j2Y9N+J=>67uBIU1Um%jz7 z=;)+eTt)IPhHMNb<$U>a4-lCR8;QC={?vg^L5l+$q+-E;HhTH(r zy!NYZ(oommRi& zVrjEHa9ev_8qZ0pQ-9p41$}YHKTqq=J{VE@2=(cZLPQ>Rs05%!a4XOQgAH5k!ux_QoT_(Vp67H!6jj<-6o z%Z909Zpy0e!_0{5v#Qd5l?R4Te&5siUdwHiicJ^isHK`?%|F!EFg?MwLgI=YD5qixrCKr3v!Auk%`-sZUNaniyla=bDb?r}TzaMa0 zrfMgYaOL8FS(&cW&u7H*l09yE48i>#SMy`n&rUv$1Xy`GkEv!bSq6<*% z^gPO$DN;a=uisZ_RBi*G2?-`ixdOza;sie=M_O$S$IE*aEl8LDR!#4|%^I=$0UW3t zQ>>@vUv@lsHewYfu75uucM~@A4^c5|#ZePkCn69J+5YOa7$0%|Qv_OoK0~R9c!JOx zXo!atsz0}v>$!fLPN^2Oht;pHW8Z~}F8EymRfWDNgP-nXNA$mxhuM1>Pmk1BB91zL zI%wt{x7P@k#dS}Snl%+8b*UN}l=CCB5!rI6TnR;6ulidWqV<-jIHGnr^8yFIpz{?p^=cU#odW~){&6d51B?LB*ZthVpD{shbp;0~gc={}(5 zVhtD2%z5e>@jlLeef53#wm_~we?;AjqVd&cDH@_<7gR_LOI4 zEPxvt{S~UH+~-&oj2-!5Q#gu3+STDx{FZ(2#Ip~SV}y$5&@y`&rOBGCl2Mu+pgkE& zRLu4)o+?r!)gdrkf@CeV;Wm}oEAz6+I02`%CQt3{;!f?(FR9Drt6(*!ya(^KUn@_% z+Ut7`GzfJr=)=0LnkjQ3yQK4GHLdVZPiO^!_c%LNc=}_fc3@UYZ)usGXMebcY9d!}CY0e7Yx&wpO{H25aBoDX{WKV_&5t{b^Nf?Z!cz=KDhmVkE zxkfPG>J^H+j-@@1rI;us6Ij@++_*4P##wzE`@1#7BU^hKOR*@e0iYLp6tP!!3ARND zwzAtp#fh(NYfQwQXO9mC3R{j%$xkN|}`t z7goZ|f`t9TTcV9z04}phuGC7U8@053^1p5!W~FzMUewgQDQTy{8|3Z)k7=H96z+Q+ zSmhMqlm^3uA&o&CHuC25y@wx91kWR~_|7L;j?QR#da$HBbrL*l`FpMHsv?azzz#_@ zg31!`6;(Z3gcc}oIL(i{(FT%+O5*wOydL>Gwk&Pk z`kYX(X}Vwl0z>j6fju$ja3v)Ec_?)h_hXF_N~l*yIXLL!TVQ> zF>JjYbC=24-gFP>oQt7fMa=iUz>(>u=-zCe>1p$OEpL2hTySSgh@!yS~W1(rFws^<%=eLe?r8W-uGb6f=?-sh~6atRnxRrBiqNLVg&35A{i z-Gu%~s05Tr_(#5mI&SKX>7@-h3sb`)Jx}@H>TG}kD=CW~A@FMUQK&72W}bfI#p2_v zxX-2tGmWlz(JqG$Yu$6%#WENd4Tv3;+t#z+{pI_hj@0y#2P0y*>p zz0awK*MW~MRfH{}V*Tf4+9~4pimj&MiZN{Xw!N3@achaC&u?B7IF{^sk@EN~P}<0a z&&pooV=d3iSuSY35tgk}uF>Bz;q7J9^}YyYU(@bAb879F|s z-ZU5M>l)OAgam>8nsMOeu-4Sq1C34o%q2G~zo?d0Rjb6{$Vuo{1JBtfh_PjA+u!EP zZ$zU?PoJk>wnFVbXB5sG4(!29;Q>-Jut1IO!S)vd!QZ-tQ< z_#8>v%+{b?pC9(tP8nFA7k*Oee-c)A;#0DRn6FQt8=RT?djRurb+#LKdzWI7@vXwB z^T*g&fINF6GLWRTUvzU+0O^QAx)1^6&*`|5$?5N((^Y1V*xN3Qo0UR+q`+J)Y~hVM z7O;Dij#Mmb)WJT9`#hZ0dvr@S`(9JS{F)*rj?6F+7xN<$gn*#3;tg<$5!Uwf^mK9M zNJV}R!Jz?~nIW_=X?12LUcDVHNBrrf#LGY%<`m~Ir#}>;=Fan?HBD#U*J+{pRB#0R z=vT$qX6%+U6Q6B6cu-bOr6V9D7Alp4fbQv)G9nz;dXOOE+1O#>;VK3O87?*&8U*6m z%Cn=}+uLGFqlNxxlGHf8BRbMW2?ZofXVy(6WI@qNE_tRSg<~&snx(IrPPr&8-LhUC z>`Ft(;+x97C8yHmW!a+=i8;WF6L#C{n60%wxk}5=r$-L_)|J^Lbj}xcB&;#0=A3Zl zyB{I0CBNCi{`~Z6tN6u4o8mfpwBb;S;tSN3K5GF&4uc3S1J4KcZI|>rySsRXOAU@R z?9F@J2y#qTB|e5m+IV{`PrJ@Wr+rk8P^_@H_~k!m3SL2Z5P-Gf6G(Y9-*u_oPqojq z^5R#o|K3ULKY6RU+%NC!-x2WY#lFYZXfK_?osW*-#8jwHcTl?N-|UdA?4>0j55{r$IVCpy6@8>3|>-7=V`l9%OH}_7NiA;N{Dgv!kp`Ok%RKQ7Pmp zn_VL@b_LCT%43ob zK&nD&-+}|O3#26_AAs1#VUVppD?9uBBU62IcTX#k4;dt};U9mbSW%T%;HSzwuPYbx zTn%LaNiavX<-U(Wo=zyV{c55dxA*3>0NM?`>4YMJmxlFNd1Zb5$Rq=={sXmavOQL% z;o4Lt?786@{v8>q7)F*vW4yxN73C)FoD@u8m^K^AtG|UPSQX;D~XM zi2j(TZFt(ODnV#gBZFBVRsVae;IU?YTZUrY5#tSwYkn=MD75{Vo^_cBAI%{P9&e7M1|i6JY1@uLC2lDUNNW9ToN)c zKGA-BGH^4gBYZN*d|*Cs)8tnYA+0ZWvbMHT3Z;yNk@epJ%D=-ZS!=+R=spF9=H#o((r3^q519?K*Pl;2@S`OQjTV7yy?~w}C2dc(*)dtm z5=F;(+3qL&YQbC!dam|bF+aY1#&2Z*exGGT)_S&ma(zK5(M90p=pXK3Dih54R{$|d z-P_snQyA=5{cK;8$#L6U&3RdV7nWeRE+D0RjE{BVw{L$tFt)@WXI`Nz@-Sl?2k!-| z&B4@7)xp#uee+dg(ptCd(N^ET{CtM?i^!;tW=VIHqa!h=-_gQ)TNHS@oR=Y2&*NSC zICcT*Q&pVF!?r~h^)U7^$V@pA8m3aioPUJCZh$2Q(S+@59#km~kHdOR8F}OB9@-IB zZxr}7`>{mS=!lxNN?mz&FB^aOZV1p}>7LOkKj)8#eb` zdxC)GyyX^2C^~-$$~a|FENU=q5gE5(aFVex`d4GIr*4qsdN1}-XVIjimi7sl4@Qto zh-$r0a<~N+9=D=mgiqbhT9EG~QOXyy7K;O80<6n>gG$5I)odj`i3jHj=ezvkb^3vx zqx0Qp=>PYlQM#$JZ!c`7mKVQz7vp882EtJcc1G_d+&t#gIMGmO3J znf_!&E}v26DEjt(QH`jx5PXosco{$mN}J~n`+1ycLmYDTTN^C6OD*1H4lDM!gvEGI zy66a^Q)a$x{1T^V6!y_4u=&kri`?Nf8!i6B6q{XQ2yDj2^i{!nlZByh4kw_t`Yz19 z<$AbHj>&bzFPI&@7<6)=cMjJKU)gthrdP}uF>)_$!m}M`24A-BRaZqNT|6I5P>eaq z_?L9$;Z3{Y{Q?cM+cu@~7py$=rG*B5I}d1VH%*%XA@W0c=5dQd9!<6*@f6SLhDK%r z(?)_E3}1Wkd{1i%skN8KKhu&51mQBc3*=EjJ!X2N%e=&D28BN9_Xha{k&;pF(J)G6 z$UMeUA`--B%k*W}PhQ|K)gN6>(4%WX>XP%|pagL!bbasC5K9tlai z!?0^za_9r-4R}-1_n70aRc=dy2W!!)Nzoz+6S|_}BH~P@3rEcd247;HySCpbt|(Sf z#QA=duTm;Y=NbpxihtAAE+hNc`Vy|b?aa$H+=H_1bt1R5%PcRF7dn_{t~34xASWc~ ztLB09q}iil3tWO1AYEqH`OrD2hi?6E(GFaLXn|i-@Ka&QIRC`{@C`q&etgZ*;Bx~z z#V8|D%05=;88IMRdz_$f1xl^J;d-U+bgd{p7m>r(`82XlAJI=bemfxI@lY6WYUgmy zX%$}%^u=*;qm-7kJSyZLl54BfPtM;n5ij^UF z_|dXj2U8O$B78^!GlAlet$g8N``m-7tP(52qgjJXWh^}Wf%oCV)5th|Ew^vnzv zg(I04MNZI%ON{bxS=U2ZIkz*M_V^4{J3r5|iXm-k?hgju=dI!2CkzLD=Wn1{4i}dr znV;xQ8_rE5bdctC}=MMvYV@@s8U3wq8-?-E~?QCVRo@d@2 zDu}))JdKaoowGn>oyz;)c;}6ID;z1ujvTDjQAn@5Gsn9YIYh0KX^exc5an2q6QtIA z_FoC2{D-k_>WsVUD`fq|GmBr?uXV>$Reo&mTFCVf8?70bS@Tv6~ADzle? z^1hhl!<9$*{cH1G_*f}DVGxT!m^vF8E%oKsn--wbbKD;ANoR*gY9X7Vqd&yHo@z5> zxtGQ|r`AaODP-Mb!;@_ghNE!A$f{40)#3tyWEEdatXjJjpxm5tGqe0}L6|3-npX-A zzNDGleHYhEghM)#i{es->QH5)v=RG)IyUa-R;|spnUpeqJlo?>Q7>%rZ-BmP6)*~Q zl6)?us1Do(#ZGP0mL*oyRqRtILRwxkp-WF2J%q$OZ;pD8)+q0YfN%?FwkarlPgV3> zeo7i-#Ns;TA&ogQ^JbYyzKd&ia_SvDHANT3D`cKKdEIkbWxECQwW51H8A^h?-{O7-akRXA*~4L>u}`adJHsJTa90 z$p$dm0H@zSo}R*BUjSjWy$dJ?)F5$ql)aUeI46<94TvV3ch&R$&SP025`UL-)4y)9Nw|3g7DLE6>aShkXxNwUSD6I12~PPBRV=dMy8mE zSL2T!Zwyv?omq)o?^XXzApt1?h#Y19d51u)0tpG+ShhU{iGx2jId%Rwz5ZPY;%v37 z`2esz-@(*Y`oXXK9$AEjAYOEgFhWVdhaDn84KmMBKXx*L`vypw&W~94As}x< zL=+G7!M*!ur4!fyE<-rh7y0=X9}%pB2nri@`nsy(?_CH&HMO-z&!Lzmy3HSL_bKXX zy{9J+DvL{l{^Obj--OUuocMr%dx(n_qHYnn0d5{i6{QQEb#7R5v(Ig;&!>M*Hc~S< z>e0&o*O=tOVqrGEiwp?zeHtZA? zD}&sP7gX;+K9Jz{wbX2Fbu}KywUN}(AqKY}ID)$yR{LUTU};%YPd{K=Pn8jLcXzKA z7G&U3`uuqh^6c9fIXDRS_xBAlKaYWpfj-0U%Cgd=7ZYUdGnX~2qH_V}5^;q@7Z?A6 zOB}fU0*{o>1{);YM>SlmhIebVUuj^CzV@A~v&929J>&}j1G{7C)i1Gw8B*969&(VHU1w=jPUEo3hHh?E|6B_!g ztfUlgwOt?J0f=e!Y|4<(8@7i72;eUWys4`lKG#kcWu&WnlDc#w<#TtvM99&48VjKU zIW|eBzBKznzE>`eKfzA4Mcq!0x8ZWi^dS>FO zi9n(#p;3v6PY|hEZJNr;?|OQq0I%%rVSbDE4>Uypc?X`S2{=+0?n_6K1mVy~RqV69 zu6c`7)^a?M%lBY<(#;Db3~@QGN&toMQU^fF8~|!#a<(%OdU*I(AIw--8u*Qh{?+HM zI=<~^&Gfry(JNHQpGEIOqm#|yi>s-2Oc3?p)9laA&qo{|J1L|Ia5*Y~y&jOB z6|TFJEu&)nNe^cCe`LS>y}vIB_VBT(VxVXSyl8(;^>OCgXJL8rNyb1JOT=$S20`56 z@h@t-S5rgdDL%TVL!y;#vm0BT{Zdr@l3(-EIrt6%*i-3G7oO6a%j1oUE&p4K7C3C~ zueNw~)fn9R!0|I&<(bRkKksMdyu)=r&6=L|9yQ& z5S#5N8hWESAn~UwO&)^GxV^K&3sqfR(nMCB0RBaf`(Qgby>jtk1N-}GS7^iC?KRT> z>Ev2NnhL}4(KIYulsYR{HglAa&IE7da8N6VQYpMd=4BJIpbci1ZG{a-R#VBM(4=%Z zC2uKdy3Fa8xdo-J>)KRIU1SMcQx`ffwVo6G?nl25e4O*1_j|sF=X>6V_^Ob`pSPL| zQkqh^pSmT1ic0M=3iATCud@81r4Lz4+j2ss=zO-(ze#Ht=iSXfxBc$&`a9C!DlQmb+C zem9y=23E+F%5BLhDXq=?BQUcgV1<#-C&f**D4bvn-+Fy}Ip2P9tncqs-sgK~481Yh zg#=Pt1*8$?kBMkGqtS@fv)|1pRk7p-Lt^@Hm9HNGq`0$->yDp)!+9(+K!1fo!(I6J zL`6fASAo8GL(XW|IWvSm?ATixHut&5nvJ{Y4K|T&xUlEqe48zy%i7jI4Uck7M@Q65 zF3NT%P9(5shd$21K%b}0TOfN11`QA5gUN*Bc6UQFL_XN&U#X%S)M}ci=SywlYHx3( z^SC`~uH@Bb&;kP97>$KxWo5buT8w~$w*p4bvgO_7LyI~Hn)}FYHd&FYGgQXu5mv*I zNS=Z`km%;mJRTzJz3=SX`is7HbLz);?(5Go;sWU(A(k#pjF#cfh z(wHmW=8)if_ju*lhTpyonjEMIPK>if9!^c&F6f+CDRfSA(+%Ntj>6^yjkv~m7WL0# d_&@o|vQ*h?IQ@nFM2*xc;=sN{PRpKb*>C2wc4Pnm literal 0 HcmV?d00001 diff --git a/_images/649b01ceaaa3c4f3a92932ee53a1ca7dbddc1bc1d46690c87169c8f7b74bac00.png b/_images/649b01ceaaa3c4f3a92932ee53a1ca7dbddc1bc1d46690c87169c8f7b74bac00.png new file mode 100644 index 0000000000000000000000000000000000000000..e94c3072fd18a73c41de17a2c50ad98299fbaae7 GIT binary patch literal 329540 zcmZ^L2{=~k-|nkX2t{RzP^Kh93T4QY43Q*+Oc|3onN{YDM@RO0^=(G5bxU+(e^Eo?nXIEp#%Oo{pXZtI5&R48V_FcQ|=wxMgRYX8cK$w4@ zrL(iWlf>b}w*U1D0(OoThxe`iuEdvYvscn}B9Ul}i9ci+(od{NWF*pQ`IB1L6Tc_9 zUZ?Nut|`0tLbCW<7`^OHS*A_0Qzd~+${YqV--1FO9oE#MKYQ0OjV^-gd=YuZ+&$TC zC25NfzW?<4Q)^eFdhJ;8ebzV0V|5!n7MmNBJ{@;$PUsNxquoH^FPoylL;v6YbJvx0 z)rH3Q|NRSkinON>19tqkU;g)_Q&b-W|ECX(B;8K>XjG8@j~Cx!&G7%+ z5*h8wl zYs<6cgZ4V>6J0sCg-olpR<2ivGTth3nbcl!s1JEIIsdFJ&-B#N>gt6>!TQSBLl@r- z+W-3gNhJDpr^_X+qkE5Eldrk6H)}55cY0ReN%HxnGDFdgSt)l%T%TTiEwHli!zQ=? zlF#~P>cCrNzgHTD9jsn`d2N?m*UO}$cIhQ=`nkO}d$AZFj%3_1W70b1zRDY}s>ixF zJ6mf^vSQF)(C7D>=Bk!|q9HR+!<55c1yp0*{{ts9PX5)BGzC`Bdc?1FpzEF=TGWL zCBJ~}%qHE>3>58>V`Bq?>A2r_b?w&7q)(D?dEa#ZSiy?dT-zzj_Q%_@v$OX_Dh+)7 zdTV)hjPu~ZEDrUtq$dv_l5X!lBztSi_I*2pjqL2grMy-KI74fbAN5h@EV zE0c~re5rZjoQ_V=X3E_U4NKf|dFN)sWye9IdhPtYXKV~y_qpI?d#778s|So5!Z+PQo8?%Y?e z6a%UE+JFC;7g9_sy2;yxX28H~@V&pitE)x9`TQrP_wO@1Iyo7en`>K_;lX?x)?1`@ z@7)_lESPD{9nl_-%xu5FKu%%dow#YU0%ngA9{T#?ip+CQ_-y-s^u9iI^{T+84JXs~ zrk=R+F_+A`ph$Lcc_i-A(CSoKjo&u9)@)r7771r^V`Jk1doczn&+D1JPdlyWzIANH zQ60@_viA0ZOvkQ< z7CMc|azzhLf34Bma(4%(qR~`e3B$3gEccGuhBU+-HvRdz@cQ)7=C0?Lo{I*2>v)o? z`_er7sJgm(*OUBv&U&^#$SqD##>W1{$3tqJA!!I@Eq~Ydsyq# zQz`4LJNcGv9DaU&M(=#dIwg_)nxXZr2abH0bNTk?_tYQ0&lzP`zeso@6Btfh7bLdt z_MXEgD|6p!>*~ralD*9BS5Xg)`b)jy#htj`zI~f}xncL*&o9hl%}H{-uWS>%k6ryN zV`Q{1fQF6Q$;s(+u`3Pp(JSw;QueD0wn}O36q3(fV;sI#8{-oUqSo~3XOcn?BA<&~ zD7S6fmhJu8u3r(gZB13)!JC%J}=vmu6A&qfrT2`QfnlgqM?)dHRBM&Kk+1Ynd#6Q z{i|VyPJDW8*Vk7>y;r_*t0o9MyH0xdo=XVH}5O%o$-ts6NFjm66E^~HX@UXSb72cp%b%26BIUR-XVkbLbLne6kM zajYe|2I+0^)PbFob7QJvm~66?SFT;ZREc7yP4_e7mIspY$6W<>3+R)RmVQ;x7@L~j zN>hn5nfQ=t`7xK>=Ki%GJwi?=_b8|BwCTz|siZ{y%C5gTpN3I*)BHqdMRU^eO!SCM zV~xF;qti#fDSi6%X)cY`UsFLVz3ox@a}`f1Hc#)W66>a>rmDD0-gUJdBthf%n=(4B zJ=f>E3A0Kpe>r!u=LQn7p=;~wLLLiOwD-?rnG0Uobw1sN z{jwjf-Eph=3Vp@*PcOG#e0{a*#>TCJ_5(5{>mRH|74NVFZ`sZ?@VU^5_I8!TYE^Z$ z$+z}2264yzuWWm(^Shs4V#EGaL~@>@WnpRTNk1LU#UNxNpZQfk&tx;|Qvm0wJA#>m z)nUwm5-t-)lU+G>F~)vHYF+ytNc-GDa8&g6-rx3wN!To?IpRlt{t-{q?+mmeKUsDp zqmcCnp8W?7kO@jnnM|)0UVL?>Jc3=0L_)bYk$w7mW%6(+t0dFWqepr8`9JiWTKxHC z@W&6^nPqbei?3h9r2}r?roU1X!nu z@ZRBK8~;-5+Lj`>6+gW0?k-I86D>1U;r4E9&aZ`q>I4ys`~`=}u0wMZos^D+EW!y? z21U+o%C|R=&YnFx{<%;Dtp&?E-E^#fd|px9drfS1HR1mKRP|&jB&+cCzM`Pu;PQd; zTZ01wq)4Sr78Vv%Y*H-WzI{_=OVbQ~UiO=bm6es~A=skQr6J1Uv9ZZ7cAlOmmOQ0) z^XojE|8i?94KPRio;sPf5^1MV)zQ-Fxw*=rs@nz6PU`6~0j_NHmnEa5q{PnM6Kx4) z=jPtZ=J|^(J12)du7TL_t~I`?BKzqf1uA64vuDq6IeQ0(@>6VHexE<po8rCt$$mvWhBK-q-iwfbXZC9usr}G3RlO%tZ#$sD5bSR_$yZGHGe) zQMZnKt8=k~n|XxiLYa?IFDxuz4SvneR-~)l&tHg%iwgv(Nd;V?4VJfecCLJQ^42eO z{q*p>7FmQBn(Pqv@Ymv^#T}2K%56DciK1qS8^!iO3>qBKuAOFSfY z8tDWK+KbgTH&>%SCpg%6i!|k>rl#)Ly?cv_ic0mt9vwG>bH|z^RJZ!J-3XcFzJJW_ zC?9u;VzU=oEg&jof@%O!Ot4oZ-=H9J0{H*}UcGu%Pk0;Ygxky}xd19-P3>1#K51GM zMPGPsXpE*Bp`4cc@?{00=<$VsBF7O5_l57<5Q)L^@8vJXZZ;jhO42ED7hPLh+ec3^ zI6UmfdoKMhU-7QpyWiK>Q=kxZt_Yyyb3_KY?VzGhqeFbKo{*Ge{9?NB{gYnzK51z- zHm|uIS8Q#KuU@@_z4@lPOOFXje#vusGYbpLz8K}U=a-~o;}+k#%^I1Tr;8}GRR+@m z-`qe0ELkn{SQH?zy!-sb$^ARa%gf2WR)@(sItphcj~c%5`6Go!MNz0v4XD=`FC=I4 zhe_87of`WVptN6BLxWa8|INFJxP*jYQ~}}1?4+c<7z?VE9WFl56Krd18~>0=hpLB0 zbc@Y<>Bf9Xsf!iR%&+-*f2I950eZdvtS@TT7%M#yy4Dvfe<5tgx#6X##N)2ib#-<8 zk`$zL)r6bC1Gh567Jl?@WepDm`WChYgqX}gOgLpuI~gAe0X?x+%wSiTl)c^@+5b9 zQWEbAUk=^WhYw|@#6*OJjVvr`?ls(Vb+JogRp2>ajd0#Zas(KRijS{d;q;3r@mP#f z3}cFXUb+&JeW~n$=XBMc%J%lCH-&|fcvN%ggoK33{{G}&*G~we%f2vgVw#!nz7!4k z6^T~4LzdiaWsa9j=BQm?><*lWdkgD>&DW~&Q7h(G%U z1nwkCdEF!JJ9US}*p`i%S>^f(R^2!D#+hSM?sJwyqodWH+F6~CvAcd1gAu@<(J==v zL=6lWZSZYO6pt?Wfgx}kslCX>=7m|^&KFlc2?Mh$O09kuNpJBb+gRJ0B3Bo6K&2M# zw-()!oHSF%oh;~eCP_j8b4qYn*mkF@Wq*Db_f5K>1iT-cJ&giZM`)e>LN23rM*v($(Xl1Fqm*Dbem1@a{19;COzm__}Ho=UA4Es zrkkAPI5&Pa-F9th+OK6SdK(>A1b!L?a2Seq*$zansi9%iUcl}bLA_UkmZ)^IKn_6~ zJo|y9IF!>~e3&HwvV)@|hk$^O<4qL z0Ik35Nnv5(_#d2{oWWXr2kzXtGmP1a3lL4x!PS*pHYGy8)HC7R9;`AlGZ+t+AnhZi z`@(G7^vn#$cIKn|NjhZ>z%t~473`883;T)dq3m5B;zPu9ym=!gOU@2t_t>~1pt7gu-rw-}(NkddA>%Bu<%}Zcg1woY*6n~N z??)W#hU=p1LUtWgLb@kRYI#1GlzpkadDEr{V9CglhPY@{Dq4X!m7dpj>cDL5es?_# z;*Z)gefv^;Oc&#$?(3_2-H_bd!fQC$+1azbiSR@nyYA)|iRF(XqN~(vbtlOTj9Vmy)P4LD;aFS{9jTfe1ugkDPFy3nJ~qkapO`0|Qxm)`i143z!pkl7=zv zW-p*gp$sS)mU*k4d2r%1(-BLV#-^szj*gC*HM(Wql1?({>br>sMQDV2GzBf$U)Mb_^s9{@I{B$L62bw>M{{^`=ypU2w^oh%%G z4V;t>vTBhfJwBVN*eJ0~L@(<6j$nD&sHmuTZ`Y~5115R#Z;Fbdrb<`u5Kz7n-LvqI zsJx=$&Koi^m^YO{<|uYOGf-2Sqla_$UQd!|ch z?x?O6?0s!Vs?MwVUgWoG2Z~W6o|MgC=k`n zH6mM{u3w3 zsH8+v=-4rCz~=+HMb5ldA2N2JAPu8osFo!rvS^lhdvWXxuEl6mcerd#_U6r-49gGS zsG{}jV!4#Ev~y|!$>qI&FI%+d8q48lwTRbv?|UBIt>R3at~TB;f$5@l9n_8hsM^UI z{v@q8_N@il(Y!MXF`3-K< zjAis*OVaT;9X-9BK0behCy!J&UNjhYPiHt-GdXnMu9TgmgfSsYQd&CMzEB^R$<};5 z)l+bAdV0Fe8iN8AnG7|XRHOBUtj_&HLXnl#)lrmt1R}7Gbgbd0u(B5>9EcW1iU8J# zAcBJUgI$TjXfH_Mi<9K+rq!Xi&U3?(T4KAsK|8jW`S^56o@<*d%$vGD^z|#z0x~a^ z{cQoCa*a1Gqm{TAjtxD2@`Mg03Lr;zv@xM#Tm%(=7@*d4ejV!!*np7PNl!0NqD4A_ zG^%d5s;H>gMmi+PfBg7;(!RdFKGpl?zisX`4B9JUB(5Wfk7|i49|hlkovxi3X{ZC8 zR|mjRi_8nw;WvL!U`P2uP}ARX6Szb_+EI4hM9@V$NM;~wRC_O6@=_q>ZrZ#3UZ9b# zpSNrXeR$N(9qbA>{a(HlVLW<;A<-z-PW(=x3(tiIao!cCku5TQT%8% z_X`p$jamMYW~TFlgX~4mzhKmo0Sc^ZXfW+TNlTq2%b9fFyk*PIp@{9`R6jR~ zJg(s~<1rNCOqZOkR17kkHjqs!bOQMY6&8w59{AFjAhL}VEAt>CLWZ7V^W@2xgoM+` zz*;bcI$uL?-{z$7zu9>;)OZ;2vWfJm*!6jz6bLIs>C*I9-5<%GGr?WAo(@wkqJQlm z@!yE1mG$)UI!$!c7Gl~b3glo#V750%9`V8H>%+(nzlc9SpA%U5TdEe{>EdfYRE0w~ zZQh*cS3&%cv=0m^hu>WvgI3XFWvKM;2kmPyjwc)qdnaPsb0l3YM>`tyGUDakTd}s! zH7M{H14F)fjMVP}Bm~ca4(_aZ$NUGK}{5~J+PgV zNPED9BQ{;3^t*QpuVb*0C5;~mU0Pboz5DKRLu}q?q|mH3+X@vYN;CKpe=BL{@rdR< zvIoFP(qvwE{y@7}(P$N=MdgbjU(AFSZTQ~filhiS?lZYPqAh2dl3%}m-Q}dVXMJ_i zf-%Tt8l)-RsZ*y89Wcjqhkh?O>yDV-L_&qi?2@#0n z`*&a-B1$~w1l``6%E|~}joeXL5QnvR7&QqCFsX$ad+WlMRb3u)gvJ=7pG~^*xqWYK z)zB{Hohix_{*rIi0r+PeYUf8Am6)iCwiJ3al(Y}f#-s-ugly$PPJvImZ`D11q3Tkz z&0H#?T-cTv559a!`jB%mE`hCVZ3ev`!(hc+Lvu6Ng9i_?3v;xyg5%=$d}~V$?9z7x zAO!_%+7l`i%E0N$y?;MZONv~ln(wuMuiQ_n#dxpNowcOjIUal9avQ;znzeu{rxS>4 zC_3Y}#%+Tgltx&N5=BIJ{r&s*2+0qb=K@E_-+;Z};7h<2D;p4dR&9?q+jxW}URJu= z>0*aEt76k^{nH;{Aa4a(mOwJ9v%TlC2;x(<7ePyOoQ+$l&3cer3Bs3^Gru0pGJZT< z^dLD|9kXjK*o1_m29ug-R1Vj!nfE2r%GM%n6i9bZKM~Tt^ub@MB1p*btpHIzub+6( zJO!|=D_kIeX00_uLR=aCbVq6uZCi8qe({M zPpn$ARbuiUFt3(=153+Ia+WZU38)t8LHvL0?TrRxj7Il~LX#uP^&K|p=DAL>KHZBK zqZj);!oT;v4sS#k`nBvy%txaVpWis#BJCqGd{XD0>n-7gP%950nQwh1#{u8Bi+e5! z5~@Q`R@OlP2Y&7=vLT_;Ox)5<$zfql7cJ=7{b=tgXEEsjxtvLsYFgR&j^Y#_KfgTY zat!|%-peUeJ|j|@M6Dl-uo=`vl!V-D7#S*A?5jXIiA+eS%b)sONSAZ*br;`V%OL6B zOB=xjq7_&aKoqM1af13p@&#!oo1^_T>v?H=y_(^g{_RV}pi+>@DQNHn!%xIA6SKzM zCsP={8AQyf5Tx-7=tGYHKhU70^It84Zq`l492Ph{Y=(cvC8^^Y6u`J9{QBUr_>)~+ zoRKJQxKLp7kwNywdt(+Or=+aF zDAuH3K|J`Oi?7T^{9hLoRC!F5)G#%mHbp|jLn3y~qvR6bHMzoYOE!f>N<87FX*XVG zeuiHC#uoY}D^gm(8)~K_{-LI04#LB>eZ% zR~m$X>b)bupJHpi8u#Q|r6(TcI+IviPjeh}9R6-pzoA%wKKVYzFePPWSv=lJ@^Wlb z{)&2%M9gv-7fT^%goC2Jn5Z=%d5k)taWfQ&ml0`UhzJwZ60laa_4R!73?w5EMWC|2snIBsmxI9H!NNi% zOFk*}9UN$TM@PaK!RkY9NS!V1I8herwcC0e%K^48z6E2hA3Ar=6K?efm3W?kiHZ8T z+3D$%ATsltckw8{G*Na?ZE|UBY^=mUD+Cfdlu=}hMROt#=yXvJ$2M_r;&vfh9e`G>F*`kO*!c!}I{=oK49s7VD*0*lLU{ zf>%F_%}sXG5OFAQsgw#_rMS~*ZngE*tJGiv2;pWcHOsq+&a4zIJ|UxbB(5B4j2Pk? zdxIyGnD~?fc-^j?8*wo;D?;ab2>eG*MP=55RKUm}2es$Ha+$yXX3+iYG0H+9R?`hq zFYS{44WN31K*bb14Q9fsiDEmT(#SbGAL(dmYl}RetilnQ+dfHBsPZ;7F`?bPI{^8k z*j(4#tO&~19t}Bqc#G-qPw1Erp&t`+X44qB4H?v~r>9&%K0<%sm*j(r_(VOqt3B1z z)3f#A$&ImVU6}nyMsspaEWBeek#r64CLh#EKrmIYj#^Ho!& zCz(`UZ4oTb!@;eW6dYFIIO{)oR$E(J%xmSy9TxGM7!}@ES65p~@&V_%U7LLWaglL# zacXN|MLCGf{Drgn;T!m_NgiA9idGDlaG%R)*1EUSs$YXeB#7{6E;U&l9fsxyl9cGw z1b?FEbsxGAR9mB81LZnz?Ac3yuh^_X_7(G3;P-vx&JMBs9rS`cw^{QO9t%`8;cPX4 ztt1f)H-#BoB_G<+XKrmP?>&RbffjCM+$9_dkO`V&YYczUSfcTX(l|2}y1Fcqn zyzYNDHmfVT3*)Ihp)okMXS3g%bw_h$*}GTwCi_DVsW`1;vqXQ#zmn1X5U9QO-T7OZzt|?V(PV60V~gM_?7|t9*FrKtX4SiHkpHi!(RR@_`%9ET2V2Or&CL?gPK zBf2>FwI&>zqJj0a0x&NVRZ~u7r99LPrh+rn%txtgd-BWC!HwbkK)*LdVcBx&n&mSW z1fR}iF;GR%E87OXfsAj=OicAXr;rIG!D=7)SRg2r_w+Df7ZrgC3E9hYzVkxkiUt#a zBazj($r_#?(20Qn;JA5LA9GL$qa1qLHWcP^+*TejHY}b_(Rj-Gl=JM~({c)Rf(N#r zORt}-u60JNcK5J7Jk${rz~$rZ07HS{`qSa*`E}NNQ@6uk4*#C}b{0HfSCq@qtDl3` z);y!Vw?YH)npNIMOITjgCeA`@#_gGRCLTvgr=X7@`|(4(9mE^O`XpGVUx~U4<6dLwpIzjOk`}lv`=Yy+-mhBo94Ll;qBd9 z7!2e1G`Z*$lkBe2h&(BW`^rB zF!6(M+YAj4ShCXnF$E8pQ%}L2K}Mw2&CQfX(CrZ_rihL$ zlZMvM3Lr`}xan|3vx|u_pbcN1;AU!14Vlzus)>MSqWsI3z2I6HB%FC*8@Zwp-u}VL z{nr3lR%|=Q zLh_I8<;`hB#u$Hq0#y85(;8}`f*-&3-B)Ixkz1bDR;bDZV?OLCPFN1Gl#nPtzjdQa z_FB-5F*pvw>SfY6&t08FP~4Alb7|4h-XjYcH!5MCB{WumS2h$3{)!;IoB(J>oboa9 zoI3a2ZIQ){>am0}1A2c%>dy)qUYZ1R%gtN29KfgoBkm+No46pR2Ral~ zf$q{Q>t<#r7Sl0X1=e$W071oEf3lFXXM5~FdUQ8w08Po>L#=;^p?Dpdsi5Pq65)~v zV-jueZGj()hV{fdkogX%XP89UKy_7vi1CN1NpRM&GH3^bq*!(DA0yBdGctIRHn);3 zs0ab>aA^tvGeF#cdcQQD8cyY|w!s&U1qup^h@_(G6u~<22nA{h`Z8fw;MaYziKw*jkhEg;gs1jo z{PuXZ#N(rID7{Nf<)fg z+XDL<2%KurXbx*j4lL5%EMSAG!A#}C>`024l}eT9asq(FZx4cA6LTCU2M`KIG7b_^ z30-9VS!BRm26%om3k$gvjqx8@D&bGzef#};)efk2pMU^0SP6T3d*A5j=(F8gFMp>! ze*Es!Cr0%LC(0pi=6bKYYfB$Icn~W2LQY32Jd0cMVD%v^C(`S4bRDq};$d0QmPX!z zsMoG%pgP2dF8)4S_a!Ye^KBRz!N8xgyBF7P@8nd0)Q-SFI1|+F=UiM^NX8>^0T}?o zq~zu&OsM_@ViL0_A;Tt`U+ z6EN?^ix)aHmkqk#907c2%{<3F>ZGl`8#+!~v8$bS*^6w-9XobhU;4%V>gtyeXeL5G zR%Gn}XC9nzd+(kr?YTrt%IDy7Zi)<~VY8l}{q^e|(c8nNe=`UP31KLx1gq}{hr@DZ^1^bzMegk*HZ<eVa3W5)uO(}b_Hxx+Yy zRt-OrS=!@+cVNgcC6-u+|EP7+rVx(2BIj>6L0}t!z14v>SGqQ%0*(F5)G`FUcbNH~ z+?*e6Vven`fuc{$fpA#8JdtxGbC0rnjiVS#m&h2N(pN9%sP$f-nc;0Pbi5p`s;SvX zqC2UXh*+;?z72b>XU3hms}oAT#*Eb;;)+LNy61nKyPy~OR9O`Aa{A(8tLO9OW5U9k z4W|{7S<`|`b9j`ai*L7N4ec1hvt5VwTkeo=*UyRqx&)-x`pWj=+VWVk9%~bJ@(pAl zJcj1P+qT9XYQxV1UW}iuV)q+B<#JeAHqtuw9sqUV9UTuSv8*#b$3xJ zd)vw*^Dszm5-K#rzdu+PpoF0MMnp!E73w$VGiL>oDYWRD&hgxk@r7c(Y3o*Oo+%K3 z4n)w=<|G2sruJK0$1dSgN~ce^F^g*ILL7j5fH1#;qo@SyPo(Z!4DKIGJdPa{HE~Ex zOdJ>(cz7XvXRv(ZOKFfK@J_Z)WT}U52w{15WXECf5kX;LRcKOk$-n-z%6nQZEI<2p z_DGEO_M0_dt#l7w$ks^_WkfEAVpRkOd#ZS!A28sojnz7G1op0*@OOg_yFN1;3-y2J7vzjXqW`@0dxJUE>WwQOxFwB|3XYAL})ibC7v=3UJ{PB1Qr zeNf=K-5lr}FtWD03+b~WNC+z)>NJ7Cvx6cr-4L!c>?PboX0I3lTW~pI4$E2RjZrpl zOxI`LPT{`+e1YG;K9YJjJx16doTvKsg7-G@pQ)~?;XHAI#kTj=W!3@c8r7({4zL}j zUotUyq&=((Zed?sLmphMN#bmx#_y`5A|q1@mbPx%Q~Kcg5;$6oiO# z6GEW#i3x=0QN^xP0W$l*DR0#ABK(gBz1}BjX+owL?v6og#o$um`CKzI7t&Y- z_r*}m4lkee<3S&4@fB?9Lk%e!01_#Mtj=eSbJVpV8x3R5l7;0+nXb;eMLt=MVyxYa|#57@U zZk}BbNP83ZhDQ*kEWZ?qcCe!2V=#U>Y6w>+YN5lxJF@gcyu8~$zA0c^)k z$ug*GBteGFafykIEBv(N1Cx`KvgE+m2)T)qSS=B#F6t zyeo&fBYisdH>@kVtHiJeQBvaC_l!j`=)r_tm6+Jrhl{$V5Ss(P1}nxvkD7{gFf?47 z>T8pF+asAgr*%Mm4^vazwE{|Q+PYG)WKr?aop)FYuTX*$0iD zvR)4T`~`R(Dgoj&Q54;A{sI&_<~0M@&;B*7UgN3UC7Z(WBZbuO>UQ_F$CFg}{kESlZ}*H$~_f#@>0| z)IG5*EpY4Vh$&huKmhGQ`>une`Qsfa)4rDtGoOb1J9KO=h)B7O|S)@D};DSCRsusi!u#bQyRv8;7$3stui>hy8 z;UfWh3`PthxMLdxp?4#A^syaI82!Wp{PXyHq zm%vR8o=T)1;JhFF64YQ91At%^!&$??Dc?dZh0jW27udReYv>^H@Ry)0R1eQ|RKXVo zV0t*;x|4#it>Fwq9?AzEurXP>Om!?L9G;p%J!iV=k$$l>zdUS^C1tuJP-VLBv0 z4dLoQoHN6Y6qt~}2mq4{5*o@273MoGgZo3kX#>E0mc6eI6P+^c?0FP`A*h`4`0?;QsHiEJ#l^hOvVJ|EMSeZAcyE7iql5YZKAO#^U0J&(2+4%axcSZ=N z8)#_4h5d_}MeMRDzyiQXM~7MIq_HtO(He=0ijw-V(24tCz8k38k3}vAA4qxCU(fUR z^Lq%1l^EO~rKS>oek6%pnr7anQJj#X#K?OJnT-P%8X6kDn0H?8sruGEcj`|V+k!lbN zY1#d3FI>08K^9d65X!}|6p?--YPPiIN_>G4Gj&M1zTE0pYtebo+3;Hz08}5<1tagA0I{uu!A+ z?pgTxLFHx08C&o@ewtFN6MhF{_zJ#P{cD z^Ek~XYk0Vh$Q5uP&XZl+(VcH0SK!1M1SNd;?p?<;e&GO!&MY7{WZ?i2g!58IS69gK z19+T-xGQvAs((2&Fl_{*3#>#W34o`KkG{YjSlQ(9p@Fe6;_ML7(}~k02%)VQ!@>SC zNJ@bn!yzmJ?_=3zFi8-0Ud2V&suRvu--MOV7*7)qS1<-99oAveUv>dt2IM6>z91*q5&1+Kp=U3Ahmsn68Pqht~L4O_Bx) zP8jkru51dg>3GWhkP@)>!&{6S@^InVV+1eJW%qrgl!rQyf`onJ{B0*JJU4Q41#?{5 zAo)qU&%Hx&VyCBIlzXb!*WB1hI7-k`TQkmb)|v??iaTw=`8rdD`SYU0QMo_A*W1$7 zm_zp--whD2Q|NdA$4J8XSPY}?Jw6;#W%BpfiST8L04m0t7_$b5EP`E(7>%^$t1t=W z8I^CqgmcG1#u~9s{2BsjA3Hl4c+S6BCh1Y_Xcz*%8y{9Zv1P`?wUIidp5iFU@$?Ruj^)uv z1YIURC|_&|bL-DX=n)6TAauicvQ=0_B+s~FOYMl`E$R(UqmAXTBop|n@t!CpurKp4RYW}0OfYDvNr4A z9x6DGz8eN2I~54l-qG>>ON$o5d=En6C5x7=t*sCQu`8e7>;NP!2O$M|AQ;t!kOU9D zJe?D$@iY{^20GF(3=k4!>S}5SKpP(bcP7sj9f{SB0Nx}#T*8n%wEMvy2)j&ZX+o`p zku8WY3Q4*jIjyYB0WUHj_6FZ8eQy&!nL`VDJgolArXMrRKAbw@Ji!`H+6QXD)T`{T zivSW?+qe@#<%olmlWDPa_X_# z{iDS17V4h?y>}YoTvqsK5f>NNiyqOkMSSIU!(=@B4$@;F%IpR3Sy+|sOFo^2U(ha3 zqh9Q|T~+z{bK)lWVxeJ1!;Ky9X)ED8E<<<_R(Lr-ESEUmD8KJS9S+;;#z-hD945>5*u-v3_MEeCeDQ-I?q z;hBJwv$CS%7J6oYewlaDx75i}9xzwxwJ4=Qh&AHxfeW1{J_IAd0y>}P=0@=AYyu3>T`@e#gQ@U>RZXnvOUHlr;Nx|Gh%^9o&Q+hU87GtWJZza|0c(1n#Zb zw*G|x4(dh2;J7nERS}Swa8uQyC*)U)A)q*7l%IShi!VJCgbyFwf7w8{yxn^cnTq@zpiJcc=! zU;j-6`u9$(1-9o~@9XEy>)@0pZcQj%%|7~+lkso`RDophKMx|4MavROP3cVDzP*~Q zdWxJK9h`&MYvjAw@#E2iTbY>9Nc$kqxwk||{2A6as1edGbH`c`UPL%daC?!!HPOI$ z*0!rC+r*7>L@J^EZ%+_1-6HNV$S zCG7hAx`&S)i^I9oB={NW5Spknbr=%EqTECsSC9m?$jl(jcqk-~aUO0MOD^%c5Cj1k z;n6ajD7`&9(Rq-tQxe4sE5|5oMh=N8tcyW(Q5F@8cwU@(Aso7@@Q^?xe6f%jDeC(D z<4M3nB1=#y&6~m?w#|UDB~G5~z$PQlPJ=YA1UU_p}-F~&d?2g z;RPI;no@^7R+X^7!K(hSAcsAv`mWo>odzxR=Z3F)5vNxO*F6kn7^G{7_?XvkWhowB zPrQHsuVs8_U_b`pZG~oq72lMlZeqfbfb*hG%^Pm`5=Q|*PsgqZC{=*`S0ZwrSPJq@ zm7Se2p1;bsLO+S^Y=QQVksB<(-{1Q}C9<(mL0&0b{rskUE;DrgbNr$jO7DKOMdFjV za}x`TQ_vO~+*`Dm!r7#`(0z$Ah2uMat?^)ta=fv9=;b#*JinAIUPchjrUu-yAzedQ zAt85NXjZjwjARy+ftCB4skkU8jJ&)&cEYq~aBe$}+nE77^{`vY< z1^eTj2VKwhDWfy_k!{>E0N;N0%>jCfkuPb&-Twa`nch<3h33D-)zy^{Fkluv?SChw z2t+WH{3`Ti=YZem{=OR`lMz-F%|tAf2~;Xj+U*zT;$+D}G;eO%vc&|>U7UCb*~_7JnKLBNl2z)|_W1-jp#q`z)Ih5}=-f z;cZS@a-C&^20}fVZac+hjPpapId2q`Y2uXyz>gUCdAm!ATbE7IqMi!jmv2*tjlPw5 z>%`L1J_4`)UO9*}If7^h6Rb>WTbyvfI93+`np~= zAmA4a3(pok)XsjJA@Cwffe{=^V0UlC#OxvrHux0lh8qv{SJVH#XG2r`?ZFqc3ep4< zg>WZ?9vIk18a%t&0c&z)pSAQQR$`cqP!>L867#J&c3-1_P zSp}oS6A%t72(uP3-If0N?SUE-XVZ@``w@VZCoWn=!kaF_weR^2S^7Er-Oaxdl|m22 zYWw5#^oeyt{@tm7LFdId@Yl;U|KGQZ+Q-a`>GExSkm+;z&^i}8;{60R^1CN0!X!dHgSSDIWUoFXXdHQ>MpfBw7!Y2Xps zf6$#fI3&4&L{R#~)Crd8EZ**c0n22lG8nS?F>9)OgjxQ~X3u}OrvCV5wP3B;%xw~M zGV@&j`C)OekOW;It!%xM?@*t*A1xs9AV|yVzh~@~)YS>Y3dn|=;84CoSi<4TD)3aT zIL%A?JE%k5B8~zh%D05yhi2g~dt+|SnQ!1f8``%mgG&E+ra;oRhfV?i*}kjBA!`>? z&ND+348aK`=N~;WR`>ux9Y9IiL?UK9kmn3!Y$Wha6asO#F&=6S+y4_^#EPXUo^<)o zGfH(AQ^y*XZM|fm!3rm#gM@PlKGAnVn5&VPs_7C4S|9 z$7|+JJ{5}%|2u$E7*zZfL$!AIdoAuoPn;ba8q)kC_n&>z;JM4Rx%2*i-O1Msjf$XK zw>FYcC?0gOvaz*zjtva>`uT0@S_FH6@lG{4iWsqR;=HjR8+p+2<3FX3_zKMfTCvTW zG)jX16Cy&f6r!QP&~PM>5pbagb;lm|dV<~~wLU$65O3We-aVk23~WgU%^TLT*1}6E z8swOoS5p5CCfsC?;^l9ur2peaO@#`pl^{tH%Auz>4tZYfFWn9)7)P{BfYkqrpCcoi z(J^2*-h=%lNHx+scnFC35I8#b+7CUL^@$fh5Ud??kMDaW%6o5^vYP$86~#{BStAPp zStr+nzuqKHuEb0^_@LEoKv3X>h$*V#E_(^$ z5(DyP{JU9#6|cCnc8q4w8XM*wc3(NJ{k4|o?(6UupY7&Y(=>RdB(yBBm7UvTYT!BW zpHQP${&5R%t5cHvTwQG~-n=9OliGHgCmMZ1XXL9*+V9-wDYUm*`( zVO??REJfPPLt()xt?|SZjXt%E6N)KXhlpghrcSRd+ofkpycLO$F6N$5d8Fl`axzlK zs{y4WS`&H}Q)wF3ESC%W$0flJ{SAQ<4YyF)Og$n1KN$XfpV9}WXHsg${_(MXq#(7H ziq0pz=a2DFj2ueiUt}&h^-rhLc)Eu#{4CFTN^J4np4)Yz#H*gtij-|y-5X~4M0MgDV$Q9-BB^9u5{d(w6` zcJb4Ve5M)n$~iS3S97kHy|@B*!rv6h6bp@cIpoMXw0w)4#oIpKif&rr*XvmeMwJcU zHyUx~Wo8d*@)WQ>J$9C-V9($FP!KTsQ`=rEh&JxQ6OldKTYbaC*`(+GP(%j1Ivgt< zpR(#X_qN$HtUKYk!&;j|dKqIkmDDRK1z8`V!Tyt@B-^VGbAS|`td$~bNA zhpth{bIA(_>}fG1piDgi!3hk1x;JND>{bF2|uYf{bGkNXF;RE#RtNZ7Jn@xWedM9tWiA>+u#$v&K$PZp}GqJ*QGz?~J+kHSdV{)Ae3w=#|wJyCt6t?PvdVWp8ypdF9i- zto**c;~n>VmTQc=gIcn#d`EHF1f+xnW{tTwFwsH3-)ywJ`7KZ7-I_yXH#lAk?r95d z)7ujLIB|c{`iQLfhVL76s(1Pv_o?-Fwte(g^6uOI4F;FT>G~+g9wgm*`I+%T^`#rp zh39yC$)`v9D;$1)(xsZ-ds9+wL8~J{gQtL*Z{s;t|7J#D>GT)QT(abb=5Id;$DUC2 zCf{||YJSXj<6)b_hi(Pm_h){?a<#BVF69Hga-WmkjDS&XY5Bf=Iz3*zQr7clGkZ@o zyt$p=v*6Dd9+**g_ScJrrvWb?YFHop=T&XH$k{hdf11|2>Emp2grd`5;&rCY*$XPa z7V~E|g*RjkwVmUMk+Z(ar)Os!wt9N8tuk+$KxiQ;Q|9UGKVO!LE#E#9`XC=RYucPz za&eW9<&gi(HJQssA(^e>$h)UeCoZ%8JkVz}@eyj8%v;uN@J zMh?klmb8kWm7+NBe?4MNrom`NVz!|9H%DoP(yznj{M&MAe8Vc!Lr$GZ(V{}2J{+lz zRcbsfFFoZgCO9XPSzSgG?j7WEtSco?&Q$-teHaskjrbg+=DY@Dya}Ikb3C;{FHh0K z*+-t07F9M1!>70vQ)SLSd|7t?z1l(lJd~s*eeYf2iL$)XezdAmM;UGGvi&PnZxU;e zdG1`v`qY6wxp((S89@|JPCZcUb~nhf&%YZIASL~j6=lWp?Ac`nUOO7+Gg_>?g}gyQ z;YQp3L~e_$mtXdk z27e0vr9T*qw7xR&dYdV8c+UGsO}?EgRGF;*rmE_#XSVbPt!`(<>7P>Uh~AkxVzwas zHH}y$a^$_<+2vQ7y?m_V{w5O21v|@&Z#oRMZ4;|yvA?{w>kXg&{6eyW=a$$@2Goe) z&npAFMJc*8$7fUBi5LIfri;vr&;QD${JWKDb@<*6wejuCcTSGUccyA){X#v6eexmt z1GmKL?BA+j=^t}E;dqd@`B6b8E~E-gMcq(COBKut$^KlN#|Ez3Qkf zN4M`Arp&rNOt1XSY}n%AkMvhTNqwBdL zr&M?k&n=(zB3?dtGL6f!cu76h<%JjviJD@^@88)X+eh3_J#>0x9{F$CP|y6YvT?I4 zIf-q*c@(jB??;Po_YdBdE+fTNR7JLOj{oSqXi>J|JlUG|>fqUW&PJ=_TW=TfKOKtH ztl#Jrpmq4)s#JZl`)G*3_}dKej9@19bII1?36f{rs24D*df}uU4g8y0UY_B(PtSEbK!zX&$Lx;J^S#oI0UDp zE?27@GOeo^4%FBYqwPa2h8khQsEV$r(fvpO)kQRsY{bBi_U3e8jcLaZwTNwIOCI0* zEr(l`Ecz>Gs8j#^{7pOK_vY9L>*qsXvaaXfeIYv%GT~qUj{aPVQ?=N5k7ApD-mHnn z{XLfFTLRkdW8?Dg=77vV36M_y9V|8IMdZ(i$nLfYW_@V}gU`hS-#cE$dzl|yp#F4mJ7@a; zBI>K-s>-^*5ou6bx}`2icS$!$OLqxK3DVt2N~1KFlm_VzDJf~`lI}*}-FIf5-}~3- zXU36p&faT%YwevHC|}k!S7=qWvCj|p{@G=rGa~4PN-7xQ4Et30P8=zVl4e7s-QwNs)YfWU#D;Kj(Rv93nMUtmyaZ+Hf@v8#kb8g5qnKUrBn zZvOm9dmwdOG1<()Pdc*SQO+1#pNvqE)J+dq3=MsXcGT z=y|XoviUY;J*a>pyUq39hLF7%&#<7qC)8F3u7PM@0es0YV(BI4{o!aYx%YOjg9%-{5ecvvxzq!9+E#B_2Hpe$#ohVgkIN!x7g_YSM?KO)7DL(@F zM)vhIlgF`p>w8<<1%;-t6@$(Owo7<(c%o7YFe5W6>?^&}B)b1;DGYs-H5+sw8)9xK z7x_!!j%h)?s)G?8fX|-gK;WKB6G|891NLo$3qUuVUB=<;p>^^=v3CwnuW9jYppJS@w|&6B(P9G+XgE~%Vx&gLgbKk@fSyG zkJXQLu+xR)J%XQJJ!iXzTB;$;BEyi-iVxJ+4@L!-l4Wil81!4U zG50p7xOT~z%i~~e;>^W-Dc|E@2@!_(0Ib)tmta9w*=szz_!%+$R}p-M0YdpyKTg9n zsatf|v*}xucb**c3Gt;1KKxmC8~8XBl_GG5?je3X zck|9eeop>9D5{C|0fohH#!b!8Uv9mmZt!LErMPS!NyJHrQSO>2u^pcU@gAiH>0io| zSQDocmGm~4-xrp;IKJsdGP5tR;=Q%Ml9EqOAH<)6`>&ci5l*DRb;Osyci?Vvp+j!O z@{s4A_<$DeyTv#q-(%4WmeHfjOEOP&@sEM3W)Si+Bcb_V>AknisB@^WUdf*(MJq{V z1pS>eCUuyb6jR#f>H`WTJCQg_!C!Vn+wzKlRMx(bDuS`e;$p3K09mjr>EJ+*E0q2! z&Kqk##ilDShe8EgYTzdgT+a2CkoHA7Gw_;;k@Y#j=J?>DVO4@;9sU2?99*TnEIc>g zit#}><@veWx6Dpe2>wq8hkd1TotT*@Ytz%Ol);p=ydl^RL{izQ9LJD#{6rgQrw^)! zINwl)f+hlQ}^axdn3i_`MyUYJdgM02vzV%5gdQWp`mLchrNJd1^dL4vj36% zTMsJ%r@MBhuISTvw6vKwPTx4@+7G_g1;P(ZfK%ZVixs{t3sYe z|Is^HZh1*dBSVT$J&b-?R@(wb@o53kl+y|N z^~dkf^r924i()`0_%^FXmIFsOyFqJJIIb`=3?nXOV7`<-=pFNscml`dS=KSRrCxW- z+**rAk#$RWspi$A_$lWdO-btK;%ctz`CC)F73~&+V{+1;by=uQ8MJ8aS zC^0jSWRHe(ZOc}z12>IWQQ8I;2%>}lF0#M4DH3*8SVL5a*Vaztv|s#5;6-E0_$~2M zwCHKxOi(ESE35uGOpQYwrx^#WY0sEcW};sHF&!p-tD^n?!Hj=<#_I>7E6fe?OHM&r zUPMEtmblMf0;gKvnyJ;uO>xb;CBS~pBe{G_wczVeW5pH1S~uGY&6IHPVqwQ0yL64D zL3(nTj@GS*O}L!w0*8)_LWxGdHHFC*i?RqSOK*n`A>GZ*8~H~!5|M7;Tnm0$H9v#{ z-*n&N(lL&|L(NuiP2(tdlyZ^BqDsVz#_hY%wcXBO94*KW>o379z-Ud!j4 zf0YmRjL)`uEPq&Qj~z`>xPtP zLeTJ&k7|N2LQUv|-J5s8{Vw{G;FnfezW_kzm13r63V9hNBO!dH^ATVjF(0I9p{>g> z#<~cko$v{{|8}<}QvA9(GAVlT{EXwCR@crhVD_7~%hh&FUXD!NlIFLTCY)a}Z-VM( ziDL_1=U&)DK!JMjxnWI!Fx5~d+?1Ow#=!O}(%tjvl0qGv5>8EFK*-o5XNR?~%Pu8s z3?VN*>W4RyZE0P_G2r*-{H|a(yLumVkMq-4^!a1p(h;K2lYQuA)R@uVN5$WdQ4FEv zDELwz#dr)YS|FO(V=2TXd;kepA6^^vL@XpFl@CcB!h5B)CQm&YgklAPhpa<*1l2Kz z8dCNjWT3rn)@%B;cN-&$(iu#Hd%Ra>M8%!3cI4zoGe#9R_2)RKd%L~)HG~L`M-r8T z2!Io*1lWlw>i(iAcrlmtjkmS7fDe4&_T6kK;}uwS;qNMJRSC?9qdSYF^NQMZyMekC zIldn`8&dhyWaYz61J7#u^bjP{X;KosvTEs#nE+IR`4vv&di6RCkOTYzI@S*U{5g0} z)zP$Si%580#XitBZ<=7rSFB1_wQ?t(^oS+!L3bSM=~cTK+iD0U0wo32j6>cdZ@1O~ zhApc+ZTQBQ@ju*PlL8aS)a-PK3eUCFaAz{sKtZZYjP-bo>Bt%#$p)-IpU4lS5(;uelk4jU*`MPpSi3U+qX(Ic{$Y~yS@go}htRl^_4jgnG z5>HdQLoz1IHJ(NmEQ*_}7JG)4Ti<{7OsE>a<-s8-^Q7+uir#nY`|4pUag-(Vw(-dR z_AD2pBhu5#^D&Op$(nC68N-U%bmhXmj3RBRlO(A=zE~(SAr#H`;jwyt!@FLm<8tQ< zbGQKdswU*AEI0XbM>m1zQ3l1x@w!vYuCWHuD(kBSbdY$B7Xf@TF~Rze=WV65fW-A$ zqfnvDkpuz=mJLKkKY-~nEmD&~>&V@2WME}R`Y7BEIjnYO@?ugA$&)yD) z<9xyY^tFpLq0fr3nrkrJl&Pu=FBZbBN<$?m=Fn80vcrn~1s|PTm1H5MM^VjY$&jE? zp-hfmbNq~-O7IEx2{v=*YY0{3i56?brv)j{UmOgwUZgOIDH*tNZ4+m;>ictbN(&7y z1@%3Tb~4#VOh(q1^hSW6K@?Y-ytX|z+E%HTaK&iV%B#rKjx-i__DC_N{VtyBM<|UP z!voQL0o@Y&S5Q%R`g_0TP`kW9j({K|5o-et%}-QTN-}_mTdCo4t9?+fi=u6cVgTZR zw3M|q)-i&#R1To@5T)fY$-NY=RJ>Smb~;^{s3x{`oRz5oLxE2t!AI3(m<6?mB5|C@JpCFDz$+;i`*e^r@8gPQ?Iz#HWtZXJs|?^MDqUWse4M5-?lHt zIZ^+7frGmd=_mfsmD^4}QqP8xF#Wx8*PohS&0l^glVUl-f%~Oqp=v`8D{&FQ`v|ZS zr>2av^*!rTNX83L;%uJLQ=75B`=Rt|T#JUIf@nNnm*RW+$rIz~DvrJs&A5xKv5M|+ zwU#m!1M73&Mp70#+V9L}a!xd8zqC*U4f0kNWS57{!Y*~6-^TC1arApA#=hAKrJp_xM zzch5}NdJ}Y(jqt46DZ7fHldD*{M0tic+oE0pXaHY;gTvi0oHwKNuO*ZIbOR{x>tyq zCTgjH7uh=8CVmm~dHgo&2~_f@teHy(_;nKo!xUMWQPLSdyC60YKEP9JnBtu#dI;PJ z4rSD-5zf??KWa(sri#DU@p9QyLO>0a@;~MoiRF*AbWLYpUVhUQ>(Bi}r6h@udkwG2 z!=-e>X~q%|hqZ1p-kdj9yLi`xMi<*M>K0SZK=L=`@XEV1-EPZSadL0qct8vM8d%~b z%S|5brs~A>!71v5r3B3;Jq&>gq1dAsDNkjsdMz$4!}zmI64A_X5kq3+x3JH8sY8>3 z<4_b(Y&#(nP|W9il__(!GGFoT_9;IU)e`h_n}`%{La8{Y)R@TLYKbL}Jb+&OsuLg| zWT4`y^}WR{LTy)nN60C{L_{!-B9;k3{`KX}k7~oA)Fa&ggTu3gE!aoA9_^9RhF*%yoDyaQWKcLm{M~=Lo(6McNFz+IB!Bt3qd%0U>ix?1U2?VP z!h#_dVw?041UQdDA!$~~D>Paj&KHe?`U#f?E#&g=R2lF!F{R$t`pUHq%v$>tr)e-5 zyw#N2n+d-81_UpL&G_VmxtdxlfREkbfedafwfS4&V0m|YHT_sGDU^MEJvjuK8Hx%X3F!1qw2 z3q2x<0W{^G|5mX@tX2M*v7N}g0j_RtQkW}#lxrL#K%)~OZfg36SjZ;-ph3isGDt4gfFi;n=5>fLuis;HQ5XRlyt>p=ZRJ02Plyp z5Ob~Gjn;MzQb2_!-f^uvxgUQ&vHV93TA_CHU_y9IZ#yK+C~Wo;+0rM)fYV<3z+X_8 z+UH$=KB4CAy=ykBaB$){FVP=z&TsS?P@capE=XWZi>abQv01b&)Nh!r3QeDp#=-+~#?RYfu7LyX=wMq5l z^56qBL-bW;3=0)iIr~PeQkw3tSExM5-)pOd*DB$7aFORvM)5Oc2b4O24Zzko zw=qcWTo!~C=x6v4^s2tz_{}6a-o`XkAOUsKvNZzeZ5Gsw^r*h2_h29RkN)NBJCwlm z2Wm*r9nM*=W3pfkdQXZ9f(z;az0VfPkCq*QQP;$jA?h|({NDpDZP~m#N zSsbR8{sby?p%N*xSA)T@88z*e)LcE`y7Ot8HFg96kBEj)cp#U2Xl{6Xp{i@I6u3Y_ z_l?O3I*Rg9Bip1bVV`cNFY0nn4e-nBMh1pwmrJ0_!rn_|OvH1%B@-XGK6;am={vO(CXT<(_?PPhflB)0WI*NR5{N(DVpHOo?P){ z0CIwpj+0$QF;1kY_s161J2e!1=DY}?BMu6=***L^MnCU-Z>q@W8hJ4e4 zg5n{5Uc8K)^N_Q>K7|aZZ8YI>IqIwN>P&n(^0e^idLD5by58O@g7MiZcDR-PAe!y^ zW(pWaS85CcdjaCQz@6q5aRqy7yY^->7$iLKX30vM;WF)EgK&#|IU1#Ak#KV{e2=lf`~fV0s3miTd8vNfuEhxh1*3_-n)#$z>Z#oyIqsH?ob9Ve z9-MRZfz;>l$EX;aZL?RSbpS{q;7L)Qp@bABSw$1Uo|Gz4NT&JcK^y@05lVEX@0aVq z*$tqZS=WBY&c)3;Q5}k{to<<|PvNFS+e}H)zWhiA(?zo0Jeo%}=|4|lhgZuO;M1@P zoLq($PLAoZzOawM))YbFZuKfQUm{qCA3|(w9MLBybt|c~Sa=9U7 z4TXUn^ktZrIVbCeceBcHRW~S{HLy9Pc|;c14gCsD#}7>du>pK`h2z+tkyCRm8zXjq#KI8#dfq=&XmoYqbgRm#RXT{`HV!Dq-^97t~05|tPB8VLxdl*FrK>@0Su2;(W~dF_sL)b4qcgVHWxxbk?w-h-m|*@A$Zi`84trW{#s6U%QyFFP zbB{}=$d4iP=2=jl$EJHPNgnUXjZTA5p`aafn(yxl8`3^G9DE?{V)9DDbQT<(vam=9 zxuB>2=q8P`+RK*rEld_I-0?t7iIn-|)M3(^_3mhzy!)?s)n+X+4kz078H!Y2KF|Sx ziWLOjkdPwdL>BoEC#vD=;gw5noqrb==p6x%Hhw*py=&`Q6ze|@U&9bCbDeNYl$ukj z1|}^pnRp$Adk+po8FJdF3Mb>2Bc>#bC!xyFHz_eNJUV%rIw6@M6s?}k=79m%g>#NN z3CAak$1Dzjw12KHdCXRfz}cnE>CL>noer9)-1@*-?H{CHLHucgJ9rPm--L{rs$QkQ z$E9Y3hXvnUbVY$+yq4!!Loa3nzXrF}|25xGwc>zr~$o zET6(V^{1N z2jT+=D*#EncxH}S_;u^#9)vr=MrQkQG<>bVk?HNvVPM|@|6r`d;9pnSw5_3k;G3jI zTV4LHQ8sb&W&R)N`pSI}N-V|?pnDL?ynN2Ly|IL9@?b)^!CBO$uDL^EG;S3r*-70n zSGX2i`Fh2EC&nTr#bj$B4bI<3;?ktjLG@=}+p3Qf^A_Rl^wB4p92tm96nFfeccW<< zI=taKCbaujb!9HZ7nD=_8Icyo}AM~-gwcVYE zvV@QEoUeiJl6t=3d+{OFls3#6cvxl7@{E~Riwjq~*iL8NGR05lb$=eeFQUNDU@M%s z)`z3MmqQvG-rGVGFU#J@9lm%$=R zUbk6)G<3(?!H-Ep^Ez+x-WCtefZubGd0|jPMHQ+A^F3d^DFztQ<&xkS;kfE#{4}vT zW&W*AjIKI*PH_ZrilJdwdB4FdZXI$2f5fnxJsK~p$yEBY0qsMhzu_YKsI;x^n%)V& zt@Zj9oUwU#{Oqg)4bT+CfDsANIN&9KOb&2bsKJ{Adep_%X8BLVQb4{9$()$Ae{a4P10%t}Q{Oq|<%LWoZf*>Cxv!l4yIu=Yn&6DrK zc??NI5&hc3uW_OqOwXiPRP)M=n9WaRbfuH3rzP0&LUJp}BUv((ArSw!i-HVz`kbU? zM(~2g8CnLieU7Gw81ZQ+tP@7oQt3jh%x&v*-E5LiS42|Iiw$C}FM_piu{aJjJ26dtuj$hkER! z^p2go%l^SlQ=dm#!lnEhqF+%V$JZ;7%Qm^woHx3JJJ+*_$#hkwq@bC z5@^7)4*?6?LCjtKmnrlQ6jU#@A$55pCmFqnvgDM+iZX|g0y>RiR1km@6SpMaAC|H{ zw6~aS%F|$Sx*X66mI+71D+0J|T6mRD{Du@imuCtK3q?&lI9|B*V1XgFP@_S*a1J8$h2ZP>}f zkm*0rX86eL{c9*b7nC$!-Loiy#h~)+IUZ>`&joPh2k}eDl1Ht08 zl2=L1e_=UYBwXY)i4fwnAqd551+UP>_-1U-h(OyaFaWsLAL%L93#?H4i>4&OApf?L z))Dt;n9EKN{P+b2s`i{ht2gJ%ixhr6f1d~zlK}@Ru<3>C$#_KU@lcY{itXMfL5ii~ z#M%MPXH*D&?bpo=np)@Nz;52z|6_g_yz1MHO^g)@wn5&O^7~(D8aDVKX7zW}whbcH!1g|Att>zYonJS9i0Eq-RqU(ir6s6CCVxkbRrlwVm=@mayMm|=o2^3si$oD)YZ!%_8BYi&(0`N@KX~B zGYpCJpA%e^?b)I}faPFw#`5#kaBo$r8A>e55AY8Lm3sol$z0`6xeHAX-7A!w`sNcF zz_JUV@(QCYr9=nRm+xW8N#Dl@pUUf#b1my$BgQX1#UG<7zJ1@+YmDjZB!+7V`$Ou^ z8Y{rkzdd;elVZaTDJH%^NoJY2-M0?R*Va-^B${)@qAb_ce*5% z8bz#}g8*ol%vLpkQ_C;X$94yO3HbuBHzpHi-sUNA$UzXW`NZwQ5(Ush5b?U3yVbP4 z|J@%f3)B9O`yI7-p4e7#hh9GyvleBTZ~9&~hSw{q`aV6!D{O6JJpp)F+H@1d=W+YqYUo{%yAvE#Zq&`IwUi?X8*x{tq?t2&`qSV8q~@4BO^< z>Kgwx-3Y+D-M^k{S3IELK`YN{PlHqH2zK?Rtajd56pNY5I_Tn0BP6SJ>g8~%cB4T5 z`DliMUQap%2# z(kee#eX!DweAT(>n4`fIuM-DTZu^1;$3AI`q+s&G-e>|~m>3W^kkEn25FDx7Op>ew zgLVJd7;GWLrIEnngxNy-kqaR;Z$>%#$N-%mIn00|OEHlkW2)++O0%Vy=IA9sFB(AK zmA91nUVOwTq{!;q=d1yLv6JJh*!l5(08lVtRWz&a24mUnzO5_92w#$3+HCKj3|cUF z`u$QG_=5mlu38*u_R@SKghd0>FEy-onIy0cfj^P_=W`$2+Ph7i)hn@gIcIP--rB2gfxZA^xky>ZyIEKDN|>mf)0#+#{u(;9~3;}SYpaE!YA)uyd|fRQTc zts1{7ne?f4flKI(-w5B=q)X}-3>;{Q%qSH%eqtadX(p$#N5o)`E=lR8~1@9X8k)?zOuZmeQY=ogX| z`_-7{ghLMURXiTE=P{kI*iF$H_3%61!lp2ZViVG)dt%Oy%RIBJKu|X`qtLDI8Go;L?C(EqI8(g(!HO zxh;e4y^+piVMH@gC)v)4{Ni+Rol&+(!0OxYvIDw5K7RHa9~+e?fGTXiLOC)&%vYzR z3Z`UXQdT%_PjP?afX3y9?goTrz#ipWOn`P>$!o*fMbqtcGvzl}>`yQ1P_YE#*UPs) zOg*-Hz$iFhnj=w-Pz9N{S=?%5n7RPoqyMC0%MHGm}$j?hBEpF7{McGvbuylY58 zO@QoOzR>r{6V%iqI}<>;z$|m@E#^=y)^v}52-Mt@IC})(7$|+MzXwB39}%u`iYrQV z-~GZD@DmUi*{CI(dh)-O2}H|)>9I$&T&;E~+ z4Wv5N+K2@r@Na<1IC>F|AoZywUa-TV)e{f>mAs_18 z2j#AnQ48dFK|;g$AAd+gF0oOqtf#T?PbHHx!R7Mr(MbPd>mT&uC@=`WmH7o7j&O?? z19VE!`h&$dgVbnLB|2lxBTbkbpNo^nR@1Bacj4@hGetcIVlg>vg?QwQ#^j??X$94 zmAgn$rAhaM8|hNVWsvuD|9qRTA(7vsn9F(EJv5L09p^W(?cd_aS~7gZ|1HAm?KNue zn?EU)SUQx>Y8!e9I91egBXXfXaY*1qmr^{iPD7BsXSXO2mU7PV9f|V%;Q>x${O2#G zpY3zdL6;dC7$(e+qf$#{9(}i)LkMO#R4-IO0#pSBf5kt@TT`SOy$1UWkzRqd4@($2 zsFYvLl`HY|zIgD z7-o=24-iaq=xqLuT_6J?Blj-m5ZM0Vsdzc{a2~Fw0D8gj$j^G-nu*W&g+Y4ApnscG zj;_d0xeiHaPRV~`Y$+4K1qqv|HK4Fs2hA2lw*NOB!mbK-y~=I?3I8gA70=5&RrTj?f57 zsMly$X~$ZSP=Yj@f?x6#sO}zwn;A$6TCPIPBm^V z^=q!x1!x%sd}cO--@zk-2kYJ=1|@(2+|$=NIii~W8^A&a$wT0<$nncHoG|0I8*u4k z8qWkLTW_kiMiTvRndWLRjqlEAH9Twy0N&d-K9OA+j6UIr@Mg9uYyS zQJ*J6?=uDv3uBN(JLdN;%8_p4pa4`1yy3pmsJBtS(%7XLM8Yt^>V@HgRJo2#$M}jt z8SsI?L!M8+7^mF&bnybz14k>25*S-n^ew_qdW5Vejoe3GQ(w>Bz5}kItes-h$I$-% z(T>hL*w&AXK_CGY;<&Q|5r~AY8QML+pr%Y zPy{uF#1|(Mbt7OD34{z~hacWpHC-}4`#nOGSyQKE1+?MP9u3`tvIwBlH#qk+96r9%tiu;BpBD|89GntXYS{+X$QG*KqXPG z19QDw!J-~eU{AGCG^HB{wV+(e0Ej?9Ga2Sc29p6Ra=W-0cQBU>MCjO45oQUbQuqc* zhweXv#1n{C(g;zLwoBdjaiBEx8(;wlI_9s!RqbFtQH4U4dNm{D?XzkN*U^FW^knpt zUtC;*|B_+rYKdd-{GRQ2e;c;FVvFi~sY^9y^-4i!UY>;o|KCpab!~q>TyGn+Gi+*C zx>aiBt7wASm%G`TAA!L5UgV5Vs6nr3Ptj+S+O3$q_t}(W^m&U5Kq^%jWKnQgUwUx1 za6jOwt;vNwyL-E1-e^QDMfJgR`&5)P{KVGf22iJY(>jcb&?foRnavOL_~G zdEn8SP*wYfv%<#?!7`pem>{|#g4GK<%Wvc3w_r#FNKVwBsIt-RPn0KUr6_L>)ztn%ED9=lC zHOU=?R|T|=uS=i2Frdd+{A zEnxaNtLdSD3*h0VD|XzjT;MnP8SuB43jQ6$V-aZ&zto%W?w)uGGI}L2vd#d-e<(w3 zBt)f(616EY>DBHI5V_WW@FRaqw}A-CuUJ39Zdq8af*2c}Vhi63YV=uoyBsV=O7?^f zfJ3=e2|{uS%wdHcq?M8O65yl;L-Z-b;#d)$h=F&Uc9RB0(+8Vmnex{Ft5LtX&V!X^ri!yQQ*-2AyQz3sdSX(9@f3dipjTx@ZH z^#{hlsQTGaR8dv?)i+J_SNKR9{NTXenZ;^(vi>EC^;hapAf4tk!03+WtEw4j7C)NE zP7FJ|fDP0zxNB*?WmSzq-ivrM;Vk!|1MKT0ux4-k3_dkY;mmz59R9^xWJPa7B=Fh! z^Po96#;E}?5l^a>Kuz80Kaeiug zsV=EiHIuvY0|8t(m{$ZSOlLq2GTWGyF^sJ~E#48pRnhn$v94`d!kNw(ifUkOqmo|2 zIS}HEh1GhYBL6)JN)B|W=K!Jh2Xg?B>c}r89Sg!*<{K82?DXT-VLYft@WrBN(eoCDmlr2<|(fU*MN@hUUnP^2Ft$j z>u}j+=BCt(RjLVZbzJVpCYHq z5`VJ&wU`BneDn79pI}jY7&GQyGY{EDatH$XpQj%&J93c2Dx0os6m58lVFWe@;JXAm zp!sIV#hO4%Y*lQ8md+AA6jv`IOTwtx6GW*rL?LnF9r$oxseL$_*?#9wj+wTl;F9_@*1m2f;gk#pqNharB=J|=fPFB*1wY*3P68dL#Smg&T`qErIJ zcB)PjCL2#*0ZM{#MG|vG+-5cDkrXno&7_)urs9Cm@|(ObN)s_rErNejuJ6C(CHK@gW`-fKhv-29~C-P#9AfPu?bHro=2CJ;J<9 zN8p5S%{z98(O)S8R^LsTB?k4J16v!WAs^G7J==ii=Rk|hH3n`9?6;QnnbEzAFGxr~ z6@#D3*s4bv7URZDps?{V0+Vokh%ub}I0an5y9dNc5{OIDsGay;1PEY7qAB(UpU;|)V9aQZf)9ldG#H*m~1=SFTb@`z4-8Z zw6{wc9S{mI=bmH!OdcpxB}HQISlEzLh7hR`K;(FX@r;nD%v__r_+9@?Z`2;kwcH|~ zBGqh&D9GEX#`BUocKkU7;qM^loTS-E_H1^wU4`{BVLVD0H-2!QtMWSJXDNo*Z96U?&DA^1aE+0*Jh-bNAK~k7N z0SZ8xZThwZNV?wjE^B+Z(mogF%eQa`;neM;MT$J)Xbwj3Mr}OHBtgdmSpU_1QLRRM zD2C@P;D=Er-Qwm?(nR}OjIbOLrIbxp0DD!zp*=-Ai&KpQ7lLrzs)5l#RWo;x5VIjH z7G2Vc4gCz(A&sK}C8#M~vmI5llYZ)HS5U@st%bc}zNX01Df5lx0hpM1r+(P|yRRAS z@|>0nAdLV7WPxVFYRgxQB$85*boADgj`6f|A#naXaHm3#FC00Dv6Ckfbby2C_gadjEqCC0uGTq&Sc?&aQ z#ae3{c?qzA=?Bk;l;kyYn(wgaI$QO)Y=Uhe-s?UP1Q1X+5?1iiDyg=lsvbKvoFIIy z=&Hh?flp1#E2XEx+B>GI6=1-UC;=)LU7Q#wUj4Y@9k~8KHt*?+9*;x@n3xAuGgRXO z&RfpWzWhn&@ODcRY6fW3B_I*>Ut>3Y|&b>)SAELS76DP$eB}9D{)DLY;{MQNts< z2NY`QypAIvDx!y#JgowY(dF`Ou_oWuKIuoPeVA6Fqsj!l5dtW~CFaykc?4FV6am5N z3{wtHK7$&V20v z4*pE6n+MxB*i{-SHB?1)dO>+%Q>cyOf5xipf9#Tji`y7OfIkE#Wul&&%+x|R3KH)^ z%0M00*VsU(cOP2ICm_aWf6l4-!a7X+*h2umI={ zCIo7Qpms0!+2+BpUlkxXAEge(CB+ebv2Z7tiUvJ_2>|t;i`v{QAWzBeK5G2c$MXfL zqo^q53aSc_1OR1nGM)|K$THIq$MgMrB?GMJQv5O+_5|aiBb6vyq37@Qe-q-LmeJV& z2^Xp!=LdwR$wnFwy^!*?7Sa1u=1OdaLIs#F8{^;kNeyI}{2Ygtk98siDn(S4veKmD zxpa9o!|s5}gO%ATQ0<(c4eSzBY8~R%Ilsm_an_{J!f)2pp6R3$#5nDE2ppxSpLbQ! z4R$1^D=B^9JW3zQr?YWcn7}45(w79^)X{P>jRT4aTcOW*d5qV_BVh45neG^v(vK(4 zm{^BoVPjablpfaCg-Gzi6g?Gv7^u;l+zNav*8JHP8&;|LkB%KC8?%w3G+w8Cj~}>( z z75@CIIRyZWI_TmHbcIi>VaJV?wm1^r#-Ffy}X!Pghq{*BOagXBAynk3x zJle{8G+Um3hEcOv?h$0tXn?_y%*cE+b}*A#b@#o~mzxT2h)}?OCmg5+G~OzF;!nk4 ztp*K>Gq&;Mm4e|)ZA+~)33HD(J6JsHP8HM;JO=c*(&1P2yeY-jE!u#NdBz?ve3&dT znCK{Y66{SyjZ0m{WD0bpZZJwkR1*!xq9nY-D7h%{-W&W599qo79go#|dineLD4 z50hCSQZumaR0z6oZxX%$I()j*&#|9*Bn3QQBFitDcJaQUQh~WYGlZKpq&N`AlIONW z_2|mQvbSZOtS=cIG~1*6V2rxo_kxnOG)LKNVGL!Lm^D8#N)~eH+QVT;$YyEXmV#=o zsaB&vGxWrGF^5|zx%3?e8+1!OVQaX#gi{y{^uor6U~ki7X_+Tu=iih~6kUvxquE;Y zKU=W)C7AP+i?PPn37P=(kKIUr!~gR25BBJ%x*k{WApigZA`MPU@qjFP27(+7I5}X* z7{{0b4p`M3XPi#Q4`MK5Og;7uyC(rMDVW)dRe4ka6MP-IYUYHmug*!49(YuSa>~G* zFo4?!Q&??7i{=iWzX?q<-(~=h zp3o|m=ZA|04uJrzzo;_&B{)~2=|nu1UE-G!OX6GE5)O%$XqbYTm{9-f+Z-NH`N!Q2 z%!Fip{js0P7~gdq&>gM6Kl4Rfq=*FG{E7Ni78|(2<=@9QDT+u>BA89|gcNM8y+TDM zJ#G-9!>AWn1)=e(iyKz56a%8Dpn41tu3 zoM(4I7Fzj8gb3%}nPJFohx~sshnCVjmhbvf_zAY)R5TcKuy6*olTBp)koAlF?BcFO zsL2)mZ1#O`iRFcXLC=9(y*gnP&dW&_{V!D`W;@z#c_q-djxLUa69;jRQ8!WY$#wa< ziCnC5?>v{&C z&x+X;w0!3)2I*A`i=d~g?lD76*i*Dztw%re6oe00L8oS6XYq;e-S}vpp=Kxjrit{PBFcJ8rgJaMntR{g%8KI{n$ir^N^?SxncJl zft7lacuF0^kZ555AAysWroXpczttp-79`%Z*dZdM4Y5z4Z`*n&TZJJ!=?4xriI}Wi z`25;(qnM!u89sspKh0_LrI>GZ03u@0U*}Qp1Ca#r;_Nx2pL|zqq|YL`SN{5+>DUxs zKyMTssFzgSomTTB$0*ioCeI8gu~0a~$({|K2SU;(ZTgk+Wf|WYem)HuOej*^a5^^2 z^m8v4u+M%kdgpxbPPGJ4K{y!)$1zNX&|;gH(E^+ZGWQ9Jd6{2Q#5>88|92N9`LFsst^jEX3x-c(Twk{JKu{YID1uov+3ao;H+Z!$NX6OUEX2gE`1i!PLgQ=4(exb^+@P*^a^J4!5zl) z@&%Hak#dh#vH);>X|V=Q5>`?f&gJ>JqzLc4+It-Q2*zqpfz-qmQSIAStAt|Zm%Ox( zM7z@S(ur(L0d3z!+H%^85uU!5N@6ci$zC}_;D0I0Hp4rrHLZHueo=caGGzFA%l3W3 z8UMf=p2}?FIHNCiU$iDn{M2sdD=_O#H*zGkkjUM*LFON{tFy`$lCL zv6fH433cGOdnZ>{T1raTL48OVgdO1Or=rMg*bO~D(_z;{fTM$<;I2k+sChbv#h|sP zU}H>Ol_w_oB-vZ6v_*Fw``E<>3YRQ)nIDy5ogpL*a}d}#q`!W}}@;actFtwDUbz`fn%%Jx{_H;#&I zIaN8txXVZrTwO*Xt?*IREn46>u&cnsVqwGbL_gxXQ9PelK2few?4Tg&FaK?)42@x= z^Q42A3EwQ!HPJCj9#wyF&7ZFkSJr6R3jRAOSom2d?6B~rQ0=q%#;DU-j)#=q$pZlj zmWaCY4}3}a)TEWzEkCxkew2c&H03>xGR^n0lT^Z4a>{HLr1rn6)xIpuek{+Xo$3NB z%T4vjog`i`0Ncb54UKp$^QTv>#k@9&uGxF*45)|BR5nHgDiwo3I3_zq^`bQIE4;zU z2>l$V90Ul|e9A$M0l($BU&cG8Z{~>%H49Ktx_FasW>FEDsFqEZ+S_{hvIuvR4jkj` zawT?;SFoqqK`Sd&P!v~;*|I`j<=tfEA}7=VN56u*HY~wi8+-x+uw(m>o|A?b7c+tr z%n?_>Z3tH296r0nCVX(jspZI5IdIPYF}RKSO@%R0cO4mXCFhhv{WqNmcw8UEIA5s^L26u**o)cUirEIlpp;tAwF zDB77a$DhPY_Q~L6U?~BV%#O<5^Rf>MH|tzbfGVBOgY+cgRRdiO$p%d*f5AzGwaP4g!3fZ_4o7ts`upHsoHh0^`|YNpjmT%hwO%4iK9^Hwq_@5A{OH?jAy@5vU9*-q^kg`i%5kEQwS7@~U2X6gH%FGpdnj!`83qoCX%ZXlFDE1CFJDK+d}{&_=YZp*7}tK7 zcJ5Q~vVu|8iiIcH!D(+tns!e<%P%M^;;l(VQEdqh%pb99iyLsI|6|>n>E%@oz=uHc zQUAlyrLA>J;~NlO;=ep6B$+rMtT%q`O-{N=jN9N~e0?QLivAD>SD`E6_0tzLz9+(V=*`If z@(fYeC;l9xE7ds0iaa%nzS>WRVv4Dl3m&^`y5pM@85CO-GgLe?k`E>{{XTP>M|18~ z|NFbDc(z~dvolphh)am=zB>PK*4HbQpTA;@{Sxe29Ojg-FuhrHrhUAB)!I5x%T97a zUEBK*qtb6TQSqG!mbFnI@(y`gVB?p;E?D(k8B=3CwfxW8A<`hXQ+?Rr&YS7L-GvD< zGo{@7c*P7x9!=?l*Bx^w*UPQ#x2HWlV$7YBN}79^mE(>HErpmaX@rE{=%h=OG7HIO zPGViK-=#3}ur{Fhc&bRZ)I~)%hf7`W?^j$c%aGqg#TGY56(#=3lggk}I7IO*YAzQ2 zju{Tss`;A17pwPC5f5p2X+Ccx8=C2dglF6zjaA&8P0MnC1iP2sa#%K`JlW`2qp9IF zAb^X}Lf?|H*V+SvePNJpp6A&<%%O(0MTkYHFkcys9MTsO5mEA^1K2R2+$});>{$d% zu^sgZ3JS7tpW;~_sa(Esf6bLM(B5`9JDv>DVWILDYHgae#yYK*{LiSh^6CXu^OCa8 zS#*yHCz~hyj3+;i-32)=eVJ=(ZM#nHfm=UQXb+8W+G<_I=-Wg&i~6yx^&U&%r&YJ(ypfCGNU35LOPRmO<@2xQicRlCv7hp81V`29 z;TJKFifZMiZrd;y#GiK$^Q1AUCs-=?>n-}QazMQtS> zeiZq4;qebJV+_$K=DiVqqP6qLu=svSfssx~-&kCXwmZ+VX;ok6wKYlq?^<@H?W;`{8 zavL*lR8$6al`mpBq??VkF@Q^KzjWUku;xmTH)A(1 zN3GaRMnS#r@r2rN{Iv&PmSOs3tuTcGwQX;ly^6i|{*G&> zn1Ir2V%B|p16;!xO=aqid`(pmNGPA#fk6LqmTuE!NZ~QHs5X8CYerWzHvWgiYz>{Q7<2+JqRK=l6|A%{mm$mAjG$N*~W@VXaXIAvB z4lq#vkbK@_hP`23YtP4;W(IGPO-0^9&Ok?6sBH`(65P*Mkh&p0A+ACj+r87@M|GI3SVwF z?f8Iw@`Cve#W}WW-?YFAYh%-ZoMz*Q&b`X^ujeD5?QLGNwCf^EXz0APlen3y&Y4uM zEs}k^(AL2??}mN&euXRz7ay-jW3DRYh`&fv%nt?KAxJsU2e4Pl@g2!3)Yq@nnJ9H^ z7B?PaB)z7IdtRg?BHA$f>UAF%Pp|c_VrRUTLd)mAYpiO)22Hyz zQlfss9ZqQ;e$;f>-)UBbro%kL_s4AeX_UD7oHc($5pn(TG9jY$clTeL(A~)s6|8_H z^gw{OC%pDWzO|Z;|F;2>XvVGEnZsCz#(4i;+__7*J{y`dP-tjm@Fl(_2G2)46{+jK z9%^Vr&Vx#ew*gLx=ZZT=uE?}OF!WfkR?*5(+`Xfot+V)Fe^dnanGF7=I$ z@Nx|K+^4x6t@_szSEwfJJwFvQ%W&nY_gyf;7044jVdUwDp3~pAK25KR6hW=6-i>dl zV;J@|{P}NIVR+N=%9sVhcd1l7sW6YJF%LxGB0qj2+Q=u+zw$fYT&d^Fr%AML0nGvC zEN-t?Ez}imuhBkduzKo5Qb2lKL8Q%QfA4rY}7-~#(8>1 z2+%OkpM@`IE{UAKj}nj1H*+?&OMlZV1{L|2nJ-SC&0Igi5TI_Et6D#m4s^fs)v>;> z=!Ew}C!GX2e!!R^1#X+56tcQ~zYeYrF5tUgqr)O%g;{qk=@cl`dP3BwP`RRugrjk% zD*Y4F5;d=*R?y(RZ8u7)f;}D?Atx_wUVS5J!+|MZxRwyE;%Nl0s?D zkiMq-m!A|>Q1a!PEPamph?q$ZuXA>z~K3oS9^{-R~ z%9XF|Ih7ylPJKsysl>1Fj+Rb-@#KQ*pwj6M>t2I)lakbtBn9U+^OKf@<$JfSZmT?} zJgW^Ul^AXjbf1y$#!eKD=PlnWiz0<sY)(hN#ECbV4mVVo~@L<^m&;4*%1p09RnQ0KU-DF zGXmdOfyvORcXllMlUgscl37+Fr>{(Yg1nRS{Bj3%mXfuGO0wRpLF;sK(%I-YjTkxh zrI_`p^se!#3}hnK>TdbLO5z!3mxaC!#^1VnL{Opd+$CNVJ6B!nCr#&vBQk9Le#`aV zaZimNHzW_|nW@eUu^^CUWbR)O63$vJ8}*v7jWu?Od)Er0`pNa~oD}m4C@B{|xJhw& z9hkU2Dy))RLR9e1GX*KW&qUH&rW>DhTAm1{f)|po~L(HCzu{bf4bP zWGA7POycD*cB!4wOQE}Hlsfoq=Zu!ykULH0l-@=YP*puxRIV1QtDA%(g1mB(o~IBZ zN;qrQMci`2HDKSe7+EL>ljO+=1`0QdPBXq^T~02J^G*1_`a~w)Z1Z$$|7T;P4c6?w z$#kifMoOF`9%Zt{NL@-|pY8a_FeMjjJQf_;N6EYIvd^!6wfJZGSE=|}6&t4Hyb=?2 z$47Q0yGlEn-O#YJLIoZTN#Yicmz5XA0;S4Am}8i!UMc?!qjR3f+GBc0xkr+yL}jzf zFKS;TrrBs<(eiQ|?|8_Qi|2lsYW2H0B^JPabm_7D>q6}7)I=YU{vW-CE%O)O6QcX2 zG8spxmxJ)bsZB0xBaP~h!cLxIFLLSy4#n({O5S@o)S1BjJ4u*+Jp#oJ4@L{nsxSWu3YwnlU`E#^*uPcB3^-KE!{d+j_D3YF4ae zNEOq7pSg)?&EfNUlDEPf)>%l<4q4^21CN%C4K?pm37-!2?$58$0$d-SQ;2-Z&egG6 zpMW{O8Scto=_x#EzMD|X-KI?UZ)DqbSm<9L{Pq%YSAh|DKEi%6FFfJp=b7JJ!)v$C z%~dnk1E8U@dazrC623^5T}W5bj47{C-pWcB5fQ;W*9X-cExWHL3gO!;E0`^8CqD!^ z=x3u6!@EP+UJCiXin(Phvt4lQSG5*jVj}u}5COYXZkXf5m5gW#u2Y9T^q{U~DKqTt z9_SaWC_=hb33>3C>zOn`C>!4cw;w@2=hZu~-e5A0^0D83RUo1+Z4k(e-JI)P?>GGh zMHEG2Nop?{XYo$hOM!^dakbk&Tg-jNYIH6-gDV;1BpbH3`%GD zX?mTUbV4Gt>aXc6$x9A&N#dFqm3XeFFKcQ^cOo{E2S`4AiF zCgy{HD|&3Bj)YZqA@i1kFBnmn!?aX1A3&Df%^OcY4Y;@^;U34iX$}Bq&#lB?Vu({oa?|kR}sC10%_B#z>W8c z58>q}WXZ)3G2-$c4Qp~6+FGArpy=V%Z@maF!p8i}j{;fffy9tW<#Xk-^Cpe8 z|G=HXNG1i{en1BENbWa7m(mB#AG`Ij+_{h2DBji)3XEJl>MoZ48ZboF!`=}?%(=UN zU!qozfr{YFrrls~|9A_R(77)VuvLw(O%?JsAw)>*ivhK@+Xrkq04Hu&>f{xWs%7!RzL zZt44`7Lcwbj^IR3BL8+i&G*@ALGy-648cjKvam;oUv8?-V4(QLel0fYUMi6J!}B}9 zm_Ox@z#jswnBt}tRJ~__!ou=-{02%`G6PgT66Zxmk&6V<+s6!`tV+|0U$`JU<{k)7 z#&|VXabI12g>4F;)sPGB^IYaG=Oit#{_$sfZ0t&K9F0gotG`z82#1(~PhWW1z4M82 z=}_=zdR<2y+-yUCvM327VmEsf7N0W5?xma|l==kuV>abeX=GoTv)?9@Jik#R*9Iz& znxA+kg24CAvU0FZAxJUW01vT(d>2522Wh4*r75rO+55q4u z!=$iaC3~#968FyqB#>KD_W1q#(Vmbt`NU>99o#l%?q@4o<3plJP5H2cK4)3N-Xx?r z+S8fvgy)39>f!OC;*eZw<@<7VK;k{o87wi9pGTh+%x&e7ZS~&p7wL39;>RwzSNusb zn@$1e5#EPfd4@Q^uBcSTf_G4m2gqY2^OgFdAIJt2sO4f;O_^-*vz+eV`53HbFjra14cX88|urD4avhbagALBNhKkzj%lJiA+enQI@=_m8I| zCij6%h-7f)LTLn3T_gEa+}c?PUWuB%m1(%#C#c@ziKK`by+ODYn-+1a`6ML<-l=Y!P{aaWW6(7UUE^}(=Cd% zyGy^NC(WkDyM5iF=uX((ABf+C;(6xd^>{R*HM3f(*e5vo7~@XmVrQ~!~qNc=dRf#QdZ(I8|A(d)cHIqTS+JT+c(i^7C=_36?K zN=Lk7*->Qpc;cXr;7~o{WG<|5f*>GSd7k#f^DN&29hCIl@b(wQ*58sq9Jg)QF$+{7 z3(RSzhA3Gz=D{p;ZSHqv;DM-J1D-q){v=F}?Wtf?o1^FqqU4JDj$v3K&s}QC+|V=#Fc|%6;zDSRI_m!w>78VDBQTZ@Ob^5vZ50Z%VN0{rzr-rV#v~-%lbng6cFd$VSbMZ3tAdHvy?l%!09lKydY;#9%kyNMjumZ-y1sy@o#H3qsXl$r9k&9|9WH{mfhsyODlbcgD$a#gRdN{)C5@p?xUwH9H}_XH!Hl*#K(pPsUfcS_F7$1STK`Wvg5s& zp^!829D07aYrFY)VsER)X2RC+HW(7>y_x;W(EmHtNqUJ-nZ`Bg32&P@CWnL9^73$5 z)XKI*MIpF58zl)$Bd@tCw zEZ_s^+4|--e$MYFgW9e3`qX zvJ_+q>g>>h@^W zT*3F%?om|5oU(svQ?7xre&U z^XR@PEB{%muk+0biOE^-2W(EMY!syrRXi-3#1b#y+}H5ReShdh10*w2_{S|82An<2 zliP4R;T@zC$<(MZg0X}CDA(5Ok5iiG&4+rK<$0rx4{)_Qs&MZKaNs8kTADUBacbFE zQFCx9x2sW}5`Ln?{8CFoN*V#8H0YV1KY#WdbAbA%(en*PSa9bgcLB=gg6RrW&-lw+ zVShjCI~q6qu;7ifd$#aN(w@}c-eXa;%&RFlEHeA6h}pDzgF>_X8F5+ilST|Lp{3Ed zkg!N2iBRe=7lQO9P6P*>uIr-+;RH0_55g2erSghC-!+ii3`RB+8K17*KHL9IGcjlY z^Om_Bp8d%18NIe#tD_!ZWgi+`9G7Zgt6UaWt=5PuIq;O+KawqY8Gt(Q#MDRz{2|yz z;XgLtZ{j52cNeVWovvI961%#-4?e{htpMt9RkeZ$=nkd+=Epc8J#817y;4N#^3QwA zyhpzExZJZNYWvq6bjuX#Yv8#?#RG4GK4U?-nhF{erBK^+u0tYB5c9p-BzCnW*Rr5#IF>dA}7BKSe%hTv{L*XwO=ZuGY{LGAe zVYtbN{`(Kf6Sk}*D^Bu-%{*;TmnGX!)5+E7?0g>o_^x$bCx|&1Ef2qO4`KZ%!z*}l zpjhs!<+Wg3>XD;+5NEqA&4OuU4=#7;^pk&$-wA?@A4v0X25i`rhDzf2zWP+wyLvF( z)f4!J|3O9bj5|=I^}GAXDr3t3%BFmlPOF$TV!fnGSm_klu6{V4ldZ~G8jMZ7UP1>` z&TG&s`0l&)g|V|&^0mZ@&_e*ly3FH@jzZXUqEjxUyBfM;Yv}H0>zUbr`qmsT@TFez z!l>n2zJ$WVM-Q`KLD}|wh4RHzQCu}sKh}MpzsJE-eE3)I(}`}RfxD-o!{NR>eSY=e zu>Bm%f_HPh6$G?9k(lFu>QVJbDV|4Tg7L?`ZsqORSB)$j!m`SSyHh)sLlqf%6S-_@ zZ}?O)H=)^TS#C%WbFn?@Eob1bMk5Ch!U$~jU&TwUZiR0V=o)f=Qna9I8s@L3`YbZ1 z(o=z<&Ivw;V7X6n4Vh8(^v%yWL{Z2b{vY+TS&drNEAms%RkO8U&DtK?FTde%^L)C3 zn$ILB4K(U~woPixGMb}hmg>ewBeHS}T~kD;!w(=(=)C|A^XX`itw)E|`lEt3uG-vJ zSciF2+t!Vd-sxG@U?seqIG0nc)&+UQa4OY`V`4J<)yK-@wZw{wD^a9)w`U7&p_m%F z3qgT`;Ix@vtcpR5fymzONmqA z1dbCAmi()=eYPpBu8r??e3H>UOUg5bF7eoy>@NpWz2e}X1w#TiBO_m2;{1m6bN5?F7YW|yXXY<$ZtjEFpj=k_zwpEyJQGtq?*@O2*pZ<$PjDQCV@w`xTYMc*SjNsZX~`PR_OvBei(vo$xp z$`c^{I&Ah<5SQ^+j)}`2^7z)L@oalK1Yj#t9K zR{J7O$Plsa@CKU;)AG)?_Rs@CrrLK9Mcn zxQ=g?P4LAv0n}E4CpQ`U>wPJ%?i6Ah>*i~f1y?kWx%7fj?pQR954TmLLj6NHdA5>~ zZ>9k66}k0?1N+{c{oY|u@bbVfJ~$-1_gq}1L9OI@);j0y5I^vgE}r^E2~+eczvrK5 z#R|Unv*&hUa2Rfc`==*ZxKC7A)jOUu?h!`>5?_j67A$%6Ml<4M6<1#mcCj`+)p8RLDIcwJU zdwfBziW%~#K*pLjWpM&W(6{FwnoFHrC_JGT)RH@!>ke7u6+6*Q*yY|98IUo7Hu)?{ zaxw$^mt=%gD&bJ2Fa&(M=-!geleSZ?X)1CuGc&PJ z6}0+cwQ;tFJQCYCYUq8ua%f`syLo{>srK_L(7moq@P(*{ff1 zYxWm2R*jcU_Khn)97Qd|EpG)Ubg$IC#<=eHWCQb_uv&1*-PZmWR4QX5-E_XSZ!28S zmM^dUhqSz(!LUxhAFRJwvy%;9IJ->A{JlY*7&U$ZX-QO0Dzf`~*HcDo8yMc;A)v^(UyChjHK@5g=dnM4i^gD0Ub@51PP-5K0P4k|CkXVjw_qSjiSAB zfo#no`rB9X@gcl{_d`1fH3P-(5-N`jKsMf1`;3v@e9OR`NtX$xMlVx`NQAwu9kOoN z+729j&FH?l_8khJV2R+~4J%9mN{Z+E1O+N}k6#4N=|gHlDz2;X1KjCwHE={+GF4-# zHI4pFsjV1gNPrI(+DSz)Dhkj-uywK;2STR{IObDOKs1tUOf0*D2`Q02J9(=nJ%|7Y z1XL!s%f~#d5VuBOSWW5)rWfWb_6a$P1BqRF--qjWf(u_hqZBYXtEY2%f>9X(uADiQ z^N6OI6GYS}Np<;I;VA}%8K39Pr*xKU>73Cxgr`eT?=%rz2y5TH9~lzvv-8Pw5cFb| zyyO(XgDUqrP2NU{|6O`|YS!5I<@06YEidJz&;jn3{@&>4cytQK@C?`rm+6quNC;z% zg(i$jqM#abI2&E!=%!LzAcN}aeb0O1t?{lNw3n1GW9jM-wq=tHm3<$|sDyn8Id1p6 zk)JZTJN{$k{eOopWq*3x!8`M&0fj!S>?k4%!jpKJnweC9`1K)$t zF=NBYdmzv5Cn6B$(3p=sK$p$1P1i@4!MsEpyZr%rmD==stZ~JR|A1;d?_8%1soXIg zupe4NrNJyLmv|drtNnngx})J@+d6((u0#+Ie5ia^{5;Un@kPEess)S%uMOWge4SgY z+=aM2f)_4VO4wWQ<`!^q*Bd2<(Zhkt;;?u+1~M(} zu8*(f#@BFA+<{U4=l#vk(EvFD(NnO9t3`=Zq{xIAggJI?u|B+X)_W!JGyQ_lfiy(uSSv< z+^gHEXvp-{q5`>vRw~*b>pta+8yyS`@XT1}ZhhsLkd!J=Mt})&oIVtZ{0(*)0roJr zgynxvwiC7-?zBjd({V#4Eu2y@0f~Z-?1H%LsjhS>dm>cFP`w*<&yYA?exn@2ELr>3 z!eSjc9V`_l<--4u9Zwsa^O2?s4XBW~bF@0GsTgq1)-L6K&nc(VewV9k%8kpw%ezQ> z2SEnF@Ipi+f*C>;jct;P6F?~UC?d#EVGIp7TZLN^XgE-P@*WkR$#k;&YEMPO8faBp zyJT9n#MGZrmLmsVQ+Pa54q-I?Z2`V4r?Ha{9{)*Pe=6bfAzIjv`^f!1iL=v}-TAgK zK>>j`d;MQeQn#@I9V z{rlP#QlGHA&#`Fs@hp?yAIevYA4dZd6UMYJd3WSh64bP`!d1pqm*{R;3J*L?+4R5x zBPQP^Uw%`wbG%h{V;eBm;6Xut3^dq~ecpR`6QKIk9qub88Ajvwjm@Yh7(P7yf%1oQ zjUBZcrASld2`6*X!VwB8nUg0?{UW~{WhDE;=Dm;1^r8n=19nXdNlP^=Z8kUzBB(JkMu!!2ml0Fmw;o^+U%;98WG4b)_m73K7I9TS~poso%uD&Owng+UZGuYxP3 zsBl0Y35D46;XRNj1&pttQc++ zV3b=tzmQO2r9h_i^NEt6{$Z~6kUTDfm;^zuXFAXpt*#!;Z^&f` zoq2KqBuwtgSqk$vft7j`zq0%6{Oso{TiyS3gWO)6ktDyg%vD)a1^%b*YMV9=Q4IKIL;Lh{GDKd8v*X;(FW&z=w^yNq*qrs5?~8GuitN&~YR zJO@8UEgrYmh}Nu{6{yjZpH?b#n`n+T-6DEfocDGwkWRrKK+*a3PUsd{%{>9`&!H?V zg?QwTyklO;??#DJA;?~ZP?1LBo9H6{Qnpz)zJPE{T+%0lKtN?~4c7d*eA^CuL!!re z{%+!3ZYXHG;TgKCtqr6`xt!*9ybz`pW(Pz2Id*^C*g$<$_(NfzWmnhS3lIJvrm?FTWk zvYGI@zRvuLpE+^Kn|i4kbK^(Qcu zs^$SZBYc9~|5{dB7_Q!@Y_QW@NJC{OQ$_iza_CUt-0S1L=}q$JUKF#a#G&8yni6O# zL>&RQp15)y6M!(5o9!k6cDg?>nk2l2BlB>7_=kXCGC1GzJV>3q602BFaB*U)Bp)~p zJ=nQXXWG3Ht*U)zmw}Pd#&y!!g1ZaX%(L zUT|y~LGZ1-Y$OPIE=MKKKDPRIt|bwa2MhYkpQ!qpe^C!ee!T2*iJ1EZ4t{840jWVy z3T^*p{Td50RcTXwS4Cd8A_+8dWdWc=D&EtL$?_^B!T+V-Db6}#z@sa*Yy7J+ngr<6 zw=42b;*V?%;Gbu5RM2l5+v3 zl68Mq90Hpn-#z(S<8il}`y5kaVGI_9<$GPC1~>+lp3I4)k^$eIt2X1{#~GkxfATB@xA@cYeq3b?qq;( z3ZbNw|0%aDF@r(~6#moZ;}fJy+hcTiSIIl5YWKh1{{s>e4wYqnbwGP0RuO+~orWEn z%0;a?6-i0dKhBs*vwD8}cEM@EsSC&FF0J5{1+D{Y4%)@1hg)%gMM3ga@SPCAx=fI! z0bx5Ye}VlLw8ZrmcU8HbUnxC%P}lR<+@E!fwd=)iMBAObxf?y9wRI1O*8uG0Sk-j& z-klBDJp8CI@zTeo-^2A%gqcl9~ewIZz+He`61lPXH++1qbW5dGA z-P#u;e37|*Z3|0#g@w4lP>N$FD!&G;#L<>P8vg0YUJGJ{j7Ff~fU@mBC|JE2a?(_@q(u$x1^Xz4^i@CvOF`g;D^uCuf=R4lgtS*{*SlI%kWx`!IR9*qmQEqLLKRz15tbq z(;;wB4lIK?XD&siDp7DuAfivWIvCcR(8Y;EGYImqEM1Ib_8gJyL0^wwZ1v4-OSVig;@Mru?cs9$YoH>l5^gcinQE!yeH$t*^%a-RydEo&tgG~}8$%)2JOH8w@GAP_8aU<4?B zKgC@j@OE{LkcxA_wRmHpTB~utwXy#I#=kX8I^3x3_~4ro*}{qngtK|wmH9#woFWea zlLHZE>=7AP!blk>e&^!@N%qr>0#(hjcHJ!DkhFNxvA{7NO)2uz&!D-n)~;#mhIxE1 zXwFkESwG1sF#JJej ziLGePw#E7Hzu&V{!wNXj0OTVK6Xli2z`Rm12uK?GJn{W&A@*N2i+T&3$1R*!;i0#m zDGoPMm9^>a4UE~G&h_3rOu$bl;S2)0rdL2Bb2IHa4GeNGrAoXG{Pdd70ze!;;M!+~ z8d1qZ7vk8x0s$0pJqs$04_;T{M^IQ+HFZm){^5+3&o$4Xp2WiB2==YH)l_u2Y%~|s zn6&%RO=blMW;cYD53UjH-ILnO=}d%fLTbx)Hp{6ak8iru#NIInS3@HJiKxW6A=N;0 z0K%&P1(Ax@AwPdh?;s?>CX4c_ab?M*ghiPSB8Wm#O)^K7huR{*BZuuKHs7P_L&oQN zfQ8ll`*&=4`EzM$>3wLb>jU9w)#VEr%WFMyA%tN2dBpWWgJy$Gz|@x;o-A7fG)7_g+&-B#KoW zpKFQ|69_>K13V=8sGXCY_7ZS`Scv>AGr>h4!T-Qp8dzp}93)hUHbFX+r(D-m> z6dP-hhP%aXIiVmsVMJn@L=KVG%+4ldu6zZUsKe;kK2i9h25qUF^;cevzerM|YRE_7 z2mHJp;QrEfKhk?u3w~Ij=jFQhNmQ6|hu=Wg$`a9QePO1tF86{#Czf4O#OJF1%>e3X zz`&FJ)CHFbZ$V5HKPvED96d>)CTHRbkEoYO45`U=*G`+HYPXc~T|P^))c1XNs=1vA zEDlZD=N_2t^*$Sg2KqUbVR2^3QCc8h&di`QKvryUfYvxoih>cDv)(v-er-i!M#c#? znQh)!3zGD^C|k^Kl#j<=S8?p^yAB=+iY?%TD-lP^gyrHbXVj10hJj6kf<}aG zMoQFM3FKfzi93}u7c3hr>i0ot6bep+UghCO zWMP2s`nLwc_-4XFo)Fp3AEh_mllm4O2XxXP9102-k(D(v*O{(OmTHV$7seJ%n|3+L5UHFB*i)O4j0{`n=ueI4c z@#(KEF--~OX3yDvgcL|dI(V^qVm`oVt{MAu^tyyl;*Etcut~RMZ@*6oDW|=VMi87c ze(G-~!+QUd6hBQtSq=YvRp9``tgL%Kw1t^z)iAS#++*=!X%^&4a`xz7I5*<^ZtwD_ z?<->|JbfdHe(F=1Lqn)a5#94(#e|;ZypCaRyAxdaWarI*8xjH>1^(HkRsN(wi4(O#<(NQ-A zx2%gTq{}3mkOuJ2%uq$coWdbnqu7thN(E!w-T#;pj76i=-i+qsbRL?pptrBoo?gyY zKCkkJ@!DnG=aGi?2k7|Sv_Atc209=aCjpz1Jn9Z!1eyfDG7$%6x3B%iYkf2X}@`tImx#H;P<=IhX0P{b2BijUU% zi&jj<{Ix@2fs`|TlM8v%CD7^mVUpOo6SCNSO);Jm%N%#qBsmb3A1yxk!6gtMx924`=U)nqBWaA6= zRi{4|xhZLFr5@kjXQLB>_xP>RK$L0!*Q)B=SG(0Q8d@*EuPj;AKbTIGUw(1_oSu%DY5R;w8^qAd zks~tjQYl%?!aY!Tv!cEq`eM=Z=AhtOROZIK4_b^a|NIs6Hrtn~IgX!RHn%xxDwvF> zuH~^-t04(;C+!?@AORBPsDWaS+{tsfO~sjTT$ z3qpx7xJ%Gc@?Hy=hpvckFO|>B0f)2a9^=D>3k+x$sX3-r>zVMhU}qovA-`3mGvUl+ zUGaJNanAqz;gp`amjR|ZN2rKCG`MdFb_7a~72T99P&(k#4%nNyK#88R?(y;aDC`nt z_-t!{4DAw2QVPdQ%n61jM%`I|#eVSR>DspT{rt#UeN#eM|Ea+|J4uJrd}5qJD5^DH zORKV)g;t9e$@7iZh$UwBom9SjHm?aV7`uKU5$JQmVoEY^HEQbtI$-5dO-Bz zp4wr8mni1D(BFf27~oumRNW5bPhNWZSjQ6Z zl_ZJP)wp1xy9^elcngiY)1-FE4I&#j56QlR$7r?Tn?((SWY8#nSFZqV#n0N-{<+Xe zqWwHN52#Im6DN7EASU(@A1{Bb(d;M>L37Ucho*Q$HJBqxHpq$-gX%-#?{#qJH=qc- zm3dW8e)HF8qa!+AYBzm#D1$U;RWSn-fUtGTw}Flr+zLG-xo@dke>SQTz*xtzVzXVI zsJ5WTnzu)6dCzJ$a@XWMaSai+9tMf+lCKKIpHRp2;VXJ!M7H?+KuNd*@WIw&GjM@H zEH^bxR9O4?NCDNa4DWwP%4{TxC~mczrX^##9M9B1}JPX(%3Rgf3{qe5=n?Z6|b2#|l6f4|?d- zOh!W|TYjO_FhgiHXC-PhgI8tf^L^B_IH&|ZtNIWMWO)J$)tjG`^?aPYTd*ztOl?^S zuvW?o?yB`khSvtK6@SEuQ+Y1z-UoqvaqlFO0Qf1;EC68*mAALkffEO0!do}CH%vQ4 zz&s&Xa)3ss@;i*JA~Tsw53P4f}gnV`nT5FoP;z=5VM;>M-Oiz@xakH~6uOkm%^ z&S8?YvuhPu=1L5O^zMaqtYD@>jX)Ml)y;ONXhToaVp)_)TWkf_ZAyor#^YnR4ER?$QepN8;#+f{a}-*sxC8kPPAY*htDle zg9{p_@g#ILMDWj?>^cu?sn+O9Y_(NKF)k5%dwwqc_RXNSC*qfw=)%%Y-1?P?p;5bB zxc5AG(k!>?@Zd2(Ew8@O6c6Ii@NhMCcRK0N{=q#U2p`v~|44o4f*^)~?bNU}z6F5H zaB9nH!d(F267=6q6d;3~`<~uPAxY{s%U=JB7SN*&K)+!qD@|D$kd4#4T)PriOyH?H zq5P>zzRH$oxW){_pw#;$2Yer53QwGsYA(G1_xY+RFe$&RTwXj76i8thDF;_be6?oa z9Eu=Zvd>_ZhNUdR$bL^_QD-;0y+G>*=z_oJ7y>SdCjr95e@-5De0H_zK;mt zT`eF82Gw^wpf*EgowMSO)wR_i0_NG@dbaTkC-yWojG!hEJdNr5Jgd(OPJ;sZeB_2|ExvGjW3s7ih_(1uHjuHl}V9R-mo;|Og zRo)EWI>Wy3RT)QB)VtZgRK8;XI0%eNkwop*wvfhn<90rv+@VcN{W5y23Q^o> z;D}S>TDwSJ#do18(xJRtNHQ^D-fB_noMcrDz*pU}k4#Jg3pU1YaA%}Hd5BN{7hd~m z#lOfpEayDPtFxlbIZMa!VLZHnpoub-j2224d9w61*L4~oCJmYOD7{Nb%ot0NaH2&h zppXiPJsqESvc4gC1C3djMtUFk+grsS^ta84G*jx5Mk-U}l-vEYEO`nJKYI!R(?XNJ z54^Ytvgp`pPON?YzJxMWB}8R-ze*sKInT|>WKt+>T|qN^Rq-er*neb{f^s{07f!c^ zZDO?)B2rykmW$8{!0GT~&%=gb&D|elQhHr1j8Nn3jr(s`0WxXlHRw1s2Dz~hx)Fam zeBUxTY3_RN_Rfq1Y&}r^7i*d<*C#^n`%Ar$%9n`FGBNQ_o0wbmY)jh@{8o5 zqP;TiUn?k03@5Mkq|%{91mUUq_>8`&S>J$+6~E6a3(0g2m94!b#$|BWd7dAo$(>!aewoj*g)DtuMh+{GApf zeeD1UF+B{li=71Ps7hp8X-g*)_jiJmM=^xz_NzG8=}%Is8V z12Qn{&ndR}_5cX6mpfb8;ArJBN6j&V{sUR3Z|k1HSFOA4?W6lE(M6)Ajm>QYbFrg` z)B{rcRs}Y<)OVT$`Y%|ASu?|o3CNvZCxW>XFvff0Q<yucF#?} z2Yr4Ho|X6QZ0OBX2PE5NGo!PirSZ>3*5wu;U9BnQU`fVWHdKdHGWJ!ju4j4{h%sV& z(qp94+kiWP1p{z=e68kShyZQ*i<%V}Ewyf0+&=Wgdr&dZ2}I6M=5N4$E6v9f1-{OM zfdu`~VP<81TXcxTMxI8w4m6`@&{+#c6#592ngVH%2oW!EZ8?`|hqm5e5!MWJ&_L__ z@>c`lQARZ*fjf7(VbEA5y#Gs@(|=U3}aiT%GJRTIZQ$c(Kjhuqxao3iCaQioI8bD-`Uyx(C;bbNU$0ho2A0rM11== zIuF3R`!a0-@R3SLYBQNfyS6HbrnW8n9V415ni$NO;2}Tc6h$gu8_Tsk3k2Wkt8I+( zP*BZTZb1%0QzQG)>HEYDqR~6fB#}E+I3NR-!?Hd?YcugRK`Hi?OJYyK(?ZSdd$aZl zS>smnC_Zv3YeME)_e4r#4~DLM^1l^4gQPd%=8`vgOW(uL11OfRQ6aU0{{wr{lceKD zRrYn%9{T>35;~Q3^T!DD^!3zQ*V>L~lyd3b?uoNU2-;UNM{YQm!dsjG;)*S5BdD3< zf!_sQmU5t$bLd6prjO?ZI@s$Mh}QdKm6X^>Y|Qj~|4bVCW*0`ud5qJ%L;|f;tn`zK z84Fm_5q56q_q*^tQ6e5u?hJmui>h~b5}M-Ut&&Sm_2+a#@v9EFY}yrTvM@f1|Gg|3 zwmd!NMF@n2GAfz4nHpYRoX}(R<>+_}yo`z^mf}z-dz+r#j_l&g1f_&dq4K)Rz3);Z zFo#sCDwdT2hM&nmJD^v>#k;OsmRl9)y?KC7JtF}S#)hCym{KU|8V z%Ody*-d&YeDBsSL*Q>@&Y@TgvdogIJ8OSd1AcgUBamBq8()?e3vbB{wC1ML88k|L) zQAAO5CApM>!Zfj`2q%!Su?apcIpHqeITfSQNfxKW^`wujr0d-5s&WG%3R+tcwj2b1 zbN!E}iseU_orH~OoqOJXa$6=f%DIcaladSAwO^~{h9^QxEd z|EAYOFU!zHINg9!2EsS(IDz=zpP{{ZCg`WsGKMV9tu)mp+)?@4nKo zO^Y@3W)R@c+2$z55xe$KjyAB|-(Dv1dOgQ*RnK!tgXk!HQ~yBxlkMgjE5M*H!|Rg8 z2fBIjU5cQ9Bg}PB;3+`M@>{#N(%h`Rg%*YOKGIT0ljEhN5*-X0Ae{|a7+BI)u^tQfa=L+OH6+8V;|7W6a zv#tFH9ACcEH4uh-u0ITE8l;7#3Ok{|2I{xxw~|swaOlrNY5;N6Z6WgXlq8eW~uJ{e_WkqSWscswXp>Rm2ME}PLUQB>F!2ST0)Q(l#rAbBm`-s zLmH$Tr8}g%yS{zind_@xGe72Hh zsF<((f2z+Xaz51vAjYu0T^t8bT!?)$LV|^~W`7?8s_YhOB74BaAf9vEo;fxcvVmMV z>*uHBAfW(7nU`LP}#9IU_i`k3*pwLF$)IEfz7*0I_>z<(=OdLqV2%NR;l9UVh+U=-qh} z#e?q(8$Oc`dj&_hU%|&Ms+QgfW7H8h3;T5Y^r3G7Ff;*EWxPuwhlbIc;AC-X#h%l| z1>5a8rVZ+fsG+%;)~vBdIoBVLf)G$x>#s~nW_y?Gg~xvEy?6JJ+plh5{4<_v?5T`y z?IXx;a2EfS)(!D&*CV}30jD$=d^Ma5NdaVHHaq4G&3gK3_6|M#1DVVV{i_~t^%Xft zVd0>jdmK1*@(ER#&qIuN-LpWr zx$rf2xPuh5CO?N72SOE43p^Fsp+io%JGX4JD<@M$3gGHT0Kd2I1Ha9+JB$@hJ zbU;rtM9=}+8{v`wCJc{$i`~gWhDV^aNOg)+JV*_eW_Yby6;PkS8~pvH7Z$-~Fg1tS zsWr%s59XhMl(v;n*XsI}XK*7M8w>mSk>DiaLIPpXJQtcB^$7!Z=+MRB^8nrIO-Y(U zbhez`M__Ipm$v7lz=*&+tPFu9ypFogdBh7uGwLSoX~5$uwwkslVd)6}HI zJJ~i9{g+e`s9e$>hq2Gx>&)tF3n9Q12NXbH>!sNY)n;Rm<04}FFZMdf)vGN>@oGz$w#^P)zq5pNEX!Rx*}SxRz=*`Mx{zJ!OgxVOG2bx+W62Pl zG)o5>JLf&yrvGn&irXWN#A4+VBmF;~QYRO7Jae2FN1{K4I!2wLrXEeep+mG&C&FIn zNeiy3F1T3!etjuQS+%**VEhC9-IJl&Emu#|%tr=!Ha&gOQWc!Ln2=wA9;z3nm~_8V zND%Y;o_@hId3m${orv9aXXy{10N$ME6rr?b%5n^JuDgja1G6Px@41iR@r)ttAK020 za&jPZ>s&gFs65~zYf+pIx3I}maCNt;o_@bHl|HBs-}Zlv>Mt-c+6U5OHHEXxn;Lr` ztK`hit7<_UqkY%Z$?o}R#`Sexv$QCZ<%dEM&j19FggS8aP50G=@xWgNb>@WdzyKs{eWNxeV_MiarSl~WN#2v3e}z6v2@1sY__*-bC@OH&f};~LN}s3iLDk&= zSLYH&±sY+92XaK)YqMZ{jaxzg2q&~Ak2D`Hh=9LOL0o|uIg*orxFr?{xZN9-)n zRaDgw+049q7zC)Y4bA8>^#El`uQz`JBqeuw#=F502^wmot&WyF~VTcxd zf@3R(^zIwwl!v-6Y7nmO)m={_OY1LbL)vk#{_lLTa{3?{xU_7nyV4Fy~NYw`n9(rJ(9~TcML25(>WK{HgmQ?5m5vl`Ns?uG9LEDhd6^;@! zB>S6hE=)nMuX)&8bZ&bPDj<`Bdl!wt>_nQ!!?N?)QtDQ3?b(@$<_Wz#`9p#ew7+31 zZ26-CESS~eP{dc?bCsB54vw`mN3;EG8`}d}1!QIcju<5F-JJ zg0zvT8y7+sli_Rhv>uI?wS*8PGg(efhQk7>yzOgjEMKMl2>0~FbIj`g$bN*_M6Pnq zgh2{Z42FXQ^TnjE!A{k!4X3iD{k?wWvb-(`dpdJp;(~jsW$X_TsE3eJeHGR$O5psS z>b^HwY6bb{m(O8>yhFIrXd~m%_-ypB$&2aQD8TSZd4O3nX8f^r4#OgT1#8OCsU{40a)-|0 zuB+f%&X$aF&Tt6I@0a*(f^1?Wx55r-Ec)S?+g@{KSQfR>2Jl`6)%B-#|YO}tQgrQT<@qlT# z1T`|1h&$wt&~)G2WVs$n^gM;>gS$vWVM2<-8UdDg)K*$(A8AnF zE%;p;!3Yk`9PTTTKR3oUEL)53_d*?JVj7cBLO)K!^DCZ3O;0cFGX0cJ;UD}PA+43p zfB2&74oNgGz`0rgubB+?{lUVkgmZGw@+%Sex_JAf+`~@7{KSe{TrreZWnYWz-O3(b zice}>M=vJSbf;Sz%bNBZ-UuV!a4P+eu=V-gJCPoUh)IKF8GFA(y`}T3QkL$Mzud`= zvt#8rj=w>c?-7kxx=F*;3>sPN++qZ!QYZK^G&UIeio$gQ3enP#<#)xWr{;&kBLG%3 zeme|#)k~E#PKf?>;4&a^Jh+$)vX=UAm`OCFt=r!(?I2w%Rd|Vg{(0j?tcwf7_?GpZ zdgb9rjbIaYm;ix3O;qV3;z7fBluluB?yyPgQE`k8(pC073lZ~A7))&p{}TU_fajS2 zI3{pRmZXgVR!EIzF!qx)L#IQY_M;`wjLTN6P-+ynrDMde`btkr_}8xlG#^C~_?|2F zSFxrekA3?uWKHSRg;tuV@LZYF;a3I*l>Df~yFD?A<$=P_Z-3KmJ@ z*d-1?L1nu!fgtc|n5esesIl+h2Cn2S$b=fh?4>%;)|yNP_Xqg$K_!-Dh6uv1dV;Hyyb)f&XW$7 z3ZZ&DAH_8eqnJG@UxJuG@=(Pvj2n+5ji2!lTKy>xrnxsW zPWJxEu->-Oz_RzKgW7I>fR0ii}VK_>XXIAdU;bi&vD-l{n+=B92ZZ z@C;L1Bk2wHl@NFQ6HG{A0?qkt>hMF&7_(fyAs`Au$caMgKI~Y(wTRvYe#j+AC1q#3 zqCkWdB-%aw{TuK*rm+)?g}XBWhOBne)1y`% zu6NYYVId0HH#tF?2;Shy@#qJi3l!t6W#i*_gVAMdrJ;?>!>!~Pa%KX7cvt9D5Q1X} zqE7|?9tb+8%A1YgAyqEQi(KSwm}@v$XkcYJ(3S-Bx>eSbIh~e0!$xxUzqr$4dJNDT zyF-s74P!+VMQRuHa76hodyjt-0`@;7#fbv4j){~Xvw0L%Yv{VO^QeD=$sx9*UEZo37~lQRoU4P3D=WIEGa4Ec%0U`Lf|Qbg(jZdb3t2# z9&fg9)IB*-$+g$pt9!M9QCbMDi^+MX?0R{-1u={&B5iU(d_9#-m4j0m9KRFytMkz!;a%L`zGzgQ1BObbnVypIeie>wa)HFGc6oRZ04R$J|lYS=z~HH3Oyu z;>M3Xezk%2^_3Qp?aqQ|nd3xuA2kYHU5Y@cH@R`v?wrm%za{=CrO5O3&_eL455ysl z)6tzqypmS%A_A)mvOUmzQ37>$upDXxC91C~rMai0TY44Gdrt6|G&W1)4dp_@zKe_7 z0=gi2mfJUn;U$uCglz}^E)MHL@SvkHtloRC8D$n_Vz2?p9Av%^fZQAPEq{DZx)=MQ z?kmNzy>;u(ET_8=jGtS;!Ub3C;%UKJ3eg%ia0$Lxfn9>w+ETyaGb&=2fUp|4x0aRC z6|?5$@`YpJhr$&HiKXKFGohdNa)tUgBews~LJF8XWuPVWk$#(4%mxD0W>EPL z2AfHDPac?1w8B3ehUHmN*T^FteB2Q*oR{Q+a;_ zc(!h`^D8h`UhHlk8kb+Xq?T}#8_f5maG8K4G7nHm`I7Ad8`7 z$r{28#xU+V;YAX0&^f}uAJnXQ2nhRI9NvWnQ0&GQ*Mx|9&MNbTq;1{l)0 zt%lgD7q_dY6lD)=1Ao;1_;e^^em=?{IMl(4krTbOciw0Zg^eG0BB299 zr~snjLrVag`m>&I67Omo0?*X`b-j-Rx#I0txBeA$A>9q;k-$&$grD*ZbP$6E(`G?h zBi{5|3s{XX)g)dxCNPXv`vY9rd+1_rZaZq~GyX#M60*zW51XoY; zvzw-GBvB+O&%y9?pddet^7l`FiLl;iDlA;`W|*R@uU15Uv$4r$Sd9RuvH>)emCDNv z-5PzD*rtGT;LGVB9)7V;!XHtPlVcwO4h|vt}SNjyQ7)Xhv0rx|>k+9R<$EORT0$x_++D<8k#2@+;cjOYy? zTOK7G-ErNUUeT%e)%KqCI~+yep+V3cSK6LEHMFH13B^DCuu0 zAiRl4!9AJhqH9AxO<}1oqWbVidJ_<=8eq2*PB{Av=`_$~K}T0$?rw$$2bxwE7ER*h zn zM!P`oIeeafM~YTm$e>e`==w-1BWUj-%vMzGZ+cBKu4n{Bp)*oyRbz%4Uc|DrsOztq0Y~ zRvk%Ea0p?^3CmsXZqGI(bd3|DB}s5r2fq*O*QCAv<2vCo*B2SmCkqGByBL&glz;Am z1_7EtJ(T}2nKJ;#Q#$51Sm|S&ZZC{y%maK&Xg3H0k}cu@Cu;sP=l8|;GY6;j9=JVa zoz`IxXfkx70kw@6h@sin@j)EapIUIv;(Ec6@*n%$0yq;9QI%q4D|0UpQ!?_VG+KR2 z+pFAC@L4>3Kv;i}Je>7f?*%+A5s$|VLTFpRrn2=vS0zwZTa|J?;i41cn?PX%=P;LOfjU@% z4@ZLGyUb*e1<9##SG995Rn(WlUdYiAozUz@&X!-*G%ia`WfQCxbtXQ+L(y?Iwwzls zu1u^Pm8;M&xupIs&#(+O9Viz+eT=;^)mY6A3uo4>7SR9OW}FBhyndmxv&^D;zhQzN z^6ASkvx7|SN2bU-b*O&t8I0a6Hw#XRP26eL9<7?KAR}#Pd}0>MLvvmU$zDhIzxRDP zJOzAr72M}|Fab4j=>cSd{5u&HNdKL%9eiYH3uoFF%IcxIJU+Z%dRVu-N=XCbzEDZQ zkx}D}I5p-6^Q>@Ffj*Kh&Q?YGmbgMO(I8%$@<+DSAdU((gszs%pB;dV%ygvPGktU= zJBZb#-5Za*I?ze?)IIG*?tp*?kcI)zHYmO!E~0B`BXjVA0^cX}*3DCq7WLu?G?u$MMH1S!bg_8gIPmvO&HRxSX(1f+{1p|!vV z=HRm*@9TEb!CA^6=%v6dh9o0niPn<>ims;4o!~FIKU(x1G(rHj6T&Yb`C{I%!Jv_@ z@aIjCjgcJ+WKk|CGXPIj?34n-HE5feX~YF1?(7h9lcfG?z2}Dkks(M6VAE=4NDqIO z2@<{fm8$we7L|Wb=Yr0OsKah+jO0 zg}SI%xA`!PK|`wCaFBA;(QOeqc_&`@m2DO3IihfS7R$+Zjt zq6b6?hev9v!MludH&$w9HPh#cG~w0Td9-+Aa9Cvt82NmWYxS_XBXE@wdF}ZAC7!rJ z(atf~buaooRjDrnIHs%;%F;#y_LPKhjfJ--y?WFCrYkcbgA1izxmm>~pUxYs85TA& zg4|Kl`IoXtNlWY^b5IdKas53QMt_gl}-aF zCBR-q4Cb%kEf^WwL+}!>g7x1-pgp|pN+hfx^stwswmv!;>1!uEcgD3z>B9?E2{Rp8RC`YD>ZM}O; z`HHc-v}l!cLDeFUHF%okvIXqS;55Gv0bFxxI=2<%MVtd~Guy^KSF|hho$%UyWXuN+ zH_rGN3OS_nMBr{Hpq>__cgOWc-`ei4NJ4U&a30ygt``S#$xFLgd}KNWOAD5!+FTh- z5l#+?W2o2mFMg2 zFmihdX-PU0%^>(b?Ko%BS4V!qW&ot*jkHc)?cE^X>@DH!e_InVKk{ukjxFae6Wkw< zKZ)#pIQqL)vAc>Eqo=bt@R35OdIOE>)@-;!3g93Y2le`fD>zEmEwc9C7Cml=g(m_| zEH`hraE~e43y+f_wBquv(jP^N@PhukX!%z8Z50-0n7-cg0a^ub{;$ZTyTs~WRGI|$ zPI&ju@7=(}tY@8ooLvWu2=q-FV`I(nJeWGH;ZF`kWFf8Q6^Mc;YwCQ4o7%(XkROJ( zbzH5tL~qSP!3R4cFb|%-tg_qqkZNIFmP-haq&jy06>~x<(V978-NCW?sIyhx=j5pu z_mpc^x{lL)qoy$r6JZjo{mL~DbTjq-^a*pG^MK*lTIi7LLxz}CmJB-a%D;N2- zYMcqQcNphf8{LbA^BQ8+S0~a}mje5o&uJ;`YkucXn!=VUM6)!M3sq=Ixi{>m)B5sg zt?UG8Ml9l890RW1xr4~{K$uM;x@dwN!=LbU(ucmO_bYI983{ZMswE@c!FUbB%%xKg zNEJd_>l?gx|D&ZiPJc7`GCP+Yh5#mt?c`7}1q7aD)bYOtn%Np^J}1U9EHTqRaaBw` zZ5+6tEgd|M5?GmL1>WOyAVh-8H1W<4a-*H>Ti)Ki0NHwf>Y9De6T%oNSSgCZjK;bQ zJ_W8SyeT z&@qkI3k%=Z9jFFtjM-&rTA_kh-O&BZeA1n*s|zL-NqUm1hlDcEMM?^kqd8cfH^8bY3~yt`f8WLk9tgg0EG`p( z(HxV?SgOj=G0iP`m#}B=Vnzz223V#>4njql!$?Zsvo5PAlM_udFFqn16~p6ToWTNe zPB<paKfm;beSH%Fb_kOOVzY#b?&9f7#CC7)65CkMx84@sm5R{&aCMyt zF`t+^nA@(FWR{f?At9FsKKOTQ@nAazxcO;Cy+=XWRSf0?8(6e^E)J?mT(;5C{Ug(b z(kRQy3JKg1`2@9be~@<#4Bs>g3tgQLr>mw*0r`*suIY{^QC?J&X^6rN=`WyMAru_w zN#LsP8pP|=;|JysC=ygB()p}&mt%tMTRpduR$zH@mge)=4%1!K-A7Mpo(}SU>P-~_ zX-^qw3B$AbD?r=1a=2K^kuB)itM{*~6IRNQT^K1edC&+r=DDo*&a0_`qYTm8oudn?$&fK0i{jk=Cmov6-EXI0 z1iMmO#Sh*O93JKnFy{}(=v&+I&pZKa5S2pMSIXrbdIY!;yJV7{Nd%>-qMMm5WLPEs znlL_=WMcl^Sr8My<{1Jug&S#}ZuA*8M2(fJKc-?V;S zqE%L*0X+kFjX{4)#gw{A2%z0({#C{Xj!P)1ue|}Q5PbUzIWkEUhVy8=Fq2jw+((X9 znWk^bbD-*`R@=H(Z<$`c6=c4FtXn(ty8m=>?~~uw)Hcf^YQ90wuE2g4!_z|qccWaA z{dHf7ZpDeW6K!8(sk5qJMESWl#p!}akYZNqQSB5g^T7tG7cwa)8d!|Gj19Lhi`uM` zP@4oJhR@x%Y>><$^c*glF39$;zooBC-^3uMOz2la1bDC4|9n+^ob^{OJ78eqd6se? zcr}qoI|w+)&Y=hOszApq(Jh`quKI9fNdb2DH zkRLFBzyKI|1J;+TU#NH|e53l+!7PeFvG`7aG+(82!ZI!y>1~tl!C-1Kv}aDUKR?ykY)@0_H~7~rHrkm;oLbuIvs`- z^66&Lw7d_924%*~(e(q>RXOO%IG2iw4^p+`l1@O2C+ZZ8;oLla3L`Xa zlJ`3~?sfBK`bJ|VX4(~YK2k9(Y0ldJ*AhkEEHwvpb%G~Po>-0+`H%^6^tN4v-*fx_ zMldPQMEUgmYD{3M3T&l9r#kSS81XQS^YSx-P|Y&n>Oed4yNL>ba)cyXp}81EAy*I1 z6`rZ7?~wC?lZmZ+k2(+!V2^>lbmZWXh77%ufd(q*R*;8mE4g{Ogf7gvcFu%saM4S+ zygmcyMx>L_VQ_dYcO)3Q=~VA^%@WY5FZ=-Dm--S&OI-6Sp0Dca?)Q6Igt|zq*G@Y0)hyMpjn?O z)=eS`GjLqOP@`@GF53R!KqX3K3+m;YqR#`^!JY%7F`&r$JkLU`sb?ZbpJQ4x2r{fC z9RIUQL8-YlJbJg8@|?cgnJoYKZOo_2I424?09t?b|9Y{tA?=tTN)TH*EvShwV}mndPVVb8*4gj2^J)H+>~!L^7i2!g+SPWX4^4}Wg5 z$9a#%GZ(4IVXHI!gWXjuxR_<5x@bk7S3F;!d#!n0&`Jsg0-WP8zK!FKGxj9#6@=Ww%(4Exm+dI0H-{&l`%;*zeHFddoU6&8TY*q0)Tetv#l z{&x1d4?4cdK&HYy(l{J5x65v?_+mEQ8O-4Z)YU#hoEO>W1VPTM7P#)`pm_pUAJW%CrHJyTu2>Kj27jI5@M>np zGks6?OU$}tdN5IPD5{*FV+Gv+5Ccd=931+5?u%Yq!u5HRYAE? zy(KxJSC!*3?hyp>OSB(#Fb_9BDvDy9Cvmk4f^gj2>{1xzgU2G?;DAeJPlnY-B{YyN zBGj?qdXaO#8GJ~H5_g>rR8{pUJKj>X;lBDod}-)}K$1;mTkbdiW@4-_3K$8P2mxqj zR-=t`aQfH~-cw{}B4vvx+W+rNRE%P5~L?}O9g zRwSQF17z(j><5=g!G;zoo$H4ow>mJ}aG&cn1`vJuswuDR6U`E|gZHZT`?GN3|15Lc zqgcKM7O2^l@znKUA(hi@(;Q)y%1>stFxlX{>W_u8s1U%|`k@~y%xR&S zIG7={)sGXBWNUJJkEOQ}?0}G$q6ia5M#w-TYLFlQ0`PbvhD%LrQC>K%7vFEqmC#LI zM}es=Agg{O!DX!yYu~+40iowG9E8dU+59nD_r`06k+z~}#_;u#*0o=XW()0991P>i zvSIqFEk!|NpLO8OE8bpx4h>CWcHgvk>s{v0c(Cml1zfO*2@HG!FbVIzZ|bSPm)o6P zDE#C&45WDb142a)S^$8khHs;|9c^yT}$I1KEa!D8N$`_Pp02kYh?(BCj&s1j6fb22kVnJY(2kjkvfifOuGwnYb+GWxs9<6O;H5cC*)&lSR}LQvC3{k2NA@w$5HxnI&}qqhy) zQktXjUeJU+DBfbjCbW{A7KQZU3#Od8keGqgs-17~?#!6~0kE2#*$mbDtU3 zXo0l0NApi6TarTD+*AeVEO;(>kadAm>pj_NJiM4nLH#kqzZpDke?O;snsSrs{BI43 zPR>%^VQ0*nJ8vR+fIt4Ds}-XP z6Ed7pHYBwYPCZL_#(-_D2ha)>hFxX?ejqqRnoGZRV55$Xf;mGt0w)GiE_@9nYP`Ep zi~(Y}xlQvir+{3jpy2V@<#d+~UsBdV#&vloLmgoEj`my0`F?gpK_(jzG{fSTNliMQB}Tk_$r{R*<%(CvDmd(+7l^q>aVeD-%QKPVAwkL&Eni~heuX`Kdb|v z^Uo7;g)qIzJifVvR$y?|&nra$C+}wXm<{u#BRebsx?uQ}e&fe=(76ISY$T<~n*iYp zh%cc2fJkg+?jjzh2u5gd7!$l9eDIB+bG+>rwDNHVH9_t)UndLix?8CA4C4LLi^KTB zc(;xo*O`dm@87@4Cf#xHBC8yXK|5UGxIwhJxjD+QTUXLW`=8y4N=5?i(js^d0%BS@ z&(1B8^cCm?vM@C`uL=st)ji1X>Mu9%X$*Q+K` zd8lQe6gtkC)7#G-!>@QQ+rEH!!Wl%VB{boI|HRXLNP^u}nmi01g9sp`8)z#4`j>sZFMRcd?}J&Y;Y+AqV5nz;({=!g z!{x%sdik%%Dz74=l^I2EtL}w&uV|&QW+WyVz`67++@u|Hz6L+{Mo7>fEkerIV0-sS zk#OH^yv^DuRv?|j7LMgymbNW(=bKWueUQ3;lHh;6fx z@s#4Zwx*Y{jpdx#PwBGxq1CNupdT_^vONTP9tCspiy}%T=a!A9oK8~F9dsF3LZ1qaFpyfn>%l7&9$@kD$oApl+461)%K5pvHF0{L7r36DSC%n8p3)*tXp>2|`t57P(&rp8-zCe^clH)M?zUeT z#D%18>)!od*s1_!_W5o%>q<1Q2SZ0KOwJ(^n#Abp3L9j>KmzP4!xvQ;_wt0E4t@m$ zDf`^|Jt&ZVo0i;%C;#6KZmEDB(k64@ZM5f_9*PIDY;oQOAA|^y6>PWdBbu;;r7ym` zuBe6vQZxof6pr09L(9tBpP;}H1hU5V{*knTY@&Ae4m+j^CjE74NYI(xX3sm(n~Mpo zL*lW@gbL(J;FsR$D4Bx^!o=P3WEU$yy_7KYOWNZf6QYJ-E<)sw;m76ax3#Q&5$IT8 z={3yrqte5yGp+m~9wr&-=6~``+CVyPDO@r&5{B97U-dLEzStM*xkLLkv#jr(@)7Cu zzGqUvf4dui_U|__FPT$3r_K+G@oT)VWNvucE`&(07jYjQMaa=DKPi|IM#}43SBWQm z7wK)s;xq|gn<|MVTu4GxL%;{y+&)C#y<_JS5AW5E-x)cIL+(fv1PB)c=&C@`0ZRM- z(87nJDumWu7>H?~@)1B`fMf%~PJ)0y0Ad5nWdJ3Ocl3Lc5UnoJ%`qG=kC_feCty## z#s-q6s;*Xh&?)C}?urfJX5oL~RKjsrzX3dH=kXUleJQFoY`{Uv2HY%`d-sx}Jvv{d zJeooNpLP>(cgHbE??}yAbL67yQzvOF?fr6r7O0MhO+=G}8SI7O-^HInR0BeQC!igf z|9aUY=l1iy-O0P~=}3~}6M`33FCYh#<$&{u{;mPEEg{jEh!Zb-PY7y!0h!5{u7+pI z*ES~h5!D--2L|Dlx#^<|tn#=0^!?mu*%;s12ll^tpRWJTcG#PkmJ_02Jj`!NDj&*G z3l$3`OMAbuGuMj4s!M`$=gu8VD=S|6#h{M1`vCLm?~e$3%*j%Ep?Eh)oPX?u{@U!{ zXTRO-hZ$8vwHj^McbZ;4nV6^tAsS&+<|XL#|GZ7Fmni^6+e%p#F>nz3Y}Le&NHvfe z<>sivU>p0kMTFi72wv=PaKy!!CuTDk!bF+LPOmBA3+;M&)khDNGj`aL3Z&)ksA08o z^7rIo7Of7wNHGXn`J%})#e6M@W5MtiH4uHys%iY*jmNAn^sdV{rTX6u0C?~x0PMmQ zl?IN-XMG?2?`)B$KA_u2-TloofDf2?FczRv5w1XVCgW~24lFUuZ76*TR|dRAz{xqj zSlvQ4ny5UO0Y@p`E!KvYt)JjjnStgK2*qZAJqJ$iYuM2dS;(|EdPTOnTPP%MXQHHe zN|B`61tPJyzZ_cha{In=i`(wk%uks(g!1qicc`as8fy&|S^DN;3X9T2Wm>%idz}*D zT9$|B{uZQZ`nsDq#4Y`CWAD5gD8;We(cY?5Ofk5_r?wnFto872(I;q@UQG7>_C9rn zyQOK&(ZWnEj}&mNi-1x#2YM~*^m)U4WrR{GZJ2~H)4Ag#2xS8)umyHDB3!PIf|!c% zgkBxdzyj$(6I|eC%~;RqcvNho*KwUtHxo$RK$bi${F16;KWngrE#DvhgWBF3-lzlO z#1o(a*r6;-Y-1xWC;keQ+~bAdHGSz%WawZl#~6GGOK%dLRM}lAx+2*X)-9s93Pv zJK#{YT_{YMvRQuofsbOci%ec5HUa5Z0}P87YdE+R?ZO~$nhRTW2K1&XGoS`zr~q_3 z08Ns|maW~?u46y`*5K{q37E@&C!Y%NkaJ(5g zb++l|x&G@1BWa<@)KWWkg56RNAHQpl;6m%$*4YvDF}Dw~HROkP)?44zG0sZN!ja68 z-z<>+0>^!^k*9|hTIoOToDt= z6;o_4!a8c57Sqa;2~7|jnS()|-3FLG`lpM9F(i3rI{XD7FVzU~4G5F#| zY(++OGm4Cj$;5zdo$^ZGeWH{E2Y~boohqfuY*)b z%THKiVWXxx_#UCAT`ox|tC=E)5=v^N%DVs}JogM|5JpnMf9$Sv zic*QrpVUr4Jx>wQ`_kOFXF5A!t>Vfo33YdYr_^j0V^6Ew^UD6T&22zc6Xni*GNYlN z8nD<_G5PtebeV50ZDEg_FT5$(oHn&p^L1sUrSHkaam`M9UV&J{;7oL7&$B(~zN_1k zZWJNK@I6xOVJiPUqwMAsJY3D0)n&<})ycgmjI*q5hFRRl_k-pE1F#@@v6SMaFG z5mQ|rma*DhH2CG35`|pRbRsWA=5LUw@_mU9>k0^ABv3L9YPtMWa*oO#6b=+Vxl{E?SCr@Y}Of3_MUm56aZ+ss&a z8O4LyOj<5*&T*UX_LiqLd06k{?dU)A?q|~5C&HZ0JKs3`Dbzi0wnav=vHX_zOAdNV zvZFy0jp|+Rt3~|P!695-WJj*blVFvNtFvn=gI#W=x`y+pVKX^DxA!z}ZAI&cO>(c) zWKqXZ2VTB{ZtVHrEjiELe0-0z^mj7W!4*FD2uoFm{#lRcM3-naq@G3;kyiDW$&#Q6 zG!-3o66o0oh+Pl;^IGeUIc`pKF8i+{K~|YC-^={dyLYQkPgRo70L_l%fORBx!tD1Wxf#D1qflk!QQ3s2i+2tz^3c}NGw?Eu zGaSc5UaY;i*U0!yl-0OlyJ^RbleH2VmPZm0H z8XINZx@N^>xt%l3cE~l5+npkI&%63BHziW5m&k z*t6_1BA?hjVI#hUjHDA3=dKfT*>t;isHmTN15@{@s$bMJKWmS|SA(;r-60;X@dK&h z43Df+*mPt!^ZQ!fZM|-e@x|`T$^*$kL$kBAE$SCITn8dOf`WcWozlGd1c;9FZ?C7cOkI0PCCXNGD6Z(^^`_D42b8ypGkG_)_@w_SA1}x4b^?b=6$r9RA#vjy8t=!kw(0d)p)w zG~eB)_gy_K4-J!PWM9&V8XV=5=40ux7w>dQkEZ`^{~M{Nm!HyK^GiBh24hVY*awZ+{+_kb^-}xhs-OHTMlSKq|RIWMt)f z)W)+%21c%Tx5G|)G0&{b*9yT_K7$9MyRo~^$S%@var3eFI}ziZ;=K<&Os{r6IT9)j z^}!)Hkw)IxB+TQ7L}!)cx~QD)i;iW3#|FZI&Ml`}YZ^<%vOgvzFBA`Kb2lW(tAxHT z$GZKgs6!7;A!7#yd0w@A>DN__8d^sF+^(V~Rtm}wJ>&e?1i1dd!_{)NOtUD>^Lc`w z_C0mf*F^ihhnLC1H(T>-Z|x_ zk8kE#_m^*}Mn;=~nz`cKO!t`HV_kfT`8>*c59QuFf{ra_&y4r4_^6Dnm#7WYZ+3MW zRY*O!nb<5e*HDZe?_w8FEZ4isbf{6gDH9x<80-60Z!kp#xgbfI6NY~WlLQ^MrHTjZ zRysG!x3cMZVPfkBn!tVvwoOG{HC#9KHYv@NPUR6iSom!Xd3 zs`<#YmR2V=q%@4%qUvWiN2gM6LkO=RKC}&&04&_O^o%Xw&yfJF?Iqr_Y7*tmJ z!h)L|Myc*e(N+t~v9zXd3bTBC-=1ao&T~q*Nw_U9@$w21CdCL5{SN;*cK_SjH$zin zF(_H!Z8yzPyC(m;`g-6vbGm(0Pn&@r&WMeqwA8%I_PZWI{?;9_)*aM?N1|b#3FyqR zcu`D@HF@WBnhCp$3x#Y26hhoWa$X@k?+Eq+v}t;A+S;<>e)zu*3mr>W+>Nz+6zZWg zR-VIku-;obV=+Ll;TPD*f>&wzJHs1Z-k`SL&_FP}H_c%KwZHN5!-c{A1gs6I4!;i# zSNP%VtRLaG)g2KG5#sCkTmR#|kIU!W%H4phMEZrUj@MR3@Xiv#$pfzeRv(tXxQ9+k zLc{}S>$#;t{a+kK9c4AM89^m)!f&vPI6JC)@||G|C!Re7lvG}5wJgRO5&4^N@@Urf z+tJ5tZW6uH9#b*BhDpU!rh*pkL*`7WgN!Qo)x^|JhnCMqsiG%coCCcQZ|qj{hRa;#bX2L31);n>ik6FIyPfpA1wWu+L5%xL=lt?zcA%m>mH_k9@k1VB zYb*Vc+Ses{BXM&dL-5B0@$izogXteBsJk)r+P~Fi8}`os>=pj)5syTVc#lIo;9;Xb zo0@A&avQiV-+vkLzRmN48fyNCgDWdX1& z)c?4Mq_3w#)1?$5J3IaD>N@OKQAtq6)g+v+#Q=^)M*Jx0zU z6nDS&@K8TuzIL^9sm!cdD!-XuARohCd(ro$gMeB{OlV<=7h0LM-^0!N?WOp`b{LvZ z(d??*tHpPp6fMB*E)#vi<^9yK7K^){Wf5``jP~ zX(0~_S6Kle5$L}v*kLPM@p3FV6|p*H-T815cm{vBx6<0~*&60w=>|6y2|2pIg*)bB zABNCLQ&D6PPA&fdX<#19_4<|u-|k7C{sQSn=~i7AkI$R@RoIC*vbJ;o);Ee{PSe)# zI|Nc9eiWV!hy3~Uhbd>qQ{e0|#7$878TmJZYCfv@;~z|{Cc}_tyJUvxLP_L7!EvMa z$bh{om3t*Ib)L)9F6l3j z@ystPafSAZpJr#}`_S(7ktzE#*S|DpBjR3RR}Z`?klTI2ZQ||GJAC{cSpSZ+et98z zT={>_BSLP|X3%o34KPJ(Yh8b4+}UBdS<5SR<8qq#iesgX3dh^qH;uR`qn9jz5Z`r) zm+lsIF3+#U{fK@pmj18yFM5-yhp~>X-kq@4^6p^Zb}>F+d-MUlm-UaGk`xpUsIhqA z3;#NUXNU*vbHo%HQ$D$qwm>)YrXq`aFhF$<>PC&8#|*pyl<3NsFZ$L~%=0)X077&Yt;9j_B}I zR09@e%ojSQ2JA*4E{VT&V{^CINA7pM_z1eudaM&s7ZY9VXo7S}raj002fs^;iyBMI z7z&wkhH8_rGLqs=+NK^=`@4E+)0jF&jGoV&-{8~aBWe{4c9x9U&?zT&#D_8AkduyF zUEBqlF{U3GNlO2rY}*%Gj}hl!JPmew_DDVLMEIjS9*#-aj88qyb!=ElyN^E3WTe?> zrV%n~`GOO{>&L+SP1Fez~yn(2ho5b(MCLN&xAHkqpV*PPr{ z(kB3}u28H9tj5Etaaa^`8}8MAhiHqq1hY@QlQCb=8*8pU?qM^P6%uOyQ}Y5fJ01x;*2jvAe8ey^3abc64N-B%wp!~GHe%9x0i`thx~=^%x>Xx{0!A0`nYtu2`J z9`0F5N88H>VrUX;?5(b;ZMn($v`2}B?Q2EUqzA-pJSP702NIg9;m0-+!%HV=n@ozO zn;stsYxuX!XV%)@6+9`rq9+di;L#s)=F6!C}POZj`~Xu zsn9+F-q>(0q}jEENB2iHftD!~AgKgCJ2%90+S65)GwGB${ry9G68T1@5Z9@7Dorog zgYM=nBpTPUMuh#~;g^+ii@f1X#Z)x7coFsI@N~<4X)T6_wYT9(w%s=TzglPyix2w~ z2AiO4ubt?@1;v(K#z0WiVWAQ|w_>rTG?~r!9qoN2n?h7fOL|Lqd}76Y8VWSh7;eV1 zo+G7^Pt8lY?__mDBfcDeoj>3m#A2G-lNJ*AxPGUwtW)#wXtFozq1yYWJC6#dTf+Hh zqwxE6XE?|F;HoVyZB@nlrPbvmQ)d|2Pgkk7B^yyBlc`z408&HJx_4NU=eHJP;^Ob6 zl5X!;3$rHf*6xIvQh^AP^(dnKjba%paitZ7g9{xaUtWFICv39-F2~c&)Pu#Lk#obw z{3Xu?(TTuN!AWTZ8<^IL2OsKZ=stCm{})wn8BkTUg^PlqD53%)WdPDG-62RwNJ~gb zh;()39efPaz{6X1!tvSaWfvAk}Uo%+MgVZZz?^%eNfjuWqy@eYHa*OT)^NkXO#GiiYq1%Iw4@I*LNqx>WMF& z4RI_2*wZ5@5WnDL(k*UpqjO6?atbdFJ8t8Vpi2GA-B^k`ipx&H`wd)o>fcKAK29KZ z^XJpw#O4)CVek#^HCay&HI3Ou?3w%=-6&7TEIRY4FnhLzxp`zJ`mSto9t{e(&9$J;ZIH1S};2 zCz$+uap}nywyrn;P1!cLx%CwF5Epk5rzcB!k6I8`+VcE+O@2-8lVb{2gDz8+5X*SC zvsdP9=+D1R3^_dVv`e^=@zBb8M65VtC|-r!B5`6_qkujGKk}(;XiHEiSGLlRSD8CE zwurhG`QlGUdvsOF|Z(0)8E=eA`mnT+>nVghD5>4C+yU1zsXnuY!oGx^b|DE7qD5XNK2}TQd zP)d;O!=Q3+TwI-NA4vZU)Ka^iAIbORKblOdEoT3IJ~BXu_n%HcvR7sjrh{MI<3RDD7i=<~qf^KJrlha&n*ib8z3H70+xxwFG z3hA`{Rt%eMb#-Sn`mYxg3*FEAtj8>jZ#RsR8Cf%JF>Icl{Oj!!;3IfL|7J6=s`0pS zPJN-wAKHzPK2wRz;?1Acq6Lv<&j#5jUEZ+^C0&F9G#XZrl%^=J_pH~8U5r?cN+<;; zX2yR9+MN>ydwG57j&NLZRTdcN;M?d}=d$}CUG^s@EarZqnD2(9x2WWKcKtD|rDUhKUHO})-}qLeg! zpPv40&<$ymvP>L_!C_X(cgVy@UrND49=r3obpXIIkvScsJL-gLR+U$8TZSKpcr~mK zlo0)N+~%A3EJM{;Q1TFpj;6bHq>rlhZA{`7Vt_Sdgd?pDbB(0nl%>G$(56TwEAS$)My|KsKBbqF)MyDMV;BI z%J=k7v4W#M3WL42105NF(4SIVD&53{N|jM> zL`VLb-Mm)F+QytSeC^fJYasHNT>XAMm3xqSXEb* zYtm#%kd`QpHtjqW{=MnDjJ^u9#$)Iw;5Y~PfMVD`6q4ERil{*zSmIs&3y znRlN~w`}>wJy=ssadCN4D5F^_N*EicFZf%tT1qxHIjc98eGig{u>P@qy+DNtxj+hijyE4Dx=OrUL!_`5Ddvcxj4}~GVuI{rw|))cf(j)9Do?Hp2mWa(XTU4S{BV}OAf*%8N%BQ z0*knwB=-p-(7|%V`_s+MP8f$?P)h`~a?lNYc}Q-ltJ9UF>Q{t>N0rx%Pp*u4mYoFH zyjuXk?h_I9yD#J2``s}^!jz?#dsWHB%O^MM z;D;hrhF~mR5{xgW8=I}a={<2XYKYbGrHhioU`7ok5F|)`iH#0TqrswIES!7D(mdJQ zP38}B_K#Y(xBvNwr#AQKH-JlWa~i~IK-z@b8S(8rWJbBsO+SIjb(3&!I9JwPjW(sv@!5feqmOBv@` zc=ho@%5}A7&?sn_cvfjnXjOB8l_z{v?zd?KL2&b9KdIo<;X-Y!QN9;*oxFvc+`)JG z{h_G=G%jN@&PDH8Dk;EdQb2jZc3?5s!d3_eBy8J$u!IzT$cr$&|GL;l*W5qe_^_S9BD2@uyUf`9O#*$$(@{tI z82F(;GgY9JEJBO7>V%7H*-GFLe?^|cY+9G}W2}|B628}-8Y~UAC}-CWLvtlF zDiy3D8we#*SA#ZOF@L%8!>CU8yQ7j4its&03L@{D=!MsH(w?u}$X_k>ht@YVrArrT zcj;)qFP(JW_v!u*3~aoV6oS-`q`7zH&OA|$H}@SAJRL5{dnHAnTBVuv<(~JQ-h)QD zc-)X{gT73{HxQsgR;ylNDJF*Ybn@`Zz15!9Bsyep+THF%&ewTX9?+090+N*VBpEk^ z)<`>8x{=BD_ME9a5|?iH*eu_kfU zab!s`D?3_cC^~wV;a(`H)Wx>rA$a|1_*3KBDvr&%&E+b-p zxLW~ogGRXMs72V!bpj^^gjniU&Zu&FNxI+6g`sGmK+DN$fCZGu0#5YK-GfDS7m=j% zOpNwWbnzQMG6#rThKK?{CkA3XH{02VQjB!Xuw{^^A(Yomx?@Nh-98GCCLm5bG^aR? zhj-581O~!dzM!K3WEmbJH@i63qJ34XN80fJgW~GLJz8skTbWz371}#%o>IV+>WGUp z1fG=m!i?mF;J3ZQ9zaUGz;}os$8X9ku2*YIy4`fR8pDB6;3xiG%tfS>+A~^+XOyPf zrQ3M`s6G`Oi|rEB2%28e`mbl7NJUN28;B_$fn)ZhBLQ^>eWH@MuGxyHdc*2WC_#}Z_Yam2ULiih?mS$U3kIA*jg$U{Y}T@E;fM{ZWwjzW&X=ugO0Lg_a1^wfQz zjL%&3zrpinw9rf#m3_z7Z%kp7l#nu49(?m=1dhR9mLlQWFnjBx@n)FK5NRHp$lOgBjX-eLM6e#?xCiQ_H`z%D>@=#~z=kBhWCRG7NL z#l0?ujecY6aaR=I8yXAEM^Nve{k$yBQqlcCUDnKfyoXH)qQ6%1I{)xS_M0C}Flqr~ z$DHXxa#T`xI!pKQ5DRzQL)QFRxCRdg^Sjjm{Y)BAI$;lC=j~3F`k{Q%O_&@H%F8iPN zgU71!7S=oflBD;%>^As#?z|%RE+OHUR~#BL-FYu+s__SV$b2q%d=u2IGQC*6f=Q*> zf3CGnwlJ6pN$kc`2%;x{=%u)MO_13g028C=DJGBt;2#mK684vBDgowMd3>H)InmtX zLz3v3p5V-*VPVofNI=&e!TKTaPQlge+Wo0-X&H@y;%qUFZ=V1pGCet-XvuuluH!)` zOF_hnfVc0n`ao>?QAIm%8}k6SNTK$ZSA#6BF09i=PJ))Cz z^njg$?;40jH1P1%(lCB~YE}Wpd;cG3=R>m<*8+Z6R+acXcfFB9K0LFS9X~=)f}y)J z*eoN!8HqgiO_#)7>5lNQ(BBI)(Z*_-DJ_Ho4u`rSS5NTE)g`6GF{ctQg8@lUpHe9a ztiu(%Acvg2^~wE zqCr_|=+Wj|(JW*0Gxkd@_9UP80oZ zyn|w$V~rq4&_k3Tj&wwRqi3io4tz4``hDE6qJ{8(Vht(6=;`)(>g8Ug>()=}{Mrm$ zv(Z>aDdXK~03iAXfYc{SUxk)ZEQuSBe)Wtowc1kDzZ7}u2}npmbOo&F)`?y%azZ_* z)2(!mt(lg(;P0$&PmsM%w=Wt>Opd#F(XGb;f~I}Dt@b)E_t`3VJa0eE-Hfw%FC`Y> zpF1C0?;j3w2AJXB%U7d%YF!3czH%c^8pv~D=Cm943N6Ip61DiTx=2?(F)prH-9a!g zJk$!?h2@n#`~&X@HL9J_lvj#>qD*ZqmU$2z2tYQZ6g&2Qj=!PF0^+#)V&|v|NF?~n zzd*M=Wu=q(Bwh-%Da&hp(NO(8BDD8|Iyo1Imfye(_mp&dII=#wCbLlOx5ZoCU!kZH zG4hVrP~hx*_b2K3^;J~v63{dV_rR=60zlz)?8hNo z?WXF0lXs~N6W+cE2{-&2k@TWStG4M|TXMmbf%<1d9wt)Sh-*TRw>y7etJH2}p?Nqn zEitX{K*vZ4m0`r$l3HNGRqr6{!G*(-KI|1mR>f>H_1LYt)4N*=ld$o)4zI7zjfYR| zlCGixrqN}|liV6k!d5WDj%A1C^ynfcc%0Y&IgVFy{Dllq+vv@?P1if&2!qOi5O3GD zo&x`=*V0_cvzi%`6Ppk!6a82##?}Qv$pf%PF?kQaKqIhL|80BgP)g@DfIRx>YU%hP>-wJR zT7CBGQeq&f^6Sfz06tRE7rO&z+L6SHm?hi@+3|{=XJm`CInaNGU{eD2O;RU?`R%>^2&^(161lL&<8{JLB zJ;vRH6Y0qhSI4^Q*^^uQLg4z3Z_(z=2)r{)!wd$ZSQj(8@lA74TACH*jQfC_ZLiP0 zgmsRC?(HW*Wr8l|Pl)$cc8MdE)K$IY2ZVO^j~8;Gthp&OUaPm*=SX5oN-a-ob-%Zo zUnmNbtG(3FTfpu=$=rVH{CNRNCpCZ^P>%cFYmu82Cgy2Vxz3Iy7 zd%Rrt1?~^osW$=w@tw645w}D(3}pzxE(HQfee5kQ;9bH1;11QixlPf*6yB~jYD@{s z3wioeOxdhqu(*!PcPdc2YMzD6+-*dKKcXZ$kIjC41bjVsKEvG|?h#!d0LMktM$lM+ zOz%h9(%m|XefvV&s!Ix~G_x~vbW(OspEbGEUG|XQPvk^q_0#V9?%QnnK+m&3F+tFK zmIPgdJm~aF;=5Wv9DX@>f%NN*NB6QSBrM$;-61<^DSEMf+hF(pJI+|Y;zAY_oR>JI zpC^T-#&F$Y{|!>l$Gi)ROCb9{5OV@jqiW&NT^FKt9bTgkEtsS+M5@Y zd3A4)DIUHj*?@@Js5K?XjwDsme=PLi*J)fm;86W*uu_)Ml-~4nD@0yoHZjLSC6Oah zg{TYuhdIgV&=7udkfSi)q9>=%egm`uQEhA<|uCIi%mgF4t}tJmxmB5L8RF{=$%=VRfDi!$w)KMhB< zn%JTn!??dD*VNw-2D$Q^J`-uyu`M*{K9$?qE#Tv&6U#-pI*PZEq&XWQCWk&I3uJs0 zMic|^-Fxl`NW2UWt4g9q*7|5#A=b&}Uq@y2*FIx;rbu_|jCXMpKna)ETkUYR-8!QR zY&Ivb-CW^;CFm0$@(^I;v9Z#HxHXQu`+UM1xMj`OSC#u1^cIDGDu-Yx{pss>-e8N( zrCadj!9vq*t$nQbKoSIQPa8Y`wGW*7eZxab zunMUj#R|8JQCd%IbpXYqs2AHr9U?=e4?<35M#aeKW8E8@L^M=NZaI?PIDY(ZGc8+U zc=e%lQB9`(BvLhc1j!08m3DysAPZm@yUEE|_sg@UT>pE|qjR+?xi+6@>gu$}JP zSDjvLpXpIbzDA7;F`gFs;wIc!cBcy8?G6O+zq-r&GMU(Y*UmysbCS;b_pGfD6B9>p z5NP+zq5TdK)6;kg6A<9QZ?JsV>+0j@0}ad=%wh%&@CDP{ou190)|Veg{yCOkEh>;3 zeymjmXa=}@&;RUWB*}RE21141C6YRWy3g6w2;w68!g6w}N)0p~5m}+f%7`nvgk_VZ za_$cP8V{=A@+VdVxnGo{W{*z66>h8G;WFW?yhQfNa4Hw7z(O`+I6yRQYg?>7&*(jv zNlyz$mM2U`b7KLfVa3clF9(X=3AGF?LkdWj0%4m0D{-`W7wBJZB|hos z2&T8Dn|V>q`WU9ZF*D<9ju+Ys5! z4>TQs^l88vy<25bv9t-w4c#ls6CZLaYA+p0J&bqLKAn$| zKP;vbkN6OV^h2M>@5^IKL7Ou=rjXsd zR-rSwSfezhV6U!%Sj)znr<@26u#uIny!9(MiSOnW)uVd^_mEANFkt)rq}A8c@=_WO zchG1e05#wVQUIW^w@iUfzT{PR{|M)Z$1`XcZeZuF4+<&`*yNUL>=^H?AG%I#7Qw{s z6ttWA!TCDM?7%FdHiTOnpSy*$!;_1!Xh5D^EdK8>2kGx+KPX`^1PMXT((8M`-sK-^ z$hw)FpPdL(QedJ&iRRbjM2i8?bN_K|C0f9Gcj)HeD4lMUA z|J$iM)h&RDcMWrBu4^tEjt5{F-Vi;!OU6O2qQcStLWN@&ii5SiGSNxi&)3EbccWNo z#b7Fcs-q^0n?%UO^eXp6?Z)N8w@!AA@h@;(=ICmB(~}o&t5g;3+7&`Ty{F~{lU%Dt z{IXHamcn21%twhLD`FX=R!hl_|0(=mW1`xarnF#NJj@d+Sf1;{fY=Nc!d>$@%bh0+ zveQk%9;PP`%lrpt|As5EYY)fV9p|-To2P=fhb|M=0P67MZKb{BXTw~>mA)c5x?W2t zg>{wwAjZIaZuq6wK1ure?Z}iu?f1~b;P-Ap(=LYPj~$2I0Xm=N9RpSvXk=SK)WK`> z7zIGZjF~ZCv$|UKxiQw*K$ncw;_@{Ok<8EEOD_~bn?wrZ`<)8TKf2~spr~KP5d!9zqq3Ua<cfaZyvcKj2ldBxXBo*yMn+>*v>gw_!zN>5^T0y>LDeSAOwd1{2#nwdm~GaTkMhDA|F#>zTlrqS zXRF#i0|uFOhH{U&J8QSUqjY5CgSlhH1Ia0JAt-&~f1mu?V5u-x z&cuQJjy1s*pkI;b~;ms!Qb1gE!&O z0Gdcf`aP|IVbl&T>ED9|+rW(zy%)kJRa(RJnslgz_C1hL@@2auqH&es=V$5k(YJNC zrTQD+kjUa#$$pLtbS~&!S~pZHh#Z|BQ4&NM{Pk9F@^PviSfVFW7+E%6E6zJ&LO@1* zw;%wy-PUPeN=lw%STW4B{kYqC6ON&_SW zGCcr$068*Ssq+DBw@2x0PANoA!PJoPT~fl!!2a8e8|&c`KlW^Y<2D{I{9}%IqZteU z%FKgRpSp6vkE`t8vWuhUxn8>MW`87`O1?}o>C8j^^`cgc1Z+15WkR-_xj;G2p*>-e zJ3oSqfd=dar34G8EfH2rNA>b4lq(Pw+PY0!_uLbZE7|S-@pEz`x?-ic1Opm6m{V}V z+Z}4w#pT|}@q>aChXZ&hQc*-y!~SXV`N1RtOV*mX`i%$k^NS=7+E-reI%GO$j}KU` z6#GmY|6(vJ`3i04S6G?=Q~cG|ia)hD01<9*Q)$yR&pHsleXy$v zM8bP7MIKYr8Lz$W%`f;t>;K)bLO=+lU6Dc>a6`pkQusib?iq)(A?*O;Mrf*qy_BHx zySB1*`=Rth_!_;Ij2@z3m|1d{GdX|rvC;c8G74;aHOl03;dt>FEj|N~8!FEpdwFDN zBq2*8ginCN2jQIZsdD?f>WeOd0upb3RsW>*n6T<%m$NxA09Bpvj`TayLWj1xd60Rro||1#@v+DSk!xH~SU=zsU6(<%cSteE};lrD`hbAHMgbJ;(5s)SfN>RCMllCxpe86UjoR% zJHEzLS?c9!nLBn04tH`=z`K!2+Gcbu*|wPC{3=$?A3OVQ)8&O4pO1J!u zUS1EtG+WIyajlvk!*w{>JZ)n`j=G4pb}kpy`gY+~FYiM%9=?4B)ceV02SSt z7%DCeVPoB0T>9s1{~6~@T>fzD$GO!Z1`v_y=`UX{mc>ZG>V(m`yJ*7X|GY@t=h&5J ztB?+H;ti`q33jMQ?Kb_rrzCI|Nx*nFGNk`-X6n=2Xlu9!$C;n`3P>elT;DN)cWUV< zpgue%>5I}W>bnO*O$Y{NKEONPFb`+A-N=ylaj6sCo7ebnu?NiHzD9NtY)};50s!G3CAkiphj0ZgC(T05PbQ zz%eiRVaT_?sftj7LtWn$zq@;$o5?Ub*#lHZDML$FL& zSJ#)Ipyt1S*^lm1{7-pr{G}xF*+7LqP-fy zGC?uqyxFRO4bTc+f;HQ8NVP(PRkH~I4$ZP1?3t}x zz>l7T!41^qFVa|pFi!@Yf}lABnGZv49iG>YeQQbj1TG*{JV{F=GrdjZ_nUF6LDHty zZ{g>3Z&W~k)o8`=w=@*`cK>+#7r)+v=-Br!G2#KrwouWUbE!g(Q!>P^A~}uYaI!HA z=B-ph5@F}P-O7>bX}zUX9CYXKhrhUvXV&jMa(BW*Xb@m9VlM{Gq~fD`4o=@}nHf$$ zQEC2c%VPveK8%KYvYyjfi$cba&Vaa$b#-9+uVq6PlvO6wU~^Ib=fD#FP^M>B(_h0)=FLF?bCaC{a^{E7nn8WY-_`Je1hy5a$Q=W?WI*`LJJ5kx7G$F~k0nHA z-P!hojU!qS2n8$&@TYj1hu>k>$p1t-Ku6ApPLjy;} zskSGV600Ht5e5`8hzKK6SJ?@!zHAxtq-OrKwcx^k9`+Bl7_~sbNB{cUVhiYT-cOX(de@I1Oe5hq9SPw75!~{dsv2@nS?mc6!?qwQ~S|dG4{gu_8Ezp<Zaj4^^3ino*wJ83sN5II<(JrNv4-;S-|e9Uh*BJcl?iefce##POOKyeWkrikR!f%7#}S+ ziY>mzGSg$_G{M6rPJ6TV%PT)byav)c<|xah7trkh}YIpr(G(v;NKemT=Z23PC*hj*pz3 z&;h(a#%I0LwcSOqcp!WcyzK-jZo{+3)qubtl^yNgU6kC*^2SHLELkg$I%1a!%qMeN zv)2f)n!;cXVO3oNY9LXS z1&bB_!#7qlC)d{lMs4kz2IVGCBEV;M{#1a?nVK*8rMSZ#{o7NPnErS48Vl}#TaUgx z@Y-N%WnLQng~?&34NLJe?!9>|WX7jqx>+UDlTTHGe9C@2W2`YY$XWT`&Hqvk9$Av6#mcsTkfFn=4h!mf<9 za=LazzKNFG+`aHPYEJ$i*+8-78PA~f>i3f#@yn{qkoRoH?WN10I9DQ;NdcOSXG|w- zieiUl=Z?~KQHTZN_&^4?@#X4%DY%`O=g@O_5eeYJkG0NYkgVwWd@hJ&6oNw-Sg`pO zcc3Fh!0*I!wa!l&B#q3@wN@$z&3@0RLG2pZvV)3)3JT;qaNqH4UC_X>M+V^0dT(#R zuICoqu2g#-_TcRNsBbupnbv>UyB%o4lDwlr%_$-iz^Q;&0);E`3w{Ol4Ev0Pil#Ty z)&es@Q0+`C4P_WnZY6CBppJ|iF>B@7U$n7x5Yaw+N|q{*$$m0dDt;)b{S~#jd%udi zL@b3^dB$%BXun%rBwRrxG9U~D^a~V4U)2m1ViH{3{8P?+cb{%vhcUA5Y?TiT=8Xd} zSqK6OFfoXaM*q390R!J={}T|=yI1$N4u%<@nxYy)tWU$gzD}0cu4rbkwNz)0dN{&NrtWNupeqD5 zQp&W7h~}ZGxrcJN5FgnyP!eV~*Mh+tmSz$%TSV`P`lq$<9-qrbn_Uk$ZxHsvL+$Cdu0QJSg@IREKxd((e9JFAT6(z1D*C67QXaI602KPLbFrZIhuPwDQHfYj2iIFQm#R)I2KM+5dF~8z!ox*}r#+%J@_jQ(irf8lxcd3fZUsYc ziIzp@#g{YncjBn~2g{wWrV;~-_>v4CM=fw;JjYgZvu7CymP5n7;|}z#Q?=6~eOuZh zbmGMZ=b+BBK2tTU*Ml?BW$f?;T(dYeCnbp&5#Z=BJAsx;3>( zuTP2RPMZ<{@q&R6@#ZDRUon`Z8~BjkM106dq6o8Y@`zvoP@6J^Lb1QfZg@U>>wL@a z93dD1Kd(Hi3SjJfUKTtsl*tH{!LG2Mh|Qgi^o-N8gim=!eO1t-W;;HcT)8jxscqs? zfBiep;tvc(GJKpt^+lIKP|-OOho`~Th((45;9Sxx54xTu*`bqs{iaKt(lX=DK5q%O zjU&vR)SftA03mRA1=w4+*c;}STT7?LlEA0~ADrg8p*P*;AShdc1$bKk5`vaM-c1gV z1Mau_{5H^rSd6k$>V#NHWL8Tuz$I{7&V1iyRbrp$R7Mf5us512(52d{RGHp;!*he> zM=?2+LJv!#%VOGMMBoIMz#;;t3dCJuzDb&Cl%(F z|6FU(irDUIsJw56yN6d4%Wj{Y=4xn||5x4Am+!{bgT6<-nkn@qu#KuCF20Mi>`9*;=%6|DqH*Bq{!_*#suvNt6 zTYiAtGl$m>h_AweuLhOQJ=yCPs(M}c_2&(Cb+osPZ=uWFY-1&~{jaki08A+$PT$4* zw7tEj`)x@WxVQgUMROko6$q3gt_8O#l5BhuAG{jrFu>Q*SpWFa&}^c(s)v%5HVj^^HLNn06fE6u7s9XY zHB_eYe?KpNjs$Q3F88VF^Ox~ADrU`aCfF5>sjRj^ddrE3I~B}*K6{0ua?JKdp}F=1 z(7(n-n2VIybiaRHH|lyj;`r0)_aP%j@Hdlja^TCCeKXd{5kRz+YE}9vnnz;)Zu@RL zq{8&8fIVMbxW@4r+{}#}nJ0uD6l}WFS|WN!*g_ zhUx{Q#}`nALqx|MJSRMs?;XV|US7D@L;vO%2V^{sGKhylc+Ds|$#AEv8Cjv1%c{&8 ziO|G6`{VH~{W0mz%TSOP7JqKFIV5{%8A;Dvx4s+f4wry*O0j1(3LCgTJui3)A{BHuVxbbrpy+_ zp?n4qvDpIdn$XDy^U;T2{3<_QA9Kz441M5vO8cRZuiA!ZnH5GXWb+&W>Nmgk*$O{yr%rfY1#mIFygCyyHhXhoCIZyhY(f46I>Erwwq zwPfC5a>&(fi~q1-85X^DcbD*;owRQHz?W;|Cx}vFNB)G>v-I@i{Jwz){}DNgK<wNA;&{7Z~}ryZNdCbIS>RbMBt0< z5TmOf;DEMvVK|x%iWi9YAiT>!B})a5g+>HOLa@VvY{q82QAls<=Fo)3=OCXu!&*g3 zrYeluO|{>CsyipO2re8&)$f^yTUHU-goE-;4;)dNCXWEoxX-SVF~PFhKm$67na`O* z2n9a5QYXC7#8Ca?OOaf5(^SptjSgsz5$K>~uEO2Gop{W^ffGK*2wcXCOklv{&K@2{ zj9?^gERZ6#{HX@L9(IU_7(> zEL_dxAuEVDVdy$Mhujx=0Kb7!BGVIpQQn$!=7^NhV(->n{`!VC;W10|-n3;2JuCEY zN|CP+U-+9Pnj)l8;OGC{5l_$a$VrX;uplVEIc&$#nu>yAQanX@n{}Hoqx`7zV!F4h zE&40UN^Cp5^Ij}^Tk1m6m?b9HBk8!W&N$od7*ZDXKf5)O%gpLZVxbQZF2f!M(GyI` zpwJuOJ2M9K38^p;vVgj*QzEqYrpIWvuN^vSv<5g9P6`$*N5_;vDv}Ak4an;tof2qc zGQ>>)1O!m=Y2Y{lFGWgPhG@y1ZtkP?M=JixGvLr<2_=8V`W1K$U6Ako&i^E`!}CN; zAoXJC5GV;fn2+F0vt}yNICfSY-#Y9ZXQ(Rw1ja!S@1lK+cu5O(xL%qp1w0mp^C2)J zU2lf{VHO^#@(gK4s$Z|gQM+D=9?LEzCuV`~6cA2Cj0!N6f|2ZFbaa^m8E5_#>)VsvSwk#V7v;g~{DCiRR*ts&kA^x4z9zXALZ$iyU;3PKaD|(ME>be0a z$luXuglDJMpyC@?9y!K3X3URbAul*b}5n6Y{G5gwv*P z^}=5H$ByD}yjHdi6^Wly^X@mKp1cs$P3+|b0E@J48x_Rdwy=yBH6d?| z0i{jHLcQ^Lh;LZR>qz-Fm3aQ_V#E$#OY0M~&g5vp*va^E zM~S(YqlVobxX;K)TZdHtXX@w1b8Ijwl`C%*@OOEUkrDZoY;H8dD1xQa_1+)A`>NNM ze-9F<_JtXPT@R2=ef_tMVA|bXe>UF&Oi-nB4G8n84xijmsqq6TF3i&<%B)PG)KFWX zmAyue=8S#f1-E}+OH=mrcyvKn6NvS*U0s;)csfxxChsss1getzWyuwlsKNIm@GXrd4cY{2kdJ?qwQ zexPakGc(kO4IeKhCF)Q5ID63%nM#K+j>5HzApG*+K0|}RrhkOaAH~;*aiR#RPGxIc zwo*YnoB1TMW7aev2jt7}Nfq8}0X_>hh4Yp(L+7A#tBqz3Uh}ONFBH+iq+{*W@Ybxr ztoh=4@daGM@%h@l;^S4l9)9Sdfc# z;u)X+Z=Yjw(fv#oun2bbsZUT2s#Vu|Kpv0-8nlp96_!Eb< zr%UgI*s@j<7}&!93Y?)Lg2y!v)eo~Dn!3Ew(1QD+n+0*0DdD44-0h#2G)v;3Q@jv3 zD*>Pm1<9KLnuOR^(22|I)*F&V-Y8zzM!vuC$Ur(bdAC1u#fxsh1NJJAecctI6bjGq z{y$iJvdaU8zA))X9us6cL8u%ZA?|l156@Z$j9vS=leY=@qTMh=C+FRb1aqXzP|NM6 zL`>s{l+`uF%;=p!e+PoYggHWb%R+NN^b-m=Pj#n_x%$^Z``(%BqZ-m)MyYNpT^^S+L&KB!)?3>b9 zuI4|lroP?_#H4^CJ|8%5)@zS9uah3iOoj@uoz9QF*hPoej8R4vMQHCfk&*hZN7--4|HjRNTB?hvfwWiDn}?)GOt=Y9usY_$2mlf`9Z)^GUwKw zRupu1Y1tA*_gkJq{ma-*o|KVvi)S80I<_maA7^?COSg|8Rx|noll968CDRS9CRnss zhT>7JbuZsyNPW=zIAUdr202lXo)%kK`>LH6aqxrcRpwy#$_&8cu4#dfh$xzfHIqF? z1O##mTv2F$D#Ue$?A4<)$XOPr312%Gqynl2`LiAKY2hqzp$PCgn}gK|*$>{3?<x}SD}gYkAXCEPr<9WzaF|s%HfYFIf%_vOK~hGIW+K|i!WZ+Ba;6olf0s(2X9Od$$;E61+9kCs$7ce!KR}6A_fIDb*)y=I)_!A z9kR=Ij?tlaj{QKEAtTk-`T7AC=;ofM7|hKNy%W8dKnR7pAbgNmf)0$7^jZCa+dKB8 z=a5OmO_K$=%}u2qnx=;X;0Y} zKls)%jdI|(;#3&BVH}~E@?Hk<2`(M5Ec52d)LNK7I4Qxqv<1?p*DYc7eu zy&(nCxkq>TyI}MM+U|u61KR+b{j~ zU!Onz0pWNcAcqc*+0evOm?D|h73q(nx0n#M0E}d_4(3&y1$5=Vn}>V~2djaAQl}Yq z)$ve*4j)lnA{}*xJ{E@~Jc z4+_B2{#utK{$AB?(9heAP5OZa1Gpzh>ZFhj6$juAegj{lxi${qj>F@vw~@niL72b6 zpGTzbN&%gdQh&NZindbfHVwS4>Zgg+EOM-rfdZg$mp7A-@*_3@0nML*esW$)4VhqH z=3!*7;cmSE<!3j@+=v${hI4aJD9XUK5|$6uE85G@i23he)G z*XVYTEGsFkds@7bf2e&&7;@a~^2UNrq8GyfV*r48eWQkJ;ND9&6MisWAZZKYyutG$ zbNc)t?sv2C4U**CdwN{?VjbM#ve|6Rrdc2vLhmBFW9H>06HhBA4_pS0BYak{;S7HG zr#Hk#h8>f|-<|jv5kNfY3?RvaOKI;vsf^`c@sSoOlwn{u{0lP5$u+Zuw*jyzf~^8z zu;6NeyX9M5&^XR)a&W&^Pj}-gBBkgqg3r}fHK_Ner;kwOy^Zzt!NqcpPZ%>3{&gw9 z#9t%4)?EOB0jz~R+)?&wEf8Kp1U36xbrAq`qvaV+;UMuV23N^qMM7^E6`L(TCy?5> zx22(ZWcH84{{*Kh+r|hxIy&&DxNMT~ph^cfhONB}CQ^Zby;EB$3mcGo6)-LxAJsD0 z_W*pF5v+`Ad~AM4q8^imVC^MF4dJ?Tl0BboRzxN$4y^#fw1B{#_MK)Rq(W2@yQ!E( zpHRWgFKzRz9hA*(q5s7qy0Siy-h|>yb1DNx6E0N$nq_;NULJTwpBS}6_Qjma2?)VK zjx^OYl6R-?PKfucrr-K*J?w!=A2gLQ&@{D@JYE{gdxIE$GWUpY3==1;{5&C8Li{bT zc4Cx0aqAPV#AF_wW%h9adU-E=O7;aKn>{5G8#U_WN{(of4^>O{E{Gr+Oo!wu4v^_P z4TM=N3>)8-WpX8Dq!C@HSxtp3e^#J{(R^`Q$@{b$r0+`=@<0<7z9xr+83)=0?FtC_ zeIP%PiMEpJ&gsFL8!eFSC6E;AB>kJ83 zh!F{dFRw3v%~6o&i2wfIKTwt#l?|J~JS1!<#r{nrc@+Rc)sh965>*pHLoyu_HbHaRl{`8!CZ$D7{H*I!qFu)g06uUbFD{L>p z1S28_N)G1rr1#r8P9D#@NPBLA-KmG$A z*6A;5kYkO9`0^jQ+bPfOjcojgH!A946H9sU85Y@OLIr) zRCrlnVm3D$lcby@A+jIRb=YFX{xcxkQhm+}HXZh{Is-AVUZs-hjQ(Ja3{cLL3Z+vn z&6Wh=49ptV09VfL1;q9Y0v=W+W#lq?sP`|$x+%RyUi>SL7t0OxFLVL#*M6ZhKf9`o ztq;4y5UP`Iv^YS?&!U-zJ4N3lP0q%~H^~9%@ev@l8f=6j z2Vk$CA-LlLd7nv{6^(vVMw2;^<++s1P~l1I!vcFne2b+uC`-VVX$vyJ0{Zg*fI~I) z5X-AAEs)H)mN6w;HxzsLDMH3#Tj5Sh_i#qXqVfV+V; zx&TlAeP?M7I(2n3%sFr58wT+PzEj|kb zP8aha4)=tdSuosNn=UfXoaz~!7c@c5Q``9fy5YHJK-JYblM|!UFEr`_Nj1MWn0xJC()iwn&U zfVf0_mh2Yx^SpL>LqUL4_W#i9ZsZAc*hvoLqm+*Lnb%2n({+-?Bcz3B5Xi!!g%%)17+? zc-_Qbt~bKLvH^KFkQ|Nz-bRo{&qVsTIiB+Eh#5mHRR5tgJPE8=8DFp-xY_wn^{&sJ z?xC<6D5Q6|7ncB||itH%x8vvu3X@x*(30plPpG;aeWgq>mHD;P&ovI-DBi4lU31NxH7MS%`71mykt6L6M|zJ8&JhtACmZd~ zl*L69?iSWFzqkJH+Y=ZdEBLe4u_^N&lF_lc+y;*5J#fC?xgKX>sRP=`hKxoC;uZ#Z z{|lUtcRn#HRQ`gn0EvBx2AfTvDJ1VT%U>P{E1*X3rfSEWE$}L@qbL(9V{wtQOxbtE z9gP5Q0OPGEXc=IOzys{JkW8047G#m#*m~91l}-W?w-9R3R^t}2?eA`xt9K9~*Ff1W z-I5Zz#&6(T|AcBFN!TuD71A{uDs7gfo(nwQrsU;65}b{5@#Dv?!ax-6USQ0zs)T|G zGKpE89H2UrmM|r?k0n>_>p-}KaVYQ>8D)t-BChr8*~LL;b6awQxn_w?YF4_p<}iZW z!x(?WA{7c42!s?M2sE5Gy|nxWlOWPQtW;uu;(kPa=f1HgNB>R^_en>R--atLucx zxnYU`TLCXVp-s>M% zPTL2>uVubZdwc`L!+w0sBd(N)^QDFFSbI!_E~FrMb7B1WZM;I<{NSd?LFpjt$+8~s z|IY`R(>-6`k`cbhFc8>r?b~X^lLAEMkZuDu_C{0b$9`a5P8nuB0-g-<;6Rs-5-o3u z1%xQ;#xWa+1&2pW4Syb`Cia0+@?^1r69uUk!1O|ro3BGACnRtD`=_}AFgTJj4G?BDUG>%vwlGg3zd5@GBoIU0q$B(24gx zRWJ|JvlO1X6|Qo~>J~@oO0vAVeWG*#F!hUrW1LO5&Gmz+oQLQ%7V7Fa(w6EaJBCSt zcu|CJ`VJ%!Q9qc5Y#bZ(0T|E+ceMmJ_gxfIa?{5WA48T(9)V;S_9&#%^*M5%7$@Fr zy(N@8)C6jGplQ8*E924?@V!p5&oJMws$OaV%ni?G6Pl z@~1*23%Gn$<&Abm1YRX!pIO{ub!^U44_@ng;WsIT3yBI`Lra%nOa#l};?`Ll(3s2} z+W7UvJ~EJ3kMcjVR))7pekdG^iV~7ul7Y{IfHM)CCiNbxTaZWAy65V4=YJ~djwOhG zo+VnOQ=HXuag(X9=?*e^o!wLQ(ncXUHQpwX<D8|}0P7aiJNSs`s0^8CSlQWj z%2h@{4iG_=;jc^?__>f#8p|t#vpTt z6@I8_C}=7raqzqIJJT_KOJwqR0J*!k5??%NYQ;A#2AqHYC>b33?E{==$eSn<+}BzP0dpK6wy99MSr5==tp2D*!*+ zYsADtuC)3KjA{a%*^_Jz!?^Ja+b!{&&yVy7U|<@8bW}oj=8X`5MQq0hLqXH310oHu zsUUFBCts9xrO~fJN0&8ckc4BC*z6j!{S8LhC$B_S zq4kXMNqq#6T$r>p5U%lqV~up(cye4Z_Meg7*<`J`Trz!@I| z0)V`~5vZ+Um5~{u&2})3=?*Ft?K+lj;r&m+vZwzLhbXnjZ4JoKlw>D+Bx(Sh-}7A3 zSU|u7%zyyy5T5iO0v_FgxC>-VT(>C!1_J}cY-Qh6C}irZcN2pFA4WVyZ^iYMqBs37 z<)7iQP5cXo=)o+=#zj8*oY`7IAP`=SwOS-r5w}f=k{O1m7AnJeN4zW*iy}eNG;`?# zxe_EGoJF7FRPP8Mj5OVY>L1f*ivcYlY%+PIrO^R9H5v*KD>>*>KnMNC<2Uow8uTs? zut>k@r$mn$-h(YDT-v)N7wO$2hSvw2zEnsmD*ji9sabu7R~%B^?M})!?wpJhe%`-M z?e^jF8cLJ~BV5q8{(!b_cKu(`iI@}NGFJ%nrHeVIHh#i$1(YZ%2{kLQKbMdE25X zyD?aOSV+<)+^>jM9Kd1v;2b>_KS&WFP&fT0a(1p89Ml8NNFav>D^aIjUxMTpsxK@s zqac{s@$#GA6ngTUR{F=qV4R4xA_xxpQq8bc!!1KilPTb> zf~N^ee5=D16)R_$^g%P$2GTKkMp>?Q8`wDGu6Y?o+I21nAqKFW4dl+!cl;$%))7@G z=u9By(NClloXBDqH1rh}cRs;yA`M1Qm_7@0FIbv}h>{lU1}M@gdo3LVFnC{pCmU!Z z9f;Y@ttpR%#W%j*sbJizLeF z&~o=+qS_w&;r}w#A&amoI8gw}3)yT0CK zV%zl6Y;UP@-03^{|I*iM%#iSM+MWDcTG%;!g+E};nyP|XM228%f|3KsW_0%wI(2sa z(PL-}a!cqEa%{T>mny*RdE*EjhpvBM;3J}9+58<#hLLTu0_w#N$}55(rhzEhSFS?_TkyStTB1&V3J0Q- zelLu+goK7je^U}V!OOfPQDulGV99?d}@Jq$=FCJBe2E>p)W!Ta+bgFB!`56V7#a>8ptxh#>B>bc$b<@n?P*p&CKjBNV= ztJ(l9@Ou|X%}q(@mE5wcULTOIoVHZ^ChK%*?bUBeT6CZ=5R3+{y2IP+l(Z*yB0^A< z_H!q(fd*w_!QcJ=0sJs0-MGN`S7Ysr;>LGHHF1&`OU`QhgA_1p zsS|`2cfGVn3>c6(ixkRBql-5+U9MqOkyj$i=dJ4;=1ATh>G&tuaH9uG+1!2Atb*sV z#cve~^wdoPWsZrf@!EzNXqQ$c>-RPsVxHU?zh6mr`xSWD+~<^IL=F-_kbhyauUj_v z0VI5J`tRGR`+d@hV*P9DlEpB<9gUt-t%$gykra5yv3XXQe20dBMj}hV3+!X8P~a>y z#_t{2d{p|s4%z)HP@ScklUQ^+OaPfH%PI#gflmBig^p>gl2M{LQn-;dbBOk>qmOmg z9;O1sdx;co237VxNBHqB?x)Tmr1t&vDKscFy8IM6rQ_;_EpQYg9zeMuNg)`yV`U@0 zn|!wv0u&e2IM<&SU&>$B9CAWL^8#c(#QZ#<`kK#ZFj`=I=MIuen>SIq+gF~X4Bx)8 zHiTR^f_f?w(o8@mU)W`sFsy?FFUb_YVXm1xRv%+@Z-u~YL$Q0#JTmlbWNdG0&n1xt zj)EE9EYMawllc}KDyHM~6x7Qj1{|;I&eOX)4L!jW0d^WTGX-cu_jWts93k3%E!%;; z&n>7(gbJt$x#c(iAdyOurr5-I0TZ?MIAd*i!(RS4i1P1Ey}zH!qaKv7?zgd!$GApVRN?bQ?MS$6Gyjyy1_2H7~58JsZFyL6<3l zFRSUX?18Z6e|1bZrb$*MtJx14maHM(e?KeqiZ%tIhYp72oyHEEs!N?~x(=$gL_taj z*{M?h`jfAtO6}3%4?(&T{D#qnBoTj`fb&-1R4O>wRP1>;)Yto?RKpSpy9Xa>Ou)t8 z2O;PA*87^zAcK&cjpH?3!xBlP+#@;~6vDXZ&U)X1+rQnc=B# z4j!-Dk0fjyliv8h=6eb{l*g|Hpb&I}eDXG7;SZ2Kjw+gn!^YJ@^l*fYqKd4R_()@M zmA$Tn$odmY_*kpsy7~FqLEHK9@!oa5G!j+MTlZAh@^Td3t93H~5z_^8IscjR<6KDkst>JEN*FZ zbHf};!D}ti4NlnfD57fZc&OeLS5^|+U1xYbf0gto}ezMR5#Ae$3nB)eczgB>n`c#3FcXbKbrZkT#;xpuqv4zzg_)e&JLswXn22lPwFT_xJVD!n~_DW zB{?^OL281u4QvcU;YF{ydcj`@%aiJ|rE;PnAQ5sNd1Lo|f&D?-k^9JrlmvGSa20}W z4eG%xtdl@E1lWIM7CZ#$-=M#+&FuGp(aY$j7^43BuXnW_2(ei%@M_nAzY6jbw6l*+ z%hf)tzG#0}{W9GpK|5aPMIH%YD27Dd%yY;HUrbEM={d4e{cPNj)>r_cSXNf~z;wXL&<6Frj&pu@1VGZ?cfOaG zl(f;*FH7pRKmyJiC2>4yf=#%595JFZL45dCSwU*9V!xzXQjkW&imPZ%U1*#IAptRM2dAUD#i;UYH;PK6~4h~;~QECcP} zatil|Z-1r?2*JuEtO3X44Co(>Uu(WLl>i(7{uP{WIR&i9>bpv*Im7L*AoR0EMio!ay}E= zKpH=w!7g))k_JwF$|?O9GTo0K!N>r{9*}81eDJpOZKn<03@39REB3|H`*73+2x=z{ z(hVaQYF}xtcj%-$(c4-*c}jK=b{K;K=?K{WpN9tf@j108nF(OM2#pFCwJdnDAm{1f zmis`bLI77PmNKa0VT}zck7=cg7C9S#__wcOPeC1;5Ei@j<(K2q67y0AaeO~2M!`yHSg!6`LvFGdWU^&|>TU(5NX95g4t zuXv~H;6}zGn_s_A-emkQ&(aby!`_DGGmC+vBK-w~co1SE3K52o>bJPq689p)mi8Po zkqN1wwh(GGWYxAY*{ZQot1iBPuE=F<^sM6YN-lE>L)e% zk<2-+G_I8|&j(7FhTOZK2nX4tL9=vWde~ife>mgIlRLsxZ%hnm^g|195^)ljm|=3$ zv3sN0UNO}mJS1HIq8mE~0X+BkcD6Q)0yAjL26^^Eg~KHk0zY!wst9H9ptQ0Sp%)5MR8g1H}O3g$4fw z`%Tu--l1o-2Qk9Cj0?X9x6(=n5+}Xo2df@nxxo@_^hwdu21+tS^%clWdU;lIT%Yxy z`fySDgXhc_Eux(46&2O(bh_R>;%73TK5N7I*TN`DUwN~@bG!UZvRfw+##@idBpyV{ zGzKdsVCHP(P~kGZa>)Wi0CInT=Lyj(BImSNi&TWK!Og4MDDJBF91jfla>;Azm^D%m zTYNI8FOS%S^sgAde)&O!?qrF(f9ZIB>OtlpAn5nU31PpT_pr_}1cRGh76>VcN0nL5 zWfrAlfF8~YV!>3$ely0$G2Mjw`HL`kfExT~zkrITc_}SeWMm``e1cip3ZH`%xWOif z3NVP_Qgs3VYJL?@?^w5`Szh-du&mt|(qE?YP5s#Deo`=k363aAwa1SNM(TcQ$8{G=eR||e zyOvS4ZSQ_k1#wmdEWdl%#_tzlxIoYB{`-AzMz}&~RN)X{Szrmn9n*tF?!IS`?T$o4 z04Z`c0yiu`2!wg2h^QRi5JRmg*A(pRO_>}6jVL>G8)C(2Q}z$0e_%-~G^L0keAo4I zLdl^(%QzTt#t>t&t^U#%`Q0`jbzZnS94+i)D=1zf0V_v}weDEm5)xwQpg=$*beq+? zKjhm~e?Rl5|9W(>M8A4c15wKA!2O_mSE+OYPyY7S-aYshvmQ#@!Qv-4fBX3(0$NT? zkU-lD?G!L;C<7^hFQwlb>NjWAWjr%bN8%SC^T(pLq7zxQ2}WU*gNao{n!)3|ff%`g ztw6GG5+xlK-zEvqJoz6cMzIUzleNG(Y;Dn+hqTOiXL~8L8}YbE7>jyW47_tQ>XR{N zGe>}G*F*7Y>%yB4m(uWwl>QR$lK#A&Id}b>No~slcf*rYW-Y9$`WQ6LZxJmW2w?#r zMdsTn90C?_Ni>0{HDyW(E`RJb$%f*RHR|s)>C&{2BGt_~_jcR#5%npo-12hy|a?Rlz36+i%p`eUndL0w3F4g%y@U#%{ZboZ1u z9}F#!5(^t&WB}*jJ^Sd^@9)h1-_@0n=Fm_-gq_m>8&Ty2J?A`ksj%_38{}90qH`pj?c2a$EXaK7#0+59x*f$VWokmS1 zNDIG13yWAE(%0gwA)N(@3;&uRPUecW6$H|bkd_-O{Iie|IN%2RrnWYr6ma6hADmxBHX{fHw0tPpx0WCeuV8lZ zo?y|tWMZyU?$ea*2w2#Nq|?AA7UsBF*B{cfA0v)wZT^u9_4x*i`Z-$KAU3e#n`+ga zy?=I#j7Roq_Gda;pPTBNHbMi2B>DGE$$`zK|5xTPReO2W9(BR5ivq;?1bL_+6NltC z>MjhvuK+nDV-@|@((djX&Om{9_xhe|Z>DH6RUj4~UgR>^^iYwu`p75%+-lYk()z#c zj<*ug<}Vz(VEG?}6JA!GQz!QZ!#cBO>OKy^2RFxmChAVsjH?}(|0ihSHUFPnesjp% zh+)5OhB z9MXhkBsN&RntT>36D&0yS%ua+-@j2D*ijTwOp5r~)_fRet=8f8_>35y2BIEb{W`>r z#i9q37Y-he!gJw?*v;Cm?j<(^NJfEV|HJ)}SCCxT;EKk`@Bmu`IvRCS#{{qh;2o>F zYn{XyH)qV~Ed2%g7mdvu;y@smTpAAYJ8A*fr33FO{%*Jg`#=uFG^+_rXoI%}5d;IT zCH&NgCO&ZPh?YFE;gi~p(L|CSV13t|)zs&9p;(U!LPhrH1Dp%6?m6&Lz2ksdhd-?J z1Yb`B+*=+)etHnaa$keTN4!ydCTgYqzn*dh8 z6b_q`{1m8??wu64r$x~DUD0!^a`)3I1cN%48CD#~#BW2|8L`s`UvZ%*c-!wuGwi~u z4S(}o0N=v<*8HAgo{j-Dz=XY32>6FsT=?Q^mqqJN*p!7bAfCOoS%YK~jAvl@w}gBb z76r5lyhq3Z^5(&4R-Za25x5Jd|3MsK9G5r^V>I3l(;ff&NLG$-s;>*$@`5)y!E5xd z^VxmhCk;|f%1Q*son92Nj5NQPu5C)T(cqB7Zk%PCkC?5 z=kEgzw(>g<8$~o05V%h;Rzgm`rboV(GGx}~-lx4$YR$(% z&u_UwS0fBeE`mS9TLjzh1~O5YhgdTp5E2?3NHtMmJJoLi&pVjty!+BjqOKQ@021b< z^au&9unLvZQcHq0VbE1u!?T;I^vODP-WobW zxu2A!uU!kBY~OToH^W!CmbTvOvbn|*8e?eC)z-DiWz%(%uwP|+um9F;k>ryHygOz6 z4%%XIG}i1!P8Qr(!dLYkaj1979ttYIj2;gS4T<=3=(}MSJd7cDW8qm_Z?O535tLuE zQ%`@J_kZUX`-6TR!5t#q~_OMKtv9O)(M8+umZY(tpSNCE}a>m-Q|* zqpc5}$^Dr@MVwU>PnLtPSm0BBR!v5OK1u^`gBPkV_*o2S$2H^bHMEJ_HAx14jmb?Y z{Xn+x&e2($MXzv4kIG33r!~Y!8Mn~?wGaCqo;$(8S4G)*o%7fH=q^uUij%uN#VB8+ zsI(0f*O+>BGygnzVJ2bjEA@5p{d}Dm=4+<4v+_!D2T!d#2BVS2#1(eFt#QEf8KD4HcuIKwR4CiY)b9-vfkt_O*`;{BYg%~lXrOmzI3W<|H~=tA)* zZ0nlME1SZ5h0mq&e>Iuj?;Deh8oE4ca4(N@!{apNWQf@;Dloj(iEe;G#M$&}LVWd!}$!aIQ>z6?&(0HD>M=<21US4x-jb`oF z={t}uTan-t2Pk-o><`~gUrJ`40`)@0;Cf}_T&vNqFE-Qc9ERh@hJ2ZJsR<%fbqd^# zvLuhNux=B`6%=uOEzQ6Sm2mZeo$M?Km=1f1Kq<$@xeCOtM55doAew44` zF!hc0zPqsQ6TzWS_pSU>Lv%JwP!P7av$T*ZXyPV6f<=BCvx4X4mQQc*ADpk(H-;OU z`fnF~$;qw!op^PVf$Yt9nnBvp>ZfGdrUvce8k(~U7EE)pQ)wOfIUg>ydtMeq|HikV znwqy?HP`9YecK}Oj3c$Aa5!cpf{>L@okCFwt-%CM-!Epf8ADLJA~GZPu!rImFO}j) z@An$i(@rQ%$F(Sb&RnOK(ta|vp6$vzcI?EFQ)^6YOq`TmHAmE>Gh&gad#87pafay| zMi$WODWqYOFMJoOzP%n-{cf}D3W;%UzFlNB+a%WL!CfHPAd!XzUq<9V2D7^pFW;*B zR%v*6!rSyZ?zTCcOr5Dt*Z7(o(MWl{NgZQif8K`WgC7e|uRF6kZyHWDOB=U1Z5^l< z@mpq$M-C9z5FL`Fd&f>iQHb80a(%$*vFJ>|#%gFnH|rNExP6Csm1}xo(<`bHFPXr} zfqRh++0t8U74m!e>=~sR4$hDgLw~zuL|3aHhLUKV0{wI67kgGFl<}&qs!xc}RK*E| zY1lR+LwkLV%`E1E5=X6c%XVs|t3#`|-x}I0 zH4To6C!z^sX9Xsb6z%ioFZ@*ecq`{rPL_~^R%NkA>pGDsANYAH)9r`Y3g1}t$n?fc zr*}J%GD%^D7&dt_0ina<32Vm$N0j-@*hlRpw0M86#zL8PJ)d0e%y)vY zF^Q&(ADHjh9kY8Y=648o&^1`Y#g7=T5gLnrf;ZoZeYG($#`zaZ@wcI=w-t4m8Ez== zTYpjF6XCa?bxjV)^V?Ysx-=8g-Y;M)q2OamNL{B0#eaC`rf2i}Otw_=cG=*^mu51Z_3ow>T`8qNHs0Vmlu7P z&8^}5@m|b`n*p<9Xzn>Z*Nhe2!J~(M4*?j$N_Zq`CPFW&BAU9GzA8M}_SX1Ibvd8Z zBdHf^+yaGfC2)KP7~2S0H==F5n9bFczUvnUPgmASjI!O0NY$}F8*yP?M$5bSipjM2 zvdRD>=lU(W=DdDUUTJ(zh4l8ve=@=_+q>v>)s8v76^3Qo8pvojyOw%Sd^9*?h1~Ks zk|W#*`N3OH4SK2A$mFHGahm9pWs(X0*`i#;?vr!z#B_d-<8oTctg0=tF?8WReO^7W zFIJmRAv&8OC$O_P$+_^<(_pZ(EXEp}Jndl|m8Fj7+08uNNuJ}!aM$fy_G-C3y7z(n znZ2PyQ}nAkJd`2iG>9_vQNT2 z9GG|6lb^I6yC;8q!lNIY@=hms*-+es zGl}#f9(PGGS^n9`3oG(!b?4SI3Q?WOpN@sXNm<`%YJ<--s6W%8(IwG>;$K9{w0_}! zZf#ZKmba@y!U)SC_j(^6em(sbF~$b1_iN#K+>Wleb%I&%dz9ZT z=JEMl|IKfQCeVWyc#vE4>L%+R%ZQCDrrOKWU#vRRF(;UddGH~h_vk*=AhKU@Id>e? zRL^0TOEvtFcx=0`Z8DbC&)L)I^4X?f3BST1bNy4Laz#jN9MVR(5*_Iu1xzT%Dw~k( zZC*OG$}KSGo;(*RCC)3(f6gq+_Rz@GK-@{wDetEn7QD}^FTYFw>qsZqtLW6#EOor8 z9<-2Fy!7u)2aZ=ma{6cdNu3vqB8y)pG4)HP%yfEn-nNK6fj1$b3cY-_DkYjIR#(^H z^A9g_#z;oCLbESnX>xwAby5U#H)RK-MHSxf9KU||96YxHngX$K?!4KE{%*~=4OJL= zrg$E&9xLs3=O2AcnEY97XT1S^4hro+G5WvOa%>V}o)2V~*NGU-rz1A=m;Y8-GnaSj z@sjZFOwLOR>)dozI$DU5sohpzTFM@O^nf{xLR7uNK~&27%Y^%L%SNcVAqKDT`>fHS z@4C;I-j+>J+fI}A-;wp=~+;%>kQw{pW#2zd2%Hz=>zzAx>6zudQe54 zNpIKtlK$Ro{~Mk4Sq{}vF)E}N>rUbakz&)9t4>)QqACO9?7tlrc*ZK)dP;))G9I3( z@f4A$OiV`wO=7zA67;{AFNUm2KYaJI!;V$uWEe~_H#cF3x4-seRMW0*HDtiWMY(VC zVy`8MV2fYV^s1?yXoR>zK ziu^OjtE{7y(O-0ZB~o+i6GgTsT6i2%<1Nz$pL50^e|l)1aAK~wq?2?c_4>B?AZ4#j z--w+#9`bUXjauY+lmzAxvbO4Ck*fvFi?rRpd~t;;kZ>tFIhCw=W6?gkos}f1uDO!U(u<9PiYA5J1PdO;1uHzvj#Y zZOPXiylb%5BM{b>$XO1VP-{JTaL42x`6&0EJEe=y=%C!}y0z!_{)^32!thG9SAJO1 z*dOUa{-}8@a4ULvI*A-WN&fpi@dlK`zc?4}lWmbdM7i9x*{WFN zDCUH}XZCF}Vk*rUp=(-lyjtSIb@fkrbD_>aa`aBMgF+OG%!Np7=ehrE8MbwF$aBQjPI{`~QWT%at-$ zHGas`?f(|bd7W)fIB{d&tl(xK{f~uQ4T;-NnV&x3?Flei>yUm&E%k=ViiywXc4X`z zj0!j3-^$|3GOH-`gA&_XL2^_7S($qoTEkmoVZI+u%5kcub`ET%#!}DM=z6-(ObxWFhL-s9PHv$v8#8x|9SE}InAZQS8d;M}(5U@Isg8$H zTs5?kmdLKJW zv76*2Mcku=mad;OD>yHU;r=T7pR^h@$-LO!-k+3`d2zFPGZgRw;fgd!M3D0c#1#-V zK|?2`o71$OSYE08X2_LBbFZ%=#wKy7)v_cR%Dyk zN#ePe|FrGu>YI3N$!pc{U$T?lc5B%pt8FJair5Iqx?{&@@QuQ+k2z!E+G;3G=q^9@ z4Q!DT;#P`aQCrjDK-f33*V$@$ri_A zJGYZIwR8$*U^^C<^AUYyQ=|+3@}ABa>EkL4J8}aozlR=zsQ9qv(!?U8n1PQoVa_3_ zXleAZy~b2y=X{*)w{XFeF_XQ46Foe=IkWiyD9`W^dZEf&a9G3&3|chmy}IeSyPaBE zt>_JRh@R`X%7)?2!ZcIyq4>9kBA&zuR69bNKxKA|2&seA1u{==>)gc6W40uci+~%P zm>;MQq>4qAudx+dwCxxM?d@(xoy?t+()0cbf!|$)4_+*n&4_(RtvJy(DIMoy`;sr_ z+E;-Wsof{P(3Hq;&Pkrep`ZI`lWQc#F+h(Q;)=OR}NSq6}HBZQXxI`w59yiPZDdt%~f! z=F$x~Vl5tMv_#)alo0Naw~{x(Wpy!pfJ5@7IE&rcVDtNT{a1PHXBO*oLq)Z10s>Pf zjtTZ(@ffK38kasnqc%6uj0|Nt-T8|?4+Z2;<8fbSN$)0QT)x6vV(i#XsEesITt2Vu zI_F!lyj^}j+uC_mwIemM|K{skt*s${kBQidaNd*>cEbCDoDf}ypn}zN+C_^vI)|6B zL@})JL~xc!>x2|DET@ff-7Pv&N?T^Vb3?zm zHb#;)@5!Iynw+j2hg){R)Oi~Uc+k?am`prl*<&SG=ZKD&Q+$-eul~3yzMAu}O~8G- zAN9A5S%w^sEtl?1HU;_{aTxRe@?M=gUcTdBy$Y4;Qj_Tj=zy0Hmrvbk`!sQAgs>z6 zyg~5g&suD0=9LVv$(yVc45-|Vxod_t)dcrE(#00aCljdizy${{Sx;{XCC^j)?aR8O z5eMC*^8^E9v)11wecLPZuP~z?JLQ!Hz72SP96K{ER(;FJ;GawX7CHZ&^H01Ak9E}o z_4npGDN7PF7E^bHrcqJoS8FpH$X4qL8rA+@Gm|uRS1U`lC)1&-3wx>kbbdRp9{zRf z=etjg%P}2%F$h;h4=R#`>PYc8LIluNO~xhz7#e{&=&hcacFN184gf(O!6wY zrK=jK{jHfodbt>9S!g=M$YD7d5D|f!Uvo-3IXM~sLT23R;T;oN z<8tHpG8@nOQVg5pL+!4nc!t3)4PR4Nr7FHE$B{HnGuO+4rAwWEcrJFjoN!s|&FhC( zNO@dOd+8@8YbCJ8e^j(-v$z?fvj$B`nQFNS*X8Rg3rh>88j4$j6PC^clrWLRvF9_y2t)-G>>!!D4aLl}4m0}c}o}2J59|;vJDbeEG z(_B5pB1zz8fvfWGrcaOSYlqADZEDTOngb?kl4R4?W(7|sPNtqz>&o47({?kvJN9=* z%|}KYvnHSWh5h?)86s5e^>v@2ZBVhYxV6TZ*Oz^{GL!h5Qxp8}Xz3$+>4w?r(vqpLAu}aiy(qk|xJ9&*)6jBmwQy52%-$=~InY z*#g*n)T`^`xM^8-a#F|f?_s7ocbs|mh*zGd;|G58j~$jdTA6s0F}v z6H2btxPC*IwH=B5=$2oL^(}G>J4X?<1m{EVq2>BE#5HK6C*{NC6jQ2<1^tu6BySAh zVmD%!zD%K?+=kxNGv#xprEF4l(P3|qOgC0=ZGv^&mM2WhTi$L;I&~`A9sR9YVUfG9 zX97Zhk3%`Zy)AYlp{68T(9$n7AOPK77J0s{8a40^zK7kmO(g&==3DZ}(QSz`i)@s<69b*BH@$2mCRifK zOM|DYTjP#StD2WS^XEqdMgP20M%-RiyySmC)0A$o*E{+iE1>pi`*dnm^;a7_E&`;< z5*>j(%fAz2YFO|3p@j~yXHWSeeWq=52B}Nb3W4ai@D*XsY)Mfe+Zi zy+o<4Yw{T$aTqTZbBlS%qDRNXp1xQBv?PCbt=g}3Iy9#pi=RK<<>C3c`Gl51j80~E z`@Mq=xef6emkvz8fYny6IEW(CEOpHE@cZ%~zn+PCeG@q#!d+vd2}poHwpu(a(ICN& z_K-Cq@E~fiX#3Aglt>J%wt0@QuX!U-hwY*UTLroSMue7kc|7tZ4TDD8O}s9{a~N!q zsY8T9M6l1Q*6G~Dsce5b@DnFeyy=d9PIC?f4<6>_j8&QZ*pH_1i5k2eX1>FEB!4!) z0f$fGL((6LZc%i5qJU73hi@!N7a9|o3Mp;HBRbXS15N#g@N4YLc$XRg#4Xk|Jz1RR zj1S@pgbwA*aEs~D8jk*qhZoW(C9j}RmA!jr6{s$;2=j;H?{*eS>RUW}qen5Br421~ z`Bi_HdwvkG==ny5krES2xViDa@3jUSJ88uwYQJukiS3j0|LL(Mz>P(Oo-TIER%5CsSU<3uHez!N8Y zYP1Yl{R(w@4cdd}yD}qAJ>K-0ewqEW2B%%~di|m*q(f;n;sth)ix?CpLoJgm2z!z> zw|INWvYvTi)T9+qDpFPCWV3Lx7^;pL=e{WQ99U8sif*{`37TPePD|A{whH!>(p+3; zO+9sC%&>Cxvlg`@`7gvzGaGo1qJMav@7>s<2~}xKi*T@C*+|)U*_;<2_E1PkPLa76 zfaOmj26_N-Ay8QANC>Uu3;iX-z4ai&kq?fat2Pcc^ZV-4P;E*&g($P4M=Yq^C64Dp zZJZvhYYEnHC(U&Fux2l0VhySL*9v=7prG3L=tO+BZiYI1XFmYScyYom)k~CEW%jzU zdLkwVCa20n#!Egqk7!YVY$mh#1Om_fl0+`y?|x!sHXOFq#~%A>F=yXq&JZ&PL)lZg zrwcx!FcsO_uD&(Q==xn~>ILIpX8$vb^zrby^mR|O&D6;msa2Aoaemnj3f5Pwc^F|S z1z~Z4M30&llHz22kq;3H!j{CzLpBu4Lzl1vSN*+xSIF9bH9x>Ukm(fsd0)|{E83N zpg5^9_pk`1EW-M$>(EgF4A0alQY`~3UJZs#MO%yfhZFsJ)oTO;KLCajDZy{uepGK& z>OjrG7ukXnSntkyl0G=qXWi%9?n}-{9+bSCtaFG@6KJF}Av||1&~Gu>kv>9xB`MZE z*qpZb+;W4=g%A*SMC#pp#)5QW+_x)ttz3K1)l)FK<^lmcK9=+qbr^B} zP>ml2LZ`_Lzy73b56GvZQkhz91HGno^CB5>6J)Hc4ZgStZH;{u>a&e@R1d@6H*ImT zY9{|SBfhHiU%IIrm{>UdF194B9=>rmPv0+o>EZv1p+og5jSS%1p7vtAso>+p^>Z^R;e_{qd)tewBfL`H0RYnR!8}avs5H|5 z`YUJ<*wo^xeBXQ=52r=++ux5_+gCDKGB7}6$374gdF5+VGuxv#W}3df;T# z%2>*^@>}H)X^W6m1&&|)#-y47%bx&+WjTE{g(&@9)xQ8?=*2m4thSQQUA;A%ezn7C=qq8&H$juccDE(Fii|kR;qj}u<(2PO(o@@$SMJmMr zbG}DVoV+IYsXpSEyz6{-#LL=BeM)*d9p46qSws)o$1ZBO zQ(69`*2w72=0E2+km2a+P;Ga4!Qt|`;rUU1An8l;luu?-O@i{%$-2`J=Rstks))5c3o@evDR)yH^9eVfs%iBX3WxCA^0M0~YI1576}FI1&m3UN z7sP>KKJViXj4;&yo(56M2B}uARti1JkdTPvwAWg`0OC;%O8U3{=Mm45WIZ*&>Zb*M z9KYBC2S&7g)81eK>T{Kps}dNG;6#Pn}{3QuP|Het}NH@@HDI7?xJ2K zB+Y3$Sp@p?#nZ>Xcz%Y0cE~jCBPXyuu#^7+z%3#wi$7iCQVkNXU*NeWNDlEcaadXj z_FV&>1FpSFF_=Y#?cF%KH$Da(L=Cl%EtVv;8-C{3ov#R07cKMD<$H5|>9)yzQ6@ij zyuk;=L;-O1C*42K?Y9F;4dz2=se>x3oeM5F3^;_-UJs0xi7xqtPEWtzoTz-W)RnMc zP8;F><4tg(*$B(w=7hMW=3^Qf8dY5Bot>Q*ToL2;`6+wguWR|dUQzND?rZ;6k1PsYFeM06y#B?j{G(^>{ia~PNHzY5H3d|ov@n|tEV^F` zCb-Ni%&OM}d+hgMXqB~rm8fVvy}78*Ws2)*wsK^(zJ3u|+OgI9_Rj*h|IVP6YPaVN zG?dN`Pa5;|@G^^?&_?xu+Gk4QHN6|Sk`dn%L+FzBr>E&~?wxYgNU4U?mvpL7i-aqkb#Qzt!9y`;ziw89IC>DbjH#_c4OV5*Oj;4hwek@;WKj&RtdPDUZ zMbSGKDVn*Gc`CfqJ(xb?rgu@v(kTB4ochKHHb{E5$wdnL`gz=i=b5^c9u^*k^fy2^ z!9rTB;k%Pv`^&8I$yAwEg&qk!g#U$ z@7!oE39X$cCn{k&nB+IeYe;wapi=L}U)fkUUwAUEDckVAX^^-oe6mexeV>hG53ZA0 zfLQimSTeR4Q%_pti$pF=bNuG=GMn8J%iHet&`97{89bjksy8+o3Hih25u89C78+G| zhB}2h{lkrP#%M-)bri^|Fu4pYo`8AJLRCV}6<%hRkK6AVHF^`}wmVq6r#Cmd{(7NV z+1WL=wD^8T#bmKcF?iN9kfT&?vxHIYbU?ckPenx)9UZ+qDlbHmLGKqrr6_3x{~&Zh zf46+XLL#30M^|F$U|GdmwLFr!q)Xb=FC2g#F#l*5^UU?FqT8e9E#jr=&d=-B1yN`_ zcw)SaWON=R4|#?k7TiFQyCKK@!tTBDo;FfK9y9X&Vk>A6G!_ILo~^{B<5T(#{{(7Q zrZ6>{QnBzA|8gaci^f8OgIm{KW#vg7+=5T42G;Vhh7tm}TREv~uCZZ0g64Q8hb#@X zs3Q5-t|%#n+n)vH>s=K(+tLX-lHnG=IEoF%ew({k?V~*+(QMGlV8Z%vemz#T4Ygl* zj85EvQ!PGE!cV-DCM`ui&|f&-oONeqpT>r#YoPrstqLa-?W6P5*tzX0wWC@s)x|J} z9TA{5bH#l5*S0}g@i@y-?X8IvEsy|r{!m{CIHnRSL#c||(zyMMd4~y8D?csboo8$? zzYf&{tFYwraLR`|21edK;Ap(rNXI^f{ZlF4sH%8+YIXY#Y z;Q(3G*IF*;HxUEWCm@iN_OavsMLt!{V@Sgy`2ZC$@GrJ#tk2#BDRfQYnoqjZC`fPl2Lw1A*Uw=_tLfOLZjNQcthozl%a z*53O$&pFroVSl*yzHVLrxz-$Wj9*P5F-blDaps-#?Je8#{uCR%+w7WT+N%)Ivxyq2HH} zts9>l$7SYvGk7UnBy@Ktk!~-c6wvB60#e~^k1iwEOR@kVx`YY%GVBQ^wUcxEPYa@J z)@9;iwZ`V?lISHLGBcZvmFEwZyY8;z}6_KKr#Vfv{|y z!JR83IrQ@TiO)La=T$oy@~;n^(Cw3sNmDcPe{TL@9!d0@0Upg~x)x*}($8 z-p-;^vRm&iGPG;<8<(nSj1RPUdCV+hBm-#2i)SVG_RPlLKkC-~*p|mgEKN3GBc6T| z{N_uWiq@%*H4U3bvruT6CV)DtlFYdXDf`r#@&~}n6YNg0S|4`jgoNzo5AdrRJwe#k zx$#(|@LdzLc5nhh1=6d7DpC1lvSk82A#?=(DmZe=%o>#@WM?#5v!f}WP%vh+v z)JD{pyR$MoM1Q1B85kZd`;fUjO1E#b=eIbul&rgry~EGa`VHJ|ZEZV|%9Y zcz;MguaQWEIqPdc*oEB5oXMP|s0kYE*E8AL#J6?GAr-OyrGf&wU}&X4eKd z`|rW_RVrTQc=-O>2b79Pi!$%Ju`kepJ8#FWb?dE3%rnX%L4fC;*$hoOIBlLibBWos zb_(qrWI~~53NFtSR@4>Glw`G=c=pGx@6DILDrXD(8o9VJBrG7Seb zoYSjQk^*K6g4R!TnBD3up{+>u>gL7K6M(>X^Rms?4s{b2w^7KXeFRi{ujJk+0KON zQNYgQcYAh3w~etOt;SV}_jr8@qm!h!zJl!x08lA0mxA&9^=MQYwX2<=K*qtJhQsgd$PVD*ixwSJf^TCNw_5Z@wEqn|@^>H>1QFbjMU9D7y3)C1 z=f;!RDvG81QUn@=h31Uu_icPZtOQ9(zZXSp~ zpJ+dc9o76SLn9TDm*T)2tg0^MAOB!NF~N!j8^#1g&7gKK59{O2hzh>vUp|dqu<34O z8(2^4P-D_t179aQ758$%6!nGmtL{aH1kwRJB1C@`deZ~r`{#?m=lxzvalZ4;hYd3S zfn~+btt|yC{q4;8J8i;dZ=-XG8F(0ImOeCnNHqrqkT6LOEhl`iF@Y@zp!M}*$zy!B z)HW1Q6*MOG^I0}jCl$)O)AqQbb#>B18wr~bs-9_Z7-8GCF&3B0Eblv(Uiv;|oyVA*!j|^StVwYOR zhoh)x^=}^OAIoO}YddPkod*eW1&kyx;4(@zbBopI5(H>?G|MWw8HJ9TJ8OpjBNosE zkv2{&cWcCl>*!akMxV2$&XkmvZhj0bGY$@nBPbz=D>lCF9qzqT&XBBfWb~7=DWm1_ zc8|AswnQKBn{bkvsWvFZb-RJ~_o9A>8vqemP@83*)Y ztNu}{S*##MTvOfNold!(za!@l-|84#co|*bTBummjpiuJ+^KcNW~jlY`}i`E*@17m z^lQWoPNnKJt}#8b2pZew zOs-}gfbCrTm}U9BK|Lm8Sw`P!dik%rWdoZn_$l~3a8!f-2hm0B9GGx*y~&zm2c>wn zWG4^|Ku|n3X}k^8Q$z*vtzZcnN#tV#q8CVa`RT;(Y$R@Zw4A%>i|E@r*-O$JtBleH zovNeLjt|(3#2tdLFrw38O)lh4jbKfZE!+Upn_HM*iHu30D=dSC+%m7|joTY`Xv3iI z$UC7OV7L)=)xmy6k~`MAcIZ&R?z-I*Qb%R$dqVbyvPDxvjqtgDyV!9Z)Yrp(MWDX% z)g&^R@6LlS7CBV&@@#?UVr5#&N%^vx9D^m2WpMZLUFduJ#!?o6kSFsPkE<~Q#B`GK zHBb4l8=+u&{R-nBq831S$mX;{`|^S%tX{uBMG=d=y0UkX)Aa|ZY~KEa^K^Ni7K+w~p-MP!K&Y9Z>le!2DttXxx7g-ER9 zioCQE6;lw-BTAJ(KK*$hz_ixfI8QXRh8y!_#k8-4{`&nhd}Skxy>7w*WVe8lS5-cQ z%VbV956cEgZVeJe0B<;)WOS#-UUqVDyp!BF(d=#2V7Owj4dX1Gh}!G*16E*A#6=C^ zu^z6MC|Y>^JGgH5_=<1V*r@L)W>SfNJj|eNu)XF+5HSS!$1-hda356 zH@VLSb9^6}`w}#67>C#3%js*7x+K%)(I$D!$zdEeMg>FtEOtE=Cp|)4wgyBnUDGHX zBni34w7M5L7GAkrbh+sztfR%%5jr_PgZcs_<(=AYAyX!fx8&=EZ61y{gayZP8|HAl z1eGpOB@ec+|D!v3Laq)QB$c4BW7~U@{f*SyVCuT6J4IQhiIka}@gcOASYAk#*$S@P zaZU%Kp>I^S5nx%Us$YrKY7y1z)Dyk6d*hu>?8hGCTOfJf21V{d0nE}~J>W#?aJ-1V z$5aL84`BV=*`_1eDC|M>YAzLA;`E^XZ!SI8CpR!8HST;ACi3pqp3%F2LeAEA(T+ot=xu zoCDUWF~(z|2H(xl|3nFXh&y#2P|z(6#zd_TH#h&({W5*K z#;Bg94%nuAK~!kRhd%Rr4Uw)-E$UDuhZh^L_@Bk|3#)MMZ>wMHBH1&%RP=Y{9av_0 zC9*M(2-kIcol(A$RY+UBsg`Cg8Wt*zGAE-YFuyZU_`<@Zko)wmv9I7}=>N!S)jr6V zrCu+h8_`pD3B>IUV4T|{4GF#R3{z5v4Y&JHf3;)l@+iW$s0&){lZAI6N& z0eAo-0o{mLOMv|{J{{Q5!VN%9YEWlSZcYZ7aY{bJ)*yt*@}@k+@^rs|(e(-%_GRZ}EDf+n5j$YE-OuJH;Du;r|36JPj zC`Fw|X=ealZ!7v{Wi|TLYken)_4}OMYJ%PEO&^Q$TM!-|kRuBpV(W$h!qQd9=IbG#xS`JkX2ej!yT0$Sk zax2Wt#t1G~E}CC73^THE|PUvds6N+sr}1Jym1 zfYRM=u;nM2V`(4zRZiByyX6S313S9K8;yfEscGr`HXlul@LAYYnZ`{@S2a7+b2g_; z;hf$i6pL)RlXj2eUR0vborl59l%%2UjYAe@oiqg0Xh}*j;?HEpVv5D4pwZ699F3sC zcjvwh9V!G=U#p>{+fqqQh4%7Il^g314>TCE)JE0_RPX*Do8XT?U40N6XgbYP##~iB z^X+5VqguPqA?8l5&6!nUVdKiZDhDHVsk5d2T0P#Cfezp)j6KF#dwtkt#8zn!OQfKILV$!K1|~^z-*o%1fzdU~mDoC$b!XDMj;67tlp! zx6chs6cz)Q>XM)$K!0X>)K_Mp0lg;4nf?oKf)G7;&SOp6zu0yEm37zUTRuz^Zz2Stl z!ahyK!&Z$2cC$X3?v|u%u)G0G|KP6x&1}{v3Ab9sL}s&GQ7%tyDc9}HF2?)zXY(7I z2b;jf{bdDlS6)#5f)M#8VvYE_ zBZ-25Set)zJ62e1^3tZ;?mfI0WJ~@l9G*gF%@&y0uT76iuf}8<^Xh93slAJT;hSp7 zU*MrHDz}WIU?;b0w$-0($|ukf1|;jG$ZOCJdAMr}KkyyxtLrRxIp0uxTwYl0m#@=- zQ=I*Q#r=5@|dk}ZTx(J3O$)t9w4;uXr#`Z4!9?=-iX~Luz?}z_|pRa z*s-RtN+l1R3v4@V(AZJ(Wp6e8X(}Ec;&nQ`olsyY3W8>^#eXlvI<@RzDS%@o0Q9A>I@$!TsNWxKrVwA7%QuN-+je!NvR6w0gAT?)QnI>qH82z z68>MOU#2H&%saH;$%SgOKvqRh#LWaUIeWHM8v1m3gf5nr|9B?I+%z$%>vZG>C{LM( z#mpXd>7K0{0FI4KIGO4zLYo5GN0aNDSq(Hga^FN0x!Uj7nS4O^3K8sHFDM%-Vxc** zeoT0gEbO3FS_>d)Ag7*1j;T&4U^(^`UB>5``?nw5c)nB@l53T%zO035bN3~jw#dKZ zwKS^=!3n?-5&aDPX()4L*w{~rmJh;I4={1*MM1QvEUWh!Xu-E1ny_5DXMsD@It7hs zY~;NSveLZ$DQcgH+*h3#xMx3odzhc59SPkhpq~G<0$L_e#(>vX1b}|8#7p$v*1~3(-zxLQA};;No9$e02V7-yGAGhX$@n zuNG9Wmi+*X3qAfO3P%!+(O~F3cA-cSYu{m3tEYY$j{)dEc3b*qaC-%_sZL8uFmuA$ zH;@Ivgeuh`N6n)RC$b}!F0CjE;u``}8o2D&>&p|s1n-gpL^n)Ljj(J`^gzRrH8ez< zLkdoWhh%GQpb%6Pj=OXI^R*3_+%&iT0Q3NVGqRC;-H+Z+;SSlI6w>L@o_Rh2Yyvq$ zQ(dNrdCxt_4%4(7two)WuTg`S;rH581U>`lWK>S5cGTys5lre+j;OuKe$3Enn=kEG zMMfT2XxB$8&1qdewg448?8x5{b}kKDr+`J;Lx&7hE6g}AVfY7p%rdbuJRq5n$sr$J zvCXCj;oI1nx}f*IPpd*$@`7#=h5z}I=~@Lv*Sy#GzIX&u7F)PGN#MW%JRskW^scF^k@U=p#7zxrSE9v0h9@L$ zA@K5!EqhHDc)9eWd;BV~zt4fa)}=lsCPAHPjt+`!>oOZY+H0Y;dK0`CpIAVQ5ysgs z!me80o4WzWV8xJ4hfIJn@)#RJW{6oh)!n=A8 zSNBpvc;xKl*=hXUx^H|w^D z4=gv9>2k#BF8Yf1RSV6@gzC?wr&)|vc>KxqX&(BS>VKgVMnrio328sWqUSW&vK#LR zs}OTqb#TC48;_OAij3QDA*aHOMFD?B1bBKu2nuB_u-(I56SGh(d}i&lkvJ6|Q5x(; zY$NQhps*GiQQ=)pSGLuRhs^Fw3o*4lU=O6K5J7r~`u#VF%+1bck*#y?LaCyjX&}T+ z*9wWCv?IyEuDtD~l=pod^g{4eEV+-ncnX~6Eso!k*V@sB0v_w~sWA0m#%mxY*16#Z zf?2-IO=)5MoX>8heJ=J)-2R3Oo@qd()b?Wq(Q$`I2X_d$)QMmI|TmJ&bDms|7KXo1KZ#b*L*R{vwthy&e;}(4x)e}G7&PxkMY;zH4b*h zK*wfbJPsX`!eanI@6>q6I;~^m-x*;~1gS5~52G|8qFS>`&ITh-GEP%%#xm?;yGA^i&q6u&ux`k&| zobu>E<@j5Vm+e;@^_fEx3738k>KxMk{e$!VL{(&~4wdQdaPhJ8mCKDufvX%;lKHi)!0mY`su{fP9_QnqKk z_zbeJy@TJR>E z2aZM7bg8>`^juAteT?n_@3W9N06IZ>cXR5oJ~W@GkGURa0Ue>GOB-@4r1~5aPZc}+ zvjVGQhiZQW8AL5CFiMYj842;F3qCb4|GqPW`Rc`Bv6kU2eC`4FRoC%SXj0tEPs4P> zm~9e<9PbK+94Q?TgL>xWY*qkB4{lGn@_Q+q)F@wDDh&0K(~-Obny6i^!=ZMMT7LZu zgIG3V?4iXJ+wglW=aT#_lX`rSzDd zCNT5M;1fkm#QS#((c?4pl(L0r9=!wQKi7L}6R40Vpe`>ea|$AAE9%RH;h=K5#Bw&dx!k1+KU)aEnFs1b=ksl zS`dFKvwfwqdPhj4Yu@#bBZv~koJ6>wcb>ldb*3MevIL5u?b^#-l-kiba>vS{!#2@`BIl#{=RK4Ew{-hA;04IzIwQx^0mNQGwrPK_yk59 za%fk{>8+dE`>*%9dxik=1J*u7E_LbP<#JP10vS6F5;F``D+u9Mk6H4R7OMCty}%q zK`pgBR#`Ys!6-$*9bxmTSr*uuMadl;@c+H&YUYGH!nDDrp}=FZI`c>DfEx9)>-d9N{dxTfH9}gXGT3rnIn}arBfc0)CCip)9C&I0DVf=r zv{~zr6`@EkDBS|@r89lQT%GThS=-C{$#ch;8~XQ!s5)CaUab2UA!-FMNDm9xSDf)^ zkxq_W-aKA)N0h@KZc#HjgzU7wLWKeRv+4t&H6uzQ{mL7J6`%H+-p4?AW{B9>#@St1 z-bl}(iLNb#o}zZVZu?+63sQcRWT|uZ9}r#F8ZJ+T|KL*p98@jYhVpH;eW2n9OOEZn zNH`twvTs;?LR4zitDg7$Yn7aR+G8d3*3OQXohPj0&+5Gs%E-Zc2z=A$&KAlB`$ULV zLH%a9{?U$t=}mDildTGD@;UC1A;$YQ<`Yp#ea?TfM95vn08WY9;3hB2FabW}>)nRx z&U#5RIM0H>2n{ozyU^L`b&ssY+#NWK@gKO2t0wSmNEl|^O7DRYnUMx}od2!#_AY`48tXm>nY?Ck=Bp+DFk)aEqQMh)=! zHTw?^&OuhJH++l+=wEaNgHo|&Kii@se4{cQaz_2tN{JtMy+MqKT7m}nQ_Y_tA((~0 zjPf1y&B%^&Po91*C-X-0WhtCg5Dp-x>_pJUgLuUI)%TLHP%B+8zd*mjyI49{A0kh| zIkC5?hb;clTOZy~;6A}#6-mnh`alhWg4eU%*W@KFB4{Cu$!=wm7EBaPJJSm&Pd@R% zF4Ik{d13NWJ&9!@AYEAZdue{(6Z^v(P9{$4aaGwmeuX2)Bm6aD?1|?i@;z+Ons~%9 z=A`!@ROV)Eo(L9rY$vQ{4-{Q29SeabkXk6^IjfUI=EBwg87178mJpgtbg2qtzMv_E z7^&AKP5|lqu|r)KPt^c^!^~<(%W3(PdqsbfN|2d5cw)#20X8-*YT8;m!VX8`N7x{M zs&=9dh|>?Rl`$0ffg%aAm3Us>plUhVShqoWGHBm# zcf!Z#e2akD6{+Wvg_LqoEuo$x!|a0V1H=XS>GzF8{!XhcZJP;8BR6m!42;uDvL(nmR#vd65 zu^DICX0bkAkC@9Uaqfvg;==OAMm!z)QkAln*T*%PtQq0L$y9ehHJNJk3{0Ek;e7rJ zZgA_BX@#3!qOgZRwY4+xZENpkuCU^67)=1Jh|KdhFVfVV&jFu3n)-BU)^+^c1#qTQ zq0o0t*h%`+6|4;_8NPcxyIywCgzn3&?yh`SfbVbTCMb@TwaQq*Q65ev3;JQ?WJx*! zgQ8CXKLM5M)0LzA+i#D2+cZ4M253JRj?Xb3Ol z>q)uXrtF=%XbbZ`VrNYu4Mn>`Kmez9iTyA6d<+SAJ^&Vxz>DEequ;y^F4)$73x-Vf zoOds{#X?+w@$a`1#DWS?x`rYOP>r{4qsl2kNHBSsGK&V)8)d+5a0%{Ja0Y}y<;~{= zQ$7E{JVRAvJqT^>S~$TdOQ=K-CDIu9UhC}1n8W`EgrYxt;yum!MDxkaLRy^6^)T(Q zj;djMyG{q#c|d^hz}Tn4ntgPUvW5D}a6p_%>Ca?Q-5bd?>Uxl5UGg0Y5j_}wY>N(_ zgy^*+c=bEFVRWQBW6M(@Q5^J*hEp^>W7G953#Lb#o5xh2^rN$>kxQe=M{+(#(bk3A zeXS`D5kyiwa!W$qm#7@YGZ1l*vt2cBSj+}5@jeB0*<%xeDJsqnU!>omjLTQ$|E|Y5 zT!4d2i?j>q|Nk(h0-T!b8`|Ef1RSN7t>QfavU`bGuV_|%wys(@Mvr&YJ_S8K&`aPZ zKobT*9@+bb@Lwx7W2sh|+Ds`RRAnPA5lIgngITs}-&TY@_T@yT;{#%8^M#C?9yJ)ZhT=|jzaq-;hO>n=?d%!6i zWXVckgA2sh8>|O-s&@#*2wkfVKF3Y2XGe7!hq3+9jr#eERXK^4sYIk%`X2ea|Ak$2RU^b06(dEIln=Q$gI{k0{vE&XQo!$LqWufOX0 z!uyUfW85-!B(Z_wv$D(r8G&ka0G?C?Rt=>;P+4#R@D93) zv4tq-1cOge;@x(E;$_ahR6e6c644O8clGe_(zU1>pBMKM+E-Z@<>RLzsx9`fNZRW;A1%^o;NJJ zcf~HqerCGGzEUhi1-D2B=sS5!7D}j7km8B7>B9@n(n)#u*|Zd!+6w&up%#(LtYuYE z1K3u@v1;k$E)3?w#6^Mse~9RsnSr;k0(2JRmgBEWY>iA#AGrg~Wjs1diYZ zF#IF3M!~_xNwK`Vj51w|zwUGRh?aZlJO%TGL5g4Tj)=?A>aYgn`&@Igck{gSH@!fP z2+N#CL`me0%?{loYWd9qn^z-vKwrQV_qEK)tXFw*@{kJ!+m&T{?VkSHx;+DU3^PUI zd4gp8nR8WHP31*y#?G>!M#-QG->uifHUf;~H$G~tk>)z3w554SZP!S9l!TE0>2LMO z&YX7WH11X=SGiqncpUt)XP_x>M=(=V3I^4`PKQX78~>a;ciRyI*lW<=a#UE!+m9^* zyF}j0ALcc@qR=C=^t}uHPNj>m{hjNeMxv&dMl@>BY0d1VlY8jAMKn&bt~VeXLtQ#u zg(`=c#)Ov5xPu6d8ojLCi*HYRa&y0Ya7hMcLf=a=Ss>Iw9FNg`tqEd!Ov}Y-BwO3! zfKt}CzE=C5hg|z2=5@{lU|J$_84uw#(F3}!@KsUk4J2>?(6HbECrEo^-zn#c#!3%0 zz|yP_u8=a-J<8wGT~1*BB9Aj_yaOJ9|I^hGj}Q zMeNBVEsF+-PT8V#r+kZ>eDb#Es%KW;5*PN(hg2HT9WN?=1X*#GD=$?Oc?H011#JpP z5#y=-?9WH1qqo@unm*k8&yIXo+E!S{{3bBiSx?7gbUMa$4DbJg4KE`UnDgzv(}`k<%>=bOCzT*(z!;);i8*S>KzIwKik-+fC>0Q%RCMe zFepg?X8rEUOn^ZP%bW^`U~oM2LW7;W^?BtDL?}+DEPKsYu0Uf8$!|zpV-h|eD#UR@ z)>fptcU)ey1-w=B87P`a4+XO}2%wA1&%W4s4HD;ILuQs3i17aAx3Fh+5eaBA;q~7D z0bp&(7KJB&<^(AxB$au&oU1)tIavu;&~$jtPHzj7r~CM&QPQYA*xJBcC<4R*NXwa$ zUNbPJt0mhL--is$Q!5sN!AV@<9N(dJ`z>OAU&T}2qe3E5%Bp`e(x;_~QR4q^xLA1zI zz80t2VKr)c!W4W3(2hR*;drpASv6|gGC=XxiptD0XEiBSqc{>J1qT{D_{<#FI|ikDx5$7pT}T`pyHpumd0ivRB_1 z5`>a|sRv(6Bzy)1fVa#PHr&zEBaofGglNHNL4D|8VD3d(Ag{fN*t}Ai?ozVnj(Gn1 zaJw%lRT0E6QXu@Amp_4a-;wPF4*=x=z5_XAw&IQMU3>w;vtv_?H6)8<@64uU`8-l>vlG5zkId-hcyrM%I~GLZSVTwzSF)3geV zx*}dT@3YZHWDUykfF>M4WBL)9ug!)V_FIkWIv;S7W%g)3KkgsTs!Cjb!1T{+BnRh1 z9bA%T;0quKII3m10>0*oL|7!0&9@s5OUW0f1cR)^Lq*Q->-KnA|O%8EI*ni;1IXI=O5cl zanshG=hG#wa|qyoW&Orh^e1l5Sz?I|Wcpua^Pjaz-9u=gl3YX5GZqKqm61dA9^}-4mP5`E+d~&Wt zUjO0dZ)u9B135uR1_2`aS>Gs@YZ?;HR8UTz zxSl?Ml!oX~3*#Z_yziZjKhg)=)^j1N;J9m6y#Lx)*{@iiNEPo%pn@iSJNr+}DqtL2hl;{IZ5t3Q4EgJr|ln-=6zG=~CCS z##_Mv^uXnvGh7tP!^`LNB_74QB~=lxuRQQF#NZ%k0y?1Vku`xr50eynN3o+(l;cF> zxO5dQ-#%EghT@e##Tf#EaX2y@Y&Y+Z-nxS39R!jwaO?u0W(eu+53`7-D=1Bx^ z>xLz7*ub1dEYmZFQUN+zU^G0uX&ByA_v!d^Qf58PyW+D-4Q<(9@)mo5EUFerrz0;? zwrwv%1CI%Z2ntyd(P>6YZ+ii;w>{ea{f^j($e&N&3!+U!MB?g0Ded1s)~Ngou`#Me zr&v{>p#xUyJ48*MLvXQTVVE1K-B(PEH_a8*E zq5?$a1JaA2M*3lx^Dce0^)QtUH9!e(Ef zmHypRBz*{=ww!OuzZyXg_w1kS2TU-?sBX?#SRkZMbVf}AbGLd{Q|4k+PFx;J;#Us+ zH^w3nG@^u}#v5aRHsqfJs6SBZR^v7^Gp%$?0ttD^x53K*Z0iRgT~WG7JdVy^!{lH- zs|IpILQkPYwIvPI_)agdn9lRiPLMgJ!;&1={@e6^p$(t0G;aS~lnn8NUx$WNRVgcU zeVu@3WEx5>oGovVHCo`1tU34-`U6db(;n;uk=zP&tbF+3v%j*61|S8bzH#=A$}^P< zg7D&p7Y-d4^(_TVg`3?xITeG;3Zd@OhEDf^L)_t~)m8i*^ZEgsyDp+{ixwSXB@_n5 zJ#dM?0Ne*?2#k&Qwn{il2A*NpSY-H7Zu&r*=JQ99F{*N`W)41I1$s(hLi<*+iFA28 z#zi7x_efd%fa&*b5TO{mbNiQ z^_8Ha6j5*-V+5FkqZ&%LOecUOhhdJ6fiD1Pj-s{EM<^gZM-n_hwA3Ga zQgra@?|Yp8)vyjGqyreAo*&9r;(k&IFEg&d0LLIeI}MBIb86Humb&gEn9nXogPW&MZeyrh5R#1tVuT?V-DB5wN-1OCLQ zr2v%9E!Gqykk|W#S)f753I)bjj7U+o#!2rCZ2O1?23VnTw9Ql&oL%E4Zq9`>f_ zbB=oMfFx2Pkc#J^2QRPV%ggn1R|?*f?t143iX@M#7hd^S+%72Dy~TTk%$3gsvwMH^ zs4Rr*h6PuJS9MzwVkL7h60oC=OVv^1DhPQlRi3>?1 z8Fa}oRzK_*ZpvteC`8Eo2kj$%EdG0&WiB1NUxsg07g!0uLqtkkjofb7LGWFhZ8-ef z-M>P5i~^ZN&027jB&efURmqAi=ZgvWMq$kAvGnqX2u}!F)|@MojA0wX1jCI1#erw8}J3?Rtx$(0trLZ$#~ z9x{-N0UN?__2N2)4;lDn@S#Lz0%N<=`weJthyok-WDO!DkyaR&M#Q0Tcr6c%%bRi$ zug+QHjD3W}*Rd?Cbbvn=cw3O*^Y?7c1>T;PBv@bK|1UWhKR$33FgWui{+7?(*6m1AS5No`NOpgR-rUM_uAHG6G(VsdL| zV7l;QnKwG5T6KNnYy^}j6M`?$Os;^*CZC%edbMKTOY;g1Gpi}B>?IcWRIT6b^nRk= zAl(4-D?}%1yuwQZ++A4-F@I;aY1$!<>v zX$52=$KFmsWH0rOyxNWB;3$~ilJbJZ$=BdR=yQ<5Kn!`&o9~86$)_-{fogyrn;s;@ zUwe5zO5+XDi5q6ziE@0d?k>p>k_Av9#ez@hSOf#{#}^-1fghAsFbWTrcvKiVuA~Ac zY;qQx`K0qLlP=ii_@({AQcAW|XBq&Xw}8v= zfg&I(DttA>`TmLn}J({Wsf`bt9W^=#Md_fj14jJhFXrlBux`yaWUiuVy+ZGvtPwG>t89`0K z#?Pkj7!A3e2w}EW?&-MB1dIgexs{VGGGw}csau0>dgXSmF>B-k-A14SseAXpp3@N@a)#JQ{izh(UtuQlFv)D|1_!A#)u>0ie%I0-`w64Lw5@IAyZD9o1Ocq)*hJ=# z_Js&!AZzo68CQlVaTjzHijlva$CWs&?Y?m=E`=QfjEn_>uLC$r8IDE3lex+Whfh~< zC)gk%uLQcc#|=wo1SygXC52E`&Ekk6-Yeo^1Z(pNm8tySf zwzBVKD5%g{)D5nR`zumHwHs(2IMpBp)jSjGkvDy&e>x!rg8}L&!b$QlRRuAMY{cJ*~)Tfcn4;4NM?Ec7iS6wb=fR0qte0!$3FcVm+ixl8)+IxKTZ0P@{fBzfDt&wZbFYPJjP4G6;ZEJd>$WK1$ zweIjEJXPA_m!euX-)~yZWruNx5ivrpDLpecNGscL8@;9nHVb1``L{qNEtNnQUf694 zq{2n=UWMLhv5etVu*Z7PZ~%x8Aha~QVvUGSl2PRtqs%!hRalYYL!}hVe$r1hY+L4L z>8^Ym7K%zsmgfyj5bvbP2`2g_M`C32cS4BLUVs_}Ttuo7AMdE$1c%zov3@JKM=Iux zJIr3xL%~R>BJxl#Oi+NNR14o=T--{+{T`^RmtloILCY8TdCjmGtYIJ)Q2Q*JiVcU= zjSt=`@b#y9-DT0nD$3?|qT;Oi6mZ!?GAd;rzzk@~o;=ROR0taWDaBqo7sO-lxk7JuG>o{o$DI(o4 z`35pDMwyQ&XDmlv@95qc0+Eym?_@3FeFeb#Mcu@cB{z;Out1B0+?Di$2Q!a@AtEN>mlqna5+FGJ z#$7QqRyP0W)IWNySc5UDj17^Pu_-@!-QFgBnq^zewosv&)clES@&j3e$496lwGnD$;Kj*}Cy7Yi$L0jGhQ+}}q;M!g`zKRwG`6U;3{?)+ zeQUVo1nvBv@5aGNw@O+^>ru0t2DVZZBd0TvpUB_~`T^UoORccHW__u_lU9$~;V5vw z>^VeqeBy=nRARHDVPUWHx3pFhqjwa^P1!$&gxkR)o4Y?HapkNa?5;!JB-Xu#dw5Z@ z^^7Stp)4$YU|k|q$0(eR+vuUX_g6VK7Ri}Vb5W)N3>S%~L!v6z>Qp2yr6`058T zreOHQzlDTD*i%Btwtf%?y_$)bWXs-#lg0Eiigk_9t8*AxvSbqf0{Cf&ILLdT0{A6bjAJPN%jh3mOxUW41P6IHH zdddrd>wcb*33jZSw3vk?$`3?z5=?@y7?|Nx#p{3Y?#y2}bp|G#Up99XUP{y4%8GeT zE}db*&<;=EC?xc6!N^<`ZB3`**;)8^JD|mZD>23Wpo#@NSc0ea}W0L_{>-wxr$T zX0s3&_Gn2MO#DB)MuWxdagiKvwT2rg>M8nNen;4l5>@hM+OSTa1t&LpZbUC zO^Na?=kh*iN%lRv;0g;AM0I026logtAp~DUj(XbeAtVC?$ay^0Y5kYW_dCe=_wPf( zqF(wykfvbqr{<>|#F8mDkD}l)RGAB}aEumHQV!CH z36dX?!m;AokVPX^92HZ*D=9oT-(vb}h!OGeM^Qpk_0N{rWyr0m2NXfe;w~|_Zk<;& z!cJJ9=t5IW_u85Y*mw25Ja3i|&mRcjR&3D>QB4IA7OPs4*zclZQvC^D^Ta?73vu6I zpiGwmd@+WPWB+;b0oj*!G$5f|f>;2U?sq{w1os%I%p!#b1TT%>agTS7Vo}@$jx25+ z=;k=rP&Q{j6{H0yu^eY~$31o_Z$2IvLWrL=N`0IP*XJZ9RrIzM%K2iz`#AnT?*p`$ ziy+c2S>C>n0!mp!(0~ue#Xh9hP#!0W$7`Q%xC)lu_uvQtSl+hub$`u9rY*cDp~Mr^ zx0#JGhH$eX?GSSm<)B)uK!5kl8gJ~MlhwS!<-vUNn3x!jSG{kq5z@WhUscQJ;yf@2dnfh%X>r%T9S7u&Zy*gOhOZ(%Ldy5TIY&76#452E~~Do6Q+> zxsNChpL|2^hCprx0`rcVlddiRRQF-)JTUp=VmRL#PL2GYv)vvcNKj2VJ9GEPA(u2U z$*NuK;+|@nno8+P;I^M{#owH)3#_Q9D3HTP0T`-O>j$MInxTsQ6ADeYVi%~ZPyw&N z&0`}g#y7OtgPPXGtGU+OM@YK=bd+gSbt6};9m6GsC};dTrjx7tG4-;K*lo7l5`d~i zuC0Lk8R5}1B|9{oZweybL(pjd-@n*CKsF@fuzeDSXLwtkUu^S^44QBk80&cfhxPWl zNduXE^72VoiG&{@$XGz@{LRfN-XPd7SFfYT+|<@Gw!a5GLRGjsdhf)vBc8Gr3I+zo ztMjuKO0V8j5p*A4-<6?4%Ktkqzn2O{y-+Xs{d>&Ivt3*Pw}bvNDFu$hKQhkSOvUp5 zlw*+v$bnga>khuLy`)6}QOQfVi)Ufg4p4Nxv2(J92ChSGd-Kg_J5CBelS@qREkBP*E`huG%lyCS7J|A@p$S-1din9rh6=SWo-!fh5YJ29u>;>h2?^)S{r%}hJO1*KK&dL%>}x5H_2 z+X)1sMV2V2aU%H^5hfpqHmDiFSK=b&bFQVg>mJ|%2*>7pJXK2Mg2EFEJSH)9P;VbQEmwT~tEIA; z(F!TsvvAYQXW<|1woDe{$~0i_(stvdU@CO<3XXAN&Rd7QzmiFNrzr^E`vRX;Wgl)` zTiGSV200eC6oIFTobXWzng{iy5t_)p(y*?OLs##0=OOgOkAlsxk0asN10D4L5%rZ( zS#Dj|h=PtlqI5`iNGc%RZ4lBWEhQn{jdUZ@-5^SL_qT4(^Nsh1!Wlz7 z+}FPLin->R6J)f#%AuA3EsI5w3lvc1JT+>hRdKZdr6M26XdvN$qDQEP4o83Pe5q!> z$<@W_!RnA-g~b%|T_PgC;$pVZ(NRrvGBPs%z(9swf$Hk&rN4i>5qhbszy8*U{h!RD z0tXQ_Mpa+@&Z}|fO%9XFcDuiMG(K!_T z)=0-h?VH`RsX##FV3<1o)RYP+zE8$@0k!En74CrP-7{d9besssf=EjeBQwR%Pcit8 z!dO5T11A~KG2^Fa3IL51z@QPlOu0U$zWdpt|Ligf5aNtVqIA+d>59|K@0!Kh->JW< zMcq^%e?zG>C6{0FKnmHyTbQAr=f9%@9p)c3=PI5!r({{`PJ)g8{Im#>Pz0Q2F* z;b>@Tkc|`hQxtfpfG8m$gdv+|r|YE(DM-%?FN#9&sld)b|G(ZJ2qDmJ@(DHw^_zG6 z6XgH%GiCy`_cMC;N7VH6jg22)gIwoGxQ_z`tY!ft?S^yJ2gw^Sp6Y%re#YYw0Ed&? zTiCo$^a`=Ayc#>CV!0hD2P&9gGN>l=`zbS*ALJ5TP``<1#2+STb(49RC4^9k1!vhu zuof`tn9qB8v1&^z3Vk)giW7RJ51{`G#scOtiqv%clH|T86ODa9Q!N-=CsGwEx9BHS zYAI3iiXmV#e3|mfo&cfBO)sTkkZJX!cHc6&vY54E9x_zVUV>;~vS!i70ei__Y0mUt z+6N1L7ze@s4pdy<=@NXi)T(O9=Mgp(;HC!bL6F~i*4Xo&IQ-s?6KE7bk+^@dfQ!Y+ zt-8BV?>-M$a^_zYiKJ#Z*ohrP-*-72QJbi?qxHik`=*d4w&zGoOS`wXCm|_0ph-bN z5gHk(&o+86^#kjC?*)|4!(7zAzNh;r9;mW7y zAW;%vR@fX|9Jc%Z)_5#Od$|kt?0-5Df?{Y3>>K*}lf=$i)+FUI3xho;V!nq+$_V?y zi!)p4s*wMh-F}LiAcP8T)PfD$P>^NPh0}^xHODo!9@ZH$=nVre`7fxC4lMc6ASf)m z4-`;9f+of4zhi|##E^ri8dw;%!YEsZ!*N$`+o@YHcM)VD5NPcG{1*!z)WXK|t5>Qq zp(K(#Ckw+kh&JaI)y*{eI!~bKf?PEcVg|6kPn5`^NYd{z2M(VIrOlJmQ=5|={psoH zvLmO}K@=(~Dr|CrPDtCZtZ+#0v^AZoRv6*1C?g}o%EmTOp8e|He*zl*L*bIs(tW8P zGU#Sz-m%FGomj8_nGCcTs=$SU!t2#V3^-{3+9dJX=waelzFpn9V=%>Q+rLCep7*a_luP_v$$d=v5;nSz z|C8TVi3a~9*h9Ej&c5C;>El6IoVmO0X@Rf8=}N!2yWJv*?#A9DutmTJQsc;p)EYBF z-Vh(gLqAXV|3!>fI$$@?sBj2c5is-k6Q!o!;3+s&Y1J_}s5shKUQ*KB(}Tsp zz>wr|q%rHd&h*a0B3rLPsIcyc81#I~%IKLgV~2r<1QKGLTvlxFc;{S&{L=1GLq!f-`hc z|FmenxFhg5_E`!Eczt&RURe#4MzD`i4bjp_#SR6w7L8R>5IFrI0DW*nWdnPZrp18$ zqxwo9NWk)L2g0iI;!N~*p_6IWRJ8TomNAqX&_w2nDQTC1O08#|J9N2Lpzkk3!s%J- z7(z4%w(1Z5I;~p0~;%>qLO&D(J*KwOPJJoAwIt9>GgXF@8if zuJRe?zn>a$PX4y?AOY4M0Hn=g_Hz2;YEV*Xc8lbJ&KaRx^0zC2jV+HCh05;{4onsO zApT{v#6;KPixI6zi{*wjPXv`ewnP+om2;jqUpKzLp*f{isQYW^mGGTLFi{It%r;tV z^@pU#?tWtJd3mU&lkg~u8hkeQK`P-SYfc;?)(Xt)Rv?!CsM;4rh!KOK-4fIp3Ule6 z4hfpHZ(nOvyj0Q{Lr)?FXL1nvb_qlC=aYOVW;3I88`JQ~i@|#4`VR0r3m-{F{!lPs zXMqFTZM0lGQD9k9>@j(SQBJ>nZ)yIrk_TkEn*Ps?Qczvn6JtB~a!d}_nTwd}1%5rr znNIn*Em*Syx`c3)fYqnoKE0Ls?@Q?*7xjd|m28OC8Tl@o(o7Qst^>!RI8aNwF?RC= zjsm2YzJO*GNETwixRvloLjss;BNk?f2z#FHyHUh#K+%J>2%#+jddZCP%zAyAFSAB0 zN@{b4fW#<2hQScR2M;!XZa5=0_PKXTG3Z9#;mq|yh1R9E{2MfF+9gTYxLHTbyZ&VE zBn3$STx@9({+MnA?zAAJrWz>t#_&3dV)R9fAR1jh`>$`TTwH%*^gI{f*TCT)6jzXw z4-vgdhzNcsm($zsLo*FB13+u!R9q z1wde1DO)jEht-~yp(-2??eqSravlq^NsgUb!&gggGN8tuv$U{v21{>j`I}`JiRLh& z&$LRE1F*9zDNu1hWTrj5>rWbGPP3k}p^R$azkd2^6E*l~YuN zxiBa-Abvs+yVwQke|6%rd&zP_2&cOE3C>(gCG*FqQYaLmyGFA$uc?QhILilX-sfY2 zDlmsDi4`<-V8OCFXBF6Vpft-;(F=_1$XllAlHQ;WOTa-@YOqcid}#C^yfRRjyIuVL zXEDgU6{ySO$HcdQG{p%d`h_LTe?&?|%?NvkH=OJD_Yul4B2iLtE^&w<6it=YSDo_6*p9Y_aS>3RU^+v|ORE7w8OTjkKmtzyYM9-hS%NFKy#_GB z(oLEfpQz^8K6Jr>E5cS=jQl@=3~BRE;b8#Fhe`HGQ6m=26XbyD1JbwV!4PredJ~so zVXNN?%qRmB*Chl0sp02{s?8iC!JOA9dYcizd%&1?mc4~@jb|5HzBs<3d#pwHE~Ig= z^;`FLHmp`bfq#rKU zUrHHPCd@ed?p$~S<2ZL}Sko`fgYh`1p_Tbs6pPx;r8Y8a(Ahu&wvK=|&WpbH>OdHL z$qBW_z-(os=h$ZR1^Ce#=LnGwjK+bU96w__A`ChFEQett?ndMC`t-G_CCcxXf7a z;aElA;H6&Fs}!3(Lkr0-QTQcuk&8saVY+w~G*-l!{ z{WWwlQG;HZ?3&C=_ILQn<^E(N+{dRi8xLtRd3>LCPOX0vW_a=dppLc6TulxF1X)+> zjiDJ;hYW&%l&{aT_F&9y<1{%v7X2zX!BIQg<|;8|ixTcKI8K4Qk!npX`RiXkTmp5M zrto@#p;?LTbT_er{Z3YFHfx(E*|D;Ij0fP{t_%nC8)dJ$T}0jlp{+foQz**Aytnl2 z7V5?MZAQ-X$DQ@W66?AAZ-;E3!YhN=EB1HXWiPoJbS=5_ab;pOsr)z%`|}Jl!1e z1rm^V`@OK}Gnv(n8~@F0=!e2oKBREUP4hOj%HsR?1$FfHgurYb1aaSEBr*U#7``rs zklz7%Jz}Pk6l~U;@&`&fO&m1xOuj7!$p|A_y<~q}5VkhpFff-r1Yj>qETB~eskf28 zk^jEpeIDcQ)8EUlKTQO)IC?1bSTa(9LGf3~GqNuG$Mw2I3R0uxv&jSk@y(R0KK@}~ zb%b~Oyk@G_+~E@}uj?#Szjk0UL6&ve2Uy*3UELO|)6}xZj5p&!wqG^{&@p{1I%$iVK(TY$Jd_tk&U-C(h*yPFE6jq=MB0)|A z69ZbrV+T34(O8`9c&Hc*z||e8=bf<5Q&NX80DC~$PV?rq6mi6CYmWak`XI!}P132= z9|XhCvY#9Zs^Z_?l8kuyPAo4PUyl1AElRqViLJ5N2q@{eWP zH4fS}K$F1c^9aKUADAi}?wi&K3jTlQZDYAZnz-Gr4ay@P8H&>HYMuRm1Rbg0PycOM z*g)w!npqK>HHmva+PC_PI+YL!fOdB>g4mQuFlmw54KzT;RFCvr1o3da^iH*uOsA`O zbjc=_D|wLxAuneQn1ylEHD%xaH;uM^yR((~Q)EAPWzfQ+9 z8y5vNNFJD-gDl3y(?#*W4vA_DkJb=FxP2536wry-;`z{ z{G^a7`Jyqrue*=_P#pyW_OMc6t4edc46(+ZJ{`?Cb$+tWUBo%Ekb75v4!Aik=G$6~ z{H0j${mJo9K}i_^XXO=lFa^cZ;tv8Cxrn3G5Qud4wxgk2=EhIfFBJ)nRR;PPZWBHe z!aCck(iJL1X70eFIK_}VCCuYTT@SgW@(l;RnN+Faq~qvJLo+Z)C@(y#VrSIFFmi+6 zR3vEpibk`44nrZ>T3*6F>j0~ojc?oY*@R2o_*O3nTGSNq`+nhJHF*^qC|582Eh$MkyY_N&vU9 z;bS%XKhG1+O0l?9uWOY_K7Fw8<(R;9m(@e`S7_Y52{wnN3uv4h62LwZPC5$*1XTnk!$<{(Ixe|mS|I&XjUoIjC-BGoH8QL_ z%_AP3C=|2OIww*8T<-ZQ z0Yan_)+_!jiA&c;$2Uw>G=jfEtWc#C)4*}UvqeQaso^8#lmT?1dTaUMg4cJ41rP$* zKU~=TEXn>+zxSRu;LvMld;!8~7}pDgDgZRbKr@zrWuF>OjW@$z&U5I63Ip_V<&Cwx z##~98ZxenY+D*!)>3+bG{g?|@@aI8X(hi2iDZ6f&6>;6oLYS-b!_OOzMjt^x6L8M5 z1*|=P4}L;7yYmhT>MVsX4ic^~0Mpbtczj2)5Id*)Hb`YLl)q+VrrHYcn2ew3wo%mI zOJj8`;V5M|x?7!j;`FhmquY)luF^b7u4es4J}U5hm7c6`vx1ukQ>qqH?0}`1N`eMM_SSjYO4vc<04;g|hU-Sy!E8YtFo8#o{QCG62rqILTPhYa@R%^^i9^kCYw^Vd%YUPwxfhlmbPKjY?wJ^+0Xu^(11w95t2c--0rT4t-)MuFi7 zCFmrx3+3PgDu?G9UZFmNEr7b?ONO({&m4=p_@*C&NE+?)Za(U|oPlzjh_8v-22JCT z-T*Zc*i#4Ok5|t1sU!XH2@3;PQv?1m6UedusN1&i6uRV)KZRZE>!cGFOdQ5r^OyD8 z`)w&KW*bfhvQ^)6SWE`D%k9AzdRRWEmP=_27Hx`C`jB3aP&qja(bWiZCit?1o#aO^_Nfr;XBt%$(&5Z!|NVdgl?AIc@^a#FgJKy}Zp;JWp)w)VdWm{#)c|XAmYS-5qnaDfDVEb(6fbl53zPi7 zI=!!EyUW=rX9yM^I5oj|(bQxp2(g?{@q7v+c^d{zsMlPvJLe0qBHjDrNwpu@Q0|<>ku>RZqK4URZxEAH&rc;z~m{WRWLQf(h zm5ZtvIT;$D&|9%H2&?;uj%KW*frgs-R=;up!gCeHgK&7oY@$Sdc5dOi)M;*4R%M%_ zQCM;^)6L36>u9zVYvRSNiAN=VST~5iUES+1eDv)z)&uO9zVDhoJWK7=HSQ}>qn&Yk zynHPFtK4*u+jQv0=?^`YmzI{6y|Qway>`hQzE%_=Ok)-E`P^0u>q&Ys8obG(#=DpO zj1dKrAMce*)R=sBGG&agG_zT?K?_C~ef#c-W!tO>d=W7e*`@9#>5a1@JawO=Ki^Tl zH-GuAlD@aaB;LneF8@2SCHeK$!YR`G0#BV{ z8{9XstXE(1oWr*IcqJ=U zVWOl_A5EEb%*`4%yRZGGhtdT3eXWht?udV3(b1x&>9B=hsB7$uCASzSse+|BV{8Ch zvY~`Cnx^L*9ycNPXHTB^A$Fo~dG!=7M3Tb0OShO`YCo|JKj4m}pSXj9HO1;pL5K72}wLD+!N)T2@mA}-Z>y@)R zELP91`7Q%J1SoI)z2v}2COy4{w9`Oz<%h%X`8H=U8oga6(}U@SHGTe@@lt_{&ifeE z$S>A$+QM94SkKSiaJRX@yfuf@UL(C;v^B_gP&h+jhrFC3`-l6Fj&jf~R@>YQuJ2|~InVB1XkW;vEU_!;&gGV9_Y^&1 z`YQ4Ank^<49SKgqXs<0QcFKjhUht5q9`h7?ELpcBcE)fAq#k!1rz+V}C%iFuH{}(A zE=jr4M9;=n`_d&SrPj|=HK+x*pPYRol(bUIAd7eA$qqw@#|h?qWq1_vFFWf_-1yMR zk>qoTo2T9zQh4kUu@k7Jd#O3*@BffWrfCOGC|6$1fD11`6RDXZ`oq#QXvs`PhVm^jO^+c zOyRG&ZQl`B#G&r&PU%^@OXBFa)xOm~v!a}jKWlzX?mDufvf$TcdjI^v7WPc=!B_iX z+gu+Lp+=Yilf=OOkNl-n<(4?OE)h=sZ+z?PE!520q@ma$Egk={OKS0Z- z+CS_Z{n#P%wEO4iAR(;YPOQC4H^~rr_E5?54zDu?%Jjoe_1?bk^V#vG&wo9$IG*r1s=@|H_NL5zYwX z)Tm?z_pf<@a8^;tHv8r=$L6@<3q8lnusBc#dK5Q33B9DxR}NmaFgyt@2`&Pn$_}g$CRc$BT>C%-UUDc*VB8BY>3o zK!?S&1Tr~OXjM*M1`X#ZGHl$hxyfT_X)v%Ws_x|?h%GD-)PjSPR;*_D zW9&*0D_c0d`IU;%%A2eStKU(l?O}WF5RV%tjZ0GVd)&%!0h^spl$L+nT`~wwIQ+Qw7Md4MO zVo)50X06Tag3HNXYfS9$JG@!5b5);O-uzHDP`Sdndj3-CmUf;_f2mlXBJ)J)y61(* zyLxx5X9GORd-d05sqOjWTGf(aUg85p6%hFEd5CII>tv`d*bExhCAO2(3Njy5S43BY z{aoto?COuFe=44sM!?f;Y^!WnfXWg$^x1iu2&GL%+86bk+9ygHLE&!!^p6=((wu_Z zdrA0j#G2UG-9;`v>TMq6kiLQR(~YI0Om#>`QP&Q9tXQ=T(?9aM@DLWdd*yUqKFXhs z@ilQBcTMrJ0`*%9|L7>qZ}6@26bXA{sev1$i@C2CsJVUlVrGu?NR53HINKF&M27J} z*+q5CSeIB{iQ}j@X6a8nH!-8+DeYaKm{k*a49$_EQCf4I(PK~ZzfW;{{`6vpb+BZ} z){prO)04eZ{F;o1?CVeD1cW|FE5y)WJX)nM$H2iOzlb^My(0=Lhpx&O^WXc^sF{PiKStvgTV)7sF*y(3Wf5?U9B1iK zem`Lodv4AX@{SX)bn2IwPH4>^?dFdU@Odt+9k@MfPVi~C61+z)Rb!s7Cfz}QfR0vA z5tLH<9Ib}PyLQ*fElTjGdR-Z9I}NnY|r zt69YIgN%wvD%CmxJ4z0}T3>La_8z0_mMZ>8Vs49+K1#}B8RqA1CDWh+HB7F|?YIy? z$ZsI!>S+f{{-TZhR%H^%rnIoB2fW?;QJN2}^{qd&gd#N#i1~2KUN={F-qjAN$#c4~ z)EyFaEggOGm;2)9e!G=qYet8DTO5J9t4Vg5(8uqIv?k?AK6Fgq8z&~K-7#ZdDI}+w zpiLAX*SuEgbc($?wlCYU_)v=97ww?H@MUMonhw_%k|vbtW`bMB%RU93Gd6$L?owy0 z>s4tzd**ZBTO;(g(KVOzK6AuuffPUIo|!T;Rj9$B!9l^f4eb_oiLwTYP@jn9jR!`Z zs&9x~-PK6OkcqbJN^LltZ($KlQ`tquMf#h%WiE7J3L_(laTEJScl&0tJ`EKs$o*&aMO$Ph6 z%if-~^pgto2#byT>?L;nNp9qh`uG)ZR7Q7mR|joI?CQG{jeL?zcy-DOh6!zO=3Z)M zs@xFA?F?^wD3eXbp`oRorjntmh?o9@P_j?ac)@ad<{FQ}MXY!IoZP(g;irsdJg9j- zBNt*-Z-+MoHVo^_tO@+pygBkU=fPLTe6&sEZ+nWwY3m~*!IEAw&7nk|-dOAxCxfAn z<;vul+htG;4bqV(-MEmIxWC>`@j4mk4*!)dqa`MX$}FlY0)=xnY{<=LHQzEA&%4Ch8X4n{TA%3z}BS7k2U@9ybpO|0VQdr|em@WtU# z^I+I>)M}Xmr|^a!0`CON@W|t-CElAOXK#xxpF401}lUqkYY&hJEUk^viI*VxLDncTovqdXpfDRMElSo8EV75k#~>7 z$J=iuQFo-N`^GPi1nI<|nr9U+9hTP!3<6YMBzoEsV}`P{79`ZBR~0Fh%f;e9y)Agt zRW-|wZOKkX?Q3&m{!N96Vs`Rg*Ap359_ZAsaABiK8Lm7U`vnfFJMVh<0z#Q) znpC&_){H^7s9d!(xFBen4bHA>SbZ0Byag4f=zWIpa)_Rjw4O5U1tCvl!@%eP9^ zceXm_VhGQF)=Ja_=P+rP(ljBH5AJW~m9o}H;%DBfU^+A%^}dTHjXm_BnT!}ez|S8C zlPrlTrVG=9w3Cc1(rc387X__3tx_^}_yi_8PSZ~<-S)_IT5Cl<{r&l0D=KMf{-JI{ zivl%;+aXm4;I(KPa#^_f202oym2|SvNVCr^kxsHFozQIBzZMSVGJ%zs!bbOvjVTgH zMh(T)jE^;qEiD_GLAA2@^S2%Xo>i=^g}0~&{p+WuLsYfcgci{@*%uXenvT||b}eh2 zc8!l&eio-2Q$6BEzP&}(_~HCEqJK!tb`X3g*#D~`;U3R~#)M>Gda|=E@|)(~hfMsk zRy{`fG9B}yjp;}E@*~-1*~!vosyT>S=6kVLab?)oDDC-uqcDQ_6C_*ls<#mor{Xv9RrHmU(04Pk2Z@1R9m;!Z&w zBMCa5Z1DSA{|nCinW7kmfUwnVAM2)MDxPnKzoZ7=RL!p-yWhRIQFG?d_CeuxcXfIu zt#>25PlKPs=FgiXIwkrizt`9~WIHM4O66PgTosg!>*)ukSLRM*TQF4meab`6o4@g@ zWAH&z%-6WQ(yb1tcd7{7q`!ZUE_Nq#KP))LoySAEo$<-P_xu9WjaXLg6Ir0Ngc2)1?ni< zq~EmkEh;WOt{aLw<2x}6rZ-)fLbj~1d@Pu#m}<2t=0ya48|?x8Yy~M*baWi(Nr3|4 z+1;%^T}1t@wURDGBTI^Jo*5aZvJzJzyesfE!pDTZ`&tt!+m2oKCt^qa5KV4X#H&;#b zgJga+aH!{aj%QWwk=sgjw^U`q*n(9 zy)b?-&ON6qDlLg5H?Jz8ghr(;l;!fXjciAh^r;LJvmo~EZL%-Khfr$072JBa8N}?V z(_ikYHhi2HTC`L&og|9_2!y$5;AoVl`7b;3wQ^hAVcu%YyrQfUSJp5MjT`_m(s_D2G(h1VDxpayHHY&Wru zg|{s1=oKHj)bltV$3U)U7*H$AT&OuZh@Zu6^z8N2R3hRzHq}k#`|)A63oz1 z!uS812$2v=KwVT_FK1J{ zFrW;5ZExfb7=H@ac>bJcTG2>*;~$y;nSW=qWq0b=+-thZ)(Xn0{suWO{4cRRWcXCd zj3Q`|L(@lI&{GTCl8lq&JO7*LrWVPXjb^v48&VU*66)puON~c*KcWIEYu*obtSPhxS>P(-w}Tzk#YeEqDsz}TWo(Gt%{&Q9z+z*Ly@a;8)QqLzZ#IKp+3mrQyG~G zJ9gS-Ii#ywIaR6m_BrN2ypmd?vam}!A8`lk;wBjS` z6HnGfj>U5F!oSLQW-e>f;$Cs6(=*yUUc-9UGv>L}7 zS4HBb_GTuuKUSVDPL(u7N<1;$@9$iaW6~c_iVsO-K?&WXnG6Z6SI4_F6gtW9sx?ia z{_fNA0=E%^<)XwDrP5GzDVf$*w74+MEF1o#iqWhHOkARa-nwV*>@ij$KMWMdu*uBCZI9qp9ti%2;JC_8Z`fAaO2M*igwa5cCxb zdii_~Z+=did+2fKZG4&9G~$5zR4eKHA*tV7-cU1f@K4fv97mBDLyU`o}rH>)ru?qE|vPm)k*+1~scvwYN&bjTTN*5aDktZMX0X~{}p!Z*cl^R?qV zPJ*#KTMrw#QhK_T6cO;`f4$FB>uV%{sD@mp6;?m@j_{|2XpyPYqDhOY}V_~HtI@=MhQp91>JdEZyh|@wejbSy`QQWmDbyI_(NO zCwHfO-?hxUev&T7dQ1>~k0u}gU!Rj9X8Nzsfo8b5W%OqDM0VAE7u-q%t5wntfR>2S z2cgM<7U_nTv{u^BG(s~0N!M@XTjH}meSt41l^XlnUd7j{YMxA&qe73zqA>qlIkrxX ziq*KqC2>aypSyr`A}H7$f6~qkM|WZuBZ56r9%@X;e8Etq%h+z*JjR~S(9;ufmE(g? z+i2C|$uPY%D4#jVqkX>dQ&~ zuveEkre%9FV5YHHYC5_;Fxg1_0HOW&u(wi%u5Uyq6y#mBv>Dh&&@q|HR+_-uftgH* zW_{;9yr7UI=Aqq5H~wx)CQhl80`Nz^!hs5D?mdR=u&;59`Ju55L+YAxngh4{TV_Ue z-u%Lm-B>dFt(j+t_u!+A(gfYFfkV>?Qv_rNFaQ!fs*Bxjij~E&jMk3F-GTnN^md5b zOzNOvZgUJp^?IV)*j$^Qd3bY4tQ!w6#{=`;{H8^vzzn*tU-J{$>i*dGycN7j?ns`o zR|99*K|v-yKl$vbI`6}^#4KA1sboD{6L!F!7`fK0TBrM6r`wxR?+B7KkBkz~#nDxr z9pv_YaVe0W!#>+Y1_JHME^7|D=^ z<6d2G*FlQQkvYhoxXtgom30?$VsPKj;x#+rx=h<6??$L;`ILy(&84TbCJ=EiU(V!; z`6^>}U3YFWSPnNb_dDb2uD|3qM(9Q!^ao&x`{$3J7SOqDC#7*YrK8?1+Dw zJ!6if+Q?^ho^ne#I1Hc?;MF##_PA>O6j+W4ZyXAefQ)+<&q9<__<^I!WNL^T*{9i` zv1Rx3TRVQmCRAM=@NLmfkNMAFEf{X6In{+CjUhdycgatQfa$pAuDn#VBct-`>GU^q z=|)yYQ2#EOvs==~{YYESeX812uuv<*ZNLg8um|^1({4w{0zjvARL9?Rq8w>>xfMKR zg5-S&lF3=_(Bk-`HBA(ix-Kh>^wcrjq2<|~u7%iKYq`}-)Y0$^FoyTj`acUf-BA#D z*^5G78kfY2JMK_%xz`^(f9J}06g;iQy#EA)(wcTFr0n%s>bW1lDp}>B3Be>^zsP;= z`#h#`|8A!awa!p!w#Uek4|4>w_cMF51Fyj2Ht)r=q4g?qJF-wbid8Zd<@*^Tr*mPO z?&hA#wpq$1O4#yk(HY%?Qzy)}2{+D(wccPFBn;t_Pm~5uZ%-}A_BTjAj{K2X?eg{H z{>=)k#?#OHMPXX=Q@V2oQh{_dwI2?qg6CN6&*hi0>{zq59=;``ruu;tm`VV)D%-6c zYi!LUNfRU}Xv9|H@S^ZC;H~}t7@6K|wUd@=x5Y_}{gw{pt&iKc4HtHO0NSLs@G2e+ zbS}JfL(3yp-!QycbLRp9>~Ck*@09Jo9M{q}=Ke^@%|v*6n*!R3)3HU+RkJR#eP&?t ztyhx`fv_H0(g&l`y$wHr>LiS~MpsRCO>+3X&OMi+UkINBG?P8bzdA5N+U zjk6)sr#A1PwiI9eIV6n|%Lw@wo_oM~J<5kc;a_(`=pjq|D_jlAvBA#~(e+FNJ>NC_ ziF$(Ng4+j&q>C3f0uWc*YWj-+?E@ySxBdxiJjE5)nn9-QnJ+uIzeweGlSy7%-7bL< z&RVNj0e3;C!tz5p4$0-yc+o*Fo5*_jeJI;h?B|@jD}GEG3l%5#@Je=}QCL$)(`|?8 zwYLt0xeJ;%AvI{PZ}6rPnx((_P9m(SQ<@)UBXFxUVS-xUkbscz4O4p-`=t8#!^X!*4gzZu zT{yqyW{+kwguK`v(1<4*x^Jh7_ri5Bi>yc2EvQ-ox~QPr`ia(Je|YVKl6$`xOm zL(S62z_<6&N2KL$uHo5S+}P_5hkRZ?vUkePSyvccdueZ%M$l^gwz*f8{ecqOnx&JL zLTDBQ_`msip|PTO_pPZ$BgWCVWi6O8F^lOA$NNfi=vaF~6R_;aeC|YC0PRnJ!*6X! z*vzBMv9o4;vu_W@ipMN_NO%(OJ0Wj+n%xGsvn;1?QeTJZdS|Ft|ty$5RW(!-0e zVqY@=)Bgw0lfA+Zpiwq0yFf(vdk*M`0q*bg4p;H3doQIttHz!~O{YoLexY+wovDFB z>HQ3jzW8@$GakuV<_Nl_J1D4Y|rY|KWUP^@9ZU0U5 z&5cM~XrZ%en{8GDDme_x)5Xl8bwGrK`>I~C3PUb`Eat`Q$WX2`t|WfRwRP>%4rJPr zd%2mhGVFabb?2MY?&p=r~M@uSE?->!)FvQ)wqA_S-Rx$UsAc2Lb{Ew;+LNqCmZ zuiUjTwUnK*L(a$#9fp}aoE-vSkX`JN?!Tq>fbq{un}kViMiG>06L%)dwVm!{V*xug91*v`Y<53{(B zQNn*N4VI}n2(EpLHfN$U$=T9QG>?gsm@P+^i876 z76d}vZ>E*m0lnmK9iQK1){#AOh1Ou@NSa66zaANiJyKGKyLSXgVmD4+`sf>Y_lSh> z-3B1k>@ck6o{OXvi#>%KMZUsgCU>oSyvLT#wojwKYJP*(krwmTnj%Op8I%dBKK#$lH2EB>*azagVMHscLSQNn_&s|4+gAn!Gfv9PH@o=8>Pp7Qh;E$z#w_ob|xm! zrv17L8Yw_m)3J@>4<83ALb5K)G=QpD9+L~mJGgkb9|7&MX1O9y$`s-{F{#p~@vE%k zF{>GU3DXm3#u3wqdX85bxFQdwqm1_yh~h0WH5rOnAx_XxIOxAIz75S&sg)B{a#y>U zp$WEg;!16@P{bp~AlhE8WDp$D$O(dK$Q`8JwI97;V-qo9;Go4<`&Rf?w#8v{m8fS}>w@Oc>Fxe&g(WB` zZ#74>*k>|_Ks`Az);ov|z>28@JEk>y|LL9KyqS}>T^0mjZ|c^dd5M_x_1Bx7i~Rh; zV~LDJn}Ppm&Y#mY=gEJN4PO|Ur}g~@InDgIh)JH$E6icX!aGFfMASeAa-6n+YCrJv z7qm~`>lHii0ig4-Ay61X!b^yViap9B*=u%OnE(=h|N=X4GJT!%_RJ@Pkx6`7v^6|(bJJn@^?*0jnkBa9% z-fBpb0su3B>)6uOkc>`}8ib#F@c%$R<6(2>6ZMEr(hZ1ndxPAWIBRIr*LG2$Q2qK}b^XE@ zPh?*ALJ%U&a&zA*nIr(wc^nQlK#dx-LU6|j$@M;yjX6nJtT*O-h#m68J{#UhJLci^ zGBDDPv^goh4n>U;WTeAFOk?V6&x^Kug+Rxhpr#=qIDs?YO3DOdaqxFoM4~~zIh_%P z^Q6l+m{oA@yn7D`8wzPc#JxlCu+}o2{|l(!7{@Re*$LTghkdd~F{s&nmYFPFp>xpj zT>S_vG{9QvKZ>JJ0RT4MK}F9@BlbA}F_y4faQQoXM>tU2Kh*w6sq^03`H5$_3wmQ| z%#L%@!7L$OAATyt+*snC)HOdKhVT&#sObmqj%S*TgLZ=hSKptlI+xFw{~r60fTYFK zSRF8Gj!uaH&yHp${N^mLd?R1U5%P&f02BkT1T-o^Ql2MIPf~o%?{My#eFT&{1Er7b z3pOfQ%UzdcE2g~XI@55a4A9DgeS*8hb;dO&o7xB4H~gL{o#Ki-V;Y8Nq%3kccb%(3 zGm(@S`H9C<@|kwdRi+Oekr-oc(ks2>6XNY#bvKa^e7^dXBb3NT%9j7Ny7H2sW&pQd zN{PtN+i%`rNwm(q-(|vO75u>9Nr-k3EyVn6kVs=DcIEETsV#0Qnobx(X_W5 z7aX?E{~#3-B{LZfv(F6nwMSh1BUz%efj>no_0<`T<~502Ds5cZ=vhS2(9j~=B~L4t zvy@|Zr5Ek+c?2b#-y?`wp3NT0P6Z(^(r{91><$gc0<+R%?^DwIt_-hCzwBxVtWCbd z9|##L5kaLScHnO^W5e#M9MJ0CdZ=cKip!pByOPFZ@bmq)$X6tu*w1ps;tfttY5jzoroH|mBmH$s3JvA=(Eb>K7l-<;8|RYoXsEZe@69zZy#vB~YMFAgq6s?JFu@~V)>TL4 z_w4tJ5|i}UJF!9{_pD-!%e?75mBR}a27YG(lCaxcLv%Nq)K}B8{H_2nhe)M$b-zWh zW?ugEC-BDr;-Gw6Hb%}$@Los+(hCRcYV`WkSd!i3=3yhiTf-U zC}yw8Ss+-a`s33Qsz3ez<7+oLK+Z4_%R1LwGl($=gl`; zGdqYq+{@*O7%UZE1gGawQyV{Cc)ob^H%^LQ=4QHoA{dOsJ4<5oKKyjx^xP(r#^mGs zdn6fezAuN=zoI)2Z&0qM*OWdmI**wmBj;{}|jMK&swvo(-y|I}8h`Bf@I+jT}4X za(;DO2Nxv*Kq$)wO7%`AR^O9A@Q5Sf28E2Xr7 z{!&WpAU-5$7$T#hvhtuaR2Bg!8%7)-0Tw~9rk)sz+_>rM9pf#M8RjdYrSYS5%wh#Uu<@(W)^u9p7Y$;nl%2iuL zxpi1)DY-mLATqysY4tlnX$}dge)EvYq%284U=bG=H%^f9mcft#%;~t{nBynCsI62Lw;Z*^S&J#jfxaCS0O_XG(|1 z^jmoFAUH$*PWZR#2yZ!QIpIfzWxa!9*@&9*7PGic`&I3E@%5}HsfV+&`M{4%)^`J2 z9#qGalLNOwROhpF=nMC=2Cp|u=lp#~fTU!{M3^vZ-{<|44^JN;0PAuapTJ)YURulN zQ|*tBUnP0*tMe9x%f1w)57wW|kYyT<-95(2ds>T(w4;-}&6@G&i!Cz&F780-|DVh+ zWaUD*6rCSG^{@1yN4-^=4|KxOYN%A5mRG49kKfub*89`tmn8vh=S zR8o8daN`8>SR1feRu<;&RJoOO{#Lcg3!<-=4WgGek;@z|&PzFYVzpfQV+v*gor=bk z^jtapRfP}ZQRd1QsmwQ@O6v72W!Zaco2ZvS6u{|IoVKUgz;eyo{?OX<5(s(3ZsJ=$ zz|n9a3e0*5Nq&$@ke{rBoGg;~FeZ)JT+lM3=p)2f2uA4^n>l4I(6aB8lnU>7#3<6m z$k2R(V}xlkR122Fc6P(Oz;k(0^<9NBO$EZ9JURie8Sh3C8roM|FuptBzS_Tyc8bpc zwX%FCfmj1MZWJPIGg|;gj(;8dxtwTB1ogq_kzU|{tXPaw@n`sn(P3T?QkzJ^F*6hT z0tcJ&F@vZ%1tbRQH;(~xL_q>ft||R*B%;evmJCMOa-@$cp=0_2tYvOj%GZ>)6ibx? z2{;~`&>$lzmMFsRz_&NvG7C%Wyf7XM4vEvY(AGCJH5@j_RcPB~Y?TG#+_SFRp=3%bBncrTLsBC1 zR0tW8G$>Q%WXe!7B|;_h6lF}N3Xyqu*Y0~i&;7jb@1NiM?|a;iqx)O8&v0FPpZh%5 zxz^g(R;aS382T6ASag_%nT-+b^bJVSX>JjY5?+tfIN%=)MyCVYXekV;=SMZt;D*7FFPE|Qt)9*0S%ad~j&HJk3HLKOH%E=#-@=4PI{D(m9-_lJEjS35% z{ATC9^A^Wq`w7*g6}K{3S+=$5eZDp<%p;(Ve#OKgE(N* z#+N3h31@^xEv}SIpH%4Gi|rW;^YH`mNA@&f1vd`6UgS@Zw;0PYoL%mcuj!Ci(8}ax z2#EouP3#XzmXTuvesbq+PQM;G!W7Q@h*5sIt%Xi-*RC}uPMlCtQ}d4F6}zW(P-B+{ z;m3Cz!2?`iV1U33(Jm(R3@_=%OAHoI4^#D<_4&U4w9~}$V@mQjoukv;YeKwo+HM$r zX<2tA-S|Ue${p-j_*VVxt&1-6Ug0ZCon{p;?&xiDF)&K-X;2uYFr8M|Kg?M;)nP?2 z8jONCh0Pl?aUa1HQ2r14Qx(t)4}vWuL7@sfhB|%j$2B=wWvB<*0VM+ASxaf&BqyJ$_=Q)9kQ?Duv+1~Rg%hIsoyg5SUT5FGQ9 z^SN7L6|HN|*bP~F(a`pB@(oeI1-K@H0-ppfCsw{L*!tk9kcG@;I1z~YuY8EXZhAC0 z`5wQk%Xhs6rny_w=uI%k0b;$mU#d3-y5(cRLxol6|7j#E&`4fh zIJe7;4u*tp&rQ?ZhF`ZThIn!fGSyMT{%y3F@JDC!3r*dSGKi3I>>+OhTg23B;|!dh z_r{_O$MtvJvQpo0T5#4RQQJLT%2AFM&(lzbwbpsnWH}`G zz8tqnH3FGL!Y04qtKo&!j9VHjE0b-NGxf&DC%sdHtel<%e12cB z>H-=sC7CnXs}izA!gjU9y$w5jr$<`_Yr1p7YOyL%BcxHF-fv;S(Rq zFK6PN)c1!N;^neBUdc^C)w`t+J}OO~_{ScSLy0cngb2}uo!X8OQ=1O`O7_Y+UP0u6 zm^_!CqH?SPE|#%M#!AMqN80G=7?IwNO}3-gjdRhp_)e1tns0E+HfQ%AMeJU{47?t^ z%EVdx{#^e|j7#)yes+zle{p$kC>TgP`*ucIhYyIxgUYn+C*;;4cMX^fhMFw56-v|GD{4UzS^A|17AT+jw2hR;Sr*{Wj zOWQW_RFfX@@%jYyR*Gp=+JuKU|G2@K($_~6wCY7JH)wvjUiV+x!-DvR6?KRffaYh6AiFrdo( zAShwoB|+yO_c4TllON@o)fdg3_ zvbQLm^x#^!iCtc4CKBV9Z#Yk7bk7yd`JJSByOsI?7xm6`C6mh~Ds~wI{$FDYvc5HK z;B>RoayFP3_(}5I+GH^bi>h?fK}eMqPbk8PzBwYm7K(xREkjc0?{mGADH?W1B2=yxmOt*oV?CE21xeA&>zN?p{9=g6ilV(%G4AHIL+A7xcIugBG3 zOmFjrIzJ@oUBq!}!>+obs`9l&9Wh*+PL=!n;8fSgEzBFDIMZ{ZUluw1n$%g!Z!|gQ z7$Y?1m|-KeT58!7r|(dGn_}Or?ZHO4VYr~~cjA1eLwsSS;17Z8lY33SOk>9qw}@E% zpp#dhSa0b4$W^)O$4ZG?1H&2q_F3D+3RZ^zpQq`}yOsBu9Eqk->fih9R1EwY;^+5a zO&{M;jh`|7yb*7j`$O;1?qB>St|h(exKB`g=eB=l7n5}kOoy_>CM^~r&hVw0bRA+zb$Ad{2)JcnL zO19~q?V8lducXJQtXT2Po9c>#jMw`;eCJWll^B+HJmcSFO9RB!W7!u#S;_Y2OZ5}A zo4%PN9rw}Y-4~z-Iq#?DFaG+=dhPW}8411dcBO^#>CB>(iRD+pzy1{NS9sDrWYqT7 z)AyIMf`V4mTK`9h3(k~~@IE{whGLoDeAhS;RkiH!(6%kYV-MaM^GWgOL&S{d=3X-%fr0X>0OsA9=Jh-ZN=i@h;8C5tOPh6bEl)=&J{2{q zs*|C2jEOoWH<@C%5m0AarsXyyg8=)3o4;jxuHLu)mEVcnhm7142|4O-LCl~zR+2eM z>viw>J>yUGPaZy^rKr@XD%om_a_x{6Ei8QIJ65BsekK1+O6Z_m+Jb&hpJ`B4dEkog z)ii~Xwgb9+JkJK%#6r16!t`I2eR?WkkbG{9%z{gd%c1ENNdltcX6*}_w7wEnx-Z^t zlqnNG#c)9H0JV~kTtvc$Ih$c&UgcEtmYBd3K}vR(Ii(p`8G)q_{gXL2^6KSXD%GK{z>P;B z01d*;2CDU{tF`Q(S^m=?RI3Pz^4GCSRoSk+tsqtXfO3fY!THN2&JSPo95nURK4RD? zc^Uuwu}fKjnahN4#af##*DeQogUh;;_l$kHYISR*m9+FpifVUy+gS5zG?X#_lmj!n z*wERVqOvkvXLtF2ePdRwKr!LtiNVF+W)-f$6B0$P|Ineld3HK=tkuw?Cn?(f?UVi2 zKBVesRjA3>g&d*s7ZAdR&@Y$1cAHtbj>eb0ryG@TKc%cgvNPB>ZIO&o@7?#NaF7$DMZJ|eSINepGagcU-`p22hpjT<6Lsjn z%l7`mhqw9H2F8}=M~`)Uv)%vNe#AFy=gHw8(T^VaS645yd_AVBDiCI?IVAR{PG&vL zc4t|dma*>+j{{p$y%=7%PEYqz#vw)(_&DkeR%R8W^@7aI zSH3tz<~2Uy5Y`}ne=pU98xI~lXt^#dEUch3EcC6wsC0$Y{{2Tio@t2)S)E{hU^d7# z)}<~J)Vubp*q?E~WaDm!#{tKO3+8Ej%qq1-cH z6MK!T6}~^y-@sczp6(g?@FD-A)56SEC)O0xOJ6DU7kcJ(_^(ZiQAfnObe?E0+g}v< zJPRaM+^t`a<{TBYM8*n^WBE!|9Iq9wP*X6ab${vaxAu(CDU1Aq0z6V}n}C3-m5Y|v zroy5k`>8Vm;pzgn%^Bs6JxQfB)>2typ$?ARFNl7$_rC^eoP6H*w`~vC7=4*6G^til z@Wq|@Rqe&NXT5kKKk@z3)v@lwYuWZvC^6cpaifg!^>MAe{|!IuLWl=UOmk7_vc#q!@qA!wyW}H zd|F6<{&{@-cFYjBhzL_~aB%-QPV%y+nw9@FF60ZU{Y8EnI&BXB=j+J-gD?F8I_B@U z{_{U(H$hzd`$v?cKW_%l0=utx6cILXmk|UJQ~0{$9n+ijdG3&^LS8Gnv!YzB*3@|W z{{5RN>ItghwnA&j3pGBgo;cx)N4Yw&-i$)HkuR*`+`K{TeYsd$zgn6$@4({Tp z^WJoaw6><^hG$wSH!4H6vgT{bJX+ndrs39~8^28=x4G#E^UIxTS;M{ZZdh2)$OwJ@ z6R}>+dNpRr@ph%TOapcI=Nsc0Mrisgr4P@BpQ)Zy3uX)b*q^MQ|Ke!K(BNQ|Ft5e= ze|^lqK2_{=WVZ^FsBcOipFxMp))x8?A@(;W&lklk=xcQ)=MXmTe~&rOL}@wgfBh2weY6e&*uQ_OE`cEY_oXP9l|A3cyIcGDp+CdT=dG=S zTGI6Tsvn8A`ulP6D-7>p{;ISH+Sy_k6eAh8;*uWzLUKCFY zUyJATwzajz=)JuB%5DDo{`(JAAFC$3Ro?2hQcg||zuC5J8ztI(ZkIP>gY0wG+Lye_ z!7+vS!zZxowBmB)PVyg3p3+*2=K15>}{f)eS8z| zUik+gV~Vp$Y8V7QqD`K;8upn_Deuzf8)QLU8>o3VJ26m?hb~Y4_`I>czP|sQxB&Gn zhOHGj7L8Yin|9%8-rNTcaL71M9=qLjSFjiL>iZ@s zDT0wQE-a~MGL+(!f^zb*4IVz2nQ_dq>Egn3?`P&mORg@?*}E?OX}xmwYUtGL?~lS+ zc0-!ab#v*GPDcAiMs6WhEif?9R&alKq7OZ*asP*KonqJhm%qI7!asXI3YV0>xbQI^ z0TE?`m2dv#m5BCpo!IHCM`V}J7`idHrk^{auFkl$FmaM|zwOE}zT*O^r?!c*VGt@_ z`O}sCGYIY&1jkjqeCHDZ6?P;Zf6TY2m!P@E(9kf;sPu-dAanSG!9jDXL!7d%I<(vh z^71z_b81-f`NLJmM>0z8D>9{UPX6pT6UZTX!m8tq7xg<# zpMbYf(OyYPxlPF;-(ts|+U2=FBP%?mT&AAq)OL9+?=cm9L`zS+;vvNB>8iyKnM7xo|rlSUCN2=cp(HHIYZI zU(eItl5#3({WI;f57Ne~Fc7}QZu6FIOOz3x{d0@cUG+~D>DO)+T^SV>W!|2%t9W_I zWoUeUdX!gGR5SGi5+y++&o|a)UH{qM(_MP=mHh|{rMn^FnAG(jY|hia)_MMU`(^X* z+315#8)|B5%Xhi0t3Cn!+*cAO?k)7$L#xGdJ%&I-{UZoJOJ#N3| z+)wK4j556Tz4|Z`>2OmDwU0bixT;UB?EKn{;yD3IroqGg2(_vz6#y?wnak(TQ=K_; zriJO5`rozn&u!poFaLcTXOVV(N9?m^Pd6wEFsTdk_#_=ea*}vdAS^Oq+a6greEmD zg#2WJzw1NVjy8PvnfrMzE-t*gchj#~vqpD5JNRH12_A&MxK+zq78aJw%*;1f z<7A!c=;*xp`0@6ix79N~qP@aDJ6_K(q(ylK14!J$sI~5BzC0WCiGFE-fwP*}h#N z$GSrsfATnw9q*4lm2|@Rd-bD+lC#3qA0LTb^!D-bnfZ}jTaJ5sR}sYFla`j&mU;eW zPA#jUD>uID-LJ0&@9=ni#pR_%pXlglm6IohLGD-Mt+Jcs*`{WvhntUyTeoXr&~!Nu zTvuy)e)beO1Ek+xRe{F%i)kmDB(`aYG5s?lYc$6D__B`&(sGkbuF(AKv`=_=xOwxl za4Gv?Ehkq0544mbkCyavyMKm7MF}OIh!oJ**Z0P~IL`JzfH!)eo4w0QxaddK8lc2fl_4S_u@<)z*Ov%w=xqJ66 z$t_QSiD8rPQ~Vc@#J8=JZ+ima$B3u_=nvYv{)fM zgM<7P!CQ6%JALfAb`#u|3)gIpN)*Y{|!|9{y(4z64C#FIobbrFz5dSrvLeBrvD5$iMIcQ z8P=@nzW*#P9-jZCl>Z<7;{Q8|wCWmw`)aTUGqVHH3D%%$ZmRJ$wr4p18D__D(v3#yp`?w$qkWe@Gyp&*x4xnH(f;w zk>=LW*eK$@;E0plC=l2)U%piCs|XtZ`Lc`Wz=4jYB-0ka1QD01OE@p)aEjJb%>-4p zgN}O}8XD}TWUh2mUfT_=z)?L?Qc^J(gtiwKZnwzp+O_MUgcXaxne?>@n*JasN$)FN zDe(L&^XAPdxi(5lt5^heJTWV!EiEkJ0;k{J;XZQZXS+mW@n(hinHC_yTTj?$|FMfMCaQO2pgRS_T|eW!{v`M2_jW86AD+j_1)ZzS6QX z>g(69JNEdnUO~?kx!CDCah&u3>FMd2xw(p8U)zh=bRLY4kAL{vuG#=irtI>NvNDBMEH8E~hYzoNJUMBnqjPWZ5`|dXQ zAnH5wO9lnk*SXD29tNMpjb^vEd`;o(_s3FhbK?7~+f9E@h${R0`wupyY>YbSbOXa5 zs}#iUI5)W~m`f(0x>~KRyOt;n*hz*_lI0YvB# zcdSxaG{KzvHHAi(C-}fbxy?_#!Z7 zh3woQFQTart&jAYd!f9_#%LkgBrkL7=9qh-gX)P3k$nqFIn(SDd!#7th@E%nKUXQ=`=hs(`J-Rvk&8^6W znR$6awj~X7+|Dg*bMA1;kzQ`(duj?A=zEsEZ|_)XT3QPH`0+zEZLM$Six;9p<26tA z-$bu#0>Z^{Aku+?Ewe%LXl(YnO#R?-iE_nofgaq4m+?yUf>;Rx-`EWvsRHfdddd|X zkT&%5_uNQE+57ivK0XkxL?HJ3{At~AO-y;TWLcI=*3}QI!s_do>uAw*&XmhoHx*%f zBs(3cyWHoky(&9!j2M|$Fy&0hWz-b4N1`-0S2I*Vs0qMnm2VmwPmSzX%q@8P_HE|1 zffI!jH3$BZT1A+x!G;9->%YGEV;M9iPw?^di6}jDj7nll;mLXA7bTJKr$~c;lREz< zKDl&X?$)t@E64ZRH|!S_Tx;mDC_%0RO(`{nPwk;6SwvqQy51qT(YbZKwCM`oxbuV& znKI;0iqT+QZ1U+;mhUx@sm)h^v}Kt{*D}!3zBw>jcoV5U=J?}%d@_>PCUMea_gGIE zNGP4y_de+71KB0$NX(#i(5tBujuLJEJCLm2CuL_>9=g0Rf>?Zao7DuQ6f$FI%Qb1c z!EMbnZnn0znYR6^WI>FyW<1Da02zk#)%NOYpV%X|^ST*N4!X`TB90V)w&$KVF`<@} zlmua>FnZ^wxA#i2rO;2g>&;~WE4O)1(2vC@e-(n`^!LGsMCYOMg%iT#u{#T@%C9ZJ2TW0=FE{9u?ypCORK^tK@!s$T}=) zkjKZ`6E#!1ySroTd5?mWdw+LFvSCTFc>Lwx-`@M-Bva>gM>-$hz)7H6^YZc>ae9}X zZ%co|+30V-`#+NGhts++D(fsRH<#UFhy$5O7;+5d)$TV`ktX09s89oZJrc0KY+dlRp&hN|0tzNwvwCc;Y#;0G3-8isCIaodi&0snBKt6VyjU8uUx-gfq4t!YIuDAzVG|6on@as zt%G{RCSiF`dr|bA{rPtR%%B=>1qH1G)8vC}GyMFlMjdC)+;;^$oe2DUESNzQ*>LAO zAn*x$kAiw5H&=pP@^T;sg;^)hrg(N0Sc{wZ3~BpeZ=@kh8G|pgM;v~(`ydy*X>Vs= z$1eT`%yFVa$-)GimBA=551WYbO0Xw6N+&P1Wl|x*kZS<{D}qD1(xRr=!MZC&%er;< z_O3W^-~dvo%4;SWvud{II$840Zl9vxep@aSkNyZXWc>5R=vdqS56EpwAla`XmUz0N zG190?Mh)>t8}?aQSp{yD$WVY;@O)3&+x;_JEZ+jMr!3E_e(LCkoV?rWM83 z=9_(rz$f`We$26gn%X{b;kDBQ-zo;KwIEY<^z`CD)y;r@whunjG%9VRv!$lsL`{T* zRs4tsgqW*SKh8$BO6161?kwC)?&;=DYR)ZN>NC%m$!}zfxTafheGk|*qMw*vxWMcv zqn~TZj0Mo7auNq4c5q2KPx4a+CmlItU8O`tMKfKdFBeswJaIy3%t4rFZ{7X<3AtY@ zD_2vDOiWJI?b@KR*(lJ|U1Wp0U56fD7`KE3Gx)x+4{5X2bXH=U+YK_X#0^}>6^DH9 zVa^s77ssJf4Bk7vk-9(VB$zC#I(9mfia;;OL|E0{sE|xkQ&WU-YvL-f?WZGf5W}yP zs(pOauf=8h*ZHbD+zpevtlM)+ks%YZyP#9=HF`tADZ!iayyT5%~ zsi&uxGGKER9tdM(#fD7}Wo2atyGlxGTqclBW8D|$)CIyJ8NGv`LuVaw;o`-z=4NID zU9%H0i2}iC?&R3!@T>)O_$iPGUY)F&KxbAPl{UdeurV^KH;%65lhUz;`0|T-Xef6b=?6-c{;kfy+e&j(zTJ|78}4ihK7b}3|d|4$Xf?2)M#1O zZ82sltpd#rMv?0uO4|z@l#$7G?%;6l>c;!nr0w_*9y}QD!U2Yl+w;pv zO~Gg}J!NcSA}sxwPo&9G?Z>w3uI>d6qe|DW?;|v$b=Z5;hoTqg2qMFPv&=0Zya^1Y zUcLTao|B^^DL=q84zbe`l(Ig43h|l@w`K@0y62kL%MZ+fE%${5r4(;LqW&||T6t1# zG5*@~z`(WDk0lv^w8)xvb#>i)rTfsAB9}Amm37k3&+b&-$ZKKXFxpupond9}ww8_# zICC3D?!1jnNPDi;$d>-72f)TSdG9t(c-x$&n=6mB<5d#*c%QXARC?L@A7WMgw(*IH z!$r#4I-EPa>mC*B@b2HA|7PCn^XJdtd0YMCFgie@(VwLPc$IKgsqxd6ARq?^hsw{{ z7YRNk*%5j`1&Tf?d3L|PY;MgkeBgXADLy_1H3B7X6l)5#~0PC(h4{Q8owRCJ$l zg>cd2hV@&dy~q11;{b!(UfOK!beld0F1rW9LFiPZoQEuC^A-`92>6Fob0S(csJq(; zBrWx!Uks60Rpi`9fIMC)DK?_?gXN9yj3(0#L`Zs)p&6_@ zOg_K3KvblfXt@lrKzGb9;-l;a4Lxar7RJgL#wI7rk?-kUgK&|D(zN@4IU44jCkHh! z;6qPozVWTo)YPoYGEuhZ`1U?*91OY%Rv;ORUtJ|3z%_k%yOjIFtETxkcczu1<(3yV z5?F;~HP(1ij`?#OudFN=hK7e|CfrASjnMY7Av5i}{KfBVwpkApfJ#3mUSe?~CWdilJ3DlKTIEVj|~KvA}J@t)7{bQGH~pn`S$Ib5%3~Pdl^#aq`@W3W(ahV zICQ)^udZ;T8zu9+a@DF{T%ywPn|H#)eb5W>h>2~qDI8ygh0TP3CKn88=!&iFiaQ+~ zCTIf*6eEBHd_Oz1@i##nl5~Zi2mAYdfZom{HA;8I0Yo2)RaYr>)YWAt^$LBoTGYYK zkTM8vCmtML9v=A!4qaNWrNwzNs*X^FHC|pmw=mUV!v;a3bYLx|G3n$jz!Eb5usRXt z4w}O~_O=~GLgXL#H5r7l?~iSIL1D1%HKLGW$NsD$ASg%?>xq;(qP!az7+?*Mo)C3w z3!Eog+}+*V@~k;XtA|2f{bc{C5w?4NcEGRzvTQ5C*fFCu?kMY`(m@O6{>UyA%KP2Xr7_j>Cr!>&nOm^xYON_S6@u zB;b~`novK8d_{Cq`Dh0;MorI7(*tJcc1Xw^7cwaH6FB{B&@CN_0#TO`x^gzU#ADfg z`_7%mTDi7O&qv<7=Z%)v+uOSvJd8Y&k)1E?fFxRaL7hwru9hIlJ9yEZJB&}{Jh;9V zIIO#obvh~vlX1uDZ>QE57#9qfSqaW?L^icSq zYym3mCJcZ@7qV^)0;(IL8^&dTwnEWVeskOsOkyupu*U=svrHEMnBcvYMLpBpn&J{W-msQ;HEI{We)6 zt}f47&tj7qGB_^nR!)vMX+Pl-(Rq1!3yw|OajC2LoTXKKQc@g-&v9~)$*lSz6-)}x z4NJHn2uk-ueN;l2*B3fntByRtYMalA7yb=eB&ax-<@N01v;bda95#hsK)Jlq((DK> zd{U^EAz4&t;^WW=q38u{av>`D?z~SQkxPV27DP!u*PMFBDt8@HuMa4RAxQ{peF+Z? z-e#Fp?zL#xPVze#gi=C&;8QHpPK%v?yOID+UZuc8V4)Z}IRnw}v)k8@g<&eXxzlA- zMgag9ZNgwn8V7=wmV<-i@4?F7!cJyh_{fs>?nCyA7nyLvtYsHZuB+GeSp35ZCD|8$ zj7x9Opr@#u8Sm3b(cBUD;gR8q6YGg%pC&=SM1SAM%5@a4q?dNNo*_k>}< zntcm_R8?H27r{^$r_A7pYTjAsRQ3LSDFP@c;1d7<9RmY{>%w@Y%JJhgMl)_V(MSL7 zjll239}QD4a<)g!X7yMYUrh=wnMXJo-e#061ptsK&3zgl8{0dlzs{m^ND^|Syp z0i>J<9U0MARYLL%eextQCT5#{kux(D6_rwJ4=VO~Bt(Ln@MW2h_c7wMAzU(d6EEz` zktO^UsY>h;mVbL>02-Wby-T#-6%HOi!8o*S4*~Gd8r*vRTrlNYJ1DVjKV8tbNl8od zptlEs^d?R3r4hhktAWe9F4u`5yFK;W^L}^9edJK?mqc?8G7(jRfD1w;v@eJ9Ts<_`?c?EDKaWx-p*mWr%eg{TfKjCw3Lw%Z^hke47i&~kf&l)-@){kpWNAu}omx~@Bbb5hU1aG^!A&(ep!jBy3nr}u{>lqr_Wo%-SV2#4E!8TtXyo73d zqLX1|5J!@IHNf53SNZuvPLfM;nkn9KadAX}w>yE9V2qAHK33iD+c#5gg|zE;iCzE7drQixo%Q%L)CKUuLMg}E%!$&=Fp#NFIL12Eg{e;gdfA9o z*3fPPC_@GSW|KACOY`n-s5E~YdBPS-j~2;BSe-^#BO~`%FM~^^p`=YKpW^y7ka~5njyrNBJW(iJH&@lFYsazsv=n1_^cwOI z*7dl0pm1TVDsRT+bM(*#%F!CcyPb@d-9zz1<~!AHrtO!%l}YWJCR7`f;zTuz(_2IAaEqAYy}yHiF| zW8!hK;lkgo7e5VX0u6;edbG=W8Ib5t%fteDjf~Ty5}<_>r?WqeAPubWoI&EWAA z_MvP;Kb(@gh*H-)CvzEAt5>eGwy_sB$@>Ae-$op=ygrF)pop8xP0zK=)y=VLJwePG z?PgV@ue0piK7Be~{_fq;`CpwydK5+^x?4G)>gJ@beODvy2T)-F&U!h528B8T$56q_ z@u}||y4-da78ZKnzI~h2)hT;ByG=quLSUW(hy{aGus}8uc?u&eRiRV!U?^!QS5chO zS|h|R22-|?EM?Jge~(@{@?1GokH6lxrP1Z3lc2!q92^{moKpaKEWp*ooMw%Xv=M^& zAyE1vk0_T(yk$elX5N0$_@8^c8Bv3Eqfafh)^wSPCKef_=}KUM@3&QGXW6o4&pp)y z$N8Tx6RZJjeZkNY#M_Vudq>ak@UxeT5nbSKXefkaKi1LP*XI)y6ogk9BcK|tA9oFZ z>6VNg&PzgkJ9pB9Rlv>;`xLOtOsIO{Q^$@UX9g`)_pAd$N`@0A%2P=~v$M1Qh`?hV zbe3@g%v-k#Q~bbcFuyu!XO{!ccLU6nb9PUWO^Nx}vj~N(tyeyc(5zZznR_uP z--fh7aLLB}nUgm+yvDjm*R;v0KcluHr|-{D$IA@uqE?jF=K0UxFJ8QubnO$1ykE)E z+%XCxvTbvF`s|*Tg_Lsz*F){kU;w5^g}=H8RH4@UgoK3n`TN(m%L2{!eEYV2v3L>W z-3m`I^I0__;?Y3}-47pBtvVnzt)vjZZSgqv&p6sgCQ3PS7QIZ@f_Uo+qyP;_46rKd zl0W3{=Pz8?A$0Eb_MaWe8ocMNtagKrdupcc)|DI;unHiuK!VfO+wKCGJHn zRu<_uLA2e;+al+#kBX_XFw+-e426cElebtwWQYjWF0%}>`6)U$UHj6mF2kL_-0$O5 zH_bdqFOU{37O8TwucJ5jL#F}|-2LN6Al`K>1EyO9EZ?iwuT?uZP~Z`#CbdyA(zQ-#!g80s#vWOX z{)T7Qu9P>euz;JlrbmkBOk%y`YTsek#y0OezS5wwHj$BVcC!Ju143f3v*>`av2nZ{ z;pEVjqk?PwnEsA@^bXzbUUUf04T{>k6|=$R<~lcn7~_CIm8|zNUA&jtb8;Djh{u-o zbm57RtJbnnJUl!s{Yz zzv_-Gig=qTR3Y8baTX`1Y;;OGL~T1FPAMw;EU{`mCrP_$vA54;7`y{PBZB<_7FZ}9 zb-3kMuU?r)o$l22 z&s|2r&2a`j*-Qtd)H457^4|B?qRx}%DJQ57VK_8U3vY&mE$e1u2}5E-U#XR90GDDM z3bLkK$(5cJgk?aG4GFH&VK3Q27`@^AR@@9_*=?HsZd6qI%LfUGNynU>onvchCTn-= z*G(9L96$)3$9p65$ODq4EZm-$+_J@{R+T+yVAB~ADzwT;^M?%mro#JQg9AXp0}GJI{hR;);> z2^R9=^A(kqCQA#mq-yOouiJL%%PS@V&OvSMK4(I-LZUZtNUkSs3N$K6ur~>S_naCy zU^l4#9D*o>v9}nuv7w}BW1toikr$)g5>IPG0TH)oScyVYiu)LAK4aKJNC8n(mC#dX z8AC1hDj5gHpI7PVV4OAVXq$4z_r`af+$Q-e`CLJsww@UpDf5oJv=)99kkFAc@%(@* zcb2+7f8GqxNxbR4>$eD4x0auAGW5V=A&y0D;VZBPszr#eVc$d%(-w z+~%QAF5|t5M1>&j(4|Yyo7|5cKdwl~^KVs5aV)p!&C>+Cw`lC=Z~kq2ad2#6)&CulxJ48=Ox z8tm`NHG8{vvbYrAM(&UJ+DHC)HO#v0dbY*z&fRj2cTVmYa>h-YypiP3BZUFmg|#pH zT!nlBOhxyEOO4iR%Yo};cLSrmx!XRh90kynlk+7emFr&>6pR$LhDrvDCa!lFX*q7S z(iry&{wvv@;bYxgvOkF2PV1)JQxmeN(tWVBz`U}S@H^lU4$*p{rPZ|RLXSk*Og)>ikwIivO^F1xMR?Ev9G!FI19fd)}H zzCP4xKa3pU*dM~?P1v5=U+M|sw$bYG;|$eZvS%okeT$1Pj8P4i5kRXKL86ML=7 zV7ef_>k&4zmM;~KFy6LmO4a~Z^}v_y7HrJuO&x#cwg$?!ppC%C>d0E;D0b zw6BGK>{sj*FTDPf-N1eJ0)TgEeLePKaIx*T-A*wta;Uh+;MwWq1rV@XV*SL2W$Kh! z?%l~$$@Rz&PYyV&9~v4WS_ne6?)h0U@ylOyB2ExuMmOj;S?JgU1>gVJ*jU|M*xkD~ zUwcv@(K;coWj5N1;)ouaa&Y zMYb#Z{Q2y&Q*$H)o_i3M0IApf)2P$@lr`DSHSk2dmGP643?>Y+hjimMwga{HOVjP0 zom}|0?nFGx^y?TWx!)y*An28jUrRiR%~f`ZpX-|<7bF>e8(tHiY|h5aZN73$(roP(cg=HwPr-O z{7FV7BxE%jFT1Hvk7w!^4#>!C0nJFc<8pivYyesZf7IwV@cWRj#9Xb485=UBY}>n+ zkyIPq5dq9F9M6YP2(a&E#pGz$R_KTO0Dim(I{*zvF={tcIH$?>3Ke$WoT7E1C7(<$ zxyX2Ymguk5n*tCVj&#pX-nD1Bp5m+8!opdtis@1DmsNBsTOx)!s z=KHaZps*%tMBmg*A(Z+!h%<;Q$0CFTZ4RWyIA6GMfyTpQS-y`S6`BAmtHqmehQLsz zw_C&(Q>|Zc{rJEWWF(qH2ZHaC*mw~x9*ljTVA6cG1xYE#<{DB_4*hcY4I@-Jcurk& zP6Kt$({=ky5Ho{nDVBrwN8@6o1YpP*jS%o9jvH8rj_n9u5m0Oslh3_$uo8)?7=km| z9tvvOr01;A9<1Z4&+PAtkW7JWoZlO`HMMQ}JMSaB2i=F*40 z2gO;orl&Q37L_v@xuVhPju{0Csw;MLQG2+T3XC)%`N65`n%-5IFo4s+U?fTxS(S;6 z&0L)`;n97y#-4Vlx`Y7x^5qMumRcDGTS)mM+s4kEY31ol20IhuvAiT@H+bjXw`$Nx zKrhe(y@~DsN}>Xr3a)^WA<3m~Xnwb7x`^fp0%S-bg`h2unFpd?`Hw+|BmAu39%yt& z(Dr1VFIz=2B^(CW9fLx5|MwmE#K0_&977^{#flY1Q0M?!`(T{gojsi%BO#?gMSs@< ziUMYh143{)n-+*>TXBX)lV>SaMKK$K2GBo6m zEffU2kR5Sk9US8o`7OK@_27F^i{x~6Qc{xkm4T6w+XRZ8d&N+7V>#uaZF2MHwa0 zoS)|&-e~vs&1?NA5S-$7wdtwi?Hr}jZx=3g*dlBPTQjy2rWZDuzn&LA+LhC^h!=k7V|uYcqXO`O z@EALUkC(PdsitVLA2cb?Rx#wHc{o+yYV3=(fy%}|*i(;?d2?;sr-gnu^= zfu+tZ_Lyx3)eMIp*`Si;FlqpWjk?QidW-DRj7fF0oZ*~499n0)rBl#J3FHXwIRC*a z14aip#%_Qe>H$UjwzJ433zdWTMo_?n$8rM#;>05>#OFbDeu|NLhVtF;V>^sw$!9XS zK=Tk$iA7rTcpO^mst+IJVZwpOfFK)CsHX?ob zok+H|r$MxXz@yn$O~4^qF+ywV-VQ@+WO&i=2uEo|YpqM)cAL##zkY@Iez7hqpaI*V zbBSgb#z8W z+%gTIa)97s6&&ko(E6K!DFdPYYx8c*@dePT2|;(X-w>(_q` z7EkQ}RLcvUCiX({u&_LI?AS-1l5F3FbPl~+w~a5k6`W}Zwo3T zk@WQS-GqWmkOI2E8Gti;gJrlj2SKLC{!u!mEM8P65wKCYA18fcQtU2&C$WvU6E8s) z8Vzg*%c+_7rrdxOwVl(n?vRjpTf^yra#YV)dh8ld{v_FZBlvJe_3 zBE%4VsncWG4YJOg(o!mc@DDLk!w8+Kni`=i=bcFf4onMyJ_Za=I?UO;o0L1XRg2+x05;_>{BG&J``(!g`@20k!Oy&gqX9xnDvm7FmUQ;Mwx-w zyb-vojPe&@h%3EVsM>yvT5elV4$ zNiu4AVQs$3JhopVc%c(Uwzyn{W<=ohK*g1#AfMu3k(oiU93QObO=IE(#@Bgmw+qwX z-Pgw}a}hVIo}xwEZ}!0t!oqmNKR=vSBCb*Rhi@h&?R@Ppnl3S5VF9-$QpxJ;qn&9I zIZ{~1#A{+?6k~TS2Q?gJcN6iV{+ym1Iu#izhM|F6!ArcurWY@c6eeaJaYWBxCp5T@ zW1qLa&;#EH%i;37JC5Z{HJaAotMmq~pc)V>0w~Mf`)oSb;^AP}T7SqYI`+t|URWvM z1c|Ph*tlUsyyz6%*XXBo@@*3)U#TYCO^gs}g6N*pSps0pvva5NoV(?wf!B4|tPJ_2 z2Sv5j*#?+BSxiBv(Wv=(?9=_x5>_p2u0q6-ZE70dvQS1o5B42UQTEQtke`pGGTDBw z-c0r|4txm;oqm0HT6)u_P1`>$>vN)m1a<#rVRpjaof-$=1O?Ghh%+800z8SuzeYlK zbRuAG3%@nsf6J_^n3xzL7zr7bs@w&E#_qeyR(K|AqGVFTIoGUPr+DScUKj^>tZ#$X zoPRtE+cf1+DDQXi(NtgXW|mFK+~+pJu2Y|X?II{MU7Om}!dC7h?yW&-Wr`w+vft&- zB9?A zvTgy8B%eaS(_QE6)=C(vZZw*M&8ZJ^j&J;C-C20nstbJL7HqKR8~UWG@UD{W{etoK zBki3Lwj7NHyDVJJMH7h~vqW~*=Ijv?N`Di&nAnnZax2(Dr3e8Uisq?PS+G1XZQjuBPdFZD9vBoyHb=A!)6vp;-n@Bp@+>m=I&E!j z#BPeV+aelfJmf^@+W^mlk0Ky9pweyy9V-J(A}6tag>7Fl3?@V^m9E7j8XhEiHo8{A zi}Wn_?-LKum#<&5uJp)bhksj))h%rMAbSD z>*qhswE-~~qt2hx%TMv?WT>jG8@XEnk4A2bhx5XW2$n_=;XvCC6!X*htiULi6W$5S z&SD-jGFegKD>_;11=pN3&>O_8qu@gVn3eya&BDfF-RKO)6{wo>Xh!SO&mFLEQBYV( z6dZU$#B;d=bWvrMTENRC(orDz&+dcVSG*A3!E_v$?} zZ_7?8x~j#4f`Wo|P_0%N?nE=W)oqfA@L7qy4Gw7~c0(K7mlqviyE>x!gn5%PoLOAJ zWVM$#-!bv_e}k>19GC^|gg4Mc4`PFu_R+b(Z4UQ(7LoK}o(6O!{RI;%>n##u7ytpg zDqW2Taf=mTv=Ns)Xi6bAgZ2vbHG=6b22?Gv>c9_oyV-H2?Er@dwy2B&W)sg3c>n}y z2jEsA`!yPZ>d+E(lYI!pw+;r{sQZl<+>CgJf}pFL8)SH`BxV?hSqt z_s{z$z6BeV$_WS2Zj})WW|%;C(B&j97f=@9b}Q=KT62SV@Srk*9;HP~?Srj2aFrO$ zm9Fvxzh#0+*2y*t61Ojf?I82=SLwg0SxezCskzuh(F-r-5s)?ZELHB9T(Z5Sj|2cj zygHaszyy z9YFs$tR{Kt$;b_`qr|2{b}1kpNOvn>?roc+T?MgtU1UEcL#S2av!coC5;9XK8 z2l#pA_qU@5oqj7sc(mT>vNsvY0s z$Y9UPQReTU5r8S=RH}m>URsx9af&=B1A3E`$I?OfxuKne)rJ$+knF z9YK-e={z?PWk$ePW8>qc=!k>dZTze3*mxfq2AZmL=$-n7(ryIL2YH$fs7PHX?%h|9 z*BjK@fS(37rUo1eCgJxlhnG5@EC-1^+?nC`{%ha6A#MG&8JbkA#b6r48~Ms(S(b>0 zi$d5;!$fxCkeU1SWk2Y6qs6&Du!S^BM9lg1&%kiAZ@*b$E;94WM*{ZX~$ z)(UkYBH|sNV&^4U`6RsXD327kp`IQuVmbr!q6~~r{Mbjcl##L4sj{r)*tZscD?>Sl z9sWq<)O)LpB42z?FP45KkQL#dz~U1shLGD($p~s9K?;G2j;uaBBIYSjvXtXkOg*nB z_6mTI^27Y_00SPoFL;{ z;2;ccz!NmP>K1Qef3O#R!&dP{@-L*NrmhEVP1F|vF`^bN&5a1}5_#qyN2nQMXGWO? ztr2}xxq&$mdl$(5N|rsk-amd^%DMD;0|`9z7^GiGD{n#y6F#?FJo~T9mN@TGPs!7Y zz&iIK+uc-6Xqa0d?Km;%kqQk5S125_z;~oO$D?f&L%Tkc><+aLsqWT;2dw0=MWEuy zTGdpWK!WT>3N!!uT7vJy6F=l6Zpdr{wb7MeJL0{|5GiADu8;ym+-gLUB#9J41u=7 zFs1eLT>JUP3)9ihr2>1@V_f3JJ~_L4G`C0|uuO z)k;Z&_z&NPBrQkkHg?k3)UB{aMWJ207JKYh($Udn0v^MdYO=hvxXRfU1IkF}l#=Wbe&_T3?!G_w_pjeS^>`>= z&*ycW*Lfc2aUAF6sZmORhFvg#H}Jqv@|X%9dzzYFO_T8A|9x=4N*W#vxi4n6!95Z# zhKUE{LsL4~*T)E?kl4eKY}Ccyo-Ax^VX7}h;{Z!tmcdq1Qes5u1-&SD{sEA``8zF> zV^w-(hVqb-<)$3KHwLBIX8Q;@FdP(qzmvx$W~YFnl;Ad*ws-CAGCR;_CqN!;Uv*W2 zCjS^bFX6f+Leo!yPtOO%EO>bRGH@)PfRl6u@6p*Zs3ojGC$Pxm#KQi?!@zDF_#!^` zp6BK=@jK0mE^TeyMcHuV-#=sujs=z`0VcC9gSk3ii=7(U3MExlLH)ebMjLBuYKO_Q zmU~)ST<3lOiquhJVbo;Q{1i$gHp*K-;|Zr{u(bJLvz22bBLzbQ>6I&LP+=9p$Zxqj zUjP&%3qSv-g(Fx476yg@NVM%6`#POt&B2LTW{@idrwIdqNS!gCfzIm=q}wn#CPt>X zFgU;oP};j~=K)j3LicewP)Z6AwG=X(6$ian>K`L|@h4HpPC%2(M2vk0fM6fkDtp1S zv1hOPfrlgE%ExO!N?1X9 zkjv4aI{N@A+G$S$0|NtjClo9AxvY-tTwE-WAFr#W3o=SvjR6fQ0jBLTeRl^%oA?{t4xvt10W|9D=m@&QLb?M{2#-dWa608? z0>%fx53zvl+ShlLpq=Rhibx4qbR`I7f(fX4G0?zgY#;kBt**|VU$g_b36UEt7kw(36CHz4jvBD>_cC=y@~6M%Y2fLcyl3MG^b9*fAu&5hZz zDiu;)JkkfA^o-jHc`ZkafQOdIf~tGTzSLI|*%TB8cmV84p$k^Lf=`PGo~3oiv6FCzpAGjK2hhKJBc!~+mv zO6WrZ3!G0@aHSHO;g0zW~HGKW+*RNJUJj3;jUy3L1GN$(AJ757TP*pqU=3Zf=qkV!h{nmM2GS3f)11aDNWaOAgkZcB`Gb7NS zf?kqlAH0*G#=V4Fjz}c4)MaF4`+%_NgSxP1UwUk2^Wech5do2Lxk_IZqWs%P&ZRHl z4;!6^UNl_L`RmI^^~Ok;!svn0&dyHMxoOh809=DPZl?qU1*(+f+1|Z`cc7`gh1nBQ zxP;*8F!Vslh(%iNM#|=7QgU)U2ptK?6TnA+Nm&)TezgN5W( zc0n3~W5||}*V&L70eLb1_AS`5goD+!wRnIeq#*h-k%r%aK#D$hf|R+Eq-V+q_=pKI zIcy>F8AJjBort zJiHDT2_`_h)ol&&@uWKto!=`qVc-~v4a}3)3AZ}_ffZH_*mpyeP`kn@J*Mrgr5j5dHTF%F3n z$l1^-g40;G7o7jm6WpdvsmRd^a9w)U?}IraHb)+s0D3f z`<5rjsbuUPrBl8hs)nIT1dPH=IWHCV-5iZf6FPU35xZIhh{L#^T5`iZFl>d$2T%JFbR+6!L+hff=ukzr&_uZnyM^jUgA@Oy|;Ai)LAySch< zL;B4HABZ5EOjR#J3=P0q2nuhkqe(=C-WdmLly2Sqd;bLKs-W* z>+PG&I6`Dx{EFR7L_N0XkZ~wPE(KW^vDH8)9t2oDi1CX%YQ3=&O9bcguU}>=6Yv!9 zFh$&j3b~KJkKrKqX~Ipmv2k&M5R2K_*(fkh_2}J0GD^gZbkckV7^OkYjSXS+U^9`q zV8BqF0OyhWDj>JPGzztlZS68UteU9(XirZlCN(>ma+$QzLrv9oUVIi(9Hav#=hO}8 z$l(*jT{Uo1unhB@oj|ti$&O>;Qw1RAnA-z2<;YYA&;ZT-LVI~h$f6~lV2$5N zL?-%>E)k$^D=$9MRU!N#_-%%SqnFx|ei5o0q96Wqp-5X#GB`I<;d(w~P!HOBC2-Nl^YPBnGWqczwE17hyHDK996w|Fc2Dv8kzHAR24eKaaTochBH2FJ)+AVZx}y z_%pb|vC*Fyz73Pfk=XptxBU}D|1K=@zz;CRd|&;u-~aa`klpVWkbUJ4Q9N#k%mV^T zJR0cn_d63Gpvhq4;^9G`gG~{+CZfqD>wfv)kbwnjrx?_}eu-H)(&-uMQJR?^|o_1)#YNP1iCEy5CVz=>W`zI26v7gNeC} z>yQZ`8GnCCF^{b%Xb@oP%eaMAM1&HVyF1vL!=s1{LCkZ|na18>(fzWpwpQ>oP^)Nc zA_e9p{(XS4n*gLip)EZOVK0y5v}OI@X9(d&p5cy*3m-CY&VH}J{AhboA?7Iz$sl)! zPrxJ~beqWF7r<&+OG_pITrl^XVx|D|dO&BP!=0DFbRrDVRL#Q#9pR1sR=7&feVhI7 zq79SPT#Mga#!bh`ZV3Oo+&d1I(KeRYjQL{f8hoeW#Lpl%{c|CtxW^3?sT(P9O(PNL zavexxwYvrvM$0Y0N%GvPUq?ZK+RzDP3c^wW1~&Bl`s^7R07bAqe_!~UC^Ry03W?^vNV^@> zWw{76{tLm-{|gag+~Tyqd&)+(zC5xB0{yptu7eEv3614R4;VzCF|oHr54{BB@>zO+ zVp390X{qXkkF<0k^I*Y$B7!Z^FsDH9vebX0C&ZGQu#BpRz4>Sf4_@X>4~ZZ($SMDc z*_3DhjT_u9F*+J5r~p_fFnmbmFx=Zaa(nI9uNauT3PO;ZtDD=tJ%<1cz`>%N>A^j` z|9>A%5Cv1T;60{Sd_gzr%*n>qirn%G^A;#laDz!~R#psDiOoqm;IIwLC}72Sy^JNZ zh>EoBw&nj5Wg2Ym(dnO5QO4E&^UM*oQxf;{3k#7x>0}<74dglos1OL1^v}JjfEs}7 zM{J^y&7`0(K_7$Du%j%_U`uQW84QerM4kgX zeKJ4qwSEPq722^XAT5!h>#nXYBo*!K?jl1aAcYg71xmFHBWwz=H&>wCqD6MKBLlWp zeWX}TKxOQ3J>r!lp#P;Nmu{RhPr-26d~pGLF9!Eft~HtRSx4p}tzV25B$_Ko*hEz4 zoKuBpHEPVs<&52;lEHR)NAgZfLjxsE6>bi_`>}&P@j+D3?}w@Nzi~Ot>K-4Hee8Lk zLx>)-#PIi>wA?i4Q!P37UP6sjE4;0cGj>B;M3b#Ni2J-k7Ag-LnX+2$D5-Cg$Y`$% zO7{H0@2_&UHSRaQs^rws9W>2v_$2-t%U$&vPordtObVTHHNM{ver%U{9st}KXK7xQIL*&ZLckoBD)nC)e|Q0`N2TW;_1G(MujiYMHdbTcrn z*?y?GwWs&!{OsDfIaPP3fCk$zVe(gJ6zKrfFo;IoUmYmhDLDB5`%r)Q%-D%qqD-D0 zmDafqCVE}^o%WkeGil*df=b=qN_?9nYCK9FOZD2-1s>;`w7GjQf>P>bj3jE9ysqn254FlVqn@#dx z724vlv#_!2+i5)I$s#r_x6Tx@FO(v|YY8E*0%7n$~RU1YvYaoD*j%0+1C`JNY9M+N2)?pW3|&CHuz53^q{8{Rkn zhzakE_HpGDLQKD#;vxl80mAXsGCZo}*9=?UQZ6ah*7i0MU2(!-Vu{4tg06plt;_}{ z+eS}RQ&F_v>WJolEn}TC_WR8kwD|K!O{DotK9wOZqC&@HhR5&U*2T~mu#x?FX74t^ zIKW&w@#Brg_se5g1yi`U9>58sRJ3J9VdLVIlhJ*q8K2gq>g4+2&B$lAKCVw9q)g?7 z(-q+|F4n3a)&*6CUF$gcie&MV3H9wB|7v~d^qnT@#o+RMh0qLp;tBdc5#b%9pz?_E z8f97t?omThO6psKaUzYxV&%BhBwI4xz8ihQ^``wPOw%IM4Em(2v>5DJrWtJeq5Z$! zrxN2}I(d`yY|+cc3SzInd8L?bWKMp%{d=*fO7zJEwt{?A`-G;^t374NM+EzU?C)fT zsc~1o6hJv(L@&Z9f*ljT>5p2i=iqrC);MJKmIOM#)X`tWj&MauKCyj z2?N7X`7aO8#?Lc4TW&22m|w-ju#JUjajHp)x5&4G^`vvg9Bs`(jn<&UW<;m%qE>kE z)KZs8+c2rmkETHcHXy@O7&W7-+0}+Dwf$}$Iin>b4efv%l z?{_SIB~82Zp}#eJ_fn?lX0tf_cGI&{6JGP}p48jCrN@;VlSD_3D1tYc~;+83D9C6F_E)?XL9jbREgL-o`wc?GcsIhgV_urHJG5H?b3&xu~ z)K~O87j!~@f}@i=c(1cY(6|5obx zZM@)SGdVxd5WcZGIzmi9s3scxHQIYJx0Xy%_V#T%dK#)6s>Q$WAtMGsBzW*5sjFS^>VZyC>fK;l-KwYHel1FRLcK&+NTgat?maYx`Qe?Ws`PMVy7X(!MW-zj$R1?6^>;0Ms{-#`Zxz=jcr~^SF+p?7;=bDYw4V4)BiNv zc=L$PpWEnej<%Y#0cu0(&u4W5qL7D{#}e<^JV;neUSs;x^Jpb`&GNW)HTCywl;OK% zEt8G)(B14nl8CF($=M%s^DsyIB6v~$Sfjo4{)J)KzaJ$vj5C>ASxSs!fTNJ6wZmWE zx1TAa&fIhR-=vYu{YC@-cxi?5Xki1(oR8~A^jswB;w9Dcdv=Lo#uVZCvn&I@`029_ zPnwdsUu$E*-WdPg8-1*Q_XclLTBYVrp9-Hce`AUdQRl|H`(E(|0u?q2I>!XFG$Skm z5%;{Q&&Vd1!|29Gly#HkRb-7hS@c68 zkXpTmzJ8ScQS3%B>F8g}EGBeNj1kE;)IIH%>)a?;W54mj+<^Dl>o(Ztk%2A4XT;AS zF!Id%UcD3_A&wsP#>8*`&`yBHI_f`ayYZEn>-lQ1o|G2_W3c&j=0klSM{X7goV#k0 zA-d;fs^xQTK19!*sBtATVlt|onIQWnm%X0C+vj|V_cwoSW={%7u$SKAdG6sKb~n0d zzoE};NqxO=oK(J_iN%VQ3PW{={Frsp2U{ZQ*|j*yIO5&TT6@vew6&dtj~nmGX_d9F zrH($qOeQe4;WvNtsc^(jo^y7fIow06Imr3cZxh{~{Xpsrcil4bLM3Bt+>IYkP4W6q z6UCxa{nM87pVN}15w|TW)w)x@UGX=ml)Gr;qLTi^fGzqgo%b~DnFUpFuM9C0UR!oS z(B2HW9fp(5oZzEB75}6wimjE|HdvRb%sP`6)Aj@gNa}@GQdAk-x^$yu@k4t1u_3*smR0O# zNmqO+%E-+kGid-o20Gy;pOw5iKl`GxA5>1Ge_}-8UXl6E0tjeJ6j3HyzDH>bqLtnEGr93GUl{N1ig4 zL%pjw(g!uz&{zf5RrV6|KAoA!rjwRY;|nd3QCplF`72D-8i7CB`AZI{M@sRO^-1&l z@5LF$M)=B0u2{SF3ao|=M~O6MRZQvq+RnhuMz6ydX|s63v;dc4WD6N$)d){zY9?AF zUQ0?%3S+V+8Ilx>td1F?DJ4n@p}|mrhx~RCqUBiUaN|kT*TD5jiI|KpB7B~^<}Xuy z(MU5p&98Lu9yQM&h8e&Wo8dDqOKmuh@qVtcl(6f#h@T2in3=^8Oo}YHEZ*N18r_E9 z03~yV3mid8c6vA(l^v^@2x`-{iNV4R3W^}K!Z>){g!bzi_T!!mPXn-auxt)VT!XRW zF{xS8b#Svs?EFs6sW2gA(3OJl4I7h-K0XpSEzoRb$rHV#R1d!%SgoC2%%M@!?xA?<>7lXUj%~2TU?_Fj=6wEb%wVF{ERT!M*_L%n z^&gqjBFUCm)5z>69U6Y^4&Oc4}kUwMuULbDoCM?8BXzyLH&d5xx#;QxWjk)abgm(63U_ zQb+DiVluwJ1L1RB%FjHaY{acwjO!sQ3U>D7JMU=r!4;lW*_;U()7-Zw0_tTt%#hxS zcAg5wD}-cmO@|q3U%qOqHPMX&0e=JLQA{ zHep%pwjZ}2+&_N3O6(de%6E*OiRU|HJ6HC@D9rRKL9K3dOV35LWb~~YgnvN?Ki9i0)q{&l_gx)~2TM_8aDMojiZG56I-Sjjsy+OLUY ze_IQBT4H&<_6qwLC4imW`Jg*bU&q1q0~9XXCrWs~C>GpGKW67iG`{qCObAszSf;G? zC8684>;-+)gcbP%MyOl8A6N7RtOyEfGPO>hYoSOuCe?0Di~VS-y^QOA9L-44A#=fc z##c1Xg6||uh4!Mg)J*f$FmZ(Y-*&JnvsmzQ>%u7?3DwtzxO)zHV_a*3mxJD{%XDSA zw_G~#TVo%?mAK(){Mw0MggKAD#<0Z(jzV3A+hiffMb4j`zI|U|dJ;(z1=P!CRnAam zi|h+)?eM=!P+=tywwo=*?0z0%mZPw&*(wWiw)lPA1^ra}INZ~7SbJG1>CMt4ZHwhx ztvf`TUdx9ZA6ZogA(Dz3Z;WUO8qL8KIY6P7!A1B~LT@!%%_2WnCo@g+OovZs+M$`O z8FgKFS##*Ufc8sYR5Z8y#t=;zCV*8;o$E;em+63+lXC5gm%Qf z(;DW=E1O2dEkETs%Iv>dW()8?_5ZeU+p^*;%&l_WR$ix8EFyt0#|%*I3<>B^@Rt7Rx0Y5s@l=0%Wa03;?&c;M zTaDqoH`F^MKi=Vw{1_!0_qKP%+pMZWQ{Ephi=yUJsHN2ZpqOKY#l6JOu{#8}tKC%G zNY3wzx~jNUIkfT*IEZ{!nvl%Uc1n8PsLr$&!N+gO!rG-O129~{Exgdil@NM&zHp0S zZAr=7x5-bpwxlxxghfU6>FONHtJU&FW2+Bci5tJa>~fd%zrOIZJETQBxR8MnZSKz^ z&+pKzPNH+tr=HjncH^45c8QqO+T<;p&)6W`b+3F>*|4VKEn-1On?w8NWrp$JLOx(! z=>=unCPnU8L3-fwWceal%F@SsW|rr1#|TEEZp6BjK`7{HT%^h5YQPfjny~G^e)wD7 z`QrzD_HkyjxS09nr#%gun~%0eKM&&&1!8r}$8_YUD%sMGOf1#5xbhr816@Pb^gQR^ z9^<}vQibE|0fN1geGHUVv*in!`EI{g4vbxK`Xy;iLBbs>E2tzN=~4OlET3J&PE6ip zeHwn-x2t)f%B$Ag){I+;w>zPY7uMU%_^iesSW024Gbg7~QN(pf$WIj6`8qkW*IZ-cP8nWF>bvRb^M+ z-dSPa*;a~CugpG0dypaL!q8Z8tNSJQBv<*zCI1l8A)M-%-6@Hq@Uy+UPrI`AXU++7 z^-rW8k#+T3N^p2W#^If$DQ3c_LXv%%XxwwEnoZnf%ntRX2W0zClNp1Nipbn^p?kn> z8`f=m>k?-4En3=}=N4Bj_I{m2Nny8@_?UI2m)J9`MY!1Yvv(f#P?di9i}0>ygc?;l zLw`MRvwPw`AbrB?^xd#kmAh+q{pKBnJ8n29kqh7iWe^rP?ikbk1@A8w2QN7<_2AuR zxIr4LyY2u5hT>N~>*BS291B`1C1VPs< zKckY}t}=`M>dPF=U>4{6b~=Bl>GErZhrjiWDJIRohO;wj%;*RSMc-O?OKZRvsdlDG zN_qo7!I)<)g5)QqBX1+ivrF~MprY-IKTt8DwLW)f4n7l)xyg;K%FSDLp zCCDe(v&UiFXsqHvmOhMvxzca%$#p~1_eH*@cjox3es^O!)K#IX<7RD4%Ad$tY7MYd zm%U{x$N7uIdo)V96bAaKSXNmrTnDU5uQW`2VI5a89`&fw6&T#e3+Uu7GZxS}>Swz# zsWzc)vjIo;D8jDoiHg#U(z1y|3NPA0@gn^Yt@+~ppEt8`7(KO) zIt!VQ(5hb7xF6FE=S1OZv~7GELETdA8z%CfjTs))yDx~aECi1VhDAINk39$`&Xe{i zPcA0t=_s&(niv@?DM~0UpV5}Qp8E`a%FTyz!o)0;xla+_&^kJTE<~w}HOJmo@1(he z8DRqKuogZcerwcsN;t6KmS$~iyk-4BP)4Blj` zniO~(xVMp>>4h*T8*0)(Um^TuopHO8BW#IzrzkFpgL{;zTJ*C+V>#faPZ6K8uNg-6 zkh;k09Q-6m#+*!hqV+;DOCVB!B!%R`!qIgr){W|M&dXc`!qBmM3%%}G)_}9p_Teg zemW6O8v`$sL~{)q2>#-Jbxvi0decsF#(t6hY^K}OJT%bjHk#e@>(Z&XC8ql2I!R${ zDPZV>n?I;NT;i$q>@&}j&cL*|m^-6_R_CB|tH?27Q=;H}jfNHL<}5jzbry!XQ3+SX zrZi-?j9#uGImm8SDOUHT-(wu*uU{V$E*e7kaRCuiK37Ng8@oHd9bcYUlvEQ11V#&4 zn8m%_DEjQo6sF~ppk%327O$NbY;FJv3yGz=2{MrKahE;lV9oKX2Z`la_1rn z4E@slq3x|X;PjVQ6HCi>4a#(uorX;EREr=1uukrN@s&H0qZ;J-op7WxliYB}q<$;) zZ43&V+bPbs??F^!kBOf|f3YS$dRgzxs%vZ-IB{O)0=b~}lTB{(_Ih+rYV9|g{)>L~ ziXe1DUUS~6MqK(mYAGY@ahJcHy=bz>g*WB=t5ZVYYgq=Avy;kowe)-`v)6xOJ+|C9V7nMqjW#CC}YI|sxPfTKIa12J(C|uGlpAaFJa(Png@0dAk&}Hy1 za%8c(CY7TL{16KPzn#VGSjoc=#bZ?=4X!`=$}+I|y|OO-u@{y6COR!-`{wB%ID~RM zG0zQ4y62ZK6tcSg?8dhm2B2XWnDWF}6TCN^>T}fMFKb&;DnE=N4V}@f=5XEsL(q4x=f_Xg$*w6jl zyQ(;Wu+EsW@KFJQS)IdmOZn};&Pgw58a035uDdle(F4t;@Ut!=QJ!`3G{P^M?t(&+ zn_&Ulu2WL4mHb>?$0FJBuSL5$Z}E`gzXas6zOv41+YfJroYrT%gOe{; zF1{uh67E}dai5nDErD)CqmbO&L|cbk+0cRp`Xu2ijY|@V#l;$QLPTBKwf@#~R*tpJ zshq-glR8G@C*_YM?Q3Wtc~W0Xn;UL%cD)rdC<_=K*cyM!7H^YVKX5NfiYvP%h2Ik& zPVqq14ML#t*e&ggBO|Q&_NCoOl5dy8?FGt53Gpa^-8c7Xr$6!($Fi#pwqxZiDrpD@ z^5zNOlT-aancLz_eoQW2C)VjYcBuBJqfY;2at7|{@z?-o_vP9bU7eh|9SO2}8K*?P z{mRx#+%9ALqKHTObb^oU&EGjYS8`FA%J4MO8QTx9Q>b0YsD@EN!Ox3RWEMQIjbeDH z5sl$cBNuskd>Gx|pWvFHia9uiPdnI@L5;4OdzMSWMNm%pqNT*lqjc-@+}7?j>BFo3>PJ^L%gZ{Bd)C_~< zC4xa&Z9sO^v1Cgkak_YdC@v&BuqMz%M_?jzxQ)PrK}YC^JVo`Z$rheEzO%U$)G1Zh&3*~UZ& zmx{pZ$E{ieb|NJOYUOUkGLOXe1(8m%496&k%khp-0>PN|oE&7c#@-u!3P?7ic(8Of z^lLftYcdbjF#ms{nvsMsrtEzhePhLIUDOv%YD{K|lmLA*UOWvt&YZsF5SBpJP_UA7MGRNf9hb*o6 zNUKSKUmYL_O$0Rb;%TC@_Nz@wyPp?*w>MBsH)kn2jPNJLhie15C%b04S{6Ta{0i)< z1Pa{=-%bo$$}48I&{`9EG0I=={zPU6=Wm~vmDAeR(9kJM215gHFx4BKF>H@AwS6{-u90L|XddS;w#Yqu=DW$xoRqbkRUYf+J;}lipWbX>&Eg$;f>z zN1I%#Xhk6X#GJX-mg}^_A-3oYUOTS+||Km1lq+s z(dvoFVR_$oI_PKbRTRLPVtgAbmSSb|^P>3vidxhB8xh0f+T!s^+cH1A(B}&s0%x(h ziO(gYPs}gs&Q2z5Rd~3%HnB`Y0eE}N*Qv~ipMR7+mUXCWM%}EaPy__;->7|xCei=3 zs_yogMDgjrhpigGEB?F~9oO>^fqO&QvKm;B`QFxfW1@9QG(>Uap+w*f%WB$>-{Daf z8AvZ?LFbPUC>2YN;t{}32i`DSH+V56FWEUeX5%I9HF4C#oh?LhU_WNpuuIh0TIM_$ zf1sp8m?^4-LM*eLza6ewxq=|1G?(aGG_->^9s*Zq9V%()GpDpZs7NhN2(30WNOBI^ zT$s;^f@3)!vaR=bAGsZ< z0llQ1_oR_uq}s{yY=8e~zqXEd5=JL49Pysp!mN;F#(fwdmP<7Wv$3h}8UfXdE$`;iP ze)VE2Kx2cm%6>0}dO)1-8u~y4MZ3(UE}F_k49tROXz2VTZJ)w3vE7NJ1B_5W_k>m` zlT4ED5gb#uUuo{;?%1Me!S$hOrGhwaL~gzNiba}Bu<4*2l(7x2c$4S_v(2+z>iHLB z4cpCVnUvOVfvn7%|M8lG(o}F~sodFpCkc_Jv88KKku;&E(ca^C=nYj4NNjT~T(?K> za2M3RLQ7HzLCwHi0G<%N0b>bKZQ?NliJvvoo-V=HqHOulW)z)0>dMOhVKO+x4y3%E zZpU#eSUOm7tzDE$W1dN%F`_?|e^{5`hUMY5wFDZ`Y+rqlk-DIU)lg+!O9>w1-yTk= z=k@iJ5f^tw+c3--1;>uwusAsL*K*RoeQEt9K{og9`+#hbU3L@qt_C(^FGnB$OgX1c zrd_k)JnkS1xm_h&a*RgIj<9LNf;2E2APwz{73Dg4!>O<8G6-O4&2G=_(L}#G-30FqO|^?R}MWoqpat=(TCuf^-tOwMF^m7xfie# zgH~Nec^RTFnO*%%X7T%FV^So4&bZ1{h7Olwp*^-axSO4mqX*zFmobS0`!ZIL=JCkt<845nsq&U z%<~Gvzs-l@(Bq$CkZ2cYlpYBw^$w?UN8_unT_S!hE^v5MOn7+mLXml&1Q0)d`y8m;i^aY4sSC)>j-B;FgkB`3*#PNU>#d2ZevMnla?~>mOtpfv; z)oKZ}Sv1vypX2+x`y|Iy*a7`*30TKOT<@^(9^(mq`y+DTfKMN%UW+aT7-@-r8UNWe zkgGHb)rea0fWL+Wvo@}3)^BXIQ7(>xUw$j8LOhtb)4JQ@-Yl!bi}@&kYbUjmO!QGN z=%S|z^&jJIt&HHN75`vn=>2mjVL0N5D!KKW4`jyeKhx`=Z--G`P$BBCldlNEWkRR@ zKm80ZtqF-+*;@|gr3lb)c{>%la)B2);Zn9Ajywq{KU)AHMd5|7mJ?}&PM5-I*x1}c zUiyRIQ{|>&>i=@Y1vUnc9-~U$I%bEmawjzj1!%EqHCLs~*TZbezMS@j9GyTB~2oxEBv^TOo) z6N`I)Sn2Lcma5BHwq`%jS4Ym|BKLFgCY_|4r~OZ_BfF*1BJt=Z&X)h2I!JCEV1YHHm{w+$(##wL16Nxq=S=A&}|Ixjh!D zD^%zopP@?lWGPyI=b!!9_#l?I;IsPL*N%N@kS_qgit6u|r7l zy-AhzJm!Ffs%E{A^HMllZA{T_ms+9p=^7D3>?}Vq79_JGDy}N`tNnp>f?Tt-F$1{P z2~5psjBS(}?UIq8{sDPpH9n#MA|AuTSOZ4l1>LRSf|WNCgD?AeF8q0ZU4;-RmT10< zlKOp=_WM=4Nh$eg-5`)Sp|t|^2vTpA7b5k7c%c46FYlI}AHoj+*hI8`D}83~{BDxFP9Y8}^&6OnH*E~Cqc zTv6>;zqu12ac_llhk)bu-jMIm9EUS;CABcv8|3QrM8Q=uI#$A76VZLNrM@e2?{S^$ z+GRwm_&MTMV54c5X#2kSij&oBE5frlj=d9`3~hN==$xgQn7)emR;Dw;_HfrDwe#gu zdIj&~D=A2m`>f~a7t8R0SuC;OGF~FKv*#6#uks(qPm%yE(F}%+Vcng5#;}09t#Lk5 z_-V!T>n)%VOMHI=_~ zh?$9bhwAvdJ5Z!@Z%GTv6J6G0I>??qKYz@G8D7OeRFdwCkml%9u})#VTz!M6+fL_! z?vo#ltkalh1&rrO%j!Mc670Xvtj8(mwV(YtRlnT*xGiS35kw|i*UVT#cx+Ri5TEDF zvz&C+*BJGW6f?Wl-T%eQp}by)R;7*a2-PGq7EYoz2^+U36~Us{%F~!rm>7~3>K|R@ zIDPB#YY(!S$~WzW#a?Vl0;NCFLM{IxW@M$~h_d5y!efX`ZE0``Pag^=DwIeoxIC90 z50^~%K0p6C@>3b9ufVzh`&7y9fBDJR z*@xRSh#qjmjt&q@$*svej#FJTgJ|kg8!1^qPsSe@2s7g0x|My}umz2!XWkjD{>~C9 za1(ib@vN~aeO2DucB+m7wT8m=xF88lk+xuLmREFy^iU3zZ+@w~ZkcDv$7C5izFzua zJ*1jVi-M6|q_1#)d~UXp!p9}FSEm1p=PQ8=X9gAoVOdS4=-&A2Sh342d8jw)@9qP_ zjKkF`>ic=!Vlyl$@_E-heTKD4>zfEZq)UXpy4>vY&HhH$&8fV!|6-k_Ahu?vr)1=( zL8JX6Qy*#l3$9o`vJX`Bs-m-Ug_5=pO+E_TQTKN4sg|$5t+QSH+|FhWw3LT!>=)CE zBmZ+hhw%AlYAzYXDb#P~Z-90I^&%?rYAC>Y?Z%*ho2OSPCAwSHF1g&w`{O_Ri}|S{ zqH#U`sPV_^P#q{q7yoH5!N<;F?}?hD>4z=?z{X~rL2tf2v+R8ozqM1wCYK1<7bshDhbmwb>=KTepDhaDkx`eD(Itv~1H1fG* zpy4HK@r4bFl^ISFu_P}Mb8pr^^ zV)oep<*n_d3Ia``Php>OLU(3#*}+G=kGP0I!fKXxhOreCEA2S?Z$uhE{MmjE+?o1^T~zfEjmfuI8~Zt!J3mzKj4;<&}|bi){ITjWR43 zbNGG4`Tp%ce!ram@b6KoMx_0-RNY^EZibn-4=pvk$3%hduuXOWRXykWEXEdLmPJlR zsHGaYa%Q_LjURMs#+mK2UR7j6I;6cGLajdcxkROMI;kke@M=!tZ6 ztvs9)ap$ehwWC4Ncvm_4Sqna{CgKA$B&RiXJ*vZ-y>jq!@>7LHtMetKZAR!e<^13D4<77D&Oq#^msPJFT$Hlt;+xn_A*yRY-E-)?OjA8-<*FbBn= z>0+%z&V7xC+IRZY`M#X=YlWn|@10?AQ=&w9xb&rS@mEl>@;YjrufeUq%*8Yq;c_~@ z6V|2slgp+Pw3YKU+Ny91&^35q`-vRL!}(Zx&?Sx>Ws5SK^l|m@1BcC8*O<`CvX(WR^ zbXzh8GGirRCg2+OVlb3~c!l3K$-6{7jq3QJ^-w#t{weE(vB@Qr)Wbg#15USTUrju2 z2Qq2nb0HB@>2>sUEe^7(7q9KLgO)Ak%c`tqsaC?ps2G+r7;0%eCc0<;siJ$Pavc3& zKzXdq+GTXAx~i|ANadG^5AU0d=QX&knVS#y6_8NuV)}e|x2Kr1gm~@hb6NrC4S{y{ z=c>~}IKZj&tn>K3I5t@qpP4>wDM3L+K~a*E)`sP)I-R~h@Wpj-so_6F)>^k)Q0TVV z8#9e>KC3_5-=InNr|8a5bKXl~1R}W(_qD4+(xr7^%8tX&7*=pKi#ZTOj(Uhx2t$9~ zGet}t!nK9Bbtm}6C`u?`J_Dc!kqk`)5OFu?rLs~iHBrC{H%J&vgmgu*#4@p_iB2m= z;KO|Q4#N31On}YEoD^m)flNtfTMy8{QF8W~MqN zjklJeLeO8i@zRbIATq*-S4%#=JwMz+L@=5At{O+g$88YE%69T*IVIOC`35tg<5MTRB;62#4qYDKRi_$Z(!C$OPNuNEJ;HDLAD09Ncvn%C=MEwI@=j5U99Yq{YIMF}7* zFv-(uuPC0%Pbw$XgS=3ccz=qng<9Nci?=Yq@9G{b5hm^-Kq~JRJb!?8!f~F<@fv=BiO&_v?k5)e)EbXHo^L}fb6IW+uguK3#f`A^Y z^Tp$%oxPNkuSaCc@}-0R@tCFZjO7d!f))Kls`emheyDbK)Q~@Hyd}~UnJ5n&`jh}s zm(hwN8#3lPVd{)z^u7 z`H4<~-Ph7(Ef9Jm8f^MC5*xu1rT?d|lxU7+mP>R_Z2J)pvkz(qnC@i2mYsZUfKL77 zCut@+kI++`D$OdWgdVjV8Q=|}s&YqvQ9y^0VR8Rk!0Ra&H!Q+y^fK8-3`1(SLW_I~ zmNa%4@tyhT#1(!$>Qr%K12N#~{3$JRCWkV_)iRee(bS=%H@W}%;DwY*4Wi82KAMN_ z`_7O`IX^M`QiQ6mKe)#`6jzqtwq;G*&MdP1r&iy{%KAe`fAx%b3(cc*II2Q~o8*ep zT_wV%mIF)_Hc9P(;YFjVpdBvAkvoLbVU}w&JIcGUM(Oqm?|4H%DpBUIRuJez=g&C1 zIVVA8|F4!}wnRj2hKY&aFKErCOU_)zJ6LY#N73;N08n7OlqdEr(17-Ol2ZEOG!p}% z9gQRx1n)`prA5wRDxl2sL^}$ZZi5%#$3-(3i1H}9p_3TXk52;(64;1^;PZpIFIXWb zMP|ofz+UB!VD8aAb+hQ$CrE90zyZ0U;rZjPsCNRq7L({;RyW%}$AvZ$5z>LaTe9g+ zyCSuvy0t#v^L&$b`(v#c{&c)fzK^X30!c}@6~+oD$_Q(PI7f8~E7B2-M%P93nD^w* z^qW8HIH98@nmpHyR=l}xwxGKa4z&S0HYIGAQ9YPbM|FT-sbxPN%eex`Pd+nu_S@vm zi<5ayhl-=>va?5=%nR59k%1g?&l+3jEGcAlfMAV8^#KCCT;?~)u~aL0fCUwB^NEGZ z8XCF*PJDHO8mZj z`VB)0b`GJ1=q`|6@?sLoE^|*ynukEBxQ+|83vzZdmV_4r{{;FszVD^YV^Xj%-V>Fe z|I=h5@(09W)45X)VdHrel+>ArH_n?*uaj0^9__Cn*CjLzU!RmD;vQX^>b$=(S{a&W zs#}Y=E*k7NE5V+Ykmknp0vpkZEjp;LpfaMTb)_jJ(Konm6_?XX2v;;c{n_%uw{G$? z%AIVZ?2nkY9|K5UNnBwlVZj4o3le+x>S+j2%&T4~8D>AhH~flo;J+~n0gn_tU?q7O zd{GX%w%m?4EgfaC0~Z8P6KSq(4cEtL9BLp28pa=^s=>stfW;H4uf2M8sGL(cSA-uD z-1ngZOyW493NknLO_|6^tPn#Bll|sbumzYJe>(kRajX`2>1=c4!Lb4Mrj^9C1(k1h%5!%NHiGV7i6S>ub!`|(+ohRpykyy#J;~daRVXZWDg0yl@wF+ZhWm2@0O450DI6jnfJ8& zALu`MeK#MGC6Z^S=?Ne?RsF6n8VW=hE#h+Z^Ej|DKa%=E`+nG>qC||0GqP%Vjj;4X z0|hvOMd}NppVA^h%%^#un1!I&8c%JRqngy7Rt6hfx>n@3$5knRt>5q9`?&64@>v!9 zVpZt|rw=T^ObO<21}7WiS62dz?m4JTJs+J>%yWD6;AOgN|CcolV`6*E3$fxK8lXv2 zpxZp-Xqews-Ys?ry-%RkJocURAmVl-`0P6ap;LdN^iG~nW6p~Wc*d}LOFstbB26T9 zf>jtuA@CZ@=e!*$UiQY8U|9axy1dXQ8jH(Uri+5!qzxqC20XdSfKwT)n&fX15V8;5kUSk@POTJTUoGlZcMWMWg7lWfbV z*BfUN??}8cBEJ3l3+9k7%)Tfw-q7+0im?M~U*_{bX+T*nBgs*tfW2dy z(Vnk<-wKo{*Wh#F2*41c;`>};nC_3?-6W&T6BbHPC<%lqrbH_nHI1$b;r67(DlZ)@ z4X^|X1!)2Ol&)(!o))@v{UE5Z^$OYx6bA}gI5N1kXwYc(vJXldTBMJUpTIw4$_($c z;^=EU)M3-6V0th3zW)pi@$? z1?P1Yto7YDnG?>?=5NgBw=~Nq)=yZjfxEFMU>=j9mVq4l%029#fo0)Fj0@P67E_o} zr}ya~B@;IL5}&2-l^kqVV##3Nm6QlKD?fh*wpBQm}_^JP`< z-J_j0rN>5-1faJue;Z_ZkRj`$Sxob16ZZoZ4x@MI*hFhYZQvz0nCN*!ttY&PaX{w% zYZSu#@jHK^?=x<~Q-Rk5)|Os4AEM|kfURhB{#sINN2hi( z0)H};7jE?GjjN=i z1`!*CNgu>-tv}x)c%}6vSA%mv{Ck&yLg0%Z@eYk>_297K$)N<|eVgPo;LVHfxqM3Q zt;3lb!j0L^D(aATGJk#CH+}t1><7dph_sr?ehVyo{N$^|Zf2M0P*5TWx~#&k3X&JR z=%7)Bz>F^5DY?gZ#&99+6}fbzRu|{8{B3jPf8_{WEGrP}+7NDu`;11;n1rc``4Rh1 zQUG>{kqH{Bpuc32?t^=?!!0rUlN0wL2e2B+ora(BHm`ajx`vumhG9`@DNi+N;2VKx z)oahw@E!x%^uzlGjyjrioCvHUv7P1i_Bn6l>6p+U;u^>h^}i7HF8zgyLKrPEiP6(T z3bO;)7kqR~<=FDOk+xqXy14eGN77|pYchg~Q0JY_s?Y>FS+Ptn$#mkwuKT-tL6g-H z)pWu{@_Ki9R#g~RaNBIAz(F8+6!)gLnjv2w`%7`?x z;g5f8??9mc9RT*XD^KXF)Q^YTcjo7goB)w8R39%?ik>8UgM$R$zh7}l z4m;ly&vx^ibJ<}h3&<20lF1v-{>Wnj4&s}8567^cMqhknoX(bn5m2gk)>KdCzeZbM zO17|ROhe)`cT8_EzhtXWOCSxWbnF0M*`&Ksrfh`B)MHG7j6@F|U@MtQt2*1y1N@B1f)e;y1U`5Ju~OL=X^NVHD6|Y zu4jb3_kFMROPq*jC*ptN-bQ?h_CyE}e)nP#EEE7V;$`IiKv48?mt?n+wZdURUTRKq zQFV9|uss0!9p7wW_teDPg((OQn4{&^ME2@)v)Hv_QqAm~w40H$O>?;7A#k;_^Vl$J zSsWKB=6Bs*naz2o$s}A%x<$_wmX^f`hZ$9^;SQM-%=f96V`58aL=sm7{RmiNad}2h z?*00&N9V6wQ`0h~Ig6m||8D+heyjzZpFa1Er-xD7#j`W4R{6u*c45ly^PM_yi-YYo@@ICQTB!2SEJ*`lcj!X~5yw z9GLZuIo1q3C@&muZ1K-Wzk$mLmdk8Q{Nh_>ldMv!;9>3WNF@^ee)r4PJ-N`GV{RCj z?%ri;Tni)xdA}2G9!{`FiFS$N2rp1_@#PMBwr7S2C3iW_uG7bv!+?xTTV&1I-9?oV z?$oii`k5cNLNl*^QKz;e zdf>3AhdjznZ+zrapV?>?{Tx=VO8UYNM?WShjet=dxISaMc4S1bMGCV<(|1;Zp{a&= zcq#`_B?=b5ZVDA{Aq~gk9i=L0K#$s?3=u$MVGCWwpa$RIMK$;4&l5GWSIMZoIBWXy zVoN$h1Ncg>B2)CT`48n)$NlG=Xbs(NoQ1PHILu3BsKmXq78tW0*!y;JKFA%CF6Hq4 z9khr^7I0M*8wOnX!Y3uNHHIurDIdYJy{oLERZ74De*nrlCB;d09pKBrBpl$L{G(5S zhHIP5$-AfEbq=FA%&6`iWtpAmn0PUcJRDh_mP?a;dMHoA54a(0OX?&>Bt}a#rtks) zgP@j^1L#^*sRx;ow&wMu8Uwq+Eb^Y(*g4QL01|;14;^~BIQ$}vtyg9qB9_Fpy4vvv zTcAc^FBy}o`Mp9K%cz^xG-Px?tJDN$d-CPfEVXkroTX?n@Zw=m!iEVi#QFKv+X2c6 zB#_pT;uDjREcZ|@iMbC;z|Q$09E0K4_Z0z%`h=00f9rZUA_<3I9Z>R!En^s8)AX>= zu6c;j@F`@=S#c|ipZJi#0r5A+4Hrag0L$Z~O{U&ggW-8pvB|=cKNBB6K!0#k86K69 z3cDGhC<1q;KO7)%?S=ge2GyQjIhZtIv?TZSl1wei{M>p276cIbAfu^aA;?lhfM~zn zNfYCi0M}@cVdO^_-`M!4$lhx1KaNbEU}ejm`ek5^43z)`_57NB5&i@527-_i!>`p# zEgLhjM*`fu|1SvX5+7ON;iTRC{a*4KgP)vg(@k!m94PXVeN-su~}w z{F;>4aM9FJ*B|BwyT94$FgsPdCYzGqlCKiYM%*EtH)6~U9(i(}cJsF2*vEKTN-@sd zES9gSNKJRN5ZnoHi_516+Ni$wtXqVRcVxf%0s1uUcOmrVlE7<6NwtfOwf&E&Y0!-| zIBTC$9<&S&E3C)Fr!sBW^a{#te{YuA2j^vSu4SW~!ggPYp+FTGBTUYMwC?!z0%tjQ<7%3J`7^o$Zl7=&TixWg7Y?kc9X$OrmCE7iX{?kQAvxt^u= zvU2$RZ_!K-EAJ=>b`nUAcv7A#n>a#qlCe#3f^%JFXr0tW~;V+vh{w$9$ z-p-i*`cguWpRKafR-&7fQqg_M{qTl!G+rB_DBu=43dg0nx%hVQkUu%;0r?ESU$=r+ zQY9xVLGt!aL!oIGy~9mf{j$zpeLdNfE^Z?8H}|7#9i0{Rrc-exrK;O@Q*XKqyu&cLBed&8F3D6d5# zATe?e6m>T7I-fjG7>o8BZbHZ15Pe^<{THz2eNHKIcJXV*uo>|z(_jWphS*;bmP;Y(9 znnEH42U(8aRA6YZ=A7&MTV1J{pAXky5HF7&SmP?f-MW^xK~~O@x{enZNcGO%K+?Qd z@{LIt55b*s<$+I?vpb*PR?e#HBVB&<&avZBWcO0}`0{PYRR5ccH(o}}~^fd{n zJglf~j9|JK^@sBglB_=Cw%L;5 zg&Nlz!;S}w)+aj&t zplz1+xsgcs(qr;{meYq063k^SmW}0Z^{tQNC#{i#r?s{3My`mqj`~98=%0Y{M|k7~ zs%CDt@;G5?gFKt<66#1xuEA$PVn6-_o)EcaNOA-26P}9uq~rsNrOE$gEw-U870?RmH!1m z(!rj;A$;NxSD<4$s{{fA$@*aUJ9>m({Ew{Ix^s!9b+-QeJV!L%;$*p%X4`dZw@vnq z2=7EsWx!?p5sky-pLgG#;9iG29o_H=FBI0qpj&n4v>?if2iHFS=unt4$puBASpnUT zd+io7tHu*8dMb)oY*{a`L$|)akYwm!qu&Z24mwDIL$1H!1$U<9tE}8O54+n)IEz|J z>o1PSh>{}qAYTeT`K@2to71PZQ~DM^Dvzo*M_}K9a4fpcL4yT9=9NEg(M0&ec=UEx z;kpK4%QVA|n9@5kh-u+{z-9s8IZzVQg^nstc4#;J2}R#*k2TE9?R-)^+MFllbH2=Y z{m@RKH$94q^A`07fh8tkMu8p0{Z9rQ%#PP;fnWMa*?av7J^=)R0dnE2n3?(X)w?c7##&$>A2zFr==cMLw`h^|?JJ7H~U@r_mu z4w&~($jX_?a2bPez*Jf5TlzjBnXVw+Jb#Q#5&agB>6)Y)_Nu%?49HSH^t~>ed%XFq zd3Sq$nQeyY;CWNdl~nhg2zKSqR|(m5G}1}BDCz{yxfiGt{327e+uCL*|Rp58l_f21_~!!JkRGf9`K+ z=v?A#D^W9k{a6Ga6Yt5#+YScQ%kE@WS4#CvpC=6Q@R#~C9XEtkd1c3OzTpff$PUuF z9R&Fbb(@DzCs&RlWKLrTq!I6u?sMv@HW=Q*WT<_Wo!ER zsl-*C<0BsNukzeQ9OWL(0`?r(R!rsGxes#1gEv=RtKzhh?A6$_;xz-K3;($TUiE=G z3iIOzdsC^=VyPlvNWI~VZT7XqU|;?y6ee`#PT{f2^DNpHqgM4=Eita})B`d|gaBNk zQF9ufAh~_u4yG(-rf}B#VS6DsdA*b09~e?En-81F<=FkbBea?jsxy;tCDeoQgAK#w zT&@2S@r>-$B?(T3Vb(@f)eEshU&I0#Rp^1aKocDT1oWQyi=4(d!{2wXW^_mTg-mp0 zqBQAXjfcDC>+3kLlBSqzfpV9j@*_!$IlD7Om7phtY1wqZz3f*~H>@rYZv-^lnnkK9 z4hzStf1PYy67;%_N)zAjtAWl*&CDmw+jI198t|(#K*hhgOz5nCo*Ggs?Frc)a|I0mpcWEe=sW&VK<*U0 z_plEmI0Uc_z>$H&>w#i~2OInk(h8VqYS*}5KeiL}<$S0ZSzp)vO}Z;!^_r^;*IBrB zlv^C?MJN-5e3fgJ{Y;iK^D&_p!!DV&`b@a6`uCO!ch6qgK;ij<17Hw=FRSUHtR|GF z^lMg5v}EZrdAZSp+doXLSlnp!&h$-wIbsn{lgZsCe<&$tTH>%&n0fg!)3ncan7dE$ zu}XIMn?D{jyu0K9y0D0ew2(H!W0g03$Sp~d*~zU?SVVq5>jsQ1Npeh```>n^rnqr{ zD9adRG)~UFS@lwks{kd)O~B92At{Yp0z$-SBcC^kO?&-4WG;6sBvUh#$P5@9+8quP(}=(G zf%{eQ&-3hJ%e3~mr)IVE#xg1ude0XW=9SdKVnn`gVA2dd30PgRjg9-$fDCZwgT997 z8mn;}`O%$<3S^tMM^0(FmTOv&FECW+RoVg;pJyxqqRB;s+K0y!wuy=AxpS=>pIRf1 zSjdN6$sK~nmhUi`CZN?{Z}9q#q4Ly`JH0G=rC@GY@iKI0O+K<$m8D-mnqVyVeO6{T z7~4BhJx=-Cg2KIek} zCnz-6VMp_ttw9gkqq`}wf7@1CY*n1MnGyft@K^PjyL(nCrQGcwHgF3Tf8GAuQQ?KK zZQ~i{4&~_AcCnkml3sAKV#0i8bQjrX8i$ARsvcQQY(0?Ja~v_g23dJ8y4D`p<47&C zpt`4=t}@~$d4+mon{a?sz^<15&iwr7Gu$Ahxv-pj z_yHJb5-1L3Jl?w4x|Toc|ANYSU;yumAp&hNwSG%5D#PO-^I^(w>y#>sYf?RufO&H7f ztNeAz*-3q)hzSYhMR@t|-VH*-0Jsy-TL9x9%Hj|tW7Ry<+9Ezp=GH}v^vE8z1?lL~ z8@BW8=om+?!tC&&;+$wyR; zLaMZaFYx~G7gkx<*Lv}jn=m9i*}#EBx#hPLF3PF3Awy>Obz5-u{p>&@6M;qrerl?t zrSeKT+{&87*PVi<1rc4dAG#J|&VT7z=Xi8?&sBNZ3;a+^9a?JjmrwmDsc@kQY%Khr zJdzn3ICzt_lYhhhnq=60P#-JuGixl?jL-wk16Kt^22C?;djs!XN2`7G$!!{>(?=UD zJ9z>XXa8a}y@)XJV2%V$)`QoP(>8w$G+tGk6|^a@1%THHqSzumj-S*0X1IaG23jZX zlVMLZJ;(ks!81b7y`#^()ze})%42$;b#u9LC;Ee6*!g={o}+p$;x=huAHLat)aw+Iy`zU=u& zx8qgaP`lFG$uP2p6ZnabmL1PqPmu$WmcWd3w7Zdr>A-VnVUZLKJ~&{fc}#nY^ZuWA z59u0)CWq@tMdI7H_n-yNw|vqW7mB>1_^eYj+s~j5d8kvWsHE;>)-oAP1M?wbb81rW-;fE;0$t zrOwgJbTCO!ndQ#ul4FAA=E)Z!VPJ>F(CMOm6dy~Lzoh`*bk< zJN7O%=YOIZT4!3ALs zX6!g=j3%O-X!c^f(F2G$gv#~!&g7G=|HJ_}`7Pe%cud5EnTJYje*Ynj8>^XJh1-!7 zF1*><(14?py^*LX`?`tt)B24|KbCFvg3|*FjhEFQc+kwLjLmzJvP)#ycxaZ2N&kDm z^|sP)nBV#OIp_D|vZcGG=;X@sB}WII)?eZ=XpR_#TFO&nSGhx3b#!q+Nl0t(RVL== zzk{Nkb#9^z9Zs_?e%IOy{e~stVZaPwsdG^5mvX!@K=Cus;)ZSOtCu*4wA$jYP|D?a zM26H}2sh~Eu{W^+gM)a63P8@ z$m%HY>-4lv&E>^u)Kix-_i>~T4=H4Z+L{-yUWr3>0#Y2>($catVz)U-&B4K;0u9dn z95M!iSFy0FpXF<)LyTsFRDJzNNO=3uQ&9M?^?uZlMMQCr4IgY-VDxDi+RH}BSBH=Z z^TX%oA{Q7RFUj#i0y!5NoC-J!mb&Rv3Kov&38m;)rUEm6Q*B2%oUwe%$+gxOpSrMN z6=wfZ)j-^%T)Y0Wk19@_vion?soIr%#$!RhE9*bpV|l0k4es?&tftxk+B9p_cY5c3 z8x<-503mMD`y-QA6a!{R4}kM%0lH`p@{jtiuMJ#ZU;@lqi{4K@wd9z;l9?4KU8Tos z@J7_Kyt*qydX&kMlt#U+4439MnP2Ey0P#guP~Z-}gvEXY z?zP1r!oz?p_V)K*`qv0ER4`J$qO)H}_Zgf);G~aHQ)QZ}4tD@kPe9U}keEJc;qyKj zhA^&ZL z4Zp^9VJ7otwVo0>Yb7)JNJ+z-U=D# zFPCAMAR-eDTWv6YD$K3G|Au#n>Qy|4yu3U*S=W~Mwb&kCCH2WXB=;NoD)?;veVY8q z_TS8L4%-Fk(Dr}3$J4v3?h#)gp-O_`b}Iml+p9s^9H+fwFFK?fU}m+FBr}(3G_Wmn zA9XG{uVewRHUI%&K~3vG%{2IwL_tlqv9pV5yI+WAW~n7L;(ZpHS*6bM>AXM&bB$XR z1NvKZWNcM{SIM-}EM6q@TL>rbpXKt5{(~u-ZO2d-5PrF_iydlqMn+s}=vKq~6RS&! z#dBf*d)~n2U&KFJAaGUht5zsDwu2gca`3y`rG54F|G|AbdyVdQILO4@Yi6FH%6 zH0q!^a-2P{A-|x#@rbzK-`Nc$!v~_>_!|sIA1FrZ0qzcVFHF!MH}+ua+qD?GPOjQw zSBgUX0IeYBWW#nyZ=j!AKlU>^PSd91;j+{$9su;_A95#0d!8i6LPq84y0!#FpdnN< zXm!L-71s-S9V|=HvGO{QRE($AkCETd%W8(1zk{|8t4&uY$aJL6$Pfo@WTJ-nctaU} z+3+Ktcl5mNz2w&Rm!YDWf!T@0!^Y`)R|(WF{n02lPI67$Vsn|qUEWBeIDbo5nLpuu z;rMOGL1R25YXEuZ`jG0-F;!Y`#LL**oIGz_+{kuqMv0`D(>VNQ@- zncme(oU5O>KpxnvpRLfe;epKgBg{aN@E4|+!{pTb6p6K4wZfilunySIJ z{H^2UP%-o=7o=zrQ~rHZwtF=IWTuM?zQo6Q*vVN1*MgZE{8?^?i#6r#Bhu z8?YpVJOkOp0Po@Y!c(xyM=(#&|Mn#@urp_z+cb8TqZ5r0N<9#{5<2f*C8aoTQ$KcU zq(7Esa8$7BceLjt8?T4qGmEqIOTEF)DTA|jd}8Fb{;vpAo(;tdM#F=d6ba7vwR5Zh zImyyW7OXe(*6#@OgES2;$qlwook^D3g1%<9VC8fZ;~gn?_GJ1BpE zi@p}UsDA|t_7}x>$*DOgKxxGp<&tt=Er;KhI&s|%$Oy8KpvFG(Q$ehUB-Hj3Sm{sF zc({n=4tt}=$I6kY&A&ahxIp^JH1q0O6*vCk>H1Ib3#7I|QpUD*NXWLw#AWY>e$b`< z6Ze4A>yZ1^mN5DhzvTC$vX$_#8WJwG-`IeYr_n?RF!Rr4Qde28DvpaJ^TnPdN8?Rd zR!vQaJlXfcNB@BS9IZ&IID1g4YP0Gdy*g+;<`uV;Oz35kjl#`C6YU|mG0YVk zIbe~L^>R=^fT!tEUn!`g^z8l_BkTiv2)p;3S!LA6!}ov7j$9#BmC6gU@0$TO@bN)f zQ=tdfA6gKg7lM|DhwSpu;}Yw32v*WrP${%wAzg7Dy}c3ua1=oIHkY}{gs_c~z|n97 zrh0S2xC^^QJ0D5*XRwUEtEKGB8_wE3i&?bZ{`tIS^xt!^vP@a{y_}}ShOE5*0r}X+}t0B*uw{k z;k4CU>h(QAi@tYze3OF~AAGDTeU?;xMUADg%k-DJ>+L^f-m};%Co&eD3MOKlX!~Nk zz%ABRE~5mlS@3wEwFg2~H$tKoZJSVA-rV0`bwQsDh`{v3 zTIWpEdsT2zMXX0B#85til+ayiQj7k*R-Rbs6#|HbK1pxZQS5l-a1~Ao4vF&tX_Roo z42kHV4pEWRBSaCYjH`zxp)=r$e@j~_Uyw$_Uwy0`IrVbt>u%rA+Bv2JY86lhYoW_J zkuU!$Jr9=FgoyelJqe5m|(g%yXRFFVImu8fQ(j4BHQJ%oQoj; z#X~`%B2u=G_{|?~+Zsnxr@fl)@GPP;UnyG37%Q@u`o6o68c6-)GQPC{?@{QUQ1$2? zo6k=0S{^P@x$|9OINaOlBcL_|OcbP56`?LzPRGexZ(d+b5he&-T!>?4CALywVQqw^hR z%u8B1ud8S{q!d}v54a&BY7oUe*7+dy0Y-BSODa+AMLwej4}qQ{1ea{CuX0 zv-Lywy0c>UrKFn!xZl2&UubR*sxtJY)QsoN9DJ_tFQX=rKvKulGcBv$E&HTJ*;>7- zrRq!o#cGGaSLC?-V1c{!vR4)uc_0jo3rns7lZ-pSnxyIN0J8x70cgcOsZe-9=CHM6 zlkT3$V3+Oz@(nCV#fmkBCQYBCJ1c~XW?~NYOQYCJ8E`SwPnI#LOK|EgfSW7W9e#CY zwSg7qW=Dp)GidiAf5+QHIch-KH{^BCGi$E0qxwD8U{d3fE6@$Xb$mBz{J&Kk2dzmX%>S3~`b$qH{zVbh>Gc?bg8$?{?mpd!}$@Xd=Bb z@?R!;VR|jJSQ21fsl~=4N1_ARE)HmIq}GMfvq8&KXfY~)IN>4p2+jbr5$g{Ijfj{9 zr86Uhn~hgM6(}nf`CNjidWCAitkQQ>ak0;!|20)$dC#&1&4NEF8ny8E9p=0_+8;l~ zCGFFE??lzOYo$u&1G}oCi~q*e?SV?fTc#oPRM@Qb?8$d%nJwfvGB?3Gk}`McRajvI zNh@bUtd}-s912Silm8W|ZUZ{yBjfM&cj9?zRR89G`4t;douhL0wTRF!l;H8%t|u^G z8ejkP$+%G*HdbaX5^mfI26wQdd(ZBuZM6ed&h`<7*jD zG2F4V>JaACl*ezl8QG=>UlL@qi*r^$jNy|z%bQoEW4ImHPxy+^BEvsF8xSyCKnx?oKQCmTTMbFm8L`{3gUP>aEmJ(#rqKVq4 zcc#Zt-J`r1z{rcF4h<=^{ z0OkWAna6dnSHgiBVh%L4x%D>4OVgt5qIMGZyuMQ8kb}%5I61{|WpEVt34Ygt%l)vE zpwh&3+$wjU@0A|2#a?X5G8tDs_D{EX6FZ(atYV+>5JKp4%T7SoSJgPxW-^5b@QWpd zkwfZAaAiLStdDUCHWbN4axjYpKnuWhU#%EEe;KD!adYev#c$HqEIsK7PExfLAohWs zuKBZ|h?;-pZm_LDJb$_%DRFLq4&$d8nflb~=+{^7kf#BvL%>BMu0CF?0MegOeQG!C zB&5{c6QX|;be|Tw_SrmfI=qH2%NMw8p583A&Y-WyVUQ<`~4lc$J9rN{X z(2V2kQ_B**)+n~*1>b%{&Z420=kz(|ufrD?z^H zFNfRy+8*wlm20d?s4n91GNON=|7MX z@x|B-P8Y^7PK|^IUp(Ou)!r!gc%@!Uv&a3KEYEfe{L&zBq;k-}@zD#+wAqHQTR8sI zh{Q$hBk*-_Rp2sVPEwKQKgE2)kAQUc6G_8Y@WbP1&dnp z8%2{{4v=s*epDhxp=hWtJK*m;ER9&DI<|0MEcUb~vEDRMJrVo5Eba&(0b& zekkc=#^1moykPSq%2|{^=kL%faL1HAoqp z%bwImLm|XB#Kgpg^b7w%4U9`;$!+{o#v>bgdn_2+nq(Qk?&vasj;FT5L=O#uWaTJxky{$gVY}1pmhXomjv?bS#ap89YZq1siL&YPv zIll|aQ~mX!(tSNv&eqDlhEL&d6lp8;Tq*xLo+^X2{|fpCHdznp|EKZ?zmx33Lf!5NTc$P?B@@m_DN!>DwBmL#DxHSTp%P&p2%`ITIlA* zf5$Xh{n`=zXK>m8*M7e|VX~nN5g(d$)tV=x95hSdG+p46e9qK8_k@$Dd znVhd`L(-@$>o%PMc`YnFo zR6*K&X1~dX9DVLnM@XbV!NnhEumw<`nLOx4$IJ9KsfH3vVC8HospK@fUIn0@r zriqg0wN{)613mIPmmj)Q@op$j7{L)F%W5RHx@JNX3O~eyveya_`HhsRlzlWGjj0$) z+6n7oloh4~Xaceryr58}WB2vSZJ3Qq^jgH3!?E$f-wZAUL`4n$O2@^`_sD^N?)qtk zy<$u!F4_k3`UEBIL*8r9?$k1Mc#(Ht9WU}fVFk+bSYlxgq_wdj$=MYA@y--5L1AQ6 z*~#)s_Q@|NAjMCZa`p!bL1n*F?$3lt!V@#voYy%lZRc}gYfl%6hA)N31iqBS=61kw zk=)phGg*27R)avr;|pUB{G4#KsN1Pbpy>uQvv2l2(Qvl$SAuJiBr-i~H4U&ym$r?@ ztj264O8u#-W9Yb@!ay^hO~Vjl1^fN25tJnQ$j`MmqhNQLE{CAO8H&>z(nJ39SV|U za$#;_A913#V-edP51Imz z?sUOo`k;`p&UZ`@0_j80bPjoisE~2Z{7%HtdYk2t!(Qrn3X-~WE_Z;C=^=|AIib7~ z>E-dkkl6###5%w8Uh+itVS(48v@9QuJ&s#1&rY`a-}E>KOV-mXIrhR%I`ua6jMNc>281-9IV7ENLf zlko=-!=$`A3bI@w{3D_+OlFK&-8pEcnDyCb8~mBP23~}mTSb_tf}=A%s(O#V3;M33 z>tb-DBYMubmrpU0aC$yc?Rl^c-SrN&ullJWdaIcoU-m)j?sKRLgD%O;M6N@N;Hwii z!8J>D!|?ue>IO}+&wE@@Yalr4-1}g^&5=6C<-^DVehW^VE*ut`upMbwQ@O7+vpcR= zj##ainlAMvVSq6=aEkx7{`W{UIBm&v{}n3!b=|;-9MjY{$19Aj zbxgu&dtz+UOt9@#bJEX~t^rnaz{y_J*Lu7`LFzd=k{ue*-r~7hix+aF@Fg?T-AAT? ziyT-C(7HklLzIRB9Vy-5&mV98R~z_&t5O&9ZIy;sG-bY=M51UW79h=tTs&6XOmxBH zQK8$Q14Ij4hrucAjD%UB78}wk0@8)JTm2*iTlV)>xn98czCwZw04@KBkJfy8!HZG= zo@6*U+rX@!<+c{RZaAC2?E#TBUdTlZ_lUjC0~ffFwoGD`(Zb4y8Rf~wN<2W-Cz~zK z*iFIFC#|o~UMGQn8#jIS#h-GA9{Zq8Xcoo&_Gd;XX-*G z4^n#I`g@KTV&afLh0Kk!@IB?yV7Q12p=b>mn4lDKXGd~xe3XFyK0kg@jRQ>6bEoc8 z7$`C-bx+t3Vh;$ca2?gScX}l-dA;}2TyiOOlolsZsjZ)-n6liOKk1SOV2s-1yF0(G z60?vajUc6!{fgy@PxL)3^}qd`Z?%ml%0dq51xlXP@O1UQ%X|#8CKSwpDg4Oo-)2W# ztbZcfL(#vuC!OyaJcp~`z#+5K z_AFNDO##b0GL&4@@3&KW)V4iyw}S7{6u!FzfLq#x`&z?*DqZ;3 zt$WBefYN~~CWrAXu^-W}ar014XJvjSijfvaGtow95NHX7)5RFJpv1bZhZ{BSSjyVf zpN};ckO=UwEU7{kYf5o*%B#qOKvKu8cL_i=9&gT*MwaaLRqZ?AVHG=nNNXlH>`@J} zH$6nbpl-GNGtGqhz1)BZVoC>bY72zD!OE{+$|P?>?5n%Ao0JGDJOrNJ9$L;f`y$=nFp--k@7*Y55$0PK@FqDMn@j>=ziPJ4CT zU~?$rrr}dwTok)OFG(y`=ZawvqTx{>kd4+zg)Du0)0@8oerFrx!|e|F{)B|E4(Qqh z39`>-d?w;I7m{}RJQS1Jz%habO99Eq^O5s;V6*6!gYIc0xZgq|tzc$Jd8UZC+}l6p z(oLTRu^~dCwYt*kSI5{Sr%CWj7jGe*X-5;9o$kT{FGs_A-1t&SI`PH(GY=kR$v5{p zd2w#0YYInxVVxHnJ5cviKAfjEKv>9w$nlo&3&6$a+8?Zxr1?EMT8h$h^RRKRZC2IQ!~XJY$H& zI8@$}81=(i(9#pw45}Qc!W0y|;6OG5V3*bf(}6|X@#;c=DMx)e=e*5jLXX-ql|dt- zroYVyz+-!vU^-9-zb-u}Dna=ci!=W2tS5yCgpZIq#HQ?#nO8|R{*J#Wob2uupx)5> zK0cD)<4^c{aL}jj=ta!6F{hn4W#ra zN%^&AcN)y8d^Zl=#Vc#IwKrkZE^bea$=nddpnH{~9qNui+OLUH!78}zad}3A)JsgM)R|F{-qj=daM(-H^c*hvl61iqc!F_imafhoN+*~n;7j88hJ4j_FzX- z@*pXBmB9lF*AWzm0kS)1BGZv?!zipu;lci`huWXP-k~qMb{pB|PIOl}*j?{{g%NUJ z3V?LtI?cSLr_?gN8=6Q5d6GIFe-gYzlldq?6~_}Y8VK~>a(0(`zFCmL%}7NiG_y8a z&aK0b^)q+38X!xf&t1_a*6p4Vv{h_%_3e1JLKc|W21!yZw+-|d0?P8vCWtk84YWkc zF4)y+XlucP()?-sCrU$&MbjoUA@YZX;+*fI%^gC1`Zv**W-&dX`7!mB2o&Ukl@tC!BC#?&FSxRiQTbqMj37-sb1Km! zz3Te)Kt3Y2uQ%Okjvw>Xl@L9u!&{_Dlz@JloSKr~77~fQGx|MWxDlnbP6MKLO5JR$ zv)6m@7(_e##`gi2L6YFK<4&5=&ll|zupl4}Ot90i_=mP9ZfiJo<%UPDUs7VAVq3*a zw7EPPF$*5EpT5-QfEOdoLl*%msnAg3!Gai`Xx`x941OyY0h_chfEUOLeA>1y*7g?<$@N26M3^=;dMknnLfk)X(KPoP z8c@1Atw`lOejik3lqC0nRm{we*`m9`OG~#_E{nAlX}xPmM;oe&z7QS7MVcpLoVW)F z45plHe_-V1@k7N-Fz&yWmQSNA2^tmqX!F80~C zAWP_C(QXTh=Itxil?8<}yZ$8}-k&EO8{aJ864}_@M0ArN(b?)f_vq8L_Y>$>_zPuo zX&4a@b)^{3I*tsk=7uHD5x)jLE&AieEr>f6pi zxPiP{y96GeE;p($^-@GI%zK5C<>H=0A%}7^e7m z*Qri;HUc1J(btkXxL4L)i{THENB=1(&i<~Q53L4^ZKZ8*MJz+q$e(^FT;EE2^!;y-4=eQ~!_1hUISXLm|#d5M) zVnPTp&VVylZ@sj1sV?tv4D-7WAs5HkkWOZp*sjK6yVv;YUxZTrx8^^KMGn+Hq8z@h z1$_@Ii0d{lpWd!JC;UO5*c7`y^$f7Hwr#se{V# zeQOM#AC59(##6ZH8cSo?nXFyq>2f7+2AbklZ%@NmrjfPj0Si*i42%h2hDhXso!Y=P zmWZ-G0-BQav$N1-mThsrG4L{df*7Nc+5y5HG3*PMy?P`_FMULJx$@1oo);aT#qzJ$ zvg@s4fB%=J;s&pSJU1{N2>P%q;BGSH{NH;v02K9cu@3k&cE>0n9U%2KY5sEra3~d; z?Q;cuNJ2C~E$9GDAng=jXRbJtJNR`s9x3TXp&)&;{2{KUGPljz1xKhyIsD7)t}o+U z@7L)W;&vGC&{O%e9fGDKkQ~@rFwJm)A$Kn6A`tmip0v!E9?mYX>eC2gqW#ii z%q}E7YmsrP?T+6mCt3UjIsk*dAkeDXdwK^ajTK(;C5k_!g+%$Pr3ohVBgohP1-3r~ z6W)C9PJ>5&X0v{?M6JJb&FYC1h{vst!kdx12rP^09<@Fr2enG;^7An*K(WnZL}H-o z`1Y@|KCOJaUw65DMgwppfNR&_02x@?cJNv!oTKrEZ60#zbjpJue-_BWx8ZN2@!a{c z!j-a~kY2e0$yRlGQzp~_qM0wCvhk>9WU=D%axLCo<;^=vzs=;wkUd0*i%WPlu+*jX zmtr94cZXT4N*DK*JjLwSC@mMk1wY6hgD642?uSpZ$?i2a+*4|*Q~n@o;w_J&g~NiaRh4|Kov*Q63{%rxljrvl5Jv1c*&Sf*UM6+LS` zZ*;!RE%|uRjDGb~L>5`C>A^zHs?%h!Ti2Q4Zl-(+j{iIVwSy@csly252Y7h%hukk_ zf%Y;@kLt4zn}phV2i218jMPMTXV(IXOC~2`OiZ&2XC^Uyo=+9;#&+*>tBj0$)z(X= z)aW`*w%4`qXE5!T5BCn(lA@t`#SyutZ(@Aiqr{_ZZ)r)&&zH5c<8pR(eqI|dI^Pyc zx%YH9a^!VB(Oo^gbN_CWC%E>c`%m)khfAtD7~LZNB`f?nOx%Fdy5dwfurv@?ck!xN zesk^Up%smyOx7&tsKm@_f}<{NfCXDh*>m%nzcqyZ|8^hn{2g!T^YE1)t9TS5@#L4C z#_O!yTybF))DP$Q*+ogAE@~IDi@?rorqtAQv9+*K*IWXt`61Gn4KvC6bCOS}kGZB+ zv9TYBO55Q1q2m|MUEo(H3<#JA*p)8(hQ74yE@4!VmnD{9N@eEE{eACUoTKxH`S%gF zbL;hJ6DMh_oNZ2c)Y*1nrP3Yvh0i{ZWMhl!hq4b1b=c+kB@^6ob12D4i%3hjAE3sZ zB2jw#_~HpJHuiVAh!^h)wjR->gcdDD#U?}>r{_2Jyp*x+E+cv1=zfnvud3U^mF*2pXTyZyc79&@DHjRf*v{s|0LnQPzj z&&?0Ve|gSfz@Kv{pJ@KHt2v)Mh;w!Lwl9<)sd%`E5)sDmS<d}DQnqgy@#8M_wfxv zGCAzWY~)JisxmLvzg_uwm3?TZEQ;!%UfJ$4@V~d<^Q{F zGkoi32D!hK|7l8H!iP^u4I|HFHQA)L8!N*2%BH5;3Icj=y|2ByIGH;uV>fJ`^Cs-g zlG#A?Dn_2IW#3Z`)2fuL@142t%a;UcY=jwn0}ef4Gu9RJr8*Rcr$P zwNgE^2#3g?z~2DzaZ1wD?pJ7Dv#%_2@1P8;-jL$C!Z)Pnoma&g`^R$Dv3D-YIC`39 zMK)f>Ud7IoNY9_IcU6%+%d=gWKuxur_Aa*CWY_xMa9chm{i~ifNyN{fRQTz%H<<}P< zL(_;&J+!1cjtKD`9>1uTT$dwzI0sMJ(nx&TrUGZ9x1EsnK$y0tYBmc#{fJU6@xF>X z5#?&gA@=N^c)|2AdM68;1bnbtcst$J$OEQeq>w&;$Ji?_nEF0w^2OJp*7vxi%8GBJ z+aJldW?nt1!^S>)fh{<2=tW3=jM=9!qA%sgLbdGv@rK&{ipy<5d`fDSl|mB#H{TZb z|0tO;5gQN$;(gzUsETt+P|c{})5$UD_H|emKS~)7s35kJNOns9lOCAEdE*7|&ZVj6 zYS!wG)V{Xo2acU$oWP~5)s)<<>#nMgSwx=6C1o7l*lxt5Vx}4$d&gkeRx=ag>!Fik z&@{eOe&#;&9zKspJ9{q@e1y72E}qd6X=XXhY=3G$8#-d+Qsk=KKEQ;(9J#YeMiar+ zD_5>O3RO_Aws$izxWPpFe=+seQB|hh|1bt9C?X}&C0&xzpp=wIcc&mCB@GfPjdX)_ zw}5nmbW4|%ba%b`%=7!M_5LwyX4cG-bME`vdw*(QJbwI`_R-Ix>7;Khq(k*KE()!5 zGPT^HnSAl^>#XgQ#@Gg)&yTQVJzeHT`@E)_IlO8{ilvDCz;O(@B{}FOJx-GI)uIT# zlXH6WLFOd~GN&>wq-ty)4+`Hyl=;JhVYY^6MM|7G{&A%QaLClJJ;*IGj*tZv zU8VRJ{MODxz2=_na>}d9XIYFECT!Y=&09AyT2|pqg;k{cDstm|ydPc1tj1hsG+kvq zee+SMoAYqw=qWHxQ_5uP{0>%vXp2BKdXu>pH*PEIOnBa#F27jjJOdS+Gd}KY_7&(_ zE$D3vL%&??3rSl!k4tc|-j-(86`ublz8hQb=A)u9_muRn;QXg%Srz2LbS>-(hv_7i z#T~_Fnrfnd%||cB@{nfu3JoLy`u};-`LBky3K4i6*|9Q*S%S? zxcXd-1Y_`PQZ>n7c-lev*U!Q)|DH635WDk@Z#Bdh`#hi6sGzc3Go1>V<#bs+eb~I? zP0GNpTHN6gB12jc@qtd9H`u7SMK6#eXuq7LM6`#i!BVDn(&$+P8<3b*N=?cw#YHn?2FYJbp^CBlS^Em{P@s zW&c?HX3r*)BkmD>cZD!Ac_Xv$eKZ^z8!Xc4#fEPx+XY5{yXS9xG;gC#|G_lhz;H{=u6V z?+(k8*5wEHFF!8*`SV6tSojAw1(x4aH4CznZ?joCYtF5itwT4C9@Qk9aYg<^O^>{J z=2rP(x;Y}dEc~i+^e-K&$nK3mQAB#`?#!LCmx9(CKdr}R-es=kVVlTM#IE`uWZRnw z+X*~MxI6yfmFtz|p{B5z5aV0dV)ima^$p{@ArDqW`?2jx*1Vv?PlRSor_Zd_7)uZ{ z|J$8M;R#U*%a@kK6?>n0G)*{@#1KQS1BHEg2nW%&4oBXSd=uz9sE>$@u+Cd>-tapE6kJ|>-v7QYv%z2{PPy?XT2f&lyR6X5`Drhh*husuU# z8ET+c*OM6d;e9z-ovuCT9QYT{xvTi2pqfzy%udB2D zQgQCik5x4_i5o7Fl8`BvMfH2IFjA&?HW^*#v^^P!Jm{|Wni`w-1N4r+3KL&MW-u_> z1bsLy$L7_#FiVtra!j-SITtgmNcZ6H_1~}cs$+AzmRgTk3K93%HR&PzWH;@Z7)uOL z{{8N(@MyX6yRF%{GM2uTGpDbfUvEikGA%a^-23_SgQP$AmoJr16rAjhKh4ZV7Ohg= zzI_|nd!F4*z^C!|3mN1zwCSfGy(eT%(o)l#n?8GwsHsx+3s8trU>a@&FDn&!h)pDN z@!|5xA15}1U?%;`Gp z9>zVtMhsrHKEa16P0ihhlXl+*FE0O;uRTJ4qO-Eu!h$`8n9RRXjj4{j9Ic6C~MsN}haoc7FSn_E!mJsri-W(dCt-Ek05wqfKiw`ylh-IljHI zJ)HB-Wz}f*g0sAtBBcBi9q`*aT{9W!E!pVB1=~G(PFmE|BkR7)P`?di9pW%>Ok8lR zcEWnj|5@^gMnA>krIErji=BeDcV*bhV=Bf?y~wdxts}}KYZg;@$xVV<8y-P#lzGWt zwN^#1nw8a{kN#0HysA5Ly4ERUEm?TKQwB9aWFcbl>hG(6F8M6LzE(f%&Un=Vc)W%D z*fp~#0MJysyu5-*{19JOVFX`*R~xg<@sc zNiQSjYEfsjFUGpXKlX}kHJ!_2FUpya0jNMAN}GFghyq@>D(G*LxF;E&PFG6`?Ly_J zdec?P$vczLKqG55TdSUo{q-)GxtjSTMnI4I6WpFQKX)K~l^VXJbMrW{75=$t01sZR zoq6n7vrF-dv_$bcYZ#|nFUA+~mtwQ*4>=Ecj=Je4c-aekew>8Pwn;_I^z{VeqYqDE zgm4SIN|8bU7o%4j>dHY6ZJyq3Jd0jEQ1-O2FbTMi*;LZx)Ap^Cm?1|S3zGsq_1U%- z*bbUDisry;NAl1K{VhzlN&FESqvzI`ngTG)&;yWhrUPSCoPv z%JO$8iG(BTIfnEzRQ=GOwh$6C_g-)^ zcXArF8u5rwNJxKo{0jN9_XGrj%X>|x=jZo5Lw9^8pOo+6|E0_eRP{H>qC zLIO!e`%^}8s~Q9Mhwv3a`l`$yiw7>hp5HfdR&;8@7~RX%_KS;=r`Zvs(HVX#U?~9 z*7c?F!J*&~VOg8Wuf&gwAY|AiFYkX{Rv$4ymEaRFQY&Xtdsj}u#u^8`)}XxEpX8hK z{9d2PLS1%VHhWc*QPS0MpdjZ3nOK)fLxGZpwjWhxG!&l3Ezcd~CR2I>=*12`pw@uS zv;>Du?VrXj<0Za*<;Zf8g~u{o3$IATOz$kZpHlO$gT<$IHg8MLFyAYuMCRYy2F~s) z?FaAswE9LRh{(l8W?L;Nj5Axcn&e#=N5%Pv-UD~&OC%o7G7537N+;3`;zo5gUwUXf zt%x+)HKQstqz1;x-W>DBrk&1rUhEiUq;>a+Ti;k?Z$`)sH0;~R{FHITI|!DQOn04m3Z_2Q6cJ!u6Vf#m9Y@qN`^u`TCrN2YH4_qWu$b$Wo$fFUm}XGa4UioEsd z&Vc+dIp|D6MOTvL#&!7X+lif4{%;;*5=?vA_wt{PZmW(&j_#oy|Ba?>(1W@>d$EF@ z^tf<^V8H}5N+uHWp@CV;+tajO8 z!{1V8E!^g|8?~#t*>k5Bsn;C+02p_l`W$^#H>rPEN0dUoLfl<^MbXi~vAz`UN|f{R zWO>`@OQpcC^VN2my@|4cX@KY^V{)H`l#SfXv!{UsU??brbM zuDhO$Jtvx7!e{u_FA*s2^4r;Pt*b58Fc!YG^If>gXu)mM<;z$xS82Q9k9(H%Kgn5{ zLZJ}ZE+#h(27^ye&KnRMZLo9jAukW@m_Y1CoT(;fYHog)@P()F^&!43j^2%zPwD)) z-ZKSMpg|EMbg`>vw{K6#6S-0YkO=DHG_d$q;QI8&6Cq^wDH$}${`|p?7+j&An#3a8c_P>$0wB)4L zjuCxt^Zuo7>E}iaKVYcnz;XD*pJDAu2kGvTuE;6oWj;%%etwvo@^fm6SuU0vKXr2% zz59TE9T(AelTB}M{`TRfsh^oVED|94>`8-y6;2es=xE4fD9&T7&6%2$D=9SPE?oWC zP^Yu+_lrLq;>vW|gwKQ~LOLl81s0xw84k7 zfle)b!F(kz%4q1A{DK4tb1Etb3Z^x!fqBVjgM?H6RZtq1pFLuP3K)J;D~EN>Ro-L{ ztxIk0PK9nDBvXX#kovNiz#U0yBYMSa139W(<7;&(Z&q@0=K170Fgei$&fGYqw(i~l z@E0)Su>!hv@S>aE|;@MP0;%o8JpHZPq8~ zzK~?P2g`iE62hgV2z{;cBq@25Cbr#oKuY?@XYPyVKKk2&vCgXQzHba-YUDx*&i$i& zK26Vr%zks}ZoO9!l#f6)FBiSk{+Q#dps0Xc`ut|aHD5(-aN{Ejzc;_FmLi}lc%Y74 z`}lxw(-;+20DwcU)<@v-clfCH?;8b`hWW-aD|_CoaCqUMD(Jn&HjIcYb-43iXC{P7 zYT&v0dZK3qFqwja)oc4(^`i4gWOh33mp^Y+6inXbWxThU@bM2ryCB(48$1?w$`z!0 z2q!XT*zOUMVSiAha)#-*s=_K6xuphWO5?-sfy`HgNL)JzKRpi0BkZTwTAf zC4BF1^hNNSMjX>*RGgFeb5i`a>Y5E-nLtr(F=ACsRUqKDbvO3BQ+DE#>8${`&z$=E z5nl&pMQc{;>MxT>EM@Mi?sstX{K``}K`k5rQDxmS=bLJ=>PxL8MAcFVDt;+-_v%+_ z1T;)~7rvokLdU$oI3XW9Uo&>gn$3>~cY-l~mk&|gfvW7QNiuy~@Dljx^`+zVn_sv& zv^BwTkEVFjO$99XCt4@)Ol^s*(%-d0feEkVViIB#0&4darPmMWkK*5=Ofy(&>bMun zA%)ibnMSdCbe7}M#7;HzTSVSQY44o9`jF&0GMFaG-yAR9(KY# zLrj5o?vRButA3uzMcSZlPHNe(c904`&i<8|VX~jN`REZ$K=C#1E2C9i!o3!f0cf+J z4fizgB!f9scG0v=fr0YizH8pk!Vi7bg5}SLqi+%z@>;Pnxk8jNP{Jap54(ZF(mEqf zGW6nM_qeZNuTf9#ZI5WFhUXO((bs;}WO~6|t<$PD98RL=FZ9Nm&$j@PdE6Z zs-x`vB!io_d^8KWdec$Xlqns&wvEg=69&yKYUYmlJseD*MO>+VzLM5>XMETBZnESL zGTLoHY})M?b$&;tr)vu_jBF`EE`--k#~6UzlDn>3L3ni9n|grgy@0w*7vMq>=etqe zjIoaT2En(KptFII;K*@_`5=x-SVHz54A2BFKGylu&#v~}2s%D%$~NHjyxi%RP;%qi zYF2=m!yFBC>U(K%?>PBq_+zy^*eFEbpG>_0v{iMzQvK>+6oAyghdbSxOcHRk08eww zO(Ybb7QdQxItE(w_Q~c)zJ(|Y@v-r0!$HNd7NHR##Zeh?lM(7<*>uSvoLLcY{mgRB zu#yS-1AOspI`%D=B&ftXy;NQuhYP>_Kh$azp;gr2_HyC#yO&`uYqbB&Gxd$nt#(;~ z8CAVlRd6?UdOtQ*I$_F=nuBVWKNQMvRXESr8h!ogN?uWA@y!6SGs(8(S>&?1qb)h6 zALc|-R<5LS-w99uAc;f?Tk&6*s^>&oBHoth{+CT(KQ~rNZLF_MCyYeYc_*k34hO^E zs`%?~Y4G;%qVDN$PLzn%i2=dCMK-e<3kCZEW%>ugfo-czTMN#V;TC$iAS|3_6SPaP zB&Hmm3v%GWa7FU|NL=0zc_@CDjxA{2AIW!L6^@bsyn2|ISa@|jmm6AvJEfpe#IfMF z;PfP}zYuv3k1AXY6_@fh^0!pM;c4j$C(OOn*H~FNd+{Smi!V8^CVbTBS2nxLU}`=} z`y&2Oh%@0HDXE^ZSzDNj^nC)t)?BVUgpLAz=gACQ?1;O(=3dNKIXBaHOfafE5<8-Y zB_|=6QDmu0CZMPBPMPY-oQ_tyo;=jheXWCVw&SR3iCPKJ-NEea!(Z~If;6?Yc~ z@EkMeDmZpeD+?IqtY|~Z-f_E3?eoy3pG#V+0iqP*d?72zy4Nq^5E5Eh&HtJR1@EGz7luo^I zzn||0aRv>l4EGId-SW(T`*X?pZ&lS(#^*oUs|gFFajLlbLaAtz<-*Af=58#?+WbXcEn z;O^Ifwf;W0zj#RZ(a!h$8&%fcZ&X?-^k--7~Id{W~G~kx{_8ejvRaG1YK%BL;J? z)hHBo>-eW(-w}`2!`jz&3U=f>Z&@4O8HXhM#$5UVwN@;$6Nn{|d@segQ9GtzGaCis zLD|wVR@hM3(>3m}EXrh?(lJSdBg2Sm`+S}Z1g;Ly%3Ll_j0pb~50vXkbPywCtza=? z14VjIBOykg|ECu4=lsS}ugIWbv3#8)v7*Wq(a_a>qiB=|IB~ z;|bdcay=0Me^4=LPCUgK9K#*Shr6BEow=iITB{=1`=a`|)pY>LAYzq1wD9b?&s8j}gSj2+wYW4K{wvXrl0y&&So;b`V#{guBDA1B z`$9E}m6HbzWt)9$NX|+dO%;!(29!n_H!V$HQA7?nx)^?_t$P`6Bl~Oo#30yfd9gpp zbS*IhzVT9DBOej0z`@KVus|-!p&eZZW6;sk9p>U z5=J|wr}CzEy@^pwH||NLV|_Z^((B5ga}B(?pRO9qWKkX{)gFnqzmM!s2Pnp|HrQFV z0KME-#@`6+3(!I3M>Of9mfEgyZ&Thz0_i63CC$A(x&>@tNj(<4Atm-5D`wA3A16J2 zGv=*bb$(7yA>Znkxz2%cpncO|S@jDac zf*2leGDagGlT&=OBU^shMQ67iG)o8?*?p$2%K6%jGnt~wypiDWx;ON$OnG%G2UD?g z|CBPYC7g*m-Ml^vGXn`FV65%=_Ai~$WyK$f-3|T28*?eOW(k0-RoHgl_?jGc(T>4b zB_B=zJ8%g7`sSWAl#x2w%iI6|C`{vE7p-b&N$ZH{8-9T%`XXh=+5=%P*Dunb`d_N7 zzR1U3Iw8I@-;dKIl5$wV)Buty|*q-33>+=>CaJ z6BYq!*N<>-?!CjiNJ5ckeu;^n=r>v3?@crpdwdP0m&|}{QSb?W@Rvd{@@;Ml9r4<9 z@VJ327U%ZTgDcweX%oa+M8yLW_HaM@1~arP*nV=(&rmLSd2Jz3l)mX>3OQ>h>olpe zu8KXzj|Smn(2Phz9AyCY;%LaxN2YSh1waT#C)imM;uC1S*pGh)*PhC}3&Yv=s7>Bx zzq;8`R$7r_B<4(%K{bI?19HV&?YS(52x;k{3uVpr4h21r)OO5Qe-v%YYPPO-IOR;{ z2XJx-YhM(vY!j&CJwzlvM*g*!tqv-^C`el7F$gn^akJ#=7Kjd~mK0HzjAZRIjG6t& z>%88)GkD?;3|TNMDX|$GM&V3RD^EM0MqlCj)2AnxmEj1F2JLhEGC^5g%cn0=VT!GE zm!HmGaGj^CiasnRY^+WmODRm%$#%JB@yqc8r#^rtIccCq+-jPy#*~kXp3dK-m1fOEI_dB37NJyyeBjBHQXOQwTgE8gkTGH-4?-*Bz?5{8~-aBnQ8u#Nj9K47{sri&?3$v{755$td!K3mI0G&X>(v< zg6NO7AZ0@hh)o;gQ_1!=ua0h3K-ZcTnzI2aF-2Cih7n6-GZC-T1k$9^1sg`5aW_o=6DpE#`P ztP#Vdv{&kU;#lz?-v$(b-RxZKZtF+rEZnmP-0)UCz9e>+wOgQ5_6Ldr9=H(MSv6}g zI;FB_T%TWCp{wZw+i%Fkf$$;6Lr02nl&E`Di1Hu&bz$g{NwQ$ z8sV8ZeIx=`10$spX9%d-e<<+XN9#5-*mW1BLG5`965)uQh88cbn z1xeNw9DRRHg$NM6;Yutejvrjf1<+0M(2b12O5pS#*$jq#hfGIcrQs}n#I59*INxno zZIF9k8hRUHc<epTaYW zW>otNKhH?PDAO9Gm9<#;jD(LBb|4Nf8LdmQDJ7pv=91jI1 zqcwLv+#1M{qT%{E_2c^v_EUUc5I#UQ8&DcF0#0BfsiAwvPw5q+9{11D5KmO&#$rM+ z{b3MBoB0=9;5MLdO8wzgr-;<68;XPM=EST%-__LtkB*c- zIn4I5aJtKz6$CE*tUcGbeY;Bj?WZ_33TiUO`MKP%c|M5ZL6H{b2YY|<*7AzYNLp5v z#`2T%Tm8LA39Uca%C{&#Rqzh*dtj7l0kU|mLZ_wEwmcFfq@inXRXB2g19?9z+lbB} zJ?t;@c*onF zS+fm={5i#LTdl9-%egeSz5Dw}KOiKPf8!+3u2JRTl;~z11@6t`a3aLJf;0=;)P7g9 zL020c5(aPP z7rkXtw;+Eo9`!SFqsGG0O#7dB1K_#I4U7C;t)|#j)7PQDPwrHVlpC3Cr9Ave>O1Db z5;dpZ2YDN#jzlRQRtThOzppkzixPa~(i3BA$bG|B7nB4NyGP||{4A&Q1N@yiT4+P6 z@pWbD;A&5K>nj`^ zMDhk23nO467(AuKe0$BJ2!06N+Of*1^O)zR-8EAu3BVXT$sGY4-knDc#D_w&$%r^` z`Hk|#Mg!6HmpY7-(qC-`?PG*R0~(Ok9o*7;v99rF`M7Zktrzq0+lb~ag%BzKzaMtB ztIRKbTYY5~p^+}-NuRE8 z1>=3+yunKxQyoKSNr84mu{j9C`wOmv%I?@vgOM`F)%y$9h6&dmdk>kK6BjaOsz?1~ za-U{V=O?|Vr|{7P6`LMo5qiy_@F7BcdM`c~5LY}oit-2fS@ef6m^UT6E3d9=k7=O9 zA@?*fsm}nSW}p4`YU(C9@0(ktFCxT99C5eO8$!&>MuDTWoMM39o-?2UNs_b2 zC!Q|e+Y5RNKL&^(b}9~O!CCUzQawM3@89xYY^_3ErW;vmU2UW@{GW*q_(iY#eXGle zk{^>+1=3%foukfHc^R^!vfP82Fb)DTnK>yFTexty<=)fgkCc+NJT{U;?R zjFjhhcX2TUq>FtO-ge#Ij2e&^(`LUP@Cwc%>?d>L%C%+k*1>pDjq3>n%4+@qt?vg(eQJc20 zE*woW@Qd-oqb@z{Q$VU#-RJ{mQE&do^eag!03>&j%WSPwo2W&>B7!r1)J>7;dtl1T z#yvxCAa@^+n^WaTe+^#2uTh)D^^H8JV)DHEkbs2HHaj3(#RfaKDuJ)9U!OyO>(lhyt#pgx9y4z5 z!8d6Q&U~Ldr_ZcD7w1dTJ9t^y9&E`%{KQYr7X&!9-B|z63`K?PJ6@qoqG;=Uf(lPN0@3 zB}j@a*`|i4(p9DsL7)^)VKjW-+q?ApxR7NIrC0`06W~3BaU=FtJ4~@;SgL+K1H&6DEy3_1|9;!Ibd+cB8!M8$Fb=Gg7^2;cXy{AhZvRxzC4 zpk`cErv<}l2}CtQw52w{iN--jTRjnwG+Xu`GH8%$4pzjZi$b@5u?eq@1N0O_k(Pe|lTLOL2Y|CfzJOYc# z0Cpisk)wM~!#sWFm+h19(XekGG3SgawbSchOB_AMcCh33yY;oXWq#X6_LyDvv}c+? zFxsdpg4E6esV$OF(7*y4#&{y}@XuS^K>Fgm;X+1D>+5KEo}?Srn|bekN@gg4^Y-`E zJTeUPDxP_hisL`&55i9`j_0^z_&z!eXiuEjh(DOuFaK6@yjotB#IBs+-{(pU3b2jW zTEGV;gTHNlRpw&uec9}3YRl#R5Ed%=ad!K^19uw!J?`^~iqS<&8BH_BN5aI6gON=yhw zBmhzI(7N)br^?;^I4%;)J^%o>ub#X6fAWcb;cCtPI-0BlS6f%3f8(HM>DbnvDeId> zw>LL7aRBOcK^GB8347$fYc0r-~DK$`OqTBT^TEF9p_|$zjlGp;0A*^o<%@DZ@A%~AL z&%;?{+pk_$8y001cKlByQFx5PbQ{w5fB#HrPP@8 z^Xp39yie?noVm|17i4g=5Xt3R`nT3Rl80{GunoLk+H6nCJJCTa+;iWN1w{KAGpjhe zje>e4{w>G_Hvf;t_KdA6%u}6{?#R8Bc`QXim3hSxgpY2zl&gMPMOy>2p2j)x)EqZ! zCv{HVP1_#W-)YU++@;RV31i2Xwr~1ihM$f&zB%Ogls3jAyNZk7F%K?`W8Ud#PG{wH5| z@5F0oVS9&pDh)nz%f>@f-JyJR}nGOsys zaWnEMo4;RERZd!P8ukT+`jwJyyFXR59DX%t1v$75+2H9L$7G1>!OqeGqxZvP)u7F_ z+HX3X&bK~7Hj#I0$Hy-U6*kqoIe%b>KK0z2TMJ$P4GS|eL4imCsTr0~ltTup4{{^2 zn-?)d4je~82Nxt=6#R?7NymO!=T+w`7u3(uH#wm3W_;#PPld48Bgjuf#!}7BMLr5& zo{Q?enPv$S3x&?d{Rzp~U@7CpuE0+Ovbt0CW_j=Ke7u;k6i>we;^15PzGweWH?Fxf z?ROy%(mUZo!?l~a3VFR{gbUzaT$O$)UtCKC53NbEl+uV!b93{Pa}d0sVk2%*XplXEFINN% zDq4WAcW&Lgwp7f^e*;YO=@v&E0hI;PTD7!oVZZ)a;xb@dMC$D4u$c)*f_yepl!qNe zU_p1FnK5;Czz%UBS#x(FKb7(LndfiG^Nu>1j*Rj1ZtJeh>SI^xHdML$9Uuw7I2`;9;HB?e+&{@^{lOr-*U7m`?}H)(b=kKpE0L^uhgMwt&~E(#3|`l<;nNUqE*Ywj@VaU z!O9x=rDcfZE^y5N&Od8bClQ2%qBaOLT`T544F#$EDd3)3eVgl&aKA%`)H$7K)7 zGgpYDuin~okGN<#%73`&Gjf;Yi{Oe(qivF_Ykx=UYOQRojNZrt^^cnku;}%6G~N7M z*YD7SfpBWTbdf<&oW>Xn>u!qf_Uh{l1!vN=UhwKm2Fe>9e0NkO^Jxq3bM2mp>0ii@ z!RhV=l!t%b{}$N%z}rDR`2exNY<3EXnrGBJUv(edGz<0L+|n~ii$!z|bun{&fQRoY zD~S>D12}jeFlrNx_ouRaIjZ%fVt$jV)0oXm4uP)UbEy$r&laVvM+>U`5P+vxZ6Xx0N1`PMov3PY(Ly#R{ zrz#-qwI9N^b@-65$v2=h6>-+PGCWu4k>Y`IeIH&!7gdPyKX2Dyh?iD;opB@{Cm%a1 z-H!#lSwuN!v#*bIi`47Bv~%Z01R?(!jl8s4y`-_&25z7YfijFUHh+%iSorvUb#(%=aUA;N#riQZF}s&%w)q7GB^4DY zh+iYwlPr`>%=byp*tjhaA8s=_p&=tfLPrnM>L-7C+U8w%?Scwvb0 z1p*urA~&5`G>FzC*7^Vz1;&S+Lh|p{JnuA%G|txl4GG-mW1RgQ)bIik+GH#a!ufF? z+eB~dVPHSoIM?N19*coGSaL3WbHQf~tvsqit82V^tv~@54ccqt4-mqC-c(_qeNf;N zJ#Pzi6YuV?{5l1&5Azawp@a8M*ZKA=YPE={foP^RFcE0F^1r$iLhi(yp6p$VeuJ*U&?&lB6H6?Y6$FJ~= zq0weS3{8|ujJ0x23uY;2x3wbk8~vsNWJsbdLW%?ObBLPI(D28xMms^7X=!RE@35V5 zcZfgN+<=tl%iUjkWZD41tSFJNGO2%0s+&l>w_$XCFtoD~)5+?^L`C);8JJ&3GD$a8 z3^GVdrSC=~M{|sIq?y&g)V8a~>VXEA;N&KK0swh}KT!n#fnv##BLIV}5aZW%i@Oe#0h`ml(TADpHu!B!rTom1QYFR3dY7krGBMw0 z8F+blyMqWX;vaq{=QaQc3Ij#gJHz} z%5wGGb;o(x;&m_)F&5+$oDffqLg&)r@ZQ`4^v_r}J-}7Kx4V=h;jw>T-T48u8)8tG zhk@BjXMwb!twA*`OHFL3jp##js#e*O(la76>nAtlGAe}KT) z5Itw}p1r7h0sCQ9tYD5RvFCgRv<3JG!iFSYV2dSz;>DZ6uuTke#n&pw{fE^hnXC{_ zH%9vmzS;5_2`?nKgyin-l8e{(xMoT#H#Oe#b-stXW_;u+U-VI6=v(X0XDDL?Jp+>> z!rf0FO5yEMH!#nIqr+WqoUYWT_1m#l6INlbsq*(UT3Q3JC8eaB-?n^*^*1nqD~VPu z4`$jS!}mHe{jc73<6ct71MLX6u`6xZg2#hb4;d*_^@SU7ZB!WYA;Z0>7Gh|Z9hRhg z*}b4Ue({mT+Z^2>t-GD5A3GZB+pMcV`s*|91xhf3U}ABsnujsIq5h~urt(#Vr*QB2 zAvx!t(MI_3zLK%whL8y>rRJrJgA`B~vUI7ru~DWWb+n$!RBA=Oc5!Mebw}x_14G_U z;R^J}Dnl6C5r0^Ezl~$GX0+d0h$wsiOE&|NnJwr-Az2dGH$W3MWMO&& z<({&Y;(2zu#+xf@It7sbo1vA!t0>7jAbH4f=)v8P^ZE{@a-K>C{B;)@*?Mb|Q!0|a zZFivspMzFl=;_m^zUAed_4W1R6BC^)oaQ6<`S|!$^3_7$^)4+Lg@xbXM)>>rrP!?v z&DDA)YtPkLZM86kN+Fb(PCS}$#y9Pdj6%Gh4D;ystLgrV`1U3^5Sh4xu*L}|EoqhH zk0Cf>J^oJ^L_cC;hk>yQt4vm~@(^|()Da?~3P%uWa>ug2)074uVpWhdSaD2(b&nx; zT^GnYcX+6sW3;Ax7O~?S4|2}fu-+KctlBQ`45rp{b5ky~5fc_B+W|Lm{%Th93GJTa zD*1-x1rIC`+K4w8(n)-AneeAF=;Ie^fgL!+QZw^o%2z%mQLOTQ^68Sp<<$RYI-8^a zg_Kcy5+TEbAKaR}Ww1!O9+9hvq)i#FZ5ZVL|FQ{sI20P~?}@ zp*Ox5tT&U~CeG`Z6ZMlXjPK!~$?xcu-$^%qf)kmN`iQa)nNoK?KK;2X_2bLTzkQ3v z9fv%V_maOKZjQn31HwFwW!6`jcC_{GyT^+#D_3||V3n!%?bco3YrwL3z>z&RIfi8^ z6FMTHqamf0xr7i{a})G-d+aBQSf7NQ`ILg(-iy5*TU?KV+G@7`=49)N6Lk$`Gvv>s zXbd_Mbt`|0Dq;CSC-~q7VrpB*6)k-|kLJkh&l=2NMK>X^%d7v(%$4A&@lY4gP{lMO zbRY(>6N39@(;4q7SgaDSWXi)KQ_6#wlUPZVUX)7W)(>zD4I_iWgcJe8TBe3S2n;+U z!>k*QM3~fQNB9cXG=fw*Dq#|WVpF?^PC{c=+ zJaQms5N1m2kqgsn+0n0z9O7)QnI97|m6+vO6_Hve2Y9>Zf-lKVWva+dWn*cF8efa6 zpZv03{P(AT&|zoR`0(FgzHUPj{90z~i(||6v7-KqlO5IrgN#LYIgm|#`%bEGG(XWAXx8B+*@IpH4p6W;l7x%;XN77_iF z;&ccuos|7R+X`#j7x%f3$wke@9c|Oz$)-JC7bjV+HFW}c(Xt5#_B;XA0}2H}N+~f( zWaH4%O)a=x05OVS0~?kZl6YRMJdO@aqT_7*fOHVo+alAEk5p9eND<|`hjA4Bz{e;9 z!ywb}D|{O;wQ57$l5?=`4^63q&lwW>6%(EtqGzSuK8x6u{E(3Oi(8hIbfb?YVgeh545+#@7h7W}ZwSzOGpIfFw8%R46``T&tmW#?|w{lziSjqe43 z2ugOuABNuGU_LX0(PvXUx|$JJpgkk*CV@hP-SNM$%xOdb`v`BUaF-GN-z+2zl7yI0 z4CUpcj+bk!7E^`BYKi(hNm;8YNt+%&laYI$JkM!*hJ?t;N_@Wuep46g;3GW<)dq44 zcs+{b`6b-B=B0e%QlC53CRcSRBRmWvMLJJ2t;M+He`oPN_rUOaF&>_7AF{)USQ!HW*-Sfy zGs}Y~aqS)l7f+N8LleKDj$jY8b85CseyNUDnfPeuN81zWVSl9*W^fmrjT2|Z`CMN)*- zGSKyw&bL=^exrlR0DGOAPQPdr#UuQ~{IyV20`{3c7OWvw$u^yfAG{u8JWCrS1sZhJ z_R6=-53oFZXd@Iim2)!i5&}7fT>`(+_)wCU6<5IyKeS3HsNaESF-tM;`z?(1sG{3& z2rYvy3Z4nJUrw2CSQwLf^nVieO!?uNy#5JQxqI?UL$ZMvY=XMeK1@cv+pwnDyqI{e zP(s^SIc+ha18yLieve&z&Cqo%(IONx;b@XlK0gh&xzs&6c?A{5@`7cvcZ)r!b3pzl z)4KrBY2ZyWHk2iRqi>)&^aMI8&$++@D`q2zFdkenVoeDsl;9)_`tD8NCb_+yq)&8kJ%tF{2U4~jhf?H4woHmxLDgCQi#&^Qv%$@g zHga-K4EbGgHu-eV&{E^>p;WO4TvoG;E|xRZ_MpRjo1dR|jsD`%SGkSjT>CH!Hae<; zr~c>1>*`A&_ZL)FB6e}Xb@zSDnlgLWJ}uC8$~)P_Y#BetT(Op1dox@MdK7fyw92+(QXc?IiryY~YyTG+=G3lsR$;udZ5 zALcLJrut;^NgaiC8)eS;_-F#UrJ$nt$f^=sp^vl}USVy$SN}cI2@BBwvmm*F?BJ;z zy6f}tLtPCO`#Pi|q9sX1l_hcQaqU6!D&rU`S1t$L2CixX%LLYh%J`!pg>E6T!Ps_L zy8cZo=4u_@pAU@>cGTl`Ab7A|iy8G;T+Q`q$Xr0xK_lH5XT34se1QBwqpn68U>&-rE< zkBN-zI}Kc2gV3VD{A=K)`2L}Lj80kN39WUhT~{faAP5SPNemN9b$*qsR?ESDk2^2# z!p?ZL>Q=CSDH_~`AsLyT3aj?8;)hU+zGzb5(SRIVb;dkn)ph^UHMk;|D<^D3hS&c) z$z5suhdq4T8B` z^tXDn|6Y7K;_;FE@&wTXgmpIOZhQRIXmEE+5_F?KnJhEyr`4=rL{d>viHVK1UK^r{ z4JF0K_Rh+pY5BUWWqwijm>}N%=Rt$3uOw1^FNOmIAot)hjbFBl94`1N71_4nTz$ojAr$p=Qgf%=BYwql=r;j{WiyP*#}!^@APLV6qVb- zEoR(PYd-K@h5c|5kf|@tZx}puuEHUz0*j592!7`B$c5bnPJQc%h;xyqtg`Ik=#k%> zU~0%5!y0;g_6sDnb#=6tuzE?+EIQ@$DROcU#6q&Gm#vF(ATgZTdHdzMp)=XM5N$v4+awjs+{!9^n21A5u8TtuI(`( z?NvRbg*|0@0^@CC&CXv6!3B?Q0!qVP>r?WIC4_aV^&jq--te)pvQ5b_7X17g^W8;H zRNiGlqJ3sA(MFkX0B-S;w-OU3le;e%Za{l3a9ZH5yPmyP++=)*Ia2$nqX8NCCkwwi zL*c>(_LNy4nJr0JSymshK|D6r(I$#6BE-d zETZPtK;qR&9(Cc*Fpi{uSK#*ljU(-MW)N3KkxLcVzf@iR^fjjMbvghlyTUW3SkEsg zZk%l%cmSqx3i>CQAf;L2NazBmoyy@8SpBh{ZWshntv`7uKVe!fT0D&ba`S z4R)sK_&w)dgHze|-xNQ=Ptiv47!VzT%NGe;rwfL8i({}*+wBU~L}X`R214O5Hn9gd zLDZ?n_n(RbYReoz2r$0L$LmG~+#K$UKd=8xIJ+t{zWWvtl28!@N~7%$TW)2s9EBZ) z$h8j27jStqj_)C62^hO*|9l7|3h*-_5Q&OAu`XEuSsGykVJX?yf`<&}=S^RB>uh>) z0*o9JH7=QcZ!H>6Qh8wWjU?mDe=6x7!_VI`s0UO0-%*8QwLKyPI~j{!}9OYvP- zxIeziU@eV=>7cNK4>IAAowlA~#Nsh1N%}v!QpHf86(+VJDF!oV+$0v!;86VzCOVLP z8L76HGX;nTBv0&GA$I}51;LiK1i$g$>G!07fcnygy8MIltTK)G3N{{)Y^aKEC1sZ$}JHp*5LZKP8dI>yhGr(1BO6 zrA#+mAyCqH(_uI6J;!kZ%*Svq6aAveP18{=*8b9DNX0bnE%y}`6=_2hGA0qbxUCv( z1S`aDbC^wtD=6S%5wU;R94l4GQh1$mQ1|JEK&s3Xh`mj$UZ;zPliO!DeBo$nU7%XWQ_Ft3ETlOM-m1L*+W<> z6sVeuX}>35chP8r8QNk{TY9ssnFANp+W(Ugc68Pp3?4WLTsoKOtwVt%|H)Jlbb3B9 zBwvfZu}a&qFLtie{j#&lwCkA~-J+u)137pE2)6N8o+GdIV?yT-0{6mU2P+V!^@Cn6 zL%$<-Rc|4^-*XbCjL00H#Mz2{9Bl{STdWLs*&easv#Yvg=dLUFc$}({E-Y2WO}Ns86NJ68K@;T#1mWp(0YHPF2%*?KDcS{uim;Um1s0jXUdM|O`6H@ zTsmCd%O20s_n5y8QzfBsKGQ-d=%?S-nJlOK$p4N`b;qS4rE;RT&;-j+@{Z5zpjpt* zsdQ-vlihHgu zP6)%v>l8PDkmp7JaF_l3<625&aMS@D5HZCmH7tAN#pX5g zhxtanE;9{AO?rK8_x{6wc&}fKuBYX&wH`@?qKV##GoP$S`>)M*^_b$D{00LEaWfS&}N>is05VCbT<$8s7=GmIm> zF2Vl30@f$cI>8*jsY8PbLoM7H{%QeSoVVaM0TaAIXM5-UnAVAu0M{F&NrZcPSe>1y_OOV9wk8I1PX;}y2+Kxy(14Q@ zq{BrVzl&MMu-Gy0(BF@UdsL7olPgHTPCrC#IODqE9J1E-85zL+Z@}C*t%|+N2g**( zsO{Orj?FWx_h;XD1IPOS@OfMEcGx3xxjb~U(h1;Qp2SJgJK~-A)wZ2l?U`2QX#rw% zbi|B;a*Q&jwUx51|4iIm<@#8F7u#|1za-Sy7uYb~fN93@!>dpbH0gD61WE;@!B(O9 zX`985@h6oEn~g;I&jWbbzGYD=I=tA>Dq~P({X%1Syn{DHE8Lq|QDP0ojTneEKWQuNmJ4wErG2ScPUWN@Nm+X<_ z_BM1+6--8W^Ry3*h;~6ANIF;S%8c@RI!|CPuBVNj0S||@eD7O|9_Fp|VqU1b96(S& zY;I<;I`}NFwze~Fh0~$33=<0a#pZL`s2>3_WrP5Exw^$^#XQ#ZpmFi@Dy?5+mQv#N zM{s6~oRW#i^2~TYU3-*c>sFHEc=tv!GHI^3f9V0lzYuag@B)IV;OyY=B;rH^)F}CF zM^=5*yUsD>Z)U-X2Bf;~3W8H*%aa;vHqA4+3ZfU=*3+H$NbNfOxWl zwM(8Jn+?X!m$et1AzPZ8E59hZFelEf&O0o*x3+y?Q?6P!)tUB)b+1$EvhtDuw(!=j zE6&&&!%-^6L;$tW_7?&>hilbg!Zz<4=1c{-f+{4Q4T`4=Ef!`#c-y1wUn6azIQxb4k- zs?UG&!N&lE5K!a5iM1Nn9tljZe?WbTari`u$eC@r5!4JK zXJ+SsR(lJr${L=!unz*eday1-U$E{(`0rcny79M=*!us@h~&18r^_$(`&(XzbJF*P zVaxbHp$2d*(AxkCl97?5JQ@Xv zZLFPp|MXYtxvS~CB0r}_cap*NKI2l1?*t*PE}z}@%}G!K_)EzbUj!c(rBxR+OCgkSsNuM14!1@Jb4OGB)#H_RMqTt3$H!*Ez9P0ItI46r)@C7+MD z-&=7XUMhGddwnD`eS%n2n?I3p8ulqTbQ%iH*_2AyUS z&~PnnJRF)*#YponGB+$wsqZ8ko>K1u4(o5Z!MV%dXI9tq{?YtHR(NNth)4x@;~Q+~3eDG9LQs0peDwiajvhF7o;Z zQ^TITH&s7WE6p+r%crKk4_vN6mN9!qjKb}^RX&p zWF-uA3!r5n7>{S4BwYSIhC7zQwsZz`6@Qu3lc23m$w{NS+qW=g)q?3VC?7s6ZFj)sUduxz`#(F_xg@XyK5NJH>2qOEz@xLsj!1kL zsc1Ys*9;)bRl6KgV3I?P8$I@c)|LJA1`x$6ETR7xa4~m07rKyDRx&{PkE}o0FAsO1 zm@))$8@aF=sfBu;h!Uus79*o5!2N!qel(D4#7V-zJ#*F&^^75kIdAJ1{jf=O4GRpQ zbR4}m!Mf$$B#H(NuNAJ(#ldmD$=-PD24!)~l*MOvHPu(J_Pjp*U^=$%=4z}sYzLaw zYY0F}WyQ4c7Vm8~a2CWy=qY_2ZDkJaHzkDT}<3ibem&;@hPhGvM{DM@bWl1b2Xtv-E@)!0|dzqa4>);R{ zT%LmTc*Pl;L|(&$8X%>6`+p41`k=f48lQHt%x7&CQDS@;J8>(ndH@;*I(de&I!ow! z0(kkpOu+e`WqewO!fgKJEk85C%vAXwIWb zQ~ni*W06Oj+ILfPi<9sN@rNv(tdKq^rG-;&*8=qh9V!Sw;x&NL^ryZYmJDa#HZ55c z!CATed&lc1jW3(rv_5&wvNfY^H%wt>^I?K7R70dj`!r%TTt&m{&~dzLH4K+3Hp)Ec zirMwE;wVxegabAb%QQB9SFhOlV1;9kM1I zN(W0~-kFo5fadoJpnGQCuQr5WO%WHV$-uo2xF9mV8LhlH4Gp3M5@~ItCH`nPsg+;Q z+A=|4042Lp;SiT!(1ZKb61X)o5$Rr@)nWO;U|m685=dFtdAQQxKdo_}k1KXzwc}sVx z2%iJ~zaY@}_z}a>`j#G1LCw6aV5@h**77GXnuL(Q(Yi{#C>a^Nz8*2uUBU029G(1q z%8U~H!3et@EZ89aXy$1q2FY~J;d_Q*a(QL-DDb;nt~X6Y3zdJJ^pWYPdb{na0<0>q z#laG{;jg6pVo;#%<3QM+gI9sX$tFZ&&@m-7qY1$)I6FV@I$&idX8U&5{i**VBji_z z$?%$os^TbimpL_FU2sR?#UM6$o3G zC{R?as26iG|$n+2yQrr*cKrjCTwSOK`Npu|Lw&stZQ^TauE)b~C7Lbu~V`3qxj z?czRt07yJ>oK$Oz2MQ0Np}>6@!IDpC4Ix1Hoq;Bp01L{Cgtagbu;m;wS74^X{;HC6 ztrsAKu(Sh_A|+?^xriwnd_F)AT{`dD16d6e#nLL0xnTDM8fb=4#NGet746U_ffKMP zwSE9DTd>#yMyG?}Bpn3Yl_{!2{^ABX}o z!3NL7eFOxrkBd`x+_Eq7`hTcVj271AU9@y(v;71WHkuGA^W6Sz4tw)t$T!(ouVfl{ z4~=!bZ4Cp6@<6)0(3kDXdUm>DazOG-4n5ZTIc&~%jP~iEO*#8+Oe5~$hwZ-YYd&f4 zO(GpKMl6p1X$A3fbyh{&xy|8GFjk)awIk|D6yw1 z^y49RNJ@H^2<(#JN=kr1Ia|usO~97k_QlY;>^V_*r|6!+6I(RwYF^uHgW(V6j9G#1 zBz>hGaVbe%AW@f04n&5GxE6bX*N_XCWTJlwVJ0TeB$K{fSgUFC2)?r(#yIE%5Uf+A z{W%@=kKBx&w9_!R{Qx>Rhbk2}Z`GeVt{1EIO?5vO?{mTN6~59JXwgr&2oF6`P^vSj z%}-$l3}`$yfohoO!+w+ICSkXV+FLD3Y%;e zL;#u=X}ew8PCN8uVf1uc*R!UA&)7wy36xW#qn1=yT^z#X5f%WpgT_`oW>GKN%JL4V zHE|D=^x%?g8J#jvnbdy{3L8XPL$q#Ga5d{vVF|u(%k*hH_-S`8W+cHZ4{QAM@7Cod zW;EH!q!vyn&>0o!fTd9y>>l4n;GRQ8G+JMwRD_$n+RrJ%xCLPz zLmmY{1Z5@4k4yX_!MpEL@pdQXW-W28NYZP-9e}o%ZGDX1C@23_>Z8DStEF=IxUZ+n zwL41S@|LP#_w4VI7yzR_BdP|DiG=&MpXeeH@+qUZ@az#oY(z!(@g+b71nz_ON=vp& z1kT;Lx8*`5dB2IU$zk)|$Ry^{pzVvA+85AzrSoqE>*G&@4rqRI3~R2#kO@3zk_Vp# zxkxPDafm9aL=2iLBR4Me+CYfO1W6x4Dc#iZaE1`wxXBN;-G{-r{;GLMKDixlIqt}HIlV0FtH_K zx_tt!5?AF)M||?oZ!f@Nzz5hq*ZdAHNa9Gk9$)d3w3A>=s1)JG+S5FhX$5$PAnn_yK;0W2Sq>q48CB@P)?Bk)5PiqpeR5eysdkQHU5`j?WG z=3An-BQp0Re?Xx(zZQ|#Hu=g9L27}0v)|B>;_!I;sw1sO8U`;6&f;63py7FCXECurjUl?=4Hwo&uyKKU4Eb*j z=z^8uwA^Unl!Qc*OIyCt3+}iWl(}Wyo1*YeQL?h^#$`W*w=x>eHAr!KgShB}ChAZB z0}b2``v_rD01z~k9mM>!^nsLlQ%G4SPn9OlDJq$2wPnSJSAUzAP43H%Q72%p(?Du zbn3w{PW2`w%}95Yq|ME0hN(_3YpVRq8P&$AiNpv~rR&U_yX-*8)o6x%ru)Z3;K^pi zP^Dj(9I+$Wa*5`^8zU2JhT?D4y5t_dB>h9^!r&62Udu%!24+{EX`_`%^cv7Y&J zO+|22G$~LeaeGhVOwBpt2WQbb&0P?z41m_=E-$xR);C(>N=zMRQg0H|?k|VdH|t&} z7f|Q%hbhpufZQC6t&ylg$dEAqyG9E5lfhhr0{c>I^3%T?O`GoJAX=K0Hi{Q?87OYH zNc0vkkgt+PN>=sf>WN~!%fP^rhh-z;If50T>pRn1?%T*%iHCbD8E$ic)acg#yC(3L zkHIkDHVRp!PX+WPNF#f=5KVs{!ZoD(*7zXU!%Lnflc|6ESPs#~ecEI~)Uu$BgJ?J? zyJ?2|4polXkbyBM8Q|4N2F5{(+)L|D+d9+o(9naKDSF(7QQlR80AEU6I{Dmh7r<5R zz*m0_*W&)@pTEqx2&kW}Mhx`n@GZr5IWr-_c1qLgNWMw*u!%;7bu1(6Ggxhd9IPl= zLbkA5hj6|xSj-O>LSn#0PGI`nlx%Y6@H5^kLlc~g%GLB4g6sUu>$)gU{#@zz#;hAN z52PE_2BZVU?2ZlJHTRA7HJ8gV6&ct{19Zp_OnEQ%&M`aYbVmy%L?eCx5{jSHNte6; zq+n8}%n?9L{RK{7NN^yek&}=V`O8tz_~-jwwCi_SK?WM7sktQmmsp?U^sA8`@vPGi zI=~#Fyd!*Pnb*e!Roci*jXRWX*kL3$kY^6#0k&qX+W_ul?B901=6(+Qqg4=ffoO+i zfCb?!!@pIeCfAAL|3EMj?fz^dgM5ZsRo%fU6a>km)D;NM`R|z;CEEuH$vnRve~Ku* zAOe}VL(fu&up87rh>v_W*AvAitKS#o~l)@{8yGcF;Mct02(GGC}=nC z;yfgz=E;D9s;LMITtV}&ASoKI0&z%E;AL9QE0x$ylh%Y}o1XA~IqY#&di_SvX*jX< zv}=63Ygh>AZqVJe;i+F3_kTwclIQzWuz8x{QXg!+hkO%lVEl%COjoZK9BEJ*tU%(0 zP|sXuDLGm4ZJ3I&kBqq~yr%tMr!7*G?i5CFrhGf#wk|n9oDz=gkdhY3XVl1t7P0(2 zGV=3=tS~mR{Zc>e%9-u#%S zs5OahFD;)kK4av2xVwUa>{yK3WdHmipUkoqk`W5d zxi9|T_xm2`9MYAeMmEA=T$FN>4(~*;5uZi&qNsXTrAXwv`%yS;9(xbqJG$lu>pRQs zg`k>>8k25N5fR#0-G|!@5}RK9*%Pi69-Wt)D^NF=1Zl~CCxGZ~p#4Dt;~)(M=<2N? zP6azkMzOTPT{{8#@>cM){j4kH2jOcq(Z!v>iq%)~GIg$_v~2)LPdIw|LKuj5($Z7*CJe?EMK395o#m6Gwq;B%4|Fdk5(YIyPB^*&jaFy;q^I#4fDdTq7YR^L-|#pMcq3bpQE$sS4E%T*hU_l>?YPJb+4n!}V7Z~-7S2?}SpQK#y2+s6-d=1kk|HAo8ejwLK4wV5c~y*hGw80a+N7mnmJu8? z?R}0ek*FdlmqzCVaF_2ga;vKq!2NYPb|?aDU+BW^PgiMR1dDvJDjE79CD}YGH8@>d z1u-;p!O+XEmk>l6`hc=h zSwm9`9Bd*r&tPx7jhNh^r(SqjeghJ>^uaocsC#|xW8)AAD#(S?zow^42%Y=watwko_OU4+ zm@jVhY*ftKQVl2j%y6RLruKsR1J-?j{gJa&6hUYuU=e~XA#9n#@)WCz>egLgX7wR4}up{A#4uC zSar$*}QikLoiZVdb?0K0HkNxV|m(> zee0m?E(WI#94!!51rMi9eBd^io4cz*6GPK}W_2u_hFyzx)M2a}ySP(-DR#CfeD{@x z8z0q^S1~)4E~Dff^vKZx@MHjQBGNp-d9`_beqc4}4-u{vMVnXTsE|Rl^BFJYH~*c_ zP@8c>iFm^4YKIK)rB|~P+$iK;YNNk05Z|K z+oZdz72I7o@!U&ds2ZC8sI3|xVGs~t20~Y)*9P}hM^WB-M4oq4T$EIJ4KSEDTtZZMSU8dR zBk<9pfY32)6b*3>hGt;HMZF8Q!~@A;F?zhN$GrNA2lhp(R90Om=aICW_r%65z{`iqSQxVX7&+8OrauX!)OiP|1KheO-MSLk#}MuTQ1HLyR_zQ4g2Ix@E)Nv3saZLv`F&|o8Z?|x z9HIaPKTOfxrf9V}@EWHscd$%j(oDf0cgT;pmYko`x5M28qGxZ2T7}?LWbq68DbYki z-xfIxfXiEQ9_NL;qkOx8Ok7OLLpxg|(1WlL+)|OQ-!>lbmy++F5}kq-JsdD2$QcEN zK`Ov>fiKkki}fpOSJw=PyXIwry0U0%Z*9_*FVF6HBaIArp^*X(Gy;H&#i|F{9M|wN z38)uN@bx$cSag8Ag3?{Vf;N3$69wWxTVdJ>$GXGA)3=O5GuEt~gQVVkk&0h*@sepI zZd^eNux9qt9~S)Z|Da}5BM!hi+*o3w)OXL`7@BO&0~cmw*0H312Z`T2> zjJPzCQV3MORCjild2#biUkF9mrYacEzm0=m`Jd& zr$AO0Tr^OdbSX{ef_N>4+R?l7kvKjT1hXbNK@^-ZM=&f1;qihwe1B@e3bHA$a*0M4 zifIO#A~EYaj=q`)q3ek#vXF;LL|eFAM@XII5i|PRtuXe7R#egOGVJ$J#XWL60Wla; zfQ>vu}Lm9alpkb$EC^mHlWhO{RU!iwzJ9&ij5=YyPpJv zp%{;Gao|Rxg&oZqV15B*{33`|<2SAGfdFE)zFk@8PZO2VUNZ#TB4FX%Bg-!8+le8H zls3=Ci^J)fb#sNNBUNt1dJjc93aGRZ!ZoS#Wr%aIuP`}at42Y-vE5c<0DJ}jBTImy zMb)VsVCvZLXdq8U90FBlt5e{Yb_2J(cO@w@PTyndV>@b{0QzJKIpn782K@g|8vUd; z@(UnkY!M94Cbpvia4`>0t7R@##zLZpJ2*KYbOjzh66g)c6vWR3XYIF4Yow}zdk$a- zsndlnfUwR~4rCY4CyH^k<~KWB6}^P^!s;HHB<@U+XIVINXZrWn@&gDj#FfE>-Di-t}n4Vjn8 z)KDca&!m0@KQC682<85Zzh8x}dFwWWbR1C4!UIrXr5Ina>-c_|1xa0%1 z;CGmsfg@*htNhV2LoX7|G&%W+^_m^P{#uKax?tIdumC`p6Gr}qW{m+tMVvBMAi57S z6;-rHeYh!fef1FT7GSpf&19-sT*JjKx_yJhj!4C;ldv{ zX#WLywqFvgV%6{2JY#(JX4cy9rx8FPY=wP5u%aF*dl9DtVOFpy0&PEF%j}6SBCVPF zI(o|KKB6s5e0jl5^IqQoWSC+3N8|#?kZJNYXt|;0=f-{g2EL2-aupIAHQkPZycjS{og-;3r3ta5lAfFU~7?Dp3>?X)31te5Z z2}q7?YauhI$AgX`paR%lcFlz02VnVL6}^aojhY3_xET*>o?_TIA_$tw9)o}q8Xd3nJZ&V2E^Fxb4 z!SO8evh8dDrj8)t{r=rjWb4;tipU8*NKg@z-jYUAwuNo6_)~4TPKwIZi}U+#UFH%w zK+YRbAz-Ht65nXhGqm^g{3djGbU_5DTDdf*fHP{lpzpT>z?>&M@JJe61~U`*HV7WH zLU>Vaxh1_BiIz3W%l2(+Q}+=`BJ0{JTWxfOOrjU>JN!GqbP5tc2?#9u34eG98@?Zh zBgq9kljj5NdG5-#|9N~cii8(br*b450&KdzJb^VDTg9a=BBeVoU+y;NCv~)Tg!=?J zG5!U$B8yHCDuWgYVN-(5I0nX2k=K{uEs!-3MZhg!;x6*0#tWon&7G~g*4Zc7$o78r zCrviu<9CzFr9-JyTyKqVQPy=2hc^H8@p_kerfb)3Lm@yyC?1LJeptC-cJUcwI5rO% znge9cE9r4i3l7GuB$5CSL^6GL1%(t5xZ{u>Ltzdmqo9j}AKM~#Qwsf&UV}Lf^`Y)fA$_&PR}s$@kxLXj zMGlYuk$~q7LL;M78feNacvmW=v>?iQHCeMe_>WN#nB z|0C6a?d9SQlcu`htTCu|UC5eoXh4_2wM7un)@2cMTh%sy*|YN*ZE-=1ASgQ8AoS*= zd`jR(TN`baQW_^s9Sm@eL^KQ-^|$ck?}ihfuCbP5n$(RH;JuIeI& zhTENBNlJh4PU7h6z4ZMn2?aq^|!Ygy>Xcwbc8D2h1XTUGEuEC46ZCa#Y-5@Sv1)Faw^w z$>C^xW`O)P_r~VV-+l>?2F5k=0GJHfv;OvCP#?DV#yh1l9mGM%D3U}5tklKT_DrcP z0pD+9&rU#~jszut{Pc{-+&tjyhMlK#_<3?pT6gp51H>2(C-eg%Qi(I?O+qItW*C3` z8mqJ_okmnSK$YYViX#D(N6OBr>+=(Tgj)%^-_+iK>mSnQ#R2#LpM)Cz{_*mO0BaTM zlXoJ6DXWvHrI9@x92Mp z*an%GkaK_rHB(7}S*Ym;M7lb*^-&TcT;N>oe2;kqqJedFmGytw-;Tr|VsLXk zAQTXjS40MpUDxYTU|AvyD^BQF4bEI18WXZXEMj7SeIsPFuYx`i1b)CFy$G(^yX!wU zF}G7Cxh;ZyANM9k%XMw@k-%0jR7W9t-_~#6S2HvQbSg!Kb(nl=jx?^((bAHMD}VN$ ztZ_B5)lH}P5$%w)%+J~F#J0D|&12nb*L(6PV=LaTM~0)i^oYUi>C}(~$y@@fmMQ zE9(pKT&{_mh|**5FfEL;O@Gf#k?tO6`8$}8QSY@*{E+xX7ayjbVq_2+Z!XDOrSzFeEjGbXb+wl%xG zROGw79gOYz)0567=#!0k1?qxq{3wp{j@9bb|7;JGFuvd}%5^{E=ewji+ulTbDVgPI zZmh|_ar&gJwQNztb+YtRz;s5=@lMI!Li5)LC{AOW^8DNXD#k{b-Z(XUpZAYmqs=XD zv~XtD&3>gI{XJ66!Xe5LZ*TEMB+>sk=ggqdvP@tUCk(r3IWehtrJ1~vW23W!hRXAz zPV+pW{IJF|DvZEAm6j@4O@)!Sx;`1}t9a*|?pnH4}wVw=-Ws z`npFNH91{RvUcSX^=lj!W4Q#~Gb+#C%Y=%96@2NQIGj+TSMJp)*6P;Zm&AT5#^@2~ z>g)(CPSaq>|9u+3IW^J_ue#xf2{)e#?DV{dbK63k*m1OTJpOgR+Gc9=m~r~(;!;HB zry8x!l^@hRC}-x)|60dpQa=x#Kd=2%`cMu&1`2Gk9gIVHqm|1las6bydg@_W z_+Zn&ntI=fAXkoz|3bpgyZc0vk^WlvH#Qh-{+=r16Qc-X)!w@;XC+_oyi9L-B|-4S zR)x3MC15=%@2T#yf`UE4+SQA|56R;XM?ZZ0@Y=$OdHU!i(T;~kvejImGH{Qycg1*h zps5zkacfI!v|dl@DEjWplwp zZ7c6O-zwfMK3-c;KDXZzyR(40Vz{#75_P09;-FO+RU(x)qb6XQy|utr@^^}48`NU`mt^7-3Jm(n~bYY+O1*jd*qp9-p)sdg(pk;w%(hR*)y*l zifexIQK*Z~ZLS4+mx}$YOQHLxe7rxBxp8M4mHNOm^OyAOycwyE!F!g`YKmF0mAX6u z)ZOc?zk;-ydazK~IgGnEN6Y;Q*9L6gG%+;?_f@&}W+ogF|iRMcMQeqsc(H(XRY-QuL&mt!L8kYn9hIl|_DaU$2zbc?KKGZm{v{&%mFj zHqynj_Zhj|ByK0h>WPfZ8++GpiD&#TYv>xwUgf9g7$nB;-ld~L7H5?t!PTcD@76?w#JgX3`#c+F6 zZpW;@{?O`6z|QF-^9y3W=lVCiE}|2O3=|GtjDZty`o?G!3RER)`xR*J<0lC zC7fOK77hNLwM?H}ZX5}Edi#4~B-vfXYxOqK?pJp(bf-^`xx_nJd^`0zU>Rmx7X4Oq zI``W{Xy0}vm*cWGmFLC9tVc@Olhy6a?2B3}4C}(nKe2x&6z&EIP%DIlHv|9V;Unf) zwb8J8-Q`;eqpVhv6@8d^R-W-qv)(HBB?0g^z1^>=U#XAWAB3j*GYZ2$1($KKf1+PE zM`d-|vp^{e9_ziI`Gm<{RFC48sPIi)D^&GbzN|<-Iqauy5x$I>1cy0FUukLRdxkMVxWN3cZkkw67^9)bSx(yH%VO=8*22^mg%r1PTBGh|-Ann7VXEqpBTN`p1UL!Fh$l)s<75Yon!GeZ0U151obPfyu zk*4qrgC1q70=b@G7rImbW|)<$fJgo?EUc0Wq!ewx8S-1$B8 zi|_T*PxU3QI?fU){?CW0tuSctCH7z3!W}NL#^4!(xwbOZagSzJX9njdg*nxpyICQz zah>tb*6*xMu~2ezRf~s=8G6<@=I2vMi{bl2@#4nPgFOLeDOMM+riRwz$F7dZT{V?A zWkOWwyWQ*5*4Tt$$!`6WfhkaIH25#R3P0B=x@N+u-)wKw=x1ZPTkmh_x*Q7!Su502 zb4*Wk_g%Q?Yj`^ho}MWF=i=E)^1qIHL40Je*WR=8ktlqPvn8!jM80`kOaq zUo-2bb&214{s_Jz%b#@#aI-{eXmoNK)M6_UZ5aXlL<*-;RuU&)4c%$X;L+MwO=PoJ=$jmn=vg(QCGT9W#*99)^@LJ z22`}yAKZA|`9|=|P1HL%n7Owf628^eIWF?)@o5ogPFif}8VpzF-Q)YviE6#!mi_e`Rf~T2tZ#;VB&w0&7 z3HJ`FL2BO|JjD#+xON%^qZK1#L$<#kscW}t_pMeGbFX~~kH^*Dj_WyH?~Hmserl>R zUwTVYNKzCvU~cB(D~i+LeDKUfp+v|4kqS0mq!g=q?yo z=+0q(=2%02nTeP1;%J9NLxpWY?@X?+EQMqJJ7$ifs$2t1&bx(*AN{O+vL9t_)c%By1iXXa8s5rgNQkgJ zMN{XWajm&jp0i|h{bjNKCl`k;6-5*+K!2b|y4#4ye;VyvV~GTQT*+Rh+0C!!H*R~m zNOna+?WjcCo=VQora?^@EER}bW@kDQ0l&h-EmjhB=}CzsW#P1}_}Vh;;QG~-h_PDy z-+$dlUolPmCNTXF+DSgehBvR`O!CX*8|x#@E9c_YP;>GI-m^8?N45$gEH-d|0X{?-L0yWl{P;mQ8I=Y9E)> zcNGw+;J^4aa=vOHN>JoUMrDR@Zy@fHJTAPN&^}5Cw7G1M*42$%B0mDX`PU$?yO!I{ z5hroCZp)x&UR7Rt@ZA-n4JB7@&sMO^7o?1`oVmOfiOQg3H)1x+C97P=C_jCx09cE#4X$_jP$Uh=>oFaS9iN`0+=dyBkW8l5a{N&f|-SrmD zYYzvUFzIgPQ_IUyK#9KO`kab`BC?#Py65Wi#l1GoN4_0CDUwZ$@j=|kRb%qFg3$h( zJ95%{kt2) z<-t2IQd!fk<33$?67$-}42bs;bspva@75d0eM{jCDnK+4#MvB9RM9yB+;; z&g_F}8R0bUc7|@eFHd;3H|X&(Wjl0#etAOM8A++IBYs9)#NLa-+^_f4pO+vaTSOg) zhKt5VWz-X%xEh1nN#*h|<|I4r+ry&@wzD_BeY&24?*BMjb(ajR3=R`;zOtZglcqtH z6TKRXefGx0^UM8fDc1t-k;o*{-;@4H>1maoT4*-H4X^Us)jqV&7Vob|_loEZ3E=|9 zk!W3C8N`-oH5Tea3srU-q1!1psA!6IxxQ94xNp)aT;eW5>u=wu5MXc+gVOq`$3WwV zaqw~4+Z573WXSG43)Yr&tPo?@tXO zd*WpF;xOY-I8AtFC;P^GIR+c{Pky89Ljtsp1R9C9gu$ne2X|Fo#Za?Zo(W$Uyn*s= z!k7gaB-HmDvzpckZ(fC_S_TD`Jvz~;C)JZ+TgF=|TwS7suS`(f$)}(uUq^GPG)b(k z^}!t95%C86;$rVB?w$;~qp75o(1fI=q&h^abfAvQtl{kvSrFKhmb>*?8w1tA? z0diTUKhI3+yP$t+nftgh*1Xq=;-;x>;Ajikc$VA3nCOPpbZN7-+S;`{IlRs>Eh#bSDD^Nd$(@e$A7H$`bI_50ay-(8l*Nid%6xmv@`Z~__>?AbFB9p5Z8ck959qrHt1 z8s#_9sCIXPryfqijml#GfOAYO%^UN#1ewzkq^oe)K6i$VzP+&JeZM*5|2RppLe>b% zDd*us#kF~&!R49buQpeiJi$ezPhK^qe~gk)zb)SJy5XEhZ#psOUa`bER_6lihHK%n z)~OK3-RbrpOR2Q%`Ne+>2&=W2gRLK@rlttNcZH6F@4z_spid^TBQ*GRFm}KNyy2dk zd>f9;#XV9`%;mnlA%q=D`_GT)gq)lVuBdcwT2Td;uxwAd$;}9UdCn>`_!5+*i=6~N zYj6{rn=~_x1WOi1d2GVlCG{z(6ZeQ_@LP1+Tk7Mz{-kQV6+Y;tmbJ&{T?Ql@Hg^H;0|9upOl(mnOSru@54^{8gGX9W%As7Y;4Lh>D* z0|is+H&ogBcl!+u`$K+|PzT9y2W8e!Rd`mcIOj?YNqlDdIrcP~R8K&=z4Zx{*ZyT* z9CY3}x+eaGctsbu{kZs8Q7q{PX>z71%{jtIotG4K`Sc0hH57Geb;`2%_V`2VtZ-qN zM1@Vb*r?w2nh>vkVlw>A=+AH=(^OvP2k}2%iy}YU&Cx#6VtDDZ_UITzY@YXUa+!fNfW z$04;N%_vP2r6?9vnWRZZW0? zX*}{Wf6U0PH_h@{EQb4B-cG9J%1U zqdrzuGeCWuww$hGY$Cbuq_-WkT9r}EYtNNrdlug3=yWNSgc1IxTV~m1Zc?aoX3jGsyh^Vd|~J zvdX{jZx9g)gOCoTOIndG2?;^EQ>04}R7#|glP+1Jx}o8S7YvP8DR5MM@$xmv+194X>SFdrbE5{w;X27EzHC=&XZ&5Lp2zK0a)X~kj3W|&?W3mIC6FqVE%~CH8FM0UY`7rup}+?>&(QuUA9MFVUOZEbPn&9z zO`nt_y*`(98y))}SFZIj|M9x>{a1?sbVfLilO%|6e8=6to^AGQuTLE(qIAyB6w=j^QI5#hHt$?qJu6XRCEl8BX}8IhVv zbPRLT685{|CRi|r%VxnnDc4E&XG@pY8HOh3TXf+qVYN%vG~I>xT2IPW1LecpZwr6v zoX>2Vr8{UzW?%Cl+3dPo%P<)AmwWzXec0gq%?bPGibxbww4UB#`aSitTKj_aefd2? z+4zB*%9AAGBUj)#_1hE5qo&L;_c6*i+aSOPeUxY2~Z24z%GQGGn*U|ggJS>I4;M9jFi zPR17mcBleg!}4pV^mpJrVRMO$zM@FM3$-$O&=&PelsNB=R7=3kfFpTR#zC{s1SdM} zBbQOTrL>!!FRhZ)rZXS>xVv$gF{+wI3!>;39j{~GV+XB z672KvNe-ldm-BXZwo6VJ+?!UUk1b!`qC`5N@*W1fUMNC1TRYtR1nv-R5=F%N350Fk zyfs?Npifj|CHp8k`oUG-%jj`~c?-)ayN39;k!&oDAh862kASGzmKH2qxr}Gkwv^@Z z5hXPJg8m>*!7ysQ7|faRd_zI}f|&r>AQBh98|&xV1dlLI0%4 zE>#jf@;&Q;C(g0=9Q)-rud_buHTDM2w(eiTY@FQBvM2A@8=j-Oxt!u9Q$BooV}q(T z6)M^vyQMLfH~b5(H)XId?)LNz8C(C>be^5W{1WEw`4UVMOUGIFi`$jszgUiR3pPT2 z*BK%YrHhP=DVzwUPyVcSsu`@VIa#u2)M^s+8upyj@n3^=*GN`}OCtD4mCL!LC86Si zrbP9I#MZ`rA$Gk9Gb`)7UsDq&cDy{_I;lP zKktU_5+71lK&Pj)Zlp?DU_HR@>edUNsAN>P61#$g>WO|2-lLI6G<3Y^a1Ni}IN{8Z zM6cLp30RwKWi^lgCwQamaTQ^(yMRigWn+rWpt8yk7ig8n>VNU)FAO9uZFlvygj?jE z8$HkOZeYnO&5B^BzV=s0MN4)sp7543TTEvb*sp zpiKEJa4EVDSz<=bxVsTS*Q~Cul^>(IWU(9w?jJ1H($~h5C;rRvWj5E2K1W}EZ93dD zx0w9Qd)OofWiJ>6lYH;Z0=Jj0X`xbRIMFh)1waG;W3Ys5o8rBqCdbC+_e2T&+vTTg zmh?8MPu(+5VdGb%ja+Nl+$;XhdIDZmx!p`lfji$-#l@j>mn{W+lG})$XtqHKdYI1z zmhVS&*O zs3OmZUEN~KUS?mZ@;unF&{s=+h7)}5&$#KY7Eh%s{_2`p#*jVz8cuGeB0f2he0o#a z*K*1HEzxIA+B}6NMaEDzP-Y3;t*OnQyJ6sB&{ak3UH*J=I|Qoxcu?w&RJLfu+M90g z^?=pboh^bw{L78!()&WriT2f2N^eD)=|tibH=IdJprwN3K8Zg0mhTn?ZP2HT& zxd~HG2@8{2f27^U3u3=3hr)udH%pS#RZ0|V&%72@R;uFt9GsOq>}Krctb2UQF_D)r z8{PGH)7rwlB?rdyyI^Os5#p3Xh2iswi+H%LMxy%Vd=x`v`srqp{zT=ll$@wJ%B)V) zi?rW~`g3Jzd)IE*5f5xN%4T{%Npddy8%D|P{fW4v<@Vmex2uql0t)B4v!B0YJ*B}% zbh+Kq0fh`|6e^>dXZX9#{kla#(H>5FCQ7%P8G0Q+-~Hk>dLR*Jf+zPbKVA`jEq%Xf@Q|Dau-d}5rb z9o-*Y$AUA*mGo}`5Mhm|Ro<~j!&7sm!#51RZ3oCf2zIFq$(%mU*fbNIuIIT=oS z>-u`%hv_=dm#IyZFpXu^O4tEEK=PO8x}(sZWxc+_iNfl;RVTg4XpjZWwR4%w+`r)^ z5Xjc5{X)t9-21C`s{ox(F2mfQYvWF3KMny=AGXD@qr_jX`J4NvsgqIj>o-F?EMh>Qas{o7&oPI2^UnjX>s=w-UMq9nc!tSm{rz zAXTcd9aa|LDu~=Z1vKUluf^ys zJqQwQt^a~tjO{LUJ6PmHW3<45hZ4UaAJt+MQ=|&13+1nLP$og-R+28gEg-e6)Xyq% z@S9*3b@r=S7fUOZ76a?9$niMpyN}A0qNq6@f;}p)5}}3wisO~-S$$Qd#ai!y6$&Z} z%Co0psv4{Hfr4brTK>6IqXhz|r8~t}Dt;}@#2KG^nH#=n&E>V+j~pu(>$b%76I9UR zB2%jN3{$!D{0A5pyD#50O)e>TQ2i4C)!ztO(hs|izvA60`RgeEf8WPP3 zQ=@nju)E8^YXtcsJ>No2^R)*iXtZSLSfq)(gj_O>lW$B$0u&bc>D3;F3$ySHW0Oy1|0hkbW5b;Rl)?4XRr!4q@Do+iO$u3*b~!H6!!-%x zNtvvV$_~HORnwWzgR|4EM5;r%QNZrSh`Xi9m# zd3?qDiUVBoEIluy32;bOxjv^qmneJ)b9%=%c^CV4Ny=F@{k{fni#3-HWc|x#1f^YJrKWNvx@Q?AF-f%>8Cr6|WNS$7f4U=r2)gugQFS z*45SHmu%upXw~Pz^Ovz%oh7?$sV21_j(#z@0!go?4^UW&X*8DXALn8;Bs44#E>&3e zFzc?@4?Dlpfx;ueHFv+FdiV*&n}i2s{^8)fddH)kb#3CyibYmNk`O%!y*N55bf?m3 zuHC)gR;5XxP5#nT^0 zu=g*2cL)FfY;)7H?Jm4^D&6aS?v3P>PcJl*C(YBJr8^yN%Yz;uk?e=Z!Sw+iXwsEE zedB$y4^U10m`-=`{g(T=TU*51-FKlVXEVvqAb<*AM`0l~{YuqxOA@o`UQgW@2l!Nf z&6i}v)vv|Bo19p2HqoD!bgHp?VWND)D6B)1vMMQBLmex7l@#yRjmH!{a9ixZ*j@n|ykbDo{50mnjO9B=xwWO|qQ9$ZiK<|{!th%CG(Z^!tVwUmo**isEc(7l71Y{yO*XH5lbf&tL97=GF;gCnJLbWI58!rxNa<&uL zdaRtwRzH-NfL*}is>Zfb_2KH^GM~IJ>B`m73!bg7jW7N=_eZ`| zCEdGe8~v~62g#5}-%S&SIM?&qp@pN%-ZsPk{Ax3iZo*)S zbjt0=1@`RvIVFZ2JwfFK)-!6YGrQM3-+m00Q-PS93DUcR*ACx{QSg`3Is|k|@KP`5 z4&z0cva>AHJm@Zi%Jd{M(u;5$4oZF)_Kc{;&VdvfSLaS`Ra)FB+W!GRQt|hTIkdUt z7LdtN8PW1Ex~Yo3S6YD)b;E|(2QG;=?jVLC!9lQ0?N2)}^Pl#0oZKmYT%aBPkdGlA z)~G%I8czbALc*9$*I-s+S~%CN1+KmVgNco?5{-w-bFtgtqOf9Xcg3%8w>!gw1I4h5 zpq5FKR9k)hktDOUq#M0ZvS7lK;y>`T+f~|qUEV%}Qvka~8Gnyn@jRDbfn$sl*}z~- z+`M_~{v-D4i5>98xElwp**f)%K^iJ8LR9>xmPsJRX1870m405w9PekH{%D3B#Ylh! zJ%~R@0*SV^c)>ak^9f;ba}^)(yyx352>+1)`@BkTWWqsOOXx>e!!4$IrWwWhFnIcf z&FY1{YN!LV0*NAQ7hc5?55a59b21&10hQcm;AZ;P(Hr0LPp%Jhz?a6E6HEd+lW$w6 z<+j-i1RVHkgWnsu_+vIlsIhCKz5UBIU-7oEWsil-Oe)Mfve0vRtY49V&38XSMv0Mt zyv5U}v%AKgbM3b8=a;)#ybi_715iT~j~mZ$KdL6mCkH~U+(Ok9J6A>u={l{qf zxJdJp%im8>K>H~oZpvt1b~^6#3K+flT!Bv#ypKK#&&Q{%$rl2drP+!z0uE}Q@2fhn zosxU=-d=)DU|oG9BZ3cWL9r^ZSl;QR=tedU@IJ`ahteJpA>|2MJ4^Pc;PIyiK{6+* zs%HHEIV(}_b*%djqq@#o{hIpX?5t<&Gzqr=hqP|4j{fi+1s;;d-+G}Up|_cXWY9P{ zQtw{ZPi(%5*ck<<&Ez^z6D7*c6_|`Hsd(I?O=l> z)TsCP=L}*m{|+|Wspqk01_5))N9G=5=jz%2@f$YtqpJ)!s=3~sy?p#@=DH|ZW&YPr zXR%0zp{azJ4~-FTy<5F6Umc8%wYy3ImK$41gxtIxEz;Sl8cz%S3y$UCeBya*SG2^Q zf1Z0Pbue~Gp|(Z_`+cLXIrFPwKzS%jQX%k_L7PCN1OXgyzAbQIoS4KlAk=bI@h zhSxZktPeC8Sw*8+rvJBtQv_fMCwacr=Qw5W(q*k=VpbJW`kWH`4OEjIxQUfF=!_ac z?^5}d%hl0aKG?Q|G1NdqC@o-tu^1QfeI$K8E#Xnw=(W#RC*$*+n zd6)AB>st7s`O+3?)0pA7Sld}T*lqhgo zRDkWfU%ihRiv4OL$H=l-qpOCv9~z=A(diG+2K_WJ82XGYhZGXTd(h^@j~h`olOEt1 zd>oSp394@3i7~fv;Ips?^fXc@b61z1svr4I!lEmleWw25g1(D)5S+Rc`@0LDZkB3DQ z74m-XGkCkOtjJgQf%FlJ9tfj=B@`)1yauNm(e2*3`6JN6^wd$j@Oblr>;9gOjL|NE z=!M4(bUfN2$-etMOi}R6mr@I_ZXQMCs75{*^h1m|plh_&x6`M-{tr2rameI1;~vh$ zg|axxb#6|vh5fojP|MsW<8-?=INaqOQa`HbF`x*GT=JzRAIlS)6xjqBd2nhlV9j0Gp1Sw${?r%hXvrosOLl025(9aCWzR=mxjJ5cFUNBoL|nnWZ@T zy#2#d&vT1zt^*`PicFX9AS}UynVmW#?Dvkve&z~6XM`t%QW3Qd&(oJ~IkxOi*Nq30 z13xEX5Wiv2WXiF>;i@!EiBV=yfsUTWFK(aVQd#~zPIET(w=oH`+eG(G8R(Ee~;N(O?c% z)qt%);@pjM^>h>U>!n{@V%Z1Rc;|*_WHI4Oc_^FNs&Mgm@dn~Yb%J$UJwA?w zZ3-9dIBBb2X(KyY;%(MFasajDXCA*`6ma5kT<{3m?Y?qSIfQQUPkkRgI##vJ8h`@8 z(-X?pNjC&%0cz_}{||fn&HJ$JQ#XyRBS0y^yej#A*W-C3-}&e^19X`1^CF6CYp_hn z5+BjqJKcY{R(+q1CRBv|qIWng`y*<4Y4#ATF_zc{3mc>EF>)$cQq#9rsB#O zs~fMXDPyg+Dp0JePt|F>NUTg%Z3_p9V#3)~C$KFX#PZddv^^FY|0t-r4-QHlpPX|X z;H){=uJIwl(B8`Jhp{yT*K(J4bpP^avQ_EBk?mRF^58$hr=qwB zxb_Y;hd)P#77xMYzt~;oLB2`2jV5->KJFl^_hW6`%u7Wm*gU6YJ=PBwU9Vnq?+=7 zXl7GVvwpts20~<8?{R=Vh~Uw{gQI_O{lu#yUW@X*+DIc*QCL4eD|g3hUdzQ@FS|g5 zYnQ9+^hXfT!QW1kvQ4~0qpw6I!+Y=5xz|VTlZPm8nW6ure?O#fZAU~wcYrN-O33UJ1XRYy*;e}DskXEs2pA0gZ_cV^aZ`k zRCS&opcpCab$Yl_6%KJi{8*CikI%7>w>DhNWgmfsZ=7Q#wc9>?Cfafn>3@r*fDz$6 zDM>h2e?e1E>-6Z&>Tnsh(57n)8DlR~&ja`};rWq=39?z&@|3--n0}elpqLF!7#$@` zWdAXc;%@IZRN$T=wjhhp3lEWh!16Q7{qphz0wmW#uxML}kM*Q+@oVbuf2)gq!(I}w=mUJW)Tp2yk|K6Ewn+x?#0+g}9R!bitO7js)gIN=WZ zIR8=WwGk$WSa?pK$P#!KApOBP=Fa@;{VP+wT@ktGV$V5Egy=H^aIdx>tEu$te*bJ~ zWMt?Ckt@F`KX7p&>(cwJ;sKkbYV?w(&cSQ!m+0hyPugP=`wRn^M^K_#JD_8q%1zES-x$Bk+&pt!HG?Pd)l{foJW|}(FrYxWk``=}e-3*_!0&VtUQn6} zWy}YK&dAj>SXVx-dIi~lrkbrsphukKZ!22g{xtyh3CZ`jD6ZR^i@!p*circRn+DDg>HA)uY$T%T(}kWDy}SQIJ?bE5=30Q);96 zkdWZXf~a;R!_<|?YYv@>^75hXVs9@71ItY8i_ZUPYakX@xc%Fe)!VaRUgN!(pAR(~ zIURB;?hB8IZSx}|(K-`37MxCFkgy5&4DEQYYjjqTIy8Wv;`$qgh z^*(5(ux)d{8jk-}`E>Gc#ouxoNk>6SrbY0CE<~Pe=S^uT31oW)*B>o|2u~}+cwY4{ zTlwW(G#cts@<6RXpo$8Mn8E#Atn2^y7+Pk_mEn9NhWET{dau$Jw&oiVt^n%d>Q|*H z&MAm=Rk!yK@5~xJ0uGPqw_=|(K$I5LqC5y$LjY*OHP>+1z|+dS;JtP#O)CX7guSMq zTY1Kxz-L@!A}`}6Q$P6!F<@pm!U3*h-0w z95fT)UHPwpUE?88$bXeT{yrMCINDcq1?W#?`!tywGz}<$&H+$?@s`W2>_2QOJw0&Z z(6D=hQvMQ4E3kWw$hjjUZI?8=V0?TpoUY(D_{ZcSPx_V;6DK{)1bX=txv*Gov4YY{ zZl|%W!3BnBSg70AtLImDz$k&HJHs>b62ccN>b==$pL7;>qo;hdD2ApC;N3xyg<2D`3XsiYITc0r}Jq_md`^ zcF^ej<((+iZuK|&zZ>_w7E+w{pzJ6GdakuG;Z@@I3wHe&hyWmIUsZIG-+Ql+tbe& zLvZMnp{WaRG4^=(0*(}4T24UV0PN_Ah}4LaRu?0*sJF;|^;lx;JZEZ&yDieNC+7P@ z%bEgJ>TKvFn)I4?UhlroE==j5^#5TY$pFUaE73^Q4dP}rC;&KDIqNQ0nQ2olCyu0N zw~n2&hYZF%BpIlZzB)!Tz_swT72lv}ThBBvZ|G(+S4L^;k_pP?r`D`nC%GkKh!ET`I#F25Y0!<5-?_sB6_}k z4fXW9>{y)WM;@z~x28%#@5)jp5{Q7?G59VD4fy7hgE(xV>`A7YoV-iQFj5 z#HYlM4OSSGPN1k%>{a%%u?mot(#pS405#wa@M1uYWdcdFP#-esnO{e9!n1T^iq=es z$+T$I&w5M@dTEo0Zlur!3{3^w55P}`o|kWICJv%+`{ilAf5&9E@xqe2l(^{{_;M&v zFj&+!CEFX=lD9;>7-TV!tXeq7gQV5a|3la7mAh}uV!b?G`lCsrjVmP5(C0PM_c)kr z*!t!b&P8s!yJ|rq0&PH1*08>QU0N3oOepIShZZqMxep67y%s#9FL?hRyJ;{wSk$*a zw!+sFrdSbg<}dGqBLHQKP9%Q=`XzH29-km-rB_F%b!U(+BRo|n z4S14)sE9yL7wN?8a#e`ny68%2^>0GBFFqDWbgE$NuR|83g&6 z+v1EiLzyar#zj)X$WQ*WI909`q=N|2Y|!4Hk9bGkd7eQxhL>`(X)}f0aD=F0(Efor z*8l|(>~L)P<94RIu$*gxL=#7uPO#U$m<$sm(2$HVx$y zg_s*L3(FIgo7SBPR)u-Dgz*{A_VP&ch&Geyqh(fY=k%aeHdES0|F(M)9v&|WwOOD{ zNE-B%h5`;{w^nLp^dZfsLsK`7Z82Z68t>issfAj4kbH+k zB(98%3j?DYoL?}{^O6vEl^Gr10Ijij_aMa=LKQ#t47wqTKgL|AGiuc~@R*xq+*p^> z^Z9;!!E+1Y5lHw~IgT22Z&DzNCS(H&PGkyvZ0 zSqnM8&6j!-ZRTG7*paks2(xo}o49}ObXmU}R#vA0nH6rKSG!Wvyw~5APRRmySr=UQ zI=i^94_+vD9TU7Rb1QQ+*$$yvj@ouq{Cf$?3T@_|Q}#qPB+OUS;&az16q1dX^UUiP z0*~I`-M_z>&C7~()V#HK-wKpza=fhDvxk6XR-#_*)l-hAo!00I<8qyqf z$4$d2d(XOee?Ow))Y`l<{dy=?k@C`@0LJW}+&z(<=iM&H>Dzar`5zm^gu!$N0O!7z za5nx&ZI<4-*P5EUANafYq7w1^tDdXWgiQHCa51_>ivrHF%FEODh-LyUno%Q==OBY} zq>o*PgR7rM*}&QV%v8+&^RVN)B%9}I^I^o6&M-T^rve6^)@R0Ncl`2<&HAdO)f1ubO|J68@E@6 ztN}^Tdxb7n+u$;K631r`%F3TT_Qs~*c-N>~KfwVPWpUxycOO3{<822WqMd9yJ`p;VPA_LZvlig1X@yI!z|PxkjFN~jdMnyXnNAh>Gb zbVzQUD{u9_+f4KYVSi(5X{SNvbb+n-y_lf6)2prx=SoD82VowBAM^KjA!s~$QgRzy zDBToi#9q4#!yXnbVt4YkUtAbGy@w0+KeeF6^S5vSz?^~C%RiEpZ;67b1%DAlo$%S) z&G0+jg53qb1tO>cvVs}nubSWn-bYq0-@m1X-^ONY_c3UB-Uznk>`)PWYDrj+2Uj2Y zeNR0s%iq~Flm`Y*Gkj+6@BY=74CWGVq%GFj^kh|s{J4Bi0*bkQDc|1IkO_nt==wf1 z%Y(xPRhRmZGV=oyCMJRW_T|xV^P6K7_a3gZ1x3_EBsl1Q{!=mq2Br2xF41VFST_<- zB3`rpB?i^x?pqcm1&ImqIdMRR)ow^!e!{brJa7Os)bu26@gwKif1&s!t^lJ9llEe* z+Oo$5Q>_O*4{0!=oqEatXE^-qlLgR@K2&YellfACm%n`A1@eVz}X z4I;QFGTEZ7{maMWfwzAqi;L4k0E`9OY~OOUP`qt);9MTKb@m>af`!_oHGT&Oq5=-I z{C2?s?oc%FO2^_gEa2<1+jGJP&&XUn6vXYSXb`bV94fclA#YY#YQYr*Lt;xs9)) zr*g`>HT36S$43K1^vqI^1V`!{_ko71e%>inOf(~5A}$N7YK;H&z;I&C`z(3(X-|Fq zo@Q!_W>(Rb5956;5Vtu>q|6e&4`170dSX4X_e%PIesrYQ&+(Cd)7Ax;ys$dCuz}U=hr? zu2Y6Cg{mcBsBU;{ZN2Q$ah+>tf6BDY4@qLE)TAG39Z80Nj%;5mEQCn{@(QOv$KI01 zV`jeFWr`Y&nOo@>cY7r`ZEHjGTO9>1%|f+VEfUQLhJKYuPnU9gqk=Qlu3B<~KZa{C zC?~GWM!fv`pX^e0Q>jD}SPuLUNd?s+E1Jo`pt?<+0jUq*A&U**kCz_Og4N`q+BdWg+?1cOr8kuW37{W) z)1lY8@I@MIB6ileeJ)cq)vS$bC79ygGyhTkC)lO!!th_gfC0$Eo{5m*yg-5){3kAd z!SqFzNazoN>kO*dFACd%XIGiYRXx$BIOn&2uyhS*6fT&WkR8^VVxJr%r<1`nMtit9 zVK)4*WaT0W7T!v6CLd|~K%Zyrd?V{t^Ko{anX;pb76e5>vv#0)K#(|d&s>S<8RpR0 z)XZpQ4oC$6cs~SFN!@V`W}!fZyc54;iK^zp;sUKS@wBmZ_GvRzH^Wd*LGI+k>mO23 zK3o3j1B<(ir|Kzv?4O-l3=RB}-B*dcNO%|pJc^W0oJ5m6#`uthtU9t%gc4gY?kFvx zC2;LO9~lCg0jh++ffQ%yAb5F101b@Z5f4XY!-VDp651r7WhlBTBDOG$Edl;tR>0sv z=i?!&TapxgyYYAjW))7~Q;Ql~o|j<#Kc_uEywVne{1T~d(~WN&3>WhjiJS3NcFrDCSg24H$bdN6r~S<2rn#A5$6 zr}`p44JZdOdO5mV7=4}$@arHTIgfj@6xI=0w zKwzVZLONSF!8!jcWyL+QvDorV8)@(mb+R3sY7QUWo)J;9MAtFRTe)ZwH0P^48l;CX zTqXbDP4auk;w)QgaLzxMPJRUn$Tiy=#t{dxaPdXN?GwX%4m^974`9dS3w4vlKNgoL zXuDWAYd;Ly*I~tk21Nj4?nMnc3Q#7ReYpQ{<>hoBBq(+m&v4g2vPC35 z$(*suI}K9+*6Pjp&wK03x!N18LhCi(S1zpgwGhmDKB*hYVNEWefN1k^pM#NX=$nlQ z5j#UEGkczT%zo3pGJdD3u!^pfZuX)Zi|mi<q(8AKCp@lkv2UK*C!gzSJpk?{h7IFcVnsZjV*BQvJ>EwnB?xRg+4QJh?q0yX+Sqna%6u7dw zNzM^Je-;akt3x)XM-38@E= zK*6{!^V?mxb=z;+;ijWz?|A+qj)@n6+fg zWej7H@`i8i_W@nYfBL3xb0mH0Rho@b@wlhf_i$PLJg+q7Mfa(}5V?NSrK$V7I9K=e zYYZmzrAtEr8UEGMNQ}cI4stBo_#Ik7x+JNbkO^+*u)74PZoEr}9%%$aGtd#{ul!84@D>7dd98>>+5L)=>2aJ`Wk)}k*6@+`y` z|K$Pifc|%bmrR!~{?`A4zFxMaqqkEhm*lWPnzT-*-qF1M0U$x!9WaednEwQ3<&7)q$D#T169%2`g?E_4nPn{$+pqjnyT}x z)+ZQ=7pVWhYen40 z{YYJaA`3kfR4DLsLBg}Go+5w`Xu7wX>y|SypqVk85%ByI{R0*;nOB9+A$15hE9;1v zvQ4Q1rg8M54}p6m%s#p$(Un-2?Sp)C*4WUoiJ3-JakF$lwd@U zB5ft1lm0(>FznLE8b7SA5Fnl21Zm-;l;XR*qb4A$K8BIyAh&F{0Aa$f7cK zT(R@llaHF39TP9mr)w$1!g^MdkwUId_OH{vh4Zh;PNY~$ik5#sL%&XVkJF-xC;Em1 zV7>k%cP!Gvm5%Z&+H3G^D1V8xH(l)2B{)@PF*_14u1uA&Akll6kP-cUXYt+=ZY)V| zO!hud`T#+LgN_)raK=S{u4cYtlV3Az&Td>6tNsht#FpF+^%Xl!Bnya)=J}FGSOn%T zLo-4rP5tWMa>A?&A<~1pSHEP_l=K5!KJdmGvm>t9S@*UEOUN94jX%(DzOAirL^$U- z4?(mdn3#a^`_Jzl^q57QgWdlQy=v=I-X^Ej-EaH-juIL32Xnvl6Ps?jl1l-vb<%vb zEx#9cIJ2ZgdJybX_-3Y195QMC?RQ{!;un~(GRlkWhciO7D{J_0QZxg6a*1Hb_> zDnU%+;mB`LNnr0c8?Jd~-BgdO^r~ykVl6@~ToQ);K-T$#VUc%*)+=LmYDfn!0=bMe z?fv&7O12k!gv==3ZKx4_QGx=HfADB1XilFTriYnOL5Axg%$NdVWD$l0A7R_!8|=XG_R}Ax0P$|ff7ydpBSZctvvxBWAIM-45UgOZ zNI7Rs{=a4A0}<8)M#4x+iMO&(?hI2x<1L}Au3S!EJtPYu?d(%|MTWrU0!-s--=Jgp zu)hs7KlJ1@&c1HRSG8hh_ri={W8V#JL#}d=XZFugscCyNC zP|1Id2DGqXE6&h4_KQ%@fGchcDP{?%$;p%KmGbJY;A)4lE#(f!U1qyzg{HO{L#oUG zO(VBB96I60ca0jaW9pGPcUGscK*EF^N2I4y)3hv$8E%Vt&99vL23HN?Pn9%E*}`5^ zrZbJbyeK=cY!;@<623c1j*NS0Na%xoBrc}3f!~T5wQZ_&n3P`}z@kk}ZE6U1IrO(M zKj}lo>aWhYPskW0iKDRa%YV4azI=E=>xBjTuSW>l#M3gp#M>!wez@}QIvAnrYPMO{kYzmi+r?rbv<06DN z^pZs26d_VMIA^{WVU<(}kN;=88 z9d8AHsIZuUu@!Mu?s(I7cF5cf-GKTp+h`s{I2A-@W9NljwLw z%Ab8MMKCIm#)by;aEKKUBC-!P^&%MEUo%@UC=Y~=)7CMdBBxfSd1AkfGHtv0`w(7g zL-5MI_|HgT@gvi^4j{^)jir4&#HmfAYzeVDGDj-m&e1$|7uBe?;zeew66Ed z(qPK`fF%_G^uZH?*W$&yAfkQ@BX%s$L;(8Jz>jj*q?3Vwxn%V*8guKaR>1};G;YTi z!`s%a&B=gLEl*X-s5#6*aw%sct{u>O@lJO&y68f*A7;u7JWQ%L{qo!hm6*Rf)owqB zDIZx2S!FQojv@0o)|rk@Edsr8KI{_QbI*p+9tZ8E10oy-GSv1QZ|(~|B8L^2C~f;H zZ$zouWL9KX7;fFSQ}3{>(ovufi;Ri&gMmyXge6}hzsS6PzRNwhCrRDnCHa)uDQcgc56#?@)HFM|^M4^$H3apfp~`bOmg0ZB!nmQrNYGTid`m1tQA33YrreGV*C|Jz z>=)e-W?ZZSZ}Q72+4>3S+A9`nv_qAr96vc<6&|U#2wgm+qB@HMbPE!5(Z#bmg^PP? z=(qBHB)xUtn%HpQDY>o{q^x|pQQuUda2*m<|9`BgEz*Mprq1HHP(DvQwW<4T?+baW zf&+q8!)a6~Y@{Ah`IbLF*yp_&ik&l*Ap8;4*5svxwmvB&xDlqW+2qJL%OuNrz}0`2 z20BQC?v|$6g*Vmi1z%)-h^E1@3snus!q1*QeYzm|AVS8T!|``Wjom-kv=g2*q48GU z`IxCpr09Sl4TF`1fVb`heK3q701#Rxfj}4;$F;}pTeMe@QJNnXpF$Gj7c&8qRIOfq zijGhVd}eI?aiUO8(w$x_-RQ*ovIE8*{X0D!?`7`EfY{*qjkElVS0M74?5uXS&pA#F zr9(1w?DZye)gR0Xv~SqgI_E~4vH)Xi+Hr7ez>>F+KSzT}sv-1iXS=UaqCf88lVAwR z|AVoc5Y0QAS-zGr1euDul(%{?r{(>A)?5&Pv!KJ0OuW1gH0uW))Q>*og08KdpTS(1 zuk7%DGd_;mhhhRF+jJG`fh(Q1=#QmLkZqsWApEmYH4w#r2hjrJ8pe=n4a z8pgvt3FA(abdL#*C9rCGmBk`a`i*k9(k?;;{p2Yo-e<>1(7uX>yDjCaIY&9a${!hY z{Q7=FKt%u)r%%!5iE9Z#QjIt7$26;But=!yt~!{$JF>g*Gzl2FTYZ6$4KRxE&o-o! z($y7qS#RFBXM{3EwV2cOv_*%0faXuTwO}FC8i-zNAgGT<7LR1qsW0U z`#`#(y-A@O6SuVeK$tBZpJWcI3fJ(tXMiHCqK{V&?W`=2Neg<#;324{SP z32ryAmSo^JdaRvAPPwu}J`=*9C{+HyHg~JRf-BqKv;UfoU~8S(}j)4rUl5&I^uA>3Hx-9i01RNfu8J?hzcGh z34Q|2=i0WU{~PFBL6zi zo06=q?vD@WriZHZ`t*snT|5kmJyAu0bGF-fM;$)~!-bYyk_>FdHKKhq{Jlyaj2Qxo zf{ZEykLyJI8VxhlbcpYP7+^5GyT$6PqHf$6;*GP|m}@bYO`eag4L~LU8BhfqiM-C` zgP>MQ*-+bn7w$J2;w`}>AS>1N^?E_s_Wcm(_tYEmg@5O_B(AzHd|5NrV6merTlEYe6P?1!KV7Sb{n?VF-fL3io zVZ#C_YS0=1F9^gmrdE@Jjz0t}ZU|OA1saz$f#>CRU2`XM5D~fd7r^n`=lU@ome$Pj zLuE8J3=;SRp~<_W-;LM1(H$RMG8Y$Vt97ulgawvhdSzZaS=#4ybK5sL7eDt2Ix{N{ z&c`Zk`0pSB`Q1E?GJ^C0;$5Tz0~KsfDF)^CBrLnRl#3XkJFra(3g?V1fCc;RVq-vQ zDsnCA_4FbAA%r7BAo&FB6f@_f{bqGFC{V$m>=+!J7ff8{l9hH8{(+GkAjVmWN-(Eq znov~Rkh~*7#L||=vk6DLJ3wmJv1ExZ_FG~vpf3om?fann z`)^SxN0M3?&-z5L(U1Vv3_gUWyUinHqK?R73r80WM+0965CuvWi9*tN6W9+OkMGQz z`*4vV2^$FKo9Hm4Mn_e*Tk1{kTq|^CPXIYz$6Px6By3h0|Q+NE>nKK*REFoM5I7p z7`iM9H3g0XsW>QHETu&+d#&VBPLkAMfbp);_??}yLqnKP!q%yuaWGemh~PqG2X0$? z@5bEdLGi9%aTMoxy6EX$5&L&t!NAOC?5TKu^u@LZg{;+q*^O_7Bx@`I~9)XF8OHrKR0(0^4N{^HRIJyDQ_RRGyb73^6gr z5(W`dpP26=5*S9uo!5^p*SHU^-X;LLSWEd!d4!2o7Li>4Y#T16EnSCFTxoN%k-C)f zs=8u)?LIZ#N7VHj;KNFmN;MPNCj->TOGJH)xStd)rIV46kC6v2! zMoIojuuDYa@(+xpD_Cq&lT?(u1L=#ZT8kkVIy?dMfgvLcXu;R~k`e6W>3%=?5=LGD z78pqcau7bK;9!ZPYcVT5E}?)s4tQd7SaHcl0w=$FFvy!cmEPteZyRVhF^5{%+-{^r zirW?e*X$JF6`Itjrgst)8{FHarA4SAtDctQJpp5~1GAR_fpc@(hv~xa*qF-$-z(|v ze6~k%{554j$fn$Q*PTA%3ajA%W9u!WvRu2UQ7{nM$^au(-NaY$ZxB=j7)4P510PL@lR)p`4vjsqN z3YJ?9oHe!oCgryLRBc5we7Y&Z+5s2PLi+-(#ho+oWqv$jPf8vyzO6Mk{NdZ-M=({1 zDfS4`s%rv&$sL=c`tiYEV{pFCos6nI=H1-6&b$h&Y_nT|=-ix{p$tTGFm4e*9ByWJ zroUfCg1QRehG+n<3NK)!5)zW=nU@CBX7vpG%q9Wlz*}Mrx>b!u#_exLi&Do9Pxh9I zO}mN9EJr{2`rd*6G#M!{i04+Gc!!1Mq$$}gy(Ba6I7pm$>DX&dC#X^$ShJ@xe*08UWsCz%}M zU2IjIIy6P4plz>4)u>TJ1%Ytuu#2$4&!#9^fPvg<#7qf zh@R!}2DY1qlQAXOCoOxMs!LH|o0P@)#zhc7vRndDdWrTFLdNroDjr78;-5)PM16X&%BddozF?Xw8*jv4KGzDve=tdeKx-UT=3TN@|D{!VM^Nwx(sl?&X(;< z>gcw!7Hr_8OZ|lc;(5&xCo)h-{S?ys4g7RV{MsKXxA(!sDl9zVB@Bk52g{5mO;wvD zdON6T`XmZ)qrCkGh+ig3&a0-qA$@sJ*UTL(O_&Y5MG(AKTTI^$3ZGUc?cx2_baYs> zbtwQ)@W7Ond@`BhArq{ncnF0xDEKLZSo_&slnh>KP(e7%l&UsKb6OX)gZ_? zhx98*7!g}QARob~h7xXNT3p<6X%!w!pU~!jeT;ZC1j3xl7YJfvZy&e**naWRHeq{w zYPtwyufAunZN>4f611~4TjV-foRe&`bqR3%0 zzh=xB`coD?6`K~yoq_)RuVBWraDg*A9L*X51Y*1TRAmUl*}=p^t-D`131?FdkU|NKBwz2*4l|2R~Y-E)d~K=29__ zTJ458YTio*fZ*Ty10c95WGJl+X5fWs$^J1-e*h37z}}i`rDX%=E#TXMScjkp9$pkS z+5ldlBVT<#!(!o2cE|;V5-$>D)dSP7lYxyJrhS+6ADQ91;3Oo*6`TZoj<%aIBXl_E z0pM#?Xt~WIbh26T{T)#qrXbjXN!mM?03~nb?n-rdyg{A+XOt2!{3>{MB9qljXG`5`i7v z61I;jaOV&PTWPl_WvXfdOMTX50Qi~xz4E(~#)6F2bkRmeXJ+01z4B}c8@hi(;D>9a_l^~09Sl@R8@HkU> zp#41XSMXLJ><0MJ?F&VsMa|Ie#;7%vTv$+>+?VB2=@_PMgCY!B76I1JVBSh^6Yx#O zB=@_FT1guVJ7)yXY3Wvs1{`h8Vw0WIwS3sSX3b76NJHcE>C-jmqfL5CJ6qeI1`S{0 zc^&20c187`e82zsM$;`E)(n536r>=8@Azu`S+=3-}BpgD3_8Q4CeqXz|xt53QF__Ea$K@I8MhJ^!6QpC~}t_Ki@#i72#GQ$FF0P{Px z9PCZfyr~JVoZ&epe_+H9)l3#$fIzxS@HN#+^q#-Kb$Sep1UO&KK%M?1kQZ1eTWBK~ zf8hz1S0SXro}V0fYqisal~h%3)k3*U#WNVCnhIPRU`A^aS0ip0wQSG=g2^vDr^d6d z(@O{^5xjfQ{4idFWZlnwpg zLi6P;ma~1tQXSfx3&Jzzq}Gqv&7ebq(};=T=KngzOQgvMA0I2z03vuwnewO*+DDLD z!v>Lm3-h9&LiDRM&6;7Aq`=nFDxDv`tlPD?(np9~V4H+=j%NuQ5IK^l?BaF5$-XrI zTo9d-o#_wRDmPaPp;WS^JV6E>-=8oX%Ysk{_D+FSV-wJp{bVKOmF08)q-1OjwB%rY z8H?D8`zf*?^U|Cg*`x#NbQHv05X=z#0)4v!Ocys}{!GK71@@tA@@F-t+3Uiii8cV{ z00}>FBw!?T_>&$A3~xBcYCYj^Coc<_L2{+;)S;lZjec2oiVWXS8{rGxJxq8p_1^$c z=;`Zu%0nNEq!wT>f=(PS$cY$%(|^}o4;Wz)(Rf$_u3-L0xF%Z(vhQ@59QIe=!2oX} zcT$?aIVOV@th?`kc5U;>F0CKQ zM=c;gY-MF7BP%;trmdxgO+unSdjd6YOS{YKN2%$8xx&w$?ydvv6oX#`DiLZLh71kv zvaB20-f-)n!8eTVX9C+4n&&CuerDIBiEfNiMg?C7sJmnzuN1(GIqe`*(1@V`JH~c< zO8DB_n}{jcw}iZ>WOSZh|88^R=LI+uym{QyS40VmEYkJo+_?rFo`U$*MnLp^aKjYadE3=AYT^R3}ff*v@#p(-@l0t8Z+9$9XkgF6}s}O;zw>1ZW?eq z08R%h4DHgWVnGb8CtBwtTjFD5CB~~=nLvmB+&oPTiw$tYM4bmK@k4UT6n5FLQ{KF; z5B>gYWm)6vcKADFfd>#gW`Xr=paTpS#Pu0EXMG<ovO_0wF*a6AerN-*k&y0YfenS-;^3uwXq?UGhhcg+{Q`x8N z!N4^(nUy7TT7Nn3`?^m<$+sk$WWoI3vl}nKOs%a!mwLYVoamTJ1$40sU(_nCZ*x#=itQpJylX{$S#-fSf8@z{E!H3Qnj7$c; zlhr*quKA0d@Og1Y!kANA6^nT6=Pr4u!AF$n*(XIdZOnUx-5uu( zcu?i~JBq*dTwZlTeZX{#YyFn)lVS4zx}Nw`9`$RmS^YY%7#@p@8Ho0D&EDhQ+U}53l-1&@eP7tae zEf10;Q99)o@KiHUC>93WK=8rQUvL(M2X4fMl^1I`$ z(B96s4zT8esT*RqzeN0fu757^Ct2@r5Ka*XI`=?N55(d|aA{Exc&BWu?8l9gbrl3d zWGH4Uttuf<}pw=I%_$zv!uuNw5cM#FyPf&8Dal*E7&SM*I_G4uFAlE zueYr!va_KA>>Pm-e6n^>7d07T?F=5}_Fn@5zMAm4kY;Zyn47~K@ji)T zB1^Had8}RU64YV^-;6CYj9a>xc|iy93cS;36lT^o+lz$T+twY)K?v{oiWr4;yyH3Z zyG#)re5a}%9=_go9G3u}fk*8BSUs0HeN_bEfrDNcG=4ZmYN`UNE^&w83JGr7)cy(@;d~#e zr7)SVQK|h3n{vTy(*zh8$X2_ibUZumLl%NB)=5F`MBpwcvfbcfS$n2h=o40?o?1~fK~Yn?Dsg}9KslT`+DB;jx zQdhgaW1Kk$v$T+yL|-VS>~hTDdN5)R;|>-#AzeBEb5JgSjtPZ z(N*+E$j67lllk*A0XjixjrqJTV)AD&o0?BZuxJU2X^CEt|CGoWw)G?RM-!5OfJt+_ zxr_5`6YoQgVdsiYujy&jO>xuE^dI3d<*=L(fEAhdaRJGdhO%<`IzZRMhxH8gJN19c ztXhdZ@Jzr0!E^jLRRa-bM7dLm|yMH22*xr1MjKmcWA~ZODXRQ2_*KrdQ2S>Cy zh)9|*Jt*it4-d~EziNnjyx$Fxb(wXrd`kp!6xh(qD!mW=58!Vg*RXAS_!AL?;~DCS zL4WcYdpG!(o6LJ*j`U?h_(EC^hr7z1+0aJHd}oOqpLy@Cn^tbT>|j3UN?afn7;c+Uu@+Tv_mjm=o+T3 zGXbSkPVI-li}d`T9jUH=+PRKQQ+3Jha%Am&<=g2glU0HOnl<7~|IJ zBTqvlV53IU zj$;dxe-RV+GzI!yyShX$mE#`QSzrZ(bkK)yd!^uRfZbFcPN<`yR=^LZnnkF0o*pXl z*G`7*<~Q#*4!J*Gy2w!(Fjaap*)%?S<_#!J;NF97)(;J@3_6wIt;>>g_KsDtPhPEb zfkimN(&&{Gm%i77w-DDqjT!a$D_ASS{Fl})N5NQMs%~Ix6FIz%EiFEaopIS#tV~Qv zatSEDlBBSt~tOZ;(h-p4$Y76AtXw80O*Qc@Vq`Ze$7~EFDtR6 zz41b8z+z{j^qR#JkO~2ClnRn8gtY{wqF|=c1$zjAx1*6osFwFU3WFJMpskijh6ow9 z0{Ot+yvG;fn4g>et+87bLw59vZSxZs;^r}rQWbkMYJDVRZTSCHB?a>W`AhKd4A2TV zya?d3QCaNTvukQzqKV~qh@UB^(zzl;ds{6$O0`NDh5)`x)FoxRGl8nXpPg_Qj1$g^ zlgJ{rch=-OwDPk$Ty|p~wS=uZQ2~A-q{uGa_<104L7b6Sgv-uJ@Kf%y#1do zvk#tm1#i7~jY7P2ejM!#r`J+J4hKp64sfa330>I#J!A2{3qwN706$Z z27x#LD!AH)+Err?s^gBEmxh0z3+iviivm6=O0M1#1JoZtbAH1zJD@B?#`+*@agn7Y z3I@|)t_UDeR`1E6iU$_WDkuL2drft%I7U0J&UVequT8hF0&9ludu$weC&H-~iFsuN(qA+M!AiQyLtl$TBJc)3r zy`A~s_+L)ZQuhNlcOmiO_0La!FeW>+y75`KSpR)uR;x!Wcy-RIlo|f7;cHk_lz5%{ z#qnOZpnjvuOLJzNd!K>V(g$5L*jd7T75SZuVo-PE4iSNUV|yzG(4+D6o*Y%f!cNoZ zJtk0gT%Un13H-&diju+mSc;#6k3D|-+dCK{q8KxVblv0WPgZ;Ydy0`QkH&4qB^D~_ z9dBxG6tF0oYy0_B)BNoJiKrP6uVvURhe&~SHT2%SK?UR;xMnFpLWJDxMtC-GPG})P zS6;nn&sc2lRcYdq;@5|VrMFnAj*K7YU~mTBsuKNgKRaF8vlU_?GHg8o<`nojK`v+`)Mwkv zOxXh&8`|Rl*!*Q28RZW(EmA}hsjy-8r5fOk4O>6>J=mB{Smogp|A){Z0O~lfcbf%# z1E9!DWmLm^nYR#=7myD>UoZMr{f7?_TY_4@RCCK+UOozpC$=_L^clX==bj0mDhe2p)FmXla%{v(b5@ltKCrP9A6g=3#H< z@CPMx*+aa{Tz6%S`1nuP8eZ2E;xMjNXNy2W1ETJ%M^oa64^QV@3Fw#33nMBG|I9IpL9w0=TkrYE5wHq2AK9GUN-g)HcRYrdgOLG?X z^`rp55G@AbbDeAC&A}w&@FOQ_80mGul3kk79v_? zFf$V#4K_P~GvHw_<=Wge7@K_)WTeB(hQz2rpcSR1sgwZ3H?p(Ls??BY&sw)xq&NrQ zV10&i0c02f&}Kn@_pnSGzZHLQ7hY$On0~`)s%3lyV)TDAh#cH(QQTzR%05^dfK$Z( z^#?&H*o7^2irxwHNB3*Qfzs<9bg?{L;ZZrKs#Te4EMO+V&eY3J1~6v04x+|(MKIx2 zp}cQ)dz9Cy6_G5wInMZgJCEolG2cBJ}| z?Ni3CMz@k%Fukj??eVhRC7c#oj}R^!(okQ zt#(fr<|}s*r7fb#W48VSX|#~NEVsu=9`ryUij|=3Lzl#vhP5ET#sJ(4471IA4L=i; z{|t}xkvLEa5t1<6`)gmW{3I2=J|@h0K$W^P_2WpQL+a7r6|>deI!O;ec0bg#u2HV) z_+^j-D=cg6Ggt_kl*W1g2QttAk7n@%s`7$;ycA$xa|uMx9KWiUC}J+E@9zrhy2smJ zDQtRL!L|f&)QRPi>}-Exc(V4Bwe8VY>d>LvK>WvMwbgICDG;I_1sA)T!wJ#S11S&I z5z2q~=T)S0`rp;q%WIEjiXESQ{AN&VKcfU9Zwvb%mda1$j!zZmKO~V$){hl96U3{j zg#I%Qf1A;1$B2;pVKj-DWKi1sV`{*|X9B4ojCheRw4f$cO#>ns{e*Kr(Pq3mb^hAfua|_)dR}jeyr7TKzXr?dWrx{fqsr(Ht$@d5bw?loSP<aX zonPNWMciQkSX3X^-=CUr@gT1+RPPy3P#bXsGZ@f8Teu>RC|hxK8Snjz;@^*BbQE*z zg2z@}28NuX#KAS)0*u_DYlodi=;K5%uZ8I*c$U>ZLSR+^)o#7TmoPF%?zot zTaMEl1rc}JL#0BG{B&r&3@!o>z$Kkn;Z}}TvzwxsAaGFWrmCe%`=dJoX~ho>|MHwAI(%A?j(Cz$R%)HgFQ z%|~aq!l5OAp#^OCK%^5OpGGtn08Wqx?b4iujD1jj9q0!{44{74AUifX6|M1~R3@Xk zm6HE38duqmd-?q~;vNAj+#k^(HX*R&Q^Cq($EE)cf!ep63(i;`vg3QZ**lkx@{2w9 zFscfVo_?O-es(H5Fy$2W60i$cJP*)gH(1?#UKNLZrD7EUzhPPpjhtRAP~i&a4(}r& zJ)0B*1vtOp*vtyt3V=q|AJM zR06YZh=6p<33j#XI=3T|R#JAsAQiG{00 zZwp=~GcK`K3;5aghMN}+y3m1c|4%J=$N(+(9dm=C7f`+^Mxx}p!{N>A~NY<$L^PQYMr zn_&Gb(43KdI2q5*E2q0*TTQ;wl0H@uVo`-`ohsf;R9%kFzM~Gic9G1Qxt5oOot+za z1Hz2ny)0}rAPot@{&Vm)MmFY-N}J(nKhkQ$*y4LO#vYK2n%4jfHt*x*HYd1yxAwl3E`&VNQ#MFps)MoV~bcYrz_S+JD95<$Kv?&3|>kJR9zOjDfpeJV@nS}m9PEimJcD^8gH7~g2%6!HO17ov6(B{V#o8bzdpRv{Ad%E2JqWbQD-N9+hvz4bAH4-Dwa z8{?M z`#*mxoL%UA&N)Y)RH=TOM>Y`4ykQr%x@z*7PoFOy2qC4U*XGVkHf+LuLnrNIr*I*V zWq1F-3|-aSfn4{;i+bOyMS+U7mY?4Y8!zi^>i-tXhC+~lOWs2e#w&^?$n;O?K#=|+U; zDPisM+IO3f%#gdIT%Qqe*~%;S{_DvC2mBR$WOWa$rlo}99Euq(*rA!~5+jx-w%ed- zyu0+k%|l3BIX#{{9LkSSSSt$dMlqKeJ+3v8r?8*#Wy)BF1ZfJG@zf_BmF%f#_kc+c zunv$t5TI?hUF)ScNW5_eK^FcC0^2azeR!KFJwF-(@C1jo4AizAZ&;CqD_hiEd;OPL zf?Va^#0I+2MZVSu!U%wlTv@_0G(BLiHdKZ8v&A1-R4h#5nAR*Ku)JG;HOjknoVI!p zTo-1)CAyN7!y+}BY>7JhqU<{6lEc5o+~GvqL6^yjh&5G(N0@jKfT*V$hx22EUz>CZ zE|Kio3XXp9LcNd5YRr8)U!DH@4*zrs^~zrS(wVD(YEUap4t)jZRmEwKik$*2j+(Sq zj;wN5P1)gvxEfKa_Ojk#s>d^FkukcBn8zGpXJ?b$jXl2XPbNlL7RGFer+2yZNiMXe zaA%(U{(F<)@gp|0gp|1-fe#ALM{FO_Xb2c`A05@|r&VL_QyHrqRN5u9Gvo z^8AgH${V_hgC%Y5@9zmc)IG`=CbTyADR$Eqqd3_Qsx8{$l=j*`7!6{DPti%x_=lH& zJ@K~js5^`Eo_;O6URm^2+oN_+f_A3TpnIq5*inI2wUOd4lhc6_`oPV*4<2_#-qc>D z#5kPo!c(*uoS4`#F?pY8w(BIWblDa2>DEwIhoOdynu^{_@3Nnx{QeKUv4m^>^KH{I zJ#^3fTlSn|a@uUA52alGzJJmlPiz<6>n2uwQSeYjG*bZ^tB;6FVT(EK2*1<&kBD4K z;*8cMd)|V+;l@fSO2x=8CawWG$3X+aKnOuB)T0@giDcEi7G3)N6 zT~~H7Qt^s>gKzA|pjo9y!-cEItV=jLC7o%mkwK#OLDkS6@Aq^O_4;{+u$Vpvzt$z3 z2s|4G<+|;k9CHpCDN))(du5 z^46I{aW~f|W4I0MkeB>o{2or8*!VueL*2>d+U&D=w@KGu zkLj7#degpEc-$C#DvABT()A-zl;h0ntv`!5<1BOv%rUtA|MN{t7i5!;GU>Y$JmZ?> z77wbDHBac(zEVg&_t*WateqGtJFAM0qd&QebA`YCK&bAWUE3<{qX<0atOgp6&gsv; zl7Ed3pYE+Dp1UrZ!Z#<8zZ}U)jQP=Co7ZF%!K-20ZYz7pScvn|;N>e8Cu65!evws8 zG}M~R^{#eaUp|u7FBSKUB8}S4bk=pF`;5`;oI4E6hciveeeT3Q@ZvqeTwZyp<*pg% zfs*~gQ*X=mpn6!5b~-7e+UG^r+lJt8ecCMJ!d+*4R@$_nQdb4j6a9F^j3sO(<*m%W%4i)yxF|=Um7Ik#PI*V zJ``kIn=s65{`T$7Qg2?@O*~ueie-E(v>PVx49SePB5G9UDP?Fsqv*8MlAb*$mJxVU zk}p3lV9T6R?y+TZ<@i#8|DZEw##yIg%@gPVm+ju`7`9!H67V}KbL`*`{f1w=I-c_i zG1hTBH;Rtuymy~iC;zL>r^x2)U-}DY52urrGL9F@^vxqEO1)S$C zx0n0Nf;E?#(_*OvbCj~S-|Z&}=?cBgqzORN!i;?O8RbzH#>reCNe*v$5ItVGf`%T= z*53PF~Aoxk>mN?AMq8qHJVFt&ysIO zq?E*F>g5TMz9D?Bi55cPI|s&xj&F%VmdLrooW!Qmh3X5w85DKD&XCU-)Q?MA$)r0B z%Q`9lclEqhtEZ2X;Wa7)|`&e!HsDhgxO9_oV* z!;X6^e;0W<`PFxx*3aeO&+8t{{&R&a-3Tse65-*SDN;WV63 zbgP@xeR3!ccw$0VuDL?GJ36!EcIG>R~_q^Xf3Fqf*b$O>dzhPhh5jN6T>@uy^wUJ zuuBHFe$>_mL!03(>VB^O#kJE`)T`}p|2}{C?2}aIt@I;zW=Q|-g2otgjlgDtw%OcR zTGt-c5&C@KDB1bm(OgE#+LN5LiMYt0X-Be#UBU{Sxj)?Wv-@{F6t9|j&!$7lM`_nJ z1njsSk7@{d^8I3u*7%-wi@(kl z`U$+)>#I0;r(9=DrE4lDWaVP%|BOy0;oYh4<=gUYa5eV_?HR8}ofb}B3z#pzb>lwM zXoq^w`3Qb_hr+#yw~Y2emO-^5i<0RlSr1oEvK|t z;<-e4dEge`_eARpO}&6pI3y;y3Eq&WAR?Z>KeOf<9o%Ba%ffJSikjj)7*x!Uoouq9 z+PiC>`$S$`UZiGC&*$IVdc)v(b|;H9ws(k{jGiX3hu($q{ndNB*bys>&k{m5#IHH8bZC22M#$oE{L8R4nj~6V z)iKZ@fZTFEy?J$g=72eWZtZogaEhjPNL^SsK@G}{Yr<0Of6Y1b%f_BM-y?xndzptCW?Lk^e@Gpnt7 zlSExvP9Acrjo2GJwDb5bU0D_%GikcppDW0oF>~Ifzx7QmTr9(pM*gn*pY=UskB}r! zDtg?vT~1*%0VPj!6d}Xf6#l?}{b3J(nWRUb;mhapJ9yb!HwS+zJ;TSWKMR zma&Sv85Qu}k)2(86&oJ8&fIrb`_Ij5!WYb?n6}Diar1JgsGipgl!v}+;YHx>G&c$Q zKt-|WA4jWz*K!6(ctDEx8eJUOo6!N>Gfg^%yN76tL)+Sw?B{AiS4S5Tt5|S@V<=;G z>wJ3?@m7hQM6?;ggsC4XKj4~mqrS9sS6XmLAp-yIvqjTO)8AI9F+H1JE8mX4lVv>^e^BFn1nU^gzX}GTJRf{((FC z@2_D3IZ-##$?ltPjZUTfEF=5P*dMN#Mw{(O_e+Shz$!--4Yh@#)#Sy*Er`=a{O-R( zO5P=DlNSFmVTQ0H=7>+9;(fF8nyHJaSQ!be<5#KBm#%NC6}#+t=Gb;BcN&-e?lrWM zpuBT@XZq&X58Ey_iVr@7oM@K80ke0h@?&Mxz}n&Z?cH{(y6A()2fJNSm9ZWXu*lKL zVnSOjJ~Jt`r*AiHwQ6m0ee(FEED@>2t2d%p>zJ;}Pu@_{JMLF|k(gZd%zT*fCSpt) z%6dF*W?4fSaPRNhb+1);JDu8}G#-g*VGcd}{87((Ki|Rw%Smqfv63cUx1L$|ao1c7 zgpJ3Oraonw!v4RTro0u2#E=qMh-4p*|2zI=dA~)=MNNi9o%z>YqH5nY?tDy7HjPM{ zp6som)%TmR=FlCXSevWmSY;pe`uhl8e=mJ-sCs1c@86z$yyu!0vdTSw-q3EGg;MMY z@87O2S)(M6>3}}5wNFxd;r3_I1yPwR8y;vC>IbJH=pEmN2#OQ@vE%)o49!P4gL3qQ zv2D#?CUG&0-;=#WsUp5|eIeShbR`!zKjD62#~?$IyeWC^e(4C24Cx?xq_mv$q0B<6 zIcT-;3Hdahr(v!0(^Io=7_M|H)-V5IA71dtQVk~#R5N5p6 z6T|2bsd?f3=kq-U9lZ{Ei??I~oZsd25=N?DvA(_kmMZaTxU}y0e0vGSmH)z`xC^J` zt(Mf3J=}EG;Vw3TY;I zw7Tg`)Ry;^f63uw^WUH+1|Ju=1NKL2U2Yd!*Y^kCjSleB#(GKKZdG3@rgtY8pDjmq zW<8#|tO@*d3E$#n&vXl+lmNW3so^bwOZG*5lY}eyEXNn;TO+g^8q9X0Ue|Gj*M3%( zZ$+tv@Ajm9)o`$lsFw8&?M`>^`spLOTXxL>Raspg=_4nICPu5?(KWpI!g+j()N*i5 zRM2rq%v5Pd>dC&W`MG* z!#o|zSVakQTgl3aNILKtJ<&j{qd}`r+8pt!GPORSwMR!!9JiOMmTkZE&DTw^b>2J-{ zqdw?Mw@P#lw1XQBfJk*h^~(HUYl_`n7;iE?EqIppNTllQebn{SULvu$ghsp!j1j0H zq0~kSNjToS0wks+CiaQ-@dexgTYP#qXg{e1mlty?SILEFld<#MOYf6!^$uNbe3Lh? z`|suH9RLAdX|A)Nj8&Dfqo3ZsaUT<#UTt2fi!v=YMhqe*;3A9J+O;feKVCxg2)6De zP`I?47hEHHg?6Je1e!pTE4J~L7aa}tUi#Ko5qEw(oVPkLK9SMmkGU>+d)t2B=uCI~ zF(F??{qXQIThZr9L#$w|MLe~w!j27mR5$Gpa%OVHY}k*`wCDmAk?sL9tC88i;uzBf zH}ppVZv;P$8WhLia7Z8OVZ-lvmg*;9b=CtNfs?SPmf{m;UuN5>M{(HFCX!TZb3?@f zZ~2qd)9^95e$!a9nEpur%?ClEurs)DbrTJ~zI&PW*b5zWsThaMkXy zR8SgmQ$w#8=UeyWskvy2>iff~C9#HGkeWDT-kLE$f`NK6IGw2c16;1tkXsw$&@(9I z(MKKK{B^s1V~W$ELNX^57tOq0&P@F3_vQYB^=?BilIx_YOieV)f}ysb_h;>$RLPKv z$@OsOPXL zd;UIz#^0n%-cEv1PTcd_9bbhl1rGWVBbB5U`cC87EZ@eo#@UVe&Y)lKqjSWy@umqc zzVts%-?2F~XpN>kAf~PZc%2&$wVzi^sE&q0fU{O}bpicG?#)~|ml{l4Ref04)6UBC zcd|Yqj%R|xvG3@?y7ha#N!c{vOigS8ht~1Ydd=JBgl4;!BD53oZ&JCy0&Ii zY)_9|6}>606*|{wG<4-zQ1*W$iazLl&bpfTQIBI{da!QFu+_g+hE4CQ6cKqRlPR`` zu%*vm=-+iZe`O8V^4A5`5_n@Yv-~$>B<^YK}ulN`5yM};yeqYdp z`y(}lL+;TWwnB}R3)v^?Cp-JWAN6Kk-fh3CRA4Cq=a(jo+=#6p59(%}MA?%7O@rbN zo;n@vu8XyUBB4E(&iwL!#X>z35)2Y1L-NG|Rci?X)^~rfT?<2b zPFxiIfZFX1vr}jJm2+IlPqwOK`+vS<@@#LOdz}|l>K^v+*+DB_NUD`!6e+1-h>H|} zIz!w~yG4sO&v{NzJw2h&oqsI>WwFSa8fgKx+~lI zL>ULo5*=`m;_>eb{Vx)qSk=`{Up)V19HVH%l+5L|GabC7@|X5p_hQuHh{5^fsAxoI zYT}GalTvekd#%3VI?3A}jf0ThPg26}tU4DIm?O^?7i9tg>$}KmhsD3b&}wn$kH{D} z{iyB+Bns{e6R#x)Bq($<1JB=5Fbv{xa{L+QNWHmkN1fzhO$_;UNe05;eD>a`n=$9F z{PoE0jeo-p8QCentQ~h;lX1(Mt(WQpA6(m>^}#bMv$}TYdFF}nZkdogb)?J#Q(Hzi z=456JvLufgXRZaNkfr@lew$I7U4c}Q)|Nx^n1>u+;pi;S4E~rJ23YU_%mOf1A4+A& z(>NZ~VDt!nt7Befe9maJw2-h~U9IdvjP87T6pld&B>@0D{%EI#0Rjxa0ZXQ?WQxfX z&?QLerNv~!E0Qj%yciz$mGWU3yS)5-eP{+s@W z*LIcP+=LmrpjIL;rrdr@!7+Fq`R>h>bLBNp`qxrj10&v;J!ig;Q@kA;w}f(4+s{5t zcp2^OLm|t4yeC15Iq<+y-0`miadSo297;`MPi2RlSi&)05#u|CHNvH$E@Y4)boD#W zmfHR0yBiFL46-LmmS2)H#beI)bl7FEjorei32=)BwgXSe@45_ba%+_5Z> zEF5bG!x!fdJWecR_Ma>*a|X@0=p;5AUeI-Q+qXcejoFdSKIcZ)!h;9FYPTW7u%s8M&R0413uzLc z*`m>U(+22rM^>zJeVX+0t)ljOTRZujCvmAv@T*ulf{x3qvSilJ5lQw!Ww_?{G~eC) zi`Bntp1F!HUH0K-ShN(XmgeD59KLq{xqbqGhXA?RKR7ip{f7688%!Qz5t2c-b&cR< zrb1tT9X0=j%kGSjTk{JO8>-u(_gkF$f6Tv_4__>R$^zPw8y}^9{PcL`0j)CGcQSaX zv7hOj)T7HxoS&Ap_$%mR^f4Rp|boeden`o{HS_Tsu&{5b%-c-9Du&PL&VNQH5p=8F*+!+$QeIb-w1Wyw?5-2%bhb&Is(9Dty9y}r{UyEc~yRPg>r1)mR|HD znfp-`Ui-#;@O|fSxF?$SLGTi=oESoXJ>B|Q@e}_)eHPX%)*pa8vX8wf7O7c)X|B^& z`O>BP@Z}_tC;-Rs#Q_x}V6<$MGi&bil_ucRgCYxh-j7ay*GT!qZd{XAbnHqoyfAPH zP2lhp`TEO?7jW57-j%bP`^7%>y8xaeIDE@qh?w&X%Ek55_NH&!9RGe|sFS|=QetD( zu)o1BIwOab=L7plXZB#KmyZ3rJ!mY|bL zhWSL!FE`zqc}D@i6Q2g!uRHep^X+E(e%-Rd{%L8Or|NH=y`e^I$S9zZ#LnMv5A?V? zu@i@&5WdTO-<_?RDAMugTYLNbr9p}( zp;QaA`OP}4n^Nm<8a%`<8!ujnYppM~fZJ(%6MYVEU63HdrLc`?VRiTLXcVAeEWes9 z;c^CtC4`CQ(PE-mel2@zg%r{pf0Zo;2&H+c@T3l@H>q=J0%1nP74GT-u-#oDc;tYP zK*^;g(^JRq&I=4meV8T>RTq(Fkz#oPl>Q!l<0NPwNE^_WDJ6?)` zk%KeTOD}JTV`353EA!o4#&c3RbmWV44uHnQU0{z@F!AIu%KvwWdmg)+su2LVn#nnr z*PiB**-~#1Jx1Bg%DmYj7sTo9G2)BWBe+{Hzqx!%O@D?tayR1F+C7X`_?w<57REzw z{e*~45}R?$ImYp*4rAHaH<92nzGi#+tOEd%8A{ZbhjjlQ+HUVWk*VRX@7|AU6)&up%t+n2hKf-_?^D{4|Uq>{+6Cwr?sxN6z)y&6iE4K|@JP9HSW#IO7YzY}hi(OQD`S}ILam_1*? zKh!ohW0|`NEj1ULrRPQvr2if5)!C`f>%z?Shf)RrGtjR8J94U157~&M@P+!N9cd_L z!derz=f6?Y3#5xUkX=n2$fNuxs#d#6(MiFu>K0QS(>3Qiv(-h_CQ+Qe=}Y$-rzcC^ z-c=6%6#~(GKIsx5t;bH`aBi8QDnq8QuV#dL%V;psi~#h32~{5)bqr@ll>G-H#>z*q z-MqSpucmS(f`7Ntz}?`kHD^53qD*{7Trhhce7tYrfc+KQwuR<-!}O$YeS)h3Ex{7& z3e?+ac`;IoPFS3d)iKtl?iOmHucKXT^~e~vE+2%Z%uHP#F)`c!#4)AEWFxv$d8b2% zH%$3)`h2A6M~}cuy!=4-Tq!;q=Ch}q`PDJ=e~jR%lCN&kWVh@tL@eyAZmOexFzg_} zrRy6S{y_Bkq)O-&ZB7C!k`bJos3F0RzB9NE73;2mx{Erz#?zbtT(leXcjN%30MkloMG{f8#8NWI<*IobJ-y3E?)-W&9Ix|!6z>sC$7B3k}@qP60 z?poK1aq&>Mw!Hk+cdA5vr_J70?UTJ#cbFZYtVZTH7Sjm(&;Q+YhHRkL*HGL^B0l{-_6n(jiP*E)Z9G3F(OILqrkD))vELZv)7%wB}E0+EvP?})Osf6|H zd@+{O_m9N&#}lnzq4ezAZOCmdH1vz4`S69j_qQW@Q*IIl>C*DxnbTfN6lRJ)4&?*Z@RIvAL8DP%C}+< zlv5Hui^<2JrT0t{*5EO{Mx%gNurP~@fXDDJzc&AQH-RnzXS07yH6`1Dy6>)e3Mo8< z$^nk~pYuNzbyxp~t+$S(6SL}dVid6IXa3FHKFisd7YuwV8|#eroz~#3Mr`22J0-6H+Zq(* zLRtqzLohR$1ADaUNV<+|o8ZQsQ;XvZ2hE1d@{uZn=IG>Phj<>T_~8TX{^xo+Y-x>bw9D4;JL85 zZ;q4a7o38L;pa&u>SA?>1!#+}d{3KjP+6Xt5}yUH&b?35gFEUZw`+0A7f1{(b z8a1=AVi9_z27ANc^NY)fR!Ld>HY*J9aG0PWAl2WUXJSUMLF8ZFz}Wk7n-iZOx=WH7 z_5v7Zk-AV>raD3Nmy8zGJJ~l){g93p50my&Krt>rvUnQX$RTsy z_T}`Jirp1^ojGwd6UqGfBhs$Ro8Ld+>fU3L$#`l|)D+-%jX-=2+G%P59|{=jl=wPk z;3p1CVrXs!{&Zp7x-9!9^v@QwDWBP2{P;TiOe$e&G;-2fvfep|y`IRvjvqKTz&TlJ zM{RxlOg8m$y0n=y<~p9Flqi$KCMYtU_Mqv%@KDaWAQ-s;%9~enj5>Q@!)r{NTAXPC#&kN&yd3SgD+_=5F}%nhUN8Mq$fjSnF?qFLO=!G+ zr5Tr*Y8RJFebOQ9`ZQo)w+2^AXjM^arO(8ySFSv^d;}D?PH*Be(m{K$~M;9~0M)q2@ffLrv(->}$U`mP?36 z%-L;_FU8gPmkbZf-+Lil1e_rWrP7tv6Y55iAM?=RN5xAX)r|Pt=e})sUEP@d9Kx3% z`{YP#AGhdRCEJj*9z%WH837E{Ah{`7N}>~L`PIO`<9aXg$bQ79(fcF9uft<2T@enG z{{}P@H-aDIm4DCpy09?ST$0xt0V5D#LbpEE!$3z}pfJqx#1IcKuhulJFGpX1*DW}o zYFcFn{4IPfyiq9 z?x7T-RF;Fq%D<9h3@2Zfs7P6=x-|D<`YSjqSJ0}_b zq+8rW4qB9OMuxprHU3jbg24QTzcq^@WTGf+2Zk(GP|wBUG9!=7G|@bhZ9OtX#UQ1{>KSG58igxbvFki&D++#R%OcLP9&#I6ut|n_-KK3uLHsb`1MUmBc zv++&{2yu4Yqr0F*ZGxdsvi$r9kZd_zU7?TVt!dZp#`(t~Sf`J_E5#ZHm*^`G6*Pf$ zfj#2nA`B}V!8;x{EI(({9541EpW6 zDU}l?2x7$5*&-Xa1w}siYPQF!WZlJ529V>3+<>_Y9%7S8vPSXYAvQvF1jZ``5C8RY z@l1Hi^vI%TiS^WRPZD7gH>~PIWCN+lR}-u?T^6@~Uyp9`U1#}FQULQ!8LRL_5KxH7 zxJfUb_E`fLS}2(5j%Iyenf6o`R+H^+wRVtNEP$jZx6DL6SK6i}A5{Q62!JzgwQCA# zsPdS>S9W(YunrgV+|f5jmIi6bh}im|@oRbQlTO|A^u5wRy?!aB$_N4r17{$TWvdI7 z6sfQv?*Ww#-r5ArBf^XoA-JA#Z&T*O<+8c6`SVF$RD|eJInb=mzTi9*jU(MRt!**> zTZx6?_Yt;1Xoi9V>Y^IWTKY%J@MpX7d>z}CKmBp#fL|cg5;V8T+`js~UK0Inrb@wM zJ*w)XxeT9bm=>@dLxWO(J?TWWsc@MI`B44D>@Pq|d)o;xqrO&cr=3^~SXG*mg1R?Y zEsAafWn-xWwGgQzAO_1-k05|9t~sG_2d7k|<8Qn^LZw|YzjSJ~NWK^L5;;pB$-r6q zAodEP;XBkGA%gQND@G>m>Fhwfg&uSZ&$I4-si6!8`cu(0&*I{Uefj6I?cOrY39(Y} zP~WE`AO2MTApJ0wFOA;U`}ChbIy;+GaN`px>fK4`j=m&L=zW^`1UV>7BkB{SYgi}74yXab0r^V)!0&>@ z`=Wo^4efT;1`@92bd=JmJ}|to(iTl+>r%=ct((3fkl6HpFanKyf(~d6HQN=rH!@;4 zO07^+#X3F+nhYE?^4ze4$?w2(OMM5=4Osi&ueU*q&1Ln}=QDlYzLJoU@Y7u*GLZ_UhjmRhs2wvyM88`$D`Yb88|Sytk1R>a!E(h4 zN-sZk6Wb8MdZ@^GuAdhx3aZF|duW2H8wex`nj2Lej%N5s$ZP}vb%@~OTaK@&I`=#M zm?yh%T(35~3VG4^*61j(Z;GKO5RE+V+EGWxYpH)9)tx7W$>0#HZ+qX=%m@>CcFhII zj~l`YRu^1)#$s}>O4oG%_Vum5W&}Z76byY zcWaJ6=YRfIhgjY5IZ#!V(hH}J{zOj(!&nk`J`gVs;z7UuJl>AXP_xCG zQNyA#!kB8WXR|zVm|>``7~pX9QElsde(Dd`WK9Z;>DgK>5_THvPvd#|^Q(o)N0hCh z$&o?CJrNh9F5CS_)|R*hhTRl^@L%7jIWg`U1%lYdE$Y2;_5$=)o1g(<9Wh>m6A#c* zq}xIUO1V6(FQJkTQc5t;Z5Y`ss%l%_`z}A(riKaLslawZT4o}pkw|0D$570f&85ek z5>9ZjDVW(FhvGjXcvNy=+655aa&MVr=^{ZERwd|yh5#{!MP#Z}@DWJDz9%*lNOux@ zf}JWjtl94y^&C|6u_=^5#PS~;6LEd~CXXd@_brrdfwhcpH$HtlW;gU5nd7+gPS9(TH^5BNh*P!KT~RZD<#0uWpkG8Y8Q0U zmaARm?-H{$VODUf+IyT`qNmUTtHQLZ;5wY+wn%lTHBhR^nCoJ)ekn9c5i*nIwg z+bum;Wz-lEV=?OO-ATev-m=`)1l-~tA#+a9LZ04M*-tbco=q*MBbB@%rF&uw)G{Xh z-{ilsf4$-P2=C)9e7sLG$VPNs38VYacgl?OXwEx9wc9w8CbB!|L0w|s{59)7=?dt`%}d;-u(*wxwIC7D^VaIx@cu=rAVJfq`i>H4GyF(*KrV>XxA(2r zwyd|2hU_K|*_h$Z#rh%Yz9hGQdh%n7vC~ied6ezA*VuCyXV#be-zC0$y!?x<-HiR? zEj<~@1WrxH7_ZfsqoFkKgb=<$ZxZfk{aCF35Zbk zq2P->|HAE7iy-1&6IhBYD2ZeOVYGA9oO?_Mj}Is<0Nv<-cXl`bz_1tiyYj1k{i@&& z@Ji#KllbT1fnF4^uXC>^v(K>l-FBM95nmB{dyss&v-R2uG*6E#MO4I%Ic{ zCqnlXsf`AGe3ulNovs5nAzvLfrbpgaK<^BT^dIpr)2;W@vL5MM(bNsSU*KHAYLPE({Xlz z!;K%Z%l&x?sMAPgU0pu^Da_Qij zDILpy))eoD(@*?TEOufYPhT@U$(LrHuAZH=x;Q=w3PgMxoBebeiSM#KW08Z(;mW~9p^*{+3f1y zA*IyUW{im%W{A*AtfQ!akqI5^;T#8s*Ggu${N}laMx?E&UGQ}Th&&mX{QThutWK7?Nr>)+j+^B#oZUMm1NE(BpSMA-iI zbCfaGqS2`%X@a30qv}f0;smdsI^62#*0S@>q&>3R5xuwSZShJe?W1J91WtQj??!J} zy_lv~AJ#v_yBnew+%eZ5GJLy!AZ6C#oA}}OW;joY=w$5HkEzFp)+6Ch2>i&;dCSi@ z0oEzEt^NqQm>j3vZ;f{V&jEowQa7fyZeDVGYlIUlE7Vns{A@V%C@ElPHbfA#$Xo8T zMYl?8FfAXpIm%cIFzd+sPXpBr_?FH_t@HIAtm4j>CR$ygyufPUz^Dh+Ofa#)+)74W ze1Lz}?()^^GYfM}6v$By2Z{{l5w<6P7f|0wIs8zAF%~nnRTT1zK{|pqa&yZwz|m>6 z7mbHy_uh+$L(l&At1CnHMkLV;=FR`oExB&I@3)+wDTMk(%oF#pVepMIlq*Y=t;J>p z`~u|DV9r~zI*6sq&3%P+mwz!`Am=+22) zl8q~;e)8#hTLW+|GH(WnEXx zdxs!?AxTFoQX65@KzJ zm!6Mu&L&vH)bZ9_DG!Vq$kTaHa1R!>VTW$GuFXk)IesYKl?D=>iK$TO{DL#_DpAK? zP`r=TZ0iG~kr<-z82Rux>ZHUcdT5(#TNa!_Zs;I6Q?Ea=%hq53y#N5CXjpHI*o3ZY zKTPfa+Py-hJyWdY&J!7NXj;Pc@Y+MyB((FI$)Q|fKP1~SI{lJq!Ux_o7XB^$km+Ax)4Z{TL_#b4D zQyAPver&@&CosL<`IO#oyc;{d`vLaoXt$gFgy2occG_W#gNQ5lS3sYZW_mx?9;}-c zCB62n@=!=pzogl^^yskiQ0XiR+z{y9-;3Y>%zF$$jsCYha|`!uY4R<2#Ej4FY!d$^ z^NB`6{(0|1Xuxm&#eaXH%)IKlaCe4e9pm=snWCAy zCufT9ZpbXHkH%&=Ct+IS8Yd}Sz8F3r2i?sQNOWFNl9_!oQC1egf&;5TWY~!-6c9!E zKLcX_qJ51KV#sp!qNWDCE7HWknr8M6%t~PrD$QqS8~OV~D^&QPE4fHI4=6u(!ty{h z*Eac3YLpz;n9L&ht4x#-C^vbYZ+;i4)VJ1RhT$ON4$X1d8pO|H3%J=ZgP09t;h{BB zV&T9b`IjH-2<8<-yE|$`%Qtz<1mzj_R?@nEQm%?hc2_O+ zjLpo^;ZzHn%kwQE;GO)e)j$A~TJ<;4F)Ck0_08&9`6M+31v(0aIz2m!WHTYOva%9s z`4$?wHKY?Ty}IfX9ZdpvT|DCD9q*C3m0)qj9YMpeKi?b$$V|S(8^8tV>0ZK2d~3@N zBc1u}pMg?3=k;M39qAM<`0_tv835b_oR-~DdJe?Zb$F0^P7INI)?_ z=Xj#KBpQ5p+Px@#szm{#(#;#hFaHV^-o(16KX6yl!a3?7dGgv+@zeON-vtIaY&}+Ln!5Y}?loGU|D!c4I7w!k+sKb*Jo4H@NMEr<_-P~TZhcg&-M6vmjaua$$ zUS}8?uao6e!=+C+q{honOO5|w7*}m#{`taQpOObM98KGGX!*+SdvH5Xwhs2zvuC#p zJYIItZpU}Ick&4BB6eScjBK|+Zovcx!Tw?9gppGTWcSJHD(vdznjW~AJ9eHwZ~gBV z95Q~rx^gXi^cQ_cTCRx-#fCSl$-{d~M3NGRTIiK}l`k=b3(Th39j9ev!0)M4W5SHwo-U$SU8c;G4c&h$_X&l!Q+}P++uge>L=U3(q0`h?~DCoC9agXBTQ35z*8(S zS-1^#due5~^iLk0Xt11eBhn}51pJDOB9yU7bKh|H>>y&N6s0gPy7H3eSpoYD89rtd zju7hX137hHbv4Wnn6;@>L`t&`LmE9<~1L3%jE^}4%`V-R%%Tx z6qG8c07ShN>8sJJ@&qme%eJ)YH4(QcAqQW90j;N}$I{ZWp}oC*X{gL>G&n3we(kw& zDRHSX-G#e=fM@^0SkK-6&1+q`j;(ZRd9IODdq|DitMplX#UmM^p-9;!tEsuVEDQU6 zAS0HqyY~wq5Fe+L8z{V;#UB`QY0GFwp7ol7j0e%^uH~A53A#v0$IwohZ0HbelJo*; zDo`x-vw3wWC8Oqrt^T0==izoZAR1FAJu^;L=PrB@loLz~{=i+M(Uv5gb~4J23_8_r zmjc;N3<`@ZhO{|xWnsd?NE4U?*$_g+hf;mcUme97^*OlV?yasHIerx_7+z^Yxzam_ zVJ$}sLmd2PpxoTo7)9W&Cm{6FJqd!z@d_xaOvHz2x7)WJAFU9eowFTlK&4^>3wz2r z9iQoRqjz@gvwz2bXte=KR?M;^~wug1+w*#q)v&+j*-9LW#plJAs zj{INKB^umon1Tk0F{Y|2BB+`#Ad&)O<%3fn%Y}2EaG;QgUF&jVbJJx2zA+^5n=LtI zCd}n(19_VSD~o`bz?crYKyTqfAF=uIJ~cc}q%H~Jk}+35Ndm3U;(_xa3`$ zScHRs>>j?k)e$`jk$KtD`4);teeLx`Z|&1^&)Es4nJ5aV!`dQYlG*$DEoOO~^Sz_n zk7D>nR#2p{D2aOJd+A-=mTcb8ydie&%)R$NPqC?6?EfET8T8>FEr1@v{spD{GhZG^XEPls`7&OO z>djN*c68?FN1LCYpPQe*M;ad&_m-a@ZVjwG-EM~f;dYHLU%m`P+56}MC=o_?pC85} zAulu#`qABQXva@0fQI_zBzed0b(Ww&MX-Yk)!l1^T31Nv_Sulg0;7cM%OFQwu6<~f z)+jKiU-#7nYHuAx@OQJq5>y}CqCn+UBe)GPUGr0yuYoDABgYDME3ImIV1K&2PI}2~ zOC=w3{ejD~ju992$sI1vR8C+VeuBf&aCfzxZkmu?{TlK>$-;gk4-`8wFUCmVbdG?Nm@_)!1i&+WrZi*+eL`B<{H#3h2*vOCv z(6BuhI$t0DI1xSQWAD4 zlRN)q8pu&!Z zptPdRrd<3iMlKO3dBETX9*i@EcdUDCqc;I zORG|L(}PK;`L5XooY0jA6V8_omy!ddXhM;FP^#RKA{uhI-OfPAOCWIBXk$1o;IaGf z>}2)%9ijLgm@_LuUHX}W_ct`y4o*wGh#!*YK5vv$79F}fs`rLO8rfq*Uc_aPN?NUs zDe6mInvu0`M#6E8G0|}H_6Ae#+bp}ibbd{v^NPc3KsZT)`P`mtO_9&SwN^Q_omKDm zkr9r&>ha~r+>hPrXHf_n{PA9Nz_e@W?2JItOmIQD&D{IzD4JWiQ*uzR$ePV7Vunvg-qH6MGnQ2>-k7`aO4SDj}F z@yg)u5ad1Oofc>8!#^kP^(inS{ujvotUGPNL9HxmV(a@^jj3-;m!bFF22&8nb>a}9 z6A5!v8p3>3&>Xm+a!_rZ7YSY(okW3}`w(0Kt;*w}9 zn5=*`un0c-k%rXLkMz!X@06(>r6EXr>nD-MCj6y%yp8^BYIUYPm`TjR{Lse5W|!oJ z_mKx^?9|7OC}3743=rXIlM#x8@nsY~cd@?ZV{&xf*w-Blsab2uZekwkFBor?nEzvp z@C~XKzj_%Mv;#5f2qS%1J*8y80aDj-gb@y;=E0ROtwNLHW|H)%$r_|5~?nRY0Pw|p`0eFszju5s_@XuiW@xd|OWTv@3(><9BBD!m}@sox|=qwBowbaEjX z8V0&kc0ek}mnKO2rT2LE9z6WY>1(V~Oq*588LZ8Fqy=xsi_kaw{WD2y*RLRkLXN|l z>I=0_z1Z2c`iX_62;550_3&_?TL&1Ll6Z_96xliUj{op2~K4LVo`)MQESGhEM zZ}nmp8m99rc=t^{*+(~D=D6?yyCED!9sXr*nYzzwK3e>2%An$NboNk8{bLN})*3vC zsu-MswjM5aZlSYIWy?>m?Z9$I%%h^&xR0UQ4>w+tlSeQ8;VhmVayZyr+@H4_-2Ipx z@R;@wn;wMWLzu+zhz~C}_GeHZC3Kny!Tbttt&wqeTi*Nn(J;)Cg zwFVZF`$cQa-)}q<()ywNES{fyE}bwn7?2H+=*n071GfEe?op47%=fnMk~?n?UF74H zh36_?zmf6Z*=N`}{GELnHNMLX5cg=>ZddeW5c>46J6vvUZ7NLmtEqj|T-N0bY| z8eblQE`!*7>zMM8@)#Cu$eej8g^`DoXXif|Wlep^Z82imyfDKp&@L2A^}_qyg9ueO zG_~&JLH_o%p>}mc`0;W@`UWrPZpWwzN&CWB?!C#8*otGe9Y*b}>6d;~|Md1GrbvE; ziNbJt?os37Wr1Xo>%K=PSYx{sc^x;;*XS~w;`Wm#pi)L$$2a&3E%eIBV9D!XbZF#x;tV1oN^>U^Ytd)QGkT& ze}pr1BHZ%9RB)PAKde|MA2pUhOH!Y^^nw8ij9O3?q$WiJw=uLq%2qSk>H z9gW@~_{tQ{?9kr}ffpl4GcS(j*NM%-4A5OsJK%+~uA^F% z%)IeLQFYc44k$%*G5f*GhzIQ&JCDbQAD7R_r?QtdhJA4p=oZ8^UGLFVtal8lS|iCQ z5wAqc?oSPVV7YNhKvM?B_yI8$M6}G{=kR5DJbm={=WldL{YHpu3~g-Kpbqo7@&jnf z{8PzTm`}4iscOOISBb9+6~L){&1_3vD)gQ7EU&)LC+A?QAmwkycYY|)e*j^x9A}F# zOI8nYV-$ppacbVeT$zbZp4?noc$L{Lhgd>E8lkaa?gd%`7=M0De`^AGv2ZqzR32M- z^?l|>c(ap+k=^b3cphO#Y4S1Ij~|YdAbqU8_1Y^li=&I%%xTB z;rmsU^Wq5y8K9-+P-fIWd_(hEFiRi18jhWTG;36CY>&SrwR>ZdfX_;;_i^@6zJu-# zB^oVpi8t7u&1Jes%$N+gz6Cbzvv58)cJAeC;M#6Ni^G|Ke+db`_fouOZ4sP16a_aR z!)Dw5lu-V@%6HF{%fF9}2zgJP5Sv%zq_bP?vqri|$T$#vqjf|5t-AO!b82QfC4^)~ zq>MgY1N9+4z1K|>4qwfHDe5SzUgGs-DpK&&9DBXmpY(KD-{Y@KNlIz9A$S6YEKm9u zYD+WYAK`C-eQHN8D&vEDC{)o@HeLzgKM=~=y?+$Ch;^k}X>xjDNbb#uP}n z&g$QGz(l(Fy1A8=30qXs!Pnykhy2C$>|AZ++06LamL%JJ8(pKYn5)r)^3>2L}Jnkd@S<>z<-NWzPk zk40D((>V#3^R6NIAkS6{J{k|(+|w6PyFne9eM82b7&_NAX-({(F3krShsG>-ymm%! zn@oE^y5Meh!WkkMoU-z$%QOOR73AUNZSCr6X%Z?S;h=fiGVM+sQU9WZ$m=*r{aYts zt-Iu!%RQ<85+)igjSpJsC6s%^vY>QZc_FGP6JZ=Y!H^Iy zP2>vuM?yg7=YuONUc^McsRXJ0PI&>v0Wpv7eI@@i);c&`-X^50@?`^qE@1vuc(LIQ zg^%svWtTfUx4KN-uX-$g;%#xppD3-D86qvygJ^%{aILMnmb>PQ&Ec39}}a%Oze#@fhkX7%8x3)@m`^p$;3fE~p} zU4j9t0LE}cMtG99K8s8ikd5TVb4JM*cOLXqEp4;sS9nF{nFRa2SIX!z?g3Yqr@tiP z3rqjNfUl_KFM13)UDmgL$cF4TH}^2THa9Xa#cHOXSEVSXDju*oQ$3yIS#BO{P1v%a zDZ`t*u1pA$-nj8|+IZ6An}!Z3-UjEB$yuNd&^Nb#g&%bdT@3x5e5v9f$)?t+J8q&x z4Ax!gs4BMJ9_N6vvpQeMl(zp$%T{Tp%OjVT;+C=DG+7X2}T(b-QbCc`xP-pVVsI^E`U)v z8+#7l8b703uJ3sm;1s|(!habB$+)4|>72SJ=)M!$&Te=6@=0EiXaVtC1^2c&LNP*! zAatI<#VORbh&>h88atQ;Wlr3Kg9ivlQ>}r*>Kx)?-8;!*>bPmv|6KY3-jb0KoCJxQ z(A)a1KaT# zO48E_atST?{1GHXuY+GgC<5~67gTfh4P+ugWS&h+xC)e=RJ;`A_0S%VL~+&Om)!p! zXDd4Kgc|PVhU>*b|9C!nf$r{YB+jc?_||2Kvp5j07=aRi|SDJ zBU{X{rs{iKGP1vh7k~${@<$r-v8;Q>oB}%{KuLh;09gQN&343y*0V3cyal@2=Dhpu zZ~{Uk8lIix9W|FKMdLO-k9WjL3%OXi%@ z*g*2W#ku8zcXnx#>_UFM3L9(`;9=Gj*tjCGP^kIz_YrS1*!zJ0g5s^q6aP>*(j>8P z0$EncAxWHJPC0Kwb`#e=jkuIc!g6Y_44+qR4dhUJv(=cmInC9zF>=JPeTN%q{=hG! z9Dr?$l~cIWH2!B?F#ne=!YE@RLta$v*GMgvRo*x%(NmMIdIz0J613Bk1@|3@X`p2r z7ZI2f533D(iup8GU);u=kNH~YyPs>k7K>$@qlg=4eYk^lx<_e*Q9 zGiv?i3t>-|j}5-4k9}2bOyv8~>GQ~#v%;K&*YWLty{1Kqs9Gw~n%jFfEH3ug(IBrN z99i+1%k0Dy21S2MY5kt~4&7y+beo&OviDEO9HvC$esyL=ognoj0*}iRBpirK5(L3>6N|4SMv9Xtam>KeyI6C!>kbs*-_u6=U+o4*37mx6;)pw zi{Y=A9~o|BJu`e=@jUCu_Bh1$p!eFg=ej4m+$mT>I-r3^gdO0~L*T(lql@{v^8+@A z--XXwtl2JTVr#jJPvXYu-iQ=2{YxIDb9LOjhGLe~sLsrPgoi1fUJ6qMsAOw+&&||{ zkAj0xvomHsdK=9x*Z3xKYDhYccyZR}evb5-TtZe_n3FqLpYcNOQW6QQFpF}`y)DxY zHcv=N`rtE6G#`^`z3AdumC(Ecg|K3zI!Wru6MBX;K?SXMopWs)9>lz>EzQgb5)zHEDK? zexsMa1x zhcsQ5Om3`$gTc$vr)QJ679{i~dRKBk!Hz~Ka)>Fyw8YXJUt5J-mmC2dbx1WH+Gv61 z?j=}F{?-|kci6`bGy56o8)7wo0bwjnTJxyI-}4BgVY4roUlT0&HDdk}8>J=@*rY|( zkX)1=Xw(p$k>O%Hctd-sV}qNX-4s(}1S+8v!c-*dC51jDho^W!44hadlIK_Y&Nef* zyEI_PhR_2IjH7CwI`$A-A)?ych!hh$<=a@dv(;F`6ay7kDG$a7Ji@f_z9NYZF z0^F^(n=AY()$dcN-zKNUEYFUa>vIIS zKAOvmc^fj4(+J^((I`NgjW7dlkx&AMd!#|0u~WhNIedQLH}sxJ+@5y=CZsPT|AfXN zL(F3q4Fv(QS?Bw^2wMp=p~cp4Z2@jwSw30IUcJ)TH#r@Ei}Q$;U#z?50mw2dT4t9P zR1SnL20W-lL6g=2v24Ruj@O*?*HcrHUQSl2p4-PR@-fzVmu$n-@4EnTNYNakU?oy* zt+uY+lomawNo7nOumNx?kV}QYPmqu&64eG|<-z_7R{r)TLgTJ9>ea0!`Ux5AL?*s`)A{1UM=cHLtKIK5B9G_9 zfxC1%IbdpLP+WbN zjMWPQ5M3#KUHY&01(yqbwYEd&=NE4*@zn^SAu9V>qZF4ma@Yc$ix^mv$2w@qvZSE)z? zEF5F>3fs{R!KvwBI3*MoVV*5KCtli84+#=L8s7%cHmmRqv!O|;z56_xGnlX)_=SGr z2jx44pc%QHf_oah{oO(c?0C~YLK>R@+v~YwKzueKuF`LSpkYvFTf?wO$eT<|{P-89 zl2-2ZmGYhe-GbJK2BihU5uUmeu@oCOwgoO3co%b0If~C-ysWiFK7& z_qg@R*=yjda`HkUT>ui&fkwEm^y|X>NaH=$mH~4oqHBc013e)T_r{2*N_kmWgmrd0 z@-nCY=VjiLv8HBF_;Qa@2Vy=Wnp!`%(zfPU`-a5gL*f7l9rNnKXs*(mk8gs1z}s?I z%tsBm>Xp~Hf;d_I{#KHN6Gv1O$C``%^Y7$WgY!ELx_F)Mj{m{XIU#%lHaj3;I1RXB ztcR8a>H$J{_`T^@@ug62?){P0>whofdWL<1G?h&=mj&enWQBt;BR1t+GcRyb~`+u7jq4GsZe% z=$j%G_*`~8%srg`eE%EwUqaFeM1!(E>#YLo0D@MW{MoRfyC6;oM^k1s{O5$v3@uMP z$9a`=R{-#HK>q^MKl6?+?U=p+nISmZ@>OqwKfBqmzBrZzavih<4Qj7RSX@l#hU#uj z)@v))jRxkZUs#5AU%Fv^fASGeit74RP+j{%Gef*)m&s-fV@y_0BWXCP!Ws?jJ|3WZtXI%Qh*4^2zgwb;cA`r=B@>go7O}H)AJm?+ zD>K<0MV4|JpvnSj*Iso1_2F-Ak%GJoBi;g0T2~~OBr zj>Yt>UB@q~TBs3~lu1nL3dYjLrNQ4ps#Lo0lIA1CHe{C`f?VlAA9qQcb|D0xT;IA` z=;&zf*&q)wYz#Q=-{Hun8&S*ue`U54MwKR%K7<%fk547!NLoAVUWO_yXN*h4;n*Qf z%TuZDWC`5lykL?3iQLC9Cc1I$;KQ`xf66#6FyFxIx`A+`z5V4T_+3(6prxQ4w*0i~ zwMthT>i!u%qV0JJ%Z)o!d?BVXA4yFT`i;Io)X4i|*a68nm{)FGy^5_XxOg1`?&6>m z4i1cd5Pc@cE{Yn!X-YqR_}7p!eq%+plTXCC$Z(D^yFEuV_$A2SLkZWxEdqppZYi%y zrqn8WS5d>}4lO${KY+(mt#GhF#Yv(SSEVLNguKJUlg z)1Eugc7Tz*ru>3eK34Tn%Qyg4^FYd5nH=V_?^ssk)hw53n9mLt*Kb2XbF^r5mU!OV z{IHZU6hh;QShOBP-eC?!?r3u=_AGZm_zpE#@&AP+K%nv@^GPPVfweX5{J_J_Ztw5l z!?4&Je5a~z+IOU-$Z8L1kq|t|7MIR1Z8Cj%mz4g~ObclHkvRT$^7+glQe635TD1z{ zfCr~;xF&CN1yZF7jXP<;hi>rYDVFk6$cPjy&^?g`vGS{T{!3Vo-1CD0)6BAtfuS0b zVcOLYBRtTE<)Uk9u_-#BBCCPGB>>hgAET{+@6yrghtJKM#6yt8>QzK>I!WyRW?R3v zvEO%vnDzo^@_fha{NA1P4X@+%zy1Gg_@ z(Y`XNFrbZOF|sA@)Qbz*NrjXb&LI0FWzJpz1YnIrIPj+3mf2E!;f;Pr4*UIeT4#=t z#>R@M?KDWQJl{A;9?0U{-(-RT#$+W^IR=_~FhW0Oc)%TNHDXu~0WD*qe09AJ_y691 z9%#$2&MzM;S`{7=u8#A};klc=(5BsAaqseUIcsY0`$B4UKRvM+y|{Vz5cFh&SY#Xy zZUBswX01O2XCW8@&uh0f5D_Esn5QB{h(k6slK)vCGg4^3uDtN6tF$}kN-hC{+rNZ! z?sG`~wX@GMIPGL)p-hGwZJzbm#vA8$YYY=dtE6C3rL~9#Ej%)FMsrV$>8{Oym#LyQ zH~iT%r%Fs%g^n5_luKgUAHi5Fj=UDqgn;dKsYUOQX5l)2w!Kp{F5Q4 zG#D#n?^(1lqbLdza)DQ&j8zeHo(H96?UtjwYG|l9P#xIB)yNQc_5#9D{noF5RP_*1 z1x@TRZ@j9}0?nRe0DyDhsRzZfH`&GPP`dK$!f$(W36qw(B<9mGL$M_*t;>Md5z=bTF zaRop$5oj+F-9*Ga_Fi-r!V-J94nm3n4t{V#CKJ4a@M3VPWZhR$avqdoEWENd4v~D0 z78lN7U6mhrQmUz!Kf+b%2 z|6GTmD}(zJql4tuWvt)AV=M!S6*Uo%`sthEgB_e7DxHu309$fQCS)y92i)>$_ffJk zy+Z!O<$*JY({m@p(-ud(EgSOsbl@9@gfiQgwXIRdodu4gdTDTj>=fMzw_#}i7zh&< zd?UYo)aKs?cu_!ipgD)~LQLJQ*gG9tC9{UM&6QujLz`GV4GDpbNz}{6eo;v6sv`#o z%bF?o1sKX?pE}(=pM-?S)_6+HC|n8)V^yFJoA}sIn`XxM;1B%Yg!PCKyR0kvw0PhZ zY48Hg5>YV&v0dnWF<$xH{k(V|a$wZ&wOX=;S~SDHp!HL4<7lZ%6i*(!zYdx~fFc@z z*7)(Kvru|LTE^o7;+Y){F1Qh2YZdnZTbn8^gik;s?W1dZ0Pkj7Gwho7hCn1J0u3j9 zr8t^kIwiXavARgE1biL6C}w(njU1%sA$S$Xm9MTtL+}Q`nr<<*@$S0u)@+&NaWStj zF`?Z*R~GQY30izhSzrvj1ezoH->Olp)0^44%j1N zGy48{iDlts4A;9U2k#wcZYRD-^ka|zgpkj&f_J!QPz6x#;2n~z9e{Zb{Ouo(K0%u@ z1%c3Ds1v1qox>~-`Gmlc|HAr3Y#dB4dK(4<31Y1s^vFX}4WH!CvKD-xCey+M-j%km(5UJI*IpuLJx9)3s6&j4uOQ)g+ zh@dch)NLBdUM|;3 zdL)HLDxed;HK!5?H;o{1-EdOCEi3*2W3xaWf^hQ$V2N;@k3eSHH^BVC-dv;}Z-p*k z=6zRDlYS=7NV&(S2WFO+Vbd^SMEK75(zI}9-Cri^?s{ESQEhP`!V-|zSuLF@)i&W5 zcC4aA0JWD;fCMlS-Vn(y2I;6FE^|Az!e7;%xr zVaqlxSWmvqh%N(r$)r!1eCF1>{3OA|DyjWfHCBHVzoezCU&{L4^)vtL;^&8`ZL9sv zL2wv7^{&a>D$qx{g1!fs5@ZU5^o;_ma}hAkj80iy@oIxzm+(j0qz}S?jC9xC*mq1z zN2&q&B8j}i{%PMFa8ksV4*@h%VV2w0+cRK|bOZtdvfp$0$`+ov(lv(%QCWIx+o4K$6>{xR0{o!?ZPrm+KS~k)i_=^B1Vws*GQnx zm^ra}vBLv!_+C#zslrI_aJ3CVeE>AqAY7{xm0!ND%<(TN=PS=6CvpkHfop5fM@QJ% z;WG5x2mAFc?bYfcg4!T_K6M(+FR?Q*3ED!k=HcE8DU*JP?4&Z6# z{#O`QuJ!maq^v>8VmsEaef4pb)L(ywvsq$mxD#ccAUR+ae=BHa?*hN-C!XtIOa%P(7{?Bnj6aSQlgFAU)0UiX;JxM$9mr6@g!NVwat z^-Z{$5R(SU?ubV2C<3;`SGNM0(5%4|4mnxYg;W&Jy#S|EPSs2p$WXGgCIAW0V-y=Q z<^-HyObt(WLDE*TaK3_?#{~!glnASRosTD)P{nn{OM5HtMbaO#Ka!{a0Ae87KZR?5 z`|nv8SilWi&{Pf@2AeaUAcU%*ih!WHmo(M^TptwE&ZEG9t#U2&a^gf{|J7~Ca3tJ% z2AVZ0QNdg}8C7+00Gy!p0m!fQBF|1mIOxyCBGI8t%(-Ul;OW-)#G6=VHE*lKkjQLY zQwI-n$qUQ|2#lU7&Wu;e!8g?z6EQ!Vmv1Yb|NZwxNWA%(=0S zm&YG>xD>=| zgD5#8xH?iWK}ECFjT}y4hv#3rZU{8}St$`Yl9H~pqLd^PP;sl@Jx8w{-7ouPXMS^&R2Bz=9-FF~ zHQEfTob8K$5|t>xH&i5P8*hgs>bNGC?rIol@R0Jh(zWMm-^6qZv2AKg17%a+Kji@O zmj*jdie{ciJBAf28Nd?G9mz`?v6SUhw-~PbzC$_0Tk(hL8b+A};6Wo()tzS4_f6J$ zRq*Mfq)Rd#5<6#KL=FZ-o_Wz(cMOPVyHOzF25^lD)Ye1Y?Z=?g_@#{-2%*E);1&eU zUc{&ly~#q}tsZCe?Ek8cjv#p947Yn*-|%)fdS{LW33AdyZ$u0YUCWT$puLZ3lPZFNpzPvnJbq6#X*WO$ zP=fP=f3z{m*`ih7WeUqCB_h*&fq27~W#2DHINv)ee1CrFah&sz-4 zMQ6X90n>23!=VLYI4c&rGw_CH05`AWs{g9s3kVl@ zrsmBN#zc(f%^d#=dTxXXe-5)oJ7;*uK!F`xy3)t}ZQX4=8)F-yUkEi4sSSxij-roJ z`*q2Yv}M3xKBf}db4we`rv3>6m{yWE;P@IWKdU`!)(I(!QL0i>S+x7nmR|K|g$m5} zpwa$RUyTnJs#!jG8U^>)J*s_93QNtc_DrGK_P$P`$vNEL20boXZi=3Iz9Vw?*`HAA z0xpWHgb_X!2Ff_l%fC&HXAYj`3b7JdU&s)@)`esJN)$wI2mm(3$N?GAa2H4$(dYVt zuPB}Qn#|2qL5jLBQ;5kf_K5Cazq(vNC;F>=dOxb?qSk|!nkns#`P}SZIMNdN)uiTK z-iuZ}w8-kD8h?Oac3aDW1{~BxJ<`f2HG}IAsG$;U#%^W6jbSK`o=Ug z?`pTn2F}gevTTfpNJ0J#BZQ z0gvPX(hqcr>ToMxcDoJrm{;`YG&T)iVIDoP)Ln z)LR)o(taH2N=^t1rtx_M%m~|3!w)5HWEHq7WR{M5sMrLCEE;cr@RP1olnV^e zE)y6QxWivg>Je#@&2FchyCJROEgyLNNF?cq1sHoxkGmg(BwE~BWRUx*$DfC5SzPe5T-tnulb>LIgvsqYsc1vyugs4ZadGuE2s(gs zn_*gaUZvsQ{uo({)I0{3p5Ur!W3Aof;-uwAs{*0Ah`+J}-p4CbOA7}0c%tHI*Z*Zg z+lW9DKyQccZbTAjEL_F$J{sslXDM~{gJN=|2Hw#0*k1ip9Czq+L&wZ;u;$jBT<~+& z*{J{;9w6l)n@h=85RvJ<=BhW&z(M=4W8>!jlG00x)zgd*yYh4yV_yP zcrgUa{Ym)o6)kxi`v7;~O->B1$$8Wt%_l7IE#9p8P09Cdz_XH_9=ijE`SZj;GV-W_ zbR8VR@$XS%fx-wVErh5`B}v^?TE4j@Rxb9p__f$SF2^GKbLuQj39BnP(7~V9u^m_b z>~?^1kev1-c;Kh5v*ka^PecHbKHEziOL5H|0@l`EO{A)+?(012O_AOV()N><+Z*XgOlVKAO>-NlxUt?Dwwg zs-D13=Qlfd^Qn7MQbM;UuLD>?R_YLsg5+O-jrkOuHqzvepzfC!ZR4mYfG7t-f#SJA zs5U7ESq}Vy2nCgwxP@%yT$@x_=8k5IEnD;DJEpOF48{MvzCmN z`|wW_p{f}r4C-L_*WH;<7{`hIB_x~bF`bBZU#9@0{YE8cB?Q#ATDH+fddqs`P$Mx9 z*UEM?k4F1puYN@cQP3TpS?;Trn?nMY)Z-W0bE*P%n81#uU#`4ek^wR3FK~A7I5Rwc z%ZsINuE*i{KC^+3t_o3ypb{c&TFka)g~E18_G zGn&w~g<=Ea;yY&0@wMuKY`79pBT;+_h2+|ul?gots0?oRjbml7zl0M}Hh zfQ_k;H59nak>1yIm-T>(mzk)*2j%O?v-^J$XtES(Tp;hjEf>G9N6J_#9;+I4TL!;0 z$8>DgSq~xL-bbs^nls<|WT8{l>3zIz{7%~on34f(P!c1EKaHq%iv{hl?2C55a@I_c~;pg;{J zv&e!Bp0UEa(+ntS-i!ogi4SBfp+oS7XqVPm_PR-u z$Iie@uZVLBw}~wy0#EC>^f+yX2q>>W$r!A6O-V#C$IdPQLeR(N@SA86+S+|(W!|=z zEK^Yn{i*C}Ro$#p$T!So>pAQ70({s_-!3QVc;lC*EQHbHC8ghETIi7(SvnoGU@NXg zrTu)ly4k`~AW~YC&h^+R|A{t5ZPXuWM1apB79cNDU!=7D0|3*R<3eo>Oc=DP_(9cs z%Az@MJH={gqzqOYU=vnXeUn!ed^p_nfB~MrYx~>f`N>b`iynQxS!_o3Ym=6nnV`fC zhzt|RkWVVMa9(1)yi`r-5eCyF8WYGhvr-bcF%A% zk2mH4C%-u-Jbk3$`s$2BW!aBkdZa-%AvqJ;R$(@#LxDYZcP`#5GS3(LIBZiMC=gdP zHbSNJW@P+a6k2c2A;!Fq*L)@u#1{{9S;J*(j^{=Z3nPpg$G%$#<1dx@hPm>;&Ic|l zq_%GX4HjZtA#e7!K>Z{eM0b$(GoaEy1P1BrxTQF6Ew-Q!gzLu+MZ}fl-aq)-Mbv5Z zoL@Jp4Pah~aWRC|{gZJL8Hzubem#64iHj(hgKP%adC$)dg&^lYdKbG;tfY!vHfl7# zpvBli^?dX~W!Ou&uT99|)sualpt6zJj%WS2nyuq~(6V6bK{vOy^7xfx;%)#sIRXX% z>Mi%jh#vrm>tX_!1Q9~dgSH3*vRlOTlKJ5_=xlCR)d@frxOgEO!bPaA zHVltzO{lH!cJ~c;ku!NQfu@nYvcON{)n}1yc;J1c#oIRMpFK#(Z0Ry05q^#MHkC}E z@`*Bw>dOfUeueg-Q?w~*&!*u?n=b?b1v!r(F@exSF6d8A4#?YtP6hs8r&+w4o zvIhLy(!`Avm6bjtwi4XB&|Vn$8VtQ*NAddp8jG;hXLNDN<;+UIW+xG8=QAsasT9%t zRYXGY{FR|#Di_uxOWDHukypg*uIv^36)lyK!2!VzF`Wj&RF!F$y4=hR*Q#^Y<(4VlI5G8aEu~ARqh=HmZWqz1of@jpP^P6X9KX0Ti`382} z&sU37iV&BO#)j@%zg?INvto*Jt|H5pflNm4d_(q60#GLs^Fy8Z&;?C5_sA)FxX1#v z_HFN5%d=AA?O*Iy<0zSVhh25z?h)JZ)ieV|$7bYYWtKc=u<0K-`_-dIVrMVlGf4mX zG*-C2DtdacUdL$S*G!^*S<4d;WCS|YONeYap^F7}V6CH2;RD;No9*^g@&X;uV*wSj zMBzI5-ho?oz3p$!)f>7-H3GWH>L{*hw*YJZwpX9-y^$TDwilHgL{ zBRhYG*n34F@8JVfnG?!dVuko#B1<(jsGEn5SBx3>)@3{Ip&*k>$!V7P@U`ixf3je? z(OIXW@a2mauR_BaJOFUFoO4U$ynsR*tmpJs@zI|7`t#SHxsS%Sr-rgF>PFBbv{$Hz z{t>I4gHT(`y5Nr#P3cvjK0~4R0ti2ZmzzWzgI@1LI5BY|36z~(M5ENACyPx=Bd+GB z+g#aPKTsC9S|0dTj8!Vvs~UK$G@ZhBf>2&@m95SHmymBM21w zrTArkvILb2M9ybS!*wc-1c$No8Q-~R6hpbx-Qgv4_4n$Q3B7B&Tg!tx><|gGMyNr_ z1x~3%p|!kjS0Yxh+6$G*F>Kwk2MEzC|HaW#5JR;q@-uW9vdP{l0Ptt^v6hJ78WBda z?8!55+_iYQ0D6$n173s@`R@p8=xR-ad>`aW4>SWQtmfoke};T$c$}QHdg*cb2sdQ!GMmmMAt>oR~3aKAlQvj8}yucw^vK)M718lz^tyCA4n(sKcnevx<> zlL!6?G<}At(Mij(<(qQ@q9L-I2Sy1NyHEyeS;M6-XN`qS&GF&siN0&&uFR;@L#G)v z8EiJ)j;I=78P$)rQi26zP15PfigTlznccBQ#;Kc|J*jvZsB{rqm0IW^icqbh@1}ta zgt0c$&!KhYWA;lkK;eP_+~$A1bB{jI6X(13NPD~#Dh|EEn7Q5YGES{5c~!OPspon) z9)ohEAxH}bv^Au^&5^k@GaXXfHeM5q2PhV4r;bEu@jm)YKny~R$iY=M@rjDYtli}k zNZ13)8TT9`I3s_3vqxo(u1NxYZLkO|T-O9V9y5E66TmNhO4nB{2EjWqwWy}(YkEpq zs*Inu-4@gwz~a6h;&)R$oeaeRvZJABTK-`z2~rinjS;X8XWG~RnD;^A)pc~*={-OH zQ@K+bf(z~`Iaz;iuOtoihpOgyecFEGCxtf`ghj-6L!a-(2{vC`HZtS=3Dbm?jCsd0oZ}p%HjTwv;!cANcu$kw?4m@ruQw#ozhN z3K2B0N4Eu3j$DBrEvMuW{*4RHg)1?n;1h`hGb!;own!6Vn5q2s;(A&>Hy@l%Q19>H z#ROB6U$1_7&dBaBKEZ(UF!N20+{}BKuHZBeTtCw}SxBY$NAD)OfcuK!-P_M=SOmEe zTJsoHH1%6vgb`U+I^o0J$q9pVL<17{JO%BgXopvjwjl^v=r5^xn17+9;*<$gnN3psWDnH_nK^+Q6)iAMVzyh)OVaXYQ@l3%5IcOwT+q>8g(6Byo z@&GPQn70Jf4EUCG^W~8cqBAf`rr3awS|yhSSj7ND<^{a=0R3IWX_8W~!1)+-V8Y7?WDjaRN*nOsQodj_;^mwTlp||-(?@7b0rU;H^ zMqo=r0{N-1G*_H-@9Ti+?BlG`ymI!Uw4}5^A54(-y9!bM4-yYjaB+A5@GR363fol= zFBOG{u&Mm3Q}_od1KtO=#!5m*knRwaW?C%=hzH0QLyt6Ay|?(}$P+{`B6k(eCpGgx{HGn*jWK!~6~asS4VSzStpk$h2cv53d*agP_NZXlTO7JaL>S=KX3D^~s@e z^jV2}%VWg25aMFFb#Cp8BqOgVT>Pvyk+~JFv%M4?T>CJD?e`}JT!7!94j$4Lag_?T zN|luRdbwSdV4o~^LO&`joy*ekeGC;9Ibk`!diwujUId2?O|+S}ETDS>itK4dfZs8M zC&3sbPv61u8ljXIe>W+nc@7v-M4c7R7H|w%%XBBt#}2?T@vc$5KpnOHWm4Rt?Qtn( zC=qoOrk{<2QP*wIJ+Hp($_XBHi0#n%r2ErU;ixi&9#&4K6B6M_|Es|O%xD#&!`X&J zCjUn0fM^Q(T7M`mx!mjH-VYy$2{ z)5$WVhMDENa2yl1XhXnR8c=D^V$qk$ODo1P!703Cnq;+>a+}Yr_!&+HFoTx$SngPp zA|o=B13Rx{;JIb5D3-RkK^F@2_(>kK`FU;nRHOSnsUX~L2+es%#bjV^mx}hVDY8F9 zZrNx4opxLsjQGI1vFm;Q79o^*c;vJ#3^ zuwe&C`?eeDjdy`dpW5_CiBg(|rmlmU9I)tvJree1Ia1zrD8PdfU+9w~U=JeuKe#V6 z=$lNOE0pT_4lR>G_CvLY2O-bdM|SolhhApvc>5ka^3p;Yc%_ zH(yi|5n1Dc^$dD&XAs{tA+9~VlW(Uq?svU(WdG)T4jC~y*j|T)~Nf(d1VuFe)mo=YM)lA+d zcuY7ktiIA3;)S;pdG2Ts$b|FYEvBx#l}=?fqqrH!?2fO^4w%v_{}dYv_Q~!_x*tj9 z;cetujp1)OKZf8CbgrVxr6ZbP3oU+h0O$ecfhdZQ0ge=!pSGI1S#A7&5`5{55NZ%xz9f~4eb0Z&oWMdxoHn|Tc82kjEy9?0ErCh z%0mfP`c+k1Ioc&rzCO_2htdOtH93mEpxk7I?>fX%jqeHGQlrj}%9cQyxd81FWCZpun|+HWv>@!8I&QzXW4)s7)le z*aDaepmmY>EJ41MLd<~Ejc152Mm-aN)F+PN&}7d|#X}KXOAODu%*mct-W&ks)Kc@N zzKP5f`s$rY>aD|v#X53N4fK}uwSCB;?=h34Q=Q@@)V9-pP!I;1#A#CyRBUZ%CT(wM zHW$oWURw=UldNB&EXW-?d!R<=wpA056(scFzWuXp{q#TiAtun2;qb;?zrA`~Fkk_X zJTV{ttxn8CfIq;w!-Nl1LsPv`@fk%sy~zU^*8Xj+j|e_#9v`EH`9m%9;}wTL+1m}E zNvddE+uHZ{*>g9D#J`Rcc_}rzbi)DQLV)Ouo%zUJ65wv#xlZAjndbbvBEWkg`NpyL zeK7b%DEcdlUZil840?aW6u~QgL55(@bGNLS&yEidbs!80}Z|G;brj0$%mwO&0(hjOfD2roq`(qN{RiS^~ZRD z7Y;QTFfoP#e8;=;>VWED{hROJj34F2bf3psJNQ~6i%USr_6zf9OpXWp_BQ_?x!8ou zDvp^CL|5p)t@{X=VM4t|t}7l|&jHnG)k5PftDw8)tXtJf&??;!RS>BqH>V5r}aV)4H`wRQSbucY}8(19MVKh7yz~EfI3|j60r4A2^H5~l39KAE(wt9Eq zcgC-U`A#(NTSR7!{yw7bif5#fs!{oRf)_maJ4z!xW0kz1yp1V2R$O_l~nar zIrJvM00slF=n&yT=_g@fb6|%t}~>`KyKiZpdW;x))i<0-C%6@M*N>pFg)Kh#oibbPF{?lgc3I0{Q1=8s8338ha5O z+&D3T&dFpjHQ z;$@t`ucfm0OZU%Xfa((P`%6F|>5Ac%dCI}BU}nay-Ugw6q9n{aPT{(J&k===6@&8h zxSS~gmM_ALP&@_z(n-O|UUkB*NCbVYvqrvv${p$`U~ff{#_wS0z<&hJoEV0jCfWX4 zBZ0?S15V{?-66)_s_$t#;BB=&KE~px-BMPOd)U*WS>>WoiV694Fi^b=NDZFobr>X- z?xJq)e&E-hbNE%u#tD5-+V-oLvL6eP)4pZ`y$v2j)E2G{Z;i9_@E)>0mVvzqVfB}R zh5>7Ww&Pgtip|7E7iy;QQOvW*M&p{0&Z(@g-vz3z?)x*bGd40A5$jXU#KgoZGwz?X zL$tleoC{M@Qj}&{ibP^;$B6TvVv4sL8^>a-k6(@Jgh~&rgGoiyCGtR%z3Qb^qK}IU zr=!&qaW|JvL#H@SsBdFkLBFNLd(hP>!xK3vS?X~w=FSke&MnCht;9S-KkMj$e#%Zo zoqP-VJW3b3cE@%Z-cd4&E;%BiTYWujv9iKpv}=8Wzp z>JFJT?+$O*O?obOe!(*2C$lt-Xpy5MiN_PWeKJ>eYHw@Q(jseLa-Zp>kH@Sl8;v&5 zFXS_>9$Jc?@SO>GVr69&9Ue~fWM=k~jpduYJN8TOwoc0zFYfV`ujsAro+YH=FJHG~ zU|`I4cZ{K~JTxUy=t`BuxIlTYQ}%MDMfwe%GcT~`cu&~4iGQ?(H?%0$9xUc9uB=?D z8yOu%~kKPp&oZj3o&|F=2pI*PT>Jox_4SG~gpiT}QTYQ;&0{QjS>f}h_ThYG*c8!35udR{9) z{?>~SKdXsHdoRTJ0ksAH<|CIerHBa#A0OA3R<^Y*XpBbw=f{E3(Y)8MFJ!gXbBftw zVqiR_d=MFb*_!O6O^cSWCr2ggw(DYrQ7y zCpC}%ERBhhF-f{_lH?Awy0WslQ*kjROJU z+e<@BgF1F<+S&=PUcCbOXOXOjsMr02gNx%{s{`LZ8bv21lwI8FvQald38y zz5nomHH4f;B2;)MPEb(rS}vKq<|oT&&<0f1)1&$!VNlWC8p*WXucE+m>(;|GiICo{ zg}zU|rzewOEVVJye#hb0{Sb;fG8q{eg08>g0!XGLmR47XicQ+1l9LOS(j+W4rdvIy zLimhL8}4jtNxA9e=xaT4L6n`{9G^!oosZM@N52w@9Ao z=@Cy*GUf~F%GTNzIkF4!cxPMWDz3%jDId)-4qcKEIX!Y3=sr!m}YEA-UPvJs^axW?)eGFqVD64~JUOz`(%1GlJn^sm&;_&2aGp_$@(~ z#i*;Snv;eDFEVClO>0k24y%?5s!?Tqq$?Y6wq>WM-)CWA8L9KGzC*{-BKd{TCPO#$2VfjkYX#-NLytF^n%AVZ$7U#o33 z_~BcX%aXsDTb9)0}xh zQQ11yBDcq6%y@y8?>gLmFK3I~ta4yrpt_P0(NPr|Jpq&bLs{8iL+)f$SC@RGG2E4@ z>EOVC30!xXNqfv>0-fZWIQr2NvrrY28xo#gUN&t}Eb0aZb|pmTySy+kuwA6@i>sP- zm*wW(56A`ba{Br-%s;a7vsrBz>$=+9kFaLZB|(e5coPa&ofo+*uxFyMDbv{+$qc$%vnM zSfagvBQbVZJo556Jf4u9+9~qZDp{rbdaAazwyL%^#gCY{xa{6u<>ld$=7zS(sFf94 z>E6BdDF$gaHnu9~1!bvF*(5Mvh`USY(p_Q@f?VfuC z((pO#2~%jZZfX-#)7+F4+KSB5QdJOcwzRZ-<z=Et)$#*Dh~Vh_)Tk=jvZ z;|{u!(|NXoe0z7deQ7($dKd7;`*X=ux#tmQrrd%8b!q9BnR1DY(i?}zGIDZirlzJX z+J!^6&=ad-(J!Jq6Zw`v&Dhe`w(c>F_fHY@(MB+@_4ky71d7_75i59q5JJrC{(jZy z*jSuUuk>W5t)`YwFdVQcnlJX}$jHbj`}(5Q3v_dei@D)8bm2BucMoCVQx%H}2xv_; zhh|9k%WXq(0M-0b#;8%nZ;hy%d0v!H&+#w zP-*GytakBhP$s#_%-jQm%p#p2;FNiZN-!N+0yQ;1elAW%an$Xh5_xTUVJ_$1U9C~U zA)r=uarp!@6f&6l7Y}Ux@0+5Grx~Bo@jT+UpGodb;C$pC5fRbu|8 zxs%V}a2yyIu$b#gO1N#IY+v0y*Y_ou6y72!en(9{46~$vcsR#vrBbrBwN*x5Ufswj z4OxxT)5adP`Ujs)80Ft)-(9JoGad!YhXP_Ic`45Ha7Y62cMTy1x`egS6|_1oI)Tk=(WQt>|cSh{fzNvz7hh%_GgPMnXJ$> zqsAo(Wfhe>R)ef}Zr?svj)i#!Ub8DIzBjZH-ZIUE8?YIxQUmt|MIRrZmJ`@6SQr=> z(j`YmMx1{&;dvULOXM+o<8!nwNhRdYxd(%)sHLT~HnA009TgRojcn1Q-_j&q+S$sb zA~rTRXEygyo~c<`l5%o#TTQsGD?bDn7=!dt@S$K*FZFlE8tCeNC@5h6R9bp&==b-J z_x!}f9z1x!RY+bz;Yi#fhbw7{qW?SioDSiM1^esEjr|b)cEYNLtNq%j z3{Y#tgMA!!k=)54xR2kX<=qjHkv21J(XPM0bB&f-M21ickBIC~M@}ZF<*94I-|;@) z9@=Rn5dBUUD)e}Nf8X`w$OGqAbBL_4x0boB>LZ7z)T_M%&{X!f>Pi;1 zM*5lU?nDsqqw12R&X`t!wF@RNhj-e5Xl+LtNE6WVN~k|qBMu7TFrmzJ;y zHsJUnu!(OrLX0-b%6OmWK49J2+R{{0iw2Q+EjX>mTt{to4wec>;RZ6O}d{4)&vg?`~eSQ5AA~YQc`nGp=1lKH{HiRes2>$WRJS^T&!WPBMP2BNI zl#d}UUhmMG>A%&D z77$QTQV|3sr#Clf+kLNn-*^B2dtRLM%#OxMa*+u}S$QrpVh*v!h<;Owt9=PfJ^ z%uKmC`8oIO`c>b`%G^?ri_7HCH*lI+=y3_tC9J|helb6xY)PTeYLovKM2STjP$=r+ z;zth3T@2`LcDN`voYOy0&iddK=VI1_`)(Y$L7%-!ZZYj8`2#0btvvDg>@B*}HZLtI z=~vx)YV=uaOR8F9$i>gUh9~cJii=1Sx&HgIhdgOl$Uam{==o2`&Z=eS&UP|WAW(|N!#b2x-O@cWS@V! znDPJOnVM44c5_Y@6_qb9=`?q+u^pqiw)IW*0$0x8Q z+2${^ckf=$@XJeSck=P^y-FG2O017HX?nsgBBCx8$^E8!fI~>{UQeKhaov~UdQA=i zfrhD)?26MIaYbbftPUMp{dv!DM6Fji*J13LGjzAqFEd#|DVe?2Uf<-@soVA=JsUqZ zjQP}4<>ln=<2QpWvvc2$_i@;MTh}EKrr%VwC2h*s8iZIH;%=xMj8EF~?Hx5S>Ot;%@Tc#>4TSxnlK}E5wJeFHt&W^uDtxJux&ibm8E` z%Brf+i3$7R&dS4^H;)KX>th;LqtGOky6`1$>>Y~|$S)S{Xg7@U!ny|-n{mR-XO9Qfh_cJJFK<0&UE|0vgK z(!%~Hig?Y<1g%fTHOnZy4;99Oy;7E>C@4`impy%!7DQ!QzkdD42O(Md(;7e5SW_rg zE;Y*nZmKMJCx?G`Dy3bDSf_PRLHPJa^~?QBC`|8%7Q~NfP%2i7vQ+F;YF*BQ)!X@d zsmu7TH?kOQzT|PP;DMnfoJx3MvAT`TlZ3pPi4^93^Zj4^Tc;w5+t=>k)-9>{SaeTX zNcT%;1)n7b>(j_--EmGblRyYKBC5u1=HVU{!Oy=KiCtBlpl9>h#hqDfmwF=wk;=J4T*2u1yMuZ_QEj{UG_{(JqDxSV`rO{Zb`l?*&5IDJmy z{`v{onqH$`?91p_$HJ1B<1i}WDIpBs3PQGWAgcvS=7nN*4YGUv1vK3oG+fHnO$t^ zHVx-9#}R#|hRUf0o6L9$y?lJAPnt|+&z%eZ@ZrOkS6e-za&vR@84KN+sxQ-uMlp-n z@7TQgAcsQSet(yAxR0el&4?K8rA84_~VAk6XORT+S;62QgU-OsP&2UTrT4$A3b^`?m0L#RH~*> zmFMEZBxn^?I@pk+M@7iLuT8I#eC|eFylP~3x8X__Q8ljIvCyAZGMsZCz9_7cr1hJI z%d|BwAD>~*o5%KDk9>BG_b&)BLUdN=p!|vfYR*%znm7?%E;g$++Uk;r*|Bc@`bW5p zEs<@y^jDKpQoMY9qh7r_;l?bYGCA5mYDeo)7-l!r9xWX#dehy#E?oQ`7R22l=|#^5 z5yVIy(#Lm2GL8PRR=Ts?WhP~2tWa#i@tL=mmqA;BTl@G&5&JI{V*_nu^pI9;#+)rX z%4(|~owOb*<)=321=k*Dak6S0F2{WH^76uMxOeO}{X_nii-#}&v{L5GnY*lAZ60EE z*7fRo8)(GIOvj-{mw{mmKUb%8*=Z+l}ea%_&nwp8XZ{MbI zxxDz@i$n2A&hZr2gk$kZ$KpHXWMeWjRrp&SQv#$STkJZRrlTj;+u&O*t_dw@O z1I1i)%hs*shH5G*exkEemN}DsS)#?NDk?lib-Q|-v+AcNnp$Tfq(#S%Ec$6h=jZ8} z-qsn(VCRWw=8NwZV96T2Nz%q*6Y6EebmK9oVilR48k+lzs%gg2lRlhYR>=ojE13>8 zs+!UlJlLXIfWhyvbe`>ZnRQr6zvn>MF*i?4kR1E84O|*=?6MI%czNZ=$Hxuz^()#- z{kMrDgprl25U2F;LR*2st2>*?XyZH6oF+$pja*d0gosJe!-Zd!3d~J6ZrBIJV32=x zWqb0>^rXLwn6=(vK|5b1N5^bFvz9pJ6x|0xn-X(I{0iJQZ5JoU^7Qmfb(*wsV-ahi zeN0i3N6sfgJiWWTe-4!G;h{PylN%?+mPwW(R7D|i?N?S zf41>|M4s%ujo>+y&ftP2 zyl%~!s=j#j#HSyY2?R>z%+5?^eyO^bUJ##anBynCFva;t}MD6T^#F?;Z4d&vXK zy77eUL5b<{au)@>H6gQm=ckU2*o1_#xb-emZ7l28tO?~vc=|%kmO7G+0QSjBP+msn z>19SeidHe~Boi1-jSXaW1Ubm5sl}b- z%s7&wS6)Z!GIm(J>iOlRS?Bb&Y6&qky9T<@r(5#fU~)^jz$e7uIhSzBJ27YDNNBgV zw%*CkK9J$7i8ExA4vL$aa+C}fRo}dM^F+&NZshi0N13h1-D`RpQijcDN6bj@K^%|k zZAz!o<&9lo?Mg1@l)Z4_afDQ0%;(SM8ETv&1AnZ|oE~Z7HGg+NUQv;nGul!uuc%&Y zT8BKcQ%FdaguH}|c7`k0uEjoms+5>J5wn3)EedyO`rT5oij;EE*rhCvr^`hr<7S4$ zW@U%kORJ|xTN7__^!C|GXC*icXL)cBKL3!cli!h);}1lEAtF&TPnv& z&78x48;=41++mehP>_)Ew`^@|Yb&Lm#&0`u`*13z+!4dWy+x&^wVvBfHtuSDtaA-; zv26QQ4}EdfCjm2idJY(f#5KA11W0x_I%;ccTVyrIBqk~X0A^$lj16$AcBC_n2B=9> z%Z&n^rw7{htq3cniZFW+*!yWY9jBavf;Yf*G!}U@GKF_5wBP)IkZoVh;HTnk;?onu)eikRkwSe> z4+GX*xNrfmCIM?c5|ijqtK*Q{6SLL?JP&P-0~&aZ3&YUIawKNUynp|GF3qmo#Me1c z$f9Us63-?TpkH?{GRR&6u&Y+bLnH#nR=j)nZcKc<7fuM#p~U*F%j~rMVA1yV8#hK{ z^pz0(`Y^tkx%aIbbm3*1>7}h;ep@#p0?2hPv4A9%*|{bM?hC3^8~T`H@?aB(jvq6 zS-Wy4`>M$#>Z*?95E5#7n}`>eHcp+|ElzS^$ph};kN2c^a&k%y3=F7bUwnM%P-cfy zpJ46%2?A(=xe#%>x*~(?FbhKpnH^4Hv}r}hw0wGv7aJZA6M8&E+lI>MaoB~%`ruFQ z1-5yU>Q2a__5&~JN@=Ub@3D<%Cp><9CM_*ZLRz~1Bv(#2PNleQfPjq&diYPL@I**e*rBY5*sc=)TffheRmH#avwZasHWE57{W50cnl7Zn-s8zpMw+y^e` z=`kkY2T>UDd1AoBB@Q#kKhdtujXzbtatpyDxQ~832AfO~!vm@>W+~vYyz$%hK z!pdY20t75c-Kc7RTnE$2Z;$pRL{}&8VEd?nE}D~~O?z)`*e!$UJO1>^69s$=vc_$o zlrrs+UI(4>)y>?yp3>d?VxO~f=S~?U+5joN(;XkoFeppdS_j$+t;arVlWJ@A>ecOo zudbVAo^y&{(RMEIy7|#p@9$tu*h%%TUA=nqwfxHVVT|s>hY#Bak;i}mfhDM|v(v4$ zk4ezu7A)hCOthu4^8tgKQA&}9;`>3pCURLNxfc60t79<65- z$w0wc$7!IN;V_oz6Z~(@FDr8#I(&GzMpnA()!nV#4JnZY9xRDo9Ewl;hhK9f)~r`l zdl)?3qc;K2yX{*3LnK(t8Px|59xVIimoxaPU~=(VYG?p%I7H$sock;A#=lj>txwI)ms+kObhz z%eeKUEe?s}eu(>0DY~Uqt_v2Gs8qgv8z*4d?wj@jX`wzwKDJR^541uJ^3`tT9#MS!IBexw;1_1?9|h#-V(c znbV*)>VS{a?1pqjzEm6*JuWJ~y}XTakCv;3^Y|w|s!9Ke=6eMHTSW-#zOKOSD z@i44<6X&QNiL2TqaDWEUGiFqBt4(1Nb5@(hZMuK|eodeIu|tP00dtnwb$oVY6tp^l zP@2(VPu<-NeCjDRW1;iRb-@Hxb2eu4;j6wn{h3rwbs)so<>mDxgg(|O>;~E%8DCO> z_eU1p+nzpo^5#fQU0sY~qQ*pbY~qv(2jA=`Zplr~(XB20Y8P`fNbza=_QJJZQR&_Q z$z`W<+X_9X@19?lkdmU&kJrzkp2lp+>NV3T_o__^>~r|gSs8}=DqUfCG|5^%zLTbB z%FZy|*nf8L0qX-XO+wXlH(ZkE5VQ`L!^Mz<7<^t)(8h(gNX*DkMr=R^ zUoahFBw`(B-E4Dq*ciWC>}TwCZe21t+kpF6lWwNjY}XOkp8WCSxr}C0AoT~5(Gd}B zDCdnDlFxgFKRkTxb(d94RMZLCNGUIJuk>4Uo!Sj}3E2~uDC?jF9B%2aN;A{OGFx%p zN1d(6RxeDRT6WARzpF`TQ@n~TpP-?{0!kc;siT|tj4MDTtlu!wnm22{pAmF~oRpON zvgOOu%vwcDefJ(dbLI?LMB(=$kCz1q$PRUs*R#xgUg|XV{#qtbB=5z~T0=i={QBj` zCFWM8fJL~4g$0jwx17`G=Sx-6O#?COw&OguZrgSgRU`sum$@F;8z~efsLU1!ZK7yx zZAv$**9&%vxW?lAwA7NMY9un<@}T&ySIIHijss zOgP(Va2C%pkuov|3O0eKuJG=HkNpdM~q$B-gJn!GV`;b&T!Fqa&$X@~f&*sEVES!7#Y)~JA zNFKkw``fc;cD{Rct^&0&_JDHD+zX!Z-6_tRIr88D>fXbc2KbSRltre)a;-+vjPdsN z){>^BRIL0~WcWz6I?*2BPt`kIpPQ$>10joj%OQ*X;o7u;)lF}mCwm){v@ZkG41e;` zG^EzW+fNM?4r6JlnB`4BdGTWG#6nlj!|@bKz%OYF7Zlu;p)4%;WKq;>L-jn#SxIUN z0*Ujcd(DQ+g!=U{exBieeheamueNrBp(6mP$uvvSWwNQYWb{>8Ssn6HBG!StkA{7; z{g=*%EYqFG4NXn!0D?ZD`p2{-6`3eiBg5hmivPIIPJL1zAp`@R@dvj)y%5Hk*|~)j zewkRxwPD9;n{gGG$9oFF<#BLuoFoJy(pjqc`$HSAR;JDBQ_O#RNXS=kFD!&kt2Ie) zj-V!FNfGvGMScZAYp7003;;ODe1CNlk4=w~)AVqCyU`5reK+1viJ3P%K~1FADr(k} z4*)ku0pAvT@2)247qGY0Q4;XUdEk~NSxMib(Us+N6D5xxK0GKk*--wa(J0ZNK0$q= zC#5`9>-oZ=@%0=Eo#c=c!_+jOR`R7gckSw#aABo9eRk$+rO4)PuxOPPsmeqrI=A+| zd3+cU5Rt>P_>(6q@|#$-ne))5X~fSuR4H4;4Gjz`$!zfTrB}BsnLj2Jpw5d5h!Ha9pP{4$$DN_*N=KqN~&&lDtJ~_Y@*U56_lW527qEQS6MCY2fCK8+%y_3kx}Tc;pbhM2krzEEKZoIgPk6Gc%eO3vhxutb!m8 z)Ss58P#P%jXJtnga`eC)BN6M5>#N&`0Nxq+jNdGAh}unAyyh!&NPQ3H@Zc!$Fz9pT z-Me>7oH$X@lH=f%OGW~PPZeXom7tSGt9^%?tWR2tQ(MKu!>*ehYhLvOYZb{UO?Y<=?r||7DAt48{Z2J|QoO1T<+gJ1UE#qw^ z%BAa&4Z!;SswK?qf$wrMZAR#by?uLy$k@Bfz*LoBiFoV=&tayWBGZh3T(Ye0ZI`Y~ z(#|h4$N?==f$HPFk5452>6UhxxJNL9R9-pwrvy5Uiw6kOoX2;7jv23k60&OJ(?Ut1y$tPf7P6*oFuj#IhC2Y0igMCLm?*|7bj*VS3X~_oa zER~UzbgN6$Osv;%kVJgC$7<4;3eYRwnCp}UxX2PCh99HK8wW(NW)DW2tkQ>2SfQQ33ws9UZ3x5=Rjn=0+5Z&Tf^| z6X`AXu@;t=!yrO!x}69^3SyijLQHmhB)#G0erH9nBpt&16jv_8msj2kwT`=EEY44p zgbRv&I6ZG#68E4E*S1Z3DJ`?y`SXves;f)upQ>?!XOTc)^y4-12FC(f$Ekpojcq5$ zDEzgT?-6bge&!HHTRnDTT4JuO14Yq~}2_+rF_L#H)q>fVl@;_L?Ncjb4ylL8QW4i{jmxV;^pTBs?1= zW!r6#A3w_(nUDe`fMJdY`K4WVlQ3!^L9=yBd@I|(WSiw3r?#rjI)1pZoiLgJv;g~6 z5HRFrWvg|Yf2*1>`!H<3o`IozNKMh1OK`>Vpf^gYs<9e5_FV{OhL-R5#SYo$fS|vH zD$$*<gU0=Yjf+6a?i*XM3J?H%N_&T=>#? zX1J^RIK~_==-tt!7gm@58xDLkK2!sN&G3r6vWTi}-1@89oup7qK3}|!fgz^7U6-UL z68l(zZjTU}l5mjQ*x39M9X{SYZq-?_ndGI$Y`YX@`_9e5Z1-5fc#-%sOLdt}%?H3i(6ETcAteRwzwn|X0~Lp)KVSSw z!zIV(pu*2ln$z8igbE}K;lay48T7a05X5!%Y$&(|Q+Lb#jG~D~IVp8r0j4FPM{l8Q zIWL+J9}fb`v*7kdonlQJy7lYXckeE>k#x>FkD{;W)=(>VTyXfak3!BgkelvrPkS*(QV=&q3eJ!?;|>p>bTeD zq$lEq*PT0Bxd|~buZ1P6du?K)qs1Ypl7&|8`)`Q%sAZVQxfIts_aY?%{T^`)@$&P7 ztV8}{4LR=mB*?EW(^TlO{gXR)Rt@!C?sej_X|T`g2_#4=glXl^K=+P@9y-oGn5IHMy%){p|#c%(G&>)u?J9Uuz3_SXG zM5jIrjCUuFjjC%p-LrlAa9inr^Azqu{BJ+uMBs7h=FJfW=d= zwobcB%aTBZVK%k`#uUTaonX-ox@)2hK{35~tdj=riO<%3A;n4>L0Rd}5;MOWoK@<1 zbYxmKgWb7#>y|9CCZt1qbts6PTJphNv}D_nG8H^2DG-?i zELbbfP>Q<~f@y!w?i8ScV(H!LnKd1pT0o${y?|dNPs@X?tf`R; z9=&n>`e_Y~Aa`bw7))NUAbGMfGBP1;6z^IlF_u+~&nGm9j(dW-q@96*;gaxLE4ujB z<;`7Nf-xaTy$QCI0Lo6#?pcINzr~sPiZR7;+=AQ)B(yV7tWY#nRaMC;D(blxVe)Hh zKU}tK8Ii?m>+3nTZarLDT6*xr5~ZbS3nRPT(-s~uKf_@jqgA_1s&&yWR-g`o6EXg* z;wViPWHjr8BSjHrg$aJLMf`(RoL}jl6}&t=Q86(RcP+*mu2bs=4 zYf68WR0PNhMz8O)dxnExeOXv&1X7bkX4J5$&eQfeBaKGw)(81a8pBZ)gM?N`bxEtw z_Dmvb{fu6%adU#^A4wCK7hS%=j6)0N#)lufE0`xU^2DxU}{&rY4BJ8R}d{ zs2@&EHMM}Rg@R3&eJ%!v6zw2^yr+akm}2#)h_-;;jnla))LCANUV-x!7sSz|5e{V5 z4Q=N8@87u-0ww*Yo~7dOJE&*bbRl`BH9wqHC~LP8%=%=OBR2g-HeNkTL0MVZexfUK z`1w+n&c}t!_liGN5lI!-BrXG8q?`&`*c#DRTm~8OMSec?+kQSB6-}3zw{O+JiiDRA zf<4-?bLVT8N>=eo&nL#?ugv;wMRT1tS!F%8~BhObO@`C`~v1Q8(3zj6kvmM6IG3ki*$c`A`$#d@2s@~Q- zO{4mRTAZT3yU;NIiL2TH1L+cxn^M5n0Y*OXFfuYC@qMpO!46K&KDD;gfr6l|nR-fM zc{!~apZ_GaMlT>QaprVB?k9fFD z9rjVTdBDn!bZDC1)bZufJR9M^GIE}Zn7AE{D1r$hXgrtYlDwsYbLlp0sOx)~_|$(5 z<$x#QQQa5?WCR2R`~maMfuDSI z%L1auhdMa^M@m&q4Y=9tb8+` za2U&A&M?ES^uRQG;22QyoNfm6Pl^E&A3;uY7w%GfdYX{DSdVs@qfbnl)~#KuU$28 zYkOW79Z~c9FKbKkXqknTwjR4(0alR!WJ1b&&h|&JF6ncZX#Op*zYlYJ-cIy1Yz;o? z+80+H+3%zZI+hgTL{kNf_x?DG6IzfRCc}S-kD6?Wxq7R4kbF}Tp&I&|fI3BI#&ou^ zvYPX6BYy{XkS4{%o`!N)GGPB1Qurh4rs5K7>*@?AzI45n{AK=qdhxQ7q^|ByUH{k=oqKi-y|z`kVu^?>ClLFXPn z@BjbDv%J@3W#0MkKaXRXwGUm@CXCUI8#iv=zFh+@G0kPxIe7H*MPWaFvmlH~7Dr$>(=Ry_RR@f$Btb^^uD}$DUNl3?&swraL|pc-LRqE(n^j4@x*@EaJNRb z5-91rtPnCeL`60H`OR?T6ggShuwiOFl}I~JFSN0W`}3I~n|l&L3Q2z{&vG2nH36m; z$~)U&$H5y=8$MZN@Hmc{V?B0aKG#FEl!x2v%NHxlI0W;kGhuQvGNGu>qT}LDX(ZO` zodO7wk(C8Nte*?n~#}$(-`HEV`U+GHP zlq{ws(U3cw_a7FKBGLpayQpYO2QRoXL0EuTqmz?~a0c*c>%TWX(M;OZGy$fPD&287 zU*OlU&V799d*T3Cl10L5gK}Ea->(tWX>n( znpSatA!Ur{`6e{qH2UFhTT>gw_D^RF3!JSNOltIiL}W7sWLD(s@T zvJhz;S+))o?ib+LD6`hw3CJnYf5Wkx_)Tk2=aXoUb=!rfx}~p5N^1I@M}@F*ffb}c zlPhB7qQsBdNYPpV_LAZ(fBLj}V+Rw>HR2=+3~YYyd;R*)AOzXDxXQ~@7E!F0f|LZ_ z_5>-W#Yt_=%Nw`-pDu82kMQQdSxiJj9#ANOwi=QBpW55~BG0CN*rQ6qQREPDDZoub zTna>OSh;cE5n_!PpZd#UfAHsG-y)9s?_NE1c;h{YoG213S5QJ6ggUl90(G5c+AOH< z(3>V&EKsrm2Y=S(2>7RxWfPyAocsm4Efv_R0x~w6Pw^w-9srK@JlFCd4b)3E4U-^i z*T+D${QP{UzM4is=>CzIy7-w}XyTsrR7l>#s=0k3ydKRK;(R4_RlA~1IGa9BZb(*^ zRn!%XjF1D()tA*Tnger_3Jh%-0r|$Hlnf9@Q2?|b5fH#AUUg^l;Z($Ff>5CthX|Ct zHy_I`+jE<*SjswcZ$?H2d}HGNp9qI3Cnu+;qx2%ZU)PA=rf9>ori*FA;N5bItdB;t z4RN4@9~QSv2KdPkS)8!RsN}|Z9+g@7_9EbxUG&{OXJCHT^6$9K6J-yo(8EZuzB*Xg ze^ZYvQ(;&2I_A#U&}UD#TO~X$Zr2>HhpmQ3w}k%X%a`NZ)%f2J+k-p}Pfg_!2rSc* zE==t4?sXH{&UN0hJjvO!$EUvukrl>)-sI6fD_Oz>x=d3wj0V2CjtA2}Y7loB?J#*t@Xi z2^JEUnXkbk!A_?CP4a4%I>(W$eBf2l$u|LhFZsqB5Aqpxy%r8Mlpy-JhuF+hK&y!B z*RRtQUhwT5Pifoi5)U`W9DF{h$gI1Z@@)Jf$R-|(k0+3a^ielYfQ(DUTqCH_v&5hM zzlDn$Y>UAYSjVu#XA%(;vlBc*janT9S`;$|sQB8=g!Y$=yloi2Blaz5*LYoPfR|PD ze+U@im*Yj=M9p8CZRg1vuaYJKE|Q>KcpG`4N|?NTde?vZ0@tH33X$L8X`9^T(E0G1 zRjs^YS9D}h6@;8J?I+HELuWnP{@=mk0Yxfm4EWunqoYNO!301m)Z^@!U+!26MFP!E z{Z{+u7ATg6o<)mfG$e!x;r2h@BL2T_#{VZH{{bI3V7%sYNk++@73cNzIAF|&GlD_H zK6RwOwSP$Phr~OjoEay7K=C0-q5BYaiK<9=&R|Ty|CSQ(q{p!+nG`J613poSiS@8F zM1uD|3Ih_K57-vs9vJxW(r@4Sn?N^SfZd=&2rupV6;v6$yt$r%-!uTLBorK9bau8H z9ItmjCqr{-zxE}e18v#iLR(JBw)c=NTiU=xCcL1`&2 z$+ZYo6lz48MG14QjgjVBxz0Rp>iP%VL_Kn;dfu+`U*V?DvB}B% z0FewjD;~BdgVcos`6Q7@ep|GZHBguV^#5~4S$X;M%pydPtf>iyY#ba$gnC4hS2p!j zi;RyJ8I8Ma1p{ZAZ>;#Gmrv-Cb9tTHw*lOc^=Sb`X*rDd0778t??dPYia;xw1oWM134Fv-e4pRlU0H z12>X+j6S{gQc2Nu!$ikThaeV_nJG9VvX7ga$p4ovE$nT{Q5_y0e*NmzX-mr#mwWSy zeMl2%8AJHKh;YaQMlZ6gD*CXu=I77Ex%ysI0tMF}L(_Rz%Yy zK0kO_^x>EVc~TEfI*aw!xpSvv23zJv$l*&tZjvSjH~PJY{-Oo#1)_&18Epq!#&aUR*Q1tyV_y zc0JxFlWqS}g#opR3O3&-_V6^@evLWH98dwT(}WcgiGR5eBTewYRqa$|n;34lfAwVw zK6u9P4>cC9q4RX4KPlESKiuSC6~{7?1^YYaB}2aRBu1Lwe_w3r2;^h;ud`Xi5>(>>G^;-o?$u@CRagFI_!QNb&E$;>4 zdRF69^#26e!A9tAJiI(M-|8)V#Yh!cnrdmWcsMF|u(OL3<1XCtWr0G(p#~Wp68(=g zhyS?T6HYFiH<^S?cFDAY)*9pEd}#h4rVbOu@#+=9vWUatt{g6bn|eth#!j0NW3G4^}`+S}OPx#(#*8_5@#2BU2ITiPxDRxh0aRSp+?EgELfCw0>EE3FTw;2{Xg)ub#isAePG1*n9d z-&~AFE-Cf-zPYLM|6k-0ECyfY%33zCwWi-eC*Z!d2<><*P&|D)ByVOo zap&&cCPQl92oOEH`HJbB`!BS#qXI8ttWQy?(q541ww?4&RnFBZq`}k1w5JL$nmX zE_xME5AP%G0dTjA>lEBRqo$^|eT|h1xFVcAZawUqD@LrQUYj$Q=g1`ARls;mp1h_phIEyoRrk>5GV#0NVVV6zz z9o;{BXREyE5=At>`~OTdE}H{jwnw*krheB_+j)P+U49kaLeW}1Hz#b-2V)39eFFT= z7yL&kYWT_df=5T^ziY%zFzG#>6#0fbS6ciQ`IltW(eLcfy z%PaM*s}KHn=6&?-!qlny;Est2&MLo-0849~Z*y{v`GLi?P=NmtaR-vdROqm#Ljh1Z z?2PG;`JayzZ1(*ZMK)$_%FL5{$8Dp}77OI&8UZ6Maag8a@J&oag|XOSuH(Gop{1b& z(ycTxqLTQDF470Z&ELtd;@E#Cza}>Pko-y$E28BOoU(j1-7(^L2e$9;MEhTx?!OW3 z7)ZgI=m<1~5>Ck+ zPsF!37<+<7UhUgbtMn|M6kOc&wiblnm6~I?@aS`7jnn zchc2oZ=Z=Irt7Z!Pu;48u=m6yC7oWfWJzO=LpoX}ykOtP)&^RC5Ulu4kFE|bXjjg3 z0Q2BNjNfUPeF-0^YL+Aaw|Z}jI6T0L-}^XWzduGAkP&coTNdk})+1gL)Ox(=BysJS zJGv$b(dsdHrzg@Ohq&Oy&mqJ(6%=IZ{(orYIQ_3yjyVl`ZuQm?&934+wo5=aQ0`D* zKWS$5#J&vkM9;=ee<6DQ(PPn_osxRfJN10=ac76TA&Bnldf2Ttew)x$6&0&`fJiyD z=B`Y)?`_5e8ct!;>EkO$VG~?9UlUflDZ^L?x_^$NA_D{IWE~xyElrA9>m~>H&LHjQ zId3wt*#tOcI50k130@YYb4mFo1cI(!IRc@SZVz&oE9YKhg&edgk`}XarlG%Z=KnEl z{H03E6S}+kVY6;zO@Bk?>Tg#ww>*s=&o++&VWV^*agWSm7lAhze|L438 zuU;7=;RA_-9vqL3#v;pE?-E5KgFVVRwQZqb6&STeA>=Htrps|5K6g*t}dW_vme%f`Na9aBVMK(F+ z{^U4vwSOPwKqTtHZfvX|N4lAjPSLe9Cn)G(a$@%jNXn#55v~}c*_mlk9aIqLwvH5a zn%E&IsB(`@vI+*mg&UVp%$W(qs;HGRFism^=(_wAWCw&q;?LIv?i9T6;dfYQ=M3c~ z|9#Q8bps{j-hL|eC>CnLAQUNG&^f?ksF^K1F;zTeDhbKDt@mB#{ zfbB1RvOm(xq(e+Yzn7R+)v}i3AB}z)i<6poC(Oyc=i?0DE#vgw+)syI)vYH(PNDql zmton_9p)ig1vt?p{I{Zw4Y2N{_b!7JM<6foE!}^_#fSZ%!fbVXyujb1RnEBUGkcbC z*2tT^s)r9B_Q~O&uWAqebzNg5^*C*_n!i<4oQeOz#-#eg=+aSd{Jj0gYFIzLU3t>I z*`Uf5n}^>IeA1lWAkc(qnAMYGFn`rM(42^9L)<{1L(wocVki24L=yGc ztN$xWv|#f?&l$U!8zIf~(`Qp=OD3p%hP{omYVc&|j+d4omKM<}xAY3oLxxW0=*NWmL2{`0& z;Mw0eCq8$g6s?VcxsxsMTJdPV_}wO$`~RX6 zn6mq0K6JXSx5{L<7W@n0d;UA&OI*V!JFpEx@Lr4u0KPo>8nPtWJqova6zUMiw-+m3 zwaaN4*(L1J$s$d;&q`3J z<%V$6$)~o}ffav6^J_|ksgamZI1?4Z1&~g3 z{+zKVvSv5$qOA$8B>0(0O#$=7I-MU&k5+R#f2oI5AD4iSnmRk3H>)Qq3K%-l*Btxi zjS_Lif9>x4Zx|g^APc*j=$-tZt(a(RKSxNNF8aTbI@X8yKKn1Gj8UOSB7@e@RdNiXL~rUAKs`>J(xD*^=j~w$)fR;1^&A z0+kRWdf6XlXA8q&V{J3s@sVq3Uft)9QhioXe&y1ivR}0t;V&5Da-fkndUHOfT)3h& z*II{0NHe7MYf;O)WGI6E*^-VXy)MUM*YaG^ai5CWMm>|e;cxDVg^dkg5;`ziz0J0D z5hY}6b9V&2Or*=3<##vh?QuR}y!|p0S4HdVZ{_j4*S0fjA!XrB|FZ#MBAaF=V~0Bv zX!)l{_hF7aJ3B`P**?i)C;I?W@=}~+yK%xafX44GfLIF2=p)I;Tqbl&f9BWDp z54zhiN2wYHlJYTu-hEmfoQ1cV7t_moV4vK(dNzj@|n9s#UEz9KQYHQgOLx& zaldbvxRx+TSV^YW2*@LkRptcx|F_R_P0Fv{)13cYr_A>wXg?2f&71!8uAU)?aTDo` zU8STaSY`X>@NW-@GHLGp6>9>Z>t%gCh0Zl3dh$~#CrKi?S=`24$nmeR7we!$7!@))Q5bV(AcI7*K1Iy>0=Q_bg(Z)|)> zb^F;PgqeM~>LeF2H-qvcE0S!{WYf2DW+XNtBd8{5 z6Mr;}!*3D~*w#!ePjq(<+Fw2N?8+AX$bQluflWth@}`^e#63xC0=hF5;ZBz~HSJT* zlcu_SFbmdQKuKEaQhQS&p0~|-lPq9)d28B2I#&t{Q%O0)fx=5w_laQ#9JVtyvYFf^ zEiJ8x#Nt1IO~sf!3LVvCWw(k?Wagf+Ub)?eCEnydYc21^lDu@$nUSGDn=hRiIem;s zJBT%%01yzh7pU7R{#mJMx;PCk{WX8jCE zxecbrLyNl|`B&XB)|;?vw<>GXV-lJTroL8LeLtcGUB{0g_oF>ya+imP2RxzY{RjRu zZ7u3osW@*rWoEfBiH6cCh;mXMLOM2Ylp0cu_ZaBPrATKVPru(>%cpd; ztJmk0vM$_~pSzn!8EIPUqO|Evyv3`&iH$R0kF6Tc`*dNyl9Y1;!h!R?&#uq!^GOF< zQe>OrH!_WI1H>79Rwv%co;xjcw~$L~<2OeJc8+^-^P9CvRqToJ-(!AnpV=X1=Nl0L>4@kwO%oh(3PXl^B ziOS8La4dGY?oF$Y(JK!ky^Cav zHrp1vLdTYvrnuPC9GP^6SB6C`qt@5GHLbZ>_E5o!t7aM1sU3GQqd8MHK1ofsTQP6K z3*;c_g`L}4;gh#2;OJsHquX_bPNO17#35C$oVnSi$%N={B@4A{P3qQTr@@;CLKT$Evd(bCrI%(d zOuMAA`UEc6gx~O}>yroCduQ8RrfAzLkFyLb+ra&{5&MsMT;>V0971RylSC zqer*N#rId}O3oL0u<%3iI8V0YTHyCS6&4cmjB#kZBX|>< zbPJ%JEaDsG7U1>QrY}GTuv=DNW^8`F(l%8%4K^3Sp3Ao)U!$qF#`vmsa4&ZDtHd^v zZ7#F@vnH`7?X=h#_Gr@Ft-%dz(w#XFAEK~$dD;uVCO4Hz-lh_n;}Vbqh-U+Zy=ZZD zbv4}YYr>TSvq-B2!Sm?ICwsR!!3+D11gP2`Id7@m*#P9z`u7un)maBrOkUr}RIJX|bL0PkQ7z%#_4!$BSU8$4+sqno55mE|(4GR_^j zKJA4H2KfRu=cRs1og7W{60=mnBuZ<}JQ@G9kjILH;IQTeWo27_td606(yvN-*RjhG zEIR&l$5IZLDRg+gTxJJqPh+Sb{0jCM@a4?v**6_LJLH0$g6`93)(0k&y*62#zTCx5 zoz3k6v1aM+$;x(F>UN*J8nbK@bI02^<)EF>4?64V%7%pLbeLccuUh1A7vDGx4 z^&iJXwHM$@?bqaRYClnPQ$e8-GlDxzL5Zv5%E+|QqjJU@DwVG#n&Pu+mYw7!O?bQz zJ`h^QcX7c01J})E9*$WwwERm8K>(T(pr$@iD@!TbH!qb0@5RT6Q|8kkv}-xCZ!)&b z3Geeqiy;|avP(ycL%+zJ@?!R>*Cqld|JugLLz^BZZ|@e}nPX(?+A55fU|Zf~yh4iv ziliBumGW8-J0bYUKT&nKq=3zMl)spUV2zs#1{Q!la?8W!W5>{qu$qaY-5vrjZwl~;{2HcW?7t6WmA;Ih;TM>n!{|0>n&RS?lriZKYV33_E zTssBmSkQMwd;e8d9eB#-e#H((ulC$dDINsx%>cs}HyUS5r-l<GJhY;e z>{Vzs)qAb`srLyw4t21NT}13~Lyxo$YNV^$O1A#iOE557?vRjVN@8hB z!dzThgWHWIv)b20H-iXX1!yYNSHq^a$FO8C)?xSMv9)2(v6yn5S4M9fdOWUn>Jwk$FeZ-)X1s1l0fbvuPLJ?iCY@el-7ZWKmEgDj+#$kWheRBuS8riXb2$hbSUQ&LBC15=21B zISZ1L}T(_=9+8HQW_80l+Xw$e6#s&8U^ zn}L<#Cf#K{3k%byY>bRg{(1p}iMcK#OL}$^ya~3cpwd$;tTP(uzeDldar#(TkL-l_ z9>_imo$j@+H6 zDSxqt$&t?V@qe~P#$Wkp_TY|^|KUh(f-g0Lu7_?3%{-o&JrhD*9_eyqrucSR+!-<* z_;(?H?eVQ@_R$_K#XxPiL-cjO#Us6N?^`Ua<*O7&_P&q2bmhw4cV~xBU?1B3*7=5j z;EBB-^4;U%+57Ht%{jcod*4cVzdgJ6-D`6*D?-!6BQGB~tn^wZO2>HMmVYX|wD-$_ ztV}wQjg?u2V%w$j_)j zMQlMKq4fNa8r_iCKnB%BGEUoXLvtOfr}-p8Ux%@t;WWFxKFG0HVKe5w(15QS$ymoL z5$YDkDiOUB{qf`d@$vD9tiCmI zs#Zws;NYOFtZX#=sIZp$u1{4|M@I(^_v!sLcJ@>XjOi`3Hta8PunHO!4%DWmrx$|- z*!)q+8Jeh^Z6GWnk|eox@Hq_f7tY4U#@383=o@9Hz? z2rgVOnC&aZL>E|2hAnCxJfS>UeSQ5Kmy?w;V|$15q;C?*3JJO6;p3|k;t6BgCj%&^ zdkYm35)!C5mpUADPw(B75RU50hS7yi73?Y5wjB=@Kg|A9{yZG4d8wBsYUkjx?)zWc z-#*S-xI{Pa7u&6z?yak-Y5M)MoHzI49i#a1=D6_Xf~%w_gYw>LE6pF@q)8Y4b!Jt2 z;@9YV_UCu&YCq}ie&}VP5GE~Gx>~lG?QFw#8fxlsX8H4^C$Lq&k^fF=E)&N@W1pnz zP!X%tj@HprtG7AwYWL6X%O%NgwQj+maES%*5yoCDx4O7&{FZy*U|X4z6mQPg8nh+` z6se^dv?V7P_ZEx~e0eD#c9*Nkx7llDx;yT@Nr{r>M2nQBW@O#H(M!d1UoS>%?QD*6 zw`ORIP*PCDYm~c&+|m~A82Vr{@(#Z9IClC{JZ#XhH@E8=nkBeZJL4vwy`iwUViKxA zo2neq)1#uTt4qsJ_up+Anfkm-(me;2}P7CDnYN`_W| zWhcP_h@nj@lCI}ic;mReHfqjY_top7T&d%hbB!B_G1D-9!~1i8baFN!Hu zV?Fv5#k@% z65t9**sYRDnDss?s5@k<_%s$+8aixD=dN!q)cf2E`DC*&qMWYzup@_nRz6~dtXTCs9%5Tk+*8K-|pNMdV}!sNzmslvj@kEQXr@UY)QDyCnKPW0qw zt}l*9!N(<<4Sijo%B+7(7j_}iEH}_!c>{Xq))}9bZePu z<;Ms1yHi$gF`9oX^;am{FOldb5OzhKg&tp&7U-Q#lpF^{J8|= zuLvhb!=2=_4O)4+)oq3eD!+cM$)MZtczS|=KeS(_X^ofSl}nUOFT@o%*bkreg8~9# zAU5cCeA0lBod{7ThDqz|C2QIKmIRsBL^)bYN=j-@PF1J1T6K$o&(9mSO-k1IgVbyj z5*5-?qoXOZjXI^_N3l63{i!DzizG3!#kQ8Pz0eUhV6`tWGc!x)_aRGJT(m%O2%f*~ za;L6DFV&X^H0SZS78`hP;qsQdojLP_mWHOOA%a&fQ%8)FiYiGWoU1ESSE6IfYN{hb zt=P7Dbb*?MMb5g&bhHc4>Z-{R* zTTaOS2;tQg`mMUU5$^J16`7srqg>VBrM;nutRw`1E<9=SasXVP>Dq*IE7{g?m?OLE63I5lq&Cq*%x2P3PjoCr6CQYJdZ zR?}TEp`n*-ILJ6x2VP>L(@M9M0ckWrm}ha?wx?GwQMudqENY@HC24AE3MX{$@!xmJ zq^qXO8qMeAs=g_{`Wx05f{&Q1M!bG=Y*&`PU#!^s*!RW-{w0 z`xItBFC^r4EM{rESs+C@8$*H8Ld1|^OZ*ifVKK2&h1Y-nahCL4Pqe}93;mxvH(9wSUSZ}x{K*LAM>ibXkIbRP?PuN_S3REQ}FALog zlZn+2`>xNX+<7m5t><*OCfSK2k86rYuRi3LxO!?AvWYHM?jb>h<@nThk)ZZU1+y4{ ztv_$Z|9SJ7p4Lsh?yKj&{3%J3G<3wjmCS0Vd|N%oX=8c1;1@=O`PuJ3#X?!7SPWVk z+{hi{;qePSeE3jURJ7&P-JXv#y@iI=7|NR3+U95>zs0dA9|Ji08a@{}#2wt--AirW z$Q*t7Kq-*2nVI0?#fv$!e5GwQqT=Ms&*|Ufcj{;xVGap-UH@ngtz3a zxt<5ZS@srmK zaN(-^@k6fYoQW1oK-CXUciCMOe7liwAIAa;#&_7ou>q}qd3mfcF)`zxpZ`Hay*4}B z8Ay4mSDD&J-FVwsR@Riq?bzW%u#st)8$>XDPCE`CEZdaWp8fv#;>$<04J0K$p5fk< zghhjgCnx$n;)DgP7bbdZW5q2;E=5_cUDf(SYT*o<7df|@(?)l{zn>pIPR;UkHz8Y2 zvTH_t_dDIN1b6_seYPS>N=gJAH2+R z+_L3d_(=SXNU8=~a3VL_9Q3l1+&8_doAN z#KgmCw=4_KZ*ifX+Yq+2L1#vcw6t_fq)|0^&5W+MyHD&4i2>Db+|7dIV zx0bicIh*=0PFU1?BR6=2garj9d3egCx;e=t_?)g;EUb}o6|*uh)MbyFQQTdjkZ#}q8#Yf%x|RUs(}|pJ<7SA*yzSIh5DVi_ zf`ls1!}Fq!bqJU9_vb$_(EtY$Apg$W7AHdeeC!lS^dHAhyUeiv`59|zruPv92?c;G z0T39zygZ%+aLz&$V5aM-i?Og35ok%2OA3TXeyuixr|LW*;ba~AtgPn+dRg>@ownC% z>g&%;hqGI!!s}uyJqeQl>%akQfbA!~MOAg|;Qm;rX9^}6I05aE+}3%6YQUo>FT_I$ zf?{+=W~Ll~#uU{;d3ft4sDYS`IzD~cU&2+~-vk>b(1_Ey{rL5xRvy$#|SDijH$^g|M`}%GjZTZb9hCk55 zG{vK<&6r-9!ryW*haH3}eH5UUX8YAK7Hvwp<13{*#bGuh#1P-c*G9t?q@^(wp z4KYD#iRgpjc=%FOR#i>rkB0dHg;N_y5Bu;)ug&NOROM=Fp7!z-k&tN5(r2ZcrFC$9mb9>~JdR=)|7B#QO0A zyLIA&m&Y*C@W5TSjNktS$YcRaOY7?=gs>Q1Sl+Cxtc3liGiGIPU!J|(8^T` zmnTrWBQm7C@03;0i)%(5g%7r!cU(%+cb8mJO)af`1`n!^LlAxqV4p&^6&4pi?R8%i z{!co(#9w8^&coC3^(O9*$$N}fV@X8ZVlR%4jL^XGH#3{D*I)Z%`!z}HE+^3V?c!+b z#H4)pau3xYRG@+Fldbc^wU$F(cU`9q`-<{M>OLgBJbuQNA3qfUIujF<0W82+9)uA- z$5QU|tf|V`!qwH)!1tXY&9t>#9o2yHh;3sk6L3-zq=SIKKtx{|zzV_R;kly0Y_5xW z{#t{Gzv7MjZEc#q*FmtMe5$mp@1YIld}G+PKN}x^4+xX62m=s?jqF#lvu*dJuSm&Z zW4RTmg*f0&41pq9-`<$Dgs2&>Ug{W;@D(E~EgcClb)wI1wiQr{WxvA;s^K&q^uv( zvLEnn16dd0r~(JbY&E60%ZNV8O+9voj1KTLutU98-A_=(J-o06bul?4Lzby+)k3S* zPTg>n4wLfo6cH~3oCl#5JTLD}$5IF$90!>cunEt`==XO~?)X%@caf@ED4Qftk1B>B z74z!x)$^=42XwA@A*8|Hr}dl#z!rFSwL@Ks5<%%25rR1gVHWle&FKNj0Q;@YY{dr( zi)#Yj93vJ(P>1S$c0N?9BtY@H&%F&TJ$z9d+$ENj&-mB9pP2^aKONm3L4{>pk+)#k zKJkL}Uy#KIq3vG;;y>5=!haIEs@YAmK)|L3f_d+=u=rlUS|!*nO;`n)Ngu@V0b9T~ zP!2OOEsKSUiHKxQ=hJ!|TpsK6@@#)viNgjki$YMCv_hcphwA-jxtjI_R15Ufi# zK0wa308~fI&CPAG1Gj{zSmmN;>B?Dp5iTxAraRJkPhGszvbEBm23QT1+Hiu=3((e6 zwd&M{GbTUTma+t!!;Ne*F5I!nvRyTeU5CwdA5A4u{`g zj>8^z*o*w;!@|W-rmQbEOIQvEC?x9Ehphwg19|Jhg^8bTA}rww*(OPV@⁣qF z;t+|_3p0h+~NH9sp?eaqY#qOLx&I2|MKD}VihU$>q74V z^%6#*U*%02a$DCM=#g_>R{u>laN*ppBvemE6fp*!WhiAu5b2g$G%qaFG}agu08tyz z{taMPmL^)8A*qmsB-$g0cK5ErNkWDeNKu5gJ-}&9mTb)UQG9S%?zA0rr^Q91j- zmWH0b6>VsMALHCRYd!$ zj@+V+iaks6C?X;qmm~o^!cE6P+vAgio13m$nu4pwB}*rts)f>! z?ZO?!Zm2FP#u2OZ{oQRAhjj~}JfI8_BH^;ngDddf$kXn6kGGPjEIG8&3~#3tO9TxvZ#zA z-~R0;qgD@lcBzVcTdG~%sW_VV=T9L2QZLXehc0SCh5iVG$Zk0xgPS5=iG+H*64?)M z%5n+P52563|6tvhVBPPa@cynz8&uQ;`1se#Z?^0whLesAX9duUmDs4L*DHE zzP=GtQ$~Qa5mg4wnbZa?TMn|~-(@EekK6)$HRtB<@`9c14cfQ?8RvgR%S0$;*A_5Z&D*L6$KQ%M+dVG^6t`^Ah?_lqf+bT6fbAlM0lP8~~9U)vjSc* zKtIGPXoxLVe*zAx!f4$GT4vRD1~Q*Go@*y+&mJ@(o#DUO?UU;+5Arl`)>{7eDhZ>P`*k-;6XJKFeBPJIuj|meK^yM|IAiv zO+k7ECK1~67*wJbZ?8{6B=rTr$BEEb!Jr2%&k7?wJ)HAmga&=M)&=1_ zH3R>|0y&|9N!@8H8vsTOioK{Df`%qSyEJ$2=3>P6nt52Ce-73>{S74wiPgsQ<75rc zWknTKYnr+`Y~JJxbc!DtR0{+#(29$Ks>u+xz(hxS6lyxrKg!XAeid}FyrDKo0vKli zEisb2#-W2lLrX0(5(!dK{HW7NkpTH?{df5p$o$OER8(lv-^KS>ST~+FwNubR=!Oa{ z9je)=ImI6oQ-29jqS^(SirXeouDHw5@FMK(_SLjzN1XD7{#8z;Q@Rr1ZX zJGA^sAY&%Ni%AI_#xp|E zkp~R%zp+>#18{E%1I!cFU^aXjduV8=HP1{-Xcxv60tQY&XVcn^#5mdgee-XO>f$61cvXj2k zy`1aMPQigX{LnM%$~9qxd^lViggQZ(Xb6%B@zi|(?oWXZA=<5d#dc7~(~L_BzlYNa z`Ojsa*t)h$Y*qQaef!bH#U(1ojw9@~k?A`@ZtlD0PbE%=t6d@_9PL_Q#k{w}OBi$i zC(0SF@M<;{m96+N4)!c?7pT$5HuUCpmeYgD20bU+-5=mCH(`009a5y~UI zpJlHgdkWp-KDxi1#rg7i${_F2P*DjKT1`vC2ev}eL(C}P0ZcS>dZ@2o=XY3Nl!8?Q zDrM=HpM>iSITWSPG2(@;hZH1Ts0mt1otz*EU9k|2;`hn|K#NG;+dAJRL9fDMw`{a~ zGO71ZCaVg3Dl~PL6;`OOUpGLV_C7tnf+6){4caH2V#(auI2ug8vduNM5W&6cmGH%1^=B`I{O@Q*(I5_ zGP**McxLJFp+IGCSLz-bmHI9~m;-RRVj!?%X}7To>A_(=Y6s`SiHGWv{_b7Ev&$Lmcgg0Qs3bSG|lm;Ip>aV zh5+Rq%^RdPn3vqzDZM=r^6u zDTTTaTC>U}_W3|9UK0YG`yQ!LzJC`Ll7_5G_V>;jWj2sO25`d0f}t?JJ(a#NKhNW1 zMu&}!4IL3ygTksI_ix97+!q&~UIS^S@oe?aX3wF)K@|rE?VdhA!H2ue{(pmVdBwX| zxCcVqPLn1=(_~D2XFUjNTf73-KLHC2FWEu~CwJ-+t0aIkS=iyI%lpVU{~@%y5LBl~ zfQB<%)+zr z?~a=7cuWIRbF5f1WspiF^c~}&r;DNph~DtJ4)8~MdOAS17T^*P+4yhx1NFY4#eqr$ zo%*m8(6tD&YVX4dH`*18p?*woaQwU5x(I$$amE5mDIiA0B@GQKD6S>L=J#J4>SFG- zuW!RTYx94pGW?&?|3MJ?Ulf~vd&|mBRV?ur+Cr4a2_7la1zhr{^XVm!ds9V4?Aj~0 zciVjQJUn-AogB7_e$L<UMqvZ z^O}#u$cO$LcdZjLGVQ(%nT=ZvVR*(Hzgj8mJ?*ngC$M|J-HcwP2>5zka83yGh?i&Y z&sh%x4B7qG`9>9xPI07oKwlAgDrN zs1XR=Cl924g=W+@!5P!FzuGxz`8kP(9|Y0llD9^4{H+4IW7JKF{Hn zqnBU3`UdC7VT8D?ta1hidp0gW`|6sG>@Elrgw-Cvan<-XI@hVn|LWZ>0+Wi`i=zQ< z0iEbWJ~JT^ZU)`alP9(P{ciy2{PB@fBg34?AzuDu%G8lPsQo874-a9+rlW(UqreCH z@gyd#X@}uzp*DV{{&p2(df>V2l8JeZY36QTxS-m47?yhd7QE~CW^iG znLS=o_HMF1%Yr`hx2@&Kgj@}zvQAFhyyXJ5FY1mhgoMki7Fzs<)O8uTA93ad3-~Zx z+4*m4-u6Km@Z`nbYDXTq5`lykMBx(h_C=cZT$Opu6#m0Ak~br#RVd%RlD5b62B0;@ za&CrIUcP7KuWUMYy?Qb`J=o*+AF&{~N(IiP27k0^ppDL7CrgKEujG%!y>jK!73S%V z;X41t*1Y3W3{fu>MR!4;vmU;d^`X~luI;oYg;rKU&$WK)hnC=ON&trTwqzhnBUsHwHnaw4+LKw?sCx; zSvUBuh~Br)YP#jmZSKAOgB9Qnj2{oKNn}yB$27wqRX^2Bxil}V@9tC9ldyqYh+HF% zsXF<~83;_6Q8J}aKjF$BEL>Z;Q(99a5oX7|=UmH}>u-|jA^0AI2ZdiP6ot3v%cmixl* zcxJS%55uari_wNz+@j1x%&(N6CZ7)q; z)AS{W&ls?P$ApD74BhCjYUD{rWNJz$IM+DT3Plp%3MyK%jjc?2ikI$P?B{G0cUfV> z4nCv)ItrnxmsUccCb1b^tT-7gt`@D?3J)%ZqFL5RKV8;bGUMvy)!(ZWshPW5kM$_3 zg1V!;rc*zbabQqHd%_T%@%M-(Ij)#@l0 z9Tm;@rHtpO>h@OcZ(D8CcPPeG(OL^W`#ta=TfdqAZjb3pP>gy+ElYs7!-sP@7&y2% zelHUJ@4-wppgM$8?hpLA&_s7`8j_F#3jqVg8lyURjAlSx7;&;qhYPGIE# zANwI44XEG6ULHG@H~xc+X4&8&}_6tuo}K@7F&&X#$(wsRT9J<~jMHy1)x z3txtUu}G~MFv2v)Nwh=BkyOi2D2iExE=3ab(rkesxA?)*t_N#t3mWolV4Ez*8XjO4 zSBHEip%d2@<-?T-jHLed<{C6H8=;>Ivax4KL5w&t&=4Wo`m+>70665o)Jywjq)m_P ztS>=SCguw7je%e%Q%UDfS35%^9;Q!|lhx5XDv3?A6yk!oPOI6z6bN~*cJ+MF5Gj#Q zRY@>R&F4qVA<*1BhaxCY;{jUx(Cp4;DBUzifFC3b^7i)jW5Lj7K&^yzP;Y=7WhpAG z5PDBQ0Y-EmJ$e*#TGj76^N$)1F@YQGae^FobAf%sXX0cMv*95R!Tj8X;YWb!^%2Y8 zu)i9^xHMAdOK?cWi?SN`2x4~PkqoCIe*v%Q0rdDX8T>8A3~9d(tE>CYv$<3J<=_D@ zf8=!9j_=ph(;es>$achdK9CJHR5uJ*ml=gRf>H>?B-q_*hzi{mW3sTY6ur)4 z1%>yusbJV2q)SBF8{PzX;vvjJ(E8vu*Z}40u;)Oj%INTLr|Mzv`x2p5)12<~^lg+o zTda4j$0H``3PQW>r2nPL+@TdHbnD*0GaDSr-Yh>eojMpz3~hnJtCllOF&Tq49|l@J z9uSZ|@RuYV00shPpta=wxM01rXh%5D>bGy5cpr6=v3t%vsTH0~0 z`XL}il>toJTWnys3*VVIsqfuzupKL(nj%Y8Q@k#1J9uW5MdRlYAvgX4yP={x3bIVT zO+kWq*qqoGF1V&91ouX{X{u}sbPJ9F&Of*$iRi@&_0^X%cGDU{(tnQGzUw2oqhK*F zx=@%LUlg~W%+EmO;3m-fVmt)u3w zxhs@-`T10CX*HKFp2%}7FzfVaPLEAcEc8q`;+r**^! zk)sB+=@HL>4j{b7k3!YD*V4nsrycr@s0&}b*dzifD*g@&O}GM91y~Ey*bF(8b!+_X zD1L$rG8sA-H!TY3@+SLBOOZSWZW$S$P;3LuOI-iX_6iC#&_X0CsNY;$U@_{r3ECw& zIN^w9A+wuGZ`cMt!C<^8hJ?)`9%{}sp#JrtM+5I6`LK>fQxUpb7-tU=^nZ@P!kxoY zOBM49Mp#%^-)ImS+}t5QhtCHgwI@a-0Jd3D+?AtS+pmc`0iQyjfwwFxtu-Df{Gl$u(;6sJ0@I01>oBJg}rE z2^9h{)_oTyTwd2&LON=Et&ohtA%dX=>aUfk$M$*7->!g3vXg6jM0f26*zjPf;On(= zK!GW?_?a{+`S3U6kv%;zHFZ|A{y}9JY0EsPcl($Ii;oi!EyzhqR#_=4gyH`-99ie! z&xi3X)|Rfm{8#>27g#7KR$~n6KZMocVS%vsYaZWE&effm5|Z0(Gq-47{R=ZVKgqie zSB7<#axYASKCWs2fiC$!j$`HFBgig>K;K7AQJM6ZO6lqc)#h_8pRh_R4w+IxlNq2J zV0n@G`#rCEg2tt{87Z=dDyglpP@N-++Do9djklEk|yA`37 z1}TYbd*qjQM_!3*5H+1L5s9shBbh9fDK|&ZqF1I|b~S1-O$}8|uWuTwn<;xF%f%^~ zk=)O^f^=*9EuN5N<2kS8Lscm{`Fn0hM!?!U3^&M z(TtZQ{)hAXeJzwJF5UGZI=btBgen8@L|>P9qea zAS`@+c1jO^v+yYx*VJ~uhigi7!SB#nuLE5R*53(urry0yT^`TP!>I(s%wmvLK;c6( zHb^}HsS%qp(4*H5hxPD&kJ!_lhW zb9cFGO#*8O>vN6KM=Zlx*Glt|dqG|7P(3NU*p^io?Wc3>FlaXN>qJF2r(a$pD%C%H z0-}xQG2I%I0;k0E#r~6rM;YX-atawws3=O4Jh;Y=Fg4%d+6;7#2cLrov?@TOABx!{(|h+NMxU27FBm*z?S<>}*Bg-<+s>D zF_@Q_;lBH-m|t^3qSeRYj1GHTeQb)o?baW12rK?IaSCNn+KUli3wH_!gQr<`tXE zly~p?V&fW{&V7)}R3-)4oW6D@PymXBBIyKZQw$S~W)~j5R1YP9(v3)GK zRbb1n+)0U$2sG;|IJ#ii7Ft1fitTJu>-{mtozy@j_+gev-6uRW6Vom93Q)@zntB9;qjlt`Hn+(GmL@8#g3u$%3uJeKd6>dpqc|3Q=_X-1@ge2wp&E&+~!)U8+2)pDWHYLldEH_i1ir?Lqt~%QPo0;w)P0etl z0u<}@`TzUvC_-Ipw7OVlf6&!pkO}*Z@VS2{xCVjX0wTQ@m=`$1@W^k_QD+yr;N1T4 z7mi?eBAyRAGR1HROWZ?Ssm6v@;9_Y%GzJ0;_O^uvaRPBj`%|(9SDfP?K+d~=bbq}M z0zoKqn$*WU9XGBV;nTuqYIY|RZ~Rp_b66?JFp-5D`5n>ty(P(t0Jskk&Le z+DC_;q{f@SQQpWw>hjDin)NEL(ZVhIhad-Z`pCz9VJ4_*sE_;D_AhQdYwY;P-rK31 zPe(+Nm%6LiE*EOiC}dqm5~*J8Ls*fa8br#>tTK+xTQXiTyxj34BM_Oa&a`iTTp#+f zRq$-?C6H3(iWu{Ww#Kh{y-g=cfud{TD?2YNWT2Xq5;n6OnglmMOgemKbGEnw7{L0W z%=8eC1NHS}*NT66f4|@R9uqA})+Q$k)zyq%IoU8bb-#9^Stxod*^VmPW=4X(I>6+k}V4ez(rhYWC=ClOd7F}FL@U+>_q(;ZNHO2C-RWN$%zr> zLhN&k1 zxI#^#GpN<=d+Ss+&8-+BYxS!7TVj<*=#(B(VycR-c*`x8a^3X8W98y)n)PCoRWz66 zlJG!&3}W1xi&?);9UC^YIq~5Wz!-wEFWn zYHI>1q0v3rk`M)2rm5f+@CD18&FyUCD1aMtT$0BmWM(^JQL(0u8n6CG%I^FPPblFF1y3NbV2d2C@3ldb zK_3D)oXEJs%F4>{+3G&gje4D;r>6F;A8m%Y4auOTam!f&I}6C2n@hKs(xPUbCi}X; z{E>C&tNLRGXMX;y(hP~6pPz3jwzIZYFTecauZx64JU%XdM~Pwm2dAE~?vu(|C>Yu&^AuJQ5+k=!$nUSF9_1IzGO(L!DG;&`*=?}0B3 z23073z!#017H=6EYtZksQ~cGNGzsKCNf1d;&FZ849k4w5x?jn9hr&M^H1MR>wtILM z%em$pF!6i8$C^42QvMr^J^-u#8yyRb4H%G3rxU?|ANJ3ul!$!+t-36b2fGrG`->Is z|6vNvzq+OH3sAAuWTa>8jic!)btPXb6O3u~W`x#RzrZcLKAuLpPu_;2U8Sowm zkf#_ZCjyoRzd0fAV{gpEl#DQ0P;i5FTVn$>-4`d$O*JPg-39@v9ou;O%A>H1vhZRqhPe}wFGBlWlL57x5$RPk- zg&K{$=?DsA{m_zzX+p$y~83dS3 z`ig{YM4Opuhs`2?B-ndleNM2V>60)uM`;c5OyIOmLd+9P9zhB@HkdmA%fbn5dc-l8 zxnLJe=X7UTPRb9Dj?%(}3UFm326~EtX~KS~RRI~Bp&=yD0X=)P3lTpLR@pYtlURTt zLl4+5tDq4g7Z-;4As_CEF2l6eS;rN2P~)J5Vl4X2)4>F9S+Lah2!wq%(C`eHLxkk5 zoJR#dwzSBC^!e2`thNXS?dPP_0%2G*8CV}A^45naD$wf$X5U2B!W{5}A^i+byl?}E z@HoLW710gr0ApVwA%Kuu^|+TfBCZUqJfLt@24^N zfXQ{XC5+FX2<`*a3>R~rfUp5+-p8yuE!sf;BMS_<9ME^DrNOhvN9E{5-sN-Bw0c$(#Q{@7f7DP$9uCxlC zm&VuUt_7P(KFIAc_XJr~NtB~8TMtOD&{LwmcTWjK8wC@INm*bn7it2;$54KA5q9pY zUR{8v$j~CLKkb`5wXz0wl(7)Q)J6{iTG>LYC*UZin95V%;JPl<@3@hYTD+``_6WE? zCK@7M0vYSTCNb=Pg~GxYB*?(Ws)+>BHG=cUJG}3>aac&CIf0GC=-a z{Oh9NdJGej6X0rQ1}Aa~n$Yy}3|9kuC>oUotLXa588ldDw&Z4C5vnzS)*=$j4Bd)0 zkHyc_@5P--`UH6OiZHL8`Igj_X3R#VcU| zfEGa{G!C7^KnfQ9CO%R&iv}Q{%V+Mw<)ZT%SG2A7bIFzkjy#(60$qfF#qRzp$<}@AVtErH!9n$27IB6R?);8FlhC&%=Skw?%Ge`p`K{$7&w`AbO$z;TJ zYgC28ETT4$z)8rxlZr?tgw3Y01M02glc3`&MAjKvB3xH*Mh1o)7|amx{=Fec1i_-* zkNkPNCxr1y1> z#Kdt~GkU+F&-nB-e$r`(-=-eDW!aVBgr&_IHRF&SLxF2;a7`_Wu3SazOn4{ z_2oK6AQ0p?T@TA|)n)L;f@4}!z&xS8{uHU7Qti# zmXeXRdAttiJsFO=GA0=guOi@xTqIih6s}zl{ysx+)M>1|hrI{>H+@(rhpnadK#Iu- zH!_^*yJF3W>ZK)1;93X|!*{)=`G1u-FIwQ{D87hHFr7T64v8@6Fl zl`zTBt_dr__c&V`m{J5eCy>Grx+a0zTgxlyrCZY`@&Pn*$>dI(bN=m5j`QOc2!gj7 zP0fNMlmHDsWZ5(}HrBHcdJy zWRbcPodXyaG+NgRCahp@ixAWZhNX(=E~>vKy&EVxA$fyeJf)(dq9G?kO6Ep5)RhJ> zjRba&9~!a(6Wx#nAJl@fa7WFsCXa+}+R5&k|;{xNV8jz1qP&3o}aKA}%f6 z#;U0TFDaWb4F3T~n#r0LpKv4HRl%loCwqaLdWoYvh5vezN#NYW@fb zxL8#oLt`xTTpmGWZ2`MX^V7ppkyF`PVB>Qj@6I!e0gNiZZSO$ix<0c&HN>FgZ6SFdU!U zF38XCilRDXI5ke&#Rd=(fT^<4|;3Ehk?D3qu098Zf6*ob4f4x%H0z<~I5`55e$P-W9{nWjJl1 zyeP(t6M!iVNF;d*1}lQomUd;Uxv8loMuZTlexaq<0-@Twz>16}b&914rZ+V3h?Xup z&^4*^f>O;Fkl$EFEd$zFX>i2GzTd8If$KN6R+35snKCl>qM>sDG~Bij=Kag8Z(#?I z3{48ym^>#g4%c9AZtfo*?$l!#HMf3`6X7Z(L53l7LLKqlzSjgMAmg86&zVY#bn7?n zD_R?;yK5jjV)*OpMUxifr_!yv1h~j+RwE!D9tm())`|mP%5dr)IEkm>J8&n!)pS@k z!;qwtFvQZ;_%677VEzHlBaS~o${jaK5qV$fCK7cZ<0>4)W-#Dbw$xVuSi~vp|H=Kw z5g1fiP8=a0i!yMQ3 z(K3K)g)3rK3of7ymU0QuRj0~U!UMsvt6%`hLFo=gGwOq=qX3dJZxZ&5=ZC@4c@pwm+%+>`#KCtV1Y3*4nP)wXC=1Jc9OoZw#=z9yg80zmI|cijcCFk zLN|a4+Mu0W&fl#DSsP|tpvE#f{NSMATpx?VRK(!b=tBxa07X7oF#^ppg5xg@(+ptr z9BBv_hvVimG0<2bX$~5f2Iv$`KWhXjOF5Y#$W~FZT7u1`Kh_X|ge5i-3C^e^j*t}M z4$#~*nCa0DCi_HW(Do!`L^gHa%-fK=xRA@W0BqB!%Gn+I!)64hXbJ9c5}BM)<}Vbd zj^u!`Dz>2fFOv_RX-jzzCm{w3N&`SvDAT~+xA=0D&_&gF)Ppv)0TMTwV5tfgequ>_d`d8#(sR?-dAisb>AO@N0QEkjz#x-gn8nhlQo zLh&SNUvXB&&X$P0Jl@PQKuBt^p~S(U2TEZa2aPf{F#FHKJSQ}iW_S7~%-TTp0l?yz z=x7)3NpQ7;%*qIDMPy9dUajIbfQc8&1Y{cEBm_bsWoY|z{p4uNBbZU(xH%`F3Pg~= z?#vFTD9G-t55b;mM|uIMPtkz85b)@l{Xr+I0?7uIt)NYYZ1=8R@+j#V7dj@KYrp)^ z-ar8ns*y2o_L)za74iH|Q!-&IelSt)2Go-%(pmIcwvWSaPZS=r0Be_;)0QO?ML@=G zg(@y8U8_o1y2BD@t{c))EL`b007*173r)m;TEqbHQ?-gc&xX8UKur$phbYL`<1bD! zG(c4GArV?_;5{=AfI}Lh#UipV%neo|ri(O=;2h8bFuKwbaI_&@Cm0(N!1~QS2D?NG zO(fc|1RXS3-lEae9k?LGsDT9^zl$5@5THB-!&WZ@i6>IPj+X*{@jL=n@SZ^JF(PX? zl0CtYI}5;N6X5^EDKr6uVKE*PGyy|o?v1d-NO6I}0|}v8N*wIa`p)fkgsXI(BDr!rdeP>eZ1999PRo1=dP^1*_tKd6iINte%em$dD)A^$a;s zlC0PeF6ChS%~FS!Pp7I!(j3>U(IS;OvX`Jao=ZSS@@;0vgz5mi05OFxvQmQ{r%UxT z*1!ommBITU%3230Ix^3Fnm-TvUVzNHhz0=f3{;lUFemuJE;Dkq9;TP2fu>KUbfb56 z5%3Qh+luPF6DL5f2!dwPF>v!X!O2X6lA2#1dfwNrUE@X0a5M-KOr%|^-iCV@I6noG zsgU6w)v@QU@sGj7Zh>g|#99ejS*QP99KFkl{U1&a`DeG;mJ|M()i{}i!gcf+LJ!6H KQhEM-@&5p6>*Wgo literal 0 HcmV?d00001 diff --git a/_images/6d717b9c0df99f8d8522c0745e2d99097805c028a954604c6b1efb25fd5a807d.png b/_images/6d717b9c0df99f8d8522c0745e2d99097805c028a954604c6b1efb25fd5a807d.png deleted file mode 100644 index 92e85034aa53b8c57171f1d7691ded60fef27ab9..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 30585 zcmbq+30#i(`hLS0GX|X*vV>x^kciU0A=^u(RjHJe(q3Ang)uTD)tkLdqVMs@nX~=Q`TfrM{O5CgMpHfS^L(H0_r9~uk2^WpJIaWN*!=YeHrbsp7m-_<^cP&@2m8H;962~Rjp@%fF^bU^ z92_oPjGf!H+(HIgPI@St&&&*unQm#AyM4)ynyS}h>HHUd`E2>U!Z^(e0RI zz#M;P(9IoWyvzr;!0~Y5rV3T|UxNG}&%$3$x2zMUuV4H9w_o0V|Ni(*Wr4n;@^Y2! z+qYX*NBJ#WCG)O-R5bDT-@m`Q>99;u2OmFwPm61tcJ_(Rcir8BMn*os;J>ZMoR z61NhSD_HyF$&*r3(e(lX#SO6>ZaZ!1<^oQ>2$9w_Ha5<2XT^C<4oLc~kW`J=Nv@lo zn!LI}XOnsK^^Nx;BV)X#CK^-C{S8kIh-)Y6X)~SPzg#o*p@>s2*Cp|BQBi2fy(yuC z2{8*+NW_>vV^*lndARn@eGU#?+?pP)bIoZad3gQ$_1yCAX-hWhMOK8$%1Y<<_tYDC z*G{nd#7&Cl2M=x6(z-J7X&}C)MoZAlys)o6`MIg+v&zZ?wedQxE;1bb54F~DJd|${ z60Hc6w@UTwt4p-3OSpNWyJ90JC#QCd+V+v|%FKcStNKk?E6?GlOD!&EdyJpJ7aI-p zUgr$Fj8L*{%1Hd!`CKryA>n8KeeXN`6*C%!>a=bq7f$P~-E&#X-v0iVFJH7WZ4a-K zvVRz5bNqOWjC1c50hgUSfBWT^U#v6u`S^~P2CNY>$hv>xU1`LZ@e!-`hiCTTA01vs zRb#r9cD}pwNq2W4@98h@9e$Emn9N@oqVtuWUgXl$($cy$wdrsUpYPK<3Z4_qBd@zF zLWB6`%$d`|a$dT$$*9wNdOX^F^nFA?z+XB`1C<^kHW>x*}1^;#79EEww-;iynD{)Qtf z+N9(%gL!eOh;2)TJIhjj9NSmEg1e%uV^^ydyv?O2Ung)`H+0tdnp`1fCnap)-SZ7VD+zPu{fYz7

d|yhGgz$A3fZCK4^Mx?v@MVxs!t9-m}GFX%j;@Gs`-XBYu*%` z+tpciwR3PV>6_W#9j^$HzUb$dZ{DOh^F>oTPV1Fxn`iX)v)@^af9#xSKg(&FqU$vM zWqglJ_r3ksd++)yRO#F0-<$K}l69_w&6cn3oV&~;Z)xM$^H~E}9x138z>wbgTGM`tGj74kLtt;KjU~HLRv{~WH2PGw@L;J&Ttb(z#N;U_V z7q>q;o7i;c&YerM=FD5RRKze%+OVy_a{&%eN4WPi{no)`Lz}&#+~Ss|)wXzgA3hW8 zi#nTg^SDH1T>5Wx$rTk9`F;3c-#7BZB7tR_Hf<`two%`@acanWMvQOy^J^P(jWU1%R6lJ*#+)_`_-O^F3W0Y=N$dXSuoa=JS(>9;Bana`aYx((~ ze!p;`MA?<~CaW}kjF(-waA7xI%O!-#Rxt&R?)HmwI3C8~K%8)Oy`G$$%)RyaZG-F+ zJ$Rby!A<4*9~bf}Buq_?#pAln$Q6>dy1ahe;u_Z02`rHsyqBN`>kPxE0g)6_o;`b3 zcWO?OVSXIW?XHb_X#v-->)h%%obRrUUrc+Jg551qiACGMka2kXL@9iT$-iGK$I0TV zh*7J63nE62&bp5*mP(LjQ-;meTesqjyr*g#qp*Q4UcQ{6Dv51&l};H#!`PWEIZi!y zs-q8B4K`=f8QZaA$0$}|y_}rE%=B1c;=nZ#qomT(y;s+%zfB2sG&PO%@bpZqoIPvS z6%iwa;OPQ~4xeIw-elZ^(4NaHPdGYiUS26pv3{T_Q$%HtZf<|?212_sDVh7Zr7%eKU%fF zuHLS^npf2H_vV%s8=mC6j~DrRaCoorbykGxm){bv?r%sSX_3simOTNXn8v{WH-`mEwP`OWRU&wW%sF1{f7ox^JP`6k@%MT1PXj= z`S#myBO8`1TXtN&P#;Mq`pJ`>vPW|sT(cz5;H_@_r-?H9?9ocYqN z*qCM!cWn3E%2 z6K~G*rdd=A(32vxv|Zc#=#Mfl%s3+`tqeq zTKo20RG9hVNQb7naGE93`7CHpRk`%XjrtjReOto3CM^2uLuFm-GTXf35$5BLJo>fq z!7*P%bu&+Sog{-3&d%DCp9Y3bhHroK_#E$q9R9fy5)xuI+2%cCBR`i>79{8|Cohl8 zdMTHu`%}i)iEh6EtmG!XCdtlSzDu-ms9D1$yz$0GK6-g>DG0|Kbad+H7H0)(+}jtc z5-dRx(CI__cFOm7&{{;Wq1?6(scuByS6cYrSu88Yk5jaO6jM@Y=dp) za`M!inLXFKRZ7yLYG+4@|MkMcnYCP-nOAPyhqXipieroSe8*V}qP>)7g&Q$bP5l3mOW&3nPQQA6<_`lIeXeQpmpcyu2p)%Z>#> z&rBZ}O6MHwsk%3Tu&teT{M8@^znCGWMwQ<_}^G}T(1Uf-Za7OlLW3hD0 zTBYum0?$+VUp_u}@4Tur`uInY_fIY?y0z7U`LV0qs@fJ z)3&sXqXZT1HNiMLm-8SlGPvS-TbmI+pzc|apmv^{19qiyxaX&v?qh?Ac)-TAM4jZY zeb+4Hfi9Q5B)!UF7%?t`+;TY-Tw7$f%@{Yge5dA%Mh-WT`R9m8U#Gt|Y z(#`Wb%C2tMjg94Z^y$UrlD5s8k#BH~V`-MPWu@0e!ru%I+J5`pcihgsHCq62!pvr{ z7J52jdO*{MJ9uSXUc9fm=NqW#?N!v$(oz~MnXH~_rqU7W+M1G)oo@LO=QP;Nh*A9F zrdVQ=hNh+;Zf^MjdDayqLSwBYg9cp$vs>B`_*f(}(@WgqWo{Ea(TFl9mM!spx=u6d z(r|BlGB*&-*gz(->s_r_jor%1m(;UQ94oSxSOL^u+?QM!W>%Y^Uwmn~$>B2_2PpV;SftcZz^3sen-oL zdk_u+G>k1U@E%~K|gQGnq#vuEFvOrLVb;H|! zEqr}cXfX%Ja^W>=wi67zCVc1)z0usE0!Np993Nh*>!J*KlwsFKnTdeZ==)cet$Eq0 znzK%qT#iND4O4_Zh-lw8c3!sE^Y&G>n8~<7AvhlKg z%E|=h4GadoRepUu>t-E(V)4&EzwO_OA9#?j8LdhwV9Z9z_>A)N`g)zJ@-zM2-QDl3 z@oj5uH>-Pm7A3)~kPt>OWA9$Iy?cLWc{WU`>8`HM5uZX$!Y=4cWs=N97-dU_G^@lm zh6ZQS9sax8F6-n9eAn&UZ4Yqz~6f)Xw+^Ojq_*&rSo zx+7`_`}gI3ts380p}I!Xm|oFem(~Av_jUc+k>`mOs%xu{u)p=;`-4L>&l}d83K^u( zPact+_apt=GVkU*&4>qCH*PFLWp+5r{!N$- zvi((r{z)G57dN&D85MjnDPMr!KQ#B;t|dA+Xitla%Z{c<$#P+lgpW;M)4WyKc_p>F zbnA_ISD#X)1V~(=I-7%I_4DQF?_C)h@j`1ebr{3JQ7~ z)8m2VEJr2)d9{)aA-3Qf$)y6CTC%yTwZm z+y>fPe;`b*G4Et5Are62zNbr#v;ce3Jttju?b;RVIr%9E0rHloq)lTaF8BVbj^Qhm z%UsKs$GWzjEQu;d$`N-TJx+zXex|Lqnp!}VYN%zkz?LoQt7KhjkWteeI(DN@P$pD* z^ynSFSo|E7CPz(75+{Wb%dc-btN~aidRqr~)~+l7RBSGIX4Loh-_-z2aPBuS_AwZN zPmii2RTGY5Xc!oT0F$Q~7kx+A6e z0H`V?yket?ikN;$)^#w?$`C97V)6B^icqV34fQy!_0IjT)sY{s@}(btwL{vms|GQ2 z$o{r6VgdoEvT_4v0R>P!v^ zFFE(yW+S}acE)z&;crncWS+DYy=k3+ea+CYw6whC$y+}s4q@5?;GOVPn%9*3Ky$X{ z^z?KN%9L~!)Vofj@6~Ny-`{TJ$-25jNl6JaT~tFa_C(gPo$CDdR;D| z;Pr zYlC&;{AHWBVP|Op-m>~rD=h)`8gpHf!`yqLJTxfsG_$a%3U>p-`YZNZ*T-6DtS51eM0Nj?NwJ- zpSN&f#Y;y7g3}}Sg%*p}5QngGWx{eXvlw6<&h()~?eBFFY)=bn9yH?WZN3*Ae`sRT zv?aEgGgWA@W<(PFPU|WUM|BY&u*G7{I7DtqtvG#rRee4B&gfBVlvteUvmO|<{$af?c4Je z0=+LAcK-cm`Y9R+GGwHZB7(%8t;{<5-z3BnskrvTwXel83jQwr9&vGW{udwZ9G#%v zvfe5LY4;I(CE9-qk#lYMzq4OQmyN0Wy*)GQmZn~3zlW^&mv8p3TGEGjwa}M!|G&ED z|2@V3kM9O9*tKWR2Gm^({bkKwEF=EljRTe_VEBKK&Z1{{y*_V8sMP}Y=d%C_DSA`c zeIUI)!N&blf9!QbcLtLp6`^z-=6OH-pguD_b@j>>Q=3x*jp7Sd$!HOkn3fe0x4Y&^N`lQ3otlrv^SBLS^N`G4?EP4i6Z37aVtV@3Y zU*e(E-6uc3dj-BG!RF}Eql-Zj%AfkQPDp4U3YD6{mRuI12N7w#O_|B*Hh4Z(lU<=j zYu?Gm{8O2R9>crDkH6f8(7SKZBp@&z;u6V zPvQ~UpB)jMUu5s{bAXU`TqF{v<%jl1#2?0K#okFVDe0vW8hC^fEXqJXUPVJJ`^3AT z0|}E!`kAVL7vPtxz|X~^eCfe0Bg|!FAgw3Snh$rBY(NZ}J$GRZ;z0 z>9s-6A|oUD2&E7U13Zv0>59O7UBsvk4R(M5vs2aiLEnc!D3RS^+JcojULfsxn z0SLr^23x2o_A!oe8-6QcQFj}c2z1&CQx$YRQ#eQ5X4}PmhgJN$KFF; z2`isYHLuKQFk+&9w3?DZZeT9v+grm!> zto686Bah*8C=dCUE?s(6_>cx(fL^MZUq!fLGDoYSAUxMgpGxJVuupR*i)-u6LeEhC%+W)b& zMDzu$;%ULz=XMD=^eOmqDtz9CkH+Dg$H`g$+YgI~BVK@P%+yLbx(o7@4v3umJ_q97 zuUuLD6c7g0-Pon>w{P!=6n@dbf@+7#I4{O)Zf`$A4`P;jNbo>d+7dDUJ3BA@+?eHX zSH|i6k(LbX-aQIDSOQVWs2#_C2BbyetOrAI5AqU2($^3CUmvLBIvc=@t))vz zq*}0CbZ2tG1VxT}c(=z(F0Y#S+~E(7Kfx)y^7J>ew<7D8-`Ju=e9!w=chg;mT1%=3 zxR!b#G6Z4+L!i?2{T&o-EVQRG)aIm*^mKVHz%^b09%;oN+(`0}UEZ({i)Su_jyInB z_M@|N`+B0o52l)x6NPu~x8EW!^x$9eWN)A(XwHy)KRKS|4fkcZ)9pRYwjxtI4*j|_n+mt zgn3lU%l-Q6wBg@jkVlngA5+QrPZ(tTN594VZF?PDxNm-^8G+wBy+_S#^Z+yRYzMcD zbkK`48~&5R_|L21ff*P}T5#mJZ1#|g}c{D{C<+AdIA6}b4%j|_rhG$!X@{kJTKfW!b zxnv0vF$n-XuPZ?EBQ7s2{hnQDcM%n1q1V(_`}S=()%%gZCxGIC6iDGE zT4mS8#jl_S+I-SS{6w-6g7A9#_UZ+^3I<@|?n~Q3d_po_O(_Z)CRKIO1o%WPkX|QG zo+KJk#=iZubD?bX4lr|!@?gpOQ$zXDxB`fx_ygezIbKsa=_-(3xFv0c0X4Wb8R$YA z(FQZB@VWi$sj#tsS*fe6KxU-kMsmfu=u;5m^|I_Eep$P=v$OLaun~!|5|bXE z8q5K|0wL<^r5%r;4*|mClryK@dy;2@$M-*F6dv&P;CZ#~?)KBVw~veNA2Mt8QX`KD zunL0Z4lT{iqX0=gV5d`Td8JQ8l3bgppIHXS!QmXIY&$P<1q80$lLi$Hplv^x5>lWF zS|gO^hDtl`Ms_D=Sz&5a6N#v8>;`1D-q$I2!6w9mtB3>HZ&?!)2)^2;5zqmND!mF& ztu{t|ZMs#xDiDi5Uk{*@Wy6DeC<7zGy~KgH;8yVX?AgKX6M<59!=_EDfGE{KP?P}W z!9NmpK1x~wM2lNu=9kO8=} zZR@~6Xn%H0)OPBS>?%MUi2Zl)F#DJq8X6FfYaSfiUmhl}&qS)DJxf(S81wqlz_sZ| z9?e2dJwU)^t8=dwr4OKyE19y9QpT6mf6B`32W9G2R`{YIdw-0Rkhj4C8v z5`e6RTJwd#Xi)yNX-s1%PJh1ZJOll50|=kF3sHtyUlvdeftEK^ zFsVv`0I*j(%ih=%DjxB2k-<8<_FWaa2Lf%qu&^?&_X?_gn(4Ej`?f%PJ+|@CgLh$) z@q&Va8>FQhCgeazuUWHZ-f}6UO=ihXo_07<4<2+ZS|PjDaL0~ci2yRpTc@a4IGN%3 ze!~)w2kBk|y}d%--riT&YZm8h1S7~y(D~-mR~AXPO?iKnSf$+E{ns}UK(DjOY<=G* zVhDDwJY^^fG)CQ>w{;4cjl5F!+iY!ZaUAZjSRhXnK199y{Mik$Z$ARi^`}R{y3vh0 zeSG)qR9El7z(!!CV6Pa%{2UcUlqMYo4w*JhQTUi=ZEbDtiWmI-{V%VQHQUGs@$&8> zLDk~`@XSaQcQGF0A8B=2%W!ft8Wgc8%!HCGu`$`n0mH$ud}%~hL}bhA>56XGTbqr4 zP50io#21qBU=tz1n|C|Mw(4U8?19##nR&9+EwK}a+!rU3(^NZWmJ_*zU92= z+MQAz+%}NiTz+;_qZ5L(_Y~_oV()CQG<$(J5eZ-7O!Qy&RE&*{MSY~9tgL*i-uCdD z@9}p?&|m`N0o(haZXAS8Y;*ZlnuR9qDvQew@yp!Q2FE_ew2hrw4kN{P3%E@^z51Zf z1F06yH{yx|;G?KhzM`DfS5FBCg=yvc4-%;7oH~jZ;1DSRl`)+hg=)?!>^X|KcT2`O z4)KMrr)%ox%(gEfJn*C_k4XO|GfA|0KXfRNKZ25ylIMJUT2mqL4{Wu5y_s}tI$2m^ z6UR$r070m?wY{wWtuR(KSkf+|Ap?Zh<#oH8=>VtR`MZ#Cf1m8)>HO{YzJ(j={Ibpp>F= zH^+5o6LvF7%Vx)LP;&3V8^@_d{EDh98MV{~qXG|3u1rYX^h&)xznM$K0m4B&9%Lxj z|CwpkgJaK0%ysUm+J)1igGF)r^4Xy;UziE>8%>@kKom(h{QSGX3kn_1 zNrO1K+V?3l;#>T*sz4t&^;GdAD(p^4N#T}piXj#kcWEAdtut?| z^%SLxy!`xh(E5}(Aw4;}=wSg%IU17gX92(%dQUm8l6Tiam?Z+X>&49=Gi|=tc6g7Z z+#+SNYBUe@6mcrTnAQ>!N=R39TgC=q_;?m`aRFLBIEQ^ND@*4>>UWdt#|ZKV@c${2 z{Wo}0KV$N=oZLw--WB{XC$X{Mk&Ysxg$(9|qRxxIk$pUm_QWsjyQ_WvKNqL|1l^_g z^Zp+13l40M{TFO!+e}^z{=DzsD!L$wswWQr+nqJ6{}S*Q$ElU3%`XbzgKtktdJ*1S zng&y3e_7*@wryxr;@Gh<5&-)^hA<;xx)U_V%Gujpdsb1gx`SUp0HRZK=7Mu`L=*87 z`Qz8W0RmIAovv5z54y zxw8`R)5|#TKf3X7U>RrDB9q5nJyWwqB<;Xg|Gl)ix*F+|tdcLxAQo;Hc*wqR)~b$g zT#qVCg+1F_*{F`+;IQZYzlhguQ3Ngs6!Y-#fNf#|jrH|kX(AF$)XbDLWwJ_(q z@8S&e-J$h59W8bpb9LUyku=*D8Q@sPADYBn)!F{9 z&KCd1hvMU5mw7P)i?yM-vgs;N2I}Doo@tQK5)HC7P^6G)gw1^xRsJ9-dRjROXk>S? zVZL?7Iau$C&U3nI?6!}5b$8DSAjsT4D`dIdM~>Xy;_!B7Uj|YyH}w4*3Z6M~NTOpt&UK3}!GqhbrJa<5=j=>YUA>{hsR zAz`C}LTi9&!lBgS&GWrfrB>(&2gDlWx~Kr`YT_1cGGGxjf+f&Zt{v55O|nxmceY42<8bf{G+#CQl7Ihtyc_uTNVrAP$T44Gx)A`lCPdm1eheX%Fu6ne8P@8cUtnnx zzOW_m>T;h5_%eIoO3;P~$3N`&xS=^Dl*3+9Am~|Fw(&BHj5Su4ukS~&`b3YF#USAc zX+-{x>hW0qnxNspeEG7m@GVT|blaB33FMA@@JJsccmfoqjr=y0&1>@ZS$(FR5gcUt zU~%`4aN`NjZdg*P1sJv#zNoFt7J&zGuuofHHHqw;w|L!=mWs+By6@cI7R6kCn1ptf;p!Nn|CxY@MyFXA?hT7WuQF!8jW>|TWc8Usr(3RP|?``hFa1Q#8P zs*YRH3vzj0O@@uWdGzIyb`ZN%VX(%D|8wkCrE(Y7@n|1wgP?{*;+Au}4?Xs(tg9`N zf5*zMr~?CqI_uppnkwE2Hp7o>jw$o9KfIE#Wd9O4dJ zlkLncj$O)DD{zMWpTUPT+zHeH?eMo#|0|dDKU5sb0RPHu5@16p9EBzRhf0I&4CLDa zE|!%Q=Wu&VsNlg>KPV3C9Ia+ue zoE<&IsnH-73u1B{%1P9pYA|S#_rNm|Ck};rR{8MsM4w1@Zmty;jTwn|ZSnqPL|M3E zA@C1;gyK)1Jkf31^HrysfcsGU&dwjkKY!Ns4b?~4OEglj6ly!2Xw}e!O5VkDIaX4u zM1T#UqYVcW0Nkzrrpr0wq0z37sgK=vyCSUH@UIKudS)_8B_FE!{{=?nC)wqoAI8sU-p8uefPx!1*$Hc?XV% zfwc4uWiZ9Q>*!cZBoq27yuS>e2M;d5aGxB=6hHaVG~K#EgTgKL6bnwSUJxmPe6(sH zY+ga2PACaRdEJ;{vjK5_mGp_7F!H7sOnuTPGau1p0c(^-NnQv1tMg1UDog@GjRzA% zr6RROporyf=?-X>;%MK??%m+nbMexp8Zg&R;~$Sv87$-W;WpVykhb?@1vL;bD1KW_ z!fIT4G-WS&0NF-=DEK6LVM|9L?jA>3!;HjIKHof_OT@5Q!0g0{2RNXKmHByjT9JEy z>Kg%hfh-U`xw2{n-pK`eCy8#SPQ@R8b%z;A0t`qBZdsQE+~o9Q_61(h_@)01}i*nJe-Pz+VE z6_2eTIyWB9(W18vGkG#Z61h)O93P|{MkF{^H?4pJQem=R3^t%1e1;AhDaaoQ3Jc0^ zJko%~KodR%3mOadjLvnr75QbM!EAN=a6}#k3c_L%Fb)L-1UPk9!}&+%8dxvY+}yID zS6Juk4NG-!JnS$P9SnH_TLZeIF8o)-`F~_T`;%q=KY#eN(}l~IuK|ZDz`nc~DHLLk z3h*KbqzctnYiwCX2>-mVKS9~k0>punLm2!q&?q%Zpxen}{H=Bn%qJwIfMJ8D^cW7XDf@EHw zXjEuOYV}r-TjtT9bv?#fTtAMCIJ$6ih<-!8U8zCj>;V4>KTRrJj(4!1oAO*fzGKKw z_NP*l3^qa}j7EaTZVuxa2zPOFyH~mZ5omyzhKd=~m5wf_>@2y4pzq*c{{=w>rPk_2 zCm(pneZwJo4klYm>?8o&8o_Xnqa%%Y20#Nb%B6(lvBSD5!|kfO>PGJXY{kON48QGl z*gr_ug5-_3Ouw8*V=)`y6vUquUvAZpx@k!VKsqo?JRSF)u_%0JX7Pu$c$gq7i z)tcjQXko$Ly?GOX1=KUj1%-pSOcrV)3Q!>lso(jHSZb_funX91P3n9@ga*X`WZnbc zexY~CtkSd_(3#wXiSvN~IR!9LX9HM%5XV^yDM=+<;V|@0gb+<2KWE_Ht#*5Jo%^C7 z9KeQplHBK1ptr!$N1P<$JJB_4(HuL2+(m$<(BVNdiC>Md7li*B>{292zs^f=i?U z0A4+>tz{+I$U65%LO9)rcu-4yNw5+hM@W(wbGQTp0fLSOsA|wb>+l0A)H{Lwu#t!! z5MF5+`QRM@CZm!L=aL&?0;|RP)MN+G)9cZvMWYSiH3@(c4UDXIEi-fMaAhYlE8DOE z6G;Blr>1!e7Stju((a;!hEsTz583+w0SU@O;64tZKZwvET2%a zE2ZpLmwRDXQzzANPe>c~O3V~U&%rK$p%O4nvzCFs7Kg9$WTgib9`@F?zSI=;awU$* zQgkE0SJ99CxQdP7fVi*jBqK3$7W4P^3=)*GX~rVWi2g- zNyY{ex^DI~4wy%OW}gTH;e_&6`4&L`#O|=M#jK~4~k2QPs`DOFb&PSbl zozD}R+QdL+8xaWP=&34S;b+%9G!!mCmW*l~I!EAM|5Ut4Jjj(Ok;3t=;H^{dJ3IL~IsLbGn;!^o>GKMdZRu-e z>UU6i#*DQaG7K{# ze_Fen9E`3l-Eb^;38!?I2MfBox(zSqu1fKC5aFt&4_1&L3W!qHs9O~BE-IrcU zwt3toyu-XAX=ezd#JWwJ2E*)H?O2@%35qC!-v@TI4H{3rFcrPmmql0b^HWKk!h-XHl#hY_%VB4x1x2%0U5^@Y+C*2dT~)fbwRQjDAJ1Wb zF(wKN+a*B+EfP?E35-h;T?;Bd663 zfPDb2fV^OO%M-On?R{e<3WKB@LAhEld|L1?D012(zMyihlb#0PpiXAQrS;hRo`~yY zBS{}X^1TDZDFn+0*a!`@L$aWv9*1a6es7@nrV=JOro@kxEl#&-Iwqh$!MY;cf-DaO8hsg}>G)8~d_OL&;dIw*NEr#>Y}*tH7V z+1d4dOzyc#Ys5C$RE8yzewdiqsu8i{9GQ_+LS?iOd@@?2U!hh&^6tH99;Oc6>h0UN zTa6!+lM5ZZPm@-1NX=z0nG+g~(MYzE%-^uX9DjY^xVJ7bSVetJ%a`~W@OxC45u?{# z8IG2$LOR~StMVBky*06SiT0;1bwq=!&<>o3S`Qeko&KOge0I>RdT<$2Ss&wd@H>K}0DU|o{sRoYR7k4hdD+I&(obaahWq#{JxwAZLvro|06?Xq z2mkC|S^4t;=BVwP;F*Q8U0FBaZ;KO8zQ$)^6P&JE@vWQG4?p|>Z$V0dNG>m3J~K)Y zkWf0|zP08|wmpOY^y!%X7EbG2n*|5HS4R}2yV)TGKYKS$>0{`ZY_=@U0l(k%ouYB?k zR+FvxvNf|%h1qJwc^PZ+tBFz zF(!gq=6Zz_*%$o{24CN{>&_p?8#%;Pm=JT(=%AAex7*%B4inWaa!DhRf8YJG+80`1 zkg|a0trE1@i^)lRCH8w3%Xq{pb*u`1{W)UH0-OV(pVW4erfYDf;Rspi z|NI|}*AD^!)k?`r=!RhitA4&7t5!N1SDCm;r*hBC{cGpn9NetS)H176JO3mo^8V>& zX5>_AnUt^q$HU<+$(uv{ivv`4?%r*Q^1iMcq~*d3`;EV8F0SpkRAe$J*=_Hp%yGKo z>IacG^n-s?^Z#%QwvL^n&vQ;p96Mj^G1G74jz0_ie&DdrI}<-wMt06>B`}Fu<$n8( z7y2KX{K$2_m~Ad#eLn5HTn&$0sJ@kRoVqM|mI7T}T!PROv|5n4FJ5=#IN|CBv=F9FNdbmh*F=Th$E$Kxn|NTMd1aH)}pI=q)P zfGO0WihuRtbXk0AL2ER1m+Kgw+=aE&f^bi)aIge;#d_E>Dd^j@VzSTK=GSu!LZ7IcF=xvL!Zg^0aeE9I;POK5658X^4hrP_V9UayExhUV@ zt|~HX3azZJ7En;Y)3L~-dn`qlCR;$W4*sSoQD3s}_GN$ndeoJ*$iSz<>VN-fEg6vd zI%?L>ZQF^c8!+caxf!+(g0mX=g3*@)ih2DMOQ(4Hr=Z}>@NF2*AW^9z5L7M^)YD}& zrm3k}-9MSNNsUZ<|Jo0dU_(p=;-nRfZuF-9+WJ&&E%6-K>Dm`;)77*!FknOd)ty~< z#PA5Dk_R_Yb6Ns)Ni+?57=l2yY0e^!E6Y3>P~8$BgM4OeFWCet2b)Heh4E-$C)clp z_3PWH8x$)vpZ$ejSunD_?D7I`-L6MAV2#r5Hyc-|e$!C;2hode?tL1-L1b>FsxxDkHn$(l?@Nza|S6>iw=lmHkzpOJ;yt* z(>H(q`RCC_tK?_Z)nY1nI0)3mOh_MPqu7@({jB_Pm016?imQ`zI}`_2aJ1_>uBb#j zE!_=kVB%QWG^hi%gGItR24FT`En>&=CD%`3QOH7rZ`OOyOd65pjmUa(epE-nnL^kT zs_JIanotyz3B;xmt(Ho_Xga7zNeUv;6HsjbqGa3_`E=mHhlxULw3%MS$**j$5G*Ow zb0AXic?Ur31PE)=Qf$mDs>ZywJfwK-=acqQsn!O;iD z{%-4}T#|Ogjd|zh2LdwzIgnHccmP`kdWm~9Odgk8Fcu!Rb=h|zc;-Q~FtWCDVd91h zon~*Ap&tXqQ4k+7xxAjEfv~wmQhVZY1Aw33N&7;+Ad@~3FkQuJ(B$oZ0~5B6ng?h? z&i(tFJ;C+E@>=>bE3Zk(=lcZ#oR0+kDV%Et=m}vKvjxm1|O{K`cN@V!FAP zjk_90#&{^9O8tZLIAGUT#b|x`T~JxedA=s^<$mK^#WO%6wHcU+e;`=f){;pwcb@)aukWfYE|{o%4d&_ax{wvV*z9MiQJ zRTK!8uRH@ICwlxOTd|Cbmprs-)De02`L=eBv;u%jgx>jd7^~Ua9RlRmU>lTE6(8_} z*o51byd4-wM6D|$w`mL*?PfvO?@`IpZ(rZ;Q^;atG%>I6h~!f4T0hp@3o!|Z*MAh^&rIH`K7r85vbJuZ+823i9h<_O1|@J^B#c;^5C+8 z)Sb0UFH6ZT_zJ*OIymbY%!QY&-e=tougMu7TH!6diI&pv%bQ({s!yMqLcanK!smZQ zUBzsqxjOVyNWuG;ZpY^7^2B*UGujHKXKNED_-pbeCZ!EtWOwP6?jY|c(q5zWb6CB6 zO8!`&zkrTMHFdtEljmzYcn2-Iyh)#|!u#K=zdo;@jU>S0Utd4#BmzDQ{EL|z*0No~ zOj4(0uCtgd`|Y2|>azd4x8LW80`~lqKR?XQZfL&IH@&u5C9|?r(4eQ~TE<=S-Be6( z`CK%9yL-JFp+8UpO4VSDv32~|e5_=yy!VS?O2N)T!&lfR=}*f(yFl0`Bi}D*EUSl_ zvHGavKebBy6>c9W@hEtbUgOHgIA(U$VXqvc@!AO$rq;7F1X8=Z-bUqjf0B{)Q%=0% zy&lI)mI{dB@58!3+$j3k>A=R>toWCxcsQ10J+u6B+lChUkEdo{FEW|Mu`*dtO`MH# z2mjhy-!7q3DN$3Kx?mNz<4eVE@%P~)Uy*n6^yjiaFH_DMseC^%ZoZN`wdLu~^xPZo zU!t}u(Rc7TM-RIApKM?378H&iXS4Gr9dmTtV!FU+RKZS?P>B9lYp;sIcqHVpP&16pCOVjY zv$IV5P5HkX#}4fUS|vv}Jmr9YDse`I1>8uW;1f*gK(|Y*&@4*ZBK~6dOl7|l9mOK+ z3r%-6I_P6~!h;{M2e~%tX~E5`4W^EThW&N$L}MPxAqo_w-;z_Y^Tka~P|r-Vt(TdK z_N3Pvre^eDItjTe8C76v$Pq}=2&~NrBs#d$^a0?Nt<(^J!8fSSkXLV^opEsa42Z%w zz4SQZ=YbW=HqVD^i9wVE@fvVA(b%BW4F3xk;NhwQp+*YSa}3KNWI`ixF3ZAv1SCk5 z0?7j~o%8N-Jr=XDes@e!`cIcR^ZL{0g0_%LaZl=x4cl-^Ms|UzCj0_m>vP~j@hOhL zbJ36(p!k8;4vvT4;nM3sL{b}Ex(eo!z(AA^hXmA|Sio-Tt0ZX+?7AxGs`Lz4(o?-K zPLSk)T-TvGUy*_sV0gFzlq`15LBf>R;9zy&Z!xh;Yqoq@@o5J|o#z!=_OKqZ-@y6)aKy zGOIZ+^aowxC4`S)mM23T7JL+Py=DLF6dDE|g^32bTA0=N8K_pOF}*DY zS}Z0bsgSTkgKa|bAizA#$TdnnG{c4hRkbf)qh5fVh2i_&)gjE6M^G+Vo8krl+n9W)3`zZ@NkTAH0G^%OCGZnmeHgfbEWVd2 zGTEWLyYS>tk1Vk%e`~<(`S7NQj;6Cw(dH|_Sb(%W=o7eZyo@ap48!_ob8Q((Dui;$ z7fpSpCN0zd(0mDPOY_{kj151vO!xR@erE>}cHR=<80?H#kem_&Ry8pZc)+$)P9kj~ z?B?fvEYnv$r=6FYZ}wZEY7z|M_Kxq@vV4Kw7;Vr&yX_$+b@Hp}PlzzQmwJ zyVOFAYdeVo#&)U^M)&@ibK@L42@u7~n^#Rg+qrG08z0biph5BI9v#8=g2hJJ*7F zBj;potmYmZ9rR$=k{gB21;lD{zPt3ljv(S1t&;o3#%Ur1h?SS2%j{h3PUfDHC9vY~^p`~!;8+2tkhp6nWN$4{wA4C;NfrT4 zBLzNqugB4UgA;OXevw+>FS}}ToUQsCz?aeJlRcQoREHku^=QFBU8_VfV^KBQlgLP; zmuYL0e_|L4CW*uJR)`J9W5q!ZaK{X{YR^pwPSn6eYenNoXlNZV9&n1iDo`yuA}be? zw)jZN(~1i}a@hZ#Zc|4TSJ6#OYzhhe)?N~9=>uKi9I0jK(&yfo%4%gcoo!`B3GTY$Zm;Lfulb{n?Sg9p&iKk%|O0L!&{sXn|h4#G_CbVE1 zvsCG#4h^~$j;~n$$Zhu5t~XlJ<4k5}%v7Wdb8sviW8@!TgI07jW+}0vzpPrZd9>l{ z?egEh829Z#G-j3x{E>%)OJKYYedCbL9?@XB23{Muh;Nl=Ag`ITQQyL|-9uIH4tB0w z`XRSfa>i!M!1Mr0@Pxp=-TRou^0F1rZmyR7@afY*)cvanZQN}Aqr){o7ekTiIddzd zGVXt#@|K(dI6N(EHJ;MRTqhim{^tWCHbTF!&H!Q|{cJh+pNNIL{%|t|+o07U4Lup* z5f1CgcX!&!{q=#zE@=ooAl+p7C7zd)iT5MeKvoFq`giAi?D9^zalLuSqn6dHC!8iNX;tEq1l^&<5l?rYfnzxwW4OhbG!TLqcjh%$NCWGAc+Q z8XTY{DJjWi)z|UFSxT@i^BwZ_O%R6EP&blJdJn4Lx#*R|l95sgZ61?&mlvaLeQ*O; zCaHgza@XG5JMp^J&D{BGNAE*hLf@J%+nx_^cjR(mmp11<`$(~m)203g+eE@hd!W;V z2{&I2^eFB!Mm7(Xkl_8bN_l9*w2NFfzWbud+19-U?CP#wBdJHP3|RRa({;egwwix! z0N(Wew^@=io*g3WRnlT**YY!(n(SOp2y82U!)_P)+sLqgg2n&zC0={xp~jg*C36R| z>)0=oWm9bz`e(tm_{R^<9xpwNzm_(?Nc*y%>g(Ynk>_-i(}mVMXc%6(!bvrreL!lv zuPgM9?B`|QHa0}&A=meIs7rDh*_Tg$^WwXIb)diQcIG?c`ELu5vj~QChBR zPxc8JIg$tTxXdjaOl_$AelcArBiHpJ#A_iH>v?9of>ErqD@*+H*GDptHBzas&~ZHe z;@}S#EUyN9turQjvO1!hW|23qSzz2+lRw<1_vMYEiqQJ|j@_%cL2J0B&fFO2UwnE# zarS>#d;S}Ln8!9A(fqGi|HR&egED-KTi*SVN^cL%xmFwI&MPBf=JK<_qlV=irClu`(jO_elU1-6 zyEu=dw9HIALod3TQkc zVDMeEp&p9)TM+ESc}=zK)IN@(Gul{wIg#dCU%#ix*!mYo>-ek z8X*Qz`#LTKR?_*)=i#}Z#_=C&;ftau0qZ0o92%g(p#C)YS`caNQY+C%1}B_Q(Plmd z`Dej!lLL&zZa_meSvyhaJu^)`RG8|W2xh@=xtKutc+0JM_!I}~L4lba>4XFkydN4z z7VJr$Nz87bTLfwN5+8B}wZz=8RIzh{g~=b@jjiH!Gn8e=Y~{P>{A!LHucfmXa~|8q zs!o{NSg3ssCL@~MK+a%lR-l1|F){04f-=OolxuubXv835nP#@2rm}#lM%Fo+HytUR z6dW8(>(FxX;}YSQ zferYQ^^Hj21YtaMHiWXu+BZeMS*-M=xG8DHF=Zq9>s+U+EWVc4A2OW zwgJw@@u!F=zGt%+OpobCIrotY^IAXamcAW-{ zH1vyM*+2+ep_ZlwwO04OjcAtnSTIh08aQzXgVNkk_PpO;hvB={M8nM1BM&*KRT(Q$ zo#oImcq)%(yz%k9mct?YV7hsE=5#{nLR2c?!(YKq%g;c~ge*ZF;bxU#8yP6+Xjc=7 z54PJ1P>~u10Vf5aI+Q8Ee+HjN5os6MSy}5~>4j`eJw*vA1h(Ng!73dhs|W_Y4%;yB;O|+5tdfFeIbw?n< zKomoo?Lyuz^8ON@&6$CDoa^VG@1Vb%M(0=*Br~-zfs_C~SdX-@HX3zKy;yKOlMY40 zh^cY2syzM|GD4$rrjb0j9+5SA4@@txZh&Zb0EBmo$*`^g3 zqAz}K>y?!l-vZey7E6GQM2N$w2VHz=hnb_F4D$2y5q+(yIRV}?dng(;OAf-?MIVIm z5*Tb2-G4ytg&J2}c!4%kK6 z+2rOYI*s^!KKr)iWdCTF>#0qyBe#7eh^|AabB`zi)Rs&n36wxp&8E}qQicQ}ltA*l zc;NzLq%m>BO8PrWEdXx%|0AFo^He97Z=r5Jyn4y%|Wyr%An_>|q=j7JVTq9vf(G=26QQ2|SM#^%l zC1y!dSi1bWOj!IV5|xrl?%mT?X)F4j=lh54oX0sl&g1;S<3W$=_xt`npZDkee%(G9 z8Rl!e?(#s<>yGaM5l#ngOzC6q#T15>s z8@;D$2IvS*W-WxLizJ#L)X3@t3PQk(S!QbsnW5tex@v2xbl^ZTd(#0_s};PbhRBFQ zez_N(JD~?jjNA?`X;`OkIGH0R1-^Smr0FE4@j_9Tab8v_4$>YqKgetLd4kHQ6fa_m zZ;P`~)56$-eZZU_4bk?WkE+dX!i3EN%yA|k71eiJ+n(Uyiwz{%ABREYt$axBO>$ZCk@l$*E+4=dY;Xod9_LP^jf=p@P*9S z>2GWoB$>dYoW#F8Ot)!|JkLoe8}|RPUx%K~?cejI0UJM^y695r$wm9!fGus2xG<=v z^}idiOS)-wdB<7b@BLeLWUIYFu#(Ztt~}Q5hPMkII9dx=p9=%f45C&ft|f9gah^FR0e>!L7(hw3a$%vLwg$GpG1r6$2Pg}!Mzd?kOg z`@3`ws^w*85&Uc}f7(?&=^20E#45eioY<4-@;LwMC+b$-J&a*{@0`+UFFCQ&(|>Sc zw}!7CY;)^&K-R92Z(8!R=}b1V)K&jui+M~Kpcrw!aPmes_X3IR-F`XW zfi3us)l$Q=L{g9U)99!LJ%T4UzzY+mwZ-`ZUZb%krf@32o`9x$NG1qbSoI(Sa~u` zJatgd@mL6c0b0VzA`%pu@0XM;dUi)Zfz=SJFtDcDO^7OFsGA(B9}lW}l-5`rWB3AU8;bWYN0d-k6c;Ai6$X@{lIx(bM*ZGDm;OBl_0VY1{aYnt>v<=cz~uA_F2i zBFT~exo{+qJ8g#8_#p{A?slqNR|ZK6yWDC~+1Az?62&uqrR#m5H4j4IAC%JdaPZgY zo>K)Cw%9OJ!YPWYa^47ro=O(#V5dD9 zi%7H#7wc41BkYmHfnj1e0p;)^)_lEM^L*^yg6aRX^_>K0qOpFhM~!O{dNH>o>&-#q z31Lv?Jza$80^!q(4#4eLd7$#*wZ_7cYiK=>;NLG#d0SiC4g)}P<4pm`7{$<>xg`4| zZx!{igdD*)tw>1N+TIy>LHCpw!f>$_%Fk_C=-t=)#e2yxAJ${1Hogf3{YS5N-(8w) zi5nJt-!^Y(%Lq+tK;S~WvOJ(cgdpYUwGytEc~=phXj1#r(sM%{>*+Y9 zI*>{F34t0>rG&z)dBz7=$Rr&>hK%edaUO))-Z*5~M(xnI4wv9c=`nHGn3X3N>1LKb z_N~qR)%X0|4^|9C&Gbz|!s>79#u5`ZBlbY07{&;iD`B#or#>pQkYMquC3vU1)4mK5 z=u){TSv$SFK2R3VU};|yxjfWXrDCzSk#()!XsU(eipv~XU{-dHZWZq7L!o>mVIX6n z`)GRc-C0>1)ASvDy4VKK4)O}?7*}+jmKi%$ns}c4{lN}3U;kjH%z}$J z>Bb`#{WZJsRHyEz1?llj5^@#Lt@BD{9aLih)yHm@JMUU7cDNb??~JD=-Qc|>KfIaQ zqU!BfquNCAlMw{oyZvmMy_=?GP5aZHZ7r9UDZcJjJ8JE13%RBPBGvXQ5J7LiAAf$g(_T#r>ic*oK9LfBSIj%9r3~``LK7e2lU|Hv2Yz-_JF+BsZ*z} zTmK}~1b^Z{98F``+er|0G0gcvjP+hurtcqf{f7m^lx+STxL|ZYKHVBl*1&GJj_SQM z%`wP$l?*+uX)8-jxS?hhgmVtHA-I2T1m&J#TDyMRWIjS#epAVac*?t1Qk{1&@aU2( zGIC8t`rX7Lzr?1}DZucf*?i8upfYb}c*Nxw!~vy{;(woArR1mXptIK%N#Wj)7Ju=N z=Qo61>f!HsrpxBBx|*-apt9V3_|R#3l-cn7E_;7XJ>{0bf_}iCP?1$PfZiDLjl zCo`RC(HzK=w?9_J)8Kt(RTsoD#rNYjFQOPmF(A1;xEfuqe(_k?VgMDDpfdY6E)UCn z)-m|B>g1^w-OPuaawZbtz-m5RW|a`uKW9VpW8a(&>jMlUyHszhLF<9{Ur3u?anr?X zTlRmwCF71EvRtvL_a3%j=5xXSwr$%ADMp44Axysh&F8v@HEz(jGfeI7-+ZNRYo8_8 zSoYAO!z@XF5>t<;aGoLaB&0*b)Id~x>-v!Hd5wU9)~2k-LrqO*gAL4P*MGA7{9Ej^ z1>u5+$rKF2ybFJbm~c2L?8DrN;*+3gGAefhYYVOkK33M@hv`hf4!Ixbd5T21C&gXj zKxi|q8Oy<>#Ma>$b}+RFAw~g*aaIn{=P^Mu1e53@as{ zjUh=UP1>d*Hj;tK;{Q%@+iw~>6Y0?&W63E)yeSS*_4ADinSPM z9w$kq__MbDDz`aluJ)2a($~_@Gw6U3K>?DrbjMIUd%{^$s_hWS0xU`tC6wW6H0FXX zNpQma(cCcM2_G!B*zn!Nq0$*hR-O2<`BF-tDxkji_Kmen>7t?+b2Yyx1-WG z)-ZvrC3ONM!A=6=S;;3^x^iuWT=^sZQ3I=hMRY->0H-Mc=zJ)O1*{5@Z?SCS=|@P8 zNd3BJ-@bAc-aKjjBy7Q^kV8zJdPn&aa~|DzEcUc9Kk8`QS=MYWuVkw%a}w)0Wj^P% zUuSO#MoI%$&*Iw096>)mYW;($k}oH+b&8b8w$z$>!CvM6*^P4#Son&HK(OoczL@EX zWmn_iW0{h04r(opKbcs=iBOYXpWMIfk(qC36z+Iw5_`QB=7muB6+GGNzpBz%+AS*j VtDlmq8P+sxCfQCr@wcUa|0mc9BMSfk diff --git a/_images/72ede3091c5ccf0068d1e972481950c647421ec90304ad32a9e55558da186dd8.png b/_images/72ede3091c5ccf0068d1e972481950c647421ec90304ad32a9e55558da186dd8.png deleted file mode 100644 index 762a244a0fd42a818d4011fc6a0ecb5cdaf2fec4..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 11786 zcmc(F2UJsOyKd}bL7hQGKtu*aiohTSq+{9+n>;M!AxeLra&sn~7sHE$=&Vf2K~lXG9{53r~+>+B0g z_1&@8HYmu!ei(mdmH#B?i`T$S>Qrzq+)zad-;F;LOmfAOT--X zF30cRzhBG4qxkVbw$#kB&BDA;Jxf0pv=Wn%B0%(XhP`r z4mDL(|E%n6ntdSZ#&vx=A(Y(4Ti2PJgl}Io&ZtEtu|v9V>=dg7e)jBH>V!EeIj+F>;MX*rBQ(<1 zS}%5howWY;@d4)7!*yi-pMSn&Ty&>pJhN=lZ9SVN^P;@(vyV`zzBL)ScF6HU&drK_ zv@dNYr1YGe^SL%HO7Ia;5`@N>&G|E#^pdU3HRP!mTJ+F%9p_JTaq)0-D~NSDKDhJk zOCMTHSh!()mhec%b2S-8j5VvMs36WaD24BODT4pc}@~hh12i%w`5zYm8?w`MWZu~sG3DCQ;Vw_-ut`{vA2#i#I+O>aA=$6 zt4zkufr%>Q#KuO=OwX<5fq+7|qovplZ|wMP7t498=cOBqhT5Wk)WKFjcaY zD(`db+0&;DPk!WdUSGa_^w_bnyiR+qrbLyauy%^FBrcq}IRQ-8R-!QglqvD4AO&!fLcJp>SidQ%6(twMLx6=rjHdb=X6>uur-@ zm%6c?9P2@Z=Bs2kHE!R&ZBRnYJxLtl*qAOq6d~hT z*fy7>8kHI??LPL139Ekl_FMRrcvgpEjm~@rJu53Kxy;P?_$wvuORX-wo=GWMNvX=A zf*pBw9=)Gm1lW`uOKp zmxJQzF(fQp9aFk8%v!QCOvcir-Dcxg7bhqVr7H>|7Pac3g2p+f<-6;mr43`eR#S8{ zjCe78LPBkRVm-+LvYYyXp~`y3gb-1Op0sT{b}t+2+1R8aXKc?&*I%`YT_!pbl!Z#P zFMA)><_e9JYF_ga+gU)5b`Oq-NKH@Dpvd(Nrmgil_5&a9m{MzII{!#J1+2cc66ii(TIa-paFWzu9G5l|20togX1h%FB*J&}TDB!kl!JqVTS$n8>oM6{)#I!#o~xI% zd{*asLcH;+#J~i7oQH?!m!R7I3Lj}R1cWeZYO(`fyBSz+b>uskSbOxnf20uPwz1Gw zQc16m!f}P8ajnPAe6LfT5&~}>JFEW{?XdW*T_GqOwv46i>ij5NJzIT-R={oM%gfI% zQsvJk;>Ri`N|T!NwJh!*x9%#qjh%yKwcxD2Wp3`~XW}*#GMq}uNOdBi#<&IJb|mKk z0IBx%^*!_VZ@s&12LPH#$wI5)zWr;XKUbG+E(m!7Kok!6OLA>ED`fVII)0U7yWsdM z9<$~zIr+S4biVM`Isjp6PEPaOTnqw{?o%a6hW1o>4GoQuJeS!)j9q(H13WgVAU zqAOG~9~AAiY7OsnI<}@7*Os9(Q0Ye)PtPa%>8=0p4nFb>#-PlrgliNI^<0FQ?U!H5 zIyX0_NG8_bU_B$wTL%f2F5i6g=n?PPv)7QR_h*;QnCQ&ci;#7lzLB{GxERF6z;Zsh zak+hcWm_^U4;hs@F%)W|i^WE_W*Ae}rpipHxk6^nd1Rt@jR zOPfZ6xuP!I{`qU$+7xNaFov}0mf)$Vs91Ac%euGp;lqc?hWYj~4jddh?DtLFC(wQ; z#5IMAr|)}hjGIv0=7w2>Z$8|&e?P@z5-{)x6O-PkCW)e(e&pD(Vd@dm$Y&0C<`lRN zJ9pE}Y{OnsMy9k;-@qVZm==@iK1o%i=w-G7`o$L)OBuWNJ(8K*8roz*+YGv_4_3dh zbWK2wo%6C_l*=WIHCN9i#+G`njm?iX5&Ir7&9{|p>g4wjDRj%(#B1TNo13*`It%6- zm8G{xP{~GxNGm>0czjESu_P>~^}GAKqN~VgT;k`?>J02MMrM`1Gt`p!`1rdfidU{& zNf7&ZRrY9G%$AX9%}ar!%*-iU8@*c#)F_k91Fsnb4D+<_+{uH&oNGxtnXdo#(u*@{ zt#G=btfh*`VBgCN;hV}cL8wvCF^Awb$mbRM3r zI`QRgIYsW^Nhy71W@ej)*A>@8IwD|KN&2x#>OygfmRX;^Oe=uXRB{9 zH@6U4wq7x}4(sE0T=>%U>(`-PYQP-8>FLi6u#9$7C?PI1I(W^oA|H=DU_+eZLMCZL znY7l~n{#KP<8GTYOlG$mJ&Hw|nBxUB1h+KV{i(LL8OquST1Z;j*r9mlaYorD(T`mg zYh388;pRpKNQ;Bfjsz;6)PT!rg2gsGe0-X{rJf-#UncsqN%BcZ7`VB)8359^g%8vS zl^MYnX}Z5_zcXNyyI^+!441Up6m#Bb@ajZIt}+}!s;GTevajy}qyi(HhUf(Be-E7*k5`JQ2%=OwJmMr)C*mUHigm|Eu z4*?0K-vT&|kR_E`)JLY6mOoB$=q+6ZBsh<2J)4k}H2yJ=6V~>TV9~cMB?q}cufkv% z_eERJt&JralJL5DsBt2cWa))wE#mr26=C}8Mc`f9fDF^?T^6y8jg2{^EiVD10(BoI zAzde@EWrC%W)Tb5I$T%5TT$CDvEuk)tA^L|d^|krw{FD)uSsIHFSz*h=~K(xtufe$ z>M(f=q^%_q{3#TwBXR}i1-Etoho{kQfKhMq>^c(>?vR{(wemQ#*^wWAe1(vkjvVU< zF^A~Vtxfk_`)-2(nbqXBOy7Nb_cruyE{aLde&mc0vGiAsl1M-ZN{Ak|fzW2GH<1+v z+Y0!wKI0ix?d#XWiHqM-y1KfQ9G15oHabyxT&vRug=&@-7Z*p$$9$hRd#Yl<$=s3? zsD&fujHp;W6HlGB#fc`^-5JlH9|mlf2fCmIL`u4hWiP6JcWA>l6jGKN6OZ7eopV{M6FLZYy->eV(BDt3|C z%z1u91L&^y%DY2^4BN@xG83Sz>A<$(&->h$CUwZ7cJ&vM>O<;AMyxQh0y5m(!@l@# z`~23l>v6%sM;>{5#{>+u>>uoBZ(mjr+zj+{_~XAVRkqK3d|LAC4AmSYUr6YQ@(V^) zefXeFu~m?l=jG;3>{;)NJoLxaf4-4!n>xoCP<-(R7)7hPC=B%m1I*HY^g;#EFR1$$ z`v*hlo-swk2PCG}cHTAVujPjKO?zd#9fkUp< zjcp9OEdQBj_*av#Q(Ls=)2DgR3jDmh7$E(HBd>kVgoe5gA2%Cxq6R;I9t%8T zVYErHGtZ7P^JoVw?&SVt+xjR;z5Psr&Fd?3xt?ox%q=XSaJwOeSqcx>9}*Ihurf#I z7ZOqfnm*Q+8RLIa+F-zE59rbEW9sc)#ctX5g`?a+6|Ta`D+H<(5)||rVa1JVmgwy4 zY(z`}hvgF&zpni9tOf@2)XB*ytr(^V)oi>iqz+p`94%SuX@Y^A#vo+{L8^N@_9zAI z+qX|!Uq2ak7!4n(nnYZhOjjX`wtUTk&7jWyaMwAv#&`@LAS2Mcqbw|`P{eSsC0Rsm z!?;r3yipH2!pb_nQ2gbK{zOknCtXxoSy{)xV2o;FWONqeRMZV$mPTq713Gp4MgQ1> zE!v{>>ROC7d!N+F(h8^1_)?MdNnHB=_GbCPeiP4H?&rA@zQQe=orTV$n$nA3%n+oI zaG6X~likoB9UX=G+6cIpYu&`X@U2~IZD~pm1UKDnsmDEYak87DL($dgNURxZ^ko*| z^P>+A0zpq@E$!77$7osqA6GW>RMG5jj}5p`!=`U0v*S zSfH3}D6OoljCJHvEbCRoy5m7N+EfRf4#^uGueE@6UMN2#t4(#y?@aINGFljKQv+h# z;>pZ#lDe!YS{mp>LWihi;Rp;Fsl-y}h5WpU-=Ek%n!rIWd}6dt31|lnMFEM@!bjd_ ztRTe8t8w+oQh?jz$B&6#3mTf5LH+&x!DR9{FBueD3Pf*6WqEly zh0XO8{=wcqK9U}xGHR{Jkda8NuZl6Z^Qw!Sy0*hJYTa|z4?a(=eP>qv-A}`av;tot z1t`T>7d1Q2zB@H7?d(S1A<}a$5Wi4f_>*L$OfzKFAgv82BnVnFqMbu0=kWN%g5+ z+M+S;lj71d9~hC!3rr*V;lrKXq^%7i=mTjyw`ycEz_iu;NP~pa;FCg^sSK#NJOGQ8 zOozZ@DHMp!VrFAY|Mtz++|qI_YQXUV93uFtzYT^EDtT(z)){{O4HM?yF>e0$J&d}D zQ}iY9f?Gnao#bV|bD1GQ#uOc52M4ADZTUQRV_S0Bh3vgBavbn^6za|6tiSVOc_#-- z&hO32Q+d>wQ2n3bvhSS4-B|5z<wfB(DHiC(qIexN>Y6G8jObGjpS^3(v`Smhkh4%LL z2vNHTO)ag{7z8$LZPNfYoq;>G)utl&C$!U<*|Xx=QN%;r1Rkpem159boU=S`}yHs#`A?E8cOM>x;hf-Xi}3HDeIUeevBeEq*l% zS04+UukhJlt^>=unQ>j|CzPD$hrdAAzk`YY@jY~HQ8;1(U>k!SPYV-P0QYk5-o4L! zeYIm`JaYi`@Wy9gwZ>j$3z89)3Ht}gPCq(2JUj(za9xb73H%xklvbJ7255%{JoYSd zeP}ix8JJiTn@iU#*{u~CVn)sq8Q2?~lW5_jrj(u%cO1CV^gIZCP|cF2_hd}LZvI50>0z=iW0$O`>~>IHPTO{ z`Ag@WCo`);o3dFmKsx}u?hA*Gd1a;q^pdw<#{no$^^_2o`@E4oE`R09aunV1Lh&T4 z8K0j{n6!JIMQxadHDV_txkPIr*g6!n(3jtiW-V@FY5*W&(M4134@GnA8Wr(Ax7B5; z^^%p8lv1VJOnp-pWrbe~nPed5;Hy`!qTd36t$~Be#dSsU&bQAMOeSd{kO>nVEh6+p zvb`qELhh~VAf?WEf<-p0(<(^FBaDpr%7ub%`=R0CRFg8VeTNQZPS#jW!*fQ|a<}Ie zKGxM)i{wyHBk;E|vU?}zbS=pqcyRO&o%SxQCNyKSB|?wA%z^1Qq6dUJH7j$Mv&9@@ zyp%5Y@6UW&G+C$&Hga=3=7n>EJQJ^=pemJ0jm~l#YvxTiDZ}FF^$S#$q$b{^rt8*# zo5daX_M8(7gZV%Qs*H|4c6oDFz~%hMHXX)~m10ga0k$6d6OFcS$Y{lsI_yFCo`th> zPSA@NC6z2<_G!li3|uRlnwmm@)*WP%NCxBl)5nkM+SfTg?+$s_ipbg?U1L8 zXT|`R5Q^u2Lj3h)cM%R*6Mz4VQDXqLSbs@+)(V)Y?%ggIPB>AG;EP^}5V&T%ho}Vn z{HH|U|EL=GQYLo6=bgU-z@m$b{xh&xmV6h93wXPKR*3$OWBN_-e%Grki65%@Y2%xB z>X@CeOCau2|0UG@Ew=dYFwE_IWQYw~(QQU?;58r_9Z;<7?*UxZaZVrrz~aFMPlW^y zO17b&APY?D!euzG8>8}9$G(=`)kkOd5v2d=E2dW>OIxR5$xU4}~J@fO^ zfjo4wY-=;ZP#kU^D+aA1boA&^Ob`e`K@8$WnVP=R)YO#vlVn{vO9qC*Cm^uUB_t^L zl8f4HPwk!*nJnv{NgdurE`07I(j3{gp|h0RdP|hPhVB?VAdKCr*!oSQ-5Ow}F6(Kv zN7AO&?tQB<^%bY+S@<>}dXH1l->UpELs0x5#3|n)=BJ;2lEP0FP04`hH3T<1BZuv; z#HqRcERb5%F-R_X1O!xo1%R(9KG2mdlP!Mdo4)7f3caJ?wpl_I7^!WZX4ewl?n8W2 zAc|55_e0E_g!uUXTUJ`m@UbKoK3C47%*vh}+iv-!L96@I!iOpjK7pkTG_&u=ivNOI z1e-nqW7=XdY6;gddYa)6B>?h^re{a_=ilvNPll(7o+&7}fYF4xM2O(PoVWZL?UG*d>|;xWB*JKFW+ zrWC{~tswj`$g>Sc0*v^0uFR?zK|!EzlVHctzJL>$11={}D9-2K(PP^WBelbzyo15l z17Bacp`n5A?Ac&0v~}YZFj*ihhQwD-LE$mNrvRvUK#@Yo10*?n7OW(cx(moqrnCB| zFk?+g0d30=b3wq%gK7NNR7ze^vF+o1gxizA(4ov#61>YfAm9zHA>`rU{p5DMvy21V z=C2l21b($ZDY68PZ@OJ4vrVwugj$(?N&gaIB0}V2$0iJ8z3<=mxB3_#-hWu9b{0N< z`u`6i{5vS}mwVpZxNjrKgXNc7f^<*p{-++J(xBY~jtY|hKY8+lF_=DYshmH*_@EYj8kxB1{YnQlUwJw(s`RiQ18%4Vg3MC$Cg3kNb(9&gACN{1@Y{2NxRq4mA(VqBj_5%|%GfXbp$%uQ zg~h^zQXpzvg+M1A;xubov^4SSy*;+y4#HK0;E*i0wTXPBgCIg2pLp=Zh1kKtTP48p zK;(J)O;(LM+dv*2B3Qmh@-K+=+lW|*q6f`V=b{PlUZ))YdoB_oVe)sa-3pz~8354{ z2<^1N%m5GvjybvDN^kV7p4HTGv(2KCY#Om6(pMjUmESuBPG4mg^v~w z4-ZF7SMaaF?M{NK0X`>fj$?+Q0(x->6-V`~;4T^VOx1&6&l2bA#B#y8wd*R-K(q=- zRst;3+`>7Vu5c%i92#C;rO~ead!ai7*PdnGLB%IQh~1CQ0X9KNex-vV2B&&UM zW>qXVMRkT|K`$rkWn#y^yp8K2ZFzbwwp$YWpPqp*sV}?ubYBs^*rfUz|~a)vSI0Xg_V- zfOZBm48xr7f=Q6wT#nm&=#Us>r31!zYJ}SQ7n= z2`xIqGga(jl{*zhp?IGUss(G}+aE0Z9V=PxnY^)r_^-37bj1(NGRA?&!G}TH^ql#*u@m7;rxniH+iBpAL z4%*=X9|eFAykR6o)O4hSr<4I_c>HbENiEnv{L&|V+k-Xg3c{0T{FaYi;*|mBfTddpp zMP&fH5Th zd%4;I5M*_Ij+P7cMk!#|+RW0m_N(vQ4=jc#zhNVduZP!Fopis3q$B{wgq5LC-12lE zi>z0%1=t+ljlXy$fh{=cA)6uX&vnjt14e)^s01$7jAYU)NP!T$Oj}(&7NLP<$q8TU z%z;!(K!rgP<2P@9fjwvq2ZA^ls2Cg;#>0Cd+Zs~w_wV03!<4)Exgf0|_VYJt<%3is zFT4UCiFm@D?3O<2&eNLfXjf@mw;_MS5yxZq%8>lpu4sFq#xYw1*>4{Pwmghqz#a zc^9q{r{L!d&Y$)w`n06Wq&8&Gr*~NjHmZ>zG+$y4sAdpmHS?|XXG3BjYv?Bc|6-OX z6&6sYW6rsYE?kgmbboT$y|g#*NOB;jVgxi%kfEof^T?4SVQ@$IO98_O5bDHX1e(rU zH-0#4m{;ooJ$e>!K)7XOdVqnq^?$CttalHr$F^AM=%uUgR;N%L0_Zp({fvx1{%9HvJxMfC76Z{kGRv{njqy+2z?LuZ=K#AjTKpYxJ)Mty zLwdI!9XA}xGW#7L`ulIr0fQn#OGr47MLc*Y;m}~`<{9`hG?YBrlthLVM%wRSC=Ot` z_!t=FvO)8VNDyDQg8vC?-xTb@GpdolKs`l6Tdf$V4~yxq?_h&V=T6($)I;gw;hA0u z=$S(`aW%EO-j3PtPH|TW~ueVzuwzn z(VVQo&B5^w`8%W-&FeD(r1MZwqV1qQt+QQ5vWalUw5s0Jti7#fj)YPRuM`e;5*u_i uh|sSBQAIfrHoqs_>LiVSCg`r)+HvLC)aRDLvmx;ID2%-7m5fU_?*AWSVr|s` diff --git a/_images/8e7c42c6f90ca7f835e4e98f0bca53dedff4b75d713ce9700847c711f9a92a46.png b/_images/8e7c42c6f90ca7f835e4e98f0bca53dedff4b75d713ce9700847c711f9a92a46.png deleted file mode 100644 index daa11156397dd2655e57fb8c5fdedab67c62ee72..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 30911 zcmeFaXH-<_)-_tTt+tW2jVOY)7!bsO1VzA%g@Q!MAc!Ct$sozL6%_$3#Y7TCkSvlj ziV_q=iIPPSBr8$!oeTS%?vvi{yyJfN-*p@ZT~bwh?7z{QY`aA8hM5rNy zVb8}ruvgLEudB|%>F7{a-q#_$>tcHqm!94188w)2_`#)&&ru1sSJXVzq&yO(#-;46 z*TyRjNG2pCs68mljHotJz8rt$z_n|BqwdCLk|x`jZ?2{Xc<1fbd*f8Rv!_qYKv#Tc zgH^8X@{4P52aG4@J*uYBe~3uTnM*%yA3mWUCxrjEFY|*QJbZX6Rwa^6SXlVN@4r8G z9v$4}^zBL2SB~Qc4*dSghxhiU4yKe;iLZHP*qkMs@*5hoU0hr?X{9GuCz?hi7+2~K zkHqaidh{yaQV(5S-9oP)Rxe7vy9)ObT@`1*%g1+AIYz5ICTk-6@}dn!MfU`ES$uHo zZ7w)zo6f-_D5&JQLa?Mh%lbJu6wxIvGH-GIDP53CPqH@ybC`t-Y2W-`H7va z&>u-OttoqY>d2=eU*&*+fN;ey)>3|r)6ULA-E~h@_(nS8ic2nv+S1r1GV-oBL`FPvCN>BBe4rk9s>^b*?(Yps12D|HwOS@ad$Hw}K z1x?;>rJLg9(A?FvSwcbrZ;-_Vrk`}3W-)IucIC=EuT?j= zeKsk*+GUC*;rQ|L2J6P>Gm89nDm1u^Mr}GC`PjCrnrGK8HI`z~z8Om4ip)5JVwt4E z&!10!Dh||^_7(Es9-kQP2|pfn&trJL1MB=QYje0qI*2`6XtPOFyFZ}0C_i`Bhw$crNkU!P!7C4W(; z){6binKMQWnHjrm+Jnur#*a_-NlZSh)OOW8Ka1^_byLo8_POZ^M&;qwl@W#hqRO*p z&$iplhuhg?XJdv2L)Ft$BOlJQ^|wdFU}z7%@)eH3bVogu^j53!+i7*^+_`i2b~`*h9<33^CNU;! zW@Z*H_wZ2agJY~i-kec4HXJi*DZD#^(eT0d)tD8J4fhR{DI6=nR@HVHek4BHDS#_! zEnK)zEz4zm)#x<0>01#COFFCK<}-6cqV`8Jm=#4 zI2n&CSGLbt%6D2L-Ts}v!}OW+w(b@a^K_jU&f7XKMi96}v~ad{DL>JTW>^z@&k$WvS_lwUZk37D<-jek`zT@3P_r~sSvoVaIoyPG)iK?uHix=y0b91YN zzI^$Tou8jSH<)>&JK3wFGG-+Y56__j);iB+TK3O&jkkzLBD|$Km}MsF7p=f$)(Q%i z|1^KT;H%qP%*8_Humb<(A0N+J!=iyJc zrDS9hwRkNC+Lgw!4~^N;mhkmq%2`8{Ux4y|r1rdbjJ?*SvMi4KjZDUk3R# zQx!kG@=-weGObv(WQk3K-A3HSk=tP>^Sq>v94SR)(KRj2IBR!MQc~T0Wt3KiTGr%5 z+RS;&EsAaWKfl`_dMvO44z6 zF4^V7$UukVkCa$>I-cHxkZ;OfIYqeneilUlyQ<`u{l zN3nKyYPb>N3?ZYNyXemjJwahd*KxJCdYeR z2P6=?upR@0SDtLHi8r*WIkkK6{mF{JG`pT?BxbdU<5BXB&o3m{bQ~|bvn^-DF<`et zb9;OE8-LM;ue;78A)T@p#UA$Y^Yb$sX>gr1t((cDFHBEQM}m#4;csm)?P;!W0TRk%PiES>M4cRdWY6k7@5PE zhsw3yyC0N>9&514EPUUh?)>%TvUY6Hdi$pNzHP3P<4KlS4AB`cbyHfmn-A7?Me`tX zU)9jiNS?9%LpGKJLn!3v-3JFfmbUpQYsvWvnfAXw=^cjDSdFEe%62`e^s(GpN>Z4| z<9OIlZEc2DGhfuys9(Q+y*kAzl+$(W3^oR@g5|Q!YKmtEJ7e$Ketx@V)o%N@E$6Ke z&1vCo+`9G4xjD<3Qb&)L*)=#D2yhrpj160!IU|?hIABtZ%&r1FBVQS<`3d6(SkquN zOo=!!u)%b+1sQ{7Ha0_>b#I5^gJOwEjah7*@jPE9HVY&UA7AS6(y`@p$f?)2+VCsI z%fGDSJbl+&Z1B#U#T)Mr_q7^-`_fpU%gw{X^jNz2X+6&zx04Tm`QGQ>*x*fRVBy+B zr*SWigH;9t?JfvA3rXXq4QK5unp%{N!Zr%Fz?EnF9hZbmb$eez4lgF|7x}-_`JaEtO7k^bj%w|xGZ$EB>Mc26c?cNij@98!b= z#;7|rIy-w0;=!>E#{v|?3;qiWam@#6y? zg%AqBM#y<1{cR7MoAt(9B_`h?W$ke2ZJwni*7t53%fW@o4jNwqC7Evs-CelPK8RT5O)2mbUWQvuB6KM+Q9a3K)d=PQDG=Uy;TR zpwyn&Az|Bj=iNg|wueAi7t_+xzUHs>UXH9Gq~$tpW9;i|H-BWLBc`;7x8RQ0*+d&P zjOn&huNF69vIQx@hATy^h)|A^u~XiN>jDh1Bccm(p6%SW7I5+qW>+rL$)V}OGOev2 zKYr}4Hg9ZfJcRJ)dFRgZhX67c5$q_vr(@9Cy6@SPe*4-KW%nVKD^$jRd#=|ij zm*qNXeb+3bqXNs=GeGR@3j7pCqVfc`THa9+b)>SvuG)RlrK?3V$c#Wd(9Qgu($dl| zU%ze(aO!0?0e5A@WKKW9>7i4bH$QC}BYS#;T0%HbJQ9GB?P5m$c7pJ$=OSr;PHJ!| zEqQb#!FklyxvxlAU-AbxzJof`7<-n!k3H%B>)N$TmM?#NrYSc}DdPClFJH=ToZ?VT zb9?FMd(Y=T;D=isg%x_~k<|F4q@={UrI3Aicvv;dc?tgcZt>Q6*cqD;g!%c|Y`f1r z|6xH#;avg3*Hzo_2Ft5hKVc`H{l>Oq%Y_*nw*mtZfM+FVWn~qBFeV3;L_}~iMYRo2 zTmG`T5BL38HfUc(u{PUp^hGUSHn_UFg3P()SPXo*#XVvEe1AbeW2;8`e0+7b8G&d9 zqw^3R>n|^JU)JCy`_GF%=-B?4y+%$2uk^B07Y-D8F+{j8?xQz9S$SawelXI$|8`H< zHeN-e!Z~p#84KM1>AC;sm*({sb9jZjXQkNN`>vYK=>GhzSzljrkC57!lWE*q#)8ZA z@zv8`E%|Ay=no&REuTY|{o~Hr-?sLdw)YJSO7yK1_H$h-@V`A7>#u(tK{ z7>o}=+iVNWS;2|rbME^6Xu;iRp3B98>#j34Bz@b-f#*7&S#l^?O&JLC##F}a~q}oKR5Hfj; z*u?|jt^9t zR`Y2j%L0>@0#GNI)(C+@o<;-|G6j$=PcT-FQcsdWdX)zTE{``M;Z@!w zBvi4h7}vLHD_KXMo$E+*uK#rTMV&jVei+*F>#zI5!orBkaufBRHf@?wX^3ab8-HHr z6%P-E!-p>knbkf<5ZknUyL@YLpmKL@N_p%_NwAlC$3y#B)k)?txQ<$}Q5l{H==1GW zc7aG!@ZvCh2nj(msfdsdrh#%{g}@S|QziVfpze#GnDPiUSOjK80b-+xuMf+}9JjQ5 zI^Y1t09_+^-~OeqUgnHG+cl5z^x4;fqCzh>6Ko96$^C57Cc1y@(T$jkWm~jvW@SxI z-+W$RsSIVeq=`->d!!!-i@CT0&FaTThXAeAgi6hvT_j9DHZ_$enQMde zO5wrh{PfdX@OA6nW~Q+(=$5L-rElNtF>go39Q%`-Y^Cq*C`gS2M_jV$#d{@;qQPFB z#@}n}>P!RF`Ih<`F7-Ibx_Rr?EwlQQaDru?5Js=Gzpa!eommp55ZVtsP!m6U-aJJ-{bx#YR3qtPol!b@Od&pldV|+@>{a_HN1i_5i@MBq|2Xi}Evc5PY_h zuR)x_cv_t_9{5MR@yRIz%L;TE38O5f6saO7G4bsoWwO!`jF96eALSjE&4-o3b6P1gay5gN&$+;N{no9J zAO49;s})GBJ=0z~a9DAF;&W#`T|&hSOe7S{U(< ze>VEdFqb7R`D2(r?Rod^-79}lyTll~KT>UC%reZjs`qz1Ahb#>R9dq5kK~Gx%Xi}s zG`-Hf>fZYo&D?G$8?RoN{*AOOMCwP69x+)E0@r!Ge6UR0>0NaQcz*lap!3{@pb_E9 zF#!k!ijQU2&^~1{nH7l$c`LT*{tnKxnv098{IT5rZQHilX-uYAwJK&f+K{-1sNtit z{NDCcS2&&f7{1Xwh0+D$sR871+=xDJh9a1_ZxqK08R(pzSQ6 zILEZ?X7jq%%!#|2RHA)F34#C6Dwx*n<^RZ@*tlOADddJF+iYJ4*}T1ivo9sD-iC9cf37m@|KT zvZfIV(H^4qE6vk`AgmHER8KS^0!Zp)8#Do*m%4KD@+?9ucq8S?is7@s5&$U1$lq5k zUzXF;3w9Z4+aNaFe1jE?P#b|bn+l!<#-jw>ru0~LuYi8x6aI(#MfXx22g0#hY-+@p zOSq)3KYHhynPbqJxt~5Znwl@0&ft{Co_Sp{;Ikrb-!J=vzF061AC?6z;@3*w=;}H- zOKqkBAIAX{Juqo{%P#_-g@y(=N&)?qLLEwgz6X@XgMvm)k~vXFh>20&j~{QuDs2O^ zAb>V6M;27pq&gC7K+=mNHo6D2G+ZIni3zRqA{!1HwkyO zStLJn6t7vch7}APz$}4?Z#riYvn`;(2%=l6{nrNrXTW-A^$=Fpg9vfZO2zMID)$ znH7OzyLXq}-#eYK2jy0hZZ$Kx>E(<$i=W(W$jQlRNdd1LX!X5NP&CX1^;I&}2Dg#D zQ&vUfl5eGIdfyvST>Cbr)80NA!cTBtYq2qSIx85@Z`_dSyh-lC3)9;QVe;!9g@kMp z7uSNmkkK>(0jD1#LIjvBiGA=x}R7IW)y~Dpf?T<>w#9u&8-l0&t~yBq2pH)!L9L9Br(UW*bF?3zWmc zswP@d2);>;2*u9!-#v(ho? zy;o>*K#qA4jqs2eSC;VFHq?|vYl>#{zT#c6(=r(4t_O$~kF~R025o-EEORWiyYO31 zs)OAR-Jo#EzMYx8i@$9B7)=YYDzYR(A{>A35m(ZnM15@)=yXnleGk*WP4n&M&!Tz8RUtD~DUI&^C63JN29B~<9XOrrFz=Ze`F>@@lCvlO0vfVE%t+&A zO22Zyv+_rat$wj|#s5`dkR)d{2N3j_8=)-vj6yB z$@#>WhW}zxlkHb7h^bBHYDUPloyTC9EMApR*!h$FrB#8o_{pBj{{OC8jmQ1xO1D+} zbKUPi<3ZInPL=P4Xnu|46Sg(v%$Y;eKu5f)m~-3>bqM>*wV!)IE8U3NN&J z7}gil(u^wooSk}e)$Hc@Sy2q_qh^>x!!k<~Uf`VlKTc%&+go2vVKzsS8#>Sv) z*M5fHDODMxouu0BHf{P2>(8=CWXG^`;}_|P>*NGQv;=9Cg24ONQz@AD_)&yfWmF9Z-iY?po=Jn=8;-j7Chbfo zP)u2bV@SR_rMbGXpP|$$fy8}+_CR?W^@upbIH<0~NRiM{w<-JDl-E<$3RYNVRV)^Y zn$2ry!%#9SyX(@{F(Fsqe5w2H-1J!{Eq8@X?}3JF%Gt`zr25c3A=6FT+SiJYS+9dUK1mxM|hXgH&??YwIr*D5i2TCEy1S z9uRNS%yd#^^@B8qBVSPQ)wZWTid{heGm3zv09yfODX5~33{+~9R<0WA%`R{VYF#-X zQZr&FRF+!728^+FbN<38)wn}eEroK(_)w9eV(i*V4pMarD-FfuU?}4%U%!5})6_@# zheAGP4i}Z)r1~@%gA)GY#Q|U2MeC2s)+CxH7!-2~npP_!W0as|x|Rt6^d=bgLp&#` z7XSsf4|%SzsT^2wF$jQ$ho4^tSf~=ILn+1b6oH@-Jk(Ta165hdDn(8-|0t)!!?Aef z%7`ytEQsmiVx>sEHiMn25MnCy15hr>&&!jfO43apg{e|=dAO1tsqK0#`~bm=F} zbbA8N@zK2N*B`=~7(v0Wzxl>7snoB_CNU6HgX`_@FM}kVpjYq<=~X430!xAIcUd-H z($Lgg#{}y2@$m3i%BOOlil+n`prKJgo=K(zMc5ZI#s_OwY}dh265V%za0AuGF-!<|tmf9%Py(A!i5=S>-HxYg)+7~IvpqcIIpu`Gpf?O|83qkF zjxB`*y9Js@NB=MDq)xxMw9v6TrL}*s#=PS^oA}%7YbCjv?h96xob(n8fx9M*5@S6~iDkQQ#nL5J5J<>X16Vi3#wbjLa96VE{uTRAKGXRm67gR4phdsAz>nfyC)K^Hn!4 zW9u2M7RF?xjp)Ew36HCePiv-YBpXD?53>Kv`Ltf)9{Th2h@4 zds%v7bDy|Qx?u6V9??-_1=xR_4T*_~s&JxA+VI{({D3 z3I_EGj0DnMVy4!E1DDTg-Q)l!$#fnC+K{I>MKB!q4lhIfwg_);@3FBllM&hiLgTXF z1!>WCD9}KMV*N0EdQ|0&Z>R}lzAE-TAiL6;kG~6Zv%@V4mq}km7&VKfbLZ%6DR44jP5ihAR?#}ux&|(ZQnde{5NV4g02%zWC9?A2ISR~aTH8G7YR2U zO}gs)GCSjGL&5p(AyIZQ$M}m2Rv9_F^iAml9NM=UmV{#ksl}hZUNozSKqqu#0QLO# z@|vGO6A`TwtXgGA)hh7}k{uf1yi5@Z*B~Styt4Ah*yzXBQ8|=LtsADF>Ep}sSA@R` zZWl`{D+MHyp7+rRg#-nGcJE`Kk|j*&wF)js0be+&Gi|ntiprftlPX;S>^f6B|2$9x z{d{8iev-Fb_tvA>7=!OHM4~0PSLXPjI+4)*?hAZ8jtsg;XyfB6cAUQ78gNzyl<*x2 z%>%Vo#Racl^VVrsPDUNL{L2Um_X${MruFHnWO}%LTlr!|9rV*xJ1r03i^`v!pG9Nn z>+#Awbnp3@0NS^RWO2EC+neXjRY~42+fEfW>lhHwp?0?ytGF5CNnNq!gig2YC~?ocpgIk5oBR=>jdyt?yOuu|W*@Tf8IT z)a#{0K`}zKBL$IbBee!hVKGp~ULk>kj6A3Vzs4lNOJ?V1fO6(8*NJp&^k6);F;e8K zKnd5273wG)QjjE6j%|7$1;Tbu;rir`-QbK!0?H_7mZ3aI*&4B^5~(_>^66m~>Pc7& zK@eUeFyun7VLq91+aWX`Ja{k+c!r|*4?q0yH2%q1_^ftVwH$>`DNX7*qUr!jw6zI= zlwQ-fTPr_ye^(^RJwDp4kiP<=MFr*hZgCr7;U1Z6%^)a0GEGsy(w|IJi@>>-u(>$7fiw{Bpq@*A#Lw)9|)rEcE2^B9atk(@?QSWekeVMy;BhqB6ng9mvwZF<$YeCPA$ z7v@eOG&d7gM$#$L?Y_uTVf_CL#sASNnZz+P!@)v4OZpNGDM7|-+!;fCI?R&$8;;!j zUhBb^=DV>SpA5oZ9fIX>BI3_Kmel_BWs)y2f4*D(6KI@&FI9beY^C&Xpm)}|gB6K67}uW3Q}Awhm-E z85Zehpc9O1TG@(mix_veK*)kD{k>{=9HtpqhmHj}eVESS#S8fzP>t08=AIsNTMoVL zgFQJO&Z8D5C&g>K6J6)$$N~lJ+rOX7et7Xx3l)C&X{prl;dagb!iI*x@zJ00&h+<5 zY{K|pm&|Boy+pI+S0Nh3?*+-J(c`#&DaBp4|0L3WxCYgb@@7G4sRGjLJ22@&uis~Fbs4h<3iXvlNqfL1 zXX_5UzHss4tJklO0OzCB6nOda8R4w4UJu$|uuBqTRek!RWni=_5DArPeh2{@pfi%J zhy?g1H!9n|)_BskqhfR2XbNR7)Aw0kh9$vF!l1}$HzizMpsGoc@xw4@w9=ujc%mqJ zi0Z>{U|V>!X8*<0g?F}*9|c942(r*L7u?X7%$dGXJuwo5CCVGSQcc?z>Lp=gHt}zJ z;Ez+nBT%&vSaZ>$CK&)2a!opac{VG_dE8~N_1c>K{YWjRAu+-MIE4~mRN_UnOB0%I zXAv{b%S3!mbdcDhomtyrGZ=GH4XVS)P)`gZg&|UXs>^ul3PB@yQMrv*)@Qxxa2brb zDcz$z-C`?{itxx_m$ATRKEA@`f<`x)m%rS{+!&^46^T<|;vYA|pB5Sp|z>0=^-{q$Ct*OinRT>#)6?ZiSy^r`+#N>evX~*M_}m6Vx9-^d>_%B z+;tx5hInZys23UNI;`un*xW_C8fpr{r#6XHv_^{JBdH}|#;^28aEpr2fN#jJiR0d| z!FY0Fe9r9IaVcrn=8J6bbs1wB9?woxv|_bO_; zDmrL!Q}F~!5+{pPjFv$@7=wZXn+^`zPykAL%){I`PGKNYs{(#;)ctxhji1^*)%0MH@=GAO~d zs&}w{>_dgj{xcP4Vq;@>xr`-?kM}D$!!_y%k9U#R3PrK?jABs2JLaAeB#5>)``khX_b=1M4QX2n>CXVFl~``c)1w zZ1JK+Cr!Clt%`yi(&5hKLQMvrIy#Iu+nQaubm=W3yh%lAxDqe0e$mL7R>w4k0F?$U zZz9SWVID2*>~3?DzmBRz>t*~N!<^6oeEAmMxk!iuhgoEFC(-z#j>_$?s8I31$bixg zD;U~O2Mk!{Fsa5vzz~D7j&6%sh|(tht=Qm>9Z^Z7;&)KbMZt{?(8j;aJCzkUz;II~ zMU^cBDDf4fam+gPjkrvX+j(;AlxOvWZX2SgK_(Cg(IHq?pJ7jX3(UvOgdXDm#&73C zEN}JO!a({qo$uvf#U{d^Io5l`8D^Dm^`z)4%eF*A)QcdMoqTZtklqa8hYyE8Y?E?y zcYq1dKiI0ksR}5jcuZIYVs#)wwov0mtL4iIF3y1;_);m#5j8 z8;`<&%?r~9s~>K>$8aPP$E4JZ?PUm;43*)y4I#g5pSK@%gr}+o@RSfoEzZcuP)fHy z)6oa@4j#pZA)(qHM@BZ^)H(|Q#g)3baShWE*mf~Hd)Vwn>rW%NvdreW!`pwcXg3ND z6@j9d67ZZ36yPc$#wmg96Wbu;$9nK`SU&3XIhnl!0|^sOR-enI;UU$xCl#c~sx4R5 z%eUK3jB#Qq*5n>90kc{W@ZAFt6%@|>FoRGxGDe$MmpVw3xbw(qtdV;Xu9@%$nK(zG z&>$r(t>omCj%OXszRT&*ywKMpML|JfpvF9lXZ!Z;3YF6tsuzH{t~H@#_85*{$0ko< z!cbI;rB0WU;L9j7k_`y<9WCO1)=gLQ6po2K!a7lf7DTF5)N2r-o3!*m|4(BrP`3@) zwJ8K6Bq&2k>)}-(DFm`9)ubqE;U1#qF5}l5ab&EHumF5qExBTs^)iE%7+h;U+_oCx7*SS7!L9s>A=Km))D-VaJq@eCh931Og;g z0g46|oA0V^>b0HjO?lo8ab0K`xsSlg1EV4ubl_f5LWy(zu>ik;y>U$NeKHS01GiXh zraub}W$u4;Z9$Gy!2BcC#|Sq#DVS#r+{zqj=S5LByYtcl9qh0vcbUtGA>mBwS-}o` z1U=$&*5r5$E_llJ#nG=oo#+^A=v>a=xbzb3ADyTu<-yMqg`i>#<&1V|kuh0-LGsBD zPkbAQY5k)@N8!;%Bsy@)&#P+CA94WZ?sAaE(hS(1)-PMu%E@Q(>D3Yx@ZlwJn{L_N zV8&o5EaBHs0S{I}HWeTFyw>(;F!%@wMK5+K?VRLc=sI&e{;*LSw+{AN`4I0)$r5}7u%tO~f2L)0hDj>97@ zXkM?us~kR}XM`Qw(ZiJ%$>5acSOwLp8^3v{zm`r(Ko#v*dwGh{_whe&}giOI;*5ma!%x5I( zpj3gdu!c&3z=XB~Rj>*`|5@kY=x7AjeMP0&syQ|=nu(2e#u0=ieG1h@Dt4lOK&VT< z@Jq=MxY@LyyA^{A87!C1jx-DEU8EL@2{q4-Ch+Jitrf(xWQymIw578#0LoURNjEa zf&2qQak6 znh5erQc_nY`T{2(BWhGXJ>>!C+DX&1UDblb`N*ybyw{H$`Z=LeO93jTw6uc|cJEw9RV$29j2wHsD zlQB@Cj>dv_)C~kpXgqUdncH*$7>7NuLDBsL-Mv0mT2}U&9Hz3P4=e5=qBeDHnN(vn z*8Vhm_BJ@2?Si$%_Tuf^w-d*@ z@Vp!t=_Rh>o7q|OnDoA{knmSnfTdYtN`+%kMz@PszYB?9_$8 z>*N^U6@`ck@QeNoAyX_CBkEJJ)5yyhDJ(B9N2}S1)M3yCUF)vu@)4)9$8vZtV5CqN zAzKx`r5)SRrgWnDjsK{Z14CpBnZ7#p$Bcg}`j0JD)Qc(LitjKDKqgRQ!7&(TU3$z< zL`T3B^*d_Ugmi{x7;5XI5;^jtMylv>Q2`1iA#U5OgH&MP_^pSBc<>YzDzTG9qzDsl@JMm1Vh3it-bzdkeTjfymdTAK#4X z9b{vZYB)X=5>Oh=1Tvrm0EU1i-r|PFt+|X} zLl$+1{;s5kc8V~qPp65@0vK@9gg{{3UAq%%hZO5gfEX`xg}75Pc}qFbdXmolXmsmc z5L(|>?26Q;eqXM_b%w8RZN`qj&fRw7nD{&D=EeFmf>gmW(>Oh5jt<4P-m~`h@8eO$ z@k7zHG$E}nUKFA-HOBN~AAcrVhj;j7N;X30XiOC$mN9^L2AqZ!$O0o zz?0WcPras+6e>$h`Anx_ZYEIhaV#h^(PC6#Zt-+zfyUv16Rg|hec8&6+~RZiaBAkv znVSGG>-uY?)3o6cSpn^xQXZ;CaC}R0Ivjv`89wE-Cifv<=i!FQ3FU)V7CU?xm{dPB zTBsXaTWL9c`t&6$SNfWb;7Pg1Cle3LBY2g=29Crs)smcirl~C5!3teZ8%q-x?HMFv z!|o^4!in}CDue`zJ9F1C8bJ(!x;(B83BSVy%1Wq^H81L zuCs%YHX@3sXW>>OM(;@o2@NJ*cn&`>BepZ)T`T#!5}y%FE3vPiUIW*UOo$5 zLb9X1z+$R--}3VEjO$Wu2!TTc7(m+pd|i?=HgOy-u`I+Qd2W-pNmRX2pVre zEBtxxg6)T(WJ(=~R5_!iNzo6j)b<}v;f9VkI1l*)ZNw;RIUGb~cm!25pPM(Wwfk;w zRzH4Bd^ngIs*v=^RaKqt5JxUJq>6#gDg~Bel9{GWcdaVcY%11z1o-%C@H4XN!QV%i zANipje5af`@&Jp8-=W3l9l|Wh`@`S9shCeXW<7mS%-u%p1OyC)8-WZAHx+w;EkclQ zh$vQc>~I|F-i$0RhE^HUA~ZDo$Z&(wDEx#)(eoIE)QFP21yg(5x@ng?zAFNiN-DOH zz^$NoSa_m63s;r)6Or40ao#%=D5+Zo6|KhrC3kOyxr~osxNg-u^+_Wn>_Z(w79Fs( z4LW9hy9&bNM|L@a0ti7$Xyl`ExY&4qDUEFR&PnKS1L(>-jdCuQGF6KRIuN%ynR_*M zr|-g5t4zliT!vqdoRKIr2{p8Bb?iUw!=rGhCv!BKsMop;8+b)TR1m`yVC@n}cUFC8 zfLfF0N+FZCkUa$PcIeKZQCTmCif>}Zrhz#C3^ztxCo&Dr7z)TwDp;G>TE?3T=44Wa zb!N&O^S|ZsaHMh^M>7=2;#%~YL#0JaKXz3-%y{3$=uaPePqcDw03)gp zc_OI3!|nEMPoF%*a1tJqI-=88o6<^%#sS{>DCY;WAm+^K)I>*KI%s9_s# zXlwhYO_!TE864-ta*9*z$#4H>gV7(-b@G($c&8Q~23xJr>-s5#C;+c}k2>x@VQ?Il zb#t#;=;y9|scQB$X7AZnVNvva@~>NW5JXA=AF7gjsz|VvgTwDs1DpP~c{%y4b<=I7 z{%&*3uhRwhy|r~7dF#pm6*@;OMI`l?U*y-$jD+owz~`DZZIdFm*#pz2Y}ala9muVz zPQy>3`v6**+WPS|efqSHdBxjX84xQ@Po*qJnT4VbV~AQhSk%vZ_?}bu)|5H7b z0oE61r1eYnT47ELM<0op$X9{NLZUPA1QF4q7Tl^Cp8uf8h};F@D$tD$ zK8x;Uu8>n7r+n@omL8Pc3=b##M0`1YJFrzj;u7x;=C5s;zbIs??BjP0#e*r|j?Uj2 zyS^We;rABCH_}X;$s8Ec0*^a~R?)EFr*@xV?T;TX)y{F3V!bM6*RlL1Z`snD$}H;> zG7dLxtQI&LF3KEz(N}m$B#v2+~?o(QPZ&eOYy7SrTRg{Nb>)@|cUL_#EK75G+4)oc0nsKqxV#xBHcXYSJ}hPHy}d z(qwh;F|zNT$$ee`9fF#k;PALa-VWjlSUTifMiNFNdMGl4F=SncEEnJm6Uy-eT~I>V zmAqHb&8DE;z|nx+svw}$nGX@j2CenJmH*yU<(z@iF*TqR?S{Ea8Mh0~)911n)gUGJ zpj!tV`5}B0gq^5ZL=|X*0Ea`Q_9Lq;#-Suocsmdc+gj?7wH*6D2SKUQA}bDT&(!wm zD+HON44`4hnU4pM0Hnbhi780?Lh7~Ys#c<=92A1c-9pA9oZ-LJsp9|^whIjc;X9K{Q|2@SlXK@7`9OeW`8BB!@rU@kl!2nG&l_9U5vgL%$-5OgIm3v9iiG zLnz^6R=;z|6I1(PPfHp+;27MH@AbaEN$ur#rXV4v&sXyj^dR`+PP5?TSE6O-;(dm?!m6_}iE)baIszrTt-o z(XWmw?g^EKRDvp41SlBw>!E&1W|g9IwGql&I-YUD>;f-t7}kqjZ8SuH4lKoryf6ig z7cfa$Y#?1`!GhyhL1bTnVF*H)0t_Wq6Q9x2DU(kp8Kj_$b5}pM_FIPwT7Od=1Ui0H z!XxzqLbdtZ)ysjkHKT+D4+PJ;buX(!&;Sha`6e~gp|%%}<7S|icCWhK*4Vg)jm`UL z0mPnbH#D#|zm!mD7q5#|GOzXY>!HU*lgRkNzUPS?Gdt=qvMc+;x|La5V|!4OCN5M zT3`{wZ9=fzd7ibA&+-m@98*33R5z!*9B3DZs1k1|0Om)l9Uw{xI?)dE`rTM($GpWy z9w$iS)~7t=xCdmqw;o$Ep`*lDcXYr^2emdDMhJXX@O4sgm2=JH?6|ce-t|sLhI4dX z;)bUJG@_ef#`;0@FTA7vHlS6qg#g+Y4DQxAdHw(6F0y3 z>a3*Ihcq`v%jV19-lBaRbx1@P5?1t1*ZbOS*tkP42)#gDB01<)e5$(sP|?U+8DZB`e{YwK zQL4k!k!aa@7xvvc48szDD}iY8^qEwZbRL!ost8`0b2hoI)A`Qvk=(3Wvx+vsZ>i_F z&4lMN*l{pKBsLYZ1aNiW*(@%ct#X783F1LExweiv|FIpZ6&mfYw|rN+uK)_sS4**c zv~S-&Zss4F6Bcq52%AFh7ehAH2UxFnZH?6ts7wq#E^Ddx1|kK7^j(!RbE>!OUtJb| zsH$ha3Vqm9;dN=N=x=??<6n3Fn9u#Xh7VAQv3e2g8Vk6&vtM`q^k(gSH$qXrIsZoP zk^CR2ef+y+B>P;ve~O%`f!Pkxi&l5an{%hj#B^MVZclv>L9P&6UBHHV^F9Jj3(t^`-!_-yv z60T1z<#_N}oR?C4bR`&tmdo%dgD}dy^zL9y6;b4UHwAM1q6T6Tf|IT) zgLh29FE<4$IAKo}dg;6r1a`ZdGI&WpT1*$%?a74yN;Z)U)vThD$Oe4^(I+-Q0AHY2 z?d{IZbk6bc^?NZp@~(YT!>;{DJ*SO2Kk1v!l=rq2gCn2uW*vNp5Cnuu>C_iEc&Ba+ zqaZ`22au)MyAXT4+i*xmNORB>k~90dT3h9|Ke99wWBAEe{)ajr{#oSOu60Ez9_JMt zca+eSC+su63#4>yHt^4^?GfsNG(|FVi)7r6_BP(&A{2FP_Ma{3Zqs)<3CXz^uLm64 z`GPC?t6Qn4W#c6;jSnkZr)5`7VX>lm^)1X@J7O;vF#WP6ZOq3;d$n6y-0A{`C(w7` z^+uGQ^2sdB4*vZ841w?0sMYOh^QcPA?42=vds!xkFdDUGQrpnubsR&zo%i^~?@l5a zI+uV*bWuF?h8KU%2~HK8f=6=1m4 zG-}0Bbz?&Bdk1I*gx=cy2!Bt(;_v1^btgAk`F(LGeiHh0CkmGV?r2y2Z4-PilO*MT z7S=IH!cLA`8=Uh`tpFGIJ!>rY(^iPq+SxR^O1?zvHn&fpLVYv0m-$(vE8JmooCjnr ztj?5XT8#oGu3qUgpU>F#N4@QH=4PL>zsQg6Ub_6QL}1mzYnNvpUvb(NrYC=z{Eyv} zz65%YiPz(Fg7x7G<#VQ>?HSL%_ggM#Zm(LO>X?W|0l(*OUEdggmOwf8+|k~bJ=$nr zox(tAi|T*0npZv$)puRj=qDS7f{vKJ@@;n*#M|_l8zz}5;_ilcpP>LsYRuN zj|I;ND*(p|qIntFP>O_Q9tSKmk)MSp>#)yP@H#mYz*iKFPefZub{HYRf6nq7Q9L4r z0mhrBHW?@tRiY^%9{TINqNKJLhQnu7p02-{bJwvc@T8sL_6glY?lVhqBm!>Z1|QCl zLgyHZ>_Bup08+Z;nQaELXsV;z+(2{zpw18_BvNCj22M^UNOnkQS7&_KBlPG3lVz03 zv32L=MIxCKxmgE0?)Xl(tyz(z#8TXxe6N7X$WHn8?b~A*K`UC}*`l*)sJfQ{n{8Eq zyTH-~AJAby#{>AF7Q{q><~Gg((Q^8F(AXEn%*UuUvVtLkJO&o-?d_Gv!AW#1959D! z4U#K)v`LDh%!{K&UcPuyduAM!6$QwtbVQV9hNIF&ov9;j`rk=XK?gu~s;-sb{Jp`% zWn$QXn$@93LF-K<89A;NV3HR_bL2BBP{8bTkG*a{wu7}@O;i35GS^P0`Vq<|#o^-Z zapB&`CfRL}E6}|68IU<7GVuBHX=M@0$AIFiQ~GkpSr|ZSK{JHQsX_>@4eIZM_h<>2 z165eSPas0Y#Jh|;&R@PYyE+lji+UOoPCWaet13>icz55`6~bnbaMy&Y4?&~?VAQ;D z;ez4Uk1xqhkLnt*wh6ZXez-YG=Wa>A5Aad3-kaO=U-}_bv|&&ULXHZhV;tf7MZ_k! zB#_pDDYuNo0Xby)NAV1m-AV-UsWTuTTHo9~?}8-*fEcH4JOGy@`wj+ts?h)Y>_z19 z#4@5|py0Zr8uC;JDtbj(QL=WLO z9crqCNsK3Bv^xzXj~Y|s4NK!42LKP1j$!%r*0Og%DQJ3I~Qfjt;a2 z+e6W;o$$0brx@m93$p~h5YaH*v_%_irlwgxKNIJGYuB#rTm|U<<>&v1VyHC|a0ZWh z`t#c$I`e`E9XWhqDX7G*TZ~iDP_?0R8*o6IJ9J3{|H`fN{^%whfohK?RJhGf#f@Qb zebv1+Q!EdX%ZoI9bUCVpPNGekdR|c-LlFaos!d8y#}DPZx<)h=o!^BfOI)P_N-!Ne z;X6pBFi3~p?`M(Di=po>r*kD#x14YI-M{Y7B)fR&0yItT!--3G(KWLfXX}yn2PX)5 z0;g!6z%@We@(jSd+;)pjJfhVG$3k_ca~kAdQ>`oq(d})y%fhkg_JIAC0+c_7eMIf{ z7A9Vj0l}nY=*yQU4mbnPY`jW0_I=^xYC6RV2Q;Y#Zuou}4qN(e+@BuToVl~k^zHJn zt9OvZU0_maLEu0>YqYu2NsBBJticD0TNW@TkN>Y*OxXu-%E6#Q=gUzGXh%Fek99Vj z;7Halsawr&`Z9A->T-3$@fj6o&LBpVf?-BhDjzO^icSY>4D>W;gSD5SmN!60ok4|Q z1%nF0TqZ*Xf~8xuBFQiUw(f{tjs%c$Uz^m_REP%-bkHVg+rZCIAPrFlaBRG=Y=^-c z4syCfrY=KS=rJ5RwL^nA)ez?=0)3%Kg|o@XQ;&`N`evr%o#D^nPA}@>x{vTTAVZ6B z*>Mdg_er-iK6HwlY}^BDK*Gtq1;z`nqv4IFlNy*1wsG`bv<{*RnS$W-;LX{p2+s-x ziZ`i#w5+laAFmx z0+PGC`>ZtF#y&1n8etZ^UnVL*J|1dHVgOEuf6>IW9Hak!^%l{6_Jc3dB+cv<=#N@kB9u8462S=p`!%l zx1)c*89F2gK0^I!>V-m=#U0l7GpCXd9?F_6ng)W$OKRqFAq{eAp)GUxI}3WU63}8+ zN!R5EL}LU;?huVpXpbC24c}wC|9F;JC$V-oad> zm-Q-fCq>*FvNC}2)opZrj{B<+j@{{}vs_;?-x4x3s31rF-&%WXGu8wj%rF~MZ{Z=a zX{{?e57X#m?*xcP6uhgKLuk z&*OED@O_+uN^gWq_LaYAQo@~ACR4;KKNbiEeAv44{WgD*GtWCkR5w9y1=f4>^pgVN zztxiP<=&>sATAmAP>>3lv7pPneuvtWz+Ni;M8 zy80XTtmkP~&YxPwC$?EWmp=DqtH0P zk^gkBO`+F^-6N3#qSLk)RBp}``a72o*1HD4?lywoY1xXF?5?~QWmipwOgkRr`XJ2=_+%l_I{pLV-yv5;-wEO*8F~eiU(u%emZUl z`NVrzPKg&-#fe)*FDfi|=uSTrAZku@B_*pE^$SL}%s&)c{^Nmi%bK4xn(jKIHo>_x z?xdba;x0a>ntf+5DDZ(VP1QADGDNdD)p$mqemG~N`3~S+=t<<%JX^F2ECr`fMsP0j z`kD>g2Tv{eyW$?!-arpAxJIGZ*SG4QzusHwn63|M`L37$;0(W9zx7r-LJK&kDZ8_| z%z%$h#D**U-m0~dmry`JL6eFE=*Rwa&43S8vhE0K)`sIUPGmke52}*TQuXufKfhez zu*A3-3$`zLu{k*DZ^^+TFW0@C5-mdKErGuM-yPca|F?4gUvK5Mditd~X-U9XBItJB zZ!#2=PNyb^-QzdIQ3qh{+nsWCQK+Q@X3=B#0JD#?L0lYL?i!HWzw3SMew@P9UYin! zswE$jjAC>q88K=cXj?%{p~@hz4I%efk_Ha7AIGVgQ-{@*=3Qlf2uMckg?b%<@VoDs z!>31C2Ly-l8w(VpodaIM zhxiB`u||#$K(_F-mX*MFw3Be>Vel)_5lRUs#xO)g4G2S1%?Std2%h=)B8`6wlsYsE z3sFO?$SjXDeZ|#7YyP{l`#>sI4fw2$ERF>XKKHqng(hfbW$$dr#NxvF?!F` zDwix;^bi0A_Jm`O(7V^wee-Z79!9=Sm={q3qVpS2JY3h7%kF`;3c|!wSr@j>S1(^4 zg!S+(76{oHP3uyrK!9`MQ7@+M`+ApAQyeRfz+;aZ6xUkA>3w;82l;xTDbXkt}HD@#AjlHmr$0W34WB|PW>qZ63G8WYSLv`~{F zsW0j^^`gMZR3fSsDGsCK)ZzF29uLPX3pInJG&9aj>sV79y?(=)U--M_W6~C9*DiU* zqd1ZNl-p3Ub=A=6*^K;6m~Oa_-cm_9>x z5INMfx8Niou`N$K{%<$ zPO}FsT_h@?8y(FAl_MfJFE`=ZX>`5Q8UNUXOcpqFC>jZ zGik8Kzt*&Y180k)%93R0+R>-(`R5UcyKE{4vD_^<*fV)=;;^G4E7V2>x>{zn#>ekq z3SaCS8_nr2GMqHyt^2mxC1#*5wR5y+sE04fD&~d|>SCpEvpph;in`Ht7!WW%KHb0e z%~Bnz3x4#7DqYZT+O*OfE~1g<0J#TXwx@$DspZ0Xq(4@b;!J;wuX%`iZjtT>t*V~p zy+fn^I91=`959*NjaR)jMYllR@V2MJ_fvFoW@3oK&>^Cl;kXk0|J0*r+g%$5XW-$~ zZHwEr8rH^|)$O9g7NmXalas%orYN*bqQM(xqTo@^OTGr|-NB$~umRoh_4P$>w_~0y zLKTtPa`Z;iRs*X}Qq6@yiq3&fNjcR}cL5#s@h~X)8X}6mP8=X3&Dm4KUHXW04ixC9 zcN#mAT!-}k$w9t+4UMNmW=V8J0qm6jPiyBNSM$Bcaqeaw*SgrnCCU);^ID=*>X^1@ zD63)rHO0sgOwAVb{A3UXe;N0zii& zei6f2fjlKEh~W^A8yez#*0A!gLo(tBWZchlA@^Apma!t#RrE(-T1vYF6+sj{(xOnO z^;LE_!EdeN3I#int2ed{`B1_jg>ui&&o@xoI~W*^nJQTu?CSnc9(t?>_#?FS{Oo2! z9*f+emlT@rq=(DDK=CE^%K8VzGeiK)E2e~8Q;kL#D(NR6j*Cbx5g{0ABzCbI%Xf)j zk?R(3gXkBbIi+1ToV83+*S)Xw6AzK#0A9JVNyMv_C)Xlo9qxYCm7_wAsSjBtvf|kj zRBo60If}gkdQC!2oZ^-&%P>S*&hz(?=o88OMm#YJ#*}q6f1yX?w_TjQ!JRpgc8af@ z7VI7}wv&q$_CPXx?G{d2Q+@dr{Z-m{+lZw%`ra)Kj2~Zc zN1LYVXf$SyUt?0*so=m*#_I!9Z8qlZsM06@a+|DXdX;n=()^m%W<6`Hip_}}nlso| zC4aRWvFf}ZbDJXj%EPJ~a@aiTcHk}-5>yWzr*ki6 zOEl8BAD(pLc^mUmwgZb2-dMbL5aNRvV-uG%KRM5#)Z%>0OCP==WRq9*uECD?T)sN; zvYRR!XE*a%xO`DfWscCDqOENXQfD{u<&_N)_4^n8GV1!Ic39cCewn?^1Y6KtkV~xZ zP#^)5eY(tKipBRG+m<-}D3LgCRBJ2QQ(hM$)U$uioVGMnzWa#jif6({sk?zd7sm z$z)Hpn^@}uO)uIdUEDUH;*c_Q&WyaJEtA}>(({KVZ5~tI_S|I4u=d5ZTFt6j3!?(` z7vjv)=RW<=L)>1-?%(uw%S8kT6N>H&uLO%{du-OD7rES$(}S=tC$ik%f~eHO{({cF+6*>(uF2CIn8< zl^E;4(Rv2z3Y)`S^%<={PYzp?iT3p}vL6&39sym$-+B2z{{6pOE!O$W7{uq$CZPPc z`s#Ci;8=6-dFrr)83(C4|BAtc>?_8p1=Fu*Tqaf z_n0@ul*N%!wb>R#0vrsIOeGXEIPeNWNtTrS{g9uk^%TKYGJpq>%_R~ecoD%(*%t^# z0Y>-F{*dZ8C3w=;S?Q7S&B2O_{PGD`m0{hXPb8QB*oolnQSr@B6eT$Y{*FStq)u_N4*i7_KXQi%=a{5*MZA>IHbTs?vCUYt zXizhMHvmzaR_wN8>&XUiDJV}R-*J(MkXP98Dw*7!KszTimU0R&Q|qL zzL=jk0!yk0g8`8QVT}psRQ1SDq1$KktftR@cIg{UK(o~MqT~y%m<7|ciLlG>&P*N1 z4TybTCXJj$A>#FF`}Vz%r<3gicKb%>&U3zxwK9+Sv-K`&x?YrvmSjw#Gu32A^)Kg* z9ka`bpLZK+pbP>y1`oA31|l=hXZdn7sG1#0O-knBXMQ#We3dwy49FQzUks@TOTb3=a_|76;I3}>U8@Q1{t5q9?2cuO;vJ`5dju?yJlY&%@U9#0W z8+tR5h!gvoxN`VDBZaCpzV)q^j=ttLZ5}Se*Q3Iu(~WUM=C)9WT+P6}z6NlQa7L0F zO3Az+PI!EA-HO~?v~A*_1VWcsu(;}tD@GomP1(sX9Em1C4ttNjZU&$}@6)d8k#E{O zF-v%TJ6a3qA`pyNgsq30zNt{1j-NLW#!keR04rBhFD}g318phOr9_PXxUo^?RKutZ zG3OHCCPoM`MNoGrjn_54m3F;(LwThxXNUO&I8Sl$=G4Xdwv<%s>cVdZb|%!~YKCs- z5N*&a#G>yrB<&V`ix_%~CojX@TVF}_nM48iLPo!}x_d)rB5nl&2(WIV0F&f=iL|f( z#4&QOu93Dri667eraE2XgNYk^!E8%j7`I^Gp9)V&aQx;E0yp3`D;F8?wB~CQ+72wAvQAsYP&PEE$LxihQ z^q#4#F}ZtlY-n{|SX1UhoApeH7=STL@<302unX_YG(PSr?|Jqn#RPMa1ncp-(~L!OmpPlGlrNS+;I615k?XDDSUJHKXjam5ei zm7$S4XeLB`m?)Wp%vnu2tuxt8r~ znA@4c!nD96SLkr)#QIOD%gG>nwI^ku1qaYVb6eBi3V9_7U*P0mKpEB)L%NmYH?G~` zj?mQiv3{Bh@_-&(w&miKkvZC?N+>S}&bLkM@;yOTzJ3}P4Q))wvPjvp zpkBqj*HhjDTZ7ly&ptB*3JAH=Tp6n0&QIM1Dp`j+1*=?yf34zvwmQAl+0vj=XN*)k zypH6Mp0t@}EFVv@yEL~O4p?nSD7Hg^spLgCLNwlZwe$mIAXpvfGB!yJgLv*NgDlWx z#L1u+8AroG>%b`(!Seao-Fea^bNHzRvgZS%I#5;l8ga#_)d8wjE0&&dm?`Tf3-|As;KvE?A91ra!Hnxb zlt%>bv)8Au{b?jOdqMR&&&_G|>St%;eeXT;%OeC}eo%0*AuhIwmb%Q)mXa!+f2L1s z>Dy3)5yPwvMX%QH)cIn+_%pWXM zXnM;g$}tO`Hic}+E7FL_&I?akzU{o6)ZxKJ0>0D3xye*7Bhhq{@muwoM^28@2 zE+WUPoS~9^CJiC`t%Uxi66jntGSbLux5Q727QMcnh|p_*WQvd7qey!|f+3@oF3df~ zpNaYzhor|1A}&TMD`xt@Fh9QkfMlvygi+CDK0`^yslp(-%~wE1<dJDE5}LfCuM0)nZcZjf<6Qf{$l6{Pgy60O0HxXJw-MI(a#T%bBJz{rmXt*ehX zA7?<6f%wKG{SEB<&avfPz>r5PDc@pi+Bj~2rp zi9ja|wJ@J+^>c+#7ym>Yv(Nm>s`b)V^TN6HKYiQU-PL>5XpM5vCTZOq-*tK?dHkGD F{squ-vFZQ- diff --git a/_images/934e12b9acf4efc9643d8116bb28841d13ba40a27196c42a92e863c5b2c96193.png b/_images/934e12b9acf4efc9643d8116bb28841d13ba40a27196c42a92e863c5b2c96193.png new file mode 100644 index 0000000000000000000000000000000000000000..e0a80367c25550eb039f44462fb3b9581d85c51b GIT binary patch literal 89230 zcmcG$Wmr{V*EI@?NE(2G7=UzlBS?pYlz^0UcekQ|G)T9Al(ZmS(%qfX-JPDfpZ9&v z`Od%d=j`j^Vzb$6uY1jV&N0UrbAkU`S#fL(LJTA%By33u5d|cqTVhB^$R%i~@JgrY zxH^2}wii{kSF|#;cha#nK$6k1w>G!3H#gBGb~LcHGqJK{W#D39p(8f7x3{+AVPv%U zzu&-MWoyJpe0kFhAA)Wzp=O7KbYBPYg`6#rWrBo^gd`~#) zHnDxbcylygm?C0+bv0)9x-%%v-4K2==W(hTZ7@7$x7wTJGn7O3w$FlugyhbwZ}X+F z)(VQhJ5JDWgqfI^Vy1LQD8)hdOtsTFoEGEw&f8e?iC;cD4PdE;(>1 zr2EGUwvTCOJg@e}T~D?o#|kt9t7vg>h{*n3&iy;MzI}2!=Vi3i9uDjO?2k)ndvRpa z8vImTL*rQlrCjg9IJe!3^~si+>+y!@$WLW-EG+%~g_hxL`Old648}EzC%bcfKb3Q{ z-~XmD=!)(cdGl6?7f$Z$@9%%6p8EC&Evr%Qv$XW|{r!CsVq)TaiDq5WB;Hh z9D**Mp}=f5N+%XX@F^q1AhS&_kt>{Dz3h8d7NzCpP}Y6rpGxytDW1ARnKBC}^66sC zE(iKp*w{~a9rMTt9udECJ87Pr;IT8D6G26F zebB|II}!Ypb75)eiv~lVLPbYMMMsFxKJ&rpsS(6jDNpsGu&}UH6pd)1RxOKCf~bhd z-uY_E;>JcmT^)aKZ!Z=B)9cb=vrX2B(Kh3mDu<(u5zLQEqyVx4c zZNC;);dQz*W53pqEG{k%@3nDqG8)ZOql%I$mWC^bm3Zx)p5ph(G0oo}wVVg1d`%_x+Vl+ko*w;J-*%Z+DixLaFWD=I3A zVC(E1_&hEmp*(dA41B`FA3AJ~E~j|iNUH2Ccg5ImPdJ#Ah5V zvrzBu>0xGJNrRIozH;N}vg-(HXn2i!|3y$q3G2nh1s4}rf5w{_`!U1y!3<{?m(;?- z(DZatz1AR-moHxqxkf}p6#x3A3o%9OHB(2Il2!d1$ zLywBKN7N1>83n}w>PiMKP=!8EsMj(u>G=-kkHypHK(DW zVI+-m!2V*Jk*bs9p`@7pk{($^2LZ1mUA5zOn(cDu+UDls@^Z_k+joEEVg5baU;N_h z%i?-u9K4OVG7b)oCYz+_i{nkRnrWoY7{<_;7?mpS&fea8!op4Fmyu6Q?Lr`jC@3hP z1j4QA&c)J$%JlA)R^LqWk;)`+WWXt=Yu#cX({=RqzeGgf0;J1~WtQ0qIUd?LqItho zQd08WWoBn!V3>$!ZE9?+a64sy`WUL{17K=uYWi$3Rb~>&s99C&drZlSfKO6wcCqmA z@byHL{QUe%z;9?0=~i=fT)e!CtE+9l47!XbOQ``nTiV;vKE}op5VD&#*Seh&u;`<) zn+_9`k$r)(--8xlo-xvGJYB&IMWi?1=;MCa!|CkojP!SY{tsn}d!sM*Q!eK{Vn{c< zP=Ls#@nSvc6#iG@7U5f}lU$@y`5QU5vgW~?Al-k?e`~_fHS68>OSg$RX!-5bHvpa$F{>L1}ESx7# zI=W&QTP{kzjfOts7J{9kQZJ)Jd>-H}-TTt7sMv(o+mpZTGh3l>7gttV0jnw@|}iUl|qqE=bMG~t>fdd%DL~BB{s8_XiUZm zp2LX^ccv@NXKUi%+I7v%yN7cW&)3pJ*Jf*Z;ku0)J|Yk2s>reN-o0~2zTVSgVPS!Q z)ACt{RFv-Z#WA8Jpjrm=)j5fe-_(c(KIZefNwisPonKpPhaSi6xTRWk^9&%)aeGp} z#84&^N=Jji2;#+NHJdn;CAYY^n0{P|jA)I#PCI)OMk(_f8&cNROn&!?R?ZJs7n~7X zA{Mp~8i_tMMLy@fj{qw+=LZJ8$*&Spxm8qDVk~E>_Q$ln_Ahtq&7{p?k6uEgA-uP~ zE99(AS3-kK)M@_u5c0`-bCe#kq7S+iyZZlq3K7aoFp;ImT2n}~(b2BhCl_bUe03AM1|MFxz=sE8@J_c%Pe?$z@#Y5?S|K_xs z{Q;eAZDWH)w;2s!*5zOc-R*Q|*^kJxpK7Yw$qHVJ15Cqb(D(pp{>9JF4DEcfo05AT zILOuUn0C;MSA>d+ijNsIBmm|S5DUTXJgR`+efvkr3j_nI)aZrfo}Vp-+706iK0w33 zz)6|7`rDhtYri!f4qSo7Zbce8kIU6raci5fY-=LNm;hy;gtIdj6mSMC=V)gp0T#^y z4fv;04kD|OwpURsRu;Dq+0D$%Oz`yS&~Gyp&+}#ct*tFv_n8qPb+KFd0N_qL(nLAn^@^O-DX=xE9;IjUHb_ope0n$9+9^rDNRL0+}EjoCIxZY)9 z{S6H;+WGaNEVbmzhEKQe072V71u}{9`t0U%m%a0NYeErtZsTHG=p8tRc<2js+e(eK z(fow(N;Ir|DuV52lO7lAS>AwEVPRp!mYe;lpTz`*_3dkGYHRPPtE-c+u_;YEF1BI| zGQ?osM#Xwio>RCPMk36%u?3&<7NUez(5habUC)5jNaS@DZom!QBKY#iati8TXnbdL zlNPBFs+6tFYrh5m7BM8f^z_QY!b_w^fRSbk$RqE%x;iG4K{A^uqZAJc#03GCFO>E7 zzx~tMDTRcHjDgENs9!v!d7!FzX6W&YVgZtVwnVy zzQEJKDWHCLI5|20jEpEhBf@-4_W((!E#$dw<@mU2sz#+Pp`Ln%0y^|F{K-<22ur%k z%1ZS7_rGzw&zuaMjt;325QMEjWwO|H z@2?>8gOi<^TzMl%d>_E|fO<~LX{z>R+u%(yH18t!b6eyGP?5A~jZ@73XGJ@$GEw< zA)FeTWj(g*ue37?W`W{*j5H63;!SKUkfJXlc1TGKK<urS z-``TPOdILxksfVNads`TA~@MC;ykTdo-Rkb1E~Z7FNh#??v7uY7XK{^U^s)dM7X%P zcL11EA$JxyET9-x7lTxbK73*V4AVJW>1l-W@`2`!$-~1V1S-O(y}eyJw9DL5g(k|| z$H%8XO%yYD8+d>>^nWBYl>&{9B3VX8##A6N?@u)oY$6_>n@Xww(nkkq8$G)%)4{~e z9S57=8Aa;{Z5w0*?&&qK5T)FAGFL*fZv;i3LUj2r)<{pbCWP(nODjBJ8N-Fz0!gec zj$3o}L_R`)Dr^?n%H-nN&;=iyfz0?cT&NQz)lzCQG?;@vlx#L>hX4GzjD!SQFd_R( z28NK!)7{l3qDd{hM816WcX|*Tb@)%SlB-xptJP( zF@F1>&v$>bR2#HbTjXAH+AN3!Z$r>-Nn~Z79vva@Zo%s5)2B4=^4cLITP*J0d-fd~ zoU@x-;1rzT4El-f@E8Ds|351o9l@4>N6Z`?nLr8_PJkro>gc2n+}vDWLPLEh;}iCC z|0y&<5V62jROnX!{(TLdt;JSMOf0QTCb+PW5nwUR>)#EKBM_28aB&duQsV({#VpxW zg`84;MqvL(M@L*X3n=sR^G~9=ZI{p_B_*YyWc2v%6Y)P|Wi6rWq3lWEY@3{n-<~QD zoN8=p;&wk{^0+v9Sbn|VMg*PWZH@x@ej;!;1fLBvZIsuhB%WbCv-}|B2>JmDAbQ^k z7G`5@-R~@hibc@S5{M6A?_Xg7yA;Ww8BZY-umAoufzyi1VFORt7b{gdj)m}&C4LiB zWcvPPNgx01+2q`^LrGcViC-DMsO6?3KV#$KOoC>DzJ`X%84bSG`|#m4aDtEvn}0VR zaFlSZ>oFkZhmepS3`|T+;t@@fl2ySe=B%FMzI9e0Flni3LqkJNZEch@)2Tg)VKL{< zS7-lWDG=VFbn*L-=~Np4bX<9 zYm9we_WmNP6lyI;$nkgBXhJ!2@$i^RXMZ%VJ3KwTtI(&+5VN?x9%tYI?Icyb+%h&H zLC?_8H#j)>tjO5xsb{&@Yu`G>7cX8cV6xHg%1)cMb#!ZeL$b8Alm<}=$*N;v0hHE4 z^_RY6$mLbRhmGCcPz{DG1mI0=Z*LbD6+P%Z_iNlC^GSXfxYTz)|pX<1p~6Tb|GW@1X$*4FwV!j8MM^gk#5U2HObi-=%H0pNOJ z1N_u}RVh{I4wCoh&n4;T(Dns@OYHO!JUf#~>TLSum zD4bt-62pv~7OT}xmkT>PK%Vd~)3)8e;g-5MvNQsExc{kr14$aYEftlNAZYp4c(Jgs#GqrhiQTo`MUXz5lRk%&0Vn0sn0sC( z)YSOYlpQz~8qWoQLHOQ#-Z@=qm-9CD)^F1hA#riPRAIkcYSrGx!dh)Ibr%E%t$6Xq3~y{Lp<8B_#^a&wz-r=B3-O54!A# z%NB!+1ilo4B?F%+wp*3O!Ns-P5{^*BAk~($Y%BQu`LyRB_(=G((bMa0F;jDv>_ z8G%$0A8RPnJOX6yIa+oAV-R`(LN|aeE3UW(#j)OL$}9hK$_wZ~mB;Ds8~`Yfw(vqO za7aYd=KkHZRobl@_kTwQ@vsVXyidM<1e^fi;m${E;o0(^l(8$8?xv# zRu}xcu<&jD`t7dDKex*h3lzcr3d`LWxucPQhW_uTt{UJ{pouaAbprF_OL;jbA~T@) z2MJU_3Oovxl#*J2#Z8=~LymwqP~>sx2%bkfNSZ-Wqsr=PJK%NiOO3;qE967N!Cf+T z=QgqrE)mLiQ6xpX6-p$K3D`?Gbr;YJjI#=mu>jkdV8~7Ixcw{)FFTxpI%X@)f_I8# zDENo$0%7;@sk)|BDd?~BaI?9LqE&gDqxAlmk%Z)vY!c7@-n?+gGwyGN@kOQ3!{O9| zfsg4CNp%j*1>u>2xq~m`KN-YrQQ)PO65hQrY$*FSV#Ym>-kbO@*srUhFL`-+2R^Ci zDA~e3Y=HG;7A)@>oFIfgrb30c{$m=%mdTeyVbi595OIT|j|FGzi$)kPyM_ENk2n3K zDf9sO!FpjE({_gzC!VA9%Xwcnc>8d*Pn;sce*i_Z+EJ7thShGR+diJ?xbkN`!ChLy>@NHi3TIKR$j`4(!N(CEPpH9n| zd#9kFV4-OSVyIQ`nP03V3Z^LSyS)DFLNF;Rs;dtV`vicPMHJKqHFlK%gJIA#hL?FW zGcy-z!KNYyM4{8Dc&k@apj8_WjLdvD5V`;`>8+XS7zoU_Z{N~%#6AzV=Rr3r1_Q*t z4IY6MAC6hetmlP-S-5+!>UEk>vFn>a58*s`Ks;KQ387I{S4Y^YvdMfoBhxy1dcwdX z)k+Mp`%(nP#$yIFvShEnizSKjP##L^4Ai*T0nJe@GmmRMfrJEe%Mb= z3OPUIQuq@EypjcO&OSp{J(3V$9dyk0Av~@a{SOo$0u+BKv-2)Hv=P&1)20JM8-!#( zkp5?<+^n8A=SH_~-4gK{Nc@(vnE94X3^=qtEC`w=G|>(SGf*6fs<1xB`m1jUEt;#s z=!^A42y6g!OiVpsDRkO(8p8R>iXe96sqjE)`n9)9fI>8xt*Ol3_+4C_3c~OTaue`o z$uvyJ^xIF^0A_~`rK_u}?05Nue)paua2Ua%uHqS03Z4PJ8i1?GW;*;8jK=iB!ak4~ zHum=VKvsdHB5X&1qjun@pv%m`*J<)EfR8kvt4jj2MWNc!0u018VE?`ziJVq1z!69X z%82!xM+s{T)J&h_b7~8)4+sEvGhpiwfEO8w$6-1BRVej4G*!ZDexP*--4GHIQc+nc zpCy|ly_pY7MHnDJG1GGP2Q%K}Y1b!%P8`frD|vQ$oLg9jFrQ0JM*_fyk;WQhRLsQE z(b2hMSr*G;fB`%t1NJ`XDd#;}TH4VUJ{>(ILIzu@}-zUFX&raG-oDx?m=W&-W2m?8BDJD9iu zVTVC8BjC0r0~pB?{EQ0TGI)=D@FKz^gJ#_bKA7kAMX~+5!b?)p9PN632w6`tYJX>E z0GJ*u&U+u=>>zKDmph~M&i3XBm+c)K)~CuD!GIM@ecKNzBY#7?!kPs8DaQ}+r-KNX zZ^5=eHk^Tf&GyA!Vgv`MTO6dQ?ah@7^P^9$vcrb_)O6tI$FZ9|2E#HHwhe@cFGzwC zu*f~n=I;i74+WOYs@IAYLL|VzaEwsH2yp{@hlYvyCMK3~TNUBrLug>nWiARHgS1mkGL7u)>MEIWM;>_l8-|wB*g6{Rb1Z&g>BogN6 z=%_c0W%@H^p3XyiUKiT9L&7fY3arZ;ENR3X1Qv~nQ22ljD1z-C6?MdDjUWIKf*J$E z=Vg=idk3x^@RUpWPo0EA;ppKD$UppN&!69cxmT+D`9Wii%OML^f@X_1$iGJbCNBYYF@ZjNM@2>T=c%zG zjwD=$tYc)eoK}Si0UpwRvcYH>F`AIA?Jp+S;y*n-GW{bXkATL|yI&uV5w2sRkT_r= z*vHI1&_7B11DERyhg6V{2xkOg_jD(}Qdh08PDMid^yyPvau)HA5M({QMXag)g9EAZ zSLvRwTn_cg*qSy!!D~@>q$m5^m`%5LRM*~R0?Wp$yipSkiW~zAb$t zWy#<1wY%}SE$B%^fw|bBsbQXKu~4>ZaT+4?5c>z6SB~@U&na16$C1>Hxa$m2k3yD< zE{43zwSjaYpgt%tvJ#Y&le4zB#{->6$>)CdHa)RSPxit8OcCOGor2%v`#bXRl`f};`!;bmTNGohus-vLc9pbI~Sb>4xBOa+SF2&OixyZFyG z2{A8|l;y;rgsm`iA(BnCKxQb=OtY~9s5mLoX7z<8{l+ioSK#k~23s;?3u?Y>gU^C; zHUw+2GQcn@ER2dDFCbK2QU_2hl3x8CX-ZJD-=At1R^Y7@6*i;*UXfp3`kSj&+LFUq z#2$t-+0`#eNW#T2TH3NJN-U;0EWrzcNnR5ox>Tt}I4yzDpa)7#6#4l0z*yA<#ULUo zx(^!SvBMZy05ihNg@%WSti~-dA)z#V(zwCb8t4@WoYt=6(^iR(rh0;yUVsXVh+))z z8PS25!~zQTjafVSpWcUL0_-&&%ESgZk&YQxh7VaHK^Frv<3EpoB=$CRTLS|FAg}{E%mSa1D=@i2S%uRPP=gr-k8md~ z7#HNWm|=d#p(e;76@VW<#l@*TJcZ@|=kYWxEsY9BkHsN>>B7CkC*5IGMe*MSkq0eo zp(^rWyZ?86q96Z{HT|FK`~UJ>JmgL~0?Bg}DFM@95)UHnjb1%5nsfpO_T9U8p?#PD ztpgc8NQL|OajQ6y$CtRcCyyUL25Jxq_{^8|^?z@y5Yg%={($%N=^N;G2phon5_EP~ zqYtK9ojW(!m(4Kj0PTsed!rE}jS9Qfdtkj8f;@!`3wTH>wsb@H-kcs!eO3wn_4&?C#I6m@Jx4u)7LoYv79A}bn7K9#5Ygm zH>?Nm^pd8hg^1&PLvLwi#TRC`Kz(2?_*CNfZk6-?%XG2eTL^bjL`1~;cthEAG!MN2 zAQa#nnmwgJwPISB`8E!@&)>CfZR1L66^+SnRD7ki+Na)H@_n^R$fshsCJfQ-#jR8n z6sXWo+&w%#DfyYfvt$9U5YSx!TJHa@Phkw`2ZWOOLjw|IdP_U|{rmSP%PhL~=9?<* z*KrVLKkx#usa0~nmYzQB7-f*hd4TdsuP=mo^-3wfb1I&2sZz#bvpuwo4CB7V?%3LG zB1IPy0}7(#Zpr!xGTI2tQtd$vI^@cJ0?kTWA0XHM^>7ytS_2G7)XFWNYkM3&0%sJM zn>Q$KgdT>$G82>YCGr1``v$?WUb5wW<$8peM4emnkcV!WZ?h;^Z0GZBXFM3ycVm(jA%OO?5ee%I7*){1fAT;3-q#24Bh5lL4>y0sY z&(dT5w+gMUC#TAZ&J{j!pro0O#cPVV6$+;ZC2PTvcj@fFq775QCJw~+mcgx7X-_j4V(ra!u z>^aQH|0XT@bTe*dtW>YPO*2JU?q2b~0nZzcD@GC<5<-Vz`)tX}gKZP-x>vuSo27@* z+RhMJtS;m?Z9cAYVdRw>tYt*swUT6_(RIA6)4k%DGw-S$NP1J#YcfqYvsb#`+|`OH z_f(G0f^Wa*q(QZ>;xDgy<6F6!-Fti9&Mx(G&6I5=qfYdPy**8gjrWmQJy=_ZUo?HG z!YyK#l_{4Wb_ue#Pj{hL{~9uH5pthTR;Dffe9}-d?MKLQVh~A&RL982+^fSqq7#AH zzNj%3wv!kZI?*Xxi}km4w;`~Kom57Rfn|34RvxwM3)_+DRhZwtIqtq`yi~^t3Lvnk zS6Jxre93h#oq4HAufdK&!T6Ms&zz5GfVHDJpSY4P zUKazS-i^;WN=v3#^d#Zbfy+$a6J;~J71WjW5bDnEG37+;^`hU;v##WHEcAPF1he*v z_Nl_k0$IsD@>U(O?zEuT{M|=JEcs8{U4Q8yyweT?+YO$v43A1Bi*Mz%oGfai4yL^L zF*cV8R_Z6I1{2W}qiX$;&2HK_vvc1*C^cu_bu=tHDZR~0$Nz=bYRCGtM{}pHlJ>^S z+T0pdJX4{yCdjvF$z;*rFZizE1^H!_fw<(mKzxor#ec3G=Q*P_v|iR}Xmo3y{kn<4 z%Hc;5)@-`9D{QG9BJVF>I^OS1TUhwlc%wb;kCAnWJ?-AjW6IgK;^d+IusrFNtFFT> zw~7>x^4)o&$Db4)%cfo3Yggim<@!od9&Mm*$o0>F6aVvT43Zia0t}W%%I3LD#j_$8 z$~%5_A)a+fZn9MVr*&jC^@r>l+AmkBmRK^K4)ljJ&Dz_?NBL_bC^0Irp6We~C*;h? zF;fiY5n2$M#d!0_sp9Fk3#+&05Bf+`4*3qa|MB0bEXEERW(>tGL3XhYV?>JlVA|bs zd2ybY(s$kc(=7L^od4a1rpeFL*jfFBwgUE#s(c1RYhstWk9y8d)4fc76`(uKO=pa> zzDs=JPIz}{L63*Zc(%MaIbr{MZa+Cg6<=0i=}U%R4>>lrtC+v6(NPkwpyU=78Xg~y zthGBBD`h_1?kdj`KEJ2*tKf??#gHyT^uC9RRe@iq0lZ}zqps!e%;)oqwXvZ5SJC0W z#a71MV^n6#-Ly5r*u+}Cc<+s&1!FF2wbv@?toLZjf57u-dkEWXq|Zr@4&S=T+>@tZd4o!~aFs`STG#z2DVJd{bdTGJ?I zwN;xZZ|-CK_jPQb(4-=hr0-?&yuo5ihae^9HMz2qd9ABY;Xky_It}JQLVYpIHetuM zVDlW|51q(2E=Tu68()}2+WfYDBxBh#9dENCs9$DhZ6ag4ahH$une;P}Pm=U>E|bo> z2C*Ko_LhCLjANv{zbigskf%b51mqe#p%_VM4%-lxav#=yH@3C0nTx>J`kiZ^y*Xu* zozX-qLQi44@)e&Q#_+kDhjL9RgVr*_w{&mq*&NKbQ;IWBG$V-udsF2dlPtTf?VU)nNKKA)}?K=IJ6eVTrJsk&Qk@u7@k##1{-bd zr*tG#a3ZNbRb%ZndZy>zYD~WOh?Awt@MHz`D38?o?3nM~D{eB&U4>#yZO*HBo?g)y zi#p;u$6b`U)Q&2OFRgxq!@sF7FL(P!#eb6d@Z?rLiZpGlB(#3?QLHRwf4W{KbH(|0 zW(HSEZrNh0Q#ullb5vG<=A%5U{8Ij%RsP0MC|t09H|AQ4$O zJs`%kn;m1);%Rk+#C!8#3!9N$q5j<7e-c7s!*;!DCvZr&@C2!~ zsuin{Inn=^LSeF|^xZZddz>cg%@B6&z-2gD(wn2g!ITbcibaD><+CJrKW~iCx`PXh zo-s~J9_o16M?CvRy8^5p)KR5xSM?281d`7E)v^r3^Q2k_8@~B$KR%F;3gvR9Wa=u` zn(kw#%z3k5FN+Ld_BBw;NvqyGcf{s`q8t(@HAL~bd!jo$`_sxbLMr(H1rW6BM*Q-8 zbwD7|#S=B-J6JJjY)txoLI9QBc_RDT!lUbZ=#@S=qZ~ z^9Cs3$91=z2YAQtE|oP3IXRU{TI z=&1jIiCyW}Up+;dDHk0x^FV0|+OR!EiygfH8lNO5CzjQ%XYRK>ko&_o`|G8=>VE!H zE`C79LRxJ`@xAe_K)A=E>DvOO385X$730f{f6A1v#5j$k(yQbyl74Kjl#%@)LqH#g z<5Voexwa&x!wL40!QRfFg|jWluPz?CA#1ii^SqcZb|a2_kq&cBB^AQDA@m*wkG3KV zjodV{|CBek7i3NC7|x45U*$RDx_H}Gd2eJpS1;R4LSKl?FXe^dzx3-ZuTpJkoz%>q zn#z+gW^#TQ&$Bl*IFnLzB{a~w3h9jYGg=mkDO@SA^7$k89a>l2j`Wp;u*w8R#Yt3u z?JoAPG3+YQwQg5Sc*`Tp6X2I|P-&us0%#l34 z$+0rH?K<(I+@RwA@r=bU`WQtN!N2_x!rk1wev6)ME!#;n_PVy8JJ_g(i07udX~_qW zacx)bj?R?O3Y1@Pi!(-ey|@t`+t!qn&tUqsA`$JV`cp@YntF^LNs1%9zKSjIq+r9#D^am_*QXRu8wOkC9LPYN6L-)ZZnNZ#pEbzN!-@ z&+b=QI~2WUj2*NN81;WsJ~t~{FK|gh%vAYD-_!IwqN0#YpQrAzb?~3+yLPN=6i73# zs!B?)6}F_eN(%o2+ulI>SUP80NuBLaR0&O6aKqCrubPzGq4ys=CW_81WHIF)O@oeG$~c!CAHp8q zwS?x~FrVdjzI??<`tyFqCvBDs%|Y$1?5gj+H~_q$9`1 z!FTipqih+XzCi&QGzv4RRlW_85it^Cd}uBWeXE{^O+DCT)DcK~zxEe$QMDhL)}@qw zY4+J$TqjaylrfCU3^iLdv_nmH%B`nu`k|RFHE#$?e|v&ZpB5nPf1lxj2xM zo&+O(a15M~HsQKMHTyoYIa0(hDZWL{$Ww@#s+i-Kq2wj`(ZN>6?`SG2im$)x%+zcg z?i32kNOcoXfBhKzF1d{Fo?CbRU-fB>suskzdv!gFMQw!fMC>g3kZQokzXE+6djF$k zqC1X9)**XY6;tt*;uYyN_rcLuf~3sW)^=aV<*5M>81JjgTL=5UP5mi9KfWq7uluc* zs5nhGO`vVWC;apN08cy%{kIR1UJ~8|yvDq0_e>tjj0~a@Y!d3F8F?3LZPY{kB7XW| zrnI!aa403{+m-c*Y4Mw$Gv3KpztsDcLwd5zfdYFS0GNlDRlL+jj8E#F=k*!^;aIKGj@u_*LdLx({r7LgXF~0YM|m_%x#x7!k=O(! zE%;PgB-N8a>4`zVzeJ*}q@?uS&+;PX;C}q^&+O;(;+D|ygmI&Z7^_f^uG6ggyC3w* zgWWZb7wOvKvD8wv%HbHp#MnPIc86~;XG=Y56y$v zvT#w!56JM~R4!-M3z6vTqMfuQnXRYtxsmUhe!Q^TeJLIia71M4%i|kaLgQB_l=3n5 zqkZKGuyF;5H1>zHuSAcp!1?u(3Uo;O{_b`unx5qqn@xenJ#V`mHoB z-s1RhXI39!S>o*dTADV)(yLmZ7+jK%d z4f|UgAE!$H6hK$O9Md=z?rDj^e{#7yZcppaNjDV6O~3NCUfRP(-6rmA@PxA324%@K zuQtH7WlX%@aIptwJNMhmgX;}6l5Esg;-7eZ;0t7+7a~#I1ERC8kn_fOOeXW|2a~y# z(p&|uvF(MfK&;tUv2G-%NNXyUM3__b-3slGQ9cD0GW@#gv@M&PU@&D4atJ=J*l2Tq zf2jDAS80qZvm!YB+ZU;~^Z4^IveidSN2y|}UXIxUUz--1M1o&@Ocn|iGa#Hd-RaEd zEU!4)_*PNq{|1+0G(n;b<2ma!Q?C>gjjU(Me>#qDsJ!LKCXJw|hV3(G((7L`V}HbA zmHXF63`KVQJqt3QKllF>f=p4BNg#fOL4(P{()ICUxaUiv-_BnvKbe#X#S|AX+s4VJ z8rFr#g{<0)>&btpBC<_M5ae{hxe*c0&p&pMCwN<@9v)Rb!&be!-Jy~5AP zD~DaimBb`cifP4myrcZ-m_kB#QRV8NR7a>0%tN1dxT@q<{3Qz#AKKc~u|5j_hq3zN{u|TGvS6h7{VlmEB zm#04Q-<_!MjlJU`%g|M0K&77!sL4@q>9rKN#;$-H~rWb+UDlWMP?pmjIsIK?j z6EgnQbCXk0Cr6v1ratIa?Z3He8d)qz5|PSQnl^tR-qLFI4krlXYh!@a=Y@1zNRG3} zGijep^Ee_w^@wKaB$XlhIc$ zR$`z2xKSfi)iwFxA6KWAxgz$;M=PXI&sZaStyCQRys;sGR3t%wrqbq<{cSy2l*pjE{zI;&b@bf8li;_e|C0h@|)}BRnwS+Uwu6-?tJsNeW z{0#}(E&omt`45v$tYI#f!oOZI@Dk-VzV^j>UU|Qy82h@`Y^)_(zaV*rTL66wNC#h_vzW8c$$9MXTBk!X zYgu}!n#qFVLgf>8MLfQ{FrZ zkv-w|_$J6Uurn1$Y5JK<1dXHe!7|@)GkM#7z1}}PXgg?V;05iuwau+76)RT#+V9xk zswnxqtP*24zpO4;qMH*Cl*j%Jc?2~wcG)Z-f;%f4eBKy&M)uM-W48+rnT~V{+$qeu zjw*h1j;Hd|KgaR<8xrPluc%RK1RRDtUn0+|{`Q}|@#<(>&RNPPX5eOMsvrNMnii4f zFY%R_h51`{GgTUHx~PmY;1is^IjcD$_M1c+OE}2Ij-N}m&3D>xq=0WB`i~nE?*s9dVqwn6?Gs9!u}>Sus(|lH@o;EnBp1hdnvZVa6D~M$MSj zd|&bVdyEld)w>Ovf|i(vP@=5s{bVP6=f_h0V{xE{962oNm2`ubaQbfwD$De*+0C+wB5NJ^>T?B}!J$Azkd?@c4C z0T$;9uX?MVZhn>cilpGPv-4u+iJBRij7EH9b}>nYU`IS$)qPaDE8{YTE+CAsZEKo=#^^P7(GJWg+&h>>U7v&K;HF_L|W;l8{SQihHAIO4|3rGKl zt|e)8r|>M&dEwilgoGq9>^;OovXcy&14!cXM) zC*%ZJx&pW%7Y>SMf*v=EdFO}0N=i_ZCckV@$nYyH7{tzV<3fDpmXC<1p}0e(rlaS;K~}rS*Mw!xfTwKjm*>@s^n7SDAq2g!H+hwZWGtD2dWZ zssko>z;MIw0&aeGIXee{nuzO3*}PrwxF9H-*_&jirz=7?$uKk!0VLOi&o3Sduu_;ZK{1FKyT=KGB->UKptNJ)NmULyfUv zb|Rsn4gmCQ@xX}lHni+nTb>BCjH=4$I*!PbHk^nukQQLp9IgS0&{Fg6(7ITn=kW_X zT#@wO!3fd~+Qrs%j~cj^Nl_;9s#c<&X?l+P+|}i@7OLz;l74$K2_Lo>MnnIG@Oj2D zW9-w|+c}xlk6?J;>V*BLIH%6QHZC#b5f2LpU=RnriegLNWE|9w|4DdVy}W9!FRdS0 zO}7xcZ0xN`N|7(IeUd$hbyRwsjq(UQpD%5GxDWyeBi z2n0G>v(EEsm+>E#DPDijl1x5#t17PiX6m3@vXnaY!`gZ0#m`+ORa4H<`j^vz>H7 zWGdKFvy9{*GWZb!vuHJc&TcPqucuUD1%p#{_`WASRE6k;&#N><|cA;3`%wL4WMlZg|c$VUq!eB;L57GSY(KCIhmb~2IX;ogUm7A zHclbxGg8tWR{tcPf9&s0i;`2qY~InMQrt7)A^tKtGYYh@CwbRmz)DxeUj>6IwS+Lt+W8<&9YFcRF~ z$dedib8e-E3a8lTRm7GyqUt3UzgXhTkjJ>@oxDl=LabNL+f)O;Tk`tv=y}Je3p}c?N}D2ZCS0T9lwu|8D-_XMYMtAErxs4CdL7QSD`oAu_$e>%;iZS>!!$h_g%sUi z`T+`ZJ(>Wvpv3h{Wzv|A;{I~tm&`&+QC;DB7UuL9D%roEWZZdjpP4-O@1!#d4bJBb zk4KJ2(}JR#0e2i+TYRTuEfkfgH83k$p-!JU+kUj`>kI$ht&tuX4ccL#s{|j=*=Tb+ zAK~6tEOF_#6TJ7J(xi3BIPIMUf-sPwi!XbTLiUoxd&a|Qs8V-Tdh^xQ5>wO3y+xNL zJ7R|%98OHm(HT|B3w&fYN0aXMc+&NqfmcIxGiu>+=o0jn6;&@tym8M&&rG6Nvm$kJ z>~Dph{d>%yMiJO8GZ*-oTYSnMCxuNaH6!Luv~P~fNUwm@N^a7r?ey$$NQk>emO==> zqvhQ>!--`B^NLErZgqofy>@YBeqE()`C;p9kIY#;Y%CNNho%U$h`{~NzJdcdfk6Z!)fY!@%X>f%o# z{J}?5JO@7)mGbp9UUOO3A$N4N8dtaf3JwpZTB?YzPd_fUrjBe0 z9a4DK%?+?Md+gF_L5N}Dku@Cd|E7>`Ir85WpUopFWgz4m;5Po>P8v|#N-j^moHz;^t+ ziYo7@v3CKOia?X9lr|dI-lxNGi?69hS=jNuPX6wDusB?v9Djo$s_j`s)BB^mH7Xb( zBq9D`iii$q2^h`!Kh&eVk~RL~DQt@K3W9_{e8D(Wm@brT_i{vQY0-FIZ+1GYtEQ5| zgigmyziZWxAHM{rTD|JfEJ0h%*2JF*Z^S;k!$$`{*4>!}2}-uDW6MI~pyaC&^mIKF zaDCL8L1UwDs1@+0|8s-Z)yTiQ&&<6i zPOXWmiMCeW?a_aWlq575;_2-Q+vizfAGzZaE%fjs@`ulf_*Cd}Xl<%vu{X*WhbBF8 z)D~KV07oaUrrU=0vJlSe;$9mxJ=qV^AFBBE{e+6T>mK|yeTOZV(1_{AX!8FW6t9}N zQuf(5O22EXee>@4wP{^hx?Je5qfP}N;H2>jBjNr{X7}1Ay19og`hexVpBr9EXINo? z;hbddul!$pR_NO>g2mZ|KQGt=!SU0iTY&uwctx+%g9#nMcv(vc<1DVIrcmD7TFt(P>gT4Rg20UEOFg;%+H= zD89sb$u!KY55_Ro!3(9dUoY_4CiRueScg{oo2wQurO2}@p4%rRojTg?bqK!r!ryK! ziE8nD#q7c7lvM7r)-qscsr#uS6e26s;n^T=+;H8VNk1>*EN<%^zxR#C`b_F1vm#9* zQWb|fk59}5J@md&(k@T5rdnpPggxt+VNk)Vc!o#S`cLDsm8kdCmYaTmG{ef{2!pOD z2|9U9Oe4KY*ug@sUILMul6qwOvv9-Rsql_jZ0oS82|LJI#GMQ|ZxrJzI1qw7$UYb? z0A2SmzsKEk&(88reXvk5XYuMH4H0X<8!^l!5LCBgnH;EY5-2xfhy6Zo`qdA5`oa+o zGF$)vNZ3-Gf0w>TP%UA=Z7yQqCT8?V4Hancdg}@GtGp8=QB8~VvD+UpkY^eU-z-X< zLWTd*qi$(I!owW@^Zz31E2Fa7y0$SuLPY5hK>_IoX%M8OySp1{krEJ;F6j>GkQNY7 zlp1U0 zD^-EoAa_-W6)N@nxcyv<*)xTt1*fGtc%N;Q^Osg06aG6UZmonrfAd4K3j~gz7x=h7 zcLfC0*wP?T4oR)>F0o+O+}))`HMTK%daEfl*NoUauW+w4HeRNNo^f@3ebe>jFE)*h zu`o}OkEYuiRQtl%t7JXT{vHkiN5((IfUg|>Tl;xVvI$H;Zjx8^j4mn~Cgo4btl!U2 zZ-X)cFCZi4nz~hzh4UQUYa_N)0$LOf7h5UPJYFLcNh7Ie9%MVF@Z&w;7bN$d-K0MR zun@z)5EB*_z4KB*MCV`XkANnA|MpuH^CK~XO+zG#DRE?E^vlN4qi?_$OJZUP@&3tA zC_guM~)zh-Z$Tn8M)9E6F{n>fhlYEc)V_Q4=Zkur$$3FYxz4hKsSpf3s6zGFrb-1Pqu+P17T z&=#;kbH{4cIn|LwmVDCzvIK<=JYdU}>|F#DheujUknafz(x8jE`RzjYNCaHKPM`qW zVZdvt7iOShA+FQGbwu8*FQ(w=N#u(lj{IcySV>Zbje<+pbW(!TQhoUsUbu~HrM~WC zgZcL4J%?@$ZtT0hd4J`3&bMgVFT)*%b}0v64{DtVza)Q3<@+PyrJu2XkZib^yaX0K z1-&B6{t*sgLo3&8BUY%4q}y&~maXZ%I4>QFRN8jEE*X8Bw~vn#meu1xR#lRaswRiAdiu(=2 zl@a4jJ#4zbIl`Lby?&lWzO=X$V`!J4u2?qV?1ZyvSG?%m;pNZ(gGIW^)d$~El-zD2 z++^HtAh(R>>f9;ma1=Xm5x?DTk~cNF9E^;o#fOhx?N8U&n(E(p5nF4Qd`n9DQ)V2{ z#~?_Y5QHWgh}1LT5wDhZY*`wS@-+j$L-Nn;KN}*)yDFhKiySW9)jx*@_@}MU1s4|0 z0{rWQYgWFr?It_{1e^PKi|}Lm1reYh(4A^026@1BULd>v&p+a&HOt7LcNWUzL z1CR}JtVLnS5*^mC&6`@IJ!G@t6XZ#Qo~?YRjW?WM;F-7=;RfN*Y&IVh>%pFC&3a^B zWMPB$R8mieQw&zm<~nUB{2JZ-M|k)!Yj5LKyAwwxeJ=z4b8DwTJG<$0>FtY|8Kjr& z?SFetdZ)H<9wz?yVs4lvbv;zcayxr&6t7V%FeQi5*otwzyD!3<;W#`V*|%ne>Put~ zQS-rL?{^8mMKY~>n=2bAU?{2#Lh_ zGnwzDFxQ!`EpcL zpoxr$<19ONE*cckrC@L(AP|e|;EOh(R5UQb7b$r`%CNp0<}dq|kkfVQ#+i3j)mYb< z__HNBuk^TMaclwk-2#!`I)YUVA7g>(T^j<@oTr?Ndx$c;JW4-o(*#g1%gzsO*19A( zZklV(VgW<3%y06C_@e48eC8}YqyZQ`t~U zoP{mCzG!pbdQ+cB*W>UWL3LcBd*_sjFlj_QLlaL*nulCYH^veSqtR?ZTn_d_Xkuz8 zYBIK$jI zE>S&v^pE&gIs333&-*Gt_Nnv!5yr)z<>PsT7rPqJa+|BJs%n)P9yJZrRNR?kLRZu0 z|EYO1J@d{fkRFY?&T(`5w1Ttdi|{%M#Om~Y=cah>G@`tgNiqJEiRZz40Dk{TZ|V=k zZYo{%oDL zAaxLb1iVRxhYk5Xk*xV2gQP-Rq5VTt^2EV?5`Z{q9#&vvq7XU$B$gIq+^EwI$t{Ob z=r_&Rt*vu}qQreyer#T&zudh2_cjQT4)-@&GpzhAmWF7$B{4xy8eBwwI=^=lWY(aU z)|fDEr59Le32myU+W9BB`9=Yc%Iejz`_td>oI?(n`?D#=4JD7BP7s=IV^CzY49-YW zjA&`!B>KOKt5{PKdrp?vlYVl&r1gWd=43_=&Vao{cTGbe#l;E}Zw1Gz^@G+^4#`rbI9j^@n3lQ!eGeSrBcJeLjm^nja661yN z+8rq8AnwDnxF91&>_T!2Yix~K2kP0vyql@Mp3)mz2`DaP6`*sv{&w)uf;j4FHfZEf zR7phLB6hSG{og>5T6_??Xf_~=R5+n#XxI<{ok^1688piU4TYr^JDV`Bku=!%sQgp1 z4yjk!@`G1-ncKv2o9<;>huIi$OM1;UJ1;s<`uIf(v?T-P=43EkXa7t>>9OUE2a!-S zS1zaU!*6(=(#{Ej%Ra#$aC^&FY`W!@l{YzhDgHXrw&D38%am1N^*H-rSvDy0gO;=AT*+ZiKwcc^mv5Tm;VpiC#j%v$< zi1}INO4NGw7eN&B>HfcXo90SVBp4LUIFnoRss-_?Rd*4J0vHeECFjs3=q1iH`czX zL8P!%itB5njH^9>ast%@LTQe#r_}+3!uyc`6Ln`TVbkd@;-fx3zKFFPi^6I3ykv=5 z{`8NyX8IKat`F!X5Axs`H@hKJ@e6K>y|D7ED(JO{_EEg1KpadWcCz<0Cy#^!-=l9X z$y+KHvH2Habtwu)f*QbE@Pu6`?K%n?V3Uqhc+DOwK@4k(O__)WkP5X~lY~qafU-by z*4-s;yO6ZGTPqH)m+ik++M7q&#-}(!+3F-dEtEjH~;b-H52le>RCSZG`EpBlNlv zb3TVFKo1g^S@%Tr`j{wPy$*z(+^iv^p?zH?j4G(cD}S%?Dr+37}yI+Bbvo2;?$B!bt+IYEK%1Am$^ z@>s|O(XRjK2wQ)t-OyCCjL=;IP~BQaPpwQ1pHKq8tV%q)a3Maq>0aB`_`^I-Aydtd zrjt)r0T2749uKvH?c2FQ$+_k<>*(uqK&JEWsy3l9aXz+svpsAbI>G0+?N)Oz8db*q z*T?Tjcig;ysvD~U!(~TPC?)>&1+dYQ^}kaA5XchGhZakU=nDa*QM8f9ZbMo?JpMk* z;nPSuQI~>|062$+e}6%1TN{KXpIn`Jv8`H(DyaYhTqo^E3TVf~50Y7uSt@ z{d9IF@qMqRW&R+)R!kDgBTJWq<}<`*dVnZX3XWF19n1~h zAlG4+>oFMoA_hwihUcc@8!BaDxj`%2EFZEf=~dg*R=jbE@h80tt|8U$USE4tscMh( zW+#s&+6jPBVTkh?sABIu#R7}Lzy`N1%P^O*bwmk=n|0qepLT?m<9j^RtadfxI*zVd z*P$%g{DT@N+V5;F2qjDPlt@4%M~**%6S|9stC&znBXq0 zII)L!$IeTaK~RN_PX_MS#f?y7wMxx|jbyXQlU;c)dFYB@Zz0gE2z8NX6cr?7JiT}I zB5?!G4xmKf>+9YB0jqo%O~|UVZH5hSe{dx)(Dxrk)&6Au+a|45|B}+GaRUbc8vB$`OT})dzENEG>uck$w>T$(2nO#@_MNSb25IX|3($xh&I~Gh?uD1J>se=_8f=!7h*FCw z&lU3b>Nv$|=fu5YBzFJ(lG)+!r&Fx-mT}{hwhTY}ZIH z=c#BetFH+vz9S*YxSr@88yNx6~b-b>vtF*$rQfV{$mz zwoP0a^IRUXjK--OOP?^F#nCX8Js*6(h6M0c+dh4_SZ_M$j_wpbFaRkPvGv$3kZ}h- z@{oALOzAQiR4GE}d-NY)-+o^ZhVakG z)U#P;4^oDiA#4rUt=Mpi!*@a~7f^7D0TPA;tj<5<5VCUi^6rXjw^tvSnLM1O$mz0eG z4|97s2Bo{h7!$|d5+nMSmub}L!81vs2-%`NfsgUUcI{+AYHtdWvd8^j*7xOCKaf5l z>-$Whtl?mb99h5A?)L(t%CXcZepk-(C#cvf1ul!-JmZ3@l@SS5%Sc+y_3A3(nEmgMyTBIS&H$x6 zevS60h#2{rBQxA*DSkwO?~XpHr>u6L>$Bx8r#x=f7@f+3)$fS6r`lKe7#{^6;fdfo zb*(A5yMG7VEKHaUzs+yF+qCAZJ>B;Cj_19@9!~oISu-iuk$aWzguRiHCG~gL!{=bS zb)KU_dEBYA9Xw!bY6aT7PZb~Db)A_+P?@bCA`oYiT~S?~l*u~O0y4Lomw}-$1}vSv z4N8d`JymGXZ;rkapY9Er7`B%Wl9fv$U0==G;4V-48EeC-q?C^ah8t+dUpjtglB6V~ z2*Pd!ONjH#P}Bo$-hVV(k6hbai#IF6onG}@GUA3!IWwj%=J_d2P`fH!Uguf ze0dC?++1$lGOAPQ;0Q@`g}uu@^e9ww*c6kb-tI@V+1;isQ3dB{aUvJgBQT0;jTgNL zno71#dbQPysd4Op={a+h=w$Z5)Q4VrH?@)HVu1nLRl&mjNAZEW3o`>whsPVKay0u9 z|MC{c!Vj-1nT5-RRTxyGV*KSQ3J(f(nqTITrlY)sDp_EpPNnW5xfI&d_R+uY>EaY& zmc3_0C37FbAH(W#b|Gr!6!l=Nn4iw%w3yVx_5Lm2uA11^028WxGJtLspM3)A5~S|` zHo+XAMuiw>L{iZ_r)P8MJvPw*U$n( zSA68&C~ez5_1OL02N*5cvsOOojK`3itDhyzA5T3LLEo)!vL+F^Dh;Xtbd)zHKj<~N zG*f@Z#SW&?f{csnhGMmZX_7N5*mhb%FwTxoYk?-r%o|wT4Aehx`Blb#Sw9vR!pvL& zay|gs<~gsJ#*ZYIQow~~+t@eY>ZH9BFp~|ck;{w0W|it9tr6Y6M~S9KeN4ZEECj7L z-o4QI9@12S&Zwhp@-|2G`oFDA3>}!KHM>6Pb@2Oy5$1e27ucG6J?S*nyA*XN15o`L zB%Zb;S-r8|N(_^eWV^R}cZGK^d8$93g;U&$NdSX_QvCJ#+aD@0XZF#BI9N0D0Ra2s z&l*4%nuZe_!)X~4tE!7Fa zx=rky=^hJldet{*=ft=3z3vqVJSJw{+;T(s3AifWJ?X(bs*+QGNR<9LH%)6oIRr=j z&&&1q&*a~qH6h@E);RcQ_9vUu9j;9`{K^4uWw2;?|6rMKiH?{;=+y`I?kSSwjO4uH zMl0nh;E3TH8|EZ?N6q>@V;-m8WEfW;q^%C8cJR5qUa4&E!fYIElmJ*kv+gChU0Ygy zfC6BJHRn9iv$N3|=05Ozh^v=&*UC2aI(cEANn0KafqyQEX}bQ+`I+UEjn%KfQj#_0 zI(bDmM(K*~4S^irBDJH(btD~0mEP+cL7`tJOz!!RMR_9X0{}?(=h;)H=&eIAX!`6} zlliiD2S9wO^D%!#{nHy)O^>Iln58PF#Wels=IrKMq1&J?w!1smvA5^`w04~Of?@nN zS|%y$F#GC3efq)M8RP4n11?$JWHWc>8~0NzJ?X{-AH$|^^{0)jCxmLo8cnET!1**U z-rO;G8}|2`*0+^9xuDB-5XOU8FbkBTKwu&E90n5u&4!(6@QZ_A^G#({g`4*C>d0*U zk|tr4gr>eqRBx_d(=>SLJ6ylc=Ri7$3N1wl3qaj29w3IN;o^mN`!<>C*{6HPWZ<&+ z%zqa3((2RKa$)S-h4)XoB~@L_YqebEDvnoh6J?&Su+!N%CGmdXWmlxC+|0I(+iY%_ zMU+*gu?m~GE7VU9GET@E*S}R$fcJ6HXr~3zaweyY>A_^i!(Y_HbGY=-JT3j_%XTPT zc`MqD*k=(?2B$sj%x$*Ikr1p)6aV3tgiqDnnZ1_}@smSi%k|>=wP=k6T8v`YX`^c0 z#h+PIDr-H*T~$q&<|WeAmNx#xKJ(+(1SyhAZCPKIYsfz5#lM+Kp*@*u0+Ob`C43Ha zJerIR8I{LluEo7gA1}~#S-Q5Z7N*k7okhmx4WXs$Dxy#HG+~PhiUOWo5b8T@-Ur44 z#@q6u7(-Se;^V}r1;1)V_k^FSfBiZulG2lM3LW63=e0Tb`ZR`3Wy`fBRi{@oi)tyX z`_E0!i(U3yO?ow(J+0+MJiu*;VuCN8m>g+}Cd<}PV^~gyEh6|+ZZHs!RQ-+n>9QwY zus8S7o%zQXfp1&gwbXn9{p-vYxLr`|UWnKWn{VThe#LlW8QIgp^jk1{Glpz@QSKip zahYvThmSaRBH?S_v`AZ4ZBfIH;d*CjHx$xLGMG;H+I*a#!duO%$}2idD!s2o+sfYG{)zP(fq_ zEs0|#Dt0Z@M+xZV<;f6Z^862vO-y_Y1YKqP>bC}52&02^4Y z2}2xW-V7nAl0ol#0wkEQLbTZmn4_}9LVmMB2)rry{~^2tktzWh;1I=OD=A6yPP?FL z!|A8u!1#-z;<1|7^9r+$3Z)yppJozL9Q~$JT$f#bGSMXKFDzSPtWP?A3fD*``e1HVEmsGfHsxj%- z-_5ZKK_r^qT%QQlJFnmV0nt{F(_;*oj)?f*=7!G{=q)~!%x1|aL4Jq5oqaOu51$XD zB&9ftFt%&KSCtPJd@C%rs7_@xW8x+-(#b0%bjkxU07#*QoWYZfW&}xfZ-#qi!Nu{C z_Lov<8N1-c9m-&V9krbll6T?ILA?PcA*sy1FIUa|nW|%dTAE~Yk%r)xg z_P=r6{pgosPRaIs9yuE#bt;Wo(VqxlKW{~u1L>+=g`u9)jd&0R!ZyR$*9G$zqrqsYoCH?nO zvX*e~OD05=Kz!$CxsBBA~-WMmOiulOA18zA0^#L3BNuMBcE&t`3- zinr=FGNf#`>y@07pCenc`=rZcz-Ib-_y!xjn6oDSw*!JI?@Q!S(NjwV-X^k3k%nTyE>q-wG`0_a$ zo6@BRL^cT?a|+F0KyX_~-b<8yqSn_;tpOe&(UkweN=aUb6?Ae!Bdsp-39 zNo;k3qcb{)juA6liDGTS)LW~})zl#QaPzSOO(Ypxj%tN?ttc9Pka!lae-A7OQ}Snk zJ<^wVAxI?_tCW8=0Rj^w(k{0S7U>3f*14qy+U;)UX54CVB)CQ8=lpy+EEsmUsbp(g z`4_FfpWmA|Z!fU#qoYIe8{aS9qobq2@qX>G#gzS0UAM*U*2}ZEOifW&zFX=qnCOP( zUT2X1@6kV3ImATyh}t-EC`ZVdf-C_Q^)nkoD|3mD;mhh*fi-uWdVI-Cfr7Xu+69fWrhldx+upWA3BJtu>WQ<@zhB*dO(k z{Zb=N*O^hfeu@z9=vbHgp;&Vw$}XYoTe0#WWB4&pt{vB@aOy*l#SM%O8*v<)5BT=5uq!g$N#m zXs$a-U(V2Qp8vZ#nTM#rClI^V3Q@OjoSkzZ$Lef0)ib-s*cSMLr$B7?*1j;;zV>3> z{!BUdabPT(&5rFL0yP3BQo<`35W@#PjtQ8vFK`Q>`~oNi95^kAAAvl=wbZ9XkGFd= z%gy!&6(&u9Uei#liT@D%RnM?3?6m-1!!XPInO*-@VrOuccb|~TzOFIkVLxlSI@T7C zcp?k8DL^WbC&b^w$u7%qFsiQqh=imYQs&_Li42J4e$4#_>5l&bA1eH+Fln35_&OAS zuZd=@Za1;Sf2%LUM->*0Jq7!FjlL-3Aw%6ELrU9n7}QZXH!Wg*&Zu!FnUzi^r(h&? ze2`p8OU3x%CfoE%JyZL)038voS#Xq}T@mO?Q%D`-YLch+$q#QGsg0W3#Wb@HyD&u_ zkN7ESv1_UI%ZTGnIz8FDy&$59e%nn?>=AzahuEkmdU9qoCTuKp$oR+vmnu4uXkvdW z(j_3W3a-VWhPXFK^A@q@Vi3IFuK)P8%5z8eQ&XreT@~NYF>bNF*#3;m7$|z}_{SA# z_+;iO&4w*{aMjcLR<9X|5t3?-ounR|=KXFLbs-@mB$%3*XSQIu*x4J!g~5@1d?8|( zOGw*OqX(Sfau@R_?_m_uIV;wK%Ep0j3N}79VpRG6NOnJl1Yl%bvELCpO_BKizLoPS z73%>TLQZLw_8~j#ozLoB%SV%s4NNV>u=<}M0Xac8y`Pxq${=eZcI_BLLp&lPua$|) z@ya=*;q}*?Q{jN$0W3Eyo=9ddQfbk|v=kDaE(MU5dT-XHeBdI>R(@~E0^`?vDFwyW znqV4S;l8whXC8fvB9-{TR<2tKoj+=76~ptwcu+ zY;Q9Z&NuWGtCz<`s3l#q?y7I-<#7r2XV1>PB$#5@LF&^ac+Oc=T4wa-=%*H$Hn=m8 zK)HagasrudRIPVoNn1HNTNw zxJ0<@5Ep9xHHMPpm;5xM*o+0&f3|X`|7qQ`c0M|4ge1e`(Q3w zoC$FPDwF^rR}C*ROQ$28MQ;jF`tsTHi6DzqFq#y}h_}KnZ{HNb;5$1jpIEop%R*ds zar-7U2G7c1zNzqr$PalC|ACLlj+rq7Z3d`|R4R*}qsu@@jX|+_N?wiH`E|>Jwm$;& z1${f%03{$J!m;?)NKIopv$wQ#nOL3H2)AvG_0bFy>h0{4h?Rw+kc{_luIj#R$~@&i z-j-x6HWvqx9+7hl2xxeKe^9>8Lk;mMdRmlSoDqxJ*_HpMa*O~OtkxJH%!4+G0+f?x zN7bX3Ln{O&;q>;ZPr!}`+|^s`>kj}C;J%Tk3dW&&iYr8IkxZPK@vFQVEg%g7%^;O3 zB#ftmJFEA!ihbDpK%yJGU;h6m*H{MB9sY`M|MqW#uSQZ?Py9@2S*#>l%fOMvp`(To z3CEw(D(=N<3q22)pVIWj-$Sek!pVV5k$b#xyOQ)LY66aw^~zYLgj(22Q&OB$~mf^ zgXtb~ky$jY(Rh;2bW}~gO<9&(pKoYk#dCH+>xIC45MC89(n6Q@HhFrpnz`5_+UpgC zoL{zE>4oOwx%o**I;^7vjc7OgP+$l4=-&qTuVmEW*YSO02oZwbD0Vm5NB>9TXPR(a zvz@psO7;UaZwz0+9$3AT?Q533H#cPo?DP0*Pnu%%7umUAB#?mNKH5H#8DueUgqE6U zXpji$HVtDrL@3H43k=cyNs`&B^m?72m%!Npz=7fJuf{E}Z}H${<~;V8dOK9^Ss1BO z<}Bd6lq4S2(^ujZ#*IHiCSI0`t&Q~`5F4t#gGW;A-|I;jg|Kuq= zx~vLDJR}39+1HmdE9NC-sV{&+_y$Bfs2O>{cLDlyYt%3#;8!{5hCe-LlC^+!vGHJZ zSQqCJZA8>3*z&&rbD8ICnxAneHF<7w?50-tG0am~#BX1y%H zw%}gX$OVL@@^4~i?}6uBbQ_Jm2?xIKZK8DW|IN5NQL9$szNJt#K>zky$qxhlC-xVH z6wx!%$gA3#+yHG}WgVgewuQnwV56(p{VRAZIMZ!;GfXTJADfA{-Bq1!91vc`IF65T zCq$-S{b~H(vwdW*o2_n8B>m<+#5)JsjDH^-mYu z&aDA3mTJGV>2xwN0bdcAPej88;O~cWVEvhOoGT9;&Pnwgh_tKk+l@{u-CC%LWg*=c zeDqMau=p{2#3us^3a9fH(-zFu731y>U}s7IIQ+i$G6@j;Ic z^kA0pS-5lI1g-K-A1sXFaQVf&N}-@>lManJ2Ogl-I{qbm`haS)G6}&be+MTdJYAOP zubXbT{?q49{4idlb=>)ifM%_Js470>1!j)*HS2n*m~ng?hl`~Y&iHdUYt^>=-v$5g z-6E={CW0yCBmUVg+9yuhnAI!;ar`yK813bRx*^yf@tp~%DA7|}Uf6qCG-;m+8z%BP zNy92cNbGLM*k>?x z;_G7reE&|7(l4*jV5Wt;n8Nb*bcc6`N}}qZDxYs{`G2gw2gt4Q)ZU1T@GRqO9e4*z zQhwb6L{P`wOAK_S7ncm>ok_1hFk&)TE=-AXgsGO7C~YBUy3xw*?)E^`2!F-ZvFrKu zBmpqlm(-`$oRYc(-xkQ$`-6O`Efxv`Dw98mqGi+cXtxSqC@Rs&D4Tmn=g2I~C3_Gj zQO&=ccOF!;0vEs@l-JgtfN!6<;rLk^Dv~B{iG`#<+wSTw@FO9zPn5(97WY&~=+AE^ z)0O+>gG}$Kk#rRH6>(fT3!YuzyqKL4J&~F{+q~9)SxB_ox5kGEZ*XUd*Vo186fxIN zpPWWMgJ^_hD5r=f@*U6xaysPhIwLbc@WxmOyN$^e$iKv*tMpL z&na&8XpD2WKhFl;x*hWDJL_PK{blH6u$9=xqSxsUU#nP&o78E2gA-K(0dTJO$R|*V z?jhmaXV-mr?=!kCZn`e@&)-GdsnQQE=7$NU2v ziFZJ7tl+L`3OooibyJU$7y4J21QA>}T*JX8 z@YDZ57V(PAiTUtJt)JcA^Bvim?aj`ke^HxGygVM5OQ`KqHmFTeasw3rD+XEP3~EmO znxaVUAG(nH?{Pn$@sh!J&jO!PUo(IIyZIw#^d)>-GzFZhoA{~)zJK26}BWK6N~yal0>bXC1AP1QHWHtjLwsNnjoz)fSr$v29r zWX^tJNR>m05VKo&S~Tfny&`>ei2KgyLAI!=5%0EKG+mH}DY`+lt(Ur<{!_)=mbu@0 zuP9W?Ra&v+9?}INmH{g?!H9<|+$=gR{Hd<_z}t=94PrCk`z$N2Q9ugh{*1SrT11>< z-FLFjxRnJWOxbB3v>SEt3+eI8lkO)d(oD>T?(NHBv(;GmMeF+;geGSr1AgkhldyAF&N*s^JsCy(Ig6F@o-T)r%r@)R_lB4-F0Os$?)2X|9@x7= ze&mt)G7Jw(lyn?Z@-^umfE(e#kX8Z}IK{iDVF#~)gpa zds*|XqP;R&VGCd9W21cIPhT>r;!xry2&WCKO+r8%7@ix>oyem&Rm{QU@aU`Y%NlTh zobt>cPtpcnOMhm7m&bHJ8V3r85b;c_v#AVLwKUyJVOB!f(DUxk*uT9|vy1OYiMDwW z+i8Ljo)2C~RDvZ)u;^gYgDgP#@u1m#WC(~T7pD|yrkL=ua4QtKMml7cn zZR1T^)m~jUxHUr4Y!eN&oxz=tTDVFRTXTw9{_|Ey%v+O7>RT#>su0+5%xT2)ur5rzE6an(XmZ zI3~NU`C;fUHms8I(aRG0aTvHI)u>`3Q(k&XeGkM^cq_sUl?~zSmDG{U4I+YDkH#gH zzp}og|MQ*x5bUCO1p_76D#cArNw5&u3g#%AK*1bXA1F3PhPDlYwf%m5xbK=3(qr35 z3EKh20BE!+;td{rvCL%VLKj3a=9 z0(B@$Iz+?KJqRu_zBLsdHhaaTFsO(SLjl=$xApFqYm(&i-OYq?;^}$a5e`0+4jNMx zI_;A1cgf{x4t8=}H!O6q^(~(G^aIqLCLeM-{bF)tjE)m05iKB5ui3xEesi&CRAmtl z!Bc+mvs7ZC{||OpPEc9#jrLU)Ux>J+1qv;%z0U?IRNA!iKt^97ug*L70HPx<#oii+ z^80_|I!Go>WAPQ9s*CQ8Pjsoc<*Th-4F_I4J=xQUPU_j|{6-D*AihhyAWgKAipu%1 zzDi=>_3hhqx9?v>%k*Vc!-2DoOhO?$9Q!W4I?AOfhn`mDTH9ApIaI2AV_jH$ha}O^ zJ5LE^EObxreXXtWR&S`_w=>NyW0l(-_CA;p@A2;4u?ZNX5Fm*3&-^4^PQ){d{|WPa z6q<#d{q6jmu0!R1>2T!Gio1S_a@J|)i{$VrXH25?N-6(P@>cAP;`$cw!klJZ6SUf8 zc1n%KT4>f#Nu)h7gs`Q{k^Q_atmqD|(({kzPjQ6{nIwF5G#}vBvW#=dGfxoa4X)%& zn&;XddwCO#%#;4gfNI!0D&Ai(82g0;I#8RlKS z;D7Rt0o5lA{`jr0%g6YjoMU5*pMNj`!-Oy`jYF+-UX}Y8R;g%b?*Ca+?sz!K#(V;S zf|EyFc5EId_+w#xi-0D{9sj!6f;R~nl1XkM&Y47}VRA(l3%+zl>)ON*1!$r&L4STu z+(Yoosf}(GRlk&Sxl;S`r?S`nPWlI$5-UNbUJqu^ynQCky>FWJd;16R&SfK{NLQbE zL9^k1TeddnN5@-nyZW}~+S|cd$=F2yeqxBjIigT_w@(Pow04&s{v!q>#KO=AP=I}U z9sD2{0KaF8I zfiQEJb_lQ3^b9Uv=mW?0@)u7##9c;aj()uTb>qBHW>b~VU>*eHCZ>HNitGy?ZqSgD z>fp|3U2Lj5E^6ycb8;h2%v7+lOxOZd$XWo~vxFd9Xw~me^MwM@@emhB<#(eT1Q7ko z*UCoH@U(Pzbh5&jC@_A{u31R`aI)8fjV=9z(os&V^1&MF7!j&iK}Te^6l>mS(qPr( zNZ{tJag4f;*p_F1kSVI0Q6lX+(DNTYB%FTcmBsHuIo)vmdPDLB!Brpd!hMb0?WuqG zh-$X2{stGM(L&Y;#M<@`yF-)b$VkrF*qp-}t*~ge-nQr4o;d7?2+e`%Ogh$7b;89* zUC|9wl9O+f_VC-~IUBULOdC5U7dp+%EsAOfX`kmPZU)Dk3m!5c2y#xfk&M;wG){s;nQvtcEd=SX`Sqx^4+?qRGd ztY8lHBgyYKpo8gJ{u_S=IT#(0<$Z3Xs`0AJIrE**w#O%?3W5}B!9)r5A?k>N`cdI7 zM&en)YZ1lk=+t$kmjU5+9C_l!e`{-+4NL8>=Ush|xW<&d4c&p&kbZf1ky*~L1HBXR z+|hWxg>D)sYw!Hq4A4IVspk7*D@FCnLdZvZL`>GTbFYD&A%@`IR#nr(_?>r#=^V+@ zO{sGvF3qCX*=5=NDQZp-CPWD#5vLO8!!};*pinT)ZSfFZTwHnu>G`$#&x2+5n zhS-Bw<9aSfDEA|ZW#Tt*Ny<{tfk=}SjKp&$im@h`5U$c5rh}qzAcn~lL+dR)whpV?rj_mBcz6bO0j~pdjCC{G_HMx zRQaB)1c}a8i#y~Snr$YRAMPuy)FgFZm7lCHPf9Z+XUG`r)YW~vT50QvVGo(Xy>8n7 zY2Gvz2vc@17l%BiM@>;z;?Gr!tIYr#0viE1W%? zqlc&|xSvvkbZf3UcWq{|$zFIo*)p6+GlY`wU#e3p87CqC)sKTP~*XW!l=bZS!W;}DhzVq}>x+zZQ@r$fqy+dJYrrNi@ zuAC=1yO3-WDT4?wqmgI()nPy+4L7g)R?qfe?YdHVh`3S*I2|!cu%PKM3J%F~Y*Fhl zy>DgW_j1E21)o+)`dM>FkF#Z#dCPg}rslXQDKuyxTqoR}Z{z`wAH*uIfkp9t5uy&oP6xT>7yr>ExI(3B=n#rlx!9rG224B30&Etd_iV ze{IOOLUzNlBVFlWIx5}Stn{cjvrw#20+FmgUxD@A74)ghJs<{YG$P3Xp)`fE6cC5& z2zg%}kq&E}Phliy`21oRM4T%peA#caPbl8iI}l&wNWz5@Mj0nBnXsBeVZ zbW#Y#W0O4WQ+Vth`WS;Vs)&VagXPiK1qWR^*UZm`w1_OQKa2kB8@=m8?w<0hUCd}sFUpIa|e3;(W2DmO4>9Xfk*1XQm{}ew>A^;ygE%==0>tzu^m?y133yz@KKC zmxi$0uKDmuC`g_}crZvEfeFF{a`c@`Mq-;UE=v?w=k9r|e=lJNH2#f~%CX_aWJxL0 znTX^P9zea97zYTYGn5EOGt(S&K%V8V$FpbvNH=44#TCL(4;&YyVQN9I65s?Vc0^Az z8NgiadizZMSns5(deR@Ejc%MW6NoE7;_+`j(-+_t7>gm*>RCKd(I5K_O^wd=~-uCb^{YDD*Pz?Pvy z>JSV3i&9KwY5LC&S@q#C2~wM{vgatTOa;hYWNV6UsarPGF;){`n&)r?R)e3((HHPc zK95~dkRwBE>M2C#E(q!dFhMZT9Rv6sP9;w76ci4gf7#5&{fsaXW;a2;K7`ScgFX{N zF}02|p`TkhE`5*P>xqw8blys>rRW47bxj~@IUpKW38fa@m9qTZZb`O#nGgx(5U)i{9=OGWg3QGmlV?Ku&m4ewKUE|yc_5BSK)JvY$#QYH<%#)7&AjCrS^(r4 z!I5I+%5S8eB(R_2s`|OzqH%B0DW-I+zjbDDF|Zo$->=@m0$`_$0-&a?t!fYoo;d}>z>mYUInf``MH<=&yZ%`aW~##m3e$G`9Jb-gsl88}E{^k?08MWg%l( z8;BUGjgd6T<;(mtMQ?B7vb2wl)<_A7=@piKv_MehJ zdr6`9VbH7ZJKOCKzRY)FaHKeG z`3LL7+|BmPvR`frElK5#^4UM3hIpl0|4jXv5h)$uCyUe3@{@UvQ!P$k*68I+xIwH0 z=iE!adt0`(wYLm1?R`tiZN1aOKYUPwi2}k&msawV5qS$XjtmfgopDgpcem~CN&zCc z5K<~BVDUBY-lSgL(%PR5+WmI1!UU3g2D|ujtl?;B>9zVsdPrO5C^cv+^Wt}SOWl2S z@6jz{0`$o*58=vkMruVGlNv%>wMEuS*1&w_W37d4hIc@b7HGKw>`>YyeTcq==$q0BM z)`nJ_T#l4zQ|<6(ZtRCRFP+9$9+SSUVv&;msXVPLl2|} zRoBewPggy9t>;xr6kJ2O(Zc7DXGwxMmdyCgoO_Da2xJ6a#L9Bj{Q3Nq74&gzp{8oAH;=aGp7-t^#MJ(1Dxc?VY48 zT)RKg3=kN~_LJW?lYE%P2D0;<7Ts08Dak&;pFZD3J`*sjl{X#kvLX5wfZ50tVtRG+lvvy< zH&_#|26HO#E*iaknaT8(ZAT7UoU`t28qv)(34Zm!;ToX{IUT9T8SmI9WBTRkTI(z5 zS@9pyzTTJ`Szh^&++)Qqor&vX&wivny6Sfm;2EJhn3Gk3*(p?8QTA9l)_rw#58%~f z@#D+U#WI=Q0Jw3((uw+5VCrMI%tu@Q8rGuiVi}`|XU|NDoKorNY}KE1os0d-M_p5F zyyrCCi)^qk81(kz+u_jydV!)7O4YQkPJ@%E=tCTGWwS2Dmpxwm+fll&@)8DY-z`~t~mf= z@^AO9f{o>i$W>C4_16I(ZQlcqOIpUU>Obd2n+cnVPVagw#Yah0GZsI6`m82u8C?4* zQ1Q{8*TwF-QV9lH0U9Df8u$S3&2ti^pwD3TaXMRGmXVr3!V9H0D6kLGi9`gkh8yc+ zd_#FjaUm|&{P0nf$UwcL^^TWo1X|d0q<`&4LKYRdXit2f&_xWEO7U%Ij6Z$K=_{L- zyg&C>09y%%(Cy9R+qaELLchp|33i>7e*Z4g?ZUVhcKD@GQ?)d#S-gR6d*AE+qo^S{ z;T)tcx-3H#QTQ!uu%_h17K0JJ)$eSa0$W{ecmD)$D_&#bP~qoMf3LepcOTk|SwC!; z33w7S9PN&Cf%4v$Go)s??$ak;mLXOnSVoVD-0y0?(*FLc(Xy$A2ZM>3TsAFk^%^@! zl=k%7!ZG@i$Z?Vg59`T{4#ITq=YSk{tWoIcHSVwLJU5g0={IVUs!iLGe5vwqp;=QK zEFOAXQS^-BXT;)SpQveBFICNRZ_`w_D zg5-WI!?*3Bm8kzYGmG(=67iaHHkMw@cS05GhXwm8D=EpZ8ZfutKH1~%_iE=L^baaU zgYX&0wv*7V_V1SqY|>@S$Og9a)d}l~5d9TW%3$=n=}}Hj9!tgwQeT7sbC;gUM_($7 z^_8ZuxKbm&C?$EsM|@^f=gs;r?;_pPYs0$g%aqRb8r$k+AM3@84cx?|F=b2(V{n_& zeDt_}v)QVDYA7E^__6Agli^GNgK^jlUv%mmAL}S5m6e%Fd6}4K4kDW^?n3)?;Wxo= z%65Z%+m78?Z*!x?pt|RL@&c@}%Utop{a?sFia+i;;D+o|4vkTybV)Kn*Q*4VtMRDk z^2S|zw8c%8#P7?Jd|IRJq$6LOT50PiQqYmRr9Qj!|9JY!sI0cAT|iWj2I-V;q@}w{ zxQLq4X(G#)j%E7;&y&4^p}ULLM1_V zVBt&ut&ocnFH3taaVroc7m>FX;RE?s!lS<&o@4vo+$pn#Tyzc#Whur@2~1GaI>xzL ze3ME#bPQ-AEB9( zO>U;PEm|VHkpz7chwP(S_*TTjQ^Ryj8z`X|A?dD$!Cm z3c*2bMKAtn9{ZW8`f1kzYW7-N!poBPgrk0|`x0Z{>Y&E=&L^KEv-pNR7+h~3(XPUz z&lBthXO*qsH@9wiY);HAPG3%35)S^I)8twbP0@SQ$sXFDiHI%kYi`TIH8pA`iIef==o65{?lG!J2}PrpF3 z$F!#^S4qVEESHh=f?v!Kr`6{P{UYw%N(DpVSrd$4ylvGo(+2A8CuGGHuDEDNPtbs=C;D#U^Twr)yE(>^L~K@E8@cFl~&13*N0Q)E2Gd;|A5 zxTu__!bm?ht$g3~x!iypdwVb~$A|G*+IW?ev`2_8P|eL}cc36#;O)1A@I1Er26)#u zXE6Vyaumj+556CbFxa-W6)iJ?>9yy9eQ(C++nC#%U*%JH!xgW^?H#TLWG&}NKjfIl z%uDHtk|S7hhG8*i{qpyJgU@08AJ`19Ql=FT+_W@h3cO6Z}afq?;XDk{2HVhjv_@Spe*NnvMJUm#AU6%G~Irm8D-G5lpZm%og!dEfc|BY()nqXAqpoUEj6Yov_gCt7gn< zW6k0vp!S+c2pFy9cz=OI&oKCDTi@XHHW+R?ft;n`jJB5(Pd|)x#;f{~Z@V`Fp27Tp zJcKi(Fw&vOX#41B2yEE4cX8R>9*C7qVG9O(RjVyxv-=dkeno|sXZ>&UX+H@&J@$b7APAoik+>hy__m5+7Z=F7=ss0`F}Ls7*nR~)CS zhr5=Yre;a}4@}R1Q-e#tkuQfhdzK%e_sI-A$9A$6uZXywi5zlxos_WA+=&^SQK%D# zEGBc|5wPf?AlhqQw|{}5`b%(HEjp@iHa2=?<2y_{#U}=oIL(l2!?p+KG?e{xL zN-02-fUPQDRq}z8e`r4uY7mR`kVKd9A2>0trYQ>QH`ho|s`s<$}>tVsJrP5bK&jf{#E^Ya>c8g-cvP zXzLSu4b4S3fb!aYh+d5Fo?;@ME0BPO3zOf>*B32vC@9D;K+nLD*AT`5p8(kEhMs^L zpe~61V}jjbxuUk5lSk#=*55FuN^?BKI9dH%t~846WA1WKVQxWI)%Nt@r;4?%N4S3G zSs6O)^l35CRf&@TMG!jNFSe!f=Q8-crQ>N;p$fI?XkA=f()c{pEZ};&yT5PsB2mhv zkEhHsnz_7hX(Q9Vl3ZLG6Y z)6~w-wEph?261`e!i%%C7ZaTLGoz?kWUIE3%OsOeUjH598UJ)&#Sf1A;4nlbBOkk0 zz4u7%71DOGrs4j`uACyL_^2Z$%7$BqFFutomjm81y+)-Uc<1()yK=Lonq4XER#0M| zVHIr;A@`SiTgS(;GsUX+r_E=DU$bD|yhHqY>m-dtSmI*r(|142&&e}};9cFlwE z-!$hS%1@GY?47>1uLwF`_R$D0*l`A2D_0)#Mc;6WhSGsnw~D4plb0*`g~Ig3SJY4x z%SaJ37o8^IApv9|npY`h-9OJHXWm1?cY-tQ1ca^OrmE~~U!D2^zl;Z*IzX zaN|jczl=X-Rfl<1S2S%O(|8kmDtlXgSv9&;c5VBz5%HrQnwaxRqZI=SZQ|RsEe^ZQ zVjS3S|JiDm-sjZpjNc`n&u3SnW4OfqEaZ0Nd8qcK;y$1z*V^ zX~Oi~oSyF1YOImQImej@-sL+Pp+UE1%8$Y* zOns2E&~D@_C>K%TUDzd(gyK>#r7>lv_=P0isq=8!>gCT1 znA`mV>&@UTK8vqei$L?K`tbzX-6fG}5c!IfB6M-+I@Evi>#6$J?4PaU+6w_Xa-s~n zNe=Ia3BYcMJ+!gLbzdP1I1{#%5kc)@xv3DjgRgmS2nl$`C$lKTxkFNAdSfYD>X2&ixE7vjIKJZWU_D@g78Aj#^mf3a6*sXaJ_kQO zh2^G&n!##>5!Tp%x?_2l9{Xpa=><;x49A92$OnJ>7V@MhcXbC=7uTG(a@ z8H!FgZm&AneqYnys#GHz-HxyPS!@JzJ7Xi|OlQ(n`^i~u5LdeXYP|_Hgr^X9Y3E~o z(^E%DyKy42{D_WiBJ?gNmm2BTZsPMK+p1e<%8k2ieZ`5&joAJ7j#ro;_Q^x#b$N?y z^>$$;t#phDjPtk)Xo={Fj`H$xWKHln6Pq?KN_bhK`=y^0cQcN7L8Y(R!hYuAz=F#i zFspH>on29;|6ioIZd^fVN`3`<0cw;VK@@6njh|>TPklhW*TR#`jm~3iNwCy@>`?4I z4+`?m50Q+DdxrwEjHPF;7XF7tt%Vn&fQG1x=Dk2jkyS36DA4>mU?#^eBDkI-LR@vf zY6^ZV0g-zW(TwNE4a<9Tt3FAJ2$SHYM?uw7Hu?SfFX{Mp2u@Kyd7^0ia;n== zjS%vfi;iKU7nE}acQCmP{cpKIVA9m%oM9hH@s0K8q#|RIpp3^fwa9yytfF)%bD=7R zF-HprV^xtkcHK)Z^uYmvzBX;YJ`cabQ14T0KO9NAVp)OmnlmEQti0~Of2$D|I#5$X zQg_F?7lTx9pc~15V%rzo9Vg+h>EC5ArTPx!=EuefS3?0o6#mkx7&{cEg`W)Dz#JE$Gj=AftSQ1 zEF?K?xdC?!Mp^fa`Q$vCw=Y?{mBC(Z#*xi|{+eMXA(4zUn-R45^QU#`par~qs>7Wv zav!2H*S6kq-;@ul4G)qDB|IhAek&qyG}7-Q{^4Jg4k%r_J7Za~YM^w-n?kMig! zN~lLpxaoSk7T<%@%iZfWyUp5Wd5#HC2xGjn-V%JoHJ&u=38wJ`%bMIJbV{}q!S?j$ zFI%4Ply#Ly!}%ltG|^Md=={43R_HHXcW95H%7-j-CD8Gsw%p8j=TC8hJ_PNtI*?G%%nO}g0;ZShO5epRCG{u z>{S`tGlz9aBATU}1&|!jy*^dUyne58Py})yoPoYTfnC7cK_M1$`R(u}usXa-0$k*0 zUK<5=pKfl1Tsom=nl5B7BM zNNS!HY|&{0L*8^kA&4_Et$>dNNii0p#4C_`xtm)rWt7hYPc^zg>J)9yU}+eFj*_C+=TerS&7nTeC-6&!lB4zTBXRY+R1%Y(JI;E zK6` z(gn#Ah1hwjkx|ctx7$6B0KMJdZIjy3AofVxe~FGvCX7qB-d3y@N4n(3`obBOwf+G& zMC1*cvUPY7CEwT1wcz7v0#^wxIWtxJ_~@L;+1KbvxQG-LF3 zf|p>Gs4EwnIWp;W0iOfsKSocYQ;1#TPV`~>Ph?RBGx~}*>N5?DgBbskFC5$}F2CJK zX4va1%Qz;<(wcSe?AmQvdYJ^(CwAy|Nr9*Ar+?vKrt75oeS>~3v9RHmL(Xu;K~PpL zxEF`fAAZ^Qtousta8cb;kgf|8{9wVgxL|`SP6Fc{_kM>J@?`7mY6N{`;!5OhpXrv0 zYc$F=>YjgRlsswufxXOf_si_#J2kv4a(wHZRC(QGcNa>Q;4u8m<^Sw|_bx=7-;T83 z0~G1X<#c31QDUaL_o5dZIDK1Fl8xR{++6&-dZeTYk9Q(Rh!p%38SoO6m3tdRP)#Z) zouT{KkY!iwmzEGvG=%bgtYjcK7RCGC=`x46;nCnf+(<*@n#T>>r<^Cps{ueIT;S|PyW*zD;=SG=BwRQI2pZ|2`vJ&-Bv@tt9-@;E> zpyzG8FyMh5*2RNE>imwBTsQ1Ca}8pG>sLur8i#c9%et%0cWX0Zu#z9i%%y4pU-pSq zaYN5WtqRxI>Ct~SUfYb@R+HiRBaM&BKzwX}_I!$^FCn_V92nza7VP}ipeF}uWgZ8f_Ocj%+BKXJQ$L_4pazExMVZdghr;QgX zd^^2Q6snm{Qsg&S=U!8XR=tf8MgS-A+PT3TI2f46Um%N?bi;TINKs>N{BlYPpqby? zJ`P$ezH3jZ_lZ6opAS)tHB2w|Tf_vT#4nW02qdcmx^pFkgcA~k!5^-zn9M+q_|UP0 zhsEBwLtGSd;jE$*H`#T`+nLDoGSLzeLP>tW#e^{$OS`RCXIcyvcm2jt9Vu2CX~CNr zE}?lXH$N8KTdUah_C<9J3n5^RQw!_QjUf-(62%sbSbZ(jke7z1# z1^6eAYjtu-NsP%L$*})ycIuarT84mw#-b(*$=?deR54ME*VBk3!6&2;Q`KQdlCz-E zSs^}*6zYdlf~WkB^ghv*)AbjY3s~Q^hg1N494^h8*)}&ep052Zhejud?R|?*fE`vA zZPPYOet~rc#Zc~f)ytMub5S?_-`5vcCnN!#ryoTl`3??OQj`SAf58F-$!G`)0Ze61 zOOxS_Mq>t9nZ7G%U|taLjN6Uo zECB035M!(gkAU}-6nt;nsWTfgG9(4OGVeD%)y`eTHw5L)W$KCy)x-?0l2mhw-A&*0 z>j>NuD8-+mnUL>AM ztFQywV5hR#cxlS`c_%xJN1~IhI9E8VfwfN0qMx|o6hp!X1(N5nYs-->08r%TzhVZl zLy`O*SwQlu7b^JUA^^b7hfW1(&o*~JbOhRH!YIfxAres%$%XVTUOJ zE}BSW0Qp^Pvx1L6*v%c23UdyVl9t)5Jp+cr>7DsPBl_01u=gkdG^vtpGQCy;MDCJv zi!PfOL6U8i%xVk+`tc_$5B7jrd7CWSd-|!_;@g}bH{C~yb;qUAo|#eAye;->yWG!V zFo5MD*`5uBLA(> zDCvm#Ip-ucwU2jBMMI@gAm}3l z0AGc-Rrz944PZm6ms-1SCJl_<1H3B>@EenpQ*K~+IgrF(%A~IF`a~sd-5q{4$E3;J z&Z|v}Mu=7)s3w7v6<|-FaaAJ|>P+~dy}vgZ`J?$AdNj_Dl61P7rBO9^J){%7>dTH% z2i;C`QbsOlU3cA|-pco0Gw(|YJ|lQD ztk4_v^gG?{yimS0onsFigtVj$=EuX!z!|mfJ(Rvr?3YS#hyEZ^sM+)KMe~b6k(m@A z@q8wHtp6?lb=_+x`@;Wa&RIHY{o7$w&;Gz&dw7;yFm|PRwwAZMFk2W~)by1~-kp|9 zRxM(fQ`i@dL!7d?hF+@4Ko5@V!f!gzW8V~BTpjqaWXCQw48h&-QRGr*jHFtI(0zN? z0?-;ub_`@k;SfR*OhARRDdI?dXFZtc;n^$l%Nz$2QMKZ&(XCuwRjeRN0TJSN+`m$p zv48kn$@r>>FqJ8laN+ly3UaW|QD-y9To4Jry{{sdfhCtj1+J%OmL(fGC)rBYY7y;x zIq*;wMtY9x=Rb7z%*)MQINJAGbuz(8Tq2Hy#My~UBLJ44vhGSJWCBx(QVxisR&hIV9c(52Fl+xzSrHY0OCu^ z8zlX-I~c#SC0_;arHA_z5c;QvNxMq z6Yp}Uq(&@Up{}6l$YDvg7yfZmQUoLg4Y!hjhV)Acmub;)v8A4B9=RD>^fD?E84~$c z@Eo`#6p6OZp@#sC4MR@l{yus}kaHAnD&E&o%7dF?R8&&D5iuD=t?-q%Fa_cK<<_3h zn674wM%XyCiGK6aG?NStCX?tnu0K~2Z;8`XJQepoBNBj!@nM8;;VecoJ4>}?i-J$5 zmp^DfDOq9Iyx>03>1ExXBVKfa#-hMrY$5{xevRYsvGgSDI8Hn=N0Z&Sh;d)WrpQJ+ zny4;)VglVxpH$5MZfH_44%32b8{0$zpa=^*PE6jeS0*KMYHc>x3|mX7)#usdq19HJ zjL#o=l(CuIcZ7|ZR?S1&Ee7i!9w|o0*Q&}gG&3q;ofD%d6J4c?9lxc5llpYA-mp_8k8E*B&`;-0QA zmSYdKOpZxIszvg<^%WWLW4g(=>poM>?ML;@vmhDlKGL}etK}$KKunn3$KG4 z3Mjx*DlXiXlJrT-jp#6w``q4>k%?NGrErxdEU}YOR((TJhk*es(f7q$HvChYba7i$ci%}?UqEOALtb*ulmQ6I?%CW?ZAg*F1Mk;E0O}5VBgqDygFjH~`T)ymaoxO5sYD*ML{LXcTOCs^9Angg>XP*4* zMd}qK6D*>hpK4@R)RHt~iWQqGD=zr0Go$^WVc9>a(l#mgwuk;2BY}X;a6O+`N=iZT z@>nLK(`ge+QJ~m|SRj3&H+YX~JpQ1%%C|$i;Rp@Y9&9I zdD((!9zq|ue7do0|Ga$WQX+N7JTbd7_R-COn; zS`~Ldpjs(Brit;j0k1}K7Xcvl(ww3dvK-Lib^+l+a_e ztD`xS;fdpk3!zukNJtC2F_9aWeN-ejM1XCxm78K8IY&Nc+^&))axP{L{Ya!Lu=l5y zv$k;hXN9(p?sgw~`(yUj%5tt`M-us`+rTDK*v<>;DTT!C)kOL?$!ckXmmkp--!k_} zc2S#eUOz5hg_2NHCZ}a=kV{TBy(JHqZxan9rP|i`viqMSNR<)!jksy`&%hR1| zs=8Dh7aJ8rX%^Znz(k5(XlU>^DIsFteCJg&n|JX2_O-X4AfADwlh^$Gt8LbUOp#2m zcJB9<)Kn*$KOC#j67v`4pGXQ~q$mJpqhyO8Am~T#+9jF2C88xg8bb!-FbQ99w(2w8 ztP^M}zp}qO9bO;51W>Gs)1BZrGV-4!+b>7cf`*2MpV`?dxViB#VynqEDdAvT+LzGK zi94^)=PdM!+<)|OZ{Mddxq9q2rmOxYTMkyKHP)CmL0hYR$nW0yhafHf79r}Wrm)SH zCG3f(A{ur%$hXHzF^if=ckR=GyU^t(JRM@;j>hBn@XGf+Q+t(Ct?QgS81$ zA;%iH?c3EFzl#o>7N>*3$2k#WIkA=}0LrPMTO3HgA)oxbc6)czL{9Ra{MXTwbjz`2 zzV}t_mAQHz;Yu+LVqO!6v&;#58NCuJU%StRCBT1_jLbQut~Iz><9SLYwK0LF=O=K zu3yy?>H-%Z$p@F=XEX)zk{v%y!BeT22~p-qO62!tWX=dKcR0;-3xt9(t5YM5xttVjTO|8IPMDCB2@h z{rWF{NgWU(wWZTB&t11hX2$A;TyY-(`*y^?;nnucs2IG^K#3X^%Ls4g)qp*0!>OIT zpAkb@uUQyPS zFKZpAstrTnza*nvp^xJ2``#Bz`;O8zG=DUjK3kuCUe<4%I$kp+z_TwLZS>OWOHw#?$y?KE{J>98A_}P zN)U63wk60%2%tN6;`iAUGo(NPbD{wQBMGZi*CK_ry^QQ18DU)zsEh(Ix-PKweSW>_ zhYS-F&26wkI2AuT(O0%OXEsN2z*a*5czn0S<{z&2*M}82miUt$RsJjj13i;sh|R%4 zS!{B`=>cfl0xjb}^2EvC_yc@kU=wWZ!gzo;%4H_@fAED`omRyse^>rCv*}GGiK%04 z5SMHH9tsVDts@W^J3;Ss$j9(Gx3jlm(U*)g?CXZVq*#IUnU;SE-z}F{jyVe+@e+YvAFW*FtC{SS3MMpQe zoaJ?5wLjy(KP0fQH~fo3FMW@=bKeNsUGC!{U_yMNI;1IVCORf%yguoY|Ehxugdk8r zM>8CFEzk`Rl0XBL#*2#&OgZ}1vqlV7e6ytSk``K7MU$!1ErypcRztyYjF4Q9nv4^y zA4d#T?ow_^$Rj{o4`u3M3MulKQt2MlN18uJMn8(jM5Qz*ipKWKgsTh6<7LV6%wYpY zKH*j)0&v+VhUz3y^76pZ?ght1ma0xWeNI7LJT+(u-&iQF>jRh_Xs!>63jnu>&%4Ck zsMS*Y@JS(AB>)hSpxTwS=0yXqJ+g~MZI^;SkeV-~>zm=P*R) zkKsOJcNrTcSo+YF9gc5gni!zhH$y|i3R#64*P3DKfRb$Tx05v@m{2JP*+Y7`FrD+m z<_*;3wgr82BVsd!OW48-kFHO9Z&QspZ0ljL?x3(`4K|g3NAfP6&`-NuCLrq=#inXo zpRX}OEai$)Hj=L@KjRjkCj0?FX~1IutyR=OAJtavaPZ+!G3))jF)}~Dq^v_2o`6tv zj5z4LV4dN4ic{gkslMNI)c`itp6Va6+^fwXz;a|fv}mKXBW8*x!oM*4d`j%q&2F>t zCPgPpanIQMKuqUCVjFeZwA~sJ83#@7W6!Y2UfoFBqmM zws-jAG%~ohT*dEio9|~A8I!k%orx?yd*jsvg{|D59;S4kEbsUmbE&$2!B+-5 zC-I2O?5Lq)ShXwT37JeU!{Fhi5(`RhMKEd9x*fcc42FL&Ter5yXL3JvyPmYu9UK^U zFil4K@I0QAY(oPn*zB$TSfNLbw3xe-o}+ARLDj{qbQ{krA%I$-5R3SJB`VsvU3Gq7 z=pdq^!*KDrPYrx|3y@{YbzZbfJz+k`wqbmNzkyuny5u=5w6kJDjtkK94%{4=@O z2lTkt_l0K4ksHndtSzVCK>!3{;fFGR!IvG+5MUT%CG64}OJkgAqP~o!O;uBylh8S& z`Cs-F^{~7!)U}XPLY!z~ewLtWpvtTA^$pmq2J_c^kAl~8L;5SOqBC+ZiotGjGJq1G z{D3ejz1U^*u4aq8fXWEqefoSan_cgSf%Fowwc%DxZQ*J8+zbTt)IH|OodbvxO~N4Z z4x|tW=zmKnU1R{8jpyuc?BDl}pZ}@q;uUR8{9Ad2`MXp~g|6>EJ^=^_=udyO@jPS~ z%KN2mu@m+(Z#f^xDsH&5KH*N z44eZLXIf}q6kk4&4eWh1^BSWju4E~+P*pBUpN6FDG!3Hvdu&kX${5Ug=CXhpDY2+1 zG*_z1Er=sKxNzFdNFCBoWHhCl(Z{m&faq;5w=x|$zuGIiRyhgLMqhv-`B2X~4^>TL zmSE6|MN59w1?iWT(eI%DOWwN!DF>oc1@~w3HC_PZ3NAaHU8gYVhI9HD9^&IyzZ1PB z=#S#Vi9X4zc9q4@fb4KIzx&k2^^62rL2mR98Hh5vZjt*W``|K*_|t%NuJAbr>I?S; zbzla;=34VBsgUrHG(+RfA)X*5Jd_!N83=h@Cqg*0MQgiUa|UIbn)7Dg6ZpOVmoNd} zS@mME=b(^rn0BLVNTMU@JCK+2`e{{`|$9Vum)5-O736@j&4){%6&N zu6Xn8U!_sw-b;5qYl9f)ms(*r>1E?sic|{!LaDJev^li{gXGIE?3B%>pzdse6q`GQ zDYZ~DHcH7NHLXFj-Z_Qu0JBL?eQlI)9NQW{i(@~WK!Y$KykyP_@yKxk1f9ob5I zeCW#{GTLelC-8OAp%JEu?XLuT!+Du`V<)BtvoO0XQH;#fvmk&5AUKv|6Lqex*QK@@ zY=57ui#eGZO)UORDVNucC!+8)njylGK5|!u$b1cQp-bCZQ^q2^#W@RX(+Iq)a|>dr zPWd;&o^CxdmRiq>8N+{3{9@iaCU|LmWP*VKqB$U3Ipkw2-Fs%NpFlmc=!N? zFM`iY>G8EAS2$wp^n4YvTSes(4-;m>h)hXm8KEig$Wk4!w+F%=^&30-jL)6RmyWo~ zzKB!W@_o*AbRhH!zhXm@)j@S$XtuTQpb;&edhSU;Jy>WLnva>{U~v4Fk}$J-*E1Eg zd*{xf756L8u9I)YvK;{>1#(Vysv2?g^jr5)&e8AC8xFtsin4S?c3o2x#t!)$y*?v> z*aO-nAnnT?wtxWw^-fTKaaP&I1uvtMv(?`va9Q&vb$ovwG#&Rgzij@!L#Vq0z>ihPy#S8UjHR#eWAt|~(;)mU+52bH%_ zO~^=)LinEZu@(4Iqe)E~Zfy@MipTaw_|3Es#1ikK?oiVbc)(|0M$kv7jIpbKO!{*4)24XewWORQ_vZJF8oWO5n3nRBnkQgakImUI`+US!@t#*c5K63e5x zYDBhH_lQhJNCx=i{nl1afYR=!tumG>2fm>K`8nz45*%YhbAMXBqq$ZV4LZ5oZ@2U2 z$1|t3MZ(Y?EbvSETE%mOdL{NxlAt|jW)c9i2wJd)4I0t703^_!_-qsq2vsbVq->u) zayiI4$-#jd{B`u@7gaz_X&(z9s-$JIdz!GUTN~Jy&Oww~Yf%3+p0KJR4VEQo?WLw( zIQ=iR;Gq}3Au6h}9afPIW~hoy6{e`aoh)8a^;XGHUORtHPQ`o2bGiUUEY;=RAk2l3xB^h*cU04Q?dGRWNy#_ z=)%r38G)C%LtlvI`(-eFG?iz{LYWG5xhY$1NXK~pfU@0<{RA^mg2429SqEr!-3TA? zUi%X@a(x~$^|aK^V*UO$JldjR5&x){O?6RSWNx4GvX%cM)&D9y&*er%-0TB1(IMn{ z6!wFAAJ@`e0v<{ZmCtXby&4~->%(1pF15S?T?HRYsi17RVV)A8C?BV;YE~pVcqhK) z&awla$@xqGa19Wr7L~+O{YGv%YW5FFv0Qb-%4M+|Nz8^jn1{Jp>6Xsl&ESawh#DZ% z{{kP0Ez?U1c^Q<_AV2uvcXn`zpI>+u(v7&L2sdCFvkLMgfRe>0+6S>D=X01mFOLxT z0pZ8^%-Q9_%l5OHJ?>LrGN0oTt*`?|r0llEopL?$^5D9bKL7wXV#zZ9DOC8H>s4_< z`J9_Y$#f1#wZ1$b#R9B3w3)HjtQbX~?Gc7B8F}w{Yzi>39yUik>71?(It}2A+8DhT zc&wRzOue};m=j>D#QBx*O-#*Vu7Nd3DsJOW+swo6Yy^afVEGWWQ4_b7jnbp`2tNyG zH-($su~Xm48V`l5x~t%zDsrwKlD;Z%fP9bxyaWXoKv{4Oa1>XvJ){&QC@z%Z1FFjo zt+VVp)>>b7N4t4y9nAAeLnaa|FF|$u%JVGnZVs%0wDX{Oqe8;KlOtRprFKoCFKMgXk$i z9sAw$v={hSpq|Dz-gB#-h=Q&d?4|$2#g|Oz?+S69#7xEFf*Ilh&Ue8R*Ao7s@<}(v z1k*>D#;)Ggob_g!V>e7U76LTYG}ommkxVUQ_;^ABk1wHSYt<> z!23lZD=y{sW@%EjIytr2$%1ia3$f-?5=aaD zMdawgENS&XQvj7lpLSP!UH~=B%Yz|=3hXP#I4%AkdNJKT-UJ0pP||8)0`cz}o;P3| z4FT~SX7?rIZ8}yIwIe{$pe=rxaJ!_C$MKK++}G=4?7LS5EjX}jx$*8W8y!Xp{rvSN z66LF}iMRL(e!ST5xwi^m!7R#CEb-#2AVY~3u={+!8!+IXe}(3dvBs(Pg!62 z0wuPSlV$1T{HD9^7wNI|KVeFX7on?p61tw{!~5Mp@_lFZiw+{u84Q!(>7*VMB#r)O z;Ew{imip|kACg6*t!achhmsQSB<__*O7WmThrLxf{R3N(Deh5*Ldj?U-y5hQTShY8 z#Of!fM!#l-FM+)JTc;QqMnpp9Uep4Okrd(M^fq#Fm-*HKJYv!TVckbz4mZn_Ff12g zETSJ-J1uO-R^mS80X!lwtNs(G{+jVCnb-iJ?U0%SkHsmYtF}6j0i_uXOm%!Bx8vZ_ z23rJQt*)kW#4lCa&GReO+Foec@d|O*6drjYP!;5~%o2{R>1BR)yItqKd??mdF}wUb z!khHumsJ-?N>T~_I?Gq()JPQXFyA=e{1evEvHz0D=@IK32{^Zw@i!Nv&Um~cZ;kCv zeO)peZT2>;H)H_~3$R-wpuw4^uQKRfMI&%?^6Q@Nc1Z30x*W9gKq1>FM+oUfuAgTw z6}uv(J-A7Kchk*>(op47UoxMNAz}Z1eJ}N`5f>Cx$d^#^KvyW>?OB-Q zS~@}D{s!ro&S0TM)W{nS*8C0}s5XIDJ^|f_U_hY%%Qy~CP*J>j z0g)5Xw-Ag>oxe>O)B%uu1@adFZ-0aHr;^C*7F_bX!C%5i&4!b6b~=`1+S426=Sc-V zD^=MNh)OU;-Lia=n-7LB$<=@eXa(PX%(_&-^X>#W^`8gLh=Y%*gx+2T37p$I_v$52 zP5^t*sJ01xLKp`SIAcJUrmx<{6g4P5EdKb066K(iZ;|^=#=0@Y@LXFT*@G$y;_Q37 z)xa%|D;^CC585OMiayhzPNx?ud6)H!0!8262uPFRQ(x6V$Elrz;dZu6V1B#+R3;D@ zIhb6mmEx`Z(Fx=c3&{ZHAXL=vEUu(9eDJ`02X3juGJlToE5JZZYG%L}0b|!?0X3y9 z*EjeV(n4yURq5S7)M8EjU;kaeDXuh_mj*5p0fA4{s45ReCZ58W4WE>}!tTUgWSsZl z=wqhY%!w*Q;0iHfqCNlQz+e3LShuFwBQQSR_6c;H9o{WGy2Z|)fW;H&%Ze`h-h0(w z%V&tAZF`?ek)z`+avB>X{=SpF-q@w$OkQ>1My5mtO-L0;`yFw#I=OR;BZNyzdmd?CAfM--4mJUp4gOv~Na>#wP<%re zL|};J&3qtu1JETfxX|Ll4g>VG1!mV71cc5XL7o@3gaPgI?$6h^pm_Six{Fv>YBgaa z!wEp}Hz7npkUHePYzIsl#`fc9f2gc_6{km10TKsryBha)H(sxdj5T)V-~R3V8raxs zWnfmUzwW5O*xz`5_zrw&RX`24+T8{%6aql{{6*wim(soh2JVT4qS(or{Qr>}?=#a1 zv0Q|L+=dyRjV?a(l>YRs)M|LMJhbt3!5aV=rC!gvNHIX_Cs!bsjtVPu!2a;Ky9T@$ zFvamJ@B4BcW~gw$<8j=q_4h*Kv$7Y(Nm0}~Rp+)_iD_|bhKNT8X}RmqS4HdQ=rkls znM_v~zik;|EjCgP1faWQe1QXq)jRc>94{Y1I}c;zpKNbkcJahE$!u^o-U|9GNK(Yo zQ)3HfALm%#@6V|%TTV#Y#%Z!S>5Z+Vf> z4j43+i?t&_;mF&3s0J_69vF&2r7t43Rf_a;>@l<8;o`8iWI2KoGX*shZ_IAa=Zy+e zvol-KSQ&f+@X@I;0E?XB+e|oOpgJ6nu|&%#q$c=E!5~=VM|e>m>Mf3bV|&)H!3G)# zaW#F>o?K^w#?!ciCq%>=1F;HBs9}IC*R+{IL#A^80Z*-qxg4-m>NYs_0F|%Y8_ufA znod9I*aBv!3R1*9{#8N%1ONw~d3zOKyWTy!@@vg9T<}OUe+4CTqTdJAU;9gv{;qZwN2@fNF_HWhvXVy^#&l4h0H4uS{7?L9* z6t6zB&9d*_z3;P7EP5L)745XJ{QI%vHhIC65@=`DGkn){?;^z1u{Zcv(}5c=nlYF4 z=$IbVo@G~yyW&!=(4a_hDqW0L^;Sds!WRX|T;{e7x8dty_z;B6Gi~1~TO*!g`r}L+ zqPTf+a!+6%g{2wEdocOYvS5fjsW6U%Cze;aetTTw)Io)^&_$&D^RYdmR+R>?V&V{@H`KN}MC5fj&-7V?Fp z6NE>|N>IGvi&CVO<`=(!T!6+Rr z!3^l+-NPXrl6}BmrE>cJy&jB`W>~$wKLA~1U}YYf9<7_;i(8?Mr%_BlO#=r55GljX zX!t>Cw)aAv7-8dM=Sm1tKRME4eD{#lB*&jFbfT-Jns^D1)=GnALyUzA-U8cFs`yR# zA6Di)EIeF*9csSXreNm7oxtFmc2N(yor)@c;xPrmsUySU@NW!Je@vKIm3`5Xbx?aLPMiF#s9r z2L`)iavPoaesft`=+CXTj?CO}em6p&*?z?qg)+A`;@C`xp*21!b-jK06GBU;q_^n> z4D>TO)H`8;Kq@@*r(O0l6@5o25LpsMd1^xe=OU0*V)@hXhzyF({eo21fJ_6}mnpE4 zYJ3`)p@tcc%{62U7W-TjC)Ot^n)?TmrhvEyNSflcgo-`d2}cN+$2mxVFd2jhol+er z(26u)uGs_eNlv;W7LRvg)I7Nsx2l=ZYdGQ}U(ni$Z$Z2W9q1Hc{gN|q3wqPCFLy^l zAp#lAz!=u*7aEUnOSMukSFfjo^k*>j4=0;W9`!&w0KYPcU(@7nIhcWnk+JPh|E!R9 z73*MeQu@T(b#FqlW^1Qj>7V_us+W1)9Hh9Aek^+8gD7H7JV9~q^KH0>0>zQ&&&{9J z&)5XSvVd^_Zau(agHkSsx?toDA498b?_@tW8N81Vdd%d-vg^iQk7l@cJlOg)}cgl>zeBc&4>2a2holAq~mx&z3*yp6~mYa-!^sP)gaO?6iEk z&~GWcoc77UMNtls)!NtoZaR$1ZF?A`9)wNE>Ab!9C-jRpH!$tL?Ip$=+kH%xl9c)H zXtuocxHTsH4F|ZdWU-M7yQOQII_izpHsc)J>PKlN$p0&wOcx(CjB_GVu@GeolZIn% zFWesJM}Z5GALMvp6gr=tt5ah)R)Pn>&@Q*0r3dY&^G}+H`NxPwAXCLm#{7%C7@OAm zFN@^u#SIDf(t&xmn0oG0i~)`_5Tk+*_{}{Xd6AK_gaOWPH@a3HC^-g7)LpxNnz7~Z z?6Awrm8bN#>Db?&ubqMIp)-n4=fd8bH8_&y9^y}<#)^u{VS+bvBfTWpmnJbH7DnDCFj5fuXVZb-@*EH9%A0RUW ziBxUIV8(z?(-j7`zK-$Z`tadRN=Q?M;|??kWw1d~5gk|R%22{>@EwceO~1@k+7#G=7}2a*QA;+K{Ol`4vv-rM-bL2H*Psg{Ujk1^gGh-@haIlo zg-N3ezpfPmf#IUi(Mg6RP`LCl$Pfj)Be{iM+?o^{ztYs{G`xWDHzl_6nune zA@w%mO}yzmKU}}uKatz=+b+8~`#Wuv(Ut+r8Yq|cPp8wN^CMJN_!!5SA5&ANN(W$p zaSg-{2Vk&?>>@IwlP#c|$^#ykysT+(BLU!PRBVvi0?%SLSFyZ*mzYm5h&2~{G%q16_`kQ;oSeWu6u%m+XVgX z^ZH|VezybQdR<{y6BX52D-s53AjcOkM`wl~G8I=a5|iCh@#?)g!nF7(Ibla%p+<71 zyim*XKL+^TOWsYcPgTV$~e8rt1m(z;mS#LS`ZK;>iT-B0evhPl&oO- zMwUz+qm%2QJaF~^I5*~5P!al{tC8eT@CLN#`LxXL1 zFNGNU&qJ@2J>ppq^Zk;J`Qia(rYUR>{V73q#YaG9HZXs`_9HtkH~WtB^BKlR>|f7k zA=d#fOmSFN+UpnxT?fnsV4{yqTd(Df9jk3?W6x@qXVHI4LMAJus&=Q~bl9|3f`EYz zN5hfiG2mp#@UA_~N9r;BDTo*&4)#euXD zbosG2Wxdn}c!K#E7CYCs(b&KwqiY-hSzQ;7$8HD)A`E8=5Q7N_35>eZPEKsIv$NJ~ zZRwvx0-*lgof}!s6#s5+=3&sP?RPw${MWG?09dfow`*H}|Gfboxc_ns$dm+ul=I7h zBYMN0ZQ3Od7$tz~ z=L~(@{R^5WSst!%j4=hMZ${=_oudfAs=%laJpcyzoW6ZFqkik@z_d>Uaz*aITI>hZ zToqZp$b@eLkB43V>cJ|rFnK&|j<4_CcUt4Fug&`EAD3{vzp<6qheJB82fNoOV7p;z z=L-yvR$YD5BGN0e8To&Bddq++yRK^+TQN{N1?iA3X$9$SX`~xzX+%Kj?v!q%OF*Q% zyQE9H`-FaVCg1BL;i@qqW^(zpRQ^8cWof*{ONieYvUGV-7RY;jBu`&rE`{j_`Ja< zEqlhrhs+QC6D$?Vt%E+kEQg(0NQd+WKRk_AgU#x*oSYon_5I_HRD+&4g+g@>;U-EB zj@YH8O6h(^Mn*x_En*4|S``)VS3ZMcSXNY4>bngohsZp^pOe;IVNjOwYPei=%#&gy zo`drG>f7DZluaF=*mwwcKbHE&mzfuPhfawO|K{(Twq&64br^#qr1P|C5kWZu#zg@HN=X4Rc~3_K4-glMQ%;}enY3Q<@M(Wgq(tXZB5F2y}j zA01030C`$k@@!c8Z_87?p*#6!m>$<%JIh?QhZg#(vWn8IIsIN4Gto?Er+W1cT)!(y z%fEkj=W-Hi--KFi?Pty%I0Og46bIm=VBjyI`g%=l87!KucY|XWhOFb)+FX!xbD*0? z;MJNLnkajB`QStrlQK-x7@|^_0O0Xjy^5jB`Q5vBYin!T1_n{qvG7&FHiz)2!E{BpxZM+G`ulwa?m%tA2i?zB zUYQ|S^`V)n8s7Rs@ly20J>)?{t-6l@y+fyK^lE>Ay(GZNvkMAJY+_%Q%m z10sd55*U__Kk_pC!Cj%N(Y9|G%*VlZ%x&ttBWpZYk{g$|QPa6`J|_&GP3|X6oce6O z9W}ADG$I0W86VM8KY!?!39Vr6dCg{In5&!}G7QG-H0Kta51HMh+`Kkl_*;J^*D?Nu z$A>UKK+7K_8~J7eDuC7IebN+Kc;`i9G}p)BdN ztgM%0JpgjqgHz@|j)}ZUU|N6@(bFwFKPP5fk)Pwm{}9fw9Q}xz#)S%w9UR~3!yGjF*jhW zTei*U*KqsENHv#Rooe#Q;FrM5cikaob7(TBl5X7lA%*2z3j6K;u(mvEDg>(x>yI=sBO+dOvEgG|yT|^R=&`S-vFv=?v=3$lHld#m@+pDG&`%D zYnYDvriH0I+m6!V)wBTXth`2ZZ zJbgIr`iBEF(|;ezTew-rBYt?4Q@9Z2?THf-8tI1M60b=fA$UZsU0pOori8ACFIY`S z^;!dP0E3cJP|yRpt2o@B8IYutxaXIgwj>3$DCjMl`Z)zkX9~eDis*%bTx1C*$_s?c zeNZQ?t&N9f@I>Y2%c##P+AxpaOpJ0pd?+&O81))uv+r+#`WKT|I*J0qur)xvPz`H) z_SNigMWIHFF{TqQ&eTXr;St;FS|nW$X4NZcceM>m%iOkqvs~lmZ1Jv1rauwF?H!Ul z_FV2u-cDTL83hCe=BTmTNK*+22)w4HjVuZ#M%M;fNjkxP7D&5h)9jByh8E^zs&N z5}_z9qN3#V&6(OMUHICvmcG3l@XcwJMy@16B-sOkT+wnAI{!9)Wq!mRWd}$+5-7}p z)}j7d1128&n2_CsxhG-#F!6*-T1Pc?-xZpTFky(O=9i>l=^1=37p^jE!vSPDat1mX zS}91OoZP4LHGui&0>dK?|r zxGe|o)X({;U!;~PY^bOmIqH0T9LmITU&c|>u_xxszsg<+4*+{?x~(?)(6$pDnkaC? z$TF+lvuJbjfFWLlj|>pkB03^6B0Jrc$RYItN)OM5N4?6#H^A?Kws*#$v&vKroBPoz z&D?^^vNwrzP`{-iAGo3$cf=cr>ErrIBh4L>KSjRB`l0RVV}Wuz*6}Z$?2d>B#)v92 zw^oR&$mx~is^OMnD4}d;i4@{&7p<-rf#KoUh5+3D9v*7XFMHdLkKgKQi2@N}h@yki zJmGRMjKyFoQCiidgP2z-4{0JU3O*w^N*jU19u3Y{Pv08xQ=0A+_KekU5lq<_E)Xak zX?lZZ6H@F3?ZlPu|HJo?_L7#Bs8p~yT$e>UA6}DxEi{l`;81Erfsu}`NwAdF&D}tD zgku`mneVTvXWCPQ?!hVkuf_Um(0kmv7Q6kEzm`*&hlLXl?zo?i>^uH@kOzkF0*Dd{ zF4&5=h-985(k4V|{(vG2`n0b*$s#C088&aU@*Uto%zfQ@E@^v?xf%`r64Z-BeMSP5sd;UAHC z2fYiBuPIl|K<^1_K2baeOs*jOlT!*&WG+(5-=s8#2PPP7&huTwPrIcDL&BJsY!1wt z@ug*La^!4D?PcLZZfaq;1VX%EHh3v$`y6!o|MgN6K!`B!=C3(KDmTSt64RXyJ~8cKFgnFAk&`z=YF z)h%G$;izsQSy&=lz#O}~kBnhfZI#UGFbWe+Z4e=+&a~QJTAx9mkGeBMV@o}D!ijvf zEs5fC>eI8pH_gEO=!BaNqH;^;%q zML}7Am?+2RzT_OPZBvOD1yVz37JqN=Qhb7}Y*q7Xc)1=c<`*y8tuHDMw)fXVMgO^% zB}1DC5Ft2{`NT^N*| z*BrJum#~8u@Q+B_cZAeVN8@qpOZ=|*arTWE>zsx5ArhoRE4oPrT%*EHd)cz}{^9ca zU~1Do(|EEgAsd|tJf)muNNJJt{1B=1K3jD_CMg#~;YuQ(pkk;&leUJ-E-TbEO-@lv z3w8LimR$NzvUa-edmxcGM$P7lL01pay!^U)9|>&Eu|xLHhE%2GouoUh>)&ge5n)_s zr<^)F5!nmnvba;eFzPU=uZ;bCq*Po;VD zMWY%*JlM@hO)T~`uc}JcuE0i(KC{8Jg*Zua;-g*ii0%0B7s&WSAR?yiZAO?16GI7r zE@>ziE-GOc-wED;SXT=+5a;hZSI!Mcn)gZzv!><$qI`4x?+p^{ytLM7548tIyniiW zk9M!Xpysxu%!CpvyYNV{Sa@m;JRWnrJvW(}=K{up?~Sc6uqYM`ykdrG=nS=!LG^`l+AXu)@!z1E1M0(2 zgX6>F%vii@%!=AybT^$*%)L8jEa(vmD%CarXV*qLA6-*RZ{vi|2i`y=ZG+9& z*Z=mdVxP&@i#y6HU=_J$JRZML~fumS1Ttw1-!Y7zt+B zU%kG>fw?F7E7mXDQZp)34(6dWrv4H53*|+JL_ULlG5ZVDy(kNYshUiB&plpiCZs+z zk34embr>nUs6m&+rhP*fv#nN(7WG_6_o5Y~oXX}SUK=UDy!QR@_9m4%p98k$ZQ=;N z{=GeBS;CeAV)fAjvX@@mf5FfIhL<&k^6<&FU_h9T9c!Knp3UoRHy6vcfy_|u!V1}s zoVA$N|N9tkkMNTW-|rFDeq3dW@b{T=2Vfo=@TKC5YMT_)tl(k+`htJ?7gjJD|70yu z++;-ln#o#>@q+3RIFjF|N64f8C@4vw4;{GwerCi7da+OzB05PhFAWOh6awq736Idn z=OgEW@6o{#^deMFO7jP;j2Hhf!6dc+87j1q)!j2>D7Q7zDplK(>&%# z8K-2HJG%GSpPa22gUYGdr6m8mPw00MDhhUtkGD8bNd++{sZGyNDUuT3zD)sbB{fi# zrmDIuUIXr_1u1{4GAgN;XN0Yyh7x7OhdB1dK}X5|KJG1RWb+I(sq|UP;erHBer6gC zJ%zL!`7I}qMb=wiAbV(WUi|?Zs|lW(h8KmG&9vb+v8kw06M@j~?`L`(Bu)XqCLP?! zr8Ph3#ho0~Z_Rk6?&j!=5RrEB(uh0xk$L9M=|U@rB02f)upzd_Zo_Yor9yhfv>sFG zWVc*b)dn#o-FLp}8|{_?jOHv-xllW!kAkCR=Yv}2G4G7Iiu^r)?RRu~I=OxXXK5&L zMp=!C_~x%U6!V_3b6-$vl!85HuHrf>cSTYBlYNV{TYZ~2J>83VRDXD(B&k`b4vXtN z>#%>?Ac39&M7!Vhd7_O2JQjh7cxeymJx=+G$D^hIG;mXt7`K*X6qdC7r}`XpxCIvQ zpr>C57!wN$8QYCSjXD|%1CSZvykv321$9YIdX{|t(us3-w$SF*G+s{nr|4E_Wvmw$ zJOEDuLOM`zr;<3l6PY!W6AI!4>1Po5%tUcrf5Z-IHkP9C1QL?qzo6#iJHl5m$a~r~ z=&14Gzn{q?L@dbvzn{6<+DG8N646Hm@WJlxQD(3}!RNr>IJ#0^9(lnrQXn@f=(X{k$*Tf}s(-2%H7Dc7a~` zvCDMT(%qVZ_&@$crqt{9OXKZma5KRA{OgbPY7YS-m18E-4n%7N)kIl<3MzDSi3DEA zK(*?sS(CGVL9wX{chO@3pXLV~4_!nkaeadaJ&mw^(H~`uD5|NhCSvi~$#@OeJMJui z%LO$_av*$ehmj;;6b7wdrfl#VZsL3nf}bC6+{u@35X59n49!c56#2f=*+p|WKKYgW zhHd`$;vJC?1~6tI+a2uMrAO5=B^s*M7iJI_8js zR-tk24_XRWDdO;UYz=o76mmXoAPuvWSSlr6NpT4N(-^aQN)7f&1^I8`l=HH6>dbvWy9w}dtjV=dvkIz_;k$p#1;NYG0Supwv* z7-jxc@=5N3Q5;XdZqLfi3WSWHo`z1(Cmm~fequ?n7Do;B{~kd|G%mA9%=Cm1iPZ0Z zVxQl=efxGlNWQ$RHpWzSBwaWocG`KP8|6VNlJwhh>*YbEm4vCCovWRJt!g~$cT&K8 z0sz9w#RtB`Ss|A&N48ErWWU@)4vnPVq;Jk2J~`e3#~KpoahZ$v-q#x+1*%5YigTTv z@kH2xkp$u9MXEPCz9)sLXhltUoYD#VWGFES1*<{q>nPv|zOFqfmJ`TGZ_n{kez)SU zXY9aO%k!}L!k7ke?(h_Sk~XHb={>!gh*>jmy1Lqt#SyaUZKzxWC(EUkU82}jE{!`G zD^KLpmw4HAsca-Cfz33{k3k#-0|eh2@oTkJ0+fb-4jIu_ABZA~+;h%IQ{{j@B0EbEzl z=6S|sOG2>{k=A_DpytXnaBB*3@pMa5Fu+BdmR30c;7IF2Xf4Aa=}t%oyE zLVCrS>z#`n-w+lN)$9~}gy^tAlNt%+bgLi%-xDmQ7b`obrC_1GJl{StDs6kmHhuG0 zoJ+%LxK2^WhFS_r#?$Rf2PAL_E0ef0$9W)LE)EsEK-ChkkT{ubH8wchWH`301X!}v zkFQ25KPtLQ75d0{Ja!}6>1fQ8dM4_gw|cAse~H8k6BDHo?xDalfOVyYrT%34nF@c8 zI{57WKi6+z#j`AEdJ{J>$*-|~{j*YpkZ_$Jn?zO7zoMjjhy>En%*upbXuvf=9rJb( zlQj<4t*7cG$JB}8Oq%HQQ?X^ueyE{XDT_HUu-t2II^bFh3u)hRs1Lyu^~V-Nqj~|p zlf~5_zB{{TdwtahD^kUMKe!`zF>MR=f7QQOG|5_RddGWg}tQs(KVgS-fNp?uk;?H+}WypFNiT+F=PH`uOOa2X@W<#a^IZq9CG3{8Z1)o>a$MaF#JdUsf=MI=fWQW;x5($zKOxC825bjhJ;KDH{RL8uYCv&!>^a+mL=!CCPMWpgO`LWI+^o2-7GJZHJQ%xlK2V%tjFVK4+%@U{T42r@D@b_8k}W;JZfw;kz9Ha zgf@Wx?s(NV_O_I}ZP;r!Pl8%EVe^e!_2uJDp0Q|^CZo{_6_`)2ZB566XAnkWEJF5d;Ezd$tI(Po&G|HR8zTWiiIO&_bV*1X^n z?ps2v1R%>pOC2=BMxZS8`S%hLe`})kt!7_2i1&g%Ak#B@F~78Q+}iyyDrtHr#zHcT z$(AA3!KHUrBj;nHn3 zo|~O<`)`}VpsDnG7tTOxrPV*p<@(25)N4DkkykMGI-OrYF{^EOdg~V0CSuNYPwTHv z6j+OLqpB-`p3o*EDI~HBl)9;?0{?MC&PfA_WEHRd`1lupdOD_tMVFN_ z8m>uRPojP&S5we-BIIwU(7Gn$Aq%W=U-iNkqq&<~b--G#r-*h|Fl9OY=vUK-M;=1N zv$GUVOeC%+QN@h?B+UDz()w{VIqk5{fHf^?bEhYw1Wox%4j0N$ENnjwJrTV zg<>em&b7a9_=g>{gG}3xtX!J*5M=42q|Mk7`zWE$8^ev)!WUNV%LwQ*pZz5mDCJEk z@#fqfrTB3*utemWpmH)1Aly+<)uZsgWY}A4c2VTSSUSMG`-QpQ5J`|DFG@jN(2!Q~YpuQNGpP63tP3LPv#wi1X;NC$c%{fX6LP*{pYXMgCyAC@#Dx3vVGD`2bt(1{ndU z;uUa(6Tv@d1-A{*Ijn$Vp8J`zgpR6C(A1`g9k6SJ_&?3+8lE^BW;rFlARl58w1Yxc zXq2EMuGSQeMqnWl_+7>b_JBAP@JIMCI=vpFHY`dOQGyN_QuabGieHBYnm{#M&}br=RImu&ZHi*9D0G4yQ-MK{>o^+F*O`Jz;LRS}g?y&hNB4h!!Gv z?T`R;!~{Cfdh;t<#qQiC4j)d4A8Lk9=7HNPVm<>BQ&1^(TRDTgFD;gYmZm%%Gz~0y z<4-^kboU*9yx=PGYvWM)Q$;lKb3ThxM$_#=#Lfa71@1nvmIcy=Rp5U=;nP&`>UA@^ z`Pz#7#RQS*gEXvSko$-%FRmSyM)mbMCk%G<0KNiaQ!MAj1e<5bxH=sV(^@i`LHSN+ z^N~feV;%|myCUIusaR)t_Ea}L6c|wikCu!41!AVkQ5Nw6g@rQ@?6dykqFhqcQ`}*@ z^^0UOp44cF>dZk?_sjcxzTVK}1p8&F(H%ijp?+O86wS7JrTU7Lq1y)KiIJO=z(+u! zdcBn~scH6LP8Tz*hYE(!zN1RD4@;g26d$FlP8W#bG=kVxHlSkZA>XR^zx(L8^_T@l z)fOW)13(@Jjhw;t^qhq{sm401tZW?wkif(V!I1@NYD;q~n*Y{#wQPvZ=YdE;SdH^K z>whQ$d8rC>qHz9OMWx*e^00squ{8~@H!YwPhB>Xz7C~z@N+0OcdhIVfy*`8ug;k#} zr0(Cq94RU%(+`IOe`oF`v-KN4wIHIbGoz2*&zXJKg)w)h%I8jhG@-c2?A-D0H{`Dx zr0jgeBTBsz_CXW*b|~kKT%!|N$U%)Y^^mlLWI8xQVoC42ZC%nZPj z1Lc!LlUdLjKoZCv)YO0euWepZl&h`)6HSEj4dIuEncD8wy5(7ETk?d3+H-xw6Xk8_ z=B1Dg5KD^C$it%Pnr}DfMJDv|u$weI6?AI`Z`s*VXA#27e?L~SYta2Q7v{74w!Ukc z@ryNF==ZLyWv5M8oDiSigPn>fydC1Z+PDtH4Z&iq?&v6ZHn~9Of2Oth&xRSQjStQa zwEjhON>0&0&W{<@!3A@py7|W#Xx}1kN`RU{tQY7jKL<+t;;|3_G%9i>FQ~WHL4OPq z=B3`uZTi#kx552?xW5PS#Ek(& z3k1XN5{-8eiOheDjQMc^lY^Ky+dif;Q0SSDsj_@QV4{!?5^Oj#n?daSe&r4-skL|} z+oeBk@ai6T`yrs_V}!nWMGk}8m00HG!Xfj6mph992T^yjqEeGgLF7Wh7iO3w<`6zi~P@l~~f4)u3&Rq&nuOKV)3tOM4?3c}yX z(iK`mtT8q8)D|qbPzI z54xGv;7#{k%72V0am7mDn+89mHUt86zhVArN~qPvw2Ib;;Uf!%!N?+7PzOdjC{f?s zK!5+NW_c|3*k2^zZ_%cE@xK)&C`OS!vDoNA6CAo6(K}Mho-c6kM;3z*73< z=jyEH|jl4T!zt;y1N|#@Uz2)O8XMSh#Gs_pDA-G zgM~_{a%1LGu`N}_N@t6x)T^4R2!q4%W3SDk!XdbnNd15AbQ7A~?GE!~aN+RuF*-;Xy|dLp zW7f`$y?rt}F z@PA-hihmwR-ADTxr+|6Cv)ZZBP6((Y(Cs{+JbV%S=lTNc{NWAd4L(f*c$1<1+TmEa zQi+75wj=ufoq`SvhuRy%{nTtGLisyiI(tny_AasE9Y%^1wW|&-^kg?!5X}CI{CnC4 z@&otj0sG=RMoJGyRwV5^B$z&aK5k(~ShN8R7h$S4=}M(lA(O2R62uNmWp`bWGJ~SL zU)s{w{2bluu(BaEp?49$rxx`!9YD0IzT9Vm(it#W;fuqxhqT$|iil!!u&o-U@VJm{ zC8M8ICro#(xctF((KJ-ki@@oI(>eV^5YIuk1WeW5C*!&TAX+5q#6NA4nQ!&yd*c4j zlDfcgik&p0c0allr?sI(784MEKEOb{+I{n6>gKBZ=KsZDECyL_wV&tVut!!(qjCh& zgt1r7O=p633yOy&RiP_}!&hJ~Zj_k{S&JP|NvfbANNmpK%0m+Tu)N#8V5+XBu6J4Z z>LP(g(cK-Po_*vV)?(y@d(9G#v``EAAfWzr#tSOV6_l`Ly?*l|eANXgMTjy7%nGj_ z{p!EwP857D~$Cy&Lzf1TGDEBnz=*@(d&GxGrdt8ky(nA_tCt%Gk zotBm16wl8;G|}da%1(K;tBL!$^=9R;lxq@Sb{;L|*_nhX%@YhKTvLL18(3nMDp!ks!K`RY*HYA8KXw<;ErN1SbLbG`Vwu$kY9W~sxlRG##r6H( zS0BJuYbB_lyERiT@rDTsU%#mb7PfX9ar*J#LTr5;C@LYow6_|JSc`{lNBSdszK6H8 zyMEKc^u6Z8ism%>a=3XM_fvQyGYr?QPSu*IC{TReoW%2o$X|sv6tI;rMC>*sDdG%N z8AK(-e(RH(|K)mjlHV!lK;*r)+tnABS-T(m_mBT)m`(I+#n`(XM%yGC?c8ENocaxr zqsZJo@ml%}xcwpyh(r{7>H`-}PJ2D2%?X!EVSbrsW8WO&vxz$r2-9hX5VCe4m=0tK z5!NWts98U65rpVlp30*oli!Nqci~`NQ7A5xH7>1xs(h!gd!+} zzW57i)0CE}x!u~;PvAyojT(dPk7!7p6$6wF#KUKeD-^GzLeGl){D;68xqJFAInxGL z`Mn)Ee$sE%;BvTtSsN}SnqhdWK@A8KV??AA$wrV&{WjLRaJl{nlHkP1p|5e)=(ZA-tk*Gzul^~KBlO^g%3hM z?H+xtz(7@3m&5Xo_DVx1Tz4H9A<~zOsf)|0ZUSur!p@HBoBsC1 z|4&FroW~Zb+CmuGX=NKn{!y;s884=mMmOZ3AiM%u@<}WCL`AP6?l)ymQ)pq49%x0% z4P6&vd~hGpGH=7`=-$`t+IzVF7Z^JCcV2c!1{bAdMRKSV!?+QOtsvnPVe%%*Gzr2K zVDSdB_zkbG%NoX(Q;U$ILOUV_#^wl%&3YY(+|2f4P@xk_LQRDXm(;2T>%Ow!q^Os0 zSECHbpe~60V2NG-qTX+N=Zizc6j=sYakDET$#yBr2dxS}+5=PQlPPnup4Z|aQw123 zKGk1i-9l}_nJ%>E0-6s3;w=@=8Jdt3@J^L0|BS7V)spa2!1Yra%tMkPN)}OCo;!$8 zZTC+Jvs2DC>n&smcWK7}1$YSsLkVnv)#GBd@E9asi?BSQPL==XHv@e-ayqgg7%}3^ z{nEe;HUVQaWTql%0~i9=5Lv+kpU%)QYBF-bc+)HBl$coIi;3QPg-mp46u$I({* z@xll!YLGRv+pbr7#n5v^L4DLL^jsypEqq7X|l#;QYq!3!QxU?FbQ4uiGtSu z&~BDWKqeGhaN&hXnCtd~Ie1tK#4U}@x4;z#B?oCb84|)^I*QkI${9ROs_`57ktL}d z4DIRax+fKRG{S7$iyev?sqj{d$#0JTkNoXgaWW4zzwJ~iLy#(G+3S+Ur$x*O(7FK^ zcoIkk&}(&0MlaNEou>0S@oxt~{~@@95y2fCGvVpujl4AXEkd+6!$p7@nU zQsHYsz)BeomdZZxe)pRQzpqb6qR`?PXsXExu`ZfxGfcP~Vt#afACx)G`v@iXkx>y)!K~KKbu?o@h za7DBZ1o8f-_{J}{Hc}*QyQrFP12|$IBn~68jQMBi_r(F;0K>f7yYH@0N`CF2%{TE? zUf48=`bE@w_12;tZu}nIM{(#UNL_AaD@U1=~Y5lQ7&EC4< zNxK?`SKpsBHqcgDJjYJ7A?qw9orktx$A zAu8R-H%WM7LxeX( zovcDMFANd>haoQLZ*y*dr((4JCxT0V_6@4yeMdaZQs$n2*AgTF(wsjACE)~kA@lH$ z{!%HT)vY}96x5dYEI^f=+w>~#txwm@)ketADqCnjV^u!*0zPnAP-yM4B^(!iny+;f z7GzBhc3T`+zi{dUn!iIqAEryeQa!LP~@Dw;COPz<7O;OEc>0v z9^Abhk`$#t0YF^o!P87`B7`3Qz(Q%N81PYE8?W1~UuL06W%u4j)z6rtydCl=SFzie zUo#zgmBPXV889S=&3VAp)B*fd`NxZTEK&D9tQJ3OKXd!By?L%gFNjTB`+NeRSQE>2 zj~}68I;iAFE#?gVj4fN5<`L8Pvfg3r{Ofve^o}%p$@)Au8+T#np;Tfi>2bX@00E~z zyMA3d)JqLdi`*jnm;cqVfc>S0BLVJ|y`E^WV+Q%JA2~~y7Gaks_|fzGmPT_3DkJx8 z9z^26*I<;}(97!_)TpCe34h@k<1p@TG>^L}_ zB~7u_24gm2bxaZ)R+0e+38Xba%hg$+V&A4U9u?OGELpEVCBLrxPqxt?Rv65BgFiOn z?0s#9=);29rn_voBs=_Bz>nYFPI5RmkqqU_T6F?^hJd)Ll8Gop zyTUE_u10LVm`SB1L65IU01*+VM`^GYDt2P&fwDY5QCtAT2X<WX>l5}d7;)?cuFHq(|J6ZBYsF0-5Y6Db~2NVa+K>SToc)z2RB0nTc;PO0GDAq0jP z2v`uu1}Hz2y7t~Pr5(#m{_%cnJXuE7+S)okKF*;18!3s~G0ZqVJ)M;I=F$fA*NjX| zI=g=x?>=~t=S=PW=fhYGnMO2{A9*-^s^(ISD_BK48}6juDY>czR}*VriA!oO%}sN7 zUM%$xVu?$X^?VA(LI)u;`uX?BN+qVnC3@ZRHYsrQm5FeEvA^v@6@xK7r2nF0 zf>ZJOEV4wf0f5e zclJ2#k*5cAs=6#+XKk(&#$1~4Z()?jy0|d0f9+l3LHcR`n=pT^&J*jS5*)nVZd~UBpX>y9-)Kf_Cu)h1unb)rd%Z|4^)P(oEGnWHk*S9FVNow5?y@1% z>#g6tJK}<=Ms%b%6we+(nR9G5V`GP9(ZRW}7j7A&8|G+z8^6QVCvC!5J7WT?+zPLaarbI3Wqp?DQfq{X1 zwaOq!{2j`Xr$Aye8-H7%T3+RL#YwA*o~W(t7Ait|IkRbrFkjycxB(`*lksA%IaqkvztZ%w*d6C1!AM>0y}2lOfB4&7{ynM(e*oyYoy+PX9raQD{dH@F!_i z)rlHwiTjCbdnko4f@lS4W1X0&JK@Bx4+lj;;zN&A)EG$!w(e#o?sVk|&_4=ztWc5I z{vwu(k$hI6-}IZeg(7tfu3S;rtssNs1#M13P!52Cj$cbnYuO+?4*fQjbvHix2=fl9 zUu$ObprZ}e;F9&fqqsfC&AIiLF0pnf28iVfC^+CzezE!jQ?M6!cVHf};f}q5ZM`t@ z2zr=}01&S_TEVpG>&wVhQ9Q3cOluH#pHwoAH`kOiCd~>uiF4ve5VP80n*^4 zxcT1gY}G|Rn)DV_%j`kSKA~ke>Rgyr)TI_1958EMshQWt(7B8GG@FA+e#8uNQy}f| zrHA9zYGh94Se#I3&-p`JXvXvGZy@_1HtG$W70Rhe3-4fLr5P*BSkyjMM zX095=2$on;DYtmq|0OaD6pQ*v+r+m**EHv&${nz0P1x6C-o5qp-hIH%F#_!D*%Re5 z?4M^nKK))Yw)!=s-J>tREP^ez z@Iftj8N-A>23wnj#0}i(>X?2c&m({LuFEVo+I|foKO5N$QHNYzI?2!v2txpxZ7W=M z;VWsG%e1`d?emt_c&gjQd58VFy`W8z=_rwj-HT{_?rui)$87WVpPWr^cHCb=S|O6z z6O8+VDRE!lY&t|WNu$_IuCjEjTNa6~IISR#K&Yc^i)J-QMuxi{gB%a`r5Jc+(qP*S z4HaGk%jl1`qyGc_h?XNbffYg(NO#*HJm;-Qmz0I$YU&MI;0Fr`hm2f0x3uj5l0@dGQHPYKqODayUAp zKS zM70}AG!Np%XM8+}NEpa6k`Ky)FE&kA81V)qi}S&YM%}CLmlD#1{mYpFDDwjF3N(>C zGn_KxY$*FM<%w5hxvMrdcbYlE-Z@5dqY?}188GF_WH(!a9~OpsXf$_dW?ioC13~}^ z3Zggk4&=P7NizcW%w`FuDjwrZ2&}q^0@NDN-nkF2vyCSCTk7? zn)wW_`7)$Swwya2zhp8;y@BPsf z-8W~{G?xLR4njS|B&_1y)Gqj2u9wdMb#hx9q(|(u4f7E91JQx+0gM9mF}{<_cQAwO zy(<-^T2fpz zaG#_RKlYQ3W%5oF4z^w&B+HP!t8Hi~EGC95D=QnzZ`|0}I6g6<&y2dZv5}e=?@X*O z%baM0@ugWZR(1 zhiju|ygO~VH}6LB9hxnN{K>oWw_1nC1|f8P*(@;WNpSFwppS*RZz8p+rLEWlAVTt7 zZD)IzgMinp4cx5=?3>c2>YhVUgCon?izz}g!|RMQ2!KQkkKAgH@nC9c2sC?y=mjd< zUA4-&&-lkNP14V7);eBI-$9R41Xa`imG@4Lj;i3gsEJla-5?23s+(=O?F6$eO4ISP z#oh3x!>NH_0g`6}bxtR@gE@e~U2l7V*u<*#&V5Q&wT6%-A;I$P57eKFatm*EKZJVj zSv(H;_5(#_vl!EZY$gi5;G_A9%!*=x;=3)MP?!wuwP4}D`Q!l^@-pQnBN9987Sq_~ z=H|UgJYC>3yY+d0=@GqFeY$>Es`35oXH2NYctytDbUPXd#~Y{8R*Z3c0IxK3nqdlp zjw^ICualwTBMbYHymV1sSwXJ;?1sr(oM=>G8FiUVcL?V2YglA%h@zJ6u@CU^j7Z)$ zB1UE??U6VnP^ElI1p3B3-})zE$%SiI8eD(RVkvZ=1t4DBR>GHkAQjEuDD?xRW$BFg zMvu>-y0LfuEik$32^P-H{Z0xs3wLk7(7;lraQ1bYu3-zwzg$iXqW;WtP^06CaGToLn6KHQ8l$O+s&{?Yag z?)1MqrhQj1<~CmSa5JL;I^%86E%-7se=quH2TckXhf_!!!2XHPY5Nc>y0XLy)f1SbXP7<9w)6NDDFj8R`^#J8)z1AE?m<2{!fzK7=XJHbu7s z?FMd$0ju%*Lt6}ZvEgEZ8j0?GMl2{E*?;4$qn{Gz)mn?#O<_~*Hf0YcB2rXH7o`+?fe|XLRs7?WnAmS2kBInr1T_JF zbkHFx(R2QXJl^Q2gHzisd~6eXqEn>t|192|*lpd5<*-@lo|xe1<35_48VlIISNl4~ zlS*>OQ&!e;iblCmZ@S9LgR^n5JC<3c(t-d72j_5WDjH13SjJ+`xB^mUE~?yt?#2=l zCQs&0&XQvLdWQei61c~o^W`-iI|Ph37WQkruKS7ZQ5C%KskpbaSRs>ML_+MzrswE9 z;aX7+&i%h8TR!5QI)lu}eU|dLgd`eRNtFI7suRine_E&SOLIxner%f=t@A)yGT8Ld z|9ECXP4$Og8#f|i5Q$XXjP}$;+lCvz%srT5J6XFq^Mx0Mw{Ff)J=q392^025k$1B! z+kRf1zo?j1Zz))+Ba)xjTW$`JVvd=$atc)?$`I?A*ex|fk-Z?B`Cj*l0VAuWWBY%`8_wRge1y@K$ zhYdnrywCLe)_5{TMR>&A-UoUElU`C{XHFlSm(tiqlP`3tTlA*1e%&=)7QVTE#et2V7tOG<^<`c{i|~UE zS7ehlw>lvv)!OHA$G;YR3;m0aE0|F2k+LW66=MlpdIGAAzMk`l+-F5hj4;d zT;nfFzPb}$=0&dNW(r6Kh76ZVNnd?4<`dAPD#fmLB#r;du1m*m*tMzFslaTtU0m&A zf683r?6A64m4*~B%M@3xJjRr@iqE^V=a_STan{`@F~>zPhg+ZEc<=;i^Xn+H^??ZD zAsubgN;)CQxAkvU(mia3#l1Dyr^R>hXIfN9Mn_9ulTxSbe5rcIIA};ZVpi6pbN+m| zQztiD#`YnPq(CZThppK)GM?s)b_7S}-Sdo}&OGcVBSWt)Q?8s9M5!^8RNIv=Di*`` zk`vhO1>+3y1kySf+VHG!A_YYSN$k7gj}@CU#RYvtjRVz9@Uw9e9!H3oBgg z#vck^@g-jS;#?RoR25Hl)Uw!KrjZyn^_67L5zlU(zQmcpVYw=&azNdV5bb9&cv9!K z>G?dM6R`qM=?(et-7 z)Es^z%1Wgh`_!JPUsni#~s`D)T>XL(qKJ85fQ5rMsY7+ zS^GQgj$Nw%B(y^oshN21ZRSh!xhjM4F>d*y*o zjG59ETz{3VkR4A?Hc@EseY7a5PN;JCw4kY-H(nKOmYCVxm=Lxk_Z z<>1DBL;_(DNU#<0&poAOL>-M_@Hwg__0m>&=5y}eafWAChI&rb9riuqCLmt??nzSi z<36{^Bl+v8%?78D+;qdNQf57h>*%Wq2h-%tH@O*q!hT5lER1yq^B!F&n8e=J?XFMQ z{I#~V)-!Xm!?e1FZ$KCuSWs<#i^39CKR&K=wiu7sT|xP%IbGvmSyAeWyOtk&2RPIN zl`cjn)W#1q+fHHzjPH+_<*w%!D~eM0dM6L1-)_gKvNoO{<(E%QPgLfrGkKe*v)>Q< zilv$B*Q0lvjN$Rc@J#NRgk!X2ZpME$Uo`zZ;cRttbpik3#odBC)S@j-I4C*uG6Gp{ z282mH3A#3GV=08rLOZW`X_LKL=Kq9{`ZA;RF|cY=C-Hq|avAyrTa6GE)w+5q zbHmfq!1mbCe0MvZE4<^P!%4~34<1Zo6Tbot@!o2XsnLaphedkEO7QSiTVBI*U#RVl zu3A7%c$E7@|BNT<7`s}cH?K#N?2{N#{5Q+Y3}^8$rtlbN7dku4k@>*#IcEK%mfNaJ z)96^vUx`_#mY6sQOzrhx72K^OXfANDEZ%MLKHS~@qE5bQa;UiSGTDEJuzvWw7*qas z=1&S+>Eek=yH_XP!qJRzs0P-|*G^~jLgxXbYLNiR)zUTHRZ0vd95#ABlAre?6ut5K z=he9C_~5i+LF^c7aww^2es#@#4@TNnB!-=4?uDU6HLjOCf%z+pGj8 z`=VpgRg7ErDJYWktS>t5pKz?LE_V3d{Q6x}$ysdl-gLBX#24+xu~FMH5{qO6H=pgL zNn1Hq>9)uh_>`Zf+Kj8J{?FZNt;`7(k{DFS&f#b&eO+we-Z4GeA6? zzF7YhQ`NbQoP#8?NjZ1*^Bd#v+U2~&G1**X<&80ioW6iw<~K~+4+n0rdXfchmPQPU zbPPWVzn8l!PXBs2qnv)e=69s>jay^`-HoEj555x><3^=SRUI%iv9rr6heZYWIqj zCK8UD{RJ(0xr?^RZq7IUAyv=wd-4(6+k@FRzh~ARVy8?CHLcYs6;ZSPER4Uz?#=mG zWzDl@T}qE)tnsz?C=X{CNekx@cRg9X;fY#}xop?B*0eZh!lKa71J7X0ylQq4s*zz5y{`$| z$mg^XJTn(_l48Qv62rrnnPu^w(RElIu^nd5X1mADb**k@6O*oaR6d)$`WW2g_mBR> zad+`cJf~qByJGi}!6nC`bZZ&DKm~RD7<*lB=4MT#Wn90(?G&kA>~PfZ=rvj4z=1d# z6Z3(7a)ILVpUb69$)P{G|DJL7MRW9prCdI=Dtoe)E2S*bJ03HoZEhi%$rL`uR{w`Y zkh-u_8o8{;mF3wEsiD|!Qa1Iew{iwy2JQ|!+y7r{Uma9c+qJKtGy>8o-Jo=bK^(eU zLQ1;3rIeKBkRsjE4bt7+-Q5kpo9B6FzW2Z1%r~Di&H!`vK6~G>*0rv6-D_P{oUDR5 z-)XRQQa*e0OuScuf}0wzi!Jjx%2)O$14IHqr?Z z?@@<$l64_u?^|j5&)#@}9DGGpoiVJ)eyYn$ZZ|nLrshV*POJba>hv@_KGHvJHaj=< zpr>D7q$ldlaPfN~9LeAsbQhm}uFA62jaNndwJpPLVmz*gv}~7y8BjB}(9=pQRGl?e z7mNtE_OksOvYi?yuIZn){#rhd=w1e0SGzqrAye$%9EuAVO4Q6GFJsFuO$ULy1ba5X zvZC(!&JqzMGDsRWGPCc?J%@uyE(=qqHOmQkesK;(67HEgsls)9(bu~vkkB+#>hoBdX&wlrZ~!WWDaKs1e>%Vx~7HGTV+mSq4KXy@F*AVI(FvP?pq zzK|rxId$y9zlAHl`$m`lHd=xfM$P`fjNkL<*Lq}Z-xQy(cj9wOL&_NUUl?gW8Ps?T zsPr{MMd;}80hA;B#u@EA=Qm+mI2jR_NKI9H1qydp?d z|Ja`~-;5o$Mx9Z5^4CVqlhIVacKe1>!`spZ8BQ6{_Q0RZfXC!JZ_`T4`DrHJFG0o2 z6RYakAgX0MoYf$KRx(M^q;r+r{XA-0u^8=kajLlD(DBY<=dGzY=-RF!?|&U3mqr;T zo?mt3Qt3rYiI9BTyA#tciCX$!9syOgz4rKO*e5V*(}i;TP&rw zBlW6y6S3QBt^?~Q>5>|={cA>76Gxe<^V(-clZi4Me9%w4C?KdvZG2VxGI^KqpBgJO6 zqh$MrTDrPgiY#5f0+P|u@aap?x7{>r0rq6&&amjO0}2rO*CUwUB||BgnPg6_%uUS~ zD&1%89;F9mIu)jWPidH3-@{9le7Vi+`t~4FGiF!RX-A@u*rZu4_rj&|%SK*S$UJB4 zR`l1x*YCcKq`xgIZ0v8U@wCDA=o{_aZDmwdNh(Z!GUDkPA><%NIix{5y)QCP4j&{Q z4=)xF6G{zk%V@K{I?#KyAlN13^so#jMn;gkyBnV7`etep7@MI&M=saNUFqW5hOg_x zJ+x7I^lM15Xxd>Y_zbYBtN<7*MFz<;iDJ(zboczwlMXDo*wIkY(s&PF{3F zI0I8uY1lZp5HpUj85Q5_FTM9LR-qBHBk`p-Fdj1ttNmEgaG_ z@gNHE&;EFxn&sB-Q&6XAD})3g-oEsLe+U<&3y)uPYy9&V=kvR?aWlcff#c(L{u}+J z?M-oJl9;_!ROW z`{NY_4Yjd{H}3FQhu#h69V#QGqhGg1ewwjNA_To^0fQ%7i+v`9tt9y29X+Ecnqg9pw<`@R6hy`YAaf@dnxmwLu zr_{Os5jROo*j|FY7mle_ORp%kSr9fF>w@Vc@x^>LRIG&Hwa2->)S6cq9&3JiQPZhY zO0jGlToF}RNthxrHAot@Rboa^{`j>;`cQL^27gGjw$+f{mf2o%d?U)KtvVTd>UcJR z0BP8{V6CR80)X!FeG|pUjyG`+x_gx+;^GPD_jmj{moD|h4KEI9RA!lq-SwUM9SRsI8UlyfihP-G^1vYy+Hh54WEUkH<(m5h z=54+CSj1y&KFY&hm`1DAWmDovSKs1}cr_7oWM57{+?kd$q_0m+$?R9Y$8O$l0YW&v zG>cmHqrWq($zv$U2L5eiYub-oZ#`PJEGRf;RX=Ns05j^OJx$PTv;4FQXw2K*zR61Mgog@O0(E zXIFz)WPnlqY728+ef{+=3WVL0Zc9Iy0S1YErICjd$^0-dRjB{uvMLEQf6ZS_tX`jN z#qA-_W_K5OQCx`n*h+!^Yj<|HZ-n=E@guN&s?xbe-LsWv91w%V5JcgqC#4i$w-SWw zi<`|W^zFJ^!rpQ#QPw<&6bfkIZg>6yK7D#JvDoPoS=z|!uoE3Gp*ONhtPa=ST8{n) zzXx?Zrg&_#oqI=pPK-PzorJ!9Q`$KFtEDFsH}iQ*p$=K+?CM)|A6D3+P!UVROVO9F zv4}s(*`o&!Fn%CYT+(b+T}>U!HOgjfK#6?`tZt-_Y-BX_6W^d?yJ#^Y{hKtFJOgbFK5zWiJNyZIyl3-- zGfUfeU*zm!ORl)LkTWG#4Af9Kr{`@{u6`>)+O>PnNCfce9EcVs-X4txGuSx&VLrR* ztiqQCND}fqihZ`IT`RpehG?4yDPg>mqfdbByt?azgl(l_Lma?wV9r1l!!3>4gK>U<0iEQFV*lSlc= z?d>i9+?6nqPB(h@QW2q9T!)h1TW99IqiBS5sevu8dZHZ*6WlX@spf*Bva6lz;wi8F z2xsotsNXHs4(jg~=kJ-Dl5YJ~6B=8xmZ>Ho8uqRjhlg%L*#!_^h7hfbpM&hD_Y|zSxO8A6=F7drajqj51+lWR>$5bp3N9m{3QEx&wZ zUP|{8?Ag{~B3j4EAe#PSfG9>t@_D0gzWMb}j2N{_7p9$h<3oOGdX{7!zT#tUjP!h+j{`fv8E4q$X-=7iE9sOWgu@f2-2-41I5(x^i< zM#jm+H4fJUT6=3+eI(zdsL9Am4F0~(Do<@`x_r#s?I{AL6(AL^+4}C%=3WT_+^n$S zqQz?vpHdB77B}uS6*5EQ2Wv=Fv$d%JpVGVwXU9VSHhf^I!&m+O#B`5oAC*HXYF$Z< zh$1eTxnv%M^4Rz|^V{JvNr*zNcMGT2IlW@M$xaK$F7CGC$veIPoMq%`dhv|Vju5b9?Y#^6ZH;*ZS${l{H+Lm;&;N`&-!F+&M)&Vu&Gt=k z`DVh#+3KCVRMAoIkM^d^Fv$EvVE}KrSa+SvqXs!}0PAqvKv>wu&3mGXR+9 z=D=Z_u6EpIi}eIWgY(g$$|ow|+dG8_#xDvOIP#4b?{VLQHr90A^jT>JOKm zRRx;pFXPYOo2t+^voyba@$0t&ch}G1znRYkEd`ahcKaTF=Zk)I zR#8M#Qi`>+qOqbbhyL~B!~~=r0FJ-_h#iuw+sx>5!dn^H9T`0{{$IcTn22Jy|EEIql6Z#|w882Z9~>a1lYZrY_1wpAjxoX@5Wg)$ z#H^Atci}~oif8@s392bKR!V$1`yy0|df3rKlUb;?uWx|u`l0<$(yRG;KvP4f5nw2; zRZARn?-r6klWQP(kNwExKIdL8D4oYOY#=!~DWIu5JZ^seVK$#V-$cbg*}Fx;7E1(J z%2SL@jt2?i) z@=CjVDC;AGTNkyz;0Q@lIJaz|A@Lt2wbv|czm?PrsUTlE8u1x<%Mj#{#cZKTjLJCk z4RvL}F(wrxN!W;Bhcny3VPO~*!x*%wxqnPp!HPwa%$ruCpr#TniwBD$+w;v+PNckh z2!={2h*wCw>!(R$8Heh`JEL7ZB1Yos`vr@<>FEB=EJ`nIkeHCUONN1w6E_$45zp4j zQ&&y*cSCm9@)&!py&meTfXXaZh>y#&&%(As8wLNgIkIdlMwmJlbluCS$Yd5#K;2R| zcx^Wm7MMk}TO_6tC;McVa_uo{7JvD-$7#hbw$%>d{vhgOTuw$F%&;~<+O0wlp@(k9 z3U%fNX0v;F-QP{RPu!Qm>>tp~ZH|W)n^Ga{YSb~91s0Bvup*Yz6{lxWLdx$On0(}Y z?#3=@vYZmM^G+or+xY4h^^ULGp8*c?kDS`igcu3H{_GJq;L5tKYHal+bau@*f5X)j zTGpFjzF3%%RI-g$X#zvV8tt;p0EPi?!JHca%q@ld;EpjBwZ-YScV24nqPLth6nwta zO`OXhqHAKf@>!$F)A$KUw2+HLvicZJ7f@+#6_@ zz7lt>X-I83Z+IVTbagrRioz=UqhPnQ!iJqDR6X})?j1~2g@$gBWH7~*&rA7;`Je0g zc2H@QZk2~K>+05vHor(&)@@qn3g%NhX>3KcCVyR}ZojsGAwV4yoY#HGTDrPgwJ#d4 z8M-hlE-zZ;1o)T z)C|uLA?Dm&QYaX&sy|Oz0A3k~DIp`T2!9Jy5f?TcFs9>M`Fjl&aUgc(_B?csAi(j4 zV@AcBwPgexQu}PT=BShP7K^9QH4F4)7R8d?`>mU2ckQq9r%kPzxMQAZO|-icD&b&Z zlWU{pfz`(6Mg21=>lZhsc=h-v#{NE&otbiPbfwu6M}M9XLe|p?7Q=Z@SFLpx4x{{1 zm!u0dNwufJ;pE`7npJF3($XLTtnxe@ZFh+hhZq@8dUSgfSrZ&9wgn{*ZVAKnmAuzS z8oY~ztdm*)MRu=Ao4k)pYr;f@M93D8l=p~FselI!ZKaQ>w*&?F zl>sCU5(AY?w8XL_sY}3~VWjIE(i1 z8v-4*_s<0E)5&<)pcGEwUteTuhFf7zSDF;I z6MH5oqRC)j5w`&cMQKc>528-7jr!M}_w&|o11c=_q6bc}eM-#oCG<_BDSw>p*(;PO z^j>t!Q1MVeK`!()+iOUV6gd@}|5$<2NZDw&oYBwBzLAVITBPKc6#g%1*@72zMEWhB ze0Fo!v$pJZ#oO!|4U;{ws}NmaUE3QYQb2ICOc-dERQ5c86TfG~N7AOuA%BQP$Sh=* zGfX*7m8J3ASp`L1{^Ys;FC{t`{awNWWDR(4kjB&qtEeXSBIHBnt88ct)joIKwwn@_ zoLYT%;lHncSlB>R@9}eN@7qS+D^}!zJc+QsJxNz+aR&6S=6TvcivC3>9A*lZ_Akay zp5~=>s|m`smU$u+8f+O3%L6OQp*?-I$%Q@4Wq)mHdLou)`@8$f$Ioa~DRno>Ls3r4 z5*z{S7vXJDeZgw*#AoYU`T{fq^7#O#UeT6KA93fcy|Pb3N|=?>yT|z!;iG12iD-4` zN!Zn!P;c8M(NRI7x@V)_!`LWz!Ldm6D7uucM$a^t{M`$YsKm^Pj=2Dk zyfS1a`&rmyG`1mcUf+lzXBPIvY)UAhJC?7^U!=0+n4rzL@YyYE*AGM4=)VCd^SJQ% zv{9bY=Sx$%!k1k8bFRMadRBU}(t!!=b`}AExMqxDy0UTV#-2)zF$khEw1%^;^na_} zP5oKDJ~s2ueoaE`oUDzJax!g;xiS`bvCtufz0N*3O=Qja8Nu@sB{iG}@_hYysbutT z5%0l&pDq={QFj|V%Z~Xm^D>UA^_8_?_B@qRG!ZZ*qLw7N>q+w&u9!~=E`Z>Rf3gTk zibsArZSO}6L!HPtd&>X@<0(s1NjUrLkD^1n@-=7PUcH+tGpur>&Tkg*W(lB!*2Vlx z=k}@OHPfBzkA1tB6!@&bT;?px`Nmo@xuhK++viRHxM4m={?zni$l1c)!91)qUL;^8 zZ($%&r&l2%ys+k=CAgxdLQgu)6)Pm#ida-Wy-@px73be+dd_3NiQe#_l&H|RzG0AC z`V_}UVal53vET+$Lhf9yWuI)9gi4UnZQBIqb>rcsC@z7e>7DbA*i)BU3xQc%y%B%g z^O)Q|gQ);LqS|9_nz6X-9batipC{^wlQP{>%SXAXc+OXKuV-bzNDo1=-07JfONQ45@X8jg!EM%34xi{^mEWysS?#0E#7%4 zYqn)s+EXS?+re#HYqUR}#s6FrP$x!5wat6=HJDwK9pQyS-vhTj}4YqdV}7guy_*&cpy33Iq(4< z-io3PYr={Q4?q4-rydX-J^4sZ4}<8c_`{osER zsGdEniT!bO{xP3K{Ks2)IBpuJH1vB0LcgP=Ka~gJ+4?&5Teh6xU*wo61p4%F|2Rs6 z7w&h1op5aw)bjpTXiZB}M#xiy2Fx~ni5WhtbYb1dCvF~f zp5-j(h&{hJd81jgO1_z#qg|ukpDGK^Gj2FX9wRY92>H0`RjA*?HY(p}pcvgr20!U_ z%&*j+bOVw{I4vu!>=sz8F9mkb3_wVNV!^7Um^7iL$P(Xj!}NlJLU%WlufA!SKyK)e z(o5ZM1Vl^(p0jt==+I5VRlUvT$mf!HBhKI76>oo+P#E6w3PlJ;)4yI?m-@<<*5@H$ zMnD0ODj?a8(awy)*8$r3S;en~Y;A2Qx-=>eu@t(oNk%>=cB?fHO3zHM?4WDnq~Ejxo0I8zJ$dU+sKar=$(D6-Hra5zL1ba_RsHRz z)M;{nf6Ip`DF=|Tubi7|0pvq@*sf9;W+Bo2lv|_j1BE`itMtFFpc^?+Iz5LxIVEhu zP{Aah68kB)1idvjjp5nSYj4A zKnsqm@gUqETEEsI`a#?rA)mQ;1!THRl%ZA{4RkUOCN(#qGAkKAY8Qy5QBcb-ynk`%d+(^inB=$4SY}k)Z0F{uhO4Q9#R} znSzMKQe~K1dUevJx>r*Xs76WBb&`Vh^mR>_?g1RcS?6Eec8{4V;j9dILko9o6(f@f zwtMB}8sv0DKPE!{Ggi4MG+khO0jryZhzox{dx$I0xYW8SSWx;Z>xLX?i8O>J$bnd5 zJXiJD=9JD(M+8@zi9m4(uRXiHYDlg@@?Mp z+oxZAorlE6TLEeOGHzPBI+HV>)vs1Q@Q!WC>FR(&R*!roap#@<68wQ_2l)Tm3|;$k zzUzbWEEFppLDa#4pUF~4@fpf{Whr(7v9Giw4qY31$DNdofs-+BD2cgrU(}a>6j|TN ze|IWkgO?vJ57<>$J@})hy+Ke#nd7BCHtWkL6I&ef#+LweMoxuaOJW zF_BxT(eG>esAu;B@U~c2Ko;=}G8_>dk%5tLp%tpv+C+6rg}*C6PRj?hWAzoMOb@ju zaYl(mHCdG1Ab)$c;cs>1crw8&Gs)2|cNy|8N`42zl$qNk-O>2SMIy;3q&oP@qhrw6 zbHbLH7=%Sa7q{}O)igs!vRfqD8n>?pR0clvh5YR)SR27^Pg8jTfbkm2Q z$P?9C3aLwNuHdvSF7mVo+yqznF)L-4OzpK*Gy(JV6y;@ckbG0ufRTW#XgHIHD}o}? zCBIxy;jviNV+wDyh$LbnU4wN_O7=!LhkO@ShDSm` zO-p^tKuju#TR=FFF-*Nahzd8h(!rf2og{T zqyi0+DM|G+07Y4g#<@i+@gN{i62poEiTsmjEM}^br@dKUu8$CcH1??`8C591VzGB2 z_!YAihI6`rzgQ;rTRdzr1<}`JHe}|FSREH-8yQAx4W$N{t@^=>5XG-z5;h z(NnGN_J8pmhHQTId~(#+V@*2{RYE7tNbJG~sla|OcJ*urR(@!=h6=I*!0M^nU-nm7 zaY=dF*Ap0695Y)EC|Sam(PMzT?Q-&vDB8_r2;j8hm+)+x$u~Q0+AEI1ZJ(b=24b2e zAc({{V4}C+zcwi=M+Gd+9$ty>`%rj%1C;9@5@BDQwk!cm`Xgj6LvAbTeVz52`NM?rR-h|np7xuS0C z-aY$q{$n;Qg@n1&dM0uC*|==lC&e$I=s3#!J1kW~RT9smKOg$Vv86>F;huBBKAH2B zA%TP=J7oWtPx4f)U7LEfN0C+)dU#QDg604-!mGx?%RYC@toNNK?Az1Zcb+Hjke%X^ zQgc|7K7*A^&5`AeHhO+!?#w?=+d(_@286NoWw*pCFN%iD&6Y;I1DH{#?aa`AU4-9m z)r5atU+cUR(1V*Kg|^&SOwpwL`jq9AG>{tixCYdWfT-5D4<3HfGs$a;+PL%>0vhnl zwegH`-ttFhE|iKZ@7w>#w5BmiKUxhO#rRV~0I?Vjq|!jLZ(@SWJF)d0P|MnvF2uNI zxUgXgiCU-A{nbGZjm*d@Mk>yH)X-F*Ra%v?Pk-|#wj zsiSgTnI@NnT;eQ(7`YeMFVZ_ZXz-p_Pw&RozMpi&_Mr=rmvgLjaaujNb%G9Qd@dEI z%2mU!js)FgHqH~mH7{m)m@4{>YGikd9kq*31`kF^Ur=EFvMU?_$zDY7N4_Jk0)kp3 zwi4hXe%8D;~H^k+n`%&5Zy*#(@)j)PQ32T(jb z=SFuF&gZQ!iHMEq06B*<&H3;dq4AAX-#3^mOnc|gg47cjT7wFvWApnW#+>=wGXzP5)%^SX z_v>0YR`@yo>0LD2NezncdN0a?&_ksBtlYeU6AKBOOPYxq+@g5|HlH0Gq&Ok|KpmcS z!Q$OWgO;wtXB9Nck-FIxnO4#xi=8L!4%ca0QBub0XjyJ8e+B7yK#d!W3_yS$s=KS7 z0*GADVlsZ4?H4f;mWSj(0mok%0Ho1d9JM9Cfno(+F0K;NLrcCG{#?Gxu#aR6g%&R= z_V#k`eLu?1m^qR@)>a^igR8aMjRke3eAC}OKL^xQ-_FERgwTtg8;8!IwR9Jli-uNX5Ldr0wi{v)Ny1weofS>(+8ClChbw zmcB2%l8GHiNJHTz=1-2+^VE?L3 z&VfRMze})@Q9_;s5!}w3q#$dw9{%2I$koJbWn|^**C_nm&?WqR5^eU5ojkPoZCj6v z;lA(dy4)TNW&qp9?nirL3#=@UWj>!d*BMvX+Hai)Cs##wX+5?A%P`VbDEp)gECB6mkLesnADDeEMvp7C^;krg883zt2!T~`jrb#W*%8_q4e)Y6paC7Vdj&)p%Rd*%?lf+d zdD0L<7N2X9zEf#Ctvy2sjX*rHnG9EVb6`pf|9E}2WQ<~UMF;PjYRz?wX169Y zuqd7LPT9rMPZA=6lyB-6tUz@a$%(#c?_~oZio7q)bEeY)Pf5JI_lg!vD> zQ?!Oyx#5^$ye>kh{K-*KpV?Dm_{l1+m5x$XG6aV!i(FXrXazS048DE?SUK@4*%mf3 z6r>k7zjHP@cv60_;4I3Ga^O6sJx~hfYNk~XKE-%h?3h%16+D*ERIGRFT{fgllDB4s z-_dW3d0IqN7eV}}rfjg7CFK!!)AchVK0@4HqC72-0zDo}M4(uJxDYxg85TV10d~fS z@pRyzIYI0lf?@(2`a!Zs_TeJ492IC_Q2)dv5ItIkoWm8K8;lW@_B* z+Wy^tg$ukiT1cYu5Jjc&8$}!UzfiiJJ~ba_{p_lEK#wZDrwK7Go>es5$%jmxa{3$*QZfsN?hp0DG|mPw``@?5BQ z;pXKv6$EEt^ZJ$vh})r>NUQ1`%}Q`JoVR3!W`z$S5@0d z3;h8mi^y;C3JR~Eff;2z694yt=vYv&hKQILRUqU8OLrtG7?JPa5%%`?Bf8HtKe4i~ zL}*l)9xpY+rc0}8E2G3O{d?)RAmOk7y8&BYoz(Hllu71QQ&)c~?*NW@ zn{AOn`A;|c)4_I|nw?$U*ytEa`-q5$IBXh~k}^wddm)n&lC;PvRy&&e`*L&49V#G>CJSE#{JP*`X({QKqRVCv*v9OaL zPn#?)Ee(#S#N@XU{q^1HV6J8rGw4G;R;-f>mXk(4LT>zSsmTGn zw$fyO(op-2kZ0f4aJr4P_22I9AE1IlWKxpW57jg;Ki%lo093*&U~A&R@ZrAI&QQ)* zc{-`Pwe|HQT7L$Q>ly86mh>tpyYqC=y`X?m+x=KXK|z7t!l*C485AR#uC}2N3n!r> zC;z6`8h~#-mNi&ox2aZZPsgNLIX1(*p&``P**TgiiQCuz)JGTXsfthF8_&Pf)9Rxe zz$~q9rh08uEqXp36$Y({M}VCh868FCwjI@fxVvUlFZI*$y!KyO(%l$L9dugs=zM&* z6p|)nnKY!JqVflp@p!km38z*k&V^XOl^vW8U;XO?`{Kn5YcLd`V1$x-oE(cd3?!1W zdva1Wfzu*k!zxpO&c($A0_KfvDJPEvRJwUh3NBWPq=ZO_i~j@iaAqDWo!E?n5xs+&VXeQ0y zUM5(8RS=n(nOSZ*U)zKCB}VVB_wx}yM9lI^R6#SRm`WZ z_csoRKf#b@o0NfiMiA;K$nx@X45y<91-q#5|Jd9F3)`Bcg$6e}@L;fE1v^h>@|l*F z*0XBsWf*mJbq%}43<##_WD(OwW5`p1r01}3U;F94*G$mxIqv=PxV@;qm@%uasTt0a zCX8j$%$oMv93cMv`*-=q%0>G`ClrWy$%yJdZ^VJ3bmu>yP= zyUEB4{|`P2xdsPwH6bJd1mKBZf+rRg5n0~Y$f{WE>qEiC#f?gF0~U}z)MPXZ0}Jb^ zstAfeG<`QP?eT&hyzsAx{`U0r47KKt0RIWza*%7$9acDz(*gkrX$36S*1^HSzv=lJ zclVczz;Xptm`#qSy&KBO z!#S)!ef9kLb0R_a_yi6!(@HmI=bun0CyNH=PK4;g9;@be?Rpfxl$KD|2D|7Q@MXA454zfjsgMZg3BgxrR982+Q+~g&8nh_2gm&xJy6q)mr_Y0KdpsXk zwOE_#-8;Ec6X5*7n@-&6^i_Cnjbuvtlw)#PEws(f5_;D?r*TYzX-eX;6YX=L zgGft@Fi&dd0mn=qg9L27{1$65C_n{Nkv^cR#@CsriV!gpBAsEx3?6;1twRfo9W9{f z4wa;&WcT8tPOayCEtql2?(S|#P*4!-*^pF1u41-CSXkId1cg{eSC@D{4F`wvs8LTe zodR&;nZQs(fO(DMbvj^lIGCIEPA}qJ3zvwZ1S@T2Z@MfJ3Wc&e9ca<9vny$o8HF0? z>r)hJH)xD*%vv?YfVG+dDq=~3f#g_^1ol9FsoUD9YmLPEKsp#%!T!rt~^ zLz(o(GAW$zjAw=m-iVKamz@>|7KHh8E#>E0dk9R1KQgWa*a(pa^K~?kNXyfiVjZDe zFr6b%HscJi+r)vHh!zbaGRct~LH_Wr=O4S53x+?^-`{_2cb6eq&|_xkBdd$|2O&^! zVXPb?DH*lkd27)PENf{=NrblNwILlV>xi{)(FcAeydO0aZ}^-JqTSuyDZ%LFg3=lz zhfR+~6*`#;5KvyNW(_PYbqx)P2G{e*4KOQn$md0( zUR{)QIyZ9valyuT%liLU@C8sL|G6vC{|^&AqQRTO-dn%4T7L%qK}2Le6@AeC_WuAL C%AFMe literal 0 HcmV?d00001 diff --git a/_images/aec05e4113b7e50cb309d28650d7eb0d56ee41906dc25b4d0a38345e96322db4.png b/_images/aec05e4113b7e50cb309d28650d7eb0d56ee41906dc25b4d0a38345e96322db4.png deleted file mode 100644 index ce0013d9e529ab62651e0185cdfa5f5e3e8dc492..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 30225 zcmeFaXI$0iwlzv(42hx`6%`dw0Tl$XV4>S_2}0LBP z69uJ8R{@c($N~X@J0_ZalD+picc1&=zF*$_QlzYZdCHt)jxpww%gP7jXU$kVgN==C z7Gv)&RW`P13)t9xJn+lU_>S=Wo0st)3ESP;wrW-;whl+EjoJ1eu|0Xh%Jzim(Pj3= z);6YAmK)b@S-VbT*>PLjlQxoKViy1Sg|$}J$Hb%;#?Qe;em%KY$A*oK^9cR(L!?}U zDI1%e8)MgY_0xBIn;c!PX-!Uk8aBEqb3RfeEmAbCP;kFHSi$Tbz8IV-wPGf}|1N{_B12x!=b2@8 zf#r7ACL4keb{sU^z>!bS!S?#`lja}j55<#vMW()S?dgyB@0l0>>o2cdyXI43lq7xk z?%lTj{)DnXsqPQ2LWX9GmCu+pOC!~++Bzrj>C;`gV}02(X3zFZPfyRu$x)9#C}G$0 zTBW-tuJqH8%}#Z7AH|j44<0<|;hAw}tj(w&&*E5gSHfog{Q04wp#tL*WBpEJz3Hj; zy}CS-wtIJ9nV;xzdb+BaS@fMv=HaemL!G`_1}aTic7hCfPu^-zxrsMDcDt)91$3@ z=C<2d?-q;343*?# zC}SRvtjp_Y%fpB7tyr<5B9&+H;^>zzm1B~=d^vr6sf4O=sh`IE9T(Ie?D}=qlFf>j zFJG?f;%DgQx#i+vS8ds{#do#Jj)dHyJF04Gf((x%kvlHTn8C@Zl-^Puqh-7~VAIJr zk2ySDKfT+{VCLmb>ZeO>)t(fZ{9G=_dUsU}L#QgO9_jVtk3SB&PY%0l=H>SUC6^dg z+}nPBu>IDdXzTW8)(#F@Cr>`~6V)@(=zpDPNJEOxEOT&hpnF@?r@X=l#dbAK@VJe% z-&(x>=e3aGR*SA(oOl*@yy?VfAi)Rn>*j{s9p3b&x z=c`w*n4wp=*62Q~iPw)=73`vVOYBfhM6g>lpWB!1o6M?|BMt=4=jIk-V8v;^xU*@~ zv9i0iMc1xfQ^yEbCmAa+D$Y)0AN?ygVCjx`|tQzPHG); z)xc#c79MiBUoJbQh-IaL#}MIb>n}((ubn@4?t@I54zpsf<+_>HVS7Az<{2`n9%QU!#tGwtY3H+}C@PV|kO6dRDn%_jg|0m&JPP^6|}+Q4Ci_oRG7hT-FM0pDN%C5( zm_r>oE+f{iUq2N&wO-$na{Sc_E>T_e-iGwr%kx%=*kLoS;^X7n@4sPpjAmQ~Mry^X zRjXt^J)PIdlw~ZIvX4CwEE}gJH?A%>@g?NSLNT}6&pHnepAB++&+X{!+})j!R}-s~ zY};8Oc)`QNEZ<`m_s}#psr77Z)0?q5IT(fSUj$tD@tM!ReEAdYR5RbV9UaHS&8mv` zG8lU& zu0Q(p7X_Wur!!QNj2Nxh1DZuk#E*Nu?dmd{`jsP#3hPtNXEFAa`iaJMxgr{P2pCp| z@ApgEVEk;6jMLy=hoI%lm+#rT_fq>vTZ#89c6N5dhBOOJ*2GxLDn!IC9Y7x!MJ zRQB+Cz!s~;TPz#bVIv&Q`8rVQH_(umzvuemu!fGIG_0q^xJ^`4)E;bem0Tyg(%X2T zy?ghr!=zY>AAh+lf9QwT>{^J`3s_y%-pR?yh@w?Fjy7CEs=MUAemsBouBB*+lzq?b z**ub=@%q{On3l~srj98m>QvXSU+*`m?9f}Uv3BiRznDeLL00XdH4+kaNt(-qgcx}f zqcQdAR$>kg!?r~V`}S2}PUDWAXh@5z{#?ZCtjM&*!gQ8xp&g=|Y8I^$;-S&-_U+rc zM>}ucx}}wMJIl87K}w4FI0nQ|QpR~m-N-1^IO`R{ob8*(Kg?PzzPfZX#wiS;)a=Q* z>9oc6`3i?6JR04H`5LXwn=p<_w{G8e;lhO|gb&W1yZL|o(bnE>?AX`c9rLc>svc|j zMZgwTnN)uyK1ksQ$woa=c{#;Rc1~W!h556T5g;m(duPF;1! zf~)a9cD?nfBA(Nh4SQ*`v5DXt5f%+;rict(wF$wqd8H#eg58^w#)qWGZ}Q7OtE;Q) z`c$DH#$c{Jn6Zo@teX;9pJox``1!p~xX|uBd!j9yvZ8fUqeJz&*)hsdp0cB>n?6}8 z`DVH1G`P69#0F(&Wb9?eAIftp?{J>@>e$YLa@^Wjp z^jW;p+Q0t#>m51wM*^L#o^qPVL9FK+%Z=7(CfCK{u?!|BhVxR5OBdiGT8|z*!YaDE z_Ru2{#wd2DdXiBIyHlCNP`YhQ`D9%SHdL*7LThvu5cCmQ^Ebk*}~u($~i1V@j^WO%4>m)U#|&F_il^nmm7aLQFOE(o!Ct>Nvf0 zj#_RXQN5v{^8D&*jgpd*&Szo=GY(6zGlVr`Z#OnJiaQVWWb<|e+ikS&_`|-lCTnKN z=uXFxf%fVLyJxx%l&ms)_27cvTK#B-_sWu2uhy4t?h7}oj_zvAOqTunaVL+2^)9>a znrePe=?7R=CRr`#w{}RmvZ}SZnsc+89Xohp24*f?8+r2WADvwRis2%jj@kWvY2j^+ znKsrZPrg}Dyp4C~(I41~Usgq_r6O$RPK`YUCsNGODSTGu_@IG<1Wxy|vaPo_4v$uR zVzXZAr+)WIJtY~I&*IG|B7d0n^Xhf$l(D2G5scivev*&VNq!&H+E)`7U~u~F^xVM; z1*f69V|HCtLi+3zt|OZ-3@H^#HCc4UGf?eZmyc z8ZqL?y3?mmm+`WBq=pIQ;^vOJcW)UzVSS?E#R*n|yRn4mnvIywJCb(MS@ylrHF0_| z*!uep9H_~gV2SBJa?w!>SIq1;oL0Pi$UtT`+rzvDhYMMs4{S%wuT40#W#6r}7Fb13 zG8{jLA6ev)c&wZ^#IWeb9)Oiu00jAn6vrDg5=a@vJi2)qKWI-I*wKV#KJG1TCXF>a$lIiwE-Z5a#1Vx`R1dBh8ug+y}agx zU>oiMURMEj&Mzn^pnPb6ooDOtBFp04)60HRCyk5zHy*q8skLZ{lI%z*VS=p^65I%X zh4Yl8kGSCGek~<(-NRkgr5`_k-gq}K@cNlEZ1l>7BcD6^NA3!8Ph+30xUe$Np$W-_ z`6}DND&+L1cOKc<*`KP^l(@TV6O?LOxW{KtX7�-?!9DGP(>esg;Ue#-XP#AQ1# zRZsypky_Z;9&*!%@MYrZC61c9x_1bJ0aTQ3iARC8Y1Ku7 z-}q^AJ|ABKKB*&n%h==TkB&9Hol4Ek%>pQ1rQ4S3Hws?P8*x;(4-ZQ|y#$Z+-xhZT z4fNnrhmx=6?mTmSsscRh&@I0y&Ec1azp34)*LnT7`tYy=S5cgL!KpR9JU^e&4d-raH)y{$TQtq0|s2JYh7fYXh=rLw$cR@+3KAYVW^1Whk6^jfr&cn{Wln2adCBRZ*LE4&UIcRBvfKHmS)jVm13#} zq^oF>tOImapJ@|e?3`ebTLl0f;|jDQBqt~LB1mTJhoN8aTmwJOz3OtjuQ8MIa++mR z^po@K=8w<(;MAAdQFU+owBE){HDJ9iL~npfKg$+Ty|hTJ1Ouneuv;n4!?q=wPR&-Q2lzt3u>C;|}E+00V0xu2i7_6BH2G%f!z^ zP;&{bTv?b@4xnMn>e2u!u%6wCw$P9fAn-$nImM4q-U64Hp(JF6R#mC{zc8`;@N)a- z_b$mRPzhC3#irp!PpZr+rdj(-X8ui}dO=dmiE)=*&8DniZ!(z3D!Vf%blqmHyZdr~kyA<4mZM*3ZwkLJ+qO_o;q&!wzfV9D$!aAmO`IdEMEac)3Ao&H&4z- zAIf{AQ5RUAthQ?H+5_Wb!&(JbxKNwpZ##@ppsZ`XYJ^g-te?ON{Jiv*7-l4QgLFcP z_bR;`_$7_#`8Fchl>;*|yTt@&GeOY^Z}eAWhNh&X*pA6Y&QwR1r)WoTiinPEhkidi zjb&rTk*LaCXNSP8r*>diD^LfAJ$}4x(}~yX@(pkBNNH-tA54@kyZg3`n52>E4i|(E zQ_2NG*Yj-}$pM0|&v8sfUJW`D2o8o;fmvNrm_R22Th__9=QMawk|IGLuzCOdRrvmZ zDgZb|Lz`2lZeG1wDib`9NGV}5r>>|7arX(A-j=*W0OOHi2Y@75L`UF+vwwKje zDGzw63F63U@Waj44t9)E1mDlHru}mc^M~)?T8Hwgl4^cjXD{&4%W}ENSfnz&>dvYt zZv*#nyX(9%x_JDWD76Uj!;jfwB=P(;SZeCYCi{U&_wV%JAR?zSwH90rw!s=8svmy% zLBh!r?nL}^)E+M}7dVw&_Z0zJ;@x0prLbOF>^?t{ zD6kO{66>pQPhJz3`kgm^;oxvNoSufAwXM16odv%CJ*u)D-UvSIuU{^(nudVhS95(v zDrJDFgw|8m(qr;%j40fHPjfx-tq}oLpDOo%3wrbMlOD@q|I(q^KWtu+xGiY7DD)(V zgsDi+W^@iL8UFh3QiMn|_|`K`xi#Te{*nlqx_lG=B@fvTcV@MY+BThXzWBqEb>Cxp zZwEg!bYgjX&(dG}7E-DF&uQzQvKYS1M*hc}21P4Br}#gW!X9SV{pQ&q_0#K1e|y|) zDJR+O^5v^uOL0umeHepm&B?lD49NlenNsrS#tOLpK8pV|sQ>h(a<~k^BxR9{1f*)QebISp$IZk2_Z`OsJzrT=PFBU6JNJL0T4nC|RF8l}>4B z*+nkvHuvTc?mQV>zU|k^zJvLA@1LjMyLg_i`fxgi`iJibW-2)@Q#yUDV7oJNC6&%> z%aksC9S_A5&-z~w#g01y-mv}U5~uSFAAY;UjC)w72-jO{8xU_E5d7}$C7jgp{pPP- z-aYuo-Mm)W2B%gxPd%{XW8!%KxG-~#sOWwsr6PaDmAM1Y*7!*xPgEjGh%xFjPK6+b z3lQlktg(+a=Fy`M!uqZ+*#eSkHIb3Lyu4Id%;)0rJuJ<9Ra8_!;*Nqt0YAu-nVlW8{ru08E?*v2pNdfQUjh1ulD9*D^S*ui zoaQuP!<~`7^mGO1al9OoVTyU}T1G{dUAKCy_IiY(GSyYW!bF6Cg9-j4Kfn6^PIfBw zTUH8tUVZseASiN5u}FvXE*ram90gvjI$=FUUg+FtGuvF~n%o@y=Z1mRW-7}4I=7HW{|q?1Nm+MRVr z&NaJ@Sy;3@(w~@^xFhT86h01~B^K!`20@Z-fZZFlN$&YG>e==dcAXWw`S)B?27$%` zi)vmG%An8=@X`(q;5<8LSD-`l&47RaRF$T64j>L^{Q4^m{sj0;jY#F~$I62=wmqJ- ztgAtg1Yw}npY!>~3Vwb{GZsx*8v6q_S8ptr4gn9*g3;cmsHmQJv>?Ug#p3FOLoG?} z!LqKl2%=QHVm<)RD^a|#0Q(h~nz7pVLHKu$vbwG9?5O1XGv(hW_r3qxLxMaoASSV zcnD*{JdPa4I&*sOe@s12caz2Ihuh6-<9!nn63(4Fmtt5n8#K|g%F4=tUpP6nPz5{) z2}!l-IKb_3pLpwPopj5<8+>w>ru}$I%3f9R`cmT^a+9Ph2=Ht@xeds~48?5q1g1H; z{t%Pbxo3T8IcA0#it3e70h|^$cOIiNsKvDBbz+uv`<3=nfGA_oH?XsXS2?qv(c7_e z=O*(Sk>0vwd6cKos$o}l?AVcF*(3>Y#K4LpFd&W;t%RMyaJYsF+PuFx*V@*$3VFWm z!-wOkP4o)MAZPE0n?7hSz12-B3m7WVqFbT(GG^E1xte1jyR>B-?CsOOx=5|h%$*!R zdFm9Smb9}0_PJN3-wjD#1qZH-8)7E04qkzr#R3wfqMWH7qbW*h8&}KgK1EUq5FUU~ z6et1iw2n7#?uq4nRmB6VKm_69;tE5hs1c>Q8&syG>u8FgeiRip_rzvZ3+N(IJgk4HJY&x%__l%5K|Aa1FT#u z(ld6xXS@Vcqixe2tkiC zLO)?k@>Brc%{zC&f^dw4!d#Wmy}!{56Hy|p6)ys=%mXl^6C#`0>xcJg#A*$kUnCW7 zXJY z8_(zdRRuini=j-Az6?lDStM+LcJBsHws_s)GZs8QQ9Qevy<>TKmg~YF`%naLdvbEB zhC3s5Qj4m!HYpUTb>G4?zATSUm4NE8ZM%W7<^OZ2OhP%OVu;PpN6q zr(RxXq^8>-?|XQDI=SW3r%ymfv>Tw6_43Td-M6Du^%3B4%)SuF|3t2-v}1idC9*#e z%)iv_-^+M^?_7W&HntT(94Q1pzJZ{=YCqq9QeTR^&|8Yl4*2g*YitDF9&i4}jutUifHD8yF)qkmjHG)4T z3v^Q8`p@Cdcg;7WiNI2i<%m~A59VptR3)7q^QPPQ-vBYlLD0QSVRZsY&FTu-C10D;D9M^wBhOh3P1f5oci})meyV_ z_*S{ka=v(~1^Tkl27lX;0b}QjOhNCGP(cMhz&X5oo63Qq*^d|S%ipL%`PIv_=j@z$ z^FmOT|M_Fb4T%}2T0KAw`xwhW34*rpe#b7bSJme^2Q=^MeV)0 zVt~b}J{Ig64)&FW^bPt8+xMeQhlPJtJ2 z{dd+IdYHVp6PDiWw5I7);N81}(1gtqPyGh|6)+huZb3w}`}*ZnoPM?@$OR1uUcfG* z4XB~x@wE`}!PNz#6*T)985xS6{$5`9P^uDQpxPJ;);%aQ!VpcPn?o7iRf&f31o<#d z>JSxJ!!7O#%(A-@Az;`e5spDoq!U-N-muW9KK{reFtEPhV^fb7%;UF;9ON`U7Ju0$BdH#0F@YwCn%OZ$iJlBrCGJagLLWqI`X;ebz(@hEFRbwoN3yL zx(6s}yRL6(euAaO&Y*ZaBaNIar`X6NK8x|7#^-g%2fv%0~9|%Lj^cv zyun|9Q5m6Bi_B)%{)|gv>(ZO{6feS8$ z#x!r$fhwk;0u=&`^my%EyLWej$_AG45g?-p@Q-fB$@>`4P%L0`?1N~vh#LZ(5J94q z@1K+X@@5(!w20og7px%I_s1brnl)vy;%*6>;2%|kM=p-n7jN1p_UOw4x*19K zl5Sr!5V3FaQ?efFZ%M%F{(!Qg7Hb1YR!(O~&Uq-7q*BOwF-Hrobh;%lDQs-AY}AIL zka)KRDih2QH4MKPHfXWxSmUC6;ewqdtAeZGD6t#r(NU=DmF}UZyt&Vxi3@U^?-2 zgcd$V`KSb02;zn~XUt##3SlgvzhWe!K?OVr=i8y#y z?+&2WE~w7-Av*O%8lsg4cg3Ro?9`r|zcRR{^sUcBfH zs_$#b%R?y@j|+7p2kFATQvF~c+q5F|GQ|C<-2rD%1tvB1RO=p8#?4(joi5JiA?<|3 zN)eIg!bg^DJ$aAhP8s-ZD198byY)VVMV(wH7CdHMGJ*NIi@?=WX=z#+PT2d7giSbd zxxc9#Hp{ZfXP=aY1o!#8L}pE~>()flioq)GYRXP8^yCY!+}~1-;MWE_11ulJD0ela zCtxwRb#>i&EBo&W#Qvxzs>m>q^NZ4WH@S_F zJ5yqfZwgphS*4m*?t#Rvf>DgS@!Om^_gdU1^%0Wc^wL7U5V!rH?Em8Z()~R_E&~kL z(awlFn=S5~JAWQO6DGRAe`q7(`9Okm)|#sP4?{f63CCffwrlWhfw0`E=@9(vd2jZd zDZGD1Z(uBn zo=Ay?{SWb&UejhAJo+2TmyaJ$I$u;-<^nzgG#Y-ADd1pLii(Bp&HZnv_CJ)V{*;TR z_styen*6$6=wNemGdND9xOCcZl?-RKK}Rm-k&gk z&HMq8{B;5hR7rStyh}<|n>q7Kc5rRuglpr(K|k)fGuw2)g82vlM?5RLiEB0>4a~AW715^Gm!xgv7p*_YZMT+QVmj zUG~{xSD#JJgEx;Xf&oH#+qP|fb_^(+5?dQ}f5asn&zGD_Pv7F|GktWm`Jl@C55f4b zPKYOcSTucXb@t>N<4>FMdVj6d21MW%+<$xBcF+Jrvjxi^O#M3UwRGHj)6{ip@DS}R z*$v!vnGREAs?oXsnJa}7>m9BX9G_%d`V4r27=Cawy*$h&#UN=Nkc}DGuj)X(BwZkJ zrA5#C?YHILB}OdhVL^c_%3J|K6dfkq+}!+n!45$RpYh8tUckP6_3wO6Xbfnez3tRFA7MOeiPpXfQd~zcB~O9lQ|rMq{&H3OILx943u%+ys&)5 zG2C~xji3;C5#OjAlL|i6>)jBdy7>wbdDE3w{IWUNPr>g%H_+6(g=%3A};lkGeEN=&#FbXGz~}+g@)-U z$U%4_H;;^r(9XvKcxd=Eli-);_~%lwyuHjI=ROIAz;l~Dz#USI!$5zDZ%E!~NxEo% z-lPF+JXQEJX@jYjO}dC-nRbgMgp*|n$lLcd68o{A*c_A$cJSWN?ev=vsC2K#A>X{; z^F?B9%z6Ri@hstD!@W$6mZwjjlJJ6Jg?uP+T{5wTd!IG8jJSMuGh%a8#0y`a7$4K~ zh3SJEm06Jo!;SJuEDY8xvpXBcvu` z4C>CK?!;!<@xjW2SJw4&OWH=N!0*g2D*9p_N1>NMD{6~$>GHCSOqY?Qw>>>4L=I-W zRP6x17GJt_=`{eicHN%L_A=S503<>f7a@J=JOg!i4OXG|Cr&y(ZW>(`Q_E$zI`>$R zVOY(=4%aplGh%@ZeLt8ZJMI;8?r;#nRwK#Z59 z3<8Rg3F+C)(M6*XJ=X%@;9V^!SP*>x9y3r)num*OK+mD-R?j$jBxV5iju=#EWS-k| zW2w%)_ys0ISw}f^q}(TR{KO8$L&%P3(DW*N8R*{expM5LT72qHM)@f7eD2&42D2Vx zjekM&trv>U$zR7owK5rxa3>QXE38^tO};{Ed*Bdu>P@Y!$~a|+3W>kmO{(MkAPgeM zn{ylqTEeECfLc!h=ERqnY|+;DmWFUSstx^8+vg{u^8k|SniVVlP}O`{^fEAMqa~^> zu-40AwiM70Jom-T*T*Lm)mS8)$^%0~X+C7GM4{#z92^X@F6VW~q{zOBibc-1jal@9 z0a6a}h#yrT_hSamiF@=7O-^B7kTmSILc@0OnQbpvn zVl?-|E2RRpKgDHaz}D&|X9#Rs+HOF-Sp;yPx0*t~_q)Kn7B%U=$=pvj<@kM&qzXFQ z`F3(=2A@)!Q=|!E01+YL7pbM+m9*Q3Qce>@{)RZMmqp6r=Cmcc`;Qgnldi-#u;k*A=`te~kXT0^0%tZcgViKY>Z>UcRKH2iRHMOp$v zFFJ4-5B_6NgUnFwH$D>w$HFTZqD; z6(b3c?I_%vGoHWB3RGVTTPofSa=Mb=SP#f;gzW!%W_XE7LIFfPrZaqG$xfZ|z;dmA z`OGxMrN!Y`>WlG)WH`PC57Z(kCmWFhu7RVimlDrj1Pb=Z=78&wk*oRPni$AH41_9k z)647dwMFayc#Tc|8xM~~tbTS)Bs>IU3nMRb*{hBlzwz%`1gWGDs>d~uO-m43He*GK z7@9ou5u$hn?dU{LLwfmX@GP_3-6wynluL*0Vlkxc&0v8oGz^rBly~enmk0sN5V#WV zYee`$s?8n5pOs~F0*I4!+Ys|yh#Yhs8D+_nCr=7-w_ZD4PIVJkA13oC{HQgnb&^68 zQK`oaN1z79Ms7tNUI-@S8oZ?3*t~_X-&}{yE(D|u=WagZ8o4@GeXh3kwhf3T9AJeI zn7KQL++P=Y9WferXkIr^J_d?*AQXnPr>oV%uc=_ShCl_tbi^Ypq z!$th|{d*JWFQfOn(w~p6mXwstACADUllL2Tj?K_2jpmE$R;|Y3rHo;S=7Pe4s|$Ob zk8sLkA=a)B?odY~Q{es$-V19vFm8 zCeIhev{LzOZEs(LNfTsH#)(u3Avdn$>C+!BuL@E|0t<5k_cmkU+E`2i18c(%JfmP; zrYMLbY@K8?f;3kyU3w^89?ip6YyqMB%#Yn58)*~6cPPjp`zS%5^cFWg&=*xw{W&3o zD2NpkfKNl?ko$Nld`L@MA(z~QzK1+4z<|rW3g9Fj+tm#5dde*YGd}$2RY~QT(Lt0t zoxnF$==%u=P&S7sG(6wgzW#?ZjZ}!NRt5#L5_CmoW+wT(Bu~CMgFPn7Z~_`bze0b^ z&Wp2&(E*=&@75tV9YiP)SfJ*1m1>{PulR`kmwf zhdf5rI?aNl&HHOk!+miCtGZfp9M!<+F$atJJtKkY$h%I~UkHYvD;ThXdkK(l4827l ztu!rGu380xx@Z8ztv((tS$Y_`0eK^>e0g>++cwJ;Q)>uHJp9W!0-aRafo>Kztq?$Z z-dhpZsjMXZ>Gx{c8#iwF1w&4Y1`O&7@szDNH+`mhs+k5NsR9#*b|{vSz#rPZ{EVQW zAirQMrQEC+04MtsVEKONw6-bh*(p8yhCip^CD9K^rN?1+BfB%z{0L?y+Id(r)E9v8 z5jK71f=H0Yeii^y>M#wxd-tyD;gS5Y8=W`hc@uS?2ZAoda^HF6$PvyI9=6k7WQ&-t z3nd_0GcMYp*-@T|Nw4KQ$uLd!Y6%IQhIFf11XVH?Gt%QvOMia8k-&;A(hg+N0_#{p zWSE30E4%xoYjv!S+QPL5UxHFphaETdMBN6x^~3>^+aG~a1EIq8;}iBQ;Dc#a>}+r+ z!oV{lhZqs~Ahgg@L&P98E}#vAgm~z`v&(CfCC7engALQ(t*(S_AAIiW?hgu^Ayr{HYGz|g?Cw2X5dx5ts! zQon#TS@Hm6Zju)r3>R_x9~bYG(tBj&SFfmzM|V9)+f_ z7(>N7;tblGR~Cp01$PTwO0+FSl$wARDB(tHkjEqLKy3qAS>vy2}WHYM{kWT~tJiIMgKKv{k z4qPDn0CgmAi5VOOjSzh>GpQN74W*n;bpZ4ruwm_;okAd@PziQcYaM!#WB3Ev34Uag zoL~J0G8O6v^$$(B0Q_vG;Est`M z4hYC+*Id7JX{w+@1=bA-2;SujR20P6EhT3TNX!IUonOCvA_98?T@OSQ5LHUFdQg0B&|iBS}@tSzkPeE)@B6#OJp%7gl+X`Bplob zg*NJ8E%M~6g_Ti|LB+pG$4rFW;WF`VR za&&(g9bF6*kR}a=f2#Ko&BNN&=1p0tZy`Q}hKK9&ID=TxWMRsV?cD$o%0$B;WX~*u zirj@a@7yuN2Nqf7eDZkP+G-ezrI3blvhbvx-6rHtW1(!f@hlbWnh;ElUlP8>jrF+) zwQ*PvR`nh*;LA%c-MCTq&^3SEHS{xZWASek;AV0_jcr8+-b{f3y4n&yr@Zl@faN8N zwpbqYD59nKwyn)4-W^+%0|ssCh44#)WQZn7Y8{TYgjh*^8OE>oXu7^frUl&G+T@0q zwH`j!BaX5FOc(^TiN!dfL1rDgsoNK!*4Y4TboYof+W;Sl^}LH(`P7cn2m)S2A^0;% z8PMe=;SudXsBSt;lv^>j?I=T&g!Ph5uEPVgBDqdPUS3{8N~#+xu@>00 zvMDhdi_UMdLV=0yC{R|%?VbYxb>VH(bj98wC)3EqhymqA05%;5zk&-f$xwtTGeuW5 zxt*CzrT_yXlaIixrCVV%26v*Ag?1PuBg<+}v~^J00^ZYbg>1jsqF&pVI&iSD4LxPT zkuOago6T!tRX{|NKo&EAZ~(6rg8W`4yz4Qj=evP7YpE9(Ys$#+1e@a$0Mj>T_bMt@ z;WfDC%z={=EQA30cK|xmoN~~q#PsRQHv$767qn1VeRcjo1K)E&Qw$JXH~s>hNUpVn z0_i;(GfpurMa3u3ZyRj;i7Zjo*{44}`1(D(I3XY#e0tBpb-se;wFS zC9j6|uk=RiXY2xb>_2_50`0DR8=(nHt_5S*^x z07y#c+o~ zb;;#*Z2L{22^b<8ahLR$UAw5?{eB+gda5|E6j)6TEizuWQIv!MPelGHL|73|t0nnw;v6Fhl0Y7~FwOCfH3W2nA#ohYLjm6^bB( z9HQup9jwu_BJCgIb}BG9xlv(ZCAN762S?QstDO5}ctC|j3ip-yLJy$8m}A95w0YP# zu_@d7LAgLDob@%(vk)KF72H&sl zL=89+OEnI*p7YQoPAWMK^$2y=NM6Jei~)~Dv^I%4zUq6^C%W^XqvfKhn8<0=n*t;@ z!v_b1?{atw{*r74Z8QeqAQDDIlGLbMdW6kA0f8$V;xjqnsIQXV1M+SsbpxZax!pbi z`TP~8I+V&jtaJ)BB(&o`pi@t2YHcJxN6YfxaEJgxH||@|CB;*CgC~YGdZ4*aL;3GzkFTkH&}e$b$(Z zL8Y3KOc>T!*b;fzB_BC{Yt+hE^A`j7|C?3q&yKTC(;bVGQ3u)fHA=vyfK^*3wGT1E3vY2z=UYbWEr}ttn^%mCb(a0Ja&@@>}E?Nu?bRdK49o{flHn z)j>dFAqiE*+fYfNChg(z5GYCT3KjrA)_InvvaU`CH6CZ1_7vcM%)^ndjMNI6<3zu* z$R1xlL1Loa?iGmw5F)Uim}p)%<@o;THBn%#A3}JL>_wXFJVQpiB9wJx{&|SEB|J9>YPyLZIy;eOVJG()G*?4M9 z+CpDp2fZI#<8Fi76N5_ZYk6Ouy~@t}(`Ixv>^Fdg%6NR18s>!Rqmz%0z^k|@wXDy6Sr7U~@?|p^e24SZW z0Mo$WV2U)j?aYIww?Mys?h=h$C7(VvnS_`*aL!d`2)zJpHpVaN#@^9LI9 z^Z6roBz=4IwrQ3JEbF2>-oCw$g0bVIc<0~zglAmd*nTw)ydh`Nziz{~mb+zq8F#GV zwKuvlr5+ZCkB$71)rdniOw-f;_Jse^&QbX7t@&2J*F;mrpPy&HlD!bNM*kIwr>Vt` zoIJPI>Z_u=u3vZ6h7GDbaA;T~uw>$gC+2%E z;%5lI(|uZYvyn$jWWXOSWz>0(yQ-n>i-dVP;{%7K&|xJc^r5DvvowFjFW{oDb#kY+eh!wA*%)i;N8JhUzzoKKJ&if-&R7)k2()d&Po)SS0c@g+3HI2-{|3TGjT$nC`acj2W7 z@wI;@af>P(>a0N7;n1`y`SW#8&s)e>C?*i!0!rFXh;_Gd@?uBZRT#bmbW@EDRCcNMr$-A68&;9`8=I+9cbuuUCx65dDj zG1`rR@Y`eQwsmwwfDt|pdYb4r0LO%-7Pkr-M!azPN3{)2`eWaVJ4M}R-heHjW`zwi~LuCl__z{mH+iz`m(=K!3&J{?R z=hQ{_lyzV(cAjtH1$8rnIF?t?iTM{{PbJ z_wk`q%Eu5LE#~|M3ruv@jDd`qYET5KqwZIr*fwpK*u>R`iEtn;o6mLdCbbTb8wllV zdUR!!+A2cv1Xdvb#DU5-1?bVVBfSg&jreV9m-T?b6D=?x&NnU`~Os+V&w6 zqp=NeN*O(h8gMmH_X}7PRRCjI*pD#BFxSgt4EKW!xFh47hRt+RX{`Ct%qNA@BHBBB zNA!Q$pq4ApA_;qYl2}4BSC>iseg@NfXQB5EtO4>j!b6S|Ga#aN!ODp>t_dcnmuD^>>XCh0#cvG%7E8@6R?}g?B4#LFh)yM`!OEyc zSX+AC^S^B~w9W_W!i$PA1_lOHQ3?|sjbnq}AJ6`K|6%dQiS?U=#6V3D7SgXb`S)1i zyAhw8HZ!1sa3#K)8Dqu8o_!pS`7`ghAlGv zl^}O;0!UHx^MZo*?H7EOe?uM1K?bjolgm43g``YR@x8IJZJJx3+kj2^=)R{gleBeq znzBxVC$y24oifa`jcij%e^3{_5FH-Wh}^Fy?mSk1ZYs^5zI6KZ=}7Rnnayjb8t;*r z|6t9`IyrtWH@|q!R8!*_mt}prcLkzu>m@371A+ow*F--rDFK=^eiR%x)t7hXV)3`h zu+q?sQWb>ZZnb=a;M993b-F!zxONNJVBrlLD%M&gPeHPOIU7LRkRVUnG~P1azl^$a zVfHmx_UHfYP=I1~rsYbZP7@|Q;#8l67w6p!>m94&?>=-`^c~>*qsg>2p2lk1=3Xgh zL9K=ug9;ZV7XOMB;tqX{w(X#oHLxxC)U_RUPhl?UU6gMS=27qu6!S|oubsNV$2s2w zr9<)Qr6_ap*S8Y_*apttd$4_m@M0h1Tokk=)V_2Yt?bszCBKjTx${EKwLg)*U|7ge zYQxFtd3Q$1jPDnPN?rU(YFpE+Kga%cn4zS7=k33Y{hK}Y=q2zH`m@>L+mxKhsTH}D(7n{^ z*7uc(G*^sj2edl5X{j#=qSOcU2t9lC9kaGgd%xqob8`n`Cuu_9BgMdmEWOm_zE@9!_cbj`95O4a7L#wfYsHHgB$hV3LN_w`9Sp6Z+?5 z@oj=G?uBG!-`^aE^k$AcM6?XqAMkeV$Fslf^MSKZeReUJ7n9|~Sy0l+M_T$B^k3Z zievE0qzlxl%As8VCjru+(-Ck$nB;sUijz|di8+_ZD-=4teQ%cCp*FONMFETIl6UC<2sG*dghPv(A;1CFXFDViu|t{$ z*utbL^a@6}O^!RD#8QT>teQY5m`ys;v9n$lc65@8Ak2#zaU zP~RKtkC|fH1^f)^9)Qs)fsiPI6A)|Ci7}`Qn~wbP6P5M#k6g2%v~O}99b|8^!#ic{ zw6;zHUgTP`BnBO%W}qapoLJFxaAQdC1}m{;S~>yoe&Wn)Dv?MIIml=EF8a!sK@mwn*u~ zfwZiG*MO)b3wIJ3nm0Lar7(hn5PjfgLUPybb#E=4RUK>Uy6SdKf z8NX#h@|Uid1d-1z!1SSD7jCMWB=xi73#s2hoT@2fWnD z27~oAL)}T3^2Sn$2Xx{oHZ5mp0!5S+?B3^>Dmo6gIyYaBWrK36hEh)O@@kyvM$<>6 zFW|qQt+{?a(gJ*4Dr7alXjS3BITM}MWem_7Dv0NsaE>FyHwK=z8ZL)E$+%+df7)~; ziPN*<%n}lO=rE1_@Ydq8n$W1-a8?*uvKl%n{yoG_vzr6p@WTRi@x9x3pQl1!5yqLJ z**|6kd_QAFVlW^lS30@*{<4zRnMEL)%CQ+~Cww#YRyV(G%XnT^JK)&!j0??c$DEed zXfG>o2wt$dJmoq2zI@l&d=z9vMreT7V zzR;e4OG%u~CW>O1^b zEg1U78cFYh8xG;vT;n~C3V@dbN%c=w3R?zkT zFvy(hE&VTO@*P>-i!?8DUwA?E8(MXFT%KP}5a@3>y72R_h#q9eWeUqm6F?<3rmal#sO|}10-zs^3HH+)0fZPVIk+(K8Y|KAQFVH;NGvF(v1VXTOTv3(w_8;xduZ9D0a1cvh<=vJ#LKvH7*swXp?UT+|*6)v!Uz zM+Alvs;9qE<=QrS&#N03*w8Qxu(+;5zapeEG&^M5rOTI9Kqh{p90ww${k0(_?8Jdr z&ys>*OOuxIU*WxEij%}5+je$Az@jybfzQPO!KMGVdHDZm^RPi_foQe$DFqZ)_ni$4 z*P}6sPEdpIs~X5>)8WT#GQ*8F)PGI=2HdfE1I)Vl_~+zcuDJ0oHY;N3(54InO^ zia82>a{j`Fw>sC)`|r+D)22#QARK8vHsWH^h#-N@%a-G9kp-TO_fTQ97 z!io)>ICg^hRR#4)yf4sWBw(l$I>D&@I0n@XH4DBk54K8efzOTrHTD73hXMk-=v*u` zixY4Tlyf)0hg0g0;RUF(3n^dRu1lSCK{_CI!*wg{0>UL!rvbTiVaU=2u0j3GhG>>R zm;|p&UFkS}rdQGP*5A*ZIW^W&UpEJ5oZ~PIIzx_0od9S^Mb05JKQk28BuI?ZB2Jx? zfEN)EK|3*TAgr08BuRomr4u2bz|Y5ZU@|z4x${dy9RU)MWWsKE75r?w=`(F{dL12a!{_qx zEL@s?ac(&9`p<*q(7rONDSt$Ix+qGto7wX?Xyo62%IsHr3 zXp*0R>9O=cohp};IBSzmu|t110WjU+pagAcI63@+d3bo*aWpHq1HETBDL}Bqn(Gbj zN9K_B{1gG1kv4BC2T{103uTXQmrEW(^%!@*Gf+6kHl|*o)=SeB}5v&Bh7ZFYz0A5?+GJ$+YUPR*JIE(O=k-yG3t84MHgsN}O@lu}LBSi& zJS@`+i)_~mIBNY6EUDBCOGGyPKLk*_B}?wXiGI|j9xhebYqTup^+xNwyy0tLcC_{V ziI$$Y+3IkC4hn)*)rhs-21PuPxtHe(T4y<~!E2IG4(mf02o!~^O`7u&=nw@&y1K4KAf{At zWW?RO*8M9F<3?mH)2Ks`v59j9NNI~-I(aVVmVwih(tvdVe`GrZL9L!cI5JK!0r&0?a0y2N1*A2~t%V>OP%449zv>cZ)ZV z&yHdPvA%wua!g2`diT5A#K`1?&mTo|31SF{!@|1tZFau6!0Qc z(=wNKtVr_P%|uxM!hZ=RHH>1akW*vdBIiOx8$n}q;F9e?;g zF3_pTgK!}ot1rjQ6~FH4&@^Y+#1LZY>x@_C3~6xKJKE6{;k9vesFzqMohDb|jp_Y6 z9)5ak>gZ(bw(#87cqc}3?oNDsZ-+tO4Bu6Gj#8^|kn|oLbg6*><-+MK=qeV1{S|Ci zlEZP%Kp16|AT!cY7U;{4qW?Dow)xO(VuvN}Jr-O5nC^rF!tLHY{T1$rDDYh%Dc!QN zS3I$&Opop_U+_rse6H$~BjxU-j8gvso0piKPBV_&y;uFCl)SaW^tFj}q!;Sd-2ByZ z$jE{AT^yJ2a_ivma^Tbdr?WE;iuyjoIBIP=mP(>V7Xc-ORuphJJctC)7%{8Hj3_8j z4{i|@kwd_EB`vlQ)Oesq(Kr|n1Z=>?uocfrmIXw_d$~N&x*!-qEg;&@yP`2;XVU2( z{(-}>``hpLJ)ZY@p7&r?p*=RQgA09{M+%~B7%Er} zo2M)x4oG6u+G$$be$-3jlP8YbY**2C6fq*rAEs+Qxp-O*>qo1Jx~0up){aZ9JY? z_zbS9I2KauP)g_=Z&nQ;?&hoq`1*BkbDM+n*6pcX(eVj$V4=SAzZ4yTDmT|#D13ZD zUVSJHZo?FT(5r`FSdh^FecL?uNlIk}aFsU-1i05iCK6(+AX zu;7u&xh)2ff?mX4kwVURo=m>x8%Vf~khgZjQH+XIKPx z#U=iZ*Pj#13D2pJ>P+DWBnLPoTbl|Qu|6@rs0^Ns2;71o-=x8SXxo2-Cy?c*8g?bH z+^gnWLyU2iKnmD0&;4*Fb=kgzH&5XTeW zed5?lgdd}-yKBA(o$28jfctMLr(`3)O($!OTyk5}Jx=A2hkjaf9nz=@f-LME*Xn$c zb@l|f7O#bGk3r!Ul^CEx zD@T4lk3r--A!BOJ*oi<~bDg1|#1FcqSz89|b&Ngw;-kVW{({HzwZp2D_Eh`&ye&E_ znfB1KWNBUF^ucWfa8bn}32kTw$7TPrFIFhnlX3cC43FOX#ERvBwo@T3sq8ifPw6bD z=e@|{4)_hTw7uFDT1{ulj?Z24q48X#reL5JPA>M*k?$j3{AxUxm~~}zv1|)07UZaF zxhW9&*$fgXx;uiQPkqmD5%tc|4sM<(V^l8)%(P(pN^)-9ym=u+-?NNLP7rf3;$oaw zdL)M;SY9*7>5f-y;##T!+QJ;Z^lR#UcAL7MH1AiKq~hgldMV=N>BTbm;GqsZGp6S_ z(Mr=uQ}|2d@tJAcw2#ghO8D>%K@I14s{dLk3}5QRu(ld&w_`yz8LuAdB-y+r4b;}r zE8FS^FvmMNb=tM90Sf49V$PZcUM|vl-=-MIz3K1ActU|Gcsrm5T5}em7ccYLC2dc4 z2kALN%_#azWKA`Ngi5N$jz~%=w;7~9F}hiF?U&fQUT`{ zf^@)6s==B)*Uql$*26gOS|qMora~3_ff$J8VhWoKf}q$I@nTbXUO@zMPx_2h=Aa6L z$%y+>ktP52%P*Z!*9AmEBZB|0y1{NAQ)ei+j>N0)5`GK}LXTd=FgEJn9UTLtt<8gmD_x2UiaaLE0ex)YREvWltFy zKJYPpX47ty_pG?7A=7gG9v#sn5K5>S0MExqpPzA0HnwUw(USbtN`r~U5ZPGc3Fj(> z+iFU`ldD!O7-w}aXFdIpg1-ac;7tAs{QwR_GW4x!tj*y}4l1IGxo?&*oV&0|6e=#P zl7jW)39gVLFhKr(j3p%8b4HCRHl*k+LWJ3<_-^@A2;a%px9EAfCvnDHfyX(AvqdwK z{8eFeOlNys5aJ3?V(#ytFlUg&OuSFvAA-Ev^tcD#e%Zm;pnI-Bmym&_izkOSMKT6< zu#Qw=^K1Jq8|&1tyYYBVuZIftLb{b?=GM`4QL!B!jX@fR+-I&)inhC*n%3u^iVdPs zlUW4%$6xl{Ho)v}a86z;Tvr(jg|15g#h_2fZ~$-AEcaHc-ccwHFkXGI+QP)B@oced zGTbmzG!Rmw5b+*~LlCnu@n{w_OXoVmNE0K%#FMlCM2IyT6?tBW1PKw__GLp% zjGmkd<|sB>Qd5(%{PuE;^vrV!D`_NGiPIvf@k8i?6ZK(m6CBHCJs$cK(DY-@4-^TR z((uweDb=c?Ksba#&;RzE$Z)Vb6#l8EqNT^GxBe!LNpPJo?x_)v5Tl_S*ur!WGyvLH zeB)Iin`#jTFNr(D1L0Uo3vMk`4=5I1z$@YzBBDMjnKaw}rlu?ot4V6G7br;DerCoy z%=Z7*Xw-WUn=Jd1Fa$-EsiN#NAdkv7i7puOo!oji^i5e1I;j2_CyQ5_VOa&VRk+6f ze41AtV7hgwg1cgikVEO`)_PCEx`$*tIKb;o5WvDicgqLiYXn8~o@1ajg|WDg?4 zZ?YDUlD};b*J06vm`hq}eFAd;$gvC5@zSl(*GCZ3MJp$qzbY3uqwk}n*Qye2&n0Y2 zWS5n&Gf;bqIwYJ!CX@ttu6=R9o=c>~A+U2VvWf+qQGpaOb{u~1a?)CUK?I1Z6arnF z*$%~{t&<}mwwD*7X<93VZY@7g)E23>Xs5t2V+u`->gGIflNa(AMi!zc5@oS`Fy!(X zNGe4eDnKQ5z2L@7#1GPwgEF3wD+(l8%p#MGt*71^ENeof&;j$^$6(tQABxQM(KQL< z$q>^Emeg)7W)ejf5@bgsC6pd^qp({{T%hj%xq_ diff --git a/_images/b856c5b86cffd874c3342e0e66eaf0b1b89c70ea6d0a85636a61417b2d0a2ae0.png b/_images/b856c5b86cffd874c3342e0e66eaf0b1b89c70ea6d0a85636a61417b2d0a2ae0.png new file mode 100644 index 0000000000000000000000000000000000000000..be1d1df106499f57dd5106f8ff74a4cda5146aa7 GIT binary patch literal 30437 zcmbrmby!y0*Dkysxj54&kB7XBXO~~VAlU9IMxGEvXa)a^D3mU6fFK_oRRvjHzpTv}e^Xt(E6km* zcxPf8;#jVA+fV9DQePUqSkkGt@BguxL6F%SRPC7+2 z1zX~z;5VYJ(mZ%^NWQ!7Q44=Vn*Vh2c`nax(^l*(42UjsgcG4Cz&}bV?7oQWza3Z^ zvfKned7YJN*T0FiN{a?RapWBw#NdaDJ5mq+y?`-Z3H*E8PXkLlZA3!U_~mAe7?_xt zY@|5#{Y>DA+*epkNpIc|GB7Z(rNwXa3O}n1*qjtTK0E6-!+?hpW)u~r3JD2`pPjw+ zx%lZ*RA_ZjTuiLb6d(TW3>Pmi;pOG!;D$L%Pv zEWD@x`!OVA7v6VrXU~J=un+B_X$r+BSS$! z*||L1c6yT-AKy9O{?y9FC7xa~!18EoMyx_Q@Q`b(`N;gPnAqp`c0@-czI;&7Id`J} zp8+biG&R%K5IQI+I~zY==NbEh_m67*x0{dnyjJdKkH^u8lOG-)?(FY>`Q-2;DKoPu zIHWs)j#A8vEh{T)er+u#5Ip9v?3zKHiw%fA{{qb^ielIh*6Lh*-Kq(y}apT4fc+RP*q<9Qcw9Lv0Uxu>9 z7gkoHFV2qga&v#Z=-!xZ7B@9Bs|q}FmDv9#Khfx0ad^hj=)2w3lgx~OL`6mG78Atz z9uCoR8Gpj+?CkX0tRClc7{0YJT~7ktH#7vNh_$~qii?hpo^i*Gp5AXB@#V`GnWB-4 zS4E#bkv=HURJ69fdAK!$>+5@@R7*juZIYU7@Pr}pHY#-3WoNygD|y`d*o@yUM>>5k zPhV@h(ijXn+ZtO1azy{Vn z58S)_WsKkV^=tRTH^GrC>Mtz2;;0}b0iBrT%D1;F8X9Pj#L={8#@)v^q4|E^)-MTk z;*~)s9s}9p6zb_b5o-CLPY>3utgH~w%5=Tw({4RBQc9_yyFQzf5mEF3SdBiLpG%EC z?rhf1-4qcarxWvP3q!@^^W8Fq+Mcthf2(z~2m&*m3@$aSLIIb%&TsdonD16;S=FDv zTU%RqeYa=>_E+8pH|69&i(T>Z4i4;>C(8_ly2bDBFcNFi?9Q~`N-aTe@E8BwHH_E& z+?CPeufw^I7#S|>;ggD#_-U3K!kM$r+&3nwD8+r8^J)!>bj8AK*2l`~9xr0p55CMd ziLMuIYHHf&E>Lym8gSo|&NKOK=uOvHHS|V0ad=o~+J8Cwz?FoY{C%^Vt7`%R6=VMV za+gf)#XeFb=&lA0d=FhA4Q=zX0C{u1Wmfo(CS402<`J_gnS+ z?^o%{+S-chH^;|*UR%>tj~_pV&mHV__`rb1BOz+24crK?&ub$^4;Ge}qq4<)9eG~? zr+dK3Zm@VJKkQ!gP}%!S2EDmqy)=U1>apxp|7n+`8NYCNbLog!wcpXw-cmm?J$(Y$ z{Z$Ei3JOf%Y7I?Hn7O#{aLKu3z)$uW8#lM2gG15bSyPilv*Ud>(tu!6-t;Mar`o@# z$;`^XIw>p^OigKlwMV^`kAe>kKErsLJA9UH&?d`0TpS#}kaNEvU`W-6i<_JH5PV%G ztDU0UT23&eq@=z*5?cA5huPQH=T+0X{5o)F#&?cMOpMxh`mu7#I_phG&Ja<5e4_}v z9c?2UFJG+;cCrk?Qpv5AUttEJVi7i~cXqm76q}E|-tqji)LrE5@Eu!!yxgo~yY(tT z)br1Z1U)r%j9!Vp74R;{d;Pr0Nl8enjz}hH>DHkOF2hQhDVq|VqWSIZxf@Hhb(+~? z?Ok0M+S=L&uAV#dvYQt%F*vm1K6qx0KIjm9{Q{4+6#f0{XS=t4eq_zc&fc93+mKY#vY;^f4o;4y7`<<{~{e7lJR z4BH7dYfWOS_40t1%e0Q@XvWu~tk+sW;hj2GSlSs00{Zb8#mZIx!l}8rQ8FZm1J5mC z9f#AC<-rl0I@X{)q?q3U03`!N|&3pm-kIoOL z+eI_Q$QQ^svInIQ1 z`qZ>kqp7J0{Er}yS%dEKUwwUjcQ3Dz`pn|m*#KPL)^mYBgRi2%m9*ab-P_aC^G&K1 ztPDPz=D?$_mf*8Wmno6D`g#Ne`*Y7_O;S=)%P-NyD|4;VEhm3oDJ5Fb@mr&fI97|4 za-^xj0RbmM4mOCOprFdos}K;=rh|`WR)7JS2kk1}6%~~&(v>UHwZ1q#xa+e)30zoM zx_JOLL+JS~cjCpbSl(aRzO(I;N7GMHF$q?FI)WJ3(RYCjAu-QR+Iwp*=gKzh^2aoo zTo<{3L&fJY)3XCtfKu3zRP&8gnc&;^JRoRbVPRc|z0j+(Is7egfQ~rQaO&&ptDiWj zs$zoxMnp=A=H#@FaisV@>}pHFcJ2AcSiWD2p*h5D7QFb%tXfe@&0Bj1D4T}*5as0e zcpIZ4#c7U;nV4D05-@)BvuEGUJ0zKy5d8f7lMz!Obn*wE?i*K_v;>LD$;+?f6<0Lv z;rMLN#((*uKzr96B9z#H1_lQByw`Mt`A?op-rk-eS|~4Yu~8qgTjr)Hy3JqlGMN#*$>3Ei8mzcz4Hk@FQ)EdV6NZ z_#m5hE9kVuO@a?PK0U2D71li2)>L@!e9!CVpNk-JSy!Lv7)nI`ht>6hVqv*P9w&zg zj6?lDrs-)f6(2+)D6g#ZM!3X$HrRZz6%s;`<9CB2?(0Xa&UByKFt0cC8=VLxRaG^tb|jniU#82F@V|i*fdc+1(Jw=RKt2+5vXox8-Esz=FDUy9V2wf)0iC6T z!!v*#OU)Yfmkq(gb0KHkFeaOroXiDSY@){H)sVEVfiMKD<`1+NmowmYi@Z>-OccU4qWkR>IYIyyRh zLC5ZKw4yh}eYe8%@|X{|=MrOLVoc~i=H{Z1+}3C#(UJ&b2suXB+1cF0&$e3;5O85ipmt5ZbPD2;jl^rLN9BB~DlJRMga-#Kz(RN3-)yo^S#Fc$TQA`>!w9O?!Qu z@vibWbH_IJM@?x}n-HG)D2e!vtiGaR#Q{d!E5F`0pN?L+h(4XuEcn&&tl95?QvfT1 zFHAbr)w}GcSOu|#{shNo$B+=I>6w`-+uj=knS#p8^}x-bp`%+Ze2##zG^D~L$i{{R z2NXEc-I?`6T_3OLj=-g`w6glXa^vI2j|%|8gNSSeoO$)@(6i0jD)03%uIi3W7btHgLOX}p^kd1sKUOT|~@BbQtQ2yy?b7Ny3WHcaCh1$Tb@wv~- zWN*sL$?XSdDJYa_D}`W(h_YO?IQA|Tzx=FG)VA?fmU6Tc)iYG=8S}FZJC=?|uWa!#I${w#Ut-ta8`*%tSKRyxX2_%4$iy+U$Zy6dY-<79zY!JQA zNs9AG=;iIr*ytYJpwJzhzEPA5l&o)4bE;b&)GR%N1T?SlIwTV8SWq2a0Y|kmQbgkH z>`X*PrnfC3jB2Z>hz|0QND$Fck^(qE;yU%)=p^{;P|?=*76I*DB%IF9GfAwlcU_)Mm==?tBUKlEr@~0P3Z_2mr=f_(?8)n~(*;cWFNQ zik&miC^XdSE(V52C)6N`SE4lV{~cCcCr>^96R`Tso%jj>*Pb2~1!ZMsc6RL0%M;dL zzkYpUx(m=HHa0ehzOwfAx7F0u*Js8{Dq3L3y8yc?0M4Z@_8&OUHW^i5>u5`ppWEP%^wq%N;O-f5lWOc-i?-g^{55?8%)djHPl`Kc^abhUU{vb??3N7mi-+wa5j!>!H4#^{3M14mQXypiEM!<-)t!Zw zg!TOn{Cdr$;^veINiq}(b}q8i@knEv=~lseEf1?5GvDXt=1#TTB(0`bR2(L}6U-~D zu5gP2?CMgO0@OCp9(JE&$~@89thqD~AP{+!N!wSHF~-d9ER9$cKmI-jq}Aiqljwdn znezjb(${29z8#i(q#N?45SG~6+q-*s442&+N znCfpV6*^vt$KSo@<>%U-{J{b)Ab*$)^##UdxpWC;-GO>;3CWFl)T3PE*G zn@jI-mV9I6FCluoiay$$Pj#Zw!=+H)u$6dF#+|ydVwI>#PXPZh^qOGhx0Ty|D3o!o zh;aPJJi4{_sSp6>aYLIWSAR)I3GrEa20sF2;-ZfYt&ZB)?~%i^%!o;I0K});s|WW# zyhtrcPBJRoWCGcfoP)K#cC*br7w*Aty&d#)lCeY0vhqKrVl$=d2gHckod=vm9t#sYj>HCd= zJ%It!B;SpaWIuN!ecST2fv#*YKXF5nGfg?WctmGMI|%>_=EB zN%VFaetKa(cK&>?@9{hI$)86QKX8+tKQP^P%5vfUR^&nJz)Dz@{wbwEa(Z)0iLHzf z#oERQ@ zedu0Y>sZxbLUPScXP$fW&;e%Az3Stai{Q9zo$;=6mOvvn(ih+Z>>2v;+=D&5Wk z&W=Y*V)kEvpR%bvW`x)2=e z1q^HgChI4yE=Zn!YA*er{*fqHRQ(}MzTBi{!}A9Rdf8%iQypE;;%jN7zW)2tDMkX}#&F zC69sPyF`17hr)O7Qi5E4avLyCae(NAxo;3UU52FqeE<}Vw--{pyoq5zLW&!EzsTOh zStKKFU^4x^GjD-{DES2!1v(Zsb~~U3Ajs9#73ehb0Ras|BCD&bJA1`}7owb;oQ6h5 z!hzXveyyHIY*=ma(oopboiSA{Vt|aen&$)84mk-4Dp(qX%+F^zJ=#tLgw^I>>Ufw0 z#KOf*$&&!2!_%LE>?FJ6xK?g<2~nqKz3`Fe`F?ejl|=v&>D`6YKib3n@ncyT83-oW zo(!;nLk57@+V}gc(eAo+SlDnI6 z2%x##DtZ4$*gQ1@&~#M4$>j?p&xS!32Z+F1182gFjI$97=<B9#DZ)YtxzoOD5 z?#LdrYk`ca=iprD++&X#0`_Oi_V39LfIv+x5?)!{4sSsW!D7;lYZs1}1LJ!F7DUpE zlAAX>EU)K*+$_*}EZIs5Jbzt5K`r>gOuTCsGj%Kcn`Y@tdU7mW!OH*^0n$r1U^Wf+ zfW|QIrN&b_kd{GxgV9%1;dTV9#I1EaFm#tNX_?3GiRfrIv}MfKq(uJpv#v z{M1^?nw_x9*5A^CAc>K={}`cd!}ZSWdz}OzF6)8Sp!0dU!@Hg-bbTC>W$>xi zF;Ad|x%vSAWBcph^GP7~zDY1chX&{Y4Ho^9<~m5zi_qUw($1uAe@y^Zrnlu0twDbs z8JLTN<;2k}|0Kz@ zZcW(rCJ+yq_jkSxcZLN6@-a;?{N%r*QZm%@cNndbY??3okX%cdD-wSFJR%c4|5)@7 zHDozP1k7XP`SskXEB|92o7>?b2u)xfBk!;Gen!qH0>g>$HaIKKdX8N3?(37nZOzu~ z1V-j}*U-wD&<*Uoqv!QFYfRy7F<|lU@f|VMJufG3IXawMC@U!FCN3Jd&X0_m8ouP* zRe6MjSM~3#4h*${rwo^p0?_0+Jk6NvX%dWk#8fS6T$}JM)@$1n190GpF*9FbGj2nG zcpvahudZoAuasW`!XbBq&>_B8&BY2IhQ&*PXo0!dofwsvNC-%c8rPYC{>?iecWT^f zzy&E6;K3CP4Jlz>KHFtBo8bG|+-q_hX-+BqHKE z|9in>Hd(lNwDI#PJX-6;Aq|{$!@L)ur0zcc6+YxM)99=0=vaJM<2EN1tPTQAgNqzi zX{l+sqmm)xKq_z^$yoyj!R^39@%wB{D7m!)pP0QZeLRnP4g|5|rF08G|IV$+4GbWt2rq4CXXl%gxu>BlpjwE)*g%t80QuvW#YAayCuty2RDSsN zYXG2i!xF+x~rpNwrO+X$u4kwzcwL7pAb1_Vy(=@ziO-QC@t!$a4wHGn9P zunVu$h}Wb)1Zm_waEA(?|6}{bBwzny9l`*o2WkX}sHmO+^&5z{7|8waS0L|&lXfN{ zAyNm2;rw+#$K>b~K@h9}bR{w*!pj39V1{(4)PEEJ`6gw6@=SD`(DapAQIdGditoGE zbKJCf>-%->d!F)l!1`}~cmN>5%2X{c5NI$Vz<`cs_Ff%~TL6U}1!fVNnwzU@Da`$3 z8wY_D#t(D_G)zpJ;diRAwAB6-b75;Mq;WeDct~08hH(b~0kO1oY46Q~~=ww96@a*I$_8g}s`@4Qe~0{9rqu_VUK5~kcp*yU-z`XC~P?HDifC<(XW zWaq|=LRZ4|lH!1y8KY}KK>{aJb}c4UQ<>Q406l>~`XSBq=->l*e~Do~Sa^>}?h&j0 zAT2GHVE!{RG#RWMA&V`JXuN+Tgh$lzEz&e)#&piT*3_(IX^oAlily4_$pI;#cU6D1O&#iHey0hfCmWq$i)_#4uS z*uy||#CF37MAwv>-4#937e(K{chGl;)%ThuSk0)QXa=#)Fq|kIEHYbQDqXzsl3t^; z{L0F0L6aN?Z*_7nd=D5@(BQz174iAYi;~GR?3^NKG7)7mVpZynHIIAutKp06ZIni7 z*OSv|JS2P)8e>Bfc&5EPPx`u02oDcZ8fiQFG$HFT)g$F*?IV#63-qll)|sniNy{T; z?guo<2sp4N_k!%hxZF`KTH2Xw(6+p*?NIly*r$$Uhp;HL(TW#!!A%AaAPx>B)^ zS%4Hi0|C|L2Y*3+hik8f{yqx54=l>A6O}bIX={AE#Q4XzbmWfjyR$}e=qiZOY&WKm z>>53#d~yuE30Z3R@*a!*>@kUZyLo~}$hA)yU){iEct}wPjEE-yunJt$C@k(v?{~hMJ`!No=J_Y^TZ*`ETd!WW^CIag z1i|?Kj<532@+OB63X?3)%0kI=Fez1W)T}8S8AKf4H^b3WybScXt2bU(-vs85>hVf% ziC^E=1GTb+Aic34*AKJ}kntt>HMZ)X@BxcKVxxc%kZM;|ZmigrQzJ@a&9}(;nmf`KrDZJyki9eq+F5P>?K6n zRiMZ!^Sw|N$I@N*U0-%af;XJL!ZO>vZKxLN2U&)=&VjGP(v0I~t*U|Y1Xn2x=d06H z2g}K!bj8y|0SLx)`!)t|%kj-W1DQ{yFOTIL2P5%mKu#V8w4p_i!NdH$QX+jk5O-iH zK3BwcG)w^t5r^lajOiN)xS1?7+;Qxb z`&i%i4**_7uW|nQ1e@gcNaLVWMRVllRP7>=<0iY`Yh*sj%Ay6ORj3e*a6n;~b?CSw8c}9>`}vefd!j)bObfu-i`6&w1KN z7wPK(yV9aHy-mr{<0l-9Wg2|DChQt-Ofj8-tnVFgQOGdq2Q(nB#UzVcaGKA99@|#c2UVYop0#&PQ!bbfHGc?rT~U6}+UC^!(l z1w!-SWl5=>sVJ7|Wx)r71HJkZhb-44RKf}rks&lqH?(jiW8t;|h0A+AY(jxw9YHz) z7=JJNGeA=jk&|OUpaMq$=t15!-yaD@$HWY~%7ZM3MTDF1jMq-K2znn;{l7N*jBVi%LV4Zhj!Z2vJlLA({c8Aq@9cn@0Y#Xej1BAE;O7o7#TQ4JkgbQf3b&)y1#$~?L zOH0?Mo0-848LHVMw_$sB78X9EGf!jx#YS)ahn=anrDP-e#QxnJp7cfz0pft89}JQK zq4%XePZ=1mucsO3~Z_FbeyTJVz*mWoQH3OXV?f$nWJJVd_DA zPrYyV_oU5aju>+(UCYa{IiV-TM8W}j4?kVz;6Uv*$lf{i1@S|J`2r&u#ms3vZO$&( zA1iTQ1|V*8%_O#dE$A3FeU`|u7U8?KjldNoIXOtHq*0k9%rHW9-27eM{8qgoUo3dT)ANKyq{t$pFh33NW_c5%90S{{zS3y> zt~};}SN`BGpLaH?A+IxLNEU%^YM&WdwcK@V*A=1;yHf02*d0|)wlD@wr!D}EuND#6#O5nJSkb{YpNv0z7Jrr!mbP#G zL>d9WX7x|1R|#k7Tit-B1MI(5$AhPQ4msHIT4kzOmIiheYi-?#D3K5E{mzox@}$+m z4u&n-PL(MQi?m@pq#^n8OD+Ld-3@Es3MjK#ZO2GT7ON6Mu_QDukIuz z)?Dlf1rqwNC(D1Uqz?0D-RU6BDOK4j?uovRld*k`kL_148mSk*@suiA&Y+gQLIcG`W@J=U z*NDX@0-Tui1JAqVj+u6x^*6NP%5qa}$0IKt4~q#- zDFXG@7o{t~+zErOi0;4S_0_XQyGFqC;Y7#Q<17Ql-e^FQU7?u|w|K)4bGbQbd0+fW zFzGRQr4GXCYmZs{v+ zGNGlR9z+sTec} zw;8iU=sD8PUAFC)wM}Bn>@m$ZV&?0img;#JjGgMHBE}QcQ^tV{>x~MFc~wsRA_!|| zlT|A?{u%>fR4xDVmbmJ`26S}C;4Dr*{dyE4%w@;sii6twz;Lv38KPk|>UZ!CIz#-Z zML2C?meV7~q_8xm2HGZxyhW3As5D8ARAoP%zdvx=oX*D;L?b{)i9&VF{#{g^3~$X! z4HnbR=l>-IxW2ZR9;Ak6 z$WH@gPeX;hMcujI3uJAfm(!y3xf!4Kk5vm~5Tv+nwIk)2)a&oH!;bTwzOH^)y>#~H ziUJ)3l!9@*FoP{=Y3F*|(@x+=Vc1NXjUGs248{9Qw4DCTG=7LWkYZfQAT=y-acB(F zGh>S9FIy9B_8?+wbjakTNndlP7Q%Di9xnd8ItZ_zP!&{l?tGzk2r91E2|HPAT&R-W z%z4z=N{atyUrROs4YLc`Ij7j}z;i#Uo5?Ay2)iGr9VT|nz7AcB`-w7#b`DvVJt-arHpWc>kYGsK z3sW^ocJ#4T>DsNfVr^81f_%%Dbq2=zYk%Aw^HETubQ47BaQqJWR^0;xuP<*Zpfb#- zyl|#8%~7w3@9ldl2&Y&PDXHq)-VvWdSnmHUapZNAeBbkthVP?5<@@aC0mcPxPLg4I zd5Gb!x{0FqCJ9r2uesXfqfFwLZ%H1kVY5wbUHu#VzK0L-YvVw?Wu3p4<+_%$$F3P& zyG7O6#)Q)Oi4}xHFMqGH4Xb8@wKUVK=3Ue2+tl4W~$<^U1UqhmH>#i$lTF2#P${2 zhBe1LG+ryGuQ4H33-T)jYY;xJdt>?ERVbdQ6q>4WI7r_QlJ})i4`gK2z#~DVq3ipvo$+P2?9Ko;h|yZ@!iKkj@i~@2vJpJHYVTvV-QYgBpM*W zT6M`%s)zY)V!e^?8HxD#yZrs;<8|Gcj)04%eeW(_WOMiCwh7j%n(ec|lJpdg zzLA-(&*VFVWwf4Rv^%T)?v65WjC|+KC`IzMOgwDkvq0U1k@YI`1<_d8;sdv$T+)fZ z7OR)v(ji=el%xog?lt>pKO)Fbm8Fay zR!A-Bw&`K_?Fg@Hogtjauu7Vk;oOHFFmHqw%0a>|P!I^BR;*(v{sst4x11{tu!Cr4~u$jq&x>q?#pCV@I2q879KpflP1o46f3pvZ!Lz_2S*(?xT{ew3Z5-QaKe0 zmqMKPV7t$CXM!_~MzIRy5v>Tk0s)wUbnF1?-R{U_-rba&@md$HfeqGUL7Z8;XksGs$<1@I=3VU|*3hD+k!QZ$JC;nXno$_OQdX>>j7lwh8LUI~_E z3gcrEzJB&xPhc(q2lia~)Y=_0bG*>`UY|NLSg*O5c*9>%ghzH%9_0fMqP0c$B5N3B zhsLmZsAx_mL0H5ZJ|mYnB9sz>Tfdq&hmS|Lq!NxDjYE$`J?mMTX-!yygG%=>Pc=bA zE{;`C5?XcqO9GLOlH{Iac=%W8Urzy_9rV-0a~D*d)PZm)$H2hlS4rW_B`T%IyVMDg zu!Vg^F~6rPro?5zwB9!tm|SpVE?**DEUNBy7h|CSHg~hzr+rcWDX?hvgz_Z&xDphk zRAQeQezGboZ#tq9m<@dvoKs(XknO@<`8zp;ayWVM!K-(rSQE8|4btaiA)uB{ z)Z-Q@j$+vqp!+{f4P=Ra9Q$k273ZJ^>Kb&5fJMMPH78R;xpK_z7H$mAr{k6wqf^@Y zhQNbZ^Y9j_j-c#s8O>B$p#pUiE`xoOeGY+uaN(Pz;wIfQE|wJIbdQw%)c>O#pjjn+ea30loAQLV}4 zxZAX7`!8?$3M;rgnYB9jp(Wi3mns9X0s+0?Hi20Mo6Z$!Fkxnm8cb=R=1th&>U4 z3GbL4u>UR}>`n24!u@Q{RH}_z-_rwx`8!X)meS`cO>8 zAW7C?&OfC5tdHLB}PR$=7jk18s1pP56LlexOs{<@8E(q3limZqd=WEaa<8V~#el+>o40N$Ebp>EDDJ-4-}p(=9B?29irOok#(Cfl zw(3I?pyz;!mCYki3V>ItFk+v-^kTkfJ7K}rgCG@WzM9``=l9Mb?Hfmxs8*C1H>f-t z`I_*0VYvohi(kE>0kTfg>(}LfK}|@&)5UwZxVTjz7Xfg~4?cYXD86;~^z6u2PhSg~ z?d!tk3Mjt3M0`IG=$jN*|kqinY;mw zACq`YXf5Iy;YAh<3ih%^K0#|cLt7r{_5lPusA?Wit!2&`st2gH__HF32dXeo1nmdf zkO)+w8#kVG#!}=}R^D$EYXcm^!uonFIDnNV*OR>^&}E7OI!(OkdD+<7;L`VJB&?tN z`*DGimLcxT156RP_~%NS7P z75dw0LyzTo*sSzVxD+3hsN2jo`NJK@Z=`}NZMq3I-<5D0l!Ly{&B|u?1r)gIR{HAv z7~{7~dgds6(6FlRj&-fMd}U!w(`2ve#!cuVD#rbQgq(RPzGqw8u<;>V5_~?WtOWw7_$qS_!~zSU><& zmS)tP69EL}8B|P5a8Ag^2{i?xwjcGtHx^d-Z580AD3=qfX*LdJH)*n#S0p%?PPp~` zj^a3iVI6ZY-;P4-A$v; zLpHz5BctKm#g^0~wvRvf#OjtES^L+Y7)}g?5ul!M+OC=#oeIR5Im-%;3A<=A&G_nxv2yYv=`&t#%{M;XyygL~JSpuR%O>9cd#jc-L;|Z-APU zAfYOXuKk_o^|>NkchK+FfP;$Rgovn^Vdz5s$s-hn{2~}or=dZ2G&Z(bJr!N1TeR}c zM}6dxISb(I6}+#*Fw?69vrh5WEL5n8auypDr1qL>)1(KI-EC27_(}%-dnzP-1OXGT->%l?TAf5&n3QF0gyvKyu#+jec!A>Q1+J z#FJ*fy}o)BS_{q@1}b(pZUrxO7<3G-d`YA6vmVq2rA3rKW^i#CHn8)b%j)?AN+E=n zWWHfBx<^ls5`E{s9ybNo;UuGe4=bi`1TNQpb8i#XQ}A*kZ6;oU@lW9DW#JuL?ucmW zt~W2i$e=)(=*J5NIZ)tpig9gb zDJm)1B8JDDz))Ba%}4)_N4g@E6igLu#5(h^fVJ-gF#whHGB#J$mbryuMLAqSu6g0{yBy+CrOVJN?}sppZoGKi0h!(hZ_I*ARQk0 z7JRx>y5(c@_1>(oya;;g3?;?UvL!(IdaNTX&bcIQB?g(z8b_<}!rNRcn@5~+_JjRA zSc>k&AGILCU?|{3wAYM$#`#DY`3=hMMrpZ#FWEl4#t{WMtfs&HM$V$iD8L*oB!&sC z=uE++U41T4-2bqyN(JgYGp2)Qaoc!*T(LAk^NAed{AghoYx@touc~hP41-#8vDp@S z&?#^U#H(<*RUvlEOd!?Ols`7K^X9C$W`Nh^punT%HG#>tusQi3) z_7L=f8z^Ji7#rp^p=)3Ggks4+X5Fafl1pHcFX3!Og%GYGT7RX5fL_zi(tnNHVDwbf zt=RwA_OlGApUEFy$SK@|ebI^W$mlP*r+D<#zhZ~I%=}H29 z-GZ;eJ(v|6!2-R00GZnWZw!Z>BZigU9LIrSP1NOD#C`Wt4sFisF_E6*dwiZt#GnG3 zKlh_J`MoVvL6)b*+Edl{PbV)BZFwb4)kNQ2V8O8=B78s&yn_MjgoTXq+Yl9?TL?kb z!HSS$5o_3lMZ3A)%^z)V>Oe!f${=@_%^bZP=q~}S_tqx^VU?g%tC7o5MX$o~YZP>3 z>F>mpI|UQRx=}##l{nmFdiR?&ulW_-m;^lv5c+gcMlRenYSY$9hx{A|BEjuplEbr zVuDdZf)-R1-D8iBF6;$TGR&CLYW75eE>8Wg1hUuiS#H;4HPB?71m^ohcNvE)LMLdj+FyS}`vyA0HnWZL6uN?T3N_vU@pWSPJKU zH^glOE$zy`>}8^U?=XNjz_3>tsUE6#Slq$^V6?4FK-8#~^aZJw#4Z|mkwJv(OoJ8Z zcL6Ud0XUiyRH4hg1(Hzu;h)vjqF_y|FaUQJLCek;(8HDpI%}*3UkcaxY*K@gvB`IL z6cyeP0?&SWf(JL}|4~DKac?~_iIJkd|7Ni6LGfWGPTi;UTJoC$Y|Wn?jf|+^LNHL_ zv_{94hDAuI?B(UvT*1l4CIj9T0GAPiK0}6wUtf<(rGp-)PoIRcgNt=JKxQ%4_!YcT z0jO!K)6vl{*Yc!!EN9+w-e*IC!f#96%BX3UWGTR<{mO&#MftM8>AhE~sC=23iCt}6 z_CpW{`Uk2@{t5%MZdhfF9&&l|FbFi*gLe+V-Dc(H%{b8H`0B^6|0k9%vuj-3T`Kp3 z+As2^c5@OdW*nSAS(jdgheo6D2PQpE*L{O%@qa!D67x^(is4lI7n&gYLe* z-Jm0L^mnk*e^-HtSavFm=$DFnq2q=oqC-tmHMs91(RxgYSGiXqcmMQ}60r?3ILg@P z7#MncdOpp}q`KDTfR-4Qo^FtL2)-x`R5||wx-OIxoGo<*>RX@W<>d{PZT?*Rzg0Ke{8x3e(}>iFqcCVp#D^=O zW$xc60x!4lI?PN@kCKlf5Ds{wpm2K3DuPN(W6g-RGm!%|iM>q!?VNVw2=Ocsk&n)| zVRt=m>+)?}kP-5MqGUWuK8T5l$*{?f9|sqg-)W2s`ftSiE;IA$8}8xzC; zr^0V+Nlr}-2k&ZtlJs%>fL3??N(InEi-m*p*~G0G9lVx8BZIHqeLFQ8t8F3NS>j@b zU-uE(*81kttLbr6&|JUup^*Ku$P|$?=hgPilOkFpZPv;gbnn-NT!_KV{J^FFXvY-y z+4!cJ)Znp%liIgNFa;8Y`Dd)JWsHrf!HXQew}ytoUFo0`@Q14)c;yJF#r_3K{uDGd z2_gyTV&GReH26Wp-#71qqT_A@I$6;4?d!GM7Rq`MsneS?$-%OLcz%eme*y5jz~lc3 zN9T%}^|7_RtH@0@GmHe+r8JWc#R*psM8fw(KnftQyMZ4rfj#}VYMP8#n^{P>0=6*) z1&_vnJS;fk`&dy0oEBFGbwL=TV;g%s?1e9l5c15hH+-2n+W`U4ow9zC4=^mBj;H#! z_8Eebhf!_qlh^wrL_I%=4c8|fq1q!7X7|Pblz^+QH1q+Gcwcch4tR6m5a%03--5oE z)JCphWyMUPMQI;#_k}x*(s}{Y(-@Se&zq`=wPWG1o}vqgYOoFMCnFM|d~5-HZb$#x zpDH;>0Uet?$NZdxZLln4XqbM5k^s;=cZFPo-N0Ln0Eq1QovQa}XWzH`vCt|8ZP{Se z;Vuzc{ZBY>tI0-=cv3f-QKuC1l!Oco(P6bR*Y+pcSw5ZSuqZ`y#su5ms5DgB z8PO}Hup2SzR%Q+dP814%wo7Bs9dAUvHYKA+1jU-bx? z^obG6@%0eA(OL4af^BL18^R&|eU3DC6=f~tz%3t|#P_eQcf^CjB$RBe-y+?v;(hxe zlDza1x}pUK@64?gi_^NDB&_37ijfht4`3+F^1uHQxKgts1qI4fJKHuBP2*X&q%K{- zP`J-2U=+HwDuT4FDaq-I)7UXbr`o5Ply4v08zD`zr!{R*P1iUZls#A0`mQ!*8D1)4 z*1SP~tfj{D0q%#wS_}dI$;DCg3G)%iv6*nwA4t4$CGGim+m5ccJOT!`?o=lCuf>p!#E}cQ*zw0ljIe?&=O~V(JirTk&kH`= zeeQd*fv7S;DUZSruIG)cX2j4fE9AU|!SFzoNJRHvv2*&Z79OR?(wz3=y6gO#BM+aL zQ&T7lnnmgW{(b6!sAK(kMKHydDiuc1Y_@wXtf#Ue#azmYGi7u|($@!jc@q>GIrOEDG*h{|a$7-p3K3aTxyDc` z_nbd&O37ai%xT1BTlIdK)F?1(Y)RYx$3RxGgr{^{+RG{HZMwb!$l9vB5-YVK%ysZ$ zBdCyycZ%b@AWg-`a=0w;3Ij<++L%FMjx+m;&eX1OKY8(b4gv3+299Tb@Q5|TE%d=# z`y=*gu3`4j)TDgcn|+NNRW)L7312y=H$9)gTR)9AmsTX0uzSd};|6<+ck|sx?9Lp! z`0PYpMA6`kjxgsX8OSq3~km7X21BxP5#8A*>iV6Sb=bT94{MS zNM%@QiA=o<$dZbVJVyG%RsNAyXC+cE{8}OMbE)$`b+P(03RLy7B?vhNvi|%>S-Oj^c|c+8|&1P{Z!izg=r$p zrLtf;UqhWIFMN}caXN{30jjp|n#l$BFVmq`Hz5P_Wm0E8((K8x{#S*C5~#xaq%{2{ znKj0P&)6|kx9o(GXCsJYSfblHazFg)t;C~H^uCymPaH1a&Ml|ip4w2I!o|HI{v3=O zl_DEwL%kXoE)RFK=dg-VRz3)de}x0%;jlzHDe8)x7tSf)Jn{5mZ)g}p~9`~=a z{j?e*Df-Blsf!A^3XgMHZsFX0P%Fd3%sHtCu|U|D(;AW1MUG;yP4Z@CjFTpOGnB{oY0(tPvXL6P+;JA7|0@I8q^BS$BbA&ICCck3 zmHrgIH9+BQu-Q3Bm&MyoA${YoS2GWdTe}t{WRKXp@7c^L7qf+=@ejsbzDp*{mZVf- za`ZRh9H*lST)b&5?XHArJOT?nd2l(4CQ%a9BdknQG|oo8WNyd*SH$}S#FKYrNSfBPyC{28x@SY(M=yPJyQqv`zN>OY z1mj!fI30QO*|9g+6aD%I4nh4*ISCq6Xj;e0Mx0*nZ|A_xj64GeXgRO2It1L}xOw8P-kJvf!IYA?iKLNrTyjea?Oh|$kR+~hGbz)H>z0#DK>mhBc?(z&&;?t;4 z4_=s!@-Zk-`R;Vt<>Wp8J$~=Z^sVuSp=ib!%4;LSf$jHK9J0hJx1}pBVT%)?ci%{= zRORG^X?@9FiQ2qLuk1)(p@FBzrWxyt!%kEN`J~^!O=m5OEW`XUaZ~$pW38njcEc<2 z@TMF2x_$|p$!`;(FYOX)PzbfqgO_)NMFI(31OD(TRIMWQhY)?91*{)< zU`5zHz+fQ6C0f=ir-p`xeyzSe>H#j%?9$hoRU&cFRT2OUW#$d~J57m3EM}~aG%eM& zMPkq2o;94~y54K~QN{ZCt05nVwRjUf6}Gx`M+Qv7p&q>IlEX!pgvd+ma_TfiOhHt9 zj%D|bT{PW}Xc^rLE|0n=4nlKF1|=LOyL~$xaz;~cLQG%WK7>-p?Rzsh$%ar_Ebs3T zDXl7vOQ)BXq7k+rxK*gUj6o2Mf^634k1vY-zoAu7sN~!)7eUK=u96%nH9ngePPTRf zBUI&PSD`G)rnV5N)6D0+g;93Up)!58mV2j(n#5d|lL9B28Zxs)z>mpj$ii+%3I34@ z)R~G)S1t_JnEkB?<+yZ7f9IKgvGU!!QaQP~EZDf59L|K~KtsLKp4g`xTZ#Q zrGA#~_0~jyJEnZcGaR&|Jc8wxPq~GKD|?nB%+!q)dFd>BIzoPFDqHom%`Lu4<}%_7 z&S>U?g6ARaV8VCTqh6E)1s`9Nr|s*Rxe`>Bh_jm+3UQC}EDe85m{(;+6eSMumqC?2 z7;mC&I+5jd7nW~CF=TFZ>5PTy&149^8(7s;lU;%ca0NlB?z46X0 z;@eIEKCG|Mn=`bFm+x)s$FEYRUjzI(WUcUi;iTW^mm^xwn$r)pGLn&5)SD-8Fql*I zxF-4Q8N?dNyINCupB1LSWzh$p#>XC~e;#>q?{PEW(8{b@SiyULfW;8=9wKbdA5i%9 z|4t*VZf&_u%oJ;V3e&lH22BTDpI%s#3N%9_lTk{+WhixS;tA zrI2!qk&!VRK!z0)!+{%pYIpzaZGram{w>HO9bv^2220;}bv>w)tUPm7Fc%W8v)3iv zvtHmgAg{*fs$RHk?m}<;)r)y(f{``WeEoe^7>I7JlMq3hqi9C-(q7IB9&tK8HFUk1 z8N@vA7XCw;>KNddNKu-Za%Y>Hn@y{3k)WpD9+htgooSWpxC}WZC8wa)HpOi>x1#|8 z0l=?AW=JdGSD>mc93~OM>jZzd9Ym@}ei=V5Ni;5^_u^8!Z2PA@@eD+?Wk$hMyc3Fs z(L$=549gFlAblT6)$>On9JeUm(R^SDB`B5Lr{-3N@+Ljll|ICC&q9h8L0I zAI&TXWJ#XD9m;Fsl-dQKn_Oyiz}p*$w@8Ng{0LB3 zU_Z#YSa$q0e~c=-gdiK$j40HOouuQsJ^aeMIKG^MlEP>crkV=mgB}`OZ{=O|H$1~mKOxY*; zkqMQ?G(!_%HJ(J;LdtkwErOtyoIv;hE&fi0>1uoSW#$l&0jZkOKM`u^G{P!zPiJ$g4y!;#+XB^Vjh`jANi$?i6CDc%p{vXI?C2Wan*OSN{r-kiI8U57x!K5LGNL$6y;sVXfmJE!r>_ptGV8)OCr zCkB2T)&Q*sqcNcpvFvP=Z>!w7UC`M!pCsRV(FI zvXF&D+{DYjNWnNDCK+pmc`m=VGyrM72cYR}UL5}TvQ-SWC?PwB?^h}fQL=$Xr*N%| z$j4K->;Q%aLz5u$ktcqNz7_+YqOf%}p5(ifhB{&EEN{5-pj?*c;vwCd4}yH1+2rW- z0T}FKsY#VTUn`No(b+!Lm7hmR+3==sM5(}0OZhtM6VI0&0(-d%XxHUs^UDj`VV*}R z6PB>ReV%<=rB0bWL=CyY86`8hSgVGR?;meSft*Rw%9HcU00|^9M2edD0mK&)FE~8x z{Gvo7aVU*C(Sz=dRt#+6zcvTbsqGdyH9kPi|29}sO@P);GI;=5r+z_MHsI>eCtC*h z(`c11k2a2?JJaYKf6zz>f4S%Mnv7%Vb_f7O4&~FrBX5228 zn1Hh@1Tk~5+V#com-oJnd)pQ94V_f?-t<UZ+d?YBKlT` zpRPPMC^pBX;HWv*`8$yWdog#@CpKtML+y7s%2L*^SRW+gXaE^qYcLCK|D?nlU0}48 zbis~kkol(ByWtO%aKwCWP`&8#!?lyB!0IzNDb7Q=ZAhFMK$P!&E&;1w(2OEUC@sk{ODLgs*OkV*ps`SC76TJs=To4^#ApaBD5A$_)e%I` z*8xR>U^%^}^x6j$O-=A3KL3`#tnqe=NAt>cT^i9hrD}7^MY;>QfrUQi-kE?7fa=n6 zWk>=G6%1!ACEU<8#&4dqr}1{LtE9_Iv6BKW4mo3?^E0?gD)9JHmE z`tFbevU<$mVA{#0>DF{H>qH-Hk z@vPTRJU*y3;0?~lW14wN`>gl_{5e$bQ8}KU$W0u7z(($D{T{H1o z+((jSb7$)wk9@7diYKIZ25EOoCi=@Xf(up#kKI}}JeS~8zRT0X4;smweE7tAvlq)G zTD$fh|8iGzPVe0oDtLRi`TPR($JVKI0mze!h z1H(i7PWdIk(~k$VlptHf9(vHUG=1AC`^2@zyV6_^=#PaM_Od{80aKUCH}ll{Bb?GwL8-zrB=_GW?}xgxuV)<*zUlO+UtA z!Xz-vD#c{WDd8k?voX3OjP7*gfB!jd=wey_GA}>rx&gl%x_@}-;~?8~@;BU`O!(=k zk?PGCx_nOvCvexzu(M84T~v0WnuU?m8% zB!z|}&m#*%(VHThO@Ss>D*B7&``J+wOXzaxEQ51(Vme==_|vix`YFK4L`cU$ zJIj*k`0!(h0SI;a*0#2xtE=vSjuy`sLoRoT<9}S&pZMO+wb{t1ax1l-GQ;PwIcpk*4hTAa`FhXh6-u?AN4o9b95cx-${r zU!qXZbpq%_Yv8fZ0!5$_yZ7xwydFUDfoE#8^Ce3$6fsi~QN$)?33wIWO zN*sLR#5;+lB>zBBBsHE##@Uh5Kio)CQW7j{4p~_X{MyEb_gz1~!Qae?_vC6tG|CJ_ z6qJ2^dU#cMyvhY?l~s-ayWQX0ImgGRzVl2qSJBXrp{=bA?!eUaSdmRGUcWdB(fxGj_C$+%~p95vIz(73@J_pjS0;ySr zX-s)H3K%8Vg9ld<=zt2+*Yj9@YK{4DqN|Lv$Je_F}SJW)fXY6?I1EDLf&PZ2FT0{h zq0$!$3X$M9{HGdajeQKd)rh_ zcAkstallH08b~&%eSLk`y7((2py9&uPl(*Kb#|&j0IaYNE1quwgkthwv%2r!zpJvD zM08+3M$n&gJc}l>S}tc zKw_e0r&W!8%w2rCF9NeRaN`Mp4l3a-EiF(Ad|WM#l`)j^$nj9BqeF65dU_l{!sh^> z%{vg(wgXQ5!r0iD^6lGsJwcX!bBt?%krpqhD5%viGTj3Si3&m%g6Pgr(X26Avk_@J zaAmFigiL4g@5ANDb9*&v4{F_+$v^vbU$9Qe5pi)$z?x%({yQ`90ft?@ey`hsgdFJ$ z)DD|KJ3jNi5Qu7#CML{*O9O>EQB-XAbe%_Qwaj06UsqO9c?|o;W4Jd0v6TwIBqrX<?{d#{{BVBvc~D`O2g&{abQsfNA*=lv_a&hlP3=6T>k*!$@c^MR7J zNl3FESpP5eFmP2E-?6dF-i@xXF)F9Gm^wPf`q1aBx%`BMfb0%Ui+#foZ-SY<(9gvY zww5U>S*PKZ4qssu{Cbdja2sHJbMo<(7+*fMo+b@&DhPfv!ji*|w4UmH4)dMk;OqZA zXlymFe1BMO{Ft=*F|4AdX8UV(8Wtf=P6BX_@W@F3>V45P5TPsj`ANgf#m0e{jDm!O z1S$!JhWcw9bPz@&?kVVNppS+l8w;TS`1ttT0q9N{H;VHq_M8mdLh1`Zee=#_ z_MeO?=Q@9$9BK+wVGj&F7&}A=GchqyzgW=-%_#OMw+5cg;+&KD5P%Y_FGT7Ny)qPV z^%d8>ULO8jU)un(FNCiQ3a9TDadIH)srH;x2eLXGc2)srY-Jq?j>&uvuN-`XjV0}} zFC8NCsj}~8=1Iifr(hwZ@$&Jtor}Bj02KeAj4$n(JvAUbpxbEJFz!{5?Ne-{iI2`E zprc3k(#OnQ1_*B*_4SWKfO{jz!ptm1JCy8mP-aq+{gaUrDDgud;^rnxGcwsoq; zVxg&!5|HjgJ6#+bzl@H~w*1)>mT(=5KuSblSdkV`HRMBTtbXJ$v}ciaKwuQvK);f^ zOVyn(dnMHxQ87-b&{*RZw6D6m{(+mN3}X04VX4N*Y<9zLySCE!LxLb>)Vp911>7{K zY+=S|OJXg+imgU4oFgv}0TS~;ON+c}?3u?vSChQ^X&W~v1ai%9*reRq zAzkzk7UL<%5oJ#7G$y7f=7CfX2w@!%GJcHoCW2$GGEltMBKYAb;6+3ch_wiq7D$T| z|H14yD2$0_k)#7z)mzvw#sxazC?G+Fril`<8UR&)5E_b|JPOGusFpB&d53zm$MIrz?Sj@k^#p@ij(3)(SoRa?oBQ#cGLF?BehC>cOcwG+c|1u<5(y*r=fffm1 zKyarJrHov+{%ebMZiI><@HH{<1Mx7OE{5ZI`#(c~l{H>BW9 zA#hc}_QS>+Va^0Pe(33W*w`3wFfDOhz(E6w-lg}=%rbPS~0L` zL_k|NIPYEk(n|0f#cJeQogKhUJ9pD9=(;XL~OHz`0(A$J<0` zNCd(=Cv*!!XxO$S2lRH&Z|`sZeV@q67FpJ33hV{5L&G9^8XwI;=rb`0;+8ZSeYssV z0zfy|DYSnK13u6iTDL*Jy7($T~3O zxxIl#;JLUNP|AXk70m_&Cd_r zve0r#ekC@ShAy%oT#kh#AlT6;F&)@K{`|@7yMt2L(P)Pu><$x?HpWZABpX|r_bHCz z2}tDK)S`){Bxy1jb$B{Rd!_Ww*%`zV z=59C8k>vsipa6Kw9PlqYy*epA{@fK=*>})!uN~6R?U0WNFE1~j&@h4iAMg@wWYav1 zLi!LPmymI4kp+?pCp)_WG@&y%BkOMn6;_X{sxB`7H2SEBEO5>X7gUivPJLtJuvrco zZZ`*#ZD8X-@08=w*aW(7mCE9@4n9?N~X6EBRyLkB-Fl0G7I1~{ABJx5T zI8P4@q;BvE!y6kLkv-ZwX&LFlXo zr{&jts#`m}p^CYA8e)}&!I(gp!m_4TBhaNLaL1?G<{ga(%sJ>C#vZgsH0i@SnTXte zf2?V-ArW@KHSjSaa@FD@^YYGDLw_fcpxwLEGczFh9|%7Nd#+f41+542HF`O%;f96i z*b$E&90gIp!j2ZE3c-=-YMLmfp#k}|$Zgp=o1)1N-GdV4a%D6e%Ga(%nASQ!@3F-Q zx*k?IfByWPx?(>)l$DiLHDqDa0}b~c75`32EjMp?(K8EtX{$!9K@}3P;*bY>cPfO+ zQSf%!vu8X2ljaA+PgrVdD$-fNN$_O=Om(D&P0XngIKt}C)WHaP*C1vb$QN>ImXfkZ z;BoRJkEHG0I~8!e9)lqq3F2n#&;tS-U>IyS?7)j73Bo1mYynhf+`mLpX04u#A;qy4#ZO zb%BdZ1=>m)1J@dMiNlD0%Jn5-f7tn*7o7cS% zww5L;Sz3xbB>34!q}HoLmneplc(|KBcE-i_xHXm_yj37XXPya$Q3MPEp@}`n3yC~| zv-^25@+kPR;wGcelu8Gjj<&2F=MrFTDUD%Y%sp41b&V7 literal 0 HcmV?d00001 diff --git a/_images/c2c525369fe62a83e70c49c29b29e5a36825c10a56f6a2b06d82951b6a8465b8.png b/_images/c2c525369fe62a83e70c49c29b29e5a36825c10a56f6a2b06d82951b6a8465b8.png new file mode 100644 index 0000000000000000000000000000000000000000..231cdf77b664a54ab621a2c5e4392c2d782f305a GIT binary patch literal 89689 zcmb@uWmJ`G)GmyQihzoQh#(uKk|x z8|UBobJiGpz-Fzd?t9Lw=Gxm|PDb=0>T^^iB&3JpVnPZ?NVoZskZzTu+=IVRR5iVX z9~}0=@9Y(=jqDwDZ4Hs6b?rY`Sle5e>Jfi5w6!y}wqmAxL&rozY+`T!!H$!j-tzzd z0G+k1F+K6cbu*mg!3QxlJ0zsXx`=;n(? zH5gwpS0S^}N~GvroeL`*`1|*70-}TgyYN{StLa#HA9t05|HLMFG9`viiz?R7kRQ&( z$jsbzVu!tSCjN2-yVdTBH=JHTZoT>2z-+TW*1XO}l1Y+S8_Z;6Vfk*qHrO4@cqdaK?u+Vy?ohSO0{ZM!p~jCM-u<88zY=y|> zcvBp44MxT^x3hh>y%t;{5s~H7_#<04p+~W7md^^wC&~1n_1d@{5X34;_1`Y3ezD9 z(A0IDq*ifl;+)3803B;u@b3QQgIGwwnC7p2Z_wHO%X=SD1 z_H<1UAx}J&a^B)vrF+ghb@jn)*%X?tHyj*K2nd2QGDx9D(^U%9@uJZlJu-riyPdCP z7ij%dnSNiS$-#TE$^3D9TKvnS7tLFtM0~9?Gf5>S44a#qOguNRBtvl%=EFJs4IWqH zCAxP$-+w$hC&7vxAS)*)he0YD@*OJU89u&Zy3hl}U8b2*F)@AX7 z^=!S5ukWqesq3M0TculET%8>E}@u3;JhW3m1OYJdO@pEg*Y8Y{om^9H}$9U zXcEyh{%L6>OI+x+`|%jV{IYsz%2=tXaD z@3ZI6=hxOc4%dd{bCvYspv}r%PprJXy_?M?M?M;kYKw*t{23d=Ra8_gC@5GR&c*s+ zJv&MjVdmAp+9@;=H?dd&ft0NhK=eQUAsS~?I}zi!RT@6WRoC~ z**HC&Sln=}KAokKkLcvwccm{yL`2@adBb2a&hWm$qtM}z);T%zBZ4XO%G?YAabFE1|{psS$OEM{tPycXI*6|-et1O*3EYS(kaPDrS>MNzAo3}roh`t)gR zT--o`8gp+FS4`1#PXfE?WCdkwYio6FEt7t0kW|C`$@UEOUp_lKyU9xPHuyk!-F8s5 z=MC>ntwYnmz!OqZQcW$bwUK;Wd3kv~yi5he;_MwBHuv{qz%JEa9cz61_Km5KorMLP zhldA{CEjXw=BHzLhrxUxHcQ_%AWHKJz$R07JS(*p5rDv8gQq7AEp2I8S-N(E2Zu^v zTU#45Jhen5#V23iyY3gqBhR&+8R--GJd>*|r}Qi>gL88!5wQ06m-AXDkIUg#C`es1 zvw-q)W!k3!zx+1b+_Fv`i2twHHAHoQGf?% z1S41JsUOy_$;f=eNks#u44CjpMS}hTFsPY*MC$J8DJ?DSIOcvWn~W@$t+o!2?oGUV zGV5uq(dK;@E$3Zn`kNo41!@t1NM=#a*Owf3?mue&^XHbJpdgh>L3?Ku_0ULEY;1cZ zr6PrD5dmUbIXDI?%~c6`-6*059R9|17$BPN=K3O3B8tj?W#)&qcI`njr$c~xr5QB7 zPj>ce&+9W|zcH8HfBetcEWSoX;TRbiMbc|0TQ^*>P4P+y=PF_1<0q_nz(omOyeKbR z*_*xU!`=mvZ9EeLYb_+h21r+3?AGo-%0e!AX0;nSV_3Uw|Hjg5`trTX^)u$o3k z*;Kd8hI5`k`RHC>p1ECY{cv)2zV&ZuiAghYg)|M9!@3gGh``nPQ5;aiy?gf%n-2)lUuG!z zmh^XATpXfvy1TpI*e;?(kW0VhEizW@9d2^(89z=Z#l-$VRXs02I)9VB?}xxIxpV8bwK)uIpQho*ZQDlzpP zU$uUI+#3)j8YnlGRVmVpTZ*Cny)jm7I$O_E=W>JqXPWoFV&B)flWr+c zhCr`)dCp^n8lnJ%CL?(`@GLKRd6QcLafeED1&cImzLDBl+uAY}s#m_Gr1bCOy+9Wg z6;0;z>@Cvz`86o0d2kT3-)*Z{t=un^_xvk;{i*lCN*}Y`vXs?qeNV&9b%O59qeqWU z&(2Dn50>rw27uLq1=2A1WabwZ5Ug`{u!4@y7Nn3VVYA$gSAVvQ@BR6+uqQh|1_B$i zWs>wxcjurw_I4U>28*@%l8W(k4p#@>si`r-{%rrP>zZ!~e1M8N57pIfQ0AD7`-qTR z?BaOK#@1GEbG-BoC#UVjvE|3D$rkuTi!D`D0CcwE4=XLBzT}>I_lsC=XC{eEg<&rw z^ye&Jf$sqi@b5h)3{uEl1o4u{IU5=KMt$Dsqd&`)}c4Ujx9hR<=h^iHG=S%MOZpsk(1j31ox)! z^|cXsqMP^});eqi2>2%@y?_li>`&zv5)}gj5m zJF>EU1U(n2Ppl9!NhE~8zov!*mOUGqkK1|Q2a`+!>BH5zgL;((;0sLE&Tra7ZPvJ%sirxO|7?14sB@kjp01{Bk$7va%9@YHOa=sIqv1GzW{QzNADI^>2Nh>Tq*H(fne% z#_n#M6gjucAw`$@&RB8EzvX4}>uV?gf8)5FSnUp|wsu}?x6C>m(-8n&(wlE@Wh66fXv+U7f-$ZI81|BovS%Pkx-8ojvgI@R;A>ySY?E@&U{-f3dN( zMayD2sdUNXer}H_@M_RkDmDICuTfEb1)TO5{fSYmlZ%1#0u3W2GXHICBoys1zjP?d zlh5!AOH8D(O5t&>LP7za#6_N)S-zX8K)d*9fyO$04`?<5dN~~r$3%4YrX`UdZ0m7(_&g3e--izxC;{SZ_fsBld zz`J*`qsIWK52B-^=P%1_mn3dsEcYfQ6om|5k2(CsMdn9BzH{eJ;eVxqr2EJF?tB$o z7!4R%Ku#{KdJC|`TOh69rO5MQi~SZxo21OMHy=_N0Gf2Csw^8p5&445MD^;=5Dk?I zt#R7Z%j%m1M7aAlme;*@^mzDes=J$}iBr4Ig$$_?@W#RF0vHb2S0LP~w>`v-^~)7F z5dv-}xsAsanT_DQpmHe{v(RCyLHP$>fV>eI$x{|)RaM`oekDg2bI|cRr9{8&k)EDj z^A38ENeDlEzZc?$<-n29^A_9xZ^O6yG1M}hooMgCAL-jKKUP*cRLWC^u zfLYg{&-eX^%nnhxSry33GKSuZi+`ioCZx_xZqmx~dwb?5b72F( z+UnYxX&k-PboC$bl&cfv+0~X^(X^-M=b$SK9kf94ie@VKFPOmP;G>Ls%_w{CdSe#f;@aHD=YhJ)G-bhShW!(Hy(J=H${paCWQDrE)}EK0~w+b&^GZZ zKP;#Gq{zGEE+VI#OO5-I-)U$BHn_XHe`42XX9h*WbofK+h)YULtXP#jWq|d2R%Oj z(-i7-d~(w0O{>C%_LwtY6db;=wnlkfq>zaU@?YJq?fU9sZMudzQz8np%h}m^AWu2p zehl@wqM=OEKh=VFf1qsFCM&5^JkBYhIgPUJso3?K%^vuvNXS+hae(q8^L%cp-Z=CD5 zG7b(g)1oaB&8=ltpcAYAW9GjcmwLa*DqAeH{ob-l2Mx{1I;VbL{@< zm>|OCAE9+%oRFjw*rdn!?mr^vUnkPq-QCrJsDwtloBG28J9D`CU`tx`t^Wl{}$ zcD<|hNo8Cd9)O{`M?g&yuELd&eOwo?Vzd|f^VbS*ExMY%Jhp)Zqa#K{)%HRPA0OX% z^?r10EX8&oT2N5Xc%3Ud&}Aw}kLsU4hhSUCrQ>~qgQcs^qUx{D%|USIX#HdZ@-ZCF zkyl?%1Bi#6?0~Hp3a+_z=N^)E>oi;f;XGYj;#?zEId`)6Ki+&^Cj6en1zT(%kA(<= zKHq!zjN6F;WXa+BNFemw3MUoA(E>T?jfj?*vJpDL8;r+~A9LETz6~Yh$$?@^UTooX z-hTzhrGxso1ewgi%d73~&9qS7$Ey#J8HCRs0@6y?)RfXsaoOS2$ZGfaI199Tfp$YO z2*WauD;MA-&?lm4Rn$yOn84aJG&G3dDLFa$86Mu;&Q2eAaxESA7@(A}PZ^Ht;Izaf zBv7Ggm!K)qOBOaZy1)$7*sVN*4Ijkx9yVh=K0dY>FCl5-R3t^Qon(iV2XhB~P6)~) zl9Vr?yNK_{)jr+#_hTRone3Ii&C+{=z>!5k8D8)Q%{haDnyY8n|)risxg z6om6X18)H+eR_IY0znOwL6%{cYW_%t$$<9*EOLW)qIo)UVb~+iB=qfD;|{jA^YCma z-l?pFAh|ysrj6_fv;^P?7tR6yL(8;|kH;dC6h6KNn$V;D{doYy&B@9@FlVKpXP(lk zH-8t8fQ&8gl;CJ>=(VC}*<}!KS659F9EkN==ELEt{KuWY2#tMuvD1Kv4WOdiM_2YN z75KJazI9+`R1V+kJ(D8kLKVA>QCi4Ym= zT6f3o=|7{RPa(2NTJH=2eA3s^`3>930rjQreuR^1qoiGBf%oMx(NoWCMEa8^_{9W- ze6)5H#~OaWo7y%k8)RmKwGQSXM0_%^$_MjI%q_jWkFc;Jq%PFyVgj*35)u+}mc+ZJ z+OqQcx3;!~X~o~m)z}&$5=V#*`oQGDId6fO(FG0%$WK$rukpO8j~28rF`)<#4~Om# z0v<%Yi-3OAdmtU zsO(%adM{Qd$_`oSu?tixbkd*;$MjFf$4*!rzzH2tf&O2=wkul7Ss^?)@G&@i4aq=v zgd+8P|1zSZB6*0%^*B`}-{JX1R#p}W`UsE--x3q0#)`DgK+3>9Spyq4flrN+h_cjz zRzeu{$jC^kBwvT569>eq=70JNL`Wav|=ndF|j*cIFRWVuU5A{v@)XijC!6I)s|1-f@kO9? z699VUxizFf@ZR2;6dC)0z|s21-tO){s9st2Sp$~P%p_`Lex12SUts?sh!o#4)1!Ka z>E?a99Og6<0?pPxHa6zc3!ed&tgfz>Yw&QlasBXt0UEI5L*lX@tQ#VJPE1T(1=^1` zY-(z%^uT}i?BCW_Ffq#a@87|kt&SGrLos*lHgRp)f&62Kw`7aF5;0Jt86^Y}C7myoHJi6-;G7Z)OgSsyD7t*m4P z$kYcn1p^%LD=~A;su>~=udgqxTSJLtA=zPIW*(A|h>C_dtRLzeQmQuaAk7%gl9F9g zL(wZw!Mb{Y5{Ht^h2lva&_m>iKOJ|nE|_)?4)j6KK_V96<%NV;ocem+lbu;(c!=%< z_E50u6r%1CPeGS3W{Vsw_i#9@W7E;mIlJ_j#(|l4s)qzMJv+NC#q(NRK>@SexbJC~ zbS%RshmFwzz{}Q<7u0_3KLNfVG$~Dlk_JP(JS5AP3ET}*0F8@_3wE**$jKBS*Du1s z2$32BX%E%8Izp2AMIqM!blAM)?NrcihZ|#|nUXO9M(r>@L3Apo<90!&d`A$%%)m$o zSWPHjrErh~-4oJ9$d5jQZW@BP8S+YgO-%x@`^LaV$oKB)nVU-@b_XyS$nF&b1BSJ= zHRLfV1Q%^&uU{kT8__sWr)m`@PoPh~!;nXP$(ETOR2wvp6da5I(cfOTfd6fP%I($c zfOLH+^0 zs;Vj?6ino>6B8Ft0||5qotFrv3odRF_a2e0LFi0M-YiLWM3xXgW(LcW$mxLEZ-60_ z39t$^v#_-#ZEw#4fx#lI;O5^tuB4rwDL@@eNd2C(n0S5udfAjM%pFMkq zQdCs*U+BfqI_=jEff0>Hl@x_mZN)Ra(~l<0fVg+xKI62{=^eZNh>}Na(ijU#jNKow zG60GHkz98i^XsM$qcE011^mE*+16cibMrrtF}-oxO|8CxnTi1H=Ut#q#9^@vy57$M zlB%v?643}bBMkt`1F!L{pmRwK7jWc0HJUTg0`nfx}aO|2!FsFBn<$~8_uj_Wksh{r1{^~b^&z=PNXL>&Xgce zB!-%P@c#XKHNR*h`vPK}$!eCIlb z{q{~tNzpMdcm)K2GL$Wgt5WbTTvwZj$3+PO>L?wM>!7_KfNl@~4EB|bq4PJie-Q3@ zxEjvz;osXoLqm!TAl5A`EPTL;pg@-mQpJ4x_EIW|QyHuj1_a{1-^e6UXWb5hRj9m& zuO;wbrbyV^SLj$+&>%IQA8jyONJ>cs?e?(Gq8N5YJ^>Ga4Cs{xIZ7ja!(}>7FH8XF z5JOCFU|7WcAb!`&X(%GuZwn>D^?US!3M@Msj9VICr?{m@F}de=u(IMHW;@Vn3NV?2!6|_cNQG?4*;FMeU%+J)94aLY#GL@# zrGY(cM5M|Vf<`3!cFW!3s!v}CMk-T9?E)@7fPf8=9?F&KwV>~qnxT6AXrqh!uITJq z&>PPxnIo6xjaXg89lqfDh>eK&EiaJyBjOPWqkumq88VO&Viiw;zkI;o7TTtzr8VZr zXZRqN?fm@Q8+1fJz?&`vZ|X~sy$q?MYu)0x{$o+fNxd7w{85{x_OdiHB_&hY> zSU(-`{*iQA>hH=7#A{d15iTAG9~nm4e}4ad`{Coqr!FVkNtUapkOBDsn4@iPZ+nBP z)zQ;?3C2+nah%@{6+8P6sU3|;*I#BMRB3?c-nqHCh$>_;AC;mG7ExDF3^O>4`S_^M ztlNNP*1&i321ml+H()p-z<4c_*l#-uB!2oKeEIGJ|C9UTD4pK$rX5TOplHLao&8_E zdKG{>_=}ii?^=$6mtQ!k;rcufLZDJ`0??+frR~9!{`WrNOH*$q#GKv8NCcuEHMqed z+s9&JV!yP-4!nJuFTT7&7KeX@ms=RNMDqXshRFl}MiESJxD4XOD;AI`uTiLSFyDd( zV?(kPq5r;y;;#oGCQN%sIqkii37CPaBVH|^VaRSq+phTzTatu= zwdV{vrKK|Zf6n?UfNfx4Ad*InX)03&H2@CIjQkCj)_R70I5eho7= z#7iDUOdt&MeRwtB_y0d``~UuD@etos;6Ff=`-w?OFtbIFjygg@L81sCple|v1+0&7 zDk^bbzoPJ-En>l~l$4d}0bMt@w$=~%{?8(bi7omNpz*^uLl82D@A{Oq=?c_<5ljea z)XIEdzM&7J2_R=NDJkqOxBZUS)4!Y}0GZ0n$LM4d-~54lu=B+EpY_4Sp*Gq1;Fs35r4# zRHXCqCLSC!k<8A?`5Y8pdV2bI1Ak0R->(w1ALeY3>Gd&7+1b;pzC1*AzJA3|-EJq2 zO)%(wRYGC5v%}rUWIpn}B3#picGi~h2x^6?R(8+Rm)&E>LwLU1I~wP9e|y!hyEMbV;?MIV{` z2eA|7^pXz6wpGxkNQePX71x_LUoYUQFy|PXEY8mU5*!@-ZrRePH_<;cGxPK{Z88;! zeD&tfC*5C>5S@6(tF; zNcR4uE1*fuI0pu8uI5fNHUjnO-qza{};BMFCq`tu0SVkmWz`oyzkmyZ z7cZR8_A^I4G8M#ygnZyWfVx^*6lPb16_w3Cl|OEpAlyxaADIu{ri#EEOU?A^T_*B_7*(rIoG8ReYyTEcrS;{msJ%?l z$OvY^^?bMZ4htI}U-Io+M2O;-cj;)o9T+7JP=QMXQ8$P3K|k0eMLAfuoW z2}6XTpi%wM@fv;6aNoF}vjBQ!LBho;>{k~mR%PQq??sG4;Oyq3X5288`>U>IfGb6D zjB|fp6Z7tuq7(DQdR`@UCI8~b9zA=%7ry5x>{n_HYF^HT>r3~8Oa+zCL2+<3;3;{eS0e$Ej=MNk$p_>*9Oe|G< zPydD}jGNGf3w)S;Sea_nHuIvJn>7NhkKT*8O?VWUCk;9NNnSAehl=6DgP#ghP4`|) zk_x0_GP{YqJ%~!iU2!3zpws8MxS&ey4+PEqs6urE}F{N(EMd8HglVOz);kt_C$E=iuM7&Z}+j+O3)QG@sw@xp>ag2 zBj#iC$G^6I<(jBIvF5Ud-}cIm8i#+g+~8|;izOM%68<~eOZP|-6BE}_{!O)<7$>M> zK#cU%?`cpTYk-YIo33@9xQ+a{v-jblz7t78X!72}kYg^1hbzyWU3%w*Y+h_|;0aPy z26X+2nQ*secO~4M8w`|GzmR+ulj;yRT0uP(5}iy-sr!wYUwEv>={-FW=UMe)&i3W^ z>Y0o5Ls#1>+v<(-!aoC?CY*JRbfRN=XxVaxZ$C7C(ZOPCJ2<7aEw}sBy#miE)&F+lKc<%_t1jBqSO3s}5SbdeP9D=4Y%YYC zhw{-~lhlh%)6AUaU8|xOuwm%CFSuC?T50eo*WN4k&%8`)Wwc}cv(k%B%+A>4;n@|(1G?1$G=xH%fg~pDYL(<^?BGA__fny-K5lH-kb5eMbdxFojTHg zFr*>yVUtlsQ|(UxHFbZ)#+*iHOqJo(V37qE)wl}CnKcI7uGoQzFVw}N<@24WMGe1t zy|(V0F7L7j6|u(8v3^+@M?NX~Wqnf55XQnU>~pzWj1u~I<>RQiwmE_`Y)Y{sT3VdF{qbldjD&l(~d?fjshQ9n)C%;yJuupBeWk^;3~|1yfZ zVOmZ}={tyBL3*}gMzA&3n`Jfkx%Epai_Z#zA& zVeK4Sp?bZIEj&jkIN<6j3F1%8K=0KL?U_-`AglV?j`CIGIKl;!<=EZ=m4Tx4Q=DXt zhpO*QTFcP>SgKqxa(QR%QC;I8RgqT(E_>99-^I&(d^tezPQ=8JWBcjH3V*W zNZJ>DPME_~iV-e(_cAH8^NSYJzF0GCQAKB#2^v}iS=#e%$0QfoALOQ!MK+VQ*|6;9 zJhM4|weCO4xFi{g>+bI+d1kbJL5gy_?Q_V%#)S5SgLO=GouA^v)-ilp$DQpnqxYj^ zBX4zQrz)^3Pkw;hHITGdV1cKXS&6(l_6dIqXgK|l>&f}Ag_|G0;+*~}S0+V#;ruDi z$4YPsUAg;apAjkRJPSRS*JtmjRdKNFyUYru1=9xeb@73-;VxE(3+`$4ew*9OKXa-{ zRhm~c;CbcpD=o2Ke;*(v_9WRbuXY9+7dmkE_HS}lYMCjvWj;dufExOk z_5ATmevIm)^{1}eJGv)VGl?#?s8Okyq3p~I8P03Vdg&snXk+MocI=yU4M`Wltg2&S zIm6Rvs%WaM!-P#?&jt5eDs^Uqb;x(B#Z3nS0|BqMrLv`S} zg->m!b!n{rok9S-J+*WjgJgr$&>^=-ZlRC!z9mRW>U7kz`Prf_^Di#=X#PWCZOE6w zWG*KH&$r#WhBNP+~3|TfQQpcuetChNjbOAzen(mO$fn5z|u2*hKV0 z##6snEe;aTVt!Bc;)`C1XjaS9Pc5)L%9VDP{b|v)gw2ofW_K5xGq*ofaGL)$C-s`^!oTMFO^2Ltv zkW?W%80ttl-CGQ$7?FUcc{grEQb%<(I5GSEji$NGl}36*dd=BBxvF6C!Nntd%!uH2 z6TFyVo5M*rmhDlichA++m8c*1Kb$i?9I{_JT69se$$5z?jHt9CA&w&7_gFnfD=A61 zSL;XxK?NpD69EVksg*KkOrv<4&J->^#?E*$t!ee^*DaI%XAVc}ou{=6xvESTXEM0+ z-xe4Way!s)FQhHPrBkUN@H@ZtaMY7m#mBvGn=yHhL7uIV&QPGLO&Gtg>8Am=@{7Fr zh1JiY8IPkjsh3P;5(4|^5d}pnI)9H0pP_V4XfoPTBUN50?g>=qxaXM7tKYO!Wx}*W zv<5qUax+sYH@CA>pAJ8xLO(0Jj*+r>Bfs)0)pPbV;qR0SDeQ};j69zI9Xs;e!_*?LLPO<-RnNSkxE_nTLRpvNPRev|Q=#!Ym0h~yQH=^>hY z*#chjP-j0XK34E!op+kg208}TI%Dx;6}vK{O+={m75(x_R3{E}9$ye{lD;H)DXn2R zY+oe)vuq0?N?8-liDNpRAb)})+y}I(ygXR18P#{I+q2K@UrLI;3iC;wCV9YbEl)7q z+Hy;)fm@MgW%uP-&*JxdGcM)Nkx%iMI%6ngS+mVR`N_P0hG&Cl@5D3T%CXUJ1rqmC z)3t=jSz_f<&+G>=pAxmozV_7H%WOdrH*{DpZyYr-5c#M+wvjf5_rsGwl#u8aiwALe zeBXRTXUgjL2WlUk@dOl(@NLFeEAS(k?X*_;>Uv!FZb$dq3 zcuUsAf+GL6O6lRg!h4?toCL;iM1Qbpe{DHq?0Id_7u)e1a*k=gUuo^a=l<%HnmHgY z?1wHXD2Z)*S6*CRkIKKITD@8U0F5=tT+d2JMotOi3*igQjAn&W=F$x52{weq06kpF zR<#W0=;q;yc{s-Y)h^&m)P4PpAVZzXPn@ExS;Cm!wvfHl`4(X<{5E1#qBQl%t*3;( zjeTx%&C1Nsq%?~Sak_wP?sd_k@mCjhT_#?#=!+*OHMkz3T)HRYPTy~LbdVclPRjI5 z=Al)!Rw+5=6_F7{QOnb{X=~Bzy=T~&=6|G|LMJyjx2V#!GEK#x}T zFAa0W_?~rfv3EJhB2-9m3p&h{PZ}|&9q>duBv?0k?_pv;2~7xokTPo5_I4*YOBw_D z`sV?WHo>WYy-x9pdZ=^ZihNh5N|oj5Qa8Pu!!9+_waLYOQuAP%vbmO+_nPT9o>w(z z>*Pp0RL45H3BKuftW~~?P}0^^_<-CH4B)(rL@j7efEgVgYY;hS-a%ga;hsFoxmpaxZh>CTnA?1Pm{1#1znr zBu>PQm#)sgL_D#Rz#F7!zi9MA#z;noR)cl7q$jl~{K9|wlrg>cy)HMKr{it@iuj>p zxnt4ZqEyzw{IOL7oD8$pM=Rp$`%JPJ@`(3zEPWeHpNgoYQmd;fCrkR#!A&_`r*&6YWIcl zn-2}6G3Fczwo=xdFPN3@h*+W{1*pUp&@E8B)~A(^YqvJ`Txg5n!;Hba{~Iag*5&Z# zYl0qva*M9Vq8>V}9e79u8)YH9%ICne2JNU7vzSr-Qao%?9LCG3P~8cWHj z<6nJHM&E07eUp@|#`jR2eh-D(Wd0~yw1qIS8eh3UAQvq{)uvd;QeM4Bem&L|pTlNlYV!B)LgB9jK(W1Z|dlNKqN}EUOSputLWfH;QoQpu|qCD zCP&I(YoxN9gZaz-Cy$YOzO&~{64&S4+yxt1VT0<8mZgRfgMh>J`%|mg_bqj%g5CR#-jSgM|`ipQ7)i)E@|$X0sq}xas%1U?Id^x zPCig{S3Fl*Ybtr(l(VcPy%C$vCK7;U#xJd7pu<@>04t}Sb~q7!zK0)+#J+b>8(&lWpt7w@CFdne zu3oIRzpY?lYvDK5JWFZXY4E{Kq-x_=vsfPrv%8%X>5BJcK#&wQv5sDB^Xr~%T~mYP zLNCKS>j2Fx)l|F;ECoy_jJ>zmAz)|b)K^&v>pgNZ<40?>u|*wq4OEF!rx!Bg($6Kn}sY*SR0up$OUDi1nxpYvQ zGSrtno3MF&lcJ~>fn`!(#)taHdv@wt>`37wg#nXND;tZZZA1HMjf8+4p`6@+uAKdF zt2c32s#Lqu+fJ3Qoq8$iP8qH4xNVEwa_!jgTnuv0biNz=lqNH_p0_>^j{Zcsd~Z1x zFILyo#6L59xo@)lxjCsh4LU6oE8cSobld6BxxKmcn}IFW9}iF-`~&;?zWG=GIaSvq zJSNafIVRdqX1~?59GOS}v7X+)I5=2K;W%6kdsihL$A%F0&()lXHQr%G;x!!JinQff zf4*kJF_&50BQ)!y%j(D2VXaWA)+DVOoJVJ{Qjq_2xZr1Pi2s+@n3(vt-%|IfT#l}@ z|JwXD7^RvQWj{NZbhCZ=1z76KIbnK{xt7h%$_4Mr$w9+Vx;@$>Hy7fWJ?ECVY~yDo z?p`L>tBRSA57hg*STxQ?!t!YV_K(KKuo4K+On5b2R5m+y$zsWdBDUc6%D7rr4 z;q-|L$7#DD!e#v!s?C?x?ah>PmvzifJEKf+iMu95X&itkXoe}ivUSI?j( zQLV=HpjYJ$sWiB!DQCR7nH>F5oX=LVowH4aKT{MG9rxSLXGxx`=XY;JQ_7S+s9>aE zrp#%BS77X56e1VFjKUTMOA5=Cevb<939gPA`QR00gqQ+Zc)A3MaMCx@3m1>HFiN?0 zoYk(Qfrzyjum$w(bEtr%R z-8D{0YWXw#DdLWdLY0sjl8eRKpJ)w@)t#Xfuhp8ZX}6pFDiu%aR5 zB)M1{DG3~&V|2eF2Qjo18X>eFS_ z>x;;zzTw#v#f^LB)oOMes}9K?EN!n^5EnO2NnToA$k6n3NctD6V{@ICLDk0LELL@7 zuPD1>TW0Kc@hXKF{*!j6!1PtDC?Z(s3ZMMd?p?@NLA@ho+J$DSA~9)0_Chh9&hA7q#qtBaJ@ls|gelT$^%x zQcjL|Tt@n4chopw!DmSEvZ)Q{*q?0oCO)Xbde1Dn@&+ zTFzkhe@d<*1k&fEj0a%!7yJ4TN@wqe6qX|xZArKr&0GJoGv39w zugxfMB4{_$GmCm@cSC6z>TN^UB*{7z#)ANIv$B$v!~gPkVt@2AIk)uvc;kV-H&2~{ zAhFh9q| zwspFV{VO((X#X$d`)w_JNYZ*ehA*NA@}#IE&B%W4Y#DVdk!^bJlAlCG#9;~MJ=Xnj z^e3`{CNAS(={}%~x`4Et0mdhJYvkmT)6J{`HAVs zLT+x~KD$myMK{Cl56KxBCNSUUD&~mKWQfqPA3@eK|M?l0d?}zg@%`}M*>4!H!YPT; zWtC(=i3*YKA`>n+_1l0XiZz{hERW*7smj*ZZE#P=EHX%PjgRB((8*8DMUiokd2o_G zren|UV1aZebaj11S?aqJ>mrr@N$`?Wm{IOiNU4@9Vg>sGcp%+P@uSAyhY0ea1e?yz zYuDV`?^L0rL37xG4O(5@hYD@eTGEjLI}`_yI{OZtsH zlew_na`@=o7r4UANqHXpAtJBG--UGdyAfkADm5wfbm27AchgL#)<$2?;6wP!@NHi! zBU#Chyb{Ez*+hX!Q@7v0_6v+pz>Y$VX~v-_5subH4gX=@;q2#%B(668 ziX#yu_gLDXLhji$>%i3-gHXLh7)MLGm@*Ih^79o3RGVPvW1IDkTq)o53isrIl!TNV z5?dBKgQ+b`H|Kwn-svpbhYuxL4c>1!KerrQZxtdF9_TE`q2m9b-x zP{>10>G$CN>ypKNOe7emyqnaeL_!2!FeFUp`%>snd&m7AQ$?#BwK_Q`n(mD!Fp z;{VCf4&R_b2|^#nbWzZb&uurfEkG~)Diwe|GGn_q9zPjyjghM!@Xb5OH8w)|t@-WS zOa3jBrA!HYlTyx8`)3Z$!hX}S@1xAfuK!#UJm&7L|8nu>U=iIvubWlabdPpP68f=% zb}Cw$osIEeSPGOtIElVoCBJ=9e;lEPD}qk4_mkcb+9$R*i&dRW%CzmjU@koQ*Yp|v zFGnnlbC7y$2?B`h}8bf2L`ISS{BCQcE0P2m8J4*{Hjixv#s>vWlDPD&gb_kb4M$nJtxxh@s~o`^vyUpqu)c;;7ab%~}6&-2>)?o9+|QdgGytJKRyGgyLY-qARoo zQmEWfbMB*tIw}uQk4Qk|`{r_$;zqNsb0&u56)L^>x7qGNbostY!a{D1Cm7Fvdpcg< z`Q6y>{XWX2lv9Tls9HU8_a)6H-AGbi`LCujdj}zE^wa&u9h!r&O*>RcyF@|w#hW@?BMdd z8l3jV22)DJGPCkqUr;Qu9epmUm&twN9Y{wzFVvsFZLuT~sc+B|et58!o#~7g{4jIE z+xFS3mfN;clx+sH9ODTI3Ii>-eWl2a(&(xF_wc~21cV+IUGhz7=4M^#fq~6IErmQ95#J>cA@5tPx|%vai|P}lDN&y-rpS)F*_B6&8+-L3J+0D;)o+`A92``Eo+Z+;s$sbz zv#I?mm#Hrg?VstEcsi53=HlQ)H{R8_oD~}RGvm3NaFj?=zig&kV1H=;R98t_B9O07 zf@f%k4;m`)u_Ufm)bY+%C5i)Uo7-O%5j6T>mDd>~&3yK@38+H2d~90l&I#G_vT82Q zlwFrG{(($jM#0ZFx5tyhSc|3Um)xBnj}2h{tx2ot{PZelIWxg-cjz-`MZqq74aT~z z(aOt5h@S-IHZXo*xJKLUP*Y!x&*UUpmNAp3HD?278yYYtz(Li(Tf8#cT}K zYr39a9Jc*!PVRf`MrU+zRB>!zm0xpdGxt~?DQ`~cv)$*uy`w+Hw-6C3-BasEFCtOi zWrs%dg5bi5euq0SiEgmE^wlI6rOi>pDG4~}>nlIY=uxUDeutr@yxHC@gq>o7L^5-> zvOr{0=Gsx@`g7dFkqgqv*J@D(%4~&-Khg2%^|a-r!;C4BZaus8vE4Z!V9dXmafE$o zp_7QYpp^jx-zx^DFs+l1d#gvJ+kP`ke>UzT2wTiTtd`9Hrf|LW82_x~ajbuOqp{Lk z{hu@9%?y^B&yJjb$nqEdlIOd;jd;AZo6$s5Tk#dd_t)jaVU#~4tbYH@=HgASK;juH zdy$7{CuIIFy3R7Hsx9pIh!}thl7b@A4FVzp($ZbhT>=8qoeD~KOP92CNF&|SE!`pA z+-INrj&bjYdp~)`&@s;5Yp*ruGym~hPy5r72h(f==!?`zxx*<%7wUvCQFeUhhGHwd zU+HdI7QHND8p{qgBO?68mR0Pc4}#CK)+zV;*`q*f3$TosDFyJ$fvaWCZ$~p0Xmm_ON1hw(I)qMfFp6_7+2QTRWp7X?m}=Xi(eI@rJ)peZh`;awILr zab)29CZ1!#VCPGE9ND9+N1+3-sN z)@q2Ssqs7OX@aOMB@*FHDO^J4+Lcd?@ zZA7xspTYaZCxp)Ym*csuMqr0{tE{eQUHH+S%|SZimaH0nO!g`~Qf#ZXGGgRb-o%Mc z^67}hkCzz=KGKIplgW5V35;fOXP$@RY%k>EMC)*ms=y~6 z_+mi3eiJBs!N?KpOt;}jm|^t1cYMyc zff{MX)hR+jMj8Z!y;nQYsk`FV{xoEx7iP=iaviw&J7w{E_mwSXE%~q}|MBS-(>&1j zh-*zAPLW#1P{u4_?{~*F_tbQIEjvY~&o7FJ^1ROd_k87d|0v z`TXr3LeWyXmG?V;sRA;xB zAHjgw;b8p~3xu|5M<>DIeHihQ7(W+)9(W`%itm#&$ymw(&nT0QxGmVA$d=+G2*6+adgox%~^AxkxO^4robKk&svyc3uNksU1#~G+{ z)U$9$+oC6q*DplPF`j;>4=Q1M%;wzf`UFEe<-k-UPp3VXS5mJXWmajR(wDxmzy)a#j z-|Y2zH&{elJSgJ$4tW$)hUM_5j64k;);G&YmxIR`@HOAuY`sN-l#@qx4X+}^f=RVI z{T5TzWNjD@~C@4W&(n>cs|B5lB?U`EF z3L^NahB%_*HxmB9R5KV>on_N2>GOQx{!8PeBwbi5FWn9-2b~CB#d%*SZHt`v&#?A- zyC6=v$3c&=qpDSFm@7v#Y82PfGV9&p!HJhJ+kbUVg9I^$h2*50jM7fa`sz41fJo_a z9&|M-m5>#L1QcE~lF0oV)|88>W>{q@8STJebf#y;4lAhk=G5v}aWubAy!|GcaW@za zqA*};vc2bm(AhJ>R> z?h-f;RC{$>#x4|Q4^Tt|-LZ#^;pFxbydvL`C((?ze1i+ZeGYKWuCg ziT}@-uQa;&U7@?h zJCmHF8k*_l*1vv5ak=FkW?GKat4fQ5RxioP=?7xjx4b})p}nW|xi?BRiYNW)$qHtw z49wH@3CirR9p=8LD(K}39)@lRe)>7UVCb$!jIVj6xe>j;&=G(gILj5E?j@o+YgOH6 z##zS%5$Z1?3EsG?Ay%AgcgM677vvYL7&Sdu>$jw~O=L@ML4a66M#j(Y@k3C#JCDA} z_}xo^&vQAsuY91CwB>McA^m{;7LLzR~Y~G0+k=@Ou$~Z`-LFm zxL&~zF>V?4!CIx6oSG*=QHex6u!@^kRu->p5C*^HA+=y1Vb64F-GMEWSet#0o{Un_ z6jy?YY55|3E+DINXLcrTNKe{#W4W<|&y*>Tfz#k*Z>K3MNcn&@A7z>Mc-2>v}HYz zm}E#*T{l9KF$6!nFh`G$4BKs>>bA(I# z;w{N{e|ua4O_x_Goh)wbmy9sogVeZxbh*olP@9<6a!0iX-RU%QGjII+dLG>fx-d!h z>>{pI#q>03Ji9^12MEVqD_y{GJWpEU4&wYD>!x3Y=lsyK>o_WI&WI;y=BcsDHO$Hz zj74?9qog=xW(+Fz)Q#fS+w%=f#`z0kCt_A}#n~u-x*fN}lV# z>RZpwZe_94+>}p!cc)@@Qe5=oefV7{hm#vmg6i=bmRc5CPPeBmktEIDZYN%HW(*uJ zd@ZzzjpDyPU(i6UZw5yKNoCwV^#_3ro6m@S&Q+6%+W`V%+JSGYw8^EGp^ZVu%H{e= z5t)qr^x)55DlDA%FJBBlb|KCIJO%qXeZgKb=}G$|O+}{{D|1MQ{8?S6t?$S)O4HO? zM9$)s%An_(K~RX?9Icz`h?7zlvMd-Cn}sHLqD1fYW2?AF91Qn^6TS#HsCJ8|ej|BT zjEQ~Fe{1`TF$bz&;kJANT}$E15A83mtFJJUcW=HUp1~0l+}CZb3f-8`u<1EjiCrCE zY9dP-+ZZD*4rIw;H1ho%cl$BwWBL>A!t&f-Fd09`bs4CTRA14K?cd1DyVXmYi_p@; z-6#s2SHC9-LKb7>S>9l4UN@KaSDZ<$+5x*q-7?r&YO<`R{nW$W@gOmnxTR#qHVw`Hk|F{$$r|1c3jmY_7R$2Wp*ZmW#QtR;?l!R`oUK+M{@T^w>C<> z8g{QblCO=cPt!bwWS5p3Ig-TC*9}*7#a00z5Z=g{rYU`@qV$$!b7gefIIP= zmZ{Uk|I2Blqcln)rj!P|*6hHfWtydc{z+Tf-$lbsirIjvA`8~#ahy>tb-MEtn7>(S z+djd0*%;!j=T~DGQ7O%!sU#;{_56%)`GZJy zPPFR#7#vjCg`@t`A@=&)7#N?<*G&q1gbX`=tZOLfFYJHh=N@xbt4@KR*X`uw-^JM+ z$KIZ2RUIVw+C~Yw+oO0_Ail1aZ$>hEW1%$@3lDnVN*_Um%SvY)IW;yS-luQ8=D>$$ z?jdL~wnKX#ZR!g_+>_2Pg4js0OYCB1%p+#0V~)5tXrOPwVY)Zwz=Qg~JuU3%QA44< zqh|LEgw~5M+WfVpK+x%*uK1BG_s1b((f*-Bv&5%c5-ZZ;{8gTm+vO+dm;uCdadUp%= zT7Qq$zeJxWKDpga5eq&;gtb)a^|Q9!36B&Hn_>qI+FTZ8l!iMPeS8ZE$_^r$U+GH2 z`W$1$l%u2W1tkWPZHdHw!e8utEQa6S9sl?3!xfG^v?k`su*u?_Khh#%9uz;of!|ZQ zDuSGPnzY%`R$W6(u!kLvG9Iz289DkC{qVZa=_*AK-j4uf{6yB@&d^VQdm5fvhnAfM z!_~|os~R2M4^3GX2_GOU&Fs?t6B3!O(WgIirYK!!To1P1nha9Zo))o+Cp|U46-Nl8 zM!fSY+&jrEuMJtYH({5<(^5gqxFB--jlF^4M0o7El*#5FQ0H3yW`kc1Yt9$9VU0TFEd_B#*PUT74IzwAgxp;B})&8 z+4)CH>h1<3o((PzxtoSOA}vst>`CiB?V+i7*R_-e=g-)v+tO-t;gJ~*-3 zI2Is88J_OUKSO_emrvN~@<*d8Toe|Lur3S$a?oE&>c(FWOf_V%anjLRE45#8N=){}Rt z9LXe?TOStk+Jn5_pna4euM`R8=lVINUbsHOW1!sO=$?@q%ArhA zC8lopu^{WyEyy&KEl#ZH?Y|rBDzbT0;6!l3BGaFqS6xzI%tRPz8k&O?3E3pOM$=rT z0_jDzptF;{2C(Yk$YQL#t2s^N7Sq4s>RX-4A=X8nMU*TYMWF=l+XH=Weej4{GE-x0 z`(j=lohpJ0X5Lkn%Aa$$Myv4MqfWEZlZ)RFW8pYkB8THmk2xFr%=M6rbi@zI-xJdW zmR!36ALcK7GEl>*t(S%$5kJH3`Q3u8>Y`LC98>MZp+G33Yr8$jQ4+&+qTLsoDENCW zdF<*tc$4vD=ALVqn))At%kSqfZAdi5SlenyGqb+bH(xD(Wo6mC#+}Y_y7odTM$u4z zEXXO^c3ZPIzKOYszP>D$A}0D9AvYN}+4=kR?pRL!ve8es-yALB2s%7kwvRP3@gFr* zLwH+n^SNy;4q%>A@i6C3@w*?Lf=FZYC3kJ8Gjt{hVA^iDC_lNqRH6)bcMf z7%7FYG`IHPGOZ*gw;y5;`AG%e(Mjp&b2mN4eq{7Wb@awwW#>#8A#bTz-NYQ#8`uX- zaKsxhHdOU2|Lulo4cu0|#`rx?SJ&W3Dz8Yx$$%fO4#?Zvc@Hy!C5W6qZa2Y4`cPlU z5kV-ma3MT*d*5N-tD`{m091}1F5Zv^%i7M3Ez|j~A8P4OZi`fBV8-`S-O4>q+tN zYX2>*OD?9>!Bq&B(d`eyzb`lANDx69-EA^%E!`XdmJ-6qhlkO`(5?_98(1<2GX-L7 zky8P=2FEqT?$C*SPwDCJExb~jC>)j-30+oCzE`8 zIN1XJ9EcC;n_)=vatFa&hVY+!n(*JSu04P}swfrG9ih93w2ia*rqBlsYUpIFLTQJ7 zx9aT}Q@5B1)vbX%c_vye#Xcn>EDo~LfAa<=J+bfGp2W|t91ab=(wLC#IR|+Cghs|! zhVDn`1UzPtO6KQFfl1Hmv67#I;2#t*9CU+4K9X9>5 zKR~6Svc*EdQi%K5y(EVAkrLXkP7c!2kK+@DZTGf~8OoE&S1omaS<&x zn;7s-D6&}i)fKZ{S7BV!XeCFMx7q~JhgFSO*ynPi|+W#sb(^<`B-(_>oM7ctyc;ni^~tel4Ty0 zX=wcD{*Uo0!p?rJdo4<(x8>BF?>xUxb*6iKNrjRq@ptXPfh@Wyv=U;6^d7+))e|u- z+eRxPqq>vp1qELEISl}_774=OVkz?yjT-@msUCwAc(>< zrkm=78=at8p+4}VL}?>1YDRV5blx8xPFns}2+?f^%peS(4kOI$3|j}$4r9Nq3XKZ>}ckiv=7n{DgF>Vg&d$r{_}?fb!~ zSuoU>%?&4kIsU2CR=>a9WqjBiJJ=|gqc*n(26ZHufSN`7zwHvb#TXxnFL4Vy3twIh z&OyJyt|K9))cjG3kQ*PiD4`eN{SLQ@(c^;*=D#=1F0WpA8;$e@UyY zv9h8{uP=Y?p^8~a*MNlSy~BiXcS$7?LUNE1sKyWvj48Tuam zRmn<+WMVOe|0A?&?=$n2MZNiEMBYE9v;p(k)1EGAx`1KQv>G0aM7Qs%cAPJVj0++{ zSRpaBGI2)EBK!x%kk2SJpc)lBdVsRDKIof5#FJy1NB-~W%^M;E1Q}OykPa99h|i8Y zD#@w){?tzDf2S{x_?hWzzDfFb#i2rdkb{#rroSU_t9g=jBe`}hB!S8D&j%$k-`(fZ zit;$%?tQZA5Lzkw9Kw382A5Yb2GfrH4F5s?=w%{c zeSQvq?#E+2i)~xC6OJHo9a}4v6jZjG*Ti?~4OX-npV|BMjzSn>(s6mt))Lanz3wsB zARO((my5G=#-rK5kvx(*D_#!?EaWEi(Fm)=KlT{*RtvoU6wWNiS;uGA&;2gbL2G*x z%Q;|f!;VO9LTwOMOLm#w%xVg%{?7u8-G{0QIX)?8;*vi+s+g1;0xs4gktLn&H_Y6hCyHcIWk!XvIb%{>r@ zKH7l1my1gepvi{_rm3e}Fjwr1yJCAHffUsYx#;3oWlP=X+AC8|tOMSjqRKWIZeT<%RnNjr!Hx`&qFF_ciVV(Gd^v@&TYP0e3F}UP;32 za{LjGUgbq}9K1*b2pPrzP6M3Yb3hdWUq?t!Z+_}^=19;%$mPydehL2+m4^h|=5=*0 zJDIiq>n_wB%3=woeFx@|T2iX3$IprT8n_~PuE&4Vo`>U|{ z)BS_1WNbX*yNwWSj-B{u0s;%A+cO+!7n#MWxOL_UyIu=b9JLC9`KU5YIAqq9? z@mU{t>f<0Uk8k?xImKm*O}YnxniHNmw~O)l1LG6-j(#U$QsOTufCnlC01^OdM5?Wq ztDKK$fnuWv*e4_aoyP)#Bc9!(^fVzelfrIecpl!UK!C;%Fb{GH3crT*^n-p>#-c0k z4C+$$rEDfC>7LjcgU_Q;`FKul_y&F>pTsnpW?bw8>+q3qLaZWGJ>CX7c6^&5`~7hc zcbm4PtVMn!CSO~}9NK-XM^#2v!>~r{S$xpaS&i<{hI@!(a+jLB;!tPzbDiyZ9=1ot zO+?ekJ$!K&IO2lbNNiy0J8UK?WgPRMd;Q$KqX_YpdUS!_k^#sH#UHY_05S}0-!@7r`IbMM^le(GItmgYe zZC5;T%qKJVjRu06aZJ5RT^njdSp`b-lCaQ672V zAVZMtIaYsvesgQwWr@|Q!?-hlnEiAIi^^{t|NbftFvi$oMhq6_{UBcqp4OL5vcdz+ z^j);KMG^wy$WVN{_m^vK7tNLf3rH#2sr_BSbZ33a*htI}0Px)=^p!85AFv0q0J^8W z;gn(QjD|BW4$=Pfv*QtEZNJGEo`9so21qmTyw=Bxh=YUUG1~?PWWRr(t=$7^3Q$ct ze@X*^>A}M}2K7(UPE(J5?X(G0aK}pV4Y%_h)1Bf)J7v8IC4Rkg`AD6K+JCC5vm=>= zk-~TPkw-f*{tX{r$`>nCck?qkx4h%tqj0L-uH=}TB?z{Pt48aI9+CL`x$Ec654g+p z^#{-=Ca5!h1*x9Lg!o+`y`a52#YORg+6nSNs>WB_3m~+NWE11(tzNoO_WPuqo;ogB zn|CUw%BH+G6S%|u_U$KI+a+K*r40c4yBFT&K)|f`PK$jtQPk|KUCCy1#aG_aqtW*W z{lr|c^THsh6Jvj}Eph5&yHL==D+`u=#?~h$X7{dW}UMA1AtBAp)wQsoaXS^6l zTC6g?C_3`#V!O4M{_p*Zr?tdDP5_z@j6C2lotJ4ah?9n?tQ!{`x@9~I!(w3&?UUup%Xa&fL}HO#-b#= zT!H@oLx54VwXBk))Q8_UaDv^}@Vfhnl9^(3?$t@_TZL(A#`z4|a?jLU7PO{#^bqZ# zANiOQrt(Do{N{EkwQ`5lP3zWB>8;oW_B(Dq?j)5z9A!gIxc4tK!2Mi0 zY#b`nnv4H6?~qej%Ts!F-6}B0rrj4qi;~IaV|dhK@Gg~mHB5$t=ULQ?PX|t~9{=kc zk9{KhUtI1kB}F6c4RQq9?Ks&dg$KK$z!(JLJ`k7yx-F-(8YKFy@l4qmS|%FLti$5_ z*h=Y>Y0m`PR^k@Y5<@%Gk6}^y-wuP=Md)k#iXR~fKnz;1qrdoKo8UXlVC&)ADMH1% z{reT96{}xgs?{5%xocB*ls&)WRJc0WZ&JS{p{G?Y5W+s$S^HMo(e=%7!#IduD8UbZ z_jWxTxQg=YZf+(_k?g7sOd<)azm)ct)vaq_6;$J6y9ajXK<}@oNZnU4#_Bw* z2Z7~r`2*SpSU!Teo)Pbnkhg!1r&)~BF}h0t=i}0ThaD-4Er}A9k5e{Ocj^uisr!}R z_utBH1KsVz*w6xoHgV2JZB-o47smYpaM}LNtD^IzOb`<%*~RJkLhmNDY2;OBxJPlsfkw^jD-{!n0k8;Z>zm!Jj9QC*Ax-)bG&TP2*@z6ALexD6eZyK zSt)2-Mz8$emWV`ZMdq9T`6z{M^_LRd#hdQV3QyLq=`RQR@&=M@qJo7rS^9V7==l{TEkht@`r+rbojugT=auNXn+X*p}@!;t9l$IG?(4oJED~aB4ShI zC{B=cQBn|dGdgGAqb^&$Y&#H5?3!^+@}PT-bJuC-$yGgBOeX}}O_@YW z3@O-<#q|VTem~C%ODJ|hPq-^MEk5|K`3;s?mb?HHp_60DZuepzuX!I2*MOK70`^*1rFlu~Es6A+|sY%)uGN2FT;;k5xk-?6_@qxfIUsCM!SbIU%~N-ra@w@jP!b8kv;{X%(KKo)ea}lyqerwRbffaHLLpC|q`)$I zLwmm>O{<_xXX)+@>AZx}FnoF+3Ld@P&zr#dP@Xmdu^i$=igrI}(L?}7qi?EnF1@OT zw?~IwbdsGbs5BX4CIfkPgwoX>&#l>i(tSq!LCcE25bsbbfr8V{0w2XI%thGx`pikT z(X3^{aYJg!ZaN`MO}0Pqzu*TU;*d_t{$7OpTy?k_!9}7<; z%J2n=#j-|Tgsp8B1u4%=Ft-rCz*B7F@qelnNAGQEF25DlzC#P^r}(wAoz{}| z2+@7tIxyxmPAw?U$AdXi??5DBU8~rIr&2!chum<>+(EqeeJ@67k_(~4=|CCieL}hk z*g@mujIj z$~SDuygGdI=3=QPQE2`u5f8eva2UXR$b;g^ZuQIlA^!N)TAiVRb#pOEb>E{$1yNMM%onh8v^Tv zC>QtlB0_mND~b%7$=_U4oV>|N)`(8$J1~0QaD2wgRR8pM=r$)&>EBD_wymdv@JPax zV$4%1oAyIKl)wr7c9dGmd_Gy6@KQ$nwY1yJVPcW`AC$VM1VKVCwA;W3L}u5X8U7F` zP-yxk{jV80RZS{pzFenP1bG8$$xRWP$#PiV_xD{Tk+B6g5LW;dqqWb4i-W*cUZSyt zxgr&krHF$kI0pKL22txrv`Z{W!rYl-6AdY+DcSPTdcK8^Zv_vyVOCary z`~YPxM(-Fc6E(Gsp#`E{20cc(H)!De!cLI!L*Y-<2r#$IR~i0W#3S;>5&pFO%v>ut zC}mwSf5aP6z+jEmhJ6rnp-`E$&d({`WUMTAlt;rROHQh#9cN55lI z*dqbQ$Z2;wbqReOOsr7G4H{giWFc4rrJu;O2>PLnui@yXzJ=EpO#YBHSlA3&&EN&lhH;Ks*DIB!-nI=BM68-S&s|B8`}6o1riHiFTddJ$ROH%yWeGNgQaTuP2povQ zZH0exm6de`ay0i*`2VUNmfEhAeJvt3QkjLng|BJQ;rRSOqq|6$F+u^_E8E@W*@7HF z6CWr4nOr*Vx8Jmf@;k&h=bN0-wK=!_Kw;}0W22&F1`W|mT=sGLfbrP3yvRz1BD-1m zya>34PZFz4Kh)U=X!XtX=uDk1r!S#$UObM@ZK)7BI|pK|Q}gN7;u$1=5CtR;m+J)c zGsUkPUOcx|2Tg>MDum7nqp4{PaKq^Z)!tRT930U&6Zd%i&zY)(A;#aUnNNb6h4tkS zR{U>s)yPiKah4JG-r@-=@ChONH5WT1aJ%Z?{$0PWz;bP0G{JDi$uK!!KEO|gNIJXo z9I@j04NkW{Sd_#Mx)mir+-j^W`l@vCvh+ajaCE}hcqnlSQLJ%4mdozDf9zLDUU0!{C^=-h@buUP?cWiqeK+q#-T!dRiuYu@>3>P>53_ zliha0y!M=$udIIVoT&V-sD!)0Yua`Hy{Yio?UXNQmA%C?Yqlr zNG79I2RbKF{8&}>p6Tx@IT}^Et~$L35C@vAEVrK-jNV+AH!EG0j|bfNW#S}#Q--omK87P%R z+t_-ukR*Ea{n|_1bx=HB7gS9s2_I1S4NK+QGz80JhCLdfB8b8q>=djFbikO|l8v+J z@3Ue%G)=nCzuS$rj8zjBx6VpV8}@iJV8=T(-84vVv!EdVS4D7g!VNv;&j`mGAS010 z$=81ffKMP4Bqx`WpsXA^>PwF&3TOyGT(-4G@fhXY$VXo=^~>K!4iejfAyVUEwKz~U z;M(jC!T&{7;k#5aL}3)m@;Z8z*;OGvUu@ToXCJ{MD&H<^)Zr<{RjBZXC;Xk^B^Nqv z&eX7X&0j{AuZW)uxCO9++Gp91CyYZn_FHK+DvhloHD&$CAf_2d4X_nBIG81GJ!*`lcaJ;)Alxr@%Rq=FNM26|l^v|XNPy4YqJ=Dkt8wJ&{N z+-wnFmTa*%fI=y7Xrzrvu8d|Ut6wJ1y$iw-2x^jG$fLnOrG~of>z@V3igi_vGB)p~PdDSl{_?^H?p9g$s}0Sk-S@VOlB~WX8k1$&fqv zczaNqCMWrUIbiqkZuT|jZbqekmZV>k{C$q+vn79wD-$78dDgl zmkWE45belb(%nX%B3$@wC3!FkKse=%Q`zVa%{zaOzEUzzw=iQ^Ra!G`QM$>J(~T&e z>N0Ie8hhNj#n#kTCrV;0r*IeT^PxbXU&R@XU2=h+c~ZuG8rkcHKh9aPkveDTR}bdc z-nLwdQ3QS@SU%w5IS%?%_VVoSiZP9h>|?T`D>}fToOWE0z1Em(gm{%I8b1Kp_M!1s z=&R9-O+pQON;ebZXUSeq&WAK6XFKQ$;yB#$Qpu1(AR}{oZ4~-A_w+MoHxo0YO6&7) z48zn7ioMP6#K&0lrHXu2u{J^FWxwIL_)NYZ*v(&5is{Lho-X%7IqFuc9sNUwA#~;} zld@MP$Er`%YUgz4-&3%8sJ^T^*NJy}m5vb7+V9?u|DhvjNEE1rVc082H~Q(}fUAK_ z*sCL-wtKr_vBcN7pYt&8>OlYPH)Xq#8e>snx(qjmkGL#CCs}d$p-}27tM3|x|>zAi;vV}z>Y_K+UU05 z90e8!bNH|HU2E$`v5MpIt~C3A*l9-=GSi@x1P6A)Xj9Q@tmU7tN?aT6q&)kpyWLdU zpFCJDpp5h&%I>GcHQt@cLJSf))CbzT{j-}*K7&0NNf=u9ot1CU{`S zJ*%U&4e-vAilgba++eexVgz?T*nXVsz?5a(*iHZb;H}bL&}HM}`G*IrJ`p^{}{vTK+SH z+h2v{n(3*2I=|n9&YuIHv1XnoMVL>=w)9YJRi3PC_LxdMh}wpA>zhCp0!%UO>crY& z^Gm&2AHZ}lWpn8|%&v0+b7T)=G@~)*6+c#vql(L?vN<^;wqz*Fc*1c--pR@k$Zp!Y z><z!sGZhe#XXB@7Wh?^Wt*TX=9@c>?L zCls^lywRt=8)QOX>eN5@=SK(QFL{l@k;@Op*KLPY&;qEvfj205T!GQolN~K4Dll-< z+0mdkw^}~PUfl^9c1Uxjsk|Ti#==V#B=!+lQ{;x>%A_M4=W1)^8s%Ig4!Yab>Q8cM z7gtB$C?AQ|-T+Xtxs?PTP@u>x2GHS@ifUDQ^W3pkc8aYgnlfiioBf)Uo+p1`GAu%L z@WiL*vWxr{wPk1DC3T9h46iS?pfU>#_^?9UG-&ETvnDc8I~t;l*v}5!Kad7sg=0qg zR$kF{O+_0@t+FBYaI?n%8}Ig7;iPTl4{vC~%%jeKZ1~09!m_*YEOFFfzPZ5v4Q2n5 z0N>XWVMC^{lP4PlEP1W;!6&@IP(|UFa$^Bm zqk43?fBPq04*aAZfD~Jv+%p3<%Kckj+I`mo1%~C;Zyz0a41SF8092M5eWg3tD%4}aoB#xfftg>wR9?$Pb!@Sg{)=600@Dp` z=KB@TUXyX)s1M8;Qe&@2z7TRL&JTOCmVI|&oN5)9ahm~#wO3@4Hle48{_}a=?Np`L zj2w>+;#Th8|Kj@C`*WON#dhZ={TLSUYp$IgoxR{DNFw{xYc$AW(NkuS|2DFKf&QPn7W=UE!v)Uh&b&3erTSa-{Uv_XF4(H@ zA^8LTFd(To85-8q0FV&W;JX7ev(EQJ10ihw2(d)f|mafh7LV7 zzh>*u_Z^0ZCv1Xz2hXyF{A0sA=vY{J;|XGmvknN~JE$SpR`-aBey_?9LpMj@D*T88 z;&2{z7ZPTEae$J6J{*N1UZgGvkT4^lujl$Rg=1!rK^FaTWSa@OiEOCLiM(%zx|IG#*YEsz8NVvY@sCWwjX@4@x>|P@@827JSEm?uV0YrqR@h!&o zdecZoy|#2HP-IN4cL5M!j2S#+CXpuXUWC21!NeiUmaq- z7k(iOup`ZRJrV}hq3YM97qVwt z?;ppw;*-zfg2HRL>c04kYz`1)2wqv{cFdpFJc;@whq=#g5RZCx zsD8DC1p^2`by}( z5kwdbV7L7&Z+{PPxl4ytUVstiRmp(W4ge`6L>CGmIkyOpjNmDgL#0L31(md6fKee( z1zbiok-d8MYpC}9-g>?)o0`ZZu&)`~Apv>QmCL^e0PfpF7W+vJrjn`+d5Tpi<9(r{ z5Gwa2(={cyU3KK9gw*mos#@g*eIRJXe02b9^U@SKlx{TgHw~2zDLQhB3j8vu|^d%)$H@1voN#-mOd+t^oAd zP29Zz6b6u95D483vFpOzZQ`wdK;5C}$o&#pmsb=Gi^USUgNTniONn6olEl};^;~nj zv&r>cUv1F@sy%us$9>1K7)}o)1O~WXLXRIo7pLVH>M!6HT9u2FYy;O_$Tu)(jNN+v z><&_m@>Vc}-7&OzmmEWnV{9!(F)uFK=3Xf1!=bg_t}gRq5!RV_i~PfC&dc1j{4<~y z=YRnMeu9(pb2EK2Aa(-OCE%>G#udZ@_nRZY(jfrB8ZGn;^5j|XA(HkBS(Q!i&i(tdV|%#ZmJN}~=G zK`qNu1Q|AjBzHf7pM_+~IpVr%78W{i2M`p|b{cKLT3kQb%MqaAVXgNGaHp@Bs92cZ zU561M!g7;BikCSNSaUkYdhNvKtbJ1CLVDm?S#v&5>`6Q={AcW>c5(qWY#kXQkFs5l z3*{e>$qoMuiY?R=CtQDnRyjl$vBrob>_TVZj9-MU6<|2Dg7&8sgA`Co18;&>a`Iv< z!t1}h(;7^5y=M_v#UF#FDJqw}w;g6_QdaXA>KH3xS4u>Ae^Lx?gNFmf&E5#kA%yCQ zP~VUOrWo4#h8bI|ty@Iy?|-wsbw8(L;NAG}@z2hK*LVb^$;|Ng}xZ+$BMG@o~_eQWP1wMY!=n2?@= z$2vSiT<@y?*B4B4@Lmf4o4MX!>RMXCU%p6>$4wRk#TBvB!HogN zX6nYxIM?Q0R^RJKb7C6|c6ZQxkXvcson4$yK0c^mzN`OHusyIz=O^>{*I&ORtg;=w zWQn4`(62^+BdM#%kqitu5 zOS2#88WJO{XG*I7D2Si2gW$c3O7vKNShmR8&uStPPCAy}Y--%7*s$w8OF@;H*P9+U zuW=rx3XuL1&R0zgnb?jPoqsW6aPPU7gXdvTHPvoy`yShvN%>z5zk(OoK`$OM=O4eM zeEoj5OoZr(k9Gzz(p=@`a~EuvTC&=+x!xO+Fj2+X6gG!BZu$py53P!=Zw*TX&z^mv zLRvXr87G`Fb><)?HHClmWScYoo;FX4d20ngdYP}+9M8A51a&^@)VDpC)km^#vq$-T z_tW1_ukQ}B5y?!KJ?Wt$;{;RxEKhoDg0CG8JPxNuLZI;DfC5?Zt-ogeR2zT`-rw>!rL!h=RVo< zOm|)eAH>a?I#;yQ{;HzCRea0#(?;XOpfS3>6DjFL8Ya%=_BA_ee=oUeQeadnZk|g~ zpK{f4_5ts|%}i|*%~ZA+p6bY5j#)>y&v={aDVR9Vo;iosk6dKAXp>N%UJsvK+Fdd6 zsSZ}xu3Fm~)~LR&rys1X%RW3_`h6N8J6fJ%Ot$~riG!GRYE>$bx3sTUZ}Vz9QbObF zgH3wwFP|lS;c066?d4H(6|qwnT7}8^ai_7q{bC?uz1Y0*wNY78 znDiUDcNygRsmgK%+u~}74~2^~lWVJQpD=+G$jkY>NQa4&%OT4pYA1tQKGxod(44L! z)87ymH1~<^@~4iU9QKyvn?8O_BYtS$+_U*6L_(iYZX%7P zC`}7d_Q*>59&hH=TBh-f0iy!k)VS<3je~|Pd3)^{7q)14ai4CI4|n=Rjgf|j8xi_# zbmhb@SkM195#NXcNx||2%Df=d>3c-WSNMU7B zLG~{$EMO{G{%nMXb6mM}_U>A-VWetA=L;hxOK>Bj?VDZQc0Dfl&>%BNbRKlo8=ax( zHL)t@hHmOVp#_$yOeg2uikQV5$MoR5Sq~nxr57VIs+fz#tQ{HJcDr=|-+3^`MoPKz z#JwprB9#j*14TC0UZ&}J&Z$IGZDeYen3yb}Ep8c->ZSK_`r>&6rC)QD55P()Wqv@VM7k`Q2613KIN-pd z48br-PZdc;w01>(ChqeRo5BqM(}_oZXV~@bgw6N0J)Sd3RnWiDvp%T@Ne950f>1%D zH`}34IvBgB)=sb^mWh>5&eYxi&hfH#MN~|;IbFP(f`03!2ftdl1Lbz%$+m;%inc{j zo6g5R*`Z@6$<2m5q9B51ui?k{R#*dLvz}Djm8y$1S+Eg>7DB9>8MXxjs{>E)hh;0% zllD?kIe2PDXNZYobU|A5pg*mr7Z?B=o5MKGVq%xr6K2cKyCA$NK|x-9xXpCmbh$QK zCB*TG;y-h64%YD3h6*b(Ybs7S!Bdy!=8aZyQGIhNGhzF6(ioMgSlaM_+D`c1v=Yk5 z2xdDXfQ=v;vXF3#us30n?D*~FKQBlLeO>x__+{b;p{^lrc9yJlI538>uYbHWx z?ixOI)D;p!EE8WPINGEytd{vS;q&?lz_&D7mcqQ}pWfBw) zhj1Qx)X`5Im1?RLDs9PrhK8ZGt^DVF80w9s?(BdAad2No0%nA=;x2q!?}2~s^nQ-d zkuNqycKkL4#9oJB<)A8ygDSMfrC$g9PdksbK-)a}@Bvo9ECqJW@{@|QZ#V>kZKCow znP3|x{fr}5@*Td4t#WpyfUxj{IGJL>m(1VkXD;9BUC6-074Ud_cJ@7z8S|^ORFsZ~ zi*-W&H8@K>?RU{3dfBie{ez(ZV6mmM%3~G&x^N($N^YpDSU_?;1_9V0D8-g)iI_ZU z5ChL5Bo@^5;?C|zdFpp25M?)CDr17Yh$0z-kuN<{<5Oj^r;?sMYJRr*NVrpcIVH+((%g7Ovs$Nr}{kTo%pyCmd*= zbKbMisnTf?c%+kWrC{{NgdpY@8#V>?|HKGFz1$wc1tQPj_;}2~z`)lO<%LGu(q$mk z0-3L?tE;}**+l7_PU}Ef3&V(6Zdi8!G7w&HAR#X*{^h1RuwnQKl0`JFEx+BLoqofV z@K@K(2?j!qYeq1=Hb`7Qi(+EqCZf~fE_RSzlYN8WNUm=PKY5*1#K{Ys4!1R9i4cz- z%!U^ewY;Y4-X0tf{uW3EqZtB!Nc%<`3^Xgk+eOJjB?B6>4EW6tu<3};i9WLV5fc-e z&DD^#w6uWGWIqraUF~{i01`cw7ihGaqCjY2js2FS&0^E53q!lrnT)a8=&zk=&-k&F z9e90Tc;i-^^c+b!7ZF;1CU@Z28Z1YVsySPGufQq7y;F&hCrIQKVX{Sy{+$(Ih;Zy> z7de9Kjnox`D`i$!fa(Hu40)>VKLYMKyMrTIn~vtf>+ zCY8Vd+!VmuA_dYD=i1zuZC5(BR)6`YWJIVM6j}B!|MFm*VB4@+)!v__kG|uh) zBC@-qKN2hz0kv9oqOQU_YBn?WF;mIhAvm$%>O)_B%5HL1&5UG3ID24wFi)i5r!hxs zCGXBlt`C3h9_5RvuV5&}=$|VN9iOj1Ng+q{FpU#n;Ts-9FTT-pKA5vQ>co6XtFw_r zwGZf;+R2t)*^w|Y6`Z&1#B)=o8OB77e$28<&jPlP@p?-&olfteo=_}GwF*3Ra%sIq z_I$;f$Vg-$XLbdlnfv=C^Oe>M4Io1Me1z}C2%DLbGB_`fbm|49`Pw-;PJT@P-e$l1 zm+1azAJ(_Jg3*pr(jQbs`XJoV%=7b1pH89qT|pQJd!Wn>n|_I{Xo9Jtdfrhq_L`z!o zATz`bqy3X?!IzwlJXdX~#hk(wDi}nZlKbZX`tJ6&%An_6iE8-(2tmF(AEZzIVvd%| zO6l{yU%7cK(=h^e$zkkXvc=%F*bRsMJUUwZmHxMP)Z@}HM>4yiV z1gvU{AC7||DUF4ZaL=k^E<~$s$w`V+)n#{dCXmc^d_CxS8A?mw&T^SkTo4+fJ1yz9DpF zw4@okPcyo@uf@vl-%IfX3MdpbEXdE)e}Je&Ws({~B^6PIPz~<&i6zk4!AmB(?xb9k z3DT5)DOXFcfA*XW{h%^{ky?*b#OSNqVyx#fd=tI>qM{k{`R}o3e?-hQqn7Zd&=(tM z4t93=T9YBi%Bdm+f3Jr)NVDtfYY1o(YhDo6ynB%NFR3F!`KPwO zvx1L`m*2Xda-|p zONY3B)R0m=LbB&1;1%WDt%kq5%8ZX zqH;hO&StZ?I!NC+dFdDegJg_1%lHj8y}@x{l;}ZV6pD3aNHXmHQqrJ6G zTe~V2midP}lS0SIDo`+lNrl^(&DMpKeN3|d%l1Ir4-gKZ} zlD=^VbNo%cMj(qW{q6k;;ci9m?SGv>V(IE^`mMmIn91nszfq9qSnA%lE$&Tm}^|Yzvo8I z+>5`WLmh}%D~bwpo$|IGJh6`@2Vd?Bl%_w8BHJ-A=cP<|vGO_W9H1X#?|nQof0AS2 z(nm$571$7!-{=kJ__hl1x{_yfeexCaC13NFBYE$|>xYo}9{IJj@HYA)DVUgIRLeEi zwzmVn3!M4fZvHecFR(khVmapH31m4r|B^RmTaA_%R&Sd}13O$`SxX4#D(3pS!mxC7 zR&!Q*-t+W3=5cqqAcGsH zfA4E%N4Ja50`@|l$H-zAUNNcHa;Fy2sKqZ1$Xv9Gy5)7@SjhzTB%IBrX;zg%a}im2 zRsA&IB#4CNuLGTp&tw2yzW2lU^X)6=8O5r#=dBiHmbnARv_;#vpf{_0S70cQ;?O71T@#JbpKn!)Mh!SB!i z=!sC*u)sQ9>aXK7xCo;_>-^|k1@AL{EOy$61yQ@0E_{%sK)c7e&cQ;=p>I2Bmy&?g zypwQENJ#vyGvdmNkJGR-Tfc8PjHEmT6;Ie>XG3qsOa&Lr_?)AhpoYOI-Cp zrq!t&doF7>E@DU6PTkT(A5Y2<{zHRlGfEw4Iz?4|1!ZE)6t?4|i1E)0Mc-Bz?Cu$@ z5xZ8(^pcv*FvaATZcA+l!OLxhW%9Tsf0qr5lMq5UX?E7{@h+;wvHi2muEYfWyWZ-zsO+iwmQr%paNaO&JP{!A7d)6RL?T#={O1cQ3mff8s!YIH z@Y8%k+oCrr77hu{fCpEIA_nCj(w@hg1v)G^#rFa8NqeeYlk#2D#BXs8OYz!Sj4uZW zqcQlfzM0z_TOMdk{Ek&up@sj<|M737f3|VY_N)DQW~|ZO>Mj2QCh*6mBOjh`+#eb5??B+=KNG5u7D1G$?{`*++N#X~S4yJOU zj-A5rnKJTG0H5?a_zBySFX-;LiHj+~y#wtMbDK?pZ33e%IRd?m#;0&;s=<-*5JaZp zyxGKGrJ<}9Dk#v?I((T&LgIcH7ztnZ*(Z#puyn*aMaiSrBGXW53l(RaFd$fm(@#(5 zBh<_Il%yo!4!!ILULfBDkftS87v8QX;qqzU2LF|zxG>(JSIH@Z02B+}C+DQj%9o)! z=84%0Gh`RY<0{Khx(1|KNkI!p@OATNu65ErIi+kz3?UeM!K@AaD>s5@i;eF$PkkJ) zGHbnQ$Rh%cSaO+Gl{xD(>CA()TMc2Kor#*cOqo+W4dO>?A?on0v7jKc5YX^9c-WZE z4H>t&8b-)S4#&W>Bxt%tSD~Y8qZ=q06q_r>a&4UGW##@$YsGSnyf58IVarY+-Qqc#iENbeLZw8V|n`G9*sxk@)ErfRfe2hWMz#s1Qlx zD4{=e?HAePZQqiU+rmr134zzbJDm<-z0zg51PVi@kslZ$?|5T9i;NVCyQZ^;iZ%qq zqYGc#>JK`a{oQ)`IzKX`BNd#)&b&fT?5dp=jzEsqufm^vTdT4D5SOLPk;Y32jGiyw zD%x870P2F(rgU7-0cpY2i*x+)UnzbOrvN=^dIU=j+^a zzIgS`jvzppQYEVyDC~&1`nbGx)Zq;$STKka_yGqThp!L{cToUJw~us_*xu$UNQ3x^~n>? zvIP#swz>q7{K()lV#^!)_ReT%$+Nvk5l4^KYRI{(9{go_v3x}Yy5*1^R{y?1;^yGz zDs+~%xPEx_i5D5L5$AJ9-hL1BD_Lm z>A`s38N4~RRXUGPNBSqZ?clyQZH`P9z#+YVAl!F=#u#|4eL+EaX0~5W<}`nKY44=w zFW9k~pXR%&NG>h}!E2vZ;B-Anyv~A8e^LAvyK1!kK`$uSt(a?8DHF6-B`BOu6;boU zzGv4XFQg3p6b<{s^7$>(guAyY;WG-@d@~{fF zlwcWh#ibVa1Vb+~>3lT7m@(CkgVE$Y(?XKi{-(1z#E%KqNqg8Y%a4hba-K3HB|IFQ z>qVl|U*}yh&VvHfuxf@JQujL)M=Cx|Xvi9VEB^(eh8d6h*{`|hq4*0W(_L|{Vs_R> zimeoqUy;z^FE?%s>UQVR$eFg@X&cUbH*7n0m-^0p^WnOAx(N%(0I~uRPqI~0^2>M! zll0M4%WgI_VUDQ%sj{PL_($LB5T#64^Pcdrag&ZX-)}lqDUk>#Cd#L>W?PTgj=@n0 zPpZ&#oQtT$7%Y#vds#w50|YfZKKq<_X{$c;q>`>nHwRBZEXN_CI(5Gcbwje7HF@Jy*bgl zkNuq9=xhGPWSbCwl<29X?R#;i!1_FK0l~lqF7U&3<+BOSvXW=B770_$TUgl%298Ds zc>@j?#EU<B)!}0d>v3-&PeY4ZiK2z(^q18>LsV*`+8l(XfTnHkV4o|0MiRSh*u@h;A$KBw= zio%tKq#oP~f%eb{mXC>ItOUR>V(i3v&$u5s6!QSyc}98(uifCdwz%u?_2ahA0mx*# z=A9qBtepUR2blD?G0unxjGJ^z{(Ny#HL`$s^I6^(;+p)LDz^}DQp$}L8NW0$w$&vP zC^m5So`(I=*Fr}e2t0?WUSy^AN8W*g6?2H13K8#OK)FWT_V6pVN#;fI^hGu{F8_QG z;0~CUEV!x+jQrmR20y_D28;PJ{i^K{dU|j8N(D4l+p17i0L+-KvqgGmAf3`yBLkoW z)u8j2b%QZXzJ&6O>P?(ht|pDs48h=S9-8Wh56D`b5X!9C8T(`mc|7V5-3wC#ejGFi zR{M?cJjpr@hDp20@>3;L0CQeL-BmD94o65W`<=%5)i9Mib~VZEUo!)&p|)XfQ$%)w zj0_SFk1!As&!%l618H${czx#L^L zf?QhEyAwfv``mZWAs;u6zYU zh2Vkh_?0JXg=Bln6kX#u(Y{LYtpYfA^KKa2@lx&z%mg_IF7Rw$0@btAZQ9ArGs5(C65(6qH3v-F^s^>luQj%2Q_rh>n9F+3a5@);A7U-L?ztyPu3`9C{u=jUOv8go*`c9Bp&ql(1 z#AB#0%&3x72mwNQbu(?s-6Sj!^ABDABah6$RnOcw4mA|@Yk)-fxp8+p;-l-c7(h~L zvmb4`*3zLW=NJJMF{rJa(@H1aO$MknKYM)ti2iY>} z@?>?n&>WL-GnQlIiQI5cOfknNDVj!%zqA%R4O^#!PQ!N`k6ur<5YyM{gQuL`bJu#f zKQlfFs+9~Dc&FOuyJuYc3w-fA4{W*d8+#xh8&%H&K=6I@|2MQORWZR-GC7wS}LA+yL* zjZMu#^5NGh@gocvOxHXhfvWJLb4qnhG(zBBbFnt;@-Wb%7nSvROhf98Ev{HIj}HOW z^%4FVj)T=BLN2;XwrFZ?Yf#DbE$tsQiIm+hc?&U_R(r=%bxa=ovoo?7 zpFg$Y2ns5J#?i=eH~=y*IazH7fxD^Y8Jc(5J;-6!mc6~9G4Df)$eI@w54*IQHse~O zno)9a0^Nu1vW2j`&5D)#mppx#LDwWASJ2n%jXM^-{XD&S%>dya#8)lHsDGCXo#3GT zcl(Fbd$&&hlDJ=v-CGDSq@yxyUGX9V8He4Re z{%Go-GF6u!^zBVkNPQQ&eTh@l_ee`mgaR=e{xX|eTya3y=BzNxSu;U&);)+!!P3z8 zNlHlQHj{YYG?UQ&Gq+9P{gSZ610or1`SPHlUsp}th&k)xO4lz6SdJ5qj0IcU3$SV^ z&oRzYK2UxWmWxWrM#11v4K(hXlGIS2V1k#QdDwvruSnWeDMm2XT!6n35k^8q36x(cr`n+>=Wb<}E9JLK zI~j`!W|qX248ZAd;l0CgazhubA!orq_s0n?iP*c67$yKH6PVh%+rfw$5#54JB@K8OW}M@MBBhM_Owa?Wl!f~thlCHmP~=Nw%SvCR zX@ec$&n}JctqxNg8Io?7EHmmDOhJSA#ie0jx?g;dY`hMKSfV(Dkc}jFJQ?lG19J=- zpfkpKZr}Ikr-oGAP9MZc(Gr|>B|RP}lPI3~UA5d{lyOvDxy^+Kw{%fI5~Q4PSVE^&6@fK$(dT_Dd-` zZi@#aAAJ82hKV~sYX04qjn=%ag;M92&KY4S0EyCm1 zbr;=lZJAOSL~%q4{m-ykkdWCNalM0Nb2odELIvoh*W4n)yu$y$!#hvGcp?G-G<=vW zap{T)THdan5PuURuu+;mbR7X^np(GyM$(?@1XG?c`p*XDp-8M``P2ZBxU5Q5&r)RK z+L?0Q7XxJnic3fPm)7hr35PqEUcUTP+2WUNbF()#9rv{6lD{-aeZa?Yq%0!Wc@~>J zcje8>0u(C%G*qo|Lwq|)JxIiJc4REbq;n&Q2%_%d;Hgxgz=W)CK z`LG9vjj8rEoC|TBHNpo+jV>434r=?qw{0=15|Bm@xD)bx!2wVoCt5QM6BhpQJqNKQ zdMUKAMJYpWXs8*8My52UD4EmFjT}Fqpuml#_MI%jGUwmLL2{|iCu^aV64j?8rE-2- zKH=t6#J_L3G+x>8YW~y>T8-4rI|G(r4Yp++ExQbjBFRmgVqD$ZQJxZGsotmtt=Lh_~EeP{gH8&))Kc20VxkxwI4%&5y_`$$(!Ha#s;>30lEwT z_CB&pBu_dje*aXOHy~if1@`dbQ#}5%c9~X@;lr^vdF7y)5?*Ne?lr0rq{(3F|$bZ|WUJO)u?yt)pb zsW#tzKUmiHtbd}5hEE>6LHHac^&5L(i>!9xpE6lCMIlwu^G5Ldx1$f@WT%^r$8&+b zzfPavs(*Kz)+x`~eyUnOU`J-vq(LVOE%Pdh=jZe5m>0rk#_L$^Ay zDc>uvFsE>U5R-mp4KfnBrhcwlvrLK-Q^;Q;d2BP@*0UO>H<}N{YA$co&p9RzhD$yx>Um+pIp%oq5 z#L+Mokpko*tO`LLa~#&$UEbI@yITESs*G4c|z9oIgmLP$%Cm`NETujEzTfO#?V(Xck_ z=@4s<+^~e&PZ&zs_8(XV)z+kj#<^K&L{9g;o(o!?d+A`;4XWTqDu1@%+m z75TG>+0G~4e$zAGuDjtPDe4gND*37^pjILkB6!zL%1(z3>JZ*&-Y--OLCPXj34wDI z71Yo$V3UcH4fG|XHsU&|POi1=q2pR+c>D%BO=-xeOS;)<@dHNtaq{sEv5rG;DCQL?@# zDvgiko3~{3R$N>?yI*wkimo-8f@MRt?+*@qnO+Jbtnqk~{_15|ItOy|?JqS*WUt*uairE7BIG=t+ zT6=E}lu}!@bOvi9yP&3?AODmAKli=*JA^VrX;+^UU$68^m{@jX)A{~8ASJ5?0u@W1 zY2tWsbFGHz0jbG4tqE?+#$Ypgu&Jejz?dkuaV&Y~$QjaR1s@m&Hin(qAVX=JlEa-Z zJHPP)PjF>DC9ju}t%)fxHQ&G#|6thCvIUPrve~T2_f;TSK9p@8P4atN zSH~8p>SohdLj7(PTP`h9v+}M=Hf~G+Qjx(w*e9z*|atPvQ6{` zv!JKHzL?9rXg{gjS;Bx$6z2La7=sR6_++5Yg#B!|#nBvq0EJ(SB-KKz?^HSUD)|Cv z5G(HdDfzvOf}9L(jZ(GBJ8{Wkr7KE5;o+24%iFzmxmTo5cK9f0n&UJRKCZe7mr&A_ z4rk2k)qd=#a5L?!HrI=t@#@}o_laSkX`7cRObI*_DfXK3?40F4z*do#v^$aUC!N0Mx4 zW%Y3x{P)UM!%XhXl*67mGrg8O$*5KIwQhr(o>v`L1P`C+%l;Dw%Ra_|d!^ymBmJ*9 z8mQ?QL!bgo{^kieER|kdQ}+%%LS_}f)WQ@ZmZ#_#l+vJ1ks6H?&ndu}`G#l8#~TU= zen2gZy2=;=p@{nAgktESeU55`RabEJMe~xCEvm|c1kmT^{jL4)-O;W>;Y91i>({d&>;z|OJjYHEfbMc!rBEX36d*wk^dtF$33N2} zy24JS`&###XpOx~>o-W96F{v4pc8<<)~;W_yFb~F+=7(Sur(X9#q!zMPEGB{v>);= zB8Cb4N?b`6#>o&;j@)o=*{XY2eH1Celm7lz^mg3Tl;G1_K4IO0k^7DV90gP1>dz9x z<`F<2rn;!{D{{w&6wJi+6<~oqqdKRJ)YZr(VPCbf9vF`7{5@AfJZM8>ShHXR4Gk2K zKvj|L6aH+0|DwOEVxo%^(VR``9s2~7`-9%+wkN;#8#w6gA4NVNl=K!Vuy2ay2rLX^ zMYp{Yco9CGrHb4)XB_it7RX%_qlL;Zx=vw^;YpK5Xg*p`{@+>Nj#n#+k>h3hmRHl> z@OFv;MUxxeeG-x^evyrK`c`8ilwO6ctdSzAZ%N8O{ytv-J*s3lVo_uDPCmrNQw$J) z{>NPR-tTfpCxkc{AmFuU%c8RGnZiV$eQw30{h+5_-hhRxZ&sfDzMKaGfIf7$+N*Il zl(Khe>*}+$j(t@ORarm;SK^uT&II$z6)Kj;e|Z}X!K1DEvv+6f{ih@v3mvaMfXHi~ zKhdUQ5ZLNYs3W>9XkP^x~n&)qicXj|ReFgdC8hu{%foW$P zLL)~!DpPcw^)KPzG~aQ3-z+Gbj_KqIzN+s0)9loGV2g^fx>~JHbZ3@4 z6FdvCe+V29Edp;XYzGGbKilBbfQAwm3Lk3O`yqkcGWE6P=4*UPCaMp7-5MbCDrw67 z18_qEr7|QuTH3#K<>pvGq{fTN1Ks88vju{!%PprWxs1#WEtfFM1X)=kLULd0jD=ZO zTM`|j6UTYbvH%tFIF2w-;xgoIqXbTV6a>n#TakN8MB)=A@O^Uc8RJEr4)&?6bDU+5 zl!<5$3`b>QTS1z6b54e00$8vnnW;m3iF77Zrn+dKzP*ZS zN;h=v*!b@tT&nE_sG`r=FBu`cwC<})W~e}-omo>$_I@B+-LyRD`;s?qTR$Be06i*r zs%tml1i&VzZmYHK=oiwMO%uaIaP$%cD#kZ)ZwHN598YF6)gxgAklDXnqP&)s0M?%a zq7%j7xNMJ~205mFH>9@1_i4s|o>3uQDI_5|nc1 zSiNSzNR1<~PdkYEVE6BYg+XYAQvl_)Up_h zNvP!69}LmPC+>n9c&}jwkm@CZ)Gh2T*`*F@`*Sl&@lT0w|F_DzUcqQEqL)>a71|3c z?<#-SK7jveB?2X$aA<5vOG^mfK7dKzeS0ohn3Sqjy>-6zoMD%!SddCJP?hGSIqj2* z$7;(s<_Vnb6f0ZrGQS*!C8kC|R@QMyi)(=EnZrWnUGb9KoE&*($e0Lz4bA>WCe9NS+7s$d!-n)L4zzpG({ zERgg8OA|+{^r2aBb#X#X>+)>X{12^7!11cFvU~R^aEcBOr>kTT|76;KV*gw*6aT*j z_|?e+Qy1^Sk8W6-o#Wg{L5@OfvAr9+W7|Dq!E4usE&}MEm<|qUrWdvSeP5MvU@^4? zE2#cOEN1!f%8%}MeFmokWY_fUhsd)}aV)f{TTP%~V=y{FxoQ)*SUv3 z05e%QP%FyxBk}Xo_{l$BzEr@yGS=TIYpFHo&`(foKA?cBN}`Z9Jud$oJyX6yn&b5p z2L-X2Rs$oJsP5|EhHlN>vk5rtJr@o&KeW<|(tVDNqSjRIrT7i|G}$s+_;1jzqq_G3 zPU$m`+K+5vr?T1Bok5Gc)$F6(c0lzR%j{E4oq>7|t z>6exMs{~ZZD_7vCAZK8t-WdKkyDcVtDGjRdtexwOI<1u$AVg2e*x8KZWiGKUQ z?W`w-{(lt$M^~v0sF+}IO+@90>(9@bmmN08 zoEJ!*jf)XQRxzqn5|zZ}lL3YhbLDS`=gPXrtF+taNETekdsW3yYP#A(_ABn!SGT1H zx@{TfDc#*j%vHVoz&+9y?B=ighnhx-_eCy}CRa^@fAyzVBV0Iwm|B4pFlr<%=+m+F zEs@?n=s6=T{smHfMX(V7J;AZ%6>=i$BeoRpMA_KH9qXd|w{EY@ReJ}(zElRF&ZH{G zv7Ue%2pKO4q=^^DSF@TGxwVq)`I=B53bO z^T=0m*9N0BBuRGvT%dzObfPQ!O}7Pg0GerL6un+fpN+r{`aO(rma#cBBhw)Y5M8&8(lrV3JhS05S&Qczp(i7nJn6z5BpbDMX)5M!bMhBR zpMbkbamd*0D7);S73qcY*;VFr{iMQYqFvGjye#<024c#&&x6%H2b?#rM9syQOUmHl z;8)(Qr$$miPK?%G(J(NkJkZMA>~AN}^VaY!7mx;Im&gK5)j9b#;!5Uo2B^qN;yPcN z?qS;-Z$z_i*E=U(D+C4b9)FhhXpk?kzeh#kaVFsV}#~>q*+d(nv8`a! zUw~wx*hX6$2hF1-ZaE1^CINm0I1Ibx8*T``#)o839-#o2MAni&*!Iz-SwbND z6PP^UeEq1wlzj&6ZC)!}J|Z2JY7eR}Q3Aa1BVx__TgM6tgtAYL`X=Hk8rac=qZrL@n9KhHElW7|>D8=YKI-uNHo!SEmnPL(T$s z7kLXgI49nGyS!7dpsf_~w7-A01V)5h&=MKM7=HD%uI}A7Q4(#B;+J@RO8Dm444~R1 zd>HkX!QDds4E$N7Xu(vZ4G&{B5NWjOcWrAs5Yl{H_yQP~iL#F)Xh3&OS{5Z`5M9dDid-}ZdFQ^TnRycJYDBx}@ z5)6fSMG;+Wil%4RoyvK8c8WCxDQ)ifPbSJ6pwtSS^!l1i9-05e<8P$c8EgDh)Q8Cb zfA>rJZJce2x4(3b^p7~gHI++hAZ#kK(!uei(3ktBwcbD2pIGvgk46a=0FG}yTOwM5 z3}u@Z(dsdNZ?=c+w;QBEregv$tlyQ#xe{cgLI=oGZIsDGQqeg?w3M9XKe$^*y)|^? zQwa4n#Qz-yq*Bpb8m1BeXV5n2gbsbmXlff-8jNqUmca6O)y;-1P`~=-Oiw?#D<25} z1sYG|O`b}C>LG4Tq)~cm8zZ(<*7AD`wf2D83x(y~$SvKG5$q-py$Cl~6`Inj<`iy!Mzi)AATFSpU=f_oE?+!uuz5aM3J{qTY|5pZXVtAg}u^6BOE3Fn8*07(gkR zm!3ysg@7#;S8&q#GD4wZb=L2nz4rjif zVN#K3K>!jSeyj^E*h(#_myLu#-quR$9y1ktV|@Ei`!h)AMmg$OAGCYn zDKkf)+3aeK!tR>8$77pjXo0_B~&>!IZ?_FsGncP!cRr?r3A41R^kSZ~Du+O&17^PAj0ol(iI2nL<>BoK4v`P&}3!zN5Tg5}m;v zdU1c0o60O|q8bdrK<4E;=O{g?D3IEsOFQQfDScPo^!Rs+rZJIvGwB~25#v>QUqAJ1 z=sdMWF7*@{r~=|$cgJz1k`GyNV9{Z9q}{(qSD->D1S@>emDde_Yyw>%FRIMeDSJDML47+Xyd4~O1gcpgzg!?5YB=q1k30qs}!LQ*54_?X({ zZ|Rxn1X-usHg#A|P8WH%e|4Cz*n376F)1xUQG>Ph7zCBUZMB~fBs;UdYPo8JK z5%HWQIzGA^8!MVGXhduetLD5R%~9aRkg(EQAzU~zR>WZ`vxGP~_p_Lr&PkA=1!`qHZ}+eD zM>~joeSa5&eUk_a@HI}p~1RLy}kDoz3PY!rZI?dKo zaQ!FpHU9&k>{~*>f<|a^GSzL%C)|9E=#b9L9f?r%QF*ee|IVA2uEh0h)k=VG#l+&v z@8%WQLuP1el2mCaM-@H3Sj_>@$X`Aoe2KkU>!swn1~wn1tJc|JJwJ?Ed#K@k;5zLY zqh~+y(AhHf$ng>u(DaU6lUj3L7PT* z!P`Qybd!-)o;d2*YK~*DF_hI+16VQVM~kdT0E%&YF`wyspI;$c;MB}={2^Cc%+hF> zn0S8`|2Q1j4MAb?8!b-aY5&Ky%D~vKla~5IGVzmZcPzAtnK4t>co<+d?~6Vd-m4h# zmDdDc8mTJ{!GZn2;R6H^T>}G`s8nA97$`jMCS}U)&oejagMPt96`l`T4F4M{A#<<` z!C{UGn1*>9t3d*_XYm8gr{O8?K@FGAS}e4K=Hw*E(vb(Uu)xT)eio9MhuH zpuMcwAEp8pZvMN@!HcW2%4XoMeJ7x>degif0;&z7k^u%rf};Mf*J^7$; zqaT3XHi*EvTm`%^UMy)%gHq1I6oF%RoGE#@1^8WQ{L75O;dzq3XS+ z(QdT~`$X{!0p6RmpG+i-jG?(}^gRh%TNp^84IBFb_>+m^WoxyC8?Q@M49+s;fg3jaK8h|_`d^&$mAW9anPl>^qMZ25F-K=S6U)xF2w|i zjY--7GxN>3mN)kc$x^A~PM?Y9WD76A`vSv7paD_#nlV~DR9I6q$Ys0*hQo4NAOA`B z75hq$M*dmxpeHLQ z?43=t{mn`zJ4nocIX$~?<*;e|j{&eW6FWl<;9TWP=9^?mb)H$E4iSMW3X*4&rAMcM z3%?-+;;f%W^y%~f{9&#h)Wb72`I5Y!I$r6{*TU&y3_vfM=4xn5Qovn8yp6%2A!URs z*kay=4h8@W@Q$KIV}DQXNR|v0)2?iYZAJ%dGKg*500%^9Jwn#|;3uH!0^FsE(NtN0 z&?0}G@mKo-2$nbkxHwhw$bvIt$j z8vt(9f2Tl!BYp3E?pl2y`sF%+2DY0{9-p0xri#M9?vW`Pk3{F<9LzEH4ov$Dy~IqZB}^mWyUp z2O`V<6)^)Z%O^lu%-dRw^e|!-Td2e%7}7CZkA7w4o0ayo;7)IJHW3-Yv^s2z29@0_ zQv-Z&>n-E))=&*&)%Jbw9bPs1!z@SjiXk~g7YTLvplv7q>z}(zkaV;KQj@6TPD6o zHUzh?)y(WbKLlg1wy7}KkT4DhrZBi!LwwYXAekIVQo5;O^Bu1kxw)|3c1r8JVw-6O zl%xOk`}OreokrcvVX~%n$!X`6LyaGs-&IJ`z8ziVKYI!a?!+B9YQmYlX`! zclHO`q(+}W_|$@bank9QCFvzq#sKChmUG_ z<;0kUm*sj{sXS1CRybEQ&9^Foe?uZiN_IZ^fI3EM_t%a}21N2*!3QDo`~7HfcAEM` zQoCseZql@lgC8_MLkUX{l++3aD+F4LI!kz8Pw}%`;pr>wLid&4*}z(Y%>1PSXKr|} zoO3uJ-efGF`ck5yYP{Q#okyjp?(RStDMSE3UvHa;*1wzRvFZoa3A*%813igYbG!`g zRBa78dki8Igs%* z+yF8^fC4?Uh^M#Ov~RaQ7Yk@Hzt>LfXtO#e{5V{%$Z1#1&9sQs=?Op**{iBoX}8kPt<^3AR=DUn~l{ z3+D~sDCrMyv8Vtn3h2jj0f>K}%%Na@lZ4lIXlWu4E4l%^aQ5`4pMVATg7i|NfY=uN zsKvsxDvrq2;l9F51sxbX)vP79XVa-LKl8#12DWYiein>a6Nu3wqd!7OP2TOD+1uUZE1#IS2jgQ$=#+z0m_r`Om> z`|F+`M*|(c0?QoC^TlZ--?LtC7>;xXcQP=~LqsJd^@9lpbIlGEAo0%eXg+>xFwxM| zRBd!(?A;$v!Xu%Hvqxagly%GeJ+u%$v0SKP(P9py>9TA)Hjd@v@vN8&Mef9B*BKfc z4`O!?w~JQpDhEBf+Rr&9Dk@;kwJY{x)PulHGq7oSe7|u;x%5ri#0Ff$nk@hQ_}0LO z_zAbL{kf@JAYGO2HlIJIt||I_bnp^&bMgI}SM_>jpjf;2Cy*Wd*WGT{2InL2EzBKR z_<-r&f~Tpl5#&z2SmJqjhY7U8+L=D4I|llIp*v{=UKtIz3+w1>x$nZ`0lfg+FWkI0 zS-_*Fb=4{9D##9WuzEnG_P&H8=pa*jXCZc_2C%Tt01_)~^NZ?5A|WLgVd-GaAec{S zRF1}<#lJ1lcrID7B?(URMkycXakS^&n_jkVQT<4d6RCxBY*IIMUImSIgNuO|X z8ZLAMLz-o=u1bl`r)rI;y5;ESsiiQdT&YZGXW#N>+*to$<^ux}=&`B<)Q))3W+R6D zoWA5Wkdc6gC(lgx$$>A`<)8V$h{URgEfk}s)=gIzZr*}07j(#~_Za<4YEqLBn&)-4 zDN4z(8@j9F`e`JD`g(0ZFao9<#BJtR-&AF$t|*?z23D`7;d7buKhAQzB*%L|`k~!m z+3k5VZu+k&6U5)^HfGMRvi-TBEV0nM4N>mEHN*I5IcoK(Ps40|~HI%V}cU!q4zbjyv=p93bw%*5Q0YGsmU;aioer!KIWNfmT08&OL z_pOzF&w|Insi+afLF$l7YKJ&dZ(pK}WJ4c|L};E8z<0KtVp zLUq_HVb5?p`+!9CbZ-F-1#Bw=J5N)e6dT&%TVl&&u6q6UhI|t^W#_t?JD7E9+?T&) zeSW1G9`>d)D8Fg9xO}Ov@{Z=}*(4g@a^B~|Bh#*GjOhoiZ)l30aQ;aZOxKq|X#a8# z#Jb4Hf?giJk_!?{uc)JDn_zo*z4jEiGp2pLj7Z!3XS<<>mj&Oe2KKA~!%r-@`sQX* zV6ZpWTi4kP1LWDGAR#%^hk}RlV)RcoF_KWw#A)qDc^k#+f7zS`nkMCHjZCHz=XlB) zGT6u&v^slKuT%0|poq*HpV*UKxweQErscp2Orc9XZI_Zix{*EIQzzmk6<@^s* zdi7Lch9P23U%+{L3DQCbQiX-v-F%ov*PO(J-?^Ny!Y*Omw_{H!r`4ipne8Js|k!WNJmT%JsH9Iou0&T+Q z;(Zo+n4AHZ#TdXcSKG(D@cB%wh6LYkX(^7IjO(aL>0Ae4`n4v!O#ewUL_;YhJnQai z-j&DUceP2En%!(^6RTT0G&ew@r=P`6;wd_5H(Dy4BB!o>w%}XoD(r31Q5Qa>0NQdG z->ucwW#lL0wEot7Uw7C`tI~4{?bs0Erz%B@aj^#(PrusAN3^sEN7Ku%9IlT(cwi>s zYX_%`$N5%G{`Je3FNw6CGZg7acm|z)P5DF!IMQquy%VR!rBBh|L~lt48g%CVab?Mv z(DOTTqHs&0Lc02JIKE7Mloj`iecTk6l2jEYh2{rfxPIS9y+r(1YLzva?|e^#1t&(#Z;&i$ajy;|na8<}cO>q& zxD5x-NROmBpYTU&k`uJqI{TpCzu%B>nfZi;-Qnlw*KTx)1dPttjEwim$z;8~z2XuQ z+0&3Hgz0`hAWsh&tunH*qnFIZP+3mB$fqK3_ICE-zrH^>!PCAXPa3#I+STPw3e{jM z^pRlPUs^e>m?G;D2r35ELrqaYq}(1yK}B>XKS`NOBC)#Zjp{=oOwHn~@Xti8R;7cb zl!x>);gsvh#D0tNonaxnB-C74o$^n9l}Dy8r1Y-Odk9dyQ<{VC@T}wc%&%VVhVuge z34{`2(9#6)gi1+{%9A5U)|d9C1s@gY!P0M%Y-daYPUO9Ui9dg73 z!dl3%rOuT};20}TZtji(j*_aXYW`$*7+HVKyw@kl7S7Jj_P9Kn9 zjio&wFWCQ&W8i3a7Vhm5HlsgP0bfo8{do}NU9jeS^{JYh6y#wzR|4@7C{Zzd0^e{@m zW`Q~l?-K>)GhFXt4!7^;DfE=wqDRfjR9RAWbonzWFkv?}3(Os4*=!E+ZNR|0OPa=_ zR?N#Wy%l;Ca+-C??xA>n-|Ok+e~3f5bBo}wM{P8spCSrv?kV%oOKLD8;@V@}o4KR+ z>gzX1IH(URllz6L*TTbao;|o2M;$)Ka;Gz8czQwapXkh97ss#UpLU&o0Ku8^9^>1r;<#!ArCc!Z15l z2Q|&7`-hmGPRHqBfA*k1Cv*{g&y%Or;2xAm`v%kXK8Az)gVw|UoP#~&4GPjG5?6-( z2HNY%zYFkM3`yjABk zf??N$&5~brqo+;ow(D-^f4cIngNQ0n(L%C}*9YZlYmXfT`ecPo4LoY+)sAob0nUcp z&_HAK?3SxItnBrg3i7!>b2p#N8Vn*soHdmqwe$xfde%)zqDc(w%d3eLyjin#tcLPh z7DjHN!>C#o*8Mx&8WU`>Jr?W+7VBaZgH@jE=FiUd`Nt~mho&{wow)d?5I^0=EI(E|2C*B#a5IpU2=VK1Ov)*ShDe;u>-=?paSigr;#FYD(~4BP%`ZH zck2B+S!sFb=Jw$}yWFl-g$?)!>7YZ8|NGWQ3^21Fo`S-gqL=OPbKJhYY??J&XgzGU z4Ea?nbcF@I<;VBu8rGC-Zs7%sTZko7Nki+}M`~wkJ4|p^V~Z~9tEfn@eD1(4$JtA0 zToku77r&LY1)X`DdyOpUZTOWp((;$`EfwlsPb!QddJ605`gs#UTYzfiKfAYz*fN3N2*7w|~=(#Y#Cx zl{b!#7yT~&mgcw>RsQ#>Ed&E1I-FqhA8MX|dEbHi*Sf({Chy1B|Llt}9X~QKHaXXb zQ7}(BxfFht)SjLak=wpv<$Y9o_WdoOQ9m4|P9PoHdG_n?$tcFbR?DDQ(y>L&dk0q_q#}S5K(dIPd}TAy ze(?xLR<`bEB;l>izcY2MS$LHS$^5cZC>+_BD=(=;NGH!IHwrITg{uD5$xlp6Mm#PI zxWmuEh_Q42#Ju~zA}si&?*V|5ir$%>VYbQcMOpu=Ax=I|I#g87J2T4%)OzLDdtT6h zDC4L!0011KUGd4g;o`CV?LzLre0A&&n2Pn;MK{&QEeKE)q!hqox#JN^8!5TAH9}f~ zrOUEbiD;q_{Z)nI-~-QhT=0zF8uWF3q#g=G`BCupTVR`r`*_~%uQ37D#YfM_G~DH; zSvEMM?o-c{%AJaNJTjv+a8$pMZfz`To=@`ngtN?cMsA*;8@ZH$N#mo+shh&<%lVCG zIPM5s=8v#{!F-Vr26XfifF$uhf>8Czc#R^{Ct0WXF>0AKtGs9(Xs?e;%KKV!(BIg6 zm3!~s7|o>i`aJHEhGsM8zOhV3u0WKZ3~Ft-0!vP-xRmCJt3r9Fjah9>G<}Qtc9^|+XeH1l+5_w&`QudX`dgG zXr0-lTPBqM6aV+v;9RVE#wka9l{Z&R|E4wpdg(XA|0;%t=s?OapZ)D=e3p$<(mdP7 zl%%L*$fQJvd+IS2kYGMEGJKA8=orfUtv>EfP{dnFC&U*Sj1f1|(D#xAM_!5sPhx^h z3a)$c&ZoH5U-Hg;OT?rUV(csuVfYRmU-UHRs=1qPg^NSsoWOWM$*%eG{X#A^cJ1-v z`Da2}yS=%brVlA;s9)3anLcvDhj~|-|KsBZT{}ZuZ5U^b#gqSUR<#lHWSBF(W)$DZ zud0hb*n*nqf(>A^@?iOeLYuX8amK?w8V0}AL`xppJBHAV#4v0ARL`SCGQl)=UP%N! zQ4#6r1~nb{IB(v$KM)b?ku*}zac`n%Q_7-j`O`D%tfGH23-9vTUp|<(Ae}=v-ZiG( zt$djkKjD)tG|3Af4_?OH_GATpk8_yCeB?h7^c@*d{~T#Iul94M;U=A1bohk$q~eoB zI?zqdN`DUipkD=L`9iXY0&|e>Rbbj7a83>xL^C4B+bRKgOGn=cT3)v<4gMb zuCmmC4S3mB&MdOZZHC?oa`PX9&gJ}%g@4cCW|+=e0NF=v1h*m8!R_Zbv6Tz ziZ|8zy@M8TAAOJvrYP9`{N*tf_En}+0Kjk9WkF41u1M=vGilvydyeiiFL3c4tg0lW zT1ue3u$^%a(wruo%omP4{BWu#4F(@cUnT9?qE4$h;&!DonFg*8{UvOB=UMX_!xk?T zR&Q?~v~_Skt%Ic+=CW%Zyt z6Gk$w>{lw@=J++6^%Omf*9A1W%>|#}A>%W2j?ZdpuU_iAye2~yFG;l|UxGM@Gp!2+9H;r*1|Pt{v$r}f z3>$~)xJ7Y_r{I|~mvR4#<%d;GdFHwxxvk2EhcpMh0r6WQ3mev~#RuO*pzHUev+g!@ zro5UCEfnN)UiWUD#H$iaRJ@hXjJlX5(R+WG^&9TicLhbMZi-pY6itcSCObQEF;4mmv3Y{G z$E$u<3HgjYTPObj=>eu5@ccoE&NtK@D*G{~zdpDTyE47e%RLN7*f${kMM`%+yYt+f zerxfKF1{-hwp*WM9n>83ds$}#y#cc%~teeyY>7gGa z;7xjsyh)C8e0vrG#tfDqVt9lm$guDW|5@GTqfs$^_zbIc0iAmoHo3wlnCT_LZFI{R zMv)NIvF{q`uL0aAv6`Y;guMzPF&Hm^+|SPRf()65-|i+15X$+QnW;PJ`hqUzaemAV zRB7VS6Gp~Uy$vc7XqxtZyuHx@m-b$JA3O~gONZ!SM)8>R5 zr4%ySq#J)q2j$n)IhPf0brv|EU{DY&LuF_*8~NlgQ7aAj; z&Gz7g4QkdEt3QzzyHc|T#0z}IUlpHxXEryk@Es0TC)vb%6c@Gb)L93r9jBJklVROE zf_!aVq-te9ocmOoU)nOUewU4&1fm3t>~8Lxp!E`<&Tln@`LIRdO84KUo(EgV)3d(} zFjiWgnASo8`xo&df1o*Q&L7M5!aYMmUTL?{`I&{|wooYSe~gYUcKCOpy^JUP1Z(VW zC`BYHB|U**#N+ggB2{h6gqT4;A0MA3K~r;E=lg2V_^#O>t-CH{5+?tEwtZtG29u~} zWa01k7TlJXF!_L244G~iZGYZ0ymWITwGAdrVAy0}%(XMD6Z;O@-FRo$M=9S@P#$bN z;AsBi(rmGpEJ0B6NuZ98T$&%0OCW?#2(z8FedKxV!V*r@_7aTQz z`%GfcBT#Qs>#Q8+2Q($B+8*BXlm<68XerT$((In(*e^aOAX^Qq`BY z#fYs~xAw-5X2K#vBP=b^TO+pYjHK>Eyo{FmdFN~IOQe?LF{xll> z2ve9JRu;VA4tPFlCkvWm%k&}UoN^5;MXCj*GG0!W8ucP^nXrM~{t~tr+ATLa$jK{ZB5Z@P= zCy_J>=vT!c4L9OT4p)+zwBd=nZ>KJE^PlTY2wp`s_%hDmHp;`ILw@xIo0Aq879(Se z=C>CrAnRpD&g2(j;A%(i_9)H#R|K%dFdp)K&MyDeSX`CqEn%Ks3Z0|eqP2(ruS)0~ z9*fM;567C+3Z;1;&gy+i7a1Hm(8NWQLo4Uud?o-#4k*ivG)|2F$sI4B$Ie?+-N@Xc zR0eV>h;}hr-NKJv2qcJ6JY|c&sYZnIxTO6V^d9YhW;js5Uh$$UWP)=|r-&D#Dc}Mk zsqUek{-}j3W^l!^Xk+_?Oaa1;LrnS&(8AWVl8VF`kK>b~0T;BMXZ6%=U zG4`5zi%x7oEZ)(HkRVQZsrx_}xZD!p$t&DyiY1EHeO%VtL8X@VJ?x8EZW?xaAHfUn zW&}=xQtf6<%gCMg!BnaA!fj6t6uM?>KO)krf(VZsD$$X3V+0&>o|Ac*Meb17dslw< z&R@Rs=-3n6EK^SGGdZZA_;P&zH3fZ0?`l{1WCLxB^S|T?0xhBrJdTKYk7$5IyOJE^ zgH==KOT$vFXZf=PpqL|9!>;-+e_Dpn!U2dA~03-`bef5WNXEkVs z;EJ#&X(En-Z&m0S)T~p}RrRUPwztxqif0fG(H>~AgHj)vfdAzMf2tq&)HqdVHEy=1 zCSMOY+cZY`Bd0tg40isKm#3O+CfdTi5}`8Ik*yH+mCds!dB&|I1@2$dW?Ax-(6;gI z&}XS^iQG9`w}VIwNECSvQxHU)jnmJ=QhH=YHBU2mdkidx1K0!Qv#NK|kW(0HGH}C! zd-;yfuOia}i*r4dB6^OMmgNv&x*>Xdu>An>;s)|q;nD%Urf}6~rFLhHN(6b&u)TV~ z*2L$qgY$!?`$-k0KT~wy1K4Ph`{$Ya=BvVcT#J9PLEwK_I2C;yGerbn%EzxQ_2SZk zj(;~wt4}mhyjm^<;2E%08p5v7I&(uV6E6{(>`Iq-YCK6Q!SCcKll~rS@s-~YcqzBq znMo94^Y{^b9oFnK$l>QhH8d+x3gs(zWy^7M>!$H028Z>L^SN*5_Ya+rJeAwQP12d20656XJPJ3WbQm#TSiok5jqGbPRAPdbD~ZW-mco|7*niHbVIW@)BT>d=PXQ zj0P4-LJU=tG{8~DQ=&Af-rOs-6Ag+8@GA&v{bv?F`G~GTR_=b`)n-upUom(;AD^y-`nPB$hrb0Tds;uK zZ7%4uAD+3+v3y>O?|zoYsInA zVQJ|uULCaD#VGbW#$TrplBeMN6M*mzwf_!+WD+4Yf|stRjWBD?i0fL6Hm2O$%&($PbjilC-zphXgZ}w)(#{YC z%dZt~8V*x4!ALjf@RtIO*vy!HfDY{FE+jS(JN zJ8B*3z{yA7HyR2wcFIz~5_{_+{^nr5Kmp{fpu(WE*(S1zx1^Gq1bGB;9&a3u6Yozc z)8$)L7XM6yN#5RIuT8w$TOjt4{Kyw8usrFth+hIw5(=EDQc`mIl7o~a8t-}1arlU= zlBet-0Rj>JCYYKYELkz#9!fDh9UqmknhY;V@`$NAmdzBtSmk?bK=Gq`fV9mZS_St9 zW;(Xb{ASQf#QVZ;z|aG_Z2L^>7r=~|xXgplZ+p7_ehhw=+ZMRbIV+9^9!};#=97zu z4{X_C(4RyBK??{<`*B&l)4sZPKJ5O129^dFG`Dvk(Sc#?0ma%4P$X(tgOm?+IbU5* zSKvzv2J#Z<==>-o5m-x#F-`fc^tXn@mpMnm#z(W`u&=}!&&DmQKT(fgIwlDNWJTPk zzTHV!f)knwvQ{F1Mf0J1B~X!sMg)ddO@=k3m)=!V15>rK;)Bji_B znAcdpdVOS3c7kW=Zq++TY7UUHMCMXjL_kwhH_IJ;D;cg5^;Vl*N%6e-lPiw#-B8t( z>uBXu#Q>#_~(2tbJDYf5a*jUT3O^CFp6pfF!=bJ+ps z;B#UO7)*=D_34;x|NH{WcGP=&hled?*?=uFM##A0F>=S{I5F@+8?Sk&QK(NpWH!DPn47`s7 z>(sc%QULgXeMkASrNVv{Z~XOR*42gfm-?FDU+BL=G2$jCE4=r$#b_ha^}=;a-pl%g zlYIPCk};8(Je$L(yiFv^FMuXc%}>OCj-+p@5T#sKO*Lx|zIU*I@akw>lapP)(JV06 z2#fig*a7}Dgx~^QKa@AwHeGN}F|n)Y1>>V>osBNm2dv*41qC3+!3OC*{GHssW6t)z zA0I*9whlT!I8xGq!vbW0F(F+|uc07Z13=!7PUTLpLB!73ky5k3CE2Fnghjx;&v6$2 z91kt7>aU1UZu7JD?58k(6-Qna{*4Bw>@y$#w6&-b3GLTldn*N%8%c@zK#ZE&KiCT| zX18`^Y6d@1m7iNULnhU51}S1)TD@selRh_%uk-S(gs(m(t*d||tci)7=@AOc&d#A@Sf<7ups~YslI_)Jcvq4kS)lq1w zE*%wXwn=bhdja*o#ZIyDpYZ^ul1M;UfdBLlI2g@YJ|m<)q)Y;|5qw8W=0BAHNLVp5 zCqCq#IKgcWVu0jifl*Myhdwy|wS2O4)A4hUm5jsf%d4jlO_iOR{5_PHclXxuS3o$6 z30|Eq9g(Eid)UM@$vVGk8z{w}B?*Bw(r^&#gBKZP{ILL6>nld1yo{wnpgf&g4%5JPQPZWIr z@O1HeJw*J(^*b}qu1lADAA)Sd1hQsAO7nYpxVuWU=0fI^y%$@fJrM;K90|txb@mIV zSSXsRW_i*+kcd+f?mhS|2Sa805<YBjJz!a-u_UEVHBNewF17*a3Np%(Sl3P;Iq%0^a zuh$)Yw0Cte_?|*wLtt#O=gBx?{{?d$!b%1MkE!isC#*Ew-dA&D@6#|W8*A?Qz=pi6 z(Nn<%2~0O76G>0IpQreDG}^1Jc86+{tZOx~b7~D5fk)oMX^C^==XiRx)fV>j@`P1t zEItk*G917exNV6O5L#b{FF^j~%_SsUegn>q^!uKCenhR_UXKocfRj49gfzeY0PCaN z60qN&UR^x(*17)Foi2}Zgk1p#(Syl151DrgjiwUJp|P$R$d~Gp&gJK(wprw6HMi_q zSX&`>bPYZI1HiM5ZV>_eM0oOAe|<0uE~2QvjkY@uV@ILEK{rWOcT==gc#0fRY`S>) zL66pz?0_U7t;fMVL0kgju8RyGmEj6bvUVuekO({di&7X&{xN!wHqoxVWXpSb zWjYBU6YV}a|J8DDt7cOMan)SXyL*|=w~rnc564=yd-d)LO3;YEJKwSzzka32fIT*p zwYENz_*)rEUM%%4K9N7fWnB$lec2ZRjv>$rvP2J46_jV|`N3iHdbshcW}Dr{_toDA zgMar=k+Cyp!8i+MBd%`u_!Q9_xoJKG=z|n^yS<`klWVElms~iAf*t1(X}sr^&aZQj zF&ao8Fy>!lbfNFZo$DdFfIl-`4hgDq4MsvEi<=TAyzZjcZwOLk;AK4BbdQCp)4R(f zM-OTbsVLKwO&U=@NDzV~F^9aF05+9+(5)((g$CS?E^My=%r-eQFMGiP)~4#@fS zBJRUkNlG!+U>msqfV2n1vK(KYo8vo-8(SY_fB*O8+g1Q6luCfmE-7>U?9fq7d>xsD z?cu!h7%Vp_i}3k30O&L9o0NJtZDw%?*kck8;L4NUa$0tK5xNn$Ijjsl3_Abx>`=(fAB{fMaW1X!WZJHHetygRDKt;d{N_$Ux1IYvI(Bh@>J-sAF%u-28p?b-0aAYC}cy` z%M)zMKW-cUR@KvpJ0%Xb@Y!mocEG5?O&WU;KEsPiwzlpdJ9z_-mpVxN;FWFBciH+=IrBr& z*z$68i=2)-xdZfP$ax28JcaqS`KCOHJ*}d5E9^e_kv(jW;1 zBs&DsNi%n=9_Gyjtt=<4GKc48-jBwAUSl;|yW))lDNS;r&t5Frh2FlXm4BY9c%I@d4X;|hA`}w(_XPL|F7o?q5&7b>uziq- zM3Wonl5pg2VwH1E&^}{37#SbvB2Wmga-QUX!5&0OT9elegG4#dYUviA@k$&eCATlV zp5V96Dcad{l~~np0&S!|ApJ&?KgAN<^_3!8)S*KGfTa9q67p?x#8MirLfFfLWm1=T z!3#R$;aO$=I}K_E>g^lEcG`~wg@iafEiyj`H3Xvz{1t8*MAB$ z>j$nt*#SrSFw}jZi+-`%NBhbzz4U|B$Mo~+ZIB{=1Uzq!L^9K7RqCRN8sw&f5b_UI z`;PCsy6P^)J=!$g|E&1P-n_g6j?cq4{ zIkwBqzti}NnXkb1#hB^LAKStsbtHGwxof^xIk@Jueg%R&lcD$d7!q{HH~-f)`nnn& z^OTZCt%&s2ZQ13A_|*oL6qt~F+jv0Iv?_Qj1P4v@WAj%+j&G=-Xr;*`lEeoqjZ*uW zPP0NHQLoh3_f%|X&Y;0|b^82?ojw2AQ#=~~v{pT;H))2g9bNYmCf<_3yHu&C8I!qI zBV+c=cey6^zc;ytJ~H{wE$vv+F|jRq65t&v!#hIRRo+VMusjxlmCUGg*aZ z#px&QY2cvCu{+MV^LJA-_DJoL%gH11kY%$B8v+^-PR{RbU+vSwTj>1j_pvsoCs%<0 z1c{}YoPHzHi#O`kwu+(uO(*y?k;O_CBUoGvN*qS5Y!)(RXPFaSBLgEk*Oz+`DTSBt zAQ+0&8NG&_>29E2K`rn(P@yw6q=XYK^&Po!+<}ik{uUrKkZ=vioY=LvwABs^eTi|u zwklz0MC@&zxmHpHnsU<>?iJoL!A!OoDGLs(D+um^D;hx~-^Ngd!*da_m{@ZnATfWo zynhyHPB4|pks<*dXhg3IljtP~S#$U`6#%#GkwT9ORDl(cdY+zjOoDjpyUKL|6q)%y zVv2Ev1!ds7ieX`TQf;1uoibAT@9~OG3P$V9v3=DX%7}z?)4k7X%Oiz-0!K%9|4b#B z2e6OEIQ+yr*BbTVJ!qyp2i6lMkll8{DycDQDqC;0G0lARV#Muf)}EL7MTF**8bP*| z^iX04+*kodYwY4en@zXR@>c`>zje54!DDa*^8hGoN4BVAB%y09E}#8ULgxLm*TW^IAjD@&4b>TqE@JRx8B)^eNxb-_ELoQKrIBv2HNVIuTda z9A@9Ak#{8K%gK|C@7J1LALK>7OMI#^Qgr-g=@#YC;>X;V5Xot|*^=y~)ogfPWcqX6 zY9)>>L)m(PE3yhIvwLVag2nx`Db-@UH>Dj%*E`MpE&}iE7aSH^>0>)S`SB#JSVsr& zz_KUx+LYbwBkVfrTY%?-`kM|30X4h!AlJGQZH|QgQ8}G4fJT(XrrM;5} zR5kt`0q;i6X;8?=FB#g;K@N7YGjWZg{?j$xga&`kLiG!ygzB5^`0GWpd+-<(=__NB z%PVA<(j8UYWd=U;Gnag2&L-t;81Pbf!tc#6d(81SDkkxP7JF;(wDrZ@P>gjI8NfmoErw9NC&b+rdrjsQq!D|v?8{@w7>lG}zJeqSnb#$DvZVVD{>Naxz(B_2NCCKkVyyKzG#($RWvyQn(3+K9o;3>CB`v-eF`4{Ol(GnuMGw z?vYD%q-^*~=^rWDY^Sw&%Jt*tkbb<{l|)L@8~s80qhi&Y(i*G7-1enCMI1}5 zc270opF8hwYxGbuz;#tr;S9h1$-J}r&`hgh>}%IRD>i4+40p3b^}FnsC z)PpV-pPA9N8$)Pl=!laz+_(zO!esc>l}6d@tj{ENdjrq;taDghL%?(j`5^w#V6=mX zsM#9F)qgL$Ik$-8$c2heo*+HS#A|NI_f7}e#Q4EN=_<9vb}~x2S!1?tyShAQa4)PQ zBt$z;Jn>I=A_b<0_nG_n3{c`md!D>v{(A55(T>`%L++E{(UQ1DNIL#%@hN`R#Hsqc zUcG5F-IeT8(-^HO%nJwarWA)fiGcIn{y*G4{DV(NXO00ERsnFaXQ+Z7h|)kSrWh|o?kD_5 zAK-2RW91*}zpi-Xji-Oh#RwRieRKy*7+X`LKj1ZhqbN(=%{*xK>>&>%hLZ4FgS^_f zw5lpguf^+`=NZ>5PjGOs$I-Z&x`u|nfk9iV?|)dgZjBr&@4tW(j%A|}^EHpU2k|K= zivhN#dbvfuoVq>_3*6i#HtW9Q>>hoJuB;lR6TIRoc$SHu1WLd*u^7=^SXMe=7dj# z4vF5{KgviiriB0h>nD36U?U(JEs&v^9X?2%P@7}tnVlE^c#(`!3}SU#jV!+-@NIF~ zv54MPR?(;4%)|}IVp2qEnKWe~XD(*GI=&YHU7=~8h}ieX)%0vH&m84ag=E1Aq*L!e z$+oSt-0_)F>8afkru*^VKMS3o8a>ZrZ~TXD=Eiht0`OKO#m9dP4f4LNs;9F#{pJeP zU9WdenqE-3zSMEPxZWO6y8P%3*R-QYn>UPq=Ec3*7Ss2m_)YM)vz)Ylt+9?X+dE#- z-c=T;pRI$foP4+_gAXOIYNL^#Gq5@4CLAXK( zE;cY0`L)4Q2$Wx2kUcg(J-)eo#q=_oTlOEI`=EQOi0x=%pIN%E!zG(YIaVai3mwAs zvLcLC&mjxTixd@i0}IPnueI;OgmI)P$DDfYczPNtp)k<30|x5V$y|NIrVHK~8VsMmRclLKU0n^Pwjds>sk;OOo%N2JKbt)T$oL&l-n0kej6ve-=41(2 z+P($rEfazl378U{j#dQUM-Pctb|00am zsUswO+P;Leq{ncMjE0)_oz6819e(uriK1c=$P!t1-)iFpj2qN9)V>xbJaOzJ{bO{+ z7iMA)wN)k%_OTst#;q%JW%WZ)yJr+MI`?()Ol9n_!PG>hlHU3)4NI>|TV^t?ztH{Z z``XV>;hGdA_WJH!(pE4TmvNUbpA*g-7MczOuhQ4Zd4Fo20#k&f5@3{4pnozRF^9 z1->4Kzds{Ce83zS98{TBDO8WNX+8~PRLVAbK>a_-%FY^_;D~$5&rg{6_ZYv15y%Ao zP?m!ei*xkOkRQbxuAvX0J_T(=w{N;MvDdV)6;?2=s9v`GMd3e|h7=;&&az7Wf|az3 z$$CY-9n8{}Z!V0*Rzyc%@xG#X>XYjsM z&oUehOJOu)pSB?~UovY(ZyC{RuI*+V7EUM~%?%NG!GNdbx8`03ZC8 z+b$0&9*HW8tR#F%L~jN733;B~B_{5LP-YZlrKEc7OYvu*r%6TARocv_+`LU_^k8*0 z)q5pQ5Bh*^`ko)4(NTM`DF(~a+u`Cp1lbzbCy(OM>q<0bB18m;9S3_Yx;@U_yMTea z59;unLX$I!@nn(QvZ`IvYZF~x8U_9Si{y*5`(8Ahz)G2dj3~|&JU^t!;6h9Rh#B#e zD!vyy`OMqR;p$P3QJ7-=5J%g?Ot)6|P71w`NJt_awKsf&dm~}Lgi2b2`=ngV{g$a+!;(G6)+0IxB zwC<5ru%Eqr+dhGcftCUJ2Fg~uk&MvY()I)%&F`$>4qJp$>Ei$P&XYHeZh5Oghc^|- z6-&&F)6fruQlxvTC$VO}`Gs2cZ4tN+sl=%uIC_Ym;;dD@p-f8{CHESnvsdbl_o!F8hv9cKvFDun2{k+{T`WLane*wf0gpZv9ZAp+F zaIjh>oG|6VbU#T3f#V?)BjJXNUJ%0oaVj33>YweBG5>lX9jCHghy%-w30DF5(JC#6 z5N^{PCWJ(-_smfue_2T23<0IWmXWynBxvGMpHWTkvpb#xFr88s+y#HZfG<79e#}EM zn0NWo_i=qZnKlAjQ3teeQGhz1`zF-Pz8fzKz32`JuOH+zZI-mGK)t42`_31##KF6* z-yXQOv0--%7ydgBFCXM#R$0zH@vIGt-5Gz|_%Z#dC-0%p*Z* zl}u=&l){jKMKlL|1~@FHql2&V>O|R z;ZUgDxRLjjN>)taW9|o!Ge4XFqI(MXx;O9nrYW!Abz>iSgP_fAsrm^gPi+{CMT~ zFmFD{7YAb`N0CTdnc9O)_i0`a=;f<^8<8y)Ut|QhGA)oeF1X zx#zhP3D1DWzpbsUvPxys(Jx%)cn!`wT|+~-V2T#H*nN&7m&~6v%7>jNcmC!C+jrV*0p0QaK2S_Pww8{H5{zs?x3&5 zS7&BOa@?t6S8hoARQK)I#OD_oe}ko6zfg}YQU0VcB`ms|l@UN~&10=eZWH6b^NS#W zTw9D@SoHL_gBeSEECJi0uy;uT4Z(rj_r(Hgz4XtYxpGH*yyq@3Y#<9>S)&kFd+6_C zMIC|r?bq``sSf}AaXp0wl+vVnW&Zq5e*YJ9?%Q`Qfne#dk-wagNk58IdC_?uN?xO1 z?m6s^jmF#-(ZRJ|%TBj!sw3bGAl90n>$5o0V^-Dc-X_bK&bR)V_zUj|E2;&j#lq-< z?Ux)j0lZ6dE|nsOS6X||JSPtIcea{5W|u9RJx{fY>=})26}NcLuIXlfdS8~%e#nNl zd_ve{w=69Y{s<>GnpQ4}C)9CsA~GdKu0*#+c#0>A>-@=xEQkgU`Y@Cv zBJcR^i|U)BiL~`jg_N9ecMi&(pSbLQlM1vZkybZ&uyV_u@L0F!-^8MV)Vmcqu4$Wx z#+yYdGjdb6ISB3$-jT5qj$z!&UMiSX$p8H1wm|psn=10*!T2Q2bFJE{HzMzEU|VuU z#9FfkI4R;9F>w;tyE16`Rlmu8Y}g;csyVDyPbGzSbgh>9qxSU$`q`i9HXS`{BgYuw2V0 z+^3dnTVdNi-c_|k%j$sdcQsv0uZR7MfiOW@#LFD5eDuLH@+Zd&J5T6n(dVt2|K9n9 zBO)Juy=Z<|@Jy~pD&vh!7S;H^jhG@2>hCvyTD!M|Or*~l6FK-#ZJCb=1^k>#sa-Ix zg)Y>X!<8KyHb{JPwTi6Ia6^m5kw;kV`XK2&k0BGUasRZ|N0sOAzVGpQxGue_cX9gj zbIlMXg9e z>&rj3=86nDIg>g|@Q??W)UeCy+$zr3Q9SrktnulSn-wk96=m?=$@)gl1ST1YV??Bu z1YRUQmIyW;uJOk3apCO!>w8xVtPOY(o+U4ZWQ~uDDN<-wlkquA+*R|U%mhqv%X*nu z)7Lu3G5crn9G~N+eyabUw~Kv4Io>PLm#M$4 z7v*|_C<7!iW9dWmFTEa7qQ&@#dd%ooNDRQJKI~US4xh<zKDhs)s(04j^K9ZkX?~LN3bF0O3<_=SMG({f|Nr^VokcBZNCo1qqKHz`6M92cZdBQfC!I75kT>1Xl8@ z^ACAjIf|Y6AHOH6$7C*e{B)K5=UM$OMwTL}qBAst*pLmZ!E=wWZS!o$bbuFC`84)OudAVGj&+5AgubiX%ar=?y3@$!4cZOf>8~OJw?q<* z-`jVs(mWev%$;g0y7{{D@oZxRO>jl{caC0fylvq+PNUJguplHD8P{Jo{nv7Gnf$^0 zUZJ3fY?4fTl^KVuCe`6o%9doUi zgFJOIat#|>@uQx1e0MPH&fBM1TpVxc2sTi~_0|zOhVs#`{65IR<@PH6CVn0K7webO z8_2@!@v0j(4q3*!Ux(%0a>d);7#Nw=w@?&nQ^svp@V)!Q<_97WLNbA%vML-bG~Xzk zsNGCtmyDvB(AN5INjW6d-Hy%H9GV-}eQSgnpPUr@sHkCerYTE#G$>i^3>D$2(f_HD zCc7Es=2p>8;#jnBY0&TzEBxQp(h1j9(UYyXn$?p}E%#FiJ!%>0qqqv@* zC@3^9bfxH2VgN_;dN>h7p8Ua^O26{Vr!CzJSAokMeD6tdSN8q;Es4wjPh)QxR#nus zje?@mDGeei-JR0iDJcS*?rtRn>F)0CkXE`oq`SKt&g6OC_d4H?b6w~2m%8^_d(FA# z7~>xIxaXMuSXOirQu3?4Q$-`ZQ8j%_XNSZ1l&Y>Y`}^EeMrHwp1caV31<%22<$~U) z;6+q2RTJ|vrQ~AApUut9*rXi~COdzV*^)mg%wU50k%}7(`gTix7_^8b5i4__(V{3+4EpPb= zpiK>TOSM`||jvc3>u7T7SP?(xp3$RTmNmDJY@$#&sfi`zTo&VEYdw%n|7htT>d z$f0y&!gM_5r+=`fb`tBo8-r?k2Tdo_-T;&{IsnY8VOl|vWGB(2#^{_Q8b=YE< z#njE~kI4ATa}tC3Ob57?0l!K=t?BOzDv6ft8~Bc_(_*<9@*F z!-L04-0+vp0U8R>O#|-&n>0C`Oggq}K6wc;fwU+^5NgSVrSOS6L@sPtGN~Y&!emIb z7Rv-+Y>nhE=bMoXlInTqcBS#bsXY=3tbPe!5FJ#1(U6Ik$dp#F){+S){sk^#rIO^0 z@#c2J97N!4KutW$m^Uwene|5|QpM`FU}J3H(_E|jlHJM`bkGhTp$ZcVVMO0Sb8Rtx zZ$-LW0}fO~31)&v_7m$u+`IaowX+m!_33C6ZiZXbXQt;|VWjmTLwZVn_=b?g$7Dv+ zOLAGXDT^xaaF%TFk}U>h2X}SKIa>BFA(b@=!D!gC zUiLgZR);Hl>%|03-XR9p;Y^m#tN{FvajM;`oD0%NZ(|6mGtOHP*#TwTZKi6q!W+b`}>*-E{<7)UOmoYp!3zh`q^* ziBYL7l46@D_#_J4je%we^w){pdCpw#xPf|UK}-v!ym9wi2U#l|!LDphFN?b~Pnt5* zQc5sSb1pUdS2WcP%%||q{EZ#$O9-yHS2UD{@Kz$rUyu4495j}o!_#?jD$dL)%33wZ zpkcqR-p>Ah+z>k_A4+U=rhck_kd%?9efUf&M66z6w<0Cx8ZJad^@8N^Uva#5Tlj}% zW;q%(KyzYu+AgCnrmdNhw_@dWfU+nrBZUZh^*EF-rplvu!2dacbeJBFHEv*&jl!W3 zsv({syu1GRR{RS|hESh!)}Zm&Tno8uO7h9|RNJq38V&Am*nIm}8>X5h0z~tDM=R0V zp3m|R@;=v245;0Y6rg|l z3-b(jQ8E$zcziH3=ltmi*%5m>Uvti`bf%f`o*07P#`g%Fv8RJa*icX+qP;YXACx=Dh3%#f{2& zru*U1MZtvc)zo}^@cZ{tu~E*>t-*TViR=>R3H%xe3!!E=)NgNy;S{sRAIif|W+k3u_78DV?T$vj$AjyG zxAOZF8o{bYD4Z|UVQlK(9h`1!If}j@f%z9xZxh-@V)JN-K_cK0%B*B~rG4r^;mK>Aeo!IF!}EA3o=`yA5;eF9_F$sQjHMCQ}9wmJDz;dB(5 z8YsgMSmJ^N!{W|rqRz0YPHdQrg@l5to3H1L^aGPg@osXLIEQ>mNm#FM+y;ELt$oqt zl@ov8k??6P_6$GCrM;2`D_kw;G3zVEL}{;{q9=NYKX%8uUXJvoS4oq)ivYYNq3yNz zyQlD;zVO5ugS3hnY~P2fT;pV2M>g`^Vj_c;u5Af+E2D#G<2=UfpQYH1Hv=-a~;V1^()0Z9>;`i@Un{JdT9>ctgih z0O)Lg7XW~WwyinExvtfhOftlTpJe39Kr6)PWma11;)vXypxz%4v|MhfDOD>K9;>A9 zkIle^z<2&_|1rX|eT9t~Lk|)t=$4j+-Pz7id*}3sr%}W(EU%En_7JhKTAOM`?BGSz z-;w#@X0O6rf6hx6{Il;%Vhq;%9M@K1U;q&YTO(f_6o^{m;w$;mkO72NszI z^uOeNG8Kwqv^_mAd$llNM)Utlm+-h2p0pa;COwY`u%#DlPyzt?v#?!7z_%3UJ(d}r zFrnFE^)Ia-NhqF|1~RaK+0EjcW*m84IIUb)NcTe5rp)8ZAq|PehKk@s#COL8Fq5r` ztG`xV=G>WQjqMV3;y=D4hQUp+P?pw5wBk(qLFXXdQFh*dbP%nOWO)C&*2X-teEEkE zy@4i!Jmfe~L@1XWme2bUtT)BJNvf;rSjh)5M&R%1M8I7bax~ujYFt z{1m>rOc9>wqu?0G1@z`M#kmM(TalKjlrI_0v*JuON_#r3$u3S3|wAnrJa?Q^d8mIj}l`Qu6GG3ObS z)WN8N@97~*$&wNhA+!8HW8>A$Y5@(HBcA#J3J*g=H!-`~9{NkNW^_WNg!%RK8?i_@ zDeO!*Y6D%Z`S?QLN1O#0Mkt*celk!@V_RE2cz)MYLm(VS9enz<&Ng2ru9v?a6n22$5H6;QA3Mhu%iiec z9#2N5jjbFUU5gtjugpb=mu$T}`?z6@PE$^yZBR67g*f61`mnne?`kC(`p?Qu&u&#W zr>{bty7Ex| z2DW1N4!TuYc*MoSkv-h*Y)e|T3FhQA$QS`qx;gm0KrwiBFmYo-!$Fi_$%&?8l(i;pgdPdrtf8Mzt^|XLkfhvl`KI%Ti~4*XzB{37xpV zk{%@V2%mzU({327rmaLM#K-Hs^d184_bn|pp$)X!{84il)`;56ONnXtmMIdMxen=M z8)EQ~z6<4j70U;$Ezjx?+MYCcVWlO!GA9~o!-$SRv&oU?e*DnouM-jN`)}!Zt0Tg% zJs(QEanaGI^QJ9a-4V*CJ!@}XhRAIExpJGW{Jg~_eVZHx3=qt4&6f*$WZdH|O~3y6 z<6N@qlFzchot&?3vptFA6Qxlo=cbnB6xu5Tlbg}hk=`&&Jx?|2AuZ~A(krHj|7Uk? zKKLGDNXf$ayyOZHs9+S?9&J%a%Z>YY&1wh7wJB|WVNAmR4ow~m4M8=joWHeu=P(=E zg(SMtvt4xhP1$;nvH$?SP=NcbcI}0D6xDLz#k#nX^4weLL!ut4j&0u9Dx~NwTR)t?1=Q|n`4besb$!;tldhE8h#E!EH+q?2iLDLa=p>tm@4erR zUj-+DH+^99fIP*sb6{9H;Jjr>x~-%pV8{#y_lw*!p0RRBPF-f00b!YJqnNfC!Ru+H6(vKtv?OSxcNKS+ zQ~#3Y@yrS~<0djI5w)E1MxFMT%+swY?d}EU?b#1#&)o*stHaWF9hMqCZJpifJNmG2 z*{Ku|vSI_mTl|oJ-1g$9;0)JB;JCby5zK%bCD!cw-rw<1O!jzu}j!!_Tc&4W+Yl!6|R@j))AHc<) z-t_s>QU!yWKtiK6we&sR=9*t{No!-$uO|%2VHt?{39`1A!|JxK088d2Om<(I=7&-7 zoePjruLDB&#Wkn5UKGlm3uK=oGRNS0*dO4l6tG&m0&aNKcHH3UzTZ3a%6-xp=XN;5 zpytA(R6@U1^l_L>a!ugf^Xos9$BJTfP+j?5_I!JdVk>YVYR~x5=-H+Qu~To1;jw+F z?SHrNSNXQ>7skr{^}_~0lWun5OP2H!A3m0;Li{+CXl^l6-mCk+SdCbC~Smu z%}{!d8w#NJeaD&E@oWMYm^iO$VMuDs)i@(c&GtqNumpO$D=v*+6qFT#FOh=R2slv6fTK^i|E*d84AP+qi zFL!nh6fR$wiTqn0mFfYWK4ZmJmPDDXsc|)JR}X(v!o1VT+6*QRjG}n82Fu8+>6iCn3Se#>KIBfC3`lMm##h=^Z?jq zK(70M1q49AoZNI&ie{oWG1Xz;{`JR9AxT=hVCP+xT4D}^$yjL3hT8Gp{DV8JzV&l5 zPyu)iVdaSb<01@=PvqW~5M|sp6&tG~hjQm!lByQPc-UXyZ>6Oa+om{G*nHjm9*bzk zTTl|9T{bFS^aEiP+oY+44!q>{e1B{z{2DSznMICRe`D-dW`Yv*(b0wdIe?p~Ls<;- z^%q7fE4ToD@ws$)s${+eK~;OMLvm}V9xZ!EB+~k@&f$eH9-_s}Ak|Y3L-=zBMM>(T?!_VU1DGC|?I6znydWb?fJHk7 zW~Cp?gRwzczjL7ze1UUY&G#{cYX3F7CAQ_=YbuJK^Tp$@s|p*9L9^GUbw+D8e zMzk@9w!=3Bx)Ng%k4Q<0o*kICbhPIlrY=8!ae3HOD!~hN*Lfij7lgQ)-b$x$~moV-n z6*-AR>j=vz^mV&?!=_FS>cj_)!hMFtVSfzbb=V8&cJdF`gZ2IT! z&H#=W)_hE&8I)At$_c4psW*^_CI;9t7xaL`v;U&&X^b}1{MQn9bt2}X!~ySdI?(;} z`sOJ1IAP3Htg@Vi;W_G{Yhd`2NJyC@Iw~=0`;;BRZWbC=UFX!(HJ2;mrAH#Ku(VSI zx3}X7o#+Z%SycBQ@8Lz^X8 zb&_4Ys8jc;6Wc55wC7K@Xl0LvE>qp57ObF=jExKVTg?)}uZ3-hU%d2}`{3fxB0wCT2ssJ?~^a;Q95N+_j1# zC1N(w|17LtD4DbL&SPxvnFpPLOe|=OR~7XYBh`-+HTg0Z>AiRRTw`yhEQ%{3CwPt1 z)V$KQ87924?m_qRM>&vOJF|mAk2jM(pmNe}f#0F0{`_jvC!#u*1x*r-Q;VzGxbuUi zd(HIqXz0(J5VEi(o+7j$D}jbo>v=gg?o+E`XV+>?_mX%gdd5`~L5LstPMNsQw#+|V zIRRc-kn>!xA4kU|`ZZMHTH)Fw5MHAQ^WrRIB`R`P#lP(?^QR7KP>3P}p+%xkhHB{( zjepJs8TvSegoHfcXCpU441w>L7?2{>NtDZDR*rs4D&T)tBWPYZ%9+myFBlP0JjhIfG#tJ0%Ai_>DsT3lB0 zO(vMB1m}0w$?LPvg-U0`)6N>8z7GY8(rgFjHh_EsOWnfV9e;7(VP?A`G;Z`$<^jTD z&r5i6*hZ!L(jY5mX#`18#{2*m%XIWH-iR7`nQsu3cVN0;(Bg37iXGa|HH;kpa#f!! z$Rh;Qef=8TOxQq!XOvjVEgh?BvASWE!zbvR6cwpox+`B6*wd+xznizsdZ@&reD0{k zfMnQP!Cc$kKM4=O3;?JJRD&l~;~xQ?-iGpI1S+>YW+WWdNMNSJ&)>#uFM+LgReniNg$ zEr=z4BJ$Yt6wRt;H%Qy-7Cyos7T4#ODKBa(nvf9a;OnG@kq$v3%6{k7pYxaVQT6xC zsW=OEjZcnOY{~G!3-(`!WfV+HF?ix4{MSam6STS~9C;TG5reuevua|Ell2g&eX*(r zAP7Z~y$Fk!>SC$oob65J?ck`m&6Llk(p1PUC}AAy8FQVY1z#{A zV59c6*9Q~+>zLm{{xm`#G}mJE!cjf7AwTy#sBiBthy&IKJpESs{)yB2tHeBR!f%eB_=VjS3(+$&s4NwDAGrmAAIq2m zpsXwMc=5g^vE!^mX%;#^5|r_-j#xNwsGBRU6&XuwRu#$luwYq zQ@~G83wvjUp-(n)_bZ9VlWsi_C|LWpB3iK~@L%44HOTWluSNT2v0snsgDA5Tt$_DD ztzpUHJ$&@|Sj^(mW>8K-=M`}L0Rjjm&9I5XqFRHlKbWkxR!VpsAxzK)a3**LzeNt{sLo|Sn1$@3yyPlE5onB$D-KwM0%`k5Q(e#Xd)gM7$qobx#$a0w?s*mQzg|IlmvfmTTt z-(N5@2u-&)S;j`lJ4~~RD2BaO*dujx9 zLk5z|Y$Z6nL?sa$!=o_?cvqK%g+Ix^D|w{ zbxE|cl(4e0>^l}AuLk9`JiZr~_h5Zn&11+>S;%F*3ZLi`#>VqPd^D%DxWt?U0_qYr z1bG9f3OjQ;cVa${s8|KX7Gh#iU?ud*0+fxO{z3jH^J{6N0A9})U0S+t)>h@El5V;K z7YEkBHtF=6ScPXp9WzT#c5KS?NyZ|`qG$~9p~dXoK&S;$!YwV8OHr2g45ae&mEG5IS6Wh9;q2T-V*v7}xH^bslf#F=PtNJh zRMJ1R`;8=K*P{mzl(? z(+J5<J*j)Jdn!<#Tk}8nL9+h-VGc0>RqqqXn3 zrw%%O)UikFH0QPN!H%h$<-V2@fg`mYE=0$X|72?)UuPGm_o7&{LnM-;Os#;($FTX? zrBo>1kzl`~W?9K?a#t~{m4@4w0}--6RO+#Dj)rhgORK2on)ngEUBlA{1Y-hNzVE?Pe zNqNwymj4+7R-So{2$OEFt_jFKfq@Ft}V0YJ5t_kkR+8RK>j1mlLV0@qJp)>S@@Lgaft z=xW{Lg<*yH$s_c%=bW4&zsXdQym@qwpKbDiw=}n~z6DHv3A{$vo_TRC%pQb(2xsvd zEBNJ}p}Z3gMI8+{eJTuR*&OS~)*F=T8R_&{P^G|bXDAqg)IT&3xPCEj%WwJgh%}wJKU>9wwn6pjUc-}LA@h`Q~Mg=ut?%=%> zVB~6Ttx0G@;yalmXBc?|$>;-(e;jY#+?aCBtJfCw2SP|sF0XR^wGdi(7Kj?${nVe_ z{O{y08!lH%+fgW?!_hxf?oZP{2tRPSY=1QU!j;4g9>8sSR}$EPYw45u@A)mx*u6Wx z4@uLJ?()YrEL)H=`PNADsFWmJuU?g~oqhY)Ik`b-54O% zGy8DEMutoLPbmXB+eeLqKIBUegz0=orqRu5b7v>pZFeG}BZeh5@t~pQ9Z>xO|8Kr0 zkk~7`Gm}A--6B4b??seam5d!<;m26?tW5}_)E;(W0=10vq4o&KmD_#J0jYl{jG}Ca(=y1B0$S5^+aM(Yc$q0#s`8NB3CTqTp zJ-ZsqNuXje_OAgP4!*Z7ve5E9@GZ^q%LI%^kOr3PUm}=&m33L{5KDddK*T=`f5L&#)$BtV6hNX(bMCAiNl4j6 zs#DCk!DN#E25X7QSwze2btjnsVPTRrH0+-`F?S5aKU(?Mu)k-2HfMLhWBI_7F!4pM z{QJtThir7urK~h=uPa{_xb4beG&e&ptcV zjOR0W_M`A2l-uXh{A5?;m2(>eg4@%kwftD;&Z)Ur5CYfs52aaVAV%zI+olaQX8IfY zpzEpq+F!V(eE~t4g05)3Mc+R#LaH$Vf?*h43LveWo<@nJ}LHb5ANi9 zv;U4Vg-HIfH~$@fSKs)rS%#4p;-lBdE-aj1t|y7`(yNu_`6%=8N2Y&W)7>0$()~`p z#8=mE_d|z>bBwUSYCd?L6{yGx=E?%i?F*o5TI)%R;7f|I2CDqm_{fG1!DG#u*QypniRl;92irYZ1SjmY=X_cMMRG|JZgTGUk+IMUS{LRn z%5KV0BA}!4sJMTv22(O>Q4IJL;1Fi*-BB{GjPDO}M^2nhjF!?Ae9eCXB+Gs1;WFQ6S@wd1`1lD>B=|SbCTwj?4xW}e3JvfJ*c!`M85wU zwnFG;ufjkBxO1VKHvq_iEM899e6&oH=LNjZ?^^=ojmRlwSta|m{+sj+QzNHFg2syJ z3;`@a)F~sG?(GvYm8KV-9Ij!wI=pGCD>(^s086eEZFYcDj4v5w&b zrETFT9iL&|G@ij5qNv~j${<@yJ=Zw%LORppCFwAJ=3DpsonmN(jaex#ux}Ojd3Um(8HXkp(t6@4Akg~DFg5+tprICZpyRh#< zcmgg6uD!j}=Y=2l-tao|_DFBw+ZqRSw=fEaUdR^=m=)!DIA`}@5ACd}fv~2Qx#xC; zm;fetshOXadc?ZJk>!34#y+K%+p# zLq-;-r)jmbY67Gh`5)50Jq(}ze%=_a80rAh78Fo>2Rtq9ep^VdX=Dj*^UpL#_dT}$ zikgCB6(WUrZ%G-3W^|7)*%1Q?vu$t@JnXdh$3Pc|Gr9U3yp0T^#_7HOR4Qkj8KuW6 zig*G??y{;RA%9dAIhz^>!@tFQRnX6Tr+P~!4{sS}+!A93-~Y7yAm%0*TOaJBis|?v z<5h1&U*8~3q%lcZf0nLi`II|U39Lq@@|&~qt-llR2D$hHezvjafPyz|Q%y+zuKa1u z^+qwh9@?2c?5FOOl|{AVZ`S(OJF8f5;?m+NrITzeLTP?DF08H-^8=~mq*|+xa!Wb8 z>Uu^z@8B~=u^(O)?A2Q%(B5{P*RW2m`62zHs>%Idgq1`BVoAv)v$mJ{xPWG(W$$Wj zxm%}pk8BsagX`a0&0qVzP+$K0uE4r|K+ z&o6>U#7k;kw=o4A?x`R2FU#Yi=Wj+pbJLz#=HYaRxp>cAZu;}UziDfr-3yE8Go(Fg zN`OcwRWdjbfl~ap+wYse69&F9#u}}*k_QSloihxsNl@0H{J!NnIph8w^X+?j7*)f| zqK02wd<*%uB%`6C?wf|C)F1vi7+^@^N+vymH--zgV=S4R zy=8}RlQq+dvzClUcoRLD*LVreQf@G3V?PXZ;Jmpb<>i-JkBQ&Npqx*L{#@5J<*F=yFn!Eq=Z_%T;3p(j>!V@c2ckjqA|=damo_QIe%fZ;#l89>qd#hFvhHUHEG!qewp|&Rh2Mgy)Lfo@{KX-rLx(F@>neo+P%^_K)OF!Q!cuJfv=X@Ah$h75xb^~ z0ec}TII@4u^X}|)sgQtoLbY0#SKhRgxcfV*Pe1YY5q}?fA$Irq7r{$YvBHo@irifc z)!E0=GXtOjpyY8 zMNPT+uU`fdKKltcWs=c;ONL&j(XYOqqs8r#gj(v~Jwi5FUPM1cjEYWb;!_dxy;e)0 zQ%wrx6D4X4R_xS!>x!KUr^C6iI!i6D$4hl66>3a2v&oeX6amA#i(O62iHQkG`4P#D zn23nap?GW|-A&CUibZ7HLp&+vePj$(LzJJM&!uw5Nn+S@aiug9+f~kmMF!wtjD+>~ zgIcFi(Forf8XDT1u8F!`>_oDlHl%#ubF%@r);57c z&86+Ft3eferfgOR!L7ZEvrrc5!Mdwzs!e z`_OnW;V;-R%a$I1g1|7VFxEF>xc1d3$Tzldx~|_u3{3@*x;RMpBO^@g*n2(ttPars zfQh3#1=9+Fq%A@`V?0?A2J&l)UxI!aMXJSF3Y0Dn8coAf>pkJN_Vz5D z5&d+x{=D$du!5o=wL}GgR@`tSHMNo}S)Zjj3;VI7-{Y83H&pH3XNXTj77c zs{B7+6&eLgL)O88RnPm8Eiy8)#$?Q=#r=BAE)EM8=2d|*mVU{r#oc){3jJc}4BCFZD#m`QZLsn+ODXs#ti;<;-9HNpDTyq`->j^xb~065{?Fe_ z*ssdY8g^`O2zi-PFk6&VLKy!$auUCf|JRf07PjnlAF5evrmwFr*yMD`>3o!u8K82M z$m2|JIbYW`J&lEpjr|r0PsGNiLM^$bhLu7-O(vFFwW6|eHI!p%<#fI0EuL-H>iuz> zI7Rg7X%CTk-LHmeB5=PD0;bQM=Ir&f41A?Q&04 zMI|OPK&_0+=>X^D0OY|$76MM2?}LLfx}KM+QPI(CmU(ii{llp|FWq6lL9nE}yeWTu z-{IR#Zl<4ak5oJCDkX7Pm(}VF)_Mg72WK1fge4>;RT+j6aI^z!HX z^t{l7{k6!Hln}56+a9m9((WA-XTT6`KrbL<0?zN?+~%HeBIAdfQzJ(>a&dI9Q%aJb zpMQL#FPhDpCRVDiqeD1}$GHqzT=g_CC@2bQ_g|#}_>Pi?N3)@s8MWoYZ^a1;N=k`W zIl%Scn!^CFD^vpI`awn+u*5Jkyq@9@O}BsTP~}K65#T z)j|Z+?!)bQ5|9aZYS&I09-LdR<`SR)PE4|bo*{*>%&w>mkeLD*70|VZjuP>iY@kucEtTO0920p1n%euusI2eIW ztIlw?$|&j4`FM$(nOVua3~YcmoheIA*e5v~mu9ft86~z_Y<%+v^wr>WJtOnHyMP9U zh1EE?zdMm{Yh#lko6MfX&gXXVnLghB>R^_c$ljJRUUlPARz?OW{UA^?MtgLLI z*>&P`c9Bbg3N`=JjRCjQL1275HWcu8;GFT*m6eRC>Hj!;iPs@j9@SotZXnQg-kxvU zA7a>-3V@^DJEF*?Z#JUkZywG^xV)cui99dRfHS_iyEEHjDK`#E*w13}ymLTDM>m-) zK!f*xm8;a3!ex)c^bO{F!oHGFylZGkNM~1U((6GRj1-9M`wDAQ_6P zwEQU>A!@dvC= zE{_{V&?sSgZn@FX931vtyT#ARneYzfLtp~~$zqf9HtM`3pHEZ#Kb?UjYonS=t-!ksCqZ&q+^9LKj$hze=Czl z(AlaL4nXeg>9Gg6LN>W00OjQk%#`UQhBs*7%(2XCXta5?7+P7;-`?IzzL-pRI1vLE zC#M8hO+Pw9QhfhRE)otagn1BVgws6LL#{ z{#A@C1vJPb;sKITz&vb^7P$I=nJ2LrhrLHfCn^0>Eml=k6{S|LTWWd^T$D62GV=J< z;e2kfdb!l=cgQhjGi7wSd3ks?8=EL#Nfd(E5Y^V!=5T$aV>%E=r!-ZhnmfXOFEb%F z=y)n2BNIcf*Gj9?>ha}O4(I_S5zn9(ceLEbAQ@$KKG)=IU1&5AH$Gc!oC{p8)aCw6 z{7)o&NP#ppvkDBUU2-Q6uE-LUC$(|NAV^S;H2B zi>-qxE5*%y7kCJ&o%Cl%I5;eQ*f0Dq(R_0_ICt*%;%}ARQVtf~wUp29drzjz(4Ibh z9h^~jgjP~-`Psxcc~OpexWa~4(`JdsHg~Go*z;U=xS~SEnst6Z4`P#u1_@*gCT8&W zqu5JXCP(@B(g@j=rG_{$H@q>%xNy5zD?!S!^D!c1{*+ z;)ivw?b^Yv*dPhi{~jIvR$TmvjZMvkt7@3hDY!;lLZV&(9rj52-YMNE;Tg2-<=12MEoqQRWC ziY(H@@m{`sNtZ=QNm+s^l~N?1DgZ|!=n@WY+>UDw4wmLtJD_93jle!TJ9D;wrT97Y zzKB~yU0gipy70W;40|!DRQS}CnTkr$aWdh*75z>AeD7yerd4bF@p)|VY|J% zLq$VdubH=@=I5`!Jd+5+8!Ocn_4oIGii*0LWLZ+LM}mZev|!&$T4g>F*wrOIPb4dz zgLmV-jLPEcjU<*|nlY>twk>Rpn!R+D+OPZ2JwJF+VP^Tl{{2qM2(z8@FDjQpd*SSS z=rc3kP5k&2&znlIle3EE_jC$rLn-`@Zg*$XJJY4)QjsK-EG#9LXHsPDUw0<*CrY#h zbvzHa1F^{Ey}X3LhLH$31;ZmEvzh&&h-1-~0TV7%E2R|`eemD1T5b^rS1{?eq$Jxk zg#2Vw!xLq#@VasU`}(Ay{m{JO3E+bv5Kue-pTV|1!_DjXLZmK zg%+7Na0y7>4??6hcq}hc`D~Yu;mEVZyhAWgs0AjYwx8=}iQSpK*q0(@J^LjyrL-P1 zwo64#9l*Qf7C^{p!e+C;2baWaD-U)=T3Q-zrRC<(uqzlFuIcQrCX+^0@Wqm6loYx5 zk3>$>7X$=-{zz!Yr>9RcR0>r$)20o|+4S1r;+QpiKJYGfRTvKvi24W}wcN1S+uL*5 zE~Ri={ypB#jzVBF>_Im$FmSuS+6r4i%+ z`akcBM!$dO0REMjW4aalBkhBt2T$vfEdNn+2cnnRi#6GakD^ImFUPnh<7p{<#DiXc z!ksR#?>8e=aIFy)oHX95nF1%ZufKn_VvvQ=F@34o6JPZF_&CG!;&6Ya9MNxPM*aHY zNH-;T&TyseOA~ZN&~Fy)`W8A`X*taT<}WED^UU4d{q$fS-)}gX7dmg-x_WfvyL1E2 zLcD6RM!DyOO`cq02f6R?1&Q^qQu?@jV=AAKn?`?6c|W()v?hKQbqU3pDuc7Fcz7K$Q`n=ejTe@yahqE|W3+D&NzP^V{NZ*>bhg=(cfQs(U$@n#tGm10YL-J$ zNofa6^&}=aUq02~@_4oBaxHADSphgKcmfeGz7I)U`Xed)z$fcfYwY~VM69o`r#Wxk z{atvu5v!oy=)xSY<6-`79Ur@ZIns3FcsNfCZhz)aoy}8K!DQ2(OE@Tdhd-D0H^#0iZQM0dxsR&4>oDmG<`ExL4=Z?J_LNuVLb5iux>pvv`71(+G;ii zoTDfud^vNaVe?wRr~u*hqW$Lm&1jA z;5)XLTSegtRf`$UnjS8DMYq8cP3w3vi{4*SBcfndG1_29&q3C!Q8)0^cV6HsTPXYz z_V;QIHrH~=(wGcL`sg+B_bb+BY4CnqQK+-E2A zKK<0x)U-Wc%i0@7ZaQCM-CcWVI+F5!Fpk-LzJ?j*hYAV`x>0YvFBW@~ZCm=8YZp2; z`eRYi(KjxZee+F6)2eJ1ul=`Jhe?Ym_Ca`hCK5(-_`hD(nz8iwtrX?c^)idHsuVaL5? zId!E`d1agt1?9czvpjQsEDQT63;prkQgM}Mv)(l5#602poq@AW4_OjnAVBfooF7p0 z@e%lKZ<~24Xi^KGO)9y$xv>G8!6X-v1C|Z~n`fx5@9H;vH}D%A5s?dG5R+Ej_dkC= z!o7RD$^5Rbths4>W)91=dml zJXVA2(MT`3Z+Ln-Im})kz{>|nE)rs6#Xz(CwXC^MQ!_8_w}a_qa%jCV>6SLw2B8H6#Xk$SW9=rnc`V>CLH6A*)yOr z`>5tR{2M194uSi9$LpP0_g87!Nx#|57aiCl z>T=N2Zp=|wnL-WU41Sb!3Nw`1EuPbG#|GR77HE^i zg)VzBAT{G+1`p-))H_q{t)16cn3#o;0VLg<}ASX&R^ zJd&JZgMeodh^5-Aq{qFz$h6V4BwGFfdVMd%QH4=R*7!q#?sTmuL2~lMiB5z+R_(qv z%!if5_%vnt%A)fvhvPqO(h|Gq+*F3aZ!$=~h7=C6MIEsVLO3d*+nm<)g#1@czMifu z*6R&(S=_?~DPBHH4qr=o$qWu!aJuKcn-}UU#Q1ofBQ|18DC_EXc<#G@Rph3EA?0|b z-?{sRr+6hzUl@KYL@vS1mpr*RU$I@xzSO*UjhSb1GTbBPReeH%N>_2|u};~t^$U6ICmq5C)HhQ+$Qr%SnI z!7iBmUSKFQHb3!Xp3LO7Ca5GLfMAR{#!^7yxw@3ZdFt>Xd-j?aDk`cvQyf~H*$eFG zr1h=h_ap-DNzX-DZT5e^@cP+qQ2wX*J==uMeqXu*`s(l}c61AEa$YnmIiY@>Wvkp? z$FM{`Tk6(sQtH;W-QDk&OlRRTsNgJeE&JRQztG2ymN6heKEjK0Y&eUd{T;T0Ad+^7 zenirKJc3OkI|`Yf0n=T5E*NEUysj&Cc~VL}S-LlTrcDJKDbH$6RM3xq^n^d3^$!kq zPAJu~h>NrQO-C)T5=jV*4Tu%+TY~S&J4xh%XgKQsKl7y81t^PVO?aBH=i1hm z)W?s{y>HHqAMWqGj@wa$phKKiOHG7f-TvJMs{vRda6|Kiw#{dFFqiG)50x&v& z*(9v2tQxg8!@#3!t!V*o=DO@1Pi#{MudA!8QDfEL@eNIOztV2?9r&M+s3@!e6f8(5 zmS~qjx!u2w_l6u=S9ZS_7AH+}CdDI-O4UIY9z@V}YDU|Vh1@wD zAw#QY)4DL!Ny6{&wXUviZJOMD13OP4UB1!f!0n)V8U{5_PELS7u-pDaiHuIrmhmK#jsqZI}9K3 zhkDN$fGd!1_&R#mr#m3l9}n{`AFl*pad=-l1)>vnV2R$gU7oCm0N8!J(%#)G4A!{` zq-RaH{|1`?stPCM47|I!z#$=#19>0sq7x35$R!01t(@LO-Up%E<4&I1%wTC}y!4d* zQo%?BJJZ%Y<0Cf%)}i{BRGw`SM}D?;G!n1jbjWP9#zayW=YnFB5(hhmAr=b0q;iHQ zk%ml5_Tdz|3W2U1w(G8u=#v%-F2CHJB^@~nB{-4*@o{&3mdI|14Bq(qMC08%gb&F) zn_xOCAZJ7zdR1XQk+u~KT$HjNl#A?7O@N_RUAk8cEJ=VRqiaV; zqX3x={Z!NGUyl+Ui4wi<136CU@_IjA`Ub#D)ZE-ZGcq!u2Fj_QunXwZu3Z?(A6nAe zi}yHPy+$isZ?Ehx*O{UAA93n7m7X4{^S_lzbRi#JDU1lZG?{oCnYZ=Q)^@Bdow$() zI8x~jM9a~OAG_grC#T%8@6=M~B?VpfDd^~e23Z=5hP*v44z+J*Iy(an7aJ=Ldokfa zEZJFZZCzaF2?z+NzdN5N6mWVSuj|7v7KpwIW|ap3;3nC8v*!g=q;t`AS=&H!xy9Rk zJ%U%pYHzYY>BLY}R1^ULfzM^108Y^LFh?qijOP4k7K-pd5f(i893)#_<*RUTuG(fh zqfJ(qmS3*w!B8z+X_4$vqqO` zx_1xAX!-#xAE1fXa%f+_y=C}YvPCC~N zP5>8ysC`+jV;V>ANb&L?CLal!SQ;`f4S&hTp^5&R!fSLhmGtm^A)h%AVt7alwBJ2r zbOi~SE64p3nbs703br=&4mN3#MulmCJ5Ivy5U|a#!NoCsR)oNEC(jcw5HB99nKvMV zfUm5z-yHb4vALnpY6$7-9Sf0twnTz#~J8nUFod8fv>ZCGl3Sxx}eO*&IM6DM*G69`)=7c zY5wmmxfcgQg<=YE*-TMM6dkoE7X<3*QMne~F68!EHp_p{j)5+Hbeh~~L$H?jd~qowBC`W09v*&IYC_rMq-1*UW$<)D$|cix@FNqR zdi?heLtX1k06N_5+G*pC1mwR|4~#Oq{z~Fa*7@BG(!j{sN>fL`?mDh?os?tK(8!bBwsZhiLO@A6G>@cyvj9( z0v-eg!#pEX8J5WKR)){mBkBq)Uom&?s@^{7ZyYY~(Wy}=Yazf*{ZN|r$-e$`rOC-w zx^IQ;vWN)CB6WPOjC&%8w|2|K#ZwIA^`mc+8>N1x1|#fi8_;Gs`)8i17$0pBTSZbI zK>e<~&YUh!ZDFteigJA%^>+B`EEC>~x180`lb5n@Iu_6@P0e29@vSZXmZn8(o!qE7 zCXl)N9#zJoRHVwA_88OD3wV+o$Z#G$AY%u;4!}tA0E_#R;KLO#@L}JF8(l?3MYDxE z_J`}~)&wE8)j4uQ<|o^7}fUjkEC8*hfh zT}JfkjLE)MyUHD}aRF#D^69NpMq!ufxi3+ynQX)G9ZGTqK~FObmV>$@qx7ci-?x@?i;(7HqfWrOiaJ=Jm05>R!c?@X*+$USDS!smKv6C zc_J$>$;R)<)ghvZ;(b!i$PP>E_Sb%%zCp;=)}rsn@zmMoa9&6fBiw|!@CQ?p^EsQ zZzPU#)x+?ZwMhK|aj~xM!L!^=hM?E+Ep!3VD$SHOD_ZzKR=iy+ap!RJxclIFD@h9h ziWF^ou7U-LIXBMk(J<*Qps3!l5 zB?-uvXyMhs+2`X6)#PoG+$KY2+}kU-C}Zi>!OBwP#fu6$U*6Wzo^8+7>C6fe^(1PZ zYWJ${8@06C?M?sL@_}Ccp4MBEu5@crmbLCcbX(hXDe}HmghU>-bEgumZLUhjuFKY2 zY(}^pX^V@H?VIt2?9clY@r1md^h+DdQk4As`SaBMdF2c(;~>)ut0ToR?1{&i@iIYFN-q>nQ(EBGhaA#Srd#JS7xK=AjE-o&jK6}Pc zGP<+3r@2Y2&Cmmi6BQM(fc^IE+q%X*m)KxsEM059zWyR1B9t2k_r_ziBdtlsIsGSY z@xqi-CaL$xXPWK)n!~SLM~orN3og?-x1M2^`-32 zb(XbyJ^Lqz_rn)oZR{a2F^vnTk3Z$bGXq~`gOdW7&2fN(pOsFr zOa-6@R@0 zCF+8!W8BnUrk#V=pon;h&#L!;4$3v?<&%0<$Pfft-{y8cpj_*jabNG7H8+X)QXfiP1aOM%qLLNqNCTic68f%+JP|eIVbyZh+n)J=r)C|6AxZ zUh&h`k97x{bsIX+tI&A8_Sb##g-rxGIk6$fW7WrlMz8z6K;jddGf8b7oQ>ok3!7c2 zkP`WfHj6*C5>F4P20jzn-?)B{#eDmL!sE^66ZNh|#F7+b-X;t(kuu9@{>anIk%5Tp z8cy_?Q~IG@!xF}$9W=F8K4gLz54A0mxnrz+E;yPcB2g2_NKYTj7Kt$$v%lydxN{zgiB4E2SK!GrN8X=ZtOUv@is^ z$=YUW$Q3y`Rxz=X?3;koTM;unSK<1Ad`CCc@a^e;ll!Bf8EMDIocz(3wPbI6yF+km zs{?WcSszHLQzmm&AULPedWidMVX>tEvA$Vv)FS;nTxMI(&*KCYs+0opc37ONDZ7x` z5%s@OJrV_Y^{odnW?n*rJF9cmPdTCjd=q9lHKv>hwfQ2euv2EN<*h<*`lmjr=(^{x zZuJh&{@Xzr-W2M6K#vziBwGS2Z@e!rsRn8fpx_J&rELb~#|O2`b6)$qQ-vp>9wZyj za-OCN4#&U^wa7Q-pz-5#yY;`aMDf0Dc~Qg5+LFo5(JG&^OTdEmct7inj`TNXH6tl# z#(#6=J#m8v(qElaq62p`Me|bfjvpE|yM#!)0HcrE#CbQ-L1v zaLi4b>Ki`dwbJiy2X}U41fP21B}Wi|l6SS%ntJ<| z?Dkx!$+Nz`q{){r{OU!C`(2asrX^z|J`*XA6#-zoD{sUv796p%rJ{O(lPy_N1_kq7 zy`vK)kd&hP3EprsKlshK>!}ape*fJ$WbUd^w`*)RL+InymvVP^XbfpM&t%pn)t++l zqVw{utq*;X01V^KB0@`I$3S@?VXWS93kGBIW-cc%~KWgwHRgtn{Ov!88%;MCwR9MXX^XF{xHMP$!E(rXp=hNXk7se zfhD3KN%ap3vL-DDi8wVITiGQjBM$U`0(t{wEg2IQT^qiqGwK^6K7=_m{;m{Nq=ySD zDU=n&x8D3*ht?$|+z)u__c1-u9iIo?@8`8fD!ZT8U0e_~r)+gQSa4{7n#A^4wmT%z z)NJba&*9z=Aib%os#;42%s(Hy3|OczX#deoe}CLWjO zH$LaqL(WI5_mmie2&7U_#OW_ zyILR|sRSV_2kREL<$!UlC6X=Tr<_IcB&Pr%QDe0Ot$xR5-aLt`I;2=gB1^v_(@(Nz2JO zS^a=b_Rl}<-dXScmmnKn7@r8FxsDyJ12WaTECWiNTf6tdp|-<01{t`nuS0;J`68? zEY5nOETlUz2Me6IWp{Q0;9=_~UqIZ9_kAOeY<1V;r8QwQ7N0lIS9eF}*qym<4>H63 z`zdgEv`!q-zJ-`w2(F~5$cU4^>Hh_EB}h$;16tRP>b-&DNH=l5ZGTHCS#jQJ{7rj8 z`#b1!6xZ)~{+@pmt?dJ9!{wDz-Lr%4X*0!}LaC2;2d75nnL_U%oqnH3`e{uSw0?)+ zcnm1=lJwlcE%qQHGr8jdjLV-7ob**>ccN?>i!XLK!ZsVip*9*btE;mScj#l(7W4)f zw+SJDZ0u|s)I;y#rE1$V&sHGtsZzkY7P^eQV+@mxml(E}b*$yD4xYfMVmEox0Ho~Uam{){$k#$o)kIE+<;0~9{-Z9( zAX~SVE;=DbLXT9zW*5(V{;dQ~yn)Tsi)d5maiHZgmnZq6kp4U`B>e2hBg2|FFl5o}mE)@p=B*=3!6W z(pU{?)ea8S725u>G-Se{@SI53;4iiHBx!|0M?P=+@0}51sRr9bex52f{?Yf}2Hjok zMy@ve{~OdwbBE5DWuy2Xinjb)#Ap8~&y}F|*6Q{<21w#R=z+L+3g1|d?DqM_ z7nm-u*e|yQq(#lZX}dQi;Fu!ep)SEocT6;=BskMZ%cl<84b~DvRdNtCU^k8`n+uFQrW|6lKk+ z+7z<&Ah+>Q0E2kTGnxAwgwj+8Xt7tB06YlSyxj(}@J^k4N}9?z@hoZiSX#V@R1Ixe zz509c-Om*vUwN9j3$suyebheQJ5iA8y2c@A`u(tPZOod}@c zUW_rw!w!`+J$k3!$bdIo_}=0ZTP$LX(wsr||7~5GF4>ywFT9PLX5niUvB%9BDc@2@mR*n3FK6#0za@1Fbz+5UZzhCsnaXGNE>)p z+ij;xsDEq>k+TY`6L&s4Ol4@wZ_f|}s-_4lESg~porxi`)SH^zLOFyHn;x0veu&oTi3VQm)NZnb57cb6?= zZgumQxQR`~FQ)yvF@T3K_)5hc`{<+fW=jnBh11?^+hR$c2Upy+W$BE?shQ2bkAC(M zCgto%q`Ig*4bLix%C|<@e8lXAAGBT+JcoHl#XZ2J^dvRY*|}EQc`oPGkk?sa8K4(#f?w{u|yx_N1R7d;%y_jqQyvM zJBHA5T9y#4myNMwLql=`u7^WIi9m?p+Z~Fl<#V-pdpe(Y+Ldd|qT z4D55{Y4)2B+Icd>2K~co^56Nodi5q3BxxE=_1Wt zP{6jO0RR|z)cTMHFp8%FD-fGLM^X*AP)o*%Kir;v$;(R|fB%)UIV)AtKc5sQO?*QL zOb~z2qB;f?i|p*|5^n(O{5>`n;4ER`W{!6_U=26ot>2SK^M4T5RgiRwsJd$#!YNxv zftK5hg=tmEq_>?8FqYZ@cxKab1>v|z&GOp^Uf3Li=4jWSJh4+Mpx6l9D6vSd#8e@5fu|~g-9yNM=uaPm#gR@xiy+T3hH=? zqP`+PF6eBWq6l1?@{NMgzrpiYaI`Z@BdB`oL6D!QFV)g!eT~% z2%r&zt;Z|=U3xY1W3`u1UBJz^1U4}}HAjtLwSVVCRUNx1oE?CS(ZLqZq5A+TnKDAU zHCBnu`5+kBhbl}T&@tBf0jQ4L0Va`Z02WLa}$Nh&R@Ey4@-yvOm46q%^htbTp+O{PJB>Kzk5{xX>EzfTE1V#9w zH6BsZq+6i=@gYNH%0!*Wn49~|$yt0nhOf7Y$f3XpDlm%25SP=VS$Xk9FfvD}cOsR& znP}eC?!Ph>Rpyo6)|1zYVKCw)ny3_1)&QyfVq?!3ybA_*kaz{-FmSPxA6)>E^~D%^ z+<{PJH^TZ2PxaBt54T`lOmzyAaHTbzf`i8~N1PwZI2LW=9&`j_o>d;Ld`M4dO~wkO z5VSoC3;yumCC)_Ey4p6G_+Jza+y$n~ z?f-)(*kuJmf|dRo2fbjapMuXaRzh=@3vPW7Cr-RT6atnliWD7{#DA|io$3k5F@n7K zT#5-QeY381k}vi(j6@>qhfmr=q}d;x;<|b<@)54Q7SVDoJ=vj)&tmroVm4fs$J+oN z`QVS@q5r+h)O>;coW@jfx;G$NIBQ>UhHYdaYq|@JR|)2Kx#d4a-;4KjM_jmz8kU|>M`vNC zI{MDG>`t)neUQi4^Tp-WlMw0I$E~V1AwYI~7JuIav?P~q4f7AQ61CfgHi*35+@Z>} zcM-sCT3FxREAx=^h5RQEF?b**Sw;%6Y+pmx?%@-8gI!PYxSz$tpY;LN#GZ$pdB1et z+MWjhZk!lpMkXRP4z}jw+$|V^G)UK#1WE7RL*9AoTOSrH9X*l1U^n9*qv+J%g{c$Z zM{Kmy@i2Dh9*`UH-a_n;v4Y~%U@xMNe~fc+K=}Bt`#Rta(tn^qTQZ`aKh;7?V1(-;VUYC{Hwn?w3lIBd9=y;gvS54$|^@gXh_|IjY=J|MukVwi>IQtkEG zUcY1;YRIA-CM8M_o_R!X%7SQySdQSd05NgNA%Xq_u{xUGL@xvu+3o57oAhHLZU_Yb z3-i!;DWsNxbLN05#1$N~5((D-Y47;`Q^hkTM0TKUdN383s@ndCP+AseBGfcz68x0l znc+htClEl<$wg8?jtsOLK;~mz-^&CPFeTcJYX=7(Kw0GyI5>vqzrh9FAObB2hrZEO zxLKy)BwX|1BHzPn4j!CM4LA8u4r?-!Vm@&XD!p3XXH)28LJ5FmfGH_C^gEt_D2?A3 z0G!R7wW%U9DCPAIBe1Br>E!93tMJ~z5pC-%ZZb6T3tniK#&wT6VVUih8_0Jy6F7}hRI=}zZ%{Vph( zgdjCo`Nu@;7-%o)=;)BKLPJBN78XvO$XAH>7y^wCPtnnt?n6RD9b6Is$m;g4G7+su zQf=VD%+ieY!1aucAWv$YUxpKbk3^FfXDE^x$x8>?8*_8>Zc!9W5<6#U04m<)JEC1~ zMBTMXFx@4lVrsVXz?M_`=j!P3bKk=v3x}I){8M#h5@9a7EhVff7#^Bw}890fYj+7iJE&A*Qnh1nW|A<9iJpoIR&Aep)<8ng|!Al5; z;GT_8O3ytD;_*vHacbx;hY#(OC>JEuZuJocp%}zvI5yB{0U8ltJr;1F;e%dY4nB#; zdH|+yfem?UB-I@#z1@KhK;`dyadE4EHlX@C)||AmrQJSeEV1{e_Aw~F=D@ap5~fcO zSQzkH;Xg5JPHryt^NiUjDyr&kQ0J((fmjGFFco?1D|R4y@B79!S-Dkn8>N3`*L^!k zxk*MvbzW%JqDo^r0SGU+CQUxo)436BTv>5=z~SMH`AM6J%-FYw1dBZ$bcUTj{S&uU zn@{0z7&JyuM<($i>TwqqNS`ML^Tj+K@)$@-X#W3}9~k(=8I8%iO5vEEbM|DOgajM@ z_Y^u|!6+o(B(yXw<Sg;L95;eGvP4xz!jrg$k z1nb@Bg-n$kZXz54GT>9w@>|3mFZnJb_0 zGHBQrKwlppJIL8lt=T<#^#L~Y09Um`#FZM^tdo2XdRf4lRK zL20;2c%kkrCM?13r65)~LU6;A-C7qdzyE!Z%uM2s_6^$_IJPX!SCsclxSrIVe2!r) zd)Ant^5QAE{$aNuE948*Ct$jS!YQyWNXobTM0Rez>TQGI`gVR*`A&qTduIUO71Odo9tG2n#F0vbWC1 zuP%n?#SLWefI=6h2Wq_LEp(%&^P4CDf#@-jP)2*4v?Af7n8Drt6Nx(#a)kfxF=U$n z*5Pqtdq0i;@jIeEDMi*^cWZhuU+Uu$Z~-ln&~3L#To)%kKJ14X{PqE%seu%I{ z*Usa(m2lNDOzvxfcEVisxidchBIlHJ&D9q7GgMFpb<{(RV+@yl&#>SLnCW2W^T(wP zi;9LB4=>@sff$SZP+x-RvxIqn-9P-5SvM()+x~ry#^X5T%e|)UX}$3VLx!}xnisA{ zok@WlbDW=U{+@IrN31#TPfohy2ql&LBd0^c0PKnJVZMKUaF`o1|8?3Jl2F1`deoJa zZdzKmk=KnR@f!ygf7aLl`QxV7PRm1+_5>JB(s9?6^~s5o>(cwEBmb^yJ^O%>>{M4W z;8Pwie;!stwmQc8KqV}g-XKEO#Fd59DZt}&AHs`!9$G{44F0E`2)6xe*tHIyDxlBY z?(<2#s$4|jw6px(9F@^OwYQ9jy8Eznjqs9NuEj`KKbkg!)$)mwTuN;Ssnj_9NniX%5#8@$V{@2YYn3ka^f_(h21H}raMoP3{}>s)Q&V+TE=jZM&v zsBka6Au4J`$Ga>8L`Jp?k@0zsmCtHlayTEz*XB^l~cT-Z~Ke~+{=1K+(7o*Ev?UNI34VrHI13W-h zOph0aW;2*xY__JDAHDLq-%v%OD-&jUeeNJ0@H1YV{9_gDuO;HbJl_P$V4wM6s4l6oHO@`dTCPles;FD%nVhe_QKaSD2e4Q&O`%6I=+;u85E%m@>X2!>Cwur znfM0Pqkl56Jg0?@B9(()n)dn5h=R^}&flg#_G}07*~2+&w;PurbL!$JoIyf#mH_rHmOLqaF zR|m8ZjJjT&89SBssL){}@s(l5xccX_I@R@0jRglI&Mb0XgDxd@5N=FH(>|2yG$)97 z3xK9cV-RAv%IB|13?Vs00BNLJG*`@l#zhjLb<-V0Gui>z<6=&N8lEPDYTCcrt;eCbjb2L zmn4Olxd>R@%y|`s$Wn0!YWJJj*su`uSn2hBr!-w^8;+n93oLUvm{W`boswAKgV*vR z7YFmbK)cs!0OBA)eP!|((363(mNJZ_$KjeHdjFBP*7sDF}C4*Dm&aMa6;J2AyY#iHQrK14{@<-sFZU2PRbg$n4|*~`Thwt+%61W4gwDrA7KCrfqH zS385C3y!1whf08fM$LEl=f0NA{0On{nZ?}CAR}DA_SV<>7#@kB1kLsjsRUHq5#7I# zF9s$iCP1&-D`w^hKR8@|JnZ`K#X;kBwo8&PU#3O6Bh@f zf3$^-_d8fb?^><0YFb!K@KPZL{XY@84fuh}P{tG)gyrXE+ULK$sT7-GzONt;_|@9D zqs?kv*H3!f!I&q;J=-NtW-qsQ|Bz&xb?1&`w`CJu9EbKHJzgFN8phampz1)xhrH6j zf-U4KCUx6v*(bV3_`Ylp|B)-4G~?dTWd=Ev;pXAG(CMs6jKb#1`c6;fv%MwHYf^Q_ksu zd3Z$(Sjz~?maPFuz2PL!tcE664~|cYzDTU#sJ^uja+~^gKHVrlgl+#=ep6X^sG&LO zi}#Io5r}G7A`|j8lnQi>v~yM;Q39~#g!cHKBkV{x!SL4aUn#c;d3P^+Q2_n5{gSXR z{FAmh$=cprTguM=r9G;FS{OT;;WbFuZ?{~{3;Z4#O(Ad)`iuajk4;Q zo2a!;bj^7Bax+7MEnx`5KKgWDh}O6H8~K9(LYtrJnfn1`1oZMXg2B$V;@w|7A(_(? zDJ6!F7e-38fv+W+Lu8`bR0P9aLrBI-*|@(-mX_=9=p62#7SnW8doZc1pK5zANOztT z8|&g_D{}EK$mij!EUmv928$9670=^D`~Myax7S@vgL9M%iUUg|q+-)OXIi9j>&CgD zIq}}>VrV0$WL@u%(J#%;Ld4+UVHloJ&H|0$bvNs0pv#tUp+RIqs^|Ik-p+0r2_tNE z5E*s&Egi;jzs1JRHSq9Y7dSlL6l1tE8=ihcM>u=sWUCleYjdDl`8ST$+CfoWs%}m6 zk5?IN85v|jJ|IogH`H%>i{k6ByQl_)r(^!Se-XF>m^`_0xC}q*Pn5 z45$1OU8}Gc@O}3A@-qa=Q*mG?0C*`cwicAL+a@p`upEAv+(wQvv7zBR`!Es5p-8B6O^!y1URKq^WHz_ zt1OY*R0POYH$-@%-hVf8Fu~HWIGdaOj~}u3ul7_p?u$=`PxwQ0;w6m=-(?&H z{MiyY{tdsbBatHm1EXtiddDm4y${nttNujsdtn{&+1zX9lf<7uJ{aii2*f7x@}cz@ z$PdK3s_U7^pyLzft?a)KrFb1)mJvguV@XQkdcyL6^|jj3+KNii@bNOg zTLeasjP?B$GqngoR*Toj3WT3;p-)MvT3*2W+pg78*=@{%@j=`|1cv@kM z(69j))~jq}z`j<2lr#c#Wi@-887ww9<1ajbE^N6JzG%Qn!6-4%UVaH0niyV|1xu@x z-IyV}`c|baAXrY7&{z-v&3nQa;{CCObKPX^ZS0{Yvx4$_m82VvDPP*}KxDS#$_Vc%RF(Y=1%hkX(jtlVIsB+GSz z#R)$JHoKsM3FOb`B!3FkSUpa++d+#IOtA#MlEof$b3-rJqta_1_Gc^IuQuZWP16Zt zYo6o(t0(^^g8+!WmX&IdsHg?beI8Pgbma`tOQ$gj_>nut{rSz-PfJmj>#QD+C zR$2>WBWLO2OKq#H7*2E&BVfYX+TJumxf^XJwm{>TekU?u*&HAkp!1r;=qc#WXFf~# zhK4^5_$OF92Y`&E0!}NST{j=JDGfp8l6fN9+S=CA!7w~KUV@@Yr6n+qZjG$Z^kv)2 zY}uyzR2J-N@(sS!=pI@jzk-$DyDa7@$jj$tWcZbpmA#nn?C1y%3u8P>0R4I8PCJS{ z;e?$qtP9{y9cU;44TgrhlLY{zf+84bHdVfD`UUEpT`Iu;4!o<3`&BE2TS%iZw~+&h zPhzC|=4uBFfNIn3+RCGFN(StJ+g7TpovUlUW~~kETSh=LQ~i+9BuoHiYYXdpHmIB( zykI|y;;a^LRQ>j7)UDjM{rR*B^F&nvjQ55kKfsqTAn(gaiiwGVFRj@EfRm<%T-f8s z@$vZH1h>`9a|H#3g~d_yI9t&7@&5gL&_K7gsq)RnJ_JiU{)I5(4Av}QA( zO|A=-VfwfuVB)EAo?tPiq;N?Bo6pfGw;cKfx_p3{8urJ~bk7&5GRnp=Wr9j-F4+WV zE(7Fgz?22^QVr-aC*raC1x)dG6IkmdkPfbEYr~F@mk8!khBIw<5}sflZ1FS1$9yXg^X2A3Zr^%B3=NO(~w z8lV(80Y$^6>vL_*2S>AvM^~7c{fQVoUjl*18o&bAfrbO+FeBCKbq-|R2qxzVXD_R+ zmRw2G+&eoSR@SdpEN`E&S|j36$0g$bWn+>GmZOAh)zmK4{aPm`5!?I|{J>Nw))s}B zG*Z$3;@}b!(?u7KYw-@N@vssC7ajFDdwR?VUc{DkR0d@ zutS8i-&pjtD@n=4C-Ci_#W+S*{T`)!g}r~26&!R4-1$u6@%vdrK zxg+mVvRF{`tx8UtiviRak${Uj#NSTn!@<1w?dxFhwg z=?c>f6C%s)m0>L74Q(>Fl0ex!nx1?2qFbUa=phAS?^xBy<}+)H3VpYH7%o^&p`d8x zK%=S4ZEYacge1Zq=Bj@$m73Lvm05UuVIEU=#{N6`mv8FG$h2jS)`K7BKF%zaiuh&9 z^45b`qhMpxe_|(&{B`w`Fg}5aX%JCUnbAN$RJrkN3$X`*wr1k;Fd?H7E64jdGLkwm zBAr_9ygb)EU~0IWtY=cRQ}=|-Zh;`b%04GnUF*z&cpm*;yp-$CsZolLJ=%xdsh=N1xiHFgo_Aip`rAu3{CHdcTmXxRI;a ze-*BtBJruE@fFz@`1Zn^N=t5l+px!2^VfO$ug10;B+vXJ?hY4Dt+>4+g#yKkuv+h0 za2SqfRp+dO^+&}MSo3N>Yo`(oH|DDv9kFdxy83FRevkC1&n6o#0=Ynd3?&@dw>Uhu zRLX>wi0AMPSA|B&n}s#Kf=#WFwVJ*0uf*;X7Y>h3*Vexv)`mO>Vv+Hy!@!?q`j<+z zy5wte_HH&7*wEVSpE}QO=*N|2^ySGPA&yVSA>@sK@-tt_W;4^ytfD956BPX)_fJQR zzD!2jTJxXhia%+zOwUjZX?-M$W|a_{$BcEQ{r!|qz2?lQ<$PI&Tqm!Bg1ZQ_8Mqp< zpgad|Q{*vgza%M4ZYZL#b94=#|Z0Kl9Fc3CMtu#Hvb~TE?3UqdVgy1#?;t zCroXLgPzwP1$3AD#*+`_P?3@%*u{Y>OEaoJ@|m#(=O`sE5FPO)4`&hqa+HDmQ-7;l zeMrzB$J;wdtW|MTLypffRI9+dCx0FjA^gQ7RqNIO>z6$U|NQ+S-&q==adFqnmgyVq za7XNkIx!L-uZz@%4uQ6_ozYQ?0UBl_OiYMBkvV_7n;RvBV%@PUR9Vc}xbtA&NK6u1 zCspPiUYMs{zuLtvXaQ_yNDebAH&r_o%7fFA^3CBOVHE4f;tJ*!K6i1K^Ix`jV`()| z+Gj#Z`YIAx$xm+g=nFQ0G2C_oY^PUN_=B#%ICV|A&9-bD zPmamGV)cay=K1q`@9H`)AJTsM^x*B%ZHVC;H9_8m5}E&8h#E~BAiHBHe7@UTVS4I} zrYHrOI#$GO(7%?Xf%)i!oez~XJE%HjHx0JH`v#Vg%(lr@Pi+)JY#c-6daGE|>nO1P zR#Pdg#c|&LVX3_fXRjO`1$XhvgNmO0Q(-4R8FS%;EO-a3XBHpb2jC|%w03rw)Ff=D z&k~oh{FsuaVuFByjWe^Z!0CpuDuIV^f)PZL%6o|0v3Tth)x7X*Zxx>;jg7Ia{d1I@ z%jXPs(*f;^M1R@TW}nP=#v%MZKx_uFI?Zz1M1@vP&4LpUjf2W*gIE0_4>?UP%@x|O zgv!fQM6-(GNguKd*b$a@J`*`g2Q~NZOo0f^;g8}TV8$VXjFu@xPMlW8;{e?32nykv+U+sxapz&ZFh+?a2)H5EoTrzU8<<@kqKJ9IW76`o6V>wtC`&@mX#!!)q4m_^ z+X6$rt)dwr%iXmH9f29Bo0I^sC|4Ou1U!gUM;=ca5IG_6C8%emvcq67CJ@%k(W@%! zoK5oD)}rOJ_>|~6(bgW#-XR87&_%%UH}`-|w|rJrDl07w*ZJ30l@GyG$#nCyYvePL1C%XywUDhT%Rw2=6z2OF+_ZC!-s0l>5RP++%pHC(Qb`hT- zY@F%VXff1puk?%EM#nnq32HpJ!NjCEH!!+MLqjv}fZj3+A3PkA@P?e~?rA6I{Znl@En)0Ywo9u}lk# z8&Kp#FXmp-v<;OIWDE@66TczM#S9#45K*GCE7s1P4;B+0sl>1Xo0r7u?Z3HMmd`3k zWrZfF{yg9SjOWXEBiqmwrR|h->b-jm@k$?huQ$c)v^b}~h-nE70e&18<}`hMeW#_N zaAvtTmtxF|v~xMMik=^=RIOGY;z}$Vq1sy3#$&yWwe9ogsc^xGM|SBC(JC*A=)`@$ z-MVXLv=#pI1^1lgIjnxWSF(*EL>(9R+-V+%JF5b=sls7)VWLJv z%wzira2_ChazLzdqUFV9Ibe>91#p+RxVRIrQ#GwY`P>OSn(7s8`+tc8NvrD0Tzx*> z{Yxcvq>aYY-&e~DpSJQ;i;f?Ap@TcFmY-oOxE``+EIj8&wum`A7+%;2lFi;@@eN~X4tuiMBn8pwk)d=hIpE-#}Z!Ft8c+34ud~1)MD_#p_Wr=2C z7feR@H2hxoXE8(E6tRd3AFnfLihb2B>&Keg60e>*WW9^Cu3v7DG4&gq^4lvs{vd*x zd_^o$G@3wDcPNrluqz!^YeqKqi?_fiCmoC(2>np5-phsQbr&Nd65gFxM25%bFY++e=@{>5^1P1fG42*lL3Y6t-P@!D5U9&_NQUgpBT#f!DV>LOZNHZ(7MXvA(apzp zI}eq0ey)2%(JEZeL;UiLZ%h?kZo?rldH0>M`=`E?8J+k&v5yD#)C8qT0j9xNnEVdz zjvJ6LRP3I3yeYRIq<@-jjeXqQ;qLk3^?Z}G-Vn%-ZVI!1w_zl`12jiZ-6|?KF%VB* zh8W^IEL>|!sl+y>e>?3^%IxB^uf~vc&7w|Be~<(95u^n+h9I* zPnUEQ%dWdc0DxT^uo0V@RZy6&kBJZZ&PDY&ZR@9msRY_HN_*s+J#6<}G`q}gaDzi_ z)w@lqq2s0+AZAsfkv(xez{s9^%gLyI7qunQ!IpMu1`jK-E`uy4a+**t%PuSdl5gXe zprXWiYqL)QBv)?rk5i7*!yy73Z(s~YA{M5Y86sjT1g*S9T7~R!->O~|JMK6D<}0yW z3E5SWHb%7Nn z)4jY|j!EYPbYQ<+wLTyT8G7qWZYhcr2A?Y{4(oeWXE_^!#r})C-7l;cZnqhDXmfq9)5OMP5p)UwO{U1f1Rn9 zTFva2hJ@FnG%=Dvqc-- z^1_bAcjRZ?5#+63?qYwT@)cWKD!1%$Z9vQVfw!?hiHWbGa-t#hV)UIdquTimaO}ab zNaf7OV2Nv0?MSVS^c=Dl$yNg+gI=tsK#D==qmy28ao_Yw_k;@E#1W;j9fuP=OliGr z-zN14*&ql!RyG`PgH;iU#(Ukf960ANiCI;-*ShOY> zmLEz{S7vi0w`x}Wl3X(%0io}JyR7v478xLj+gh2Mndrf2+z!dnNVlI+CUh4hsh`B1 z^|=rNV$*|8F&&Fj%g_e`WKpsHyHe&1rPb0@>l08bR1Oz0p1JNl~kUfePpa{P>o0dxUHtaA`hWC2#r?nIFdAmZsO zHt$i{Nko}nWc1o3h1k~V6!;=~^lQU(<(A4EFekuHGat>H%^6FSANw9DXIpkQUq^H; z!y{^HJ!aJD^=uU+?#ymk3N~T~UFAj7In08t^fxQ# z%zPt=4t21z;zT7mN>5XizMYP79n<}QX$*W>G2glUk@U-!Ku{&cU$h$fqOiI6pEq-N z*N$q{0(_u1?E#5dXDos5pcOMv+a9deB|{>)dVH4n+_?-O!bF*M8iE@jkcj#_mif(97~mA-c3YpDK?C11K+fVEGANbKU{ zmi@xtE@=kQ5E76^GseI%zwktZ7n_hEfA=ndk&zK|S)ji^DHWA@zXuW{0|Czc93&hossb!E|+KTw0|ed4XH0i#I8~2m5RhI%d!(pE;^Y_p5DBQF7xbo?$uro&+ zt&$+ogG@%E!vX>VW>!|ZVIk#gB!E|SdU~2lbQ>tJfD}~UaBZg9X>s8Df7K}D&P)yZ z8&Urd#VS8tI=l_i?xlvk*^MF~Hb_!<7CP){M=`%zow`wW`h1|kr+~`&<=yIrt?yrJ zIjTZsSn^QAS|`fZsT&dYML-TVy(cABMBshx7Z9b zX~Cu}bXRh8IEj6&@7UIrF(rK7YS0%Eh*fTXcz0_$_UossPUrV@ot0@VOB`hw8QwNIooYp29@eXWv8HgYY&M~>ND5#_{qO4PfB_l_5GM8T(;x3YZk1P zY6c9glx`CMf#*KI0&ehxo2nmPzJ4tg!=(qjr^;*ZJ^)edc=yMeJ>UU)1>p%GmR6hb zf_n1yekBPnhu+YB1QE1>ms6B7BQk`d}53vSz#%PE$e6 z%~2I>J)&JAR|)lyQ02w+;POogeLg-Q>aURz`}klu&B30ca?3j}EbY&On>N4xP?_zq zi3sAcYjmwXTfOv=OB`->Gb*xId+Lcg7nEJDn@b|qmj!!^4P9LW1 zf>xBj1i8v6=Es2B!RZ4xik+t})@1Sk#(Ca|bAPrnTUQ(83>-oYRxvBz?B}>;g?%h)26vIDN0^HkHn9{}Qe-b%C-?b_ACk-t zy^Du2uy!sCT~p)xM0abGoUC<6mT2@MUWA{_R*z%$xHMPao!m*Y<`Hw!pK(aANf%qZ zbo&qV_u~m_a(Er4es%A(x(j_9K$wPCm8LEB_sYl9?sHqN7eA18SC5hE{trX2Ic7aD92O1jDBNLVN(c3VJKZTkjMh__rWsf^ z_TK5J^icAit+ScH6J#QWf8(LYNCJf_8n-7dJWej8d@>C4x_KOJd``lWSy2m>R8YPpz^ z)~{WXP;?;&2=*UlwJHxhz7jPN_G#d&7=w zGJ~NlSh%~aT~C9d*+@hx)(h>7AJ&KkS<*}GG_*+r{_^KW-f4v-%(*fz^o!GCCDWbT zDJ@@|Ih-ni?(QRpD4dl{VXM1lPHO;o`P!3EGR({G+LqtzzdJQQ|8W;~)4O(MUhRB-<-Ma$kZ||nZ`Pv@Pt`~JK zujqeS5r)}ul0cb&@kLsBf;kOuLA`Jf3c<&}a%=`&;8xAc?}HvV4O^ED-QfJ|q{ejPwx8p%+I*60KO`S$C3; z4xTX0C9A$^PrF!BS5Hq&JE&Tdf?NZI&2pqO281z*on5?9?PP6clGCeADASmBV+WM= zUuOjU%Z4Re>+U9|v$@$#yg8V1XOqK*|zvclvms{Oe>D;T!@rO zHz1^lhPiuXb-yj++Bdx9m|sy;SI*q}WTQmR51sD>;e58L$ZKC>PD2Fw>_d2mmg)6Y z^!}-&s3+1f^yS~Rh&3D#$3t7LZK3kqdZ#I;oSZ=a#XEOb{3CWUOjx4dE0S5IIwIp@ zGFRqx&l{JI#aNE!>x^IJUQf7=+V8|1oxxte4u3Yj1}m6Fe(G&**W~*xn=^bTUHRi- zYXn`pkfnxgvliPOJ@rdJw@d+K&)hyi@} z3}6G7MO^06lfAPZA?2q`D#Z{o_TC;fM<_3#nM9GptTa-*3UE0gpqBX?3kn%c2go-A zktj=E-EVi~f0^x9_uhKM7J9g42DBChc;Elks{K`c2$4V;Gcy(m$keWt$#GRa2Uc`$ zh)l}G}Vb>vnKC#!}&kX*RX{Pk-h1byF(cyBH!H#9cNiLr=^j>Elxe0yzs zyNs3Z_`v}`7HPKD*Hgh^fuQZXr}2YUrjYaA1QOB#69idl?Bfd!2}(N;k+wJQwhOY& zFB$f|lR;`n;WPck=1K^~EzHtvYXlKu{PS521Oay|!7&%D{nQEU?F7y3yI{ZFXsVAyb%H^{6*vmotr5Nii>FRS4I|ETJ< z0$NqLRBm)Y;JxZUf60==sfC_}s0Cb!I%YEX*S12D%E+DmySvY0aT+m)nNt^N`L0~O zT0i*qb{7CuXv94$zP7@sH0Z{lD~;{+poT%|!R=Co?*m+>s<_vR%PIoLzfc*fIRFyi zC67_Vb28it;HlF9ZW0g^6N6A4sYKwa-HLmmVND|rhl55Qe29}-)pH29qd`C%r1bPQ zCt6^acH{8ihPKq~Ojw^HBBBHO<`xL}TL8*6dc+)ZLM?!rHU)0l)(nHX+BN94KnLwa zn)C50X>Lry|G4U#kg z5fKrj6cnZi!*C0vhnDv{%aFz{lxZLj@HMV(Y<&WChub=t!=1pSV78u=Y?C9t~-UBc>7Em8GN)gJrQhQ*V27H&t&!MHY()Cy_ zg*=6b><`uGJQ|&`7SiD`qmdzj$KS9*I*yJ-y&1~a2)UtA$#O_DgL?L0#d zT#&6+kIsuLjvf?v@zE?qHv^s3$3GjSX)_(PYNBJDxxlab{~P|}*3u{>s-)F!|l-2z0V;m|mQ+OF=fOb>qqO>4rSy1fMUg`E}*!R>AuDY1-N122WUqfm@o%ArTQimEC)D4#5< zR4B6k;t3% zYT#gQS^w4%4n+SZKr+?>>}lbEwYnxDG07d4<=QpUC-9=e%*K+gF++H`a}-7^Y%)?{ zglE=8)~*^-oXvP4k?AZe_+z^j-2*+;efZXxp*Q~8lV|QA>oa3F$h3N!*a4;dZ2vL)waPI_{|Y88u+reLdv1jOPZ9@ zEa0}D0Pj@v0;ktfZh4rmuP@mer$O!b&-Ha)AepoY$xKD74w+|W5Z6pXmyd9O8WnV! zB=!n?E0uc%D>F*DYxMY0i<4d4JKyJkLd-6SJ^5~Ez z(zqfGxX%SzRbT_`N8T9RLn3sg-F0Z%H*-^iG^~$ByI3LoDbiRe= zJq(T9S*`pSTiop>tWY`neA=QOs@SXxA@;TaeKc1sU_ZxS3>rKQw0R30#cu0oS?*nM z4CvjEujkXO^iVHC-iyB26?Ylpho)Z2?_0z2bSopF&}GzXe5}-(2AY;YezF+{wXN+C zv6E3yaMtvMT8=BXZbd+S$0a-K{tp+R_m|o7SZQ;i(~pr?2o|moa&^UMT-gj7b`dMI z)q%z*jUO-?CFl_3F!Nb_@rCs%w4ZJ`SEuAAez>VBdG8+5JP2sNSlHRKclnP89r@;s zG;mi0Yj*#}aD=>H=qXJ7J1F+4u`z8|^qZHN4j^=kSz$G=v9h*)&}17Exc|}VyCl-G z1$aBOYTQc|@Eoh6=H&{nfPR>amR7bWNeoGh^K@&+G}53= zO%^BO$_0Gt5Twi66@9#iy_t&+xxIe;O)c8m3=Wg%!H?pXqFP9WH?smBLOnog)!#!Yqiw7 zelvK;mR=0bU8n)c`^UL+!mGOX@rC@9z|Mb?kZ`olr%nN%XMuyz%En@L{(3W&!B0T7 z^?_1BEVK0M@4#A_hth}X@=0$K0Ks|wT5BD5U&?LH7fD0gSjHetwxHI?0g6^*=;WXp z70QXYcBc;3qerB!<_x>5r9~9sLQ zgi@yy%TMg%;{z=MAXx#&KVtT)-k;*M-@deZ}iBLp5vQlwtKtM@sOKoiy3SwZtA&6MFDLXi1Nh=JF`LS17lcA#7qYXhG<3vQVQYoZaB+NfkC?hIuRgyyz%G|Gslm4 zTjnswud0tjHYr?J0tc{(sv5-seTsmh8!_e6lhT8({X>Oh^&ChKVr z;2tdeZL=>)nKxk~?USL5$XViNxr+&_JIFK_&6MC&9z*Ay74*vU}@IE-x=HqN6i)%DIrH zU4YN{mXyB0?_mswfWZDUGLoALa7T70L`=!{1ETmMgQ%uwRqOGs&ytX&!}&xc38Gby zE_9$ToANYmNC6)J0ewVj8F=q8Lroa$M?or4rC#gprkT&y^O9&)Y=}OJ$|}CEViBta z{UZ!K*G@AqFhCCo`%%*vid7NkMYSs9%HtVxUDbysgCRYqxnX+)6S-6U#-$oFC5~e~ z72h}Ffheu_4qJ7o7eUSX6nlsiC44MO6CNCF1X99TUgo6Y(2=_B{w+bVx2}G;D}2>RYLT79MHLH8C;a ziy3Pfs*{6ObSb-X4a&ovmFF?WmcbiprPlMh_%a1c`nA>0O3;LEx(;1P|1;=C5(oSW zU|@y@a^`?00jWDi(cv%pdw2F19QJ1X&3)G`_`w|7HZ|ijWrxE!(W0;zvGBF3ytm4Ab!IrUof$dg(l$0Zg%-U`h&_RizJ(QW&Fjt4LZz2?fyy`R zj2G+~DKrTzgq9Pt(DVWY4ZOmjGuq@^G~}BYW{+BnQOD#}__bGY%~4LM%NY%sjPD znGFw+wxdB5cl_Mi;s?shnSrvKxq9Be)*c{@7X^`vkyi%a{aJ4rS|<%ULbYsulB5qCKf28g} zDIu>uG+!fIRo;x5{$bM1@47Os(t`p6Z^kPmWMVj5qX!v`ZN+rJM#v`1_3H?eEeb@n z$@72!T7;FpoBg^+Gld24-q(!SgjjxS7k!?|)E?b8MIi#oxHn~< z^XtZ-fJ#6lS?m~}rm&2sGVtuR0CfUA%uEpf4j}!!uc`8g7R0DiQ=)!ta?h+!F zEaFZ{M=+qFgJbkaKARq@tR(zc>VJTr@od>@z0LZl_dU6sEZKWM7~F>1@w1nr zr=dw9Vp_pa$D9)&n9yw%0}U|Zp#9eEABS84>FMUd>x^Y8|KflD!x;}XN_edI_&7L1 z_W1iTpEv}&kdhzx2Vnz%O#P=G!~Y%(0O$tXzv83#fOesRdNtBN0uyFyNE)e zETPIBQlU`huBK3aI<{~=eusDEjVt(%sDtcD2UQzm2WLGyBZ{J)!&yrk2TL=34ksf! zdovqrf!!jz_w3{_b#ORqzn_oK>Tf@=+s4j>Pkc?vulSH(&dQy#r%+h+$ger^QgLP! ziZciG&;d1<@BxOahl0uM?3Z!F8xrT^caCYU)f%vnUoP7(TPT|lalih4NcH{9I_>7E z0xbv5$7-XoiCHJ)gPNVy-IIgmlH`6qVCUr>KjFx=nV))Wd1`mZUe=Elj;}{0H3IfV zhWCZ1vH9vP#63{fzcX|q|D}j-x;T&g_mc8S@}IM8|I;s}mn~bCesX8lB|ksEpXSc3 zi;`KeLCmS5-=*n`zJcua6ER1FJNx=}Y}&Lbc;_jVf#%E_-zDq# z^JgFa%Fe#sulRmxsa(bbirls}8FML=^y|6y-MstuofNTdeN!bh`;dBbtJ(DA=zfoH zkG^)5n>al=qN1;Vf31l1!?_EVeyY>ZRj&*c;-;1aY^cd@_e%0#C&J6c^`bK)zFpU=I~(Rn?0{*~yHv*q8H&foO(%QeA|JaB z8&}>DC>b>Qb>qgAIdkXpY~Nn?!Xbd}*cY;MwV#Klr#juqDx-sPmZBO(p(NyK8J^BL z`^XwX=)PPq04=aK$q zeBxl?HCUdi}am4I8!krT;o| zx2`TO@yDYMx=oKZ1mC{RL*-|YiIKl`!o|fUeKbWUpEs#4ab|idE^okZ4c}23-lwVu zqpWPE@N2vGtTtc%2<__1?f1o9zw+?#$jy#>&zg)2DD+8c?OeTtZI5)M=h&TBA-i@c zDJiKZs!?~Gc=*V|`TI9p$DuZDTqPtfE^g5(-sq5BTD?!t&2<_WoMDlg>KDK>DO_B% ziWU|Y7O+X`Zm(K=SNW}^V-fqmj*J9dzkYqKka_ejt*q$%I+O|-y*U)Qy0V+wxT!|3 zg3@+r6?*00b?e=(UEpyl!=$QSq}}7etKc0;o>OC2FJBJiBKLt`Z(DQiZ(0d#*>Z5+ z;?-&y#+6*u!kNh=^V;|*U9Sn*nmDC~tE+a@K5?~QvQ|)T#a0EmtQm{c{8)UW@1~OE z+asGiqYX*|5{$}2vRJ>eb~I;NEc)e_w@+M$1x?>@Bylb?ycd!R%m3jLD%Bbn<&kEx6C&8A&FDTC$#e% zwrfv4vFkdTKRYw!He4x^X;`+LOggLP$8T*4r;RP_XTG~mOiY;d)+T6X82gh+m79|j zevQVCK+6=bl`f?fc)hEA9*2=z?le5nNtM9P1w2yM3muE+PvQ}2s zvuDo^2lJ};hp_wVJvM#&d?5>q;PMqKmK5!|Hv7F>%9pF7^af{^u=n)nt@j^48ndhu zuE^RcF5b#>I_HsX*Q-_Z0nDnWXPuozW+waiiuSM=VEOxUJvfzN>@+}@lpH^nwZ7Jg zhbQ+wz-X3@31Go5{NMJyV1eh)pAWWN(qnrW7wKj0;_kkV z#zH-O=FGjfG4g9V@O$YN4G)g67S+|&eZvbS)rArk}j`nTS>K?S{Ye*GgDcXb4@xOPE^E{`r2HrkAC4i~arylE z!dA_tH8lcFW7e%XQFx`zMwWGn!HnT;ksc~EhslwiOKt6|cASXEzLI!4H(k5^{rmT3 z1u{3VzoaW*$5&HPp?OXAY|{!GWYBkP+45YNVTuiE65}Ft=Bdwuv9}nh2r=hli`VR~ zy?5ZeTD06U&zXsCvW^O8M)|bpbx9gKcJ5Tb8moNdxpeX3n|KuixrK#=i&pP66=}=1 zX|L}ryQ!XXTC}U|=8@gIcfY#1?Rvllu~?Z)OS#KGx7t@poQ=G`UiAKOcU6*o_iLw` z{3rSOqxgL@Ow&B4f#$i{b2<8slOg-hW*iNbX=Z|O)^|3i!QO= zN=iy%badU)4dI%e=#HdCW05AQC!GkD@-DCnRl!0xuYZ_;DkPt0Km8PMcC>wVMx<#B z8+IN&pZ@*(_x`)|+*~RxMYnL~&6NB5=ko^I3#CrAOG--evv8hj-~MHMTq$cO2glPa zZ|5c03~X&}H6NWh$JH}E-mdZf`Nh%xjH=k}NpL*TgDjdQ8|U-rjTI_3PKH{hZt=4H}o0ZWzHP*z@V_ zgTzxAu^Zj{_hMoV7W5gtkZkW8u9DKYwOd=z^{XMBdBLwAE5jb<7wfye6CMiCKH3lz zF6FIr?AWo^pV&){d3K_5hYDMThU`3bU!=`N#;PT&ZiSL~RCSEJ1qybVv?BDYm!>K?Pa*T#}MH@*z9Z7~2;~j~yUoRK37sLeOo*)SqqdL9!_Q_zL1# zrM@3m3=>v&ammSZ?2E->?@2A3sg9Dl^w@pe+HbQ^}|Z<8N~DnjT{BQRXZBo_^PT zP&7i)Qxh+_#^Abyaf3DRie|du75wQ`4INimCCQ0s8ja@gv4Y)mc6xlRu;p!R;g0PE zSYNfNx>6CM_J@H2-X^LijbI@p=@xqNYCewFZaM6~HsN%xohHD6j>nf`wISaTCG4;b zsH}C^1nZKuG`zgLu3owFmh6K<7WMJ+w{~asDA^QD#GXjiNye_+m)W4BT6}etQUq{1%@D>Tpk+u#bZNSX~E&GR(-|QJe3)h@Yh>$7?!I`LU_; z1BagKm)K57i3EgU2SgSiyI)RT-r6~H<{Umhf5|nJ>up-Im|t0RcC0?(;u)p8;$|bC z-WKs-j=t~hH5VUiG&qc%&Hu`ZZOzTC`4(?9bUlMDwW%)wgRIIiq}Nc&*|F>AydNC2 zR!h}koXob?PNyG4p+24OR>vmh^zh4z6-sQbUpx2Wm#6%K6<8*bL{&kp@_fg|a8&b3< zv4vI!{7hjFc>WW`Md#g z(dvoe?yimwgQ=J5_$k8;MSE7RSrdmsFDlBI4gdM#y!2#Jv*d1UF)qOmxO7HHxSznv zEwEX)XtALd_5j-8`cf>mt#P~!%^DUleeXvT)C>2mJb2S^`}ldNv&L6nl*UL z`|Idv%p-ixb~~rxATG%rhUt$LnNMuhj&439>URqYDgp#nJZUPV#)jH zZO%+Oe2r~0)x0LwANU~&QbcTyKM*rF7gyuml9w+Nu~>Qe4b#F~#cM>)P$-?0xL9Ek zv4a8X#uX7&f=9Lq35ik%SFT&P1C$!2xwN5SyueD-;Kp2n7P1P(#Kg+6nP9hhylZ%T z{1#X7ix*s|kWn&;s&N5~boa=(7)1qzYm;LGN&H5yO3gE0nP>K5(DvJZyq2t(s*`Ui zdkEh@k#ag=ql8;@o~~-FLYh^%d1j*AvX4ix5;|9|TrC<%fULb=v3_=iewrM1ei|(~ zOnF;8Dek};J^ABpHGoH%&OEMX8!LLXzvxDqgh`KFHRsbz}-ENJK26_4$6 z4-pf`Tk2fdx~g}XDiAr|Zk=^geibB?B#?(h)YF8lrX1S`#;?N@j4MN_wAXhflB8z8 z*QEGIMn-C8TPI^k&GF;CZTVB48Q>*lm6Zcg=YovSU`xrsiDG#P$7%{W|ocO1TCpUMD2;+x>s zNhp8n8#it&o9x4+Bjp={4<@uw%{VJAr&-W58`QMyvqm;Zq}76X!7#=6qBhlykz73w?g9@ z8)$wUC2sjfqU1WvQd63?zhSrWKi2?@G2a!T`R^~F^28p*hjT0l`!cOeRcQ~TZQVA< zXmY=SVA1wd*vPti+EivC`aQ@H76tn*lO5O>P0sg&MYx_kw zJ%3S0!OfdtaZP(seS}YV)V@+^8cay26fmOaF8l9B=wDawKgRFheRtyl2*R%*bcBqH zd3|>wbiI5EMn%b%*-B;avhiV^QhI>lGLFn z5#bVB?pi_9Kom(UE1R|_3ClPS6EXAa*RLwcnwcxv+3%RouHn;B!*);fS4NJljIW+) z^J6o&?_Wx~-oKAJ8qC`RDjk{ZX=oS?+T`{9%MomC+IR2XC3_4ZRoPHU;$EQ~19bH^ zWyC=Zxv{JW_wQqQ`T3T0@w$ZtA3l5_tdCj^@mlSk^c<_kN6+fF^7E?z7w)p+5Jpc=jrT!V&_Ka-fJSBL83|GM-kzP@4 ztm3-5cx4%go^K+(XA-`BbD1}PelH49sJLsoxVZSp`%9ae>lu&DZi2$E+_Wi`NWmzy z_1M5yu3TwoQS(So26w3n27Cg_2!S-9FiFY}4!eytnT$e3&|2*$`{m0Q-sAUtu!qM% zoNBBe!d8rO9}Aevi?P$w)0@PFMk)lV04Oi97QT*;Yv2VyDT)EXb9Hxb*$9=30C*_QnV26%gj;ljL|T{UXffR_HG892{|47IxI><8hcAR{!|WMIM+5b@qM@TzkB#HC zP*qU2xq2|bP8Y948&(Yo{aIGWEGHL`UGmhc;(kgFr=Xx(q}OBuD$h3j6TCy?7^YY= zuDx43FFG*rSE>ri0;IVI2hPvuZaMt+zHFxVte2>m7z&KGos(0RJENtgWz1PbL`2B4 z@iz!jSYE-(n#rKS-HCD z1*2~#(VQ<{xKOH}#>2&R2v7qG=q*7aW~*SSIbwc7U*atuP)ksey>jIWs5MyDsLDVU z2rYc6(8< z;>qL_*g{TWX68bI=4Nac#xhENaO8S(i2r&~6|F2w<=L5Of?qJ76+p5ZU@b7s0cAqM z@sYc<^VGH}-K~W}H3B`%0{83WxgTQ$#E__#K*N@D4{ALyw<&}Yx2|9fL7O)5h<&yP z-N*XhF4*L8&vp1?jH~y2){PHE?LV4AGT-ku5)begcYXn@ap_4?fTp4zl^%v16m5eU+4sqZLJ!vHyRh!a{xEZ-AdPTlVFbKDS;Np1I6F)%~&DQSVpkjrq6Sc~+agPKj zH}s9*EUT8-EwWd+`f7@cWpzEiT!g}#N(OK1*26aWqakfB9ZMAN@XKP@h)zTH&|n_r zEtON%1)lEtUtX?TD{2=FO@z1?L=y>E@+*cjeb?Zki&gz*Ok;_7?HUQY@JfB)7-@_dNa|9&LBq;VcckR%biA zVL?JfOJ82Su4(3UVW+LRxqSv_^i_esQ2Kvh`2Uw*hCEp8_d8iOE|JTINCdG3{#;W( z536C?$;VJ>2&^xsK}wTa*3O;QsPb?d z#UDjvXJz;zEN`$EtD}(PH%o;TKb36qR>L3Z z>gh=UP3k2c)#zZvBB+KUnbr)=p(n!u_=K+R?l@SbP=d6wgq4+*&D);jqFSomKlBTD zzjM$NKK#;g&8nr=_X0b?AO=W1=OCn z*s}X>rV`Ty6vH= zIiI>Cz3VS+@-o$ugypRmDX9&;I0(T4w~t6+_*v1W68-+oFLP!&S8++36U4JZjC3L6hjQx<__Rne=~6uNd5qCkPMV#Z!MMB zkX$|eO&LVd2E~j89!=Cp)j<`n^_&u7k-;@J92_1Ka023)fUVl?;~kTc23_x-E8FfK z2Pu0D+m=4MdiUvg6dPb!9$wy~sMy3WBbW@2{t2}g6f=UcAF9jETeohJ%^qTGPo+qE zEuhU%m`%m)y=x^sa>fQ3g!q5DxJKvEs%r!{5-H%>`2`lRUSM3`*s2)n&^|zlPj@<- zvv+dDd}vBX6%=YwnYgJa!q9-oqrmFoqh1XNH~}t7QV_U`1+GDc3fc&lU-1@dsHlDH z;ehoCM5jQ(#^>Z=#*Oti8T9S=2W*x%yl(bSXhx)7BD)SS=o-}#0;}-~_S=5A5FQc1 zO~vru#6JY>!cj}IY)WrVGq{8i-A&!^^*!h4t=-Aa?VcJkzAV(5eOz0&^6D0NXy%-a z0zbDk;n=mB;9pYixVFQ&02+sC91L`Ozd^@c5xPMQhQg|257u%1^jHf7VwJ0fWxCnc z5y1NoZr^4jPG`t1m|mQRuf37y%a0}(gFjLL+_srYD)?QO55H^>cR3EDw`QHqlPEYp zJ@lc1jAZY@R?$`4RSq2qSg(AC--tGSnww}CWZA_Yi!g5~ge9Vh8C4IeK-RnG*RpMd zD@2Q#$dXzOuV6cJD;xGZyn(2dsb9RPMHqElHu+@QmO8(>70Z_g1qPmR-w0&_bw0i{ zuo&C3LQNI+XATiDp-k71u{Hl79BrDsR*WEm*%Te_5bO^%DDo}**zTz55%cyrdO8{OdTs)tV`spDVF{5oiODwVxmUEE0Q&~4+j=~;|@wF#=-1=EAgnezCF zU}!l5Zp&?KY$C*6t53)|Ao38W6j_f=k(;`B^-eOjgaNh)*Qe^*WP1Tzb2Vkz+KjoE z>=GKEYFaO9cL=NEv4!{0usbkKv2Xz{Eqirkt_^{JhMQPDzhwPQ!s;Jf&>bDkMRkrH z{ytnZ!Z4b(+`*XOn7KDI$Z*meo)(Zly3wIJRx8_jvg5iGu?Q1Rrs><++p8jm;V}GB z@zPX5Bt8KA29$%p$-=qn?9cdrsF-jZ)G%R3i`VGJD@95=wU{=g$FzA(4H&lMXt9X% zxSLl`*(+7TbrEv-bi8Gl&ZN+R(?*lpQOKLbam$A^dcJ9W;+g@2Lk+C7VzBKPp4Pg( zAX&nFEFP1WHmGpX?ajEHC3pukBW4PPk*o6|a*b4+Y_44w&6D*7BZDO&0cj;jJzXC@ z-2YJQ7uTGE&6yxNLWc<|#k6|V@)C88?Dn}ih7850znwpy3H6q4gzfUl(0*iyoKy=i zeu4IelWRKjzke;??>_c${?hgFSc!dMHU)2UY&!(;Aflp11LMPRvXX#L-Fjkf5fONx zDdPx<`kF)~&5!_&;sZ1w z@sgQ5+TWxK^Qp2wMODyy#$#e?D#>ellIXcGS9f7T=hEqMc>weFs0-ZSm$IZxl3>E4 zGtVydWi(Bt%5QMMxhE(F2P0iQ%XQO=1+nI{Zgv42(l>?e><;oixPTl8|pQ zhjWY-d6OXwpM3-(>W;m8l|dyFk4OCm9JMGYBr0>b_YcWzZo;-Q-*lpCDluyh-K{0~<_@8lVoNPsw zEH!^D6jNS=*bml>Jme7$q|>)Nvn8+Pu~`lAtbmP9&rVc%*CuK3Wf+j+vqIeNqAZF$ zRFBGlFLEcJxTG~LBXdtSeJo1>|3k6k{s&O{Uw!G`S-`<6TE(~Gc~@Vbg%gG(aLIIc zi2*J8Kvj^i=r8-o)qU3YO*@v1&g6B#4*G$s4JrTm;f|Rxpe6@V_ zh+$a*n!h{?ombfH`MbI@hn}+%+CR^k1K;|Kr1_$Dn#79=fueC^!Tg!NJMk+D>3Z1X-gU0$$ZE*60NSiy0m9O=UA=ZZE2ZC6!$aCixs&9IHl z8F`sR;A`+5KNo%l1N!=wu2;fl8DCR?q2>&e>x7w;+)2e90plYwTes^LJh^}WzU6g< zOB;3IyM-E8+>SyVPgl&T|2T4PB$kML!-^F}%b;zM1>EL6JH1j@sl3VqK?Y(VXPUm< zf-oKxl~Ubr^)845x7F!$7Kndh3ycPQYs}|+sG0d{&@td#xCQiq-uA-6ENez$rbR<9 z@V$9!P8w6|blFrI#ljJmfUL_~>}+%+1nXYLD?d;;dZ9wlx^>?J*d5yoLJ;Tq`RAY6 zP%bie(IG$SWor6kewZj9G~7ykiA~nZ9b-6w1kDnp#|)qrWeFF~&d^Ct4kF{$@^nsv zR(BToZVm&@buQ5ERJAV|a5w`>?&V@%Cv3TgbL4bN0^lW{7ealo^md@Q8DW`96k!a)cp}C^$@XLb%h*fc8 zQ0%g`28V`Hq2Sz9*(?BYM;=ys1HfJ!@(m~7zI{uSUF331r|#H`i|?=gDsUZG_^!BX z5T9;=S__AXMf2l?)jLn#gFR>lEscOwA_>9kqpqKudqt0J?S6;&yIzxK>hZ@9kn7(e z8b{E{ovZ2HzIt3*zO7LJ@L7c#4^JwCM<|!kxP>4fwG@Z0XT5%RqaZoBJvoh>su zQ3vM{xf!vN8h{3f#4TzK9c-np^I6#Lp$=LgI#Q<7;mOhc{u&;U%<`rt(I%U97zf() z$DeWuVIccE>RQv_(&8_lKgpF>iF0sBi`cY5>bj+3b-tB*&z|Gt0w}j!7`oM%zO{gU znIKK8cAsv{3dbw-!}LFjAy9*lg$PN#^#n+PI_zu=;SM;Q2%5?)VqsCkTU?1{>MRam zqlyXe&ZRU41DJXuIrOx)_CWI?S=k<}qW3waF&N=^)JR@jeR+xWF%vdl@=&-ZtUE`N zNoMptVeLGvaPeT40Puq2VCyMhV-4U0@byhSSaiKD*{Mx$1Aifc07_^g3NT6NAT&!X zJWLi4DpM>hB1;qUKmuAMR|Qubk?+cY00&b3kRY~p_xjpNC6oj%u?D93rf&k-n#lyA zL$Ti~B_%~>5|EGv#;FeCb%xVo*7sf|(%4~zASg?Wx7y?Bfpg+Unk`a^olal_7glMC z_v{SeC?s!*eWmfW0`y6Mq3E9cNCS>A{sAwwr=A|4pDj3?reAyw$^{$fd?w?!rMXH| zV*~zBe@Rw!;i5(SFtIJxi@UrTbAyDt7mJt~kg>NH0DrbwzwhkR7cb7%LR?-#E!&8N zCd9&NB{d8JybgNBp0C|iHi&Gq!PVab1Y_{LjYDG4ndLOysnQgi#+OEe>+C5hDMS$V z$G~l!ny_Q(JiUFopPL=LAT#s5Cx=No*14glD3Mw?MBcCck1EoCuBdF>i;V751q4orp0p`#co_!djlvJWp!kw{9CNWxFU$R_?i zmcY#MrkZM2iXp*HPdSY+Q@@Ulg1fE#1mI z##(D?R6(mAOR!=mQczF`9p9WhjqBb=fJs~hKvpeLZ9BEvduDhOn1tE$3%{)0bH*oH ztR@P))+jpwM0sEc`%5)aenJ60s-R4+1bP zI!WmIK&)idiWMXx7bC_@I6CijMuf#{qH7KA*vJ%vd4qt~>yI%35kS#Fp{$3ZLLvk( ztP)XHj>^fs!RI-GqAc04Ukw_|M&eoNcuzZm2g>1%KDJ6C)e>X_8pwV4rb*yylb{^X zD)+0SCSmHztH#1VFeUv1xppyR1`#m?3F6nE@pzo@i?J+4uq~76jlfR>%&Plvz{nqm zeg&27I7&f(vomBe>|?5UeQHQ6(i=!37G9KT<0Cyc#DZ(#x?&0{0+~|n?;@5G581D` zI>ryqArVSinyy~!UqIof73VlF-$rn!IM;u+vj1Y#p zT{@q+GD=U8QF-_748fy&_wI!rbrVX0RX!-#ubPlC-X3Lf>WLE*)l0g~Gb{{|i zB@39uRf!RXXxP@63J>R!_aLpjI!{~@2hiXW3zk8EW|@xs(WA7Rs;}<~o}Hd_L;-`b zAT3PGXs?6teh_7Y1Wk&Ii+hS#r5?LmA=W~SDU=;P7}JC+qdh3g!rs~KE%y6bEOUg1 zNP7};Fv=btPat0)$|Xje{d4Ee5j7KZ(kR>imlaz{^U147sY22{m1(ZdY%dufHz8CN z2>G#bC$?TbJ{=yme**ls!|z)p$(*nt`&!LFID?5A7r89#C~hemnGqt z84Ot>JU7B45ZEKVPP=pqT2mMV5w?e@piXX;C z6&ypxAPagTc~10ih3?V&Z6MP*fel)Z8};~5`ejb;PU}{Y?*u;z_z6(D+r0U_t&!wLH@+2e>A45_Kpu*&PA|i5nw}AM6mvLnITT zwi7$hX}Z59TM3U=1J2M1tW5Gv5T)SN#t<2UT8%lDXmZ!}FnJ4b@Wmx0gzP^mpk(Y( z?0}8BVb`hjLmeg8HNb-47|(;j9M_mdWHuDFI>d7GCq9OeW(-)fR?ZtrFy(}t`cIO! zFCf)AP=iqfq~+nM)Bpz)Jy5F!e>wr!=yy;S3!9rt#9qYv7$?OmZj*vQ^d`^=b!;52 zuC6gTeBR%`THx-kpnxqq9DfLD;x7|R! z10+mA#S~KPSj@4GpF)v457M}nb`9$!y7?uVb$9?N23(=mDaRaLMOv4f1~Bw`kOtR+ zVmP&I#9#s?Cu^;v!DKOR+?5JJUm2WM%^te-T9ixvHjiP&B2+E8qes*8Nk38%ngsTF zPCmA3LcZT08Gv=3lOt)n&{B{O9Z2ucks~c3#DH43bg3{GJN#*dOmBp~G0N*uT=sCW z(^yzpSv&5S+}#UW>Dd81ljTHa&*m~V0b_;47J?JrfA~PN^nglm&BurG0Fx)nh+su7 zcINVIfw9p6XF@LX`U3wuD2KM4r8f-w5IL;)1Y2Za0@Hzo`VuUpzZo}K^$1;@RxIea zD#ZXNx>7pDnNydoW0R^W8AGDtV?(4xqoTKLL|IW)Qww5dX1p-!{daF+LD0}cH*8pr zYG{>hi4D-a@lh1sDN1cuZ*L;$uRuUY!Kow>{HMiBo{x$J#;Y28jUn8Ss+)>A_;S!~ znTd%>rcJw~qJeU{Ar;_H3Do1wgz)4_*o!zXVO+PIj8iG^#U5~HSOE3Eo+gF3IzcHsB_MIxUSBSBS^e)`* zO+7Yb6C=2Y-k;|&kxoQcPqfyNg1RZkiqfa6x*HY&L!!9 zz-2E{T?!S10}y9|=%SS69dPZGd4pf;j!X;r!HsJ$@qRk?It^K^^j8uM0a77}3+lW@D+9UwH%e%d%5EF6?XJrfnMoZ$Sx`W-{OGK; zP-^7Ig{QxNU%6pJgr)1z^6FREZV}R`C%Z4{u%wNElWd0w3PPUX_@|=fKNIw}YATs$$=mLh)C+P6(S&4oNfxquCr%6)B~Q%oDCsR{sU@G<=XF{0CwmFJRpm{fJ^m zBJ)pWCct|v?Z3l(A@W#dgqQ}}oQQHXis5Q%_WJhzk~!oFk|+blAgGhLl%!h?9&#VD zJg)*3u)Q{5TOtj_q%!1T{K&<1?t_shAx=ZORRJ#dCZEn# zAzlb@kY$6}$RI-tmEWy5A#Npd-H>!h%ms!JXv0~axfFZSy0`HtoP8u}UT;POkdQ%Q zT%uq$ty)zb(LQO@UZ71<=z*JMh^`M@LOOw9xoZ0w5d-gI#hnM)?Os|iw@LVkU>CUR zZ^q`#=n;KK>ig&O5D8+znu#CT+nSp}+LXw^vYz$^%AOpg4+)x8bIBe#(uW7+Rf)b# zvQ2vpUN%NlUWOg*dFc=-p-2Lt&e4Y)*wAH593s-fH;HC$Sbz7hTa(Bg{1eYl)8*Ip z-W*gIXoh!m`1;0Vv`OxOxJ#OIphg-yyT1c}*bbbEJ-r@8nj{V-Korr6=#}2FQ2O;# z5t5um=f3k_qq+aK(c>>{o#c2SvNxRogu&Lr2U7%54K%a^m)o%v9Y1|K9QH+Lr^BrM za?)BtwjUx02;NVJs z5g~QtuAs;QilL92UoVv=?9^y#xBT7PUw`i-T*vTvEBZD>jvwvD`ZmK z&r>PfPxIA95S=nQ40%z~nejjT=}&JS^DvukC^PQ|g;rtD-ny-9t@C)zTMH`BP9H%Y zbk@AOcFM}>+K6jkniwmkbY7y@33YX;By%Sg@hx^8BXL27wO%S%5`Rkq2g(yzi>GEv za8l&vs7Cn+=6DJ<_Al%?G285j-;?%jUXfAKzmTFLO?sLr(aLTGk9O}sOU>pwFSBC2+6RrNL9oqfh-c}q)l z%kqe8Yxhe^T4@&ny72K%C4aAPUWTrsx(^#nDg$mv(xvFb6ra=Y`V4gY@GA_&ZP7l1 z8|9=Y8ZQv@{>#hVQ?j($l*7wz-i$7K73Dnhu(_#qJtc5XTk~WHSAwEhN(Lo;-T$Zy zNlY~gK_iA>98>|K>S4MPO%$r{?T3;7l$h2VpF{wrHeQ)?70+>LY~Uoen(v-HFiJE5 zP!y-W)&fs0+-|6V$+7tXl#lyH_!I|+p)BE9H_9&sW~6Gi~!Om<{! z&LNfzz>$O_*EhPMhLZRv(SSa@xZ-4mg8?4GmN0|N*qm!0N5WnpGj!p9n+D>dqRLfc zVy;}Z%1Fxutc(cBSkkvXctH&35f-i=BwpiVfW|F+v#VtlJTiH_|+zd6= z4!HKU-oSarW17|8o+3Rze)5z$wR-S1ebbxea)qe-pNL8TksiY8fbROp;)Z0&PDLZq zBm~i{QPKu`qy=K?&4u2D(3@|5*gxLVj!-!{g(BBZ7V^aSK$yU4(Kr7(qJqG)Lb@X> zPzypYBs-k@gg3znqYtM1N@87in;UCvEI6Jr{g6rUYH^|f?)fR#Hqi;qlGW& z>_q$BnJu8-$glCh`M}0pkAxmkPNu&c`8Y$n;g@aC0e_3$4PnRnPO)8g_7vI+%IYiQ zSEvEu*KG3s9yQ+Pt^`T-CUj=h^atQO&CP%dvJVdXSHpXFj2E>E2dsdx$~%TZ^FfBB zJkSHPG>~L#aE3@c$TK>+%WDgGc5d8D5=5vu10js5CnV>T=a>XBj%FSP8`T_$gT&65 z(K13K2AaPCl)!BY6?0A@fh^!#lg<>wg!BXBQlqz$=c##|T}LV1{M+yXbcmFW{k{QH zRUoX8Nd(A^*v24~VZS34B(H$Qf&9862_!)!Peq=lF_T@~v&SvMuk zv4cl-ob+GPV1$ua3Q7cFYUD_rRp?9rXxgVb)s=F*R1JU+9(W*udmy-ywIC7)j~kZi zi{`qvYcr(7q(}LP13d^X0VO=Bi zgW5P<1{^127i2RPY*9qmMmkZVX+OK822bq4&8l47+}ro>*MuH)3+o>3j1>W$f%{bl z6}G*)ksTJHJoY-W)q1t`?l+&4d}-(bIxB^~aD?(gxJc_5iKUT=g{fz3UI?hQ5|l<6 zk}GjQP^wCcFUsJtId(vAKMX~U#s#QG`p>}tphcR-j+Mtr7+wVM4#sCOb$+sNr>O2WNI zlxmJQy?Xdo#%g}CITXX&lvD~Sw)6h1o^t1%GP2_t{kstOjTBWJ5=Up+r@XwRyp%zJ z70UKAyerf5b+=w9Z)j+!WpS_45zh3!^u3^ld8MV_U7wQr{Os?N%yw6>86uO)bKj zR&GaT@>bP~V-yOzv7!GBAdd8W$RVYW|E-&_i;#0OOvnq6Uh9yeT>%uK@!(d|FKF$3 z%xZ1p^fO1x;vc3*e+Vo@shTNfn>EF587wB!|4=^FwRSPb5@VZvQBCWP-QK|IDV*=z zJ%^I}G+Y;r1AO*KsdLOjD82g3%kd-JR8N_sq2XK`>Xq__yK7_={O3^E-%m>n$0e;l=g!B5OIp5q*(OW^12nq=RmW!0%Q`WY(# zq9)$mVI{a{)gME;2+tXyeYqxWu`PM&w~L%NQUVu;=Xf04wmT9%&ps>ntXd>@{^M*D z7j^&sgoH9`_4^{XKTD9yOiMR6l`b}fD36c(Kelc&yX>UbZrJC{EkBiXvT^eG08ZVC z1wQB2^6GEgO9uOae#~WN6I!V(iG@PbYu@GFpH{-3ugl~(9BXV5H;|T=4jC^O`jK)+ zSe|3aQUy~>GSNL>GpApcQ!Bd6Ia;*R^e-Y|ZdC=5GZ9-NFZ1nIKdmfo!aV5y@MDNv z!-p|MrDMb?Ajh59^YNwb?78*(eZZ9BpI&-=JM2`BC2LYaBC*50uBdPLCI6gd)8i~^Nd$u$3MuPA| zF*U*a9P^f=jS`d1;#e};D|}WGPX9LoL%D>w6u#t0emzvyJo8(kxY{uG0W<8mS>43V zN0467s#%cqP_sw8Udl{i`kao&F-TXhUR8k}Nm}|ywiO`rP8%QOA=GTYoZQ^)zzV>d zB#KQ01IX^Zs1~KQAT;x$&-o2W5*A`^!^flyiR;uFz(N9SM|;(GoqQyXf=P>v)QugJ z)%&s#ZrB^5F2G9MIe_EMzG!Ay-a%S>>Uf`(gy*pW>yV0Hf{km2zS~x}t`zP_6(8ZP zGCoN1YtxXs4#ISxMgM5BGY15*vwPKAcJ#-pvb*u<(H@dpa33Ee;gH%KTLV&Bk*IxL z>m_P1C;C}^G&-)V;)=Fzqh3-C8~lFiyBQPFH7?7Sp{a4+^DU$L^p`_?!!4&vke~*j zmE_Df11LCqYbLv{$qIjlOv4N91Z{0FUU4-DRRjVgqoR3^JYUQwM1EvDkDnk6yK>{cRUfUY?0LN5tb(tb6c92kf zC}>{$gw8Mscp5?qmo_!~+o$sa&eX4>?&fq1#cfcXOkcij0g_Dz9%@jDF#QcB>12#$|!ar8LD}D-+ zaxJDN7Zo~DJ<}M!aKRL@(n%aDMWW50P%W97HL*-A>K~HoDTH&9vHxnZICZKQ zUU@cX4x(p5==K1tJcd})4K9Km$#_YA|15*iY^;w&t0~h&Am`?Rs>ndgcN@wduf;)M z1Ub_LZ9g2EMp$=T!r}&0FLK`4aARZRHTE-LQ%6b(<6>jup^`H!V7`#kq|na81VBxP z;IQIRN!Xh7Y2uKHTEr9(LfuNR7~D-_4}u3e;CMl-(5G1`dThVQuyoHtM_(3H46O-=E1r;F&j=_!(vRsEvstz3}UH$zJ;oHC;Y#JP;XK%PU z=wW*leqAOx+i$Wr2`79#vYMhj#+Q(QORYUYf9Ty%x3UUx@*;h-#sH`Pkd)eh>yN`= zXoJkY5FB-8xWYL#!v!w|cY#pOeKd^{O%)x7Bo@I<1yrrW1Rh8knI%0xJW%LiS(CPx z#A#7cQRX2ENLLa47+tfxa2vsO2yG&r7G%OgFEmgNX9y0tr^vy--p4^z98 zJ;y~XEXO^f7>O6_uvysMo}lq9PM#OJ{&pAt zC@N3c{VciA9Dp{atX0df-xI6I0cR?bhpvw312bv72jw>&@-sF)gjLkw@>sRp0kPY9 zEIb~W`W`T{TWFFXEE7b9`)@s+2K6;wLEF@L~ zs1lj0ZiBhq#`t&(X&OO=h`ZfA!5YJ}V`S@1e)IjRMaAWWeoE(%tdsAgvbLW_qsE{08y?SY^7 z#8qah`$vfZRKY~?RTEcdna``xB@=o&~py2`pCG4F}<%m5*_WZbj z9F4pUSiz@Jn%!f6?AK~dH&k`M=#u-7@KXXZcNOR^arjYlIW)~ zHCr+;$&$>6uSu}n#$<2=1f~k@u)w>r5P!>jSH9|-aNq_d0hA3FW`=0Y9!*LIo!E4l zA9eWqWM#wx+_{BPYF%@UMP-; zBfIVjF}432QvN|)LcOgxw5qfc-XS*?9Q`H|ZDnTs?FeFVP0vmr<6}bicbi}s2jd_g zByr?uh$8?uC>#s^!cz1GKe!T^D#)s@uw6zC{NQ}!3l}a7SnNfWHqbx2n=WYg$7CFoJg97}Q$1>Z} zPjM_cvDB>@$i2bj0h76U)P3FYx0f9=?Fq#1HSaugfy5fN(ZGQN7cmb}VV?aQI3Hcc z@kd@P%`k|r`pt>CBaY0b6;94JwllXxH6D&7!W*V)aE0*}Hzqf1vh(sIJI`e4ZDzK6Tu;;0I=DunV-6ZfUwPY|s((DGVC1z?oZkNV^00k$!Y(>P;2|4>F*Vi5!-N+YnPYUirf(akwPZkcMk!VQC=?Or zs@RR^kzPbT1ZPE(K3wAx7cS(p(Z=8bv`h|x3Eow85cal3O%(o2zjZp(X)V?Z zFW@xXl^`zety^(?TOuqga)K}yk%}SXHm4i;k@Lm?Ax+UWLg>cM5HaVmJO6vzu^qdA zYKM3Mx8D>#nR#{e6&?2hA&^xCwc4q52~+1Wm`)te;1U=yN$r9XBvM7#fe z&DbT^H>Dz$%BAIH6m-4E`691<$Lou~9bwQzLpd4Yr(<-+`BvHs;e?RRwXoiKsm%=6 z@wu8ml`i}pUZYPQp@pHAv8bw(;{W<&zm`)zh-fB&LuRqo&_)nt?Sb<`4oJ3YVz5q* z_wf-Sw`Du&I7^Ptp}%H~q4WF(az-Hh=I;5hnpmIkh~o4Y1V+@6TSHGEIo1f`RD`I3 zci&rYYRVYuc_T-?wU6($R?F6jTwe5Y}iBlv&Ft&h*X zKZsDV7C8_HZCVD|{%}irp=BM*@~0O+J)a)8HD7AH7E+%?^_t5_sB{|M@uD{&5^RRG z<+MoxkyWB$aBm!uSdP_NiyUd)!=?zoVjNj$;rzv3 zGiZm#?xu0+R*CY!P{g~?%ce;HIx|%bM>Cr6GaS?K2EEY4%%xlHL|ztI+FO3|^$hKO zI0^t)%GSz4@6FD>O{m4EcGTF2Od+k;hjApwfZ_y?he((mMvFlWdat@VgEF1zOO`G@ z0Tp1hTAq)j2T6}2IRpf0ZLX<-Nhz|N$k9q94Mx0hL^Bb7c8M>*&n7`IA#s0lKnPkA zOr4coj}jjZcNMp{oSyjNQuC!tdm&YkrfUJ?iZ^IwAx$UbsFm>zCV0fo(|2ad3UE3b zIktg(0PMO17``O%`!ZldSd(^~DH8AG#4XIbI-G(siu4zbc_7I}M?|eZ62XN0-5KQc z5S(vCXfkV^4YKLvuQ~9X8pvi^9!6_nYRv78`m3nQmnCgyiI-K4xh!wF{w z`K%PTGuep*;;M}st(~qNc@CGcG9WO@Yl;&_LeC1%r%c|sbk-568;Z)8(g^06OMzeh zIOd4SwEihvvoRM3F!qevnNk7km4?}w#B|tgpn++C5C=|(cg-0P(}dFkk7`~qwa{OKRi{lEUQWARrX!G(*xn2upy8k2X` z@||vH+M45N!v236JM*Y0&npho8cUl{JsP!xC~6>eCxROW2TYB?1k?bLxFHyp2!ac; zw17*KQ%!Vm5GmqH5XeyxRFsK8F`@!4xFLu*f{GG17Iz4AoIZDmtxcMqoTGmrILv(C z_uluu_x^s*Jw5HZ*wr5nsgD)8l}W%*>7T9mUcXlUlFSbdxo$jHud%VLNL#nY*e67a zoAI7*^VYXjoiy2Z<0>AWOWkLfZ){R;_l~4|-~12VZEKU}lK<+R{@fAe7L9Rj^NMJH zs)VOh8Dc}vbxB?mWp(dd>I7Q{O3{yEc4qWzUtxB8QnVpEv%w+ndsxkL#OZ`URL-u{ zZR_w9&p5o~W`|Z>s@X`}-4dw=S~062d`shxjp^G$zqE}RReJY@BGuGiZK*bXQCzOD zdda~4%2b=Vf0DN0cEp{Y1GB15Ta{GEz)(=*NfCw$W62H1DX^ZwIF z`{A(aj2Ax`(ZCO47y-Rff4 zlO?f<6D%XlG8?W}rN^16K6td8mik>^L;I%esf!#}XB^TyrFzwA5O6ld(GC%e7BGr* zA(l|n6k)K`d85X7g+k8~QU}o~4|fF4g*j+jylFpRFP*vt(9!AVGl}%7FVA`)D=ySK z0m5vOi7~;vU<~yBJpZz8Xm&^tooQT*wq1HzoYu8%RKC3vpJF7@U7Z+G_93q*>?z8o zP9@cs!mpW`+r5u@BTq0ws9Yp-3c0xRZ&>RNhK#qX(wB<%QnY1ai4%>O+a{YTbVFpP zSpi`*(!!!cmm{N|)x+tM@~$G$@}DjDJsekC*TheyTgaW3`+%1FT#nBoW#0tD#~{#9oF>> za)K5(PL>f`5%bl>w$`WGkQ;=Z=R?kgjZIxRkt2mrDuX|KW||%@#HmuEBAZPg~ad56MT)b9n*s=Gt7B21UVxI>Vi16&-M1 z6S6t+BPDC{B(-QtX4uP2#7^Ue&Uj8@)LZ4r7TlEV;_SSK-Bq+$uu-ysCylP({N4X^ z@}~$?$JOtLYJDwH=1IX)#XWr*e0! z8q3RlAOtoRy?4i% zWs#>ZB3}@4xCr@?Nz~XR-A-vYIO?BzNe3Ci}rqvhG*&XInaESI#4*r5H8oaamk9EszC3^hXOjUs$PvAd*b95tDCaq7ae37~- zytJc-S6V`LFNB_W7f$VY0OTUz@9pV9)S$#-0r+Vj(6j5`gptRK2a$v`(4(NSgcL^d z5HUeVuc=QdxJB1gY;B-r_H}4uD>Z3{`i-YNRe*vPC2dm3R+nOe9w!_JU{ju$VDcR1 zY)E9CpRTHUwqc^SSsz_u`_v%)Le5Wrxe>cDDOMwI^1P~r3j0ZK8H>hedfTBWpBRRt zqB`TF?`YhJ!I@-J46}eV>;L*-E`wLZ!|dnh*T=eiMbDl+0b32iZg_QCs^LkBydzpa z4_z(22*@%wtBObZ-|v~wvk_*M&sOBSdXjui`GLr9cG&~}#Lr=hBSE=jJF!42(wf@` zB3r&4zCO*+a%s8~hR7;0<(X>FhLv6ToHy>#;xa30vweay#tS=Y=JC^=^p!GdDjsl& zg1BEw+F!mtXf0{4xp!987i#qwBeaC8!z>R4wU<&DziK=p7A%7?LgC^TmdT`$9u^i0 z!`t`TLLRlUv#V(1D5d85_7$iA5UbF#a(?pn#IF%P1(o)M^G9d{6qGGA$kTL##8~QfMm?KbB%-PbZR>`ZJ40rjgK{9gBuCgvY-0+KpMeIDO0P zFPX6NTGy`TEZ(t#tBF-I7Em#M(Kh20ll**hTt?%&^|SZ;u-ugIR$EJoJclQyeY~OF|l? zcBpBE_XXu>Cs>o_^??Z;@zZA;e3YllF8B;s(UvAJ#g;PRM;GDbt2jXB$Wx6Ie-JOk$^d0*Tv-EVQTyo3-0IN z*>OoS7XqN@2@00n{7e)(AQXIqT)M0ZT_Zh&j2mnUFKyE(O@-nngPz15gAdXzk$q(6 zrggV|f8uw_j>dzWDmMWPC0$G7dK5p8K}|3%)iGO!3ZZu4k4!WR zhFs`LS68Sig6-q@7}$hLa zQO>s{D?#Hc>s#n)+<*}Hagr6QL@~lcy_YF~UU)}1(FMBF&~D*+ht ztIic{H(eF6A1+5qe`d}!N=@)S6dazC94R}1lECvX8f#Gx?2QO0$*;p2lL00BuNa#jXla z`e2-y$&L9Bm9kcj>U4A1H!2`kO4a8syNa07B#{%}IM2EaSAiHWvK*Ng#{?Le@zT)J z@{THo_*BKeb00qDm?5(*fbA@-J`W>sx8w45nL>jGH34yryZc9^BG^YK2$}-Ho&4Xk zir<*HjyCd>jbcP;s{Y*R^C$R!2|>T`hdWjtnVWR%`#!@&R$`)>GVT4GKly$3FYj3? AUjP6A diff --git a/_images/ef992eaadb2a2e6a9e2ff1a45bfc363a8537ac01c74b81c6d0cee8f668e7369f.png b/_images/ef992eaadb2a2e6a9e2ff1a45bfc363a8537ac01c74b81c6d0cee8f668e7369f.png deleted file mode 100644 index 6bc4d2dfa4aa2e021f7197637b84301ff6da2f6a..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 13657 zcmd^mcU+U{)-CF&GcwAV!7?Jn0y1<*n$%cOiAZnKf{iXcv|s?SFjh1wC?!EDp+`yp zsVbugNRa@MKtKeH5CaIIx4R#wo%4M&=bSnB{&By1{izsC-txTrS$plZ7MD$o4zFD! zvPM8aU@cZ(&rCpId5VC*GW?gT;5!pH<+i{V4gA4lcyn)Oe9#F$Cjr9~c%L)g_%m)N zw+1@-`MY_0DJ!Zg?vmf?ipTr-Ybq&u{`Lk%Z$B3$?M=CVgM)nKqi^FcARu%C{aKcd zp}GkOsJy`H?Xw6@;IWDJZ4(PipE$ik0&67iiRxPvov=RcZyQt8OpA0#^2k=Y+i;cL zDhizEf*rDtk`QoEbom37hw$fV@+777+o|N(37QE*fXX-Gf zF?t71Y-NuqvCCWCYchl~#aRfc>P;^;f%emcdv1t}o%<1$JH8 ziD>4FYz$9?$^%Q}c}D zO!q}&Vj7$o@S(G%My95>)~s36=tUA}ZiqZ;Eb!!_)5K6)>ANd(c>V{|g#o4T*U8bk znK^dFLlR5VQM3HPQv^bolA@xKchy2s<>CZw4v&L_On&T0{`m3Z@cr)u5>_miiBPIA;)b#Wb5R!(IlPD4ZE$kC$~`uaaAmVMmq zy@c{l=yQ$55WC*dCuJ z+`KD+Q9=^!ukI@cbU4MzNJ{EC&as$r4VH3DHq?Dm@Jyx3>HSwXDNSmI_ddHQqUwH!Oq{f7V=_G!=V#(}ors*|byA-^*-L3> zwzj6Uwpxg32b&0PQf$4s?LcAB2yWrsrmE&)b{QQOnKl}<8k$ZJ7$ z`tTyRkLrkk5uQ`$9O*BCD?o~PS{&u6Bva)#) zJ0Lb}zE2|b*-VW@cs88V9(@a*q@|^0>RmbOA(jWNZEmEBR!N*AT>n%pv1oGt{(V_R z#rB@XNp%JL5)-(5#^S=<-TU`5&=s=sovy|xI%Gm=Hr!X{WLHHCe4Q_lB$$n>V3AIH z_EfU{%Gg#14xFdEF?QDX`W#bd<8KcHmgx{_CGXaFzyrZ~0;Fu-yxGd$KB0}pa<_?b zS{RG1DwMRDn;MzoYn+{a4CZ!7x8Y-wy|<`O%IqJJyD-8 z@4;=)iIL>C+j&n6O})FSWJ}5}?g{H;sQJ9z>oL@tk=TAeF3vqQEsbzvd~7T`B0?bR z;lpQHJtN^up#~(nZ{G`ZVrO=SIn|bAG}GoQ4uuyZ=>f1pF6yobwd?5Upq4j!7PFn# zitc%2KF2V|cw+N$XFnaJO{N;e!r4fqZ{aeybSADq(niiYmp>F68|#A2->8K9=w??Q zoF`Q~`&=o^w@w3YQA{iFmHU}9g@lPAC!Lx8+vLefLYz)$k@ZricNLp-TEVX9Rn|g$ z&wLtsjNC%zie_csdhxxn2!1w*ie~@#5wW}o6jtjPPE&>vmJO$3~SPvf;}I~CWrN2+|=*)Si31%T!&y0KFgr+*&|`ry}iAO zFSH2!^dj$`Vbz+;!qNmWAt*DFCRCTya#XV0D) z_0fA;yd`K3M~_}(=CQqEB~{hc=gPaAFiZ9$6;n8>$6-Cam-*R7Ox;^hQ)?x3=Px)e zTSi@SnJunb$VoFw%ygj;t<<}G&cilSb*fu$X>CoJ>^cy&uC~_)PsmOJ)Q4s^)-{QN zv%=l37Zc;PDXFPVrktvI{ye}vUd4@Mm3{1i#Nucat30HjJA@-6IIQ1f(PPc5*oy!hen(N`-&>9}q-cfS= z>2fD$XR^;VK!C3C9?bMpA%0oUf>CN}s>rV65wL`Xegj9ExWrk$>G9)9JB`WNp>VSo z`lNR5oGri6+}v#BJ#?#bO|clo|6^w{4c3WYwKP{HEy|g8*b{CY*kP+OMj@h1WoFI^(=N-jl3dAz#!!)#~IV%oL? zmx2SE8{3lho#%Ilj)c&Oqfb|V?yoOjy?kln<&}H#TTm3TyswBy6gTJjo%4HjbA{0@%o6FpgCVJnxCyl=+_+w33qP zYaHi-j?*?VE{99m1x>o#j%BNTe78gOTES|+j$A3I;@zzc{cCWpXQ?s_R*4&9=k%+4E?Md*T)tnGx=tMn0PE`HhAB7Fr!#KBM^&JX@ zW}sBjn&lW6ScD@CO0n?_!_tw;IhE5d|3;_N2X7nenqsk+-!~>^eY4|G0$Y9L>(;h5 zH(1m-DA!!T_JewQ=?@?7k5}^?W1Ta?VqZh8WkZW`fAi=Bx#o+sqxT;=E(}@6X$EBK zE>53HO-XU>Eb^>tXlTnR?#=`_#*(0MIbRo1J>t)4v?LNMF0I{?h9F(ozN!CpSAG3m(#$x=qq{tW z9EO?eXhJjs_1=JhfP8s_7$+GO6$`s!ueOH=ukwKybKxw}i0uvZ_XiX0t@iGX0I0yY z4tG69=WcCjd1#t^$cmCC9jKd= zqc1LxD0r$6D)40UWcH}D+`l1 zHh(h_5vY^8afr*kd-LYoT2Jb`*mH#oYQ)p0`wwo=udc4%uz7PWMrD(R`!ZhoO1z#< zl7n&9MdgrklDaBPKfhk?KV18N@?y={#09jTJHy0Q@#Wl+gxON$F-UQVzq zI$cStaon*Vc;{lqXtzm;@dNJkkc!Dqr-}n+CQ2iXwNhZA5vz?ne|}cH5@%W497^#S-+ucoa2$8zPJmbKB~P0eXmx0k0IWVjYR`4Zdh_NOpp_eR zYan%uOv^0({CJZGj5wr}0B*a?wr%_Diq0VTD?4rj2Oiy|%e(3I=Fz_DC?RI}(o}dB zv`-ODd^*sQo?sj;JKG{4fZoDj=y(Q}Ib>vH$SNttO7glMn|l>^W*MJ7TTZ%tTZafo z^7%CC7R7g5nvJ!}wa?J-fA0$Pp1?^A;sd^0z=zG#j+(-;BxTgp+PUR$oiH5jC0RH) z@DTvIV)!L z=Hnp?9j|Ayg&cDS%(r@acrc)u-Hnfz!=hW59A;-B^nl@q9HtgOwW2V_DZpK;J7czg zU;q_BBFo^&k@e!@!*B+in_I@9Oj1*4OM;@AID7#H+3a%G&d%MDHm%$8q$_0q+oA9AWR-9Zw8R;EYsg@`4JRE*PJ~1Lk~gvYo3X z&L%;}IYRnYSa`r^kA@Di_W0eH7+E|W* z-(xUK7nt-;9t_Qitn=s3E0tE^H}%E&o@`ytG8O#rBVkmjCS2Y;_6FOTtFkzgz4r66 zSD-fL*RMbD{yjR{Ncs2;a>)D5I^(aDNtLCRl*GiGt}c5(ctAJoMo_F!M1Wb zeL8_3@Oi$Lp)x{RbRRr;AS*9#apJ@SS}Y*rla-fxoP?mJ|APMVpJ+D!H+|;pniL}{ zh$9VLm@0#D#qtL5^3$hJYXk)uK!xehGHE~9E5*RR(BHT3ZCU}k>_%N{26k|P`$Ssr+>(fphH zaX*~8G&D3+=-wu)vot?0qVAO-iCQxBujUv9JC(5cX@C25aIpF7OBY6T77>Eulg2}?-O`uk5COTa>dSasW`I>aG5j=5hY^?BfEy;)nyA8J4l+#yXw8Fwx{`%$vCcmDb zs^5`GJcZFN&oS==-c&XcS>xvJuGv?qi#fnDg{krmiS!VJLldBeWhu14eSPoVX%j*9 z(Jo6{7j-~EK_N3IXM!b#<_usl#)QO`f*V~M6Ew(uv$F&c!VoI}n!w5bqN+Er%o6Yi zdfdv@tK-S*zJB-{x*iGi8ip>qEJj?sJ8gB)7cbl1SM(Owge-Q`7-5I!jwYCI4R~yi zCQd}R<$n0V6i$xjDFAlKjMUVFh@3)0lyn3ByJp=wE5Psk{Cr6)Oy{fumuRRxV}e*2 zTd|DYouRX5&-BANgP9O!X2Wa8*a-mQPUEHLl7;1P+P)41i$XY$7hX>`WVKkU`gviAA=6&0Tl7d z<;$iZRr>k)!9uqvbjht8cl=TNpA4n4h+vfRzr z_mhlcamN`y%|!Su%@Y<8$$a)~|AvhlXZ=9q7O+p6c9?{(e_dAoAN!f1gyn8H92rEF z{DJ}<(8Ov7@v^$QI5aWn5DI}Ca0AHo11%pr3edO%x|9Kk%&j0DHaW?{QjMCsi0R9L z_5qWI>&u(laJ-qB8QY>W_mOmP<;ofj(REOb84n&jWk_pj*>RaPYvATU-O^sXI0Ov_ zWP*v0)=1i~!dsmy%*!*K>hh09tSa4@qDu~}&$oa^cJS&(8PE}HYin)G0(0Wx;w&sI zB(c9THxN!;fw`fQ2R)X`E(`Ji^5{^2u5bE!!J3q*?ogUn8BY!PNn=(8%tLK$ZNMm| z3Ojg#Ff3=5m)nyH{W(UD*b*ae5ypJji0npG6KG& z<-SbJRA{kQ+%;g~-m(}bMJ%ytc67iN%03))lG%=?ur$!~KrJ8_QW~7cHH+l4%sW3B zwMi=}85_jN54Pf)Ve>Z z#d3K@-Kz;ZmDgR-nZ;X;nLdXm_y!8b5h?%u|HoNbZo7HUK3!^F=b6M87z(|&o(}E& zn{U2B&)c2bmK6&Vxi;@FqgTtIA((LjC8IO*X=#l6>fU68Kp<CT}2rK__a{W)HzyE2Up)4P)yDO&(N)T8zvb%Sip)QXLUkGU8{t;}c zUiw4WDsxta)f?4N zo{cP)*M}u6N4hKM#JRwKplMKb?I7}iJel(F;dZQ=d@MvztJ&>ERoquh*(~CDqj(0dZGOM~BU*@hX;6Rka)# z7(m1?aJWkb2E#UK0Cd1km`Ry1(HaLU#MVp2)(>dp(rB@g0D6zv!vzkJj&6>e=lQq< zQF=sR>vGM9;`6t4nulh8SRqftXlYU=&~{muQWiAQj!v38TcP9sVo3+bDl53FhixL?J<6N#gVIP%yJ_vi`rsvl3~OdyLPjmueOEyw(-gUEKon zH*yDVN`l&M4@{i^A~UiKegjZ&;{F6c`EfAW2bNWshx+)89-N9DK54IPbnUl>@Vt#M zWLWn16pNdHiE7Q42j>&C?>ZPY*s`u}Zl*Ri_odIQ+oE<9*$TwW%*;ZUCbIb|1V8pA zNc$-9dEoVUU?cF$^al_2J%9e30QMv@!8*>Ufh!B*v^5rs1=3^&3iGq-YE`!uNvxTL z#T_swbHVJA1&#dm>(}6UnjSfF1&A+GLGTL!fxS)d&9^RqM4}opb{eRojI8XD1DC#j zon{z+CnjbmHtx?r&*j?hgC?3n-{hU5J2!}|T(v5YR|i-9b`wA_2u_*<+}}Zu2nM$0 zv194L%^Vd$WQ!17UsW#-?>_X6KD6cI>(8zKfBwbHdVTN<@jNH_yDaA~pv52P*2S_yeftA)h1r`lkpo{UVd*RQXu!-JXP4sI6o>o!pA z?vTm3U_J-W_H#HM9r;d3t_BYV`Yt@vG*Ik~DIY(c$#Ja0K^?J*JmbM4yL;=_gZB3J zT)WM1-1+@Cl@irGS^WX!AhrQ48pBZ7YN*bZ{0G`bDh%Y=K7a8dGd*2j+4+^pFF=Q+ zXV~GlB_S_i1R4+WbirxuIcR{86az>qPRq?TB7rfbfX)0}VIzJFEHg7Vx5VLcH!C~4 zavBqXg5Zc~ZUr42W;@|kX8#@F{DG>t{!4&s)VygMlM3kZ0lYj5Kfip*jNcfaI!x57 z*NKku;aW{8x(1 zRTY)p>jRqgCKW}+Mh4E@ystwwV2`LfpbdBwOhq^F9uD0Q4SB`|w%oy+G~xmFY+^f> zUiEF*^TTiA+a_ynhWf`ww~uOe)K5(=p3{B`lx`<)n;7SYxYSt3FdOgkPnSTKs=yf^ zJ$k3QceK=@861NA{N2WHMAgpR1M*lg3ksWC6In-kEeiLP_{J8P@7N5Hjd>;HGGZ4AgPR2Yh?z}AFp4j;_(;0iCB7+56u4oux? z@CZDB8sUh4sF(#C2_nTT9F8OoMh?^7|2j;SzR#HBe^oH!cF>@S353bOIEUIJ+pk_h z`fNkKJkW91*AEZYy?S*=GRL9JDlab&5U}OiW@TV3RLd-@LC97yOMLqzv5@mH-@iYy z=uF4MPkl9%YCkyOTW?@QR5Kf!3?MtHRB9;eKfyh-xNXhJ&5e-+Bqh*)VOeC|ZQHg%7{i#V%i~BW{g){*_g-nw_X-NC zIxG2q`(2x!VFvWPfr*UUS_F3IaM@d57^oXdykl3j1R|O24WtS@YqTsWe&31z`#TRH6u`xW+1l%q4pJ2;I=HeFRaI3H4Zr@cYW}&x4zry1 zn?%MN&myBfN)ro)Xop#il*^YdgMNxD7W`SpfB#iHOuWb_u%={Y%JMo2I4PgG!zM*a zkp7k}TPA>{Cvh+-oqy#MU-8_|aKkH?A2K(?ZbyhXP!%xv;?7 z$bd@B%Z0ugFD)8#h2r{;e{bLZGSHI2;7w5H%-wGs=k0ftXm=Oj z_W|KKq?MZ$L+zXf-!R?)K~iEj-80>+!*n zs-;S>*N?l~MmX-U2jX-qZ*M6`{)QA?2h4o0kQ8?1%9SW&gFHdV0hlwMh3Eyt5|SS5 zWkHt&^=9bYYVlEbWAMR%aZne3Rhq1=rLicP(d891WmFX9Q^rQYLvXUzi;A8hXgX~F z@CIz}QG!IM_5JHiJUTln3Pd)o`Yc7c24&jrf$(2Q{9!O0By01t8I!8t>Q_y_ z69knAJcRZv9iTm+mnF_}esu$dg@wyJZ|pTztL1;ue98nlUVF=Kx9#tdZse*+5;q)8 ze)!O+qvk_=+!?izRxhA4YFOJx$Ircgb-z!;3*1MDx^55__J6jx35muqt9*bUNHOS1 ze=i>`;}MQ19E(W>9{RkdhEhbkwHIV=M>ILG)`F@&Sm+^({XA8%vv?!}#lc3I$zvd> z&mUNUZC$>I`T72s!tT9ztz_P{v%A6|oQfR1mKHPGB>V-QM9WWipxTcAm}fWX|NhnM z{@UBBXQzGGKGkcH>CLZ|rhKTuEaqj%ATdw?9&n@9NGmKZzxjYrMrP&_7^+z%zR9cB ziMqNU(TQVwG2cDEs-;sJaaHKoA-cIy!sDrPVr}Rr)XTh1_HRbRT9ViwjxcLOxjDru zC!T!)cMO@`!MoNt4YwX(xi6gyGLn*>WI+(g4T2>@5Pm{A4+zT*y?uI~t>ueOuDhAg&fTHz1E5^R_nCWi9&h|I}OGZnK#S!CVT z$R$8^M#WTj7K8z_3JWa&n9V`8ydkRbZtynbjGXFY+@4?A0Oax}SkNF}iin746Vq2N z1(n*m!XAQDEdT9!A$Ml30|BDP6Hix5xWeM%`uHDgA2pxS&j)9&Cu0GYzuhU;!5Ml> zjmRFKB>LGIza|f)P(WPr%!W;yLRq>Cd~><2Tc5BX4;*q&wY2)OdoL7HVI|xYg)i#f z`waikwgfIaCrX^~GK*)|GaEB8PFd>8mv`^oZ)t9R3Y!mkMfv*t?4lwylxB_AnY>4B z0``=Xp8h=-Qb0xWS8Yp7#2f{s$Kc4vNZBAwAB$-l_c$lkBAyHR+}qN|?GUk`Wzi~2 z8Qh<}yU&)M!f)CThGKqD9k?&UgI19S!j;GT^rs;vjRG;D-T=8++mhg};J)i9Rflc} zq%4$kKQE-)44RUZsor($$^x$v1aKhIX>tW&2>Svoinb<=(vPXgf@yiXJ=!h@QT zm6D>@voIWlvcNDtU|XL(?~kpTPen2mY}rnozL3idzB*SCOrjfaww z)zGjZX=Ccaf2384g*Uc7yU5X_`;6#jdv!FCQYm4!5dV)fU&)8AGZSqipTd;6gH zdTV=o8kI~KD(suMV|zTRaP=G%M>eD<)_%8ZFZ>t-*j_E*j;RC<+oL!d2?lr+zGAU# zY5tI?&|Gj-p0|b_g0$zX+|s(N1z_U*@_Mpu$sQFDq9K5S9Gjg-?pvZ95QkZ9VxeZC>%$r@{b;7=E^~Zq|j(#EnjE1;4&C+84 z)4336Fp`)VLwoM+lXGwtS1)$*Vmf(Ndn2YWJ>cq*6Y;Qbj{o_1Ijd1zSeTxj{c7Al zZKLAX)U1_*OHr?pVGC-iDN5CHbt*QNIC&of4Oe&e!;U6jC#O_&rI4`j09!M0jqIL1 z$3Xgp;q|d361;$BGrJ!9L+eV06fdOSzL%03xKljbJf4ud5#1Wf{g)1=#j7~K`p%P8 zhz*~vmf*jS_dfD)qoO1=>mqCgcKFf)$_ju&Y6&qDNNgH`S9Kd|^!s6m^@6H62n53t z;M+x71ZwOd3YJ_6IH%>HAgUF3G^oorDv-xYg&=mc zyQk*_|MHC+R{Hw-O|+EN*1iwf@SD8%2Qd z*%12RLd0@#u{PNt5v!1GORt-Kpt_HV-pEG-qs}vCU-+8gLDNeZ7d7dp=3Mi*xUN&hvhFKb*6FF4mec<{1Cc^TT6#sY~a{&!bSNOXx=uPf)0n(J0i34E!_j z#O`i#3jFZdJ$!1XWMydQpl4%%lGC$$X>Mg_Zt|Q4V_;)zVr9w6dY_f!E{(CB-Ah}3 zHa3g@y})W^W5h*T83eQ>n8 z)kGWYHuCEGAA+iDKknuzzepW_vS*QBpqpN)s%g!fc_DvX^`RN_Qtgs20YUQD$_702)u>kWUkT`uO) z_q`13A$pEUzW~3YTcRs?@RLmAcoKz*RU#5RfkL%0;sX^>Ggt8x;K%O#YXXl}z@OW^ z-1at8)v|R?WK(0RI2jqyPq1gv^6~{mLHZux!nRWbiGOwMXkrA`7aP+;7cVzm?ii&Z+eu<%<=;%b(TswjC zRJyEK)wzh-6El*O^y;3BCH`GggAO`>;X+7MRP%QM8079ZdDbcH_5$^%(%%_X*tr*iT91R<%LLBg`#UoRg`-*Y&dK2w36#4 z+SxpIWG<236J=*-pTm|GQaR7u99h>aFmM0Du78z+BK`I2ljVC$rS91yMb`1G72D70 z7#Ns=_R}#Q6_}-={y83A^FEqVY}Rcl|3^VSK0YrB2kj?A)OLGzYS`T4tS4%B$_;ln zW~F6imF4CAEB3Io#2r%n4LV*9~Z--lWi7# zBoR#Qp;o=@req|v9m?vycIsdyAjV|thfTVSrONLuN7bGpZu6GNP;-~gQ%cvCFJ_!G zYK_i(cY(xoxXg*1*YYa?m0${sX2EuJ<-z74x5uIDB?=zd0FlEY!=^8B+NBuA+qcE{ zww8OhS0}iw$0ahK{t&CLuh+;o4KXz{)5K1#j8%tx`V{9d;-)sTUCX<1xVOAV<$};K z;=c7a+SH<=r@9AoYPf@C58d^tW+elI#HF%zdAIe*kuINW%(Upq$;k+Avru`F1G}jE z)?&6(P3@Cmx>@$~J@uAbM;^Y7lN~B*+KJdwhxvo85j9m+RZ)x6G&x14Sf;F$_EjI# zYawd$j!xKviOFuJv=mkAhkiZ{=_*=^TicFKe)2{8M+ZJ1a+pPgblf^7x&`8wjADH8 za4qlEvh(iONW8NmBzVcBm2XLTC#&OdB4j{UEAF6<8E0UfxJjMe^(si3@^01>3)B&N zqpYuDYu^3tBB7|q_H_?kSA6jd3=EvdKQL@`DJjfGm}PyU#VwEMPSpB!E@4aQ(7af? z;H;wY^XQJ(r!VB0_j4Q^ZdLYDIt;}n$GB@SGBP^jy49{xQnH}Qxr`r24(9iplZ&{Q zsb*=VTDeY8XcXHdW|ePh94t9hc80QOc2#xN;hKLNK zT(ndD58SIfR^LsNmm+kmyUHRwL>!4K-1c#6j)|KjYICBi_0Nhci=Id|XjxQvS6eFS zNM|@F)TXMLesxZ&Ni}*CBlKkADg`Ck5#Pt{Q8JRnwxqL38U>4@=EG&`tYI=FS}z}b zocE;?8gLL{Vv+_K>zZngq(jg5WOnXM$1GonT4dMzg?F%7SQ(<+Te`DSO=vb)V1bYd zL{V8uDgK9kopg}!(Y|f@dW!%Eq4}DyfWuN(?1MLXZhM&Ka84;|kNqG1R6k0Ft75gJ@wXYYhwmUAJGK>1tM6OUBx5I2`fttCv>}PFjdGGOfN*{}x z3AF;0KAE~prOW0U_Xpw}jXsZm#nd=2O9@;hHVF7b^F)1dlh6lO9?0OGr?4sJEN*BZ zS0|ppE68)v$FEu++gf6P{-H=|*=y{rUCue@)z?ZrbM%#6vaTV0UfkG?R7f>W=;5^i z+YB)&g(77w#rScbD+gPRLG;UuzBzkhscc^if2TV*zh3Jk`z1ARIz&aul-hB4M(A@z z46bl)puoF8X(E39^@}(6)Ja$;x;a_oO;+2nQ%r7SQGF%vU!6J&x>3F{jIDR8^60>@ zcV{L(fXjW~5&gu%B2##8ffH-jDHoK`sUV{5v0Y6K+}OFK(|Y-~5xbj<=_x5mrM1AsdG_WUWT<;!m4c5i(d9iTUNX6@z?D6>ch(9uYMa+cj!SwM?ljjQ}4N;v5bA_{9pEIfqK&m0Ire z1;cf#xG|oBDx1nWT(;kboWgCo=e~*teuGxqCHX5ei{a*dl8cuO3U_c~&eboR#j5KL zg+AB+P}EzeGtTY*98MbF^qVxQlOeNyeKJd9Q9!4iCNO$|5$jRLdKHi3?Z}{utjQal z&d-isE2Sk3riFkS+s+IW-i_6XDyH)*(vflvXderX{lz`t<+r5cp(HHr=br29+fPS1 z%=rr}1$NGM_5IMd|NG~%#ZXZ@@BZONr-Iq&&sXI9b}4`r$v{*@rv@uK>`wv&@GTpG21TNDmE=-nhPr?-;h@Bc2rhT!b(3(t~FE&j@IzTP6?c-yCzDAw*5v~ zK(EKn5|>rSo?oHXVWlpX7xerWgM^ounCxe-zw~C0ENz0PO|evzcT+o}cSTFKo<2M{ zIKL>QnzhE`wW2ist()QYutP_1VRD{=WSLDc*)Ku|zhtsCD&79?bvY?ziymjc5|lb8 z@Zg80u2$5QKbZ)Lyuxgx{9EBlmkEA!)Zb{AB}HZB&r?m|@rcO^AR)3pM(EZmvi9e; z^WRTWd6rmy#LAKhy{l+wm_&l`utpRt!SO`NS8l#%_R@Xr}sukIGk za$phTM=hd*aQ2AH#!S0-x@u-el*4c;qf*kJNt;xK7~u#Wi-?8I5~{Cix^60kLpC4J zpFhv#xbo~^innrgp4(!fV9+ucti0ZeO>RIoS^ZjH6OW0T3l@F4X$LhSJ|8j0`#(2Z zb)FRty4HDk`PAvVzRD{O)aVy;w76kMku^c`-fXDiCa->i&s@oL*RLjedGCW4jvF{0 z$vsMv{_W!5tW>w&urw$-B)Pgfm(?w(+8?gO^fVIchlFXcP+d0$^Ni6qS+PQ8D_Z_ek_ELCxh4=249xo z>5Q(wBk;h)B=yOYC(2KreEa+2=%`9nMa85yOM9+2I|gKdC5Wb0{(KpX8K9`y4_#K%NvfkmPaeNh@@Hpfz@EU3XQ@#hd;jQJuGT+Z}#%3R0_YB zE&V7x+zHjyRhj6C>tF)(eBvkY)5L4v`L06r?@mq@fA!1!DfwkR3hsbvy`D$hPchX@aM z+u@7w@ig#CnNTl(P$09f`!W?ZPE^58@7Xr}DZLgu?%bVOHmowCm|uz;?F;Wc`LfTV zLCznClb2lM633oC;+HI%N)levD6vajrlp}#E}&-ZY`HyY!@saQ7igZ|ctR{|jOeiM z#9=EqGRiuch|-w8lys@(58GYa)Vws+`K>VHgF{2F6-o?FIzTCA!_k1DCao5GXNVi$ zzxnj^?Rx zT@7e&I!YFSNt?f|)fz1%kWFN#IXv8AeTp;WYGdHF65hz>B;Vhp2DG&^3&V1)zp^th zdsB>9P35t9Zuoy3oK?!eVmpac1Fq(iQsqKibCO|oROeXv$VxFvO!vUKxm>uQ%6Yg~ zAbvsHa0!h^SjG7Z1Tc0n#FJ=EKAtNx)`c+l)T{Tl{2DiYIk@-|TvgjWIs1b+i~eTY ztZ^~Pck7qFn7;e|q&>zMuL&C{Hk^seO^?)(z4V zvDKj#f_KpT*}5ei#3h^ICEx%`t>Crk4NnLpb2bs6@KII7qTV-HGdnysuge4_*{z#= zMxkEabUZl|$jjSIU|D|EE9+jCm*kKL_hw&c## zsyAon6T@`Y24TOQh%(W3-Qw%V`YV<8p?B54A;ty|k7_WzTnF{x%GrK% zo@*o|XNN++4|iO$@4UkfBsLEC6C+xYB<5V?%{_S7f1*B|s4WdNUC*y~7r3p41^p;^ z<P+B)LCw-_PfQQ>uoBB_qrLyOa}sVz&p^fP#F2YXv)``fFCx2Br$H16-; z7nvIQ()s!MnU=W)1*&1%m~i)%H`FsBYC4Mc_W8m)e~Do^Zu6QW9WWZ=*OY_j7?kk& z^VJcv<4h9n(^2}+0) z_uh?G0LLCwpN(y#m$#M2-XO9aw}9-DIVQJdmyu3C-r+lF#Ggfs4e)y_*Dgel>Wk`?vPXa}ytTTL$bJ z(HVBbavv(m)#VUlI6SKk?5q<2Q$n^j_fC`t*s5XF2Wa)u3q!mmBUv3 zU{~RO6Dw@92pnv5x@{3(x$^nz*9;`g)6tWuX}?rFy_+dw+LeNFqkp>mH(}LcSqcJC zS9j_h2h8oOv8qGn1)kErA3q8t1~@Wh>*g7MLc9WY{o0vUkHg$Em&g+Wgm+V#d+BKL zF!&Gj{i=U78-li;ZF9M~udG^{Z!>=x{k0i5yApPK`572>J|91Ju1z*-Y9;HDW@Kh| z8^yRyQCt^+<>4UC;IO^0mfONFgD|}}wR;K@yV+lB45Cf$WGoz{Y;(Ct$*&AX#F}P- zX*Uy4_Uf zYhcbdY$mrDsnBLC-v}zO#171192N%>`*V%VaC6-Qxkdqp5D_s0Ppm?8u+U0(aUfp? z@p9Yar6z5PHC(d?ttz$I%2r-qzxy{$ErXu)mW=b{x_3q+nuNrr~$vxel(mI)xlo|k@l~Awp?~Ij}f6=qujfL4iH>> zPv!LYa+Gx~+3x5Y!aM*T14BdUAPx?WyyrFNkw6SFy=)ub^w)TZ6%{x&8M(Ta6`1#b zW6mlPdvoSe2bgTx;haWuUKEyrwA$7+*AUZ;UM?abBjav4Y@el~*C0$gi6Poita7(I zo6B|krO?)ptp+d!z5G|wmlPZGy$T>cBOBmMX+uDy1lcH{y=Kr=Vq)Tzy`SXW`BdfQ zJKt%&`cI%J^*NI$gB3BaJ35{uCM2XJBuLcPABsDvsHhC&n}zM-=9BxLW?jNw6WnMM zci!wb%C{P+xZXRqMMb4*$S{ZAHyd`&27vaoc6 z=FFfzn2~zW@5MXB^VOA7Thr7uZF$ST#lW{cl0sf56CVtr_N7s$@!#hb`+ih!^|{p7 zY;4#eCPyI_6Y0MCQP&u74Kd^q;lzQL0}59C@%e&&^M=MoB@71RovrQv=Q1UwoI>)u zf*VYoOZwL!erYy7dKWBLltdBcY%2hmaYq8WqAu64Ifz!`>>Y_+9i>A`S(#R^ zu17flC%5I$eK2tD&ZvF0zJCMn3eE2_hHHM*pA+AHi6sa`p-ST3m%O0&Y~i*ab{TLk zk`3@!zvytZ6Vhy$3mF(uHHj6xSO^5FnhW3kkPE}bLCPXlMZiC;Y#_7j z^HW%F_wkfqsd|Q5rcfJFM>Cg3>0wZ!#zcazEVCd8I5@0_X#wKAC8{ExnG)_-Nf`Gb zH=w<5Z#iOjJg**}LTu!^PNZAI$_+k*jK^=*3R1;`5q&9FVbUCidw&^*TM%&xn12*5 z0|7GfPLa;znQy?TwV~ZH&B9K`{$CaMA&-X7Qeon0*+4qM>j!z0ILQ^fl2pI5()kdx zwQeVX#EF4DAIj6xbM%~@(y-pKv=Q#A4wpRl zpYK*Tld5f8e7z>=(j6qrju&wgdHL&Cu4p(dPi|!J$EqsvgayBVnSkH@u3l+nMp$4T%ixHJ%#!O{?E)fQ##h!sPP}8=KFQz$?%}N1cc{svVKYr zT3;NWu|AOOqh`;u4#&u5Lu+o7=aMf_U+=%#4*~n90mu{TCBd|uGz|l~8gLR#j%S>L z8A+yuBHiXzZuBo+1nJ9o2-LY#ST{35G4IvS7fFdCB0yfk%`V-dWX@KV*2-%UU^xbP zI27%WE%VI_-jjC*s$%$2Kb>7EPG|?#=>w1%-#3EMeu=leNgiD60o5Jvez403@lS9U zdLbNnM_=|k@9EgnM_Ao&Z|GE{U-ENVK1)KVM}zh`zexe+Z@dP0J%=maBF5V*V;Z@J zen>V0l=n=irscWKDHNCftk;{M1hjb0HHyXWNLF(WPsq_7NpWm+$k?|(BtZuuAyH6Y z4`W={(7E%aTCBxdtRoX09UafY@a&jtNz2teT&Fiq9t%-GEMa~C8K)!?p)If&q(vh> zneg`LDY+Qo@_rl`aOsGT!XhFf(nog!+t5>OFyNLU)^ewmo}eWM3_q0X>){EfUTufe zygX%buZy3m#{yyV;)Fs8>Dd(}{Wv6brk-oKLlqVpdPVq^(sw&IZL8_+SL)L5&+W$C zN1-UMZ&)QF`hK@F<}e{l*Im8Zo3Ix##v$yUDiuIgG8JJKkwHyN9RKCZmuF!oAPkV( zU(6$bq8Wm{4}+HmvCC3BNGM7NN&1q;fhT0VG*k>K7gd!zZ(IxtLFqF#sb1U`0Ya3> z1CiQX&}5j>qe1=~1Wtm{&#cai-X2CzNNu$~mUhjn=|-VO*=B^I5r+@i$Z)xf8FCz@ zm`o~*>WgZ_LC|SQb41 zv*_Gr5{m0P;6;pw`mIR02oB&@6u!s5 z!sVj52m^o5INX+Z7C3<#g9#;yf_%u`iY8KMO$J^4#b z*8%J)qM82@NmQOc%$f3Ev`0c2pI#wP{sZ?zfBy&f#>7>`?;khv0D25tBFOX4G-=i@ z8>$EQ_LLD$mB4?^K=kTAa1R&AJ5`loZNS?e#a*$i^aVR3RZLBc$YsXf@nEQ7$Az_2?O`GuXGgwZ* zD57WnLiFbHb1A)W%+=_}dDTfExW{v2K>J?)CD0^nDVh|dACDlm=O*&(`RtkH{sjb; zZXr}b?fEd}t%{~D@XY=K#Ri+Z1uy*+XmZ!7y!aoe_w+|583pHZ19K8}i=>Je-}c>q zpuVGP4EgFWe5JS4jDWp!G7~S|G1$-C2a-;?2G=6Nr}r;m;l7k?**#LaSJ6R9ms*ea zE)NO;U*F0?_-*JTKeWnz$#AA~} z`vSbcnO=E63Bi4OBsh4C`=V{Y2KOfZ!F|4C3YQSTIwgmw;ytWh0N1r~Bg@M%bok^S zqQ*?es-errQjHh|_)N%qp*{Z?1>Y$5onVjGEBZa}=^-ZU{Of5uL^!p_@0`bu+LzNzt73)#UcOWBRZEa1?{`_rEhB~p2+zIX14qx2%f8M35l~4zx0Tp+7 z!>S0fIc5ueKO(qHfQweL|kG8y~z zjwNf^rdU}+W6t4J39*&c^vofdw4Z~<@luF4Mt5pRbd9TCpC-TmGIrQ?T@Ks;kq(x^ zp>Ig$qd7~&VMz;g+qUJ-&Q2BUIefFmIR?KN{;vq4_8M~5etA|A2dOIvx8TOSsdq!M zHjOO15Q4~uyfgj36x)-@>FM-i@3y|`?j?MIvp&q+Q=hKo^d|&(U|!_}KhI=6hw|hJ z2@M5DDiQ0%0@&{44A$knS zb#VjygMN8$4C&PkuqV(Uk$ec-i_XBvkP|A_D0BRw<1~5g+SRKwRcEQY_IK9pp~&H^ zi;}2>3z+dvzIM*pS8>uG3lViI#!4IZs2D0?>>=}zb5Ix}OPpkus)G?pj>0`hGCwdhg&gkYh;dtlNtex{W> zwyk-=sON7_qm;7$rIP;jFKJZ&KUV#WGK@>iqV2I}j`_!^-x7m2(V2tsg*?=uzY%70 z0sM&i8?5~h>Qoe+Un|A$CLQBV6ettBE6e%)Y&Rm}@0|5;29wX*N+g!pQBcy#GDD=o z77y9X(g%3$b^e}z`uC>9gfDmeW@Gda)OZRzwmZ3;unNv<=9fFiQ2p!@NcHnt(vj7u zPQ>PG^8*ni8gz_R)}_i;HqXKCUi)pG_A(7G9JL@_daTH-IuQ^>3f?@s}F#anp9{-^6vy#*&hVXtygYe~ku@C(_4X{ha`JyDuZ)-i zqE`TaKJY?dpEjynK&6=R$1$Hdg3WsKI|8~$v_MoG#`)tPrZx`+6SUU(x1gpDX#QZc zXX@CZpQ1}wkbI3CHxUmUcVKz(EA+$(lraH}{VgYryu9)N42WIO#!$rw+oN$dn!gM- zJwFTQgHyT0$C&jUj`j5)-X@*E|Jnj?Nnp9OD%_Ukx%rQ;AXakQ4dltPg}^r-(?aK@ zS`&%ZtH=6$0brU&T~(w>*#15oDT)iUFWv(L;jOYtW$BL}foYFdHOJ#X;6jn^+h}Z(HpQ>AcpHR(kcFBJh*`3Xlv{$|!KVpIHCL1?{X)mOh`M2+m+hpFw zo{auXV`(HhbFXAA*9uN*=A$4V{6~lkq5m zD3N=|z9YUFp2FzWyP3<2U;l;kWiToMN3C%`Vz--ABb?@00DB}r;s>PxDu2ifdJ}H; z9~*6bFf!%eC@7HlDf?eYA4B|@Kwd|A15gv5p2(MdZh2ao1R?c$glJ3&WbNHc)iEmH2aQeYzQXOQbh|HDv!@zqxZt;gSHRqUD~w;=wJp|SVqw9Ro*0|^!CN>pb1n?A z4pgRbNC+8qOZt&vxjR4~F6L-oD#m@+ByzqbN(fiP_IoFhbMMB>s;v2l|>n% z?25;`+QfGbn67Z!vzyN>oKx`F4SudaD12zKxzNwV$heB#TpT1>2=Y`?o!^`>`pEl- zbaviotLw{QxM~;(%DiC0%xc3&3K&c2el zaCQ1`0=Q%H*Q$t(e?!=`fBX`-_^jlglF^7Q0vePR7>a9cjll)CQ}LXxM#7}USMQkn z!oUh6zjHUegDuSB6YYWB+_OpALN^=>fCwqLCqLgD4P}5e7B$TLaAZfC8lhXP3`iz! zcn~9Tw6$}h-=d>BEFka=ANVSWwMCN(=3q=^#e*Qb<}Vds`#raQ2*trdcnYE&O3WBz zE5&yUt+?Med zyk3~it!SmooJ7So-g5k=xi@H}I|teZiX3JRWxN{=C*A@eioJv3(o@Pb2#?HiX=i)t zPjxf143GOjmGS_7^i09jp;@lKT9@%7%b>%NBKLntAO-Vmtdi7i^tM)frWLYtdIg3e zBT&H9b@1C@Y8Gy0X_rqRo4i|ddIMcp1k;oNhL=Q*R1_)+oL9KR*`8XObm<2o2qmDI zNCnx3VXha7+WiH zd&tbda>hx;od=sh0sbX)LKz6Y^qf@;e7-HA$IR35MjGJQqvxa zFgiJiH{w4W98=U1D9UPut$2R0Iw2I4psS@5i>OVgT5c1%EZCmdT_UvGKhoQX$P?~= z@>KY6MIvnTmv?FY?6cG-uUFe?sKPx{AaYK5m@ zr~WV2=arf|*7#T|_@qNKl3;!$l7P9vvQr!w1lxja=&2tpE_p~L-R0=VgP@Irb%oB+ zAzEZZC{TggZTp3V2)jEc*39-?ICH#!6gZx+oLSM-Xx)6xppDVQ(>}HwMxevSUc*?` z$Lx*+cCX;Mr55bxvOTDk@Q-CMRfX%@8%_P^P@+$7 zIo|pPrDygE2VbL(1WK|cH>7_c?9q1RHN&le&gF$RD0pl@`?o73T|ADsv_Xyhtsehh z9720b^5_mXPA_Igo&khCMa}S|-#@A)#g;q1F&&cBr3}h6IbDoE9cn;yMMA=PQDhId znsp1DSonPlmf=N&;f-z3#!)RU z7vWGM8dyRDL#fY37`Lu;5Y?eGaQnh90Ic&B`Ip(#%z!(_aX|^`l9Tgag=Z1gMGd@x zX@0C6u;sbc z?(hrVorl22F>_D?dp_O!54XFApW7XKdx!`xO8x|VV+N;OzR^yF?hp^Vc86y`4_U#e zGE5T+Wnl*k%ku`lc01}q+=ik_-E>I#{?(09K5${8z=(&O_Y(}JfVFgi!vb5v-3N)U zt^X?r_FE6dk2weLLED>YNZ6$#X+S7v?9j9-PmG8lmkZ~32sPahRVqn2RTJX8pJ@@4 zP?|)jX!zXsxK-fUdx#IRY8EstuOihG3k&9;u8g4c+4VcGH|xyd(cphoN1^0D@`E1~ zd$zR})sgZOEGyhC`P`SQm^2jphp9P*bS%Hjc5|4Rb zEEJmM*Vr3E;4diX$_O~0ZgF?d>6sr64k9sgA*Bhs`O~NVp@;e(uK}x)S^9(Zn4>P2 z{ma_9Ua9a&l5=g;puC6o@@#VS`GJqx3qt!ngQ9wu9h7lpHDxUgGT$}Wji4qj)| z$p~RqOVh1%uNuZHAq}XTS?cX=Tx5^X2~5u>sQ-azN}`hxYU4C&>1t%F%<$Nspa!yZ zfa6DthKh1X`&`(Zf*9J`tWG9YGvoJ{J6HkzBE+EdBs#at9)02Z-N$J32S~v}rbuvP z5fbyZ-+AA$jza1nfE9ZSy<7kJL4(|fd_-!Am~N7po;`{C$jgIRr?;JxW;~>}@{ff^ z3_P?@Cy%|$2m09mN9E0Q;75O#Q1R2;Dg%|bQ5nByDv^Elm}lc8SKiV^I~jRHT;Q?1 zjjub0LE!Py74%iagc&rdOd&TTjvc30Er(B+(nn*UO#A12sl<$x0K~VluLA( zhM7ZLoz^g82T#P3y1Vn=kA9F}|I@+3#FX6=`&Gj2$dxtmJVYLSKQ#nM)9vkx8=&6= zs=Fub^!k^Dj-GSPNq^*_ldJFqba6X@{~9PJrQu;|-PoaCt`|M3`3J)7t52jWK6j)q zg+{Q^8G2V7D#0HAsPsD9Z6RR7+}hmxr{Wk)MBkI%R=LVeOh3O&vK-uS;gn1E@1fvV z9Eo8be`M>!#yb-51=Il912wk~Nd|Nr#mLUdW4YblBa~~i&hLIQ8|LTrbF2Hbw62wb z!Qe9SwO*RXJQqW7BEc??6xrjB1fu}S0|#6(#EwD94g@%ad^ry}VU1_L%1%R-$vLa_ z0t^H)92S*o&*kGE_uqL@n=GYeWpED=g99*lJ>Zf}w=-9ghZn0zdNP6-CAkBpsS7{r zZ!UX@j}B|fIUy4dN~dI0LOi+Q8I9wu7l-+Wfx}pgguFMX?^;lHoo8p`x&5^L`yK-eaxuC6ky**RlX9V{JGent!u-_=mNF?@T*15$c^C8TsQVrJ z;iKIQ1D5(yvYiu56wzhDL*hRE^L@*N7ND$X-4CWzA(Yz1#`!=bqHhEuWHf?KLmhFr zj%XEoJ=_Fx$vTOdn3_Si3R}WC9PZ6=4%2r9|cjB<%uGZFy@n< z_r|h92;6i?IJPo^HZwxC=nm)a6DJPqep+h@Tu`(Z|5JOrz6-l`xS^SZ>NP8q^^0EL z&h8!OARcx03rmd}G>&U|+hpjUzM$Q!Ir}%w5n|mRV$;%6+YY19!K8DXAy+;Ya-J_4W^Pm+z;x7M1**9i1oBCU)U@Jx7?nWjyif33MLJ zE`9Vuf&g||1E#Y-2TEd#jY9IaCX$TMbxDuP>$*-iSLi1WbdXav>X&$vB2nZjT)*SGn^iIOV;XDkc&#;)1Z2a^<35ZaUt&6KW-# zVL(C1cx)k&{IQ(&eSp#ywSTuU$$%4zpnkO1`)JAZ$o@*syjN4X9;X?;k=!X38prX^ z(Bfsd|OX?oAPHq8)yC!&Yv2XCB z@6$yRhR!)qF9gvFy_|hnBha6Sdi$ecyoAwj)Acd0tNTms1FcV&5;n5tn>W0g^D6M< zXdXQ}H**j0-00&mp7RK*kz8y>@O(v0k#?5~=k?L4 zq7Hx>-sQWq!U&o}#lx1)FA$_(qB}o!nNN1>zFu27)2+KXm9TM$Y)znGDUBD!4`F3W z8!&>ULM=mS4_-7pn@s$zu65bda`yM9;OZ$CRrI^ah^%0~nZK*yZne_&PEooHC^P_V zo4A$v6BCup^Un115$tZD)8weKh*3m$gh#L zkU-iT!SM%#Rf5SOQ(5J12z6#<`8($N%{r=>`(N#V7RaWYkd}@C6M){UmgM!5%d;OE1(OtcD>nF?W z311RoUGJjCykYvgI;FbQZi)$g#-#{Y@MMjjcuTFHFh~6AY@N>;p$Pa5|z721#lRa2;S@A1y;D&V1=HI)MPao$Lqz4f#5 zPkz~)!&I9oJ#W4(ht3_{r+=6;_y#w7!Va=5d9$AqHIeF`H#S#rZ`KvS?rKBgmlq5Th*3IliMayEN zmeb5H-_&^v^DDO~&Nhgpj(>^JIx6K>{P9E#!&x3^anVSs=IvbPNl!ZbXzbTI{l95A z$dqV1q+`<44i77NsX7X(89qmkc4>EdKh)GNLA)%P^TI~f_4d1XDFYwJjF43~3-JEfY%VBII| zL4KUH%uCF#MC;9A(V#+DL#*i5fp0 z+q`*2wY%$GO`2h}2-$9gm&DQZ{BUwEU;G02-gj6B;^3U0$5ZY$n2_!6_6rG=U$+y7 z<08V?RuB4#8&0lnmOI#qt&ja!&3Sv5(dX#J3DFe0z0qRVb-nV!#rL{2cHJchuMMh+ z$XH+9Yni=Y+%)^x{Ij^VeCbF|aJDs3SjWCH#AK7_{Kr$s>mdC*pbQdDY z)`V}7IgBn_1eg}{=8WaMHD{z}w~M)qBKmGgE!exn(nGDfJlke=?(GbwthYDoPFkd9 z$6hBdnUmt1-17NT1{NxN1(##`#bTQ_3B!J*UbH_Y`gV4+%GU1aV!y>LqHiv%I%BmC zlM&y7wls|AHRt1G|9rmDUUiUx^8DVu_-4BAL^$|4opT(X{L(5xhq@_83}t<;j*RBKU!7&}pntJ@w&AV$R0tmG5yUgcs$B#Vbe{&Re%$if-e3w~H|AEWR1FvjN z(prCoux}IcZi5iShMJL#iPf&tm8z%oCWzDrM&09k^Na}oi1Iz3oAR`y@6q18N1uA= z{+zSwNBin0*{xG3PijEJIsv>z68uK;4RYsGdM5Mb{=+}X&bObluWBQ?La}eoD8U~b z;c-dr2c+4I#jXn?p+uq0K7D?>nZTC&6BmVc{sxnCn<}U9^m3CbIoNzCEnyukHltOL zJDAv=jE)Fyb?RO3%3J1M?3a{F^!R?UmdH+@$HlG9?8ZgSb8jmQ{B$N{N1sZeP`{KP zy`F|>r4h71$snbQ&?zd2R23qH!%+VVjog$zau}_4*4gc)sZ&qWZ?fRsY*o^?H^XbO z!sjopI+!}CcfemUTq7yu-){X?{Sr!)_ZgD;s+@&F+GN{SAvL6Hm9~Cj6`I_25szmH zsvT5yHKCOqDl?$m{th1>Utc13{{D&C16^--0ZM~_v`DjdDi%KSVXK$9QoSr&E(_({ zIwMYNLXl+^;adSdX8aP(L|hOu(vVu$Xmb%vPfy478^xGF)U?6?Q>q=zpwKhdogSG1 z*}cCuQ8y}BScKlye;2sLsL;S@tV?QU!y<;6fuYXI2^zSe z=C$L+0n{zdLBTO0hU^su?o9~=w494ItQG70+b=v0O?VPP4A%%+o^B9$6Hp5;6z)Ss zVncJYMUMNiANc&WHgZG4FIiY=lzegv-}DU@-HM^YrioSKowZ4FA!obqybzZ0#J?Og z``NHLBGD|XSQ6=jh1LTu=+1_Iv-ttD>`OIMFbvTNu`7a=xJ;{A$SX#08u=4Y@+WY% z3MxTyu$j#- z5&!qb@?>D0s$cG{Pf#EAxk3ZNmL_JsnKu%8KnL$f$=lYF8FB5Ew2B-J`BLz<{Qmv> z3q%pZrKsKVu!HW4`Mph0!fy;E{eHB$n8gA5d1Y1A2nwsR_Jri*$hU9t)^XV$*c<$I zf2^XQbm&XA+oBmgD{IRO1B39G!;R#mq@>!dvc^dcD0jXG#L)SfZ=awI0~yeA7ia2} z^N%i)6F)7L{cziULhm<)O3ffJt&VlH@VOSQEC6nAm&_x_Uj+5q_C;C zox+`MP+l(w4Oo7(w$So|>F%VW3aFEfDP>&d!WHd3w5aZOtb5>(?P#QmpHG^HgebG{*?^=to|93PsEGfE!wF zxNgI0uS-)LZXSGrqvj9YK0lF(c8m!rS_Z^y-D@PIs7YR&DNtLz&R)8n=3zXE= z$vQA5sTRm|G%PM}5(vf#eP3DqP};w zbdhy;uSm_zT6i**HTHkZoZb@-6Y~@|DP~(UGdA>(@0=GR8uvgG|@7X&z z@W(QXS2Emc(-Sf5wGnPfiI{V$EEeZ#x2#hRLw(QXj_!bnc7t@}Z||3H4G)_CbcS9t zSq+T{>td}61BYR!WHLd=m)>(LX9{Xhq!$(SNk~aWRvzNAD-56mXLJ7HJ`7;6fGO2w zn}J&%WNmD6bls4pTk}UHK?78?Gyec9i<`f{>EZ#jYd^Cr$Msy-r9h5kv0$}iwU(ke z0Uhibuv|1jzzIDPmG%_?=i#YJ$!GGgp-@QZ!7iWNxg}C3D(n!OKjZ;@=R-x-C%W6) zF{|!3xt8+zRQv{ONIMt8B*f#4N%T)zMMBHPFObr7AY?Cek6Y4)L+diB{x6RhlOfi) z0VDFlkL+W`txz7%Y542yIYUr8asxNN>@`6n1tJ^G$Vudh-(TX)%$K>h72Y#YLu$4e z9y&nxG(V4ybfhkBSCgam%Xj|Tb-0hC7g|I*mwEv^G@w=|taEmQC6eDh4LV+s_V%-x z6#$H~+}zv|f=)SB{czDqSE+*)ygi`S`2ONxlr><1ws zY<9F)rIeM>@QA+DKNf|$qM~BOVjiyeRHgx_(OuwoxCmn)BOb)Z9%;#k_GJ}N}y&G{eI?k{pi@>q17A{2~;o)JZiOJ{Z`fXlUO*LL9! zi%jGqkmBOvW=n>zo8bimHS@|_$WMAMko_?9wW17-JZ|s4vWLu*FHu@~My*K0Ks+{E z0E|D~Q_^cf!qC+7*mS)D=&o#PY8q_eR7h;hvbwq|jYhXe3%NiOo75m3TseTSEDl&z z1?jFv?tN%vExk)Swmvv=Sa7&qCo%^~-u8w5TpWPHtiZ^Q|MCt()Te{4P>#C`0qqRv zjHzgLmX?uG0WoeXpb&80NTG6Fsq!qCaLW?PNBXt9ySq;;c2Zh|L1=;@Jb6lB6!yW#7}y#U*PG3&$g*>1IyHnVBzSsnTT zLP=2Y%DYzrG#5Es4d6CxBGq=DOqn!h`1UlGZQG;3}k?TbM&tR`D~`AK>y zq)^rd{dIO#r%8;V?s#sb(xY^kxefDaz%mkAduD*j-GDdg(Al1s?!O5aM07tS(N55- z_L_xep9}RopeAV<@9fFSEOJ15`z0#DzAZ=SR2?X`O-3#`fZn52EO%iKE0i__EFY>H zMJ0k(Li~b~$xzLKe80`Sk6q4#P0-}CHSCfNwO&a`=NVMmA^3KzG@;-@+i~n2KWGlP zwnKLoX$b@gxVGVO^g6#auZOj2$Y{Vc?B#$FV&o#Nk8W|^zX1P{{;*8#Ql5mtRsL=_ z`asONT47@2(x*RK^EL{vW@rptXIHm zNnmU+#(BtN#PW<+;8mw#T8cBxQJM>d%n6XS@vT;n)FA{N%MW* z`@YZnz0dPBO$qg|J5rbYpEav#vn8OTAQ8&6Yijwfrqo~}I>SR*a=x!%# z@Ojf9M^$~(cQ#|=Wvz=Fd*%VzXRL$9dJ0`i9~m)W-e$Va7*l!hw16X6)SW562jwT$ zayY8{9i`S1%v z1XaDbwA8V9Q6%;&N*`Vm&=k0h(Ia8(5E`Bfjefh3L;LSZosZX=E;5^DW<2<42WZbD zdF7!BlB4fsHfE(i{6IW-^>8-v)WHGpo}P+t;wqf2!O<3jfdYFUBot>iF7oNKMYzdq z(JfZLg&_0@PcBlJs8-=Qq4IbW*LA(Elbcjp(je&FJ%==6h8CM}>4~|7X>8?;*47LZ zI9Qh&bpo7yGdx+YNc@bM(GL(Hga_K-;7-EZQ2ywlSC*Q`8(zJz+W`=6zgT$XyY$UD zQ<9)hQ}h!{$mad~0s>?>h1&bjV)_u!Kex3pX};A2?LwSPBZ=J#^t{si&%_5;i*0r~bJQME#D6v9C#X18eg`$haj4#1kVzhsVRhfVp)?*bm_fUh^1Ub@Q zvsT()S{K{IBE7w7N5MF%IqKLbksLHwIS8{L+orckd~?AIGWi-Wy_ck2rU*Qq1N)Ro z8_L66^8}QAG8omA0VzCAto^fRrwSNd+z7D(d#XRy(Ll+3B$d+Tg?>FqNP4I(^(w|F z0_>4mEll>1JA6Jo;10wkIFYO%&_#Z3L4gm^3kaLkJ>I13NKr`b&)Wa4Z7IwP)yoS6 zQ>wq4uJB8yq2V1+M%Ld(9coiXY1)zSZjrtQ8j1~qR`K6h{w0I^SVI@LZ$viKGH{f> zxUMFAO-@G5waFou^}y?ZH_u@^8x`fCoSEP+Z*y|^vfIr`z@mj_(PvFF%0?aEMFxHO zQlD^VRyqMa&ISJCi<^uU+A;CF(dzh5>W3QR=oUP{WCa-wyX~ZKLq&{+U zw?d8yy#t4nNZPJu(17Jo6+Tuu+Jozze0v38u>K`At56SWc73~|#AB=;8x%u8x-fKt zy7m=;o-LQFRn+Q9JM?aKPf4}yAHAFVMfB{`xi0yOD_&8j&Cc_Ym9ll6ok{%(HZ`wf zZ?88FkOzdwtESSZ9?~+n-}s}Ix_S2BZ9lm{c(t~E$i-asjk^ISRFi3YwsnrF$je-w zK9~vwGwk1T!E2*`3V(a^<0^77ar$+O;W}TVH&pW$;NJGKWjQq9zo{U+d_ zn*}NUNWyJy+0C`M23Ym|Ro_|;zQjVA@ZW2J|G!cB#kMl}qf^I%{g?9b_zOV+q5JCg H9y;?E!!w+z literal 0 HcmV?d00001 diff --git a/_sources/notebooks/02/02.00.md b/_sources/notebooks/02/02.00.md index a17311d5..32e67ebb 100644 --- a/_sources/notebooks/02/02.00.md +++ b/_sources/notebooks/02/02.00.md @@ -18,14 +18,14 @@ Linear problems can (i) be maximization problems, (ii) involve equality constrai This chapter includes several with companion Pyomo implementation that explore various modeling and implementation aspects of LOs: -* A first LO example, modelling [the microchip production problem of company BIM](01-bim.ipynb) +* [Microchip production problem of company BIM](01-bim.ipynb) * [Least Absolute Deviation (LAD) Regression](02-lad-regression.ipynb) * [Mean Absolute Deviation (MAD) portfolio optimization](03-mad-portfolio-optimization.ipynb) * [The dual problem of the microchip production problem](04-bim-dual.ipynb) * [A variant of BIM problem: maximizing the lowest possible profit](05-bim-maxmin.ipynb) * [Two variants of the BIM problem using fractional objective or additional fixed costs](06-bim-fractional.ipynb) -* [The BIM production problem using demand forecasts](07-bim-rawmaterialplanning) +* [The BIM production problem using demand forecasts](07-bim-raw-material-planning.ipynb) * [Extra material: Wine quality prediction problem using $L_1$ regression](08-L1-regression-wine-quality.ipynb) -* [Extra material: Multi-product facility production](09-multiproductionfaciliity_worstcase.ipynb) +* [Extra material: Multi-product facility production](09-production-faciliity-worst-case.ipynb) Go to the [next chapter](../03/03.00.md) about mixed-integer linear optimization. \ No newline at end of file diff --git a/_sources/notebooks/02/07-bim-rawmaterialplanning.ipynb b/_sources/notebooks/02/07-bim-demand-forecast.ipynb similarity index 100% rename from _sources/notebooks/02/07-bim-rawmaterialplanning.ipynb rename to _sources/notebooks/02/07-bim-demand-forecast.ipynb diff --git a/_sources/notebooks/02/09-multiproductionfaciliity_worstcase.ipynb b/_sources/notebooks/02/09-production-faciliity-worst-case.ipynb similarity index 100% rename from _sources/notebooks/02/09-multiproductionfaciliity_worstcase.ipynb rename to _sources/notebooks/02/09-production-faciliity-worst-case.ipynb diff --git a/_sources/notebooks/03/06-facility-location.ipynb b/_sources/notebooks/03/06-facility-location.ipynb new file mode 100644 index 00000000..c1a16e9b --- /dev/null +++ b/_sources/notebooks/03/06-facility-location.ipynb @@ -0,0 +1,11507 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "6HJBsbRamSjV" + }, + "source": [ + "# 3.6 Facility location problem\n", + "\n", + "This notebook illustrates Example 20 from Chapter 3 of the textbook Hands-On Mathematical Optimization with Python, Cambridge University Press, 2024.\n", + "\n", + "For details about these models and more information we refer to the book.\n", + "\n", + "Also notice that at the end of Chapter 3 you may find a number of exercises that show that versions of this problem aiming at maximizing the importance of the customers served, when facing constraints that limit the possibility of serving all, leads to even more striking evidence for the importance of selecting the right model: it can offer large factors of speedup in solving the relevant instances!\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZFJeMMrRmSjY" + }, + "source": [ + "## Preamble: Install Pyomo and solvers\n", + "\n", + "The following cell sets and verifies a Pyomo installation and the solver CBC. If run on Google Colab, the cell installs Pyomo and the CBC solver, while, if run elsewhere, it assumes they all have been previously installed." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "W4-kKr6smSjZ", + "outputId": "41c6fc95-1358-4e7c-9bdc-0c293ad75e5b" + }, + "outputs": [], + "source": [ + "import sys\n", + "\n", + "if 'google.colab' in sys.modules:\n", + " %pip install pyomo >/dev/null 2>/dev/null\n", + " !apt-get install -y -qq coinor-cbc " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JmSjUyeMmSja" + }, + "source": [ + "## Problem description\n", + "\n", + "Consider the problem of a supplier facing the task of fulfilling specific customer demands with minimal costs while simultaneously deciding how many facilities to build and where. In terms of data, we are given a set $I$ of customers, a set $J$ of possible locations, the cost $c_j$ of building facility $j$, and the cost $h_{ij}$ incurred to satisfy the demands of customer $i$ at facility $j$.\n", + "\n", + "In this notebook we will formulate two equivalent models for this problem and compare their performance." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "A82bpYdZmSja" + }, + "source": [ + "## First MILO formulation\n", + "\n", + "Introduce two sets of binary variables,\n", + "\n", + "$$\n", + "\\begin{equation*}\n", + " x_j:=\n", + " \\begin{cases}\n", + " 1 & \\text{ if facility $j$ is built,}\\\\\n", + " 0 & \\text{ otherwise,}\n", + " \\end{cases}\n", + "\\end{equation*}\n", + "$$\n", + "\n", + "and\n", + "\n", + "$$\n", + "\\begin{equation*}\n", + " y_{ij}:=\n", + " \\begin{cases}\n", + " 1 & \\text{ if customer $i$ is served at facility $j$,}\\\\\n", + " 0 & \\text{ otherwise.}\n", + " \\end{cases}\n", + "\\end{equation*}\n", + "$$\n", + "\n", + "The resulting MILO is\n", + "\n", + "$$\n", + "\\begin{align*}\n", + " \\min \\quad & \\sum_{j \\in J} c_j x_j + \\sum_{i \\in I} \\sum_{j \\in J} h_{ij} y_{ij} \\\\\n", + " \\text{s.t.} \\quad & \\sum_{j \\in J} y_{ij} =1 \\qquad \\forall \\, i \\in I & \\text{(every customer is served)}\\\\\n", + " & y_{ij} \\leq x_{j} \\qquad \\forall \\, i\\in I, \\, \\forall \\, j \\in J & \\text{(facility built before use)}\\\\\n", + " & x_j \\in \\{0,1\\} \\qquad \\forall \\, i\\in I\\\\\n", + " & y_{ij} \\in \\{0,1\\} \\qquad \\forall \\, i\\in I, \\, \\forall \\, j \\in J.\n", + "\\end{align*}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XzvWI3kXmSja" + }, + "source": [ + "## Second MILO formulation\n", + "\n", + "Let $n=|J|$ be the number of possible facility locations and $m=|I|$ the number of customers. Note that, since $\\sum_j y_{ij} =1$ for every $i \\in I$, we can replace the $n \\times m$ constraints $y_{ij} \\leq x_j$ by only $n$ constraints, namely\n", + "\n", + "$$\n", + "\\begin{equation*}\n", + " \\sum_i y_{ij} \\leq n x_j \\qquad \\forall \\, j \\in J.\n", + "\\end{equation*}\n", + "$$\n", + "\n", + "The second MILO is\n", + "\n", + "$$\n", + "\\begin{align*}\n", + " \\min \\quad & \\sum_{j \\in J} c_j x_j + \\sum_{i \\in I} \\sum_{j \\in J} h_{ij} y_{ij} \\\\\n", + " \\text{s.t.} \\quad & \\sum_{j \\in J} y_{ij} =1 \\qquad \\forall \\, i \\in I & \\text{(every customer is served)}\\\\\n", + " & \\sum_i y_{ij} \\leq n x_j \\qquad \\forall \\, j \\in J & \\text{(facility built before use)}\\\\\n", + " & x_j \\in \\{0,1\\} \\qquad \\forall \\, i\\in I\\\\\n", + " & y_{ij} \\in \\{0,1\\} \\qquad \\forall \\, i\\in I, \\, \\forall \\, j \\in J.\n", + "\\end{align*}\n", + "$$\n", + "\n", + "This approach leads to a more concise mathematical formulation of the model. However, it may not be a good idea if we want to solve the problem using its linear relaxation. Indeed, by reducing the number of constraints, we inadvertently made the feasible region of the relaxation larger and less tight around the feasible integer points. This fact becomes clearly evident in the increased run-time required to solve the optimization problem when working with these weaker constraints, see figures below." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GoWTKCS4mSjb" + }, + "source": [ + "Instead of defining two separate Pyomo models, we will define a single common model and then add either the strong or weaker formulation of the \"facility built before use\" constraint." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "q92lFGTHUO9-" + }, + "outputs": [], + "source": [ + "import pyomo.environ as pyo\n", + "import numpy as np\n", + "import pandas as pd\n", + "import itertools as it\n", + "import matplotlib.pyplot as plt\n", + "from time import perf_counter as pc\n", + "from tqdm.notebook import tqdm\n", + "import subprocess" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "W1Hq9OxQmSjb" + }, + "source": [ + "# Solvers and options" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "g8ASWdpwmSjc" + }, + "outputs": [], + "source": [ + "def ListAvailableSolvers():\n", + " shell_command = \"pyomo help --solvers\"\n", + " output = subprocess.check_output(shell_command, shell=True).decode()\n", + " return [\n", + " line.strip()[1:]\n", + " for line in output.split()\n", + " if line.strip().startswith(\"+\") and not line.strip().endswith(\")\")\n", + " ]\n", + "\n", + "\n", + "def GetSolverName(solver):\n", + " try:\n", + " return solver.name\n", + " except:\n", + " return \"appsi_highs\"\n", + "\n", + "\n", + "def SwitchCutsOff(solver):\n", + " solver_name = GetSolverName(solver)\n", + " if \"cbc\" in solver_name:\n", + " solver.options[\"Cuts\"] = \"off\"\n", + " elif \"cplex\" in solver_name:\n", + " solver.options[\"mip_cuts_bqp\"] = -1\n", + " solver.options[\"mip_cuts_cliques\"] = -1\n", + " solver.options[\"mip_cuts_covers\"] = -1\n", + " solver.options[\"mip_cuts_disjunctive\"] = -1\n", + " solver.options[\"mip_cuts_flowcovers\"] = -1\n", + " solver.options[\"mip_cuts_pathcut\"] = -1\n", + " solver.options[\"mip_cuts_gomory\"] = -1\n", + " solver.options[\"mip_cuts_gubcovers\"] = -1\n", + " solver.options[\"mip_cuts_implied\"] = -1\n", + " solver.options[\"mip_cuts_localimplied\"] = -1\n", + " solver.options[\"mip_cuts_liftproj\"] = -1\n", + " solver.options[\"mip_cuts_mircut\"] = -1\n", + " solver.options[\"mip_cuts_mcfcut\"] = -1\n", + " solver.options[\"mip_cuts_rlt\"] = -1\n", + " solver.options[\"mip_cuts_zerohalfcut\"] = -1\n", + " elif \"gurobi\" in solver_name:\n", + " solver.options[\"Cuts\"] = 0\n", + " elif \"highs\" in solver_name:\n", + " pass # there is no way to do this, see\n", + " # https://ergo-code.github.io/HiGHS/dev/options/definitions/\n", + " elif \"xpress\" in solver_name:\n", + " solver.options[\"CUTSTRATEGY\"] = 0\n", + " else:\n", + " pass\n", + " return solver\n", + "\n", + "\n", + "def SwitchPresolveOff(solver):\n", + " solver_name = GetSolverName(solver)\n", + " if \"cbc\" in solver_name:\n", + " solver.options[\"Presolve\"] = \"off\"\n", + " elif \"cplex\" in solver_name:\n", + " solver.options[\"preprocessing_presolve\"] = 0\n", + " elif \"gurobi\" in solver_name:\n", + " solver.options[\"Presolve\"] = 0\n", + " elif \"highs\" in solver_name:\n", + " solver.options[\"presolve\"] = \"off\"\n", + " elif \"xpress\" in solver_name:\n", + " solver.options[\"PRESOLVE\"] = 0\n", + " else:\n", + " pass\n", + " return solver\n", + "\n", + "\n", + "def LimitSolveTime(solver, max_in_seconds):\n", + " solver_name = GetSolverName(solver)\n", + " if \"cbc\" in solver_name:\n", + " solver.options[\"seconds\"] = max_in_seconds\n", + " elif \"cplex\" in solver_name:\n", + " solver.options[\"timelimit\"] = max_in_seconds\n", + " elif \"gurobi\" in solver_name:\n", + " solver.options[\"TimeLimit\"] = max_in_seconds\n", + " elif \"highs\" in solver_name:\n", + " solver.options[\"time_limit\"] = max_in_seconds\n", + " elif \"xpress\" in solver_name:\n", + " solver.options[\"MAXTIME\"] = max_in_seconds\n", + " else:\n", + " pass\n", + " return solver\n", + "\n", + "\n", + "def ClosureForMaxTime(max_in_seconds):\n", + " return lambda solver: LimitSolveTime(solver, max_in_seconds)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "SA0joA-h2imU" + }, + "outputs": [], + "source": [ + "def compose(*functions):\n", + " def composed(*args, **kwargs):\n", + " result = args[0]\n", + " for func in functions:\n", + " result = func(result)\n", + " return result\n", + "\n", + " return composed" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "Kb9bxC4mmSjc" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['appsi_gurobi',\n", + " 'appsi_highs',\n", + " 'cbc',\n", + " 'gdpopt',\n", + " 'gdpopt.gloa',\n", + " 'gdpopt.lbb',\n", + " 'gdpopt.loa',\n", + " 'gdpopt.ric',\n", + " 'gurobi',\n", + " 'gurobi_direct',\n", + " 'gurobi_persistent',\n", + " 'ipopt',\n", + " 'mindtpy',\n", + " 'mindtpy.ecp',\n", + " 'mindtpy.fp',\n", + " 'mindtpy.goa',\n", + " 'mindtpy.oa',\n", + " 'mosek',\n", + " 'mosek_direct',\n", + " 'mosek_persistent',\n", + " 'mpec_minlp',\n", + " 'mpec_nlp',\n", + " 'multistart',\n", + " 'scipy.fsolve',\n", + " 'scipy.newton',\n", + " 'scipy.root',\n", + " 'scipy.secant-newton',\n", + " 'trustregion']" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "initial_solvers = ListAvailableSolvers()\n", + "initial_solvers" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eqgDYMxFmSjc" + }, + "source": [ + "# The models" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "A0WRo9_bmSjc" + }, + "outputs": [], + "source": [ + "def FacilityLocationCommon(installation, service):\n", + " model = pyo.ConcreteModel(\"Facility location\")\n", + " model.facilities = pyo.Set(initialize=range(len(installation)))\n", + " model.customers = pyo.Set(initialize=range(len(service)))\n", + "\n", + " model.x = pyo.Var(model.facilities, within=pyo.Binary)\n", + " model.y = pyo.Var(model.customers, model.facilities, within=pyo.Binary)\n", + "\n", + " @model.Objective(sense=pyo.minimize)\n", + " def obj(model):\n", + " return sum(installation[j] * model.x[j] for j in model.facilities) + sum(\n", + " service[i][j] * model.y[i, j]\n", + " for i in model.customers\n", + " for j in model.facilities\n", + " )\n", + "\n", + " @model.Constraint(model.customers)\n", + " def ChooseOneFacility(model, i):\n", + " return sum(model.y[i, j] for j in model.facilities) == 1\n", + "\n", + " return model\n", + "\n", + "\n", + "def FacilityLocationWeak(installation, service):\n", + " model = FacilityLocationCommon(installation, service)\n", + " model.name += \" weak model\"\n", + "\n", + " @model.Constraint(model.facilities)\n", + " def ServeIfOpen(model, j):\n", + " return (\n", + " sum(model.y[i, j] for i in model.customers)\n", + " <= len(model.customers) * model.x[j]\n", + " )\n", + "\n", + " return model\n", + "\n", + "\n", + "def FacilityLocationStrong(installation, service):\n", + " model = FacilityLocationCommon(installation, service)\n", + " model.name += \" strong model\"\n", + "\n", + " @model.Constraint(model.customers, model.facilities)\n", + " def ServeIfOpen(model, i, j):\n", + " return model.y[i, j] <= model.x[j]\n", + "\n", + " return model\n", + "\n", + "\n", + "def GetSolution(model):\n", + " X = [model.x[j]() > 0.5 for j in model.facilities]\n", + " Y = [[model.y[i, j]() > 0.5 for j in model.facilities] for i in model.customers]\n", + " return X, Y, model.obj()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "raacgtZxmSjc" + }, + "source": [ + "We introduce functions to generate random instances for the problem and to then visualize the optimal solution." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "9upGR6wPUO-A" + }, + "outputs": [], + "source": [ + "def GenerateFacilityLocationInstance(nofFacilities, nofCustumers):\n", + " facilities = range(nofFacilities)\n", + " customers = range(nofCustumers)\n", + " xC = np.random.randint(0, 100, nofCustumers)\n", + " yC = np.random.randint(0, 100, nofCustumers)\n", + " xF = np.random.randint(0, 100, nofFacilities)\n", + " yF = np.random.randint(0, 100, nofFacilities)\n", + "\n", + " installation = np.random.randint(1000, 2000, nofFacilities)\n", + "\n", + " dist = lambda i, j: ((xC[i] - xF[j]) ** 2 + (yC[i] - yF[j]) ** 2)\n", + "\n", + " service = [[dist(i, j) for j in facilities] for i in customers]\n", + "\n", + " return installation, service, xC, yC, xF, yF\n", + "\n", + "\n", + "def ShowFacilityLocation(xC, yC, xF, yF, X=[], Y=[], value=None, title=None, ax=None):\n", + " if ax is None:\n", + " ax = plt.gca()\n", + " [\n", + " ax.plot([xC[i], xF[j]], [yC[i], yF[j]], \"g-\")\n", + " for j in range(len(X))\n", + " if X[j]\n", + " for i in range(len(Y))\n", + " if Y[i][j]\n", + " ]\n", + " ax.plot(xC, yC, \"o\")\n", + " ax.plot(xF, yF, \"s\")\n", + " if title:\n", + " ax.set_title(title)\n", + " elif value:\n", + " ax.set_title(f\"Optimal value: {value}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jLJ3UjTRmSjd" + }, + "source": [ + "We then generate an instance of the problem with 10 facilities and 100 customers and initialize both a strong and a weak Pyomo models." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 430 + }, + "id": "-HYGbBjyUO-C", + "outputId": "4a99fe24-caeb-4362-ef7b-048a9fc51118" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKlUlEQVR4nO3de3hV1Z038O9JQgJBckLikAsGTB3n5aaioJjCaAfjQHUUlKfvwIuVOj5QESwXW5Vp1Xa8ROzUOl5GKq2XqSKtzyPepqWPAy0WJ4AG44hYtIiSAicMiTkHiATIWe8fx3PIOTmXvffZl7X2+n6eh+fRZHOy99pr7Sx+v/VbOyCEECAiIiKSSIHXJ0BERESUihMUIiIikg4nKERERCQdTlCIiIhIOpygEBERkXQ4QSEiIiLpcIJCRERE0uEEhYiIiKRT5PUJWBGNRrF//34MGTIEgUDA69MhIiIiA4QQOHz4MGpra1FQkD1GouQEZf/+/airq/P6NIiIiMiCtrY2nHHGGVmPUXKCMmTIEACxCywrK/P4bIiIiMiISCSCurq6xO/xbJScoMTTOmVlZZygEBERKcbI8gwukiUiIiLpcIJCRERE0uEEhYiIiKTDCQoRERFJhxMUIiIikg4nKERERCQd0xOUN998E1dddRVqa2sRCATw8ssvJ31fCIG77roLNTU1GDRoEBobG/Hxxx8nHdPZ2Ym5c+eirKwM5eXluPHGG3HkyJG8LoSIiIj8w/QE5ejRozjvvPPw+OOPp/3+gw8+iEceeQSrVq3C1q1bMXjwYEybNg3Hjh1LHDN37lx88MEHeOONN/D666/jzTffxIIFC6xfBREREflKQAghLP/lQADr1q3DzJkzAcSiJ7W1tbj11lvx3e9+FwAQDodRVVWFZ555BrNnz8aHH36IMWPG4O2338bEiRMBAOvXr8cVV1yBv/zlL6itrc35cyORCILBIMLhMDdqI/JQb1Rg255OHDx8DMOGDMRF9RUoLHDm/Vhu/ixyD++rXsz8/rZ1J9k9e/YgFAqhsbEx8bVgMIhJkyahubkZs2fPRnNzM8rLyxOTEwBobGxEQUEBtm7dimuuuabf5/b09KCnpyfx/5FIxM7TJiIL1u84gB+9thMHwqeiozXBgbj7qjGYPq5G2Z9F7uF9pWxsXSQbCoUAAFVVVUlfr6qqSnwvFAph2LBhSd8vKipCRUVF4phUTU1NCAaDiT98USCRt9bvOICFz21P+sUCAKHwMSx8bjvW7zig5M8i9/C+Ui5KVPGsWLEC4XA48aetrc3rUyLSVm9U4Eev7US63HD8az96bSd6o5azx578LHIP7ysZYesEpbq6GgDQ3t6e9PX29vbE96qrq3Hw4MGk7588eRKdnZ2JY1KVlJQkXgzo5xcE9kYFmnd34JXWfWje3cHBSVLatqez3796+xIADoSPYdueTqV+FrlH9vvKZ7EcbF2DUl9fj+rqamzYsAHjx48HEFsvsnXrVixcuBAA0NDQgK6uLrS0tGDChAkAgI0bNyIajWLSpEl2no5SmIslVRw8nPkXi5XjZPlZ5B6Z7yufxfIwHUE5cuQIWltb0draCiC2MLa1tRV79+5FIBDA0qVLce+99+LVV1/F+++/j+uvvx61tbWJSp/Ro0dj+vTpmD9/PrZt24a33noLixcvxuzZsw1V8PgRc7GkkmFDBtp6nCw/i9wj633ls1gupiMo77zzDv7u7/4u8f/Lly8HAMybNw/PPPMMbrvtNhw9ehQLFixAV1cXpkyZgvXr12PgwFMd7fnnn8fixYtx2WWXoaCgALNmzcIjjzxiw+WoJ1cuNoBYLvbyMdUsvbOIZYz2uqi+AjXBgQiFj6XttwEA1cFYO6v0s/xAlb4u431V/Vmsyr03I699ULzip31Qmnd3YM7qLTmPe2H+xWg4q9KFM/IXhmudEf+XJoCkB3r8cfjEdRfY1r5u/iyVqdbXZbuvKj+LVbr3Zn5/K1HF42cy52JVx3Ctc6aPq8ET112A6mByCL46OND2Xyxu/ixVqdjXZbuvqj6LVbz3Rtm6SJbMkzUXqzrVw7UqmD6uBpePqXYlrOzmz1KNyn1dpvuq4rNY5XtvBCcoHpMxF+sHZsoYZQvXqqSwIGBL+xnJn9v1s/xG9b6e7r5aXU+RzzoMFZ/Fqt/7XDhB8VhhQQB3XzUGC5/bjgDS52LvvmqMkrNfL6kartWRSvlzGfmtr1vtD/n2IxWfxX6796m4BkUCsuVi/UDFcK2O/Jw/d4uf+rrV/mBXP1LtWeyne58OIyiSkCkXazeGa92jUqmhTPlzldotldm+Luu1Wu0PdvcjlZ7Ffn/OcYIiET/m2BmudY9qqRJZ8ueqtVsqM31d5mu12h+c6EeqPIv9/pxjioccw3Cte1RMlciQP1ex3dIx0tdlv1ar/UGGfuQlPz/nGEHJQtZQqAoYrnWPTKkSM7zOn6vabplk6+sqXKvV/uB1P5KBX59znKBkIHMoVAUM17pHllSJWV7nz1Vtt2wy9XUVrtVqf/C6H8nCj885pnjSkD0UqgKGa92japvF8+fAqXx5nBv5c1XbzQoVrtVqf/C6H5FzOEFJkSsUCsRCob1R5V5h5CqGa92jcpt5mT9Xud3MUuVarfYHP6/D0BlTPClUCIW6xYsyX4ZrzZO9zXL1o+njajB1VBV+2fwpPuvsxsiKUnyz4UwUFzn77yfZ281OKl2r1fUUfl2HYSfV1lVygpJChVCoG7wq8/V72ZwTZG4zI/0o3TE/37zH8fVeMreb3VS7VqvrKfy4DsMuKq6rZIonhSqhUCd5XebLcK15MraZkX7k9XovGdvNKTpdKyXzepxZFRBCKLeYIhKJIBgMIhwOo6yszNbP7o0KTFm5MWcodPPtU6X514ad4tefKc1l5fq92ElWWl1tQHdH5u+XVgLldZY/XpY2M9qPhBAIRXqyHuPGWJOl3dzg9bV6/fN958tnSq8Q+GBfBJ3dx1FRWoyxw8tQGAigd1AFpqz62NZnej7M/P5miieFaqFQu8lU5uu7cG1XG/DYBOBk+l/IAICiEmBxi+VJiixtZrQfZePmei9Z2s0NXl6rimkGqfV5phQCODfNIYGCEgS6fwzg9LQfIfO6SqZ40tA5FMo1OA7q7sg+OQFi388WYVGEnf2Dfc0fVE0zSM3AM6Ug2oOhgcM5P0rGccYISga6rgjnGhyyg5394/TTSmz7LPKGCjvZqqhXCBTa9FkyPtM5QclCp7BvnErliCQvI/1o6OBidB49nvvDlFslR6lk3r7BrjVyE0YORctnn7v6D9oP9kXSpnVSBQcNQKA7/VCS+ZnOCQol0X0NDtnDSD+aOb4WT731ac7POnQ0R1qMpCdr6tjOt60XBIC++3e6sbams9vABB/A1/7PX6H5XSj3TOcaFOpH5zU4ZJ9c/ejyMdWGPkfG0DOZI2Pq2O63raduLu7G2pqK0mJDx11cX6nkM50RFEpL1zU4ZK9cb9hlOtE6lcp1ZUsdO/G2dTOfY5exw41tszF2eBnOHa7eM50TFMpIxzU4ZL9M/YjpROtUK9eV7V479bZ1o59jl8KAsfaKH6faM50pHiK3lFbG9jnJpqgkdpwmmE40T9VyXZnutdNvW7f680zz+TOFERQit5TXxTZhc3AnWRXZmU50JO3h8O6/ZqheritL6tjpt61b/Xmm9XmmZNpJVuVnCicoRG4qr1P2YeEkO0LPjqQ9XNj91wyZy3WNkiHN4NTb1o1+jq2+fKYUAjh3uHM/xgtM8RCR8hxLe0i2+6+s5bqqia+JAU6tgYkz8rb1dH8vFddR5Y8TFCJSWq60BxBLe/Sm1oEqSMZyXVXZ/bb11DkI11HljykeIg9YWSuhUlmpm1RLe+RzH2Ur11Wd1TUx6f6eFzvJ+h0nKEQus7JWQrWyUjeplPbI9z7KVq7rB3a+bV2GCbCfMMVD5CIrayVULSt1iyppD7vuo0zlukROYgSFHMfURIyVElHVy0rdoELaw+77KEu5ri74DPMGJyjkKKYmTrGyVkK19RVeUCHt4cR9lKFcVwd8hnmHKR5yDFMTyayslVBpfYWXHEt72LRTJ++jmvgM8xYjKOQIpib6s7JWQpX1FTJwJO1h0+6/vI/q4TPMe5ygkCPsCGn7Le9rZa2ECusrZOJI2sOG3X95H9XD9Kr3mOIhR+Qb0l6/4wCmrNyIOau3YMnaVsxZvQVTVm5UOqRqZfdKqzteklx4H9XDtJz3OEEhR+QT0vZz3tfKWgmWlfoD76NamJbzXkAIodz+z5FIBMFgEOFwGGVlZV6fDqXRGxWYsnJjzpD25tunJv2rMf73MoVWM/091ei0k6yq5+0UtkcyWdvD6jOMsjPz+5trUMgRVks/dcn7WlkroWJZKUs0+1PxPjpF5v6hQvm63zHFQ46xEtJm3tc//Jyqo/yp0D+YlvMWIyjkKLOln8z7+gNLNCkblfoHd+31Dico5DgzIW2WY/qDLqk6ska1/sG0nDeY4iGpsBzTH5iqo2zYP8gITlBIOsz7qo+pOsqG/YOMYIqHpOR03lfW0kZZ5Ns+TNVRNuwfp/BZlBknKCQtp/K+Mpc2ysCO9mGJJmXD/hHDZ1F2TPGQVlQobfSSne3DVB1lo3v/4LMoN+4kS9pwYpdaP4Vn7WifdO0BwDdtRPbz0xhKlenazI41P7URd5IlSsPu0ka/hWfzbR+/tQe5w68lvNnGQ3BQseGxFv7iuLbjiike0oadpY1+DM/m0z5+bA8iq3KNh//aGTL0Of+1M6T1uOIEhbRhV2ljrl0wgdgumL1RtbKnVtvHr+1BZIWR8bCudZ+hz1rXuk/rccUJSha9UYHm3R14pXUfmnd3+LojuM2Lto2XNmbK3AYQC53mKm00kwpRidX28Wt7EFlhZDx0Hj2BisHFWcda5eBidB49kfVz/D6uuAYlA+bTneNV29pV2ujXXTCtto9f24PICqP9fOb4Wjz91qcZx9qM8bV46q1Pbft5KmIEJQ3m053jddvaUdro510wrbSPn9uDyCyj/fzyMdVZx9rlY6pt/XkqYgQlhUpv2VSNW22bqyQv311q/b4Lptn28Xt7EJlhZjwUFgQyjrXeqNB+XNkeQent7cWdd96J+vp6DBo0CGeddRbuuece9N1uRQiBu+66CzU1NRg0aBAaGxvx8ccf230qljCf7hw32nb9jgOYsnIj5qzegiVrWzFn9RZMWbmxX2QmXto4Y/xwNJxVaWpCpMMLDc20jw7tQWSU2fGQaaxxXDkwQVm5ciWeeOIJPPbYY/jwww+xcuVKPPjgg3j00UcTxzz44IN45JFHsGrVKmzduhWDBw/GtGnTcOyY97k05tOd43Tbupk+0n0XzFRsD6JT7BoPuo8r21M8//3f/40ZM2bgyiuvBACceeaZeOGFF7Bt2zYAsejJww8/jB/84AeYMWMGAOA//uM/UFVVhZdffhmzZ8+2+5RMcSKf7qddAPPh5FoFL1JzfKFhMqfbg0glRseD0ylpldk+QfnqV7+KJ598Eh999BH+5m/+Bu+99x42b96Mhx56CACwZ88ehEIhNDY2Jv5OMBjEpEmT0NzcnHaC0tPTg56ensT/RyIRu087we58OquBTnFyrYLdu8QaxRcaJvPrrqBEVuQaD0bHua7jyvYUzx133IHZs2dj1KhRGDBgAM4//3wsXboUc+fOBQCEQrEd9KqqqpL+XlVVVeJ7qZqamhAMBhN/6urq7D7tBDvzfl5XrMjGyZyqn1Jz7DdE/sdxnpvtE5Rf//rXeP7557FmzRps374dzz77LP71X/8Vzz77rOXPXLFiBcLhcOJPW1ubjWfcnx15P+6umZ5TOVW/lLqy3xD5H8e5MbaneL73ve8loigAcM455+Czzz5DU1MT5s2bh+rqWG13e3s7ampO/TJqb2/H+PHj035mSUkJSkpK7D7VrPLN+3mVclCBEzlVv5S6qtZvVFsnQ+S13qjAM2/tUWqce8X2CUp3dzcKCpIDM4WFhYhGowCA+vp6VFdXY8OGDYkJSSQSwdatW7Fw4UK7Tycv+eT9/JRycILdOVW7don1mkr9RtV1MkReSTdmspFhnHvJ9hTPVVddhfvuuw//+Z//iU8//RTr1q3DQw89hGuuuQYAEAgEsHTpUtx777149dVX8f777+P6669HbW0tZs6caffpeMYvKQeV+KEkT5V+w/w5kTmZxkw2Xo9zr9keQXn00Udx55134uabb8bBgwdRW1uLb3/727jrrrsSx9x22204evQoFixYgK6uLkyZMgXr16/HwIH+uRl+STmoRpWSvEypERX6DXdb9j83U3dupwm9SEtmGzPpeDbOu9qA7g70CoEP9kXQ2X0cFaXFGDu8DIWBAFBaCZQ7V6SSKiD6bvGqiEgkgmAwiHA4jLKyMq9PJ6P4jBlIn3JQ5V/1ZK9cqRHZ+03z7g7MWb0l53EvzL9Y6/y5qtxM3bmdJvQqLWl0zAAejvOuNuCxCcDJnszHFJUAi1vymqSY+f3NlwU6yA8pB7KXkdSI7P1GpXUyZI6bqTu304RepiXNjAXPxnl3R/bJCRD7fneHO+cDvizQcaqkHMh5ZlIjMvcbVdbJkDlupu7cThN6nZY0OhbuvHI0vjW53pNx3isECm08zg6MoLggnxfTkX+YfVmirP0mvk4m09kEEAube7FOpjcq0Ly7A6+07kPz7g7t95Eww80Xpbr9UlavXwJrdMx4NTkBgA/2Gduh3ehxdmAEhcglfkmNyFrSzbLn/LjZP90eC16PPVnHTF+d3cdtPc4OjKAQucRPqRHZ1smw7Dl/bvZPt8eCDGNPtjGTqqK02Nbj7MAICpFLVCghNsOut7Xmy+v1BX7hZv90eyzIMvZkXls2drixilijx9mBExQil6gQ5jXLrre15kO11wPIys3+6fZYkGnsyfpm4sKAsWs3epwdmOIhcpHsYV47uZV28Xp9gZ+42T/dHgs6jT1LSitj+5xkU1QSO84l3KiNyAN+f8leb1RgysqNGSMb8ZD65tun5n3d3DguP+n6IgDuJKsjF3aSNfP7mykeIg/IGua1i5tpF1nWF6hIhsont8eC38deXsrrgPI6FAI4d7jXJ8MUDxE5wM20S3x9AYB++0yourbHDax8ItlxgkJEtnO7rJPrC8zJVfkExCqfuNEdeYkpHh9ijpW85kXaReYSTtmw8ikPX67TyMjlN/76GScoPiNDTpnIq7JOri8whpVPFrn0xl+KYYrHR5hTJpkw7SIvGXZWVZKEb/z1M0ZQfIK7aepJ9nQe0y5yYuUTqYATFJ9gTlk/qqTzmHaRTzwFd9Nz29N+X4CVT+Q9pnh8gjllvTCdR0R+xwmKTzCnrA+WiFK+4n0ok3hKmH2IvMQJSh+9UYHm3R14pXUfmnd3KDU44znlTAHZAGLhf+aU1WcmnUeUDvsQqYBrUL6kSj4/E5ne1knOYjqP8sU+RCpgBAX+yeezrFMPTOdRvtiHLJLwjb9+pn0ExW/luSzr9D+WiFK+JowcioIAkC2LXRCIHUd9lNfFNmHLYydZ2bcGkIn2ExQ/lueyrNPfmM6jfLV89nnWyQkQm7y0fPY5nyWpvnzjrxWqLyVwm/YpHuZiSUVM51E++Nxzn1+WErhJ+whKvrlYhuvIK0znOcfv45prUNzlt6UEbtF+gpJPPp/hOvIa03n202Fccx2Tu/y4lMAN2qd44vl8AP32EMmWz2e4jsh/dBnXVp97ZA1TatZoP0EBzOfzuZMnkf/oNq65jsk9TKlZo32KJ85MPl+mcJ3fc+VEbpFpXLuF65jcwZSaNZyg9GE0ny9LuE6HXDmRW2QZ127jOibncWsAa5jisUCGcJ0uuXIit8gwrsm/mFIzjxEUC7wO17Fkjch+Xo9r8j+m1MxhBMUCr1fA802kRPbzelyTHuIptRnjh6PhrEr2pyw4QbHIy3CdrrlyIqcxDE8kD6Z48uBVuI65ciLnZBrXANC8u4OheZKClQpO1ao+OUHJkxcr4JkrJ3JW6rhmxRzJxEp/VLEPM8WjIObKidzDijmSiZX+qGof5gRFUcyVEzlPt91lSW5W+qPKfZgpHoWxZI3IWTruLkvystIfVe7DnKAojrtAEjmHFXMkEyv9UeU+zBQPEVEGrJgjmVjpjyr3YUZQiIgyYMUcgK42oLsj8/dLK4HyOvfOR2NW+qOVvyNLOTInKEREGWj/kreuNuCxCcDJnszHFJUAi1s4SXGBlf5o9u/IVI7MFA8RURZaV8x1d2SfnACx72eLsJCtrPRHo39HtnLkgBBCvtqiHCKRCILBIMLhMMrKyrw+HSLSgCxhb1ftbwWevDT3cQs2AbXjnT4b6sPunWR7owJTVm7MWPETTwVtvn1qXv3ezO9vpniIiAxgxRzJxEp/zPZ3ZCxHZoqHiIhIczKWI3OCQkREpDkZy5E5QSEiItJcvBw50+qSAGLVPG6W1HOCQkREpDkZX0LLCQoREaVXWhnb5ySbopLYcaQ82UrqWWZMRESZcSdZ7ThZUs8yYyIiskd5HScgmpGlpJ4pHiIiIpIOJyhEREQkHaZ4iIg0puUW/qQERyIo+/btw3XXXYfKykoMGjQI55xzDt55553E94UQuOuuu1BTU4NBgwahsbERH3/8sROnQkREGazfcQBTVm7EnNVbsGRtK+as3oIpKze6/lI4onRsn6B8/vnnmDx5MgYMGIDf/va32LlzJ37yk59g6NChiWMefPBBPPLII1i1ahW2bt2KwYMHY9q0aTh2zL0tdImIdCbbm2uJUtleZnzHHXfgrbfewh//+Me03xdCoLa2Frfeeiu++93vAgDC4TCqqqrwzDPPYPbs2Tl/BsuM7adbmFen6/XdtbLsNS+9UYEtuzuwaM12dH1xIu0xdr25liiVp2XGr776KqZNm4ZvfOMb2LRpE4YPH46bb74Z8+fPBwDs2bMHoVAIjY2Nib8TDAYxadIkNDc3p52g9PT0oKenJ/H/kUjE7tPW2vodB/Cj13Ym/UuqJjgQd181xvWNedyg0/X67lq72oDHJgAnezIfU1QCLG7hJCWNdP0hHS/eXEuUyvYUzyeffIInnngCZ599Nn73u99h4cKF+M53voNnn30WABAKhQAAVVVVSX+vqqoq8b1UTU1NCAaDiT91dXzw2EW3MK9O1+vLa+3uyD45AWLfzxZh0VSm/pCNm2+uJUpl+wQlGo3iggsuwP3334/zzz8fCxYswPz587Fq1SrLn7lixQqEw+HEn7a2NhvPWF+9UYEfvbYT6XJ88a/96LWd6I0qt9lwWjpdr07XSrll6w/ZuPnmWqJUtk9QampqMGbMmKSvjR49Gnv37gUAVFdXAwDa29uTjmlvb098L1VJSQnKysqS/lD+tu3pzPqvqb5hXj/Q6Xp1ulY6pTcq0Ly7A6+07kPz7o7EBDRXf0jlxZtriVLZvgZl8uTJ2LVrV9LXPvroI4wcORIAUF9fj+rqamzYsAHjx48HEFtTsnXrVixcuNDu06EsjIZv/RLm1el6dbpWism23qjnZNTw53j15lqiVLZHUJYtW4YtW7bg/vvvx5///GesWbMGTz75JBYtWgQACAQCWLp0Ke699168+uqreP/993H99dejtrYWM2fOtPt0KAuj4Vu/hHl1ul6drpVyrzf69FC34c/y6s21RKlsj6BceOGFWLduHVasWIF/+Zd/QX19PR5++GHMnTs3ccxtt92Go0ePYsGCBejq6sKUKVOwfv16DBzIhyUA18ooL6qvQE1wIELhY2lz0/FSQ7+EeXW6XtWu1Xel0C7Ktd4oAGDt23tRXVaC9khPxnUo5YMG4PG5F+Dir1Rq1fbp+h6AnP2RfdZ5tu+D4gZf74Pichll/F9eAJIeXPFh5rd/Sel0vapcq6lS6P2twJOX5v7QBZuA2vG2nqesmnd3YM7qLTmPW9Z4Nh7+r9iO3TL3Bzel63vlpQMAAF3dp/aISe2Pvivfd5GZ3998WaBsXC6jnD6uBk9cdwGqg8nRK7+GeXW6XhWu1XQpdGllbIKeTVFJ7DhNGF1HdObpg6XvD27K1Pe6uk8kTU6A5P7oy/J9STGC4pGM4UGP/oWoW7hSp+uV9Vp7owJTVm7MWF2ScTdT7iSbxGgE5YX5F6PhrEpp+0M2dp9zrr6XTgBAVVkJgABCEZN91sL5qXaPjPJ0J1nKLWt40KMlAYUFAa12jNTpemW9VjOl0EnnX16n1QQkF7PrjWTtD5k4kU4xW3YNxPpjKJI9um3HDrxMH53CFI/LcoUH/3v3IY/OjMhdLIW2R2FBAHdfFdt7KvXf2KqXDDuVTnG6T1n9fKaPknGC4iIju3v+7M1P3DwlIs+wFNo+Kqw3MsvJ3ZCd7lNWPp+7P/fHFI+LjIS0Dx05DuRYA0gki3xy5aqVQstu+rgaXD6m2jdrFyynAA3I1ffS6bsGpT1if5918npVxQmKixiqJj/JN1ceT00sfG47Akhf+qpqasIrqq0vycbJFGC2vpdOvAf+8OqxAOBIn2XKsz+meFxkJOz3uRiCaAHLKEluduXK/ZiaIHs4nQLM1PeGlg5I7IUS17c/OtVnmfLsjxEUFxkJaYvgGRA3vQN8keUlbibLKP1cskbuM7Jz6Y9e24nLx1Qb6md+S034gQzPDDdSgJn6HpB9J1kn+ixTnv1xguIiwyHtoTXA0BG2/EyWrJHdnMiV+yk1oTpZnhlupQAz9b1c/dHuPsuUZ39M8bjMzZA2S9bICcyV+5dszwzdUoC6XW8ujKB4wI2Qtt1heKI45sr9SdZnhm4pQN2uNxtOUDzidEibJWvkFObK/cmOZ0Z87crh9k9QXdSNscPLUBhI84vV5Do63VKAul1vJpyg+BTD8OQU5sr9Kd9nRnztSiD8F2wsuRUDAyfSHgfA1jeyk39xDYpPMQxPTmKu3H/yeWb0XbsyNHA4++QEsPWN7ORfjKD4lM5heBlKJHVgNFfu5v3gvbfO6jMj29oVu/C+6okTFJ/SNQwvS4mkLnLlyt28H7z3+bH6zLDyZmAzeF/1xRSPj+kWhpetRFJ3bt4P3nt7WHlmOLmOjfdVb4yg+Nz0cTWYOqoKv2z+FJ91dmNkRSm+2XAmiov8NTeVtURSV27eD957e5ktc3VqHRvvK3GC4nPpwqM/37zHd+FRllXLxc37wXtvPzNlrlbeDGwE7yv565/RlESn8CjLquXi5v3gvfdWfO0KcGqtih14X4kTFJ/KFR4FYuHR3qiTa+/dw7Jqubh5P3jvvdd37crnYgiOiQHZ/4KBN7LzvhJTPD6lW3jUSJi5fNAARIVAb1QYylkfPxm1Ze2OjiWSbpa561xSL5O+a1febB+T906yvK/ECYpP6RYezVYiGdf1xQnM/flWQyWKTb/ZidV/3IO+Aab7fvMh5v9tPVZcMcbweelaIulmmbuuJfUySqxdseEfPbyvxBSPT+kYHs1UIpkq1xqcpt/sxM/eTJ6cAEBUAD97cw+afrPT0PnotAYoHTfL3HUrqdcF76veAkII5RYhRCIRBINBhMNhlJWVeX06UuqNCkxZuTFneHTz7VN99y+Q3qjAlt0dWLRmO7q+SL/ldqbrP34yilF3/rbf5KSvggDwp3u+njXdE2//TGk2U+3f1ZZ9W3CTL15zm12pMiN0TKfpgPfVP8z8/maKx6d0Do8WFgRQUBDIODkBMq/B+WXzp1knJ0AskvLL5k9x499+JeMxtq0B6moDHpsQe3dJJhK/eM3tMne+BdafeF/1xBSPj+kcHrW6Buezzm5Dfy/XcbatAeruyD45AaR98ZruKS4iyg8jKD5ndldIv7C6BmdkRamhv5frOB3XAPXFXUCJKF+MoGggHh6dMX44Gs6q1OIXQrxEMdOVBhCrpkktUfxmw5nI1TwFgdhxTvx8vzCT4iJySm9UoHl3B15p3Yfm3R2+2fdJF5ygkC9l290y2xqc4qICzP/b+qyfPf9v63Mu8rT68/1CtzJ3ks/6HQcwZeVGzFm9BUvWtmLO6i2YsnIjU4sK4QSFfMvqGpwVV4zBty+p7xdJKQgA377E+D4oOq8B0j3FRd7i+id/4BoUyovs5X9W1+CsuGIMbv37UXmXx+q6Boi7gJJXuP7JPzhBIctU2SXVaolicVFB1lJip3++ynQucydv6faaDz9jiocsYQjVJaWVsX1OsjHw4jUv6JziIu9w/ZN/MIJCpjGE6qLyutgmbHnsJOtlGk7XFBd55/TTckzoTR6XDyfHnuzpdTtwgkKmMYTqsvI6y7vEypCG0zHFRR4yWknscMWxk2NPhnHtBqZ4yDSGUNXANBzp6NDRHDsvmzzOCifHnk7jmhMUMo0lpPLLlYYDYmk4blxFfuP188nJsafbuOYEhUzTfZdUFXAnV9KV188nJ8eebuOaExQyTfddUlXANBzpyuvnk5NjT7dxzQkKWcISUrl5HeYm8pKXzycnx55u45pVPGQZS0jdZaaskDu5ku7cfj7Fx2cocgwVgweg8+iJtMflM/Z0G9ecoFBeWELqDrNlhdzJlci951O68ZlOvmNPt3HNFA+R5KyWFTINR+S8TOMzHTvGnk7jOiCEUK4eKRKJIBgMIhwOo6yszOvTIXJMb1RgysqNGR9+8ZDu5tunZvxXkw47ThJ5wcj4rBhcjB9cORrVwUHcSRbmfn8zxUMEeQe7Hbv2Mg1HqlN5fHYcPY7q4CDbx6CVcS1rO2bCCQppT+Zto3UrKyRKxfFpD5nbMROuQSGtyb5ttG5lhUR9cXzaQ/Z2zIQTFNKWtNtGd7UB+1uB/a24aOBeXDpkH8YF9mDsl39qcShxKHftJb+Sdnz24fWutUao0I6ZMMVD2pLyrcxdbcBjE4CTsReZFQJ4FgD6vBn+mBiAqT0/wQGcDsBfZYVEcVKOzxQqlP2q0I6ZMIJC2pIyf9zdkZicZDIwcAJDA4d9WVZIFCfl+ExD9rJfVdoxHUZQSFuq5I/TabrmHIydeAkjJ+RLvVGBQ4ezT9TjZBifMu+qrfJzjhMU0pbK20afe0YQkODhR2Q3M7uyyjQ+ZS3nV/k5xxQPacvrt54SUTKju7JyfBqn8nOOExTSmuz5YyJdZKs2ScXxaY6qzzmmeEh7MuePZaLaLpR20/36nZar2iTuzitH41uT66Vre9n7h4rPOccnKA888ABWrFiBJUuW4OGHHwYAHDt2DLfeeivWrl2Lnp4eTJs2Df/+7/+Oqqoqp0+HKC1Z88eyUHEXSjvpfv1uMFpFcvqQEul+qarSP1R7zjma4nn77bfxs5/9DOeee27S15ctW4bXXnsNL774IjZt2oT9+/fj2muvdfJUiNRQWgkUlWQ/pqgkdpxLVN2F0i66X79bVK02Yf9wjmMRlCNHjmDu3LlYvXo17r333sTXw+EwfvGLX2DNmjWYOnUqAODpp5/G6NGjsWXLFlx88cVOnRKR/MrrgMUtsf1QMimtjB3ngly7UAYQ24Xy8jHV0v2r1g66X382dqc03Ko2sfO82T+c5dgEZdGiRbjyyivR2NiYNEFpaWnBiRMn0NjYmPjaqFGjMGLECDQ3N6edoPT09KCn51RNfCQSceq0ibxXXufaBCQXlXehtIPu15+JEykNN3Zltfu82T+c5UiKZ+3atdi+fTuampr6fS8UCqG4uBjl5eVJX6+qqkIoFEr7eU1NTQgGg4k/dXVyPLyJ/E7lXSjtoPv1p+NkSsPJahMnzpv9w1m2R1Da2tqwZMkSvPHGGxg40J5c4YoVK7B8+fLE/0ciEU5SiFyg6roAu+h+/ancSGk4UW3i1HmzfzjL9ghKS0sLDh48iAsuuABFRUUoKirCpk2b8Mgjj6CoqAhVVVU4fvw4urq6kv5ee3s7qqur035mSUkJysrKkv4QkfNUeFurk3S//r56owLPvLXHcEojH/Fqkxnjh6PhrMq812+YScWk0xsVaN7dgVda96F5d0fizb/sH86yPYJy2WWX4f3330/62g033IBRo0bh9ttvR11dHQYMGIANGzZg1qxZAIBdu3Zh7969aGhosPt0iCgPKryt1Um6X3+c0e3n42RLaeSTism1buXuq8bgpue2p/08AT36h1Nsn6AMGTIE48aNS/ra4MGDUVlZmfj6jTfeiOXLl6OiogJlZWW45ZZb0NDQwAoeIgnF1wWkPqSrJdznwQm6X3987YaRHV7jZEtpWE3FZLr2+LqVJ667wKYzpHQ82Un2pz/9KQoKCjBr1qykjdqISE4q7kJpJ7evX5ZdSc1sPw9YKwV241qtlDAbWbfyw1c/QP833CR/LsuMrQsIIcxMjKUQiUQQDAYRDoe5HoWIfEWmXUmbd3dgzuotho6N//o1U23j5rXGoyFA+lRd6nmbufZcXph/McuMv2Tm9zdfFkhEJAnZdiU1s5bEbCmw29dqtoTZznU0sq3JUQVfFugCWcK1MmGbECWTcVdSo2s3zL7Az6trNZOqs3MdTd/P4rPPOE5QHCZTuFYWbBOi/mTcldTo2g2zbxf28lqNvjDPyLVXlZUACKA9YmxtC5995jDF4yDZwrUyYJsQpSfjrqTxMmug/1LQfMqsZbzWVEau/YdXj8UPrzbWPnz2mccJikNyhTCBWAgzvuGPDtgmRJnJuiupE9vPy3qtqYxcu5Fj+Oyzhikeh8gYrvUa28R/mE+3j1tv87XC7jJrma81lZFrz3UMn33WcILiEBVCmG5jm/gL8+n2kn3XWqNrN4x+lszXmsrItWc7hs8+a5jicYgqIUw3sU38g/l0Zzj5Nl/Z6HStfPZZwwiKQ1QKYbqFbeI8N1IuMpbD+olOu/bqcq189lnDCYpDVAthuoFt4iy3Ui7MpzvPznSK7HS4Vj77rGGKx0E6hTCNYps4w82UC/PpRObx2WceIygO0yWEaQbbxF5up1yYT/c/Vmc5g88+czhBcYEOIUyz2Cb2cTvlwny6v7E6y1l89hnHFA+R4txOuTi1uyh5j9VZJBNOUIgU50XKhfl0/+FupyQbpniIFOdVyoX5dH9hdZaeZF5vxAkKkeK8LGFkPt0/WJ2lH9nXGzHFQ+QDTLlQvlidpRcV1hsxgkKOkzmEmI1q582US3qq3Uev6FKdxf6gzm7QnKCQo2QPIWai6nkz5ZJM1fvoBR12O2V/iFFlvRFTPOQYFUKI6ah63pSM99E8P6cK2R9OUWW9ESMo5AhVQoipVD1vSsb7aJ0fU4XsD8lUWW/ECAo5wkwIUSaqnjcl8+o+9kYFmnd34JXWfWje3aHsniHxVOGM8cPRcFal8r+0Oa6TxdcbZbqrAcRSX16vN2IEhRyhSggxlarnTcm8uI9c3yAvjutkqqw3YgSFHKFKCDGVqudNydy+j1zfIDeO6/5UWG/ECAo5QrWSxXjpYShyDBWDB6Dz6Im0x8l23lZYLbNUqTzTzf7H9Q3yU+155BbZ1xtxgkKOUCWECKQPzacj23lbYTUNoVr6ws3+p0rJps5Ueh65TeatCZjiIceoEELMFJpPR6bztsJqGkLV9IVb/Y/rG9SgwvOIkjGCQo6SOYSYLTQPxP5lVTG4GD+4cjSqg4OkOW8rrKYhVE9fuNH/uL4hM9nSgjI/j6g/TlDIcbKGEI2E5juOHkd1cJCU52+G1TSEH9IXTvc/rm9IT9a0oKzPI+qPKR7Slk6heavXqlMbWRVf3wCg374Suq5vUDUtSHLhBIW0pVNo3uq16tRG+eD6hlNypQWBWFpQ1U3syD1M8ZC2dArNW71WmduI6xvcZbS9/ZAWJDlwgkLa0qn00Oq1ytpGXN/gLjPtzbQg2YUpHtKaTqF5q9cqWxtxfYO7zLY304Jkl4AQQrlEYCQSQTAYRDgcRllZmafnYiTsKVso2u+stLdO90jlnWR7owJTVm7MmEKIp5w23z7Vt/fPTVbaO/53cqUF439Hhn5F7jHz+5spnjwYCXvKGor2K6vt7dfQfDpWr1WGNuL6BndZaW8zaUE+HykbpngsMhL2ZCjaXWxv/+P6BndZbW8jaUGOV8qFERQLjOyu+cNXPwAQUHYHTtWovuMpGcP1De7Kp72zVTVxvJIRnKBYYCTsGYr0ZP0MhqLtxdB/ZrLl+E2fT1cb0N0BALhooMClQ/ah48jxxC+3z8UQ7MfpAPxVGi6DfMvMM6UFOV7NkW0Mu4UTFAvsDB8zFG0Phv7Tky3Hb/p8utqAxyYAJ2MT/kIAzwJAyalDjokBmNrzExz4cpLil9JwGThVZs7xapxsY9hNXINigZ3hY4ai7cHQf3+y5fgtnU93R2JyksnAwAkMDRz2ZWm4DJwoM+d4NUa2Mew2RlAsMBL2rCorARBAe0S+HTj9SOYdT70gW47f6fNpuuYcjJ14CSMnDrF7l1yO19xkG8NeYATFgnjYM9MGMgLAD68eix9ezReIuYUvbEtmJsfvh/M594ygNvfWK/H1JDPGD0fDWZV5tTfHa26yjWEvcILiINl24PQ7tvcpsuX4ZTsf8h7Ha3YcM0zxJDG6Ujoeesukb+ht+rgaTB1VhV82f4rPOrsxsqIU32w4E8VFnBs6we8vbDNKthy/bOdjha6VFE5Sebw63R/8MGbyxQnKl8yslDYTegt/cbzf5/588x4tVmB7RYYdT70mW45ftvMxS+dKCqepOF7d6A+qjxk78J/xML9S2mhI7b92hrRegU3ekS3HL9v5mKF7JQUlc6s/qDxm7KL9BCXXSmkglq7pjZ46wmhIbV3rPlOfS2Qn2XL8ls6ntBIoKun/9b6KSmLHOcDK84H8y+3+INsYdpv2KR4rOxoaCb1VDC5Gx9Hjpj6XqC87ctyy5fhNn095HbC4JbGTbFqllbHjUvXZgdbU3+tD1x1Pud4mPS/6g2xj2E3aT1CsrJQ2srvijPG1eOqtT237+aQXO3PcsuX4TZ9PeV3OiUQ/KTvQplVUEpv8ZPlsHSspuN4mM6/6g2xj2C3ap3isrpTOFXq7fEy1rT+f9ME1DzYwsAMtTvZkj7BAv0oK9r3sdOsPXtM+gpLPSulcb+vUfQW2G2QLRed7PvnuHilbe6hOp0oK7lyam+/7gw1pUTtpP0HJ92VYmUJvTr1ki06RLRRtx/nkk+OWrT38QKdxrOt6GzN83R9sSovaSfsUD+DcSmndV2A7SbZQtF3nYzXHLVt7+Iku41jH9TZW+LY/2JQWtZP2EZQ4p1ZK67wC2ymyhaLtPB8rOW7Z2sOPdBjHXF9hnA79QQa2R1Camppw4YUXYsiQIRg2bBhmzpyJXbt2JR1z7NgxLFq0CJWVlTjttNMwa9YstLe3230qptn5Miw3PldXsr1Ey87ziee4M/WQAGJpm745btnaw6/8Po6t9D2d+b0/yMD2CcqmTZuwaNEibNmyBW+88QZOnDiBv//7v8fRo0cTxyxbtgyvvfYaXnzxRWzatAn79+/Htddea/epkE/JFoq283ys7B4pW3uQmrhzKcnG9hTP+vXrk/7/mWeewbBhw9DS0oJLLrkE4XAYv/jFL7BmzRpMnToVAPD0009j9OjR2LJlCy6++GK7T4l8RrZQtN3nE89xpy54rc6w4FW29pBCfAfaXAv+HNqBVlVm+x6RkxxfgxIOhwEAFRWxsGBLSwtOnDiBxsbGxDGjRo3CiBEj0NzczAmKR1QqTzVc6ldxFNjflvmDbCqZc6L00EyO2/elj1Zk2YG2Vwh8sC+C0MlSDOkoxUVlQtq+7gWuryBZODpBiUajWLp0KSZPnoxx48YBAEKhEIqLi1FeXp50bFVVFUKhUNrP6enpQU/PqX8JRSIRx85ZR6qVpxop9Wu6rByFj090pWTOqdJDo7tH+rr0MR9pdqBN7utHAByUuq97RdedS0kujpYZL1q0CDt27MDatWvz+pympiYEg8HEn7o69zaK8TtVy1Nzlfp97YxCV0vmvC499Prnq0DVvk7kCo9fzJlOQAjhyGs4Fy9ejFdeeQVvvvkm6uvrE1/fuHEjLrvsMnz++edJUZSRI0di6dKlWLZsWb/PShdBqaurQzgcRllZmROnr4XeqMCUlRszVoDEUwObb59qejdUt8LDGX/W/lbgyUtzf8CCTUDteOfPxyVe/3xZOdXXiXzFhZ1kI5EIgsGgod/ftqd4hBC45ZZbsG7dOvzhD39ImpwAwIQJEzBgwABs2LABs2bNAgDs2rULe/fuRUNDQ9rPLCkpQUlJjpkdmebEzpFup4tkC0V7fT5e/3xZcZdUIgOsvJjTQbZPUBYtWoQ1a9bglVdewZAhQxLrSoLBIAYNGoRgMIgbb7wRy5cvR0VFBcrKynDLLbegoaGBC2RdZnd5ajyEnhqSi4fQmWogr7AUm0g9tq9BeeKJJxAOh/G1r30NNTU1iT+/+tWvEsf89Kc/xT/8wz9g1qxZuOSSS1BdXY2XXnrJ7lOhHOwsT821mykQ2820N+pIRpEoK5ZiE6nHkRRPLgMHDsTjjz+Oxx9/3O4frwwZ1grYWZ7KEDrJLFdfB4CKwQMQihxD8+4OQ+NRhjFM5Gd8F48HZCnrtbM8lSF0klm2vh7XefQElv2qFUDu8SjLGCbyM77N2GWylTraVZ4qXQhdwpI58lamvp5OtvEo2xgm8ivHyoydZKZMyWlmwrwylzrmG66OX1uudJGr1+ZCyRypJ97XQ+EvcM9/fojOo8fTHpeuz/qhNN8qFc6R5OdpmbFOzIZ5ZV6nkW95qpS7mUpWMkdyiPf15t0dGScnQPrx6IfSfCtUOEfyH6Z4LLIS5vX7Og3uZkoqsTIenSrNlzldpMI5kj8xgmJBrpLaAGIltZePqU6KGEi3TsMBfNEYqcLKeHSzND/Tc8RNKpwj+RcnKBZYDfPK/NZZO/PLKu5myvy6fqyMR11K8+Pj4a0/H5L2HMn/OEGxwGqYV8p1GmB+Wffr15WV8ahDaX668ZCLqmlpkhvXoFiQT5hXtnUauueXdb9+3VkZj74tzUfm8ZCLymlpkhcjKBZkCvPW4hCGBg4jAKDytGJcNHAvsL/t1AFflrVmWqcBAM27O1xLM+ieX9b9+r1iVzrNrs+xsm7KjrVWsqV8s42HTLxMS5P/cYJiQbowby0OYWPJrRgYOBE76ASA1Sl/sagEWNwClNf1W6fhRZpB5hy4G3S/fi/Y1c/tHi9W1k35rTQ/13hI5WVamvTAFI9FqWHeoYHDpyYnmZzsSbtxmFdpBllz4G7R/frdZlc/91NaTqaUr9l+zu0DyGmMoOShb5i3p60Y+IP5z/AyzSBjDtxNul+/m+zq535My8lSmm+0ny/+u7Mw+a//ipVu5DhGUPIUD/N+7W/+ytLfN5NmsFs8B57pERNALGzu1/yy7tfvJrv6uZfjxUnx58iM8cPRcFalJ7/4jY6HZZf/H8/OkfTCCYrHvEwzxHPgAPo9lHTIL+t+/W6yq58zLeccjgeSDScoHvM6zSBTDtwLul+/W+zq516PF7/jeCCZcA2Kx2QoNZQlB24Xs+Wnfrt+K4y0WT5lvUb6ecXgYoTCX6B5d0fGz5ZhvDhBpp2MOR6Mkeme+RUnKB6TpdRQxe3p07FafuqX67fCSJvlW9abrZ/jy//vOHocy379XtbPlmW82EnGnYx1Hg9GyHjP/CgghDCzL48UIpEIgsEgwuEwysrKvD6dmK424LEJsVLiTPrsg5KKHT5/8fLT1A4d/1XFEHV/RtoMgG3tanQb9Vyf7Zfxwj6rHt6z/Jj5/c0Jip262tLuc5Lw5U6ymTBkaF1vVGDKyo0Zf/HFQ/+bb5/KNv2SkTarKisBEEAoYl+7xvt5KHIM97z+ATqPpt8/KNdnqz5e2GeNk+Ve857lz8zvb6Z47FRel3UCkgvDqtZxV1jzjLRZKJIlIghr7Rrv5827OzJOTox8turjhX3WGJmiZbxn7mIVD/kCy0/Ns7MtrHyW7vdM9+s3QrZdg3nP3MUJCvkCy0/Ns7MtrHyW7vdM9+vPJdeuwUBs1+DeqHurFHjP3MUUD/mCX8tPnWSkzeJrUNoj9rerV/dMlvUM7LPZyZhOMXzPKo4mv8k+VY71iBTDCQr5gh/LT51mpM1+ePVYAHCkXb24ZzKtZ2CfzU7GdIqRe9Z0WTkKH59ouaKTTmGKh3yDu2CaZ6TNnGxXN++ZbOsZAPbZbGRNp+S6Z187ozD75ATI+GZ7SsYyY/IdWUL4KnF6J1mjP/9w+yeoLurG2OFlKAyk+WyLoXHZy0O97LOyjpf4PcuVTpHunu1vBZ68NPcH/L9fA6dVZf6+T9NALDMmralefuoFI23mZLsWFgTQUNkNvHClI6FxGdcz9OVVn5Up5ZVK9hRY3vfsV9cBvcczf59pIKZ4iEgS3R2OhcZlXM/gNRlTXql8nQLLNjkBmAYCIyhEnkgND08YORQtn30uXZjdL2Rdz+CVXCW8AcRKeC8fU+15P+TLC/XFCQqRy9KF1QsCQN/tHGQJs/sFS3qTyZ7ySsW0rZ6Y4iFyUaaweupeUzKF2f0gvp4BOLV+IU6G9QxuY8qLVMAJCpFLsoXVU3m1U6af+Xo9g0lMeTmotDK2wDWbwgHunIvimOKRiKzlfmSPXGH1VLKF2f3A6fUMbpRi2/HZTHk5qLwuVn2TbYHrkXZgzf91/FRU/53CCYokZC73I3tYDZczzG4vp9YzODmG7f5s2Ut4lZfrzfb7Wx0/BT/8TmGKRwIqlPtR/qyGy7UJsxsJjReVxI6TjJNj2KnPZsrLQw73db/8TuFOsh6TfYdLsk+unTHTKQgAf7rn6ygu0uTfEl1t2UPjEu6u6eQYduP5oHoaQFkO9XXZf6dwJ1mFqFbuR9ZlC6tnEhVAy2ef63Pvc4XGJeTkGHbj+cASXo841Nf99DtFk3+WyYvlfnrJFFbPhvdebk6OYT4fyCw/9RlOUDzGcj/9TB9Xg823T8WdV442dDzvvdycHMN8PpBZfuozTPF4TMpyvy9zo71C4IN9EXR2H0dFafGpN8xKuA5ANYUFAXxrcj1+vnmPXPeeTHNyDDvx2Vxz4m9S/k6xiBMUj0lX7tfVBjw2ATjZg0IA56Y7hm/ZtIV0954sid/Hm57bnvb7Atbvo919xA+lp5Sdn54rTPFIQKpyPwffKEv9SXXvSUp29RG/lJ5Sbn55rrDMWCIyhF57972LwtVfy33c/D+gcPj5zp+QJmS492SNW2Wd+fQR2UtPyRkyvjWdZcaKkqHc74N9kfRpnXTHDXf8dLQhw70na9wq68ynj/ip9JSM69tn1u84gEt//Hul0ntM8VCSzu7jth5H5HcqlHWqcI7kHFXTe5ygUJKK0mJTx/VGBZp3d+CV1n1o3t3BN++SdlQo61ThHMkZ2d6iLvtb05nioSRjhxtb0zN2eBkrAoigRlmnCudIzlA5vccICiUpDBhbMLX1kw4lQ4ZEdouXdQKnyjjjZCnrVOEcyRkqp/c4QaFkBt6yKYpK8OAfDykZMiRyggplnSqcI9nv9NNyvDXZ5HFuYoqHkpXXxTZhy7KT7PZDBWhd05bxI2QOGdrNyfJglh6rZfq4Glw+plrqe6bCOZLNjP47UcJ/T3KCQv19+ZbNQiBtKfFfDu4DkHmCEidjyNBOTq7B4foeNalQLq7COZJ9Dh3NsfGmyePcxBQPmcaKAGfL9lQtCSQi+aj8vOYERXHpynydLv2NVwRkCgoHEPvXvl8rApws21O5JJCI5GPleS3L9hFM8SgsXRqgvHQAAKCr+0Tia3anBvz0MiornCzbU7kkkIjkY/Z5LVN6mREURWVKA3R1n0ianADOpAZ0rghwsmxP5ZJAIpKT0ee1bOllRlAUlC0NkI5AbKb8o9d24vIx1bZFNnStCHAyp6tyvthprGoisi7X8zpXetmJ3yG5eDpBefzxx/HjH/8YoVAI5513Hh599FFcdNFFXp6SEnKlAdJxKjWgY0WAk7tycsfP9GQKOxOpKtvzWsb0smcpnl/96ldYvnw57r77bmzfvh3nnXcepk2bhoMHD3p1SsrIJ7zP1ED+nNyVkzt+9idb2JnIj2RML3s2QXnooYcwf/583HDDDRgzZgxWrVqF0tJSPPXUU16dkjLyCe/rmBpwgpNrcHRe35OKVU1E7pAxvexJiuf48eNoaWnBihUrEl8rKChAY2Mjmpub+x3f09ODnp5Tm8hEIhFXzlNWudIA6eiaGnCSk2twdF3fk0rGsDORH8mYXvYkgnLo0CH09vaiqqoq6etVVVUIhUL9jm9qakIwGEz8qaurc+tUpZQtDZCOrqkBN8RzujPGD0fDWZW2tq+Tn60KGcPORH4kY3pZiTLjFStWIBwOJ/60teXeZt3vMqUByksHJPZCidMxNUD+IGPYmcivZEsve5LiOf3001FYWIj29vakr7e3t6O6urrf8SUlJSgpke9Ni17LlAYAoH1qgPxBxrAzkZ/JlF72ZIJSXFyMCRMmYMOGDZg5cyYAIBqNYsOGDVi8eLEXp6SsTGVjzMeTH+i+azGRF2TZPsKzFM/y5cuxevVqPPvss/jwww+xcOFCHD16FDfccINXp0REEpIt7ExE7vBso7Z//Md/xP/+7//irrvuQigUwvjx47F+/fp+C2eJiGQKOxOROwJCCOU2EIhEIggGgwiHwygrK/P6dIiIiMgAM7+/lajiISIiIr1wgkJERETS4QSFiIiIpMMJChEREUmHExQiIiKSDicoREREJB1OUIiIiEg6nKAQERGRdDhBISIiIul4ttV9PuKb30YiEY/PhIiIiIyK/942som9khOUw4cPAwDq6uo8PhMiIiIy6/DhwwgGg1mPUfJdPNFoFPv378eQIUMQCNj7srBIJIK6ujq0tbXxPT8OY1u7h23tHra1e9jW7rGrrYUQOHz4MGpra1FQkH2ViZIRlIKCApxxxhmO/oyysjJ2eJewrd3DtnYP29o9bGv32NHWuSIncVwkS0RERNLhBIWIiIikwwlKipKSEtx9990oKSnx+lR8j23tHra1e9jW7mFbu8eLtlZykSwRERH5GyMoREREJB1OUIiIiEg6nKAQERGRdDhBISIiIulwgtLH448/jjPPPBMDBw7EpEmTsG3bNq9PSXlNTU248MILMWTIEAwbNgwzZ87Erl27ko45duwYFi1ahMrKSpx22mmYNWsW2tvbPTpj/3jggQcQCASwdOnSxNfY1vbZt28frrvuOlRWVmLQoEE455xz8M477yS+L4TAXXfdhZqaGgwaNAiNjY34+OOPPTxjNfX29uLOO+9EfX09Bg0ahLPOOgv33HNP0rtc2NbWvPnmm7jqqqtQW1uLQCCAl19+Oen7Rtq1s7MTc+fORVlZGcrLy3HjjTfiyJEj9pygICGEEGvXrhXFxcXiqaeeEh988IGYP3++KC8vF+3t7V6fmtKmTZsmnn76abFjxw7R2toqrrjiCjFixAhx5MiRxDE33XSTqKurExs2bBDvvPOOuPjii8VXv/pVD89afdu2bRNnnnmmOPfcc8WSJUsSX2db26Ozs1OMHDlSfOtb3xJbt24Vn3zyifjd734n/vznPyeOeeCBB0QwGBQvv/yyeO+998TVV18t6uvrxRdffOHhmavnvvvuE5WVleL1118Xe/bsES+++KI47bTTxL/9278ljmFbW/Ob3/xGfP/73xcvvfSSACDWrVuX9H0j7Tp9+nRx3nnniS1btog//vGP4q//+q/FnDlzbDk/TlC+dNFFF4lFixYl/r+3t1fU1taKpqYmD8/Kfw4ePCgAiE2bNgkhhOjq6hIDBgwQL774YuKYDz/8UAAQzc3NXp2m0g4fPizOPvts8cYbb4hLL700MUFhW9vn9ttvF1OmTMn4/Wg0Kqqrq8WPf/zjxNe6urpESUmJeOGFF9w4Rd+48sorxT/90z8lfe3aa68Vc+fOFUKwre2SOkEx0q47d+4UAMTbb7+dOOa3v/2tCAQCYt++fXmfE1M8AI4fP46WlhY0NjYmvlZQUIDGxkY0Nzd7eGb+Ew6HAQAVFRUAgJaWFpw4cSKp7UeNGoURI0aw7S1atGgRrrzyyqQ2BdjWdnr11VcxceJEfOMb38CwYcNw/vnnY/Xq1Ynv79mzB6FQKKmtg8EgJk2axLY26atf/So2bNiAjz76CADw3nvvYfPmzfj6178OgG3tFCPt2tzcjPLyckycODFxTGNjIwoKCrB169a8z0HJlwXa7dChQ+jt7UVVVVXS16uqqvCnP/3Jo7Pyn2g0iqVLl2Ly5MkYN24cACAUCqG4uBjl5eVJx1ZVVSEUCnlwlmpbu3Yttm/fjrfffrvf99jW9vnkk0/wxBNPYPny5fjnf/5nvP322/jOd76D4uJizJs3L9Ge6Z4pbGtz7rjjDkQiEYwaNQqFhYXo7e3Ffffdh7lz5wIA29ohRto1FAph2LBhSd8vKipCRUWFLW3PCQq5ZtGiRdixYwc2b97s9an4UltbG5YsWYI33ngDAwcO9Pp0fC0ajWLixIm4//77AQDnn38+duzYgVWrVmHevHken52//PrXv8bzzz+PNWvWYOzYsWhtbcXSpUtRW1vLtvY5pngAnH766SgsLOxXzdDe3o7q6mqPzspfFi9ejNdffx2///3vccYZZyS+Xl1djePHj6OrqyvpeLa9eS0tLTh48CAuuOACFBUVoaioCJs2bcIjjzyCoqIiVFVVsa1tUlNTgzFjxiR9bfTo0di7dy8AJNqTz5T8fe9738Mdd9yB2bNn45xzzsE3v/lNLFu2DE1NTQDY1k4x0q7V1dU4ePBg0vdPnjyJzs5OW9qeExQAxcXFmDBhAjZs2JD4WjQaxYYNG9DQ0ODhmalPCIHFixdj3bp12LhxI+rr65O+P2HCBAwYMCCp7Xft2oW9e/ey7U267LLL8P7776O1tTXxZ+LEiZg7d27iv9nW9pg8eXK/cvmPPvoII0eOBADU19ejuro6qa0jkQi2bt3Ktjapu7sbBQXJv6oKCwsRjUYBsK2dYqRdGxoa0NXVhZaWlsQxGzduRDQaxaRJk/I/ibyX2frE2rVrRUlJiXjmmWfEzp07xYIFC0R5ebkIhUJen5rSFi5cKILBoPjDH/4gDhw4kPjT3d2dOOamm24SI0aMEBs3bhTvvPOOaGhoEA0NDR6etX/0reIRgm1tl23btomioiJx3333iY8//lg8//zzorS0VDz33HOJYx544AFRXl4uXnnlFfE///M/YsaMGSx9tWDevHli+PDhiTLjl156SZx++unitttuSxzDtrbm8OHD4t133xXvvvuuACAeeugh8e6774rPPvtMCGGsXadPny7OP/98sXXrVrF582Zx9tlns8zYCY8++qgYMWKEKC4uFhdddJHYsmWL16ekPABp/zz99NOJY7744gtx8803i6FDh4rS0lJxzTXXiAMHDnh30j6SOkFhW9vntddeE+PGjRMlJSVi1KhR4sknn0z6fjQaFXfeeaeoqqoSJSUl4rLLLhO7du3y6GzVFYlExJIlS8SIESPEwIEDxVe+8hXx/e9/X/T09CSOYVtb8/vf/z7t83nevHlCCGPt2tHRIebMmSNOO+00UVZWJm644QZx+PBhW84vIESf7fiIiIiIJMA1KERERCQdTlCIiIhIOpygEBERkXQ4QSEiIiLpcIJCRERE0uEEhYiIiKTDCQoRERFJhxMUIiIikg4nKERERCQdTlCIiIhIOpygEBERkXQ4QSEiIiLp/H+iwc5s5T+3uwAAAABJRU5ErkJggg==", + "text/plain": [ + "

" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "np.random.seed(2023)\n", + "\n", + "installation, service, xC, yC, xF, yF = GenerateFacilityLocationInstance(20, 200)\n", + "ShowFacilityLocation(xC, yC, xF, yF)\n", + "\n", + "weak = FacilityLocationWeak(installation, service)\n", + "strong = FacilityLocationStrong(installation, service)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "id": "PtIa7AkF3I2_" + }, + "outputs": [], + "source": [ + "def Solve(solver, model):\n", + " t = pc()\n", + " _ = solver.solve(model)\n", + " t = pc() - t\n", + " X, Y, v = GetSolution(model)\n", + " title = f\"{model.name} solved by {GetSolverName(solver)} in {t:.2f} seconds {v:.0f}\"\n", + " return X, Y, v, title" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 452 + }, + "id": "eD-SBFIkUO-F", + "outputId": "4da09e06-63fe-4861-947b-e1b417ba348c" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAGzCAYAAAAotsMiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1wURxuAn7ujd5AOCogNbNgrYu/d2BJj7xo1JjGm2ROjJiaWqLF3E0sSe++9IfauYAMUkF7vbr8/7mPlpB1I1X1+P2Jud3Z2dnZ29t23jUwQBAEJCQkJCQkJiQ8MeWE3QEJCQkJCQkKiMJCEIAkJCQkJCYkPEkkIkpCQkJCQkPggkYQgCQkJCQkJiQ8SSQiSkJCQkJCQ+CCRhCAJCQkJCQmJDxJJCJKQkJCQkJD4IJGEIAkJCQkJCYkPEkkIkpCQkJCQkPggKfZCUGBgIDKZjNWrV4vbpkyZgkwm0yrn7u5O//798709/fv3x93dPd/Pk1sy6q8PjcaNG1OpUqXCbkauWL16NTKZjMDAwBwfm9Fzkd80btyYxo0bF+g5Qfdxntqfly5dKpiGZUH//v0xMzPL93MU5flJIucUxnP9PpEvQlDqxJLR38SJE/PjlDnm1q1bTJkyJVcvk+LAxo0b+f333wu7GRISEu85arWa2bNn4+HhgZGREVWqVGHTpk06HRscHMzEiRNp0qQJ5ubmyGQyjh07lmHZlJQUpk6dSunSpTE0NKR06dLMmDEDpVKZh1fzYdO4ceMM39utW7fWKhcbG8vkyZNp3bo1NjY22X5wLFy4EC8vLwwNDXFxcWH8+PHExcWlK/fjjz/SsWNHHBwckMlkTJkyJcP6/vnnH3r27Enp0qUxMTGhfPnyfPHFF0RGRub4mvVyfEQOmDZtGh4eHlrb8voL3M3NjYSEBPT19bMsd/fuXeTyNzLfrVu3mDp1Ko0bN34vv4w2btzIjRs3GDdunNZ2XftLQkLi/WPZsmWo1eo8rfO7777j559/ZsiQIdSqVYvt27fz8ccfI5PJ6NWrV5bH3r17l1mzZlG2bFkqV67M2bNnMy3bp08ftmzZwsCBA6lZsybnzp3jhx9+4MmTJyxdujRPr+lDxtXVlZkzZ2ptc3Z21vodFhbGtGnTKFWqFFWrVs1UcAX4+uuvmT17Nh999BFjx47l1q1bLFiwgJs3b7J//36tst9//z2Ojo5Uq1Yt3b60DB06FGdnZ/r06UOpUqW4fv06CxcuZM+ePfj7+2NsbKzz9earENSmTRtq1qyZn6dAJpNhZGSUbTlDQ8N8bUdxQdf+kpCQeP/I64+f58+f8+uvvzJq1CgWLlwIwODBg/Hz8+Orr76ie/fuKBSKTI+vUaMG4eHh2NjYsHXrVrp3755huYsXL7J582Z++OEHpk2bBsDw4cOxtbVl7ty5jB49mipVquTptX2oWFpa0qdPnyzLODk5ERwcjKOjI5cuXaJWrVoZlgsODmbu3Ll8+umnrF27Vtxerlw5PvvsM3bu3EmHDh3E7Y8fP8bd3Z2wsDDs7OwyPf/WrVvTmdlr1KhBv3792LBhA4MHD9bhSjUUik9QUFAQI0eOpHz58hgbG1OiRAm6d++eoWkqMjKSzz//HHd3dwwNDXF1daVv376EhYUButv+0/oErV69WnzYmjRpIqr8jh07Rr9+/bC1tSUlJSVdHS1btqR8+fI5vt64uDi++OILSpYsiaGhIeXLl+eXX35BEIR0ZdevX0/t2rUxMTHB2tqaRo0aceDAAXH/9u3badeuHc7OzhgaGuLp6cn06dNRqVRimcaNG7N7926CgoLEa0vVdmXWX0eOHMHX1xdTU1OsrKzo1KkTt2/f1iqTant+8OAB/fv3x8rKCktLSwYMGEB8fHyWfTB//nwUCoWWuvLXX39FJpMxfvx4cZtKpcLc3Jyvv/5a3KZWq/n999+pWLEiRkZGODg4MGzYMF6/fq11Dl36JjMOHDiAiYkJvXv3zlK9nupPdO3aNfz8/DAxMaFMmTJs3boVgOPHj1OnTh2MjY0pX748hw4dSlfHlStXaNOmDRYWFpiZmdGsWTPOnTuXrtzNmzdp2rQpxsbGuLq6MmPGjEy/4vfu3SveP3Nzc9q1a8fNmzezve6MuH//Pt26dcPR0REjIyNcXV3p1asXUVFRYhmlUsn06dPx9PTE0NAQd3d3vv32W5KSkjKtNzQ0FD09PaZOnZpu3927d5HJZOKLFDTP/rhx48TnpkyZMsyaNStdH0RGRtK/f38sLS2xsrKiX79+OVaLx8fHM2zYMEqUKIGFhQV9+/bVGl95MS+cP3+etm3bYm1tjampKVWqVGHevHnpyj169IhWrVphamqKs7Mz06ZNSzdXqNVq5s2bR+XKlTEyMsLOzo7WrVtn69v0tk9Q6nzwyy+/sHTpUvF+1qpVi4sXL2Z7Tdu3byclJYWRI0eK22QyGSNGjODZs2dZanYAzM3NsbGxyfY8J0+eBEinWerVqxeCIPD3339nW8eCBQuoWLGiOLfWrFmTjRs3apV5/vw5AwcOxMHBAUNDQypWrMjKlSvT1ZWYmMiUKVMoV64cRkZGODk50bVrVx4+fCiW0XXel8lkjB49mv/++49KlSqJ5923b1+68546dYpatWphZGSEp6cnf/75Z4bXevDgQRo2bIiVlRVmZmaUL1+eb7/9Nts+SkWpVBIbG5vpfkNDQxwdHbOt5+zZsyiVygzvG8Bff/2ltV1Xq0xGfoZdunQBSPfeyo581QRFRUWJwkoqtra2XLx4kTNnztCrVy9cXV0JDAxk8eLFNG7cmFu3bmFiYgJo7I6+vr7cvn2bgQMHUr16dcLCwtixYwfPnj3D1tY2V+1q1KgRY8aMYf78+Xz77bd4eXkB4OXlJUqs+/fvp3379uIxISEhHDlyhMmTJ+foXIIg0LFjR44ePcqgQYPw8fFh//79fPXVVzx//pzffvtNLDt16lSmTJlC/fr1mTZtGgYGBpw/f54jR47QsmVLQCPAmZmZMX78eMzMzDhy5AiTJk0iOjqaOXPmABr1dFRUFM+ePRPrz8rh8tChQ7Rp04bSpUszZcoUEhISWLBgAQ0aNMDf3z/dwOzRowceHh7MnDkTf39/li9fjr29PbNmzcr0HL6+vqjVak6dOiX268mTJ5HL5eIEBxoBITY2lkaNGonbhg0bxurVqxkwYABjxozh8ePHLFy4kCtXrnD69Gnx61aXvsmIXbt28dFHH9GzZ09WrlyZ5ZcrwOvXr2nfvj29evWie/fuLF68mF69erFhwwbGjRvH8OHD+fjjj5kzZw4fffQRT58+xdzcHNAINr6+vlhYWDBhwgT09fX5888/ady4sShAgWa8NWnSBKVSycSJEzE1NWXp0qUZqnnXrVtHv379aNWqFbNmzSI+Pp7FixfTsGFDrly5kiNzb3JyMq1atSIpKYnPPvsMR0dHnj9/zq5du4iMjMTS0hLQfO2vWbOGjz76iC+++ILz588zc+ZMbt++zb///pth3Q4ODvj5+bF58+Z0z9Hff/+NQqEQP07i4+Px8/Pj+fPnDBs2jFKlSnHmzBm++eYbgoODRX83QRDo1KkTp06dYvjw4Xh5efHvv//Sr18/na8ZYPTo0VhZWTFlyhTu3r3L4sWLCQoK4tixY8hksneeFw4ePEj79u1xcnJi7NixODo6cvv2bXbt2sXYsWPFciqVitatW1O3bl1mz57Nvn37mDx5MkqlUtSAAAwaNIjVq1fTpk0bBg8ejFKp5OTJk5w7dy5X2veNGzcSExPDsGHDkMlkzJ49m65du/Lo0aMstUdXrlzB1NRUnENTqV27tri/YcOGOW7P26QK12+P/9R3xeXLl7M8ftmyZYwZM0Y0ySQmJnLt2jXOnz/Pxx9/DGiE9Lp164pCiZ2dHXv37mXQoEFER0eLrgUqlYr27dtz+PBhevXqxdixY4mJieHgwYPcuHEDT0/PHM37oBFu/vnnH0aOHIm5uTnz58+nW7duPHnyhBIlSgBw/fp1WrZsiZ2dHVOmTEGpVDJ58mQcHBy06rp58ybt27enSpUqTJs2DUNDQx48eMDp06d16ut79+5hampKcnIyDg4ODBkyhEmTJuVKi/iu9y0nhISEAORcLhDygVWrVglAhn+CIAjx8fHpjjl79qwACGvXrhW3TZo0SQCEf/75J115tVotCIIgPH78WACEVatWifsmT54svH1pbm5uQr9+/cTfW7ZsEQDh6NGjWuVUKpXg6uoq9OzZU2v73LlzBZlMJjx69CjLa+/Xr5/g5uYm/v7vv/8EQJgxY4ZWuY8++kiQyWTCgwcPBEEQhPv37wtyuVzo0qWLoFKpMrxWQci474YNGyaYmJgIiYmJ4rZ27dpptSOVjPrLx8dHsLe3F8LDw8VtV69eFeRyudC3b19xW2q/Dhw4UKvOLl26CCVKlMigN96gUqkECwsLYcKECeI1lShRQujevbugUCiEmJgYQRA0/SyXy4XXr18LgiAIJ0+eFABhw4YNWvXt27cv3XZd+8bPz0+oWLGiIAiCsG3bNkFfX18YMmRIun7PCD8/PwEQNm7cKG67c+eOAAhyuVw4d+6cuH3//v3p+rpz586CgYGB8PDhQ3HbixcvBHNzc6FRo0bitnHjxgmAcP78eXHby5cvBUtLSwEQHj9+LAiCIMTExAhWVlbCkCFDtNoZEhIiWFpaam3P6Ll4mytXrgiAsGXLlkzLBAQECIAwePBgre1ffvmlAAhHjhwRt/n5+Ql+fn7i7z///FMAhOvXr2sd6+3tLTRt2lT8PX36dMHU1FS4d++eVrmJEycKCoVCePLkiSAIb56v2bNni2WUSqXg6+ubru8zInWuqlGjhpCcnCxunz17tgAI27dvFwTh3eYFpVIpeHh4CG5ubuK4TiXts92vXz8BED777DOt/e3atRMMDAyEV69eCYIgCEeOHBEAYcyYMenOlba+jHh7fkqdD0qUKCFERESI27dv3y4Aws6dO7Osr127dkLp0qXTbY+LixMAYeLEiVken5bM5mRB0DyngLBu3Tqt7UuWLBEAoVKlSlnW3alTJ/GZz4xBgwYJTk5OQlhYmNb2Xr16CZaWluL8snLlSgEQ5s6dm66O1P7Xdd4XBEEABAMDA61tV69eFQBhwYIF4rbOnTsLRkZGQlBQkLjt1q1bgkKh0Hquf/vtNwEQx0tOGDhwoDBlyhRh27Ztwtq1a4WOHTsKgNCjR49Mj7l48WKmz9rly5cFQJg+fbrW9tT528zMLMM6X716JQDC5MmTdW77oEGDBIVCkW7OyI58NYf98ccfHDx4UOsPtKXClJQUwsPDKVOmDFZWVvj7+4v7tm3bRtWqVUU1V1ryKyRQLpfzySefsGPHDmJiYsTtGzZsoH79+ukcvbNjz549KBQKxowZo7X9iy++QBAE9u7dC8B///2HWq1m0qRJWg7coH2tafsuJiaGsLAwfH19iY+P586dOzlqG2hstgEBAfTv319LLV2lShVatGjBnj170h0zfPhwrd++vr6Eh4cTHR2d6Xnkcjn169fnxIkTgEZlGR4ezsSJExEEQVSbnzx5kkqVKmFlZQXAli1bsLS0pEWLFoSFhYl/NWrUwMzMjKNHj+a6bzZt2kTPnj0ZNmwYf/75Z7p+zwwzMzMt9W758uWxsrLCy8tL1OQA4v8/evQI0HxBHjhwgM6dO1O6dGmxnJOTEx9//DGnTp0S+3DPnj3UrVtX/KIGsLOz45NPPtFqy8GDB4mMjKR3795a/aNQKKhTp45W/+hCqqZn//79mZo4U8dEWjMmaMY0wO7duzOtv2vXrujp6WmZL27cuMGtW7fo2bOnuG3Lli34+vpibW2tdV3NmzdHpVKJ42jPnj3o6ekxYsQI8ViFQsFnn32Wk8tm6NChWl+6I0aMQE9PT7zWd5kXrly5wuPHjxk3bpw4rlPJaB4bPXq01v7Ro0eTnJwsmla3bduGTCbLUPuU23mxZ8+eWFtbi799fX2BN2M3MxISEjL0t0z1O0xISMhVe96mbdu2uLm58eWXX/LPP/8QFBTE5s2b+e6779DT08v2PFZWVjx79ixTE58gCGzbto0OHTogCILWmGvVqhVRUVHiu2nbtm3Y2tpmOMZS+1/XeT+V5s2b4+npKf6uUqUKFhYWWnPH/v376dy5M6VKlRLLeXl50apVq3TXChpTZU6d4FesWMHkyZPp2rUrn376Kdu3b2fIkCFs3rw5Q5N9dlSvXp06deowa9YsVq1aRWBgIHv37mXYsGHo6+vn2fjYuHEjK1as4IsvvqBs2bI5OjZfhaDatWvTvHlzrT/QPBiTJk0SbaW2trbY2dkRGRmp5Xfw8OHDQsnn0rdvXxISEkS1/t27d7l8+TKffvppjusKCgrC2dlZNIekkqo+DgoKAjTXKpfL8fb2zrK+mzdv0qVLFywtLbGwsMDOzk50YkvbdzlpH5ChT4OXlxdhYWHpQhnTPoSAOHm+7aPzNr6+vly+fJmEhAROnjyJk5MT1atXp2rVqqJJ7NSpU+IEDBr/lKioKOzt7bGzs9P6i42N5eXLl2LZnPTN48eP6dOnD926dWPBggU5enm4urqmK29paUnJkiXTbUvbL69evSI+Pj7Tvlar1Tx9+hTQ3JeMHua3j71//z4ATZs2Tdc/Bw4c0OofXfDw8GD8+PEsX74cW1tbWrVqxR9//KHVf0FBQcjlcsqUKaN1rKOjI1ZWVuKYyghbW1uaNWvG5s2bxW1///03enp6dO3aVeu69u3bl+6aUueQ1OsKCgrCyckpnbk3p757b/e1mZkZTk5OWn6KuZ0XUv1EdJnL5HK5loAMGidSQGzLw4cPcXZ21smXRldy+0wbGxtn6AeWmJgo7s8LjIyM2L17NyVKlKBbt264u7vTt29fJk2ahI2NTbb5lb7++mvMzMyoXbs2ZcuWZdSoUVrmoVevXhEZGcnSpUvTjbkBAwYAb8bcw4cPKV++PHp6mXuT6Drvp/J2/4PmHqSdOxISEnSaE3r27EmDBg0YPHgwDg4O9OrVi82bN+c6KjD14yYj/0ZdSFVmDBw4EA8PDzp06ECPHj2oVq1anuTFOnnyJIMGDaJVq1b8+OOPOT4+X32CMuOzzz5j1apVjBs3jnr16mFpaSmGU+Z1+GZu8Pb2pkaNGqxfv56+ffuyfv16DAwM6NGjR6G2KzIyEj8/PywsLJg2bRqenp4YGRnh7+/P119/XWB9l5nPjJCBo3daGjZsSEpKCmfPnuXkyZOisOPr68vJkye5c+cOr1690hKC1Go19vb2bNiwIcM6UyMIcto3Tk5OODk5sWfPHi5dupQjP4rMrj+3/fIupF7XunXrMnRUzGqizoxff/2V/v37s337dg4cOMCYMWOYOXMm586dw9XVVSyXW61Dr169GDBgAAEBAfj4+LB582aaNWumZctXq9W0aNGCCRMmZFhHqmBQkBTVeSEvyO3YdXJy4ujRowiCoDUegoODgfSh1e9CxYoVRa3h69ev8fb2xtjYmM8//xw/P78sj/Xy8uLu3bvs2rWLffv2sW3bNhYtWsSkSZOYOnWq+Bz16dMnU3+y/Iw+y8u5w9jYmBMnTnD06FF2797Nvn37+Pvvv2natCkHDhzI1ufxbVI/7iIiInLcFgAXFxdOnTrF/fv3CQkJoWzZsjg6OuLs7PzOz/HVq1fp2LEjlSpVYuvWrbma7wpFCNq6dSv9+vXj119/FbclJiami+jw9PTkxo0b+dKG7Cbwvn37Mn78eIKDg9m4cSPt2rXTUhfripubG4cOHSImJkbrqyDVPOPm5gZorlWtVnPr1i18fHwyrOvYsWOEh4fzzz//aDkOP378OF1ZXV9Qqee/e/duun137tzB1tYWU1NTnerKjtq1a2NgYMDJkyc5efIkX331FaBxVF+2bBmHDx8Wf6fi6enJoUOHaNCgQZZflTnpG9B8We7atYumTZvSunVrjh8/TsWKFfPiMjPFzs4OExOTTPtaLpeLE46bm5uo5UnL28emqtDt7e1FLUleULlyZSpXrsz333/PmTNnaNCgAUuWLGHGjBm4ubmhVqu5f/++lkNsaGgokZGR4pjKjM6dOzNs2DDRJHbv3j2++eabdNcVGxub7TW5ublx+PBhYmNjtb4qM+rjrLh//z5NmjQRf8fGxhIcHEzbtm21yuVmXki9Rzdu3Mj2etRqNY8ePdJ6Ody7dw94Eznj6enJ/v37iYiIyFNtUG7w8fFh+fLl3L59W0uLff78eXF/XiKTybSe0z179qBWq3Ua+6ampvTs2ZOePXuSnJxM165d+fHHH/nmm2+ws7PD3NwclUqVbV2enp6cP3+elJSUTJ2FdZ33dcXOzg5jY2Od5gTQaBSbNWtGs2bNmDt3Lj/99BPfffcdR48ezfE8kWqSyypkXRfKli0rarJu3bpFcHDwO63i8PDhQ1q3bo29vT179uzJtVapUELkFQpFOgl3wYIF6UKZu3XrxtWrVzOMNnnXr+vUF3tmobS9e/dGJpMxduxYHj16lG3ehMxo27YtKpVKK/QX4LfffkMmk9GmTRtA82KQy+VMmzYtndYi9VpTJfi0156cnMyiRYsyvD5dzGNOTk74+PiwZs0arb64ceMGBw4cSPcSeBeMjIyoVasWmzZt4smTJ1qaoISEBObPn4+npydOTk7iMT169EClUjF9+vR09SmVSrHNOembVCwtLdm/fz/29va0aNFCK7w1P1AoFLRs2ZLt27drmVlCQ0PZuHEjDRs2xMLCAtCMm3PnznHhwgWx3KtXr9JpxFq1aoWFhQU//fRThuHbr169ylEbo6Oj06UIqFy5MnK5XDR7pI6JtzOSz507F4B27dpleQ4rKytatWrF5s2b+euvvzAwMKBz585aZXr06MHZs2czTJgWGRkptrFt27YolUoWL14s7lepVCxYsCD7i03D0qVLtfpv8eLFKJVK8flMJTfzQvXq1fHw8OD3339PN99kNI+lnSsEQWDhwoXo6+vTrFkzQDMvCoKQYaqB/NQ6ZkSnTp3Q19fXes4EQWDJkiW4uLhQv359cXtwcDB37tzJcJzmhoSEBH744QecnJzo3bt3lmXDw8O1fhsYGODt7Y0gCKSkpKBQKOjWrRvbtm3L8MM77XPUrVs3wsLC0s3p8Kb/dZ33dUWhUNCqVSv+++8/njx5Im6/fft2umckI41NqjCaVQqL6OjodPsFQWDGjBkA6XyPcotarWbChAmYmJik8y/VlZCQEFq2bIlcLmf//v3vJKAViiaoffv2rFu3DktLS7y9vTl79iyHDh0SQwFT+eqrr8QEWgMHDqRGjRpERESwY8cOlixZQtWqVXPdBh8fHxQKBbNmzSIqKgpDQ0OaNm2Kvb09gJh3Y8uWLVhZWWU7sWdGhw4daNKkCd999x2BgYFUrVqVAwcOsH37dsaNGyd+JZYpU4bvvvuO6dOn4+vrS9euXTE0NOTixYs4Ozszc+ZM6tevj7W1Nf369WPMmDHIZDLWrVuX4cRXo0YN/v77b8aPH0+tWrUwMzPTSkqVljlz5tCmTRvq1avHoEGDxBB5S0vLTNOW5xZfX19+/vlnLC0tqVy5MqDRYpQvX567d++m+zLw8/Nj2LBhzJw5k4CAAFq2bIm+vj73799ny5YtzJs3j48++ihHfZMWW1tbMadG8+bNOXXqFC4uLnl6zWmZMWOGeL6RI0eip6fHn3/+SVJSErNnzxbLTZgwgXXr1tG6dWvGjh0rhsi7ublx7do1sZyFhQWLFy/m008/pXr16vTq1Qs7OzuePHnC7t27adCgQYaTdWYcOXKE0aNH0717d8qVK4dSqWTdunXiSwKgatWq9OvXj6VLl4pmyAsXLrBmzRo6d+6spVHJjJ49e9KnTx8WLVpEq1at0jkMf/XVV+zYsYP27dvTv39/atSoQVxcHNevX2fr1q0EBgZia2tLhw4daNCgARMnTiQwMBBvb2/++eefHPvHJScn06xZM3r06MHdu3dZtGgRDRs2pGPHjlrlcjMvyOVyFi9eTIcOHfDx8WHAgAE4OTlx586ddFlzjYyM2LdvH/369aNOnTrs3buX3bt38+2334oTfZMmTfj000+ZP38+9+/fp3Xr1qjVak6ePEmTJk20HKvzG1dXV8aNG8ecOXNISUmhVq1a/Pfff5w8eZINGzZomV6++eYb1qxZIybESyX1JZua12rdunWcOnUK0GQQTqVHjx44Ozvj7e1NdHQ0K1eu5NGjR+zevTud783btGzZEkdHRxo0aICDgwO3b99m4cKFtGvXTjz2559/5ujRo9SpU4chQ4bg7e1NREQE/v7+HDp0SBQu+vbty9q1axk/fjwXLlzA19eXuLg4Dh06xMiRI+nUqZPO835OmDp1Kvv27cPX15eRI0eiVCrF3Edp54Rp06Zx4sQJ2rVrh5ubGy9fvmTRokW4urpmma7A39+f3r1707t3b8qUKSP6v50+fZqhQ4dSvXp1rfILFy4kMjKSFy9eALBz506ePXsGaFxeUn0iU1MS+Pj4kJKSwsaNG8X54m1fqHXr1hEUFCQGZZw4cUIcH59++qmoQWvdujWPHj1iwoQJnDp1ShwvoEnF0aJFC907NkexZDqSGnZ68eLFDPe/fv1aGDBggGBrayuYmZkJrVq1Eu7cuZMujF0QBCE8PFwYPXq04OLiIhgYGAiurq5Cv379xDDG3IbIC4IgLFu2TChdurQYYvh2aObmzZsFQBg6dKjO1/52CKogaMKYP//8c8HZ2VnQ19cXypYtK8yZMyfDcNaVK1cK1apVEwwNDQVra2vBz89POHjwoLj/9OnTQt26dQVjY2PB2dlZmDBhghiKnbb9sbGxwscffyxYWVkJgNimjPpLEATh0KFDQoMGDQRjY2PBwsJC6NChg3Dr1i2tMqn9+nboZer9Tg3bzordu3cLgNCmTRut7YMHDxYAYcWKFRket3TpUqFGjRqCsbGxYG5uLlSuXFmYMGGC8OLFixz3TdoQ+VQePHggODk5CV5eXlmGlmZ0rCBoxle7du3SbQeEUaNGaW3z9/cXWrVqJZiZmQkmJiZCkyZNhDNnzqQ79tq1a4Kfn59gZGQkuLi4CNOnTxdWrFiRYV8fPXpUaNWqlWBpaSkYGRkJnp6eQv/+/YVLly6JZXQJkX/06JEwcOBAwdPTUzAyMhJsbGyEJk2aCIcOHdIql5KSIkydOlXw8PAQ9PX1hZIlSwrffPONViqC1P5KGyKfSnR0tGBsbCwAwvr16zNsS0xMjPDNN98IZcqUEQwMDARbW1uhfv36wi+//KIVzh4eHi58+umngoWFhWBpaSl8+umnYqi/riHyx48fF4YOHSpYW1sLZmZmwieffKKVMiItuZkXBEEQTp06JbRo0UIwNzcXTE1NhSpVqmiFQPfr108wNTUVHj58KLRs2VIwMTERHBwchMmTJ6dL36BUKoU5c+YIFSpUEAwMDAQ7OzuhTZs2wuXLl7NsQ2Yh8nPmzElXFh1DlFUqlfDTTz8Jbm5ugoGBgVCxYsUM72lqCoC3xy6ZpFN5e6zOmjVLqFChgmBkZCRYW1sLHTt2FK5cuZJt+wRBk5qhUaNGQokSJQRDQ0PB09NT+Oqrr4SoqCitcqGhocKoUaOEkiVLCvr6+oKjo6PQrFkzYenSpVrl4uPjhe+++04c/46OjsJHH32klfpC13k/ozlCEDJ+Zx0/flyoUaOGYGBgIJQuXVpYsmRJuuf68OHDQqdOnQRnZ2fBwMBAcHZ2Fnr37p1t6PijR4+E7t27C+7u7oKRkZFgYmIi1KhRQ1iyZEmG7yo3N7dM71vae7xq1SqhatWqgqmpqWBubi40a9ZMK41GWlJTkGT0l3YOz2rMZDTfZIXs/xVKZMD27dvp3LkzJ06c0HLWlZCQ+HCR5gUJifcHSQjKgvbt23P79m0ePHiQb3mJJCQkihfSvCAh8f5QKD5BRZ2//vqLa9eusXv3bubNmydNdBISEtK8ICHxHiJpgjJAJpNhZmZGz549WbJkSa5yD0hISLxfSPOChMT7hyQESUhISEhISHyQFEqeIAkJCQkJCQmJwkYSgiQkJCQkJCQ+SIqlUVutVvPixQvMzc0l50QJCQkJCYligiAIxMTE4OzsjFxe+HqYYikEvXjxIt2K3RISEhISEhLFg6dPn2otyFxYFEshKDXN+dOnT8W1liQkJCQkJCSKNtHR0ZQsWTLbpU4KimIpBKWawCwsLCQhSEJCQkJCophRVFxZCt8gJyEhISEhISFRCEhCkISEhISEhMQHiSQESUhISEhISHyQSEKQhISEhISExAeJJARJSEhISEhIfJBIQpCEhISEhITEB0mOhaATJ07QoUMHnJ2dkclk/Pfff1r7BUFg0qRJODk5YWxsTPPmzbl//75WmYiICD755BMsLCywsrJi0KBBxMbGvtOFSEhISEhISEjkhBwLQXFxcVStWpU//vgjw/2zZ89m/vz5LFmyhPPnz2NqakqrVq1ITEwUy3zyySfcvHmTgwcPsmvXLk6cOMHQoUNzfxUSEhISEhISEjlEJgiCkOuDZTL+/fdfOnfuDGi0QM7OznzxxRd8+eWXAERFReHg4MDq1avp1asXt2/fxtvbm4sXL1KzZk0A9u3bR9u2bXn27BnOzs7Znjc6OhpLS0uioqKkZIkSEoWISi1w4XEEL2MSsTc3oraHDQp5/iRBK8hzSRQc0n39sChq7+88zRj9+PFjQkJCaN68ubjN0tKSOnXqcPbsWXr16sXZs2exsrISBSCA5s2bI5fLOX/+PF26dElXb1JSEklJSeLv6OjovGy2hIRELth3I5ipO28RHPVGy+tkacTkDt60ruRUbM8lUXBI91WisMlTx+iQkBAAHBwctLY7ODiI+0JCQrC3t9far6enh42NjVjmbWbOnImlpaX4Jy2eKiFRuOy7EcyI9f5aLy+AkKhERqz3Z9+N4GJ5LomCQ7qvEkWBYhEd9s033xAVFSX+PX36tLCbJCHxwaJSC0zdeYuM7Oip26buvIVKnWtLe6GcS6LgkO6rRFEhT4UgR0dHAEJDQ7W2h4aGivscHR15+fKl1n6lUklERIRY5m0MDQ3FxVLf50VTVWqBsw/D2R7wnLMPw6UJQKJIcuFxRLqv97QIQHBUIhceRxSrc0kUHEX9vkpz8YdDnvoEeXh44OjoyOHDh/Hx8QE0/jvnz59nxIgRANSrV4/IyEguX75MjRo1ADhy5AhqtZo6derkZXOKFZJtXKK48DIm85dXbsoVlXNJFBy63q/boc+p51kin1ujjTQXf1jkWBMUGxtLQEAAAQEBgMYZOiAggCdPniCTyRg3bhwzZsxgx44dXL9+nb59++Ls7CxGkHl5edG6dWuGDBnChQsXOH36NKNHj6ZXr146RYa9j0i2cYnigCAIHHl8hFlnv9OpvL250TufU9c68uJcEgWHrvdr5L4+VFpUia8Pfs3xwOOkqFLytV3SXPzhkWNN0KVLl2jSpIn4e/z48QD069eP1atXM2HCBOLi4hg6dCiRkZE0bNiQffv2YWT0ZtBv2LCB0aNH06xZM+RyOd26dWP+/Pl5cDnFj+xs4zI0tvEW3o5S2GgukUJw3w21oGbH3R3MPDWTC88vgCDHRdYEPaEEmhGqjQxwtNT087tS28MGJ0sjQqISM3xGQPOVnhfneh8oLmM9+/sqoNCLIUVxm5uvlNx8dZPZZ2ZjYWhBS8+WtC3TljZl2+BolrELRW4o7nNxcbn3RY13yhNUWBS1PAPvwtmH4fRedi7bctO62fCRT1VM9E0KoFXvD5JqO/ekqFL468Zf/Hz6Z269ugWAkZ4Rg6sNpnaJIUz6VxOgkHYCSZ1yF/epnmf9m/p1/va5BNSAjLGtTBjfpGmenKs4U9zGemb3Ne0Yqu1pyIGHB9hzfw97H+wlLD5Mq44aTjVoW7Ytbcu2pZZzLRRyRa7bo+tcvGlI3QI30WVHcbr3Re39LQlBhcz2gOeM/Ssg23Kv9GeToHcSD2sPvO28qWhXEW87b7ztvPGy9cLUwDT/G1vMSJ1k3x7g+fGifp9ISElgVcAq5pyZQ2BkIAAWhhaMqjWKcXXHYW+qSXFR2HmC9PRjeCGbj57xDY72O0oN5xp5es7iRHEd6zkZQyq1isvBl9l9bzd7Huzh0otLWvtLGJegdZnWtCvbjpaeLSlhkjNBRde5eF4vHzr5uOSo7vykuN37ovb+loSgQkbXr48Ei595mXIq0/3uVu5awlFFu4p42XlhZmCWl80tNqjUAg1nHck0AiXVZHPq66aSyvj/RCdFs/jiYn479xuhcZoIT3tTez6v+zkjao7A0sgy3TGFmTG6sqsx7Ta14UTQCWxNbDnR/wRedl75cu6iTHEf67kdQ6Gxoex7sI89D/aw/8F+opKixH1ymZy6rnVpW0ajJfJx9EEmy7pOXefiUh7/8kPznjQv3TzbOvOb4njvi9r7WxKCCpnUQZyZbTztII5ICOPmq5vcenWLW69uif//Mu5lBkdqKGVZSksw8rbzxsvOCwvD4t1v2VGcVdsFzcu4l8w7N48/Lv4hvkjcLN34qv5XDKw2EGN943xvQ25fhNFJ0TRb24xLLy7hbO7MqQGn8LD2yPf2FiXex7Ge0/GQokrh7LOz7Lq3h103bhMUEYlK9pok+U2QqXEycxLNZs1LN89w/stuLgYBJWE8NxoEMjWV7Sszvt54elfqjaGeYZ5de04ojve+qL2/8zREXiLnKOQyJnfwZsR6f2RkbBuf3MEbhVyGnakdjU0b09i9sVYdYfFhbwSjlze5Fab5NzQulCdRT3gS9YS9D/ZqHVPSomQ6s5q3nXeGX/vFESm0OnueRD3hlzO/sNx/OQnKBAC8bL2Y2HAivSv1Rl+hXyDteBezmoWhBXs/2Yvfaj9uvbpFi3UtODngJE7mRUf9n9+8b2M9N+NBX6FPfExZTl5qQXyUL3ap2/VjCdNbQnDsMVZcWcGKKyvQk+vhW8qXtmXb0q5sOyrYVkAmk+kwF8uY0dmHK69Hs+LKCq6/vM6A7QP45vA3jK41muE1h+fYBPeuvG/3vjCQNEFFhPzwrwiPD+d22G2NYPTqligcBcdmHubpYu5CRfuKeNtqhKKK9hohycrIKldtKCx0/UIa3DyWiU27oSf/cL4H7oTdYdbpWay/th6lWglALedafOv7LR3Ld0QuK7hE8nnlz/Ai5gUNVzbkceRjKtpV5Hj/4wX+QiosNl2+xDdbQrMvV4S0AZmR2/GQ3XHDm+sRotzH7vu7uR9xX6uMu5W7aDZr4tGEE3ejsp2LXye8Zpn/Muafn8/zmOcAGOsZ09+nP+PqjqNciXK57IGcIWmC3h1JCCpCFJR/xeuE16LmKK1ZLfVhzggnMydROEoVjLztvLExzj40ObfX9S79kZ1qW0CNinCeGw3C3boUX9T7goHVBhb76Lus+uzyi8vMPDWTf27/g/D/Xmnq0ZRvG35LU4+mBe7fkNf+DI9eP6LhyoYExwZT26U2hz49hLmhuc5tKW7hxUq1ktmnZzP12HTs4hajoASyDFK/vd2PRfVaczsecnrc/fD77H2wlz3393As8BhJqjeLcxsqDGni0YQ2ZdrhauSHQrDJso+SVclsubmFX8/+ypWQK/8/n4wO5Tswvu54Grk1ytfnKifuFEXhHkPRe39LQpCESGRiJLdf3dYSjG6+usmz6GeZHuNo5pjOrFbRrqL4FZ5bDVdeaMayC8FtVv0xO4Km8Sr+FQC2JraMqT2GUbVH6STcFTUy6jNHSyM+qiNw8MUcDjw8IG7vVL4T3zT8hjquhZelPT++Ym++vInfaj/CE8Jp7N6YPR/vydanqTiFF6dyPVRjirkcfBkAX/vPeBLUKlOTeqoGpShfq67joYdvMO0qlqWyQ2VsjG10Pu6Xnq5086miJZTEJcdxNPCoGHH2JOqJ1jHlS5QXfYl8S/lm6vsjCALHg47z69lf2XVvl7i9hlMNxtcbT3fv7vlmXtYl1UBh39u0FLX3tyQESWRLdFI0t1/dTueU/faEkRZ7U3vcDTsR+rzj/7e8mXjeVbWdk4c6u0k/NRz8lzO/8DjyMQCm+qYMqT6E8fXGU9KypE7nKWwy6zP+r/N5ZfATyXoX+Ljyx3zd4Gsq2lcs+Ea+RX6FJF96cYmma5oSkxxDh3Id2NZjW6YvoOIWXpyiSuHnUz8z/cR0UtQpWBtZM7/NfD6p/An7b4ZkOdaL+rXmJF1IvN4JAJzNnXEz6MqLZ611Os7Q7Dq1XWpTx6UOtV1qU9ulNnamGg8iQRC49eoWe+7vYff93Zx6cgqVoBKPNzMwo3np5mKiRlcL1wzPczfsLr+d+401V9eQqNTcC1cLV8bUHsOQGkPyxbVg341gJu+4SWj0G61WURFu36aovb8lISgLiqrauKgQkxTD7bDb6cxqgZGBmqzCiStQYIssg6zCIGBurOL3PuZUcqiIvak9MpksX0I+dbmPSrWSrbe2Muv0LAJCAgDQk+vxceWPmVB/QpEQGjIjuz4TUGNsmMSuMdUpU6J0Abcuc3T9gp/QwYCRDVrkqO7jgcdpvaE1icpEelfqzbou69Il0itu4cUBIQEM2D5AHJ+dyndicbvFWk7gmY314nCtuo6H0p47eBx/QMxhZaiqjGPyzGyPCzf6gVjZlXTbPaw8qONah9rOtanjWodqjtUw1jcmKjGKg48Osuf+Hvbc3yOmjUilikMV2pZpS7ty7ajrWjedX2FYfBhLLi1h4YWF4rFmBmYMqjaIsXXG5nkUY3RiLPY/1UchWLOrzwYalXUpEuP2bSQhKA8oiE4symrjok5cchxbAq4y5Z/X2ZYNMfiGJMV1ShiXwNvOG0f9Rly4US/b4zYOqU19T7tsy+UUQRA48PAAs07P4mjgUXF7h3Id+LrB1zQo1SDPz/muFEfnSMiZ31ZX78780uKXHL04dt/bTee/O6NUKxleYziL2i3SMoUUl35LViXz08mf+PHkjyjVSmyMbVjYZiG9KvXS2d+kOFxrTv1bopOiufnyJldDr/P7DhsSk43IaBmX1HH02nw07tZuWBpaolQrCYkN4Wn003Tl9eR6VHGoIgpFtV1qU65EOa6FXhPNZuefnRf96gCsjKxo5dmKtmXb0rpMazGhKECiMpFN1zcx99xcbry8AWjyGHX16sr4uuOpVzL7+U4X4pLjMJupyQsX+01skU2gKwlBeUB+d2JRVxsXB3Kj2gYwUTbCLmVCtsdFG8/Du2Q8VR2q4uPog4+jD5XsK+VpTpuLzy8y6/QsLUfiBiUbMLHhRNqWbVugUVSZEZMUw9h/13EkwC3bskUt0y1k789Q3duf/wKnoBbUGCoM+bL+l0xsOFHnJKB/3/ib3tt6IyDwdYOv+bn5z+K+4pAh2D/YnwHbB3At9BoAXb26sqjtIhzMHHSuQy2o+fHAPlYczX6qL+wxklv/lsyOS/0VafQLUbLjGZ7TytAKGxOND2BYXBjRydHpypgbmFPLpZZoRitjU4arIVfZ82AP+x7sIyIhIk1bZdR0rkm7su1oW7YtNZxrIJfJEQSBg48O8uvZX7X88+q51mN8vfF0qdDlnZb9kISg3CEJQW9RHNTGxQFdvzxTLOfwIvnN5KSrajtVg5QWGTLKlyhPNadqWsJRTl4YGXE37C6/nPmFtdfWkqxKBqCiXUUmNJhQoPl00hIWH8ZPJ39i8aXFCElldeqzwtZoZEZ2WtfrodcZt38cRx4fATR+ILOaz+KTyp/opAlZdnkZQ3cNBWBms5lMbDgRKNrakSRlEtNPTOfnUz+jElTYmtjyR9s/6O7dXWftT2hsKKsCVrH08lJehJsVmzGSH8EULbzteRDxgOsvr3M99DrXX17nxssbPIh4oKXRSUWGDEtDSxRyBVFJUWIqibS4WrhSx6UONZ1rYm5gTlBUEIceHRKjxFKxM7GjTdk2tC3TlpaeLbE2tubGyxvMPTuXDdc3iHOKh5UHY+uMZWC1gTpHNaZFEoJyhyQEvYWuE+PAZjFUKWmEqb4pZgZmmBpo/jUzMMNU3xQTfZNCT6n+ruRniHpaYTI+JZb7Efe5F36PO2H32HikAsnJJmSl2k7N2qoLtsa2VHeqriUclStRLsdfXS9iXjDv3DwWX1pMTHIMoEk6Ob7eeAZXH1wgS5Q8i37GN4e/4a8bf72ZmAU5JZNWIxesyWpV98IS3HUZR8lKNevOBhIUEY+bjQmf1nPHQO+Npk0QBP678x9fHPhCdGCv51qPea3nUculVrZt+OXML3x18CsA/mj7ByNrjSyy4cWXXlyi/3/9ufnqJgA9KvZgYZuFogNvVqRGKS25tIR/bv9DijoFACtDaxwSlpGYZJThcYU9Rt6moNJqxKfEc+vVLVEwShWS3vb/SUUhU6Cv0BcdntMil8mpaFeRivYVMZAb8DzmOReeXxDnitTj65esL0ac2ZnYsejiIhZfWkx4QjgAloaWDK0xlDF1xmTqfJ0RughBRcHPVRKC8oD87MTcmnHeRoYME30TLQEpVWASt+lnsS/NtrS/TQ1MC8QMUxAh6rlVbRuUWMPjxP8y/DrTFQO5ARVsK1DbpTbVnKrh4+hDZfvKOn2BRSZGsuTSEn4/97s4WdoY2zC61mg+q/MZtia2uW5XZtwNu8u4fePY/3C/1pdrOZtyTG86HTNVA0ZtDACKVpisLuMoJ2MtUZnIb2d/48eTPxKXEgfAAJ8B/NTsJxzNHLNsyw9HfmDGyRkArOuyjj5V+mQ51mTICrTfEpWJTD02lTln5qASVNib2rOo7SK6eXfL9tiIhAjWXl3LkktLuBt+V9xex6UOw2sOp0fFHpy4G1WsQqkLk1dxr0RtUVrNUeqYexs5ctSk/ygz1jOmjE0ZDBWGBMcGp8vF5mrhStsybWnm0Yzg2GAWXVrEvfB7gMY3qUfFHoyvO16nxYGzE4KKip+rJATlAUVBE+TivhVB/y6xybHEpcRp/k2Oy/QhyUtM9E0yFJDSaqKyEqYyK5OqGSnIEPXcHqdUK3kS9YR74ffEv9tht7n96naWGbGzw8nMCR9HH+q61qW6U3V8HH1wMXfJUKuXqExk7dW1zDkzhwcRDwDNpDeo2iC+qP8F7lbuuW5HKuefnWf03tHpVsxuWKohs5rNon6p+uK2ojLJpW1PduMIyNVYex79nG8Of8O6a+sAjc/GD41+YEydMVnmchm7bywLLixAIVOwrcc2OlXolGG/yRSRLOrVlDaVC6bfzj87z4DtA7gddhuA3pV6M7/N/CwFakEQOP/8PEsuLeHvm3+L2glTfVP6VOnDsBrDqOZUTeuYojZGihNqQU1gZGA6rdG98HtaofTZkfrxG5EQIWrqAAwUBviW8sXd0p3rr65z4fkFcZ+fmx/j642nfbn2mX4EZyUEFSU/V0kIygMKwicotypytaAmPiWeuOS4dAJSbHJshtvE3ylpymRwfEa267zESM8IM31zTCPngtqKjEwrIGBimMQnze5haWSerYBlqm+KXKZXoBmjE1ISeBDxQBSO7oTd4VroNR6+fqilmta5XxRGlC1RllrOtfB186W6U3W8bL1EXyCVWsU/t/9h1ulZYvI6hUxBr0q9mNBgAlUcqrypLPIpxIdnfjKTEmBVkp33dvLF/i+0UvwrZAq6eXXj5+Y/ZxolVRTU3ant0MW3ThAEQtLkNsmoTFYmmrNPzzJ231guvrgIQBmbMsxtOZf25dpnKLiqBTUDtg9g7dW1GCgM2PPxHpqVbib2W2BEBCP39SFSdYl9ffbQqkyrXF2/riSkJDD52GR+PfsrakGNg6kDS9ovoXOFzpkeE5MUw8brG1lyeYkYLg+akO0RNUfwceWPs1wgubDHSGGfP69JUiZxJ+yOlr/R9ZfXs0wy+zZ6cr10mm1Xc1dMDUx5EPFAFLLK2pTl87qf08+n35vs9v+fU2KTE2i+sj8KwYLf2/5I9VJ2KGQyVMY2NFxyv8j4uUpCUB5QUNFhUHTUxoIgkKBMyFRAylaIymKfWnijxn0Xx+TMUMgUGCgMMFAYYKRnhLGeMcb6xhqNloEp5gbmmBmYYWloiaWR5s/ayBprI2ssDC0yNRkaKAxy3I/h8eGi/9HtV7cJCAngdthtXsS80Poqyw4ZMmyMbahoXxHfkr409WhKNadq+Af78/Ppnzn06JBYtk2ZNnzd4GsaWXkgW1gTlBm/9AGUcj3qGulxOeGluM1E34RhNYYxyW9SsVnDTVeNqi5k56yrFtSsu7qOiYcnEhIbAkArz1b81uo3vOy80pVXqpV039Kd/+78h6m+KYf6HqKua11x/+f7Puf387/TonQLDnx6IN3xecWZp2cYsH2AaP7oU6UP81rPyzRb+dWQqyy5tIT119cTmxwLaD5celbsyfCaw6njUqfI+yF+SJqo1wmvNea0VLPa/4WkqKSoHNelkCmQyWSioGRjbMOImiMYU6Er9itbZzmnqOWGNIyfwwuyNtMXlFO8JATlAVKeoLxDEASSVEmicLTrWghz9oRle1x2PlEFgQwZenI9DBQG6Cv0MVQYikKWib6Jlk+WhaEFFoYWWBpaYmVkhbWRNTbGNtgY22BtbI2JvgkxSTE8j3nOw9cPufTiEtdDr/M48jGvE7PPd5SKvlwfB1MHSlqUJEGZwLWX10Qhs699VdaEPs62jurEckWmxtbElu98v2NUrVGFEoH2LujqW6cLXetG8X2r1tkuZRKTFMOPJ3/kt3O/kaxKRiFTMLr2aKY0npJOeExSJtF+U3sOPTqElZEVx/sfFzV2j18/psyCMqgFNdeGX6OyQ+U8uY5U4lPi+f7I9/x+7ncEBJzMnPiz/Z90KN8hXdmElAQ239zMkstLOPfsjVBZvkR5htccTt+qfYvNEi9FySRTWAiCwLPoZ1paoyshV7gXfi9XPo61ZAZcUGfs7J6Wdkk/clPIOsdWQaVHkISgPEDKGJ1/6PoF/0efslRwVhCfEp/hX1xyHDHJMUQmRhKVFEV0UjQxSTGiBio+JZ6ElAQSlAkkKZNIUiWRokohRZ2SI/t6fqGQKVDIFejL9dGT6aFQKJAhQyWoUKqUJKuSSVGn5MhEWU2Q40/2EWSdLKzo1/o3unh1KfJf9pmRl5qgEP1vURncoplHM7p7d6dzhc5ZrhD/IOIBXxz4gh13dwCaNeFmNJnB4OqDtSIC45LjaLGuBWefncXB1IGTA05StkRZAHps6cGWW1vo79OfVZ1W5cl1AJwMOsnAHQNFH7L+Pv2Z23Iu1sbWWuXuhN3hz0t/svrqaiITIwGNgN3VqyvDaw7Hz82vWI0NKfVI1qSoUrgXfo8bL29wLfQa55+f51roNXFdw8yoJujhT/aLPusiBEmaoGJEUevE94miEDasFtQkKhMzFbCiEqOITIzkdeJrohKjiEr8v5CV/EbISlAmEJ8ST6IykSRlEsmqZJJVySjVSpRqZaEIWroKQQw9Ds4++d6e/ESXcWRuLCM6IfvpR2a9gMDE/eJvhUxBs9LN+MjrI7p4dcnUefjAwwOM2zdOdDau6lCVea3n4efuJ5Z5nfCaJmuacDX0KqUsS3FqwClKWpbk3LNz1FtRD325PkHjgrSWpsgNcclxfHv4WxZcWICAgIu5C0s7LKVt2bZimWRVMv/e/pcll5dwLPCYuN3dyp2h1YcysNrAd855VdDEp8QTFBnEgduB/LYn+5QWhZGnKK/C8Wu4WXM56HWefjTHJMVwNfQqZ5+e5ejjo1x/dZ3gmGBx/qqjKsc5eUi29XRTT+dysmeG+ySfIEkIkniLougTlR+kqFK0hKvopGgiEiIITwgnMuH/QlaSRsiKSY7RaLJSYolP1pRPUCZohCxVEsnKZJLVaYQstSqdluhDEoIg+3E0oIE7K08HZlvPK/3ZCEYXcbN0Izo5mhcxL8R9CpmCJh5N6O7dnS4VuqTLpZOiSmHxpcVMPjZZ1Kh09+7OnBZzcLPSZNkOjQ3Fd5Uv9yPuU75EeU4MOIG9qT0NVjbgzNMzfOf7HTOazshtN3A88DgDdwzk0etHAAyqNohfW/6KpZEloDG/Lb28lJUBK3kZp/EFk8vktC/XnuE1htPSs+U7ZRLOT+KS4wiKCiIwMlD8S/s79Xp0zQRf0Bmr8zJ6VS4DdZqBnrYetaAmOima1wmviUiI4HXia/H/IxIiCI0L5UXMC4Jjg3kZ+5KIxAjikuNIUiVp+Wy+TX1lTU4r7mV7nUu9VjHziiZqsrDn9KL2/paEIIkM+VB8ovKaZ9HPOBZ4jOOBxzkWdEw0e8CHJwRB1uPI0thAJ5NZRk745gbm6Cv0tZYrkMvkNHZvTHfv7nT16qq1flNYfBiTjk7iz8t/ohbUGOkZMaH+BL5u+DUm+iY8iXpCw5UNeRr9FB9HH472O8rhR4f5aMtH2Bjb8PTzp2+icXQkNjmWiYcm8sfFPwBNYs1lHZbRqkwrlGolu+/tZsnlJex/8Cb3k5OZE0OqD2Fw9cGUtCyZo/PlBzFJMVpCTVBkEIFRbwSesPjs/QfNDcwpadSUuNAh2ZYtSE1QTn2UBEEgLiWO/wIC+f6foAxqFNCOqNXUHGvyO685mqUwk1t01QRda7uDFyblisScXtTe35IQJJEpH6JPVE55EvVEI/AEHuN40HEevn6YadkPUQiC7Fc2z8xkBmBqlIxL6T85+fR4hll6UzHSM9LaL5fJ8XPz4yPvj+jq1VVMpHg15Cpj943leJBmqRZXC1fmtJhDz4o9uR9xn4YrG/Iq/hUNSjZg7yd7qbqkKo8jH7Oo7SJG1Bqh8zUfeXyEQTsGiSudD60+lDkt5xCTFMOKKytY5r9MK4S6pWdLhtcYTvty7XV2gs+L5zM6KfqNcJOqzYl6I/CkZjHOCisjK9yt3HGzdMPdyl3rz83SDSsjK9QChW5mT0t2PkogoKcfi53bAl4nhouamxSVCpfEFSiwRZZhCpG3a8l5hnsAQ4Uh5obmlDAugYu5C6WtS1PGRuOsf+bpGfY/3E+KOkVnnyDVkGMoXKoViTm9qL2/JSFIQiIHBEUGiQLPscBj4hIOmSFDJn7l6yoEzfBqyRdd1+bpYrBFFV1NrymqFPyD/TkWeIxDjw9x6smpTIWitH2eip+bn6ghcjRzZNvtbXx54EuCojRf9A1LNWRe63kabdLqxkQlRdHKsxUtPVvyxYEvKGtTljuj72SbrT0mKYYJByew5PISANws3VjaYSkASy4tYcfdHaI/h62JLQN9BjK0xlA8bTL218gMXTW1kYmR2gLOW+YqXSIfbYxtMhVw3KzcdE7bUJTM7Lo67r+thdQ1hUhm9RgqDLE0ssTOxA4nMyfcrNwoY1OGCiUqUNqmNC7mLtgY22g5vcckxbD+2noWXVokrkIPUNe1Lt+X6UC7o7Oyb0AR+rAqau9vSQiSkMgEQRAIjAzUEnpSX5qpyGVyrAytiEyKFNXdcuTYmtqK/hCpWoqSgox7mJNVQGsCAuWJxdqxMps/2kx52/L5dXlFhtyYXpVqJf7B/hwPPM6+h/s48+QMiarMNUVp8S3lS3fv7rQt25ZNNzYx89RM4lPikSFjULVBdK7QmR5bexCfEk+n8p04HnScyMRItvfaTsfyHTOt9+DDgwzeOZgnUU8AzXIeHlYerL66WvQHAmjk1ojhNYbT1atrptmtsyIzM06qaOHufohIjhEYGahTTpoSxiXSCTfi/1u5ZZl4MTdtLwomGV1TOHzqq6R5RSusjTV5y87eT2HC1ts5Pt937Z3pU6dCjj5sbry8weKLi1l7ba2YF8pYz5hPKn/CiFojqO5UHSKfopzvg15W4fV6hjD6MlgVvnkVit77WxKCJCT+jyAIPI58zLHAY6Lgk/pCS0UhU+Bt542RnhEPIh5ofUlXtKuIvak9p56cIkWdgr5cn9LWpcW1nLztvPHSN+fR84t8WvlT1l3XLPnQ1L0JM5v/zPdHvmfTowM8lWkeSVN9U5a0X0KfKn0KqAcKj3dV0yvVSgJCAjj86Cj/XL3K3ZchJAovSZLfzNIMUc+1Hq08WxEQGsB/d/4DwMLQgl6VerE6YDXJqmRalPAiLOwu1Z2qs7zDsnR1RCsM+PLC7yzz1+xzMnPCy9aLk09Oigk4LQ0t6Ve1H8NqDsPbzlunaxIEgYiECC3tzePXgew724CUFFN0XWDYzsROFGjcLd/S5li5FcjCv2kpCiYZXTVBb/so5Tb1g66+TqkRgosuLeJE0Js8bOVKlGNkzZH08+mnpXkLjQ2l2YJyGCTFAnJMKcdk3znYm5tS0cUChUwmZqEvKhS197ckBEl8sAiCwMPXD7U0PW+nuteT61HLuRa1XWqTpEzi7LOzXA29Ku63NbHl40ofY2tqy6KLi8SMxa09W5OkSuJo4FFAE569oesGKi2uhFwm59LgS1Rfplk7y8PKg0djH6FUK/nkn0/YfHOzlklngM8AFrZdmGPH3A+NjLQMpkbJ6Ftt507sXySpMs+qC+Bp7UmiMlFc5NLZzBn92FBuCyYYZ+H/kQiUI4anMgFrI2stwbi2S22G1xhOz0o9090/QRAIiw9LF12V9u/ttQh1Ncd83lZGCy+NViej1cQ/dHKbCkQXPzZd6nmbp1FPWXp5Kcv8l4mLMitkCjpV6MTImiNp6tE0w7xQA7cPZFXAKlwtXHkW/YzmpZtz8NODOrSs8Chq72+9wm6AhERBIQgC9yPui5FbxwKPaYVbgyYhXW2X2vi5+dGgVANikmL46+ZfLLq4SPyq15fr075ce/r79MfexJ7PD3wuZvP1tPZkbqu5/HHhD1EAquFUg3ODz/H1wa8BaFu2LS4Wb8KAH0c+5nXCa6yNrdnQdQNymZy/bvyFXCZHLahZFbCK88/Ps/mjzVS0r1gQXVXsyMxEFJ9oACHd+efjH3Gye8mue7vYfnc7119eJ1mVrFU2rVO7DBkvYl9QTZBnKQABGAF2yHmKiteJrzHVN+Xjyh8zrMYwSlqWJDAykF33dvHo9SPuht3lwesHPIl6QkhsSLo2ZIdCsM6+EOBuURVvu4ILNS9uKOQyJnfwZsR6f2Rk7KM0uYN3OsElq+PeJqt6QJMP7fCjwyy6tIgdd3eI5vTUCMEhNYbgauGaaf1nn55lVYAmkaebpRvPop/RonSLLK9bIj2SJkjivUUQBO6F39OYt4I0YetvrzCvL9enjmsdGrs1prF7Y+q61uVe+D1WB6xm442NWiHANZxq0K9qP3pX7o1aUPPt4W9ZeWUlAgKm+qZ83+h7Pqv9Ge03tudY0DEA6rjU4dTAUyjVSlzmuhCREMHO3jup7Vwbh1/fJL470OcALTw1E5hSraTvv33ZdGMTCpkCc0NzIhMjMdYz5o+2f9Dfp3+xyhac3+iSjdjBwpAD4+uKLyO1oOZG6A223t7K/of7uRt+N8NlC3R1Zq9OLIHGltib2qMW1IQnhBOVGPVOSTn1ZHo4mjniZO6Eo5kjDqYOkFyOg5eyN6cVRtLB4khB5QlKy+uE16wOWM3iS4u1Fkhu4t6EkbVG0ql8p2wjBFVqFbWX18Y/2J9+Vfux7fY2YpNj8R/qTzWnarpefqFQ1N7fkiZI4r1BEATuhN3RMm+lqpZTMVAYUNe1Lo3dGuPn7kdd17qY6JsQGhvKhusb+Hz/51x/+SYaxNHMkT6V+9DPpx+V7CuRokrhj4t/MPnYZKKTogHNwpezms/CzsQOv9V+nH12FoAGJRtwvP9xFHIFf934i4iECEpalKRNmTa8jA3DUFUZhWCNSvaa888vikKQnlyPtV3WIpPJ2Hh9IzFJMVSxr8K10BuM+Pc3/r70kAmNhuNX1kVKWQBceByRRaiz5ms9JDoJ+5/q67zob254nfhap2grc30LbPXqYmXghrOVGV7O+jibO+JopvlzMHPA0cwRayPrdMKuSi3Q8H72ZpzaHsVjPbHCpnUlJ1p4O+bYRymj47LLGH35xWUWXVzEphubSFAmABr/s35V+zG85nCdfcUAlvkvwz/YH0tDS7p5dWPN1TXYmthS1bFq7jriA0YSgiSKLYIgcOvVLVHgOR50XIzISsVQYUi9kvXwc/OjsXtj6rjUESM0kpRJ7Ly3k9UBq9n3YJ/41W6oMKRThU70r9qfFp4t0JNrHpODDw8ydt9YcRmG6k7Vmd96Pg1KNSBRmUi9FfW4HHwZ0IRkH+57WMz0++flPwEYXH0wB2+9ZNL261q+HWsOxlLTJlj8atST67G281rkMjnrr63nYbA5ZYVNJKeYcuchDHx4lRJmN/ixc9UPPnnlyxjdosJ0NSXlBhkyjPSMsDKywsXcBTdLNzytPSlvWx4XCxdRwLn8SMWM3XcIjkgkAogIgfBg3aOjcmvGkcgchVyWK61ZRse9/Tt1AdxFlxZx4fkFcXsVhyqMqjWKjyt/nGPH9LD4ML49/C0A05tM59KLSwA082iWbQoHifRIQpBEsUEtqLn16pYYvXUi6ES6BQaN9Iyo51qPxu6N8XPzo45rHYz03gSlC4LAhecXWBOwhk03Nml9udd1rUv/qv3pUbGH1oKWj14/4osDX4jRQ7YmtvzU9CcGVhuIQq4gLjmOeivqiRqkZh7N2N9nvygA3Xx5k1NPTqGQKfA07pah70pyiikj1vtr5UpRyBWs7rSa8AhXbt5vQBLa8UBhsSkMX3+ZxZ/UoE3lD1cQsjfPfhVtgF19NlDbI2NBSBAEHr1+xOHHhzkSeITjgceJSY7RuQ0CAonKREJiQ3gZ95K4lDgM9AywMbERhaCAQIHRGwPS3fuQqMR09z4rWldyYnGf6unMMY5SRvciw4OIByy5tIRVAavErOYGCgO6e3dnZK2R1HOtl2uT9reHv+V14muqOFRhRK0R+K3WrIUn+QPlDkkIksh3chsSqxbU3Hh5Q9TyHA88ni6DrbGeMfVL1heFntoutTPMvfI8+jnrr61n9dXV3Am7I253tXDl0yqf0q9qv3Q5eeKS4/j51M/MOTOHJFUSCpmCUbVGMaXxFFFIik6Kpvay2mIYfGvP1uz6eJfWWk9LL2uS5bUv15GFh0MyMWPIEICpO2/RwtsxTf/IiQhthoxE3g6JliFHQM3YLSepW6YV1saW2fbp+0htDxucLI2yNRE1est8GJEQwZHHRzj48CAHHh0Qszvnhn5V+2EX95yAkABexr3kTtgd7oTd4a8bf2kKCHJKJq9GjjVv38fUxRbS3/vMya0ZRyJ36DKHqdQqdt/fzaKLi9j/8M2Cv26WbgyvOZyB1QZqLeWSGy4+v8hy/+UA/NH2D+KS4zj/7DwAzUs3f6e6P1QkIUgiX8mJ46FaUHMt9JoYvXUi6ITW2lAAJvomNCjZQDRv1XKphYHCIMNzJ6Qk8N+d/1h9dTWHHh0Soy+M9Yzp6tWV/j79aeLeJN3ilIIgsPnmZr48+KUYMt/UoynzW8/Xis6KSIig1tJaPIrUJMJrV7Yd23tt16ovISWBtdfWAtDEeQi/BWRtugmOSuTC4whRrX7hcQQh0W/rgN4gQ05ysik1/+jF1k9+KvJOkfmBriYilZDCqcCzHHx0kIOPDnLpxSWt9ZwyyjStK2PrjGHs/zPyhsSGEBASQEBIAFdDrxIQEkBgqD5ydeZ+OgLp73125NaMI5EzspvDXsa9ZIX/CpZcXiLmFZMho3WZ1oysNZI2ZdrkyQK4akHN6L2jERDoU6UPDUs1ZPud7agEFWVtyooLAkvkDEkIksg3MgtbTlX///GxD052L8XorZNBJ9M5lprqm9KgVAPRkbmmc81MhR7QCDBnnp5hzdU1/H3zb9F5GTSZgvtV7Uf3it0zzYJ7NeQqY/aNEROVuVm6MbfVXLpU6KKlvn4Z95KaS2vyNPopAJ3Kd+Kfnv+ks8lvvrmZyMRITWI688rAVbIjrY+Lrv4uIVHx1F1Rl7kt5zKy1sgPLnosMxORrbmCOl7PWHhtCB/tOJYu746LuQvJqmRexb9KJwDZGNnwXaMfUB6chp46iygvPUNNQrr/42jmSOsyrWldprW4bfOlRzplGtb1fksUDFnNYcPX+1Pe8wRHQ34T02fYGNswqNoghtUYluOlULJj5ZWVXHh+AXMDc2Y3nw3AwUeanECSKSz3SEKQRL6gUgtM3Xkrw+9q4f//Hb7pEE8NB2pl9DUzMKNhqYai0FPDqYZOC0oGRQax7to61lxdo7Vyu7uVO32r9KVv1b5ZTkrh8eFMOjqJJZeXiKuMf9PwG76q/1W6VPfPo59Ta1ktMdy+m1c3NnffnKFTYqpD9JDqQ3Cw0C1lflofF139XeqW8uLIixOM3juao4FHWd5xuc5rOr0vtK7khI+bghXnj3E66AbXX53iUuJxLl1/M77sTe1pULIBarWaU09PiYkRDRQG6Mn1iE+JB6Bv1b782vJX9OX6VDs2Ff2kWGY0mU7bsm3Tn1iHjLwlrXUzVep6vyXyn+zmMAE1Nx96kWKkoo5rHUbWGkl37+75suZfREIEEw9NBGBq46k4mWu06IceHQIkU9i7IAlBEvlCdmHLIEMu2GKtqEk9T1vRvFXdqboYjZWdHT4uOY5tt7ex5uoajjw+Im431Tele8Xu9K/aH1833ywjJlRqFUsvL+X7o9+Lprfu3t2Z02JOhurlwMhAai+rLTpk9/DuwaaPNmV4juuh1zn77Cx6cj0GVhuInUnWvisCapwtTbTCm3X1d9k/cBELLpTn60Nfs+32NvyD/fn7o7+p5VIr02t/H0hUJnL6yWkOPDzAwUcHuRJyRWu/kb4RvqV8aVG6Ba4Wruy5v4e/b/4tfrk7mjliY2zDrVe3SFYlU8amDEvaLaFZ6WYATD46mRvJkXjbe9PK92vIpVlD1/sohbYXHbKbw2TI0cOO1W1P0q92/Xxtyw9HfiA8IZyKdhUZXXs0oMkyfTf8LnKZnCYeTfL1/O8zkhAkkS/oqtZf0X4rXaql/4rOzA7/Q3svTMzvsebqGrbc3CKaN2TIaOLRhP5V+9PVq6tOSwUcDzzOmH1juBZ6DYDK9pWZ32Y+jd0bZ1j+Xvg96i6vK5rsPq70Meu6rstUyErVAnUq3wlHM0eATH1XBNSAjOFNbLUEPV39XfQUcj6v9zkNSjWg59aePI58TIOVDZjdYjZj64x9b8xjgiBw/eV10Zn5RNCJdKvJ+zj60KJ0C1qUbkFd17rsf7if38/9zumnp8UydV3rUqFEBbbe2kpIbAh6cj0m1J/A942+F7/kw+LD+O3cbwBMazztnfw6pND24oeuc5iVQf764lwJvsKSy0sAWNh2oagZTzWF1Xap/cFpffMSSQiSyBd0Ves7WqRfDyszO3xwVAIjN/jz0uAnEhSahIRlbMrQr2o/Pq3yqc6OgU+jnvLVwa/4++bfAFgbWTO9yXSG1RwmaqHe5sbLGzRY0YDoZI2PUd8qfVnVeVWmAlBcchzrrmkWSB1WY5i4PdV3ZfKOm4RGv1nLSqGIIUSxEBPzzwHthGc5CYmu7VKbK8OuMGjHIP65/Q+f7/+co4FHWdVpFTbGxVPLEBwTLDozH3x4MF0CTGdzZ1qUbkFLz5Y082iGg5kDEQkRLPdfrrWqu55cjx4Ve9C2TFvmX5jP6qurAc0iqks7LKWSfSWteuecnkNMcgzVHKvRxavLO1+HFNpevNB1DstPE6ZaUDNqzyjUgppelXppfaClmsIkf6B3QxKCJPKF3Kr/s7LDgwwBNbYpw2hVsxIDqvXPUb6NRGUiv5z5hZ9O/kSCMgEZMobVGMb0ptOxNbHN9Dj/YH8arWokap0G+AxgRccVWZ431Sm7tHVp0bSSSutKTtQvY479T/VRCNbs6rOBv+/9yJ/+Z7n4oiHdK3ZPV19OQqKtjKzY2n0riy4uYvyB8ey4u4Nqf1bjr25/Ua9kPZ36Ki/JaYqE+JR4TgSdEE1cN17e0Npvom9CY/fGouDjZesl3ovbr24z5dgU1l5bK/r32JrYMrzGcPr79GeZ/zL6/dcPlaDCwtCCn5v9zLCaw9IJsyGxISy4sADQJKTLqyR0Umh7eorCqvIZURRMmOuuruPss7OY6psyp8UccbtaUEv+QHmEJARJ5Au5Vf/rYoeXCbYMrDiTeiV1Cw8WBIHtd7czfv94Hkc+BqBhqYbMbz0/25Dys0/P0mxtMzHN/aBqg1jWYVm2gleqKWxo9aEZvkAVcpm4hENtD2sex9fiT/8lXHxxMdM6cxISLZPJGFV7FPVK1qPHlh48fP2QRqsb8VPTn/ii/hcFlllWlxQJakHNleArHHx0kAMPD3D66WmthUVlyKjpXFNj4vJsQT3Xelq5oNSCmn339/H7+d858PCAuL2KQxXG1hnLx5U/5kTQCVqsayHe/25e3ZjfZj7O5s4ZtnvmyZkkKBOo61o3Y2fod0AKbX9DbtfuKggK24QZmRjJhEMTAJjkN0lrMdVrodd4Ff8KU31T6rrWzZfzfyhIQpBEvpEb9b+udnhdy916dYux+8aKX00u5i7MaTGHXpV6ZSvIHH18lNYbWosv5GE1hrG43eJsjwsICeDC8wvoy/UZUG2ATu2s5axxYL784jJqQZ1nQkp1p+r4D/Nn6M6h/H3zbyYcmsCxoGOs6bwmS+1XXpBdePFH9V/zLHkXhx4dSpcE083STdT0NPVoSgmT9EJDbHIsawLWMP/CfO6F3wM0AlOnCp0YW2csfm5+vIp/xeAdg9lwfQOgSY75R9s/6Fi+Y6btfhr1VPTBmNFkxnvjT1XUyC6Fhq4ZtPOTwjRhTj46mZdxL6lgW4Fxdcdp7Uudzxq7N84yZYhE9khCkES+klP1f17Z4SMTI5l6bCoLLixAJagwUBjwVf2vmNhwok5r9ey9v5eOf3UUVxYfWWskC9ss1OmF+OcljRaoi1cXnTPEetl5YaJvQkxyDHfD7uJl56XTcbpgYWjBpm6baOrRlDF7x7Dn/h58lviwqdsmfN188+w8adElvPivM0qeG20BmRpzA3OaejQVBZ8yNmUy7evAyEAWXljIcv/lRCVFidc4qNogRtceTWnr0giCwKqAVXx18CsiEiKQIWNMnTFMbzIdc0PzLNs+48QMklXJNHZvTFOPpu/YExIZkd34yGkG7fykMEyY10KvsfDiQgDmt56fTtBJdYqWTGHvjiQESeQ7OVH/v6sdXi2oWXVlFd8c/kYMY+9UvhO/tvxV5+Rl/9z+h+5buovZhEfXHs381vN1EoBik2NFrUNah+js0JPrUd2pOqeenOLii4t5KgSBxjw2tMZQ6rrWpfuW7twLv0eTNU2Y1mQaExtOzHPzmK7hxUMrz6ZvrbrUdqmdZT4oQRA4EXSCeefnsf3udvHelLEpw5jaY+jv018Ubu6G3WX47uEcCzwGQFWHqizrsEyndAEPIx6yMmAlIGmB8pPsxkduMmjnJwVpwhQEgdF7RqMW1HTz6kYLT23H50RlopjMVXKKfnekJWclihSpdnhIv1BEdnb4s0/PUmd5HQbvHMyr+FeUL1GefZ/s479e/+ksAG28vpGPNn8kvmTH1hmrswAEsOn6JmKSYyhrU5Ym7jnL3VHTqSagWR8ov6jiUIXLQy/Tp0ofVIKK7458R+v1rXkZ9zJPz6OrubKtZy8alGqQqQCUqExkdcBqqi+tTuM1jfn3zr+oBTXNSzdnV+9d3B19l8/qfIa5oTlJyiSmHZ9GlSVVOBZ4DGM9Y+a0mMOloZd0zpc09fhUlGolbcq0oUGpBrperkQOyWuz9/vExusbOfnkJCb6JsxtNTfd/tNPTpOoTMTZ3BlvO+9CaOH7haQJkihy5NQOHxwTzMTDE1l7VbNGl7mBOVMaT2F07dE5spcv91/OkJ1DxN+f1/2cX1v+miNtgOgQXWNojrUIqS/qS8GXcnRcTjEzMGNt57U0cW/C6D2jOfjoIFWXVGVj1415lnTtXc2awTHBLL60mCWXlogaPSM9I/pW6cuYOmO01nADOPXkFEN3DuV2mGZpitZlWrOo7SI8rD10bvOtV7dYf209oIkIk8g/ikL4eVEkOimaLw9+CcB3vt9RyrJUujJpo8IkTeW7IwlBEkUSXezwScok5p2fx/QT04lNjgVgoM9Afmr2Ew5mDlnW/3ZY7vlXG/h8/1hx/5f1vmR2i9k5mmQuv7jM5eDLGCgM6O/TP2cXzBvn6ICQAFJUKTotF5JbZDIZA6sNpI5LHXps7cGtV7dovq45kxpN4vtG3wPyd/KByK1Z89KLS8w7P4+/b7zJ6uxq4cqoWqMYUn1IOgfp1wmvmXhoIkv9lwKaZTF+b/W7To7vbzPl2BQEBLpU6EIN5xo5OlYiZ2Q3PgTUGOjHU9k175egKGqknYu23V1FSMxLypQowxf1vsiwvOgP5CH5A+UFkhAkUWTJyg6/5/4exu0bx/2I+wDUcanD/Dbzqe1SO9t6MwrLVWKBsUE9EhRn+ar+V8xqPivHL9FULVA3r265irwqY1MGKyMrIhMjufHyRoGsCF/RviIXBl/gs72fsSpgFVOOT2HPjRcIUd14GZMilstp2HJOwouVaiX/3v6XeefnaWV1rudaj3F1x9GlQpd0AqEgCGy+uZmx+8aKyRMHVRvE7Bazc5UUMiAkgC23tiBDxtTGU3N8vETOyGp8pLpGP5fNo/WGBezovaPYJvrMjvRzUTVcWMGACvZaaSBSCY8Pxz/YH5CcovMKySdIolhxP/w+7Te2p93GdtyPuI+DqQOrO63mzKAzOgtAI9b7p3PKVFACu+Rv+bjs7FwJQNFJ0Wy8vhHImUN0WmQyTT4cIMt8QXmNqYEpKzutZG3ntVjThJBnHQiNSdYqkxq2vO9GsM71ppo1HS21TRqOlkYs7lOd2p6GzDo1i9LzStNjaw9OPz2NnlyPTyp/woXBFzgz6Aw9KvZIJwAFRQbRflN7em3rRWhcKOVLlOd4/+Ms77g81y/LSUcnAdCrUi8qO1TOVR0SOSOz8eFkacyYVsYYmt7m9NPTNFzZUMz6/T6R2Vykhy3LDgsZPmtHHh9BQKCSfSVxEVWJd0PSBEkUC2KSYvjx5I/MPTuXFHUKenI9xtUZxw9+P2BhaKFTHVmF5cqQAwKPgqqjFkChowyUqsreeHUXysTSlLdX0sitkc7X9Ta1nGtx6NEhLj6/yNAaQ3NdT274uHIf5u20Iwwlb7ul6xq2/LaZsYW3YzqzpplZCH9cnErX7WvFJJSpWZ1H1BqRaQJDpVrJ/PPz+eHoD8SnxGOgMOCbht/wTcNvMvxq1pXzz86z895OFDIFUxpPyXU9EjknK7N364qnaL2hNbfDblNvRT32frKXKg5VCrvJOSKzbNjZZcYH7WcttZ61529hqKpMM/dmGR4pkXMkIUiiSCMIAhuub2DCwQkEx2q+jFqXac1vrX6jgm2FHNWly8r2OQnL1VZl2+LITPTCUth/MyTXSdRS/YIKUhOUyoXHEYTFqkgfl6chu7DlrLL/tqzowL4H+5h85nfRpwE04etj64yld+XeGOll7gR7+cVlhu4aKpoCfEv58mf7P/MklcAPR38AoF/VfpQrUe6d65PIGZmZvSvaV+TMwDO02dCGm69u4rvKl+29tme6wHFRI6vnwdLYQOcUAVEJyWnqqYkjNTl2CfaVDC70ZJLvA5IQJFFkufziMp/t/YyzzzSLpXpae/J7699pV7ZdrqIi8jIsN7Nst3GJ+u+U7TbVHHbj5Q3iU+Ix0U+/wGx+8S79k3V26MvolVjNw/htQPqszlndy9jkWCYdncS88/NQC2qsjKyY02IOA6sNzJPcRscDj3Pw0UH05fr84PfDO9cnkbeUtCzJyQEn6fRXJ04+OUmr9a1Y23ktPSv1LOymZUl22bAHNnDXqZ5Dt0JYeTowXT1RcRSZrNrFHcknSKLI8TLuJUN2DKHWslri4oEzm83k5sibtC/XPtdhoXkVlptdtlvQqLJV6oyV3VnhauGKg6kDKkHF1ZCrOT7+Xcht/2SfHVogMbw9FgaWfF73cx6MecC/Pf+lsXvjLO/l7nu7qbioIr+d+01cRfv2qNsMrj44TwQgQRD4/uj3AAypPgR3K/d3rlMi77E2tubApwfo5tWNZFUyvbb14vdzvxd2szJFl/nh34DnOtX1b8DzfJlnJN4gCUFZoFILnH0YzvaA55x9GC4Ntjwko75NUaUw79w8yi0ox/IryxEQ+KTyJ9wdfZeJDSe+k98HaMJyTY2SEVBnuF+GRl2d3arQOcl2m1NkMpmYL6igTWKpYcuZiSWZ9Y+u2aH/7XKdua3mUtq6dJbtCI4JpseWHrTf1J4nUU9ws3Rjz8d72NRtE45mjjm8qsw58PAAp56cwkjPiO8afZdn9UrkPUZ6Rvz90d+MrjUagM/3f85XB74Sk5oWJXSZHyLiUrAxNcjyWSthakBEXEomJd5tnpF4g2QOy4SivLpxcSejvrU2hXjjtdyL2wxANcdqLGizIE+z9s4+/TOP1Tux41veuPpqyMmq0Pmd7baWcy123dtV4EJQblfN1vU6YxKz/uZSC2qWXV7G14e+JiopCoVMwed1P2dK4ymYGpjqfiE6kFYLNLLmyEydsSWKDgq5gvlt5uNi4cI3h7/hl7O/EBwbzMpOK4vUIqK6Pg+dfZxZdTow02etk48zK08H5tn5JDJG0gRlQGahi7kJE5bQJrO+jYhTkxj2KQ6KVixtv5SLQy7mqQD044kf+fbItyQoztK82mOcLLWTsKWGbesi4OZ3tlvROTofl8/IjOzC2jPqn7zoj5svb9JoVSOG7x5OVFIUNZxqcHHIRea0nJPnAhDAjrs7uPTiEqb6pnzd8Os8r18if5DJZExsOJE1ndegJ9djw/UNtNvYjuik6MJumoiuz0MLb8csn7UW3rppPT+0rNp5jaQJeovitLpxcUOXEHU3+RcMrNb8nfr27bDUg88WM/mYxul1RpMZfNfos0xDV3XhXRd5zY5Uc9jd8LtEJUZhaWSZq3pyS05XzX6X/khUJvLjiR+ZdXoWKeoUTPVN+bHpj4yuPRqFXJG3F/Z/1IJajAgbW2cs9qb2+XIeifyjb9W+OJg60G1zNw49OoTfaj/2frI3T82luSUnz4NCLsv0WVOphXydZyQ05LkmSKVS8cMPP+Dh4YGxsTGenp5Mnz4dQXhzGwVBYNKkSTg5OWFsbEzz5s25f/9+XjclV+Snv8eHji4h6qHRye/Ut/tuBNNw1hF6LzvH2L8C6L3sHEv3umKsqsdPTX8SfT9Sw3I7+bhQz7NEjoSud1nkVRdsTWxFJ93LwZdzVce7kpP+yW1/HH18lCqLqzDj5AxS1Cm0L9eeW6NuMbbu2HwTgAC23NzC9ZfXsTS05Mv6X+bbeSTyl1ZlWnGs/zHsTe0JCAmg3op63Au/V9jNEp8HTVCAts9SRs9DZs9afs8zEhryXAiaNWsWixcvZuHChdy+fZtZs2Yxe/ZsFixYIJaZPXs28+fPZ8mSJZw/fx5TU1NatWpFYmLh2zal1Y3zj/zu26yyQdsnf0s16/65qjcjcmM2ygmpJrFLL/J3MdW8Iif9ER4fzsDtA2m6tin3I+7jZObElu5b2NFrR4YLRuYlSrWSyccmA/Bl/S+xNrbO1/NJ5C81nWtyZuAZPK09CYwMpP6K+px7dq6wm0XrSk70aBCFinCt7TmdH/J7npHIB3PYmTNn6NSpE+3atQPA3d2dTZs2ceHCBUCjBfr999/5/vvv6dSpEwBr167FwcGB//77j169euV1k3JEfvh7vIvp5X0iP31psjO15YcZM6dmo5xQ07kmW25u4/Ddp5Q3fV4sxk12/ZGa+PLz/Z8TFh8GwIiaI5jZbGaBmfzWX1vP3fC7lDAuwdg6Y7M/QKLI42njyZlBZ2i3sR2XXlyi6ZqmbO6+mfbl2hdqux4l/MNzo38ZWnkWbT17Z/oMZ/d+yM95RiIfhKD69euzdOlS7t27R7ly5bh69SqnTp1i7ty5ADx+/JiQkBCaN3+z+JulpSV16tTh7NmzGQpBSUlJJCUlib+jo/PPCS6v/T2kKLM35KcvTU7MmLpkg9aVrBZ5fRdkidVwSVzB3Xt2jL0XABSPcZNZfzyMeMiI3SPEbNEV7SqytMNS6pesX2BtS1YlM/W4ZnHUiQ0nYm5oXmDnlshf7E3tOdrvKD229GDvg710+qsTf7b/k8HVBxdKe5JVyex/uB9kaobUa0xNZ5cMy+n6fsiveUYiH8xhEydOpFevXlSoUAF9fX2qVavGuHHj+OSTTwAICQkBwMHBQes4BwcHcd/bzJw5E0tLS/GvZMmSed1skazssKmBjLraYaUoM23y08b9Ppkx990IZtHBZBRor0RfHMdNiiqFWadmUWlxJQ4+OoihwpAZTWbgP8y/QAUggJVXVhIYGYijmSMja40s0HNL5D9mBmZs77Wd/j79UQtqhuwcwrTj07T8UQuK44HHiU2OxdHMkepO1TMsI70figZ5LgRt3ryZDRs2sHHjRvz9/VmzZg2//PILa9asyXWd33zzDVFRUeLf06dP87DF6cnMDqskjNEtjXT6Es/PrMLFmfyyced32HpBkXbcyDJYxBSKz7g5/+w8NZfVZOLhiSQqE2ni3oTrI67zXaPvCjyvS0JKAtNPTAfgO9/vCnQ5EomCQ1+hz8qOK/nOVxMAMfnYZIbtGoZSrSzQduy6twuAdmXbZZjdXHo/FB3y3Bz21VdfidoggMqVKxMUFMTMmTPp168fjo6aEMbQ0FCcnN688EJDQ/Hx8cmwTkNDQwwN3y1bcE552w677sZCtj2YTUDUx0D2K/gWlnmmOJAfNu78DlsvKIrbuMnInyEuJYbvDn/HHxf/QECghHEJfm35K32r9s31kifvyp+X/+RFzAtKWZZiSPUhhdIGiYJBJpMxo+kMnM2dGb1nNMv8lxEaF8qmbpsKRPgVBIGd93YC0KFch3T7VWqB1acfF6vn/H0mz4Wg+Ph45HJtyVehUKBWa0IFPTw8cHR05PDhw6LQEx0dzfnz5xkxYkReN+edSGuHdbLrwraHP7P11lbmt56fbVTJ+2SeyQ/y2sad22zHRY3iNG4y8mewMhEI1/uTZymaL+FPq3zKry1/xc7UrrCaSWxyLDNPzQRgUqNJ77z8ikTxYGStkTiZOdF7W2923N1B87XN2dl7JyVM8leouB12m8eRjzFUGNKstPYHc0bPTFYUhef8fSfPzWEdOnTgxx9/ZPfu3QQGBvLvv/8yd+5cunTpAmik9HHjxjFjxgx27NjB9evX6du3L87OznTu3Dmvm5Nn1HKuRWX7yiQqE9lwfUO25d8X80xx4n0IJy0u4yYzf4bX8QLy6GF4GHXh4KcHWdtlbaEKQAALLyzkZdxLytiUoW/VvoXaFomCpYtXFw71PYSVkRVnn52lwcoGBEYG5us5U01hTTyaYGZgJm7P7JnJisJ+zj8E8lwTtGDBAn744QdGjhzJy5cvcXZ2ZtiwYUyaNEksM2HCBOLi4hg6dCiRkZE0bNiQffv2YWRUdG+4TCZjSPUhjNk3hmX+yxhVa1SWqv33xTxT3Cgu4aQqtYChqjIKwZoLj1/TqKwJCrmsWIwbXTJ/26tH0sQ9e7NxfhOVGMXs07MBmOI3BX2FfiG3qHhQkGk98vtcDUs15PTA07Re35q74Xept7w+s/3+xULfNV/OlyoEpTWFZfXMZEShPeeRTyE+HJUgcPN5NBHxydiYGFDRxQKFTAYmJcAq/wKTCgOZUBiu8+9IdHQ0lpaWREVFYWFhUWDnjUiIwPlXZ5JUSVwccpGazjWzLJ8q+UPG5pniop2QyFv23Qhm8o6bhEa/SfuQNiy2qI+bsw/D6b0s+4R0m4bULXR/hslHJzPtxDS87by5Nvxavmaifl8oyLQeBXmu59HPab7sS2JetUKPN9rJvDxfeHw49r/YoxbUBI4NxM3KDdD9mYFCfM4jn8LCGqBMyryMniGMvvxOglBhvb8zQ1pANQfYGNvQzbsbAMv9l2dbPjPzjLWZrNBfZBKFQ6qAk1YAAu2w2KJu1isufkth8WH8du43AKY1niYJQDpQkGHbBR0ifv2JnMRXfdDLx9QT+x7sQy2oqWxfWRSAIGfPQqE95/HhWQtAoNkfH551mWKGJATlkMHVNMm3Nl7fSFxyXLblW1dy4tTXTdk0pC6uJQ8QYvANA1o8LvQXmUTBk5Ow2LTjZl4vHzYNqcupr5sWiXFTXPyW5pyeQ0xyDNUcq9HFq0uhtqU4UJBh2wUdIq59vvxLPbHrfnpTGOj+LPzQzqvQnnOVjkYhXcsVFyQhKIf4ufvhae1JTHIMm29u1umY1EioRhVMSVJc5/rLq/ncSomiSE4X532XRV7zk1S/pcxaI0NjYigMvyWVWuDsw3DWnrvFkjOHQZAzvcn0DHO1SGhTkItHF/RC1QVxvhRVCnvv7wVIt2RHSdskBHlEugVVU0l9Zvo38Ci05/zG80idyt18nn8rNhQGee4Y/b4jl8kZXH0w3xz+huVXljOg2gCdj63qUBWAa6HX8qt5EkWY4mJGyo6imo7gbf8Sa6ZSQi8aeVLGGXsltNF13HX/exBV3JLxcfTBx9GHqg5VKWNTJkfmRl3PtfHqLlxsm7zzwrq6nu9FZCyQOz+2009PE5UUha2JLbVdaovbk5RJfLSlK6/05Nglf4uA+v8BBBoK65lRC2puvLzBscBjHA86TvSdcA7qcFxEfHK+t60gkYSgXNCvaj++P/I9Z56e4darW3jbeet0XFVHjRB0/eV1VGqV5KPwgVFczEi6kOq39LZTq2MhrW+W6l/ytqJerbRg5Ab/IuFLVdTRddyFJT5i74Pr7H2wV9xmom9CFYcqVHWoKgpHle0rY2pg+k7nWhbwKwuv96eqQ1Xal2tP+3Ltqe1SO8eaPV3P98v5H2hecUGuFvRNmyU6dW4XBIGRe0Zy/vl5UMBrw9l46k3kddybkVpQz4xaUHMt9BrHA49zLOgYJ4JOEJHwRvNVR1VOJ9uQjUnBZnvPbyQhKBc4mTvRvlx7tt/dzgr/Ffza6ledjitrUxYjPSPiU+J5+Poh5UqUy+eWShQlikP4e07QNR1BfodA6xJ+PHXnLVp4OxYZk2JRRJfx6WBhyIZPlnDt5VWuhl4lICSAa6HXiE+J59yzc5x7di5NeRllS5QVtUWpwpGTmVO25wIwM0qmRklLzj2XczVUc74fT/6InYkd7cq1o33Z9rTwbIGFYfYRRtmdT0CNShbOuZcbaLT6Kns/2YuzubMu3SaSmiU6rSlsyaUlrLyyUvy9rPsoPvJuUyDpB1RqFddCr3Es8BjHgo5xMugkrxNfa5Ux1TelYamGNHZvTBsTZ9jxWbb1VnQp/IiuvEQKkc8lu+7tosOmDtia2PLs82c6Z6GttawWl15cYvNHm+lesXs+t1KiqFHUw9/zmoIIgS5OIftFndyMT5VaxYOIBwSEBBAQEiAKR8GxGUdb2ZnYUdWxKray5py9UZG3HZXfPldYfBj7Huxj572d7Huwj+ikNz4p+nJ9Grs3FrVEpa1L5/jaQEAAXhn8RIr+RZRqJW6Wbuzrs48KthUyrS8t98LvUX5hefTl+oRNCMPC0IKTQSdpsqYJKkEFwG+tfmNc3XE61ZcbVGoVASEBonnrRNAJopKitMqYGZjhW8qXxu6N8XPzo7pT9Te5s14EwFK/7E809Dg4++S6nUXh/Z0WSQjKJUq1Erff3XgR84K/P/qbHhV76HTc4B2DWXFlBd/5fseMpjPyuZUSRZGCzI1SmGRmosprgW97wHPG/hWQbbl5vXzo5OPyzud738mr8fky7iVXQzQCUUBoAFdDrnIn7I4oFAAYq+phkzxUK2+PubGSAY3MGVSvRjqzVIoqhVNPTrHz3k523tvJg4gHWvu97bxpX1YjENUrWQ89ubaxI7Nra1s9nt+v9iciIQK5TI5aUGNjbMPO3jupX7J+ttf629nfGH9gPM1LN+fgpwd5GvWUKkuqEJkYCcAXdb/gl1a/6Nx3uqBUK7kSfIXjQcc5FniMk09OagmIABaGFviW8sXPzY/G7o2p5lQtXZ+IfKB5giQh6B344cgPzDg5gxalW3Dg0wM6HbPg/ALG7BtD+3Lt2dl7Zz63UKKoUpAZeQsDlVqg4awjmUbkpJr+Tn3d9J2vW9IEvRsZjUUgX8ZnQkoCN1/d1GiMQq5qhKPgayQnuqEQrFHJXpMkvwmy/681aeWRzpxWyrKUmK3/Xvg9dt3bxc57OzkZdFJLwLIxtqFNmTa0L9ee1mVaY2Vklen1KuQynkY9pde2Xpx5ekasw1BhyObum+lYvmOW19V0TVOOBh7l91a/M7TGUGosrcHtsNsA9KzYk43dNr5zhKJSrcQ/2F/U9JwMOklMcoxWGUtDS3zdfGns1pjG7o3xcfTJme9pAWSMLirv71QkIegdePz6MaXna9Svj8Y8wsPaI9tjTgSdwG+1H6UsSxE0Lii/myghUSgUpGCSKnBl52uVFwLX+0ZR0EqqBTWBkYHpzGlPop5kWN7KyEpLKKrqUBVvO28SlAnsf7Cfnfd2svfBXi2nX4VMga+bL+3LtqdD+Q6Z+mOmqFKYdHQSP5/+WdwmQ8aS9ksYWmNohsdEJkZiN8cOpVrJ/dH3mXBoAv/e+ReABiUbcKTfEQwUOXcmTlGlcDn4sij0nHpyitjk2HR90citEY3dGuPn7kdVh6pFPuCmqLy/U5GEoHekxboWHHp0iB8a/cC0JtOyLR+ZGIn1LM0K9BETIrJdjV5CojhS0CaqD83XKi8oKHNlbolIiOBa6DVROAoICeDWq1ukqFPSldWT6+Ft5y0KR5XtK5OsSuZE0Al23d/FrVe3tMqXtSkr+hH5lvJNt6bcvgf7+PTfTwmLDxO3TWo0iSmNp6RbM3Lzzc303NoTL1svelfuzaSjmnUyPa098R/mr5PjNkCyKplLLy6J0Vunn5wmLkU7Ia+1kTV+7n6ieauyfeUiL/S8TVF6f4MkBL0zf9/4m17beuFi7kLQuCCdBqT77+4ERQVxrN8x/Nx1cESTkChmFIaJqihoNYoLBWmuzEuSVcncfnVbS2MUEBKQLuopFVcLV3wcfXCzcCNeGc+98HtceH5BS5CyMLSgdZnWtC/bnrZl21LCRDMen0c/5+NtH3PiyQmxbL+q/VjecbmWX82n/37K+mvr6VqhK//c+QfQmOJujryJo5ljltdy8flFUdNz+ulp4lPitcqUMC6h0fT835G5skPlYp/4syi9v0ESgt6ZJGUSLnNdCE8IZ1fvXbQr1y7bYzr91Ykdd3cwr/U8xtQZk+dtet/9TSSKPoVlopLGvm7oKqS2qnWHMo5qTA1MMTMww1TfFFMDU/Hft7e9rVEpCARB4Fn0s3TmtIevH2ZY3lTfFFcLV2TIeB7zXMuvRi6TU8+1Hu3LtadDOY3ZbNrxafx48sf/x5BBd5d6rGn5K8Z6xqgENc3XNScqMQqFTIFKUBGj0GfXiKuUty2vdd4kZRIXnl8QhZ4zT8+QoEzQKmNrYitqefzc/KhoX7HYCz1vU5Te3yAJQXnC+P3j+e3cb3Su0Jl/e/6bbflUh+qBPgNZ0WlFnrZF+hqWKCpkFZIsQ1pEuDDR1Vz5Sn828Xonsi2XioHCQEsoMjMw0xKaxG1ZlMlI2DLVN82x2Sc6KZrrodffmNNCA7jx8gaJyoy1X4YKQ5JU2pFR7lbutC/bHhcLF34+9TMWidHcxQzjTBeNAZVCH8VnV0g0s+P8s/Ni9NbZZ2fTndvOxE4UeBq7N8bLzuu9E3repqi9vyUhKA+4+fImlRZXQiFT8Gz8syxVoABbb22l+5bu1HCqwaWhl/KsHUXdxi/x4ZGRUK7Qi+aPXo2lsViI6KoJql3pLEamT4hLiSMuOY64lDhik2PF/49L1vxOG5WVXxjpGWUqKOmipTIzMMNQz5Cw+DACIwN5EP6A2+G3uR56nVfxr7I9v4HcgNpyQ06mZK9ZHOpcgbUvr6YTqhxMHfBz9xMdmb1svdL5GL3vFLX3t5QxOg+oaF+Req71OPvsLGsC1vB1w6+zLJ+6htiNlzdQqpWZ523IAdmtyixDypr7PlLUzT9ps0rffRnMqH19iJddx8UuAJCEoMJC1+zlmz6enu14EgSBZFVyloJSZsJTXEr2ZVLNUInKRBKViYQnhOd5fxjrGWOgMBBzBCWpktJpbZLVycSplIBZtvVdenGJJJkaRzNHLU1P+RLlPzihp6gjCUF5xODqgzn77CzLryxnQoMJWQ50TxtPTPVNiUuJ4374fbzsvN75/DlZJVnKlfJ+UFxMnwq5jHqeJajnWYLdz8qy9dZV/rj4B0vaLynspn2wpC6CO/z/5sq3EdB9QU+ZTIahniGGeobYGOftki+CIJCoTMxWUIpNjiUyMZLIxEiikqKISowiJjlGFLTiU+KJT4knUZlIkjKJZFWylnN0gjIhnX/Ou/Cd73dU9ulDWZuyktBTxJGEoDyiR8UejN03lgcRDzgedJzG7o0zLSuXyansUJlzz85xNfRqnghB78sK5RK6kZnpMyQqkRHri+6CoaNqjWLrra2su7aOn5v/LCawk3j/EQSBJFVSvmiL4lPiRY1RUaCbV1eQ1oYsFkhCUB5hZmDGx5U+Zqn/Upb7L89SCAKNSezcs3NcDblKr0q93vn879MK5RJZU5xNn35uflS0q8jNVzdZE7CGsXXHFnaTPkhSx1BmyIBJO65T0j6SRGX8OwsqqdvUgrrgLjKHGOsZY21sjbWRNXamdtib2ONo5oizuTMuFi6UtCiJW3wkbO6bbV3j9n/ODz23iuH2EkUXSQhKw7v6VwyuPpil/kvZemsrC9osyDIRYqpf0NXQq+/cbnj/ViiXyJzibPqUyWSMqjWKkXtGsujSIj6r89l7Hw1TFNFlDL2MTqHGwp4kKa7n+fkNFYaY6JtgrGeMoZ4henI90TdSEARUgooUVQpJqiQSUhKIS4nLMEliVihkCo0wY2qPvak9DqYO2v+avfltZ2qHkZ4OH4gvAnQ694mgE9j/Ys8AnwH81uo3zA3Nc9R2iYJDEoL+T174V9R0rkkVhypcC73GhusbGF17dKZlqzhUAfJOCEpr4xdQI+PNiyVVjNPVxi9RtCnups9Pq37KxMMTuRd+j0OPDtHSs2VhN+mDQ9exYaHvioFpRObh7Prav/Xl+qgFNSnqFBJTEklQJmj57LxOfE1YfBiv4l8RFh+WaZLDzDDRN9EWYkzeCDNvCzg2xjaFKmCrBTUrrqxg3bV1fFHvC35o9APG+saF1h6JjJGEIPLOv0ImkzG42mDG7BvDMv9ljKo1KlOnuFQh6EXMC8Liw7A1sX3Xy6B1JScaVL7J8ev2WqsyOxZBZ1mJ3FPcTZ9mBmb0q9qPBRcW8MfFPyQhqBDQdWxs/3gt5Z3lvIx7ycu4l4TGhmr+jdP8+yL2hdb2txf0zA4ZMkqYlMhWW5O6zdTANDeXm3eYlNCspJ7FSuvJMhlhaTLPJKuSmXlqJgvOL2Bqk6l8VvuzQkkqKZExH3yeoLxOHx+REIHzr84kqZK4MPgCtVxqZVrWc74nj14/4nDfwzT1aJrbS9CizvI6XHh2ian111PVvlGRDJuWeDeyy8YsoEauiOaf0ZWo5lS1wNunC3fC7uD1hyYx3MMxD3G3ci/sJn1QJCvVVPhhL+pMZ38BATXBxr1IIWdRUwYKg/RCjIm2+Sl1n62JbZ6kCClQ/r/SeqaYlGD5o/0M3zU8w/xJJYxsGeXzOz72jXC0MPng5mcpT1ARI6/9K2yMbfjI+yM2XN/Acv/lWQpBVR2q8uj1I66GXM0TISg6KZrLLy6DTM2AOg0pafnuC1NKFD1STZ8j1vsjI302ZpARqviDOssvMb3JdL6s/2WRW2Sxgm0FmpduzqFHh1hyaQk/N/85+4Mk8ozLQa+zEIBAo6NRIFeVAcV1LA0t0wsxpmm0NGn2WRhavN9h4VYlNX9ZMLj6YJp5NKPBygYExwYDmqhgQ2UdjF4PZc1RK9ZwDdB8ZE+RNPWFxgfvkZgf/hWDqw8GYOONjcQmx2ZaLq+do089OYVKUOFp7UlJy6wfUoniTetKTizuUx1HS22zhpOlMbM/KkMLbztS1ClMPDyRxmsa8/j148JpaBaMqjUKgOX+yzNdykAif9B1PlvcZgOJ3yUSOTGSu6PvcnLASbb22MqidouY3HgyI2qNoJt3NxqWaki5EuWwNLJ8vwWgHOBh7cGzz5/RtUJXAAyVdbBL/hYF2q4PIVEJDF/vz97rwYXRzA+eD14Ielf/CpVa4OzDcLYHPOfsw3BUagE/Nz/K2JQhNjmWLTe3ZFpnVce8FYKOPj4KkG14vsT7QetKTpz6uimbhtRlXi8fNg2py6mvm9KzZgX+6/kfKzquwMzAjFNPTlFlSRVW+K+gKFm/25drT0mLkoQnhLP55ubCbo4WGT3X7xO6znsV7J0x1DPM59a8v8jlcrb13MaqjmuwSRkGaHRs2sgQUDPq76OcDDxV8I38wPnghaDU0PKsvl2cMgkt33cjmIazjtB72TnG/hVA72XnaDjrCPtvhjCo2iAAll9Znmm9qc7Rt17dIkWVs/DPjDgWdAyAJu5N3rkuieJBajbmTj4u1PMsIfoWyGQyBlYbyLXh1/At5UtsciyDdw6m01+dCI0NLeRWa9CT6zGi5ggAFl5YWMiteUNmz/W+G+/Pl3p2856MzOc9iZxT3qIdeoJtBgKQBhly1EpLWqwcSav1rbgSfKWAW/jh8sELQan+FUC64SmgRkBgdLP0SedSI8re9idKjShzM+yIQqbgzNMz3Hx5M8Nzu1u5Y25gTrIqmTthd97pOqISo/AP1qTAlzRBEql4WHtwtN9RZjWfhYHCgJ33dlJ5cWX+u/NfYTcN0JiODRQGXHxxkYvPLxZ2c7J9rt8XQSireU9KqZH36Gp+VAjWHHh4gOpLq/PR5o/e+b0gkT0fvBAEmftXyBXRvDL4icU3hmlparLL2Asw/1Aw7ct1BGDFlRUZnlcuk+dZvqCTT06iFtSUtSmLi4XkEC3xBoVcwYQGE7g45CKV7SvzKv4VXf7uwoDtA4hOii7UttmZ2tGjYg8A/rj4R6G2RZfneurOW++NaSyzec/R0qjILrtSXNHV/Ghn/sb0uO32Nrz/8Kb/f/0JjAzMp5ZJSELQ/8nIv2Lf57XRN7nJ6aenmXhoolhW14gyPyeNSWzt1bUkZZJXItU5+lrotVy1O9V3Ye25WxiqKuPn1jhX9Ui8/1RxqMLFIReZUH8CMmSsDlhNlcVVOB54vFDbNbqWJqnoXzf+Iiw+rNDakZNI0feFzPzKJAEob8nO/CigRk8/hhNDVzKv9TwsDS3/v11gzdU1lJ1fltF7RhMc835oIosSkhCUhrf9K8rblmVN5zUAzD03l39u/wPortp0t6iCi7kL4QnhbL+7PcMy7+IcndZ34cKtijgmz+RCQIf3RmUvkfcY6hkyq8Usjvc/jruVO0FRQTRZ04SvDnyVqaCe39R2qU0NpxokqZJY4Z+x1rQgKO6ZuHNLZn5lEnlHVubH1LQWL2TzqbeyDj6OPjwe+5gv6n2BvlyTVFEpKPnj4h+Unlearw9+TXhWeYokcoQkBGVD5wqd+bLelwAM2D6A++H3dVZtOlqYMMBnAKAJA84IMUw+JGdCUGa+C1Hx8vfKd0Eif/B18+Xa8GsMqjYIAYFfzv5CrWW1cjwO84LU9cQAFl9ajEqdPsFcQVDcM3FLFG2ySmvxbXs73Bxe8yLmBU3WNGHRxUXMbjGbO6Pv0N27u1g2UZXI7DOz8ZjnwbTj0wrdnP0+8MFnjNaFFFUKTdc21YQaO1Th1IAztJx7LtvFSk993ZQnUYGUnl8agEdjHuFh7aFVNi45DvOZ5ggIhHwRgoOZQ7btyess1xIfNjvu7mDwjsG8in+Fvly/UBIsJqQk4PqbKxEJEWzvtZ2O5TsW2LlTefNcJZDR97r0XEnkBZkt1B2bHMuoPaNYe3UtAC1Kt2Bdl3U4mDlw5ukZvtj/Beeen9Oqy8bIhm99v2VkrZHFZl2yopYxWtIE6YC+Qp+/P/obe1N7roVeY+y+z7KJKHsTWeFh7UGL0i0AWHllZbq6TQ1MKWNTBtDdJPYh+i5I5B8dy3fkxsgbdCrfSSvB4qPXjwqsDcb6xmJaicJykFbIZfT3NUNA8xynRYqYksgrMjM/mhmYsabzGlZ3Wo2JvgkHHx3E508fjjw+Qv2S9Tkz6Ax/dftLa4mZiMQIvjz4JWUWlGHJpSUkq5IL6aqKL5IQpCPO5s781e0v5DI5qwJW8SJlb4aqTRXhGJRYQ3PvNwuYpmaQXhWwCqVama5u0S9IR1PEh+q7IJF/2Jva82/Pf1nZcSXmBuacenKKqkuqstx/eYElWBxRcwQyZBx4eIB74fcK5JxpSVGl8OfNEbwy+AkD/XitfVLElERB0c+nHxeHXKSiXUVCYkNovrY5U45NQS2o6VmpJ7dH3WZ289lYGL7RoryIecGI3SOosLAC666uKzSTcnFEEoJyQBOPJkxvMh2AUXtG4WgbqhVZsaxfJRKtv+J+/BaWXV4mHtepfCdKGJfgecxz9j/Yn67enC6fIfkuSOQHMpmMAdUGcG3ENRq5NSI2OZYhO4cUWIJFD2sP2pVrB8Cii4vy/XxvM/PUTK6EXMHY7C7HvmqULmKqhbfje51FWqLo4G3nzYUhFxhcbTACAlOPT6X5uuYExwRjpGfEVw2+4u6o+/Qs+wNmqsYYqiqDIOdx5GP6/teXKkuq8M/tf9J9wLzvmdBzg+QTlEPUgpqOmzqy+/5uPK09uTT0ElZGVuL+Py78wei9o7EzsePBmAeitD5+/3h+O/cbnSt05t+e/2rVufPuTjr+1ZHK9pW5NiL7UPnsVhGXfBck3hWVWsVv537juyPfkaxKxtbElqXtl9LFq0u+nnffg3202dAGS0NLno1/hpmBWb6eL5WAkABqLauFUq1kY9eN9K7cW7tdN4KZuvOWlhnaydKIydLClxL5zMbrGxm2axixybHYmdixvut61AmV041HJa+IMFhKguKsuK2GUw1+bPojLT1bsv9mSJEYw5JPUDFHLpOztsta3CzdePj6IQO2D9CStofWGEr5EuV5Ff+KmSdnittTTWI77+5Ml+sh1Rx2O+y2TmHKacMtJd8FifxAIVfwZf0vuTTkElUdqhIWH0bXzV3zPcFiS8+WlLEpQ1RSFBuubci386QlWZVM///6o1Qr6erVlV6Vemnt/1CySEsUTT6u/DGXh16mqkNVTaLTNVMZvv5yuvGohx32yd9irKoHaNYouxx8mdYbWlNrwRCGS2M4QyQhKBfYGNuwtcdWDBQG/HfnP349+6u4T1+hz5wWcwD47dxvBEUGARr1Zv2S9VEJKtZcXaNVX0mLklgZWaFUK7kddlunNrSu5MTsHuVQoZ0vQvJdkMhLKjtU5vzg83zd4OsCSbAol8kZWXMkoHGQLghF9Y8nfuRq6FVKGJdgUdtFWqugf2hZpCWKJuVKlOPc4HMMrzEC6+QhGY5H0Ag+ZfQm4mLmivD/UjJBQciLhuLvtEhjWBKCck1N55r83up3ACYemsjJoJPivvbl2tPEvQlJqiS+PfKtuH1wNY026G1nU5lMlqt8QSn6F3luNIgQg2+Y1tlDyvYqkS8Y6hnyc/OfOTHgBB5WHmKCxS8PfEmiMu+d7/v79MdYz5jrL69z6kn+rqrtH+zPjyd/BGBRu0XpUlRIkZgSRQUjPSP6ek1HD7tMF2IVgOh4Bes7nGNa42mY6ptioPbO9pgPeQxLQtA7MLzmcD6p/AkqQUXPrT1F51GZTMavLX9FhoyN1zdy4fkFALpX7I65gTkPXz/keJD2l3Ru1hD7+8bfIFNjbPqUvnW9pWyvEvlKw1INuTr8quis+evZX6m1rBYBIQF5eh5rY2v6VOkDwMKL+be6fJIyiX7/9UMlqOju3V1cwywtUiSmRFFC13EWFQ8/+P3A/c/u09yta57W/b4hCUHvgEwmY0n7JXjbeRMcG0zvbb3F0MRqTtXoW7UvAF8c+AJBEDAzMKN3JY3D5dsZpHMaIQZw/vl5AGo61Xzna5GQ0AVzQ3OWdVzGjl47sDe158bLG9ReVpuZJ2fmaVhuagbpf27/k2/rJU0/MZ0bL29gZ2LHH20zzk0kRWJKFCVyOh6dzJ34rvFneVr3+4YkBL0jZgZmbO2+FVN9U44GHmXS0Univh+b/oixnjGnnpwS1x1LdZDeemsrrxNei2XT5grSxQ8iJimG0DiN5qmrl26SvoREXtGhfAdujLhBlwpdSFGn8O2Rb2m0uhEPIx7mSf1VHavSoGQDlGolSy8vzZM603Lx+UV+PvUzAIvbLcbO1C7DcnLDRwjyiHQBCKnI0ETY1PawyfM2Fhkin8KLgMz/Ip8WYuM+LLJbiDWj8ZjdMSCkO+ZDCqWXhKA8wMvOi+UdNZqdn079xO57uwFwsXDhq/pfAfD1oa9JViVT07kmVR2qkqRKYv219WIdFe0qIpfJCU8IJzg2+y/fvQ/2iv/fzbtbXl6OhIRO2Jnasa3HNlZ3Wo25gTlnnp6h6v/YO+vwps42Dt9J6i11BQqFAsUp7u7uOhhsDLYxBmNsQ8eMwWCwMdiHu7tLcad4gVK8AgXq7pKc74+sgVJL27RN23NfF9dVknPe877JkSeP/J6V9VhzZ41GEponNlF2l191ZxUp8pR8j5dGYmoiYw6NQS7IGVZ7WJbXz5GnR+iwuR0hOisyzacoFZWYkf7wb0NY3Tbrf/82FA2hQiK7RqxZnY/Z7ZPW4SDVZAcegXeA9I25J++8x/A112m14FyJrSATjSANMaz2MCY2Vt60Rx0YhV+kHwDft/weexN7vCO8+d/N/yGRSFTeoDV33z0sDHUNcbFyAdRLjt75cCcA5vrm2Brbano5IiJqIZFIGO06mgdfPqBtxbbEpcQx/uh4+uzsQ2BsYL7GHlBjAHbGdgTEBnDgyYGcd1CTny/8zKOQR9gZ2/Fv98xzjv5383/029WP+JR42lQz5a+hNXH4QB2+VFRixodBTrIdqUnK7UQKhawasWZ3Pma1j7F+ClEGi7gdvo7GaxrTfd2MUldKL4olapCk1CTabGzDzTc3aVS2EVc+uYK+jj7r7q7jsyOfYWFgwYtJL5AgwWGxA0nyJG5+dpPG5RoDMHzfcHY+3Mn8jvOZ3mp6tscqu7gsAbEBdHDqwNnRZwtjeSIi2aIQFPzt/jczz80kWZ6MlaEVq3uvzle49qfzP/HrpV9pXaE1lz65lO853nh9gxbrW6AQFBwcepC+1fume18hKPj+1Pf8df0vQFnRubzncnRlulk2vizRvL2n9PbkxPiLUNa1oGcj8h55OR8z2+dNjD+zzs1i6/3tlEtchwzrLD2fmhDh1bbnt+gJ0iD6OvrsHrQbS0NLbr+9zZSTUwBlyW9du7pEJEbw28XfsDC0YFDNQUD6BOm6tupViMWnxKt+ZYv5QCLaglQiZWqLqSpht7CEMAbuHsjog6OJSozK05jjG45HJpFx+dVlPIM88zW/hJQExhwag0JQMLLuyAwGUEJKAkP2DFEZQPM6zGN179XoynSBrBtfiogUBXk5HzPbp4JZBbb038KGHpdLZSm9aARpmIrmFdk2YBsSJKy4vYJtD7Yhk8pY1HkRoBSAexH+QhUS2/5wO7HJsYD6jVRPvjipEr7KrKxXRKQoqW1bm5vjbjKj1Qylwvr9zdRdWZcLfhdyPVY503KqVh357S4/5/wcnoQ+wcHEgX+6/ZPuvZC4EDps7sC+x/vQk+mxbcA2ZrSekU44UUSkJGOhV1Gt7UpaKb1oBBUA3ap0Y3ab2QCMPzoer2AvOjt3pnuV7qQoUph2ZhptK7alimUVYpNj2e21G3hXJv807CkJKQlZjr/j4Q4AzPTNsqxqEREpSvRkeszrOI9LYy5R2aIyr6Je0X5Te6aenJprgcW0XLstD7YQmRiZp/lc87+mUnZf3Xs1lobvKmGehT2j2bpmXH99HQsDC06POs2IOiPydBwRkeJKaZWDEI2gAuKntj/RqXIn4lPiGbh7IDFJMfzZ+U+kEin7H+/n8qvL6RSkAcqWKYuVoRUKQcGjkEdZjn3N/xoADRwaFPxCRETyQcsKLbn/xX3GNRgHwF/X/6LR6kZ4BHioPUabim2oZVOL+JR4Nt3blPMOHxCfEs+Yg2MQEBhdbzS9qvVSvXfl1RWar2uOT4QPlcwrcW3sNdpUbJPrY4iIFHfyUn5fEhCNoAJCJpWxfcB2ypUpx9Owp4w/Op6aNjVVD4Opp6Yyqt4oZBIZ7q/d8Qr2UrbPsM9eNDEpNYm3MW8B6F+9YDt6i4hoAhM9E1b3Xs2R4UewM7bDK8SLpmubMu/yPFIVqTnuL5FIVOKJy28vRyFkrtmTFbPPzeZ5+HPKlinLkm5LVK/veriLjps7Ep4QTpNyTbj+2XWqW1fP1dgiIiWFvJTflwREI6gAsTG2YdegXehIddj5cCfLby3nl3a/UEavDLff3ua873l6u/QGYJ3HOoAce4id9jmtygdKU58WESkO9KrWC88vPRlQYwApihRmnZtFmw1teBH+Isd9R9Ubham+Kc/CnnHG54zax7z88jJLri8BYG3vtZgbmCMIAguuLGDYvmEky5PpV70f50efF6UmMsPICnT0s99GR1+5nUixJy/l98UdsUS+EPjb/W++PfUtulJdLn9ymXO+55h5biaOpo4s6baEgbsHYmVoxZtv37Dz4U7GHBpD24ptuTDmQoaxhu8dzk6vnZjpmxE5PbLQ1yIikl8EQWDLgy18feJropOiMdY1ZnGXxYxvOD7bRORJJyax7OYy+rj04dCwQzkeJy45jnor6+Ed4c2nrp+yru86UhWpTDw+kVV3VgHwTdNvWNRlETKpTGPrK3FE+mevA2RkBeaOhTcfkQKnIOUgtO35LXqCCoFvmn3DwBoDSVGkMHjPYEbVHUUFswr4R/vzOOQx5cqUIywhjINPDqZrpJqZfXrV/yoArvauhbkEERGNIZFI+Ljexzz44gHtnNoRlxLHF8e+oNeOXtn2CZvQeAIAR58dVYmRZseMszPwjvCmvGl5/ur6FzFJMfTZ0YdVd1YhQcI/3f7h725/iwZQTpg7KjWAsvonGkAljtIkByEaQYWARCJhfd/1VLWsin+0P+OOjmNu+7kALLi6gKG1hgKw1mMtNW1qoiPVITIxEv/o9FL0qYpU3sS8AaCvS3qNExGR4kZF84qc/fgsf3X5C32ZPsefH6fOijrse7Qv0+2rW1enU+VOKAQFK2+vzHbsi34XWXZzGQDr+qwjLiWONhvbcOLFCQx1DNk/dD+Tmk7S+JpERESKF6IRVEiY6puyd8heDHUMcXvhhm+kL43KNiImOYbA2EAkSDjjc4a3MW9VyZkf5gWd8TmjSgodVW9Uoa9BRETTSCVSpjSfwp3xd3C1dyUsIYxBewbx8YGPMxVYTEuQXnt3bZal9rHJsXxy6BMAxjcYj4OJA03XNuVe4D1sjW25MOYC/ar3K7A1iYiIFB9EI6gQqWtXlxU9VwDK/kUjaiu1SHZ67aRZ+WYArPdYr0qOfhD0IN3+aQ1XTfVNsTayLqxpi4gUOLVsa3HjsxvMbDUTqUTKlgdbqLOiDud8z6Xbrle1XjiaOhKWEKbS1/qQaaen4RvpS0WzivSo2oOW61vyOvo1LlYuXB97nSblmhTGkooNpaljuIjIhxSIEfTmzRtGjhyJlZUVhoaG1KlTh9u3b6veFwSBOXPm4ODggKGhIZ06deL58+cFMRWtY7TraD6r/xkCAvOuzKObczcUgkIljrjh3gbq2NYBMpbJX3l1BQBXO9dCnbOISGGgJ9Pj946/c/mTyzhbOOMf7U/HzR2Z4jZFdX3oSHX4stGXAPx7M2Pz07M+Z1l+ezkAg2oOYtCeQcQkx9C2Yluujb1GJYtKhbegYkBp6xguIvIhGjeCIiIiaNmyJbq6upw4cYJHjx6xePFiLCwsVNssXLiQpUuXsnLlSm7cuIGxsTFdu3YlMbFkyXFnxdLuS3G1dyU0PpTguGB0JDrcC7qHmb4Zb2LekCRXdm1+3whSCApVjlAflz5FMm8RkcKghWML7n1xj88bfg7AkhtLaLSmEXcD7gLwWYPP0JPpcevtLW6+uanaLyYphrGHxwLQ0KEhi90Xk6pIZUSdEZwceTKdSrSI0gD6spR1DBcR+RCNG0ELFizA0dGRDRs20KRJEypVqkSXLl1wdnYGlF6gJUuWMHv2bPr27UvdunXZvHkzb9++5eDBg5qejlZiqGvI3sF7MdM3427gXerYKT0/ulJlo8Y0RejnYc+JS44D4KzvWVU+0GjX0RqfU2lziZem9RbHtZrombCy10qOjTiGvYk9j0Ie0XRtU36/9DsWyXH8UKkr9QUpRy/+rux0/vYeSw+OxTLSHxcdY+4E3AFgduvZbO2/Ff2ctG5KEXKFwNXnoUzf50lmZ0Laa78ceVQszhURkfygcZ2gmjVr0rVrV16/fs3FixcpV64cEyZMYNw4pVKyj48Pzs7OeHh44Orqqtqvbdu2uLq68s8//2QYMykpiaSkJNX/o6OjcXR01Bqdgbxy6Mkh+u3qB4CxrjFxKUqDRyaRYWFoQWh8KNfHXqdp+aaMOTiGTfc3YapvStT0vHXkzgq3hwH8cuRRul+EDmYG/NS7ZokUxypN6y0Jaw2ND+WLo1+w7/E+HAUJzzFFP9PHt5IEBGpKEpjdeyVjG4wtxJlqP5mdD9mxY1wzmjuLQogimqPE6wT5+PiwYsUKqlatysmTJ/nyyy+ZNGkSmzYpe/4EBgYCYGdnl24/Ozs71XsfMn/+fMzMzFT/HB1Lhi5F3+p9+b7F9wCq9gG6Ul3kghxzA3PgXUjs0stLANS1ravROZQ2l3hpWm9JWau1kTV7Bu9hc7/NOOmVydYAAjBEwvbuy0QD6AOyOh+yo6R1DBcR+RAdTQ+oUCho1KgR8+bNA6B+/fo8fPiQlStXMnp03sI4M2bM4Ntvv1X9P80TVBKY13Ee119f5/Kry+jJ9EiWJwMQEhcCKCvEBEHgVdQrAFWbDU0gVwj8cuRRli5xCUqXeOea9iVCLKs0rVedtf582IsWVcoUm7UOqDGAVrplYHfO95Hm/1VbiijJ7nzIjpLWMVxE5EM0bgQ5ODhQs2bNdK/VqFGDffuUAmj29vYABAUF4eDwzh0fFBSULjz2Pvr6+ujrl8yYvo5Uh12DdlF/VX2C4oJUr0clKUNe94Puc9HvInJBDsAnrp9o7Ng3fcOz/VUoAAFRidz0DS9WLvEUeQphCWGExocSGh9KSFwIofGhePonEhBVLcv9iut6M0Od7zYwOgnbeS1IknkW3sTySX1Byl1MinoaWktW7Q5yOh8+REBBGYPUEtcxXETkQzRuBLVs2ZKnT5+me+3Zs2dUrFgRgEqVKmFvb8/Zs2dVRk90dDQ3btzgyy+/1PR0igUOZRzYMXAHnbZ0ytAh+0HQAzbf3wxAGb0y2Bjb5Pt4fpF+XPC7wK7b3kDOv5iL0iWuEBREJES8M2jiQ1R/Z/UvzYD8EKPUNtjwQ47HLAkhAHXXIBMsct5IpFiQXf5XUqoimz0/ROkr9FH8yYrbb5jYZKLG5yoioi1o3AiaMmUKLVq0YN68eQwZMoSbN2+yevVqVq9eDShbSHzzzTfMnTuXqlWrUqlSJX788UfKli1Lv379ND2dYkP7Su2Z234uM8/NTPd6dFI0Z33PAqj0g3KDIAj4Rvpywe8CF19e5ILfBVVoTV9eB3s1jCBNucQFQSAmOSaDhybdv4T0/w9PCM9gGKqDVCLFytAKayNr1T9pigu3H+a8b0kIAai7hqMjt9GkkvYbQsnyZHY83MGRi3MhNq6op6N1pOX7fBjuSsv/+qZT1h7QD3EwM6Sa0302P3Pn6xPuGOka8Wn9TzU7YRERLUHjRlDjxo05cOAAM2bM4Ndff6VSpUosWbKEjz76SLXNDz/8QFxcHOPHjycyMpJWrVrh5uaGgUHxf/jkh2mtpnHt9TXuPz2GNe/yNKTRb7ESpIy1b6QsB86ma7MgCHhHeHPR7yIXXl7got/FDD3IdKQ6NC7bmNYV2nLqOkTGkWmugASwNzPI0iWekJKgtncm7V+KIiVPn425gXk6g8bayBprw3d/2xjbpHvP3MAcqSR93r9cIdBqwTkCoxLztN7iRJNKljiYGeS41jZVy2lFTlBWYZyAmACW3ljKv7f+JTY5lvqCFMRwWDrUyf/aeesV9qb6BEUnZbGdAh1ZMitHNqaDiyNSSQesT73hr+t/8dnhzzDUMWR4neEFu5AiIrNzD8ixi3pBdloXKTw0XiJfGGhbiZ0miQzyxGBFK7I1B3X0YeIdMHdEEARehL/ggt8FldGT1mQ1DV2pLo3LNaZdxXa0c2pHc8fmmOgpHyRpvyDhQ0NI+b+O9X0xMX2RwUMTGh9KfEp8ntZorGuc0aDJ5J+NkdKwsTS0RFemm6djfUhW6027da0Y2aDYlI7nRHFZa2ZhHEtjCRa2Z7kQtCSdJ7C1rimXktUYdPxFZYfzUoC7dxjD11zPcbspnaqy5IxSmf/Da10AQvTmUd4mlN2Dd+Nq74ogCEw4NoGVd1Yik8jYM3gP/Wv0L4glFBmZnXvmRsp7TWT8ux9sH8pKlATpiaJC257fohGkbby9B6vb5rjZvtaT2BfpzQW/CwTEpi911pXq0tChIa4OrrhYuWBvYk9scmzWOTSRTujHj0SHd/lGqYQQrreaBJl7tvPQlepm8MK876FJZ9QY22BlaIWhrmGePhpNUZpuYNq+1qzCOAIKQEKI3jwSZO7YGdsxuelk9lz7m6sJiRiSzS/u934klAYO3XvD5J33ctzu76F1MdTVyfR8GNpMyuJ7H/M6+jX6Mn3+7vo3XzT6AgGBTw59wub7m9GV6nJ4+GG6VelWgKspPLI69zLj/R8OQKb7aduPC21F257fohFURGTpSlXTCGpALB4S5S9kqUSKiZ4JulJdUhQpxCTF/PfbLhcIUgyF2pjpVsDUUMDWIgYbY6scvTVl9MogkRQ/F3BpcmVr61rTwpNZVS0JKEAaya+DoWXF5rTf1J7X0a9xFCTYSmSs77ueurZ1WHjtT3Y+3MlHdT5iavNvsw0Xl0TU9QTJrP/lh3b9GFn3Yx74x2c4H8LiwxhzaAxHnx0FYHDNwazpvQZjPWNG7BvBnkd7MNAx4MRHJ2jn1K6AV5UeTZ/DOZ17mSEB7Ez1AQmB0ZnvlxZmvjKtQ77np43XrCbQtue3xnOCRHIm21/neUhHUQgKopOiM7xupm+WMV8mCy9NWh6NTCrLz9KKDTKppNiXwauLNq5VEATWXj+f7UNIghQUlljqONNlSxdeR79GJpHhj5wRLadS13UUADbOnfDw2o5ZrD9TS0kI7H1yyv8CAYUknJexp/jimBs/XfiJyU0n82XjL1WirABWRlYcHnaYv6//zbQz09jzaA93Au6wa9Autg7YSkJqAkefHaXX9l6cHnWa5o7NC2V9BeHNzK1kALyTlchpm/zKbGi797akIXqCCpmsXLBpNv4k1/tMebIgx3FmV2lNrHWVLA0aK0MrjeXRiIhoiviUeLZ7bmfZzWW8eGOOTUrOkgW6llt5kbATE10TYlNiqWlTkzvj72Cgo8ycuxd4j/qr6mNuYE74D+HF0jOZX3LK//p7WC1eJh5isftiVaFEGb0yfNHoC75p9g1ly5RNN96N1zcYuncoL6NeoivVZVGXRYxrMI4+O/twxucMZvpmnBt9jgYODQplXZoKPQmCgGewJwvPnOOKZ1WNzfND/hnmSl/XcrneT9Pr1Ua07fktGkGFiDru/xqSe7jpL8pxLN8hG6lUs2QlKYqUXPwi/fjfzf+xzmMdEYkRAJjSEIuEX3LcN1BvBiYmbwlLCEMmkeE+1p3G5Rqr3k+WJ2Myz4QURQo+k3yoZFGpwNahzajjQUiRp7Dz4U4WXlvIw2ClXoSeTI9RdUfxfYvvcbF2Ue0bkRDBp4c/5eCTgwD0q96PZd2WMXz/cK68uoKVoRUXx1yklm2tAllPTvdLdUNPgiBwP+g+ex/tZc+jPTwLe6aUB0meXyDzhrz1XNPUerUdbXt+a7x3mEjW5OSClSBFhnqaLUP2DGXCsQkExwVranoiIrkmuw71giBw1ucs/Xb2o/I/lVnkvoiIxAgqmVdiUedFeH93Cgczg2xSnAVSCcGsTLAqx21ay2npDCBQPsRr29YGwCPQowBWWTzoVtuBK9M6sGNcM/4Z5sqOcc24Mq1DOs+BrkyXUfVG8eCLBxwdfpRWFVqRLE9mncc6avyvBgN2DeDG6xsAWBhasH/IfpZ2W4qeTI+DTw7SakMrfmn7C43LNiYsIYyOmzvyPOx5gawnN4r2Gd4TBDwCPJh5dibV/q1G/VX1+f3y7zwLewZAktSLVEL+S8BXFwErYyn2pvpZnrMSlIZnbmU2BEHg1GPvPK9XJO+IOUGFiCaViOWCnBW3V7D1wVZmtZ7F5GaTVeEBEZHCICvPww/dKxOY4sa/t/7lUcgj1XudK3fm6yZf06NqD1Xu2U+9a/Ll1rtIyLxsO8VkB/UdXDnpfZLatrWZ03ZOpnOpb18fj0APPAI8GFBjgMbXWlxQN/9LIpHQs1pPelbryTX/ayy4uoDDTw9z4MkBDjw5QDundkxrOY2uzl35uunXtHBswZC9Q/CJ8KHrtq7MaTOHJHkSD4Ie0HFzRy59cgkncyeNrkXd+2XadoIgcDfgLnse7WHvo714R3hnuY+ZQRkk+vsg6nMEFMr8s/8QEP4zct6ZOmn//72/K0Cm52za1j/1rpmppyY+JR7fCF98I33xifDBJ8JH9bdvhC9CQsNSo2ivTYjhsEJEnSqOsoRyxeh7pIqsE/ASEHAhlgCZTNV9vqJZReZ3nM+w2sNKZU6ESOGSdXnxO82ZBJk7JnomjK43molNJlLdunqWY31oTKUSQpLRVr7r0JnpZ6cjk8i48dkNGpZtmOkY/978l69PfE3Pqj05OuKoRtZY2ngU8oiFVxeyzXOb6r5Sz64e01pOY3CtwcQlxzHuyDj2PNoDQKdKnXgZ9ZLn4c+pbFGZS2MuUc4093kwWXHykQ+fb36c43Y/9zfncfRhdj/ajV+kX5bbmembEZ8Sn06w1VDeHOvUL5Eq3nluLIx0EcibTtBXHe1wtA1LZ+Ck/R0YG5jtOgzkdbBTI0SXl1CbNqFtz2/RCCpE1FUsvvJFVZJi3tB6fWsEBE6POo2VofIi3eW1i++vLsBfohxBR6KDqYEp4QlKF2mTck34q8tftKzQMt1xS2q5pUjho05um0QWxTe9w/m0/hhM9XO+RuUKgWveQcw8vYBbgWfRNfBj1+CdjD44mtD4UH5s8yO/tv81y/2vvrpKqw2tcDBx4O3Ut3lemwj4R/nzl/vfbLx5heQUQ+SSCBws4/iuxbeMcR3Dlgdb+MbtG5LkSTiYOCCRSHgb85bq1tW5OOYitsa2+Tp+UmoS/978l7mXfsc48i9kWKXz1LxDQJBG8EpvDEgyhrWkSEFChrY7tsa2tK3YlnZOSvHYapbVueUXoZZidGRipMpz8yLchzt+UbyOjCI48QWv4s+TImRfPWamb4azpTOVzCtR2aIylS0qq/4uV8aRjouv5vx8EHOCNIoYDitEZFJJlu7/dK5UCwfuxb7mrkSOg4kDVs4dVNsNLevKPQn8cfUPJEhIFVIJTwindYXW3A24y803N2m1oRUDawxkQacFPH9rJJZbimgUdXLbkFvQ1Ka7WgYQgICcZfcmcSVkDwb6BhwZfoJ/b/1LaHwode3qMrvN7Gz3r2dfDwkSAmIDCIoNws7ELldrEnmHl78O1z16YhbfUfVaSmAI3x9dzc8Xf2ZSk0mcHHmScUfG8Tz8OVKkmOmb8ST0CV22dOHc6HNYGuZe60MQBPY+2sv0s9PxifABwMHmFPEhH2W4X6rENHVWZGoAAShQgAD2JvYqo6dtxbZUt66ewVue5llJlifjG+n9zoMT4YvPcx98zir/TkvqzwpdqS4VzSsqDRzzylSySG/sWBhmn/Op1vOhGBtA2ohoBBUy3Wo7sGJkgwyGif0HholHgDLBs75D/QxjzOs4j7exb1UqrimKFC6/ukznyp0pb1qeTfc3se/xPk55BWOZ9AN8kMaX1lSxJJRbihQ+uc3VyAmFoODTQ5+y59EeZQLu0IMExgWy7/E+dKQ6bOq3CT2ZXrZjmOiZUNWqKs/CnuER6FFiVI0Lm6zCnDpYY5s8k+CYecy5MAdjXWPGuI6hpk1NDj09RFRSFHoyPe4H3afb1m6c+fiM2gYwwPXX15l6airX/K8B4GDiwG/tf6OaVTX+vnCe20+ckArvQkBywrJUtHcwcVAZPO2c2lHNqprK6BEEgeC44EzDVT4RPryOfp1jw2Y7YzulUWNRicrmld/9bVGZcmXK5UtrTd3ng4jmEI2gIqBbbQc617TPNkSVVuVS3z6jESSRSFjbey1BsUGc9D5JGb0yJKYmctrnNLVta3NsxDGWXF/Kw4dDVA0U3yfttV+OPKJzTXvxl4VIrlC3Q70626X1p9ryYAsyiYzdg3ZTz74etZYry65nt56Nq72rWsdr4NBAaQQFiEZQXsiuEStIkABVdWYg2PyIZ/B9/nfrf+hIdWhRvgW3A26TLE9GgoRbb2/Ra3svTnx0AmM942yP6Rfpx/Qz09nltQtA2ai19nASUxP57tR3RCZFKjfUl6KvqIVMsEAuiSBJ6qXyAJUrU462Tm1VvREdTBx4GfUSnwgf3F64seL2inTGTk49D410jdKFqd4PXTmZO+W4pvyizvNBRHOIRlARkVMVR3ZGEChLXfcO2Uu7je24E3CHsmXKkipP5WHwQ0buH8nvrXbz5GFCluNrQtlUpHSibof6nMqEBUFg6qmprLqzCgkStvTfQh+XPvTf1Z/whHBc7V2Z2Xqm2vOqb1+fnQ93luoy+fygTkl6VLyUHV3OECXcZsHVBVzwu8C110rvjYmeCbFJ8egrahPkk8JXKz9iRb8ZGOroZxgrWqbH7w828c+Nf0iSK/NoKphVIDQ+lPX31mc8uERBkswTUBo9Tcr1xdnSGSsDK2KTY/GN8mXDvQ38eP5HguKCsl2nBAmOZo4ZDJy0/9sa2xZ5cYk2qryXVEQjSAtJkaeohMwyC4elYaJnwrERx2i5viXeEd7Usa1D2TJluRd0j+9PzsWSqTkeSyy3FMktaue25fDLdc75Ofx9/W8A1vZZy/A6w9n2YBuHnh5CV6rLpn6bcqV6nvaDQTSC8oa694LR+ybR0Fmgm3M3+rn046T3SdxeuCFPqEO55PFUQMI5/akYhD+C9eczHUMP2EEMSRIBCRIEBF5Fvcp0W1M9U+xN7NGV6RKbHMub6DcceHIg2zlaGFi8y8f5IDenglmFHMOrIqUH0QjSQh6FPCJZnoyZvhmVzLNXv7UzscNtpBst1rXAM9iTDpU6MKjGII48fKrWsdQNbYiIvE9+cxfmX57P3MtzAfi3+798Wv9T3sa85esTXwPwU9ufqGtXN1dzSvvB8CL8BdFJ0bnKSRFR/17wKvYhzx96svPhznf7yrpgkKD87iwkfhhIUrLaHQADwBoJ/gg5NnuOTo4mOjx9b0RdqS5O5k4ZKqwqWVRSKwFZRCQN0QjSQtJ+ybrau6rllq1iWYVjI47RblM7zvmeY2SdkUxrP5B1J0OyLC9VN2RRHBElAQoHdXMXPvw+rgdvZeY5ZZhrQacFfNXkKwRB4POjnxORGEFDh4ZMazUt1/OxNrKmfBlHQiLNWXn5Nq0r1RO/+1ygTpjTxlSX/w38A8+QB9wLvMe9wHs8C32Bbuzw/7bR3Gdtb2KvMnCczCsjS3HBUGpHTbtydKtZFT0d8fElkn/Es0gLUVWGZZEPlBmNyzVm7+C99N7Rm62eW/mhxQ+MbWvGxouSDIqoJbncUuzAXLjklLuQuRCiGYZ6zfmhQxd+aKlUyN18fzNHnx1FT6bHxn4b0ZHm/tbk9jAAg4g/sU8xYfmZBJZzXfzuc4E6Yc5f+9Shm4sDPV16qN47//Q1n2y4n+vjSZBQtkxZatnUoqZ1TSpbVk6XgGykawR8eA4lAT44mL0Vv1cRjSD2DtNCVEnR2eQDZUb3qt1Z22ctAAuvLcTK0p/pvaxAGpVuO3szgxJZHp9W3vthcmeaJIDbw4AimlnpJKvvQ4YVtskzaWr1OQBvot8w2W0yAL+0+0XVBywvx0pJSV+5I373uSMtzGlvlj40lt09Izohbz+kBATexrzltM9pNtzfwMEnBznve57bb2/zIvwFKfIU8ZoWKXBET5CWoRAUOVaGZccY1zG8jXnLrHOz+MbtG3YO2smVHzrSc+0fvI5IQiEN4pv2Helaq0POgxUjsivvFSUBCp/svg8JUiTAr0cf0bmmHeOOjCMqKYom5ZrwXYvv8nms9N+t+N3nntyWaGsirzA6KZrzfuc57/cukVpPakDZxHUImCJ+ryIFhegJ0jK8w72JTY5FX6afZa+lnJjRagYTGk1AQGDcnn/ps8yD6NAumMp7Y57yGYsOmtB/0y8ky5M1PPuiIz8dp0U0j7rfx69ntnHixQn0Zfps7Ju3MJj43WuetDBnX9dyNHe2ytbISMsl0rQZIkmpiiA3I6PSmRLxexXRBKIRpGWkeYHq2tXNVXnw+0gkEpZ2X0p7+ymYJ/5AeFx6BVQZVng8aUTL5V8RGh+a7zlrA5pWMRbJH+p+zstvbAPgt/a/UcOmRoEeS/zuC4a0XCLIylzJ47iCehVe4vcqkh9EI0jLyEtSdOZIiQ/rgYSMFRvKJGmBgDctaby6KV7BXvk8VtGjSRVjkfyj7uccm/qWZuWb8W3zbwv8WOJ3X3C8n0sUIZQhUcj+B1wCAqE5lMbLJdn36UpDphOr9jxFRD5EzAnSMvKaFP0hN33DCYxOIqvfZhKk6GBDQLgxzdc1Z/vA7fSq1itfxyxKcirvFVAgkcTjFexFk0qt1cohSE5VsMXdj5fh8VS0NGJUcyf0dHL/u6E0luzn9H2AQCqhSPS82dj3br76LWlKwVokf7yfS3QpqCZe/kfY8ng+oKC8aXleR79WbRuKgL8keyNIoudNanLWMh8CCuSE0XtvH+pcrkUX5y50ce5C6wqtMdQ11PTyREooEkEQsj8TtZDo6GjMzMyIiorC1LTkCKIJgoD9YnuC44K5PvY6Tcs3zfNYh+69YfLOezluZ132CHcilG0LFnRawHctvityyfi8klZJAmT7G9NQP4mFAxrTu55jltvMP/6INZd9Ubw3kFQC41pXYkaPmrmaU2kt2c/u+xAQCNGbx+/dBzOl+ZQCO1bamVwSqyG1nQ6bOnDe7zw6Uh36uvRl3+N9uR7DUN4cm+SZ/32P7+5LaV3kw/T+IE52Nd0+BjoGtKnYhi6VlUZRbdvaxfaeVhLRtue3GA7TIgJiAwiOC0YqkVLHrk6+xlLX9f93958Z32A8AgI/nPmBMYfGkJhaPGPsWZX3fkh8ki5f77jP8stXM31//vFHrLqU3gACUAiw6pIv848/Ums+pb28N6vvQ6YTTYjePBo4SZnUdFKBHqukykFoOynyFNz9lR3eXaxcqGP77n4mkyi9fvqyjD3FPiRB5k6I3jxSSZ+7KCeMEL156QwgPZkeRrpGJKYmcsr7FN+d/o66K+tS7q9yjDk4hu2e2wmOC9bE8kRKEKInSIs49uwYvXb0oqZNTbwm5C9PR64QaLXgXI4hgivTOiCVwP9u/Y9v3L5BLshpXr45+4fux97EPl9zKCrkCoHr3mF8tf0ukQmZy/cLKJBLwhjb5SWz28xUJaEnpyqo/uOJDAbQ+0gl8OS37tmGxtI+/6yqlt7//HMMjUX6Q3xY1u8bWYF51l6toub9sOLrOA82PP0UQz1d7n9xn6pWVTV6rNIYetRGrr66SqsNrQAY33A8nSt3ZvCewejJ9NJVpab1DcsOCRIEQaLqIl/TvjxfNe/KWb/T7Hm0R9WA9X2MdY2xNLQkKDaIZEX6KtgGDg1UXqKWFVqKfcQKGW17fos5QVpEfvSBPiS3TS4nNpmIi5ULQ/YOwf21O03WNOHQsEP5zk0qCmRSCVKpJEsDCP7LiRJsWHD+L44+P8ymfpuobVubLe5+2RpAoPQIbXH3Y2zrylluk5uy7Wy7RUf6w78NITXjjV6Fjj5MvKOVhlDGcKAl5VhD/3pyjRtAIHbf1hZO+5xW/d3AvgG1bGoBypA/QEWziryMekkl80r4RPqgI9UhVZGa6VgCAkgEUnS8SBIU3A6FT45sp5tzN+6Mv8Ott7fY4LGBS68uqfaJS4kjLiUOUDZTdTJ3IiY5hhfhL7gbcJe7AXf54+ofGOsa086pnSqfyMXKRQydlTLEcJgWoUkjCHIfIujs3Jkbn93AxcoF/2h/Wm1oxb5HuY/jawPqls2a6TpyN+AuDVc3ZMGVBfiFqVdp8jI8XiPHz3G7+LDsDSBQvp+dp6iIyCocqIM1R2/al/hwYGnmtPc7I6i+Q32qWFZBV6pLikL5wyQ4LhhdqS4+kT40KtuIVEUqlobZJ64rBAUGOgZIJcrHlpu3G3VW1OHYs2PsGLQDn0k+/NLulwxNpyMSI/AI9OBF+AvsTezp6tyVbs7dsDWyJS4ljmPPjzHZbTI1/lcDp3+cGHd4HHu89hCeIOoPlQZET5AWoSqP16D3Jbfqr9WsqnH9s+sM3TuUU96nGLRnEL+2+5XZbWYXq19I6uZEzWw7kbNvZBx5doTpZ6dT2/gt0CXH/SpaGmnk+CW1bDs7xeg0X6So9lsyiU6K5vrr64Ay/6eObR10Zbq4WLvwMPghdsZ2BMUF0aNKD46/OE5SahKOpo74R/tT3ao6T8KeZDquvkxfla/oYOJAYGwgAgJ7H+9l/5P9jKk3hj86/cGPbX7kyqsrbLq/iV0PdxGb8u6HTWBsIIGxgQBUMKvAx3U/xkzfjEehj7jy6gqvol6x1mMtaz3WIpVIaVy2scpL1LRc0zxrt4loL6InSEuISIjAN9IXUHaP1yS5UX8FMDcw59iIY0xuquznNOfCHIbvG058SvbeD20iJxVbAQWphDDlXG/sTexZ1m0ZpvqmPIxZjoCcrOrLlPkLCoY3LZ+v40tQVomV1LJtUcW59HLB7wIKlAKt1a2rq8rV00JiNayVopgyqYwyemXwDPZkfMPx6Ep1eRL2hA5Ombf0SZInoSvVRSaRERAbgKGuoUpVXyEoWH9vPWX/Kss3bt9Qx64Oa/us5e3UQH5tsZOmVl+hL68DwrtH3quoV2x+sJllt5bhG+nLxCYTWdZ9Gd80/YZaNrVQCApuvLnBb5d+o/WG1lj/aU3/Xf1ZcWsFPhE+Bfb5iRQuohGkJdwLvAcoY+U5uYULAx2pDku6LWF1r9XoSHXY5bWLNhva8Cb6TVFPTS2yU7FVCkhKqVP1KYJEzpq7a/jp4k9MazmNTs7tiNY58J8JlLGwGyBKZz/V/q1MeHzWD/Dsji/894B4PyerpCGqOJdePgyFpZFmBBnrKZvcnvE5wzfNvgFgw70NLOqyCICLLy8yrNYw1X7vi72mKFKQC3JsjW2JT4nnSegT6tjWoZ5dPQBSFaksvbkU+0X2jNq+mE6Lr7HurAmBr7tjnzyfmuzF2WhguvlKkOAT4cNi98V8feJrjj0/Rv/q/Tk16hTreq9jWO1hWBlaEZ0UzcEnB5lwfALOS52psrQKE45N4OCTg0QnRWvwExQpTEQjSEvQlEiiphnXcBxnPz6LtZE1dwLu0HhNY26+uVnU01KL7HKiVo5swImx87k05hJ17eoSnhDOrHOzCE8MZ1xbGxL0DquMlTSkEglO5V4QqbuRNzFvqLCkAg+CHuT6+HLC6NDAp0SXbZf2cGBp5ozvGdXf7+c31rJVGkGBsYE4WziTkJpAFcsq2Bnb4RPhgwQJw2sPRy7IufTqEuMbjAeU3tcPK7iC44JxMHHAWNcYz2BPHoU8YnS90SrPkDS5AZceuPwnGPuO+EQ95GGf8E+7C3zR8AvM9M3SVadJkPA8/DlzL8+ly5YuLHJfRHWr6lz65BK3xt3i9w6/07ZiW3SkOnhHeLPi9gr67+qP5QJLWm9ozW8Xf+Pmm5vIFXLNfqgiBYZYIq8ljDowiq0PtvJru1/5se2PRT2dDPhG+NJnZx8eBj9EX6bP+r7rGVFnRLEoSc5pjqmKVFbcWsGP538kKikKgEE1B/Eq8i2PX1qjIzjgbG3Kzo+/wtmqIstuLGOy22QEBGQSGXsG76F/jf5qHf9h6FVmXxmOuaEpfpP9MDMwy37yb+/B6rY5L3L8RSjrqsanUTjkRqJB284XkbzzOvo1jn+/q1I89/E52ldqD8DT0KdU/191jHSNmNRkEn9c/YOBNQbSsVJHJhyfgK2xLfc+v0fHzR15HPqYDk4dqG5dneW3lwNgrm9OZFIkgKqazEDHgOrW1VWedBcrF8bU+5SVJ8oiKMwztAyC9OdeiiKJw08Ps/HeRk56n0QhKH/4SJGCBNX/AerY1mForaEMrT0UO2M7Lvhd4JT3KU75nOJZ2LN0x7AwsKBT5U6qfKIKZhU09REXe7Tt+S0aQVpC7eW18Qrx4sjwI1rbviImKYaP9n/EkWdHABhZdRHPX7oSWELUkIPjgpl+Zjob7m0AwEzfjA6VOnD8+XGS5EmY6ZvxT7d/+Ljex5zxOUPP7T1V1S6/tf+N2W1m53gMuUJOnRV1eBz6mF/a/cKctnOy36GYGkEgqjiXRjZ4bODTw5+q/h/+QzgWhspGqKmKVIznGZMsT+bI8CP03tEbAx0D3n77liZrm/Ai/AU/t/2ZIbWG0HhNY+JS4pjVehbhCeGsuL0CCRKczJ1UuZP6Mn2VRlDbim15HPqY4Lhg9OV1sE+en+Ncd4xrlk5OISAmgG2e29h4byNeIe902vRl+qQoUtIZRA0cGjCk5hCG1BpCJYtK+EX6KQ0i71Oc8Tmj+jGVRnXr6iptonZO7VQhwdKItj2/RSNIC0hISaDM/DLIBTmvp7ymnGm5op5SlsgVcmafm80/ly5mKmdfEh5w119f56vjX3E3QPkAd7FyQSqR8jj0MQB9XPqwqtcq4pLjaLi6oeqGN7TWUHYO2pnj+Lse7mLYvmGY6Zvh940f5gbmWW9c4nSCirehLJI9H+3/iO2e2wGUBstk33Tv11tZjwdBDzg09BDfnf6O5+HP2TFwB1KJlKF7h2KiZ4L3JG/O+pxlxP4RABwdfpRDTw+x5u4aJEhoXr45115fA0hXdl/Vsip1bOvg9jAUm5QfcpzrkBZxzO81MEPfOkEQuBtwl433NrL94fZ0pfKm+qbEJsemM4ialGuiMogczRxJVaRy680tlZfo+uvr6bbXlerSqkIrujh3oatzV+rZ11OV/ZcGtO35LRpBWsDNNzdpurYpNkY2BH0XpPWl6HKFQP3fjhCVIM3R3VxcQx1yhTJheubZmUQkKrtZu9q78jDoIalCKlaGVizvuZweVXvgutIV7whv1TY3xt5ATydrFVqFoKDuirp4hXjxc9uf+andT9lPJp+K0UUdsizq44sUDgpBgcNiB1Vriv7V+7N/6P5024zYN4IdD3fwR8c/iE6KZt6VefSv3p+9Q/bSZE0T7gTcYVKTSfzT/R8mHp/I/279D0tDS26Pu81vl35jw70NyCQyBtcczE4v5Q8OqUSKqZ4pkUmRGOgYMNh5NpfuueY430DdmTg7pPJru18ZUGNApvfdZHkyx54dY+P9jRx/flwl6CiTyLA0tCQsISydgdPCsQVDag5hcK3BlC1TFrlC4NzTV1z08eBpxC1uhe7gZVR6w9DGyIbOzp1VniKHMur9OCiu15W2Pb9FI0gLWHV7FV8c+4Iuzl04OfJkUU8nR9y9wxi+5nqO233obi6OhMaHMuvsLNbcXYOAgLGuMeYG5ryJUVbJDak1hGXdljHqwChO+ZwCwNbYFo/xHpQ1LZvluHu89jBk7xD1vEH5QPTEiBQW9wPv47rKFZlEhlyQZxoi/v3S78w+P5tRdUcxtflUXFe5oi/TJ+T7EG6+uUmnLZ2UpfITn1CuTDlab2jNrbe3aFy2MRdGX+DL41+y+f5mdKQ6fNvsWxa7L0YuKJOQK1tUxifCB/3UutinzMtxvrHG8whTKD1K9e3rM7fDXLpX6Z7lj9DguGC2e25n0/1NqhwkABM9E8z0zXgb81aVZC1BQkPLT0kM701Mwjs5PnszA8a3syBB5s4pn1Oc8z1HbHJ6gdY6tnVUuUStK7RWSQy8T3G+rrXt+V16fHBajKaVogua0lT+bG1kzareq7jx2Q2alGtCXEocb2LeYGNkgxQpu712U3dlXb5q8hVTmim7oQfHBeO8zJlbb25lOe7AmgOpbVubqKQo/nb/u0DmXtobuIoULmmtMtIe2pndz9IqxLxCvKhrV5dqVtVIkidx5NkROlbuSOfKnUlRpDDn/Bz0dfTZM3gPFgYW3Hp7ix/O/MD6PsqCjFRFKn9f/5tFnRdhrKvMr/GJ8KGmTU10UU9iZFm3jfzY5kdM9EzwCPSg5/aetFzfknO+5zLd3tbYlm+afYPH5x7c+/weU5pNwdbYltjkWN7EvEFAoFyZcjiZO2Egb0bwm35EJ6QPtQVGJfLboQCcjQZwaNghwn8I5+KYi8xqPYvGZRsjQYJnsCeL3RfTdWtXLBda0nVrVxZfW4xnkCeCIIjXtYYRjSAtoLgZQaWx/Llxuca4j3Vnbe+1WBtZExIfggIFpvqmBMUF0XdnX8ISwljabSkSJCSmJtJsXTO23t+a6XhSiZSf2irDYEtuLCEiIUKj881OsTnttV+OPEKeU6M0ERE1OeOjLI2PS1b27MpM7iNNK+hxyGMEBIbUHALAnkd7APij0x8AbPPcxr3Ae1Q0r8jWAcpr6H+3/scur11s6reJIbWGkKJIYdrZaazsuZLypkrx0kchj7AxVa8hqpOlJb+2/xXfyb583+J7DHUMcX/tTsfNHemwqQNXX13Nct969vX4q+tfvJ7ymsPDDjOwxkD0ZHq8iXmDX8QrLFM+/0+PLKNXSUDgh323CI0LR1emS5uKbZjbYS43x90k+Ptgdg7cyaeun1KuTDkSUxM55X2K705/R92VdSm3uDyTd1/JtOmseF3nDdEIKmJSFakqrRlt0wjKitKqhiyVSBnbYCxPJz7lq8ZfIZVIiU6KRleqlNLffH8zC64uYGHnhejL9FEICkYdHMWMMzMyHW9AjQHUtatLdFI0f7n/pdG5iorNIoVJYmoil14qG5gKCNga2+JgkjEsU9miMgY6BiSkJuAb4cuQWkoj6MTzE0QnRdPAoQHDaiuFEmecVV43Par2YHZrZVht/JHxPAt7xtb+WxlYYyDJ8mQ+O/IZ/+vxP5qWawqAb9wZFJIwslJ9//D+ZG1kzcLOC/Ge5M3XTb5GT6bHeb/ztNrQih7benDn7Z0s160r06W3S2/2DtlLwNQA/tfjf9SzHICOYE1GmdR3M4hOkOH0Z0d6bu/J5vubiUqMUs1laO2hrOu7Dv8p/nhN8OLvrn/TvUp3DHUMCY+2IinZKMuxxes694hGUBHzNPQpiamJmOiZUMWySlFPRy1yUmOGkq2GbGloyb89/uXO+Du0cGyhqk7RleryJuYN35/+noE1BqqUv/+4+ge9t/dGofhQfPGdN+ifG/9otGFjaQpZihQ91/yvkZCagKm+Msejvn39THNrZFKZStDQK8SL2ra1qW5dXRkSe6qU3pjbfi46Uh3cXrhx3vc8AD+3+5kOlToQlxLHoN2DSJInsWPgDvpV70eSPImhe4fya7tfGVl3JEgUhOquzEL1XUlm9yeHMg4s7b6U518/Z1yDccgkMk68OEGjNY0YsGsAD4MfZvsZWBpaMqHxBH5ps0Stz0yQm3L8+XFGHxyN7SJb+u7sy3bP7cQkxQAgkUioaVOTb5p9w/GPjhM+LZw5rRapNbZ4XauPaAQVMWll2PXsileZZG471JdEXO1dufLJFTb124SdsZ3KGALY/nA7JromOJk7AXD0+VFqLa9FfHL6/mv9qvejnl09YpJjWHxtscbmZlNGvZBASQpZihQdaaEwO2M7IPvQfk0b5Q8or2AvJBKJKiS2+9FuAJwtnfm84ecATD87HUEQkEll7Bi4g7JlyvI49DHjj4xXtvMZtIve1XqTmJpIv139GFt/LPM6zCNB5k6I3jxSCU137FRJCL2aBNK1ln2W86tgVoHVvVfzZOITRtUdhQQJB54coO6KuozYNyKDMOKHqHtNre//Nz+3/Zka1jVIlidz+OlhPtr/EbaLbBm0exB7vPaoQosABjoGtHduqNbY4nWtPsXnqVtCKW75QO/TrbYDV6Z1YMe4ZvwzzJUd45pxZVqHUmEApSGRSPi43sc8nfiUb5p+g0yiTISUIOFV9Cv8Iv2obF4ZgCdhT3Bc4sjLyJeq/aUSKT+3+xmApTeXEpZNKbxcIeDuHcahe29w9w7LMu4fEhfCr+6jSSUkQ+sP1bwpmSFLkaIhLSk6rYQ8u9B+Wl5QmiBhWkjM7YWbKiz0Y5sfMdY15uabm+x/rCyztzW2Zfeg3cgkMnY83MGK2yvQk+mxZ/AeelTtQUJqAj2396RVhVbsG7KPZJ2bvDEYS6DeDGpXvYWz81He6I/lX8/PGLh7YI55eFUsq7C5/2YeTnjI4JqDERDY8XAHNf9Xk08PfYpfpF+67dOuz8DoRCyNs+42n3btDXKtz0/tfsJrghcPvnjA7NazqWpZlcTURPY93seQvUOwXWTLsL3DOPD4AAkpCaU2FaEgEUvki5j2m9pzwe8C6/us55P6nxT1dETyiWeQJxNPTFTlR6RhYWCh0hvSk+lxcuRJ2jm1A5TibA1WN+Be4D1mtJrBvI4Zy3vVLYm99PISw/cN523MW8yEtpgnfocEiajYLFJghMWHYfOnDQICBjIDEuWJPJv4jKpWVTPd/tCTQ/Tb1Q9Xe1c8Plf+CKy1vBaPQh6xud9mRtUbBcBP53/i10u/Us2qGl4TvNCRKkvN/3L/i6mnpqIr1eXKp1doUq4JiamJ9N3Zl1PepzDWNebkyJMY6RrRdmNbYpKV4aX2Tu3pUbUHM8/OJEWRQkWziuwatIum5ZuqtU6PAA/mXJjD0WdHAWX4+7MGnzGr9Sw8X0kzXJ+ZkdO1JwgC9wLvsdtrN7u8dqnUsUFZit/XpS8uxkNZf17pvyiO17W2Pb9FT1ARknbCQ/FJihbJnjp2dbgw+gLbB2ynbJl3OkFpBpAECcnyZDps6sCq26uUr0kk/Nz2ZwCW3VxGaHx6F746JbFyhZy5l+bSflN73sa8pbp1da5M+JeVIxuW6pClSMFzzvccAgLOFs4kyhMpo1cGZ0vnLLdPK5N/EvpE1Wh0cM3BwLuQGMDUFlOxNrLmWdgz1nusV70+pdkUBtQYQIoihcF7BhMWH4aBjgEHhx6kY6WOxKXE0X1bd5LkSTz+6rGqb9d5v/OsvL2Sw8MPU9miMi+jXtJqQysWX1uMOr6A+g71OTL8CO5j3elUuRMpihRW3F5Brb8+4outd3I0gCDna08ikVDfoT7zO83He5I3Nz+7ydTmU3E0dSQ2OZZtntuYc70PsUZ/o6cXn6uxRTJH9AQVIb4RvlReWhldqS6xM2MzdEoWKd7EJMXw26Xf+Pv636owAfCfZ0Z52U1sPJFlPZYhCAKN1jTibsBdprWcpioVTmtEmtUNVgLYmupiUu5Pzvkp8zJG1xvN/3r8T9WfqLgqy4oUDz4/8jmr766mS+UunPI5RasKrbj8yeUst5cr5JjMNyEx9Z3HyCvYi9oraqMr1SX4+2CVeOjSG0uZ7DYZBxMHXkx6gZGuEQBRiVE0WtOIF+Ev6F6lO0dHHEUqkRKfEk/P7T254HcBU31Tzow6Qw2bGnTZ0gX31+6Asifg4WGHWXZrGXsf7QWgV7VebOy7ESsj9cVdL/hdYPa5Ofg9+xQZ1lmq51sa6zG7Zw3szQzzfO0pBAU3Xt9gl9cu9jzaw9uYtyBI0VfUwkzXkZZOdfi8WQc6OndQecy0FW17foueoCIkLR+otm1t0QAqYtTNt8kNZfTLsLDzQh588YCOlTqqXn9f4+PfW//SYVMHBEFQeYP+vfkvIXEhgHql7kHRKVz1DsJI14iNfTeysd/GdA0aZVIJzZ2t6OtajubOVqIBJKJRPhRJbGDfINvtZVIZNaxrAO/ygmrZ1qKWTS1SFCkcfnpYte3nDT/HydyJgJggph1bq7o+TfRM2Tt4LwY6Bpx4cYL5l5UNU410jTg6/CitK7QmOimaLlu78DT0KZc/uczHdT8GICopio5bOjK05lCW91iOvkyfo8+OUn9V/Wy1gT6knVM7/my7Hx1sMjWAQHl9hsUlY29mmK9rTyqR0tyxOUu6LcF/ij+XxlziqyZfYm4aTLDiOAd8FtBte1ccFjvwxdEvOO97XuVle5+CuM8Vd0QjqAjxCCi+SdElCbeHAbRacI7ha64zeec9hq+5TqsF5zSmvFrDpganR51mz+A9lCuTsTnueb/zVFlWhTYV2tCobCPiUuL489qfgPqlrk6mdbk17hajXUdrZM4iIurgHe6Nb6QvOlIdwhKUSf3qhPZVytHB77q1pyVI7/Z6FxLT19FneJUFlEtcx5Hrzumuz4BQW5b3WA7AnAtzOOtzFgBjPWOOjThGS8eWRCZG0nlLZzyDPdnUfxPzOyqNpVRFKoP3KkNp7mPdqWpZFf9of9pubMsfV/5I1w8sO4JjsmlsnG47zZWsSyVSWldszb89/uXNt2849/E5Pm/4OdZG1oTGh7Lqzio6bO5A+b/L8/Xxr7n88jIKQVHg97niimgEFSGqyjAxH6jIKCwJeolEwqCag3g68SkzWs3I4LL2jfSlwpIKfFb/M0CpjhscF6x2qevKPgtUpcciIoVFWml8s3LN8AzyBNT7UfdhhRi8yws65X1KVbnl9jCAHZeN0cE63f5p16eDbjfG1h+LQlAwfN9w3kQre/qV0S/D8Y+O06x8MyISI+i0uRMPgh4wvdV09g/Zr7r+frzwIwuuLsB9rDsj6oxALsiZcXYGPbf3VHljs6Oo1fNlUhntK7VnZa+VBEwN4NTIU4ytPxYLAwsCYwP599a/tNnYhorz+2aatyS22hCNoCKlOJfHlwRyai0hAHMOe5KYkqyxYxrrGTOv4zweTXhEe6f26d6LTo5m4vGJtDGrjEtyIttPTqOJwSvalnlDLYkPtSS+1JL4Ujad9omAg5kBratk3axVRKSgSAuFNSrbiKikKPRkemoZ45kZQTVsalDHtg4pihQOPT30wfWZPoz0fouIJV2XUs+uHiHxIQzdO5QUuVKvy1TfFLeP3GhctjFhCWF03NyRh8EP6V+jP9fHXsdUT5mPsstrF123dmVpt6Ws6b0GAx0D3F644brKlYt+F7NdhzaVrOtIdejs3Jm1fdYS+F0gx0YcY3S90ZjqmSFEDxRb6GSBmBhdRATHBWO3yA4JEqJnRGOiZ1LUUyp1uHuHMXzN9Ry3C9SbQZkyAdib2GNnbIe9iX2Gf2mvWxlZqS16KQgCh54eYtyRcaqKMEdBwlNMMMzytgqJgi4dkhbzFmskaH9JrEjJRK6QY/OnDRGJEczrMI+Z52bSwKEBd8Zn3WYiDZ8IH5yXOqMn0yNuZpzKMzP30lx+PP8j3at058dmW9S6PneMa4aNRQQNVzckOimaqc2nsqjLO2XlyMRIOm3uxJ2AO9ga23Jh9AVq2NTAP8qf1hta8zJKqdtV1qQs58ecJyk1iSF7h/Ak9IlSx6vtz8xsPROZVJbp8dO8yaCdJeuXngXw8fq7OW63Y1wzmjurnxieV7Tt+a3daeQlmLR8oKpWVUUDqIhQN04vEywIjfckND6Uh2QvnS+TyLAzsctgHGVmNJnqm9Kvej+6Ondl5tmZLLmxBGsk2RpAAAaSFCwkMQim5TPoBImIFBZ3A+4SkRiBmb6ZSotHXa+2k7kTRrpGxKfE4x3ujYu1C6AMif14/kdO+5xmZNWshUPfJzgmkebOVdjYdyMDdg9gsftiWji2YECNAQCYG5hzatQpOm7uyL3Ae3TY3IELoy/gYu3Cgy8f0GNbD676X+Vt7Fvqr1SWwd8ed5uvjn/FpvubmHNhDhdfXmTrgK3Ym2RUmk5Tz/9QJ8g+Ex2voiAiXt38ptLZakM0goqItHYZYiis6FA3Tr9v2HrK2yQQGBuY6b+guCACYwMJjQ9FLsh5G/NWWcKaAwY6BukMo+G1hhP04iQkpua47/z+dajVqI1Y6SVSZKSFwtpXas/9oPuA+vczqURKDesa3Am4g1eIl8oIcrF2oZ5dPe4HenLB5w6Qs6cg7TruX6M/3zX/jkXui/jk0CfUsa2jEmy0NLTkzKgztN/UHs9gT9pvas/FMRepalWVC2MuMPbQWDY/2Ex8ajydt3ZmRc8VbOy3kfZO7ZlwfAJnfc/iutKVbQO20bFyxwxz6Fbbgc417bVSiqKo85a0HdEIKiLEfKCiJy2eHxiVmGm8XILy11znGpWRSSXUtq2d7Xgp8hSC44IzGEeZGU3RSdEkpibiF+mXTn6/viAFcvYMVrXX04obrEjpJc0I6ly5M3MvzQVyV+RRy7aW0ggK9lJ5bQAaW44j1M+YU/eyN4DSrs/3823mdZzH9TfXufLqCoP2DOL62Ouq0n0rIyvOfnyW9pva4xXiRYfNHbg45iKVLSqzsd9GatrUZPrZ6SgEBZ8f/RyvYC/+6voXjcs1ZsieIXiFeNF5S2d+bPMjc9rOyRAeS5Oi0DbUvc+V1lYbohFURIiVYUWPTCrhp941+XLrXSRkHs/PrNt0VujKdClnWo5yphnL4D8kPiWeoNggAmICuPX2FpdfXsYjyANZhH9Wja/T0Wp9a+Ksq1DPvh6udq642rtSz74eDiYOmXbvFhHRJHHJcSpNnfr29QmIDUCChLp2ddUeI7PkaLeHAZy+64Qsh4sgq+tTV6bLrkG7qL+qPg+CHjDx+ETW9V2net/G2IazH5+l3aZ2PAl9ovIIOZk7Ma3VNKpaVmXovqGkKlJZenMpj0Mfs3/ofm6Ou8nkE5NZ67GWXy/9ysWXF9k+ML0qvLai6ftcSUNMjC4CopOiMfvDDIDg74KxMbYp4hmVbtTty6UpIhMjOeNzBrcXbpz0Psnr6Neq9+oLUu6q4QlqQCwekoyxfhsjG6VBZFcPV3ulceRi7aL1KrIixQu3F25039adCmYVWNlzJT2298DFyoUnE5+oPcaxZ8fotaMXtW1r4/mlZ47q6O+T0/V53vc8nbZ0QiEoWNdnHZ/W/zTd+wExAbTb1I5nYc9wMnfi4piLqvYat97cotOWTkQnRQPgYuXCmY/PUN60PNs9t/P50c+JTY7FxsiGLf230LVKV7XXXJQU9n0uK7Tt+S0aQUXA5ZeXabOxDeVNy+M/xb+opyNCwbaWkCvk3Am4w8kXJ3HzduPG6xvIhXdqrvoyfdo5taOrc1f6mTlRafeYHMfsa2ZBk0bj0JXqci/wHveD7vMk9EmmIm/6Mn1q29ZWGUX17OpR164uZgZmuVxH6W6/UdrX/z5TT07lr+t/Mbb+WCpbVGbWuVkMqz2MHQN3qD2GX6Qflf6phK5Ul7iZcdz2i1arGuzHnjUY07JSjp/9vMvzmHVuFgY6BriPdcfV3jXd+2+i39BuUztehL+gskVlLo65SHnT8qq5td/UXhWqtjS05OTIkzQq24hnYc8YsmeIKg9qesvp/NbhNyTItP780IZzWNue3wX+8/CPP/5gxowZTJ48mSVLlgCQmJjI1KlT2blzJ0lJSXTt2pXly5djZ2dX0NPRCsR8IO1D0/H8gJgATnmfws3bjdPep1VqumlUt65ON+dudK3SlTYV26h6IvH2nlrj+0f5c/jcbHpV68VfXf6iqlVVElISeBj8kPtB97kXeI97gfd4EPSAmOQY7gTc4U5A+tLlyhaV03mM6tnVo4JZhUzDadryK7KoKO3r/5D384H2Plb238qpXcaHVDCrgLGuMXEpcbwIf0FwjHoPROsy+mo9uKe3ms41/2sce36MQbsHcWf8nXSGfznTcpwffZ62G9viE+GjCo2VLVMWJ3MnPD73oNf2Xlz1v0p4Qjgt1rVg+8DtDKo5iOufXefbk9+y4vYK/rj6B6e8gpDGDiMkJkU1vjaeH9qat1SUFKgn6NatWwwZMgRTU1Pat2+vMoK+/PJLjh07xsaNGzEzM2PixIlIpVKuXlWvb4u2WZK55ZNDn7Dx3kbmtJnDL+1/KerpiGiAZHkyV19dVYW40n4lpmGqb0qnyp3o6tyVrs5dqWheMfOBIv3h34aQmrUcvyDTZ269/vx6fz2pilR0pbp80+wbZreZjal++utBISjwjfBVeYvSjCP/6Mw9kOYG5hnCaf7BVkza/iBDloa26KAUNGk6MKV1/R8SGBuIw2LlekO+D6HZ2mZ4R3hzetRpOlXulKuxmqxpwq23t9g7eC9l9duprQuk7oM8PCGcBqsa8DLqJf2r92ffkH0ZjPxXUa9ou7EtfpF+VLOqxoXRF3Aoo1xfijyFsYfHsuXBFtX2c9vPZWbrmUgkEnZ77ebLfaswiZ8CkK6HWGk9P3JC257fBWYExcbG0qBBA5YvX87cuXNxdXVlyZIlREVFYWNjw/bt2xk0aBAAT548oUaNGri7u9OsWbMcx9a2DzG3uK505X7QfQ4MPUC/6v2KejoiecQ73JuT3idxe+HGOd9zxKXEpXu/UdlGdHXuSrcq3Wharim6Ml31Bo70h/h3niMBgQ6bOxKVGIWjmSOHPrkM5o48DX3KlJNTOPHiBAC2xrbM7zifMa5jchRsDE8I537gf0ZR0D3uB97HK8QrXbd75cGllEtaj45gxYeqvfCusuTKtA5a5/rXBDnlqZT09WfGtgfbGHlgJK52Dfiz7X76bv8YuSSCVz+cw9bEOucB3iPtB+Ev7X5hVusfabXgXI5VTLn9rG+/vU3L9S1JliezqPMivmn2bYaQkH/0S9pubMurqFfUsK7B+dHnsTNRRiYEQWD+5fnMOj9LNeaI2iNY33c9OlI9ms0/9Z8HqPRdH3lB257fBRYO++qrr+jZsyedOnVi7ty5qtfv3LlDSkoKnTq9+8VQvXp1KlSokKURlJSURFLSu1/G0dHRBTXtAicpNUlVDSGGw4oXscmxXPC7oPL2vAh/ke59W2NbldHTuXLnvCe8mzsq//2HBPio80LGHR2HR/RLToc9obO5Iy7WLhz/6DjHnx9nyskpPAt7xtjDY1l+azlLuy+lhWOLLA9haWhJ+0rtaV/pXeuOpNQkHoc+TmccPfRPQicx6webAAREJXLTN7xEutlv+oZnm6hb0tefGad9TmMob05iwHd8tukhNvwAQN9l93Md/nm/QqygqpgalW3Ekq5LmHB8Aj+5HWDb2RqEx70bPS1sde7jc7Tb1I7HoY/puLkj50efx8bYBolEwsw2M6lqVZUR+0aQKqSy/eF2XkS84JcWOwiJSSUzAwhK5/lR3CiQ3mE7d+7k7t27zJ8/P8N7gYGB6OnpYW5unu51Ozs7AgMDMx1v/vz5mJmZqf45Ojpmul1xIO3XtoWBhaoaQUQ7EQSBB0EPWHh1IR03d8RygSW9d/Tmf7f+x4vwF+hIdWhbsS3zO87n7vi7BEwNYHP/zYyoM0LjFX+fNfwMGyPlmOOPjk/3Xo+qPfD80pNFnRdhqm/KnYA7tFzfko/2f5Su8iwn9HX0cbV3ZbTraP7u9jfnR59nbc89au1bUtVm1V1XSV3/hwiCwJlHodgkzyQhST/de3lpxqkygv7rJp+mvmxvll64z97MIF9hpS8afUHXctOwSp5OWFz64oG0eT9/a8S5j89RtkxZvEK86Li5o6qdDcDgWoO59MklVcj55pubjD84Va3jl5bzoziicU+Qv78/kydP5vTp0xgYaEaBcsaMGXz77beq/0dHRxdbQyitXUZ9h/qinosWEhYfpixf93bj5IuTBMSmv6FXMq+k8va0r9Q+Qw5OQbKoyyJGHxyNX6QfR58epZdLL9V7ejI9praYysi6I5l9bjbrPNax3XM7B58cZEarGUxtPlUlGpcbbE1Lt9qsqLabHq/gxxA9KNP3BJT+kF+OPKJzTXu1PDa1bJVG0LOwZ6TIU9CV6RaI+rJCgIjgjkhIIrNmrGnzvjKtg8oj5BnsSectnTn78VksDZVCgs0dm+PxuQedNnfCN9KX4ERvMjbSyEhpOT+KIxr3BN25c4fg4GAaNGiAjo4OOjo6XLx4kaVLl6Kjo4OdnR3JyclERkam2y8oKAh7+8xPJ319fUxNTdP9K66IlWHaRaoiFXd/d346/xPN1jbD5k8bhu0bxsZ7GwmIDcBI14geVXuwtNtSnk18hvckb1b0WkHf6n0L1QAC+Ljex9gbK6+RCccnZLqNnYkda/qs4da4W7R0bEl8Sjw/nv+Rmstrsu/RPnKbAqhNXbKLgrT1Z0VJX//7yBUCf56+iQ426RKA3+f98I86OJo6YqJnQooihefhz1Wvp1Ux9XUtR3Nnq3zn09z0DScoOhl1wlYu1i6c+/gctsa23Au8R+ctnQmNC8fdO4xD994QFG7Gzc9u09KxJUlSL1IJQSDz/lyl6fwormjcE9SxY0c8PT3TvfbJJ59QvXp1pk2bhqOjI7q6upw9e5aBAwcC8PTpU169ekXz5s01PR2tQ+wZVvS8jn7NyRcnOel9ktM+p4lMjEz3fm3b2qry9VYVWmGgoz2/4v7u9jfD9w3HP9qfPV57GFxrcKbbNSzbkMufXGbnw538cOYH/CL9GLRnEO2d2rOk2xK1lX1Lu9ps2vq/2HoHAQHJe78bS8P603gnEaBemFfd8I9EIqGmTU1uvrmJV7AXNW1q5mea+Z5P2nY1bGq8yxF6rU+TeW4o5O/K6x3MDJjZcwe7zWey795qbJJn/nd+ZPQylYbzozijcSOoTJky1K6dvseSsbExVlZWqtfHjh3Lt99+i6WlJaampnz99dc0b95crcqw4oxcIX/XaFBsl1FoJKYmcuXVFVVC88Pg9J3gLQws6Ozcma7OXeni3EUlmKaNDKs9jKmnpvI25i2T3SYzqOagLMOqEomE4XWG08elDwuvLmThtYWc9ztP/VX1+bzh5/zW/jesjHJO1tT2LtkFTbfaDjhWPInvy4bo8M4IKC3rz0oiIDtyE/6pZVNLaQSFeDGYzI36/JKXsGYt21r81vwI84+GIie9DykwKpFJ2x+w/KOF6KXs5YyHZucrUngUiZb+33//jVQqZeDAgenEEks6z8OfE58Sj6GOIS5WLkU9nRKLIAg8D3+uMnrO+54nITVB9b5UIqVJuSaq3J7GZRtnaIaozSzrvoyBuwcSEBugLFeuNzLb7Y31jPml/S98Uv8Tfjj9A3se7WHF7RXsfLiTX9r9wheNvsixfF+bu2QXNPEp8dwOX0uiwXK29bqOsU7ZAl+/Nij7ps3jlyOP1DaA8tKMs4Z1LfTldbj0NB53x7ACWWtemojKFQKbLsdlGvp7l0fkBdREQgJZlcjnJkdKpPAR22YUIjs8dzBi/wialW+G+1j3op5OiSI6KZpzvudUrSne78wOULZMWZXR06lyJ1WiY3Glwt8V8I/2x8bIhqDvgnKVZH/R7yKT3SarvJI1bWryT7d/ci10V1o48vQIfXb2oaJZRXwn+xZ4QYM2qVO7e4epJWAIeRMHdHsYwPQDd4l8T2KroNaa5tGCzMO6H847N2vPidwIPJZ0tO35XSAl8iKZIyZFaw6FoMAjwIP5l+fTbmM7rBZa0X9Xf1beWYlfpB96Mj06VurIwk4LefDFA15Pec36vusZUmtIsTeAAP7t8S8AIfEhrL27Nlf7tnVqy53xd1jZcyVWhlY8CnlE5y2d6bezH97h3gUx3WLN0WdHAehVrVehGEBfbr2bQZsoL+XnmiA3pd25LWNPW2tkeo3RAltrbsvvNVnWLpbIay9ia+lCIM21felpPPryOtSzE42gvLj7Q+JCOOV9ipPeyqTm4LjgdO9Xtayq8va0c2qHsZ5xQS6hSOnj0gcncyf8Iv2YfmY6YxuMzVEl+n1kUhmfN/qcIbWG8MvFX/j35r8cenqIEy9O8G2zb5nZeiZl9MsU4AqKB4IgcPT5OyOoIMku9JSX8nNNoG4ujbpNTdMoqrXmJqyrybL2E9676FNvChKJRGtCnSJKRCOogEnv2u6OPd1Z7SalokFAiU+ozAp13f0p8hSuv76uak1xN+Auwnu3TRM9EzpU6qCq5KpsUblQ11HUrOy5km7buhGeGM7ym8uZ2HRirsewMLRgSbcljG84niknp3DK+xR/XP2DTfc38UenPxhZd2SujKuShkegB29j3mKsa0w7p3YFeixtVKdWN5cmNwYQFO1a1W0iqs7a7Uz1AQlB0ZlvAwKphLLK83uiuc2wKn8w//hzrQh1iigpvXe3QiAr13Z4rKJIXNvaQE7u/i03HrD6zmoG7h6I9Z/WtNnYht8v/86dAGWJsqu9K9NbTuf86POE/RDGoWGH+LLxl6XOAALoWqUrzhbOAMw+Pxu5Qp7nsWra1MTtIzcODzuMs4UzAbEBjD44mubrmnPj9Q1NTbnYkRYK6+zcucClErRRnTpNIgAypv3mRyJAG9f6Ieqs/ec+tfi5T9bbSJAwrIUOOjIpB+/7MWnHA60JdYooEY2gAiIndy8o3b1yRbHLS88zOX0mAgIzDtzl8yNfsv/xfqKTorEytGJEnRFs6reJgKkBeHzuwfxO82nn1A49mV5hL0HrWNVrFQBRSVH8ff3vfI0lkUjo7dIbrwleLOi0ABM9E26+uUmzdc0YfXA0b2PeamLKxYojz44A0KtqwYbCQHvVqQuilYW2rvVD1Fl7Ttss6jOSEyPcsE75QnweaCFidVgBoW5lQWmqGlD3M7Fx3E7fOjXo6tyVBg4NilX5elFQ/d/qPA17iomeCeE/hKvfrT4HAmMDmXl2JhvubQDAWNeYWa1nMaX5FJVXpCTnNwTEBFD2r7LKv6cGYG+iToOEvJMqV1D7l/0kJOunE2VMo6g7kmvyu5YrhALpGF9QqLP27LYRnwfv0Lbnt5gTVEAUB3dvYaPuWme3XEhf13IFPJuSw6peq2i3qR2xybEsuLqA2W1ma2RcexN71vddz5eNvmSS2ySuv77OzHMzWeuxlsVdFqOf0pRfj2pHKXdBcPz5cQAal21c4AYQwIKr83nFMWyYybv0YCXaoE6tbi6NumMVJyVyddae3Tbi80B7EcNhBURxcfcWJuJnUjC0dWpLTWtlXsL8K/NJTNXsjbRxucZc+/QaW/pvoWyZsvhE+DBi+0K+3HanROc3qEJhBVwVBrDBYwOzz88mQeZO36bBOJilb3ab3y7q2khBdYzXRsR7n/YieoIKiLwolJZ0xM+k4FjVexWtN7QmPjmRiQeX0rvKRxoNT0kkEkbWHUm/6v2Yd/kPtpyp+oGvQklRlXJrmsTURE77nAagd7XeBXqs48+PM+7IOACmt5zO/E6flugw4/uUFiVy8d6nvYieoAKioKoqijPiZ1JwtKrQiuomwyiXuI4zt2sxeec9hq+5TqsF5zTqlTHRM6G30xRkgrXGOolrIxf8LhCfEk/ZMmVxtXctsOPcfHOTwXsGIxfkfFzvY+Z1nAdovou6NlMa1ire+7QX0QgqQEqTu1ddxM+kYHB7GEBCyEhkWKd7vSDCU6Uhv+HI03dVYQWlEv087Dk9t/ckPiWers5dWdt7bYErUosUHeK9TzsRw2EFTGlx9+YG8TPRLGnSA0AG70xBhKdKen7D+yrRvV0KJhQWFBtE161dCY0PpaFDQ/YO2auxqj5NUFrCcYWNeO/TPkQjqBDQZFVFSUH8TDRHYavvlvT8hofBD3kV9QoDHQM6VOqg8fFjkmLosb0HvpG+OFs4c2zEMUz0TDR+nLyiTQ1cSyLivU+7EMNhIiLFnMIOT5X0/Ia0qrCOlTpipGuk0bGT5ckM2jOIuwF3sTGywW2kG3Ymdho9Rn7QtgauIiIFjWgEiYgUc4oiPFWS8xvSWmVouipMISgYe3gsp7xPYaRrxLERx6hiWUWjx8gPosq9SGlEDIeJiBRzcgpPgTKcoenwVEnMbwiOC+b6a6Wyb89qPTU69owzM9j6YCsyiYy9g/fSuFxjjY6fX7SxgatIwVPa879EI0hEpJiTnfqugAIJkgILT5W0/IYTz08gIFDfvj7lTctrbNylN5ay8NpCANb2WUv3qt01NramKA1VfyLpEfO/xHCYiEiJIKvwlJwwIgz+pHaFvHeYL02kVYVpUiV6t9duvnH7BoDfO/zOGNcxGhtbU4TFh3Hce4da2xbXqj+R9Ij5X0pET5BIgVNc3a3Fbd4Zw1P6TLs0iMuvLvH7pd9Z0WtFUU+xSFD3e0yWJ3PyxUlAc0bQBb8LjDowCgGBCY0mMKPVDI2MqykCYwP5y/0vlt9aTlxyAuVYhw7WZEx5L/5Vf2kUt+u6IMgp/6skqL6ri2gEiRQoxdXdWlzn/WF4aq7Or7Td2Ja1Hmv5oeUPVLKoVISzK3xy8z1eenmJmOQY7IztaFS2Ub6P7RnkSb+d/UiWJzOgxgCWdl+qNWKIr6Je8efVP1nrsVbVa66efT36VDRly0XlHLW9qWleKK7XtaYR87/eIYbDRAqM4upuLa7zzow2FdvQxbkLqYpUfr30a1FPp1DJ7feYVhXWs2pPpJL83RpfRb2i27ZuRCVF0apCK7b234pMKsvXmJrgRfgLPjv8Gc5Lnfn31r8kpibStFxTjgw/gsfnHvzafUCJrforSdd1fhHzv94heoJECoTi6m4trvPOjt/a/8Yp71Nsvr+Z6S2n42LtUtRTKnBy+z0KgqCxrvHhCeF029qNtzFvqWlTk8PDDmOoa5jzjgWIV7AX867MY+fDnSgEBQDtndozq/UsOlTqkM5DVRKr/kridZ0fSrrqe24QPUEiBUJu3K3aRHGdd3Y0KdeEPi59UAgKfrrwU1FPp1DI7ff4JPQJPhE+6Mn06OzcOc/HjU2Kp8u6ibwMtKG8fnuODT+BhaFFnsfLL3fe3mHArgHUXlGb7Z7bUQgKelTtwdVPr3Ju9Dk6Vu6YaYiupDU1LYnXdX5Ik9UgC1ENCQUjq6GNiEaQSIFQXN2txXXeOfFrO2UobJfXLh4EPSji2RQ8uf0e00Jh7Z3a57mFxfEHb6g/9wihrz/CJuUHZJFTGb7yeZGEWa68ukK3rd1otKYRB54cQIKEgTUGcmf8HY6NOEYLxxaFPqeipKRe13lFJpUwqpUBAkoZjfcpKflf6iIaQSIFQnF1txbXeedEPft6DKk1BIA55+cU8WwKntx+j/kNhZ3wDGDCdg+SU4zTvV6Y+SaCIHDa+zRtN7al9YbWnPQ+iUwiY2TdkTyc8JC9Q/bSwKFBgc9DGymp13VeEQSBfb5zCNGbh75eQrr3SkL+V24Qc4JECoSiUjHOK2lls4HRiVga6xIel5LpdsW5TPiXdr+w99FeDj05wsYbV7HQd8pVvkdxKi3OTZPX8IRwrvpfBfJmBMkVAt/tu46ALpIPSssLI99EISg4+uwocy/N5dbbWwDoSnUZ4zqGaS2n4WzprPFjFjdKetPf3OL2wo1zvufQ09PjxITGBEeYFovruiAQjSCRAiEnFWOQMKGjrVZcbJmVzYKAgIDkPWdpcXcTV7euTrfy07n/rCo/H4gE7gHqlQgXt9Li7M6/D79HtxduKAQFtW1r42TulOtj/Xp6G3GJFpko6ygpqHJjuULOnkd7mHd5Hp7BngAY6hgyvuF4vmvxnUYVr4s7uTkfSjpyhZwfzvwAwNdNvsbZshLOpcP2yxQxHCZSYGSlYiyTxRCiN4+l9z9VaZQUFVmVzSpJf0Ms7m5it4cBeD1rgQzrdK/nFLIprqXFaeefral+utc//B5VobCqufcCHX9+nL+urlNrW03lm6TIU9jgsYGay2syfN9wPIM9KaNXhuktp+P3jR9Lui0RDaBMyOp+ZGKYWqyv69yy6f4mHgY/xMLAglmtZxX1dIoc0RMkUqBkVm5raxFNk7Vfc/ttOJNOTGJ179VFMrfsymaVBpACCyNd5vSqhb2ZYbF2E6etFchVyKa4lxZ3q+1AiyplsJ3XAplgwdGR22hTtZxqrinyFNxeuAHQ2yV3XeNvvrnJ4D2DkaNeuCm/+SaJqYms91jPwqsLeRn1EgALAwu+afYNXzf5ukir0LJC20Ko79+PNnscZMODf7Cy16db7VtFNqfCJD4lnh/P/wjA7DaztfKcKWxEI0ikwMnYZNOKHQN30G1rN9bcXUPTck0Z22Bsoc8rp7JZCVIi4lOxNzMs9qqpeVWILQnKsjKphCSZMlzUpJJFuofwNf9rRCZGYm1kTdNyTdUe83nYc3pu70l8SjwutqnEvg5BhlW68Gka+c03iU2OZdXtVSxyX0RgbCAAdsZ2TG0+lS8afUEZ/TJ5Greg0dYQatr9qKpDX9Y9/pK7gSncD7xPPft6RTanwuJv9795G/MWJ3Mnvmr8VVFPRysQw2EiRUIX5y781v43AL46/hV33t4p9DmUprLZvK61pH9GaaGwHlV7qK3oHBQbRNetXQmND8XR1JGnYY8J11uNJIOPLX/5JpGJkcy9NBenJU58d/o7AmMDcTR1ZFn3ZfhO9uX7lt9rtQGk7SFUayNr+lXvB8B6j/VFO5lCIDgumAVXFwAwr8M89HX0c9ijdCAaQSJFxozWM+hdrTdJ8iQG7h5IWHxYoR6/NJXN5nWt6u73MvoBgpBVHaD2kqYPpG4+UExSDD2298A30hcrQyv8o/0B+KZtO1Z81FAj7SZC4kKYdXYWFZdU5MfzPxKWEEYVyyqs7b2WF5NeMLHJxCJXoM6OnEKooAyhyhVFf758Wv9TALZ6biUpNamIZ1Ow/HrxV2KSY2jo0JChtYcW9XS0BjEcJlJkSCVSNvffTOM1jXkR/oIR+0dwfMTxQuuxVJrKZvO61pz2E1AgJ4zJ58ay17slv3f4ndYVWxfEEjKQ33yT52HPeRr2FB2pDl2cu+S4fbI8mUF7BnE34C7GusaEJSiN9pmtZjK3w1wkEgldauW93cSb6DcsuraI1XdXE58SD0Atm1rMaj2LwbUGoyMt2tu1up93cQqhdq7cmXJlyvEm5g2Hnx5mcK3BRTqfguJZ2DNW3VkFwJ+d/8x3b7yShGgEiRQp5gbm7B+yn2brmnHK+xQ/XfiJuR3mFsqx3y+bfZfmm4by/yWlbDavJcI57yelVe1ADvrpcvnVZdpsbEO3Kt2Y234uDcs2LLD1aCLfJM0L1LZiW8wMzLLdVhAEPjv8Gae8T6Er1SUuJQ6A2a1n82v7X1WtJzLmv+WMb4QvC64uYMO9DSTLkwFo6NCQ2W1m08elj1Y8sHL6vFMVqTwMfsjNNzc5dO8N0CTHMbUhhCqTyhjjOobfL//O+nvrS6wRNOPsDFIVqfSs2pP2ldoX9XS0iqK/ukRKPXXs6rC291oAfr/8O4efHi60Y3er7cDcAU6kEprudTtT/RJXNptViXBOIZvs9ls5sgE7R07nxaQXjG8wHh2pDm4v3Gi0phGDdg/iUcgjja9DU/kmR5//FwpTQyBxxtkZbHmwBQkSUhRKIc05beakM4Byy5PQJ4w+OJqqy6qy6s4qkuXJtKrQihMfneDWuFv0q95PawygzD7vgKgEvth6h4ZLx2I635T6q+rz+dHPOfvygFrjakuYeYzrGABOvjiJf5R/0U6mALj66ir7H+9HKpGyoNOCop6O1iERimEgPzo6GjMzM6KiojA1NS3SuajjIta2MlFtZfKJySy9uRRTfVNuj7tNVauqeRont5/3pnubGHPwU8obtCU8Tk6DclW4MH5tif2O8no+qrOfd7g3P1/8mW0PtiEgIJVIGVV3FD+1/YlKFpU0MvdWC85lGW5JC+tdmdZBNbe45DhM5iv7gcXOiMVYz5ioxCis/7QmVZHK86+fU8WySpbHXHZjGZPcJqV77ae2P/Fzu5/ztIb7gff5/fLv7H20F+E/31rnyp2Z3WY2bSq2ydOYBYVcIdDijzMERSdn+n5aOPSNwVhMDUxoXLYxjcs25cS15kTGZ35OffgdacP9sd3Gdlx8eZG57ecyq03J0c4RBIGW61vi/tqdz+p/xpo+a4p6Slr1/AYxHJYv1HHJa2uZqDbyZ5c/uRNwh6v+VxmwewDXx17HWM845x3fIy+f9xnfMyBRkKzjRbxOMJ80HV1iDSDIW8hG3f2cLZ3Z0n8L01pOY875ORx4coBN9zex3XM74xqMY1abWZQtUzavU9dYvslJ75OkKlKpbl09WwNoj9ceJrtNTvfaz21/5qd2P+V67tdfX+f3y7+rwnAAfVz6MKv1LJqUyzl8VBgky5O5H3if66+vc8rnFHf8YtCL/j7L7SVI0cGGnX1uMbi+q8pz1dY+4L8wcw5q3VpyfxxbfywXX15k/b31zGg9Qys8cJpg/+P9uL92x0jXiF/a/1LU09FKSsY3XQSo45IvDmWi2oSeTI89g/dgb2LPw+CHjD86PlcVR3n5vAVB4IzPGUBZQqoj1VGVzYrkndq2tdk/dD83P7tJF+cupChSWH57Oc5Lnfnh9A95rgTUVMm+OlVhF/0uMvLASJW3BpT913JjAAmCwAW/C3Ta3Inm65pz9NlRJEgYWmso97+4z6Fhh4rMABIEgRfhL9j6YKsyLLe0Kka/G9FkbRMmuU3i6LOjRMWrd/0ZSO3SGQ7qhF616f44sOZAyuiVwSfCh0svLxXacQuSFHkK089OB2Bq86n5+vFRkhE9QXlAHRXdnw97AZJiq7RbVDiUcWD3oN102NyB7Z7baVquKZOaTspxv7wqGz8MfkhgbCC6Ul1SFCl0qtwJS8PiXw2mLTQu15iTI09y0e8is87N4qr/Vf689icrb69kavOpTGk+BVN99V3impA1kCvkHH9+HMg6H8gzyJO+O/uqEpUBfmv/G7PbzFbr+IIgcOLFCX6//DvX/K8BoCPVYVTdUUxvNZ1qVtXUGkeThMaHcvPNTU57n+biy4s8CX1CQmpCltvrSfWoaGlOfFDOY2f2eWemFp8W6tI2JXIjXSOG1x7O6rurWe+xnnZO7Qr8mAXNqjureBH+AltjW75vkbU3r7QjGkF5QB2XfGB09poT2lQmqm20rtiaRZ0X8c3Jb5h6aioNHBrQqkKrbPfJa5jktM9pAPR19ElJTmFIzSEaWYM2oQ05F22d2nL5k8uceHGCmWdn8+RtKgvPnmP51dNMbdePr5t8lbX2TaQ//Oc5amIg0LbMG8Jik1UP0AihDG/f64fmkIOswfXX1wlLCMPcwJyWFVpmeN8/yp/u27oTlRSleu33Dr8zs/XMHNepEBQceHyA3y//jkegBwD6Mn3G1h/LDy1/oKJ5xRzH0AQJKQl4BHpw3vc8p31O8yDoARGJEVluL5PIcDJ3onn55nSq3Ikm5ZrgYu2CIEhoteBcnmUksgqhamMZ/af1P2X13dXsfbSXZd2X5VgxWJjk9hqOTorml4vK8NfPbX/WWlFNbUA0gvKAJks7taFMVBuZ1HQS199cZ+fDnQzeM5i74+/iUCbrHIG8hknSQmGxybHoSnVLXChMW3IuACQSCdKk+hhE/Il98n/zSYGlR0L45+IgZnfuxdgGY9GT6b3bKdIf/m0I/wnZyYBNAO+J3SYKunRIWswbLJGoIWuQFgrrXqV7Bu2d8IRwum3rxpuYN6rX5nWYx4zWM7JdW6oilZ0PdzL/ynxVRZyRrhFfNvqSqc2nZnvu5heFoOBp6FMuvryI2ws3br+9zduYt+nCeO8jQYJDGQcalW1El8pdaO7YnNq2tdN/7u82LpDu69qoRN6kXBNq2tTkUcgjdnntYnzD8YV27OzIyzW84MoCQuNDcbFy4bMGnxXWVIslohGUBzRZ2qktZaLahkQiYU3vNXgGeeIV4sWQvUM49/E5dGW6mW6flzBJUmoSF19eVP2/s3PnEtVQMC3n4sNHYVrORWFLAGQ1Hx2sEaK/ZOqRefx57U9+bvczH9X5SCmaGR+mMoCywkCSgoUkhleCQITeGsrarACyXldWpfEJKQn03dk3XVn/Hx3/YFqraVmOlZSaxOb7m/nj6h/4RPgAYKZvxtdNvmZys8lYG1lnuW9eCYgJ4Oqrqxx7fgz31+74RPioyvYzw8rQirp2delcuTNtKrahvkN9jHSN1D5eWn7Phw9i+3wY09qo1i6RSPjU9VO+O/0d6z3Wa4URlJdr+HX0a/66/hcACzotyPKeKaJENILygDrqu3am+oCEoOiSr0ZcUJjombB/6H4ar2nMlVdX+OH0D/zd7e9Mt82LIrL7a3fiU+LRkeiQKqSWqFCYtuVcZDcfpW9CwCb1C3wjPmH0wdH8ceUPfmv/GwPMK2fox5UZ8/vX4Te/5ex9fI2ZZ2dydMTRTLd7GfWSh8EPkUlkdKvS7b35yRmxbwRXXl1Rvbaw00K+b5l5LkV8Sjxr765l4dWFKq+RtZE1U5pN4avGX2kslBKbHMvNNzc59uwYF19e5GnYU2KTY7Pc3kTPhJrWNWlbsS2dnTvTqGwjjRj22eX35AV1lMhtTHQL/f44qt4opp+dzo03N/AK9qKWba1CPf775PUannN+DompibSq0Io+Ln0Ka7rFFtEIygNpKrpf/FcC+iEC8HMf5cWjaTdyaaOaVTU299tMv139WHJjCU3KNWF4neEZtsuLInJaKCxVSEVXqkvf6n0LbiGFjLo5F+P3LaBdtXLUsKlBdevqmOiZFMl8QIJEYcWk+v+w5ckcHoc+ZtCeQYywqsk2NcavW96M351/48CTfRx7foxLLy9lqrlz4vkJAFpWaKlKgBcEga+Pf83BpwdV2/3Z+U++a/Fdhv2jk6JZcWsFi90XExIfAkDZMmX5rvl3jG84PteSDu+TqkjFK9iLo8+Octb3LJ7BnoTGh2a5vb5MnyqWVWjh2IIeVXrQzLEZ9ib2eT5+TuRVWiGrsbK6XtMe8f78zYMgO+o71NfIMdXB1tiW3tV6c+DJAdZ7rGdx18WFduwPyUve1IOgB2y8txGARZ0X5VnIszQhGkEFSJob+cdDnoTEvHNX58eNXBrpW70vM1vNZN6VeXx25DPq2NWhtm3tDNvl1m2flhQN0LVKV8wNzAtsDYWNurkUOx+cYP2jdyXBjqaOSoPIqjo1bGpQw7oGNWxqYGNkk68bqrrzCYpO5MRHJzj+/Dh/Xf+Lx6FPAPUMs2pW1RjXYBwr76xk2plpXPv0WoY5n3ihNIJ6V+utem3e5XmsuLNC9f/FXRbzbfNv0+0XnhDOP9f/YenNpUQmRgLgZO7E9JbTGeM6JtcduQVBwD/aH7cXbpx4foK7AXd5HfMahaDIdHuZREYFswo0LtuYHlV70KZiG5zMnYr1Qy6r69XOVJ8ko23cjzpFx823OPPxGRo4NCi0eX1a/1MOPDnAlgdbmN9pfua5UoVAXvKmpp2ZhoDA4JqDaVq+aUFNrUQhGkHvoW4GfpqbMiveggKZUAAAXbpJREFUd1N2q+2AsbEPPdctxFK3Gj92+JJRzZ3Q0xElmnLDr+1/5ebbm5zxOcOAXQO4Ne5WpiGHNLf9J3t+Z9/D0/Su0ZZtw37J8D1GJERw++1t1f9LUigM1M+l6OnSmuBUCU9CnxAUF4R/tD/+0f6c8j6VbjtLQ0ulQfSfUVTdujo1rGtQ0byiWsJy6s7n4PPN7PL5nsZlGzOr1SwIvA9ex9XaF2BO2zlsfrCZ66+vc/DJQfrX6J/u/TQNmLR8oA0eG5h9/l3Z+19d/mJK8ymq/wfGBvKX+1+suL2C2KR49BW1qGLSjZGuvZnWfhAGuuo9IKMSozjre5Yjz45w/fV1fCN8SZJnnuskQYK9iT2u9q50qdyFLlW64GLlUmiNhQuTrMJssclN6LbtKddfX6fT5k6cHnW6QHvRpZtTlW7Ym9gTGBvIsWfHMpxDaRR01WVu86bO+JzB7YUbulJd5necr7F5lHTEthn/kZsMfHfvMIavuZ7jmDvGNSMqIZlp+28TFf/uQSEqRueN0PhQGq5uyKuoV/R16cv+ofuzfABve7CNkQdG0sKxBVc/vZrh/f2P9zNw90BAKdIY/F2wVpXE5pe09hI55Ui9314iPCGcJ6FPeBzymMeh//0LeYxfpF+WlUaGOoa4WLtkMJCqWlZN5x1RZz5mRgIVqq7lxItjpCpSAWgi1eeGXA0vy/iLUNYVgNnnZvP75d+pbl0dzy89SUpNUrXNAHC2cOb518858fwEvXb0Uq1tSdclTG6mVId+FfWKP6/+yVqPtSSmJmIob46dfCKC/N05ktV1nCxP5ubrm+x/sp/Lry7zLOwZ0UnRWU7d0tCSmtY1aV+pPb2q9sLVwbXIvA/aRHRSNN22dsP9tTvmBuacHnWaRmUbFcqxp5+ZzoKrC+hVrRdHhh/J8H5hVF3m5hqWSAQarm7IvcB7TGoyiX+6/6ORORQE2tY2QzSCyDoDP82m/zAD/9C9N0zeeS/Hcce2dGL91bQHyLtfCFmNK5Izt9/epuX6liTLk7MtXX4U8ohay2thrGtM1PSoDL+ivzz6JSvvrASUoZHDwwuvaWthkXZeQ+Y5UuqefwkpCTwNe5rBQHoW9iydmOD7yCQyKltUfhdSs65BdFRl/joRneN8guOC2e65nU33NyEJeMBddcJh7xlBUYlROC91JiwhjLW91zKs9rB0RtA3Tb9heO3htNzQUmVs/dPtHyY1ncSL8Bf8ceUPNt/frKq4qmc2msjAQfBBinba/2b1sSMo9SRnfc/yMPghofGhWRqNJnomVLWsSivHVvSp3ofm5ZvnK4+opBOTFEO3bd245n8NcwNzTo08ReNyjQv8uE9Dn1L9f9WRSqT4T/FPp7ac2+dFfnB7GMAXW+8ioEDyXoOHD4+15f4WPj74Mab6pnhP8i6QqkRNIRpBGkCTH2JeGjKq6wmyNNYlPC7z0tXMxhVRj7V31zLuyDikEiluH7nR2blzhm3kCjll5pchITWBJ189wcXaJd37VZZWwTvCG4At/bcwsu7IQpl7YVOQv1hTFan4RviqPEZPwt4ZSVl5PgzlzbFJ/RKJ4l3Vj6WxhO+7V2JYw+oZclwePT9F1e3D0BXkWc4jAYG5dfvzVef5qofVX+5/MfXUVMqVKce9z+9hs8hGtf2GPhuYcHyCSi15SdcldKrciXlX5rHz4U5VXk57p/bMaDmTH/dICMzi/vB+A1Ek6fN59GX6OJk70aRcE3pV60XnyiVLgqGwiEmKofu27lz1v4qZvhmnRp0qlFYjrda34qr/VeZ3nM/0Vsr2E3l5XuSXHutn8uBZNXR4dw6/fw0npiZSbVk1/KP9081VWxGNIA2gyQ8xN6GttAx8ddyUlsZ6hMVl/is5q3FF1Gfc4XGs9ViLlaEVd8bfyVSJt/m65lx/fZ0dA3cwrPYw1eu+Eb5UXloZULYGCPkhJFetGwoLTeUcFLZitCAIBMQGvPMavec9CowNBEGKvqIWMsECuSSCJKkXSBSYG5hTw/pdvlGaF8lJooMiLgR3/2sceXaUiy8vqjw4EiSEoMBfImCgY8DExhOZ1moaJnomtF9alaTot0xoPIHlt5YDYKhjgEyqQ2xyLKEIDGw2mZdRLznw5IBq/j2q9mBW61nUt6/P0sturDiVc2gqRH8W1uYR1HeoT1fnrvR16UtZ0+Lbq0kbVMbfJyYphp7be3L51WVM9U05NfJUgSf+bvDYwKeHP6WqZVWeTnyKRCLJ0/MiP8SnxGO3yI7YpHjWdDuHjUGVDN/HwqsLmXZmGuVNy/Ns4rOslde1BG0zgkp9YnReMvDVKe/s61qW9Vf9NHZ8kfQs67EMj0AP7gTcYeDugVz59AoGOukTCevb1+f66+t4BHikM4LSSuMBulftrpUGkCY9OJosbVYHiURC2TJlKVumLB0rd0z3XmRiZCZ5R/H4RvoSmRiJ+2t33F+7p9vHQMeAalbVlIZRxZaMrzMEn3AfZZfzgDuq7RJTE1nkvogVt1fwa/1xXI6NRwcTuLWZz9JCaqlpW5uQBFS9/g/+EuUV3KZCGywNLXkY/JAOmzqQJE/CKLUNNvyQ45q39ztG3/rl8vqRaRXapDKeRhn9Mhz/6Dg9t/fk0stLdNnahZMjT9KsfLMCO+bgWoP5+sTXPA9/zlX/q7Sq0KrQla4PPz1MbHIslSwqMbZpmwye0rD4MOZdngfA3PZztd4A0kZKvRGUV+XSrMo79fUS+GdIK8wM9dQygkTF6LxhoGPAviH7aLi6IXcC7vD18a9Z02dNum3q2yv1RdJ6OKXxfmn8kFraVxWmbUrPmsTcwJxm5ZtleHglpibyLOxZBgPpaehTElMTeRD0gAdBD9LtI5VIcTR1RE+mR0BMAPGp8QDEpcSx9cZSvs0hl0gfsEbCW4kUuSDn0quM3cPlkqz7bb2PrWnJuI61+dwz0TPh2Ihj9Nrei4svL9Jli9IQau7YvMCON7TWUNbfW896j/W0qtCq0JWutz7YCsBHdT7KVA5h7qW5RCVFUc+uXokN6Rc0pd4IyovScBpp5Z3XvIPovnkYqZJwmjhZ0q32YOQKIc/jiqhHRfOKbOu/nX5bvmP7rWfY6W3mly6jVG7iNJG1uwF3EQQBiUSCXCFXlX/rSnXT6cVogvyGEfKr9KxtYQx1MdAxoK5dXera1U33ulwhxy/SL11Y7UnoEx6HPiYyMRL/aP98H1v+Qb6RnkyPsiZlaV6+OX2r9WfRER1CY1KzVYevVU6fuOS4fM+lKJErBH467KU1KuOZoTKEdvTigt8FlUeohWOLAjnep/U/Zf299ez22s0/3f7J1/Mit4TEhXDS+yQAH9X9KMP73uHe/O/W/wBY2HmhZiQU3mtWnClGVmDumP/jaBGl3ghSJ7SVnbKzTCqhdVV7TMyUOiuvoiumGze7zH5RMTp/KN32MuySlZoYWy/Aidtu/N7PlW61HahtWxuZREZYQhivo1/jaObIvcB7qu7gPar20Gh35fyEEdLE87bcukFAVNZ9nbLrrq2NYYz8IpPKcLZ0xtnSOV2vL0EQCIoLyjTv6G3M23wdM1mejF+UH35Rfuzw2qFM5mYmIKS7jgUUCEh4kDgHswXuWQ9YTNCX18E+OWt9maLo7J4ZxnrGKo/Qeb/zdN3aFbeP3GhZoaXGj9XCsQXVrKrxLOwZex7t4dP6nxZIQ9nM2O21m1RFKg0dGlLdunqG92edm0WKIoUuzl3o4twl38f7sFlxpujow8Q7JcoQEhX7eBfasjdL78JMJZTPOqDWA8TJ3AlQiqul5Zp3q+3AN12NkJPesrY3MyjWIQ1tIM1t/2GVRmisnC+23sXtYQAGOgbUtKkJvAuJvS8C+H6eUEHNJy2M4PYwIN3rSalJuPu7s/jaYgbtHkT5v8tTcUlF5l38V63jfZhzkNvjF3ckEqWgYPtK7ZnQeALLeizjzMdnePPtGyKnRbK5/2aNHStB5k6I3rwM17GcMEL05pEgK/4GEIBMUK9yTRvyGI10jTg64igdKnUgNjmWrlu7cvnlZY0fJ62pKsA6j3VA1s8LTd/Xt3oqQ2GZhbluvrnJLq9dSJCwsNNCjRxPnWbFpCZl7ykqhpR6T1AaHyqXHni2kU2P5rDhSSWmduiYIen2Q6pbV+fGmxskyZOISopStWCwtwnijcFY9BW1aGjXnkXd5hSbEIW2kl3ISPLf77M0t319h/p4BnviEeBBH5c+HHxyEAAdqU6GLuIFMZ+0MMKcw55ECVe48VaZ+Hs34G4GjR2ZRIaztQ3Ratgr7+ccaFuz1KLGzMAMM5vcNb50tnCmR9Ue9Kzak2blm6EjzXhrlCsE7ryMJCQmGZsyejSsaI5MOlhT0y5ybvpG8MmG+zlupy15jEa6RhwZfoS+O/tyxucM3bd15/hHxzPtGZcfPq73MbPOzeKa/zWehD6hunV11fPisOcjRu6dALJovKZew1hPM4nJ3uHeXH99HalEmuHHmiAIfH/6e9Xc6tnX08gxSyuiEfQe71fRdKgxidOvl+Md4c2ia4uY3WZ2tvu6WL3ToXkd/VplBL2Ofg0SBUkyTxo7dxDL4TWAOs0409z29e3rs/n+ZjwCPYhPiVdVE7V3aq+xZqHqNDoMjk5h9J7fSJJ5ql63MbKhuWNzmpdvTgvHFjQq2wh9maFaKrGNnSwITwjHP8qfs09eERCVtVNXW8IY2ox3hDfLbi5j2c1lWBla0bNaT/q69KWLc5d050l7l4JpMKsNtKlqhIPZ02KVx2ika8ThYYfpu7Mvp31O02NbD46NOEZbp7YaO4ZDGQd6VO3BkWdH2OCxgQWdFwDK50W/ujUxOvWI0PhQHgY/0FjZ/jZPZdvgTpU7ZWiKe+TZES69vISBjgG/tf9NI8crzWg8HDZ//nwaN25MmTJlsLW1pV+/fjx9+jTdNomJiXz11VdYWVlhYmLCwIEDCQoK0vRU8kUZ/TIs6rwIUDZYfBn5MtvtK1tUVv3tH+Wf6d/VrKppeJalE3Xd8SeeXk1XIXb55WVVEmyaizuvCILA45DHrLi1gmknf1drH2ez+nzZ6Es299vMi69fEPRdEIeGHWJ6q+m0qdgGI10jVS5ZFkdFQCBMZyVmC8pgtdAK11Wu/Hh2kVrH14YwhrYheU8F2lDHECNdI8ISwth8fzMDdw/EeqE1Pbf3ZNXtVfnONdJ23j/3PvQXanMeo6GuIYeGHaKLcxfiUuLosb0HF/wuaPQYn9ZX3i823d9EivydAK5EIqFxWaWC9a23tzRyLEEQVFVhI+ukD4WlKlKZdmYaoFQ+dzQrObk5RYXGjaCLFy/y1Vdfcf36dU6fPk1KSgpdunQhLu5d5cSUKVM4cuQIe/bs4eLFi7x9+5YBAwZoeir5ZljtYbSt2JaE1AS+PfVtttumM4Leq1h5/+/3vUUieUddd/z/7sxT/Yp/FfWK9R7rAWXYqZdL7kJhgiDgFezFshvL6Ly5M6Z/mFJzeU0mHJ/AzcAzOQ8ArO33F8t7LmdY7WHoSHW46n+V7Z7bWXBlAROPT6TPjj7UX1Wfj47XJkjvd1IJSbd/KqEE683jefxe4lOU5eA2RjY4W6snka8tYYxCwchKmcSZDUn/CS0CGOsak5CaQHxKPJaGlrSt2JbKFpVJkidx/Plxvjj2BeX+KkeTNU34/dLveAZ5Ugx1ZnOksPJdNE2aIdStSjfiU+Lpsa0H533Pa2z8nlV7YmtsS1BcEG4v3NK9p2kj6Pbb2zwPf46hjiH9qvdL9966u+t4EvoEK0MrrVeGLi5oPBzm5pb+BNm4cSO2trbcuXOHNm3aEBUVxbp169i+fTsdOnQAYMOGDdSoUYPr16/TrFnBiV/lFolEwr89/sV1pSv7H+/nlPepLLPwnS2dVX/7Rviq/n7fCNJmT1BxKq3OqUxVQIEgicBYfps/9gynl4kjb2LeEPjiJPUFKbVtamES+iLbck+FoOBRyCOOPD3C0edH8QjwULVZ+JBk6SOQRoDCnIy/oZUz0tONZ8r53rw+9IqA2ABVa4YskbkTbepFWYM2WOpXoqyZMXXKG+Fk/jmOZnNxNHWkvGl5DHUN1W60qE1hjALH3FFZxfJeEmdMcgwdN3ciVaHAwaAJX7VcTNegy6x7OIO4lDjKlSmHQlAQEBvAxZcXsTWy5fsW32OsZ8yJ5ye48eYGt97e4tbbW8w+P5tK5pXo49KHvi59aV2xdaZ5RMWRrDq7a+v9IA0DHQMODD3AgF0DOPHiBD2391QlT+cXXZkuo+qOYrH7YtbfW09vl3fSGmm9zG690YwRlOYF6le9X7rq1djkWH668BMAc9rOKVENn4uSAm+b8eLFC6pWrYqnpye1a9fm3LlzdOzYkYiICMzNzVXbVaxYkW+++YYpU6ZkGCMpKYmkpHdZ69HR0Tg6Ohaa7PYUtyksubGEalbV8PzSM9MOz4IgYDTPiMTURPpV78eBoUoZfts/bQmJD0Ffpk/8rPgsu54XJcWxtDqr5qD817pSX+9n7kufYZipUfIf75V7KgQF9wLvsevhLk56n+Rx6OMsm4Om9YRytnDGzMAMAQHvt2UIftMHIZMyapBkqCLSk+lR3rQ8Fcwq4GjqiKOpo/Jvs3d/5+Ymp6lmqSWd/ht/4daTiun6MFkYQ6D0XwJT3TDWNWZIrSGc9zuPX6QfALbGSmNoQPUBnPU9y+FnhzntfZok+bt7koWBBT2q9qCvS1+6VumqlSrkpYXE1EQG7h7I8efHMdAx4MjwI3Sq3Cnf43oFe1F7RW10pDq8nvIaOxM7AIJig7BfbI8ECVHTo/Ilu5GqSKXcX+UIjgvm6PCj9KzWU/Xezxd+5peLv+Bs4cyjrx5l+hzKF2/vwWo1cqnea1acF7StbUaBGkEKhYI+ffoQGRnJlStXANi+fTuffPJJOqMGoEmTJrRv354FCxZkGOfnn3/ml19+yfB6YX2IUYlRuPzrQlBcEH90/INpraZlup3TEideRr2knl097n1xj2R5MgZzDRAQqGlTE68JXgU+19xSmB2RNU1Wxtvo1sacvD2CA5E5l3LOrdGZLSGe+ET4qPpRfYieTA89mR6pilQSU7POqzGUN8cyeXy6B6yebhwNXHxoXsUwnYFjY2yjcYO4OBqzhcm7jtxCulygNL0Xu/KHuRm2GoDR9UbTpGwTFrkvwjdS6dm1MbLhuxbfMaHxBCRIOOV9isPPDnP02VFC40NV4+nJ9Gjv1J4+Ln3o49KH8qblC3OZIiglKAbuHsix58cw0DHg8LDDmTZazi3N1jbjxpsb/Nn5T75r8Z3q9Qp/V8A/2p8Loy/kKynb7YUb3bd1x9rImrffvkVXpgtAQEwAVZdVJS4ljt2DdjO4VgFUJRaSTlCpMoK+/PJLTpw4wZUrVyhfXnkjyIsRVNSeIIDN9zcz+uBojHWNeTLxSaY3trYb23Lp5SVsjWwJ+j4Iv0g/Kv1TCYCBNQayd8jeQpmruhRUR+TCDK1ldaz4V+4Yre+W4/4NiMVDkkNo6gMsDS3feW5MHXE0e/d32TLlCQgzIiwutUjCCMUprFmYqHuud21+ld8u/YJCUFDTpibbBmzDI8CDuZfn4hPhA4C1kTXfNf+Or5p8hYmeCXKFHPfX7hx6cohDTw/xPPx5urEbODSgr0tf+rr0pa5d3UzbH4honqTUJAbvGcyRZ0cw0DFQJU/nhzV31jD+6HhqWNfAa4KX6rscsGsAB54cyGAc5ZaR+0eyzXMbExtPZFmPZarXPz/yOavvrqZpuaa4j3UvuHOoEBSjtc0IKrAg9sSJEzl69CiXLl1SGUAA9vb2JCcnExkZmS4cFhQUhL29fSYjgb6+Pvr62Sc5FjSj6o5i9Z3VXPW/ynenvmPnoJ0ZtnGxcuHSy0uEJ4YrFYCjtDspWp3S7tyWVhemN0IQBKKSIjAzDSJBGohvbCDuNwIJjA3EIOQpv+ZhTEMdQyqYVcjUwEnz5BjrGWc7hnMRpt4UdrPU4oK653pXx69o93EbRuwbwaOQR7RY14J/e/zL4wmP2f5wO3MvzcU7wpvpZ6fz57U/mdp8KhObTKRVhVa0qtCKP7v8yZPQJxx+ephDTw/h7q/UhLobcJefLvxERbOKKg9R24ptVb/0RTSPvo4+ewbvYcjeIRx+epg+O/pwaNghulbpmucxh9YeymS3yTwOfcyNNzdUPfAal23MgScH8pUcHZscy4EnyjSK99tkPAp5xFqPtQAs6rKoYI1oc8cSpQatDho3ggRB4Ouvv+bAgQNcuHCBSpUqpXu/YcOG6OrqcvbsWQYOHAjA06dPefXqFc2bF0wjPE2QliTdcHVDdnnt4vOGn9O+Uvt026T1PUpVpBKZGKnUCPoPF2vtMoJSFamcenZdrW3VLa3WVPPF2OT/t3ee4VFUbQO+dze9J5BKCb0GQg0gVQEBqaIiTUJRiqiIfPqCDYUXEVEUXgURgaBU6RB6L9JLgEAIIfQUUkhIb7vz/ViyYUnbJJvsJjn3de0FmTlz5szZ2TnPPDWJyKRIrc/jpMfq/ydrb8tUZebZR0tJzqxCCmgCTO80Hcsa7TXCjqOFo3hTr4AUpfr3wBbdCJgYwDtb32F/6H7G7RjH4buH+b3f74xsPpK119TCUMiTED4//Dk/nv5RIwzZmdvRqGojGlVtxGcdP1P7dtzyZ3vwdg6EHuD+0/uafET25vb0qd+HgQ0H0qdeH+HoWgpoBKGNQ9gevJ2B6weybeg2etcrXEucF3bmdrzV9C3+uvIXKy6vyBGC9OAcvf3mdlIyU6jrWJd21XLyDU0/OB2VpGJQo0F0qtmp2P0L8kbv5rD333+ftWvXsn37dho2zFn47e3tsbRUZ9OcNGkSu3fvxs/PDzs7Oz788EMATp06pdM5DKlO+2D3B/x2/jeaODchYEKA1pvcwTsH6fm32u58ZeIV9t7eq8npcHrc6VyVsw3BtcfX8AvwY821NcQnuBRYKyibde+1L1S7oIu5wdnWlEWj7IlKeZwj1OQh2CRnFq0QpaOFI242blofb5WE79kVhR9cQic/QfngdGgsw5YVLvQ/f6+rJBXzTs7jqyNfoZSUNKjSgH/e/AdvN2+yVFmsD1zP7OOzuRV7C1Dfh590+IQPfT7MU6BJyUzh4J2D7Ajewc5bO4lKjtLsM5Gb0K1WNwY2HEj/Bv3xdPDU05ULQF0PbuimoWy9uRUzhRlb397Ka/VfK1Zfx+4do9uqbtia2RIxLQJrM2vi0+JxnKcuOxL9aTRVrXRLW/E8fdb0Ye/tvXzd5Wu+fflbrXMpZAquv3/d6F6mi4OxmcP0LgTl9xa9cuVKRo8eDaiTJU6bNo1169aRnp5Or169WLx4cb7msBcx5CTGpcbR8NeGRKdE82PPH5n20jTNvjtxd6i7SB0qv2PoDnaF7GLpxaUAxH4Wi5Nljp2kLH03opOjWRe4Dr8AP00NLQBnSxeckheTlp53/pii+ATpushEms3QypqcH1amVrjbuGsJNq7WrrmEHRdrF8zzygdTRpEOgvJBYWkEQMLJ2oyv+jXFzU7793jywUmGbhpKWGIY5gpzFvZeyPjW41FJcOZONNtvHGXrrVXcTtoLMhUOFg5MbT+VKe2m5KvdUaqUnAs7x/ZgtR/RzZibWvtbuLVgQIMBDGw0kJZuLYV2Ug9kKjMZunkoW4K2YKYwY8uQLVrRV7oiSRL1/1ef0LhQ/Ab64dvCF4AG/2tAyJMQ9ozYU2RN0+Okx1RbUA2lpCT4g2AaVGmASlLR7s92XAi/wKQ2k1jcd3GRx2qMVHghqCww9CSuuLyCcTvGYWNmw60PbuFuqzbxZKmyMJtthoTE992/Z1/oPo7cO4K1qTVJnydpji8Lv5kMZQa7Q3bjF+DHrpBdmsgnU7kp/Rv2x9fblz71+nAoKEYvodXbA8KYsj6g0HYqu+W4OT/KV6hxs3HD1ca15CUtdBSC/tu4J18M2SgWmUpAfmkEstMYPB8x9uLvMSYlBt9tvuwO2Q1AT4//42n0qzxOyEmjYG+lItXyb0JSNgLgYOHAx+0+Zkr7KZoyOvlxK/YWO4J3sCN4B/8+/Fcrj1R1u+oagahbrW76D42uRGQqMxm2eRibgzZjKjdly9tbilVDcM7xOXx55Eu6eHbh2OhjAIzYMoK119Yyq9ssvur6VZH6W3R2EVP2TsGnmg9n3z0LwPrA9QzbPAwbMxtuf3hbE5Jf3jH0+v0iQggqBipJxUvLX+Js2FlGNBvB6sGrNfvsv7cnIT2Bd5q/w78P/+VO3B0aVmnIzQ/Ub3qlGZIuSRKXIy/jF+DH2mtriU3N8fJv49EGX29fhnkNo4qVtmlLH0JZccwNpYoO4Z6pSDQkiXZN32DDmxuMMoeTQL/kda9n55Z6MWwetH+PKknFgtML+HbfdpzS//OsTe5jRnZJZcu9mdyIvgGAvbk9U9pN4eP2H+NoWXil9ujkaHaH7GZ78Hb2he7TZAcHsDWzpU/9PgxoMIDX6r+mU38CbTKVmYzYMoKNNzZiKjdl85DNWskPdeFRwiM8f/FEJam49cEt6lepzy9nfmHqvqkMaKh2wC4K7f5sx7mwcyzsvZCP2n1EelY6jX9rzN34u8USqowZQ6/fLyKEoGJyIfwCPst8kCQZv796ADerhrjYWvCOfwdC40PoWKMjVx5fISkjif4N+rNj2I5SC0mPTIpk9dXVrLqyisCoQM12dxt3RjYfia+3L01dCq6qXVLznK5Zi4t6bSUi/iGJ8ffp6qfWCB0adZCRW0YSkRQJQAwSD2Xq0fas3RP/Ef7iLbsSkH2vRz5NZfauIJ4k550UM697VqmSaDtnD7HJKi2h6cVjjn/Wja03NzPr2CyuR6vzg9mZ22mEoedN48+P6cXfX1pWGofuHGJ78HZ23tpJ5LN7F9TlX7p4dmFgw4EMaDiA2o7aQSj6piKlX8hUZjJy60j+uf4PpnJTNr61kYGNBhapj9fWvMae23v4vNPnzOk+h5MPTtJ5ZWfcbdwJn6Z7nblbsbdo+GtDFDIFYZ+E4Wrjys+nf+aT/Z/gbuNOyIchhUaklieMYf1+HiEElYBBft9w4WYtreR4CpNEIuSLcHEK5/5TddHVLzp9wX+7/1ev2pK0rDR2Bu/E74of+27v0xQGNVeYM6jRIHy9felZt2eZpvI3xqzF2Y6Fnvae3Pv4HrOOzWLm0ZlYm1rncsD2qebD4VGHK9QDR5A/xfk9FvUYlaRiS9AWZh2bxbUotS+crZktH7X7iKntp1LFqorOmliVpOJ82HlN+H22cJVNM5dmmjIerT1a61WzWRETcWapsnhn6zusD1yPidyEjW9tzFWrqyA23djEWxvfwsPWgwcfPyAtKw277+1QSSoeTX1ENbtqOvUz88hMZh2fRe96vdkzYg9xqXHUXVSXuLQ4lvVfxrut3i3mFRonxrJ+ZyP0/8Vkb2AEATfbokA7CkCZZYNzxuckPM0pqNrCrQVQtDDdvJAkibOPzjLJfxLuP7kzZNMQdofsRikp6VC9A7/3/Z2IaRGsf3M9fer3KfNaRsZYfDHbEbylu7qa/NiWY5HL5CRnJmMiU89P9hv9ubBz+CzzIbagZGGCCkNxfo9FPUYuk/NmkzcJmBjA5iGbae7anMSMROacmEOthbV4Z+2PTFx9KZd2ODutxN7ACM02uUxOu+rtmNN9DoHvB3L7w9sseHUBXT27IpfJuRZ1jTkn5uDzpw81fq7BRP+J7AnZU2CWc13IfrnRZYzlCRO5CX+//jfDvIaRpcrirY1vsTVoq87H92/QnyqWVQhPDGd/6H6szaxp6qzWuOuaL0iSJNZcWwPkVIyfe3IucWlxNHVuyugWo4t2UYIiI4SgYqBUSXy7U23vz60SVyfht0odBZJ6erPDGnWt4v1iu0cJj/j+5Pc0/q0x7Ze35/eLvxOfFk91u+p83ulzbk6+yalxp5jQZoLBfQR6e7lz8j+vsO699iwc2oJ177Xn5H9eMdjb4qUItWaqpZtaCKpuV50+9foA0K66OheHjamN5q35RswNWv/RmgdPHxhgtIKypDi/x+L+huUyOYMbD+byhMtsGbKFFm4tSEpP4cjVqs88krTJ3vLtzhsoVXkr6+s61WVqh6kcHX2UqP+L4q9Bf/FmkzexMbMhPDGcpReX8tra13Ce78yb/7zJ31f+LrKAn/2sy7tQceFjNHZM5Cb89fpfDG82nCxVFkM2DWHzjc06HWtuYs7I5mrBZUWAOh2HpqK8jvmCzoadJTQuFGtTawY1GsT9+PssOrsIgHk95lWYorzGjBCCikFh2WdlyDHBGXOV+q2gnlM9ABp5mCBTPH0WjZLXcWoVs09tJ1IyU1h7bS2v/v0qNX+uyYxDMwiODcbSxJKRzUdy4J0D3Jtyjznd5+gld4RSJXE6NJbtAWGcDo0t0UMtO2vxwBbV6FC3ikH9BjSaoGdCEMB7rd4D1Lb4Fm4tSMxMpJ1HByxVzbHK6kLkEzvaLG2rcWwVVEx8ajvhbm+Rb4nd53+PJTnmeeQyOa83fp1L4y8xv+tWTHDO07cItDO2F0YVqyq84/0OG9/aSMynMewZsYeJrSfiYetBUkYSm4M2M2rbKFx/dKWbXzcWnF5A6JPQfPvLfh78fOCWzlnlyysmchP+GvQXI5uPJEuVxdub3mbTDd1KHI1tORZQJzqMTo7OSZqooyZozVW1FmhQo0FYm1nz5ZEvSVem83Ktl4udx0hQNISYWQx0VYkrJEesTK2wNLUkQ5nBWxvf4LEiBWfl57naZj8Gh7SXM9F/PBuubyAxI1Gzv4tnF3y9fXmzyZt6r1BdEe39AKmZqQRFBwE55jCAvg364m7jTkRSBNM7TSc03JYHt8fi8pxvV9aTaDov+RD/Mf+lQw3jzWQuKD4KuYyZ/ZswafUlTRHVbLJ/jzP7N9ES4otzTF7IZDLqO7YGAgodp67Pm2zMTczpXa83vev1ZrG0mIsRF9l+czs7bu3g6uOrHLt/jGP3jzFt/zSaODfROFb7VPNBLpPnE0FXMNtuHKaOa5dyG8atkCvwG+iHDBl/X/2boZuGsu6NdYUWKm3u2pw2Hm24EH6BNdfW0LlmZ0AdOCNJUoGpNzKVmay/ri6/NLL5SC5FXGL1VXWk8fye80XajjJCaIKKga4qcaUsDldrV1SSitHbRnPo7iEUltf4T19H3F/wm7GyyEDmuJxPjr/Cn5f/JDEjkdoOtZnZdSahH4VybPQxxrYcWyoCUEW09wMERgWilJRUtapKNdscJ0UTuQljWowBYNOl2zilf5bLt0tBFWxSptJ7+XRNbhhBxaM4fmz68n0rrmmtKMhkMtp4tGH2K7O5MvEKdz66w8LeC3ml9isoZApuRN9g7sm5dFjeAY+fPBiw8msmrr5YJAEIYOH52bj95EbzJc2Zuncq/rf8SUxPLPxAI0IhV7By4EpGeY9CKSkZtnkYGwI3FHrc2BZqbdCKyyvwcvHCTGFGXFqcpuBufuwP3U9MSgwu1i50r92dTw98CsDwZsNp7dG65Bck0AkRHVYM8gsH9yAGR1kioELJU6LMZ9HavSVNnJvw99W/iZcrWDpiFz3r9uRpWiI/H9vJ7uCTXI05SbpcHenhoGhDB49eDGjUlXHtu2GqUJTKNaRkphCVFMMbv10nNil/81yZh7XrkT8u/sEE/wn0rNOT/e/s19p3J+4OdRfWp1racq3ovueRUKEklgiL9/B7fQXveL9TFsOu8Ogr1FqfIdvF6au8p5WIS41jz+097AjewZ7be0hIS6Ja2nIUVM3XRJcXluZpmLvP4crjy1rbTeQm+FTzoXvt7vSo04P21duXixQUSpWSd3e+i1+AH3KZnDWD1zDUa2i+7ePT4nH/yZ20rDTOv3ee93e9z/nw86x7Y12Bxw3fPJx1gev4yOcjetfrzWtrX8NMYUbwB8HUcqhVCldmHBh6/X4RYQ4rBnmpxD2I4bD5NCxkzxf0tIKIYIgIZio2ZGHCuZQ4Rm8bzaYbmzQh2jKFjHZVxpMS+xoJyQpuhMCNkDRWHT9aqElKJamIT4snNiWW2NRYzb8xKTE5257bnv1vWlYa5spmBdYOK04VeWPickRuf6Bs6jjW4SW3UYTdy1sAghzfLlNVY0ZtG0VUcpRWmRRB0dGX6VXfJtxsP7bSPubF4/VhWisujpaODG82nOHNhpOhzOCPU0f4cVeWzsdnj+rnt16it9clopOjOXLvCIfuHOLg3YPcibvDqYenOPXwFLOPz8bK1IrONTvTo04Putfujrebt1EmKFXIFSwfsBwZMlYGrGTElhGoJBXDmw3Ps72DhQODGw9m7bW1rLi8grYebTkffp7zYefzFYIS0xPZdnMbAMO8hvGev9pP8UOfDyu0AGSMCCGomGSrxLMfxI6yxBcEoNyYqLL4YPMwLsvUmpd6TvUY7T2amhYD+HrLg1xvgxFPU5m4+iI9W93Hzv5OngJNXFqcVor9omAm063IX1F9EoyFF8PjX6RL9X6su1d4PwpJHXH3fwf+j8fJj5nXY56w1xeD/LKlZ5tedTUl6asfY+DF50g2bmXsk2emMKOGrRe6+Chl8+IYna2dGdJ0CEOaDgHgXvw9jUB0+O5hopKj2Be6j32h+wCoYlmFV2q/Qvfa3elepzt1Hesaze9KLpPz54A/kcvkLL+8nHe2voMkSYxoPiLP9mNbjGXttbWsvbaWH3r+ABTsHL315lZSs1Kp71Sf69HXCYwKxMHCgc875/YXFZQuQggqAb293OnZxI1zd5+Q/tAMjhZ+jJnCjEaOtXCzUReL3RC4kaePagKOeYbbS6jYc8maMItfQJa/sGNjZkMVyypUtapKFasqVLF89rHK/9/rjzIYtuxsoWMuiU+CoVCqlFx9fBXIWxME0KfBS6w7eanwvmRxmv/PPzWfqOQolvVfhqnCVD+DrQQUFmotQx1q3bOJW4GaD331Y0w8/xwxZDZmXX/nH7xcl471nAsdYy2HWoxrNY5xrcYhSRKBUYEcvHOQQ3cPcez+MWJTY9l4YyMbb6hrrXnae2oEou61uxvcyVouk/NH/z+QIePPy38yatsoJCRNWPzzvFz7ZTztPbn/9D5xqernxaWISyhVShTy3C4N2bmBhjQdwtdHvwbgy85f5sokLih9hBBUQjQqcUtnnYSgDGUGN2NvcjNWXUvMXNkMN1X+N362SWZU41k0rqbIU6BxsnTKu5J6IfjUlnC3tyjUJyG/cF9jJjg2mNSsVKxNralfpX6ebTrWc8PSPI2UdDNkecQIZF//d699zohtwzTbV11ZRUxKDP+89Q9WplaldQkVisLSSuhqetVXP8ZGSU1r+iA7/L+w58HUng2LLKDJZDKauTajmWszpnaYSqYyk3Nh5zh09xCH7h7i9MPT3H96nxUBKzQ5d7xcvDT+RF08u+g9KEQX5DI5S/svVQtEl/5g1NZRqCQVo7xH5Wo3psUYvjn2DftC92ky0t+MuZmrZFFkUiQH7xwE1L6Z4YnheNp7MtlncpldlyAHIQQZmGxTS2EMbjiagS10S8Ou87kN7JNQmmT7A7Vwa5Gv34FCLmNaL09m74hEQqUlCD1//b293FHJ1Cn2s9kVsouef/dk57Cd4u1NB0qaLV3f/QhyU5bPA1OFKR1rdqRjzY583fVrkjOSOfHghMZ8FhAZQGBUIIFRgSw8uxCFTIFPNR+NP1H76u2L9eJXHOQyOUv6LUEmk7H04lJGbxuNJEn4tvDVaje6xWi+PfYtR+4dyfELCj+fSwhaH7gelaSitXtr/rz0JwDfdf8OC5Pyp3GvCBifV1oF55jvUZJmJGk+/iPX6HRcaZmkjLHUhT54MVN0frz7UhucPbahRDuT7ovXP7L5SFYMWKHV5tTDU3RZ2YVHCY/0OPKKib7CwcsirLwyY6jngbWZNb3r9Wb+q/O5POEy0Z9G88+b/zC+1XjqOtZFKSk5/eg0s4/PptuqbjjOc6T36t7M/3c+lyIuFdsvUlfkMjmL+y5mUptJSEiM2T6GlZdXarXxdPCkR50eABoTWF6Zo7NzAVmbWpOYkUhr99YFRpEJShehCSpjXlvbl6mD/RjceDAAXepb4W4fbFCTlLH4JOgLpUriVGg0VlldcFT4oFRJBV7LlK5dGbV1NJ6Wr/DLqytxtbPM8/rHtBxDliqL8f7jNduuR1+n44qO7Bu5j0ZVG5XaNZU2uoR7lyQkXBdTi5O1GZFPUzkdGptv39n95GcSK68mXGOq0G4Mz4OqVlV5q+lbmmSF2U7W2eazvJysX679ssZ8VhpO1nKZnN9e+w0ZMhZfWMy47e9xN8qE1q6vaOZobMuxHLhzgJDYECC3c/TNmJtcjLiIHDmnHp0C1IkRjTFKrrIg8gTpi/AA+KNroc1akcRlmYp21dqxfeh2XG1cjbL6enllb2AE3+y8QWQRQqdTM1PxWOBBfFo8e0fspVe9XgWeY/G5xUzeo22/r2JZhd0jduNTzafkF1HG6BJuro+Q9Pzucwnp2b2es2gV1PfewAgmrr747LjcJszy9nupqBnbS4tsJ+tsgejovaMkZSRptalpX1MjEL1S+xVNIIq+zv/W33M4c6O6Vo4xd3sLZrxWH9+93sSnxQPqQJjEGYma/EhfHf6K/574L27WbkQmR9K3fl/8h/vrbWzlAWNbv4UQpC/iH8KvrSErPd8mmTI57S1NuZQaDYBCpmBGpxl8+/K37L/+WDwIS0h+odO6LI4f7v6QX8//yhuN32DTkMLrBi08s5CP9338rH8ZEhLWptZseXsLr9Z9tfgXUcboMmdAsec1r/O9eJ/nJQQV1PfNmJu0WfQuDhnv5lqEytvvpST3rEBNpjKT8+HnNf5Epx+eJlOlna6kqXNTjT9R11pdS+RknfOdZccjqsn+X6sml9hy92vMFGZkKDM4/9552ni0QZIk6iyqw734e4Bas3R14tVcPkMVHWNbv4UQpE/iH8ILVZqvPr7G6O2jAXgik7F9wkXWBa7jx1M/opSUALjbuLN5yGZ8qrU3GpV4eSM7+25hZpL8su9ee3yN5r83x0RuwqOpj3QKz53/73w+O/jZs/7VglB2McZhzYYVcrTh0WXOXO3MARmRCcWb1/zOe+7uEyIT0pi18zpPUjLyzFCcX99v/PMGW4K20K/+AD5vt6Lc/l5Kes9WJopiLkzOSObkg5OacPyAyIBnAouabCfr7HD8DtU76Oxkrct35mQj51JWP2QyCQmJJX2XMLHNRP598C+dVnZCLpOjklS82/Jdlg1YVuS5KO8Y2/othKAyoNffvdh/R122oY5jHa5NukZcahwD1g3gUmROnpoBDQew+vXV2JrbGmqo5ZbTobEMW3am0Hbr3mufbyhy+z/bczbsLPN6zOOzjp/pdN65J+by+WF1gjM5clSoHTQX9l7IR+0+0nH0hkHXOdOFgua1pOd/vu+zj87Sfnl75DI5VyZewcvFq1jjNQSSJBGVHKWJejoeEsnF650KPa44c1uRKKm5MCYlhiN3j3Do7iEO3jlIaFyo1n5LE0s6e3bWmM8KiijV9Z61cVvO9adbAXUixeUDl/P+rvdZcmEJAFamVoR8GIKHrUehfVU0jG39Fo7RZcDqwavx+MmDLCmLO3F3mLpvKkv7LeXihIusvrqaif4TSc5MZkfwDlx+dOHnXj8zofUEo8meWh7QR+j0e63e42zYWf689CefvvSpTvM/o/MMMpQZfHPsG1SoNG95U/ZO4XHSY/77yn+N9nvUZxj5zqBjtPR8rUhhvkX9ziRJ4j8H/wPAKO9RRi0AxafFcz3qukbgCYxW/xuTEqNpY5XVBWcKF4Iqc7i/PrKDv+hkfT/+vsaf6NCdQzxOfsz+0P3sD1W/qDpZOvFyrZc15rN6TvU0v2Fdv4su1ftphKDz4efJUGawPnC9Zv+0DtMqpQBkjAghqAxwtnbm886fM+v4LEBd2LNX3V4MbjyYkc1HMrjxYHy3+bLpxibSstKYtGsSi84uYuvbW2lYtaGBR18+0Efo9Nteb/Pxvo8JeRLCsfvH6Farm059zuw2k0xVJnNOzEEl5QhC3538jqjkKJb0W4KJ3Ph+avoMI19w7huWXB/HMK9h+Hr74lPNp1Dhr6jf2d7bezl2/xjmCnO+7fZticesD1IyUwiKDsol7OSXNkGGjHpO9fBy8aKqSQf2519ZQUNlDfcvrezgng6ejG05lrEtxyJJEtejr2v8iY7dO8aT1CdsDtrM5qDNANSwq6ERiBxMdAt8MDFJ0fgEBUYFsv3mduLS1JmkXaxd+PSlT3Uer6B0EeawMiJTmUm1BdWITlE7RTtYOHB14lVq2NfQtDkXdo7BGwYTlhgGqB+YE1pPYEGvBViaWhpk3OUFfVXknrBzAn9c+oPhzYazZrBuOZwgR0sx/9R8QO13oJJUSEgMajSItYPXGt13qMucVbU1IS0rncRUOeThtwMScpMEkuymEp0apdnaqGojfL19eaf5O1SzyzvJZ1G+M5lMotXSVlx5fIVpHabx46s/Fv2CnztvUX3vMpWZ3Iq9lUvYCX0SquVv8jw17Grg5eKl9WlUtZEmy7ihq8gbO7qanl5pdY0m1U3yzaafV9mK/MhUZnIh/ILGn+jUw1PaTtaSnFqZfyEp7cnr9yChQkkscot36VS1ITdj1JUBWrm10rg+zOg0g7faTACHGrmOrwwY2/othKAyZGfwTgasH6D5u6tnVw6NOqT1I1WqlHxz9BvmnpyrcZx2sHBg5YCVDGo8qKyHXK7QR6qBC+EXaLusLeYKc8KnhRcpG7QkSUzdN5WFZxcCakFILpOTqcqki2cXtg/djoOFQxGuqPTRZc6AfELbVYCMaLPvSFWcxlxhThWrKkQnR2sWDhkyetbtia+3L4MaDcpVZiS/84OEDJnmO1tzdQ0jt47EztyOOx/doYpV8XxkCvMvUUkq7sbdzSXsBMcE54o4yqaKZRWauTbDy9lL/a+LF02cm+j0XYv0GPmzPSCMKesDCm0XbfoDKSbH893vYOFQ5LqK2fdptpN1tvnscsRlLJTtcc74HF5I0ZD9DZqZfcMV+S0s83xpeIaJOXxwsVIKQsa2fgshqIx5aflLnH50WvP37Jdn82WXL3O1exD/gDc3vqmVbKtTzU6sHbxWS3sk0KakTpSSJNHqj1YERAbwS69fmNJ+SpHOL0kSH+z+gMUXFgNgIjfBTGFGSmYKzV2bs3fEXtxtjWtRK26eIFc7M15t8ZRHmbvYe3svkUmRWv2aK8xJV+akjLAzt2NIkyH4tvClY42OGnNZXn1nEc28wW0Z4dOU9Kx0Gv3WiHvx9/jule+Y0XlGsa8zL/+S7MXLzvUfQlM3k5KZkufxNmY2ao2Os7Z2x8XapUR+XyJPUN7oqgnq6H0BmXkIsamxxKbEav59mv602Oe2MLFQC03PC0eWauEoNjWWoIdmREZ0RvZc3ccsokmy8KOr3V22J8QXfpLxx8CjRbHHWF4xtvVbCEFlTHBMMI1/a6xRoStkCk6MOUGHGh3ybL/26lom+E8gKVOdDMxEZsIXnb/giy5fiCrm+VDS7LuLzy9m8u7JNHVuyrVJ14q8wEmSxPid4/nzsroukIncBFszW+LS4qjlUIv9I/fnW9TVUJQ0Y7QkSVyLusbe23vZF7qPE/dP5Ks5AajnVI9RzUcxynsUng6emr6DQo7zx6npZMjvMKBBX77p9g3rAtcz/9R8nK2qsm3sCSyrNijStcWmxHLtcSAf/BVPUqqCgswYYRbjMDcxpbFz41wCT037mqXm5G7IjNHGlK36xXGVxFyYpcriSeoTLcEoNjWWmJSYnG0vCE6xqbFkqbJ0G6Akx1zVFIXkiFIWR7r8OshUtJTkXMKm8OOH/wMFpeKwqlIhNUXGtn4LIcgATPKfxO8Xf9f8XcuhFgETArC3sM+z/dO0p0z0n8j66znRBdVsq7Fm8Bq61io8S7WgaDxNe4r7T+6kZqVyauypfAXUglBJKsZsG8NfV/8C1IKQs5UzEUkROFs5s2fEHlp7tNb30I2GpIwkjt47qhGKbj+5nW/bTjU68W6rd3mzWnusl3YuMOFoQWaEpIwkrkdd50zYGU4/PE1gVCD34++TlJmEubIZbhlzCx33D0M8GNyimVE6spcGxq6FKoq5UJIk0rLSSMlMKd4nK4Wk9CQS0hNISE8gMSOR5IxkUjJTSMtKI12ZTqYyU5MGIz90FoIUZqDMyH9/BTWZGdv6LYQgAxCXGkfNX2pqpXof6jWUtYPXFvimeerhKYZsHKJxnAYY1GgQS/stxcXapVTHXNkYvW00q66sYkyLMawYuKLwA/JAqVLyztZ3WBe4DgBTuSk17GtwJ+4ONmY2bHt7G93rdNfnsI2W0Ceh7Avdx97bezl05xApWblNTm1lZpxTFR4JlTHuIJdlKg7fPcy5sHMExQQRlhiWq3TC81hldcE5s/DcTwuHtmBgi7wduSsaZZmtOkuVVWzh5G6kPUF3mpKRYa3pT66Ix8RhG+mm5zTtUjNT83VSLw1kyLAytcLK1ApLE0vMFGaYKczwUmax4Ulk4R3oQgU0mRnb+i2EIAOx5PwS3t/9PpCTbXjlwJWMbjG6wOMylZnMPj6b7058p3GctjCxYH6P+UxqO6lIkRCC/MnO7mplakXEtIhip9nPUmUxfPNwNt7YCKg1Qk2cm3A1MhAbvPmwzZf0b9yV1p6OXLwfZ3QmidIgQ5nBvw/+ZV/oPnYE7yAoJgjQ/Q06u/5eQdia2VLdrjpNnJvgU80Hc2Uzft5deKXxypKYsLDMxwCO1vD1G1mkKQvWnuS1PVuDkv0pyDSqE/mYnvLDTGGmEVAK/JhYYW1mrVvbFz7mCvO8X1p1rCOpE0IIKnWEEGQgslRZNF3clFuxtzTbrE2tuTThEg2qFO7zEPoklGGbh2k5Tjeq2oi/X/+bNh5tSmXMlQlJkmi6uClBMUGatPfFJVOZyZBNQ9h2cxsANqpOOCvfR5WVc+/KZaB67pdoTCaJ0iYiMYJ9t/dx5sJSfg+7UWj7bCFIhgw7czuq2VWjuUtzXqn9Cu2rt6euU91cUWgiHF0bXZ2OI81mkK64prfzPq89KcrH2lR3QcXS1NKw5kw9CkHK946gqNZKL30ZC8a2fgshyIAcvnuY7n+pzSGmclMyVZm0dm/NqXGnNFWHC0KSJP668heTd08mOTNZs31ci3H82OtHowvHLm/8fPpnPtn/Ca3cW3Fx/MUS9ZWhzGDwhsEcvvnkWXgtL9TLyrsYY2UJkU7OSObI6V/od+SHQtsWpAmyMrHC3daduk51qW5bHXdbdzxsPXC3cedhlBML9iQhQ4Sj6xp+7uC2lSpOd3NpT3IJKTpqU/LVnlQk9CgEdbcwpXaTQQxuPJjutbvrXOPMmDG29VsIQQZmwLoB7Ly1E8gJKf6/Dv/H/Ffn69xHTEoMk3dP5p/r/2i22Znb8WufXxnZfGTFf+iUEjEpMVRbUI0MZQYXx1+klXvJ3shSMtJoPmsbmVk2eRYMfZGKrp1QSSpO3D+B3xU/Nt3YRP30FL2Zw/LDUtkBp4zxWtXnzc1S8Gl0n3b1LHC3eSY02brjbuNeIRadvNBHrT1BPsQ/hF9bF+jgL8lNkelgInz+Xrc1s6Vvg74MbjSYPvX7YGOmg/O1EWJs67cQggxM6JNQGv/WWG0zf87u/f2rM3i/Y68iLX6H7x5m1NZRWo7T7aq1Y8XAFTRxblIaw6/wDNs8jPWB65nYeiJL+i0pUV/FLVha0Rai0Ceh/HXlL/66+hf34u9ptg+w82T707hCj/+5+essDT9DcGyw1vbns3QXSBH8S5wsnbQEIw+bHAHpeWEpOxt4aYab67NvYR4sZeIfQkps/vuTHsPaIYV2c67vfFZFXWFb8DbCE8M1280V5vSq14vXG71O/wb9800eaozpD4xt/RZCkBEw/eB0Fh0/nusN1cXWlFkDmxVJRZ+amcqsY7P44dQPqCT1g10ukzOtwzRmdp2JtZl1IT0InifbZGlrZkv4tPASvX3paoJ4kYoQsZSQnsCmG5vwC/DjxIMTmu125na83fRtfL19ecnECtkf3Qrv7JmzaEhsCP63/PEP8ef4/eNa+V1szGzwtPfEVGFKYnoiUclRJGYkFtq1DJmm9ltRIo0cLBxwUbxKVvzrKLNsNdvtrVT4drZmoLcn7rbuuXyVdKU0QtlFtmoDoqPJ7KdmAxjz2kIcLBw4F3aOLUFb2BK0hdC4UE0bhUxBt1rdGNx4MIMaDdIUZjXW9AfGtn4LIcgI2Hr5Lh9vuA7k9hN5vnRAUbgedR3fbb5cjMjxZXGzcWNJ3yUMbDhQmMh0RCWpaPC/BoTGhbJ8wHLGthxb7L4qmyZIqVJy5N4R/AL82BK0hdSsVEAtlPesk1NKQ1NTTQczQn65U56mPWVf6D78b/mzO2Q3sak5b+EKmYKONTvSt35fvJy9eJTwiHNh5wiMDuT+0/vEpMTolCDPVG6KlakVFiYWmMhNyFRmEp8eT4YyA0tlhzx9vV4sLWJvbq+tSXpey/Tsb3dbdy1huzRD2Y11oazw6HCvpyLRkCSSLB34qstXTPaZjJnCTJOYdGvQVrbc3MLVx1e1jmtfvT3e9r7svZA7v5AxCLjGtn4LIcjA5ISqppJfgUp3e8tiqaVVkoo/Lv7BtP3TtEoB9Krbi8V9F1PHsU7JBl9J+P7k98w4NIP21dtzetzpwg/Ih8JMEHkhl8HN2X0wM5EX3thICI4JZtWVVfx99W+tauqNqzbG19uXkc1H5ltU9UUzwqANr/Pg6QOW9ltKW482OmXRVaqUnHl0RqMlCowK1Npf17Eu/Rv0p1+DfnT27Iyp3JTolGiuRF7h5IOTXIq4xK3YW4QnhReYeygbmaSgevoK5JIT+f2GlbJYHpmPLTCs+3lszWyfCUvVCA+dSEamVZ5968NsZYwmk0pBHiazTFUm3xz9lj239xCDxENZzpOirmNd5vWYx+DGg7VeYm8/uc3WoK1svblVXZJJklMtbTkKqubpe2hoU6exrd9CCDIwZeGgGJ4YzuTdkzUh2qB+q/2669d8+tKnFdb5U19EJkVS4+caZKmyuDbpGl4uXsXuK/+CoflTHjRBcalxbLi+gVVXVnHmUc797GjhyDCvYfi28KWtR9siayD7re3HrpBdJUpTcDfuLrtCduF/y58j946Q8VyWXlszW3rV60X/Bv3pU68PztbOWsemZKYQEhvChfALnH6kzkJ9L/4eMSkxmjxdumajnjfEg+Y1LIhIiiAiMYLwxHD1/5Oe/f/ZtucjPXXtuzzcIwLdOXH/BIM2DOJJ6pNc+zrV7MSCVxfQtlrbXPvCEsL438m9rD/uVug5DHXPGNv6LYQgA6Orn8gPbzZmSJuSaW52Bu9kvP94rUKXdRzrsLTfUnrU6VGivis6gzcMZuvNrXzk8xEL+ywsUV95mSAKwlh9grJUWRwIPYDfFT+239yuKZaqkCnoU78Pvt6+9G/Qv0RC9rR901hwZgFT209lQa8FJR5zUkYSB0IP4H/Ln10hu3ic/FizT4aM9tXba7REXi5e+QptKknFg6cPuBF9g3XnQzhxtV6h5442/QGF1WUaVW2U61PPqZ4mLUZieqJGQNpzLZoN/xbuR2Ss94ig+KRnpfPezvf4++rfmm1y5JqyHcObDee7V77D08FT6zhd1xRD3TPGtn4LIcjA6KoJauN1kk0jC38jLIykjCS+PPwli84u0nL8HNJkCD/3/lnjVCfQZk/IHl5b+xqOFo6ETwvHwqTw8g4FoVRJ+P17l9m7ggpta2xv+YFRgawKWMXqa6u1BOpmLs0Y3WI0w5sNx82m8DdRXVh6YSkTd02kb/2++A/310uf2agkFRfCL6jNZrf8uRx5WWu/p70n/Rr0o1+DfnSr1S3f71zX33C0+RekyK/kuU8hU1DXqa5aKKqSIxwlJbnz3qrrhfZtbPeIQH+cfHCSQesHafzcsh33QR0lNrX9VGZ0nqHJam/s6Q+Mbf0WQpCBKdxPRCKLGMIsxrFxyAbebPKmXs57IfwCY7eP5VpUTjZYK1MrvnvlOyY3HIhJajxKSeJ6WAJPUjJwsjKjaTU7FDJZha1uXBBKlZI6i+rw4OkDVr++mhHNR+ihz/ITphybEsu6wHX4BfhpOdtXtarKiGYj8PX2pYVbC7073B+5e4RX/nqF+k71ufXhrcIPKAGPEh6x69Yu/EP8OXjnIGlZOZo6K1MretbpSf8G/Xmt/mu42+Y4ler6PR6a1pF7T+9wM+Zmrk++kWuSnJoZfshUjujLJ0j4AJU/0rPSmeA/gVVXVmm22ZrZau4bZytnvu32Le+1fg8ZCqN+rhjb+i2EICMgPz+R7MgS74bn2PlgNg4WDlyZeIWa9jX1ct4sVRYLzyzkyyNfah74NSQZIdhSoAGjglY3LoxZx2Yx8+hMunp25ejoo3rp05jDlDOVmey5vQe/AD/8b/lr6j+ZyE3o16Afo71H06d+H52ymxeXsIQwqv9cHYVMQeoXqZgqTEvtXM+TkpnC4buHNVqi53NvAbT1aKvRErV0a8m+65FMfPY95sXvBXyPkiQRnhiuLRjF3iQoWl0YNifyTEJGjoO8hLp0SIO6x+lY35pGVRvR2Lkx9Z3q50TcvYCIBivfnHxwktc3vE5MSgyg1iA6WToRnRINqIMP5vecjzy9Fe+vMc7nirGt30IIMhLyejiZmiYRJltIy1oyMpWZnA8/T+eanTnie0SvhVLvxd9j0q5J7L29V+cilhWxsF9hPEp4hOcvnqgkFcEfBOtU400XjG1hCogMwC/Aj7XX1moergCt3Fsx2ns0w5oNo6pV1TIZiyRJ2My1ISUzRa9zXtQxBEQGaKLNzoWd09rvYetBW6f3CLjZhryjwwoWggoiMT2R4NhgNl8OZfs5U1LSc15PsojmidkfpCq0IxZlyKjlUEvL56hx1caER7swfdPtMqkaLyg90rLSeH/X+6wMWKnZ5mHrQWpmKnFp6mSj3Wt35806/2XViWSjea5kY2zrtxCCjIgX1dSujok0+70pKZkpzO0+lzkn5pCUkcS33b7l665f6/XckiTxz/V/+MN/MofSCk/nrnzvKIpqLfU6hvJAdrTSpy99yg89C69zpSuGNlE8TnrM2mtr8bvip5V3xNXalZHNR+Lr7Usz12ZlNp7nabm0JQGRAewYuoP+DfsbZAzPE5kUye6Q3fjf8md/6H6SM1LLJCT5+Xukio0pVe3jCXkSnEt7lL0QamHkYdOConPiwQne2PCG5kVFIVPQoXoHzoWfI0OZgQwZo73HMLjeZyizbHCxtaC1pyMX78cZ1BRqbOu3EIKMnB9P/cinBz7FydKJ2S/PZvLuychlco6PPk7Hmh31fr4z/+6h/YGhhba7+toOmvvop0hgeWL7ze0M2jAIZytnHn3yqFRNQaVNelY6/rf88bvix56QPZqQbzOFGQMbDmR0i9G8WvdVw1bkBoZuGsqG6xv4seePTHtpmkHH8iJpWWn8ceoIC3YXnv+nLBxRJUkiOiU6l8/RjbAseDLFKMYo0B+pmal8sPsDVgSs0Gyr51SP+k712XN7D6D2Z/vspc/wdvBl3p5Qg2uGjG39NuzTTVAoU9pN4a8rf3Et6hrnw88zotkI1lxbw/Atw7ky8YreK8WnZep2SzxJySi8UQWkb4O+uNu4E5EUwY7gHXpzVC8rJEniQvgF/AL8WBe4Tktr0K5aO3y9fXnb622cLJ0MOEptsk1gt2JL1zG6OFiYWOBp1xwIKLRtVKJuKRFKgkwmw8XaBRdrF7p4dtFs1zVsuizGKNAflqaWLB+4nNEtRvPGP2qt0O0nt7kTd4cxLcYQFBPEmUdnmHd4H84ZrZ/pAHM0P5FP05i0+lKlNoWWnzS0lRRThSlL+y0FwC/Aj+Few6njqI5SmuA/AX0r8pysdNNsZLdTqiROh8ayPSCM06GxKFXlTrFYJEzkJoxpMQaAZZeWGXg0uhOWEMa8k/NourgpPn/6sPjCYuLS4qhmW43pHacTNDmIM++eYVLbSUYlAMFzQtAT4xOCAFxsdUuXoGu70qA8jFFQfDp7dubex/cY20Jd1kclqVgZsJLopGjmdp+HS9b7z1pqm76yn9bf7rxR4Z/d+SGEoHJAhxodGN9qPAD/d+D/WDVoFSZyE/65/o+Wc5w+aFpNN/WkzCyMvYERdJp3mGHLzjBlfQDDlp2h07zD7A2M0OuYjI1xrcYBcCD0gFYVdGMjNTOV9YHr6b26NzV/qcn0Q9MJignCwsSC4c2Gs3/kfu5/fJ+5PebSqGojQw83X4xZEwTgU9sJd3uLfFyi1cuOu73a/8JQlIcxCkqGlakVywcu56jvUVysXAAIjQ/l2/2rQeWYpy8YqAWhiKdpnLubOzt1ZUAIQeWE73t8j4u1C0ExQRy7d4xZ3WYB8OGeDwmOCdbbeRQ65nmZuOUnJq6+mCvrcbZ6tSILQnUc69CjTg8kJJZfWm7o4WghSRKnHp5i/M7xuP/kzrDNw9gXug+VpKJTzU4s67+MyGmRrBm8hp51e+o1yrC0qO9UH1CXf0lML7wSfFmjkMuY2b8JkDs2LPvvmf2bGNThuDyMUaAfutbqyp0pdxjXUv2yJpccdTqusppChRBUTnC0dGTBq+qyAf898V/eaPwGL9d6mZTMFIZtHkZ6QZW3i4JVFXUeoALIkMnJzBiRZyKuyqJefa/VewCsCFihUwXy0ubB0wfMOT6Hhr82pOOKjiy7tIyn6U/xtPfkqy5fEfJhCCfGnODdVu9ib2Fv6OEWCUdLR5yt1DW9Qp6EGHg0edPby50lI1vhZq9tTnKztzAaf4vyMEaBfrA2s+bPAX9yxPcIdnmnjMpFVZvKWUNSRIeVIyRJouffPTl09xC96vbiz/5/0mJpC2JTY/mk/Sf81Osn/ZzoWXXj/DJGX4yR88bah4V2U5EjTdKz0qn+c3Vikp/wU7dt1HVopfeQ08LC5pMzktkStAW/K34cuXtEUwbF2tSaN5u8ia+3L11rdUUuK//vOp1WdOLfh/+y7o11DPUqPHrRUBg61YEulIcxCvTHwaCHvLvqaqHt1oxrR8f6pZ//y9jWbxEdVo6QyWQs7ruYZkuasS90H6cenWL5gOUM2jCIBWcW0LNuT3rX613yEznUAIcaKIDmedTXexQVBhQuBFVk9aq5iTk93KdxItCNRXvlZEcH6SvkNL8Eil/1a4y1bQh+V/zYdGMTSRlJmv0v13oZX29f3mjyBjZmOiS8LEc0rNKQfx/+a7R+Qdko5DKjF/zLwxgF+iM5XbeXoJhkPVkTyhnl/xWxktGgSgNmdJoBwJS9U+hWqxvvt1F7/vtu8+Vx0uOCDtcLItJELaScDmyGAu03J334RGWX0njR3yriaSrvr7lEnxUz8AvwIykjibqOdZnVbRZ3p9zlsO9hfFv4VjgBCIzfOVogMFbE87pghCaoHDK903TWXltLyJMQvjj0JUPqf8GhoKfcS7iK77Yx7By2kwv34ktN3Z0daVJYgb6KGmmiVEl8u/MGQK6ICwn19X+78wY9m7gVed6z+87bRi1DQkWVzAn0at2U0S196Vijo96LlhojQggSCIpHYc9rCRVW5hl4Vc8RgiqTyVT4BJVTDt45yAC/r3HKGI8JzprtSp5ibWpDWmZO1E9pZAU15sKfpc3p0FiGLTtTaLvi+ESVZt/lmetR1/Fa4oWduR3x/4mvFIKfQKAv8nte88yTMNrsO6o7x+A3yI+Ep7VLtZahsa3fwhxWTslKaYpLxue5zDFy7EjN1P5aSyNsvTJHmujq61Qcn6jS7Ls8U9epLjJkJKQnEJUcZejhCATlivye1+72lkzoLsfJ4QEhT0LouezTSpf6RJjDyiE55pjc6a/ySohVUhNNfvT2cqdnE7dKozbNpjRt7MJ+nzcWJhbUtK9F5BMbVp25TufaJpXiXhMI9EVBz+v3Owfy8d6pHDzTVbNePE9prSHGgBCCyiHn7j7JJakXxvNZQfVpRqmMkSal6RNV2f2t8mNvYAQmMd/hlmXL4oOpLOaMQYo/CgTlmfye1w4WDkxo9iNHz+Rvii+tNcTQGNQc9ttvv1GrVi0sLCxo164d586dM+Rwyg0lMYVUNjNKaVCa2XdFZt/cZPszZGVpR71VZBW9QFDWVFZTvMGEoA0bNvDJJ58wc+ZMLl26hLe3N7169SIqStj7C6MkppDKZkYpLUrTJ6oy+1u9iHa0nCj+KBCUFpXVFG+w6LB27drRtm1bfv31VwBUKhU1atTgww8/ZPr06Vpt09PTSU/PSeSUkJBAjRo1jMa7vKxRqiQ6zTucr8kkL7LNKCf/80ql0iKUNqUZSlqZwlTzQ0TLCQRlQ2Hrir7WEBEdBmRkZHDx4kV69OiRMxC5nB49enD69Olc7efOnYu9vb3mU6NGjbIcrtFRkMkkLyqrGaUsyLaxD2xRjQ51q+h1fkuz7/JCZVXRCwRlTWU1xRtECIqJiUGpVOLq6qq13dXVlcjIyFztZ8yYwdOnTzWfhw8LL9lQ0cnPZOJgZYqDlanWtspoRhFUDCqril4gMASV0RRfLqLDzM3NMTevnBVuCyK/kEeg0ptRBBUDES0nEJQtlS31iUGEoKpVq6JQKHj8WLvO1ePHj3FzczPEkMot+YU8Cv8IQUUgW0U/afUlZOSdnbwiqugFAkNSmVKfGMQcZmZmRuvWrTl06JBmm0ql4tChQ3To0MEQQxIIBEZKZVTRCwSCssFg5rBPPvkEX19f2rRpg4+PD7/88gvJycmMGTPGUEMSCARGSmVT0QsEgrLBYELQ22+/TXR0NF9//TWRkZG0aNGCvXv35nKWFggEAqhcKnqBQFA2iCryAoFAIBAIygRjW79FFXmBQCAQCASVEiEECQQCgUAgqJQIIUggEAgEAkGlRAhBAoFAIBAIKiVCCBIIBAKBQFApEUKQQCAQCASCSokQggQCgUAgEFRKhBAkEAgEAoGgUlIuqsi/SHZ+x4SEBAOPRCAQCAQCga5kr9vGkqe5XApBiYmJANSoUcPAIxEIBAKBQFBUEhMTsbe3N/QwymfZDJVKRXh4OLa2tshk+i2gmJCQQI0aNXj48KFRpPSuyIi5LjvEXJcdYq7LDjHXZYe+5lqSJBITE/Hw8EAuN7xHTrnUBMnlcqpXr16q57CzsxM/qjJCzHXZIea67BBzXXaIuS479DHXxqABysbwYphAIBAIBAKBARBCkEAgEAgEgkqJEIJewNzcnJkzZ2Jubm7ooVR4xFyXHWKuyw4x12WHmOuyo6LOdbl0jBYIBAKBQCAoKUITJBAIBAKBoFIihCCBQCAQCASVEiEECQQCgUAgqJQIIUggEAgEAkGlRAhBAoFAIBAIKiVCCHqO3377jVq1amFhYUG7du04d+6coYdU7pk7dy5t27bF1tYWFxcXBg0aRHBwsFabtLQ0Jk+eTJUqVbCxseGNN97g8ePHBhpxxeH7779HJpPx8ccfa7aJudYfYWFhjBw5kipVqmBpaUmzZs24cOGCZr8kSXz99de4u7tjaWlJjx49CAkJMeCIyydKpZKvvvqK2rVrY2lpSd26dZk9e7ZWAU4x18Xj+PHj9O/fHw8PD2QyGdu2bdPar8u8PnnyhBEjRmBnZ4eDgwPjxo0jKSmpDK+iZAgh6BkbNmzgk08+YebMmVy6dAlvb2969epFVFSUoYdWrjl27BiTJ0/mzJkzHDhwgMzMTF599VWSk5M1baZOncrOnTvZuHEjx44dIzw8nMGDBxtw1OWf8+fPs3TpUpo3b661Xcy1foiLi6Njx46YmpqyZ88ebty4wU8//YSjo6OmzQ8//MCiRYv4/fffOXv2LNbW1vTq1Yu0tDQDjrz8MW/ePJYsWcKvv/5KUFAQ8+bN44cffuB///ufpo2Y6+KRnJyMt7c3v/32W577dZnXESNGcP36dQ4cOIC/vz/Hjx9n/PjxZXUJJUcSSJIkST4+PtLkyZM1fyuVSsnDw0OaO3euAUdV8YiKipIA6dixY5IkSVJ8fLxkamoqbdy4UdMmKChIAqTTp08bapjlmsTERKl+/frSgQMHpK5du0pTpkyRJEnMtT75z3/+I3Xq1Cnf/SqVSnJzc5Pmz5+v2RYfHy+Zm5tL69atK4shVhj69u0rjR07Vmvb4MGDpREjRkiSJOZaXwDS1q1bNX/rMq83btyQAOn8+fOaNnv27JFkMpkUFhZWZmMvCUITBGRkZHDx4kV69Oih2SaXy+nRowenT5824MgqHk+fPgXAyckJgIsXL5KZmak1940aNaJmzZpi7ovJ5MmT6du3r9acgphrfbJjxw7atGnDW2+9hYuLCy1btmTZsmWa/Xfv3iUyMlJrru3t7WnXrp2Y6yLy0ksvcejQIW7dugXAlStXOHnyJH369AHEXJcWuszr6dOncXBwoE2bNpo2PXr0QC6Xc/bs2TIfc3Eol1Xk9U1MTAxKpRJXV1et7a6urty8edNAo6p4qFQqPv74Yzp27IiXlxcAkZGRmJmZ4eDgoNXW1dWVyMhIA4yyfLN+/XouXbrE+fPnc+0Tc60/7ty5w5IlS/jkk0/4/PPPOX/+PB999BFmZmb4+vpq5jOvZ4qY66Ixffp0EhISaNSoEQqFAqVSyZw5cxgxYgSAmOtSQpd5jYyMxMXFRWu/iYkJTk5O5WbuhRAkKDMmT55MYGAgJ0+eNPRQKiQPHz5kypQpHDhwAAsLC0MPp0KjUqlo06YN3333HQAtW7YkMDCQ33//HV9fXwOPrmLxzz//sGbNGtauXUvTpk0JCAjg448/xsPDQ8y1oMQIcxhQtWpVFApFriiZx48f4+bmZqBRVSw++OAD/P39OXLkCNWrV9dsd3NzIyMjg/j4eK32Yu6LzsWLF4mKiqJVq1aYmJhgYmLCsWPHWLRoESYmJri6uoq51hPu7u40adJEa1vjxo158OABgGY+xTOl5Hz66adMnz6doUOH0qxZM9555x2mTp3K3LlzATHXpYUu8+rm5pYreCgrK4snT56Um7kXQhBgZmZG69atOXTokGabSqXi0KFDdOjQwYAjK/9IksQHH3zA1q1bOXz4MLVr19ba37p1a0xNTbXmPjg4mAcPHoi5LyLdu3fn2rVrBAQEaD5t2rRhxIgRmv+LudYPHTt2zJXq4datW3h6egJQu3Zt3NzctOY6ISGBs2fPirkuIikpKcjl2kuVQqFApVIBYq5LC13mtUOHDsTHx3Px4kVNm8OHD6NSqWjXrl2Zj7lYGNoz21hYv369ZG5uLvn5+Uk3btyQxo8fLzk4OEiRkZGGHlq5ZtKkSZK9vb109OhRKSIiQvNJSUnRtJk4caJUs2ZN6fDhw9KFCxekDh06SB06dDDgqCsOz0eHSZKYa31x7tw5ycTERJozZ44UEhIirVmzRrKyspJWr16tafP9999LDg4O0vbt26WrV69KAwcOlGrXri2lpqYacOTlD19fX6latWqSv7+/dPfuXWnLli1S1apVpc8++0zTRsx18UhMTJQuX74sXb58WQKkBQsWSJcvX5bu378vSZJu89q7d2+pZcuW0tmzZ6WTJ09K9evXl4YNG2aoSyoyQgh6jv/9739SzZo1JTMzM8nHx0c6c+aMoYdU7gHy/KxcuVLTJjU1VXr//fclR0dHycrKSnr99deliIgIww26AvGiECTmWn/s3LlT8vLykszNzaVGjRpJf/zxh9Z+lUolffXVV5Krq6tkbm4ude/eXQoODjbQaMsvCQkJ0pQpU6SaNWtKFhYWUp06daQvvvhCSk9P17QRc108jhw5kufz2dfXV5Ik3eY1NjZWGjZsmGRjYyPZ2dlJY8aMkRITEw1wNcVDJknPpd0UCAQCgUAgqCQInyCBQCAQCASVEiEECQQCgUAgqJQIIUggEAgEAkGlRAhBAoFAIBAIKiVCCBIIBAKBQFApEUKQQCAQCASCSokQggQCgUAgEFRKhBAkEAgEAoGgUiKEIIFAIBAIBJUSIQQJBAKBQCColAghSCAQCAQCQaXk/wFukvrMfvqoyAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "solver = pyo.SolverFactory(\"cbc\")\n", + "ShowFacilityLocation(xC, yC, xF, yF, *Solve(solver, weak))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 452 + }, + "id": "1Qmid6MgmSjd", + "outputId": "ac75086e-0cdc-4d63-f17d-6927a49985ff" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAGzCAYAAADKathbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXwURxuAn7uLe0I8gSQES4IEC+7urm1xKFag0BZavkKBthRoC8WLu5W2WCnursEdEixC3O1uvz/SW3LELp7APr9fSm93dmZ2d3b23ddGJgiCgISEhISEhISEBPKi7oCEhISEhISERHFBEowkJCQkJCQkJP5DEowkJCQkJCQkJP5DEowkJCQkJCQkJP5DEowkJCQkJCQkJP5DEowkJCQkJCQkJP5DEowkJCQkJCQkJP5DEowkJCQkJCQkJP5DEowkJCQkJCQkJP6jxAlGfn5+yGQy1q1bJ2777rvvkMlkGuVcXV0ZNGhQgfdn0KBBuLq6Fng7uSWj6yXxfnHixAlkMhknTpzI8bHr1q1DJpPh5+eX7/3KjKJ8ZmQyGd99912WZdTXc+fOnYXTqSxQz20hISEF3obE+0Ne5gSJfBKM1JNrRn9TpkzJjybyzN27d/nuu+8K9QVQmGzZsoUFCxYUdTdyzI8//siuXbuKuhsSEhL5zOrVq/Hw8MDAwIDy5cuzaNEirY67fPkyY8eOxcvLC2NjY8qUKUPv3r15+PBhurKXLl1i9OjR1KxZE11dXUnAKwDUgvO7fwYGBunKLlu2jF69elGmTBlkMlmWyonDhw/TsGFDjIyMsLS0pGfPnhm+n7dv387HH39M+fLlkclkNG3aNMP6cjJuskMnx0dkwcyZM3Fzc9PYVrly5fxsAhcXF+Lj49HV1c2y3IMHD5DL38p9d+/eZcaMGTRt2rRYa3hyy5YtW7h9+zYTJkzQ2K7t9SoqfvzxR3r27EnXrl2LuisSEh8k//vf//L9A/b3339n5MiR9OjRg4kTJ3L69GnGjRtHXFwckydPzvLYOXPmcPbsWXr16kXVqlUJDAxk8eLF1KhRgwsXLmi8U/bv38+qVauoWrUqZcuWzdVLUEI7li1bhomJifhboVCkKzNnzhyio6Px8fEhICAg07r27dtHly5dqFGjBj/99BNRUVH89ttvNGzYkOvXr2NjY6PR7tWrV6lduzahoaGZ1pmTcZMd+SoYtWvXjlq1auVnlenITFJ9F319/QLtR0lB2+tVEoiNjcXY2LiouyEh8V6ho6ODjk7+vQri4+OZOnUqHTp0EM2Rw4cPR6VSMWvWLEaMGIGlpWWmx0+cOJEtW7agp6cnbuvTpw9VqlThp59+YtOmTeL2UaNGMXnyZAwNDRk7dqwkGBUgPXv2xNraOssyJ0+eFLVFaYWod5k8eTJly5bl7Nmz4n3u1KmTKCj98ssvYtmNGzfi5OSEXC7PUrjJybjJjkLxMfL392f06NFUrFgRQ0NDSpUqRa9evTJUm0VERPD555/j6uqKvr4+zs7ODBgwQLSxa+szk9bHaN26dfTq1QuAZs2aiarAEydOMHDgQKytrUlOTk5XR+vWralYsWKOzzc2NpZJkyZRunRp9PX1qVixIj///DOCIKQru2nTJnx8fER1YuPGjTl06JC4f/fu3XTo0AFHR0f09fVxd3dn1qxZKJVKsUzTpk35559/8Pf3F89NrRXL7HodO3aMRo0aYWxsjIWFBV26dOHevXsaZdQq1MePHzNo0CAsLCwwNzdn8ODBxMXFZXsdHj16RI8ePbC3t8fAwABnZ2f69u1LZGQkkCq0xcbGsn79erHf6numbvvu3bv0798fS0tLGjZsCEBKSgqzZs3C3d0dfX19XF1d+eabb0hMTNRo39XVlY4dO3LmzBl8fHwwMDCgbNmybNiwIV1fb968SZMmTTA0NMTZ2Znvv/+etWvXauV/M2jQIExMTHj+/DkdO3bExMQEJycnlixZAsCtW7do3rw5xsbGuLi4sGXLlnR1PH36lF69emFlZYWRkRF169bln3/+SVfu5cuXdO3aFWNjY2xtbfn888/Tnbeaixcv0rZtW8zNzTEyMqJJkyacPXs2y3PJjMDAQAYPHoyzszP6+vo4ODjQpUuXdNdm6dKleHl5oa+vj6OjI2PGjCEiIiLTepOTk7GysmLw4MHp9kVFRWFgYMAXX3whbktMTGT69OmUK1cOfX19SpcuzVdffZXuGiQmJvL5559jY2ODqakpnTt35uXLlzk6Z6VSyTfffIO9vT3GxsZ07tyZFy9eiPunT5+Orq4ub968SXfsiBEjsLCwICEhIcs27t+/T+/evbGxscHQ0JCKFSsyderUdOVCQkLo3bs3ZmZmlCpVivHjx2dYd3bzSUZk5GMkk8kYO3Ysu3btonLlyujr6+Pl5cWBAweyrAvg+PHjhIaGMnr0aI3tY8aMITY2NsNxnZb69etrvNwAypcvj5eXV7o5ys7ODkNDw2z7lBlqc46FhQUmJiZUrFiRb775RqOMtmMOtLv+2jwjTZs2pXLlyty9e5dmzZphZGSEk5MTc+fOTdemtnNCdvNxdgiCQFRUVIbvMTUuLi7ZmjPDwsK4e/cu3bp107jP1apVw8PDg23btmmUL126tIb1JzNyMm6yI181RpGRkemcBK2trbl8+TLnzp2jb9++ODs74+fnx7Jly2jatCl3797FyMgIgJiYGBo1asS9e/cYMmQINWrUICQkhD179vDy5ctspdXMaNy4MePGjWPhwoV88803eHh4AODh4cEnn3zChg0bOHjwIB07dhSPCQwM5NixY0yfPj1HbQmCQOfOnTl+/DhDhw7F29ubgwcP8uWXX/Lq1Svmz58vlp0xYwbfffcd9evXZ+bMmejp6XHx4kWOHTtG69atgVShzsTEhIkTJ2JiYsKxY8eYNm0aUVFRzJs3D4CpU6cSGRnJy5cvxfqzktaPHDlCu3btKFu2LN999x3x8fEsWrSIBg0acO3atXSmxt69e+Pm5sbs2bO5du0aq1atwtbWljlz5mTaRlJSEm3atCExMZHPPvsMe3t7Xr16xb59+4iIiMDc3JyNGzcybNgwfHx8GDFiBADu7u4a9fTq1Yvy5cvz448/ig/ksGHDWL9+PT179mTSpElcvHiR2bNnc+/ePf7++2+N4x8/fkzPnj0ZOnQoAwcOZM2aNQwaNIiaNWvi5eUFwKtXr0SB+euvv8bY2JhVq1blSOuoVCpp164djRs3Zu7cuWzevJmxY8dibGzM1KlT+eijj+jevTvLly9nwIAB1KtXTzQ7BwUFUb9+feLi4hg3bhylSpVi/fr1dO7cmZ07d9KtWzcg9Uu8RYsWPH/+nHHjxuHo6MjGjRs5duxYuv4cO3aMdu3aUbNmTaZPn45cLmft2rU0b96c06dP4+Pjo/W5AfTo0YM7d+7w2Wef4erqSnBwMIcPH+b58+fiePnuu++YMWMGLVu2ZNSoUTx48IBly5Zx+fJlzp49m6E5V1dXl27duvHXX3/x+++/a0xsu3btIjExkb59+wKgUqno3LkzZ86cYcSIEXh4eHDr1i3mz5/Pw4cPNXzVhg0bxqZNm+jfvz/169fn2LFjdOjQIUfn/MMPPyCTyZg8eTLBwcEsWLCAli1b4uvri6GhIZ988gkzZ85k+/btjB07VjwuKSmJnTt30qNHjyy1tTdv3qRRo0bo6uoyYsQIXF1defLkCXv37uWHH37QKNu7d29cXV2ZPXs2Fy5cYOHChYSHh2sI+drMJznhzJkz/PXXX4wePRpTU1MWLlxIjx49eP78OaVKlcr0uOvXrwOksx7UrFkTuVzO9evX+fjjj3PUF0EQCAoKEp/Z/ODOnTt07NiRqlWrMnPmTPT19Xn8+LHGx0NOxpw21z8nz0h4eDht27ale/fu9O7dm507dzJ58mSqVKlCu3btAO3nBG3m4+woW7YsMTExGBsb07VrV3755Rfs7OxyfN3VQltGAq2RkRF37twhMDAQe3v7HNf9LrkeN0I+sHbtWgHI8E8QBCEuLi7dMefPnxcAYcOGDeK2adOmCYDw119/pSuvUqkEQRCEZ8+eCYCwdu1acd/06dOFd0/FxcVFGDhwoPj7jz/+EADh+PHjGuWUSqXg7Ows9OnTR2P7r7/+KshkMuHp06dZnvvAgQMFFxcX8feuXbsEQPj+++81yvXs2VOQyWTC48ePBUEQhEePHglyuVzo1q2boFQqMzxXQcj42n366aeCkZGRkJCQIG7r0KGDRj/UZHS9vL29BVtbWyE0NFTcduPGDUEulwsDBgwQt6mv65AhQzTq7Natm1CqVKkMrsZbrl+/LgDCH3/8kWU5Y2Njjfv0btv9+vXT2O7r6ysAwrBhwzS2f/HFFwIgHDt2TNzm4uIiAMKpU6fEbcHBwYK+vr4wadIkcdtnn30myGQy4fr16+K20NBQwcrKSgCEZ8+eZXkOAwcOFADhxx9/FLeFh4cLhoaGgkwmE7Zt2yZuv3//vgAI06dPF7dNmDBBAITTp0+L26KjowU3NzfB1dVVHB8LFiwQAGHHjh1iudjYWKFcuXIaY1ulUgnly5cX2rRpk24subm5Ca1atRK3qZ/drM4xPDxcAIR58+ZlWiY4OFjQ09MTWrdurTGeFy9eLADCmjVrNK5X2rF68OBBARD27t2rUWf79u2FsmXLir83btwoyOVyjeskCIKwfPlyARDOnj0rCMLbMTJ69GiNcv3790937TPi+PHjAiA4OTkJUVFR4vYdO3YIgPDbb7+J2+rVqyfUqVNH4/i//vorw7nmXRo3biyYmpoK/v7+GtvT3jP1c9C5c2eNMqNHjxYA4caNG4IgaD+fZERG8ycg6OnpifOVIKTOEYCwaNGiLOsbM2aMoFAoMtxnY2Mj9O3bN8vjM2Ljxo0CIKxevTrLdnPySps/f74ACG/evMmyXW3GnDbXPyfPSJMmTdK9HxMTEwV7e3uhR48e4jZt5wRt5+OMWLBggTB27Fhh8+bNws6dO4Xx48cLOjo6Qvny5YXIyMhMj8tsblcqlYKFhYXQokULje0hISGCsbGxAAhXrlzJsE4vLy+hSZMmWvddm3GTEflqSluyZAmHDx/W+ANNyTA5OZnQ0FDKlSuHhYUF165dE/f9+eefVKtWTfxCTktBRRvI5XI++ugj9uzZQ3R0tLh98+bN1K9fP50zeXbs378fhULBuHHjNLZPmjQJQRD4999/gdSvYZVKxbRp09KpCdOea9prFx0dTUhICI0aNSIuLo779+/nqG8AAQEB+Pr6MmjQIKysrMTtVatWpVWrVuzfvz/dMSNHjtT43ahRI0JDQ4mKisq0HfUXyMGDB7Uyu2XGu22r+zdx4kSN7ZMmTQJIp6b39PSkUaNG4m8bGxsqVqzI06dPxW0HDhygXr16eHt7i9usrKz46KOPctTXYcOGif9vYWFBxYoVMTY2pnfv3uL2ihUrYmFhodH+/v378fHxEU2FkKrxGzFiBH5+fty9e1cs5+DgQM+ePcVyRkZGorZNja+vL48ePaJ///6EhoYSEhJCSEgIsbGxtGjRglOnTqFSqbQ+L0NDQ/T09Dhx4gTh4eEZljly5AhJSUlMmDBBYzwPHz4cMzOzLM0nzZs3x9ramu3bt4vbwsPDOXz4MH369BG3/fHHH3h4eFCpUiXxnEJCQmjevDmQasJRXycg3TP4bmBCdgwYMABTU1Pxd8+ePXFwcNB4RgYMGMDFixd58uSJuG3z5s2ULl2aJk2aZFr3mzdvOHXqFEOGDKFMmTIa+zKa68aMGaPx+7PPPgPenqu280lOaNmypYYGt2rVqpiZmWmM3YyIj49PZ9JQY2BgQHx8fI76cf/+fcaMGUO9evUYOHBgjo7NCgsLCyDVXSGz50HbMafN9c/pM2JiYqKhWdPT08PHxyfd3KHNnJCX+Xj8+PEsWrSI/v3706NHDxYsWMD69et59OgRS5cuzVFdkPrO/fTTTzl69Chff/01jx494urVq/Tu3ZukpCSAHI+RjMjLuMlXwcjHx4eWLVtq/EHqSU6bNk30ubG2tsbGxoaIiAgN++aTJ0/yPYpNGwYMGEB8fLxohnnw4AFXr17lk08+yXFd/v7+ODo6akyogGi+8/f3B1LPVS6X4+npmWV9d+7coVu3bpibm2NmZoaNjY34sGhrG363f0CGvlMeHh7iCzQt707casfJzF6SAG5ubkycOJFVq1ZhbW1NmzZtWLJkSY77/K5g6u/vj1wup1y5chrb7e3tsbCwEM8vs76r+5+27/7+/unqAzLclhkGBgYakRSQOhk5OzunezGZm5unaz+z+6Hen7af79b37rGPHj0CYODAgdjY2Gj8rVq1isTExBzdB319febMmcO///6LnZ2daC4MDAzUOIeM+qKnp0fZsmXT3Ze06Ojo0KNHD3bv3i2q2f/66y+Sk5M1BKNHjx5x586ddOdUoUIFAIKDg8W+yOXydGbZnPoLli9fXuO3TCajXLlyGn5Vffr0QV9fn82bNwOpz+S+ffv46KOPshRI1C83bee7d/vi7u6OXC4X+6LtfJITtHl2MsLQ0FB8wb1LQkJCjnyCAgMD6dChA+bm5uzcuTPDSKjc0qdPHxo0aMCwYcOws7Ojb9++7NixQ0NI0nbMaXP9c/qMZDR3ZDZ3ZTcn5Nd8rKZ///7Y29tz5MiRXB0/c+ZMhg4dyty5c6lQoQK1atVCR0eHoUOHAlm7gmhDXsdNvvoYZcZnn33G2rVrmTBhAvXq1cPc3ByZTEbfvn1z9OVaUHh6elKzZk02bdrEgAED2LRpE3p6ehpf+kVBREQETZo0wczMjJkzZ+Lu7o6BgQHXrl1j8uTJhXbtMhtUQhZOeAC//PILgwYNYvfu3Rw6dIhx48aJPhLOzs5atZ3ZJKrtV3Bu+55TMmunsNpPi3pczJs3T0MLlpacTjwTJkygU6dO7Nq1i4MHD/Ltt98ye/Zsjh07RvXq1fPaZfr27cvvv//Ov//+S9euXdmxYweVKlWiWrVqYhmVSkWVKlX49ddfM6yjdOnSee5HTrG0tKRjx45s3ryZadOmsXPnThITE3PsQ5NTCiNfT27HroODA0qlkuDgYGxtbcXtSUlJhIaG4ujoqFX7kZGRtGvXjoiICE6fPq31cdpiaGjIqVOnOH78OP/88w8HDhxg+/btNG/enEOHDqFQKIp0zOX33JEf83FaSpcuTVhYWK76oqenx6pVq/jhhx94+PAhdnZ2VKhQgf79+2f44ZsT8mPcFIpgtHPnTgYOHKgRgpeQkJDOE9/d3Z3bt28XSB+ym0gGDBjAxIkTCQgIYMuWLXTo0CHLkNLMcHFx4ciRI0RHR2tojdRmLxcXFyD1XFUqFXfv3s305XXixAlCQ0P566+/aNy4sbj92bNn6cpqO1Gq23/w4EG6fffv38fa2jpfQ+KrVKlClSpV+N///se5c+do0KABy5cv5/vvv89Rv9W4uLigUql49OiRqFGBVAfmiIgI8fxyWufjx4/Tbc9oW0Hg4uKS6f1Q71f/e/v2bQRB0Lhu7x6r1pSYmZmJWtv8wN3dnUmTJjFp0iQePXqEt7c3v/zyC5s2bdIYV2XLlhWPSUpK4tmzZ9n2o3Hjxjg4OLB9+3YaNmzIsWPH0kVnubu7c+PGDVq0aJHluFGPkSdPnmh8OWd0jbNCrXlTIwgCjx8/pmrVqhrbBwwYQJcuXbh8+TKbN2+mevXq2Tp7qq+RtvPdo0ePNLSnjx8/RqVSiY7v2swnhYW6/StXrtC+fXtx+5UrV1CpVFr1LyEhgU6dOvHw4UOOHDmSr5qwtMjlclq0aEGLFi349ddf+fHHH5k6dSrHjx8XTYnajDltrn9en5HM6tRmTlCT3XysLYIg4Ofnl+ePIjs7O9GBW6lUcuLECerUqZNrjVF+jZtCCddXKBTppNxFixZphJxDauTLjRs30kUWQd6/sNUv+8xCh/v164dMJmP8+PE8ffo011987du3R6lUsnjxYo3t8+fPRyaTidEEXbt2RS6XM3PmzHSaH/W5qr8Y0p57UlJShnZdY2NjrdSiDg4OeHt7s379eo1rcfv2bQ4dOqQxkeWFqKgoUlJSNLZVqVIFuVyuEUpqbGycZTj3u6j7926Wb/UXXU4jjwDatGnD+fPn8fX1FbeFhYWJ5pGCpn379ly6dInz58+L22JjY1mxYgWurq7iw92+fXtev36tsVRFXFwcK1as0KivZs2auLu78/PPPxMTE5OuvYzCy7MiLi4uXWi4u7s7pqam4r1s2bIlenp6LFy4UGO8rl69msjIyGzvi1wup2fPnuzdu5eNGzeSkpKiYUaD1MisV69esXLlynTHx8fHiyZg9TO2cOFCjTI5zQy/YcMGDb/DnTt3EhAQINavpl27dlhbWzNnzhxOnjyp1dxhY2ND48aNWbNmDc+fP9fYl9Fcp079oEadRTon80lh0bx5c6ysrFi2bJnG9mXLlmFkZKQxFkJCQrh//76G34tSqaRPnz6cP3+eP/74g3r16hVIPzPSdqiFGvW41nbMaXP98/qMZIS2c4K283FGZDRfLFu2jDdv3tC2bdsc9zkzfv75ZwICAkR/0ZySn+OmUDRGHTt2ZOPGjZibm+Pp6cn58+c5cuRIupDPL7/8kp07d9KrVy+GDBlCzZo1CQsLY8+ePSxfvlxDrZ5TvL29USgUzJkzh8jISPT19WnevLmo6rWxsaFt27b88ccfWFhY5GqQQmqSqmbNmjF16lT8/PyoVq0ahw4dYvfu3UyYMEH8mi9XrhxTp05l1qxZNGrUiO7du6Ovr8/ly5dxdHRk9uzZ1K9fH0tLSwYOHMi4ceOQyWRs3Lgxw4muZs2abN++nYkTJ1K7dm1MTEzo1KlThn2cN28e7dq1o169egwdOlQM1zc3N892HSltOXbsGGPHjqVXr15UqFCBlJQUNm7ciEKhoEePHhr9PnLkCL/++iuOjo64ublRp06dTOutVq0aAwcOZMWKFaKp8dKlS6xfv56uXbvSrFmzHPf1q6++YtOmTbRq1YrPPvtMDNcvU6YMYWFhBW62mDJlClu3bqVdu3aMGzcOKysr1q9fz7Nnz/jzzz9FR83hw4ezePFiBgwYwNWrV3FwcGDjxo1iugs1crmcVatW0a5dO7y8vBg8eDBOTk68evWK48ePY2Zmxt69e7Xu38OHD2nRogW9e/fG09MTHR0d/v77b4KCgsRQehsbG77++mtmzJhB27Zt6dy5Mw8ePGDp0qXUrl1bK2GhT58+LFq0iOnTp1OlShUNjSDAJ598wo4dOxg5ciTHjx+nQYMGKJVK7t+/z44dOzh48CC1atXC29ubfv36sXTpUiIjI6lfvz5Hjx7NsQbQysqKhg0bMnjwYIKCgliwYAHlypVj+PDhGuV0dXXp27cvixcvRqFQ0K9fP63qX7hwIQ0bNqRGjRqMGDECNzc3/Pz8+OeffzSEdEjVEnfu3Jm2bdty/vx5MRWBek7UZj4pLAwNDZk1axZjxoyhV69etGnThtOnT7Np0yZ++OEHjaCPxYsXM2PGDI4fPy4u9TBp0iT27NlDp06dCAsLS5eYL+1Y8vf3Z+PGjUCqRgoQtR8uLi5Z+onOnDmTU6dO0aFDB1xcXAgODmbp0qU4OzuLgRDajjltrn9+PCPvou2coO18nBEuLi5iokQDAwPOnDnDtm3b8Pb25tNPP9Uou3fvXm7cuAGkBlrdvHlTvB+dO3cWta2bNm3izz//pHHjxpiYmHDkyBF27NjBsGHD0vXn1KlTnDp1CkgV0mJjY8U6GzduLFpTcjJusiVHMWyZoA75vXz5cob7w8PDhcGDBwvW1taCiYmJ0KZNG+H+/fvpQuoFITVMeuzYsYKTk5Ogp6cnODs7CwMHDhRCQkIEQch9uL4gCMLKlSuFsmXLCgqFIsNwWnU47ogRI7Q+93dDjwUhNdT6888/FxwdHQVdXV2hfPnywrx58zIMm12zZo1QvXp1QV9fX7C0tBSaNGkiHD58WNx/9uxZoW7duoKhoaHg6OgofPXVV2J4c9r+x8TECP379xcsLCwEQOxTRtdLEAThyJEjQoMGDQRDQ0PBzMxM6NSpk3D37l2NMurr+m44qzYh3k+fPhWGDBkiuLu7CwYGBoKVlZXQrFkz4ciRIxrl7t+/LzRu3FgwNDQUAPGeZda2IAhCcnKyMGPGDMHNzU3Q1dUVSpcuLXz99dca6QsEIXUMdOjQId3xTZo0SRfyef36daFRo0aCvr6+4OzsLMyePVtYuHChAAiBgYGZnqcgpI4BY2PjDNvx8vJKtz2jfj158kTo2bOnYGFhIRgYGAg+Pj7Cvn370h3r7+8vdO7cWTAyMhKsra2F8ePHCwcOHMhwPF+/fl3o3r27UKpUKUFfX19wcXERevfuLRw9elQso829DAkJEcaMGSNUqlRJMDY2FszNzYU6depohAirWbx4sVCpUiVBV1dXsLOzE0aNGiWEh4enu14ZpZZQqVRC6dKlM0x3oSYpKUmYM2eO4OXlJT4zNWvWFGbMmKEROhwfHy+MGzdOKFWqlGBsbCx06tRJePHiRY7C9bdu3Sp8/fXXgq2trWBoaCh06NAhXWi9mkuXLgmA0Lp16yzrfpfbt28L3bp1E+97xYoVhW+//Vbcr34O7t69K/Ts2VMwNTUVLC0thbFjxwrx8fHp6stuPsmIzML1x4wZk65sRvNqZqxYsUKoWLGioKenJ7i7uwvz589PNweq2047dtWh6pn9pUV9rzL6yy6s++jRo0KXLl0ER0dHQU9PT3B0dBT69esnPHz4UKOctmNOELS7/to8I5nNHRk9O9rMCdrOxxkxbNgwwdPTUzA1NRV0dXWFcuXKCZMnT9ZIZZG2f5ndj7TvoIsXLwqNGzcWLC0tBQMDA6FatWrC8uXLM3xHqsdIRn9pn+WcjJvskAlCIetZizG7d++ma9eunDp1SiPEW+LDZMKECfz+++/ExMTkazSMxPvHjRs38Pb2ZsOGDbmKZpWQkCg+FIqPUUlh5cqVlC1bViOfjMSHwbt5M0JDQ9m4cSMNGzaUhCKJbFm5ciUmJiZ07969qLsiISGRRwrFx6i4s23bNm7evMk///zDb7/9ViihsBLFi3r16tG0aVM8PDwICgpi9erVREVF8e233xZ11ySKMXv37uXu3busWLFCXAJGQkKiZCOZ0kBcCbhPnz4sX748X1ealigZfPPNN+zcuZOXL18ik8moUaMG06dPz9dwd4n3D1dXV4KCgmjTpg0bN25Ml9hVQkKi5CEJRhISEhISEhIS/yH5GElISEhISEhI/IckGElISEhISEhI/EeJdKZRqVS8fv0aU1NTyVFaQkJCQkKihCAIAtHR0Tg6OorJa4sbJVIwev36dZEsGCkhISEhISGRd168eJGrxWsLgxIpGKkjP168eIGZmVkR90ZCQkJCQkJCG6KioihdunSxjuAskYKR2nxmZmYmCUYSEhISEhIljOLsBlM8DXwSEhISEhISEkWAJBhJSEhISEhISPyHJBhJSEhISEhISPyHJBhJSEhISEhISPyHJBhJSEhISEhISPyHJBhJSEhISEhISPxHjgWjU6dO0alTJxwdHZHJZOzatUtjvyAITJs2DQcHBwwNDWnZsiWPHj3SKBMWFsZHH32EmZkZFhYWDB06lJiYmDydiISEhISEhIREXsmxYBQbG0u1atVYsmRJhvvnzp3LwoULWb58ORcvXsTY2Jg2bdqQkJAglvnoo4+4c+cOhw8fZt++fZw6dYoRI0bk/iwkJCQkJCQkJPIBmSAIQq4Plsn4+++/6dq1K5CqLXJ0dGTSpEl88cUXAERGRmJnZ8e6devo27cv9+7dw9PTk8uXL1OrVi0ADhw4QPv27Xn58iWOjo7ZthsVFYW5uTmRkZFSgkcJiSJEqRK49CyM4OgEbE0N8HGzQiEvmMRthdmWROEh3dcPi5Lw/s7XzNfPnj0jMDCQli1bitvMzc2pU6cO58+fp2/fvpw/fx4LCwtRKAJo2bIlcrmcixcv0q1bt3T1JiYmkpiYKP6OiorKz25LSEjkggO3A5ix9y4BkW+1wQ7mBkzv5Enbyg4lti2JwkO6rxLFkXx1vg4MDATAzs5OY7udnZ24LzAwEFtbW439Ojo6WFlZiWXeZfbs2Zibm4t/0gKyEhJFy4HbAYzadE3jhQYQGJnAqE3XOHA7oES2JVF4SPdVorhSIqLSvv76ayIjI8W/Fy9eFHWXJCQ+WJQqgRl775KRDV69bcbeuyhVubbSF0lbEoWHdF8lijP5KhjZ29sDEBQUpLE9KChI3Gdvb09wcLDG/pSUFMLCwsQy76Kvry8uGPs+LxyrVAmcfxLKbt9XnH8SKk0KEsWSS8/C0n3lp0UAAiITuPQsrES1JVF4FPf7Ks3FHzb56mPk5uaGvb09R48exdvbG0j1B7p48SKjRo0CoF69ekRERHD16lVq1qwJwLFjx1CpVNSpUyc/u1OikGztEiWF4OjMX2i5KVdc2pIoPLS9X/eCXlHPvVQB90YTaS6WyLHGKCYmBl9fX3x9fYFUh2tfX1+eP3+OTCZjwoQJfP/99+zZs4dbt24xYMAAHB0dxcg1Dw8P2rZty/Dhw7l06RJnz55l7Nix9O3bV6uItPcRydYuURIQBIFjz44x5/xUrcrbmhrkuU1t68iPtiQKD23v1+gDH1N5aWUmH57MSb+TJCuTC7Rf0lwsAbnQGF25coVmzZqJvydOnAjAwIEDWbduHV999RWxsbGMGDGCiIgIGjZsyIEDBzAwePsgbN68mbFjx9KiRQvkcjk9evRg4cKF+XA6JY/sbO0yUm3trTztpRDWXCKFA+cNlaBiz4M9zD4zm0uvLoEgx0nWDB2hFKkjVBMZYG+eep3zio+bFQ7mBgRGJmT4jEDq13x+tPU+UFLGevb3VUChE02y4h533qRw580d5p6bi5m+Ga3dW9O+XHvalW+HvUnG7he5oaTPxSXl3pcE8pTHqKgoCXkQtOX8k1D6rbyQbbmZPazo6V0NI12jQujV+4OkFs89ycpktt3exk9nf+Lum7sAGOgYMKz6MHxKDWfa36lBEGknEPU0vOzjGvl2fdVf8e+2JaACZIxvY8TEZs3zpa2STEkb65nd17RjyMddn0NPDrH/0X7+ffwvIXEhGnXUdKhJ+/LtaV++PbUda6OQK3LdH23n4q3D6xa6eS87StK9Lwnvb0kwKmJ2+75i/DbfbMu90Z1LvM5p3Czd8LTxxMvGC08bTzxtPPGw9sBYz7jgO1vCUE+87w7wgnh5v0/EJ8ez1nct887Nwy/CDwAzfTPG1B7DhLoTsDVOTbdR1HmMdHSjeS1biI7hbY4PPE5Nx5r52mZJoqSO9ZyMIaVKydWAq/zz8B/2P97PlddXNPaXMixF23Jt6VC+A63dW1PKKGfCi7Zz8W99veni7ZSjuguSknbvS8L7WxKMihhtv1LizX4iOPlMpvtdLVw1BCYvGy88bDww0TPJz+6WGJQqgYZzjmUa+aI295yZ3FxSN/9HVGIUyy4vY/6F+QTFpkaW2hrb8nndzxlVaxTmBubpjinKzNdVnA3psLUdp/xPYW1kzalBp/Cw8SiQtoszJX2s53YMBcUEceDxAfY/3s/BxweJTIwU98llcuo616V9uVRtkre9NzJZ1nVqOxeXcfubb1v2oWXZltnWWdCUxHtfEt7fkmBUxKgHdma29rQDOyw+hDtv7nD3zV3uvrkr/n9wbHAGR6ZSxryMhrDkaeOJh40HZvol+7plR0lWixc2wbHB/HbhN5ZcXiK+XFzMXfiy/pcMqT4EQ13DAu9Dbl+OUYlRtNjQgiuvr+Bo6siZwWdws3Qr8P4WJ97HsZ7T8ZCsTOb8y/Pse7iffbfv4R8WgVIWTqL8DshUOJg4iCa3lmVbZjj/ZTcXg0AKIbwyGAoyFVVsqzCx3kT6Ve6Hvo5+vp17TiiJ974kvL/zNVxfIuco5DKmd/Jk1KZryMjY1j69kycKuQwbYxuaGjelqWtTjTpC4kLeCkvBd7gbkvpvUGwQzyOf8zzyOf8+/lfjmNJmpdOZ5DxtPDPUCpREpDDv7Hke+Zyfz/3MqmuriE+JB8DD2oMpDafQr3I/dBW6hdKPvJjkzPTN+Pejf2myrgl339yl1cZWnB58GgfT4mM6KGjet7Gem/Ggq9AlLro8p6+0Ii6yETbq7boxhOgsJyDmBKuvr2b19dXoyHVoVKYR7cu3p0P5DlSyroRMJtNiLpbxfVdvroePZfX11dwKvsXg3YP5+ujXjK09lpG1RubYfJdX3rd7X1yQNEbFhILw1wiNC+VeyL1UYenNXVFgCojJPOTUydQJL1svPK1TBSUv21TBycLAIld9KCq0/ZIa1jKGKc17oCP/cL4R7ofcZ87ZOWy6uYkUVQoAtR1r802jb+hcsTNyWeElxM8v/4jX0a9puKYhzyKe4WXjxclBJwv9JVVUbL16ha//CMq+XDHSGmRGbsdDdseNbKlDYMoB/nn0D4/CHmmUcbVwFU1uzdyacepBZLZzcXh8OCuvrWThxYW8in4FgKGOIYO8BzGh7gQqlKqQyyuQMySNUcEgCUbFiMLy1wiPDxc1TGlNcuoHPCMcTBxEgUktLHnaeGJlmH2YdG7PKy/XIzu1uIAKJaG8MhiKq2UZJtWbxJDqQ0p81F9W1+zq66vMPjObv+79hfDfVWnu1pxvGn5Dc7fmhe4vkd/+EU/Dn9JwTUMCYgLwcfLhyCdHMNU31bovJS3UOUWVwtyzc5lxYhY2sctQUApZBqnp3r2OxfVcczsecnrco9BH/Pv4X/Y/2s8JvxMkKt8uUK6v0KeZWzPaleuAs0ETFIJVltcoSZnEH3f+4Jfzv3A98Pp/7cnoVLETE+tOpLFL4wJ9rnLiilEc7jGUjPe3JBhJiEQkRHDvzT0NYenOmzu8jHqZ6TH2JvbpTHJeNl7i13puNWH5oUHLLhy4RY1n7PGfyZu4NwBYG1kzzmccY3zGaCXwFTcyumb25gb0rCNw+PU8Dj05JG7vUrELXzf8mjrORZdtviC+du8E36HJuiaExofS1LUp+/vvz9ZHqiSFOqu5FZRqxrkacBWARraf8dy/TabmeLWmpTifq7bjoXejADp4laeKXRWsDK20Pu7nPs708K6qIajEJsVy3O+4GOn2PPK5xjEVS1UUfZMalWmUqS+RIAic9D/JL+d/Yd/DfeL2mg41mVhvIr08exWYaVqbtAdFfW/TUhLe35JgJJEtUYlR3HtzL53j97uTSFpsjW1x1e9C0KvO/215OxnlVS2ekwc9uxeBOjT953M/8yziGQDGusYMrzGcifUmUtq8tFbtFDWZXTP+0w290fuRJJ1L9K/Sn8kNJuNl61X4nXyHggqPvvL6Cs3XNyc6KZpOFTrxZ+8/M30plbRQ52RlMj+d+YlZp2aRrErG0sCShe0W8lGVjzh4JzDLsV7czzUnqUvidE4B4GjqiIted16/bKvVcfomt/Bx8qGOUx18nHzwcfLBxjjVI0kQBO6+ucv+R/v559E/nHl+BqWgFI830TOhZdmWYnJJZzPnDNt5EPKA+Rfms/7GehJSUu+Fs5kz43zGMbzm8AJxSzhwO4Dpe+4QFPVW+1VcBN53KQnvb0kwyoLiqnIuLkQnRnMv5F46k5xfhF9qduSE1SiwRpZBdmQQMDVUsuBjUyrbeWFrbItMJiuQ8FNt7mOKKoWdd3cy5+wcfAN9AdCR69C/Sn++qv9VsRAkMiO7ayagwlA/kX3jalCuVNlC7l3maPul/1UnPUY3aJWjuk/6naTt5rYkpCTQr3I/NnbbmC75X0kLdfYN9GXw7sHi+OxSsQvLOizTcDTPbKyXhHPVdjyUdd/Ds7hDYo4tfWUV7JNmZ3tcqMG3xMiup9vuZuFGHec6+Dj6UMe5DtXtq2Ooa0hkQiSHnx5m/6P97H+0X0xhoaaqXVXal2tPhwodqOtcN52fYkhcCMuvLGfxpcXisSZ6JgytPpTxdcbne/RkVEIMtj/WRyFYsu/jzTQu71Qsxu27SIJRAVEYF7Y4q5yLO7FJsfzhe4Pv/grPtmyg3tckKm5RyrAUnjae2Os25tLtetket2W4D/XdbbItl1MEQeDQk0PMOTuH437Hxe2dKnRicoPJNCjTIN/bzCsl0QETcuYH1t2zKz+3+jlHL5N/Hv5D1+1dSVGlMLLmSJZ2WKphRikp1y1JmcSPp3/kh9M/kKJKwcrQisXtFtO3cl+t/VdKwrnm1F8mKjGKO8F3uBF0iwV7rEhIMiCjJWrU4yjcdCyuli6Y65uTokohMCaQF1Ev0pXXketQ1a6qKCj5OPlQoVQFbgbdFE1uF19eFP30ACwMLGjj3ob25dvTtlxbMQkqQEJKAltvbeXXC79yO/g2kJpnqbtHdybWnUi90tnPd9oQmxSLyezUvHUxX8cU26S/kmBUQBT0hS3uKueSQG7U4gBGKY2xSf4q2+OiDH/Ds3Qc1eyq4W3vjbe9N5VtK+drzp3Lry4z5+wcDWflBqUbMKXhFNqXb1+o0VuZEZ0Yzfi/N3LM1yXbssUtYy9k7x9Rw/Mau/y+QyWo0Ffo80X9L5jScIrWiUu3395Ovz/7ISAwucFkfmr5k7ivJGQ6vhZwjcG7B3Mz6CYA3T26s7T9UuxM7LSuQyWo+OHQAVYfz36qL+oxklt/mcyOU/+KMPiZSNnJDNu00LfAyijVpzAkNoSopKh0ZUz1TKntVFs0wZWzKseNwBvsf7yfA48PEBYflqavMmo51qJD+Q60L9+emo41kcvkCILA4aeH+eX8Lxr+fvWc6zGx3kS6VeqWpyVNJMEo/5AEo3coCSrnkoC2X6jJ5vN4nfR2wtJWLa7WNKVFhoyKpSpS3aG6hsCUk5dIRjwIecDP535mw80NJCmTAPCy8eKrBl8Var6ftITEhfDj6R9ZdmUZQmJ5ra5ZUWs+MiM77eytoFtMODiBY8+OAal+JXNazuGjKh9ppTFZeXUlI/aNAGB2i9lMaTgFKN5alMSURGadmsVPZ35CKSixNrJmSfsl9PLspbWWKCgmiLW+a1lxdQWvQ01KzBgpiICNVp62PA57zK3gW9wKusWt4FvcDr7N47DHGpofNTJkmOubo5AriEyMFNNapMXZzJk6TnWo5VgLUz1T/CP9OfL0iBidpsbGyIZ25dvRvlx7Wru3xtLQktvBt/n1/K9svrVZnFPcLNwYX2c8Q6oP0TqaMi2SYJR/SILRO2g7WQ5pEU3V0gYY6xpjomeCsV7qvyZ6JhjrGmOka1Tk6eLzSkGGy6cVMOOSY3gU9oiHoQ+5H/KQLccqkZRkRFZqcXX2WW2wNrSmhkMNDYGpQqkKOf46ex39mt8u/MayK8uITooGUhNlTqw3kWE1hhXK8isvo17y9dGv2XZ729vJWpBTOnEdcsGSrFa7LyphXptxlJSiYuN5P/zD4nCxMuKTeq7o6bzVyAmCwK77u5h0aJLoJF/PuR6/tf2N2k61s+3Dz+d+5svDXwKwpP0SRtceXWxDna+8vsKgXYO48+YOAL29erO43WLRSTgr1NFRy68s5697f5GsSgbAQt8Su/iVJCQaZHhcUY+RdymsFB9xyXHcfXNXFJbUgtO7/kRqFDIFugpd0ak6LXKZHC8bL7xsvdCT6/Eq+hWXXl0S5wr18fVL1xcj3WyMbFh6eSnLriwjND4UAHN9c0bUHMG4OuMydfDOCG0Eo+LgNysJRgVEQV7Y3JqA3kWGDCNdIw2hSS1Eidt0s9iXZlva38Z6xoViwimMcPncqsX1Sq3nWcKuDL/itEVPrkcl60r4OPlQ3aE63vbeVLGtotWXWkRCBMuvLGfBhQXiBGplaMXY2mP5rM5nWBtZ57pfmfEg5AETDkzg4JODGl+4FawqMKv5LEyUDRizxRcoXiG72oyjnIy1hJQE5p+fzw+nfyA2ORaAwd6D+bHFj9ib2GfZl2+Pfcv3p78HYGO3jXxc9eMsx5oMWaFet4SUBGacmMG8c/NQCkpsjW1Z2n4pPTx7ZHtsWHwYG25sYPmV5TwIfSBur+NUh5G1RtLbqzenHkSWqLDuouRN7BtRq5RWw6Qec+8iR46K9B9qhjqGlLMqh75Cn4CYgHS54pzNnGlfrj0t3FoQEBPA0itLeRj6EEj1dert1ZuJdSdqtUBydoJRcfGblQSjAqI4aIycXHci6D4gJimG2OTY1H+TYjN9cPITI12jDIWmtBqrrASszMqoNSiFGS6f2+NSVCk8j3zOw9CH4t+9kHvce3Mvy8ze2eFg4oC3vTd1netSw6EG3vbeOJk6Zaj9S0hJYMONDcw7N4/HYY+B1IlwaPWhTKo/CVcL11z3Q83FlxcZ++/YdCuJNyzTkDkt5lC/TH1xW3GZ+NL2J7txBORqrL2KesXXR79m482NQKoPyLeNv2VcnXFZ5poZf2A8iy4tQiFT8GfvP+lSqUuG102miGBp3+a0q1I41+3iy4sM3j2YeyH3AOhXuR8L2y3MUsgWBIGLry6y/Mpytt/ZLmoxjHWN+bjqx3xa81OqO1TXOKa4jZGShEpQ4Rfhl0679DD0oUZYf3aoP4jD4sNEjR6AnkKPRmUa4Wruyq03t7j06pK4r4lLEybWm0jHCh0z/TDOSjAqTn6zkmBUQBSGj1Fu1esqQUVcchyxSbHphKaYpJgMt4m/k9OUyeD4jGzh+YmBjgEmuqYYR/wKKgsyMsuAgJF+Ih+1eIi5gWm2QpexrjFymU6hZr6OT47ncdhjUWC6H3Kfm0E3eRL+REOtrfV1URhQvlR5ajvWppFLI2o41MDD2kP0LVKqlPx17y/mnJ0jJtxTyBT0rdyXrxp8RVW7qm8ri3gBcaGZN2ZUCixKs/fhXiYdnKSxfIFCpqCHRw9+avlTptFZxUFVru6HNr56giAQmCb3SkZlsjLvnH9xnvEHxnP59WUAylmV49fWv9KxQscMhVmVoGLw7sFsuLEBPYUe+/vvp0XZFuJ18wsLY/SBj4lQXuHAx/tpU65Nrs5fW+KT45l+Yjq/nP8FlaDCztiO5R2X07VS10yPiU6MZsutLSy/ulwM3YfU8PFRtUbRv0r/LBeJLuoxUtTt5zeJKYncD7mv4b90K/hWlolx30VHrpNOA+5s6oyxnjGPwx6Lgld5q/J8XvdzBnoPfJul/785JSYpnpZrBqEQzFjQ/gdqlLFBIZOhNLSi4fJHxcZvVhKMCojCikqD4qNyFgSB+JT4TIWmbAWrLPaphLcq4Lw4P2eGQqZAT6GHnkIPAx0DDHUMMdQ1TNV86RljqmeKiZ4J5vrmmBuk/lkaWGJpYImZvlmm5kY9hV6Or2NoXKjoz3TvzT18A325F3KP19GvNb7eskOGDCtDK7xsvWhUuhHN3ZpT3aE61wKu8dPZnzjy9IhYtl25dkxuMJnGFm7IFteClIwFAYAUuQ51DXS4Gh8sbjPSNeLTmp8yrcm0ErNmnbaaV23IziFYJajYeGMjU45OITAmEIA27m2Y32Y+HjYe6cqnqFLo9Ucvdt3fhbGuMUcGHKGuc11x/+cHPmfBxQW0KtuKQ58cSnd8fnHuxTkG7x4smk4+rvoxv7X9LdOs6zcCb7D8ynI23dpETFIMkPox08erDyNrjaSOU51i79f4IWmswuPDU01xapPcf4JTZGJkjutSyBTIZDJReLIytGJUrVGMq9Qd2zVts5xTVHJ9GsbN4zVZm/gLy/FeEowKCCmPUf4hCAKJykRRYNp3M5B5+0OyPS47H6vCQIYMHbkOego9dBW66Cv0RcHLSNdIw8fLTN8MM30zzPXNsTCwwNLAEitDK6wMrbA0tMRI14joxGheRb/iSfgTrry+wq2gWzyLeEZ4Qvb5mNToynWxM7ajtFlp4lPiuRl8UxQ8B9hWY33Qs2zrqEEM12UqrI2smdpoKmNqjymSyLe8oK2vnjZ0rxvJ/9q0zXaZlujEaH44/QPzL8wnSZmEQqZgrM9Yvmv6XTqBMjElkY5bO3Lk6REsDCw4OeikqNl7Fv6McovKoRJU3Bx5kyp2VfLlPNTEJcfxv2P/Y8GFBQgIOJg48HvH3+lUsVO6svHJ8ey4s4PlV5dz4eVbQbNiqYqMrDWSAdUGlJjla4qTOaeoEASBl1EvNbRL1wOv8zD0Ya58JmvL9LikytihPi0dEn/gjpB1DrDCStUgCUYFhJT5uuDQ9kt/ycflqeSoIC45LsO/2KRYopOiiUiIIDIxkqjEKKITo0VNVVxyHPHJ8cSnxJOYkkiiMpFkZTLJquQc2esLCoVMgUKuQFeui45MB4VCgQwZSkFJijKFJGUSyarkHJk3qwtyrpF95FoXMwsGtp1PN49uxV4DkBn5qTEK1P0Gpd5dWri1oJdnL7pW6iquxZcRj8MeM+nQJPY82AOkroH3fbPvGVZjmEYkYmxSLK02tuL8y/PYGdtxevBpypcqD0DvP3rzx90/GOQ9iLVd1ubLeQCc9j/NkD1DRJ+0Qd6D+LX1r1gaWmqUux9yn9+v/M66G+uISIgAUoXu7h7dGVlrJE1cmpSosSGlQcmaZGUyD0Mfcjv4NjeDbnLx1UVuBt0U13HMjOqCDtfIfuFrbQQjSWP0FkkwktCgOIQwqwQVCSkJmQpdkQmRRCREEJ4QTmRCJJEJ/wleSW8Fr/iUeOKS40hISSAxJZEkZRJJyiRSVCmkqFKKRPjSVjBixElw9C7w/hQk2owjU0MZUfHZTz8yy0X4JRwUfytkClqUbUFPj5508+iWqYPyoSeHmHBggujQXM2uGr+1/Y0mrk3EMuHx4TRb34wbQTcoY16GM4PPUNq8NBdeXqDe6nroynXxn+CvsexGbohNiuWbo9+w6NIiBAScTJ1Y0WkF7cu3F8skKZP4+97fLL+6nBN+J8TtrhaujKgxgiHVh+Q5J1dhE5cch3+EP4fu+TF/f/bpNYoij1J+pQao6WLJVf/wfP2Qjk6M5kbQDc6/OM/xZ8e59eYWAdEB4vxVR1mBC/LAbOvpoZrF1ST3DPdJPkbpkQQjiXQURx+rgiBZmawhcEUlRhEWH0ZofCgR8f8JXompgld0UnSqxis5hrik1PLxKfGpgpcykaSUJJJUaQQvlTKdNulDEowg+3E0uIEra876ZVvPG925CAaXcTF3ISopitfRr8V9CpmCZm7N6OXZi26VuqXL9ZOsTGbZlWVMPzFd1Lz08uzFvFbzcLFIzRYeFBNEo7WNeBT2iIqlKnJq8ClsjW1psKYB516cY2qjqXzf/PvcXgZO+p1kyJ4hPA1/CsDQ6kP5pfUvmBuYA6mmuxVXV7DGdw3Bsam+ZXKZnI4VOjKy5khau7fOU0bkgiQ2KRb/SH/8IvzEv7S/1eejbUb7ws68nZ9Rs3IZqNIM9LT1qAQVUYlRhMeHExYfRnhCuPj/YfFhBMUG8Tr6NQExAQTHBBOWEEZsUiyJykQNH9B3qZ9Si7OKh9me5wqPtcy+nhqtWdRzekl4f0uCkUSGfCg+VvnNy6iXnPA7wUm/k5zwPyGaTODDE4wg63FkbqinlbktI0d/Uz1TdBW6GksxyGVymro2pZdnL7p7dNdYryokLoRpx6fx+9XfUQkqDHQM+Kr+V0xuOBkjXSOeRz6n4ZqGvIh6gbe9N8cHHufo06P0/KMnVoZWvPj8xdsoIC2JSYphypEpLLm8BEhNBrqy00ralGtDiiqFfx7+w/Kryzn4+G1uKgcTB4bXGM6wGsMobV46R+0VBNGJ0RqCjn+EP36Rb4WgkLjs/RFN9UwpbdCc2KDh2ZYtTI1RTn2eBEEgNjmWXb5+/O8v/wxqFNCM5E2tOcZoAeEcz1LAyS3aaoxutt/Da6MKxWJOLwnvb0kwksiUD9HHKqc8j3yeKgT5neCk/0mehD/JtOyHKBhB9iu+Z2ZuAzA2SMKp7O+cfnEyw2zDagx0DDT2y2Vymrg0oadnT7p7dBeTP94IvMH4A+M56Z+6DI2zmTPzWs2jj1cfHoU9ouGahryJe0OD0g3496N/qba8Gs8inrG0/VJG1R6l9Tkfe3aMoXuGiivAj6gxgnmt5xGdGM3q66tZeW2lRjh3a/fWjKw5ko4VOmrtaJ8fz2dUYtRbgUet9Yl8KwSpszFnhYWBBa4WrriYu+Bq4arx52LugoWBBSqBIjfRpyU7nycQ0NGNwcZlEeEJoaKGJ1mpxClhNQqskWWYzuTdWnKeqR9AX6GPqb4ppQxL4WTqRFnLspSzSg0IOPfiHAefHCRZlay1j5Fy+AkUTtWLxZxeEt7fkmAkIZED/CP8RSHohN8JcXmKzJAhE7UB2gpG33u0ZlL3Dfm6IG5xRVuzbbIymWsB1zjhd4Ijz45w5vmZTAWltNdcTROXJqImyd7Enj/v/ckXh77APzL1y79hmYb81va3VK3TuqZEJkbSxr0Nrd1bM+nQJMpblef+2PvZZp2PTozmq8NfsfzqcgBczF1Y0WkFAMuvLGfPgz2if4i1kTVDvIcwouYI3K0y9v/IDG01uhEJEZpCzzumLm0iLq0MrTIVelwsXLROIVGcTPTaBge8q63UNp1JZvXoK/QxNzDHxsgGBxMHXCxcKGdVjkqlKlHWqixOpk5YGVppONZHJ0az6eYmll5Zyu3g2+L2us51+V+5TnQ4Pif7DhSjj62S8P6WBCMJiUwQBAG/CD8NQUj9IlUjl8mx0LcgIjFCVJXLkWNtbC36V6i1GaUFGQ8xJavg2ngEKhKDpX0VdvTcQUXrigV1esWG3JhtU1QpXAu4xkm/kxx4coBzz8+RoMxco5SWRmUa0cuzF+3Lt2fr7a3MPjObuOQ4ZMgYWn0oXSt1pffO3sQlx9GlYhdO+p8kIiGC3X1307li50zrPfzkMMP2DuN55HMgdakSNws31t1YJ/oXATR2aczImiPp7tE90yzdWZGZCUgtbri6HiGCE/hF+GmVM6eUYal0Ao/4/xYuWSaLzE3fi4M5R9t0Ep80SqGllwWWhql51c4/Suarnfdy3N7Ujo58XKdSjj52bgffZtnlZWy4uUHMW2WoY8hHVT5iVO1R1HCoAREvSFnojU5Wof46+jD2KlgUvWkWSsb7WxKMJCT+QxAEnkU844TfCVEYUr/k1ChkCjxtPDHQMeBx2GONL24vGy9sjW058/wMyapkdOW6lLUsK65d5WnjiYeuKU9fXeaTKp+w8VbqchbNXZsxu+VP/O/Y/9j69BAvZKmPpLGuMcs7Lufjqh8X0hUoOvKq4k9RpeAb6MvRp8f568YNHgQHkiAEkyi/k6UJo55zPdq4t8E3yJdd93cBYKZvRt/KfVnnu44kZRKtSnkQEvKAGg41WNVpZbo6ohR6fHFpASuvpe5zMHHAw9qD089Pi0lDzfXNGVhtIJ/W+hRPG0+tzkkQBMLiwzS0PM/C/ThwvgHJycZou8iyjZGNKOS4mr+j9bFwKZTFj9NSHMw52mqM3vV5ym0aCm19p9SRiUuvLOWU/9s8cRVKVWB0rdEM9B6ooaELigmixaIK6CXGAHKMqcD0RvOwNTXGy8kMhUwmZtMvLpSE97ckGEl8sAiCwJPwJxoaoXfT+OvIdajtWBsfJx8SUxI5//I8N4JuiPutjazpX7k/1sbWLL28VMy83Na9LYnKRI77HQdSQ8U3d99M5WWVkcvkXBl2hRorU9cKc7Nw4+n4p6SoUvjor4/YcWeHhjlosPdgFrdfnGPn3w+NjLQRxgZJ6Frs5n7MNhKVmWcHBnC3dCchJUFc6NPRxBHdmCDuCUYYZuFPkgBUIJoXMgFLA0sNYdnHyYeRNUfSp3KfdPdPEARC4kLSRXWl/Xt37UVtTTmft5fRyiNV+5PRKusfOrlNS6KNX5w29bzLi8gXrLi6gpXXVooLUytkCrpU6sLoWqNp7tY8w7xVQ3YPYa3vWpzNnHkZ9ZKWZVty+JPDWvSs6CgJ72+dou6AhERhIQgCj8IeiRFjJ/xOaIR+Q2oSPR8nH5q4NKFBmQZEJ0az7c42ll5eKn7968p16VihI4O8B2FrZMvnhz4XsxK7W7rza5tfWXJpiSgU1XSoyYVhF5h8eDIA7cu3x8nsbUjys4hnhMeHY2loyebum5HL5Gy7vQ25TI5KULHWdy0XX11kR88deNl6FcalKnFkZl6KS9CDwF781f8HHGyC2fdwH7sf7OZW8C2SlEkaZdM6zsuQ8TrmNdUFeZZCEYABYIOcFygJTwjHWNeY/lX682nNTyltXhq/CD/2PdzH0/CnPAh5wOPwxzyPfE5gTGC6PmSHQrDMvhDgalYNT5vCC3svaSjkMqZ38mTUpmvIyNjnaXonz3TCTFbHvUtW9UBqvrajT4+y9MpS9jzYI5ri1ZGJw2sOx9nMOdP6z784z1rf1OSjLuYuvIx6SauyrbI8bwntkDRGEu8tgiDwMPRhqmnMPzWEPiAmQKOMrlyXOs51aOrSlKauTanrXJeHoQ9Z57uOLbe3aIQj13SoycBqA+lXpR8qQcU3R79hzfU1CAgY6xrzv8b/4zOfz+i4pSMn/E8AUMepDmeGnCFFlYLTr06ExYext99efBx9sPvlbbK+Qx8fopV76qSWokphwN8D2Hp7KwqZAlN9UyISIjDUMWRJ+yUM8h5UorIeFzTaZFW2M9Pn0MS64gtKJai4HXSbnfd2cvDJQR6EPshwSQZtHeZrEIOfoTm2xraoBBWh8aFEJkTmKZGojkwHexN7HEwdsDexx87YDpIqcPhK9qa4okiUWBIprDxGaQmPD2ed7zqWXVmmsUh0M9dmjK49mi4Vu2QbmahUKfFZ5cO1gGsMrDaQP+/9SUxSDNdGXKO6Q3VtT79IKAnvb0ljJPHeIAgC90Pua5jG1GppNXoKPeo616WpS1OauDahrnNdjHSNCIoJYvOtzXx+8HNuBb+NQrE3sefjKh8z0HsglW0rk6xMZsnlJUw/MZ2oxCggdfHPOS3nYGNkQ5N1TTj/8jwADUo34OSgkyjkCrbd3kZYfBilzUrTrlw7gmNC0FdWQSFYopSFc/HVZVEw0pHrsKHbBmQyGVtubSE6MZqqtlW5GXSbUX/PZ/uVJ3zVeCRNyjtJ6ROAS8/Csgi7Tv2qD4xKxPbH+lovfJwbwhPCtYryMtU1w1qnLhZ6LjhamODhqIujqT32Jql/diZ22JvYY2lgmU4AVqoEGj7K3gTk41Yy1k8ratpWdqCVp32OfZ4yOi67zNdXX19l6eWlbL29lfiUeCDVn21gtYGMrDVSa98zgJXXVnIt4Brm+ub08OjB+hvrsTayppp9tdxdCAkNJMFIosQiCAJ339wVhaCT/ifFSDA1+gp96pWuRxOXJjR1bUodpzpiZEhiSiJ7H+5lne86Djw+IH7d6yv06VKpC4OqDaKVeyt05KmPyeEnhxl/YLy4xEQNhxosbLuQBmUakJCSQL3V9bgacBVIDQ8/OuComLH496u/AzCsxjAO3w1m2u5bGr4i6w/HUMsqQPy61JHrsKHrBuQyOZtubuJJgCnlha0kJRtz/wkMeXKDUia3+aFrtQ8+4WZwtHbRaNqaoXKDDBkGOgZYGFjgZOqEi7kL7pbuVLSuiJOZkyj0XH2q5Pt/7hMQlkAYEBYIoQHaR2Xl1gQkkTkKuSxX2rWMjnv3t3oR4KVXlnLp1SVxe1W7qoypPYb+Vfrn2Pk9JC6Eb45+A8CsZrO48voKAC3cWmSbTkJCOyTBSKLEoBJU3H1zV4waO+V/Kt0iiwY6BtRzrkdT16Y0cWlCHec6GOi8DZAXBIFLry6x3nc9W29v1fjCr+tcl0HVBtHbq7fGop5Pw58y6dAkMWrJ2siaH5v/yJDqQ1DIFcQmxVJvdT1R09TCrQUHPz4oCkV3gu9w5vkZFDIF7oY9MvSFSUo2ZtSmaxq5XBRyBeu6rCM0zJk7jxqQiGYcUkhMMiM3XWXZRzVpV+XDFY5sTbNfXRxg38eb8XHLWDgSBIGn4U85+uwox/yOcdLvJNFJ0Vr3QUAgISWBwJhAgmODiU2ORU9HDysjK1Ew8vUTGLvFN929D4xMSHfvs6JtZQeWfVwjnSnHXspMX2x4HPaY5VeWs9Z3rZidXU+hRy/PXoyuPZp6zvVybQ7/5ug3hCeEU9WuKqNqj6LJutS1/yT/ovxDEowkCpzchueqBBW3g2+L2qCTfifTZeI11DGkfun6oiDk4+STYW6YV1Gv2HRzE+turON+yH1xu7OZM59U/YSB1QamyxkUmxTLT2d+Yt65eSQqE1HIFIypPYbvmn4nCk5RiVH4rPQRQ/LburdlX/99GmtbrbiamuCvY4XOLD4amIkJRIYAzNh7l1ae9mmuj5ywoBbISODd8GwZcgRUjP/jNHXLtcHS0Dzba/o+4uNmhYO5QbbmpcbvmB7D4sM49uwYh58c5tDTQ2KW6twwsNpAbGJf4RvoS3BsMPdD7nM/5D7bbm9LLSDIKZ20DjmWvHsf1QtJpL/3mZNbE5BE7tBmDlOqlPzz6B+WXl7KwSdvFz12MXdhZK2RDKk+RGOZmtxw+dVlVl1bBcCS9kuITYrl4suLALQs2zJPdUu8RRKMJAqUnDg3qgQVN4NuilFjp/xPaayFBWCka0SD0g1E01htp9roKfQybDs+OZ5d93ex7sY6jjw9IkZ9GOoY0t2jO4O8B9HMtVm6BToFQWDHnR18cfgLMXy/uVtzFrZdqBEVFhYfRu0VtXkakZq8r0P5Duzuu1ujvvjkeDbc3ABAM8fhzPfN2uwTEJnApWdhokr+0rMwAqPe1RW9RYacpCRjai3py86Pfiz2jpcFgbbmJaWQzBm/8xx+epjDTw9z5fUVjfWrMsqYrS3j64xj/H+ZhQNjAvEN9MU30JcbQTfwDfTFL0gXuSpzvx+B9Pc+O3JrApLIGdnNYcGxway+tprlV5eLec9kyGhbri2ja4+mXbl2+bIIsEpQMfbfsQgIfFz1YxqWacju+7tRCkrKW5UXF0WWyDuSYCRRYGQWQq02HSzp742DTbAYNXba/3Q651VjXWMalGkgOkvXcqyVqSAEqULNuRfnWH9jPdvvbBcdpCE14/HAagPp5dUr02y+NwJvMO7AODG5mou5C7+2+ZVulbppqL6DY4OptaIWL6JeANClYhf+6vNXOhv/jjs7iEiISE2mZ1oFuEF2pPWZ0dZ/JjAyjrqr6/Jr618ZXXv0Bxe1lpl5ydpUQR2Plyy+OZyee06kywvkZOpEkjKJN3Fv0glFVgZWTG38LSmHZ6KjyiK6TEc/NYnef9ib2NO2XFvalmsrbttx5alWGZO1vd8ShUNWc9jITdeo6H6K44HzxVQeVoZWDK0+lE9rfprjZV6yY831NVx6dQlTPVPmtpwLwOGnqTmLJDNa/iIJRhIFglIlMGPv3Qy/v4X//jty6xFe6A/RyExsomdCwzINRUGopkNNrRbV9I/wZ+PNjay/sV5jRXtXC1cGVB3AgGoDspyoQuNCmXZ8GsuvLhdXX/+64dd8Wf/LdGn8X0W9ovbK2mLofw+PHuzotSNDx0e10/XwGsOxM9NuOYC0PjPa+s/ULePBsdenGPvvWI77HWdV51Var2H1vtC2sgPeLgpWXzzBWf/b3HpzhisJJ7ly6+34sjW2pUHpBqhUKs68OCMmc9RT6KEj1yEuOQ6AAdUG8EvrX9CV61L9xAx0E2P4vtks2pdvn75hLTILl7bUzsyp7f2WKHiym8MEVNx54kGygZI6znUYXXs0vTx7Fcgah2HxYUw5MgWAGU1n4GCaqm0/8vQIIJnR8htJMJIoELILoQYZcsEaS0Ut6rlbi6axGg41xCiw7Oz6sUmx/HnvT9bfWM+xZ8fE7ca6xvTy6sWgaoNo5NIoy0gNpUrJiqsr+N/x/4lmu16evZjXal6Gqmm/CD98VvqITt+9PXuztefWDNu4FXSL8y/PoyPXYUj1IdgYZe0LI6DC0dxII9RaW/+Zg0OWsuhSRSYfmcyf9/7kWsA1tvfcTm2n2pme+/tAQkoCZ5+f5dCTQxx+epjrgdc19hvoGtCoTCNalW2Fs5kz+x/tZ/ud7eIXvr2JPVaGVtx9c5ckZRLlrMqxvMNyWpRtAcD049O5nRSBp60nbRpNhlyaRLS9j1KYffEhuzlMhhwdbFjX/jQDfeoXaF++PfYtofGheNl4MdZnLJCaLftB6APkMjnN3JoVaPsfGpJgJFEgaGsSWN1xJ92qp//azsyu/21HD4xMH7L+xnr+uPOHaBqRIaOZWzMGVRtEd4/uWi2DcNLvJOMOjONm0E0AqthWYWG7hTR1bZph+YehD6m7qq5o7utfuT8bu2/MVPBSa4u6VOyCvYk9QKa+MAIqQMbIZtYawp+2/jM6Cjmf1/ucBmUa0GdnH55FPKPBmgbMbTWX8XXGvzemNUEQuBV8S3SYPuV/ioQUzbHmbe9Nq7KtaFW2FXWd63LwyUEWXFjA2RdnxTJ1netSqVQldt7dSWBMIDpyHb6q/xX/a/w/8Ys/JC6E+RfmAzCz6cw8+YlIYfYlD23nMAu9gvXtuR5wneVXlwOwuP1iUYOuNqP5OPl8cNrhgkYSjCQKBG1NAvZm6df/ysyuHxAZz+jN1wjW+5F4RWoSxXJW5RhYbSCfVP1Ea+fDF5Ev+PLwl2y/sx0ASwNLZjWbxae1PhW1Ve9yO/g2DVY3ICop1WdpQNUBrO26NlOhKDYplo03UxeJ/bTmp+J2tS/M9D13CIp6u3aXQhFNoGIxRqafA5pJ2nISnu3j5MP1T68zdM9Q/rr3F58f/JzjfsdZ22UtVoYlUxsREB0gOkwffnI4XdJOR1NHWpVtRWv31rRwa4GdiR1h8WGsurZKY7V7HbkOvb16075cexZeWsi6G+uA1IVkV3RaQWXbyhr1zjs7j+ikaKrbV6ebR7c8n4cUZl+y0HYOK0jzp0pQMWb/GFSCir6V+2p8tKnNaJJ/Uf4jCUYSBUJuTQdZ2fVBhoAK6+RPaVOrMoOrD8pRPpCElAR+PvczP57+kfiUeGTI+LTmp8xqPgtrI+tMj7sWcI3GaxuL2qnB3oNZ3Xl1lu2qHb/LWpYVzTJq2lZ2oH45U2x/rI9CsGTfx5vZ/vAHfr92nsuvG9LLq1e6+nISnm1hYMHOXjtZenkpEw9NZM+DPVT/vTrbemyjXul6Wl2r/CSn6RrikuM45X9KNI/dDr6tsd9I14imrk1FYcjD2kO8F/fe3OO7E9+x4eYG0V/I2siakTVHMsh7ECuvrWTgroEoBSVm+mb81OInPq31aToBNzAmkEWXFgGpSfTyK3GeFGafntym8yhoioP5c+ONjZx/eR5jXWPmtZonblcJKsm/qACRBCOJAiG3pgNt7PoywZohXrOpV1q7UGVBENj9YDcTD07kWcQzABqWacjCtguzDW8//+I8LTa0EFP4D60+lJWdVmYrjKnNaCNqjMjwpaqQy8TlKXzcLHkWV5vfry3n8uvLmdaZk/BsmUzGGJ8x1Ctdj95/9OZJ+BMar2vMj81/ZFL9SYWWIVebdA0qQcX1gOscfnqYQ08OcfbFWY3FVWXIqOVYK9U85t6Kes71NHJVqQQVBx4dYMHFBRx6ckjcXtWuKuPrjKd/lf6c8j9Fq42txPvfw6MHC9stxNHUMcN+zz49m/iUeOo6183Y4ToPSGH2b8ntWmWFQVGbPyMSIvjqyFcATGsyTWNB2ZtBN3kT9wZjXWPqOtctkPY/ZCTBSKLAyI3pQFu7vrbl7r65y/gD48WvKydTJ+a1mkffyn2zFW6OPztO281txZf0pzU/ZVmHZdke5xvoy6VXl9CV6zK4+mCt+lnbMdVJ+urrq6gEVb4JLjUcanDt02uM2DuC7Xe289WRrzjhf4L1XddnqSXLD7ILde5ZP5yXSfs48vRIusSdLuYuokaouVtzShmlFyRikmJY77uehZcW8jD0IZAqRHWp1IXxdcbTxKUJb+LeMGzPMDbf2gykJvRc0n4JnSt2zrTfLyJfiD4d3zf7/r3xzypuZJfOQ9tM4AVJUZo/px+fTnBsMJWsKzGh7gSNfer5rKlr0yzTl0jkDkkwkihQcmo6yC+7fkRCBDNOzGDRpUUoBSV6Cj2+rP8lUxpO0Wpton8f/UvnbZ3FFddH1x7N4naLtXpJ/n4lVVvUzaOb1pluPWw8MNI1IjopmgchD/Cw8dDqOG0w0zdja4+tNHdrzrh/x7H/0X68l3uztcdWGrk0yrd20qJNqPO2cym8MvgDZCpM9Uxp7tZcFIbKWZXL9Fr7Rfix+NJiVl1bRWRipHiOQ6sPZazPWMpalkUQBNb6ruXLw18SFh+GDBnj6oxjVrNZmOqbZtn37099T5IyiaauTWnu1jyPV0IiI7IbHznNBF6QFIX582bQTRZfXgzAwrYL0wk/asdryYxWMEiCkUSBkxPTQV7t+ipBxdrra/n66NdiSH2Xil34pfUvWidc++veX/T6o5eYFXmsz1gWtl2olVAUkxQjaifSOl1nh45chxoONTjz/AyXX1/OV8EIUk1rI2qOoK5zXXr90YuHoQ9ptr4ZM5vNZErDKfluWtM21HlElbkMqF0XHyefLPNVCYLAKf9T/HbxN3Y/2C3em3JW5RjnM45B3oNEgedByANG/jOSE34nAKhmV42VnVZqlbrgSdgT1viuASRtUUGS3fjITSbwgqQwzZ+CIDB2/1hUgooeHj1o5a7pXJ2QkiAmoJUcrwsGaSleiWKF2q4P6RfByM6uf/7FeeqsqsOwvcN4E/eGiqUqcuCjA+zqu0troWjLrS303NFTfPGOrzNea6EIYOutrUQnRVPeqjzNXHOWW6SWQy0gdT2kgqKqXVWujrjKx1U/RikomXpsKm03tSU4Njhf29HW1NnevS8NyjTIVChKSElgne86aqyoQdP1Tfn7/t+oBBUty7ZkX799PBj7gM/qfIapvimJKYnMPDmTqsurcsLvBIY6hsxrNY8rI65onc9pxskZpKhSaFeuHQ3KNND2dCVySH6bzN8nttzawunnpzHSNeLXNr+m23/2+VkSUhJwNHXE08azCHr4/iNpjCSKHTm16wdEBzDl6BQ23Ehdk8xUz5Tvmn7HWJ+xObK/r7q2iuF7h4u/P6/7Ob+0/iVHWgPR6brmiBxrG9Qv7ysBV3J0XE4x0TNhQ9cNNHNtxtj9Yzn89DDVlldjS/ct+ZYoLq8m0YDoAJZdWcbyK8tFzZ+BjgEDqg5gXJ1xGmvWAZx5foYRe0dwLyR12Y225dqytP1S3CzdtO7z3Td32XRzE5AaiSZRcBSHUPjiSFRiFF8c/gKAqY2mUsa8TLoyaaPRJI1mwSAJRhLFEm3s+okpifx28TdmnZpFTFIMAEO8h/Bjix+xM7HLsv53Q4QvvtnM5wfHi/u/qPcFc1vNzdHEc/X1Va4GXEVPoccg70E5O2HeOmD7BvqSrEzWaimU3CKTyRhSfQh1nOrQe2dv7r65S8uNLZnWeBr/a/w/QJ4nn4rcmkSvvL7Cbxd/Y/vtt9mpnc2cGVN7DMNrDE/nhB0eH86UI1NYcW0FkLrkx4I2C7Ryrn+X7058h4BAt0rdqOlYM0fHSuSM7MaHgAo93TiqOOf/8hrFjbRz0Z8P1hIYHUy5UuWYVG9ShuVF/yI3yb+ooJAEI4liS1Z2/f2P9jPhwAQehT0CoI5THRa2W4iPk0+29WYUIpyCGYZ69YhXnOfL+l8yp+WcHL9Y1dqiHh49chXxVc6qHBYGFkQkRHA7+Ha2qQTyAy9bLy4Nu8Rn/37GWt+1fHfyO/bffo0Q2YPg6GSxXE5DqHMS6pyiSuHve3/z28XfNLJT13Oux4S6E+hWqVs6IVEQBHbc2cH4A+PFhI9Dqw9lbqu5uUpk6Rvoyx93/0CGjBlNZ+T4eImckdX4ULtfv5L9RtvNi9jTb0+JTU6aHennouo4sZrBlWw1UlKoCY0L5VrANUByvC5IJB8jiRLFo9BHdNzSkQ5bOvAo7BF2xnas67KOc0PPaS0Ujdp0LZ3jp4JS2CR9Q//yc3MlFEUlRrHl1hYgZ07XaZHJUvP1AFnmM8pvjPWMWdNlDRu6bsCSZgS+7ERQdJJGGXUI9YHbAVrXqzaJ2ptrmkPszQ1Y9nENfNz1mXNmDmV/K0vvnb05++IsOnIdPqryEZeGXeLc0HP09uqdTijyj/Cn49aO9P2zL0GxQVQsVZGTg06yqvOqXL9Apx2fBkDfyn2pYlclV3VI5IzMxoeDuSHj2hiib3yPsy/O0nBNQzF7+ftEZnORDtasPCpk+Kwde3YMAYHKtpXFhWQl8h9JYyRRIohOjOaH0z/w6/lfSVYloyPXYUKdCXzb5FvM9M20qiOrEGEZckDgqX8NVAIotJSL1GrwLTf2kZJQloq2KTR2aaz1eb1LbcfaHHl6hMuvLjOi5ohc15Mb+lf5mN/22hBCCu+6vmsbQv2uibKVp306k6iJSSBLLs+g++4NYuJMdXbqUbVHZZp0MUWVwsKLC/n2+LfEJcehp9Dj64Zf83XDrzP8utaWiy8vsvfhXhQyBd81/S7X9UjknKxM5m29ztB2c1vuhdyj3up6/PvRv1S1q1rUXc4RmWX1zi7DP2g+a+p6Nly8i76yCi1cW2R4pET+IAlGEsUaQRDYfGszXx3+ioCY1C+otuXaMr/NfCpZV8pRXdmFCIMsRyHCmmpwa+yZjU5IMgfvBOY68Zvaz6gwNUZqLj0LIyRGSfp4wFSyC6HOKotxay87Djw+wPRzC0QfCUgNpR9fZzz9qvTDQCdzR9urr68yYt8I0YzQqEwjfu/4e76kNfj2+LcADKw2kAqlKuS5PomckZnJ3MvWi3NDztFuczvuvLlDo7WN2N13d6aLPBc3snoezA31tE5XEBmflKaeWthTixNX4EDpgCJPgPm+IglGEsWWq6+v8tm/n3H+ZeqCse6W7ixou4AO5TvkKhojP0OEM8vaG5ugm6esvWpT2u3g28Qlx2Gkm36R3YIiL9cn6yzXV9EptY4ncX8C6bNTZ3UvY5JimHZ8Gr9d/A2VoMLCwIJ5reYxpPqQfMm9dNLvJIefHkZXrsu3Tb7Nc30S+Utp89KcHnyaLtu6cPr5adpsasOGrhvoU7lPUXctS7LL6j2kgatW9Ry5G8ias37p6omMpdhkB38fkXyMJIodwbHBDN8znNora4sLKM5uMZs7o+/QsULHXIeo5leIcHZZeyFVDa5UZawozwpnM2fsjO1QCkpuBN7I8fF5IbfXJ/ss1wIJoR0x0zPn87qf83jcY/7u8zdNXZtmeS//efgPXku9mH9hvri6+L0x9xhWY1i+CEWCIPC/4/8DYHiN4bhauOa5Ton8x9LQkkOfHKKHRw+SlEn0/bMvCy4sKOpuZYo288Pfvq+0qutv31cFMs9IZI0kGGWBUiVw/kkou31fcf5JqDQA85GMrm2yMpnfLvxGhUUVWHV9FQICH1X5iAdjHzCl4ZQ8+ZFAaoiwsUESAqoM98tIVXVnt1p2TrL25hSZTCbmMypsc5o6hDozUSWz66Ntluu/u93i1za/UtaybJb9CIgOoPcfvem4tSPPI5/jYu7C/v772dpjK/Ym9jk8q8w59OQQZ56fwUDHgKmNp+ZbvRL5j4GOAdt7bmds7bEAfH7wc7489KWYiLU4oc38EBabjJWxXpbPWiljPcJikzMpkbd5RiJrJFNaJhTnVZ9LOhldW0tjiDPcwMPYHQBUt6/OonaL8jX78NyzP/FMtRcbvuGtO3EqOVktu6Cz9tZ2rM2+h/sKXTDK7Wri2p5ndELW32EqQcXKqyuZfGQykYmRKGQKPq/7Od81/Q5jPWPtT0QL0mqLRtcananDt0TxQSFXsLDdQpzMnPj66Nf8fP5nAmICWNNlTbFaSFXb56GrtyNrz/pl+qx18XZkzVm/fGtPQnskjVEGZBZGmZuQZQlNMru2YbEqEkI+wU7RhhUdV3B5+OV8FYp+OPUD3xz7hnjFeVpWf4aDuWbiOHUIuTZCb0Fn7RUdsAtwaZDMyC7EPqPrkx/X407wHRqvbczIf0YSmRhJTYeaXB5+mXmt5+W7UASw58Eerry+grGuMZMbTs73+iUKBplMxpSGU1jfdT06ch0239pMhy0diEqMKuquiWj7PLTytM/yWWvlqZ129EPLDl4YSBqjdyhJqz6XNLQJl3eRT2JI9ZZ5urbvhsgefrmM6SdSHWu/b/Y9Uxt/lmkYrTbkdaHb7FCb0h6EPiAyIRJzA/Nc1ZNbcrqaeF6uR0JKAj+c+oE5Z+eQrErGWNeYH5r/wFifsSjkivw9sf9QCSoxEm18nfHYGtsWSDsSBceAagOwM7ajx44eHHl6hCbrmvDvR//mq6k1t+TkeVDIZZk+a0qVUKDzjETm5LvGSKlU8u233+Lm5oahoSHu7u7MmjULQXh7awVBYNq0aTg4OGBoaEjLli159OhRfnclVxSk/8iHjjbh8kFRSXm6tgduB9BwzjH6rbzA+G2+9Ft5gRX/OmOorMePzX8UfUnUIcJdvJ2o514qR4JYXha61QZrI2vREfhqwNVc1ZFXcnJ9cns9jj87TtVlVfn+9Pckq5LpWKEjd8fcZXzd8QUmFAH8cecPbgXfwlzfnC/qf1Fg7UgULG3KteHEoBPYGtviG+hLvdX1eBj6sKi7JT4PqYEHmj5QGT0PmT1rBT3PSGROvgtGc+bMYdmyZSxevJh79+4xZ84c5s6dy6JFi8Qyc+fOZeHChSxfvpyLFy9ibGxMmzZtSEgoeluptOpzwVHQ1zarrNa2Sd9Q3XJQrurNiNyYnHKC2px25XXBLiibX+TkeoTGhTJk9xCab2jOo7BHOJg48EevP9jTd0+Gi2bmJymqFKafmA7AF/W/wNLQskDbkyhYajnW4tyQc7hbuuMX4Uf91fW58PJCUXeLtpUd6N0gEiWhGttzOj8U9DwjkTH5bko7d+4cXbp0oUOHDgC4urqydetWLl26BKRqixYsWMD//vc/unTpAsCGDRuws7Nj165d9O3bN7+7lCMKwn8kL2ab94mC9M3JzkxXECbQnJqcckItx1r8cedPjj54QUXjVyVi3GR3PdTJOj8/+DkhcSEAjKo1itktZheauXDTzU08CH1AKcNSjK8zPvsDJIo97lbunBt6jg5bOnDl9RWar2/Ojl476FihY5H262n8X7wy+JsRVebQ3r1fps9wdu+HgpxnJDIm3wWj+vXrs2LFCh4+fEiFChW4ceMGZ86c4ddffwXg2bNnBAYG0rLl2wXwzM3NqVOnDufPn89QMEpMTCQxMVH8HRVVcI52+e0/IkW3vaUgfXNyYgLVJqu1tmS10G1ekCVUxylhNQ8e2jD+oS9QMsZNZtfjSdgTRv0zSsx67WXjxYpOK6hfun6h9S1JmcSMk6kLxE5pOAVTfdNCa1uiYLE1tuX4wOP0/qM3/z7+ly7buvB7x98ZVmNYkfQnSZnEwScHQaZieL2m1HJ0yrCctu+HgppnJDIm301pU6ZMoW/fvlSqVAldXV2qV6/OhAkT+OijjwAIDAwEwM7OTuM4Ozs7cd+7zJ49G3Nzc/GvdOnS+d1tkazsuuqgSm3tulJ0myYFaTN/n0ygB24HsPRwEgqsNbaXxHGTrExmzpk5VF5WmcNPD6Ov0Of7Zt9z7dNrhSoUAay5vga/CD/sTewZXXt0obYtUfCY6Jmwu+9uBnkPQiWoGL53ODNPztTwby0sTvqdJCYpBnsTe2o41MiwjPR+KL7ku2C0Y8cONm/ezJYtW7h27Rrr16/n559/Zv369bmu8+uvvyYyMlL8e/HiRT72OD2Z2XVTCGFsawOtvtgLMjtySaagbOYFHUJfWKQdN7IMFnKFkjNuLr68SK2VtZhydAoJKQk0c23GrVG3mNp4aqHnnYlPjmfWqVkATG00tVCXWpEoPHQVuqzpvIapjVKDLKafmM6n+z4lRZVSqP3Y93AfAB3Kd8gwS7v0fije5Lsp7csvvxS1RgBVqlTB39+f2bNnM3DgQOztU8Mpg4KCcHB4+xIMCgrC29s7wzr19fXR189b1uOc8q5dd+Ptxfz5eC6+kf2B7Fc2LirTTkmgIGzmBR1CX1iUtHGTkX9EbHI0U49OZcnlJQgIlDIsxS+tf2FAtQG5Xs4lr/x+9XdeR7+mjHkZhtcYXiR9kCgcZDIZ3zf/HkdTR8buH8vKaysJig1ia4+thSIQC4LA3od7AehUoVO6/UqVwLqzz0rUc/6hke+CUVxcHHK5poSsUChQqVLDFt3c3LC3t+fo0aOiIBQVFcXFixcZNWpUfncnT6S16zrYdOPPJz+x8+5OFrZdmG00y/tk2ikI8ttmntuszcWNkjRuMvKPsDASCNX5nZfJqV/Mn1T9hF9a/4KNsU1RdZOYpBhmn5kNwLTG0/K8tIxEyWB07dE4mDjQ789+7Hmwh5YbWrK3315KGRWsoHEv5B7PIp6hr9CnRVnNj+iMnpmsKA7P+YdIvpvSOnXqxA8//MA///yDn58ff//9N7/++ivdunUDUqX5CRMm8P3337Nnzx5u3brFgAEDcHR0pGvXrvndnXyjtmNtqthWISElgc23Nmdb/n0x7ZQk3ofQ1pIybjLzjwiPE5BHfYqbQTcOf3KYDd02FKlQBLD40mKCY4MpZ1WOAdUGFGlfJAqXbh7dODLgCBYGFpx/eZ4GaxrgF+FXoG2qzWjN3Jphomcibs/smcmKon7OP1TyXWO0aNEivv32W0aPHk1wcDCOjo58+umnTJs2TSzz1VdfERsby4gRI4iIiKBhw4YcOHAAA4PiOwhkMhnDawxn3IFxrLy2kjG1x2RpFnhfTDsljZIS2qpUCegrq6AQLLn0LJzG5Y1QyGUlYtxok8HcVjWaZq7Zm5wLmsiESOaenQvAd02+Q1ehW8Q9KhkUZoqRgm6rYZmGnB1ylrab2vIg9AH1VtVnbpO/MdN1LpD21IJRWjNaVs9MRhTZcx7xAuJCUQoCd15FERaXhJWRHl5OZihkMjAqBRYFF/xUXJAJReGyn0eioqIwNzcnMjISMzOzQms3LD4Mx18cSVQmcnn4ZWo51sqyvPoLATI27ZQULYZE/nLgdgDT99whKOptCoq0IbrFfdycfxJKv5XZJ9HbOrxukftHTD8+nZmnZuJp48nNkTcLNKP2+0JhphgpzLZeRb2i5coviH7TBh3eajHzs73QuFBsf7ZFJajwG++Hi4ULoP0zA0X4nEe8gMU1ISUx8zI6+jD2ap6Eo6J6f+cEaRHZHGBlaEUPzx4ArLq2KtvymZl2LE1kRf5ykyga1EJPWqEINEN0i7tJsKT4QYXEhTD/wnwAZjadKQlFWlCYIeSFHa5+67mchDcfo1OAaTAOPD6ASlBRxbaKKBRBzp6FInvO40KzFoogdX9caNZl3gMkwSiHDKuemjBsy60txCbFZlu+bWUHzkxuztbhdXEufYhAva8Z3OpZkb/cJAqfnIToph03v/X1ZuvwupyZ3LxYjJuS4gc17+w8opOiqW5fnW4e3Yq0LyWBwgwhL+xwdc32Ci4Nxr5H6c1ooP2z8G0HjyJ7zpVaGo+0LVeSkQSjHNLEtQnulu5EJ0Wz484OrY5RR2A1rmRMouIWt4JvFHAvJYojOV2gOC8L3RYkaj+ozHojI9U8URR+UEqVwPknoWy4cJfl546CIGdWs1kZ5pKR0KQwF9Au7MW6C6O9ZGUy/z76FyDdciSlrRMR5GHpFpVVo35mBjVwK7Ln/ParCK3K3XlVcCtPFBfy3fn6fUcukzOsxjC+Pvo1q66vYnD1wVofW82uGgA3g24WVPckijElxQSVHcU1NcK7/iqWzKCUThTyxIwzD0toou2467V9KFVdkvC298bb3ptqdtUoZ1UuR6ZKbdvacmMfTtbN8ry4sLbtvY6IAXLnF3f2xVkiEyOxNrLGx8lH3J6YkkjPP7rzRkeOTdI3CKj+C1JIpaieGZWg4nbwbU74neCk/0mi7odyWIvjwuKSCrxvRY0kGOWCgdUG8r9j/+Pci3PcfXMXTxtPrY6rZp8qGN0KvoVSpZR8Hj4wSooJShvUflDvOs7aF9F6bmp/lXeV/KoUM0ZvvlYsfLOKO9qOu5CEp/z7+Bb/Pv5X3Gaka0RVu6pUs6smCkxVbKtgrGecp7ZW+v7C4luDqGZXjY4VOtKxQkd8nHxyrAHUtr2fL35LS69FuVrUOG22a/XcLggCo/eP5uKri6CAcP25uOtMITz27UgtrGdGJai4GXSTk34nOeF/glP+pwiLf6shq6OsoJUNycqocLPWFwWSYJQLHEwd6FihI7sf7Gb1tdX80uYXrY4rb1UeAx0D4pLjeBL+hAqlKhRwTyWKEyUhFD8naJsaoaDDsbUJhZ6x9y6tPO2LjTmyOKLN+LQz02fzR8u5GXyDG0E38A305WbQTeKS47jw8gIXXl5IU15G+VLlRa2SWmByMHHIti0AE4MkapY258IrOTeCUtv74fQP2BjZ0KFCBzqW70gr91aY6Wcf2ZRdewIqlLJQLgRvpvG6G/z70b84mjpqc9lE1Nmu05rRll9Zzprra8TfK3uNoadnu0JJhaBUKbkZdJMTfic44X+C0/6nCU8I1yhjrGtMwzINaeralHZGjrDns2zr9XIqnpFk+YkUrp9L9j3cR6etnbA2subl5y+1zqZbe2Vtrry+wo6eO+jl1auAeylR3Cjuofj5TWGEY5ek9AHFndyMT6VKyeOwx/gG+uIb6CsKTAExGUd52RjZUM2+Gtaylpy/7cW7ztDvthUSF8KBxwfY+3AvBx4fICrxrY+LrlyXpq5NRW1SWcuyOT43EBCAN3o/kqx7mRRVCi7mLhz4+ACVrCtlWl9aHoY+pOLiiujKdQn5KgQzfTNO+5+m2fpmKAUlAPPbzGdC3Qla1ZcblColvoG+omnslP8pIhMjNcqY6JnQqEwjmro2pYlLE2o41Hib2+u1L6xokn1DI06Co3eu+1kc3t/ZIQlGuSRFlYLLAhdeR79me8/t9PbqrdVxw/YMY/X11UxtNJXvm39fwL2UKI4UZu6WoiQz81Z+C4G7fV8xfptvtuV+6+tNF2+nPLf3vpNf4zM4NpgbgalCkm+QLzcCb3A/5L4oKAAYKuthlTRCI6+QqWEKgxubMrRezXQmrWRlMmeen2Hvw73sfbiXx2GPNfZ72njSsXyqkFSvdD105JpGkczOrX2NOBbcGERYfBhymRyVoMLK0Iq9/fZSv3T9bM91/vn5TDw0kZZlW3L4k8O8iHxB1eVViUiIAGBS3Un83OZnra+dNqSoUrgecJ2T/ic54XeC089PawiNAGb6ZjQq04gmLk1o6tqU6g7V010TESmPkYgkGOWBb499y/env6dV2VYc+uSQVscsuriIcQfG0bFCR/b221vAPZQorhRmZuGiQKkSaDjnWKaRQGqz4ZnJzfN83pLGKG9kNBaBAhmf8cnx3HlzJ1WzFHgjVWAKuElSggsKwRKlLJxE+R2Q/be2poVbOlNcGfMy4qoDD0Mfsu/hPvY+3Mtp/9MaQpeVoRXtyrWjY4WOtC3XFgsDi0zPVyGX8SLyBX3/7Mu5F+fEOvQV+uzotYPOFTtneV7N1zfnuN9xFrRZwIiaI6i5oib3Qu4B0MerD1t6bMlzZGSKKoVrAddEjdBp/9NEJ0VrlDHXN6eRSyOaujSlqWtTvO29c+bLWgiZr4vL+zsrJMEoDzwLf0bZhamq26fjnuJm6ZbtMaf8T9FkXRPKmJfBf4J/QXdRQqJIKExhRS2EZee7lR9C2PtGcdBeqgQVfhF+6UxxzyOfZ1jewsBCQ1CqZlcNTxtP4lPiOfj4IHsf7uXfx/9qOBYrZAoauTSiY/mOdKrYKVP/zmRlMtOOT+Onsz+J22TIWN5xOSNqjsjwmIiECGzm2ZCiSuHR2Ed8deQr/r7/NwANSjfg2MBj6Cly7rCcrEzmasBVURA68/wMMUkx6a5FY5fGNHVpShPXJlSzq1bsg3qKy/s7KyTBKI+02tiKI0+P8G3jb5nZbGa25SMSIrCcYwlA2FdhWBpaFnQXJSQKncI2b31ovlv5QWGZOnNLWHwYN4NuigKTb6Avd9/cJVmVnK6sjlwHTxtPUWCqYluFJGUSp/xPse/RPu6+uatRvrxVedEvqVGZRunW0Dvw+ACf/P0JIXEh4rZpjafxXdPv0q2RuePODvrs7IOHtQf9qvRj2vHUdUHdLd259uk1rZzDAZKUSVx5fUWMGjv7/CyxyZpJhC0NLGni2kQ0jVWxrVLsBaF3KU7v78yQBKM8sv32dvr+2RcnUyf8J/hrNUhdF7jiH+nPiYEnaOKqhbObhEQJoyjMW8VB+1FSKExTZ36SpEzi3pt7Gpol30DfdNFWapzNnPG298bFzIW4lDgehj7k0qtLGsKVmb4Zbcu1pWP5jrQv355SRqnj8VXUK/r/2Z9Tz0+JZQdWG8iqzqs0/HQ++fsTNt3cRPdK3fnr/l9Aqhnvzug72JvYZ3kul19dFjVCZ1+cJS45TqNMKcNSqRqh/5ylq9hVKfHJSovT+zszJMEojySmJOL0qxOh8aHs67ePDhU6ZHtMl21d2PNgD7+1/Y1xdcble5/ed/8VieJPUZm3pLGvHdoKrm1q36ecvQpjPWNM9Eww1jXGWM9Y/Pfdbe9qXgoDQRB4GfUynSnuSfiTDMsb6xrjbOaMDBmvol9p+OnIZXLqOdejY4WOdKqQanKbeXImP5z+4b/YNejlVI/1rX/BUMcQpaCi5caWRCZEopApUApKohW67Bt1g4rWFTXaTUxJ5NKrS6IgdO7FOeJT4jXKWBtZi9qgJi5N8LL1KvGC0LsUp/d3ZkiCUT4w8eBE5l+YT9dKXfm7z9/Zllc7bQ/xHsLqLqvztS/SV7NEcSGr8GgZ0kLKRYm2ps43unOJ0zmVbTk1ego9DUHJRM9EQ5ASt2VRJiMBzFjXOMcmo6jEKG4F3Xprigvy5XbwbRJSMtaS6Sv0SVRqRmS5WrjSsXxHnMyc+OnMT5glRPEAEwwzXRAHlApdFJ9dJ8HEhosvL4pRY+dfnk/Xto2RjSgENXVtioeNx3snCL1LcXt/Z4QkGOUDd4LvUHlZZRQyBS8nvsxSfQqw8+5Oev3Ri5oONbky4kq+9aO4+wxIfHhkJKgrdKJY0repNBaLEG01Rj6Vz2Ng/JzY5Fhik2KJTY4lJilG/P/YpNTfaaPBCgoDHYNMhSdttFkmeibo6+gTEheCX4Qfj0Mfcy/0HreCbvEm7k227evJ9fCR63M6OXsN5AjHSmwIvpFO0LIztqOJaxPRWdrD2iOdz9L7TnF7f2eElPk6H/Cy9aKecz3OvzzPet/1TG44Ocvy6jXTbgffJkWVknleiRyQ3WrVMqTsv+8jxd10lDY79oPgAMYc+Jg42S2cbHwBSTAqKrTNwr61/6xsx5MgCCQpk7IUnjITqGKTsy+jNmElpCSQkJJAaHxovl8PQx1D9BR6Yg6jRGViOu1OkiqJWGUKYJJtfVdeXyFRpsLexF5DI1SxVMUPThAqiUiCUT4xrMYwzr88z6rrq/iqwVdZDn53K3eMdY2JTY7lUegjPGw88tx+TlaPlnK5vB+UFLOpQi6jnnsp6rmX4p+X5dl59wZLLi9hecflRd21Dxb1QsAj/zN1vouA9ouaymQy9HX00dfRx8owf5ezEQSBhJSEbIWnmKQYIhIiiEiIIDIxksiESKKTokXhKy45jrjkOBJSEkhMSSRJmaThgB2fEp/O3ycvTG00lSreH1PeqrwkCJVAJMEon+jt1ZvxB8bzOOwxJ/1P0tS1aaZl5TI5VeyqcOHlBW4E3cgXweh9WbldQjsyM5sGRiYwalPxXTR1TO0x7Ly7k403N/JTy5/EpHsS7z+CIJCoTCwQrVJccpyoWSoO9PDoDtJamCUWSTDKJ0z0TOhfuT8rrq1g1bVVWQpGkGpOu/DyAjcCb9C3ct88t/8+rdwukTUl2WzaxKUJXjZe3Hlzh/W+6xlfd3xRd+mDRD2GMkMGTNtzi9K2ESSkxOVZeFFvUwmqwjvJHGKoY4iloSWWBpbYGNtga2SLvYk9jqaOOJk5UdqsNC5xEbBjQLZ1TTj4Od/22SmG/kuULCTBKA159dcYVmMYK66tYOfdnSxqtyjL5I1qP6MbQTfy3G94/1Zul8ickmw2lclkjKk9htH7R7P0ylI+q/PZex+FUxzRZgwFRyVTc3EfEhW38r19fYU+RrpGGOoYoq+jj45cR/S1FAQBpaAkWZlMojKR+OR4YpNjM0zsmBUKmSJVwDG2xdbYFjtjO81/Td7+tjG2wUBHi4/G175atX3K/xS2P9sy2Hsw89vMx1TfNEd9lyhaJMHoP/LDX6OWYy2q2lXlZtBNNt/azFifsZmWrWpXFcg/wSitz4CAChlvXzZq0U5bnwGJ4k1JN5t+Uu0TphydwsPQhxx5eoTW7q2LuksfHNqODTNdZ/SMwzIPrdfV/K0r10UlqEhWJZOQnEB8SryGD1B4QjghcSG8iXtDSFxIpokZM8NI10hTsDF6K+C8K/RYGVoVqdCtElSsvr6ajTc3MqneJL5t/C2GuoZF1h8J7ZEEI/LPX0MmkzGs+jDGHRjHymsrGVN7TKaOd2rB6HX0a0LiQrA2ss7radC2sgMNqtzh5C1bjdWq7YuhQ65E7inpZlMTPRMGVhvIokuLWHJ5iSQYFQHajo3d/TdQ0VFOcGwwwbHBBMUEpf4bm/rv65jXGtvfXdQ0O2TIKGVUKlutjnqbsZ5xbk43/zAqlbrCfBYr0CfJZISkyYKTpExi9pnZLLq4iBnNZvCZz2dFkghTQns++DxG+Z0aPyw+DMdfHElUJnJp2CVqO9XOtKz7Qneehj/l6ICjNHdrnttT0KDOqjpcenmFGfU3Uc22cbEM4ZbIG9lllRZQIVdE8dfYylR3qFbo/dOG+yH38ViSmszuybgnuFq4FnWXPiiSUlRU+vZfVJnO/gICKgIM+5JMzqK19BR66QUbI03TlXqftZF1vqQrKVT+W4E+U4xKserpQUbuG5lhfqdSBtaM8V6At21j7M2MPrj5WcpjVALIb38NK0Mrenr2ZPOtzay6tipLwaiaXTWehj/lRuCNfBGMohKjuPr6KshUDK7TkNLmeV+cU6L4oTabjtp0DRnps0qDjCDFEuqsusKsZrP4ov4XxW6hyUrWlWhZtiVHnh5h+ZXl/NTyp+wPksg3rvqHZyEUQaouR4FcWQ4UtzDXN08v2Bin0eak2Wemb/Z+h6hblE79y4JhNYbRwq0FDdY0ICAmAEiNRtZPqYNB+AjWH7dgPTeB1A/v7ySNfrHig/d6LAh/jWE1hgGw5fYWYpJiMi2X3w7YZ56fQSkocbd0p7R51g+uRMmmbWUHln1cA3tzTZOIg7khc3uWo5WnDcmqZKYcnULT9U15Fv6saDqaBWNqjwFg1bVVmS7TIFEwaDufLWu3mYSpCURMieDB2AecHnyanb13srTDUqY3nc6o2qPo4dmDhmUaUqFUBcwNzN9voSgHuFm68fLzl3Sv1B0A/ZQ62CR9gwJNt4nAyHhGbrrGv7cCiqKbEhnwwQtGefXXUKoEzj8JZbfvK84/CUWpEmji0oRyVuWISYrhjzt/ZFpnNfv8FYyOPzsOkG2qAIn3g7aVHTgzuTlbh9flt77ebB1elzOTm9OnViV29dnF6s6rMdEz4czzM1RdXpXV11ZTnCznHSt0pLRZaULjQ9lxZ0dRd0eDjJ7r9wlt571Kto7o6+gXcG/eX+RyOX/2+ZO1nddjlfwpkKqL00SGgIox249z2u9M4XdSIh0fvGCkDnPP6hvHIZMw9wO3A2g45xj9Vl5g/DZf+q28QMM5xzh4J5Ch1YcCsOr6qkzrVTtg331zl2RlzkJRM+KE/wkAmrk2y3NdEiUDdVbpLt5O1HMvJfoqyGQyhlQfws2RN2lUphExSTEM2zuMLtu6EBQTVMS9TkVHrsOoWqMAWHxpcRH35i2ZPdcHbr8/X/TZzXsyMp/3JHJORbMO6AjWGQhFqciQo0oxp9Wa0bTZ1IbrAdcLuYcSafngBSO1vwaQbsgKqBAQGNsifaI8dSTbu/5J6kg2F/3OKGQKzr04x53gOxm27WrhiqmeKUnKJO6H3M/TeUQmRHItIDW9v6QxklDjZunG8YHHmdNyDnoKPfY+3EuVZVXYdX9XUXcNSDU76yn0uPz6MpdfXS7q7mT7XL8vwlFW856U3iP/0dZ0qRAsOfTkEDVW1KDnjp55fi9I5I4PXjCCzP015Ioo3uj9yLLbn2podLLLPAyw8EgAHSt0BmD19dUZtiuXyfMtn9Hp56dRCSrKW5XHyUxyupZ4i0Ku4KsGX3F5+GWq2FbhTdwbum3vxuDdg4lKjCrSvtkY29DbqzcASy4vKdK+aPNcz9h7970xq2U279mbGxTbJWVKKtqaLm1M35ot/7z3J55LPBm0axB+EX4F1DOJjJAEo//IyF/jwOc+6Brd4eyLs0w5MkUsq20kWxOHVHPahhsbSMwk74XaAftm0M1c9VvtC7Hhwl30lVVo4tI0V/VIvP9UtavK5eGX+ar+V8iQsc53HVWXVeWk38ki7dfY2qmJULfd3kZIXEiR9SMnEarvC5n5qUlCUf6SnelSQIWObjSnRqzht7a/Ya5v/t92gfU31lN+YXnG7h9LQPT7obEs7kiCURre9deoaF2e9V3XA/DrhV/5695fgPZqUVezqjiZOhEaH8ruB7szLJMXB+y0vhCX7nphnzSbS76d3ht1v0T+o6+jz5xWczg56CSuFq74R/rTbH0zvjz0ZabCe0Hj4+RDTYeaJCoTWX0tY+1qYVDSM4rnlsz81CTyj6xMl+oUG69lC6m3pg7e9t48G/+MSfUmoStPTQSZIqSw5PISyv5WlsmHJxOaVR4liTwjCUbZ0LVSV76o9wUAg3cP5lHoI63VovZmRgz2HgykhiRnhBiyH5gzwSgzX4jIOPl75QshUTA0cmnEzZE3GVp9KAICP5//mdora+d4HOYH6vXTAJZdWYZSlT4pXmFQ0jOKSxRvskqx8U1HG1zswnkd/Zpm65ux9PJS5raay/2x9+nl2Ussm6BMYO65ubj95sbMkzOL3BT+vvLBZ77WhmRlMs03NE8Ne7arypnB52j964VsF2w9M7k5zyP9KLuwLABPxz3FzdJNo2xsUiyms00REAicFIidiV22/cnvbN0SHzZ7Huxh2J5hvIl7g65ct0iSQsYnx+M835mw+DB2991N54qdC61tNW+fq3gy+q6XniuJ/CCzxcpjkmIYs38MG25sAKBV2VZs7LYROxM7zr04x6SDk7jw6oJGXVYGVnzT6BtG1x5dYtZhKwmZryWNkRboKnTZ3nM7tsa23Ay6yfgDn2UTyfY2osPN0o1WZVsBsOb6mnR1G+sZU86qHKC9Oe1D9IWQKDg6V+zM7dG36VKxi0ZSyKfhTwutD4a6hmKKi6JywlbIZQxqZIJA6nOcFilSSyK/yMx0aaJnwvqu61nXZR1GukYcfnoY79+9OfbsGPVL1+fc0HNs67FNY/mcsIQwvjj8BeUWlWP5leUkKZOK6KzeLyTBSEscTR3Z1mMbcpmctb5reZ38b4ZqUSWh6JVaT0vPt4u4qjNhr/VdS4oqJV3dop+RlmaMD9UXQqLgsDW25e8+f7Om8xpM9Uw58/wM1ZZXY9W1VYWWFHJUrVHIkHHoySEehj4slDbTkqxM5vc7o3ij9yN6unEa+6RILYnCYqD3QC4Pv4yXjReBMYG03NCS7058h0pQ0adyH+6NucfclnMx03+rbXkd/ZpR/4yi0uJKbLyxscjM0e8LkmCUA5q5NWNWs1kAjNk/BnvrII2IjpUDK5Ng+SWP4v5g5dWV4nFdKnahlGEpXkW/4uDjg+nqzenSIJIvhERBIJPJGFx9MDdH3aSxS2NikmIYvnd4oSWFdLN0o0OFDgAsvby0wNt7l9lnZnM98DqGJg848WXjdJFarTzt3+ts2BLFB08bTy4Nv8Sw6sMQEJhxcgYtN7YkIDoAAx0DvmzwJQ/GPKJP+W8xUTZFX1kFBDnPIp4xYNcAqi6vyl/3/kr3UfO+Z3TPLyQfoxyiElR03tqZfx79g7ulO1dGXMHCwELcv+TSEsb+OxYbIxsej3ssSvUTD05k/oX5dK3Ulb/7/K1R594He+m8rTNVbKtwc1T2YfvZra4u+UJI5BWlSsn8C/OZemwqScokrI2sWdFxBd08uhVouwceH6Dd5naY65vzcuJLTPRMCrQ9Nb6BvtReWZsUVQpbum+hX5V+mv26HcCMvXc1TNgO5gZMlxb/lChgttzawqf7PiUmKQYbIxs2dd+EKr5KuvGYwhvC9FYQrzgvbqvpUJMfmv9Aa/fWHLwTWCzGsORj9B4il8nZ0G0DLuYuPAl/wuDdgzWk8hE1R1CxVEXexL1h9unZ4na1OW3vg73pclGoTWn3Qu5pFTKdNvRT8oWQKAgUcgVf1P+CK8OvUM2uGiFxIXTf0b3Ak0K2dm9NOatyRCZGsvnm5gJrJy1JyiQG7RpEiiqF7h7d6Vu5r8b+DyUbtkTxpH+V/lwdcZVqdtVSk7Oun8HITVfTjUcdbLBN+gZDZT0gdU22qwFXabu5LbUXDWekNIa1RhKMcoGVoRU7e+9ET6HHrvu7+OX8L+I+XYUu81rNA2D+hfn4R/gDqarR+qXroxSUrL+xXqO+0malsTCwIEWVwr2Qe1r1oW1lB+b2roASzXwWki+ERH5Sxa4KF4ddZHKDyYWSFFIukzO61mgg1Qm7MBTaP5z6gRtBNyhlWIql7ZdqrA7/oWXDliieVChVgQvDLjCy5igsk4ZnOB4hVRgqpzMFJxNnhP9KyQQFga8bir/TIo3hjJEEo1xSy7EWC9osAGDKkSmc9j8t7utYoSPNXJuRqEzkm2PfiNuHVU/VGr3r0CqTyXKVzyhZ9zKvDIYSqPc1M7u6SVlrJQoEfR19fmr5E6cGn8LNwk1MCvnFoS9ISMl/B/9B3oMw1DHkVvAtzjwv2NXGrwVc44fTPwCwtMPSdOkypAhQieKCgY4BAzxmoYNNpovRCkBUnIJNnS4ws+lMjHWN0VN5ZnuMNIY1kQSjPDCy1kg+qvIRSkFJn519RAdVmUzGL61/QYaMLbe2cOnVJQB6efXCVM+UJ+FPOOmv+cWdmzXTtt/eDjIVhsYvGFDXU8paK1GgNCzTkBsjb4gOob+c/4XaK2vjG+ibr+1YGlrycdWPAVh8eXG+1p2WxJREBu4aiFJQ0suzl7hmW1qkCFCJ4oS24ywyDr5t8i2PPntES5fu+Vr3h4AkGOUBmUzG8o7L8bTxJCAmgH5/9hPDJKs7VGdAtQEATDo0CUEQMNEzoV/lVKfOdzNh5zQyDeDiq4sA1HKoledzkZDQBlN9U1Z2XsmevnuwNbbldvBtfFb6MPv07HwNEVZnwv7r3l8Ftj7UrFOzuB18GxsjG5a0zzh3khQBKlGcyOl4dDB1YGrTz/K17g8BSTDKIyZ6JuzstRNjXWOO+x1n2vFp4r4fmv+AoY4hZ56fEddZUzth77y7k/D4cLFs2lxG2vhVRCdGExSbqqHq7qHdF4GERH7RqWInbo+6TbdK3UhWJfPNsW9ovK4xT8Ke5Ev91eyr0aB0A1JUKay4uiJf6kzL5VeX+enMTwAs67AMG2ObDMvJ9Z8iyMPSBTmokZEa2ePjZpXvfSw2RLyA176Z/0W8KMLOfVhktxhtRuMxu2NASHfMhx7WLwlG+YCHjQerOqdqgH488yP/PPwHACczJ76s/yUAk49MJkmZRC3HWlSzq0aiMpFNNzeJdXjZeCGXyQmNDyUgJvsv5H8f/yv+fw/PHvl5OhISWmFjbMOfvf9kXZd1mOqZcu7FOaotr8bKqyvzxWl6rM9YAH6/+jvJyuQ816cmISWBQbsHoRSU9K3cN9PnZ++DvTTf0JQ3Ossy9M/4ICJAI17A4pqwoknmf4trSsJRIZHVYrSZjcesjlGv1JBispXrgVcBzcXJx2/zpd/KCzScc+yDilyTBKN8om/lvoytnTqRf/L3J/hF+AHwZYMvsTex50n4E5ZcWoJMJhO1RiuvvX2BGOoaUrFURUA7B+xtt7cBYKFvga2xbX6fjoSEVshkMgZ6D+TmqJs0cWlCbHIsI/aNoPO2zgTGBOap7u4e3bEztiMgJoC/7/+d/QFa8t2J77j75i52xnYsbpexD9OSS0vour0rcclxNK5gxq99PHF4J8v9BxEBGhcK2aUQSUlMLSdRKGS2GG1W4zGzY4z1k4k0+JkrYaupvbI27VZ/LYX1IyV4zFcSUxJpvK4xl15dopZjLc4MPoO+jj6rr61m2N5hWBpY8njcY2TIcPjFgURlIpeGXaK2U20A+v3Zj223tzG7xWymNJySZVuOvzgSEBNAc9fmHB14tDBOT0IiS1SCivnn5/PNsW9IUiZRyrAUKzqtyJOpd/rx6cw8NZNGZRpxavCpPPfx4suL1F9TH5WgYlefXXSp1EVjv0pQ8eWhL/n1wq9AaiTp0g5L0VXoZrr453vNa99UrVB2jDgJjt4F3RuJNORmPGZ0zKvoF0w9NpVNN7bglLAaBdaZakjzI3FwcX1/p0XSGOUj+jr67Oi5AytDK668vsLnBz8HUsOPq9pVJTwhnFknZ2FpaElPz56AphN2VVvtItPikuPEr3HJv0iiuCCXyZlUf5KYjC40PpQeO3owcNdAIhMic1XniJojUMgUnH5+mltBt/LUv/jkeAbtHsT/2Tvr6CjOLg4/uxt3FyAQCCE4wd3dXQuFlkILpbSUfkVLjUKhtKXQYsXdXYI7wRMIwSMQIO5uO98f2yyE2CbZJJtknnM4J+zOvPO+uzszd678rlyQM7r+6CxGUWJqIsP2DFMaRQs6LWBN3zVoy7SBnJt/ioiUBAX5PWa3T2XTymwZuIUNvS6LZf3/IRpGaqaKWRW2DdqGBAkrb69k2/1tyKQylnRdAihE655HPFeG07Y/2E5cShygejPZk89PKsW6sisxFhEpSera1OXmhJvMajNLoRR/bzP1V9Xngv+FfI9V0aSisg3JP7eyrxxTlXnn5/E47DH2Rvb81eOvTO+FxofSaXMn9j3ah45Mh22DtjGr7axMYo8iImUZc50qKm1XHsr6RcOoCOhRvQdz280FYOLRiXiHeNPVqSs9q/ckVZ7KjDMzaF+lPdUtqhOXEsdu793A25L9J+FPSExNzHH8HQ92AGCqa5pjNY2ISEmiI9NhQecFXBp3iWrm1XgZ/ZKOmzoy/eT0fItCZuTubbm/haikqALN51rANaVC/Zq+a7DQf1uB8zT8KS3WteD6q+uY65lzesxpRtUbVaDjiIiUVkRpireIhlER8X377+lSrQsJqQkM3j2Y2ORYfuv6G1KJlP2P9nP55eVMStgAFYwrYKlviVyQ8zD0YY5jXwu4BkAj+0ZFvxARkULQunJr7n12jwmNJgDwx/U/aLKmCR6BHiqP0a5KO+pY1yEhNYFNnpvy3uE9ElITGHdwHAICYxuMpU+NPsr3rry8Qst1LfGN9KWqWVWujb9Guyrt8n0MEZHSTkGkAMoqomFURMikMrYP2k5F44o8CX/CxKMTqW1dW3mDmH5qOmMajEEmkeH+yh3vEG9FaxC73IUek9OSeRP7BoCBNYu207mIiDow0jFiTd81HBl5BFtDW7xDvWm+tjkLLi8gTZ6W5/4SiUQp+Lji9grkQvaaQjkx99xcnkU8o4JxBZb2WKp8fdeDXXTe3JmIxAiaVWzG9U+uU9OqZr7GFhEpKxRECqCsIhpGRYi1oTW7huxCS6rFzgc7WXFrBT92+BFjHWNuv7nNeb/z9HXpC8A6j3UAefZMO+17WplflKGiLSJSGuhTow9ek7wYVGsQqfJU5pybQ7sN7Xge8TzPfcc0GIOJrglPw59yxveMyse8/OIyS68vBWBt37WY6ZkhCAKLrixixL4RpKSnMKDmAM6PPS/KXmSHgSVo6ea+jZauYjuRUk9BpADKImK5fjHwp/uffH3qa7Sl2lz+6DLn/M4x+9xsHEwcWNpjKYN3D8ZS35LXX79m54OdjDs0jvZV2nNh3IUsY43cO5Kd3jsx1TUlamZUsa9FRKSwCILAlvtb+OLEF8Qkx2Cobcjv3X5nYuOJuSY7Tz0xleU3l9PPpR+HRhzK8zjxKfE0WNUAn0gfPnb9mHX915EmT2PK8SmsvrMagK+af8WSbkuQSWVqW1+ZIyogd50iA0swcyi++YgUOUUpTVEa7t+ix6gY+KrFVwyuNZhUeSpD9wxlTP0xVDatTEBMAI9CH1HRuCLhieEcfHwwUzPZ7GzWqwFXAXC1cy3OJYiIqA2JRMKHDT7k/mf36eDYgfjUeD479hl9dvTJtS/a5KaTATj69KhSQDU3Zp2dhU+kD5VMKvFH9z+ITY6l345+rL6zGgkS/urxF3/2+FM0ivLCzEGhUZTTP9EoKnOUd2kK0TAqBiQSCev7r8fZwpmAmAAmHJ3A/I7zAVh0dRHD6wwHYK3HWmpb10ZLqkVUUhQBMZll9tPkabyOfQ1Af5fMGiwiIqWNKmZVOPvhWf7o9ge6Ml2OPztOvZX12PdwX7bb17SqSZdqXZALclbdXpXr2Bf9L7L85nIA1vVbR3xqPO02tuPE8xPoa+mzf/h+pjafqvY1iYiIlH5Ew6iYMNE1Ye+wvehr6eP23A2/KD+aVGhCbEosQXFBSJBwxvcMb2LfKBNA388zOuN7Rpl4OqbBmGJfg4iIupFKpExrOY07E+/gaudKeGI4Q/YM4cMDH2YrCpmRhL327tocy/7jUuL46NBHAExsNBF7I3uar22OZ5AnNoY2XBh3gQE1BxTZmkREREo3omFUjNS3rc/K3isBRb+mUXUVWik7vXfSolILANZ7rFcmYN8Pvp9p/4ymsya6JlgZWBXXtEVEipw6NnW48ckNZreZjVQiZcv9LdRbWY9zfucybdenRh8cTBwITwxX6n+9z4zTM/CL8qOKaRV6Ofei9frWvIp5hYulC9fHX6dZxWbFsaRSQ3nvpC4i8j5FYhi9fv2a0aNHY2lpib6+PvXq1eP27dvK9wVBYN68edjb26Ovr0+XLl149uxZUUxF4xjrOpZPGn6CgMCCKwvo4dQDuSBXCjpu8NxAPZt6QNaS/SsvrwDgautarHMWESkOdGQ6/NL5Fy5/dBkncycCYgLovLkz09ymKc8PLakWk5pMAuDvm1kbwJ71PcuK2ysAGFJ7CEP2DCE2JZb2Vdpzbfw1qppXLb4FlQLETuoiIllRu2EUGRlJ69at0dbW5sSJEzx8+JDff/8dc3Nz5TaLFy9m2bJlrFq1ihs3bmBoaEj37t1JSir7UuMAy3ouw9XOlbCEMELiQ9CSaOEZ7ImprimvY1+TnK7oZv2uYSQX5Mqco34u/Upk3iIixUErh1Z4fubJp40/BWDpjaU0+bcJdwPvAvBJo0/Qkelw680tbr6+qdwvNjmW8YfHA9DYvjG/u/9OmjyNUfVGcXL0yUxq1yIKo2iS2EldRCQLajeMFi1ahIODAxs2bKBZs2ZUrVqVbt264eTkBCi8RUuXLmXu3Ln079+f+vXrs3nzZt68ecPBgwfVPR2NRF9bn71D92Kqa8rdoLvUs1V4iLSlimaVGcrWz8KfEZ8SD8BZv7PK/KKxrmPVPqfy5k4vT+stjWs10jFiVZ9VHBt1DDsjOx6GPqT52ub8cukXzFPi+bZqdxoKUo5e/EXRAf6NJ8sOjsciKgAXLUPuBN4BYG7buWwduBXdvLR4yhHpcoGrz8KYuc+L7H4JGa/9eORhqfitiIioG7XrGNWuXZvu3bvz6tUrLl68SMWKFZk8eTITJigUn319fXFycsLDwwNXV1flfu3bt8fV1ZW//vory5jJyckkJycr/x8TE4ODg4NG6yCowqHHhxiwawAAhtqGxKcqjCCZRIa5vjlhCWFcH3+d5pWaM+7gODbd24SJrgnRMwvWqTwn3B4E8uORh5meHO1N9fi+b+0yKehVntZbFtYalhDGZ0c/Y9+jfTgIEp5hgm62t3QFiQjUliQyt+8qxjcaX4wz1Xyy+z3kxo4JLWjpJIo3iqiPcqlj5Ovry8qVK3F2dubkyZNMmjSJqVOnsmmTosdRUFAQALa2tpn2s7W1Vb73PgsXLsTU1FT5z8GhbOhm9K/Zn/+1+h+AsjWCtlSbdCEdMz0z4G047dKLSwDUt6mv1jmUN3d6eVpvWVmrlYEVe4buYfOAzTjqGOdqFAHoI2F7z+WiUfQeOf0ecqM8dFIXEXkfLXUPKJfLadKkCQsWLACgYcOGPHjwgFWrVjF2bMFCQLNmzeLrr79W/j/DY1QWWNB5AddfXefyy8voyHRISU8BIDQ+FFBUpgmCwMvolwDKFiLqIF0u8OORhzm60yUo3Olda9uVCYGv8rReVdb6w2FvWlU3LjVrHVRrEG20jWF33teRlv9VeYooyO33kBvloZO6iMj7qN0wsre3p3bt2pleq1WrFvv2KUTb7OzsAAgODsbe/q0rPzg4OFNo7V10dXXR1S2bOQJaUi12DdlFw9UNCY4PVr4enawIl90LvsdF/4ukC+kAfOT6kdqOfdMvItenRwEIjE7ipl9EqXKnp6anEp4YTlhCGGEJYYTGhxKWEIZXQBKB0TVy3K+0rjc7VPlug2KSsVnQimSZV/FNrJA0FKTcxaikp6Gx5NTKIa/fw/sIyDHWSysXndRFRN5H7YZR69atefLkSabXnj59SpUqVQCoWrUqdnZ2nD17VmkIxcTEcOPGDSZNmqTu6ZQK7I3t2TF4B122dMnSOfx+8H0239sMgLGOMdaG1oU+nn+UPxf8L7Drtg+Q95N1SbrT5YKcyMTIt0ZOQqjy75z+ZRiV72OQ1g5rvs3zmGUhfKDqGmSCed4biZQKcssnS06T57Ln+yh8ir7y31h5+zVTmk1R+1xFRDQZtRtG06ZNo1WrVixYsIBhw4Zx8+ZN1qxZw5o1awBFe4yvvvqK+fPn4+zsTNWqVfnuu++oUKECAwYMUPd0Sg0dq3Zkfsf5zD43O9PrMckxnPU7C6DUN8oPgiDgF+XHBf8LXHxxkQv+F5RhOd30etipYBipy50uCAKxKbFZPDmZ/iVm/n9EYkQWY1EVpBIplvqWWBlYKf9JU124/SDvfctC+EDVNRwdvY1mVTXfOEpJT2HHgx0cuTgf4uJLejoaR0b+0Puhsox8sq+65OwpfR97U31qON5j81N3vjjhjoG2AR83/Fi9ExYR0WDUbhg1bdqUAwcOMGvWLH766SeqVq3K0qVL+eCDD5TbfPvtt8THxzNx4kSioqJo06YNbm5u6OmV/htSYZjRZgbXXl3j3pNjWPE270Ma8wZLQcp4uyaK0uRculkLgoBPpA8X/S9y4cUFLvpfzNJzTUuqRdMKTWlbuT2nrkNUPNnmHkgAO1O9HN3piamJKntxMv6lylML9NmY6ZllMnKsDKyw0n/7t7Whdab3zPTMkEoy1xakywXaLDpHUHRSgdZbmmhW1QJ7U70819rOuaJG5BjlFAIKjA1k2Y1l/H3rb+JS4mgoSEEMpWVClXyynbdeYmeiS3BMcg7bydGSpbBqdFM6uTgglXTC6tRr/rj+B58c/gR9LX1G1htZtAspIbL77QF5dpcvyg70IiWL2sv1i4PSUO5XUKKCvdBb2YZcTUQtXZhyB8wcEASB5xHPueB/QWkIZTSazUBbqk3Tik3pUKUDHRw70NKhJUY6iptLxpMmvG8cKf7XuaEfRibPs3hywhLCSEhNKNAaDbUNsxo52fyzNlAYOxb6FmjLtAt0rPfJab0Zl7OVoxuVmjL2vCgta80uBGRhKMHc5iwXgpdm8hi21TbhUooKg068qOj8Xg5w9wln5L/X89xuWhdnlp5RdBh4/1wXgFCdBVSyDmP30N242rkiCAKTj01m1Z1VyCQy9gzdw8BaA4tiCSVGdr89MwPFtSYq4e1D3PsSF2VBBqOkKA33b9Ew0jTeeMKa9nlutq/tVPZF+XDB/wKBcZnLrrWl2jS2b4yrvSsuli7YGdkRlxKXc05OlCO6CaPR4m3+UhqhROisIVHmnus8tKXaWbw173pyMhk6htZY6luir61foI9GXZSni5qmrzWnEJCAHJAQqrOARJk7toa2fNn8S/Zc+5OriUnok8uT+TsPDuWBQ56v+XKnZ57b/Tm8PvraWtn+Hoa3kPK754e8inmFrkyXP7v/yWdNPkNA4KNDH7H53ma0pdocHnmYHtV7FOFqio+cfnvZ8e7DBJDtfpr2wKGplIb7t2gYlRA5umFVNIwaEYeHRPEkLZVIMdIxQluqTao8ldjk2P+eAfOBIEVfqIupdmVM9AVszGOxNrTM06tjrGOMRFL63MflyQ2uqWvNCG3mVC0lIAdpFD8NhdZVWtJxU0dexbzCQZBgI5Gxvv966tvUY/G139j5YCcf1PuA6S2/zjXUXBZR1WMks/qbbzsMYHT9D7kfkJDl9xCeEM64Q+M4+vQoAENrD+Xfvv9iqGPIqH2j2PNwD3paepz44AQdHDsU8aoyo+7fcF6/veyQALYmuoCEoJjs98sIUV+Z0anQ89PEc1YdlIb7t9pzjETyJten+AKkt8gFOTHJMVleN9U1zZp/k4M3JyMvRyaVFWZppQaZVFLqS/JVRRPXKggCa6+fz/XGJEEKcgsstJzotqUbr2JeIZPICCCdUa2nU991DADWTl3w8N6OaVwA08tJ+Oxd8sonAwG5JIIXcaf47Jgb31/4ni+bf8mkppOUQrIAlgaWHB5xmD+v/8mMMzPY83APdwLvsGvILrYO2kpiWiJHnx6lz/Y+nB5zmpYOLYtlfUXh9cyvfAG8lbjIa5vCSn5oupe3PCB6jIqZnNy3Gc8CU13vMe3xojzHmVu9LXFW1XM0ciz1LdWWlyMioi4SUhPY7rWd5TeX8/y1GdapecsnaFts5XniToy0jYhLjaO2dW3uTLyDnpYiE88zyJOGqxtipmdGxLcRpdKDWVjyyif7c0QdXiQd4nf335XFGMY6xnzW5DO+avEVFYwrZBrvxqsbDN87nBfRL9CWarOk2xImNJpAv539OON7BlNdU86NPUcj+0bFsi51ha0EQcArxIvFZ85xxctZbfN8n79GuNLftWK+91P3ejWR0nD/Fg2jYkSV0EEtiSduukvyHMtv2Eaq1i5biZAiZRf/KH/+ufkP6zzWEZkUCYAJjTFP/DHPfYN0ZmFk9IbwxHBkEhnu491pWrGp8v2U9BSMFhiRKk/Fd6ovVc2rFtk6NBlVPA2p6ansfLCTxdcW8yBEoV2hI9NhTP0x/K/V/3CxclHuG5kYyceHP+bg44MADKg5gOU9ljNy/0iuvLyCpb4lF8ddpI5NnSJZT17XS1XDVoIgcC/4Hnsf7mXPwz08DX+qkCpJWVgk84aC9ZhT13o1ndJw/1Z7rzSRnMnLfStBigzVNGWG7RnO5GOTCYkPUdf0RETyTbpcwN0nnEOer3H3Cc/UjV0QBM76nmXAzgFU+6saS9yXEJkUSVWzqizpugSfb05hb6qXSxq1QBqhmBqHKHPmZrSekckoAsWNva5NXQA8gjyKYJWlgx517bkyoxM7JrTgrxGu7JjQgiszOmXyMGjLtBnTYAz3P7vP0ZFHaVO5DSnpKazzWEetf2oxaNcgbry6AYC5vjn7h+1nWY9l6Mh0OPj4IG02tOHH9j/StEJTwhPD6by5M8/CnxXJevKjzJ/lPUHAI9CD2WdnU+PvGjRc3ZBfLv/C0/CnACRLvUkj9L8kf1URsDSUYmeim+NvVoLCGM2v5IcgCJx65FPg9YqoFzHHqBhRp6JyupDOytsr2Xp/K3PazuHLFl8qQwsiIsVBTh6Kb3tWIyjVjb9v/c3D0IfK97pW68oXzb6gl3MvZS7b931rM2nrXSRkX0KearSDhvaunPQ5SV2busxrPy/buTS0a4hHkAcegR4MqjVI7WstLaiaTyaRSOhdoze9a/TmWsA1Fl1dxOEnhznw+AAHHh+gg2MHZrSeQXen7nzR/AtaObRi2N5h+Eb60n1bd+a1m0dyejL3g+/TeXNnLn10CUczR7WuRdXrZcZ2giBwN/Auex7uYe/DvfhE+uS4j6meMRLdfRD9KQJyRT7bfwgI/xk+b82fjP//MtAVINvfbMbW3/etna1HJyE1Ab9IP/yi/PCN9MU30lf5t1+kH0Ji43KjzK/piKG0YkSV6pEKhHHF4H9I5Tkn+SUi4EIcgTIZafI0AKqYVmFh54WMqDuiXOZYiBQvOZc6v9XESZS5Y6RjxNgGY5nSbAo1rWrmONb7BlYaoSQbbOWbTl2ZeXYmMomMG5/coHGFxtmO8ffNv/nixBf0du7N0VFH1bLG8sbD0IcsvrqYbV7blNeVBrYNmNF6BkPrDCU+JZ4JRyaw5+EeALpU7cKL6Bc8i3hGNfNqXBp3iYom+c+ryYmTD335dPOjPLf7YaAZj2IOs/vhbvyj/HPczlTXlITUhEwis/rpLbFKm4RU/tbDY26gjUDBdIw+72yLg014JqMn4++guKBc16GXXg9bFcJ7BQnTaRKl4f4tGkbFiKrKy1c+cyY59jVt17dFQOD0mNNY6itO3F3eu/jf1UUESBQjaEm0MNEzISJR4V5tVrEZf3T7g9aVW2c6blkt/RQpflTJlZPIovmqbwQfNxyHiW7e52i6XOCaTzCzTy/iVtBZtPX82TV0J2MPjiUsIYzv2n3HTx1/ynH/qy+v0mZDG+yN7Hkz/U2B1yYCAdEB/OH+JxtvXiElVZ90SST2FvF80+prxrmOY8v9LXzl9hXJ6cnYG9kjkUh4E/uGmlY1uTjuIjaGNoU6fnJaMn/f/Jv5l37BMOoPZFhm8ui8RUCQRvJSZxxIsobEpEhBQpaWQjaGNrSv0p4OjgrB2xoWNbnlH6mS8nVUUpTSw/M8wpc7/tG8ioomJOk5LxPOkyrkXrVmqmuKk4UTVc2qUs28GtXMqyn/rmjsQOffr+Z9fxBzjIocMZRWjMikkhxDB5ncsOb2eMa94q4kHXsjeyydOim3G17BFU8J/Hr1VyRISBPSiEiMoG3lttwNvMvN1zdps6ENg2sNZlGXRTx7YyCWfoqoFVVy5Ug3p7l1T5WMIgCBdJZ7TuVK6B70dPU4MvIEf9/6m7CEMOrb1mduu7m57t/ArgESJATGBRIcF4ytkW2+1iTyFu8ALa579MY0obPytdSgUP53dA0/XPyBqc2mcnL0SSYcmcCziGdIkWKqa8rjsMd029KNc2PPYaGff90RQRDY+3AvM8/OxDfSFwB761MkhH6Q5XqpFADVWpmtUQQgRw4C2BnZKQ2h9lXaU9OqZhaveoYHJiU9Bb8on7eenkg/fJ/54ntW8XdG4UBOaEu1qWJWRWH0mFWjqnlmA8hcP/ccUpXuD6XYKCotiIZRMdOjrj0rRzfKYqzYvWeseAQqkkgb2jfMMsaCzgt4E/dGqUabKk/l8svLdK3WlUomldh0bxP7Hu3jlHcIFsnfwnupghmNJctC6adI8ZPf3I+8kAtyPj70MXse7lEk+Q4/SFB8EPse7UNLqsWmAZvQkenkOoaRjhHOls48DX+KR5BHmVFnLm5yCpFqYYVNymxCYhcw78I8DLUNGec6jtrWtTn05BDRydHoyHS4F3yPHlt7cObDMyobxQDXX11n+qnpXAu4BoC9kT0/d/yZGpY1+PPCeW4/dkQqvA0fpROeozK/vZG90gjq4NiBGpY1lIaQIAiExIdkG+ryjfTlVcyrPJtW2xraKgwd86pUM6v29m/zalQ0rlgoLThV7w8iRYtoGJUAPera07W2Xa7hrYzqmoZ2WQ0jiUTC2r5rCY4L5qTPSYx1jElKS+K072nq2tTl2KhjLL2+jAcPhimbSL5Lxms/HnlI19p24hOISL6wMVYtyV+V7TL6cW25vwWZRMbuIbtpYNeAOisUJeBz287F1c5VpeM1sm+kMIwCRcOoIOTWjBYkSABnrVkI1t/hFXKPf279g5ZUi1aVWnE78DYp6SlIkHDrzS36bO/DiQ9OYKhjmOsx/aP8mXlmJru8dwEomtXWHUlSWhLfnPqGqOQoxYa6UnTldZAJ5qRLIkmWeis9RRWNK9Lesb2yF6S9kT0vol/gG+mL23M3Vt5emckAyqvHo4G2QaYQ17thL0czxzzXVFhUuT+IFC2iYVRC5FU9kpthBIqy273D9tJhYwfuBN6hgnEF0tLTeBDygNH7R/NLm908fpCY4/jqUGgVKZ/kpbSckQuRV8myIAhMPzWd1XdWI0HCloFb6OfSj4G7BhKRGIGrnSuz285WeV4N7Rqy88HOcl2yXxhUKY+PTpCyo9sZooXbLLq6iAv+F7j2SuHlMdIxIi45AV15XYJ9U/l81QesHDALfS3dLGPFyHT45f4m/rrxF8npirycyqaVCUsIY73n+qwHl8hJlnkBCkOoWcX+OFk4YalnSVxKHH7Rfmzw3MB3578jOD4413VKkOBg6pDF6Mn4v42hTYkXsGiiWn15QjSMNJDU9FSl+Fp2obQMjHSMODbqGK3Xt8Yn0od6NvWoYFwBz2BP/ndyPhZMz/NYYumnSH5ROVcujyfceefn8ef1PwFY228tI+uNZNv9bRx6cghtqTabBmzKl3p7xkOEaBgVDFWvBWP3TaWxk0APpx4McBnASZ+TuD13Iz2xHhVTJlIZCed0p6MX8RDWn892DB1gB7EkSwQkSBAQeBn9MtttTXRMsDOyQ1umTVxKHK9jXnPg8YFc52iuZ/42v+e9XJ/KppXzDM2KlG9Ew0gDeRj6kJT0FEx1TalqlruKr62RLW6j3Wi1rhVeIV50qtqJIbWGcOTBE5WOpWpYRETkXQqbC7Hw8kLmX54PwN89/+bjhh/zJvYNX5z4AoDv239Pfdv6+ZpTxkPE84jnxCTH5CvHRUT1a8HLuAc8e+DFzgc73+4r64ZeouK7M5f4oydJzWl3APQAKyQEIOTZ8DomJYaYiMy9ILWl2jiaOWap7KpqXlWlJGcRkdwQDSMNJOOJ19XOVSWXbnWL6hwbdYwOmzpwzu8co+uNZkbHwaw7GZpjqauq4Y7SiChPUDyomgvx/vdxPWQrs88pQmSLuizi82afIwgCnx79lMikSBrbN2ZGmxn5no+VgRWVjB0IjTJj1eXbtK3aQPzu84EqIVJrE23+GfwrXqH38QzyxDPIk6dhz9GOG/nfNur7rO2M7JRGj6NZNWSpLuhLbaltW5EetZ3R0RJvXyJFg/jL0kCUFWk55BdlR9OKTdk7dC99d/Rlq9dWvm31LePbm7LxoiSLsmtZLv0UO1MXL3nlQmQv3miKvk5Lvu3UjW9bK5R+N9/bzNGnR9GR6bBxwEa0pPm/NLk9CEQv8jfsUo1YcSaRFVwXv/t8oEqI9Kd+9ejhYk9vl17K984/ecVHG+7l+3gSJFQwrkAd6zrUtqpNNYtqmZKcDbQNgPd/Q8mAL/amb8TvVaTIEHulaSDKxOtc8ouyo6dzT9b2WwvA4muLsbQIYGYfS5BGZ9rOzlSvTJbqZ5Qav59AmiFP4PYgsIRmVj7J6fuQYYlNymyaW34KwOuY13zp9iUAP3b4Udn3rCDHSk3NXDEkfvf5IyNEameaOayW2zUjJrFgD1cCAm9i33Da9zQb7m3g4OODnPc7z+03t3ke8ZzU9FTxnBYpEUSPkYYhF+R5VqTlxjjXcbyJfcOcc3P4yu0rdg7ZyZVvO9N77a+8ikxGLg3mq46d6V6nU96DlSJyKzUW5QmKn9y+DwlSJMBPRx/StbYtE45MIDo5mmYVm/FNq28KeazM36343eef/JaLqyNPMSY5hvP+5znv/zZZW0eqR4WkdQiYIH6vIsWJ6DHSMHwifIhLiUNXpptjb6m8mNVmFpObTEZAYMKev+m33IOYsG6YpPfFLPUTlhw0YuCmH0lJT1Hz7EuOwnTiFlE/qn4fP53ZxonnJ9CV6bKxf8FCaOJ3r34yQqT9XSvS0skyV8MjIzdJ3aaJJNUZId2UrEpsCsTvVaSoEA0jDSPDW1Tftn6+SpXfRSKRsKznMjraTcMs6Vsi4jMrucqwxONxE1qv+JywhLBCz1kTULcas0jhUPVzXnFjGwA/d/yZWta1ivRY4ndfNGTkJkFOJkwBxxVUqywTv1cRdSMaRhpGQRKvs0dKQngvJGStFFEkYgsEvm5N0zXN8Q7xLuSxSh51qjGLFB5VP+e4tDe0qNSCr1t+XeTHEr/7ouPd3KRIwZgkIfeHukQEwvIo00+X5N6XLAOZVpzK8xQRUQUxx0jDKGji9fvc9IsgKCaZnJ7hJEjRwprACENarmvJ9sHb6VOjT6GOWZLkVWosIEciScA7xJtmVduqlJOQkiZni7s/LyISqGJhwJiWjuho5f9ZojzKB+T1fYBAGmFIdHzY2P9uofpLqUuJW6RwvJubdCm4Nt4BR9jyaCEgp5JJJV7FvFJuG4ZAgCR3w0ii40NaSs6SIwJy0gmn795+1Ltch25O3ejm1I22lduir62v7uWJlCMkgiDk/uvUQGJiYjA1NSU6OhoTk7Ij4iYIAna/2xESH8L18ddpXql5gcc65PmaL3d65rmdVYUj3IlUtGRY1GUR37T6psTl8AtKRgULkOuzqL5uMosHNaVvA4cct1l4/CH/XvZD/s5AUglMaFuVWb1q52tO5VU+ILfvQ0AgVGcBv/QcyrSW04rsWBm/5LJYhanpdNrUifP+59GSatHfpT/7Hu3L9xj66S2xTpn93/f49rokIAckhOv8SrzsaqZ99LT0aFelHd2qKQylujZ1S+01rSxSGu7fYihNgwiMCyQkPgSpREo923qFGkvVsMGfPX9gYqOJCAh8e+Zbxh0aR1Ja6YzZ51Rq/D4Jydp8seMeKy5fzfb9hccfsvpSZqMIQC7A6kt+LDz+UKX5lPdS45y+D5lWDKE6C2jkKGVq86lFeqyyKk2h6aSmp+Ie4A6Ai6UL9WzeXs9kEoV3UFeWtYfa+yTK3AnVWUAamXMh0wknVGdBJqNIR6aDgbYBSWlJnPI5xTenv6H+qvpU/KMi4w6OY7vXdkLiQ9SxPJEyjugx0iCOPT1Gnx19qG1dG+/Jhcv7SZcLtFl0Ls/wwpUZnZBK4J9b//CV21ekC+m0rNSS/cP3Y2dkV6g5lBTpcoHrPuF8vv0uUYnZtyYQkJMuCWd8txfMbTdbmeiekian5ncnshhF7yKVwOOfe+YaVsv4/HOqlnr3888zrBYVAAnhOb9vYAlmOXu/Spp3Q5Kv4j3Y8ORj9HW0uffZPZwtndV6rPIYttRErr68SpsNbQCY2HgiXat1ZeieoejIdDJVw2b0ScsNCRIEQYKuvA4ywZzadpX4vGV3zvqfZs/DPcomtO9iqG2Ihb4FwXHBpMgzV982sm+k9Ca1rtxa7JtWzJSG+7eYY6RBFEa/6H3y2+hzSrMpuFi6MGzvMNxfudPs32YcGnGo0LlOJYFMKkEqleRoFMF/OVaCNYvO/8HRZ4fZNGATdW3qssXdP1ejCBSeoy3u/oxvWy3HbfJTQp5rF+2oAPi7MaRlvfgr0dKFKXc00jjKGkq0oCL/MrBButqNIhC7kmsKp31PK/9uZNeIOtZ1AEW6AEAV0yq8iH5BVbOq+Eb5oiXVIk2elu1YAgJIBFK1vEkW5NwOg4+ObKeHUw/uTLzDrTe32OCxgUsvLyn3iU+NJz41HlA0lHU0cyQ2JZbnEc+5G3iXu4F3+fXqrxhqG9LBsYMyP8nF0kUMu4mIoTRNQp2GEeQ/vNDVqSs3PrmBi6ULATEBtNnQhn0P858XoAmoWsJrqu3A3cC7NF7TmEVXFuEfrlqFy4uIBLUcP8/tEsJzN4pA8X5uHqUSIqdQohZWHL1pV+ZDieWZ0z5vDaOG9g2pblEdbak2qXLFw0pIfAjaUm18o3xpUqEJafI0LPRzT46XC3L0tPSQShS3LTcfN+qtrMexp8fYMWQHvlN9+bHDj1kab0cmReIR5MHziOfYGdnR3ak7PZx6YGNgQ3xqPMeeHeNLty+p9U8tHP9yZMLhCezx3kNEoqiPVF4RPUYahLJUX41emvyq2NawrMH1T64zfO9wTvmcYsieIfzU4Sfmtptbqp6kVM2xmt1+Cmdfyzjy9Agzz86kruEboFue+1WxMFDL8ctqCXluytcZPktRtbhsEpMcw/VX1wFFPlE9m3poy7RxsXLhQcgDbA1tCY4Pplf1Xhx/fpzktGQcTBwIiAmgpmVNHoc/znZcXZmuMv/R3sieoLggBAT2PtrL/sf7GddgHL92+ZXv2n3HlZdX2HRvE7se7CIu9e3DTlBcEEFxQQBUNq3Mh/U/xFTXlIdhD7ny8govo1+y1mMtaz3WIpVIaVqhqdKb1Lxi8wJry4mULkSPkYYQmRiJX5QfAK52rmodOz8qtgBmemYcG3WML5sr+lfNuzCPkftGkpCau5dEk8hLjVdAThqhTDvXFzsjO5b3WI6JrgkPYlcgkE5OdW2KfAg5I5tXKtTxJSiq08pqCbmoRl1+ueB/ATkKUdmaVjWVpfMZ4bRaVgohT5lUhrGOMV4hXkxsPBFtqTaPwx/TyTH7dkXJ6cloS7WRSWQExgWir62v7A4gF+Ss91xPhT8q8JXbV9Szrcfafmt5Mz2In1rtpLnl5+im1wPh7S3vZfRLNt/fzPJby/GL8mNKsyks77mcr5p/RR3rOsgFOTde3+DnSz/TdkNbrH6zYuCugay8tRLfSN8i+/xESh7RMNIQPIM8AUXsPS+XcnGgJdViaY+lrOmzBi2pFru8d9FuQztex7wu6ampRG5qvArRSyn1nJ8gSNL59+6/fH/xe2a0nkEXpw7EaB34zyzKWmQOEK21nxp/VyMiIeebem7HF/67abyb41XWENWoyy/vh9EyyDCMDHUUjX7P+J7hqxZfAbDBcwNLui0B4OKLi4yoM0K537sCtanyVNKFdGwMbUhITeBx2GPq2dSjgW0DANLkaSy7uQy7JXaM2f47XX6/xrqzRgS96oldykJqsxcng8GZ5itBgm+kL7+7/84XJ77g2LNjDKw5kFNjTrGu7zpG1B2Bpb4lMckxHHx8kMnHJ+O0zInqy6oz+dhkDj4+SExyjBo/QZGSRjSMNAR1CTuqmwmNJ3D2w7NYGVhxJ/AOTf9tys3XN0t6WiqRW47VqtGNODF+IZfGXaK+bX0iEiOYc24OEUkRTGhvTaLOYaUBk4FUIsGx4nOitDfyOvY1lZdW5n7w/XwfP51wOjXyLdMl5OU9lFieOeN3Rvn3u/mSdWwUhlFQXBBO5k4kpiVS3aI6toa2+Eb6IkHCyLojSRfSufTyEhMbTQQUXtr3K8dC4kOwN7LHUNsQrxAvHoY+ZGyDsUoPkjSlEZfuu/wncvuWhCQd0sM/4q8OF/is8WeY6ppmqoqTIOFZxDPmX55Pty3dWOK+hJqWNbn00SVuTbjFL51+oX2V9mhJtfCJ9GHl7ZUM3DUQi0UWtN3Qlp8v/szN1zdJl6er90MVKVbEcn0NYcyBMWy9v5WfOvzEd+2/K+npZMEv0o9+O/vxIOQBujJd1vdfz6h6o0pFeXRec0yTp7Hy1kq+O/8d0cnRAAypPYSXUW949MIKLcEeJysTdn74OU6WVVh+Yzlfun2JgIBMImPP0D0MrDVQpeM/CLvK3CsjMdM3wf9Lf0z1THOf/BtPWNM+70VOvAgVXFX4NIqH/MhFaNrvRaTgvIp5hcOfb6sjz314jo5VOwLwJOwJNf+piYG2AVObTeXXq78yuNZgOlftzOTjk7ExtMHzU086b+7Mo7BHdHLsRE2rmqy4vQIAM10zopKjAJRVbHpaetS0qqn0uLtYujCuwcesOlEBQW6WpR0SZP7tpcqTOfzkMBs9N3LS5yRyQfEwJEUKEpT/B6hnU4/hdYYzvO5wbA1tueB/gVM+pzjle4qn4U8zHcNcz5wu1boo85Mqm1ZW10dc6ikN92/RMNIQ6q6oi3eoN0dGHtHY1hyxybF8sP8Djjw9AsBo5yU8e+FKUBlRdQ6JD2HmmZls8NwAgKmuKZ2qduL4s+MkpydjqmvKXz3+4sMGH3LG9wy9t/dWVtn83PFn5rabm+cx0uXp1FtZj0dhj/ixw4/Maz8v9x1KqWEEohp1eWSDxwY+Pvyx8v8R30Zgrq9oBpsmT8NwgSEp6SkcGXmEvjv6oqelx5uv39BsbTOeRzznh/Y/MKzOMJr+25T41HjmtJ1DRGIEK2+vRIIERzNHZS6mrkxXqWHUvkp7HoU9IiQ+BN30etilLMxzrjsmtMgk7RAYG8g2r21s9NyId+hbHTldmS6p8tRMRlIj+0YMqz2MYXWGUdW8Kv5R/gojyecUZ3zPKB+wMqhpVVOpndTBsYMynFgeKQ33b9Ew0gASUxMxXmhMupDOq2mvqGhSsaSnlCPp8nTmnpvLX5cuZivVXxZuetdfXefz459zN1BxU3exdEEqkfIo7BEA/Vz6sbrPauJT4mm8prHyIji8znB2DtmZ5/i7HuxixL4RmOqa4v+VP2Z6ZjlvXOZ0jEq38SySOx/s/4DtXtsBFEbMl36Z3m+wqgH3g+9zaPghvjn9Dc8inrFj8A6kEinD9w7HSMcIn6k+nPU9y6j9owA4OvIoh54c4t+7/yJBQstKLbn26hpAJgkAZwtn6tnUw+1BGNap3+Y512Gt4lnYZ3CWPn2CIHA38C4bPTey/cH2TGX7JromxKXEZTKSmlVspjSSHEwdSJOncev1LaU36fqr65m215Zq06ZyG7o5daO7U3ca2DVQShCUB0rD/Vs0jDSAm69v0nxtc6wNrAn+Jljjy+LT5QINfz5CdKI0T1d1aQ2TpMsVSdmzz84mMknR5dvVzpUHwQ9IE9Kw1LdkRe8V9HLuhesqV3wifZTb3Bh/Ax2tnNV05YKc+ivr4x3qzQ/tf+D7Dt/nPplCKl+XdLizpI8vUjzIBTn2v9sr224MrDmQ/cP3Z9pm1L5R7Hiwg187/0pMcgwLrixgYM2B7B22l2b/NuNO4B2mNpvKXz3/YsrxKfxz6x8s9C24PeE2P1/6mQ2eG5BJZAytPZSd3oqHEKlEiomOCVHJUehp6THUaS6XPF3znG+Q9myc7NP4qcNPDKo1KNvrbkp6CseeHmPjvY0cf3ZcKUIpk8iw0LcgPDE8k9HTyqEVw2oPY2idoVQwrkC6XODck5dc9PXgSeQtboXt4EV0ZmPR2sCark5dlR4le2PVHhhK63lVGu7fomGkAay+vZrPjn1GN6dunBx9sqSnkyfuPuGM/Pd6ntu976oujYQlhDHn7Bz+vfsvAgKG2oaY6ZnxOlZRnTeszjCW91jOmANjOOV7CgAbQxs8JnpQwaRCjuPu8d7DsL3DVPMaFQLRYyNSXNwLuofraldkEhnpQnq24eVfLv3C3PNzGVN/DNNbTsd1tSu6Ml1C/xfKzdc36bKli6Jsf8pjKhpXpO2Gttx6c4umFZpyYewFJh2fxOZ7m9GSavF1i6/53f130gVFonM182r4Rvqim1Yfu9QFec43znAB4XKF56mhXUPmd5pPz+o9c3wwDYkPYbvXdjbd26TMaQIw0jHCVNeUN7FvlIncEiQ0tviYpIi+xCa+lQu0M9VjYgdzEmXunPI9xTm/c8SlZBaVrWdTT5mb1LZyW6XcwbuU5vO6NNy/y4//ToNRt+J1UVOeSrGtDKxY3Xc1Nz65QbOKzYhPjed17GusDayRImW3927qr6rP580+Z1oLRZf4kPgQnJY7cev1rRzHHVx7MHVt6hKdHM2f7n8WydzLexNbkeIlow1Ixo08u+tZRmWad6g39W3rU8OyBsnpyRx5eoTO1TrTtVpXUuWpzDs/D10tXfYM3YO5njm33tzi2zPfsr6fougjTZ7Gn9f/ZEnXJRhqK/J1fCN9qW1dG21UkztZ3mMj37X7DiMdIzyCPOi9vTet17fmnN+5bLe3MbThqxZf4fGpB56fejKtxTRsDG2IS4njdexrBAQqGlfE0cwRvfQWhLweQExi5jBdUHQSPx8KxMlgEIdGHCLi2wgujrvInLZzaFqhKRIkeIV48bv773Tf2h2LxRZ039qd36/9jlewF4IgiOd1MSAaRhpAaTOMymMpdtOKTXEf787avmuxMrAiNCEUOXJMdE0Ijg+m/87+hCeGs6zHMiRISEpLosW6Fmy9tzXb8aQSKd+3V4TQlt5YSmRipFrnm5vydMZrPx55SHpejeFERFTkjK+iTD8+RdGjLDvpkQwto0ehjxAQGFZ7GAB7Hu4B4NcuvwKwzWsbnkGeVDGrwtZBinPon1v/sMt7F5sGbGJYnWGkylOZcXYGq3qvopKJQnD1YehDrE1UawrraGHBTx1/wu9LP/7X6n/oa+nj/sqdzps702lTJ66+vJrjvg3sGvBH9z94Ne0Vh0ccZnCtwejIdHgd+xr/yJdYpH76n15aVu+TgMC3+24RFh+BtkybdlXaMb/TfG5OuEnI/0LYOXgnH7t+TEXjiiSlJXHK5xTfnP6G+qvqU/H3Sny5+0q2jXfF81p9iIZRCZMmT1Nq4WiahlFOlFdVZ6lEyvhG43ky5QmfN/0cqURKTHIM2lJFm4DN9zaz6OoiFnddjK5MF7kgZ8zBMcw6Myvb8QbVGkR92/rEJMfwh/sfap2rqDwtUpwkpSVx6YWiiauAgI2hDfZGWUM61cyroaelR2JaIn6RfgyrozCMTjw7QUxyDI3sGzGirkLccdZZxXnTy7kXc9sqQnITj0zkafhTtg7cyuBag0lJT+GTI5/wT69/aF6xOQB+8WeQS8LJSb3+/euTlYEVi7suxmeqD180+wIdmQ7n/c/TZkMbem3rxZ03d3Jct7ZMm74ufdk7bC+B0wP5p9c/NLAYhJZgRVZp17cziEmU4fhbZ3pv783me5uJTopWzmV43eGs67+OgGkBeE/25s/uf9Kzek/0tfSJiLEkOcUgx7HF81o9iIZRCfMk7AlJaUkY6RhR3aJ6SU9HJfJSlYayrepsoW/B373+5s7EO7RyaKWsitGWavM69jX/O/0/BtcarFQw//Xqr/Td3he5/H3ByLdeo79u/KXWppXlKdwpUvJcC7hGYloiJrqKnJGGdg2zzdWRSWVKEUbvUG/q2tSlplVNRTjtiUIGZH7H+WhJtXB77sZ5v/MA/NDhBzpV7UR8ajxDdg8hOT2ZHYN3MKDmAJLTkxm+dzg/dfiJ0fVHg0ROmPaqHNTrFWR3fbI3tmdZz2U8++IZExpNQCaRceL5CZr824RBuwbxIORBrp+Bhb4Fk5tO5sd2S1X6zIR0E44/O87Yg2OxWWJD/5392e61ndjkWAAkEgm1rWvzVYuvOP7BcSJmRDCvzRKVxhbP68IhGkYlTEZJeAPb0lWymZuqdGku1c8PrnauXPnoCpsGbMLW0FZpIAFsf7AdI20jHM0cATj67Ch1VtQhISVzv7kBNQfQwLYBsSmx/H7td7XNzdpYtXBCWQp3ipQcGWE0W0NbIPe0gNrWiocq7xBvJBKJMpy2++FuAJwsnPi08acAzDw7E0EQkEll7Bi8gwrGFXgU9oiJRyYqWhUN2UXfGn1JSktiwK4BjG84ngWdFpAocydUZwFphGU6dpoklD7Nguhexy7H+VU2rcyavmt4POUxY+qPQYKEA48PUH9lfUbtG5VFzPF9VD2n1g/8kx/a/0Atq1qkpKdw+MlhPtj/ATZLbBiyewh7vPcow5IAelp6dHRqrNLY4nldOErPnbiMUtryi96lR117rszoxI4JLfhrhCs7JrTgyoxO5cIoykAikfBhgw95MuUJXzX/CplEkWwpQcLLmJf4R/lTzawaAI/DH+Ow1IEXUS+U+0slUn7o8AMAy24uIzyXsvx0uYC7TziHPF/j7hOeYx5BaHwoP7mPJY3QLG1NlPOmbIY7RUqGjMTrjHL23NICMvKMMkQUM8Jpbs/dlCGl79p9h6G2ITdf32T/I0XJv42hDbuH7EYmkbHjwQ5W3l6JjkyHPUP30Mu5F4lpifTe3ps2lduwb9g+UrRu8lpvPEE6s6jrfAsnp6O81h3P316fMHj34Dzz+qpbVGfzwM08mPyAobWHIiCw48EOav9Tm48PfYx/lH+m7TPOz6CYJCwMtXMcN+PcG+LakO87fI/3ZG/uf3afuW3n4mzhTFJaEvse7WPY3mHYLLFhxN4RHHh0gMTUxHKbxlDciOX6JUzHTR254H+B9f3W81HDj0p6OiKFxCvYiyknpijzLTIw1zNX6iHpyHQ4OfokHRw7AApBuUZrGuEZ5MmsNrNY0DlrqbGq5bmXXlxi5L6RvIl9g6nQHrOkb5AgEZWnRYqM8IRwrH+zRkBAT6ZHUnoST6c8xdnSOdvtDz0+xIBdA3C1c8XjU8WDYZ0VdXgY+pDNAzYzpsEYAL4//z0/XfqJGpY18J7sjZZUUfb+h/sfTD81HW2pNlc+vkKzis1ISkui/87+nPI5haG2ISdHn8RA24D2G9sTm6IITXV07Egv517MPjubVHkqVUyrsGvILppXaq7SOj0CPZh3YR5Hnx4FFKHzTxp9wpy2c/B6Kc1yfmZHXueeIAh4Bnmy23s3u7x3KVW+QSEL0N+lPy6Gw1l/XuHTKI3ndWm4f4seoxIk4ySA0pN4LZI79WzrcWHsBbYP2k4F47c6RhlGkQQJKekpdNrUidW3Vytek0j4of0PACy/uZywhMzuf1XKc9Pl6cy/NJ+OmzryJvYNNa1qcmXy36wa3bhchztFip5zfucQEHAydyIpPQljHWOcLJxy3D6jZP9x2GNls9WhtYcCb8NpANNbTcfKwIqn4U9Z77Fe+fq0FtMYVGsQqfJUhu4ZSnhCOHpaehwcfpDOVTsTnxpPz209SU5P5tHnj5R9ys77n2fV7VUcHnmYaubVeBH9gjYb2vD7td9RxT/Q0L4hR0YewX28O12qdSFVnsrK2yup88cHfLb1Tp5GEeR97kkkEhraN2Rhl4X4TPXh5ic3md5yOg4mDsSlxLHNaxvzrvcjzuBPdHQS8jW2iOqIHqMSxC/Sj2rLqqEt1SZudlyWDtIipZvY5Fh+vvQzf17/UxliAP7z4ChOuylNp7C813IEQaDJv024G3iXGa1nKMuWM5qx5nTRlQA2JtoYVfyNc/6KPI+xDcbyT69/lP2YSqtCrkjp4NMjn7Lm7hq6VevGKd9TtKnchssfXc5x+3R5OkYLjUhKe+tZ8g7xpu7KumhLtQn5X4hS8HTZjWV86fYl9kb2PJ/6HANtAwCik6Jp8m8Tnkc8p2f1nhwddRSpREpCagK9t/fmgv8FTHRNODPmDLWsa9FtSzfcX7kDih6Ih0ccZvmt5ex9uBeAPjX6sLH/RiwNVBekveB/gbnn5uH/9GNkWOXYBcDCUIe5vWthZ6pf4HNPLsi58eoGu7x3sefhHt7EvgFBiq68DqbaDrR2rMenLTrR2amT0rOmqZSG+7foMSpBMvKL6trUFY2iEkbV/J38YKxrzOKui7n/2X06V+2sfP1dDZK/b/1Np02dEARB6TX6++bfhMaHAqqV3QfHpHLVJxgDbQM29t/IxgEbMzWplEkltHSypL9rRVo6WYpGkYhaeV/YsZFdo1y3l0ll1LKqBbzNM6pjU4c61nVIlady+Mlh5bafNv4URzNHAmODmXFsrfL8NNIxYe/Qvehp6XHi+QkWXlY0jTXQNuDoyKO0rdyWmOQYum3txpOwJ1z+6DIf1v8QgOjkaDpv6czw2sNZ0WsFujJdjj49SsPVDXPVLnqfDo4d+K39frSwztYoAsX5GR6fgp2pfqHOPalESkuHliztsZSAaQFcGneJz5tNwswkhBD5cQ74LqLH9u7Y/27PZ0c/47zfeaU37l2K4jpXFhENoxLEI7D0Jl6XJdweBNJm0TlG/nudL3d6MvLf67RZdE5tCrK1rGtxesxp9gzdQ0XjrA2Cz/ufp/ry6rSr3I4mFZoQnxrPb9d+A1Qvu3U0qc+tCbcY6zpWLXMWEVEFnwgf/KL80JJqEZ6oKBxQJS1AqYAd8raLfUYS9m7vt+E0XS1dRlZfRMWkdRy57pTp/AwMs2FFrxUAzLswj7O+ZwEw1DHk2KhjtHZoTVRSFF23dMUrxItNAzexsLPCgEqTpzF0ryIM5z7eHWcLZwJiAmi/sT2/Xvk1U/+z3AiJzaW5c6bt1Fc+L5VIaVulLX/3+pvXX7/m3Ifn+LTxp1gZWBGWEMbqO6vptLkTlf6sxBfHv+Dyi8vIBXmRX+fKEqJhVIIoK9LE/KISo7jk9SUSCUNqD+HJlCfMajMri7vbL8qPyksr80nDTwCFym9IfIjKZber+i1SlkGLiBQXGWX6LSq2wCvYC1DtQe/9yjR4m2d0yueUsmLM7UEgOy4booVVpv0zzk977R6MbzgeuSBn5L6RvI5R9DA01jXm+AfHaVGpBZFJkXTZ3IX7wfeZ2WYm+4ftV55/3134jkVXF+E+3p1R9UaRLqQz6+wsem/vrfTa5kZJdwGQSWV0rNqRVX1WETg9kFOjTzG+4XjM9cwJigvi71t/025jO6os7J9tHpTYRiR7RMOoBCnNpfplgbzaZgjAvMNeJKWmqO2YhjqGLOi8gIeTH9LRsWOm92JSYphyfArtTKvhkpLE9pMzaKb3kvbGr6kj8aWOxI86Ej8qZNJmEbA31aNt9Zwb1oqIFBUZYbQmFZoQnRyNjkxHJQM9O8OolnUt6tnUI1WeyqEnh947PzOHoN5tf7G0+zIa2DYgNCGU4XuHk5qu0BMz0TXB7QM3mlZoSnhiOJ03d+ZByAMG1hrI9fHXMdFR5Lfs8t5F963dWdZjGf/2/Rc9LT3cnrvhutqVi/4Xc12HJpXPa0m16OrUlbX91hL0TRDHRh1jbIOxmOiYIsQMFtsD5QMx+bqECIkPwXaJLRIkxMyKwUjHqKSnVO5w9wln5L/X89wuSGcWxsaB2BnZYWtoi52RXZZ/Ga9bGliqLNQpCAKHnhxiwpEJyko0B0HCE4zQz/FSC0mCNp2Sf+cNVkjQ/PJckbJJujwd69+siUyKZEGnBcw+N5tG9o24MzHnFhoZ+Eb64rTMCR2ZDvGz45UenPmX5vPd+e/oWb0n37XYotL5uWNCC6zNI2m8pjExyTFMbzmdJd3eKkRHJUXRZXMX7gTewcbQhgtjL1DLuhYB0QG03dCWF9EKXbEKRhU4P+48yWnJDNs7jMdhjxU6Y+1/YHbb2ciksmyPn+F1Bs0sn7/0NJAP19/Nc7sdE1rQ0kn15POCUhru35qdvl6GycgvcrZ0Fo2iEkLVuL9MMCcswYuwhDAekHtbAJlEhq2RbRaDKTtDykTXhAE1B9DdqTuzz85m6Y2lWCHJ1SgC0JOkYi6JRTCplEXHSESkuLgbeJfIpEhMdU2VWkGqer8dzRwx0DYgITUBnwgfXKxcAEU47bvz33Ha9zSjnXMWO32XkNgkWjpVZ2P/jQzaPYjf3X+nlUMrBtUaBICZnhmnxpyi8+bOeAZ50mlzJy6MvYCLlQv3J92n17ZeXA24ypu4NzRcpSjJvz3hNp8f/5xN9zYx78I8Lr64yNZBW7EzyqqYndEF4H0dI7tsdMZKgsgEVfOlxDYiGYiGUQmR0QpEDKOVHKrG/feNWE8l60SC4oKy/RccH0xQXBBhCWGkC+m8iX2jKKfNAz0tvUzG0sg6Iwl+fhKS0vLcd+HAetRp0k6sMBMpMTLCaB2rduRe8D1A9euZVCKlllUt7gTewTvUW2kYuVi50MC2AfeCvLjgewfI26OQcR4PrDWQb1p+wxL3JXx06CPq2dRTikxa6FtwZswZOm7qiFeIFx03deTiuIs4WzpzYdwFxh8az+b7m0lIS6Dr1q6s7L2SjQM20tGxI5OPT+as31lcV7mybdA2OlfrnGUOPera07W2nUbKYpR0HlRpRDSMSggxv6jkycgPCIpOyjb+LkHx1Ne1VjVkUgl1bermOl5qeioh8SFZDKbsDKmY5BiS0pLwj/LP1FqgoSAF8vYgOtvpaMRFV6T8kmEYda3WlfmX5gP5KySpY1NHYRiFeCu9OwBNLSYQ5m/IKc/cjaKM8/Pd/J0FnRdw/fV1rry8wpA9Q7g+/rpSRsDSwJKzH56l46aOeId602lzJy6Ou0g182psHLCR2ta1mXl2JnJBzqdHP8U7xJs/uv9B04pNGbZnGN6h3nTd0pXv2n3HvPbzsoTWMmQxNA1Vr3NiG5G3iIZRCSFWpJU8MqmE7/vWZtLWu0jIPj8guy7cOaEt06aiSUUqmmQtyX+fhNQEguOCCYwN5NabW1x+cRmPYA9kkQE5NQTPRJv1bYm3qk4Duwa42rriaudKA7sG2BvZZ9vVXEREncSnxCs1fxraNSQwLhAJEurb1ld5jOwSsN0eBHL6riOyPE6CnM5PbZk2u4bsouHqhtwPvs+U41NY13+d8n1rQ2vOfniWDps68DjssdJz5GjmyIw2M3C2cGb4vuGkydNYdnMZj8IesX/4fm5OuMmXJ75krcdafrr0ExdfXGT74Mzq9pqKuq9z5QEx+boEiEmOwfRXUwBCvgnB2tC6hGdUvlG1D5m6iEqK4ozvGdyeu3HS5ySvYl4p32soSLmrgseoEXF4SLLmDlgbWCuMJNsGuNopDCYXKxeNV8MVKV24PXej57aeVDatzKreq+i1vRculi48nvJY5TGOPT1Gnx19qGtTF69JXnmqvL9LXufneb/zdNnSBbkgZ12/dXzc8ONM7wfGBtJhUweehj/F0cyRi+MuKluH3Hp9iy5buhCTHAOAi6ULZz48QyWTSmz32s6nRz8lLiUOawNrtgzcQvfq3VVec0lS3Ne5nCgN92/RMCoBLr+4TLuN7ahkUomAaQElPR0RirZtRro8nTuBdzj5/CRuPm7ceHWDdOGtKq2uTJcOjh3o7tSdAaaOVN09Ls8x+5ua06zJBLSl2ngGeXIv+B6Pwx5nK0ynK9Olrk1dpaHUwLYB9W3rY6pnms91lO/WIuV9/e8y/eR0/rj+B+MbjqeaeTXmnJvDiLoj2DF4h8pj+Ef5U/WvqmhLtYmfHc9t/xiVqtC+612Lca2r5vnZL7i8gDnn5qCnpYf7eHdc7Vwzvf865jUdNnXgecRzqplX4+K4i1QyqaScW8dNHZVhbgt9C06OPkmTCk14Gv6UYXuGKfOqZraeyc+dfkaCTON/H5rwGy4N9+8if4z89ddfmTVrFl9++SVLly4FICkpienTp7Nz506Sk5Pp3r07K1aswNbWtqinoxGI+UWah7rzAwJjAznlcwo3HzdO+5xWqgJnUNOqJj2cetC9enfaVWmn7AHFG0+Vxg+IDuDwubn0qdGHP7r9gbOlM4mpiTwIecC94Ht4BnniGeTJ/eD7xKbEcifwDncCM5dRVzOvlsmz1MC2AZVNK2cbitOUp82Soryv/33ezS/a+0jRbyyvViDvU9m0MobahsSnxvM84jkhsardJK2MdVW6mc9sM5NrAdc49uwYQ3YP4c7EO5keBiqaVOT82PO039ge30hfZVitgnEFHM0c8fjUgz7b+3A14CoRiRG0WteK7YO3M6T2EK5/cp2vT37Nytsr+fXqr5zyDkYaN4LQ2FTl+Jr4+9DUPChNo0g9Rrdu3WLYsGGYmJjQsWNHpWE0adIkjh07xsaNGzE1NWXKlClIpVKuXlWtT01psDhz46NDH7HRcyPz2s3jx44/lvR0RNRASnoKV19eVYbHMp4mMzDRNaFLtS50d+pOd6fuVDGrkv1AUQHwd2NIy7nVgCDTZX6Dgfx0bz1p8jS0pdp81eIr5rabi4lu5vNBLsjxi/RTepUyDKaAmOw9lWZ6ZllCcQEhlkzdfj9L1oem6LQUNRk6NeV1/e8TFBeE/e+K9Yb+L5QWa1vgE+nD6TGn6VKtS77GavZvM269ucXeoXupoNtBZd0iVW/uEYkRNFrdiBfRLxhYcyD7hu3LYvi/jH5J+43t8Y/yp4ZlDS6MvYC9sWJ9qempjD88ni33tyi3n99xPrPbzkYikbDbezeT9q3GKGEaQKaeaeX195EXpeH+XWSGUVxcHI0aNWLFihXMnz8fV1dXli5dSnR0NNbW1mzfvp0hQ4YA8PjxY2rVqoW7uzstWrTIc+zS8MHmhusqV+4F3+PA8AMMqDmgpKcjUkB8Inw46XMSt+dunPM7R3xqfKb3m1RoQnen7vSo3oPmFZujLdNWbeCoAEh462ESEOi0uTPRSdE4mDpw6KPLYObAk7AnTDs5jRPPTwBgY2jDws4LGec6Lk+RyYjECO4F/WcoBXtyL+ge3qHepMnfkwoQpFRMXo+WYMn76sPwtqLlyoxOGhc2UAd55b2U9fVnx7b72xh9YDSuto34rf1++m//kHRJJC+/PYeNkVXeA7xDxkPijx1+ZE7b72iz6Fye1VP5/axvv7lN6/WtSUlPYUnXJXzV4uss4aSAmBe039iel9EvqWVVi/Njz2NrpIhgCILAwssLmXN+jnLMUXVHsb7/erSkOrRYeOo/T1H5Oz8KQmm4fxdZKO3zzz+nd+/edOnShfnz5ytfv3PnDqmpqXTp8vbJombNmlSuXDlHwyg5OZnk5LdP0DExMUU17SInOS1ZWYUhhtJKF3EpcVzwv6D0Cj2PeJ7pfRtDG6Uh1LVa14In1Zs5KP79hwT4oOtiJhydgEfMC06HP6armQMuVi4c/+A4x58dZ9rJaTwNf8r4w+NZcWsFy3ouo5VDqxwPYaFvQceqHelY9W1bkuS0ZB6FPcpkMD0ISEYrKeebnQAERidx0y+iTLrob/pF5JoMXNbXnx2nfU+jn96SpMBv+GTTA6z5FoD+y+/lO3T0bmVaUVVPNanQhKXdlzL5+GS+dzvAtrO1iIh/O3pGyOvch+fosKkDj8Ie0XlzZ86PPY+1oTUSiYTZ7WbjbOnMqH2jSBPS2P5gO88jn/Njqx2ExqaRnVEE5fP3URYokl5pO3fu5O7duyxcuDDLe0FBQejo6GBmZpbpdVtbW4KCgrIdb+HChZiamir/OTg4ZLtdaSDjqdxcz1xZBSGimQiCwP3g+yy+upjOmztjsciCvjv68s+tf3ge8RwtqRbtq7RnYeeF3J14l8DpgWweuJlR9UapvdLwk8afYG2gGHPi0YmZ3uvl3AuvSV4s6boEE10T7gTeofX61nyw/4NMFW95oauli6udK2Ndx/Jnjz85P/Y8a3vvUWnfsqqaq+q6yur630cQBM48DMM6ZTaJybqZ3itIQ1KlYRSieFjMUJG2M80sNmhnqleokNRnTT6je8UZWKbMJDw+c4FCxryfvTHg3IfnqGBcAe9Qbzpv7qxs1QMwtM5QLn10SRmuvvn6JhMPTlfp+OXl91FWULvHKCAggC+//JLTp0+jp6ceJc1Zs2bx9ddfK/8fExNTao2jjFYgDe0binozGkh4QriilN7HjZPPTxIYl/kiX9WsqtIr1LFqxyw5PUXJkm5LGHtwLP5R/hx9cpQ+Ln2U7+nIdJjeajqj649m7rm5rPNYx3av7Rx8fJBZbWYxveV0pdBdfrAxKd+quaJqcGa8Qx5BzJBs3xNQ+E1+PPKQrrXtVPLs1LFRGEZPw5+Smp6Ktky7SFSk5QJEhnRGQjLZNaTNmPeVGZ2UniOvEC+6bunK2Q/PYqGvED9s6dASj0896LK5C35RfoQk+ZC1SUhWysvvo6ygdo/RnTt3CAkJoVGjRmhpaaGlpcXFixdZtmwZWlpa2NrakpKSQlRUVKb9goODsbPL/iemq6uLiYlJpn+lFbEiTbNIk6fhHuDO9+e/p8XaFlj/Zs2IfSPY6LmRwLhADLQN6OXci2U9lvF0ylN8pvqwss9K+tfsX6xGEcCHDT7EzlBxjkw+PjnbbWyNbPm337/cmnCL1g6tSUhN4Lvz31F7RW32PdxHflMKNal7eEmQsf6cKOvrf5d0ucBvp2+ihXWmJON3eTd0pAoOJg4Y6RiRKk/lWcQz5esZ1VP9XSvS0smy0Pk5N/0iCI5JQZWQl4uVC+c+PIeNoQ2eQZ503dKVsPgI3H3COeT5muAIU25+cpvWDq1JlnqTRigC2fcjK0+/j7KE2j1GnTt3xsvLK9NrH330ETVr1mTGjBk4ODigra3N2bNnGTx4MABPnjzh5cuXtGzZUt3T0TjEHmklz6uYV5x8fpKTPic57XuaqKSoTO/XtamrLKVvU7kNelqa87T3Z48/GblvJAExAezx3sPQOkOz3a5xhcZc/ugyOx/s5Nsz3+If5c+QPUPo6NiRpT2WqqxQXN5VczPW/9nWOwgISN55liwP68/grVyBaiFiVUNHEomE2ta1ufn6Jt4h3tS2rl2YaRZ6Phnb1bKu9Tbn6JUuzRa4IU9/W+pvb6rH7N472G02m32ea7BOmf3f7yOrN6o8/D7KGmo3jIyNjalbN3NPKUNDQywtLZWvjx8/nq+//hoLCwtMTEz44osvaNmypUoVaaWZdHn622aLYiuQYiMpLYkrL68ok6YfhDzI9L65njldnbrS3ak73Zy6KUXeNJERdUcw/dR03sS+4Uu3LxlSe0iOIVmJRMLIeiPp59KPxVcXs/jaYs77n6fh6oZ82vhTfu74M5YGeSeEanr38KKmR117HKqcxO9FY7R4axiUl/XnJFeQG/kJHdWxrqMwjEK9GUr2hn5hKUhItI5NHX5ueYSFR8NIJ7OvKSg6ianb77Pig8XopO7ljId65ytSspRIn4A///wTqVTK4MGDMwk8lnWeRTwjITUBfS19XCxdSno6ZRZBEHgW8UxpCJ33O09iWqLyfalESrOKzZS5Qk0rNM3SEFKTWd5zOYN3DyYwLlBROt1gdK7bG+oY8mPHH/mo4Ud8e/pb9jzcw8rbK9n5YCc/dviRz5p8lqeUgCZ3Dy9qElITuB2xliS9FWzrcx1DrQpFvn5NUCjOmMePRx6qbBQVpCFpLas66KbX49KTBNwdwotkrQVppJouF9h0OT7bsOHbvCRvoDYSEsmpXD8/OVcimoHYEqQY2eG1g1H7R9GiUgvcx7uX9HTKFDHJMZzzO6dsu/Fux3qACsYVlIZQl2pdlMmUpZXKf1YmICYAawNrgr8Jzlci/0X/i3zp9qXSe1nbujZ/9fgr3+J85YUjT47Qb2c/qphWwe9LvyIvmtAklW13n3CVRBehYIKGbg8CmXngLlHvSIAV1VozPF+QfUj4/XnnZ+15kR9RyrJOabh/F0m5vkj2iInX6kMuyPEI9GDh5YV02NgBy8WWDNw1kFV3VuEf5Y+OTIfOVTuzuMti7n92n1fTXrG+/3qG1RlW6o0igL97/Q1AaEIoa++uzde+7R3bc2fiHVb1XoWlviUPQx/SdUtXBuwcgE+ET1FMt1Rz9OlRAPrU6FMsRtGkrXezaCcVpBReHeSnzDy/JfUZa43KrItaZGvNrxSAOkvsxXL90oXYcrsYyHCLX3qSgG56PRrYioZRQUIFofGhnPI5xUkfReJ0SHxIpvedLZyVXqEOjh0w1DEsyiWUKP1c+uFo5oh/lD8zz8xkfKPxeapdv4tMKuPTJp8yrM4wfrz4I3/f/JtDTw5x4vkJvm7xNbPbzsZY17gIV1A6EASBo8/eGkZFSW5hq4KUwqsDVXNzVG3smkFJrTU/IWF1ltif8NlFvwbTkEgkGhMmFckZ0TAqYjK7xXtiR0/WuEmpohdY5pM2c0LVUEFqeirXX11Xtt24G3gX4Z1LqZGOEZ2qdlJWkFUzr1as6yhpVvVeRY9tPYhIimDFzRVMaT4l32OY65uztMdSJjaeyLST0zjlc4pfr/7Kpnub+LXLr4yuPzpfBldZwyPIgzexbzDUNqSDY4ciPZYmqmyrmpuTH6MISnatqjZSVWXttia6gITgmOy3AYE0wljt9T9iuM2I6r+y8PgzjQiTiuRM+b3iFQM5ucUj4uQl4hbXBPIKFWy5cZ81d9YwePdgrH6zot3Gdvxy+RfuBCrKpV3tXJnZeibnx54n/NtwDo04xKSmk8qdUQTQvXp3nMydAJh7fi7p8vQCj1XbujZuH7hxeMRhnMydCIwLZOzBsbRc15Ibr26oa8qljowwWlenrkUu26CJKtsZcgWQNbW4MHIFmrjW91Fl7T/0q8MP/XLeRoKEEa200JJJOXjPn6k77mtMmFQkZ0TDqIjIy1UMCldxurzU5b4XmLw+EwGBWQfu8umRSex/tJ+Y5Bgs9S0ZVW8UmwZsInB6IB6ferCwy0I6OHZAR6ZT3EvQOFb3WQ1AdHI0f17/s1BjSSQS+rr0xXuyN4u6LMJIx4ibr2/SYl0Lxh4cy5vYN+qYcqniyNMjAPRxLtowGmiuynZRtOnQ1LW+jyprz2ubJf1Gc2KUG1apn4n3g1KCWJVWRKha0VCeqhVU/UysHbbTv14tujt1p5F9o1JVSl8S1Py7Jk/Cn2CkY0TEtxF5lt6rSlBcELPPzmaD5wYADLUNmdN2DtNaTlN6T8pyvkRgbCAV/qig+Ht6IHZGqjR/KDhp6XLq/rifxBTdTEKSGZR0p3Z1ftfpcoE2i87lGaLTlK70qqw9t23E+8FbSsP9W8wxKiJKg6u4uFF1rXNbL6a/a8Uink3ZYXWf1XTY1IG4lDgWXV3E3HZz1TKunZEd6/uvZ1KTSUx1m8r1V9eZfW42az3W8nu339FNbc5PRzWjrLwoOP7sOABNKzQtcqMIYNHVhbzkGNbM5m0KsgJNUNlWNTdH1bFKk6K6KmvPbRvxflC6EENpRURpcRUXJ+JnUjS0d2xPbStFnsPCKwtJSlPvxbVpxaZc+/gaWwZuoYJxBXwjfRm1fTGTtt0p0/kSyjBaEVejAWzw2MDc83NJlLnTv3kI9qaZG/4Wtru8JlIUITpNRbz2lS5Ej1ERURCl1bKO+JkUHav7rqbthrYkpCQx5eAy+lb/QK2hLYlEwuj6oxlQcwALLv/KljPO7/k0FJRUWbm6SUpL4rTvaQD61uhbpMc6/uw4E45MAGBm65ks7PJxmQ5Rvkt5UVQXr32lC9FjVEQUVTVHaUb8TIqONpXbUNNoBBWT1nHmdh2+3OnJyH+v02bRObV6b4x0jOjrOA2ZYKW2DuuayAX/CySkJlDBuAKudq5Fdpybr28ydM9Q0oV0PmzwIQs6LwDU311ekykPaxWvfaUL0TAqQsqTq1hVxM+kaHB7EEhi6GhkWGV6vShCW+UhX+LIk7fVaEWldv0s/Bm9t/cmITWB7k7dWdt3bZEra4uUHOK1r/QghtKKmPLiKs4P4meiXjJkEIAsXpyiCG2V9XyJd9Wu+7oUTRgtOC6Y7lu7E5YQRmP7xuwdtldt1YTqoLyE8oob8dpXOhANo2JAndUcZQXxM1Efxa0iXNbzJR6EPOBl9Ev0tPToVLWT2sePTY6l1/Ze+EX54WTuxLFRxzDSMVL7cQqKJjWxLYuI1z7NRwyliYiUcoo7tFXW8yUyqtE6V+2MgbaBWsdOSU9hyJ4h3A28i7WBNW6j3bA1slXrMQqDpjWxFREpCUTDSESklFMSoa2ynC+R0QZE3dVockHO+MPjOeVzCgNtA46NOkZ1i+pqPUZhENX6RUQUiKE0EZFSTl6hLVCEQtQd2iqL+RIh8SFcf6VQKO5do7dax551ZhZb729FJpGxd+hemlZsqtbxC4smNrEVKXrEfLKsiIaRiEgpJzcVYQE5EiRFFtoqa/kSJ56dQECgoV1DKplUUtu4y24sY/G1xQCs7beWns491Ta2uigP1YYimRHzybJHDKWJiJQBcgptpRNOpN5v1K2cXkIzK11kVKOpU+16t/duvnL7CoBfOv3CONdxahtbXYQnhHPcZ4dK25bWakORzIj5ZDkjeoxEipzS6qotbfPOGtrSZcalIVx+eYlfLv3Cyj4rS3qKJYKq32NKegonn58E1GcYXfC/wJgDYxAQmNxkMrPazFLLuOoiKC6IP9z/YMWtFcSnJFKRdWhhRda0+tJfbZhBaTuvi4K88snKgnp9YRANI5EipbS6akvrvN8Pbc3X+on2G9uz1mMt37b+lqrmVUtwdsVPfr7HSy8uEZsSi62hLU0qNCn0sb2CvRiwcwAp6SkMqjWIZT2XaYyA48vol/x29TfWeqxV9tZrYNeAflVM2HJRMUdNb+xaEErrea1uxHyy3BFDaSJFRml11ZbWeWdHuyrt6ObUjTR5Gj9d+qmkp1Os5Pd7zKhG6+3cG6mkcJfGl9Ev6bGtB9HJ0bSp3IatA7cik8oKNaY6eB7xnE8Of4LTMif+vvU3SWlJNK/YnCMjj+DxqQc/9RxUZqsNy9J5XVjEfLLcET1GIkVCaXXVltZ558bPHX/mlM8pNt/bzMzWM3GxcinpKRU5+f0eBUFQ6hcVNowWkRhBj609eBP7htrWtTk84jD62vqFGrOweId4s+DKAnY+2IlckAPQ0bEjc9rOoVPVTpk8WWWx2rAsnteFoayr1xcW0WMkUiTkx1WrSZTWeedGs4rN6OfSD7kg5/sL35f0dIqF/H6Pj8Me4xvpi45Mh65OXQt83LjkBLqtm8KLIGsq6Xbk2MgTmOubF3i8wnLnzR0G7RpE3ZV12e61Hbkgp5dzL65+fJVzY8/RuVrnbMN7Za2xa1k8rwtDhsQHOQh8SCgaiY/SgmgYiRQJpdVVW1rnnRc/dVCE0XZ57+J+8P0Snk3Rk9/vMSOM1tGxY4Hbcxy//5qG848Q9uoDrFO/RRY1nZGrnpVIiObKyyv02NqDJv824cDjA0iQMLjWYO5MvMOxUcdo5dCq2OdUkpTV87qgyKQSxrTRQ0Ah6fEuZSWfrDCIhpFIkVBaXbWldd550cCuAcPqDANg3vl5JTyboie/32Nhw2gnvAKZvN2DlFTDTK8XZ/6KIAic9jlN+43tabuhLSd9TiKTyBhdfzQPJj9g77C9NLJvVOTz0ETK6nldUARBYJ/fPEJ1FqCrk5jpvbKQT1ZYxBwjkSKhpNSYC0pGCW9QTBIWhtpExKdmu11pLln+scOP7H24l0OPj7DxxlXMdR3zlT9Smsqc89PoNiIxgqsBV4GCGUbpcoFv9l1HQBvJe2XuxZG/IhfkHH16lPmX5nPrzS0AtKXajHMdx4zWM3CycFL7MUsbZb3xcX5xe+7GOb9z6OjocGJyU0IiTUrFeV1ciIaRSJGQlxozSJjc2UYjTsDsSnhBQEBA8o5TtbS7mGta1aRHpZnce+rMDweiAE9AtXLl0lbmnNvv7/3v0e25G3JBTl2bujiaOeb7WD+d3kZ8knk2yj8Kiqr0OV2ezp6He1hweQFeIV4A6GvpM7HxRL5p9Y1albtLO/n5PZR10uXpfHvmWwC+aPYFThZVcSof9qDKiKE0kSIjJzVmmSyWUJ0FLLv3sVJDpaTIqYRXQeaLZGl3Mbs9CMT7aStkWGV6Pa9wT2ktc874/dmY6GZ6/f3vURlGc86/t+j4s+P8cXWdStuqK38lNT2VDR4bqL2iNiP3jcQrxAtjHWNmtp6J/1f+LO2xVDSKsiGn65GRflqpPq/zy6Z7m3gQ8gBzPXPmtJ1T0tPRSESPkUiRkl3pr415DM3WfsHtNxFMPTGVNX3XlMjccivhVRhFcswNtJnXpw52pvql2sWcsVYgX+Ge0l7m3KOuPa2qG2OzoBUywZyjo7fRzrmicq6p6am4PXcDoK9L33yNffP1TYbuGUo6qoWqCpu/kpSWxHqP9Sy+upgX0S8AMNcz56sWX/FFsy9KtPotJzQt/Pru9Wizx0E23P8LSztdetS9VWJzKk4SUhP47vx3AMxtN1cjfzOagGgYiRQ5WRuNWrJj8A56bO3Bv3f/pXnF5oxvNL7Y55VXCa8EKZEJadiZ6pd69deCKt2WBYVcmVRCskwRampW1TzTjflawDWikqKwMrCiecXmKo/5LPwZvbf3JiE1ARebNOJehSLDMlPoNYPC5q/EpcSx+vZqlrgvISguCABbQ1umt5zOZ00+w1jXuEDjFjWaGn7NuB452/dn3aNJ3A1K5V7QPRrYNSixORUXf7r/yZvYNziaOfJ5089LejoaixhKEykRujl14+eOPwPw+fHPufPmTrHPoTyV8BZ0rWX9M8oIo/Vy7qWyMnVwXDDdt3YnLCEMBxMHnoQ/IkJnDZIsvrjC5a9EJUUx/9J8HJc68s3pbwiKC8LBxIHlPZfj96Uf/2v9P402ijQ9/GplYMWAmgMAWO+xvmQnUwyExIew6OoiABZ0WoCulm4ee5RfRMNIpMSY1XYWfWv0JTk9mcG7BxOeEF6sxy9PJbwFXauq+72IuY8g5FR/qLlk6Bepml8UmxxLr+298Ivyw1LfkoCYAAC+at+BlR80VksrjdD4UOacnUOVpVX47vx3hCeGU92iOmv7ruX51OdMaTalxJW0cyOv8Csowq/p8pL/vXzc8GMAtnptJTktuYRnU7T8dPEnYlNiaWzfmOF1h5f0dDQaMZQmUmJIJVI2D9xM03+b8jziOaP2j+L4qOPF1lOqPJXwFnStee0nICedcL48N569Pq35pdMvtK3StiiWkIXC5q88C3/Gk/AnaEm16ObULc/tU9JTGLJnCHcD72KobUh4osKQn91mNvM7zUcikdCtTsFbabyOec2Sa0tYc3cNCakJANSxrsOctnMYWmcoWtKSvVyr+nmXpvBr12pdqWhckdexrzn85DBD6wwt0fkUFU/Dn7L6zmoAfuv6W6F7AZZ1RMNIpEQx0zNj/7D9tFjXglM+p/j+wvfM7zS/WI79bgnv21TiDBT/LyslvAUtV857Pylt6gZx0F+byy8v025jO3pU78H8jvNpXKFxka1HHfkrGd6i9lXaY6pnmuu2giDwyeFPOOVzCm2pNvGp8QDMbTuXnzr+pGyrkTWfLm/8Iv1YdHURGzw3kJKeAkBj+8bMbTeXfi79NOImltfnnSZP40HIA26+vskhz9dAszzH1ITwq0wqY5zrOH65/AvrPdeXWcNo1tlZpMnT6O3cm45VO5b0dDSekj/jRMo99WzrsbbvWgB+ufwLh58cLrZj96hrz/xBjqQRlul1WxPdMlfCm1O5cl7hntz2WzW6ETtHz+T51OdMbDQRLakWbs/daPJvE4bsHsLD0IdqX4e68leOPvsvjKaCqOOss7PYcn8LEiSkyhXin/PazctkFOWXx2GPGXtwLM7LnVl9ZzUp6Sm0qdyGEx+c4NaEWwyoOUBjjKLsPu/A6EQ+23qHxsvGY7LQhIarG/Lp0U85++KASuNqSoh6nOs4AE4+P0lAdEDJTqYIuPryKvsf7UcqkbKoy6KSnk6pQCKUwsSAmJgYTE1NiY6OxsTEpETnoop7WdNKVjWVL098ybKbyzDRNeH2hNs4WzoXaJz8ft6bPDcx7uDHVNJrT0R8Oo0qVufCxLVl9jsq6O9Rlf18Inz44eIPbLu/DQEBqUTKmPpj+L7991Q1r6qWubdZdC7HUE1GSPDKjE7KucWnxGO0UNH/LG5WHIY6hkQnRWP1mxVp8jSeffGM6hbVczzm8hvLmeo2NdNr37f/nh86/FCgNdwLuscvl39h78O9CP/54LpW68rcdnNpV6VdgcYsKtLlAq1+PUNwTEq272eEUl/rjcdEz4imFZrStEJzTlxrSVRC9r+p978jTbg+dtjYgYsvLjK/43zmtCs72j6CINB6fWvcX7nzScNP+LffvyU9JY26f+eEGEorBKq48zW1ZFUT+a3bb9wJvMPVgKsM2j2I6+OvY6hjmPeO71CQz/uM3xmQyEnR8iZBK4SPmo8ts0YRFCzco+p+ThZObBm4hRmtZzDv/DwOPD7Apnub2O61nQmNJjCn3RwqGFco6NTVlr9y0uckafI0alrVzNUo2uO9hy/dvsz02g/tf+D7Dt/ne+7XX13nl8u/KEN4AP1c+jGn7RyaVcw79FQcpKSncC/oHtdfXeeU7ynu+MeiE/O/HLeXIEULa3b2u8XQhq5KD1d7u8D/QtR5qI5ryPVxfMPxXHxxkfWe65nVdpZGeOrUwf5H+3F/5Y6BtgE/dvyxpKdTaigb334JoIo7vzSUrGoSOjId9gzdg52RHQ9CHjDx6MR8VToV5PMWBIEzvmcARTmrllRLWcIrUnDq2tRl//D93PzkJt2cupEqT2XF7RU4LXPi29PfFrgCUV3yAapUo130v8joA6OVXh1Q9JvLj1EkCAIX/C/QZXMXWq5rydGnR5EgYXid4dz77B6HRhwqMaNIEASeRzxn6/2tipDeMmcMfjGg2dpmTHWbytGnR4lOUO3805PaZjImVAnbatL1cXDtwRjrGOMb6culF5eK7bhFSWp6KjPPzgRgesvphXogKW+IHqMCoIoa8A+HvQFJqVUMLinsje3ZPWQ3nTZ3YrvXdppXbM7U5lPz3K+gCs0PQh4QFBeEtlSbVHkqXap1wUK/9FehaQpNKzbl5OiTXPS/yJxzc7gacJXfrv3GqturmN5yOtNaTsNEV3V3ujokFtLl6Rx/dhzIOb/IK9iL/jv7K5OhAX7u+DNz281V6fiCIHDi+Ql+ufwL1wKuAaAl1WJM/THMbDOTGpY1VBpHnYQlhHHz9U1O+5zm4ouLPA57TGJaYo7b60h1qGJhRkJw3mNn93lnp3qfESbTNEV1A20DRtYdyZq7a1jvsZ4Ojh2K/JhFzeo7q3ke8RwbQxv+1ypnr59IVkTDqACo4s4PisldE0OTSlY1jbZV2rKk6xK+OvkV009Np5F9I9pUbpPrPgUNsZz2PQ2ArpYuqSmpDKs9TC1r0CQ0IYejvWN7Ln90mRPPTzD77Fwev0lj8dlzrLh6mukdBvBFs89z1uaJCoD/PEzN9ATaG78mPC5FeVONFIx5807/N/s8JBauv7pOeGI4ZnpmtK7cOsv7AdEB9NzWk+jkaOVrv3T6hdltZ+e5Trkg58CjA/xy+Rc8gjwA0JXpMr7heL5t/S1VzKrkOYY6SExNxCPIg/N+5znte5r7wfeJTIrMcXuZRIajmSMtK7WkS7UuNKvYDBcrFwRBQptF5wosaZFT+FUTS/o/bvgxa+6uYe/DvSzvuTzPSsXiJL/ncExyDD9eVITOfmj/g8YKgWoqomFUANRZZqoJJauayNTmU7n++jo7H+xk6J6h3J14F3vjnHMOChpiyQijxaXEoS3VLnNhNE3J4QCQSCRIkxuiF/kbdin/zScVlh0J5a+LQ5jbtQ/jG41HR6bzdqeoAPi7MfwnvicDNgG8I9qbJGjTKfl3XmOBRAWJhYwwWs/qPbNoA0UkRtBjWw9ex75Wvrag0wJmtZ2V69rS5GnsfLCThVcWKivxDLQNmNRkEtNbTs/1t1tY5IKcJ2FPuPjiIm7P3bj95jZvYt9kCgG+iwQJ9sb2NKnQhG7VutHSoSV1bepm/tzfblwkXek1UVG9WcVm1LauzcPQh+zy3sXExhOL7di5UZBzeNGVRYQlhOFi6cInjT4prqmWGUTDqACos8xUU0pWNQ2JRMK/ff/FK9gL71Bvhu0dxrkPz6Et0852+4KEWJLTkrn44qLy/12dupappooZORzv3x4zcjiKW44gp/loYYUQM4npRxbw27Xf+KHDD3xQ7wOF0GdCuNIoygk9SSrmklheCgKROv9SwXolkPO6cirTT0xNpP/O/pkkBn7t/Csz2szIcazktGQ239vMr1d/xTfSFwBTXVO+aPYFX7b4EisDqxz3LSiBsYFcfXmVY8+O4f7KHd9IX6WEQHZY6ltS37Y+Xat1pV2VdjS0b4iBtoHKx8vIF3r/5mxXCANbE1XnJRIJH7t+zDenv2G9x3qNMIwKcg6/innFH9f/AGBRl0U5XjNFckY0jAqAKirCtia6gITgmLKvqlxUGOkYsX/4fpr+25QrL6/w7elv+bPHn9luWxBlZ/dX7iSkJqAl0SJNSCtTYTRNy+HIbT4KH4aAddpn+EV+xNiDY/n1yq/83PFnBplVy9J/LDsWDqzHz/4r2PvoGrPPzuboqKPZbvci+gUPQh4gk8joUb3HO/NLZ9S+UVx5eUX52uIui/lf6+xzMxJSE1h7dy2Lry5WepesDKyY1mIanzf9XG1hmLiUOG6+vsmxp8e4+OIiT8KfEJcSl+P2RjpG1LaqTfsq7enq1JUmFZqoxdjPLV+oIKiiqG5tpF3s18cxDcYw8+xMbry+gXeIN3Vs6hTr8d+loOfwvPPzSEpLok3lNvRz6Vdc0y1TiIZRAchQA/7sv3LU9xGAH/opTih1u6DLGzUsa7B5wGYG7BrA0htLaVaxGSPrjcyyXUGUnTPCaGlCGtpSbfrX7F90CylmVM3hmLhvER1qVKSWdS1qWtXESMeoROYDEiRyS6Y2/Istj+fxKOwRQ/YMYZRlbbapMH79Sqb84vQzBx7v49izY1x6cSlbTaATz04A0Lpya2WSvSAIfHH8Cw4+Oajc7reuv/FNq2+y7B+THMPKWyv53f13QhNCAahgXIFvWn7DxMYT8y0v8S5p8jS8Q7w5+vQoZ/3O4hXiRVhCWI7b68p0qW5RnVYOrehVvRctHFpgZ2RX4OPnRUFlHnIaK6fzNeO2H8Cf3A+2paF9Q7UcUxVsDG3oW6MvBx4fYL3Hen7v/nuxHft9CpKHdT/4Phs9NwKwpOuSAouPlndEw6gIyXBBf3fIi9DYt67uwrigyyP9a/ZndpvZLLiygE+OfEI923rUtambZbv8uvwzEq8BulfvjpmeWZGtobhRNTdj5/0TrH/4tjzZwcRBYSRZ1qSWdS1qWdWilnUtrA2sC3WRVXU+wTFJnPjgBMefHeeP63/wKOwxoJqxVsOyBhMaTWDVnVXMODODax9fyzLnE88VhlHfGn2Vry24vICVd1Yq//97t9/5uuXXmfaLSIzgr+t/sezmMqKSogBwNHNkZuuZjHMdl+9O5YIgEBATgNtzN048O8HdwLu8in2FXJBnu71MIqOyaWWaVmhKL+detKvSDkczx1J948vpfLU10SXZYBv3ok/RefMtznx4hkb2jYptXh83/JgDjw+w5f4WFnZZmH3uVTFQkDysGWdmICAwtPZQmldqXlRTK/OIhtE7qJr5n+HizIl3XZw96tpjaOhL73WLsdCuwXedJjGmpSM6WqKEVH74qeNP3HxzkzO+Zxi0axC3JtzKNlyR4fL/aM8v7Htwmr612rNtxI9ZvsfIxEhuv7mt/H9ZCqOB6rkZvV3aEpIm4XHYY4LjgwmICSAgJoBTPqcybWehb6Ewkv4zlGpa1aSWVS2qmFVRSQxP1fkcfLaZXb7/o2mFpsxpMweC7oH3cZX2BZjXfh6b72/m+qvrHHx8kIG1BmZ6P0OjJiO/aIPHBuaef1uC/0e3P5jWcpry/0FxQfzh/gcrb68kLjkBXXkdqhv1YLRrX2Z0HIKetmo3zeikaM76neXI0yNcf3Udv0g/ktOzz52SIMHOyA5XO1e6VetGt+rdcLF0KbbmysVJTiG6uJRm9Nj2hOuvrtNlcxdOjzldpL33Ms2peg/sjOwIigvi2NNjWX5DGRR1tWd+87DO+J7B7bkb2lJtFnZeqLZ5lEfEliD/kZ/Mf3efcEb+ez3PMXdMaEF0Ygoz9t8mOuHtzUNUvi4YYQlhNF7TmJfRL+nv0p/9w/fneFPedn8bow+MppVDK65+fDXL+/sf7Wfw7sGAQlgy5JsQjSrPLSwZrTPyyrl6t3VGRGIEj8Me8yj0EY/C/vsX+gj/KP8cK5z0tfRxsXLJebfmtwAAW+9JREFUYjQ5Wzhn8qKoMh9TA4HKzms58fwYafI0AJpJdbmRroI3ZuJFqOAKwNxzc/nl8i/UtKqJ1yQvktOSlS1BAJzMnXj2xTNOPDtBnx19lGtb2n0pX7ZQqFy/jH7Jb1d/Y63HWpLSktBPb4lt+hSE9Le/kZzO45T0FG6+usn+x/u5/PIyT8OfEpMck+PULfQtqG1Vm45VO9LHuQ+u9q4l5qXQJGKSY+ixtQfur9wx0zPj9JjTNKnQpFiOPfPMTBZdXUSfGn04MvJIlveLo9ozP+ewRCLQeE1jPIM8mdpsKn/1/EstcygKSkNLENEwIufM/wzb//3M/0Oer/lyp2ee445v7cj6qxk3lbdPEjmNK5I3t9/cpvX61qSkp+RaRv0w9CF1VtTBUNuQ6JnRWZ62Jx2dxKo7qwBFWOXwyOJrXFtcZPyuIfucK1V/f4mpiTwJf5LFaHoa/jSTAOK7yCQyqplXexuOs6pFTHQ1/jgRk+d8QuJD2O61nU33NiEJvM9dVUJp7xhG0UnROC1zIjwxnLV91zKi7ohMhtFXzb9iZN2RtN7QWmmA/dXjL6Y2n8rziOf8euVXNt/brKz0amA6lqigIfBeGnjG/+b0syU47SRn/c7yIOQBYQlhORqSRjpGOFs408ahDf1q9qNlpZaFyksq68Qmx9JjWw+uBVzDTM+MU6NP0bRi0yI/7pOwJ9T8pyZSiZSAaQGZVKPze78oDG4PAvls610E5EjeaVTx/rG23NvChwc/xETXBJ+pPkVSDakuRMOoiFDnB1uQppSqeowsDLWJiM++jDa7cUVUY+3dtUw4MgGpRIrbB250deqaZZt0eTrGC41JTEvk8eePcbFyyfR+9WXV8Yn0AWDLwC2Mrj+6WOZe3BTlk22aPA2/SD+lZ+lx+FvDKScPiX56S6zTJiGRv602sjCU8L+eVRnRuGaWnJmHz07hvH0E2kJ6jvNIRGB+/YF83nWh8gb2h/sfTD81nYrGFfH81BPrJdbK7Tf028Dk45OVqs9Luy+lS7UuLLiygJ0PdirzfDo6dmRW69l8t0dCUA7Xh3ebqCLJnB+kK9PF0cyRZhWb0adGH7pWK1tyEMVFbHIsPbf15GrAVUx1TTk15lSxtFFps74NVwOusrDzQma2UbTWKMj9orD0Wj+b+09roMXb3/C753BSWhI1ltcgICYg01w1FdEwKiLU+cHmJyyWkfmviovTwlCH8Pjsn6ZzGldEdSYcnsBaj7VY6ltyZ+KdbBWFW65ryfVX19kxeAcj6o5Qvu4X6Ue1ZdUARduD0G9D89WWorhQVw5DcStfC4JAYFzgW+/SO16moLggEKToyusgE8xJl0SSLPUGiRwzPTNqWb3NX8rwNjlKtJDHh+IecI0jT49y8cVFpadHgoRQ5ARIBPS09JjSdAoz2szASMeIjsucSY55w+Smk1lxawUA+lp6yKRaxKXEEYbA4BZf8iL6BQceH1DOv5dzL+a0nUNDu4Ysu+zGylN5h7VCdedgZRZJQ/uGdHfqTn+X/lQwKb29qTRBLf1dYpNj6b29N5dfXsZE14RTo08VeXLxBo8NfHz4Y5wtnHky5QkSiaRA94vCkJCagO0SW+KSE/i3xzms9apn+T4WX13MjDMzqGRSiadTnuasIK8hlAbDqNwnXxck81+VUtP+rhVYf9VfbccXyczyXsvxCPLgTuAdBu8ezJWPr6CnlTlZsaFdQ66/uo5HoEcmwyijTB+gp3NPjTSK1OnpUWeZtSpIJBIqGFeggnEFOlfrnOm9qKSobPKYEvCL8iMqKQr3V+64v3LPtI+elh41LGsojKUqrZlYbxi+Eb6K7u+Bd5TbJaUlscR9CStvr+SnhhO4HJeAFkZwazOfZITj0jK2NiIZcL7+FwESxRncrnI7LPQteBDygE6bOpGcnoxBWjus+TbPNW8fcIz+DSsW9CPTKDRJLT0DY11jjn9wnN7be3PpxSW6be3GydEnaVGpRZEdc2idoXxx4gueRTzjasBV2lRuU+yK3YefHCYuJY6q5lUZ37xdFo9qeEI4Cy4vAGB+x/kabxSVFsq9YVRQBdacSk11dRL5a1gbTPV1VDKMROXrgqGnpce+YftovKYxdwLv8MXxL/i337+Ztmlop9A/yehZlcG7ZfrD6mheNZqmKVarEzM9M1pUapHlhpaUlsTT8KdZjKYnYU9ISkvifvB97gffz7SPVCLFwcQBHZkOgbGBJKQlABCfGs/WG8v4Oo/cJF3ACglvJFLShXQuvczaVT1dknN/sXexMSkb57Em//aMdIw4NuoYfbb34eKLi3TbojCOWjq0LLLjDa8znPWe61nvsZ42ldsUu2L31vtbAfig3gfZSjPMvzSf6ORoGtg2KLPpACVBuTeMCqKYnEFGqek1n2B6bh5BmiSCZo4W9Kg7lHS5UOBxRVSjilkVtg3czoAt37D91lNsdTbzY7cxShdzhjDc3cC7CIKARCIhXZ6uLEXXlmpn0rNRB4UNQRRWsVrTQiCqoqelR33b+tS3rZ/p9XR5Ov5R/plCco/DHvMo7BFRSVEExAQU+tjp7+Uv6ch0qGBUgZaVWtK/xkCWHNEiLDYtV5X7OhV1iU+JL/RcSpJ0ucD3h701Ri09O5TG0Y4+XPC/oPQctXJoVSTH+7jhx6z3XM9u79381eOvQt0v8ktofCgnfU4C8EH9D7K87xPhwz+3/gFgcdfF6pFzeKdhc7YYWIKZQ+GPo+GUe8NIlbBYbgrVMqmEts52GJkqdGBexlTJNG5uFQWi8nXhULj8ZdimKDQ7tl6AE7fd+GWAKz3q2lPXpi4yiYzwxHBexbzCwdQBzyBPZdf0Xs691Np1ujAhiAzBvy23bhAYnXMfq9y6jmtiCKSwyKQynCyccLJwytTbTBAEguODs81jehP7plDHTElPwT/aH/9of3Z471AkjDMbEDKdxwJyBCTcT5qH6SL3nAcsJeim18MuJWf9m5LoeJ8dhjqGSs/Ref/zdN/aHbcP3GhdubXaj9XKoRU1LGvwNPwpex7u4eOGHxdJU93s2O29mzR5Go3tG1PTqmaW9+ecm0OqPJVuTt3o5tSt0Md7v2FztmjpwpQ7Zd44ElUGeRsWszPN7P5MI4xPOqHSTcXRzBFQCMJl5LP3qGvPV90NSCezBW5nqleqwyGaQIbL//3qkLC4dD7behe3B4HoaelR27o28Dac9q5w4bt5R0U1n4wQhNuDwEyvJ6cl4x7gzu/XfmfI7iFU+rMSVZZWYcHFv1U63vs5DPk9fmlHIlGIIHas2pHJTSezvNdyznx4htdfvyZqRhSbB25W27ESZe6E6izIch6nE06ozgISZaXfKAKQCapVzGlCXqSBtgFHRx2lU9VOxKXE0X1rdy6/uKz242Q0lgVY57EOyPl+oe7r+lYvRRgtuxDZzdc32eW9CwkSFndZrJbjqdKwmbTk3D1KZYRy7zHK4H0F1gNPN7Lp4Tw2PK7K9E6dsyT2vk9Nq5rceH2D5PRkopOjle0l7KyDea03Hl15HRrbdmRJj3mlJryhqeQWbpL89xyX4fJvaN8QrxAvPAI96OfSj4OPDwKgJdXK0l29KOaTEYKYd9iLaOEKN94okovvBt7NogEkk8hwsrImRgUb5t0cBk1rGFvSmOqZYmqdv+afTuZO9HLuRW/n3rSo1AItadZLY7pc4M6LKEJjU7A21qFxFTNk0qHqmnaJc9Mvko823MtzO03JizTQNuDIyCP039mfM75n6LmtJ8c/OJ5tj7zC8GGDD5lzbg7XAq7xOOwxNa1qKu8Xh70eMnrvZJDF4D39GoY66kl+9onw4fqr60gl0iwPcIIg8L/T/1POrYFdA7UcU+QtomH0Du9W73SqNZXTr1bgE+nDkmtLmNtubq77uli+1cl5FfNKaRi9inkFEjnJMi+aOnUSS/PVgCoNSTNc/g3tGrL53mY8gjxISE1QVjF1dOyotoapqjR7DIlJZeyen0mWeSlftzawpqVDS1pWakkrh1Y0qdAEXZm+Smq3TR3NiUiMICA6gLOPXxIYnbPzV1NCIJqMT6QPy28uZ/nN5VjqW9K7Rm/6u/Snm1O3TL+Tji5F02RXE2jnbIC96ZNSlRdpoG3A4RGH6b+zP6d9T9NrWy+OjTpGe8f2ajuGvbE9vZx7ceTpETZ4bGBR10WA4n4xoH5tDE49JCwhjAch99UmIbDNS9E6uUu1LlkaAx95eoRLLy6hp6XHzx1/VsvxRDKj9lDawoULadq0KcbGxtjY2DBgwACePHmSaZukpCQ+//xzLC0tMTIyYvDgwQQHB6t7KoXCWNeYJV2XAIomky+iXuS6fTXzasq/A6IDsv27hmUNNc+yfKKqK//Ek6uZKtMuv7isTLTNcI8XFEEQeBT6iJW3VjLj5C8q7eNk2pBJTSaxecBmnn/xnOBvgjk04hAz28ykXZV2GGgbKHPTcjgqAgLhWqswXWSM5WJLXFe78t3ZJSodXxNCIJqG5B01a30tfQy0DQhPDGfzvc0M3j0Yq8VW9N7em9W3Vxc6d0nTefe3975fUZPzIvW19Tk04hDdnLoRnxpPr+29uOB/Qa3H+Lih4nqx6d4mUtPfivZKJBKaVlAocd96c0stxxIEQVmNNrpe5jBamjyNGWdmAAoFdwfTsp3rU1Ko3TC6ePEin3/+OdevX+f06dOkpqbSrVs34uPfVmxMmzaNI0eOsGfPHi5evMibN28YNGiQuqdSaEbUHUH7Ku1JTEvk61Nf57ptJsPonUqZd/9+16skUnBUdeX/c2eB8mn/ZfRL1nusBxQhqz4u+QujCYKAd4g3y28sp+vmrpj8akLtFbWZfHwyN4PO5D0AsHbAH6zovYIRdUegJdXiasBVtnttZ9GVRUw5PoV+O/rRcHVDPjhel2CdX0gjNNP+aYQRorOAZwl7SUhVlKZbG1jjZKWa/L+mhECKBQNLRaJoLiT/Jw4JYKhtSGJaIgmpCVjoW9C+SnuqmVcjOT2Z48+O89mxz6j4R0Wa/duMXy79glewF6VQGzdPiit/Rt1kGEc9qvcgITWBXtt6cd7vvNrG7+3cGxtDG4Ljg3F77pbpPXUbRrff3OZZxDP0tfQZUHNApvfW3V3H47DHWOpbarzCdWlG7aE0N7fMP5qNGzdiY2PDnTt3aNeuHdHR0axbt47t27fTqVMnADZs2ECtWrW4fv06LVoUnWBXfpFIJPzd629cV7my/9F+TvmcyjH738nCSfm3X6Sf8u93DSNN9hiVpjLvvEpmBeQIkkgM02/z656R9DFy4HXsa4Ken6ShIKWudR2Mwp7nWnoqF+Q8DH3IkSdHOPrsKB6BHsoWEu+TIn0I0kiQm5H1WVsxIx3tBKad78urQy8JjAtUtp3IEZk7MSbeVNBrh4VuVSqYGlKvkgGOZp/iYDofBxMHKplUQl9bX+Vmk5oUAilyzBwU1TPvJIrGpsTSeXMX0uRy7PWa8Xnr3+kefJl1D2YRnxpPReOKyAU5gXGBXHxxERsDG/7X6n8Y6hhy4tkJbry+wa03t7j15hZzz8+lqllV+rn0o79Lf9pWaZttXlJpJKeO95p6PchAT0uPA8MPMGjXIE48P0Hv7b2VCdqFRVumzZj6Y/jd/XfWe66nr8tbmY+M3m23XqvHMMrwFg2oOSBT1WxcShzfX/gegHnt55WppteaRpG3BHn+/DnOzs54eXlRt25dzp07R+fOnYmMjMTMzEy5XZUqVfjqq6+YNm1aljGSk5NJTn6bLR8TE4ODg0OxSYpPc5vG0htLqWFZA69JXtl2vhYEAYMFBiSlJTGg5gAODFe0GLD5zYbQhFB0ZbokzEnIsRt8SVIay7xzapDKf+07dXV+4J70KfrZGir/8U7pqVyQ4xnkya4Huzjpc5JHYY9ybJCa0QPLydwJUz1TBAR83hgT8rofQjYl3SDJUr2kI9OhkkklKptWxsHEAQcTB8Xfpm//zs+FT10NY8s6Azf+yK3HVTL1nTI3hCDp3wSluWGobciwOsM4738e/yh/AGwMFQbSoJqDOOt3lsNPD3Pa5zTJ6W+vSeZ65vRy7kV/l/50r95dI9XUywtJaUkM3j2Y48+Oo6elx5GRR+hSrUuhx/UO8abuyrpoSbV4Ne0Vtka2AATHBWP3ux0SJETPjC6UBEiaPI2Kf1QkJD6EoyOP0rtGb+V7P1z4gR8v/oiTuRMPP3+Y7X2oULzxhDUq5Ga907C5IJSGliBFahjJ5XL69etHVFQUV65cAWD79u189NFHmQwdgGbNmtGxY0cWLVqUZZwffviBH3/8McvrxfXBRidF4/K3C8Hxwfza+VdmtJmR7XaOSx15Ef2CBrYN8PzMk5T0FPTm6yEgUNu6Nt6TvYt8rvmlODtFq5ucDLqxbQ05eXsUB6LyLiudX6srW0K98I30Vfbfeh8dmQ46Mh3S5GkkpeWcp6Of3hKLlImZbro62vE0cvGlZXX9TEaPtaG12o3k0mjgFidvO5ULmXKLMvRobCsd5mb4GgDGNhhLswrNWOK+BL8ohQfY2sCab1p9w+Smk5Eg4ZTPKQ4/PczRp0cJSwhTjqcj06GjY0f6ufSjn0s/KplUKs5liqCQwxi8ezDHnh1DT0uPwyMOZ9tsOr+0WNuCG69v8FvX3/im1TfK1yv/WZmAmAAujL1QqMRvt+du9NzWEysDK958/QZtmTYAgbGBOC93Jj41nt1DdjO0ThFUQxaTjlG5N4wmTZrEiRMnuHLlCpUqKS4OBTGMStpjBLD53mbGHhyLobYhj6c8zvZi135jey69uISNgQ3B/wvGP8qfqn9VBWBwrcHsHba3WOaqKkXVKbo4w3I5HSvhpTsG63vkuX8j4vCQ5BHWeg8LfYu3Hh4TBxxM3/5dwbgSgeEGhMenlUgIojSFRIsTVX/r3Vte5edLPyIX5NS2rs22QdvwCPRg/uX5+Eb6AmBlYMU3Lb/h82afY6RjRLo8HfdX7hx6fIhDTw7xLOJZprEb2Teiv0t/+rv0p75t/WxbO4ion+S0ZIbuGcqRp0fQ09JTJmgXhn/v/MvEoxOpZVUL78neyu9y0K5BHHh8IIvBlF9G7x/NNq9tTGk6heW9litf//TIp6y5u4bmFZvjPt696H5DxaB8XRoMoyILik+ZMoWjR49y6dIlpVEEYGdnR0pKClFRUZlCacHBwdjZ2WUzEujq6qKrm3siZVEzpv4Y1txZw9WAq3xz6ht2DtmZZRsXSxcuvbhERFKEQsk4WrMTr1UpM89vmXdxei0EQSA6ORJTk2ASpUH4xQXhfiOIoLgg9EKf8FMBxtTX0qeyaeVsjZ4Mj4+hjmGuYziVYCpPcTeMLS2o+lvv7vA5HT5sx6h9o3gY+pBW61rxd6+/eTT5EdsfbGf+pfn4RPow8+xMfrv2G9NbTmdKsym0qdyGNpXb8Fu333gc9pjDTw5z6Mkh3AMUmlV3A+/y/YXvqWJaRelJal+lvdIjIKJ+dLV02TN0D8P2DuPwk8P029GPQyMO0b169wKPObzucL50+5JHYY+48fqGsudf0wpNOfD4QKESsONS4jjwWJGC8W4LkIehD1nrsRaAJd2WFK1hbeZQ5lWtVUHthpEgCHzxxRccOHCACxcuULVq1UzvN27cGG1tbc6ePcvgwYMBePLkCS9fvqRly6JpBqgOMhKxG69pzC7vXXza+FM6Vu2YaZuMPk9p8jSikqIUGkb/4WKlWYZRmjyNU0+vq7StqmXe6mpAGZcSR1BcUKZ/wXHBir/jM7+WKk/NdoyGgpSf8mgiCjCzzUz0HVooDSBzPXPxib4Mkp+u6P1dO+D5mSdjDozhlM8pxh8ezzm/c6zqs4rR9Uez3UthID2LeMbsc7NZ4r5EaSCZ6JpQ06omNa1q8m3rbxW5Ik+PcujJIU77nOZF9AulXpKprik9nXvS36U/Pav3FJNpiwClcbRnGIeeHKL/zv4cHHGQHtXz9iZnh4muCUPrDGXzvc2s91j/1jBSQwL2oceHSEhNwMncieYV3+ohzTwzE7kgZ0DNAbSp3KbA44uojtpDaZMnT2b79u0cOnQIF5e3xoCpqSn6+gpV0EmTJnH8+HE2btyIiYkJX3zxBQDXrl1T6Rgl6YqbcnwK/9z6h9rWtfH81DPTE98Z3zN03aKIY9/77B5uz92UmhPu492zdBQvCbyCvdjouZFtXtuIirHJtTdSBjsmtMjTC6FKqMLaWJtlH5oSkhD81tDJxtiJT81fM05zPXPsjOwy/WsgFxh7Y33eOxcykVCkdODuE87If/N+EHj3ty4X5Cy6sojvzn9HupBODcsa7B6ymwZ2DUiTp7HzwU5+vvQzT8OfAorf4dctv+aLZl9ka+QkpCZwxvcMh58c5sjTI4TEhyjf05Jq0cGxA/1d+tO3Rl+qmFVR08pFQNH/bsTeERx4fAAdmQ4Hhh+gl3OvAo110f8iHTZ1wFjHmMDpgRjqGBKVFIX5IkVLldD/hWJloJqExrv03NYTt+duzGs3jx87/pjpWDKJjP+3d57hUVRtA753N70nkEoJvYYOAaQqICBVVKRJKEoRFZFPX7Gh+CIiiuKrICIQlCodQpeO9BIgEEIIPYUUEtLb7nw/NtlkSdskm+xuOPd17QWZOXPmzNnZOc889drb14zuBbssmIIpTe+CUVFv2ytXrmTcuHGAOsHjzJkzWbduHRkZGfTt25fFixcXaUp7GkNObHxaPI1/aUxMagzf9/memc/N1Oy7HX+b+j+rw/Z3jNjBrtBdLL2wFIC4j+Jwsc6zsVSmL0hMSgzrgtbhH+ivqRkG4GrthkvKYtIzCs9vUxofI10XniiLWVrZn4vCxtwGTztPLWHH3da9gADkZuuGZWH5aiopwkJgGpSU0gAkXGwt+HxgczwctH+PJ+6fYMSmEYQnhWOpsGRRv0VMajcJlQSnb8ew/foRtt5cxa3kvSBT4WTlxIxOM5jecXqRWiClSsnZ8LNsD1H7Jd2IvaG1v7VHawY3GsyQJkNo49FGaDH1QJYyixGbR7AleAsWCgu2DN+iFfWlK5Ik0fB/DQmLD8N/iD9+rf0AaPS/RoQ+DmXP6D2l1kg9Sn5EjYU1UEpKQt4JoVG1RqgkFR3/6Mj5iPNMbT+VxQMWl3qsxsgzKRhVBoae2BWXVjBxx0TsLOy4+c5NPO3V5qFsVTYWX1sgIfFtr2/ZF7aPw3cPY2tuS/InyZrjK8MPJ1OZye7Q3fgH+rMrdJcm4spcbs6gxoPwa+VH/wb9ORgcq5cw7+2B4UxfH1hiO5XDcjxcHxYp6HjYeeBu517+ch06Ckb/bdqHT4dvFAvPM0BRKQ1yUyrkj1R7+vcYmxqL3zY/dofuBqCP1//xJOZFHiXmpXRwtFGRZv0XoakbAXCycuL9ju8zvdN0TYmgorgZd5MdITvYEbKDfx/8q5XnqqZDTY2Q1LNOT/2HaT9DZCmzGLl5JJuDN2MuN2fL61vKVDNx7rG5fHb4M7p7d+fouKMAjN4ymrVX1zKn5xw+7/F5qfr7+czPTN87Hd8avpx58wwA64PWM3LzSOws7Lj17i1NegBTx9Drty4IwagMqCQVzy1/jjPhZxjdYjSrh63W7HP81pHEjETeaPkG/z74l9vxt2lcrTE33lG/EVZkeLwkSVyKuoR/oD9rr64lLi0vuqC9V3v8Wvkx0mck1Wy0zWL6ENTKYqqoUHQIPU1DojHJdGz+Chte3WCUOaYE+qWwez0399XTIfyg/XtUSSoWnlrIV/u245Lxn5w2BY8Z0z2NLXdncz3mOgCOlo5M7zid9zu9j7N1yRXsY1Ji2B26m+0h29kXtk+T5RzA3sKe/g37M7jRYF5q+JJO/Qm0yVJmMXrLaDZe34i53JzNwzdrJWzUhYeJD/H+yRuVpOLmOzdpWK0hP53+iRn7ZjC4sdrJuzR0/KMjZ8PPsqjfIt7r+B4Z2Rk0/bUpdxLulEnQMmYMvX7rghCMysj5iPP4LvNFkmT89uIBPGwa42ZvxRsBnQlLCKVLrS5cfnSZ5MxkBjUaxI6ROyosPD4qOYrVV1az6vIqgqKDNNs97TwZ03IMfq38aO5WfLXx8pr2dM2+XNprKxcJD0hKuEcPf7Xm6ODYfxizZQyRyVEAxCLxQKYebZ+6fQgYHSDexp8Bcu/1qCdpfL0rmMcphSfyLOyeVaokOszdQ1yKSkuQevqYYx/1ZOuNzcw5OodrMer8ZQ6WDhoBKb9ZPf+Ynv79pWenc/D2QbaHbGfnzZ1E5dy7oC5t0927O0MaD2Fw48HUddYOdNE3VSkVRJYyizFbx/D3tb8xl5uz8bWNDGkypFR9vLTmJfbc2sMnXT9hbq+5nLh/gm4ru+Fp50nETN3r6t2Mu0njXxqjkCkI/yAcdzt3fjz1Ix/s/wBPO09C3w0tMRLWlDCG9bskhGBUDob6f8n5G3W0EvopzJKIlP+Mm0sE956oC89+2vVT/tvrv3rVqqRnp7MzZCf+l/3Zd2ufpjiqpcKSoU2G4tfKjz71+1RqmQJjzL6c67zo7ejN3ffvMufoHGYfmY2tuW0BJ2/fGr4cGnuoSj2EBEVTlt9jaY9RSSq2BG9hztE5XI1W+9bZW9jzXsf3mNFpBtVsqumssVVJKs6Fn9OkAsgVuHJp4dZCU6KknVc7vWpAq2Ly0GxVNm9sfYP1Qesxk5ux8bWNBWqTFcem65t4beNreNl7cf/9+6Rnp+PwrQMqScXDGQ+p4VBDp35mH57NnGNz6NegH3tG7yE+LZ76P9cnPj2eZYOW8WbbN8t4hcaJsazfxSFsB2Vkb1AkgTc6oEA7+kCZbYdr5ickPskrKtvaozVQupDhwpAkiTMPzzA1YCqeP3gyfNNwdofuRikp6VyzM78N+I3ImZGsf3U9/Rv2r/TaTcZYgDLX2byNZxtAXSVbLpOTkpWCmUw9P7lv/mfDz+K7zJe44hKcCaoMZfk9lvYYuUzOq81eJXBKIJuHb6ale0uSMpOYe3wudRbV4Y213zNl9cUCWuTcFBd7gyI12+QyOR1rdmRur7kEvR3ErXdvsfDFhfTw7oFcJudq9FXmHp+L7x++1PqxFlMCprAndE+x2dp1IfeFR5cxmhJmcjP+evkvRvqMJFuVzWsbX2Nr8Fadjx/UaBDVrKsRkRTB/rD92FrY0txVrZnXNZ+RJEmsuboGgDEtxgAw78Q84tPjae7anHGtx5XuogR6QQhGZUCpkvhqp9p/oKA6XV1gwCZtLEjq6c0NsdS1uvnT7R4mPuTbE9/S9NemdFreid8u/EZCegI1HWrySddPuDHtBicnnmRy+8kG9zno5+PJif+8wLq3OrFoRGvWvdWJE/95wWBvlRcj1RqsNh5qwaimQ036N+gPQMea6lwhduZ2mrfr67HXafd7O+4/uW+A0Qoqk7L8Hsv6G5bL5AxrOoxLky+xZfgWWnu0JjkjlcNXqud4OGmTu+WrnddRqgpX6td3qc+MzjM4Mu4I0f8XzZ9D/+TVZq9iZ2FHRFIESy8s5aW1L+G6wJVX/36Vvy7/VWqhP/dZV3ix5pLHaOyYyc348+U/GdViFNmqbIZvGs7m65t1OtbSzJIxLdXCzIpAdWqQDl6ly2d0JvwMYfFh2JrbMrTJUO4l3OPnMz8DML/3/CpTmNjUEIJRGSgpi64MOWa4YqlSvz00cGkAQBMvM2SKJzlRMIUdp1ZP+9Z1ITUrlbVX1/LiXy9S+8fazDo4i5C4EKzNrBnTcgwH3jjA3el3mdtrrl5yWyhVEqfC4tgeGM6psLhyPehysy8PaV2DzvWrGdQPQaMxyhGMAN5q+xagtu239mhNUlYSHb06Y61qiU12d6IeO9B+aQeN86ygauJb1wVPR6siywzn/z2W55j8yGVyXm76MhcnXWRBj62Y4VqorxJoZ54viWo21Xij1RtsfG0jsR/Gsmf0Hqa0m4KXvRfJmclsDt7M2G1jcf/enZ7+PVl4aiFhj8OK7C/3efDjgZs6Z8c3VczkZvw59E/GtBxDtiqb1ze9zqbrupVvmtBmAqBOzhiTEpOX6FFHjdGaK2pt0dAmQ7G1sOWzw5+Roczg+TrPlznPkqD8CHG0DOiqTldIztiY22Btbk2mMpPXNr7CI0UqrspPCrTNfTQO7yRnSsAkNlzbQFJmkmZ/d+/u+LXy49Vmr+q9cndV9B8ASMtKIzgmGMgzpQEMaDQATztPIpMj+bjrx4RF2HP/1gTc8vmKZT+OoduSdwkY/1861zLejOyCsqOQy5g9qBlTV1/UFJLNJff3OHtQMy3BvizHFIZMJqOhczsgsMRx6vq8ycXSzJJ+DfrRr0E/FkuLuRB5ge03trPj5g6uPLrC0XtHOXrvKDP3z6SZazON87ZvDV/kMnkRkXvFs+36Ieq5dzfZkHKFXIH/EH9kyPjryl+M2DSCda+sK7FYa0v3lrT3as/5iPOsubqGbrW7AergHEmSik0DkqXMYv01dWmpMS3HcDHyIquvqCOcF/RZIFKIGBChMSoDuqrTlbJ43G3dUUkqxm0bx8E7B1FYX+U/A5zxfMoPx8YqE5nzcj449gJ/XPqDpMwk6jrVZXaP2YS9F8bRcUeZ0GZChQhFVdF/ACAoOgilpKS6TXVq2Oc5QprJzRjfejwAmy7ewiXjowK+YgqqYZc6g37LP9bkrhFUPcriF6cvX7qymuVKg0wmo71Xe75+4WsuT7nM7fdus6jfIl6o+wIKmYLrMdeZd2IenZd3xusHLwav/IIpqy+USigCWHTuazx+8KDlkpbM2DuDgJsBJGUklXygEaGQK1g5ZCVjW41FKSkZuXkkG4I2lHjchNZqrdGKSyvwcfPBQmFBfHq8puhwUewP209saixutm70qtuLDw98CMCoFqNo59Wu/BckKDMiKq0MFBWa7kUszrIkQIWSJ0RbzqGdZxuauTbjryt/kSBXsHT0LvrU78OT9CR+PLqT3SEnuBJ7ggy5OsLESdGezl59GdykBxM79cRcoaiQa0jNSiU6OZZXfr1GXHLRpr1KD7HXI79f+J3JAZPpU68P+9/Yr7Xvdvxt6i9qSI305VpRhfmRUKEkjkirt/B/eQVvtHqjMoZd5dFX2Lc+w8fL0pepp7iIT4tnz6097AjZwZ5be0hMT6ZG+nIUVC/SvFcY1pbpWHrO5fKjS1rbzeRm+NbwpVfdXvSu15tONTuZRDoMpUrJmzvfxD/QH7lMzpphaxjhM6LI9gnpCXj+4El6djrn3jrH27ve5lzEOda9sq7Y40ZtHsW6oHW85/se/Rr046W1L2GhsCDknRDqONWpgCszDgy9fuuCMKWVgcLU6V7EcshyJlay/EVNbSAyBCJDmIEd2ZhxNjWecdvGsen6Jk24uEwho2O1SaTGvURiioLroXA9NJ1Vx46UaM5SSSoS0hOIS40jLi1O829samzetnzbc/9Nz07HUtmi2Fpp+f0HTLFi+6XIgv5FudRzrsdzHmMJv1u4UAR5vmLmqqaM3TaW6JRorRIwgtKjL7Otvs2/uX5xFX3M08frwyxXVpytnRnVYhSjWowiU5nJ7ycP8/2ubJ2Pzx3Vj689Rz+fi8SkxHD47mEO3j7IP3f+4Xb8bU4+OMnJByf5+tjX2Jjb0K12N3rX602vur1o5dHKKJOqKuQKlg9ejgwZKwNXMnrLaFSSilEtRhXa3snKiWFNh7H26lpWXFpBB68OnIs4x7nwc0UKRkkZSWy7sQ2AkT4jeStA7ff4ru+7VVooMhWEYFRGctXpuQ9nZ1nSU0JRQcxU2byzeSSXZGoNTQOXBoxrNY7aVoP5Ysv9Am+NkU/SmLL6An3a3sPB8XahQk58erxW+YDSYCHTrdBhaX0cjIWnQ/WfpnvNgay7W3I/Ckkd6fd/B/6PRymPmN97vrD/l4Gisr7nmm11NUPpqx9j4OnnSC4elezjZ6GwoJa9D7r4POXy9BhdbV0Z3nw4w5sPB+Buwl2NkHToziGiU6LZF7aPfWH7AKhmXY0X6r5Ar7q96FWvF/Wd6xvN70ouk/PH4D+Qy+Qsv7ScN7a+gSRJjG45utD2E1pPYO3Vtay9upbv+nwHFO+AvfXGVtKy02jo0pBrMdcIig7CycqJT7oV9D8VVD5CMCoH/Xw86dPMg7N3HpPxwAKOlHyMhcKCJs518LBTF8zdELSRJw9rA86Fhv5LqNhz0ZZwq59AVrQAZGdhRzXralS3qU41m2pUs8752BT977WHmYxcdqbEMZfHx8FQKFVKrjy6AhSuMQLo3+g51p24WHJfsnjN/xecXEB0SjTLBi3DXGGun8E+A5QU9i1DHfbdp5lHsRoSffVjTOR/jhgyq7Suv/N3nq9PlwauJY6xjlMdJradyMS2E5EkiaDoIP65/Q8H7xzk6L2jxKXFsfH6RjZeV9eW83b01ghJver2Mrgjt1wm5/dBvyNDxh+X/mDstrFISJoQ/fw8X/d5vB29uffkHvFp6ufFxciLKFVKFPKC7hC5uYuGNx/OF0e+AOCzbp8VyIguMAxCMConGnW6tatOglGmMpMbcTe4EaeunWapbIGHqugfQ645Z2zTOTStoShUyHGxdim8wnwJ+NaV8HS0KtHHoajQY2MmJC6EtOw0bM1taVitYaFtujTwwNoyndQMC2SFxCHkXv83L33C6G0jNdtXXV5FbGosf7/2NzbmNhV1CVWKklJc6Gq21Vc/xkZ5zXL6IDcVQUnPgxl9GpdaaJPJZLRwb0EL9xbM6DyDLGUWZ8PPcvDOQQ7eOcipB6e49+QeKwJXaHIC+bj5aPyTunt313vgiS7IZXKWDlqqFpIu/s7YrWNRSSrGthpboN341uP58uiX7Avbp8msfyP2RoFyTFHJUfxz+x9A7esZkRSBt6M303ynVdp1CYpHCEYGJtdMUxLDGo9jSGvdUszrfG4D+zhUJLn+Ra09Whfpx6CQy5jZ15uvd0QhodISjvJffz8fT1QydfmAXHaF7qLPX33YOXKneMvTgfJmfdd3P4KCVObzwFxhTpfaXehSuwtf9PiClMwUjt8/rjG9BUYFEhQdRFB0EIvOLEIhU+Bbw1fjn9SpZqcyvQyWBblMzpKBS5DJZCy9sJRx28YhSRJ+rf202o1rPY6vjn7F4buH8/yMIs4VEIzWB61HJalo59mOPy7+AcA3vb7Bysz0NPNVFePzfKviHPU7QvKsZM0nYMwanY6rKHOWMZbx0AdPZ7wuijefa4+r1zaUaGcEfvr6x7Qcw4rBK7TanHxwku4ru/Mw8aEeR1410VdoemWEuD/LGOp5YGthS78G/Vjw4gIuTb5EzIcx/P3q30xqO4n6zvVRSkpOPTzF18e+pueqnjjPd6bf6n4s+HcBFyMvltnPUlfkMjmLByxmavupSEiM3z6elZdWarXxdvKmd73eABrzWWEZsHNzFdma25KUmUQ7z3bFRq8JKh+hMapkXlo7gBnD/BnWdBgA3Rva4OkYYlBzlrH4OOgLpUriZFgMNtndcVb4olRJxV7L9B49GLt1HN7WL/DTiytxd7Au9PrHtxlPtiqbSQGTNNuuxVyjy4ou7BuzjybVm1TYNVU0uoSelyc8XRczjYutBVFP0jgVFldk37n9FGVOM1XzrzFVrjeG50F1m+q81vw1TYLFXEfuXNNbYY7cz9d9XmN6qwhHbrlMzq8v/YoMGYvPL2bi9re4E21GO/cXNHM0oc0EDtw+QGhcKFDQAftG7A0uRF5AjpyTD08C6mSOxhid9ywj8hjpi4hA+L1Hic3akswlmYqONTqyfcR23O3cjbIqvamyNyiSL3deJ6oUYdxpWWl4LfQiIT2BvaP30rdB32LPsfjsYqbt0fYHqGZdjd2jd+Nbw7f8F1HJ6BL6ro/w+KLucwkp517PW8iK63tvUCRTVl/IOa6g+dPUfi9VNfN8RZHryJ0rJB25e4TkzGStNrUda2uEpBfqvqAJdtHX+V/7ay6nr9fUyoHm6WjFrJca4re3FQnpCYA62CZpVpImf9Pnhz7nv8f/i4etB1EpUQxoOICAUQF6G5spYJTr91MIwUhfJDyAX9pBdkaRTbJkcjpZm3MxLQYAhUzBrK6z+Or5r9h/7ZF4OJaTosK4dVkw3939Lr+c+4VXmr7CpuEl10ladHoR7+97P6d/GRIStua2bHl9Cy/Wf7HsF1HJ6DJnQJnntbDzPX2fFyYYFdf3jdgbtP/5TZwy3yywMJna76U896xATZYyi3MR5zT+SacenCJLpZ06pblrc41/Uo86PcrlyJ33neXGQarJ/V/bZhfZcucLLBQWZCozOffWOdp7tUeSJOr9XI+7CXcBtQbqypQrBXyQqjpGuX4/hRCM9EnCA3iqevWVR1cZt30cAI9lMrZPvsC6oHV8f/J7lJISAE87TzYP34xvjU5Go043NXKzCJdkYikqi/DVR1dp+VtLzORmPJzxUKdQ4QX/LuCjfz7K6V8tHOUWpBzZYmQJRxseXebM3cESkBGVWLZ5Leq8Z+88JioxnTk7r/E4NbPQTMtF9f3K36+wJXgLAxsO5pOOK0z291Lee/ZZojSmxpTMFE7cP6FJDRAYFZgjxKjJdeTOTQ3QuWZnnR25dfnOXOzkXMweiEwmISGxZMASprSfwr/3/6Xryq7IZXJUkoo327zJssHLSj0Xpo7Rrt/5EIJRJdD3r77sv60uSVHPuR5Xp14lPi2ewesGczEqL4/O4MaDWf3yauwt7Q01VJPlVFgcI5edLrHdurc6FRkW3emPTpwJP8P83vP5qMtHOp133vF5fHJInZRNjhwVaifQRf0W8V7H93QcvWHQdc50obh5Le/58/d95uEZOi3vhFwm5/KUy/i4+ZRpvIZAkiSiU6I10VbHQqO4cK1riceVZW6rEuU1NcamxnL4zmEO3jnIP7f/ISw+TGu/tZk13by7aUxvxUWy6nrP2nks59qTrYA6+ePyIct5e9fbLDm/BAAbcxtC3w3Fy96rxL6qGqawfgvn60pg9bDVeP3gRbaUze3428zYN4OlA5dyYfIFVl9ZzZSAKaRkpbAjZAdu37vxY98fmdxustFkgTUF9BHG/VbbtzgTfoY/Lv7Bh899qNP8z+o2i0xlJl8e/RIVKs3b4PS903mU/Ij/vvBfo/0e9RnSvjP4KG28XypVyHFpvzNJkvjPP/8BYGyrsUYtFCWkJ3At+ppGCAqKUf8bmxqraWOT3R1XShaMnuXUA/rIcv60I/e9hHsa/6SDtw/yKOUR+8P2sz9M/fLqYu3C83We15jeGrg00PyGdf0uutccqBGMzkWcI1OZyfqg9Zr9MzvPfCaFIlNBCEaVgKutK590+4Q5x+YA6uKmfev3ZVjTYYxpOYZhTYfht82PTdc3kZ6dztRdU/n5zM9sfX0rjas3NvDoTQN9hHG/7vM67+97n9DHoRy9d5SedXrq1OfsnrPJUmUx9/hcVFKecPTNiW+ITolmycAlmMmN76emz5D2hWe/ZMm1iYz0GYlfKz98a/iWKBCW9jvbe2svR+8dxVJhyVc9vyr3mPVBalYqwTHBBQSgolI4yJDRwKUBPm4+VDfrzP6iq0ZoeFZTD1RUlnNvJ28mtJnAhDYTkCSJazHXNP5JR+8e5XHaYzYHb2Zz8GYAajnU0ghJTma6BVeYmaVqfIyCooPYfmM78enqjNhutm58+NyHOo9XUPkIU1olkaXMosbCGsSkqh2vnaycuDLlCrUca2nanA0/y7ANwwhPCgfUD9HJ7SazsO9CrM2tDTJuU0Fflcon75zM7xd/Z1SLUawZpluOKcjTZiw4uQBQ+zGoJBUSEkObDGXtsLVG9x3qMmfV7c1Iz84gKU0OhfgBgYTcLJFkhxnEpEVrtjap3gS/Vn680fINajgUnpi0NN+ZTCbRdmlbLj+6zMzOM/n+xe9Lf8H5zltaX74sZRY3424WEIDCHodp+a/kp5ZDLXzcfLQ+Tao30WRL19c9W1XR1Wz1QturNKtpVmRVgMJKchRFljKL8xHnNf5JJx+c1HbkluTUyfoTSelIYb8HCRVK4pBbvUnX6o25EauucNDWo63GbWJW11m81n4yONUqcPyzgCms30IwqkR2huxk8PrBmr97ePfg4NiDWj9cpUrJl0e+ZN6JeRrnbCcrJ1YOXsnQpkMre8gmhT7SHpyPOE+HZR2wVFgSMTOiVFmtJUlixr4ZLDqzCFALR3KZnCxVFt29u7N9xHacrJxKcUUVjy5zBhQRZq8CZMRYfEOa4hSWCkuq2VQjJiVGs5jIkNGnfh/8WvkxtMnQAiVUijo/SMiQab6zNVfWMGbrGBwsHbj93m2q2ZTN56YkfxWVpOJO/J0CAlBIbEiBSKdcqllXo4V7C3xcfdT/uvnQzLWZTt+1SNVRNNsDw5m+PrDEdjHm35FqdqzI/U5WTqWuI5l7n+Y6cuea3i5FXsJK2QnXzE/gqXQRud+ghcWXXJbfxLrQF4kczCzhnQvPpHBkCuu3EIwqmeeWP8eph6c0f3/9/Nd81v2zAu3uJ9zn1Y2vaiUI61q7K2uHrdXSMgm0Ka+jpiRJtP29LYFRgfzU9yemd5peqvNLksQ7u99h8fnFAJjJzbBQWJCalUpL95bsHb0XT3vjWujKmsfI3cGCF1s/4WHWLvbe2ktUcpRWv5YKSzKUeekrHCwdGN5sOH6t/ehSq4vG1FZY39nEMH9YB0b7NicjO4MmvzbhbsJdvnnhG2Z1m1Xm6yzMXyV3QXNw/5uwtM2kZqUWerydhZ1a8+OqrQVys3Urlx+ZyGNUOLpqjLq0Oo/MMpS4tDjiUuM0/z7JeFLmc1uZWakFqfwCk7VaYIpLiyP4gQVRkd2Q5atzmU0MyVb+9HC4w/bEhJJPMukoeLUu8xhNFVNYv4VgVMmExIbQ9NemGvW7Qqbg+PjjdK7VudD2a6+sZXLAZJKz1AnMzGRmfNrtUz7t/qmo7l4E5c0ivPjcYqbtnkZz1+ZcnXq11IueJElM2jmJPy6p6yCZyc2wt7AnPj2eOk512D9mf5GFbQ1FeTNfS5LE1eir7L21l31h+zh+73iRGhaABi4NGNtyLGNbjcXbyVvTd3DoMX4/+TGZ8tsMbjSAL3t+ybqg9Sw4uQBXm+psm3Ac6+qNSnVtcalxXH0UxDt/JpCcpqA4E0i41UQszcxp6tq0gBBU27F2hTnSGzLztTFl3X56XOUxNWarsnmc9lhLWIpLiyM2NTZv21PCVFxaHNmqbN0GKMmxVDVHITmjlMWTIb8GMhVtJDkXsSv5+FF/Q3FpQWyqVUmNkims30IwMgBTA6by24XfNH/XcapD4ORAHK0cC23/JP0JUwKmsP5aXlRDDfsarBm2hh51Ss62LSgdT9Kf4PmDJ2nZaZyccLJIobU4VJKK8dvG8+eVPwG1cORq40pkciSuNq7sGb2Hdl7t9D10oyE5M5kjd49oBKVbj28V2bZrra682fZNXq3RCdul3YpNklqcCSI5M5lr0dc4HX6aUw9OERQdxL2EeyRnJWOpbIFH5rwSx/3dcC+GtW5hlM7yFYGxa6tKY2qUJIn07HRSs1LL9slOJTkjmcSMRBIzEknKTCIlM4XUrFTSs9PJUGaQpczSpOQoCp0FI4UFKDOL3l9FzW2msH4LwcgAxKfFU/un2lpp7Ef4jGDtsLXFvpGefHCS4RuHa5yzAYY2GcrSgUtxs3Wr0DE/a4zbNo5Vl1cxvvV4VgxZUfIBhaBUKXlj6xusC1oHgLncnFqOtbgdfxs7Czu2vb6NXvV66XPYRkvY4zD2he1j7629HLx9kNTsguaqDjILzqpKjsDKnPgPl2QqDt05xNnwswTHBhOeFF6gLER+bLK745pVcm6qRSNaM6R14c7iVY3KzLqdrcous8ByJ8qR4NvNycy01fQnVyRg5rSNDPOzmnZpWWlFOsJXBDJk2JjbYGNug7WZNRYKCywUFvgos9nwOKrkDnShCprbTGH9FoKRgVhybglv734byMuavHLISsa1HlfscVnKLL4+9jXfHP9G45xtZWbFgt4LmNphaqkiMARFk5ul1sbchsiZkWUuIZCtymbU5lFsvL4RUGuOmrk240pUEHa04t32nzGoaQ/aeTtz4V680ZkzKoJMZSb/3v+XfWH72BGyg+DYYED3N+3ceoPFYW9hT02HmjRzbYZvDV8slS34cXfJFdiflWSKJWVwBnC2hS9eySZdWbyWpbDtuZqW3E9xZlWdKMJsVRQWCguN0FLsx8wGWwtb3do+9bFUWBb+Iqtj3UydEIKRQRCCkYHIVmXTfHFzbsbd1GyzNbfl4uSLNKpWsg9F2OMwRm4eqeWc3aR6E/56+S/ae7WvkDE/S0iSRPPFzQmODdak9C8rWcoshm8azrYb2wCwU3XFVfk2quy8e1cuA1W+X6IxmTMqmsikSPbd2sfp80v5Lfx6ie1zBSMZMhwsHajhUIOWbi15oe4LdKrZifou9QtEv4nQeG10dWyOsphFhuKq3s6bX8tSmo+tue7Ci7W5tWFNoXoUjJRvHUZRo61e+jIWTGH9FoKRATl05xC9/lSbUszl5mSpsmjn2Y6TE09qqjEXhyRJ/Hn5T6btnkZKVopm+8TWE/m+7/dGFxpuavx46kc+2P8BbT3bcmHShXL1lanMZNiGYRy68Tgn1Jen6oMVXpDyWQnXTslM4fCpnxh4+LsS2xanMbIxs8HT3pP6LvWpaV8TT3tPvOy98LTz5EG0Cwv3JCNDhMbrGgrv5LGVai53CmhZCgguOmpditSyVCX0KBj1sjKnbrOhDGs6jF51e+lc082YMYX1WwhGBmbwusHsvLkTyAtv/r/O/8eCFxfo3EdsaizTdk/j72t/a7Y5WDrwS/9fGNNyTNV/EFUQsamx1FhYg0xlJhcmXaCtZ/ne3FIz02k5ZxtZ2XaFFk19mqquxVBJKo7fO47/ZX82Xd9Ew4xUvZnSisJa2RmXzEmY4arZZmmRim+Te3RsYIWnXY4gZe+Jp51nlViICkMftQUFRZDwAH5pV2wQgSQ3R6aDeTH/vW5vYc+ARgMY1mQY/Rv2x85CBwdvI8QU1m8hGBmYsMdhNP21qdoGn8+O/u2Ls3i7S99SLYiH7hxi7NaxWs7ZHWt0ZMWQFTRzbVYRw6/yjNw8kvVB65nSbgpLBi4pV19lLdpa1RansMdh/Hn5T/688id3E+5qtg928Gb7k/gSj/+x5cssjThNSFyI1vb82caLpRT+Ki7WLlrCkpddntCUX4DKzWpekaHv+uxbmBYrmIQHkBpX9P7kR7B2eIndnB2wgFXRl9kWso2IpAjNdkuFJX0b9OXlJi8zqNGgIhOeGmMqBlNYv4VgZAR8/M/H/HzsWIE3WTd7c+YMaVEq9X5aVhpzjs7hu5PfoZLUD3u5TM7MzjOZ3WM2tha2JfQgyE+uudPewp6ImRHlekvT1XzxNFUhUioxI5FN1zfhH+jP8fvHNdsdLB14vfnr+LXy4zkzG2S/9yy5sxyH1NC4UAJuBhAQGsCxe8e08s/YWdjh7eiNucKcpIwkolOiScpMKrFrGTJNrbvSRDg5WTnhpniR7ISXUWbba7Y72qjw62bLkFbeeNp7FvB90pWKCKsXWbcNiI7mth9aDGb8S4twsnLibPhZtgRvYUvwFsLiwzRtFDIFPev0ZFjTYQxtMlRTnNZYUzGYwvotBCMjYOulO7y/4RpQ0O8kf1mE0nAt+hp+2/y4EJnnG+Nh58GSAUsY0niIMK/piEpS0eh/jQiLD2P54OVMaDOhzH09axojpUrJ4buH8Q/0Z0vwFtKy0wC1oN6nXl6ZEE0NOR1MEEXldnmS/oR9YfsIuBnA7tDdxKXlva0rZAq61O7CgIYD8HH14WHiQ86GnyUoJoh7T+4RmxqrU1I/c7k5NuY2WJlZYSY3I0uZRUJGApnKTKyVnQv1HXu6bIqjpaO2xim/Nirnb097Ty0BvCLD6o118azy6HCvpyHRmGSSrZ34vPvnTPOdhoXCQpNMdWvwVrbc2MKVR1e0jutUsxOtHP3Ye75g/iNjEHpNYf0WgpGByQubTaOoIp2ejtZlUmmrJBW/X/idmftnapU56Fu/L4sHLKaec73yDf4Z4dsT3zLr4Cw61ezEqYmnSj6gCEoyXxSGXAY3vu6PhZm85MZGQkhsCKsur+KvK39pVZlvWr0pfq38GNNyTJGFZZ82QQzd8DL3n9xn6cCldPBqr1M2YKVKyemHpzXapKDoIK399Z3rM6jRIAY2Gkg3726Yy82JSY3hctRlTtw/wcXIi9yMu0lEckSxuZFykUkKamasQC65UNRvWCmL46HlhGJDzPNjb2GfI0DVICJsCplZNoX2rQ+TlzGaW54JCjG3Zamy+PLIV+y5tYdYJB7I8p4U9Z3rM7/3fIY1Hab1Ynvr8S22Bm9l642t6nJTkpwa6ctRUL1QX0ZDm0lNYf0WgpGBqQwnyIikCKbtnqYJFwf12+8XPb7gw+c+rLIOpvoiKjmKWj/WIluVzdWpV/Fx8ylzX0UXTS0aU9AYxafFs+HaBlZdXsXph3n3s7OVMyN9RuLX2o8OXh1KrakcuHYgu0J3lStlwp34O+wK3UXAzQAO3z1MZr5sw/YW9vRt0JdBjQbRv0F/XG1dtY5NzUolNC6U8xHnOfVQnU37bsJdYlNjNXnEdM2qPX+4Fy1rWRGZHElkUiQRSRHq/yfn/D9nW/4IU137NoV7RKA7x+8dZ+iGoTxOe1xgX9faXVn44kI61OhQYF94Yjj/O7GX9cc8SjyHoe4ZU1i/hWBkYHT1O/nu1aYMb18+Dc/OkJ1MCpikVeyznnM9lg5cSu96vcvVd1Vn2IZhbL2xlfd832NR/0Xl6qsw80VxGKuPUbYqmwNhB/C/7M/2G9s1BWMVMgX9G/bHr5UfgxoNKpfgPXPfTBaeXsiMTjNY2HdhucecnJnMgbADBNwMYFfoLh6lPNLskyGjU81OGm2Sj5tPkYKcSlJx/8l9rsdcZ925UI5faVDiuWPMv0Nhc4km1ZsU+DRwaaBJ0ZGUkaQRmvZcjWHDvyX7JRnrPSIoOxnZGby18y3+uvKXZpscuaYkyagWo/jmhW/wdvLWOk7XNcVQ94wprN9CMDIwumqM2vucYNOYkt8cSyI5M5nPDn3Gz2d+1nIuHd5sOD/2+1HjuCfQZk/oHl5a+xLOVs5EzIzAyqzk0hXFoVRJ+P97h693BZfY1ti0AUHRQawKXMXqq6u1hOwWbi0Y13oco1qMwsOu5DdWXVh6filTdk1hQMMBBIwK0EufuagkFecjzqtNbjcDuBR1SWu/t6M3AxsNZGCjgfSs07PI71zX33CM5aekyi8Xuk8hU1Dfpb5aUKqWJzAlJ3vy1qprJfZtbPeIQH+cuH+CoeuHavzmcoMDQB2dNqPTDGZ1m6XJzm/sqRhMYf0WgpGBKdnvRCKbWMKtJrJx+AZebfaqXs57PuI8E7ZP4Gp0XlZbG3MbvnnhG6Y1HoJZWgJKSeJaeCKPUzNxsbGgeQ0HFDJZla36XBxKlZJ6P9fj/pP7rH55NaNbjtZDn6YTMh2XGse6oHX4B/prOfRXt6nO6Baj8WvlR2uP1np36j985zAv/PkCDV0acvPdmyUfUA4eJj5k181dBIQG8M/tf0jPztPo2Zjb0KdeHwY1GsRLDV/C0z7PcVXX7/HgzC7cfXKbG7E3CnyKjJiT5NTO9EemckZfPkbCp8j0yMjOYHLAZFZdXqXZZm9hr7lvXG1c+arnV7zV7i1kKIz6uWIK67cQjIyAovxOciNaWjU+y877X+Nk5cTlKZep7VhbL+fNVmWz6PQiPjv8mWYRqCXJCMWeYo0fVbTqc0nMOTqH2Udm08O7B0fGHdFLn8YcMp2lzGLPrT34B/oTcDNAU+/KTG7GwEYDGddqHP0b9tcpS3tZCU8Mp+aPNVHIFKR9moa5wrzCzpWf1KxUDt05pNEm5c8NBtDBq4NGm9TGow37rkUxJed7LIzfivkeJUkiIilCW1iKu0FwjLo4bl7Em4SMPCd8CXVZlEb1j9GloS1NqjehqWtTGro0zIv0ewoRhWbanLh/gpc3vExsaiyg1jS6WLsQkxoDqAMcFvRZgDyjLW+vMc7niims30IwMhIKe2CZmycTLltEmzoyspRZnIs4R7fa3Tjsd1ivxWLvJtxl6q6p7L21V+dCnlWxuGFJPEx8iPdP3qgkFSHvhOhU004XjG2xCowKxD/Qn7VX12oeuABtPdsyrtU4RrYYSXWb6pUyFkmSsJtnR2pWql7nvLRjCIwK1ES5nQ0/q7Xfy96LDi5vEXijPYVHpRUvGBVHUkYSIXEhbL4Uxvaz5qRm5L2yZBPDY4vfSVNoR0rKkFHHqY6WD1PT6k2JiHHj4023KiTsX1B5pGen8/aut1kZuFKzzcvei7SsNOLT1QlSe9Xtxav1/suq4ylG81zJxRTWbyEYGRFPq7jdnZNo8VtzUrNSmddrHnOPzyU5M5mven7FFz2+0Ou5JUni72t/83vANA6ml5yqXvnWERQ12uh1DKZAbpTUh899yHd9Sq7rpSuGNm88Sn7E2qtr8b/sr5UXxd3WnTEtx+DXyo8W7i0qbTz5abO0DYFRgewYsYNBjQcZZAz5iUqOYnfobgJuBrA/bD8pmWmVEh6d/x6pZmdOdccEQh+HFNAy5S6OWhh5CLeg9By/f5xXNryieXlRyBR0rtmZsxFnyVRmIkPGuFbjGdbgI5TZdrjZW9HO25kL9+INakY1hfVbCEZGzvcnv+fDAx/iYu3C189/zbTd05DL5Bwbd4wutbvo/Xyn/91DpwMjSmx35aUdtPTVT6FEU2L7je0M3TAUVxtXHn7wsELNSBVNRnYGATcD8L/sz57QPZrwcwuFBUMaD2Fc63G8WP9Fw1YqB0ZsGsGGaxv4vs/3zHxupkHH8jTp2en8fvIwC3eXnJ+oMpxdJUkiJjWmgA/T9fBseDzdKMYo0B9pWWm8s/sdVgSu0Gxr4NKAhi4N2XNrD6D2j/vouY9o5eTH/D1hBtcgmcL6bdgnnqBEpneczp+X/+Rq9FXORZxjdIvRrLm6hlFbRnF5ymWcrJz0er70LN1uicepmSU3qoIMaDQATztPIpMj2RGyQ2/O8JWFJEmcjziPf6A/64LWaWkXOtboiF8rP173eR0XaxcDjlKbXPPZzbiKdb4uC1ZmVng7tAQCS2wbnaRbeobyIJPJcLN1w83Wje7e3TXbdQ3hrowxCvSHtbk1y4csZ1zrcbzyt1p7dOvxLW7H32Z86/EExwZz+uFp5h/ah2tmuxxdYZ6GKOpJOlNXXxRm1KcwnXS6zyjmCnOWDlwKgH+gP6N8RlHPWR0dNTlgMvpW+LnY6KYByW2nVEmcCotje2A4p8LiUKpMTgFZKszkZoxvPR6AZReXGXg0uhOeGM78E/Npvrg5vn/4svj8YuLT46lhX4OPu3xM8LRgTr95mqkdphqVUAT5BKPHxicYAbjZ65a6Qdd2FYEpjFFQdrp5d+Pu+3eZ0FpdskglqVgZuJKY5Bjm9ZqPW/bbOS21zWa5T+uvdl6v8s/u0iAEIxOgc63OTGo7CYD/O/B/rBq6CjO5GX9f+1vLAU8fNK+hm2pTZhHO3qBIus4/xMhlp5m+PpCRy07Tdf4h9gZF6nVMxsbEthMBOBB2QKs6vLGRlpXG+qD19Fvdj9o/1ebjgx8THBuMlZkVo1qMYv+Y/dx7/x7zes+jSfUmhh5ukRizxgjAt64Lno5WRbhdq5ciT0e1P4ehMIUxCsqHjbkNy4cs54jfEdxs3AAISwjjq/2rQeVcqG8ZqIWjyCfpnL1TMMv2s4oQjEyEb3t/i5utG8GxwRy9e5Q5PecA8O6edwmJDdHbeRQ65qGZsuUHpqy+UCB7c65qtioLR/Wc69G7Xm8kJJZfXG7o4WghSRInH5xk0s5JeP7gycjNI9kXtg+VpKJr7a4sG7SMqJlRrBm2hj71++g1urGiaOjSEFCXtknKKCLfjwFRyGXMHtQMKBiTlvv37EHNDOrUbApjFOiHHnV6cHv6bSa2Ub/AySVnnY4TZtQ8hGBkIjhbO7PwRXVJhP8e/y+vNH2F5+s8T2pWKiM3jySjuIrkpcGmmjpPUTFkyuRkZY4uNHnYs6KafavtWwCsCFyhU2X2iub+k/vMPTaXxr80psuKLiy7uIwnGU/wdvTm8+6fE/puKMfHH+fNtm/iaOVo6OGWCmdrZ1xt1DXMQh+HGng0hdPPx5MlY9ri4ahtivJwtDIa/w1TGKNAP9ha2PLH4D847HcYh8JTWhWgup2omZmLiEozISRJos9ffTh45yB96/flj0F/0Hppa+LS4vig0wf80PcH/Zwop+pzUZmvL8TKeWXtgxK7qcoRLhnZGdT8sSaxKY/5oec26ju11Xv4a0kh/CmZKWwJ3oL/ZX8O3zmsKfFia27Lq81exa+VHz3q9EAuM/33n64ruvLvg39Z98o6RviUHDVpKAyddkEXTGGMAv3xT/AD3lx1pcR2ayZ2pEvDis9PZgrrt4hKMyFkMhmLByymxZIW7Avbx8mHJ1k+eDlDNwxl4emF9Knfh34N+pX/RE61wKkWCqBlITUGH0aHAyULRlVZNWtpZklvz5kcD/Lg571ycqOS9BX+WlTSx88HNsXWPhT/y/5sur6J5Mxkzf7n6zyPXys/Xmn2CnYWOiTpNCEaV2vMvw/+NVo/o1wUcpnRvwyYwhgF+iMlQ7cXo9gUPVkdqgCm/yr5jNGoWiNmdZ0FwPS90+lZpydvt1dHHPht8+NR8qPiDtcLIsJFLbicCmqBAu03LH34WOWWCXnafyvySRpvr7lI/xWz8A/0JzkzmfrO9ZnTcw53pt/hkN8h/Fr7VTmhCIzfAVsgMFbE87r0CI2RCfJx149Ze3UtoY9D+fTgZwxv+CkHg59wN/EKftvGs3PkTs7fTagwVXluhEtJRQqraoSLUiXx1c7rAAUiPSTU1//Vzuv0aeZR6nnP7btw+7YMCRXVsibTt11zxrXxo0utLnov3GqMCMFIICgbJT2vJVTYWGbiUzNPMHrWza3Cx8hE+ef2Pwz2/wKXzEmY4arZruQJtuZ2pGflRRtVRHZTYy5+WtGcCotj5LLTJbYri49VRfZtylyLvobPEh8cLB1I+E/CMyEMCgT6oqjnNTmeiTEW31DTNRb/of4kPqlbobUbTWH9FqY0EyU7tTlumZ8UMOXIcSAtS/trrYgQ+mc5wkVX36my+FhVZN+mTH2X+siQkZiRSHRKtKGHIxCYFEU9rz0drZncS46L031CH4fSZ9mHz2walvwIU5oJkmfKKZiyq7AkXuU17xRFPx9P+jTzeOZUrhVpsxf+AIVjZWZFbcc6RD22Y9Xpa3Sra/ZM3GsCgb4o7nn9drcg3t87g39O99CsF/mpqDXEWBGCkQly9s7jAhJ9SeTPbqpPE8yzGOFSkT5Wz7r/VlHsDYrELPYbPLLtWfxPGos5bZACmAKBKVPU89rJyonJLb7nyOmizfgVtYYYIwY1pf3666/UqVMHKysrOnbsyNmzZw05HJOhPGaUZ80EUxFUZBZhkaG4ILn+EdnZ2tF2z5p6XyCoSIQZPw+DCUYbNmzggw8+YPbs2Vy8eJFWrVrRt29foqOF/0BJlMeM8qyZYCqKivSxepb9t55GO0pPFMAUCCoKYcbPw2BRaR07dqRDhw788ssvAKhUKmrVqsW7777Lxx9/rNU2IyODjIy85FOJiYnUqlXLqL3aKxKlSqLr/ENFmlsKI9cEc+I/LzxT2oaKpiLDWp/1kFkQUXoCQWVR0rqirzVERKUVQWZmJhcuXKB37955A5HL6d27N6dOnSrQft68eTg6Omo+tWrVqszhGh3FmVsK41k1wVQGuTb7Ia1r0Ll+Nb3Ob0X2bSoI9b5AUDkIM34eBhGMYmNjUSqVuLu7a213d3cnKiqqQPtZs2bx5MkTzefBg5LLUVR1ijK3ONmY42RjrrXtWTTBCKoGQr0vEFQewoyvxiSi0iwtLbG0FJV/n6ao8EvgmTfBCKoGIkpPIKhcntU0LPkxiGBUvXp1FAoFjx5p1/V69OgRHh4ehhiSyVJU+KXwtxBUBXLV+1NXX0RG4VnWnxX1vkBQWTyLaVjyYxBTmoWFBe3atePgwYOabSqVioMHD9K5c2dDDEkgEBgpQr0vEAgqE4OZ0j744AP8/Pxo3749vr6+/PTTT6SkpDB+/HhDDUkgEBgpQr0vEAgqC4MJRq+//joxMTF88cUXREVF0bp1a/bu3VvAIVsgEAhAqPcFAkHlYLA8RuXBFPIgCAQCgUAg0MYU1m+DlgQRCAQCgUAgMCaEYCQQCAQCgUCQgxCMBAKBQCAQCHIQgpFAIBAIBAJBDkIwEggEAoFAIMhBCEYCgUAgEAgEOQjBSCAQCAQCgSAHIRgJBAKBQCAQ5GCwzNflITcnZWJiooFHIhAIBAKBQFdy121jzi1tkoJRUlISALVq1TLwSAQCgUAgEJSWpKQkHB0dDT2MQjHJkiAqlYqIiAjs7e2RyfRbRDIxMZFatWrx4MEDo01XXlUQc115iLmuPMRcVx5irisPfc21JEkkJSXh5eWFXG6c3jwmqTGSy+XUrFmzQs/h4OAgfmiVhJjrykPMdeUh5rryEHNdeehjro1VU5SLcYprAoFAIBAIBAZACEYCgUAgEAgEOQjB6CksLS2ZPXs2lpaWhh5KlUfMdeUh5rryEHNdeYi5rjyepbk2SedrgUAgEAgEgopAaIwEAoFAIBAIchCCkUAgEAgEAkEOQjASCAQCgUAgyEEIRgKBQCAQCAQ5CMFIIBAIBAKBIAchGOXj119/pU6dOlhZWdGxY0fOnj1r6CGZPPPmzaNDhw7Y29vj5ubG0KFDCQkJ0WqTnp7OtGnTqFatGnZ2drzyyis8evTIQCOuOnz77bfIZDLef/99zTYx1/ojPDycMWPGUK1aNaytrWnRogXnz5/X7JckiS+++AJPT0+sra3p3bs3oaGhBhyxaaJUKvn888+pW7cu1tbW1K9fn6+//lqrCKmY67Jx7NgxBg0ahJeXFzKZjG3btmnt12VeHz9+zOjRo3FwcMDJyYmJEyeSnJxciVehf4RglMOGDRv44IMPmD17NhcvXqRVq1b07duX6OhoQw/NpDl69CjTpk3j9OnTHDhwgKysLF588UVSUlI0bWbMmMHOnTvZuHEjR48eJSIigmHDhhlw1KbPuXPnWLp0KS1bttTaLuZaP8THx9OlSxfMzc3Zs2cP169f54cffsDZ2VnT5rvvvuPnn3/mt99+48yZM9ja2tK3b1/S09MNOHLTY/78+SxZsoRffvmF4OBg5s+fz3fffcf//vc/TRsx12UjJSWFVq1a8euvvxa6X5d5HT16NNeuXePAgQMEBARw7NgxJk2aVFmXUDFIAkmSJMnX11eaNm2a5m+lUil5eXlJ8+bNM+Coqh7R0dESIB09elSSJElKSEiQzM3NpY0bN2raBAcHS4B06tQpQw3TpElKSpIaNmwoHThwQOrRo4c0ffp0SZLEXOuT//znP1LXrl2L3K9SqSQPDw9pwYIFmm0JCQmSpaWltG7dusoYYpVhwIAB0oQJE7S2DRs2TBo9erQkSWKu9QUgbd26VfO3LvN6/fp1CZDOnTunabNnzx5JJpNJ4eHhlTZ2fSM0RkBmZiYXLlygd+/emm1yuZzevXtz6tQpA46s6vHkyRMAXFxcALhw4QJZWVlac9+kSRNq164t5r6MTJs2jQEDBmjNKYi51ic7duygffv2vPbaa7i5udGmTRuWLVum2X/nzh2ioqK05trR0ZGOHTuKuS4lzz33HAcPHuTmzZsAXL58mRMnTtC/f39AzHVFocu8njp1CicnJ9q3b69p07t3b+RyOWfOnKn0MesLM0MPwBiIjY1FqVTi7u6utd3d3Z0bN24YaFRVD5VKxfvvv0+XLl3w8fEBICoqCgsLC5ycnLTauru7ExUVZYBRmjbr16/n4sWLnDt3rsA+Mdf64/bt2yxZsoQPPviATz75hHPnzvHee+9hYWGBn5+fZj4Le6aIuS4dH3/8MYmJiTRp0gSFQoFSqWTu3LmMHj0aQMx1BaHLvEZFReHm5qa138zMDBcXF5OeeyEYCSqNadOmERQUxIkTJww9lCrJgwcPmD59OgcOHMDKysrQw6nSqFQq2rdvzzfffANAmzZtCAoK4rfffsPPz8/Ao6ta/P3336xZs4a1a9fSvHlzAgMDef/99/Hy8hJzLagQhCkNqF69OgqFokB0zqNHj/Dw8DDQqKoW77zzDgEBARw+fJiaNWtqtnt4eJCZmUlCQoJWezH3pefChQtER0fTtm1bzMzMMDMz4+jRo/z888+YmZnh7u4u5lpPeHp60qxZM61tTZs25f79+wCa+RTPlPLz4Ycf8vHHHzNixAhatGjBG2+8wYwZM5g3bx4g5rqi0GVePTw8CgQoZWdn8/jxY5OeeyEYARYWFrRr146DBw9qtqlUKg4ePEjnzp0NODLTR5Ik3nnnHbZu3cqhQ4eoW7eu1v527dphbm6uNfchISHcv39fzH0p6dWrF1evXiUwMFDzad++PaNHj9b8X8y1fujSpUuBtBM3b97E29sbgLp16+Lh4aE114mJiZw5c0bMdSlJTU1FLtdeqhQKBSqVChBzXVHoMq+dO3cmISGBCxcuaNocOnQIlUpFx44dK33MesPQ3t/Gwvr16yVLS0vJ399fun79ujRp0iTJyclJioqKMvTQTJqpU6dKjo6O0pEjR6TIyEjNJzU1VdNmypQpUu3ataVDhw5J58+flzp37ix17tzZgKOuOuSPSpMkMdf64uzZs5KZmZk0d+5cKTQ0VFqzZo1kY2MjrV69WtPm22+/lZycnKTt27dLV65ckYYMGSLVrVtXSktLM+DITQ8/Pz+pRo0aUkBAgHTnzh1py5YtUvXq1aWPPvpI00bMddlISkqSLl26JF26dEkCpIULF0qXLl2S7t27J0mSbvPar18/qU2bNtKZM2ekEydOSA0bNpRGjhxpqEvSC0Iwysf//vc/qXbt2pKFhYXk6+srnT592tBDMnmAQj8rV67UtElLS5PefvttydnZWbKxsZFefvllKTIy0nCDrkI8LRiJudYfO3fulHx8fCRLS0upSZMm0u+//661X6VSSZ9//rnk7u4uWVpaSr169ZJCQkIMNFrTJTExUZo+fbpUu3ZtycrKSqpXr5706aefShkZGZo2Yq7LxuHDhwt9Pvv5+UmSpNu8xsXFSSNHjpTs7OwkBwcHafz48VJSUpIBrkZ/yCQpX/pQgUAgEAgEgmcY4WMkEAgEAoFAkIMQjAQCgUAgEAhyEIKRQCAQCAQCQQ5CMBIIBAKBQCDIQQhGAoFAIBAIBDkIwUggEAgEAoEgByEYCQQCgUAgEOQgBCOBQCAQCASCHIRgJBAIBAKBQJCDEIwEAoFAIBAIchCCkUAgEAgEAkEO/w8HagP9cAVv5QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ShowFacilityLocation(xC, yC, xF, yF, *Solve(solver, strong))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cTVJuaS0i0PL" + }, + "source": [ + "However, this is not a proper performance comparison between the two model formulations, since under the hood `cbc` is already solving the instance in a clever way. The commercial solver `Gurobi` and the open-source solver `HiGHS` also have a similar feature. \n", + "\n", + "If run on Google Colab, the following cell installs three additional commercial solvers; if run elsewhere, it assumes they all have been previously installed." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ctxap_Z3jv0B", + "outputId": "43d932b5-58e8-4587-9ab8-a608689b5bb7" + }, + "outputs": [], + "source": [ + "if 'google.colab' in sys.modules:\n", + " %pip install gurobipy >/dev/null 2>/dev/null\n", + " %pip install cplex >/dev/null 2>/dev/null\n", + " %pip install xpress >/dev/null 2>/dev/null" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0DuduTwSoEGM", + "outputId": "b7b5c294-7760-441a-a8d4-af575bead6be" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "set()" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "available_solvers = ListAvailableSolvers()\n", + "set(available_solvers) - set(initial_solvers)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 890 + }, + "id": "5IJCue_ln_wl", + "outputId": "80cb3747-2369-49fd-d40f-b730598511b1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running HiGHS 1.5.3 [date: 2023-05-16, git hash: 594fa5a9d]\n", + "Copyright (c) 2023 HiGHS under MIT licence terms\n", + "Running HiGHS 1.5.3 [date: 2023-05-16, git hash: 594fa5a9d]\n", + "Copyright (c) 2023 HiGHS under MIT licence terms\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkYAAANECAYAAADlu5NRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gU1dfHv1uyPbvpjRRCEkIaBELvvYcaSiJdQOmIiqIvUlQUUZRepROQJlW6CKj0mkIJvaX3nuzuff/Ib8dMdje7mx64n+fJA3v3zsyd2Tt3zpnTOIQQAgqFQqFQKBQKhUKhUCgUCoVCoVAolHcAbnUPgEKhUCgUCoVCoVAoFAqFQqFQKBQKpaqghhEKhUKhUCgUCoVCoVAoFAqFQqFQKO8M1DBCoVAoFAqFQqFQKBQKhUKhUCgUCuWdgRpGKBQKhUKhUCgUCoVCoVAoFAqFQqG8M1DDCIVCoVAoFAqFQqFQKBQKhUKhUCiUdwZqGKFQKBQKhUKhUCgUCoVCoVAoFAqF8s5ADSMUCoVCoVAoFAqFQqFQKBQKhUKhUN4ZqGGEQqFQKBQKhUKhUCgUCoVCoVAoFMo7AzWMUCgUCoVCoVAoFAqFQqFQKBQKhUJ5Z6CGkbeUZ8+egcPhYMuWLUzb/PnzweFwWP3q1q2LMWPGVPp4xowZg7p161b6ccqKruv1rtGxY0f4+/tX9zDKxJYtW8DhcPDs2TOTt9V1X1Q2HTt2RMeOHav0mIDx81xzPa9fv141A6uhlOV3qlu3Lvr27Wuw319//QUOh4O//vrL5HFptt23b5/J2xpLTV+zKaZTHWsdhUKh1DSojmQaVEd6+ymPTFoeHaysVOc9w+FwMH/+/FL7VIWcXhsoy+9k7PuI8qxLmm1//PFHk7c1Fipzv31Ux1pHqTqoYaQK0dxMuv4+//zz6h4eACA6Ohrz589/a2/48PBw/PLLL9U9DAqFQnnnUKvV+OGHH+Du7g6RSISGDRti165dRm+flpaGiRMnwtbWFlKpFJ06dcLNmze1+n300Udo0qQJrKysIJFI4OPjg/nz5yMrK6siT+edp6CgAIsWLUKDBg0gEolgb2+PPn364NWrV1p9b968iX79+jG/ib+/P5YvX87qU1hYiAULFqBevXoQCoWoV68evvnmGyiVSlY/zQsHXX+XL19m9VWr1Vi7di0CAwMhk8lgb2+PXr164d9//634C0KhUMoM1ZGqn9qqIy1atAgHDx6s7mFQKBRKpfPrr7/Cx8cHIpEIXl5eWLFihdHb5ufn47PPPoOTkxPEYjFatGiB06dPa/VbtGgRWrZsCVtbW+Y4M2fORGJiYkWeyjuPWq3GmjVrEBgYCLFYDGtra3Tu3Bl37tzR6vv48WOEhYXBzs4OYrEYXl5e+PLLL7X6rVy5Ej4+PhAKhahTpw5mzZqF7OxsVh+NYVDX3+7du7X2uWfPHrRs2RIWFhawtrZGhw4dcOzYsYq7EDUEfnUP4F1k4cKFcHd3Z7VVtKe+m5sbcnNzYWZmVmq/Bw8egMv9zz4WHR2NBQsWoGPHjjXae6mshIeHIzIyEjNnzmS1G3u9KBTKu8OpU6cqbd/t27dHbm4uBAJBpR2jPGzYsAFqtbpC9/nll1/i+++/x4QJE9CsWTMcOnQIYWFh4HA4GD58eKnbqtVq9OnTB3fu3MGnn34KGxsbrF69Gh07dsSNGzfg5eXF9L127RratWuHsWPHQiQS4datW/j+++9x5swZXLhwgfXMo5SNwsJC9OnTB//++y8mTJiAhg0bIjU1FVeuXEF6ejqcnZ2ZvqdOnUJwcDAaN26MuXPnQiaT4fHjx1oGlBEjRmDv3r0YN24cmjZtisuXL2Pu3Ll48eIF1q9frzWG6dOno1mzZqw2T09P1udPP/0US5cuxYgRIzB58mSkpaVh3bp16NChA/755x80b968Aq8KhUIpL1RHqj5qq460aNEihISEYMCAAdU9FAqFUozK0CU01PR16f/+7/8q3Ki/bt06fPjhhxg8eDBmzZqFixcvYvr06cjJycFnn31mcPsxY8Zg3759mDlzJry8vLBlyxb07t0b586dQ9u2bZl+N27cQGBgIIYPHw5zc3Pcu3cPGzZswLFjx3D79m1IpdIKPa93lXHjxmHnzp0YNWoUpk6diuzsbNy6dQsJCQmsfrdv30bHjh1Rp04dfPzxx7C2tsaLFy/w8uVLVr/PPvsMP/zwA0JCQjBjxgxER0djxYoViIqKwsmTJ7WOHxoait69e7PaWrVqxfq8YsUKTJ8+HX369MH333+PvLw8bNmyBX379sX+/fsxaNCgCroa1Q81jFQDvXr1QtOmTSv1GBwOByKRyGA/oVBYqeOoLRh7vSgUyrtDZRotuFxujV5zKlrReP36NX766SdMmTIFK1euBACMHz8eHTp0wKeffoohQ4aAx+Pp3X7fvn34999/sXfvXoSEhAAAhg4divr162PevHkIDw9n+v79999a23t4eOCTTz7B1atX0bJlywo9t3eRn3/+GefPn8fff/9dqnEhIyMDo0aNQp8+fbBv3z69Rqlr165hz549mDt3LhYuXAgA+PDDD2FjY4OlS5di6tSpaNiwIWubdu3aMXNBF0qlEmvWrEFISAi2b9/OtA8ZMgT16tXDzp07qWGEQqlhUB2p5vE26UjZ2dn0pR6FUkVUptGipq9LfD4ffH7FvWrNzc3Fl19+ycjTADBhwgSo1Wp8/fXXmDhxIiwtLfVuf/XqVezevRtLlizBJ598AgAYNWoU/P39MXv2bFYk9f79+7W2b9WqFUJCQnDkyBGDzmwUw+zZswdbt27FgQMHMHDgQL391Go1Ro4ciQYNGuDcuXMQi8U6+8XGxmLp0qUYOXIktm3bxrTXr18f06ZNw5EjRxAcHMzapkmTJhgxYkSp41yxYgWaNWuGI0eOMKnhxo0bhzp16mDr1q1vlWGEuk3WIJ4/f47JkyfD29ubCacaMmSIzpDttLQ0fPTRR6hbty6EQiGcnZ0xatQoJCUlATA+72Lx/LlbtmzBkCFDAACdOnViQqr++usvjB49GjY2NigsLNTaR/fu3eHt7W3y+WZnZ+Pjjz+Gi4sLhEIhvL298eOPP4IQotV3x44daN68OSQSCSwtLdG+fXuWN/ehQ4fQp08fODk5QSgUwsPDA19//TVUKhXTp2PHjjh27BieP3/OnJvG40vf9frzzz/Rrl07SKVSWFhYoH///rh37x6rjyaH5KNHjzBmzBhYWFhAoVBg7NixyMnJKfUaLF++HDweD2lpaUzbTz/9BA6Hg1mzZjFtKpUK5ubmLG8AtVqNX375BX5+fkwakw8++ACpqamsYxhzbfRx6tQpSCQShIaGaqUzKY4mH+jdu3fRoUMHSCQSeHp6Mg/u8+fPo0WLFhCLxfD29saZM2e09nHr1i306tULcrkcMpkMXbp00UqLAgBRUVHo3LkzxGIxnJ2d8c033+j1Rjl+/Djz+5mbm6NPnz6IiooyeN66iImJweDBg+Hg4ACRSARnZ2cMHz4c6enpTB+lUomvv/4aHh4eEAqFqFu3Lr744gvk5+fr3W98fDz4fD4WLFig9d2DBw/A4XCYF8lA0b0/c+ZM5r7x9PTE4sWLta5BWloaxowZA4VCAQsLC4wePZo1z4whJycHH3zwAaytrSGXyzFq1CjW/CrvunDx4kUMGTIErq6uEAqFcHFxwUcffYTc3FxWvzFjxkAmk+HJkyfo0aMHpFIpnJycsHDhQtZ6UTxn7M8//ww3NzeIxWJ06NABkZGRrH3GxcVh7NixcHZ2hlAohKOjI/r3789ab8tTC0bzwlgkEqFevXosIQXQn8951apVqFevHsRiMZo3b46LFy/qHYdarca3334LZ2dniEQidOnSBY8ePWL1MWbe6qJkXuDi13b9+vXMHG/WrBmuXbtm8HocOnQIhYWFmDx5MtPG4XAwadIkvHr1CpcuXSp1+3379sHe3p4lgNna2mLo0KE4dOhQqfcYAOZcjLkHVqxYAT8/P+Z507RpU5bhBSgy9IwbNw729vYQCoXw8/PDpk2btPaVl5eH+fPno379+hCJRHB0dMSgQYPw+PFjpo+xz0IOh4OpU6fi4MGD8Pf3Z4574sQJreP+/fffaNasGUQiETw8PLBu3Tqd53r69Gm0bdsWFhYWkMlk8Pb2xhdffFHq9VGr1Vi2bBkGDhyI5s2bQ6lU6n3WhYeHIz4+Ht9++y24XC6ys7N1rtcXL14EAC1la/jw4SCE4LffftO5/8zMTL3PpsLCQuTm5sLe3p7VbmdnBy6Xq1e5oFAoNQ+qI717OhJgWIbhcDjIzs7G1q1bmXFrfjPNsaOjoxEWFgZLS0vGK9pYeV1TN86QTAeA0YGK6yebN282Kie9Rs598eIF+vbtC5lMhjp16mDVqlUAgIiICHTu3BlSqRRubm5aMgkAPHnyBEOGDGFSVrZs2VJnupNXr15hwIABkEqlsLOzw0cffaRXhrpy5Qp69uwJhUIBiUTCRFuWBWPkbgBYvXo1/Pz8IBQK4eTkhClTppQquxUWFsLKygpjx47V+i4jIwMikYh5EQwUpROaN28ePD09Gd1j9uzZWtcgPz8fH330EWxtbWFubo5+/frpTBVaGiqVCl988QUcHBwglUrRr18/lpf3vHnzYGZmpjNF0cSJE2FhYYG8vDy9+7979y7GjBmDevXqQSQSwcHBAePGjUNycjKrn+ZeuH//PoYOHQq5XA5ra2vMmDFDa/8aWXPnzp3w9vaGSCRCUFAQLly4wOqXmZmJmTNnMuusnZ0dunXrxkpxW55aMNHR0ejUqRMkEgnq1KmDH374gfW9vnVp79698PX1hUgkgr+/P37//fdSx2FIpzF23pZEV40RU+T4kpw7dw7JycksPQoApkyZguzsbIOpjfbt2wcej4eJEycybSKRCO+//z4uXbqkFX1QElP0qN27dyMoKAjm5uaQy+UICAjAsmXLWH2MfZ+h0TkCAgIgEolga2uLnj17suqgVsZ6buz7puvXr6NHjx6wsbGBWCyGu7s7xo0bZ/AaLV26FM2bN8fAgQOhVqu10l1pOHXqFCIjIzFv3jyIxWLk5OTofId36dIlKJVKnXoUAJ0psoAiWaOgoEDvODMyMmBnZ8eay5p3dW+dHkUoVcbmzZsJAHLmzBmSmJjI+iOEkL1795JGjRqRr776iqxfv5588cUXxNLSkri5uZHs7GxmP5mZmcTf35/weDwyYcIEsmbNGvL111+TZs2akVu3bhFCCHn69CkBQDZv3sxsN2/ePFLyJ3dzcyOjR48mhBDy+PFjMn36dAKAfPHFF2T79u1k+/btJC4ujpw+fZoAIEeOHGFtHxsbS3g8Hlm4cGGp5z569Gji5ubGfFar1aRz586Ew+GQ8ePHk5UrV5Lg4GACgMycOZO17fz58wkA0rp1a7JkyRKybNkyEhYWRj777DOmz4ABA8jQoUPJkiVLyJo1a8iQIUMIAPLJJ58wfU6dOkUCAwOJjY0Nc26///673ut1+vRpwufzSf369ckPP/xAFixYQGxsbIilpSV5+vSp1nVt3LgxGTRoEFm9ejUZP348AUBmz55d6nW5efOm1nXt378/4XK5pGnTpkzbtWvXCABy9OhRpm38+PGEz+eTCRMmkLVr15LPPvuMSKVS0qxZM1JQUGDStSGEkA4dOhA/Pz/m85EjR4hQKCSjRo0iSqWy1PPo0KEDcXJyIi4uLuTTTz8lK1asIL6+voTH45Hdu3cTBwcHMn/+fPLLL7+QOnXqEIVCQTIyMpjtIyMjiVQqJY6OjuTrr78m33//PXF3dydCoZBcvnyZ6RcbG0tsbW2JpaUlmT9/PlmyZAnx8vIiDRs2JABYv8u2bdsIh8MhPXv2JCtWrCCLFy8mdevWJRYWFjp/v9LIz88n7u7uxMnJiXzzzTdk48aNZMGCBaRZs2bk2bNnTL/Ro0cTACQkJISsWrWKjBo1igAgAwYM0LpeHTp0YD537tyZ+Pr6ah13wYIFhMfjkbi4OEIIIdnZ2aRhw4bE2tqafPHFF2Tt2rVk1KhRhMPhkBkzZjDbqdVq0r59e8LlcsnkyZPJihUrSOfOnZnrVHye60KzVgUEBJB27dqR5cuXkylTphAul0vat29P1Go1IYSUe12YNm0a6d27N1m0aBFZt24def/99wmPxyMhISGsfqNHjyYikYh4eXmRkSNHkpUrV5K+ffsSAGTu3LlMP819HBAQQOrWrUsWL15MFixYQKysrIitrS1zHQkhpHXr1kShUJD/+7//Ixs3biSLFi0inTp1IufPn2f6lPydjMHNzY14e3sTe3t78sUXX5CVK1eSJk2aEA6HQyIjI5l+586dIwDIuXPnmLbVq1cTAMw1nzVrFrGysiIeHh6scWi2bdy4MQkKCiI///wzmT9/PpFIJKR58+ZMP2PnrS5Krtmaa9u4cWPi6elJFi9eTH744QdiY2NDnJ2dWWuOLsaPH0+kUikzdzQ8evSIACDLly8vdXtPT0/Sq1cvrfaNGzcSAOTu3bus9sLCQpKYmEhev35NTp48SRo0aEDMzc1JcnJyqcdZv349cw+vW7eOLFu2jLz//vtk+vTpTJ+4uDji7OxMXFxcyMKFC8maNWtIv379CADy888/M/2USiXp0qULAUCGDx9OVq5cSb777jvSuXNncvDgQUKIac9CAKRRo0bMOvnLL7+QevXqEYlEQpKSkph+d+/eJWKxmLi6upLvvvuOfP3118Te3p65/zVERkYSgUBAmjZtSpYtW0bWrl1LPvnkE9K+fftSr1FERAQBQL755hsyYcIEIhAImPvuzz//ZPUdPHgwkcvl5PTp06R+/foEAJFKpeTDDz8kubm5TL9FixYRAOTJkyes7aOioggA0qNHD6ZNM/9lMhkBQHg8HunYsSO5du2a1lhbtGhBpFIp2bFjB3n+/Dm5c+cOCQkJIdbW1uTx48elnieFQqk6qI7kxnymOlIRxsgw27dvJ0KhkLRr144Z97///ss6tq+vL+nfvz9ZvXo1WbVqFXPNjZHXjZXpXr16RaysrIi1tTVZsGAB+fHHH0mDBg1Io0aNtPQTXWjkXF9fX/Lhhx+SVatWkdatWzPX3cnJidGv/Pz8CI/HYz0v4+LiiL29PTE3NydffvklWbp0KWnUqBHhcrnkwIEDTL+cnBxSv359IhKJyOzZs8kvv/xCgoKCGPmguEx69uxZIhAISKtWrchPP/1Efv75Z9KwYUMiEAjIlStXmH6ae9fQORojd2t+s65du5IVK1aQqVOnEh6Pp6Xblrxnxo0bRywsLEh+fj7rmFu3biUAGPlApVKR7t27E4lEQmbOnEnWrVtHpk6dSvh8Punfvz9r2xEjRhAAJCwsjKxcuZIMGjSIuU7z5s0r9Vw1ckpAQABp2LAhWbp0Kfn888+JSCQi9evXJzk5OYQQQmJiYggAsmLFCtb2+fn5xNLSkowbN67U4/z444+kXbt2ZOHChWT9+vVkxowZRCwWk+bNm7Pkbc11DQgIIMHBwWTlypXM+Y0cOZK1TwDE39+f2NjYkIULF5LFixcTNzc3IhaLSUREBNMvLCyMCAQCMmvWLLJx40ayePFiEhwcTHbs2MH0Kfk7GUPxdwozZswgq1evJp07dyYAyB9//MH007UuHT16lHA4HOaaz507l1haWhJ/f/8y6zTGzFtd6HqmGCvH6+Kbb74hAEh8fDyrPT8/n3C5XDJr1qxSt+/atSvx8fHRaj9z5gwBQA4fPsxqV6vVJDExkcTGxpILFy6Q1q1bEx6PR+7du1fqcU6dOkUAkC5dupBVq1aRVatWkalTp5IhQ4YwfYx9n0EIIWPGjCEASK9evcgvv/xCfvzxR9K/f3/WPVPR67mx75vi4+OJpaUlqV+/PlmyZAnZsGED+fLLL3Ve5+Kkp6cTDodDpkyZQubMmcPoM+7u7uS3335j9f34448JAHL27FkSFBREABCBQECGDRvG0mnDw8MJAC09LDs7mwAg3t7eTJtm/muOy+FwSNOmTcnJkye1xjps2DDC4/HI8uXLydOnT8m9e/fI5MmTiVgsZp61bwvUMFKFaAQHXX+EEOYhWZxLly4RAGTbtm1M21dffUUAsAQdDZqHYFmEfkKKFI+SghEhRYKEs7MzGTZsGKt96dKlhMPhaL3MKEnJB+PBgweZFyvFCQkJIRwOhzx69IgQUiQwcLlcMnDgQKJSqXSeKyG6r90HH3xAJBIJycvLY9r69Omj8wGt63oFBgYSOzs71qJz584dwuVyyahRo5g2zXUtKbwMHDiQWFtb67ga/6FSqYhcLmeUA7VaTaytrcmQIUMIj8cjmZmZhJCi68zlcklqaiohhJCLFy8SAGTnzp2s/Z04cUKr3dhrU9wwsn//fmJmZkYmTJigdd110aFDBwKAhIeHM233798nAAiXy2UZN06ePKl1rQcMGEAEAgHrRdWbN2+Iubk56yXdzJkzCQCWQJ6QkEAUCgXrQZWZmUksLCzIhAkTWOOMi4sjCoWC1W6MYeTWrVsEANm7d6/ePrdv3yYAyPjx41ntn3zyidaDquQL93Xr1hEALIGTEEJ8fX1J586dmc9ff/01kUql5OHDh6x+n3/+OeHxeOTFixeEkP/urx9++IHpo1QqSbt27UwyjAQFBbGEwx9++IEAIIcOHSKElH9d0DU3v/vuO8LhcMjz58+ZNo3AM23aNKZNrVaTPn36EIFAwLw40dzHYrGYvHr1iul75coVAoB89NFHhBBCUlNTCQCyZMmSUsdXVsMIAHLhwgWmLSEhgQiFQvLxxx8zbSUNI/n5+cTa2po0a9aMFBYWMv22bNlCAOg0jPj4+LCUwGXLlrHmkTHzVh/6DCPW1tYkJSWFaT906JDOF0Il6dOnD6lXr55Wu0Zg+/zzz0vdXiqV6lQQjx07RgCQEydOsNo1z07Nn7e3t9ZzTRf9+/dnGYh18f777xNHR0ctJWb48OFEoVAw83rTpk0EAFm6dKnWPjTPL2OfhYQQRhgu3nbnzh0tpXrAgAFEJBKx7qHo6GjC4/FYa93PP/9MADD3j7EcOHCAmQteXl5k8+bNZPPmzcTLy4sIBAJy584dpm/Dhg2JRCIhEomETJs2jezfv59MmzaNMRZp2L9/PwFAtm/fzjrW2rVrGSVdwz///EMGDx5Mfv31V3Lo0CHy3XffEWtrayISicjNmzdZ28fExJAmTZqw5kK9evXI/fv3TTpnCoVSuVAdyY35THWkIoyVYaRSKet3Knns0NBQVrsp8rqxMt20adMIh8NhjG+EEJKcnEysrKyMNowAIIsWLWLaUlNTiVgsJhwOh+zevZtp1+hXxV/Oa/SjixcvMm2ZmZnE3d2d1K1bl5kfv/zyCwFA9uzZw/TLzs4mnp6erLmtVquJl5cX6dGjh9Zccnd3J926dWPajDGMGCN3JyQkEIFAQLp3786azytXriQAyKZNm1jXq/hc1eiWJWXR3r17s2TP7du3Ey6Xy7pOhPwna/zzzz+EkP/myOTJk1n9wsLCTDKM1KlTh+UIuGfPHgKALFu2jGlr1aoVadGiBWt7jZxlSG7VdW/v2rVLa85q7oV+/fqx+k6ePJkAYMltmnX3+vXrTNvz58+JSCQiAwcOZNoUCgWZMmVKqeMrq2Gk5Lqen59PHBwcyODBg5k2XetSQEAAcXZ2Zt6fEELIX3/9RQCUSacxVl/UhT7DiDFyvC6mTJlCeDyezu9sbW1ZMrUu/Pz8WO8UNGgckNauXctqj42NZT2HnZ2dtV7a62LGjBlELpeX6lRr7PuMP//8kwBgOadp0KxLlbGeG/u+6ffffycAdDpmlYbGMdra2prY29uT1atXk507d5LmzZsTDodDjh8/zvTVON5ZW1uT9957j+zbt4/MnTuX8Pl80rp1a+Y63LhxgwAgX3/9NetYmneDMpmMaXv+/Dnp3r07WbNmDTl8+DD55ZdfiKurK+FyuSwnbEKKjD8aJz/Nn42NzVtnFCGEEJpKqxpYtWoVTp8+zfoDwApHKiwsRHJyMjw9PWFhYcEKS9y/fz8aNWqkMx9dyZC9ioLL5eK9997D4cOHkZmZybTv3LkTrVu31iqUaIg//vgDPB4P06dPZ7V//PHHIITg+PHjAICDBw9CrVbjq6++0spNXvxci1+7zMxMJCUloV27dsjJycH9+/dNGhtQlKfv9u3bGDNmDKysrJj2hg0bolu3bvjjjz+0tvnwww9Zn9u1a4fk5GRkZGToPQ6Xy0Xr1q2Z8NR79+4hOTkZn3/+OQghTHqZixcvwt/fHxYWFgCKwkQVCgW6deuGpKQk5i8oKAgymQznzp0r87XZtWsXhg0bhg8++ADr1q0zulCxTCZjhe95e3vDwsICPj4+aNGiBdOu+f+TJ08AFIUZnzp1CgMGDEC9evWYfo6OjggLC8Pff//NXMM//vgDLVu2ZOWFt7W1xXvvvccay+nTp5GWlobQ0FDW9eHxeGjRogXr+hiDQqEAAJw8eVJv6L9mThRPgQYUzWkApYa4Dho0CHw+n5UuJjIyEtHR0Rg2bBjTtnfvXrRr1w6Wlpas8+ratStUKhUzj/744w/w+XxMmjSJ2ZbH42HatGmmnDYmTpzIyg87adIk8Pl85lzLuy4Un5vZ2dlISkpC69atQQjBrVu3tPpPnTqV+b8mHLmgoEArNduAAQNQp04d5nPz5s3RokULZtxisRgCgQB//fWXVuq5isDX1xft2rVjPtva2sLb25uZ87q4fv06kpOTMWHCBFZO2vfee09vztixY8ey6qBojqk5jjHz1lSGDRvGGk/JY+ojNzdXZ752TX7gkunTyru9r68vTp8+jYMHD2L27NmQSqXIysoq9RgAYGFhgVevXulND0YIwf79+xEcHAxCCOs+7NGjB9LT05nn9f79+2FjY6PzvtM8v4x9Fmro2rUrPDw8mM8NGzaEXC5nracnT57EgAED4OrqyvTz8fFBjx49tM4VKEqzYkpxTM11zMzMxNmzZzFmzBiMGTMGZ86cASGEle4gKysLOTk5GDVqFJYvX45BgwZh+fLl+OCDD7B7927ExMQAAHr37g03Nzd88sknOHDgAJ4/f449e/bgyy+/BJ/PZ/2+rVu3xr59+zBu3Dj069cPn3/+OS5fvgwOh4M5c+awxmpubg4/Pz9MmTIFBw4cwOrVq6FUKjFgwAAmrQ6FQqk5UB2J6kgaKkqGKXlsU+V1Y2S6EydOoFWrVggMDGTarKystPQTQ4wfP575v4WFBby9vSGVSjF06FCmXaNfFT/+H3/8gebNm7MKKMtkMkycOBHPnj1DdHQ008/R0ZFVn0sikbDS6wBFxX5jYmIQFhaG5ORkRs7Jzs5Gly5dcOHCBZPkBmPk7jNnzqCgoAAzZ85kzecJEyZALpeXqkd17twZNjY2LD0qNTUVp0+f1tKjfHx80KBBA5b81rlzZwBg9EPNHCl5D86cOdPocwaKajiYm5szn0NCQuDo6Mi6R0aNGoUrV66wUqzu3LkTLi4u6NChQ6n7L35v5+XlISkpiamjV3xd1DBlyhTWZ418WvKebdWqFYKCgpjPrq6u6N+/P06ePMmk8bGwsMCVK1fw5s2bUsdYFmQyGav2gUAgQPPmzUvVNd68eYOIiAiMGjUKMpmMae/QoQMCAgJ0bmNIp6kMfdGQHK+P3NxcvbUvRSJRhetRVlZWOH36NI4cOYKFCxfCxsbGaD0qOzubeXbrwtj3Gfv37weHw8G8efO09lFcjwIqdj039n2TRo86evSozlSa+tBcx+TkZBw6dAiTJk1CWFgYzp49C2tra3zzzTdafZs1a4YdO3Zg8ODBWLhwIb7++mv8+++/OHv2LICieiEtWrTA4sWLsXnzZjx79gzHjx/HBx98ADMzM9bv6+rqipMnT+LDDz9EcHAwZsyYgVu3bsHW1pa5bhokEgm8vb0xevRo7N27F5s2bWLSQpdM313boYaRaqB58+bo2rUr6w8oWpC++uorJteejY0NbG1tkZaWxsoH//jxY/j7+1f5uEeNGoXc3Fz8/vvvAIrqH9y4cQMjR440eV/Pnz+Hk5MTS1gAil7eaL4His6Vy+XC19e31P1FRUVh4MCBUCgUkMvlsLW1ZR6ohnLp6xsfAJ15gX18fBjhsDjFX0IBYB60hh6k7dq1w40bN5Cbm4uLFy/C0dERTZo0QaNGjZi863///TdrEY+JiUF6ejrs7Oxga2vL+svKykJCQgLT15Rr8/TpU4wYMQKDBw/GihUrTFIinZ2dtforFAq4uLhotRW/LomJicjJydF7rdVqNZP38vnz5/Dy8tLqV3Jbzcu2zp07a12fU6dOsa6PMbi7u2PWrFnYuHEjbGxs0KNHD6xatYp1/Z4/fw4ulwtPT0/Wtg4ODrCwsGDmlC5sbGzQpUsX7Nmzh2n77bffwOfzWTUVYmJicOLECa1z0qwhmvN6/vw5HB0dWYIhoHs+l0bJay2TyeDo6MjKq1qedeHFixeMYi2TyWBra8soASXnJpfLZRnOgKKCYgC08rzqmiP169dn+gmFQixevBjHjx+Hvb092rdvjx9++AFxcXEGx2wMJdcCoGg9KG0t0MyPkvOHz+frzYtraM0xZt6aSlnXObFYrDOHtSa3saE8paZuL5fL0bVrV/Tv3x+LFy/Gxx9/jP79++POnTulHuezzz6DTCZD8+bN4eXlhSlTprDyaScmJiItLQ3r16/Xug81+a019+Hjx4/h7e1davFFY5+FGgzNrcTEROTm5hq1Tg4bNgxt2rTB+PHjYW9vj+HDh2PPnj0GX3ZornWbNm1Y67urqyvatm3LKuCo6RsaGsraR1hYGAAwxn+RSIRjx47B2toagwcPRt26dTFq1Ch89dVXzPpQGp6enujfvz/OnTvHKO1KpRJdu3aFQqHAypUrMXDgQEyaNAlnzpzB48ePsWTJklL3SaFQqh6qI1EdSUNFyTAlDVOmyuvGyHTPnz/X2h+gLdOVhiZ/fnEUCoVe/ark8fX9Hprvi4+z5P706VGjR4/WknU2btyI/Px8k34HY+RuffNKIBCgXr16pepRfD4fgwcPZtWcO3DgAAoLC1mGkZiYGERFRWmdk0afKK5Hcblc1gtsXWMzRElZjMPhwNPTk6W3DBs2DEKhEDt37gRQdE8ePXoU7733nkE9PCUlBTNmzIC9vT3EYjFsbW2Z+a7r9yk5Hg8PD3C5XKP1qJycHKYeyg8//IDIyEi4uLigefPmmD9/vsGX+8aia86XVY/S1wYYXpcqQ18si44IFMnT+mpB5OXlVbgeJRAI0LVrV/Tt2xdz587FqlWr8P777+Po0aOlHmfy5MmoX78+evXqBWdnZ4wbN06rhoqx7zMeP34MJycnlgG+JJW1nhujR3Xo0AGDBw/GggULYGNjg/79+2Pz5s0G615qrrW7uzvLeVgmkyE4OBhXr15l6ica0qOK61wax5Bx48bB3d0dwcHBGDp0KBo3bmxQj9LUaXrw4AGrltKQIUPw4sULbNmyBSEhIRg7diz++usvFBQU4Msvvyx1n7UN/do6pcqZNm0aNm/ejJkzZ6JVq1ZQKBTgcDgYPny4SV4ZlYWvry+CgoKwY8cOjBo1Cjt27IBAIGB5sVQHaWlp6NChA+RyORYuXAgPDw+IRCLcvHkTn332WZVdOx6Pp7Od6CiUWJy2bduisLAQly5dwsWLFxkDSLt27XDx4kXcv38fiYmJLMOIWq2GnZ0dI0SVRCNYm3ptHB0dGU+W69evo2nTpuU+/7Jel/KgOa/t27fDwcFB6/vSXlTq46effsKYMWNw6NAhnDp1CtOnT8d3332Hy5cvw9nZmelXVo/E4cOHY+zYsbh9+zYCAwOxZ88edOnSBTY2NkwftVqNbt26Yfbs2Tr3oRHsq5KyrgsqlQrdunVDSkoKPvvsMzRo0ABSqRSvX7/GmDFjKv2+nTlzJoKDg3Hw4EGcPHkSc+fOxXfffYc///wTjRs3Lte+q2rOG3McY+dtRR5TF46Ojjh37hwIIax7JDY2FgDg5ORkcHtN3+IYu/2gQYMwcuRI7N69G40aNdLbz8fHBw8ePMDRo0dx4sQJ7N+/H6tXr8ZXX32FBQsWMPNyxIgRGD16tM59NGzYsNSxlIeKnFtisRgXLlzAuXPncOzYMZw4cQK//fYbOnfujFOnTuk9luZalyxqDhQVNi8e7eXk5ISoqCidBdAB9ksxPz8/JlIuNTUVvr6+EIvF+Oijjwx6TQKAi4sLCgoKkJ2dDblcjgsXLiAyMhJLly5l9fPy8oKPj0+ZC8hSKJSqh+pIZaO260gVIcPoe2ForLxe3TJddepRS5YsYUXBFMfQi7aSVKbcDRTpUevWrcPx48cxYMAA7NmzBw0aNGDJfGq1GgEBAVpygYaSznxVgaWlJfr27YudO3fiq6++wr59+5Cfn8+KmNDH0KFD8e+//+LTTz9FYGAgZDIZ1Go1evbsadS9XZ4ouqFDh6Jdu3b4/fffcerUKSxZsgSLFy/GgQMH0KtXrzLvF6j+e674cSp63pZHj1KpVEhISGBkaAAoKChAcnKyUXrU69evtdqN1aNat24NR0dH7Ny5E3379tXbz87ODrdv38bJkydx/PhxHD9+HJs3b8aoUaOwdetWAJXzPqM61nMOh4N9+/bh8uXLOHLkCE6ePIlx48bhp59+wuXLl/WukYb0qMLCQmRnZ0OhUOjtq0uPqlOnDv7++2/ExMQgLi4OXl5ecHBwgJOTk1HXVLP+paSkwNnZGU+ePMGJEyewfv16Vj8rKyu0bdv2rdOjqGGkBrFv3z6MHj0aP/30E9OWl5eHtLQ0Vj8PDw9ERkZWyhgMLSqjRo3CrFmzEBsbi/DwcPTp00dvmpfScHNzw5kzZ5CZmcnyiNKEdLu5uQEoOle1Wo3o6Gi9gtlff/2F5ORkHDhwAO3bt2fanz59qtXX2EVTc/wHDx5ofXf//n3Y2NhAKpUatS9DNG/eHAKBABcvXsTFixfx6aefAgDat2+PDRs2MCFyxc/Nw8MDZ86cQZs2bUr1EDDl2gBF3kpHjx5F586d0bNnT5w/fx5+fn4VcZp6sbW1hUQi0XutuVwus1C7ubkxXkzFKbmtxsPHzs6O8T6oCAICAhAQEID/+7//w7///os2bdpg7dq1+Oabb+Dm5ga1Wo2YmBjGQwsA4uPjkZaWxswpfQwYMAAffPABEwb+8OFDrbQwHh4eyMrKMnhObm5uOHv2LLKyslgPZV3XuDRiYmLQqVMn5nNWVhZiY2PRu3dvVr+yrAsRERF4+PAhtm7dilGjRjHt+kJv1Wo1njx5wnqwP3z4EAC0Iip0zZGHDx9q9fPw8MDHH3+Mjz/+GDExMQgMDMRPP/2EHTt2lDr2ykAzPx49esS65kqlEs+ePSvXy/bS5m1VERgYiI0bN+LevXss79YrV64w3xva/uLFi1Cr1awUC1euXIFEIjEo8OXn50OtVhvl4SiVSjFs2DAMGzYMBQUFGDRoEL799lvMmTMHtra2MDc3h0qlMngfenh44MqVKygsLGSlpCuOsc9CY7G1tYVYLDZqnQSKIrG6dOmCLl26YOnSpVi0aBG+/PJLnDt3Tu/5BQQEwMzMTKeC9ebNG5bHa1BQEE6fPo3Xr1+zPK00qRdKesdyOBzWM+ePP/6AWq02ah1/8uQJRCIRs+bFx8cDABNBUpzCwkLGG4tCodR8qI70bupIgGEZxtSXu+WV1/XtU1dakapKNeLm5qb399B8r/k3MjJSy0lFnx6lib6tKEqTu4vPq+IR4gUFBXj69KnBcbRv3x6Ojo747bff0LZtW/z5559aHs0eHh64c+cOunTpUuq80cwRTeSvhrLoUcUhhODRo0daMv2oUaPQv39/XLt2DTt37kTjxo0N6t+pqak4e/YsFixYgK+++krvMUuOp3gE1aNHj6BWq43WoyQSCUtuc3R0xOTJkzF58mQkJCSgSZMm+Pbbb8ttGCkLxfWokpT3PqwJ+qJmjb9+/TpLD79+/TrUarVRetS5c+eQkZEBuVzOtBurhwFFz1xj9CiBQIDg4GAEBwdDrVZj8uTJWLduHebOnQtPT0+j32d4eHjg5MmTSElJ0Rs1UlnrubF6FAC0bNkSLVu2xLfffovw8HC899572L17Nys1YnGcnJzg4OCgV48SiUTMsz8oKAgbNmzQ6qtPjwKKHMA0ES/R0dGIjY3FmDFj9J/w/9BEfGn2+a7pUTSVVg2Cx+NpWStXrFihNRkHDx6MO3fuMOHaxSmvJV0jyJZUNDSEhoaCw+FgxowZePLkiVHeDLro3bs3VCoVVq5cyWr/+eefweFwmAfqgAEDwOVysXDhQi3PB825aiy/xc+9oKAAq1ev1nl+xizojo6OCAwMxNatW1nXIjIyEqdOndJ6MVweRCIRmjVrhl27duHFixesiJHc3FwsX74cHh4ecHR0ZLYZOnQoVCoVvv76a639KZVKZsymXBsNCoUCJ0+ehJ2dHbp168bKeVoZ8Hg8dO/eHYcOHWKF8sbHxyM8PBxt27ZlHuC9e/fG5cuXcfXqVaZfYmKiVuRMjx49IJfLsWjRIp05HzVhwMaSkZGhtfgHBASAy+Uy4ZKaOfHLL7+w+mm8kvr06VPqMSwsLNCjRw/s2bMHu3fvhkAgwIABA1h9hg4dikuXLuHkyZNa26elpTFj7N27N5RKJdasWcN8r1KpsGLFCsMnW4z169ezrt+aNWugVCq1BN6yrAu65iYhBMuWLdO7TfH1ghCClStXwszMDF26dGH1O3jwIEuAuHr1Kq5cucKMOycnhwkd1uDh4QFzc3OD4a+VRdOmTWFtbY0NGzaw5trOnTvLnNfWmHlbVfTv3x9mZmastYcQgrVr16JOnTpo3bo10x4bG4v79++z5l5ISAji4+Nx4MABpi0pKQl79+5FcHAwkzc3LS1N5z2/ceNGADAYBZecnMz6LBAI4OvrC0IICgsLwePxMHjwYOzfv1/ny7fia8vgwYORlJSk9ZzTnDtg/LPQWHg8Hnr06IGDBw/ixYsXTPu9e/e01o2UlBSt7TWKUWnzw9zcHL1798a///7Lyk9/7949/Pvvv+jWrRvTpvGW/vXXX1n72LhxI/h8Pjp27Kj3OLm5uZg7dy4cHR1ZIeS61u87d+7g8OHD6N69O2M40xjLdu/ezep78+ZNPHjwoEI8VCkUStVAdaR3T0cyVoaRSqV6fxNdlFde10WPHj1w6dIl3L59m2lLSUnRG9lf0fTu3RtXr15l0lMCRbX71q9fj7p16zIOKb1798abN2+wb98+pl9OTo6WR3BQUBA8PDzw448/6qwrYKoeZYzc3bVrVwgEAixfvpw1X3/99Vekp6cb/F24XC5CQkJw5MgRbN++HUqlkpVGCyiSSV6/fo0NGzZobZ+bm8ukgNPcY8uXL2f1KTlnDLFt2zZW3aF9+/YhNjZWS7br1asXbGxssHjxYpw/f77MepShMa5atYr1WaMXlhzPpUuXWDVKXr58iUOHDqF79+7g8XhQqVRaa4WdnR2cnJyqTY9ycnKCv78/tm3bxpqz58+fR0RERJn2WZP0xc6dO8PKyoql2wNFurlEImHdH0lJSbh//z6rNlNISAhUKhXrXs/Pz8fmzZvRokULxgk1OztbZ02n/fv3IzU11WQ9isvlMoZAzTUz9n3G4MGDQQjBggULtPoV16OAil3PjX3flJqaqnX/GaNHAUUp9F6+fMlyCE1KSsKhQ4fQuXNnRpfp378/hEIhNm/ezHrOa/Ta4jpXSdRqNWbPng2JRMKqtaVr/X79+jU2bdqEhg0bMu8cPT09weVy8dtvv7HO89WrV7h48eJbp0fRiJEaRN++fbF9+3YoFAr4+vri0qVLOHPmDKytrVn9Pv30U+zbtw9DhgzBuHHjEBQUhJSUFBw+fBhr164tNU2IIQIDA8Hj8bB48WKkp6dDKBSic+fOTLiWra0tevbsib1798LCwqJMiw0ABAcHo1OnTvjyyy/x7NkzNGrUCKdOncKhQ4cwc+ZMxlPF09MTX375Jb7++mu0a9cOgwYNglAoxLVr1+Dk5ITvvvsOrVu3hqWlJUaPHo3p06eDw+Fg+/btOhWgoKAg/Pbbb5g1axaaNWvG5PLTxZIlS9CrVy+0atUK77//PnJzc7FixQooFArMnz+/TOetj3bt2uH777+HQqFgCoTZ2dnB29sbDx480LLydujQAR988AG+++473L59G927d4eZmRliYmKwd+9eLFu2DCEhISZdm+LY2Njg9OnTaNu2Lbp27Yq///6bVcy6ovnmm2+Y402ePBl8Ph/r1q1Dfn4+q5Dv7NmzsX37dvTs2RMzZsyAVCrF+vXr4ebmhrt37zL95HI51qxZg5EjR6JJkyYYPnw4bG1t8eLFCxw7dgxt2rTR+bJSH3/++SemTp2KIUOGoH79+lAqldi+fTvzkhQAGjVqhNGjR2P9+vVM6oKrV69i69atGDBgACsKQB/Dhg3DiBEjsHr1avTo0YMp6qXh008/xeHDh9G3b1+MGTMGQUFByM7ORkREBPbt24dnz57BxsYGwcHBaNOmDT7//HM8e/YMvr6+OHDggMl5mQsKCtClSxcMHToUDx48wOrVq9G2bVv069eP1a8s60KDBg3g4eGBTz75BK9fv4ZcLmeELl2IRCKcOHECo0ePRosWLXD8+HEcO3YMX3zxhZa3hKenJ9q2bYtJkyYhPz8fv/zyC6ytrZmQ3YcPHzLn5evrCz6fj99//x3x8fEYPny4SdeoohAIBJg/fz6mTZuGzp07Y+jQoXj27Bm2bNkCDw+PMoW7GzNvqwpnZ2fMnDkTS5YsQWFhIZo1a4aDBw/i4sWL2LlzJyu0ec6cOdi6dSuePn3KeLGFhISgZcuWGDt2LKKjo2FjY4PVq1dDpVKxBOa//voL06dPR0hICLy8vFBQUICLFy/iwIEDaNq0qUFls3v37nBwcECbNm1gb2+Pe/fuYeXKlejTpw/jvfP999/j3LlzaNGiBSZMmABfX1+kpKTg5s2bOHPmDGNwGDVqFLZt24ZZs2bh6tWraNeuHbKzs3HmzBlMnjwZ/fv3N/pZaAoLFizAiRMn0K5dO0yePBlKpRIrVqyAn58fa51cuHAhLly4gD59+sDNzQ0JCQlYvXo1nJ2dWQVcdbFo0SKcPXsWnTt3ZoqTLl++HFZWVvjiiy+Yfo0bN8a4ceOwadMmKJVKdOjQAX/99Rf27t2LOXPmsEL3hw4dCicnJ/j6+iIjIwObNm3CkydPcOzYMZbX9LBhwyAWi9G6dWvY2dkhOjoa69evh0Qiwffff8/0CwoKQrdu3bB161ZkZGSge/fuiI2NxYoVKyAWi00uokqhUKoPqiO9ezqSsTJMUFAQzpw5g6VLl8LJyUkrb3tJKkJeL8ns2bOxY8cOdOvWDdOmTYNUKsXGjRvh6uqKlJSUcqUsMobPP/8cu3btQq9evTB9+nRYWVkxctT+/fuZl2wTJkzAypUrMWrUKNy4cQOOjo7Yvn07JBIJa39cLhcbN25Er1694Ofnh7Fjx6JOnTp4/fo1zp07B7lcjiNHjhg9PmPkbltbW8yZMwcLFixAz5490a9fP0b3aNasmVHGgmHDhmHFihWYN28eAgICWB7kADBy5Ejs2bMHH374Ic6dO4c2bdpApVLh/v372LNnD06ePImmTZsiMDAQoaGhWL16NdLT09G6dWucPXvW5MgDTcqZsWPHIj4+Hr/88gs8PT0xYcIEVj8zMzMMHz4cK1euBI/H06onoAu5XM7UvCgsLESdOnVw6tQpvVkhgKJIsX79+qFnz564dOkSduzYgbCwMK110d/fHz169MD06dMhFAoZQ6pG3s7MzISzszNCQkLQqFEjyGQynDlzBteuXWNF9VU1ixYtQv/+/dGmTRuMHTsWqampWLlyJfz9/Y0qHF6SmqQvisVifP3115gyZQqGDBmCHj164OLFi9ixYwe+/fZbVkTFypUrsWDBApw7d45xQGrRogWGDBmCOXPmICEhAZ6enti6dSuePXvGcl6KiYlB165dMWzYMDRo0ABcLhfXr1/Hjh07ULduXcyYMaPUcY4fPx4pKSno3LkznJ2d8fz5c6xYsQKBgYHM/Wjs+4xOnTph5MiRWL58OWJiYpgUcRcvXkSnTp0wderUSlvPjXnftHXrVqxevRoDBw6Eh4cHMjMzsWHDBsjlcoMOAnPmzMGePXswePBgzJo1CwqFAmvXrkVhYSEWLVrE9HNwcMCXX36Jr776Cj179sSAAQNw584dbNiwAaGhoWjWrBnTd8aMGcjLy0NgYCAKCwsRHh7OXIvitVVmz56Nx48fo0uXLnBycsKzZ8+wbt06ZGdnsxxUbW1tMW7cOGzcuBFdunTBoEGDkJmZidWrVyM3N1crs0mth1CqjM2bNxMA5Nq1azq/T01NJWPHjiU2NjZEJpORHj16kPv37xM3NzcyevRoVt/k5GQydepUUqdOHSIQCIizszMZPXo0SUpKIoQQ8vTpUwKAbN68mdlm3rx5pORPrmvfGzZsIPXq1SM8Ho8AIOfOnWN9v2fPHgKATJw40ehzHz16NHFzc2O1ZWZmko8++og4OTkRMzMz4uXlRZYsWULUarXW9ps2bSKNGzcmQqGQWFpakg4dOpDTp08z3//zzz+kZcuWRCwWEycnJzJ79mxy8uRJrfFnZWWRsLAwYmFhQQAwY9J1vQgh5MyZM6RNmzZELBYTuVxOgoODSXR0NKuP5romJiay2jW/99OnTw1en2PHjhEApFevXqz28ePHEwDk119/1bnd+vXrSVBQEBGLxcTc3JwEBASQ2bNnkzdv3ph8bTp06ED8/PxY+3/06BFxdHQkPj4+WudXHF3bElI0v/r06aPVDoBMmTKF1Xbz5k3So0cPIpPJiEQiIZ06dSL//vuv1rZ3794lHTp0ICKRiNSpU4d8/fXX5Ndff9V5rc+dO0d69OhBFAoFEYlExMPDg4wZM4Zcv36d6aPrvijJkydPyLhx44iHhwcRiUTEysqKdOrUiZw5c4bVr7CwkCxYsIC4u7sTMzMz4uLiQubMmUPy8vK0rleHDh20jpORkUHEYjEBQHbs2KFzLJmZmWTOnDnE09OTCAQCYmNjQ1q3bk1+/PFHUlBQwPRLTk4mI0eOJHK5nCgUCjJy5Ehy69YtnfO8JJq5e/78eTJx4kRiaWlJZDIZee+990hycrLObcqyLkRHR5OuXbsSmUxGbGxsyIQJE8idO3e0xjh69GgilUrJ48ePSffu3YlEIiH29vZk3rx5RKVSMf009/GSJUvITz/9RFxcXIhQKCTt2rUjd+7cYfolJSWRKVOmkAYNGhCpVEoUCgVp0aIF2bNnD2t8+n6n0tA350vu69y5czrX1+XLlxM3NzciFApJ8+bNyT///EOCgoJIz549tbbdu3cva9uS65ix81YXJdfs4te2JADIvHnzDO5TpVKRRYsWETc3NyIQCIifn5/OeT569Gid93NKSgp5//33ibW1NZFIJKRDhw5az9NHjx6RUaNGkXr16hGxWExEIhHx8/Mj8+bNI1lZWQbHuG7dOtK+fXtibW1NhEIh8fDwIJ9++ilJT09n9YuPjydTpkwhLi4uxMzMjDg4OJAuXbqQ9evXs/rl5OSQL7/8klkTHBwcSEhICHn8+DHTx9hnoa51kxDdz/Hz58+ToKAgIhAISL169cjatWu11rqzZ8+S/v37EycnJyIQCIiTkxMJDQ0lDx8+NHidCCHkxo0bpGvXrkQqlRJzc3PSv39/ndsWFBSQ+fPnEzc3N2JmZkY8PT3Jzz//rNVv8eLFpEGDBkQkEhFLS0vSr18/cuvWLa1+y5YtI82bNydWVlaEz+cTR0dHMmLECBITE6PVNycnhyxcuJD4+voSsVhMFAoF6du3r879UiiU6oPqSG6sNqojGS/D3L9/n7Rv356RnzW/mb5jE2K8vG6sTEcIIbdu3SLt2rUjQqGQODs7k++++44sX76cACBxcXF6z5OQ/+RcXccxVr96/PgxCQkJIRYWFkQkEpHmzZuTo0ePam37/Plz0q9fPyKRSIiNjQ2ZMWMGOXHihM75fOvWLTJo0CBGJnJzcyNDhw4lZ8+eZfoY81saK3cTQsjKlStJgwYNiJmZGbG3tyeTJk0iqampWter5D1DCCFqtZq4uLgQAOSbb77ROZaCggKyePFi4ufnx9wzQUFBZMGCBSxZLzc3l0yfPp1YW1sTqVRKgoODycuXL42SeTVy+q5du8icOXOInZ0dEYvFpE+fPuT58+c6t7l69SoBQLp3717qvovz6tUrMnDgQGJhYUEUCgUZMmQIefPmjdYYNfdCdHQ0CQkJIebm5sTS0pJMnTqV5ObmsvapkTV37NhBvLy8iFAoJI0bN2bNjfz8fPLpp5+SRo0aEXNzcyKVSkmjRo3I6tWrWfvS9zuVhr45r08vKbku7d69mzRo0IAIhULi7+9PDh8+TAYPHkwaNGigta0hncaUeVsSXc8UU+R4faxfv554e3sTgUBAPDw8yM8//6z1XNAcu+T9nJubSz755BPi4OBAhEIhadasGTlx4gSrT2JiIpk4cSJzzgKBgHh5eZGZM2eW+i5Iw759+0j37t2JnZ0dEQgExNXVlXzwwQckNjaW1c/Y9xlKpZIsWbKENGjQgAgEAmJra0t69epFbty4wfSpjPXcmPdNN2/eJKGhocTV1ZUIhUJiZ2dH+vbty3rPVBqPHz8mAwcOJHK5nIjFYtK5c2dy9epVrX5qtZqsWLGC1K9fnzm///u//2NdJ0KK1uJGjRoxelmXLl3In3/+qbW/8PBw0r59e2Jra0v4fD6xsbEhAwcOZF1TDYWFhWTFihUkMDCQyGQyIpPJSKdOnXTut7bDIaQSK3dR3koOHTqEAQMG4MKFC6yC4BQK5d2lMteFMWPGYN++fQa9fZ49ewZ3d3csWbIEn3zySYWOobpQq9WwtbXFoEGDdIb+UygUCoVCqRlQHYlSnJkzZ2LdunXIysrSW/SXQgGKUoIGBgZi27ZtGDlyZIXue/78+ViwYAESExNhY2NTal8Oh4MpU6aYlFmhphMYGAhbW1u9dSwpFAqF1hihmMyGDRtQr149g6k2KBTKuwNdF8pPXl6eVnqLbdu2ISUlpdRaDBQKhUKhUKofKgu9u+Tm5rI+JycnY/v27Wjbti01ilAMsmHDBshkMgwaNKi6h1Jr0VUQ+q+//sKdO3eoHkWhUEqF1hihGM3u3btx9+5dHDt2DMuWLav0fKkUCqXm866sC4mJiVpFXosjEAhY+V3LwuXLl/HRRx9hyJAhsLa2xs2bN/Hrr7/C398fQ4YMKde+KRQKhUKhVA7viixE0U+rVq3QsWNH+Pj4ID4+Hr/++isyMjIwd+7c6h4apQZz5MgRplba1KlTIZVKq3tIlUJKSgoKCgr0fs/j8bRqRprK69ev0bVrV4wYMQJOTk64f/8+1q5dCwcHB1bxaQqFQikJNYxQjCY0NBQymQzvv/8+Jk+eXN3DoVAoNYB3ZV1o1qwZnj9/rvd7TVHp8lC3bl24uLhg+fLlSElJgZWVFUaNGoXvv/8eAoGgXPumUCgUCoVSObwrshBFP71798a+ffuwfv16cDgcNGnSBL/++ivat29f3UOj1GCmTZuG+Ph49O7dmylu/jYyaNAgnD9/Xu/3bm5uePbsWbmOYWlpiaCgIGzcuBGJiYmQSqXo06cPvv/+e1hbW5dr3xQK5e2G1hihUCgUCsUA//zzj1aahOJohHEKhUKhUCgUCoVCoRRx48YNpKam6v1eLBajTZs2VTgiCoVC+Q9qGKFQKBQKhUKhUCgUCoVCoVAoFAqF8s5Ai69TKBQKhUKhUCgUCoVCoVAoFAqFQnlnqJU1RtRqNd68eQNzc3Na3I5CoVAoFAqF8k5ACEFmZiacnJzA5VL/JophqN5EoVAoFAqFQnmXMEVnqpWGkTdv3sDFxaW6h0GhUCgUCoVCoVQ5L1++hLOzc3UPg1ILoHoThUKhUCgUCuVdxBidyWTDyIULF7BkyRLcuHEDsbGx+P333zFgwADme0II5s2bhw0bNiAtLQ1t2rTBmjVr4OXlxfRJSUnBtGnTcOTIEXC5XAwePBjLli2DTCYzagzm5ubMCcrlclNPgUKhUCgUCoVCqXVkZGTAxcWFkYUpNZeaoDMBVG+iUCgUCoVCobxbmKIzmWwYyc7ORqNGjTBu3DgMGjRI6/sffvgBy5cvx9atW+Hu7o65c+eiR48eiI6OhkgkAgC89957iI2NxenTp1FYWIixY8di4sSJCA8PN2oMmjBwuVxOBXwKhUKhUCgUyjsFTYlU86kJOhNA9SYKhUKhUCgUyruJMToThxBCynOA4t5PhBA4OTnh448/xieffAIASE9Ph729PbZs2YLhw4fj3r178PX1xbVr19C0aVMAwIkTJ9C7d2+8evUKTk5OBo+bkZEBhUKB9PR0KuBTKBQKhUKhUN4JqAxcO6kunQmgc4ZCoVAoFAqF8m5hivxboVUbnz59iri4OHTt2pVpUygUaNGiBS5dugQAuHTpEiwsLBgBHwC6du0KLpeLK1euVORwKBQKhUKhUCgUCqVGQXUmCoVCoVAoFAql+qnQ4utxcXEAAHt7e1a7vb09811cXBzs7OzYg+DzYWVlxfQpSX5+PvLz85nPGRkZFTlsCoVCoVAoFAqFQqkSKktnAqjeRKFQKBQKhUKhGEuFRoxUFt999x0UCgXz5+LiUt1DolAoFAqFQqFQKJQaBdWbKBQKhUKhUCgU46hQw4iDgwMAID4+ntUeHx/PfOfg4ICEhATW90qlEikpKUyfksyZMwfp6enM38uXLyty2BQKhUKhUCgUCoVSJVSWzgRQvYlCoVAoFAqFQjGWCjWMuLu7w8HBAWfPnmXaMjIycOXKFbRq1QoA0KpVK6SlpeHGjRtMnz///BNqtRotWrTQuV+hUAi5XM76o1AoFAqFQqFQKJTaRmXpTADVmygUCoVCoVAoFGMxucZIVlYWHj16xHx++vQpbt++DSsrK7i6umLmzJn45ptv4OXlBXd3d8ydOxdOTk4YMGAAAMDHxwc9e/bEhAkTsHbtWhQWFmLq1KkYPnw4nJycKuzEKBTK241KTXD1aQoSMvNgZy5Cc3cr8Lic6h4WhfJWUpb7jd6jFArlXYbqTBQKpSZA5TEKpWqhehOFUrsw2TBy/fp1dOrUifk8a9YsAMDo0aOxZcsWzJ49G9nZ2Zg4cSLS0tLQtm1bnDhxAiKRiNlm586dmDp1Krp06QIul4vBgwdj+fLlFXA6FArlXeBEZCwWHIlGbHoe0+aoEGFesC96+jtW48golLePstxv9B6lUCjvOlRnolAo1Q2VxyiUqoXqTRRK7YNDCCHVPQhTycjIgEKhQHp6Og0Pp1DeMU5ExmLSjpsouXBp/CnWjGhCBQgKpYIoy/1G71EKpfKgMjDFVOicoVDeTag8RqFULVRvolBqDqbIvxVaY4RCoVAqE5WaYMGRaC3BAQDTtuBINFTqWmfvpVBqHGW53+g9SqFQKBQKhVK9UHmMQqlaqN5EodReqGGEQqHUGq4+TWGFmJaEAIhNz8PVpylVNygK5S2lLPcbvUcpFAqFQqFQqhcqj1EoVQvVmyiU2ovJNUYoFAqlukjI1C84FOeDQ5+iuScXDe0boqF9QwTYBcBaYl3Jo6NQ3i6Mvd+K9yvLNhQKhUKhUCiUisNYOSt07wdoVLcQDe0aMnqTp5UneFxeJY+QQnm7oHoThVJ7oYYRCoVSa7AzFxnuBOBh2nVE3IpgtdUxr8MI/Jo/b2tvmPHMKmOoFEqtx9j7rXi/smxDoVAoFAqFQqk4jJWz4nIe4vmDCBx+cJhpE/FF8LfzZxlLAuwDYCOxqazhUii1Hqo3USi1F2oYoVAotYbm7lZwVIgQl56nMxcnB4CNOR8/9P8KkYl3cTe+6O9p2lO8znyN15mvcfzRcaa/GdcMPrY+RUJ/MeHfQeYADoej4wgUyruDofsNIHBUiNHc3crobTgAHBQi1jYUCoVCoVAolIrDGHnMTi7A5uHLEZkYUaQzJdxFZEIkcgpzcP3NdVx/c521jaPMUcvJrIFNAwh4gio5JwqlJlMWHYjqTRRKzYBDCKl1lXxMqS5PoVDeLk5ExmLSjpsAwBIgNGaMNSOaoKe/I2ubjPwMRCZEMoYSzV9mQabOY9hIbLSMJb62vhCbiSvhjCiUmou++41ADYCDD7pw8UW33kZvwwEHa0cEad2jFArFOKgMTDEVOmcolHeTsuhMKrUKT1Kf/KcvJRT9+yT1ic5j8Ll8+Nj4sIwlAXYBcDJ3ok5mlHcOQzrQqrDG6NOwjtHbcMHVeZ9SKBTDmCL/UsMIhUKpdZyIjMWCI9GsYmWOChHmBfsaLTgQQvAi/YWW4P8w+SHURK3Vn8vhwsvKS8tTyk3hRgV/yluNrvtNKMjBS/wMnjgCf4/9G40cGhncRolEZIo24/aMLXC3dK+y8VMobxNUBqaYCp0zFMq7S0XoTACQmZ+JqMQoLSez9Px0nf2txFZaTmZ+dn6QmEnKfU4USk1G1z2n4iQh2WwdxrQIxKreq7TeHejTm9r5x2HXiM+rbOwUytsENYxQKJS3HpWa4OrTFCRk5sHOvCjElMctv4EitzAX0YnRWgaTpJwknf3lQjkC7AJYxhJ/O3/IhXRtorw9lLzfAl1l6BPeC+eenYOz3BlXxl+Bk7lTKdsI8eXfw3Hu2VkM8R2CPUP2VNOZUCi1GyoDU0yFzhkK5d2msnQmQgheZrzUMpY8TH4IFVFp9eeAAy9rLy2DiZuFG7gcbrnHQ6HUFErec2/yLmDIvsEgIFjafSk+avVRqds8y7iLmX/2hRmPh6jJUfCy9qqGs6BQajfUMEKhUCgVCCEE8dnxWoJ/dGI0CtWFOrepa1FXS/D3tPIEj8ur4tFTKJVDam4qWm9qjftJ99HEsQkujLkAqUCqt//d+LtovK4x1ESN82POo71b+yocLYXydkBlYIqp0DlDoVCqkjxlHu4l3mM5md2Ju4PEnESd/c0F5kXF3kuk41KIFFU8cgql8lh6aSk+PvUxOODgwLADGNBgQKn9e+/sjeOPjqOfdz8cGn6oagZJobxFUMMIRSeV5S1Cqb3QOVE+ClWFeJD8QMtg8jrztc7+Ir6oSPAvZiwJsA+AjcSmikdOoVQMT1KfoOXGlkjMSUQ/7344MPRAqca/D49+iHU31qGxQ2Ncm3CNGgprOfQZUvVQGZhiKnTOmA5d2yi6oPOifMRnxWtF5EcnRqNAVaCzv5vCTSuFsaeVJ/hcfhWPnEIpP4QQTD42GWtvrIXETILzY86jqVNTvf3vJd5DwJoAqIgKp0eeRtd6XatwtJSKhj4/qh5qGKFoUVH5RSlvD3ROVB4puSmIiI9gCf+RCZHIKczR2d9R5qgl+DewaQABT1DFI6dQTOfSy0votLUT8lX5mNliJn7u+bPevonZifBc4YmM/Axs6rcJYxuPrcKRUioS+gypHqgMTDEVOmdMg65tFF3QeVE5FKoKEZMSo+Vk9jLjpc7+Ir4Ivra+WlH5tlLbKh45hWI6SrUSwbuCceLRCTjIHHBl/BW4Klz19p9xfAaWX10Ofzt/3PrgFjUK1lLo86N6oIYRCosTkbGYtOMmSv7QGvvkmhFN6A35jkHnRNWjUqvwJPWJlqfUk9QnOvvzuXz42PhohZU7mTvRYu+UGseeqD0Ytm8YAGBlr5WY0nyK3r4//fsTPjn9CRxkDng49SHMheZVNUxKBUGfIdUHlYEppkLnjPHQtY2iCzovqp7U3FREJESwjCURCRF6ncwcZA5axpIGNg0g5AureOQUSulk5Geg7aa2iEiIQIBdAP4e97fe2qQpuSnwWuGFlNwUrOmzBh82/bCKR0spL/T5UX1QwwiFQaUmaLv4T5Z1sjgcAA4KEf7+rDMN5XpHoHOiZpGZn4moxCgtT6n0/HSd/a3EVlqCv5+dHyRmkioeOYXC5ruL3+GLP78Al8PFkdAj6O3VW2e/AlUB/Fb74VHKI8xpOweLuiyq4pFSygN9hlQvVAammAqdM8ZB1zaKLui8qDmoiRpPU59qOZk9TnkMovXascjJzNvaWysqv455HepkRqlWXqS/QIuNLRCXFYceHj1wNOyo3miQlVdXYtrxabCR2CBmWgwsRBZVO1hKmaHPj+qFGkYoDJceJyN0w2WD/XZNaIlWHtZVMCJKdWPsnOjeLBrN6lrAReECF7kLXBWu1LO7iiCE4GXGSy1jycPkh1ARlVZ/DjjwsvZiGUwC7ANQ16IuuBxuNZwB5V2EEILxh8dj0+1NkAlk+Hvs32jk0Ehn38MPDqP/7v4Q8oS4N+Ue3C3dq3i0lLJC5YrqhcrAFFOhc8Y46NpG0YWx82JQmxdoVc+G0ZscZA60jloVkVWQhaiEKC2DSVpems7+liJLLWOJn60fpAJp1Q6c8k5z480NtN/SHjmFOfgw6EOs7rNap8GuUFWIRmsb4V7SPcxqOQs/9fipGkZLKQtUrqheTJF/aZK6t5yETN3WybL2o9R+jP2td94+ig2RF1htCqGCEfg1xhLms8IFznJniPiiyhj2OwWHw4GrwhWuClf0rd+Xac9T5uFe4j2W4H8n7g4ScxLxMPkhHiY/xL7ofUx/mUCGALsArXRcCpGiOk6L8pbD4XCwtu9aPEt/hj+f/ok+4X1wZfwV1JHX0eobXD8YXdy74OzTs5h9Zjb2DtlbDSOmmIJKrcLZp2ex5Ow5AG0N9qdyBYVCqU1QnYmiC2N/73VXd+Pnm//pTXwuH3XM67D0JhfF/3Sn//3fWmxNIxcqAJlAhhbOLdDCuQXTRgjB68zXWk5m95PuIzUvFeefn8f55+eZ/hxw4GHloRWV727pTp3MKJVCkFMQwgeFY+BvA7H2xlp4WXthVqtZWv3MeGZY2mMpeu3sheVXl+ODph+gvnX9ahgxxRRepr/EhmtHALgZ7EvliuqHGkbecuzMjXtJbWw/Su1EpSa4+jQFCZl5SMrMN2qb3t5tkcOV4WX6S7zMeIm0vDSk56cjPSEdkQmRerezk9oxAr8uA4qjuSMtHFZGRHwRGjs2RmPHxqz2+Kx4LS+p6MRoZBVk4dKrS7j06hKrv5vCTctY4mXtRX8XSrkx45lh/9D9aP1ra9xLuofgXcG4MPYCZAIZqx+Hw8HPPX5G4LpA7IvehwvPL6C9W/tqGjWlNB4kPcDWO1ux7c42vM58DaEqAA5GGEaoXEGhUGoTVGeiAGydyc5cBBuZcTUq2rsHIgNKvEx/iTeZb6BUK/E8/Tmepz/Xu42YL4az3JntaFbCgEKj9csGh8OBs9wZznJnVmrXfGU+7iXd0zKYxGfH41HKIzxKeYQD9w4w/aVmUgTYB7CMJQH2ATSdEaVC6N+gP37q/hNmnZqFT059gnqW9TCgwQCtfj09e6K3V2/8EfMHPjn1CQ6HHq76wVIMklOYg4P3D2LL7S048+QMBCp/OOA7g9tRuaL6oam03nI0ee3i0vN0ZN6kee3eBU5ExmLBkWhWbkMuB1DrufP1zYnM/Ey8zHjJGEqYfzNe4kX6C7xMf4lcZa7B8fA4PDiaO/7nMVXciPI/RcBWYks9qMpJoaoQMSkxWoL/y4yXOvsLeUL42flpeUrZSm2reOSUt4GnqU/RYmMLJOYkIrh+MH4f9rvOlBKTjk7C2htr0dihMa5NuEbTTtQQ0vLSsCdqD7bc3sIyrFqKLDHcLxRXbvdFSpaayhXVAJWBKaZC54xxGNKZAMCRrm1vNbp0Jge5EHlKNdJzCo1+5inVSsRlxeFl+v90JB16U0J2glFjKh6tXzzahEbrVywJ2QmIiI9gOZlFJUQhX6XbodBF7qKVjqu+dX3qZEYxGUIIpvwxBWuur4GYL8aFsRfQ1KmpVr/7SfcRsCYASrUSp0acQjePbtUwWkpJCCG49OoSttzegt+ifkNGfgbzXXvXjkh98REyc3lUZ6oGaI0RCosTkbGYtOMmALBuSAI1OOBg7Ygg9PR3rJ7BUSoVzW9v7E2uWY7XjGhi8pwghCAlN4UR/hlFoJgy8CrjFZRqpcF9CXlCOMudS1UEFEIFNZ6UgdTcVEQkRLCMJZEJkcguzNbZ30HmoFW7xMfGB0K+cR50lHeXy68uo9PWTshT5mFGixn4pecvWn0SsxPhtcIL6fnp+LXfrxjXeFzVD5QC4L9UWVtub8Hv939HnrLoxRCXw0VPz54Y02gMgr2DIeKL9MoV5XmGUIyDysAUU6FzxnhK05kADn4e5otBjetVy9golYs+nYmD/+ZC8f9rPgNle+blKfPwOuN1qXqTvhoZJaHR+pWDUq1ETHKMVlT+i/QXOvsLeUL42vpqGUzspHZVPHJKbUOpViJ4VzBOPDoBB5kDroy/AleFq1a/mSdmYtmVZfC388etD27R+7oaeZn+EtvvbseW21sQkxLDtNe1qIvRjUZjVKNRqGdZj+pM1Qg1jFC00OUBo0QiMoSb8M/kVQiwD6jG0VEqA43nW/HfvCQlI0ccFSLMC/attMVZpVYhPjueFXVSUhGIy4oDMcKUYy4wLzVvr4vcBWIzcaWcx9uGmqjxNPWpluD/OOWxzt+Cz+XD29pbS/CvY16HGqsoLPZG7cXQfUMBACt6rcDU5lO1+iy9tBQfn/oY9lJ7xEyLoWkjqpiSqbI0+Nr6YmzgWLwX8B4czbWfCbrkisp+hlCoDEwxHTpnTEPX2gZuChL4azCyWQDWBa+rvsFRKgVDOhMHgEJiBhGfh7iMqnvm6YrWf5HxgvW5vNH6GgMKjdY3nrS8NEQmRLKczCISIpBVkKWzv53UTisi38fWh0b6UFhk5Geg7aa2iEiIgL+dP/4Z9w/kQvYzOyU3BV4rvJCSm4LVvVdjUrNJ1TTad5OSqbI070mkZlKE+IZgTOAYtHdrr1WXiOpM1QM1jFB0ws6ZKsSiK+/jaMxhNHFsgsvvX4YZz6y6h0ipQC49TkbohssG+9naX4CNuRkc5BL4O4vhZO4AB5kD7GX2cJA5wFJkWaWCcoGqgOVBVfxfjRElJTfFqH1Zi63ZBpMSioCTuROd96WQVZCFqIQoLYOJPg82S5GlVu0Sfzt/SAXSqh04pUbx/d/fY87ZOeByuDg8/DD61O/D+r5AVQC/1X54lPIIn7f5HN91NZyLlVI+0vLS8Fvkb9hyZwsuv/rvOWEpskRYQBjGBI5BkGOQwbW/ZC725u5WNBS8kqEyMMVU6JwxnZJrWy7nLrps7wwAODniJLp7dK/mEVIqEmN1JhvnXbCWWELCdYCjQopAFxmc5EV6k4PMAXZSOwh4gioYcRHFo/U1aY2LO5u9SH+B15mvTY7W16c3KUSKKjir2omaqPEs7ZlWCuNHKY90OpnxODx423hrGUyc5c7UQPUO8zL9JVpsbIHYrFh09+iOo6FHtd5VrLy6EtOOT4O12BqPpj+i9W4qGUII/n35L5MqK7Mgk/muY92OGNNoDAb7Dtaqp1kSqjNVPdQwQjGK2MxY+K32Q2peKhZ2XIi5HeZW95AoFcih268xY/dtg/0SzX5ADv+C3u8FPAHspfaM0F/8/0zb/4wohh4IFUV2QTZeZbwqVRHQlxqqOBxw4Gju+F/EidyVla7LRe4Ce5m9ltX/XYYQgteZr7UE//tJ96EiKq3+HHDgYeWhJfi7W7rT6/qOQAjBhCMT8OutXyE1k+LvcX8j0CGQ1efwg8Pov7s/BDwB7k+5D3dL9+oZ7FuMSq3CmSdnsOXOFvx+73cmbzaPwytKlRU4BsH1g2mavBoOlYEppkLnTMUw/fh0rLi6As5yZ0ROiqQvid8iKkpnAgArsRVbR9KlN0ntYSOxqZK6aiWj9XXpTWWN1mcVjafR+jrJLshGdGI0y8nsTtwdpOal6uyvECq0IvL97fyrTMemVD833txA+y3tkVOYgw+CPsCaPmtYxjKlWolGaxshOjEaH7X8CEt7LK3G0b69vEh/ge13tmPLnS14lPKIaa9rURdjGo3BqEajqL5aw6GGEYrR7IrYhbADYeBz+bg24ZrWyyqKcdREC7Cx3k9jOqVDLC0SiuOy4xCXFYf4rHjEZcXpFdr0ITWTso0lUt0GFHupfaW+fCOEIC0vTWe0SfF6JwWqAoP7MuOaseqd6FIEqjqqprIpy3zOV+bjXtI9rbDyuKw4nf2lZlIE2AewapcE2AXAUmxZGaf0VlIT153iFB+ftZSPef+OwJ/PzqCOeR1cGX8FdeR1mL6EEHTf0R1nnpzBYJ/B2Dd0XzWOvHZTcl7IzROw4+42bLu7DW8y3zD9/Gz9MCZwjN5UWZSaCZWBKaZC50zFkF2QjcB1gXiU8ghjA8diU/9N1T2kWklNlF2M1Zk+7JYHmXlskc5U7C8+u0hvMiYyQwOXw4Wd1K5UA4qm3UJkUal6hq5o/ZJ6k7HR+jYSG616J8WjUN62aP2yzGdCCN5kvtGKyL+fdF/vHPKw9NAymNSzrEedzEygJq49xSk+vpjUG5h9fhAIR4Ufu/2Ij1t/zOp78tFJ9NzZE3wuH1GTo1Dfun41jbp2U3JO+DuLcPjBQWy5swVnn5xlpcoa4jcEYxqNQTu3dvS+qyVQwwjFaAghCNkbggP3DqChfUNcm3CtSkOA3wZqas5ATb7cuPQ8nT5AHAAOChH+/qyzXqEgX5nPCPsaYwnzV8yIEpsVi5zCHJPGZymyNMqIYiuxrRSPKjVRIyE7QW+6rpfpLxGbFQs1URvcl8RMUmreXhe5S61JJ1XR8zkhOwER8REswT8qIYrxVi+Ji9xFS/Cvb12fFpcrQU1ddzToGp+9XIA0wUY8zN6Dxg6NcWHsBZYHXER8BALXBUJN1Phr9F/oULdDdQy9VqOvnliKYD1yeZdgJbZCmH8YRgeONipVFqXmQWVgiqnQOVNx/P3ib7Tf3B4EBEdDj2qlhqSUTk2VXSpCZ1ITNVJzU7WMJbqMKInZiUZFaGgQ8ARGRaE4yBwqTd/QROuXNJgUj0IxJlqfy+HCQebwn55U3IjyPwOKndSuVrx4rOj5XKAqwP2k+1pR+bFZsTr7S8wk8LfzZ0XkB9gHwEpsVeZzelupqWuPBl3jk4kK8UT9A/J4l7F/6H4M9BnI2qZveF8cizmG4PrBOBx6uKqHXOvRdc1VnGQkm61FLu8SANNSZVFqHtQwQjGJhOwE+K32Q1JOEua2n4uFnRZW95BqDSciYzFpx00t0VYjMq8Z0aRaH7aa8QFgjbEyxpdVkPWf0K/DiFK8rVBdaPR+uRwubCW2LGNJcSMK01YJ9VAKVYWIzYplh52XMKAk5SQZtS9LkaXevL0uChc4y52r3ShZVfNZqVYiJjlGy1PqRfoLnf2FPCF8bX216pfYy+zLPZbaSG1Zd3SNjwDIN1+JOOUJ9K3fFweHHWQZPicdnYS1N9aisUNjXJtwrUrSTLwt/HH3NSaH30bRVf5vHSRQgwMORncoxBfdetNUWbUcKgNTTIXOmYrl45MfY+nlpXCUOSJqchSNdDWS2iK7AJWvMynVSiRmJ5ZqRNG06avrpw+ZQGZUFIq9zL5C9Y6S0fqMAaVEzUhjdMCS0fq6DCjVHa1flfM5MTsREQkRLGNJVGIU8pR5Ovs7y521UhjXt67/VkXqmEJtWXt0600ECYJFgPA2zo85j2Z1mjHf30+6j4A1AVCqlTg14hS6eXSr0nHXZk5ExuLDHTehT2fqFPgYX/XoR1Nl1XKoYYRiMnuj9mLovqHgcXi4Mv4KgpyCqntINR6Nd1FxK3NxjPEuqgpqmocEIQSpeakGo1DisuKQkJ1gkkeVGdfMqCiUiqyHkluYy9Q70aUIvEh/wSrSpQ8OOLCX2WtHnBT77CBzqLQXxTVhPqflpSEyIVIrHVdWQZbO/nZSOy3B38fWByK+qFLGVxOoCb9TaRgzPisZF9EIQZ4qB9ObT8eyXsuY7xOzE+G1wgvp+enYGLwR7zd5v4pGXnu5n3Qfm29txe5zvoDaEhxo/+7VPS9qGjU9nUJpUBmYYip0zlQsuYW5aLyuMR4kP8DIhiOxbeC26h5Sjaemyy4aaprOBAB5yjxGLyotCiU2Mxa5ylyT9l28HkppUSgVVQ9FV7R+Sb3J2Gh9qZlUK11XVUXr14T5rFKr8CjlkZaT2bO0Zzr7C3gC+Nj4aEXl20vt3+ro4ZrwW5WGMePjmWXiMe892MtscWX8FbhZuDHfzzwxE8uuLIOfrR9uf3ibZlgwQE5hDvZFHcCCfXwolTKqMxlJbdWbqGGEUiaG7xuO36J+g5+tH25MvEG9Sg1gbD7aXRNaopWHdRWMSD+1dTFTqpVIykkyKgqlJtdDSc9L1/KYepHBjkLRl1qqOHwuH3XM6+jN2+uicIG12LpMAq6x89mn/kkEukrhYeWBepb14GHpAWe5c6UZbNREjWdpz7TCyh+lPNJpNONxePC28WYZTALsA+Aid3krBP+avu4Ynae7ez7mXBwMAFjeczmmtZjGfLf00lJ8fOpj2Evt8XDaQ8iF9DlfktTcVPwW9Ru23N6CK6+vQKgKgEPBdwa3qwnPo+qmJr74MgUqA1NMhc6Ziufyq8tos6kN1ESNg8MOon+D/tU9pBpNTZddilNbdSZCCDt6vxQjSmXUQ9G0lbceSlVF67sqXFFHXqdMUTPGzmeXuvsR4CJi9KV6lvVQz7IezIXmJh/TWNLz0tlOZgl3EREfoddJz1Ziq2Us8bX1fWuczGr62mPs+KT2GxCdcQh+tn74Z9w/UIgUAIr0Ac8VnkjJTcGq3qswudnkyh5yrYMQgn9e/oMtt7dgT9QeFOTWpTqTCdRmvYkaRihlIiknCX6r/ZCQnYDP23yO77oaXjDeZQ7dfo0Zu28b7LdseCD6B9Yx2I9SPgzVQ9G0laceiqFUXmWth0IIQVJOks68vRpvqjeZb6AiKoP7EvPFcJY7swvEl1AEdAnkxs7nRLMfkMO/wGoz45rBzcKNEfqZf/9nPKmMnJzZBdmITozW8pTSVxxSIVRoCf7+dv61Ll+osb+Tg/NxfNAmCIN8BjHCc1Vgyrr4IHsnPjvzGbgcLg4NP4S+9fsCKMqx7L/aHzEpMfiszWf4vuv3lTzq2oFKrcLpJ6ex5fYWHLx/kDGmcsCBTN0RVvkfG9gDfR7V9HQKxkBlYIqp0DlTOXx+5nMs/mcx7KR2iJocBRuJTXUPqcZCdaaahTH1UDRt5amHUpoBpTz1UIpH67MMKOWM1neVu7LSdemL1i+PzgQUGSMYPcmiHsvZzNHcscLrqxBC8Dz9uZaTWUxKjM7oHC6Hi/rW9bWi8l0VrrXOyczY36ql3z183q0rGtk3qtJzNHZ88/q74st/eyA2Kxbd6nXDsbBjTGq0VVdXYerxqbAWWyNmWgxN7/g/XqS/wLY727D1zlY8SnnEtMvVnWGZP8vg9vR5VPv1JmoYoZSZ3+/9jkF7BoHL4eLfcf+ihXOL6h5SjaWmeyBQ9KPxqNIyoNTgeihKtRJxWXFsr6kSikB8drxR+1IIFSyjiavCFco8d2z+0/AL9MFtXqKAF4XHqY/xJPUJnqY9RYGqoNRt7KR2jJdUSeNJRSoAhBC8yXyjZSy5n3Rfr2ech6WHVu0SDyuPGlv00dh1J04wB/m8CAh5QvSp3weh/qHo49UHYjNxjRjfrgkt0bKeFSYemYiNtzZCaibFxbEX0dixMQDgyIMj6Le7HwQ8Ae5NuYd6lvUqddw1mXuJ97D1zlZsv7sdbzLfMO18Lp+Z1zRixDAqNUGb788iLkN3dF5tCZ2nMjDFVOicqRzylHkIWh+E6MRoDPcfjl2Dd1X3kGosVGeqvRSvh2IoCqWi66Fo2spSD6VktL6W81k5ovVRUB+/XXQwuO3oTqlQmd3Hk9QnjN5kKNpFyBPC3dJdS1/S/FWkHJ9TmMN2MvvfX3Juss7+cqFcy1jib+dfqREw5cVUvcnHxgeh/qEIDQiFp5VnjRnfrgktIZQ8R7vN7ZBTmIOJTSZibd+14HA4UKqVaLS2EaITo/FRy4+wtMfSSh93TSW7IBu/3/8dW25vwZ9P/2SMulwOlzECUp3JOFRqgtbfn0F8hu73PLVBb6KGEUq5GHFgBHZG7EQDmwa4OfFmpb9Iq61ockLGpefp9KOpDYsFpXQM1UMp3lbWeii6DChlrYeSr8xn1TvRpQjoVVoIF3XyfgUP1uBAl1GAQCEhWDXaCm4WrnA0dwSfy4dKrcKbzDcsoZ/5N+WxXuFag4gvgruFu85IE3cL9wpZfwpUBbifdF9L8I/NitXZX2Imgb+dP0vwD7APgJXYqtxjKS/GrDs25nz0a3sdu6PCEZ0YzXxnLjDHQJ+BCPMPQ5d6XSolD62h8RGooeIkY36IGuODxqFQVYje4b1x5skZOJk74cr4K3CWO4MQgu47uuPMkzMY7DMY+4buq/Cx1mRKpsrSUFywB4ryg4f4hGC4Xyjm/KZCPH0egRCC2KxYPEx+iJjkGMSkxOBh8kPcf6NCXsKHBrev6YoQlYEppkLnTOVx/c11tNzYEiqiwt4hexHiG1LdQ6qRUJ3p3cBQPRRNW3nqoZRWUN6UeiiEECTmJOpN1/Uy/aX+aH0jdCa5WIXFoUK4WRal8dIYDzLyM/Ak9QmjJxXXm56nPzeY4sxR5siKMCn+r53UrtzRDoQQxGXFaTmZ3Uu8p9dZ0N3CXSsq38PSo9LSLJuCMWuPQkLg4b0Vx2KOsIxlzes0R6h/KIb5DYOjeeV4xRujN/H5Wbg8pztspdY4/OAwBuweAAKCJd2W4JPWnwAATj0+hR47eoDP5SNyUiS8bbwrZbw1kZKpsopHi3HAYb2fae/WHsP8QrHltAcSMwro8whFxqRHKY8QkxKDmOQYPEwp0p8ex3EhzPjM4PY1WW+ihhFKuUjJTYH/an/EZsXi41Yf48fuP1b3kGostT28jFJxmFQPJTcdQrUfeMQSKk4q8rlRAEd/oUFNPRRDUSjG1EPJzM/U8pjSRJ08jVOgMHkMAMIS9AnUADhIFCxCLu8SgKJaHo7mjjrz9mry+dpKbFkKQEnjyfO05wbTgzmZO+kU/j2sPGArsS2XApCYnYiIhAiWsSQqMQp5St0F8Jzlzlq1S7ytvZlQ5qpCs+4AYK09JdcdQggiEiIQHhGOXZG78CL9BdPXVmKLoX5DEeofilYurSo0Qqa08REQJPxvHs1tPxcLOi5ARn4GWm9qjejEaAQ6BOLCmAswF5ojMiESjdY2gpqo8dfov9ChbocKG2NNRF+qrJJIzCQY0GAAQv1D0d2jO+NFaey8eBvQpB98mPxQS5B/lPII2YXZWttIlO1hWzjb4L5reug8lYEppkLnTOUy98+5+ObiN7CR2CBqchTspHbVPaQaybv0jKKUjjH1UJi2zATwlN5G60zF66EYSuVlqB5K8Wj9ko5mj97IkB4/FMboTAA7Wr94bUjNv85yZ/C5fLxMf6nX2Sw9P73U6yo1k2pH6P/PiOKmcCtXzcwCVQEeJD3Qql3yOvO1zv5ivrjIyaxEVL61pOpfoBq79qTnpePg/YMIjwzHmSdnGEckDjjo5N4JYf5hGOQzqMJTVekbX9FngkTBIrjZp+KPsD/gbumOZZeXYebJmQCAfUP2YbBvUc3GvuF9cSzmGPrW74sjoUcqdIw1kedpz5lUWY9THzPtJY0hjR0aIywgDMP8hsFF4QLg3Xse5Svz8Tj1McthTKM/6buH3wa9iRpGKOXm6MOjCN4VDA44uDj2Itq4tqnuIdVYTkTGYv7hKFZ6jtpSkIhS9eiaL+ZiFZo3eA6R7D5LOShrPZTixhJT66Ecj4jFvCORSCgWNikR5sHV5SpyeJfwMuMlXmW8Mqpoo5AnhLPcWa8i4GheJIQ+TXv6n+dUWtG/j1MfIyM/o9T9axQAXTl63SzcylRQUaVW4VHKIy1PqWdpz3T2F/AE8LHx0fKUspfaV2qOWlMLoamJGpdeXsKuyF3YE7UHiTmJzHduCjcM9x+OsIAwBNgFVMi49Y3vq76++CdxFb69+C0AYGTDkdjYbyPeZL5Bi40tkJCdgD5efXBw+EHwuXxMPjYZa66vQaBDIK5PuF4jvM8qmnuJ97Dl9hZsv7tdbxSTGdcMPT17IiwgDMH1g/Xm5a7NBfJ0kZaXxor8YIT55JhSXxDwODzUtagLL2sveFl5ob51fajzPLD0D/0vUzTUZM8ngMrAFNOhc6ZyKVAVoNmGZrgbfxeDfQZj75C9tS4Pf1Xxtj2jKJXLichYzD8Sjbhi80UuUaOtXyxk8kdaRpWy1kMxFIWirx6KLp1OKiqAV907KBRcMxytXwI7qZ1WXUjGcGLuDJGZCC/SX2hFmjxOfYyX6S9LPXcOOHBRuOh0NqtnWQ9WYqsyrVvJOclaTmaRCZF6I4KczJ200nF523iXSWczBVPXnviseOyN3otdkbvw78t/mXYzrhl6e/VGqH8ogr2DITGTVOr4xrST4ZtrIXiV8Qp2UjscCzuGIMcgTDs+DauurYKIL8L5MefRvE5zPEh6AP81/lCqlTg54iS6e3SvkLHVJLILsnHg3gFsuVOUKksfXlZeTEq0BjYNdPZ5255HhapCPEt79p/DmMb4kRKDF+kvdNYT0mAltmL0JS8rL3hZeyE/xxXzDqQaPG5N1puoYYRSIYw9NBZbbm+Bp5Un7nx4p8IW/rcRlZrA6fv2yMrlYn3/JRjepNk7EXpHMY2yRBiVVg+lpIdVWeqh6DKi2ErskZFlC6gU8LS1Ref6buDz/vOGUqlViM+OZ0WdMJ5U//sclxVnlHJiLjDXKhLvqnCFs7kzzIXmKFAV4HXma62IE0MKAJfDhbPcWW9BeFPTYqXnpSMyIVLLU0pfcUdbia2Wl5SvrW+FpiZUqQmuPk1BQmYe7MxFaO5uZdS6o1QrcfbJWYRHhuP3e7+zzsHX1hdh/mEIDQgtd12P0sa38eZGfHj0Q6iICp3dO2P/0P14mPwQHbZ0QJ4yD9OaT8PyXsuRlJMEz+WeSM9Px8bgjXi/yfvlGlNNITU3Fbsjd2PLnS24+vqq3n6d6nZCqH8oBvsONnrOlnVeVBdZBVl4lPJIK/VVTEqMwVzcrgrXIgFeI8z/zxDibumupWS/LalcqAxMMRU6ZyqfW7G30HxjcyjVSuwavAvD/YdX95BqLCo1wUeHV+HXG3vRxbMpfh/5Y41ecynVQ1l0JkP1UIq3lbUeSkkjip3EAVnZDuCoFfCwtkE3n3oQm7EjM3RF67/IeMH6bExqMR6HBydzJ516k4PUAQQEaXlpeJr2lOVs9iT1ic5I2uIohAqdzmb1LOvBVeFqUvpdlVqFx6mPtVIYP017qrO/GdcMPrY+WgYTB5lDhRqZyyofP0t7ht2RuxEeEY6IhAimXWomxYAGAxAWEIZu9bqVO4OAvvG9zniNPuF9cCe+6H3cbyG/oadnT/Tf3R9/xPwBO6kdroy/groWdfHRiY/wy5Vf4Gvrizsf3qmUtMlVDSEEf7/4uyhVVvQeZBVk6eznZO6E4X7DERoQiiDHIKPmTm3TmVRqFV5mvPzPYaxYxPzTtKelOq6aC8xZDmMaA4iXlZfOSK63QW+ihhFKhZCWlwb/1f54nfkaM1rMwC89f6nuIdVoGq5piIiECJx47wR6ePao7uFQahiah0txr4TilPfhoqmHYkxB+Yqsh8IyrBSrh1KgKsDrjNelKgIpuSlGHd9abF3kNVVMEXCQOcCMZ4YCVQEy8jPwLO0Zy3hiKNLGQmShtyC8i8LFKEGSEILn6c+1BP+YlBidXhlcDhf1retrCf6uCtdq8y7NLczFsZhjCI8Ix7GYYyhQ/Rcp1KJOi6Lcuv7D4CAzXGTSVE48OoEhe4cgqyALfrZ+OP7ecVx9fRUhe4tytC/ruQzTW0zHz5d+xqxTs2AntUPMtBjIhbXzua9UK3H68WlsubMFh+4f0psqq6lTU4T5h2Go31DUkdfM0GRTyVPm4XHKY52pr/RFyWhwlDnqFOQ9LD1MNjQaEzrfzdehRitJVAammAqdM1XDgr8WYP75+bASWyFqclSlPDffFrbd2YbRB0eja72uOD3ydHUPh1LDqGydCfivHoohA0pF10Mp3qaph0IIQUpuyn81ToqlOdY4n73OfG1ytL4m4kTjbEYIQa4yF7FZsSxnszeZb0rdJ4/Dg5uFm85IEw8rD6Pl8sz8TC0ns7vxd/VmCLAWW2tF5PvZ+lVr/dvIhEjsitiF8MhwVjYBa7E1hvgOQWhAKNq6tq3QFMVAUW2aoXuH4uTjk+ByuFjZayVGNByBdpvb4U78Hfja+uLfcf9CTdTwWuGF5NxkrOq9CpObTa7QcVQl+lJlFcdSZIkQ3xCEBYShnWu7tyKzgL5aiTEpMXic8liv/ggUpbDztPKEl7UX6lvVZ+lPZalBZEhvWhXWBJZSwVuhM1HDCKVUTjw6gV47ewHAO5HjvTz02NEDpx6fwub+mzEmcEx1D4dSw7j0OBmhGy4b7DezN9CynjUsRZawElvBQmRR4TUsNPVQjIlCSc0zHEJZHKmZVGcUSkkDir3UHkq1Eq8yXmnl7S2uGBjycAKKwsMdzR2ZsHNnc2dYii3B5XChVCuRWZCJhOwExoPK0ItYPpcPN4WbzkiTepb1DCoAOYU5iE6M1jKY6CtELxfKtWqXBNgFMIUaq4q0vDT8fu937IrchbNPzzLGHS6Hi87unRHqH4pBPoNgIbKosGPejruN3jt7IzYrFk7mTjgWdgynH5/G7DOzweVwcXDYQfTw7IGANQF4mPwQn7X5DN93/b7Cjl8VRCdGY+vtraWmyvK29kZYQBhC/UPhZe1VxSOsGApVhXia9lRn6itDEV42EhuW55LGAOJp5Vnh90FpofMAanxYPZWBKaZC50zVUKgqRIuNLXAr7hb6effDwWEHaUotPZx+fBrdd3SHn60fIidHVvdwKDUMY3WmyT0K0NzdktGZLMWWkJpJK/S+K14PxZARJS4rzijjhQZNPRRjUnmZC8yRkJPALhJfwoBS1mh9B5kDRHxRkeFElYu03DQ8T3/OOJyV9iIWKDIKlCwIr/l/HXmdUo0EhBC8SH+hZSx5mPxQr5OZl5WXlsHETeFWpestIQRXXl9BeEQ49kTtQXx2PPOds9wZw/2KUhQHOgRW2LgKVYWYdGwSfr31KwBgduvZmNJ8Clr92gpvMt+gW71uOBZ2DBtubsCUP6bAWmyNmGkxFV4TpTIxJlWWmC9G/wb9EeYfhh6ePSo9DVtlUJZaiRrMuGbwsPLQGflh6H4rC/r0pn6NHHH4TuxbozNRwwjFIBOPTMSGmxvgbuGOu5PuMh7hFDZjDo7B1jtbsajzIsxpN6e6h0OpYRy6/Rozdt822C/R7Afk8C+w2swF5rAU/0/oF5X4t2S7+D8FQS6Ul1sYy1fmIyE7QTsKpaRHVQXWQ9G02UvtITYTI7cwF28y3/ynCBQzorzKeMWKctCHGdeM8aBylDlCJpDBjGsGpVqJ7MJsJOUkFRWgT31qUAGwkdjoLQjvZO6kUyAhhCAuK05L8L+XeE9vCjR3C3ctwd/D0qNKvGHisuKwN2ovwiPDcfnVf8qpgCdAb6/eCPMPQ9/6fSvEa+tF+gv03tkbUYlRkAlk2BOyB7/f/x0bbm6A1EyKi2Mv4nXmawTvCoaAJ0D05Gh4WHmU+7iVCZMq6/YWXH2jO1VWHfM6CPUPrXDFqTJRqVV4kf6CVetD8/9nac+gIiq928qF8v8E+BKpr6paadMVOn86Os7ktB3VAZWBKaZC50zVEREfgaD1QShUF2LbgG0Y2WhkdQ+pRhKZEImANQGwElshebZupxHKu0t5dCYzrplO3chKpFtn0ny2FFuW+wWrmqiRmpuq04BSmfVQNG1WYiuoiRrJuclsA0oxvcnYaH0biU1RtIncGVZiKwh5QoBTpBem5aUhLisOT1KfsGoW6hu3u4W7Tmczdwt3vTXzcgtzcS/pHsvB7E78Hb0pVs0F5giwD2BF5AfYB1RJlLlSrcS5p+ewK3IX9t/bz4qAqWjHJ0IIvr34LeaemwsAGOY3DDNazEC37d2QXZiNCU0mYFXvVWi8rjGiEqMws8VM/Nzz53IftzIpnirrt6jfdBoFeBweenn1Qqh/KPp596s17yMrslaixgBiamq7iqCk3pSanY8p4bfeKp2JGkYoBsnIz0DAmgC8SH+ByU0nY1WfVdU9pBrJnDNz8P0/3zO58SmU4hjr/SR33IRM3ERqbmqpD0xj4HK4jLBvrFFF87ksL7yzCrKMikIpSz0UG4kNWxHQ1EOR2kLEF0GlViFPlYfU3FStKJTYrNhSC45pkJhJ4CJ3gZ3UDuYCc/B5fKjVamQXZiM5NxlvMt8YrHmgUQB0FYR3t3TXqtVUoCrAg6QHWrVLXme+1rl/MV8Mfzt/Vu2ShvYNdeYGrSiepD5hcutGJUYx7TKBDAMbDESofyi61utarsimtLw0DN4zGH8+/RM8Dg+req/C/nv7cfrJaTiZO+Hy+5fx/uH3cfrJaQzyGYT9Q/dXxKlVKEq1Eqcen8LWO1vx+73fdc5xK5EVhvoNrbRQ+4pATdR4k/lGq3Dfw+SHeJL6pFRDpMRMojPyw8vaC7YS2xpr/KmKtB0VBZWBKaZC50zVsujiInz555ewEFkgclLkW5MSsSJJzkmGzRIbAEDel3kQ8oUGtqC8SxirM9k470A25zZSc1ORkptikm6hC6mZVMvJzBidSSFSmCzPaeqhGBOFUlH1UBxkDlAIFeCAg3xVPrILsxGbGVumaH0uhwsHmQOcZE6wFFtCxBcx+03PT0d8VjxeZrw0GEHjIHPQWxC+ZI0RQgjis+O1IvKjE6P1/vZ1LepqpTD2tPKsNCezPGUejsccR3hkOI4+PIo85X9yZVOnpkUpiv2Glfu5sO3ONrx/+H0o1Uq0c22HD4M+xMiDI6EmavzQ9QcEOgSi+47u4HP5iJgUobcAeXXyLO0Ztt3Zhs23N7PSkhWng1sHhAWEYbDP4ErVdctDVdVKrCm8rToTNYxQjOLMkzPotr1b0f9HnkGXel2qeUQ1j+VXlmPGiRkI8Q3B3iF7q3s4lBpGWQpYKdVKpOelIyU3Bal5RUK/RvhnPhdrL/5/U/PhlkTEF+lXBkpREixEFga9GEqrh1JSGShLPZSSUSi2EluIzETgcDhQqVXIKcxBRn4G4rLiGAOKIcFFg4XQArZSW8iFcgh4AqiICrmFuUjOTUZCdoJBBcBR5qhd2+R/xhN7qT2jACTnJCMiIYIl+EcmROr9XZ3MnbQEf28b7woXqiLiI7ArchfCI8LxPP05024jscEQ3yEICwhDa5fWZXrhX6AqwIQjE7DtzjYAwCetPsEfMX8gOikajewbYV3fdWi9qTXURI1zo8+hY92OFXVa5SI6MRpbbm/BlttbdHrOSfgSDPQZWGHFGSsCQggSshO0Ij804dylrR8CnqAof+3/BHkv6/8MIE7mTjXW+KGhQFWA5JxkJOYkIiknCUk5SbjxLBO/XTRcD2DXhJZo5VG9ihmVgSmmQudM1aJUK9Hq11a4/uY6env1xtHQozV+XaxqCCEQfStCgaoAz2Y8g5uFW3UPiVKDKIvORAhBTmFO6TpTbipS8rTb0/PSTdI1tMfDgYXIwmSdyUpsBTFfbHB9yFPmGRe9X8Z6KMUNKPZSeyhECvA5fKihRr4yH1kFWUjOTcarjFeM05kxRig+hw8HmQMsxZaQmEnA5XCRr8pHRn4GErIT9NYW0SDmi/UWhHe3cGcMqoWqQjxMfqgVlf8q45XO/Yr4IvjZ+mlF5dtIbEy6dobIyM/AwfsHsStyF04/Ps1EVXPAQYe6HRDmH4bBvoNhJbYq0/7PPjmLQXsGISM/A97W3hjmNwwLLywEAOwdshdb72zF0YdH0cerD46GHa2w8yoP2QXZ2H9vPzbd2oTzz8/r7NPEoQnCAsIwzH8YnOXOVTxC3dSUWolVDSEE6fnpSMz+T2e69iwN284ZnrO1TWeihhGK0Uw+Nhlrrq+Bq8IVEZMiam0B3Mpib9ReDN03FG1c2uDvcX9X93AoNRBjCv9WVNhhnjJPt0Kgx6ii+Zyam1pqOhxjkAvlRoewF/+/ucBcSzlQqVVIykkyqAyUtx6KrcQWUjMpY0goUBUguzAbaXlpSMxJxMv0l8gsyDRqv5YiSyiECgj4gqJ8vYW5SMlLMZhqTGIm0VsQvq5FXfC5fDxOfcwylkQkROBJ6hOd+zPjmsHH1ocxmATYF0WXOMocy/2ShhCCy68uIzwiHL9F/cYyCLjIXRDqH4rQgFA0sm9k0rEIIZj31zx8feFrAMDABgPxz4t/kJCTgN5eveGqcMXa62vRyL4Rbky8UW1F9lJyU7A7cjc23NyA23G3tb7nc/joXb8o5Viwd7BWpFBVkZKbouW9pIkEKW0+8zg8uFu660x95SJ3qTHFDdVEjfS8dCTlJLEMHYwAn5vEEuYTcxJ1KuISZXvYFs42eLxlwwPRP7B6vb+pDEwxFTpnqp7oxGg0WdcE+ap8bOq3CWMbj63uIdU43H5xw4v0F7j0/iW0dG5Z3cOh1DCqUmdSqVVIz0/XcjIzxqhiahrhkgh4gtINKHraddWg1NRDMSaVV3nqodhL7WEhsoCILwKPy4NSrUSeMg8Z+RlIzk1GbGas0dH6Ir4IVmKrIsMJuChUFyKzIBMpuSmlbs8BB3XkdfQWhLcWWyM1LxUR8REsg0lkQqTe38xR5qhlLGlg06BCnMwSshOwL3ofwiPC8c/Lf5h2M64Zenr2ZFJE6Ustpo/IhEj03tkbLzNewk5qh45uHbEneg9EfBG2DdiGsANhUKqVOPHeCfTw7FHu8ygLhBBcfHERm29txm9Rv+k03nlaeWJEwAiEBoSivnX9ahhl7amVWB7ylHnaulJJHarY/5NykrTWibdVZ6KGEYrRZBVkoeGahnia9hQTmkzA+uD1Fbp/XTm/qzv8yhQuPr+I9lvaw8PSA4+mP6ru4VBqKKUV/q0JuRgJIYxAaqphxVjDgT74XP5/Hlcm5AW2EltByBfqrYeiS0EwJky8OBYiC9hKbKEQKSAxk8CMawY1UReFohdkIyU3BQnZCQbrkwBFyoVcIIeQLwQBQZ4yD5n5maUKXBxw4Cx31hlpYie1w5uMN/9FmPzPU0qfJ5a12FpL8Pe19S3zy3ulWok/n/6J8IhwHLh3gDUPfGx8GCOJp5Wn0fvcdGsTJh6ZCBVRIcgxCFEJUchT5WFc4DgcuH8AaXlp2BC8AeObjC/TmMuCJlXWhpsbcPThUZ0KZce6HfFewHsY7DO4yupmZOZnsgwexQX50nJJc8CBq8KV5b2k+X9di7rVEtmSp8zTL6hnJ2oZOpJykspkyOVyuLAWW8NGYgNbqS0EygDEPOplcLud41ugjWfFehSaCpWBKaZC50z1sOSfJZh9ZjbkQjkiJ0XCReFSYfuu7ToTALTc2BJXXl/BgaEHMNBnYHUPh1IDqek6E1BUc0PjWGaqM5ophgldaGpQmqozyYVyEBC99VBKtpWlHoqdxA5WYivIhDIIeUJwOUVGj5zCHGTkZSAxJ9FohzYJXwKpQAoel4dCVZHhxFB9SblQruVspok0UaqVWvVLHqc+1rkfPpePBjYNtKLyyxMh/TzteVGK4shw3I2/+995mkkwoMEAhPqHortHd6MNMm8y36BPeB/cjrsNiZkEvja+uB57HXZSOwTXD8avt36Fr60v7nx4p0prUzxLe4att7diw80NOlNE20vtMaLhCIT6h6KJY5Mqiax8W2olAv/VNNLlGKbP0JFVkFWmY8kEMthIbGAjsYFYFYgXzwYY3Ka26UzUMEIxifPPzqPj1o4AUKGW59og+BjiUcojeK3wgsRMgqw5WTRsnqKXt0Gh1UWhqhBpeWlGeVuV7GOMQaE0xHyxSZ5WAp6AKbyemJ1YYfVQNOH0cqEcYjMxeBweVETFGD9S81KN8qDic/gQ8oXgcDjIU+YZVJ40CkBx4V9mJkOuMhexmbGISopCRHwEHiQ/0Hl8LocLLysvrdoldS3qmrSW5Rbm4o+YPxAeGY5jD4+xftfmdZozuXUdzQ2v6ycfnUTI3hBkFWTBRe6ClxkvAQADvAfg4IODsJPaIWZaTKVHL0YlROHXW79i8+3NOvM8B9oHYnTgaAz1Gwonc6dKGUNuYS4epTzSmfoqLiuu1G2dzJ1YgrzGAFLPsh5EfFGljBcoUj5S81KN8kjS9DHVYKnBXGDOCOy2Utui/4uLPpsLzSHiiyDkCcHn8pmUepkFmUjLS0N6Xjoex/FwNbKVwePsfL8F2njVHiGfQgHonKkuVGoV2m5ui8uvLqNbvW44OeJkhegGb4POBAADdg/AoQeHsLr3akxqNqm6h0OpobytOpMmuqNUnUmPYaWqa1BqPN7zlHlM4fWKqociMZNAIVRAKpBCwBUAnCJ9Mrsw26TU0GK+mBW9Uho8Dg+uCleW3uRk7lT0ojkvFY9SHjEGE33X2kpspWUs8bPzM9nJLCohCrsid2FX5C5WBgArsRVCfEIQFhCGdm7tDKYozszPxJC9Q3Dy8UlwOVw4mTvhVcYreFt7IzEnESm5KVjZayWmNJ9i0vhMRZMqa9W1Vbj6+qrW9+YCcwz3G473Gr5n1HmVhdpYK1GTClBvBLwOHcpQVJU++Fw+ozPZSGxgK7Fl/m8ptoSEL4GQL4QZzww88BgnzrS8NKTnpyPmDRf/3A0yeJzapjNRwwjFZGYcn4HlV5ejjnkdRE6OhIXIolz704TKlpyIlREqW5lkF2RD9p0MAJD+eTpNNUahmEBuYW6Z8gKn5aWVSSgojoXIQn+outCCMVAo1UoUqAqQU5iDrIIspOSmsD2qchJNGguPw4NMIIOQX+RJpVQrkVuYa/TLYR6Hx4zLUD83CzfUs6wHV7krZAIZlKSofs2rjFeISozSW2PFXGBelIKrmOAfYB9g1PqWnpeO3+//jl2Ru3DmyRnm2nDAQSf3TgjzD8Mgn0GletncjruNPuF98CbzDeQCOTIKiqJgnMyd8CbzDWa3no3F3RYbHIuppOSmYGfETqy8uhIPkx9qfV/Xoi7GBY4zORKmNApUBXiS+kRn6iuNUUgfthJbVsSHRpj3tPI0OSxfF4QQZBdmmxR+nZyTXKac3RqB3VZiy3g2ygQySMwkRcYNHh9ccAFO0YtHjQKdnp/OGDrS89OZf425J9/WsHAKBaBzpjp5kPQAgesCkafMw7q+6zAxaGK59ve26EwAMOnoJKy9sRZz28/Fwk4Lq3s4FEqtoWQNSmN1pqqoQWkuMAeXywUhBAWqAuQp8xgZrWRUv6lpyCR8CcRm4qKofahRoCpAVkGWUZE3HHDA5/KhIiqDcqGV2IoxmthIbMDj8JBdmI2E7ASmyLauyAIOOPC08tSKyq9rUdegAYAQgquvrzIpiuOz45nv6pjXwXD/4QYjKwpVhZh8bDI23toIoChldHZhNhrYNMD9pPuwElshZlpMmWua6ENN1Pj7xd9YeXUlDj04pGV4EPAE6O/dH6MajTIpEqY0anqtRKVaieScZC39qLRUv4YMevpQCBWMYcNCZAGZQMa8XxBwBUVOYeBATdRQEiXyCvOQUZDBGDo0+lJaXppRY3hbdSZqGKlA3laPhpJkF2QjcF0gHqU8wtjAsdjUf1OZ96Uprlbc66k4uoqr1WTk38mRWZCJ+1Puw9vGu7qHQ6G89aiJGhn5GWUKYS9rOKkGPpevle9XYiYp8rDg8EAIgVKtRL4qnyn4npKbgqScJJProfC5fJhxzcDhcFCoKjQpisUQVmIruCpcoRAqwOPykFOYg8TsRLxIf6H3OHUt6mrVLvGy8tJbeyI+Kx57o/ciPCIcl15dYtrNuGbo7dUbof6hemtxvEx/iT7hfRCREAE+lw+lWgkhT4h8VT4EPAGiJ0fDw8qj3NdBqVbi5KOTWHppKf56/peW4mQjtsGoRqMwstFIk2unFD/G87TnOlNfPUt7VqqyZiGy0PJe0hg/THVQKFQVIiU3RVtQL8XQUVaBXS6UQyFUQCaQQSqQQsgTQsATgMfl/Seo/+8+ySssylGdUZCB9Lz0CpvnmjR9CqECCpECCqGi6PP//p+b7YyT13wM7qe2FRKkUICaOWfeFZ0JAH6+9DNmnZoFmUCGiEkRqGtRt0z7edt0poXnF2LeX/MwvvF4bOi3obqHQ6G8E1R3DcriOpNcKIeQV+SZDgKoiAoF6gLkFeYhsyAT6XnpSM5NRkJ2gsnyoJAnBI/LK0p7rMwvk6OOLsy4ZnCzcIOd1A4inggqUhQd/Srjld70tTKBjInELx6ZrxApdPZXqVU49+wcdkXswv57+1lRK/Wt6xelKPYP1fmuiRCCRRcX4f/O/R8AMJkLLEWWSM1LxYwWM/BLz1/KfyFQlCprzbU12HR7k5aDHZfDRae6nfB+4/fLVDtFQ02olahJM24o1W9xfcpUPV+DgCdg7g2ZmQwis/8i3rmcIoOjihQ5heUqc5n3C+n56eV+r1Ecc4E5oyMpRIr/dCihAnk5rjh3s6HBfdQ2nYkaRiqItyWs2Vj+efEP2m1uBwKCI6FH0Ld+3zLt59LjZIRuuGywX024sYzBe6U3HiY/xLnR59CxbsfqHg6FQimFAlUB0vLSjA5h17Sl5KaU+4WthC+BXFTkCa9RCrjgQk3UKFQXIk+Zh6yCLKTnp5v8QlojOFWEEmDGNSvKJ8oXQ0VUjHeJLkR8Efxs/bQ8pWwk7DDap6lPsTtyN3ZF7kJEQgTTLjWTYkCDAQgLCEO3et1YNS7S89IxeM9gnH16FhxwQEAg4AlQoCrAwAYDcWDYgTKfY1RCFH7890fsjd6rFa0jMZNgqO9QjGs8Dm1c2xgV8q0marzKeKVTkH+S+qTUuSM1k2pFfmg+W4utdRpjCCHIyM8wKfza1FQHGsy4ZpAKpBDxRRDwBIyxTk3UTPRGrrIo6slQ/mdj4XK4jHGluDFDIVLAQmih09DBEuJFCoj54lINWZoXjnHpeTrvmpr0wrEmysCUmk1NmzPvms6kJmp03NIRF19cRKe6nXBm1JkypQ9523SmDTc2YOLRiejj1QdHw45W93AoFEoplLUGZWpeqt6ah8bCBRcWYguYC8whNhMzNUs44Gg5oGXkZ5ik/3DAYeTYikAje/I4/3M0y0nUa1ByVbhqpePysvZi1QHJV+bj+KPjCI8Ix5GHR1g6YRPHJgjzD8Mw/2Fwljuz9r3j7g6MOzROS+fgc/mImBSBBjYNynR+WQVZ2HF3B5ZdWYb7Sfe1vm/s0BgfBn2IEL8QoyNTqrpWYoGqwOQC5GXVaaRm0qKId74QZlwz5tmvcQrLU+YhpzCnzKmEdSHmi7X0oOKGjZLfldSh5EJ5qYajt1VnooaRCuBtCms2hU9OfYKfLv0ER5kjIidHliks79Dt15ix+7bBfjUhFMsYOm7piPPPzyN8UDhCA0KrezgUCqUS0OQBLUte4LS8tHIbLMR8MUR8EeNxryIqFCgLkKvMLbc3l6lovFjylHl6j+0oc9SqXdLApgGEfCEiEyKxK2IXwiPD8SztGbONtdgaQ3yHIDQgFG1d24LL4aJAVYCJRyZi652tWsf4c9Sf6OTeyehxp+SmYMWVFToLAppxzdDNoxumNpuKrvW66hSsCSGIy4pjBPniBpBHKY9KNWYJecKiEG5rL9S3qs/KY+sgc2AJ7MYWIC+roU5j3NAI6hovpIqMSCrudcQyXhgwZmi+lwlkVVKzSyPLAWDdoTVNlqtpMjCl5lOT5sy7qjM9SnmERmsbIacwp8x53t82nenow6MI3hWMJo5NcGPijeoeDoVCqSSUaqVJjmgVWYPSjGsGMV9c5ID2P8cxjQNaefdtKjwODyK+CCq1Cnkq3XqCkCeEn50fy2ASYB8AO6kdMvMzcfD+QeyK3IVTj08xehcHHLR3a49Q/1CE+IbAWlJkGD/39BwG/jZQy6Gtt1dvHAs7ZvS41USNs0/O4ru/v8OF5xe09D13C3dMDJqIkQ1Hoo5c97OnsmolCngCpOWlmWToKKuhTpO9QaN/ExAUqgpRoCqosIgkAU9QuvFCjzFD018ulFdIqjJDvI06EzWMlJO3LazZFHILc9F4XWM8SH6AEQ1HYPvA7Sbv423zfgrdH4rdkbvxU/efMKvVrOoeDoVCqWGoiZqVF9iUeiqm5uItCQcc8Lg8Jgy3OuFxePCx9fkvHZddAJREidNPTmNP1B4kZCcwfZ3lzhjuNxxhAWFoZN8ICy8s/H/2zjosquyN45+ZoTskTWzFwATbNdbuWLtb1/5Zu666Yaxrrt2uGLu22N2EYostBiiCIN0z8/uDZVakBhgE9Hyehwd37jnnnsvemXnf+8aXORfmAFBUKaEQEspYlmFH5x3IPs3CNbAEs6JAkmO2694uFl1dxO13t1MYsRIk1C5cm7HOY+lYvqOqpVdwdHDK0u2Q/4z5jEqWtaRalDQvSWmL0hQ3TSq5N9Mzw0jbCAUKVUu1tCo8MioNzwjJv+aopoxzSArCpRu8yDCYYcLzdxIiY2XYmhgUmDY5BSGTPT/ZwIKCQX65Z75mnwlghdcKvj/2PQbaBtwZcSfLLSC/NJ/J+403NdfXxM7IjjeT3uT1dgQCQT4kLzUok7UcFUqFxipKsou1gTVVbauqEs2KmBThfuB9/vH5h8uvLqvGaUm1aFm6JT0r9aR9ufa8DH1Jq+2tVFqFyX7TilZ/Urdo3dQn+shvehL8hF8u/sL+h/tT+TyF9AvRt2pfRtQcQVnLsoBmtBJLmpfE3sgeCwMLVau1iLiIdIMdwdHB2fZpNe03SSXSjIMXGSSEGemY8DRASWiUEmuTgtFe9EvzmURgJId8aUZqVvH086TuproolAr2f7efjuU7Zml+QSrFUoeJJyayxGMJk+tMZuG3C/N6OwKB4AsiLjEufZHF5HZf6TgO6ggT5gdMdE2oaFURGwMbgmKCuB1wO0V5cflC5elZqSc6Uh3Wnp2Jj1IffTL4btDSxbvLen70XsPZF2dTlUKXtSjLQKeBOBdxVlWAfGzIZ9QjViqRYqlviYW+BcY6xuho6aBQKIiVxxIRG0FIbIja4t+5QV5lHRUEQzkj8rv2QX6ygQUFg/xyz3ztPpNCqaDZX8049+IcDYo14PyA81lqqfWl+UxvIt5QeHHhpIrQH+Oz1PNdIBAIMkIdDcr0giqa1GrITaRIKWlekvKFypOoTORx8GOef3iuOm6gbUD7cu1pUaoFSz2WEhJwh0cYZeg3KWW6LKrZi6UP9qSqqDfUNqRt2bZJfphMRyVEr65WoqG2IVYGVqoWt1KplAR5AlHxUSofNrt6hppAnba96bao0jPFUNswWxXuBdlv+pJ8JhEYySFfWllzdph+ejrzr8zH2tCa+6Pup+onnxnplWKBEgmSfFOKpQ4Lryxkyukp9K7cG9fOrnm9HYFAIECpVBKVEJWtEvb09EQ+N9pSbRIViSmyejqYlOBAWPq9Z5OpTiQ3Jf8Z6kbaRpQwK4G+tj6+ob6pBAM/RZUxplCg4PMEOSRIMNc3z1bWUfK/9bT0PsteP+ZrbZPzOclPNrCgYJBf7hnhMyWJ1VZeXZnI+EiWtFjCeJfxWZqfns+kRIEEKWsK0GdsoiIRnV90UKLk7aS32BrZ5vWWBAKBgAR5QqaJaGm9rgkNSk0glUiRIiVR+V9SnJmuGc4yPY5HZd594GO/SSqRUti4MPbG9oTEhPAi9EWG15hX3QkMtQ3Vrm5PKznMWNc4W9pfOUX4TblLVuxfrQyPZgO5XM7s2bNxdXUlICAAe3t7BgwYwI8//qiKoCmVSmbNmsX69esJDQ2lXr16rF69mjJlymh6O7mOtbF6Dx7UHVcQmd14Nm6P3bgfdJ8xR8ewq+uuLM1vWcmO1X2qp4qUJvKeyS1LFKgPAzvjpL2+jXybK+vn96isQJAW4r7NWyQSCUY6RhjpGFHMtFiW5soVSYLr6pawv49+T3BMMKGxoRoT3wbSNMJfhb0CjLK8VmRCJPeC7qk9Xq6Ufxq1zxR9LX2MdYwx0zPDXN/8vyCGjikmeiYqYz353ya6JilE77KbdaTas0JOVLzmhPzUO6eSWYfup/mnUpJk5M9x86F5RVvx/hcIED5TTscVREqYleCP5n8w4sgIpp+ZTusyrVVtSNQhPZ9JTjBlHG7TslKb3Nh2rqAl1cLa0Jp3Ue94G5E7gRFhfwoKGuKezXu0ZdpYG1pjbWidpXlZ1aAMiQkhKDqIDzEfst1GNy0UytSJXKFxoQQqpWTVb1IoFbwOf51pK6xklCiz3KVAJpFhrGOMiZ4JZrpmWOhbpEgE+9RvMtExSaps//ffJrom6Qqtq0tMQkyO5mcH4TflLzQeGFmwYAGrV69m69atODo6cv36dQYOHIipqSljx44F4Pfff2f58uVs3boVBwcHZs6cSYsWLfDx8UFPr2AZw7UdLLAz1Uu3rFmJAhN9BbUdsi5MXlDQ1dJlS8ctuGxw4e/7f9OlQhe6OXbL0hotK9nRvKKtyhDYevdP9j9byNHXTRlP49zZeC5gZ/RvYCRC84GRglxmJ/h6Efdt/iBZbDBZWPvj34mKxCwf05XpUsigEGZ6ZhSRF0lzTGxiLJHxkUTGRxKdEE1UQhQxCTHEJMYQE5/0Ozohmjh5HPGJ8SQqEzWqj5GXxCQmXV9gdGDmg78QdOWVsY2fl+5xJfA2LBYv35Avsk2OQJBVhM+UEiUKtLQicbDOWw2s3GZYjWHsebCH089PM+DAAC4NvJSlNlKf+kwxigB6HeqAf4CcWwH9cbJ1yr3Naxg7Y7ukwEjkW6pRTaNrC/tTUNAQ92z+ILnaQV1fKUHx7/F0jkklUkx1TTHQNsDa0DpNXyteHk9kQpLPFBUfRXRCNNEJ0cQmxib5S/H//rc8lnh5PAmJCShQfBF+k1wpJzQulNC4UF7xKq+389kQflP+QuOttNq2bYuNjQ0bN25UvdalSxf09fVxdXVFqVRib2/PpEmTmDx5MgBhYWHY2NiwZcsWevTokek58ktJeDIZtYJSAkE6cxnkUp2lLZeiJdV4LCrfMPPsTH699CuFDApxf9T9LEfZP8b3gy9lV5QlUZHI5YGXqVesngZ3mnv4BPnguMoRcz1zQqZm3uJFXUSZnaAgUlDv27QM4pwEEdQxmtOcn5O5nxzLa7H13KCaUsoNNTKfPm2lJcgdDBIbYpUwJdNxX3KbnM9BfrOBBdnnc/hMkL/umfR9piSvKUhnLjaWb3Hr6UYl60qff4OfiVdhr6i0qhIR8REsbL6QyXUn52i9nnt7suveLjqW78j+7/ZraJe5T+vtrTn29Bgb2m1gcPXBGlu3oNqfgq+XgnzPKpQKjflD2fZ3cugrfTr/S0T4TfkL4TflPnnaSqtu3bqsW7eOx48fU7ZsWW7fvs3ly5dZvHgxAL6+vgQEBNCsWTPVHFNTU5ydnXF3d1fbyM9PpFfWbGeqT+XSj9jg48HKa+48Cn7EP13/wVzfPA93m3vMbDSTQ48PcefdHUYdGcXubruz3QrEwdyBAVUHsOHmBmadn8Xpfqc1vNvcIbkMPFk8ShM93uUKJXPcfESZnaBAkdl9CzB9/w0StEBOHgcREhNRxpdCITcmgfdEcQe+AoNQKpH+94M01ee1EmVSObZSgVwhz5OsJC2pFnpaehhqG2Ksa6wqsS5kUIgaaMHdAzla30DLgApWFXC0cqSiVUUcrRxxtHbMdmBfrlDi/TKUoIh4rIx1qFHc7Kv5XPby/cDAzbczHfclt8kRCLKC8JlSZkUPbmTKAu8gnoa8oM7GOuzsspO2Zdvm4W5zj2KmxVjSYglD3Ibw49kfaVOmDRWsKmR7vZ8a/sTf9/7mwMMD3Hx7k2p2mq2+yC1UlfYabEEs/CZBQUNdn0muLUFOotoP+zMKImR7bmIiivhSKOXGJCjfEyW5g4KstU4qqMgkMpXfJJFIkHwkYq5EiVL5kd+UBwlpEiToaulioG2AkY4RJjommOubY2lgiY2hDdWUUvDenqNzlDAr8Z+/9K/PVNq8dLZaWX3NPhMIvym/ofHAyLRp0wgPD6d8+fLIZDLkcjm//fYbvXv3BiAgIAAAGxubFPNsbGxUxz4lLi6OuLg41X+Hh4drets55tOy5v96QjalzcPC9N7Xm9PPT+Oy0QW3nm5Z6idbUNCR6bC141Zqra/F3gd72XVvFz0r98z2ej80/IEtt7dwxvcMl15eokHxBhrcbe5grmeOrkyXOHkcAZEBlDArkeM1vXxDUjiPnyLK7AT5kczuW4APUdBtx3TiZHc/065Soy+vg0X8MLSwUr1mRhAhOuuIkbmnGKst1UZbpp3uby2plvrH0jmeLFiXbFTLFXKVcxIvjydBnvQ7Xh5PnDyOOHncf+2pEpJ+ohOjiY6PJjI+MkOx8GTj/XNiomuChb4FVgZW2BjZYGtki7WBNVaGVlgZWKX4XcigUMbB5Te3shUYkSDBRNeEqIQoohOj8X7rjfdb7xRjrA2tqWRdicrWlZN+bCrjaOWIoY5huut+7S0QGpYxwM70UbptciSAraneF91aVCDICrnhM0H+95vS95kkdK7mSbfd3Tjre5b2O9uzoNkCJtednCPNpfzKoGqD2PtgL8eeHqP/gf5cHXw1250FKlhVoEelHuy8t5M5F+ZwoMcBzW42l1BpM2qwBbHwmwQFDXV9pi7bp+U7n8kkHZ9JJpFl2VfSlv57PKNjn/y3RCJRJXDJlXJVclzy73jFRz5TQhwx8hhiE2OTWlQlxKhaVkXGRxInj/v0klMgV8o/a8BDR6aDhb4FlvqWWBtaY2tki42hTZo+k5WBFWZ6Zhl/V765la3AiIGWARKJhKiEKF6EvuBF6AuOPjmaYp/lC5VP4TNVsq5EUZOi6e7na/eZQPhN+Q2NB0b++ecftm/fzo4dO3B0dOTWrVuMHz8ee3t7+vfvn601582bx5w5czS8U80jk0rSNLA6lO/AlUFXaL+rPY+DH+O8wZnd3XbTrGSzNFYp2DjZOjGz4UxmnZ/F6KOjaVyiscrozSolzEowyGkQ626sY/aF2Zzpd0bDu9U8EokEWyNbXoa95G3EW40ERgIjMjaUsjpOIPgcqHs/ljGrgbGpkXqGsaaM6n//7e0r54+jYan2pIUVNvE/sPi7irSqbKcKWKRHXGIc4XHhRMRHEBEXkeJ3eFx4qtci4iP4EP0h9etxEUQl5I5gto5MBx2ZDtpSbaQSaVI1iEJBgiKBOHlcloXyIKnixFLfMrWBnoaxbmVohaW+ZY7F8bLDtPrTmHJvOy/DXgJJWV1hcUn/37Wl2lS3q05h48LEK+J5EPSA5x+eExgVyFnfs5z1PataR4IEB3OHVIZ/WcuynPYJSrMFQkBYLCNdb+TrFgiaQiaVMKtdRUa63kBCyjY5yW7RrHYVv6psMIEgI3LDZ4KC4Tel5zNZ6FtwvPdxxh4byxrvNUw5PQWf9z6sabMGXS3dPNhp7iGRSFjfbj2Oqxy59uYaC68sZHqD6dle76dGP7Hr3i4OPjrIjbc3qG5XXYO7zR2SK+0DotIP9GUV4TcJChrq3oulzapjZGKglr+TFX9InQDGDV8Fi46lDrJrYYV1/A8s6l5e5TMlByzSQq6QExkfmSWfKc3X45Jez41AhUwiQ1dLV+X/SZCoEtbi5fHEJcZlq4reSMcobR8pHb/JUNswT5ICmpVsxp0XZ1R/2+jEaNWxEmYlqFioIoY6hrwKe8W9wHtEJURx590d7ry7k2IdU11TVZJZJetKVLZJ8p88n8V+9T4TCL8pv6FxjZGiRYsybdo0Ro8erXrt119/xdXVlYcPH/L8+XNKlSrFzZs3cXJyUo1p1KgRTk5OLFu2LNWaaWU+FS1aNF/0ys0K7yLf0envTrj7uSOTyFjeajmjao3K621pnAR5As4bnLkZcJN2ZdtxsMfBbH+ovwx9SZk/y5CgSODCgAs0LN5Qw7tVH7lCmWZ226fU2VgHDz8P9nbfS+cKnXN8XvdnwfRc75HpuJ1DXUTmkyDfkN/vW7lCSf0FZzPI0FKirxNPtfJ3CI1RIJd8QKn9hMj41AGQ3OhFqyXVwljHGGNdY4y0jTDUMURHpoOWVAupRAokVXwkC/YlC/NFxEcQFhdGvDw+y+fUlmpTyKCQ2ga7hb6Fai95QuhrWFEDEjPI8NLShTHeKEwLc+LpCZZ6LOXk85NpDtXX0qdt2ba0L9eeYqbFeBrylLvv7nI3MOknMCptIXUdqR72sRtRyk2A1N8JyRk/l6c2+SqMW5EFlrvkJ70IQc7IDZ8Jvgy/SalUsvLaSsYfH49cKade0Xrs+25fjvQL8yt/3f6L/gf6JyVsDPOmsk3lbK/Ve19vdtzdQfty7TnY46AGd5k11PWZ9vrspevurtQpUoerg69q5Nz53f4UCD4lv9+z6vhMhnoJtHS5yqv3OoTFKEkgGIXWYyITwj9LAlhyy10TXRMMtQ3R1dJFR6qjCmwoUSJXyIlXJAU2kqtEkhPbsoOZnpla/pKVQVIVvL62voavOotkwW/yk0pYdW0Va66v4UPshzSHVrGpQtcKXalXrB6R8ZEqn+le4D0eBT9KO+lOKaVY/BYkCnOEz5SE8JtyjzzVGImOjkYqTfmgRCaToVAktetwcHDA1taWM2fOqIz88PBwPD09GTlyZJpr6urqoqtb8LOEbIxsONv/LMPchrHtzjZGHx3N/cD7LG25NE+yaHMLbZk2Wztupca6Grg9dsP1jit9q/bN1lrFzYozqNog1nqvZfb52ZztfzbzSblAVj6wVP1yNVQWXtvBAjtTPVFmJyhQ5Pf7NvOydQkx8bpcvVNL9UoiNf4tF7+X5gwDbQNVMCP5t4muSdK/P3rdUMcQmUSWOrDxr5EeFhdGSHQIQdFBBEUH8TjicbYqOvS19NUOclgZWGGia1Kw2pWYFYUx3hAdnP4YA0swK4oUaFWmFa3KtOJ+4H2Wey7nrzt/EZuYdA/IJDJiEmPY7bOb3T67MdQ2pF25dnSv2J25Teeir61PYFQg9wLvpTD87wXeIzG2JEq5abpb+NradmTUJkcgEPxHbvhM8GX4TRKJhDG1x1DOshzddnfjyusr1F5fG7eebjkKHORH+lbpyx6fPbg9dmPAwQF4DPbItl84s+FMdt3bxaFHh/B+400N+xoa3m3mZMlnMta8xkh+tz8Fgk/J7/esOj5TVKwO/5x3QoaZ6tVEVZutG6lmfJwAlspnSn5NxxgjHaOkakElJCqT2mPFyZMCG1HxUUlV+LEfCI4OJig6iLcRb7MV6JAgwdLAMkuBjgL3/C4LflMRYG7TufzY8Edc77iy1GMpD94/UA2TIElRJVLNthrdHbvzW5PfKGVRirjEOB4FP+LuuyR/KTnJ7F2IKRJF+vfx1+YzgfCb8gsarxgZMGAAp0+fZu3atTg6OnLz5k2GDRvGoEGDWLBgAQALFixg/vz5bN26FQcHB2bOnMmdO3fw8fFBTy9zcZmCni2nVCr5/crvTD8zHSVKmjo0ZXe33V+cKPu8S/OYcXYGprqm3B91n8ImhbO1zquwV5ReXpoERQLn+5+nUYlGGt5pxhy/9zbNcr/kj6pPy/1GHxnNquur+KHBD/za5Nc82YNAkB9Ivm8h7fLQvLxvD97yZ9yuW1mclXQVI5tr07icmcpw19PSIzYxlg+xHwiKSgpmpPr90b+Do4OzVYJtrGOcpUBHRnoYAngf/Z713utZcW0FbyLeAEkBEn1tfSLjI1XjjHSMaF+uPd0rdqdF6RYpdE8USgUbr97mN7c3mZ5vWQ8nOjhl73tQIEimoNvAgv/4HD4TFPx75tH7R7Tb2Y4nIU8w0jFiR+cdtCvXLq+3pVECIgNwXOVISEwIcxrP4adGP2V7rT77+rD97nbalW3HoZ6HNLjLzMmqv+L7wZeSy0uiK9Ml5ocYjSVn/LePZLn1jPchEOQ1X4bPlPL9lvzfY1vo06SChSrQoURJeGw472PeZ+gvJf9OTmLKClpSraQqeDV9Jgt9iwzbJn/tKJVKTj0/xVKPpRx7ekz1urGOMZHxkSn82hp2Neju2J1uFbvhYO6QYp1d154ybe+jTM8nfCaBJsiK/avxwEhERAQzZ85k//79BAYGYm9vT8+ePfnpp5/Q0dEBkt5Ys2bNYt26dYSGhlK/fn1WrVpF2bLqCZLnpYGvbmmwOhx6dIhee3sRlRBFWcuyX5woe6Iikbob63LtzTValW7FkV5Hsm3wjjw8kjXea2hcojHn+p/T8E7TJ7PS0bTK/X69+Cszz81kkNMgNnbYqLG9HL/3lil7rxEe89+XtiizE+R38mt5qLpl66lRoq0dhVWJP3kfHUhQdBChsaHZ2oO5nrnagY5MhcgF2SZBnsAenz0s8VjCtTfXVK8XNSlKTEIM72Peq14z1jGmfbmOVLfoRnHjKtibGaFQKOm90TPT84i2HQJNUNAfcgv+43P4TPBl+E0hMSF0392dM75nkCBhfrP5/K/u/wpWlWMm7Ly7k177eqEl1eLa0Gs42Tpla51H7x9RcVVFFEoF14Zeo6Z9Tc1uNB2y4zPFJsai/1tSe5mQKSEaTRI8fu8tw3acRvpRdnJ+sD8FgvT48nwmACVaWhEYFF7A++hA3ke/z1YLYj0tvSzpc5jqmn5R3w/5iYfvH7Lcczlbb28lOiFJf8RYx5hCBoV4EfoiRZCkpl1t6tn2p3KhelS0KSJ8JsFnJU8DI5+DvDLwc+PL6s67O7Tb2Y5XYa8w0zP74kTZfYJ8qL62OnHyODa238igaoOytc7HVSPn+p+jcYnGmt1oOmSn5+fGGxsZ4jaEVqVbcbT3UY3u5+cLvzL3zD80Kd6RmY3HiTI7QYFAkwFlTe6p/oKz6ZatZ0aAznTiZHdV/y2VSFNkJqn+nc+EyAXpo1Qq8fDzYKnnUvb67FWJDhY2LkwZizI8DnnMh9DiWMQPQwsr1TwzA0CpRVhMYoYtEL6mfrmC3EMERgRZ5UvxmxLkCYw7Po7V11cD0L9qf9a2XfvFiLIrlUq67u7Kvgf7qGJThWtDr6Ej08nWWn3398X1jitty7bFraebhneaNtnVSTBfYE5obCj3R92nolVFje0nJiEGg9+M0FU4sqntHhwsLfOF/SkQZMSX6DNBar+poAiRC9InJCaEDTc28KfXn/iF+wFJepU17GogV8rxea2DWfyQFD6TkV4CUvSIiJULn0mQ64jASC6Qm62M3kW+o/M/nbn6+ioyiYxlLZcxuvbozCcWEBZeWciU01Mw0TXh7si7FDMtlq11Rh0Zxerrq2lUvBHnB5zX7CbTQd3S0Y/L/Y4+OUqbHW1wsnXi5vCbGt3P0END2XBzA7MbzWZW41kaXVsg+NpIr2xdHfo0SKBFJUuV0W6ub563QuQCjfI67DUrr61knfc6leigpaQpRtHj/x3xn7GuREFSt92Ur3/8X6Jth0BTiMCIIKt8aX7TSq+VjDs+7osUZQ+MCsRxlSPvo98zs+FMfv7m52yt8zj4MRVWVkChVOA1xItahWtlPimHZMdnAqi4siIP3j/gdN/TNC3ZVGP7efT+EeVXlsdIx4jwaeHioapAkANy4jMBDP5GSpsqNqpAh6iC/3JIkCew/+F+lnosxd3PHQB9eR2s42f8OyI9nynlMeEzCTRNVuxf8RRHDeQKJXPcfNL8Ekh+bY6bD3JF9mJMNkY2nO13ln5V+yFXyhlzbAyjjowiQZ71MsP8yMQ6E6lTpA7hceEMOTSE7Mbiptefjo5MhwsvL3D+xflMx8sVStyfBXPwlj/uz4Kz9f/H2li9L+2Px2lafP1jXoa9BJJE6QUCQc5oWcmO1X2qY2uadeO8TfkGNCjegPKFymNpYCmCIl8YRU2LMr/ZfF5PeM3qNqspa1Eeveg+/37nfxr8kAJK5ISTSFCKY7amusLAFwgEXxW57TeNrj2aY72PYaZnphJlTxaALehYG1qzqvUqAOZemsv1N9eztU5Zy7L0qdIHgDkX5mQ6Pq98JsgdAXb4yGcyLS6CIgJBDknPZ7IwVK/6vVnp2lS3q05R06IiKPKFoS3Tprtjd64OvorHYA96OPbCImG4Gj7T+xTHrEy0hc8kyDPEkxw18PINSbdfKiQZ+W/DYvHyDcn2OXS1dNnSYQsLmi1AgoTV11fTansrQmKyv2Z+QSaVsaXjFvS09Dj1/BTrvNdla52ipkUZUm0IALPOz8owwHL83lvqLzhLz/UejNt1i57rPai/4CzH72XN6K7tYIGdqR7pmdMSktoC1Hb4qH/tvwZ+YFQgiYrELJ0vM5KN/OxW3QgEgpS0rGTH5alN2DnUhWU9nNg+2Blbk6y95wVfLoY6hoyoOYLNrS+ihVWKHKePkSBFhilyk80E6EwnSPt3AnSm80Tak32+szj9/LTGvw8EAoEgP/I5/KbmpZrjMdiDMhZleBn2krob63Lo0ecVGs8tujl24zvH75Ar5fQ/0J+4xLhsrfNjgx+RSWQceXIEL3+vdMflpc8EuZdQ9jJU+EwCgSb51GfaOdQFj+nNsvW+F3yZOBdxZmy15WgpC2XqM9kWPpXCZ7oe35p513uw0mslAZEBn3nngq8dERhRg8CI9I377IxLD4lEwpR6UzjQ4wBGOkac8T2DywYXHr1/lKN18wNlLcsyr+k8ACadnITvB99srTO9QVLVyMWXFzn3Im0R9uRSz0+dsoCwWEa63siSoS+TSpjVLqnf7acf7cn/PatdxRQ9EK0MrJBKpChREhQVhKZQKpW8CnsFJGU/CQQCzSCTSqhTypIOToWpV6YQs9tn7T0v+PIJiohXa9yqVq4cG7iMfs4VMTEOIDj2PetvrKf5tubYLbJjxOERnPM9h1whz+UdCwQCQd7wufymcoXK4TnEk6YOTYlKiKLjro4suLwg25Xp+YkVrVdgbWiNT5APs8/PztYaZSzLqKpG0lvjc/lMyaRlP6kCI7lYMSIQCDTDxz5TnVKW6GhJs/ysRPBlo+53+8wGv/N08lF+a9OJ6sWNUErkXHx5kTHHxmC/yJ5vtn7D6murCYwKzOUdCwQiMKIW6pYGG+lp5kFH+3LtuTLoCsVNi/Mk5AnOG5w59eyURtbOS8Y6j6VBsQZEJUQx+NBgFEpFltcoYlKEodWHAklG/qfOT26U76dXOmprqpdmuZ9MKlP1OtakkR8YFUhsYiwSJBQ1LaqxdQUCQUqy+p4XfPmoawfYmhjwjcM3rG67mjeT3nC672mGVR+Gpb4l76Pfs9Z7LU3+aoL9YntGHxnNhRcXRJBEIBB8UWS3pVJ2MNc351jvY4yqOQolSqadmcaAgwOyXWWRXyhkUIi1bdcC8PvV3/H088zWOj82TKoaOfb0WKo1PqfPZGagTNd+yq1WWqpkMtF+WCDIVYTfJPiYrNgARUyKMN5lPFcHX+Xl+Jcs+nYRzoWdUaLk/IvzjDo6CrtFdjT7qxnrvNdpNOlYIPgYERhRg8xKg5UoSCSIwccbc+nlJY2cs4pNFbyGelGvaD3C4sJotb0VK7xWFOgsKKlEyuYOmzHQNuDci3OsvrY6W+ska41cenWJs75nUxzLrfL95NLRdf0rqsr9joyrke4XfW6UhScb+HbGdujIdDS2rkAgSE1a5eKXpzYRxv1XSnZahGhJtWhasilr263l7aS3nOxzkiHVhmChb0FgVCCrrq+i8dbGFFlShO+Pfs+ll5eylTAgEAgE+Ql1/aa9zxZoJIChLdNmZZuVrGy9EplExl+3/+Kbrd/wLvJdjtfOSzqW70ifKn1QKBUMODiAmISYLK9R2qI0fav2BWD2hdkpjuW2z7RzqAuOZbwI0JlO2/pen9VnAlExIhB8ToTfJEgmu20Vi5kWY2KdiXgM8cB3nC8Lmy+kln0tFEoFZ3zPMPzwcOwW2fHttm/ZcGMDwdHBuX4tgq8HERhRg8zaKUmQomW2n5dhvjTa0ojpp6cTL1ev7UZGWBtac6bfGfpX7Y9cKef7Y98XeFH2Uhal+L3Z7wBMOT2FpyFPs7xGYZPCDKs+DEgy8j8OFuVm+b5MKuHbCg4UsnxBnOwu94LSF3rMjewnYeALBJ+XT8vFRRn410t22ip+jLZMm+almrO+/XoCJgVwvPdxBjkNwkzPjIDIAFZcW0HDLQ0puqQo446N48qrKyJIIhAICiSZ+00SQnTWsch9IbXW19KYcPqoWqM43uc4ZnpmuPu5U3tDbW4H3NbI2nnFspbLsDOy4+H7h8w8NzNbayRrjRx/ehwPPw/V67ntM9UpZUmrylbEye5y592tdMfmmvj6vxojomJEIPg8CL9JADn3mQBKmJVgct3JeA314tnYZyxotoAadjWQK+Wcen6KoW5DsfnDhpauLdl0c9MXocssyFtEYERNMioRXNOnOncmbGOA0wCUKJl/ZT6119fmXuC9HJ9XV0uXzR0283uz35EgYY33Glpub1mg3/wja43kmxLfEJ0QzcCDA7P18Gda/WnoynS5/OoyZ3zPqF7/HOX7TrZOANx8ezPdMbmR/SREBAUCgSDv0FSrAG2ZNi1Kt2Bjh428m/yOI72O0L9qf0x1TXkT8YblXsupv7k+xZYUY8LxCXj4eRToalGBQPD1kbHfVIOdvaZiZWDF3cC71Fpfiz+u/qGRtoLNSjbDc4gnZS3L8irsFfU21ePgw4M5XjevsNC3YF27dQAsdl/MlVdXsrxGKYtS9KvaD0ipNfJZfaaA9H0mWyNbAI2K7SYqEvEL9wOE3yQQCASfG022VytpXpIp9aZwfdh1nnz/hLlN5uJk64RcKefEsxMMPjQYmz9saL29NVtvbSU0NlTDVyP4GpAoC6C3HR4ejqmpKWFhYZiYmHzWc8sVSrx8QwiMiMXaOKkE7ONo574H+xjmNozgmGB0ZbrMazqPcS7jkEpyHoNye+RGr329iIyPpLRFadx6ulG+UPkcr5sXvAh9QeXVlYmMj2RJiyWMdxmf5TXGHhvLn15/Uq9oPS4NvIREIkGuUFJ/wVkCwmLT7JkrIekD+fLUJtnOYph9fjZzLsyhf9X+bOm4Jc0xM8/O5NdLvzKy5khWtVmVrfN8SvL1Tqk7hQXNF2hkTYFAIBBkjczsgOwSlxjHqeen+Of+Pxx4eICI+AjVsWKmxehWsRvdHbtTy74WEonIwvtayUsbWFAwya9+07vIdwxxG8Lhx4cBaFS8EVs7btVIhv+HmA9039Od089PI0HC3KZzmVpvaoH97Bx4cCBbbm2htEVpbo+4jYG2QZbmPwt5RrkV5ZAr5VwddJU6Ret8Fp8pIi4C0/mmKFES9L8gChkUSjUmLDYMswVmAETNiMrytaXFq7BXFF9aHC2pFrE/xCKTynK8pkAgEAiyRm75TACPgx+z+/5u/vH5J0XlqbY0KQGte8XutC/XHlM9U42cT1DwyIr9KypGskhmJYKdK3Tm3qh7tC7Tmjh5HBNPTqTZX81U+hA5oV25dlwddJUSZiV4GvIUlw0unHx2Msfr5gUlzErwR/M/AJh+ZjqPgx9neY3kqpErr69w+vlpIOPSvWQpwcxK9zKjmm01IOPsp1xtpSVKwgWfIFcocX8WzMFb/rg/C86SUKZAIMgaudUqQFdLl7Zl2/JXp78I/F8gB3scpHfl3hjpGPEq7BWL3BfhvMEZh2UOTDk1hetvrotKEoFAkK/J6PPSxsiGQz0Osb7degy1Dbnw8gJV1lThr9t/5fizLVmUfUytMShRMv3MdPof6E9sYtbbQuUHlrRYQmHjwjwNecqMMzOyPL+URSn6V+0P/Kc1kpHPpESBkpz7TMa6xpS2KA2kX2lvomuCvpY+oLlK+2S/u6hJUREUEaRA+EwCwecjN9urlbUsyw8Nf+D2iNs8GP2Anxv/TCXrSiQoEjj8+DD9DvTD+g9rOuzqwPY72wmPC9fYuQVfHiIwkgvYGtlyuOdh1rRZoxIar7K6CtvvbM+xoV/ZpjKeQzxVouytt7fmT88/C+TDkWE1htG8ZHNiE2MZcGBAlkvo7Y3tGV5jOJBSayS90j25JJhF31XIsQhYNbukwIhPkE+6opG5Kb4uNEYEH3P83lvqLzhLz/UejNt1i57rPai/4CzH72m2V7NAIPh86Gnp0b5ce1w7uxI4OZD93+2nZ6WeGGob8jLsJQuvJvXmL7W8FNNOT+PG2xsF0g4QCARfNxKJhCHVh3B7xG3qFKlDeFw4/Q/0p9vubryPfp+jtbWkWvzZ+k9WtV6FTCJj251tNNnapECKspvpmbGx/UYAlnku48KLC1le44eGP6Al1eLks5NcfX0VyMBnIpiWNV9rRDg52W9KL6FMIpFoPKFM6IsI0kL4TALBl0n5QuWZ2Wgmd0fe5f6o+8xuNJsKhSoQL4/n0KND9NnfB+uF1nT6uxM77+4kIi4i80UFXxUiMJJLSCQShtcczq3ht3Au7ExYXBh99vehx94eOdYHSRZlH+A0ALlSztjjYxl5ZGSBE2WXSCRsbL8RE10T3P3cWey+OMtrTKs/DT0tPa6+vsqp56dUr7esZMflqU3YOdSFZd85oV1oFX66gwiU57zCpqhJUSz0LUhUJHI/6H6aY3KlYkQY+YJPOH7vLSNdb/A2LGUGZEBYLCNdbwhDXyD4AtDX1qdj+Y7s6LKDwP8FsqfbHro7dsdA2wDfUF8WXFlAjXU1KLuiLD+c+YHbAbdFkEQgEBQoSlmU4uLAi/zW5De0pFrsfbCXyqsrc+zJsRyvPbLWSE70OYG5njnufu7UWl+rQIqytyjdgqHVhwJJrbUi4yOzNL+kecn/qkY+0hpJ4TP1cKJP42D89QZz5u2ibOlAfoqTjRMAtwJupTtG0wllqip7kUwm+BfhMwkEXwcVrSoyq/Es7o+6z92Rd5nZcCZlLcsSJ4/jwMMD9NrXC+s/rOn6T1f+uf8PUfFReb1lQT5ABEZymTKWZbg86DI/N/4ZmUTGP/f/ofLqypx4eiJH6+pq6bKp/SYWNl+IBAlrvdfSwrUFwdHBGtr556GoaVGWtFgCwMxzM/EJ8snSfDtju/+qRs7PTvEwSFW6V60wo+o1A4mCNdfX5PiBkUQiyVSAPdnAD4gM0MgDqoi4CD7EfgCEiKAgCblCyRw3nzT7Qie/NsfNR6Ml4p+z/FyUugsEqTHQNqBLxS783fVvAicH8k/Xf+hasSv6Wvo8DXnK3MtzcVrrRPmV5Zl5diZ3390VQRKBQFAg0JJqMaPBDDyHeFKhUAUCIgNovaM1o46MyvGDi6Ylm6pE2V+Hv6bepnoceHhAMxv/jPzx7R8UMy2Gb6gvU09NzfL8HxokVY2cen4qhZD7x+1OpjXpjLGuIU9DnnLO91yO95xZxQhoPqFMlUwmAiMC8sZnSj6v8JsEgrxBIpFQyboSP3/zMw9HP+T2iNv80OAHSluUJjYxlr0P9vLdnu+wWmhF993d2eOzh+iE6LzetiCPEIGRz4CWVIuZjWbiPtidcpbleBPxhpbbW/L90e9z9OaTSCRMrjuZQz0PYaRjxLkX53De4MzD9w81uPvcZ6DTQJUmy4ADA0hUJGZp/tR6U9HT0sPdzz1dzZX+Tv3Rlely+91tvPy9crznzHRGbI1sAYiXx+e4Qgj+y3wy0zPDRFeIrQrAyzckVdbTxyiBt2GxePnm/P6Dz1t+LkrdBYLMMdQxpJtjN3Z3203g/wLZ1WUXnSt0Rk9Lj8fBj/n10q9UWVOFiqsqMuvcLO4Hpl3hKBAIBPmJ6nbV8R7mzTjncQCsvr6aamur4ennmaN1y1iWwWOwB81LNicqIYpOf3di3qV5BSp4bKJrwqb2mwBYdX0VZ56fydJ8B3MHBlQdAPynNfIpRjpG9KnSB4A13muyvddkkn2mR+8fpRvgyq2KEZFMJoDP7zOB8JsEgvyERCKhik0Vfm3yK4/HPObm8JtMrz+dkuYliUmMYbfPbrrt7obVQit67OnBvgf7iEmIyettCz4jIjDyGalVuBY3ht9gTK0xAKy4toLqa6tz/c31HK3btmxb3Ae7U8KsBM8+PMNlg0uOK1I+JxKJhHVt12GmZ8a1N9f4/crvWZpvZ2zHiBojAJh1flaaDo6FvgXdHbsDsNZ7bY73nFlgRFdLFwt9C0Az2U8i80nwKYER6gmIqjsuIz5n+bkodRcIso6RjhHfVfqOvd33Ejg5kB2dd9CxfEd0Zbo8fP+Qny/+TKXVlai0qhI/X/iZB0EP8nrLAoFAkC762vosbbmUU31PUdi4ME9CnlBvUz1mn5+do9bB5vrmHO19VOWLzTg7g34H+hUoUfamJZsyquYoAAYdGpRlQdlkrZHTz09z+dXlNMckV+MfeHiAgMiAHO3XxsgGOyM7lCi58+5OmmNUgRFNVYyEifbDgv9Q22cK18zngPCbBIL8S3L3l7lN5/L0+6d4D/Nmar2plDArQXRCNH/f/5su/3TB+g9reu/rzcGHBwuUjSDIHiIw8pkx0Dbgz9Z/crz3ceyM7HgU/Ig6G+vwy4Vfslwp8TGVrCvhNcSL+sXqJ4my72jNcs/lBSYLqrBJYZa3XA4ktcS6++5uluZPrT8VfS19PP09OfEs7aBQspG/694uQmNDc7Tf5LLw2wG30xWNT64ayalDAcLAF6TG2lgv80HASu+5HHp0KNsPEj5n+XlelboLBF8SxrrG9Kzck/3f7Sfwf4Fs67SNdmXboSPT4X7QfWadn0XFVRWpsroKv178lcfBjzNcT7RnEAgEeUWzks24O/IuPSr1QK6UM+fCHOptqsej94+yvWayKPvqNquRSWS43nHlm63faMRe/1wsaL4ABzMHXoW9YvLJyVmaW8KsBAOdBgIptUY+pqptVVyKuJCoSGTzzc053W6m7bQ02UpLqVTyKuwVIBLKBEmo6zNNPjOMeZfm4Rful+1zCb9JICg4SCQSqttVZ36z+Twf+xyvIV5MrjOZYqbFiIyPZMfdHXT8uyPWC63pu78vbo/ciEuMS3c94TMVXERgJI9oUboFd0fepVvFbiQqEvnp/E/U31SfJ8FPsr2mlaEVp/ueZqDTQBRKBeOOj2PE4REFRpS9T5U+tC/XngRFAv0P9M/Svm2NbBlZcySQftVI3aJ1cbRyJCYxhm23t+Vor+Usy6GvpU9UQhTPPjxLc4wmy8KFgS/4lNoOFtiZ6iFJd4SSRII49XoNHXZ1oPDiwow/Pj5D8cu0+Jzl53lR6i4QfMmY6JrQp0ofDvU8xLvJ79jacSttyrRBW6rN3cC7zDw3k3IryuG0xom5l+byNORpivmiPYNAIMhrzPXN2dllJzs671BVl1dbW41V11blKAFsRM0RnOx7EnM9czz8PKi9vnaWbaS8wkjHiM0dkgIW62+sz3KngGStkTO+Z7j08lKaY5ITytbdWJdjEfbMBNg16TMFxwSrWlUXNS2a4/UEBR91fCa55D1PI48z4+wMii0pRvNtzXG945rltufCbxIICiYSiYRahWux8NuFvBj3Ao/BHkx0mUgRkyJExEfgeseV9rvaY/2HNf0P9OfI4yPEy+NV84XPVLARgZE8xNLAkr+7/o1rJ1dMdU3x9PfEaa0Ta6+vzbahr6uly8b2G/mj+R9IkLDuxjq+df22QIiySyQS1rZdi4W+BTcDbjLv8rwszZ9Sbwr6Wvp4+Xtx/OnxNNcfUTOp5dZa7+z/jQFkUhmVbSoDGQiwazD7SVUxIgIjgn+RSSXMalcRIJWhLwEkSPixbXkm1hmPjaENQdFBLPNcRrW11ai6piqL3RfzLvJdpuf5nC27Pue5BIKvDTM9M/pV7cfhXod5N/kdmztsplXpVmhJtbj97jY/nP2BMn+Wofra6sy/PJ8tHrdEewaBQJBv6Fm5J3dG3KGpQ1NiEmMYfXQ0rXe0ztHD9CYOTfAc4kk5y3IqUfb9D/ZrcNe5R6MSjRhbeywAgw8NzlI1fHGz4gxyGgSkrzXS3bE7ZnpmvAh9ka6Go7p8zoqR5PbDtka26GmpVykg+LJRx2da1r0BGzusp2HxhihRcvr5afru74vtH7YMPjiYiy8vqhUgFH6TQFDwkUgkOBdxZlGLRbwc/5Krg64y3nk8hY0LEx4Xzl+3/6LtzrbY/GHDwIMDmXvqqPCZCjgiMJLHSCQSelfpzZ2Rd/imxDdEJ0Qz4sgI2u5sm+2SbolEwqS6k3Dr6YaxjjHnX5zHeYNzgegpbmtky8rWKwH45eIv6QYd0sLGyIZRtZJ67qZXNdKnSh/0tfS5H3Sfq6+v5mivmemMaDL7SaUxIlppCT6iZSU7Vvepjq1pSsfP1lSP1X2qM6K+C4taLMJvoh+Hex6mW8Vu6Mh0uPPuDpNOTqLw4sK03dGW3fd3p9s7U93y86XXfubM8zM5Cjiqey5LI+1sn0MgECRlYA9wGsDR3kd5N/kdG9tvpEWpFsgkMm4G3GT66R/48cAtlGk0aBDtGQQCQV5R1LQoJ/ueZGmLpejKdDn+9DiVVldir8/ebK9ZxrIMHkM8+LbUt0QnRNP5n87MvTS3QLQjntdsHqUtSuMf4c+EExOyNHdGgxloS7U563uWiy8vpjpuoG1Avyr9gJzrMyb7THff3U2zI0Cyz/Q++n2KDNzsIJLJBGmRmc/UuVpJBlUbxIUBF3g29hmzG82mpHlJIuIj2HRrE422NKL08tLMPj+b5x+ep3sedX2Zsy/3ExKTs0oOdc+l7jiBQJAaqURKnaJ1WNJyCa8mvOLywMuMrT0WOyM7QmND2XLzL1adCUQhfKYCjQiM5BOKmRbjdL/TLPp2EToyHY4+OUqlVZVylLXUpmwb3Ae742DmkCTKvtElzUqK/MZ3jt/RpUIXEhWJ9D/QP0sG8v/q/g99LX2uvbnGsafHUh030zOjZ6WeAKzxXpOjfaodGNFgxUgx02I5XkvwZdGykh2XpzZh51AXlvVwYudQFy5PbULLSnaqMVpSLdqUbcM/3f4hYFIAq9usxqWIC3KlnCNPjtB9T3fsFtkx8vBIPPw8UjwMULdl13n/DTTb1owqa6qw8cZGYhJisnwtmZ1LiYJEghhxshlnfc9meX2BQJAaC30LBlUbxPE+xwmYHMD6duupa9sPLaxInVuZhGjPIBAI8gqpRMo4l3HcGH6DarbVCIkJoevurvQ/0J+w2LBsrWmmZ8aRXkf4vvb3APxw9gf67u+b7wVXDbQN2NJhCxIkbLm1hcOPD6s9t7hZcQZV+7dqJB2tkeE1k9ppuT1ywz/cP9v7dDB3wETXhDh5HA/fP0x13NLAEi2pFgCBUYHZPg/8l0wmfCbBp6jjMwGUNC/JrMazePr9Uy4OuMjgaoMx1jHGN9SXORfmUGp5KRpubsjGGxsJjwtPMVddX2b5zXEUXVKUUUdGpfmeUAd1ziWXBHHQdxGR8ZHZOodAIPgPqURKvWL1WNZqGX4T/bg44CLflf0BLayQCJ+pQCMCI/kIqUTKxDoT8R7mTVWbqgTHBNP5n84MOjgo1ZeuujhaO+I5xJMGxRoQHhdOmx1tWOaxLF9nQUkkEla1WUUhg0LcDbzLLxd+UXuujZENo2uNBtKvGkk28nff352jFmOqsvC3N9M8j6bKwuPl8aqqE5H9JEgLmVRCnVKWdHAqTJ1Slsik6YcxzPXNGVFzBO6D3Xk4+iHT60+niEkRQmNDWeO9hjob61BhZQWV+KA65ec/d6jC986jMdQ25F7gPYa4DaHY0mL8ePZH3kS8ydJ1ZHauBKOd3A+6S9O/mtLlny74fvBVe32BQJAxhQwKMaT6EKa4/KrWeNGeQSAQ5BUVrSriMcSDGfVnIJVI+ev2X1RZU4ULLy5kaz0tqRbLWy1nTZs1aEm12H53O423NM73ouz1itVjYp2JAAxzG5alLPTkqpFzL86l+XeraFWRBsUaIFfK2XhzY7b3KJVIcbJ1AtJOKJNKpNgY2gA5r7QXuoyCjMiKzySRSGhQvAEb2m8gYHIArp1caV6yORIkXHp1iSFuQ7D9w5Y++/pw6tkp5Ap5pr6MFCm96ulQ1bYy0QnRrL6+mgorK9BqeytOPD2RpWc0GZ0r6TUJwdrrWHBlHuVWlMP1jmu+fgYkEBQkpBIpDYo3oGfF4WqNFz5T/kYERvIhlawr4TnEk2n1piFBwuZbm6m6pmq64niZYWVoxel+pxnkNAiFUsH4E+MZfnh4jkuVcxNrQ2tWt1kNwLzL87j+5rrac/9X738YaBtw/c11jj45mup4LftaONk6ESeP46/bf2V7j5WtKyOVSAmKDkoz+KGpVlqvw16jRImelh7WhtY5Wksg+Jhyhcoxt+lcXox7wam+p1St5h4FP0ohPvhecYYlPRzTLT8fVKc6y1stx2+iH4u+XURx0+K8j37Pb5d+o/jS4vTZ10ft93BGpe5r+tTgwaSdjKk1BplExr4H+6iwsgIzz84kKj5KY38XgeBrR7RnEAgEBQEdmQ6/Nf2NiwMuUtK8JK/CXvHN1m/438n/EZcYl601h9cczsk+SaLsnv6e1F5fO0utffOCX775hfKFyvM28i3jjo9Te14x02IMqT4ESF9rJFmEff2N9SQqErO9x0wF2DWUUKZqpSXaDws0iIG2Ab2r9OZk35O8mvCKeU3nUb5QeWISY9h+dzvfun5L8aXFmX56OiVswzJs2/V7u17cHH6T8/3P07F8RyRIOP70OC23t8RxlSNrr69VW/Q9Pb/JzlSP1b1rsLPXVEqal+RNxBv67u9LvU31svRcRSAQZIzwmb4MJMoCGDYODw/H1NSUsLAwTExM8no7ucqll5fod6AfL0JfIEHClHpTmNN4DrpaulleS6lUssRjCZNPTkaJkkbFG7G3+14sDSxzYeeaoefenuy6t4uKVhW5MeyG2tc95dQUFl5dSE37mngN8UIiSZlHsfb6WkYcGUE5y3I8GP0g1XF1cVzliE+QD4d7HqZN2TYpjj0Ofky5FeUw0jEiYnpEttYHOOd7jiZ/NaGsZVkejXmU7XUEAnUIjwtnj88ett7emqLntJGOEV0rdMPZqje2BuWwMdGntoNFmplWiYpEDj06xFKPpVx69V9At17Reox3GU/H8h1VLRPSQ65Q4uUbQmBELNbGeqnOdS/wHuOOj1O11CpiUoSFzRfyneN32X4/CwSCJOQKJfUXnCUgLDaNjrlJmYm2pnpcntokw2xLgeb5mmxggWb4Wu6ZiLgIJp6YyIabG4CkBCbXzq5UsamSrfWehjyl3c52PHz/EANtA7Z12kbnCp01uWWN4unnSd1NdVEoFez/bj8dy3dUa97rsNeU/rM08fJ4zvU/R+MSjVMcj02MpcjiIgTHBHOoxyHalWuXrf1tubWFgQcH0rhEY871P5fqePud7XF77MaaNmtU1f3Zoca6Gtx4eyNHexUI1EGpVOLl78XW21vZdW8XH2I/qI7VLlybvlX6U9a4FTFxOmn6Msk8//CcPz3/ZOPNjUTEJz0zsNC3YFj1YYyuPZoiJkUy3UtGflNsYiyL3Rfz26XfiE6IRoKEQdUGMbfpXJF0KRDkEOEz5V+yYv+KipF8ToPiDbg94jaDnAahRMmCKwtw3uDMvcB7WV5LIpEwsc5EDvc6jLGOMRdeXqD2htr4BPnkws41w4pWK7AxtMEnyIdZ52epPW9y3cmqqpEjT46kOt6rci+MdIx4FPyICy+zV3IPGeuMJFeMRMZH5qivpxARFHxOTHRN0hQfjIyPZMvtzYw83YyJFxty4vWfvAxLu42VllSLzhU6c3HgRa4PvU7fKn3Rlmpz5fUVuu3uRqnlpfjj6h+Exoamu4/MSt0rWVfidN/T7Om2h+KmxfEL96Pn3p402tIo32d2CgT5ncxaQQDMaldRGPgCgSDfYKxrzPr26znY4yBWBlbcDbxLrfW1WHhlIXKFPMvrlbYojftgd1qUakF0QjRd/unCbxd/y7etaJyLODOl7hQAhh8ezvvo92rNK2palCHV/q0aSUNrRE9LjwFOA4CcibAn+0y3Am6l3YJYQ9qMyRojomJEkNtIJBKcizizqs0q3k56y+5uu2lbti0yiQwvfy++PzaadnvL4/pkPMFydxTKtCuuSpqXZEnLJfhN9GNpi6WUNC9JSEwI86/Mp8TSEvTc2xNPP88M95KR36SnpceMBjN4POYxvSv3RomSjTc3UubPMixxX0KCPEGjfxeB4GtC+ExfBiIwUgAw0TVhY4eN7Ou+j0IGhbj97jY11tVgsftiFEpFltdrXaa1SpT9+Yfn1NlYh2NPUguV5wcsDSxZ2zbJCF94dSEefh5qzbM2tGZMrTFAkpH/qQFurGtMr0q9AM0Y+WkFRox1jTHUNgRy1k5LiAgK8oqciA8mU8O+Bn91+ouX41/yU8OfsDKw4lXYK/536n8UWVyEMUfH8Dj4cbb2J5FI6FKxCw9GP+Dnxj+jr6XPpVeXqLGuBiMOj1D7oYBAIEhNRm3tVvepnkqsVCAQCPID7cu1596oe7Qv1554eTxTTk+hyV9NeBH6IstrmemZcbjXYcbWHgvAj+d+pM/+PsQkxGh415phduPZOFo5EhgVyJijY9SeN73BdHRkOlx4eYFzvqmrOYbVGAbA0SdHVX5JVqloVREdmQ6hsaFp/r9QtdLKgc8UFR9FcEySfqTwmwSfE10tXbpW7IpbTzf8J/qz+NvFVLWpSrw8nj0+e2i3sx1FlhRh4omJ3A64neYaJromjHMZx+Mxjznw3QEal2iMXCln171duGx0oc7GOuy6tyvbgYzCJoVx7ezKlUFXqGFXg/C4cCaenEiVNVU48fRETi5fIPiqET5TwUe00ipgBEQGMOTQEFUVxDclvmFLxy3ZMv7eR7+nyz9duPjyIlKJlEXfLmKc87h82Yam7/6+uN5xpZxlOW4Ov4m+tn6mc4KignBY5kBUQlSa5dQ3396k+rrqaEu18Zvol61S0rO+Z2n6V9OkINO456mOl/mzDE9DnnJhwAUaFm+Y5fUBBh0cxOZbm/m58c/MbDQzW2sIBJoiOiGa/Q/2s/X2Vk4/P43y36JRfS19OlXoRP+q/Wnq0BSZVJbm/NjEWHbe3clSz6XceXdH9XrrMq0Z7zyeZiWbZfsz6HXYa6acnsKue7uApAcacxrPYWTNkWjLtLO1pkDwtZNZWzvB5+VrtoEF2eNrvWeUSiWbbm5i3PFxRCVEYaxjzJ+t/qRf1X7ZsjPWea9j9NHRJCoSqV24Nge+O6B6mJ+fuP7mOi4bXJAr5fzT9R+6OXZTa96Yo2NYeW0lDYs35Hz/86n+Rk3/aspZ37P82OBHfmnyS7b2ltzmam/3vanakiW3OW5Xth2Heh7K1vo+QT44rnLERNeEsGlh2VpDINAktwJusfXWVrbf3U5QdJDq9ao2VelftT+9q/TO8BnErYBbLPNcxo67O1T6sIWNCzOm9hiG1RiGhb5FtvYlV8jZfGszM87MUO2rXdl2LG6xmNIWpbO1pkDwtSN8pvyFaKX1BWNrZItbTzfWtl2LgbYB516co/Lqyrjecc1yaXchg0Kc6nuKwdUGo1AqmHBiAsPchuVLUfblLZdjZ2THo+BHzDynXnDAytCKMbX/rRq5kLpqpJpdNWrZ1yJBkcCWW1uytS8nWycAfEN902wLpAkBdiEiKMhPZCQ+uOPuDlq4tlCJDz58/zDVfD0tPQZWG8it4bc42+8s7cu1R4KEo0+O8q3rt1ReXZn13uuzlY1Z1LQoO7vs5MKAC1S1qUpobCjjjo/Daa0Tp5+f1sTlCwRfHZm1tRMIBIL8iEQiYXD1wdwecZu6ResSER/BgIMD6Lq7a7YqSofVGMbJPiex0LfAy9+L2hvypyh7TfuaTK8/HYBRR0cRGBWo1rxp9aehI9Ph4suLnHuRumokWYR9482N2c5Yz0iAXRPi66/CXgGi/bAg/+Bk68SSlkvwn+jPoR6H6FKhCzoyHW6/u83EkxOxX2RPu53t2Ouzl7jEuDTnb+6wmVfjXzGn8RxsDG3wj/Bn+pnpFFlchBGHR/Ag6EGW9yWTyhhSfQiPv3/MBJcJaEm1cHvshuMqR6adnkZEXPb1UQWCrxXhMxVcRGCkACKRSBhWYxi3R9zGpYgL4XHh9N3fl+/2fEdwdHCW1tKR6bC+3XoWf7sYqUTKhpsb+Hbbt/muBY25vjnr260HYLH7Yi6/uqzWvMl1J2OobZgkwvcodfZRspG/zntdttqSWehbqKp10iqLtTWyBZIqfbKLMPIF+ZUiJkWYVn8aPqN88BziyaiaozDXM8c/wp/5V+ZTYWUFnDc4s+raKkJiQlLMlUgkfOPwDQd7HOTx948ZW3ssRjpG3A+6z7DDwyi6pCg/nPkB/3D/LO+rYfGGeA/zZk2bNVjqW+IT5EPzbc3p9Hcnnn9IXdklEAg+H3KFEvdnwRy85Y/7s2DkigJXuCwQCAoQpSxKcXHAReY2mYuWVIt9D/ZRaVUljj45muW1vnH4Bs8hnpQvVB6/cD/qb67Pvgf7cmHXOWNmo5lUsanC++j3jDwyUq3kuSImRRhWPall1qzzs1LN6Vi+I9aG1ryNfMvhx4ezta9qdplrM2qi/bBIJhPkN7Rl2rQr14493ffwdtJbVrZeSe3CtZEr5Rx+fJiuu7tit8iO0UdG4+Xvler9Z2Nkw0+NfuLl+Jds7bgVJ1snYhJjWOu9loqrKtLStSXHnx7P8vMMMz0zFrdYzJ0Rd/i21LfEy+NZcGUB5VaUY9vtbdl6PiIQCDSD8Jk+HyIwUoApbVGaSwMv8cs3v6Al1WK3z24qr66c5R6REomECXUmcLjnf6Lszhuc850oe5uybRjoNBAlSgYeHEhUfFSmcwoZFOL72t8DaVeN9KjUAxNdE559eMaZ52eytS91BNizm/2kUCr+C4wII1+QT5FIJNQuXJuVbVamKT44+uho7BbZ0W13Nw4/Ppwq07C0RWmWtVqG3wQ/Fn+7mBJmJQiOCWbu5bmUWFaC3vt64+XvlaU9yaQyhtcczpPvnzC29lhkEhkHHh6g4sqK/Hj2R7U+PwQCgWY5fu8t9Recped6D8btukXP9R7UX3CW4/dyJrYrEAgEGSGTypjeYDqeQzypUKgC76Le0WZHG0YeHplle6C0RWk8BnukEGX/9eKv+UqUXUemw9aOW1WBoOQWo5kxrf40dGW6XH51mbO+Z1OtOchpEABrvNdka18qnymNSpvkipF3Ue+y/TBWVWUvkskE+RgLfQtG1RqF5xBPfEb5MLXeVOyN7fkQ+4FV11fhvMGZiqsqMv/y/FQJYrpauvSr2o8bw25wYcAFOpXvhAQJJ56doNX2VjiucmTN9TVZ/lyrYFWB472Pc7DHQUqZl+Jt5Fv6HehHvU31uOZ/TZOXLxAI1ED4TJ8XERgp4GhJtfix4Y+4D3annGU53ka+peX2low5OobohOgsrdWqTKt8L8q+uMViipgU4WnIU2acmaHWnEl1J2GkY8StgFscfHQwxTFDHUP6VukLZF+EPcPASA7Lwt9FviNeHo9UIqWwceFsrSEQfE5yIj5oqmfKhDoTePr9U/Z130fD4g1JVCSy4+4OnDc4U29TPXbf302iIlHt/Zjrm7Os1TJuj7hNU4emxMnj+O3Sb5RbUY6dd3fmqwcZAsGXzPF7bxnpeoO3YbEpXg8Ii2Wk6w1h6AsEglynul11vId5M855HJD0gL/a2mp4+nlmaR1TPVMO9zqsWmfmuZn03tc7X4myO9k6MbNhUvvh0UdHq1WJUdiksEpoPa2qkaE1hgJw8tnJbFXgVrWtigQJ/hH+BEUFpThmY2iDBAmJisRsdy4QgRFBQaOCVQXmN5vPq/GvONHnBL0q90JfS5+H7x8y/cx0ii4pyrfbvmXH3R0pnu1IJBIaFm/Ivu/28XTsUya4TMBYx5iH7x8y8shIii4pyrTT03gd9lrtvUgkEtqXa8/9UfeZ13QehtqGePh54LzBmcEHB/Mu8l1u/AkEAsEnCJ/p8yMCI18INe1rcmP4DVV1xMprK6m2tlqWI/yO1o54DfWiYfGGhMeF03ZnW5a4L8k3Dw/N9MzY0G4DAMu9lnPhxYVM53xcNTLnwpxU15LcTuvgo4PZKt9WlYWnlf2Uw7LwZAPf3theiEcLChw2RjZMqDOBWyNucWv4LSa4TMDa0JrAqECWeCzBaa0TTmucWOK+JEUPbJlURvtyHZnfYB9LG12mfYlJaEt0ufr6Kt33dKfkspL8fuV3PsR8UHsvjtaOnOp7in3d91HCrAT+Ef702teLBpsbcOPtjdy4fIFA8C9yhZI5bj6kZUkkvzbHzUeUiAsEglxHX1ufpS2XcqrvKQobF+ZJyBPqbarHrHOzsqSdoSXVYmnLpaxruw4tqRY77+2k8dbGOWoFpWmm159OdbvqfIj9wPDDw9Xy55KrRq68vsIZ35TV9CXNS/JtqW8BWO+9Psv7MdIxooxlGSB1Qpm2TJtCBoWAHPhN/7bSSm5zLBAUFGRSGd+W+pbtnbcTMDmADe020KBYA5QoOfX8FL339cb2D1uGHBrCpZeXUryXS5qXZGHzRezvdI+RjhtxMGjBh5gwFlxZgMMyB77b8x3ur93V3ouuli7T6k/j8feP6VOlD0qUbLq1ibIryrLo6qJ8qUcrEHwpCJ8pbxCBkS8IA20Dlrdazok+J7A3tudx8GPqbKzDzxd+zlKGdbIo+5BqQ1AoFUw8OZGhbkPzzZdgi9ItVD1wBx4cSGR8ZKZzJtX5r2rkwMMDKY5VtqlM3aJ1SVQksunmpizvJ7li5MH7B8Qmpozq5rRiRNUrV2Q+CQo4VW2rsrjFYvwm+OHW0y1D8UG3269VpaNLjody+8E3OMkOMaDcUqwMrHgd/pqpp6dSZEkRRh0ZlabIe1pIJBI6VejEg9EP+PWbXzHQNuDK6yvUXFeTYW7DUmUvCgQCzeDlG5Iq6+ljlMDbsFi8fEPSHSMQCASapFnJZtwdeZeelXoiV8r5+eLP1NtUj0fvH2VpnaE1hnKq7ymVKHut9bXyTcKFtkybrR23oi3Vxu2xG9vubMt0jr2xvSppLK2qkRE1RgCw6dambPmGTrZOQO4IsIv2w4IvARNdEwZXH8zFgRd5+v1TZjWaRQmzEkTER7Dx5kYabmlI6T9LM+f8HHw/+Kpa7gzecpej121QBH9PVelBalsMRa6U88/9f6i7qS7OG5zZeXen2gFge2N7tnXaxtVBV6lhV4PwuHAmn5pMldVV8l1XEYHgS0H4THmDCIx8gXxb6lvujrxLd8fuyJVyZp2fRf1N9XkS/ETtNXRkOqxrt44lLZYglUjZeHMjzbc1zzei7H98+wfFTYvjG+rLlFNTMh1vaWDJ2NpjgaSqkU971yY7AOtvrEeukGdpL0VMimChb0GiIpH7gfdTHNNUxYgw8AVfCtoybdqWbZuu+GDfXYsYs/M2b8NStqMIikjg/K3SbPj2Ops7bKaqTVWiE6JZfX01FVZWoPX21px8dlKtbEg9LT1+aPgDj8Y8omelnihRsv7Gesr8WYalHkuzlDEqEAgyJzAifQM/O+MEAoFAE5jrm7Ojyw52dtmJmZ4Z195co9raaqy6tipL1fKNSzTGa4gXFQpVwD/Cn/qb6rPXZ28u7lx9KllXYk7jOQCMPTY2lWZBWkyrPw09LT2uvr7K6eenUxxrW7YtdkZ2BEYFpko2U4eMWhDbGtkCEBAZkOV1E+QJ+EckXZtIKBN8KZSyKMXsxrN5NvYZ5/ufZ6DTQIx0jHj+4TmzL8zGcUlvRrh6p/KbwqIlBPp3YHVTdwY5DUJXpouXvxe99vXCYZkD8y7NIzg6WK091ClaB6+hXmxsvxFrQ2seBT+i9Y7WtNvZLkvPlwQCQeYInylvEIGRLxQLfQt2ddnF9s7bMdU1xdPfE6e1Tqy9vlZtQ18ikTDeZTyHex7GRNeEiy8vUnt97VQP//MCY11jNrbfCMDq66tTGe1pMbHORIx1jLn97nYqQ75bxW6Y65nzMuwlJ5+dzNJeJBJJukZ+cuZTcExwtrKqVJlPwsAXaBi5Qon7s2AO3vLH/VlwnpRjfio+OKXuNKwSR/57VJJibPLu5h19Qt8q/bk5/Cbn+p+jQ7kOSJBw7OkxWri2oNLqSqzzXqeWxlIRkyLs6LKDSwMvUc22GmFxYUw4MYGqa6py6tkpzV6sQPAVY22sp9FxAoFAoEl6VOrB3ZF3aVayGTGJMYw+OppW21vxJuKN2muUsiiF+2B3WpVuRUxiDF13d+WXC7/ki3bE/6v3P2rZ1yIsLoyhbkMz3ZOdsV26VSPaMm0GVxsMZE+fMUMB9hwklPlH+KNQKtCR6WBjZJPl+QJBeuQHn0kqkdKoRCM2ddhEwKQAtnXaRlOH5ljED/vXR0rbb9p6KYp17TbwasIrfm78MzaGNvhH+DPj7AyKLCnCcLfh+AT5qHX+QdUG8XjMYya6TERLqsXhx4dxXOXI1FNTiYiL0PQlCwRfJcJnyhtEYOQLRiKR0KtyL+6OvEsThyZEJ0Qz4sgI2u5sm6VMnGRR9pLmJfEN9aXOxjoceXwkF3euHk1LNmVUzVEADD40mPC48AzHWxpYMtY57aoRfW19+lftDyQJMWaV9Ix8S31LtKVJ2iDZyX4SIoKC3CC55Lrneg/G7bpFz/Ue1F9wNk+FvCpYVaBjyclIFBZIPjHuk0kuHb309A0SiYTGJRpzoMcBnnz/hHHO4zDWMcYnyIfhh4dTdElRZpyZgV+4X6bnrl+sPteGXmNd23UUMijEg/cP+Nb1Wzru6pgtcVGBQJCS2g4W2JnqpfPOBlBiZ6pHbQeLz7grgUAg+I8iJkU40ecEy1suR09LjxPPTlB5dWV239+t9hqmeqa49XRjgssEAH46/xO99vXKc1F2LakWWztuRVemy7Gnx9h8a3Omc6bWm4qelh7ufu6cep4yWWRojaFIJVLO+p7lcfDjLO0luZXW4+DHqdohqwIj2Wil9bG+iFQiHnEINEN+9JkMdQzpU6UPv9TbiRZWmfpNXr4hWBtaM7PRTF6Of8lfHf+imm01YhNjWXdjHY6rHGnh2oKjT46m6qrxKaZ6pixqsYi7I+/SsnRLEhQJ/H71d8quKMvWW1sznS8QCDJG+Ex5g7AavgKKmhblVN9TLGmxBF2ZLkefHKXSqkrse7BP7TUqWlXEa4gXjYo3IiI+gnY727HYfXGeZ0EtaL6AkuYleRX2isknJ2c6Prlq5M67O+x/sD/FsWE1knRLDj8+rNbD1I9RCbB/UjEikUhUZeHZyX5SaYyIVloCDXH83ltGut5I1bsyICyWka438tTQV7cktOP2/vTe21slPljKohRLWy7Fb6IfS1oswcHMgZCYEOZdnofDMgd67u2Jp59nhmvKpDKG1hjK4zGPGec8DplExsFHB6mwsgIzzsxQS8tIIBCkjUwqYVa7isCnOY2gRIESGP6NJTJp+m6AQCAQ5DZSiZTvnb/He5g31e2qExITQvc93em7vy+hsaFqrSGTyljcYjHr261HS6rFrnu7aLSlUZaqT3KDClYV+LXJrwBMODFBVZWeHnbGdio9kU+rRoqZFqNV6VYArPNel6V92BjZYGdkhxIld97dSXVOyGZgRCSTCTRMfvaZQH2/acC+say+tpoPMR/Q1dKlb9W+eA/z5uKAi3Su0BmpRMrJZydps6MNFVZWYNW1VUTFR2W4ZvlC5Tna6yhuPd0oZV6KgMgABhwcQN2NdfHy99LE5QkEXyXq+Eyli98SPpOGEYGRrwSpRMp4l/F4D/PGydaJ4JhguvzThYEHB2ZaaZGMpYElJ/ueZGj1oShRMunkJIYcGpKnouxGOkZs7pCU9bT+xnqOPz2e4XgLfQvGOY8DUleNVLCqQMPiDVEoFWy8sTFL+0iuGLnz7k4qjRJNGPnFTItlea5A8ClyhZI5bj6kFc5Mfm2Om0+elIiD+iWhscpAdtzbQcMtDbFdZMuPZ37E94MvJromjHcZz5Pvn7D/u/00LtGYREUiu+7twmWjC3U21uHve39nqCFirm/O0pZLuTPyDs1KNiNeHs+8y/Mot6Ic2+9sz/NgsEBQUGlZyY7Vfapja5ryfS7TiiBIZy5/3hlMbKLolysQCPKeilYVcR/szg8NfkAqkeJ6x5Uqq6tw/sV5tdcYUn0Ip/uexlLfkmtvrlF7fW2833jn3qbVYILLBOoUqUN4XDhDDg3J1KaZWj+pasTDzyNVq+HkVltbbm3J8md3ckLZpwLsOWmllRzoET6TQBPkd58J1PebXkbcZdTRUVgttKKVayuOPD6CXCmnQfEG7O2+l6ffP2Wiy0RMdE14HPyY0UdHU2RJEaacmpJhAFUikdC2bFvuj7rP/KbzMdIxwtPfE+cNzgw8ODBb3TIEAkH6PpOZAQTpzMX1yWSOPjmaR7v7MhGBka8MR2tHPId4Mq3eNCRI2HJrC1VWV+Hiy4tqzdeR6bC27VqWtliKVCJl061NNPurGUFRQbm88/RpWLyhKtgx5NCQTDO6JtSZgImuCXcD76aqmknOjFp/Yz2JikS191DWsiz6WvpEJUTxNORpimPZNfJDY0NVQSuR/STQBF6+Iamynj4mueR6zdVTagdMNUnmpaNgrJ+Ig/V/wcfAqEB+u/wbJZeXpOqaqmy4sYHohGg6lu/Iuf7nuDn8JgOcBqAj08HDz4Mee3tQcnlJFlxeQEhMSLrnqWhVkZN9TrL/u/04mDnwJuINffb3of7m+nn+YEMgKKi0rGTH5alN2DnUhWU9nNg51IWzk+pjYPSYG29vMOH4hLzeokAgEABJPs+vTX7l0sBLlDQvyevw1zTZ2oTJJyerHQhoVKIRXkO9qGhVEf8IfxpsbpCl1lyaRiaVsaXjFvS09Dj1/FSm1R62RraMrJmk/fZp1UjrMq0palKU4JjgLAvNp9eCOEfJZKGiYkSgOdT1mX478zdPQ57mSeKUOn6TjnYUaCc9m5Ar5Rx/dpy2O9tiscCCUYdHcefdHRzMHVjUYhF+E/z4s9WflLYoTWhsKAuvLqTkspJ0392dq6+vpnuNulq6TK0/lUdjHtGvaj8gKWBa9s+y/HH1jzxNohUICipp+Uw3fmzLQOek78+++/tmWvkpUB8RGPkK0ZHpMK/ZPC4OvEgJsxK8DHtJ4y2NmXJqCnGJcZnOl0gkjHMZx5FeRzDRNeHSq0vU3lCbe4H3PsPu02Zu07mUsSiDf4Q/E05k/GAlo6qRzhU6U8igEP4R/lmKwsqkMqrYVAHSEGD/NzCS1ayJZAPfUt8SQx3DLM0VCNJC3ZLrKSd+w2y+GZVXV2booaFsvLGR+4H3c71vbEalo5J/fxZ2qc2DMfd5OPoh/6v7PwoZFFKNufPuDkPdhmLxuwXtd7bn9PPTVLauzOYOm3k1/hWzG83G2tAav3A/pp2ZRpHFRRh5eCQPgh6kuR+JRELH8h3xGe3Db01+w0DbgKuvr1JrfS2GHhpKYFRg7vwhBPma/CDCWZCRSSXUKWVJB6fC1CllSQnzYrh2dkWChDXea9hxd0deb1EgEAhU1C1al9sjbqsq5he5L6LW+lrcDrit1vyS5iW5OuiqSpS9+57u/Hzh5zyrQC1rWZZ5TecBMOnkJHw/+GY4fkq9Kehr6ePp75miMl8mlTGk+hAg6yLsqsBIOj7T24i3Wf77qFppifbDAg2grs+04OJqyvxZBquFVrTd0ZZfL/7K6eenCYsNy+Udquc3Lf+uASHT3rO983bqFq2r0iOJiI9gtfdqqq6pSsllJVl0dRGxibGMqT2GR2Me4dbTjaYOTZEr5ez22U29TfVw3uDMjrs70g102Bvbs7XjVtwHu1PLvhYR8RH879T/qLy6sshu/0oRPlPO+NRnkkklLG6xmJr2NZNafe7uLgKPGkKiLIB9QcLDwzE1NSUsLAwTE5O83k6BJjwunAnHJ7Dp1iYAqthUwbWTK5VtKqs1/0HQA9rtbMezD88w1jFmZ5edtCnbJje3nC5XX1+l/qb6KFHi1tONtmXbpjv2Q8wHHJY5EBYXxj9d/6GbYzfVsf+d/B9/uP9B6zKtOdJLfZH5kYdHssZ7DVPqTmFB8wWq1+ecn8PsC7MZWn0o69qp34fX7ZEb7Xe1p7pddbyHiQx1Qc5xfxZMz/UemQ+0WMbLmFOpXjbRNaF24dq4FHbBpYgLzkWcUwQmNMXxe2+Z4+aTIlPLzlSPWe0q0rKSXYqxCqWCy68us/r6avY/2E+cPGVw10zPjP5V+zOy5kjKFSpHXGIcu+7tYqnn0hQtHFqWbsl45/F8W+pbJJK0c6/8w/2Zenoq2+9uB8BU15RZjWYxpvYYtGXaGrp6QX4mK/emIGv8dO4nfrn4C4bahqoMa0FqhA0syCrintEcbo/cGOI2hMCoQLSl2vza5Fcm1ZmETCrLdK5cIed/p/7HEo8lAHzn+B2bO2xGX1s/t7edCoVSQeMtjbn06hLflPiG0/1OZyhYPunEJBZ7LKZ24dp4DPZQ2Un+4f4UX1ocuVLO/VH31f7cfv7hOaWWl0JHpkPk9EiVDRWdEI3h3KRksNCpoZjqmap9TeVWlONx8GPO9jvLNw7fqD1PIEgLdX0my8LbuBe2P9XDSQkSKlpVxKWIi+qnQqEKan1WZJWs2KYBkQG43nFl9fXVPP/wPNWe6xWrx3jn8bQr1w4dmQ53391lmecyXO+4qnwse2N7RtcazbAaw9L1AxVKBVtvbWX6mem8i3oHJFWZLWmxhLKWZTV5+YJ8ivCZco8XoS+ovrY6H2I/MLb2WJa1WpbXW8qXZMX+FYERAQAHHh5gqNtQ3ke/R0emw9wmc5lQZ0KGRnIywdHBdN3dlfMvziNBwsLmC5lYZ2K6Dxdzk+Sghq2RLfdH3cdC3yLdsbPPz2bOhTk4WjlyZ+Qd1bU+CX5C2RVlkSDh+bjnlDAroda513mvY/jh4TQv2ZyTfU+mer1t2ba49XRT+1pWeK3g+2Pf06l8J/Z9ty/zCQJBJsgVSuovOEtAWGyaPXMlgK2pHpenNiEo+h2efp54+Hng4e+Bl78X0QnRqeaUtiidZPD/GyypYlNFI0ECuUKJl28IgRGxWBvrUdvBIlORsZiEGA49OsSfXn/i/todBSkrXEpblOb7Wt/Tt2pfzPTMuPjyIks9l3Lw4UGU//5FyhcqzzjncfSt0jfdSq0rr64w9vhYbry9oZqztMVSWpRukePrFuRfkkU4P33vJN+Vq/tUF4Z+DpAr5LRwbcEZ3zNUKFQBr6FeGOkY5fW28h3CBhZkFXHPaJbAqECGug3l0KNDADQo1oC/Ov2ltr+w8cZGRh4ZSYIigZr2NTnY4yD2xva5uOO0eRbyjCprqhCdEM2frf5kTO0x6Y59F/kOh2UOxCTGcKTXEVqXaa061unvThx4eCBLD2cUSgXmC8wJjwvn9ojbqqp7ANP5poTHhfNg9APKFyqv1npKpRKDuQbEJsbybOwzSpqXVGueQJAeWfGZEhXx3H53O8ln+vfHNzR1JZaRjlGqBDNrQ2uN7TerftO9wHus817HttvbCI0LTXFMT0uPrhW6MtZ5LDXta/I++j1rvdey8tpKVRcMPS09+lTuwziXcVSyrpTmOcLjwvnlwi8s9VxKoiIRbak2413G82PDHzHRFd9HXyrCZ8p9Dj8+TLud7QBSJXoLkhCBEUG2eBf5jiFuQzj8+DAAjUs0ZkuHLWqVJMfL4/n+6Pesu5FUETHQaSCr26xGV0s3V/f8KTEJMVRfV52H7x/Su3JvXDu7pjs2NDaUEktLEBYXxt9d/6a7Y3fVsWZ/NeOM7xl+aPADvzb5Va1zX/O/Ru0NtbEysOLd5HeqwFBy5UcNuxpcH3Zd7WtJDvKMdx7PkpZL1J4nEGREsqECpDBWMjNUEhWJ3A+8rwqUePh58PD9w1Tj9LT0qGlfU2X0uxRxobBJ4Vy4kowJjApk251trL62mmcfnqU4JpVIaVisIRPrTKRVmVa8CnvFCq8VbLixgYj4CADM9cwZVmMYo2uNpqhp0VTryxVyNt/azIwzMwiKTtJYale2HYtbLKa0Rencv0DBZyXZQU6v3/THDnJmjmhaa2fVmf1SeRf5jmprq/E28i29K/dmW6dteZJkkZ8RNrAgq4h7RvMolUo239rMuOPjiIyPxFjHmOWtltO/an+1PrMuvrxI5787ExwTjL2xPQd7HKSmfc3PsPOUrPRayZhjYzDQNuD2iNsZ2i/Jfkkt+1p4DvFUXefxp8dptb0VZnpmvJn4Ru0KmEZbGnHx5UW2dtyq0iUAKL+iPI+CH2Wp8uNd5DtsF9kiQULsj7HoyHTUmicQZER2fSZIuic9/ZMSzDz9PfHy9yIyPjLVuJLmJVMkmFW1rfrZ71+5Qs75F+dZ7rWcY0+OkaBISHHc1siW4TWGqypE/rn/D0s9luL99r+OFs1KNmO883halWmVZmLto/ePmHBiAseeHgPAxtCG+c3m069qP7UScQUFB+EzfT6mnZ7GgisLMNYx5vqw66Ia6xNEYESQbZRKJRtubGDCiQlEJURhomvCilYr6FOlT6aGvlKp5E+vP5lwYgIKpYL6xeqzr/s+rAytPtPuk/D086TuproolAr2dd9Hpwqd0h2b3OaqolVF7oy4oypv3X1/N933dMfWyJZX41+plQEfkxCD8Txj5Eo5fhP8VA+Dr7+5Tq31tbA3tsd/or/a19F9d3d2++xm8beLmVBHCNIKNIemSls/xHzAy99LFSzx9PPkQ+yHVOOKmBRJyowq7IxLERdq2NX4rK0jHgQ9YPX11Wy7s43Q2NAUxwy1DelesTvj64ynhFkJttzawjLPZarycplERteKXRnvMh6XIi6p1g6NDWXO+TmsuLaCREUiOjIdJrpM5IeGP4hs9y8IdVsq7BzqQp1SlmqvK8rMU3Pp5SW+2foNcqWcNW3WMLzm8LzeUr5C2MCCrCLumdzj+Yfn9NvfjyuvrwDQqXwn1rZdq5bv8/zDc9rtbIdPkA/6Wvps6bglRZLW50ChVNDsr2ace3GO+sXqc2HAhXQfUgZGBeKwzIHohGgO9zysap2sUCootbwUL0JfsKXDFvo79Vfr3OOPj2eZ57JUCWDfbP2G8y/Os73zdnpV7qXWWsnJaVn1tQSCzNCUnSZXyPEJ8vmvqsTfA58gn1TjdGW61LCvkSLBrIhJkc+WJBIVH8W+B/tY6rmUm29vqirqk3GydWKiy0S6VOjCzYCbLPVcyr4H+1Q6lGUsyjDOeRz9nfqn6QcdeXyECScm8CTkCQC1C9dmecvlOBdxzv2LE3wWhM/0+UhUJNL0r6ZcfHmRytaV8RjigYG2QV5vK98gAiOCHPM05Cn99vfD3c8dgK4Vu7KmzRosDTL/8Dr+9Djf7fmO8LhwSpiVwK2nW7rllbnF9NPTmX9lPtaG1twfdT/d/pcfV43s6rKL7yp9ByRVwBRbUox3Ue/Y020PXSp2Ueu8lVZV4n7Q/RQaJ/7h/hRZUgSZREbcj3Fq9xZ13uCMl78Xe7vvpXOFzmrNEQjUJTcyLhRKBU+Cn6Qw+u+8u5NKtF1LqkVVm6op+u6WMi+V60a/QqngwosLLPNcxrEnx4hXpOwHXMS4CCNqjmBwtcF4vfFiqcdSzr04pzruXNiZ8S7j6VKhS6pg6YOgB4w/MZ6Tz5La6NkZ2fF789/pXbm3yHgvoCiVSnxDfbn86jL/XH/OvSe1Mp2zrIcTHZzUq5ASZebp8/uV35l6eio6Mh3cB7tT3a56Xm8p3yBsYEFWEfdM7iJXyFl4dSE/nfuJBEUCNoY2bGy/US3NxfC4cHru7akSJp7daDY/Nfrps9oNL0JfUHl1ZSLjI1nSYgnjXcanO3bKqSksvLqQmvY18RripdrnvEvzmHF2Bi5FXHAf7K7Webfe2sqAgwNoVLwR5wecV73ea28vdt7byR/N/2BS3UlqrbXHZw/ddnejTpE6XB18Va05AoG65FaWemhsKNf8r6Woxg+JCUk1zt7YPkVVSQ37Gp/l4efbiLdsvLmRtd5r8Qv3S3FMW6pNy9It+V/d/1HEpAirrq1i/Y31hMUlic6b6poytPpQxtQek6r7SLw8nmUey/j54s+qKpr+Vfszr+k87Iy/Trv3SyAyPhJPP0/+8vDhwp3M2xkKn0kzvI14i9NaJwKjAhnoNJBNHTbl9ZbyDSIwItAIiYpEFlxewOwLs0lUJGJnZMemDptoWbplpnM/FmU30jFiZ5edGYqha5q4xDhqrKvB/aD7dHfszt9d/0537M8XfmbW+VlUKFSBuyPvqgIXM87MYN7leak0QzKi7/6+uN5x5efGPzOz0Uwg6e+o84sOSpQETArAxshGrbXsFtkREBnA9aHXqWFfQ605AkF+Iyo+Cu+33qpgibufu6o37cdY6lumCJTUsq+VJdHNrBKdEJ2UEeWxlBtvb6TIiJIgoYZ9DSbVmURp89Ksur6K7Xe3q4QVCxsXZkztMQytPjRFsFipVOL22I0JJyaoKk7qFKnD8lbL86RFhiBzPnZ2Cxlpo6vvh7vfFS69usTlV5d5G/kWAF15ZWzj52W6nrrZT7lZZv4loFAq6PR3Jw49OoSDmQPew7wx1zfP623lC4QNLMgq4p75PNx8e5M++/uossCH1xjOH9/+kWn1qFwhZ8qpKSz2WAxAd8fubO6w+bNmfSbrIepp6XFr+C3KFSqX5riPq0Y+TgILiAyg6JKiJCoSuTX8FlVtq2Z6zjvv7lB1TVVMdU35MPWDKsiSLPQ+qc4k/vj2D7X2v+jqIiafmkyPSj3Y2WWnmlctEOQvlEolT0Oepkgwux1wG7lSnmKcTCKjqm3VFFUlpS1K52pA9c67Oyz3XM7f9/9O1RLMXM+c/lX7M6T6EM6/OM8yz2WqihCpRErnCp0Z5zyOekXrpdjj24i3TD8zna23twJJGiwzG85knPO4z96OXZA5nwYIi1sl4OF/lcuvLnP51WVuvL2BXCkXPlMecM73HM22NUOhVLCx/UYGVRuU11vKF4jAiECjeL/xps/+Pio9gVE1R7Hw24WZGuyfirL/3vx3JtWZ9NmyoLzfeOO8wRm5Up5KQ+RjwmLDKLGsBKGxoezsspMelXoA4PvBl1LLS6FEyZPvn6ilG7DYfTGTTk5KJZhu84cNgVGB3Bx+Eydbp0zXiU2MRf+3pFZDQf8LSrfiRSAoaCiVSl6Hv04hUOj91lsVdEhGgoSKVhVTBEsqFKqgdsVVVngX+Y6NNzey5voaXoe/TnFMV6ZL6zKtGVp9KF7+Xqy+vpp3Ue8A0NfSp2+VvoxzGUdFq4qqObGJsSxxX8Jvl34jKiEKCRIGOg1kbtO5agdGBbnPwVsvme12nw9R/5lBiQQRorOOGFlSxqu2VJua9jWpV7QBpzwaEBqd9vdXVo3yK08D6b3hWqbjslpm/iXxIeYD1ddV50XoCzqU68D+7/aL6iuEDSzIOuKe+XzEJsYy48wMlngktYYqbVGabZ22pdmK81M+FWU/8N2Bz6bRplQqaeHaglPPT+FSxIXLAy+na29NPTWV36/+Tg27Glwbek31uZzcAnhkzZGsarMq03MmyBMwmmdEvDw+hWD6wisLmXJ6SqZakR8z4n2NqwABAABJREFU9thY/vT6k6n1pjK/2Xw1r1ogyP9EJ0Tj/cZbFShxf+2uStr5GAt9C1XLYpciLtQuXBszPTON70eukHP6+WkWuS/i3ItzJCoSUxwva1mWMbXGYGdkx9obazn9/LTqWA27Gox3GU93x+4pdFQ8/TwZe3wsXv5eQNLn5tIWS9WquhN8Ho7dfcvMg3d4H/nf/+9PfSaAYqbFqFe0AXfvdSMiRivNtbLqM+VWa64vjd8u/saP535ET0sPj8EeaiUofOmIwIhA48QkxDDt9DSWey0Hkr70tnXaRu3CtTOclyBP4Ptj37PWey0AA5wGsKbNms+WBfDTuZ/45eIvWOpbcn/U/XQfSv5y4Rd+Ov8T5QuV597IeypnoNX2Vhx/epwpdaewoPmCTM93zvccTf5qgoOZA8/HPVe97rTGidvvbnO011FalWmV6TpPgp9QdkVZDLQNiJweKR4GCb5o4hLjuP3udopgiW+ob6pxxjrG1C5cW2X0Oxd21riGkU+QD0vcl/D3/b9VQuzJFDIoRL8q/ShmWoytt7dyM+Cm6ti3pb5lvPN4WpRuoerP7R/uz7Qz03C9k+TYm+iaMKvRLMbUHiOEQfOA99HvufLqCpdfXebUgyA+vO0KJAXhklGiQIKE5tVf0te5MrXsa6n0cLIjwpkgT+BpyFN8gnySft4n/X751gqzuMy1o7JSZv4l4v3Gm7qb6hIvj2dh84VMrjs5r7eU5wgbWJBVxD3z+Tnz/AwDDg7AL9wPqUTKDw1+YGbDmZlqFn4sym5nZMehnoc+W8Xp67DXVFpdifC4cH5v9jv/q/e/NMcFRQXhsMyBqIQoDvU4RLty7YCka262rRnGOsa8mfRGLZ21GutqcOPtjRRtg13vuNJ3f1+aODThTL8zau29w64OHHp0iFWtVzGy1kg1r1ggKHgolUr8wv1U/pKnvyfX31wnTh6XamyFQhVSJJg5WjlqNMEsMj6SnXd3ssxzGfeD7qc4JpPIaFCsAd9V+o7r/tdxveuq2qOdkR2jao1ieI3hKj9OoVSw7fY2pp6eqkpAa1W6FUtaLEm3gk2QeyQqErkVcIvLry7jdvs1T32/AdL2mapXuEG36mWoV6wexUyLAdnzmZRKJUHRQf/5TP/+PPQzQicic73Br91nUigVtN3RlmNPj1HGogzXh13HRPfrtvlEYESQa5x6dooBBwfwJuINMomMnxr9xIwGM9CSph0RhqQPuRVeKxh/YrxKlH1v971YG1rn+n7j5fHUXl+b2+9u06l8J/Z235tmkOHjqpEdnXfQs3JPAA48PECnvzthZWDF6wmvMw3ohMSEYPl7UqT6w9QPqkyN5ACLuqVtp5+fpvm25pQvVJ4Hox9k8aoFgoLPu8h3ePp7qgx/L38vohKiUo0rZV4qhbB7VduqGgk6KJQKzjw/w8KrC9PMiKpQqAKty7TmachT3B67qXRUylmWY5zzOPpV7YehjiEAV19fZeyxsXi/9VaNWdpyqVptCQXZ42N9kOSfB+///SxVSikcuxEZhVIY+MlklMmUnvDf9NZlKGEbmsqYfxLyJNW9A5pvzfUls/raakYdHYVMIuP8gPPUL1Y/r7eUpwgbWJBVxD2TN4TGhjLm6Bi2390OJGVLu3Z2pXyh8hnO8/3gS7ud7bgfdB89LT22dNii0kDMbTbd3MTgQ4PRlelyY/iNFNWwHzPt9DQWXFlAdbvqXB96HYlEgkKpoNyKcjwNecr6dusZUn1IpucbcmgIG29u5McGP/JLk1+A/wIsFQpVwGd0anHqtKi2thq3Am6lEIUXCL4W4uXx3Hl3J0WC2bMPz1KNM9IxopZ9rRQJZpqqZPcP92fltZVsurlJFdhQnVfbiLZl22JjaMM/Pv/816ZWpkufKn0Y5zyOyjaVgSTdpV8v/spSj6UkKBLQkmoxznkcMxvOzNUWy187UfFRePh5JPlMry/j/to9ye/OBZ/pp7YVqVpCmcpn8gnyITgmONU5hM+kPsHRwVRbW43X4a/pWrEr/3T956tOsM7zwIi/vz9Tp07l2LFjREdHU7p0aTZv3kzNmkkZL0qlklmzZrF+/XpCQ0OpV68eq1evpkyZMmqtLwz8vCUkJoRRR0bx9/0k3Y7ahWuzrdM2ylqWzXDeyWcn6b67O2FxYRQ3LY5bTzfVl2BucjvgNjXX1yRRkZgi6PEpv178lZnnZqaoGklUJFJ8aXHeRLxJ0WYrI0osLcHLsJec63+OxiUaAzDo4CA239rMr9/8yg8Nf8h0jY03NjLEbQgtSrXgeJ/jWbpegeBLRK6Qcz/ofgqjX/Wg+yN0ZbrUsK+Rou9uEZMiOTIKohOi2XF3B8s8lnEv6F6KY1pSLZwLO2NnaMeJ5ydUVSZmemYMqz6M0bVHU8y0GAqlgi23tjD9zHQCowIBaFu2LUtaLFGrTZ8gY+QKOXfe3VEZ9JdfXeZNxJtU4ypaVaS8cXu872f+cD0tAzs6IZr7gQ845vOEh+/e8C7mCa9izvI89KkqOPYpRjpGVLSqmPRTKOl3OcsK9Fnny7uw2FRCgiD65X6MUqmk977e7Ly3E3tje24Ov/lZEivyK8IG/rLIbZ8JxD2T1/x9729GHBlBaGwoelp6LGy+kNG1Rmdol4THhdNrby+OPDkCwKxGs/ip0U+qitTcQqlU0nZnW44+OUot+1pcHXw1zeS399HvKbG0BFEJURzscZD25doD8MfVP/jfqf9Rw64G14ddz/R8K71WMubYGNqUacPhXoeBpMpdx1WOmOmZ8WHqB7X2bbHAgg+xH7g78i6VrCtl4YoFgi+ToKigVAlmn1bCAziYOaSoKnGydcpxgtmtt7dYcGUBhx4dIjoxOsWxIiZFcCnswtMPT7kVcEv1elOHpox3GU/rMq2RSqQ8Dn7MxBMTVZ+B1obWzGs6jwFOA3L9c/BrIDAqMEXyWLI+yMeY6ZlR1bwbL553yHS9tHwmhVLBiw+vcLvng0+AH0Gxz3gTf4mH730IiwtLcx0JEkqal/zPb/rXZxr7VyiB4fHCZ1IDDz8PGm5uSIIigWUtlzHWeWxebynPyNPAyIcPH6hWrRrffPMNI0eOxMrKiidPnlCqVClKlSoFwIIFC5g3bx5bt27FwcGBmTNncvfuXXx8fNDT08v0HMLAzx/svLuTkUdGEhYXhoG2AX80/4MRNUdkaOg/fP+Qdjvb8TTkKUY6RuzovENVgp2bJLfKMtcz5/6o+9gZ26UaEx4XTomlJfgQ+wHXTq70rtIbgFnnZvHzxZ9pXKIx5/qfy/Rcnf7uxIGHB1j87WIm1ElqlfLDmR+Ye3kuo2uNZkXrFZmukdwCbFj1YaxttzaLVysQfB2ExoZyzf+aqu+uh58HITEhqcbZG9snGfz/Bktq2NfItqjp24i3/On1Z5oZUcY6xlSyqoRfuB+vI5K0SmQSGZ0rdGa8y3jqFKlDeFw4P1/4meVey0lUJKIj02GCywR+aPADxrrG2drT10hMQgye/p4qg/7q66upHD5tqTY17GtQ1qIsRjpGRCVEcT/oPo/9TDCPm5jpOca2MMbC/HmKTKYXoS9QpmmWJzkQHwc/kn/SC8xlp8z8ayUyPpLa62vz4P0DmpVsxvHex3NFb6ggIGzgL4fP4TOBuGfyA/7h/gw8OJBTz08BSe03N3fYjL2xfbpz5Ao5U09PZZH7IgC6VezGlo5bcl2U3T/cn0qrKxEaG8pvTX5jRoMZaY6bfno686/Mp5ptNbyHeSORSHgf/Z7CiwsTL4/n+tDr1LCvkeG5rr6+Sr1N9bA3tsd/oj+QpC9l8bsFANEzolXtLNMjIi4Ck/lJ93X4tHBhSwkEaSBXyHnw/kGKBDOfIJ9UNq2uTJfqdtVTBEuKmhTNVoJZoiKRY0+O8fuV37nqdzVFApEECeUsy2GmZ4anv6dqH6UtSjPOeRz9q/bHWNeYo0+OMuHEBB4HPwagln0tlrdarpZukyAJpVLJsw/PuPzqMpdeXuLy68uqv+fHFDMtRnW76tga2qIkqWXbLV8ttCKGZnqOH9raY2vll6Jt8IOgB2l2e4Ak/7i0RekU/lJSEKRcmp/5wmfKGss9lzPu+Di0pdpcHHjxq32/5GlgZNq0aVy5coVLly6leVypVGJvb8+kSZOYPDmpV3RYWBg2NjZs2bKFHj0yz8j/kgx8uUKJl28IgRGxWBvrUdvBokBFOl+HvWbAwQGc9T0LJPWC3Nh+Y5qBh2RCYkLo+k9Xzr04hwQJC5otYHLdybla5pUgT8Blows33t6gXdl2HOxxMM3zJYsWlbUsi88oH2RSGa/DXlNiWQkUSgUPRj/ItAT+5ws/M+v8LPpW6ctfnf4C4E/PPxl7fCxdKnRhT/c9me53wIEBbL29NUOHRCAQpESpVPI05Ol/Rr+/B7cDbqfKgJFJZFS1rZqiqqS0ReksfwbdeXeHeZfnJWVEJaTMiLI2tMZYxzhFKXst+1qMdxlP14pdef7hOeOPj+fEsxNAUr/d+c3m06dKH5EJlQbvo99z9fVVlUHv/cabBEVCijEmuiY4WjliZWCFQqnAP8Kf+0H3iZfHpxinbkl2gM504mR3U71uqW+Jo7VjqgCIrZFtlu+h4/feMvuQDwHhKcvMZ7WrKAx8gNDXEJ1UVv881Je++/oQkxjLsOrDGFFzOBhYglnRPN7k5+VLsoG/dj6HzwRf1j1TkP0mhVLBSq+VTDk9hdjEWMz1zFnbdi3dHLtlOG/zzc0MPzycBEUCNexqcLDHwVwXZd92exv9DvRDW6qN9zDvNCv830e/x2GZA5HxkRz47gAdyidlFffa24ud93YytPpQ1rVbl+F5IuMjMZlnghIl7ya/w9rQGqVSif5v+sTJ43g+9jkO5g4ZrnEv8B6VV1fGXM+ckKmpk2MEAkHahMWGce3NtRTBkrRaGdka2aZIMKtpX1PVLlhdIuIi2HRzEyuureBpyNMUx3RluhQ1LUpARACRCZFAkk0/pNoQvnf+Hntje5Z7LufnCz+rkqD6VunL/GbzMwwuf60kKhK5HXA7KRDy6hKXX11OlcwnQUK5QuUoYVoCPW09wmLD8AnySTUupz6TtlSbspZlUwVAyliUybLmsPCZ1OBfv0mJkmmnp3Pq+SlsjWzZ0XkHZnqmX53flKeBkYoVK9KiRQv8/Py4cOEChQsXZtSoUQwdmhRpfP78OaVKleLmzZs4OTmp5jVq1AgnJyeWLVuWas24uDji4v4TlAoPD6do0aIF3sBPr+9eQXtzK5QKlnsuZ9rpacTJ47DUt2Rt27V0qdgl3TkJ8gTGHhvLGu81APSv2p+1bdfmqij7vcB71FhXg3h5PFs7bqVf1X6pxoTHheOwzIGQmBC2ddpGnyp9AGi/sz1uj92Y4DKBxS0WZ3get0dutN/VnkrWlbg7MukLYo/PHrrt7kbdonW5MuhKpnv9Zus3nH9xPkXlikAgyDrRCdF4v/FWBUrcX7urett+jIW+RQqjv3bh2mr3spUr5Bx7coz5V+bj4eeRIhAjQYKlgSWhMaEkKpO0JuyN7RldazRDqw/Fw8+DCScmqAIoLkVcWN5yObUK19LA1RdMlEolL0JfpDDo02qbZmVgRTHTYujIdAiJCeFZyDPV3/hjzPXMqWRdiSLGRTDUMSQuMYErN1qSmGiIhNRBKCUK5ASjKPQDFa0rUKFQhRTGfLJQpCZIMvLvExD+n41ja6LL7PaOBcoOyBVCX8OKGpCYWlBUhZYujPEWRr6gQJIbPhMIvym/8yDoAX329+HG26Ts1z5V+vBnqz9VuoRpcenlJTr/05n30e+xM7LjYI+DuWonKJVKOv7dkUOPDlHNthqeQzzTFI6fcWYG8y7Pw8nWiRvDbiCRSLj48iKNtjTCUNuQN5PeZCr+Wm5FOR4HP+Z47+O0KN0CAIdlDrwIfcGVQVeoW7RuhvOPPD5C251tcbJ14ubwm9m/aIHgKye5suBjYfdbAbdSaeXJJDIq21ROkWBWxrKM2oldr8Nes/DqQrbf3Z6q0t9IxwgtiRahcaEASCVSOpbvyHjn8ZS2KM0PZ39g863NqrE/NviR8S7jc/UZUn4nKj5KVUV/6dWl//RBPkJHpkMp81KY65kTK4/lZejLNINgUomU8oXKU9qiNJb6lkiQcvF6cxISDCENjZFknynYaDTlCpVJFQApZV4qze+O7CB8pkwQflMq8jQwklzWPXHiRLp168a1a9cYN24ca9asoX///ly9epV69erx5s0b7Oz+u4G7d++ORCLh77//TrXm7NmzmTNnTqrXC7KBn1wO9ukfvyCXg90PvE+f/X1U/SL7Ve3H8pbL0324qFQqWXltJeOOj0OhVFCvaD32fbcvV3uHz788n+lnpmOqa8r9UffTzLiae2kuP5z9gbKWZbk/6j5aUi2V0W2hb4H/RH/0tNJvX/A67DXFlhZDJpEROSMSPS09rry6Qv3N9XEwc+D5uOeZ7rPkspL4hvpyaeClr15oViDQJEplUmnwx1Ul3m+8iZOnNCIkSKhgVQGXwi44F0kSdne0csy0fU9UfBQbbm5ghecKnn5ImRGlJdVCJpGpzqWnpUffKn0ZWXMkJ5+d5NdLvxIZn5QpNdBpIHObzsXWyFaDV58/kSvk3A28myIQkpY+iK2RLaa6pkQnRPMm4k2qSiBIamdV0rwkFnoWSCQSwmLDeB76nPfR71OM05fXwSp+BqD8JDiiBCT80b0cXavnrvbLl2gHaJQ3t2Bdo8zHDbsA9k65vZt8gwiMfDnkhs8Ewm8qCMTL4/nlwi/MvTwXhVJBUZOibO24lW8cvkl3zucWZQ+IDMBxlSMhMSHMaTyHnxr9lGpMcHQwJZaVIDI+kv3f7adj+Y4olUocVzny4P0DVrVexchaIzM8T489Pfj7/t/MbzqfqfWnAlB3Y13c/dzZ021Phol2AKuurWL00dF0KNeBAz0OZPt6BQJBamISYrjx9kaKtsV+4X6pxpnrmSf5Sx8lmJnrm2e4tlKp5Nqba/x28TdOPDuRyhcz0DZIUZFf3a46453H42DmwORTk/H09wSS2m8t/nYxbcu2/SqEpgOjArny6orKb0pLH8RA2wA7IzukEimBUYFpanpIkVLKohR2xnYYaBkQmxjL28i3PA15mmK9jH0mmN2xCH1rV87VFrdfmg2QKwi/KRV5GhjR0dGhZs2aXL16VfXa2LFjuXbtGu7u7tky8r+0zCe5Qkn9BWdTZDx9TEEWEIqXxzP7/GwWXFmAQqmguGlxtnbcSqMS6b9JPxVlP9TzEFVsquTK/hIVidTbVA8vfy9alm7J0V5HU32BRsRFUGJZCUJiQvir41/0rdoXuUJOyeUleRX2KkUlSVoolUqsFloRHBPMtaHXqGlfk+cfnlNqeSn0tPSInhGd4Ze2XCFH7zc9EhWJvBz/kmKmxTR2/QKBIDXx8nhuB9xOYfQ//5A6gGmkY0Qt+1op+u5mFMj1D/dn/uX57Li3I1VGlJZUK0UGVvOSzelbpS+nnp9i251tQJJmyU+NfmKs89gcCyHmJ2ISYvDy91IZ9Gnpg8gkMiz0k3qMB0cHoyC1sLmJrgl2RnboaempjPnwuPB0z+tg5pAiiykirBSuV2J5F/5fq63PlX38JdsBGkNNAz9hyBm0i9TM/f3kE0Rg5MshN3wmEH5TQcL9tTt99/dVVY1OdJnIb01/SzcB61NR9p8a/sSsxrNyrQXnrnu76Lm3J1pSLbyGeFHNrlqqMck6ilVtqnJj+A2kEilLPZYy4cQEqtpU5ebwmxn6PQsuL2DamWl85/gdu7ruAqDLP13Y92Aff7b6kzG1x2S4x2mnp7HgygK+r/09y1stz9kFCwSCTPEL98PTz1PlN11/c53YxNSfz+ULlU9Rje9o7YiWVCvNNRMViezx2cMfV//gxtsbKbRPJP8+/k5+zdbIlhE1RmBpYMlvl34jIDIAgBalWrC05dJM254XJD7WB0n2m9LSBzHWMcZQ25CI+Ig0dT1kEhmFTQpjqpuUsPwh5gP+Ef7p6iaa6Jqk0E2Mi6rAfi8ZQRH/+a7CZ8pniMBIKvI0MFK8eHGaN2/Ohg0bVK+tXr2aX3/9FX9//2yXhX9MQXcK3Z8F03O9R6bjdg51oU4py8+wI81z5dUV+h3ox/MPz5EgYXLdyfzyzS/pljl+Ksq+vfN22pdrnyt7exD0gGprqxEnj2NDuw0Mrj441Zh5l+Yx4+wMyliUwWe0D1pSLX69+Cszz82kXtF6XB50OcNzNN/WnNPPT7Ou7TqG1hhKTEIMBnOTxBI/TP2QYbm8X7gfRZcURSaREftjbLoGhEAgyD2CooLw9PdMUU6eXM3xMQ5mDikCJU62TmkGMa75X+OXi79w8tnJVBlRH1PWsiztyrTj3Itz3Ai4oXptaYultCrTSnMX+BkJjg7myusrKqP++pvrqfRBtKXa6GrpEhUflaaRbqhtiJmeGUqUfIj5QExiTJrnkkqklDIvlaaYX1r9kHOzX32iIpHg6GCCooN4H/2eoKgggqKDCIoK4sEbOR53nDNdoyDbATlGTQN/ceWOTOyyNff3k08o6Daw4D8+h88EBf+e+dL9psj4SCadmMS6G0l6HI5Wjrh2dsXJ1inN8XKFnGmnp/GH+x8AdK3Yla0dt+aKKLtSqaTb7m7sfbCXytaVuT7seiobJzg6GIdlDkTER7Cv+z46VehESEwIhRcXJjYxFvfB7hkKv558dpIWri0oa1mWR2MeATDm6BhWXlvJjPoz+K3pbxnusefenuy6t4s/mv/BpLqTcn7RAoEgSyTIE7jz7k6KBLNPdUQgyZavVbiWKlDiXMQ5zcr48LhwlnsuZ733el6Fv0pxTIJE5SfoynTpXrE7WjItXO+4kqBIQEuqxdjaY/mp0U9qt0TOT3ysD3L5dZLflBz4+RhDbUMSFAmpdBQhKQhiqW+JjpYO0QnRqZLzPsZczzxN3UR7Y/tUAe3c9JmUSiWR8ZEqP+nj3/f9Erhw0ynTNQqqDaAx1PSbgvrswap089zfTz4gK/avxp+41qtXj0ePHqV47fHjxxQvXhwABwcHbG1tOXPmjMrIDw8Px9PTk5EjMy61/VIIjEg72vkpAeHRQMF8c9crVo9bw28x8cRENtzcwMKrCzn+9DiunV3TrAYpX6g8nkM86ba7G2d9z9JxV0fmN5vP/+r+T+MlkRWsKvBrk1/536n/MeHEBJqXap6qKmNM7TEscl/Ek5An7Li7g35V+zGo2iBmn5/NlddXuB94H0drx3TPUc22Gqefn+ZmQFKvW31tfUx1TQmLC+NtxNsMAyMvQ18CUMSkiAiKCAR5hJWhFW3LtqVt2bZA0oOIB+8fpBAo9AnywTfUF99QX3be2wkkGenV7aqnCJYUNSlKrcK1ONTzEHKFnD0+e/j96u/cfHszVRDgcfBjFgUvwkTHhBalWuD9xpvHwY9pvaM1bcq0YUmLJZSxLPPZ/x7q8rE+SHJmU1r6IJ9WzCQoEkiITwqW6Mn0VMZ88piohKgUGVBaUi3KWKTuZVvWsmyGrQ4/RSaVqG1Ex8vjUxnrqX5/9O8PMR/SzcQySGyIFZkHRtS1F75mXO+6UqJiBzpX6JzXWxEIsoTwmdRD3c/Bgvp5aaRjxNp2a2lXrh2DDw3mftB9aq+vzS/f/MLkupNTtSeRSWUs/HYhjtaODHMbxh6fPTz/8JyDPQ5SxKSIRvcmkUhY1WYVF15e4G7gXX658Au/NPklxRhLA0vGOo/lt0u/MfvCbDqU74CFvgXdHbvz1+2/WOu9NsPASHIA6EnwEyLjIzHSMcLOKCkDOS1NuE9J9puKmxXP5lUKBIKcoC3TpoZ9DWrY12A0owF4H/0+RVWJp58nEfERnH9xnvMvzqvmFjctnsJnqmZbDRNdE35s+CM/NvwR3w++/HLxF/Y+2Et4XHgKuzpOHse2u0lV9s6FnVEoFVx7c43FHotxvevK3CZzGVhtYK5V1GmCj/VBLr+6jLufe6pEPAkSpBJpivZWyT6RVCLFUNsQhVKhek2ulBMYHZhiDWtD6xQVIMk/1obWaj9ry4rPpFQqCY0NVdtnCooKSjdxMMlncsr0nAXVBvjcTD8zgzUlvxHPGT9B4xUj165do27dusyZM4fu3bvj5eXF0KFDWbduHb17J4lIL1iwgPnz57N161YcHByYOXMmd+7cwcfHR9VvNyO+lsynBNOFDKhd7//snXdYFFcXh99dei8K9ooVFEHsGrH3XrB37F0TjcbENBNjotGosWHviNh77xWwgSB2BJTe++58f+y3oysdsWbe58kTnXLnzjo7e8495cdwx+HYWNp8gJm9H/YH7Md1vyvhSeHoaukyr8U8pjaYmmUfwnRFOpOPTmbFzRWASqdkdafVhS6opVAqaLqhKZeDLtOqYiuODzye6UdBrUdSybIS98ffR1uuTY+dPdjjvyfXcu3td7fT37M/DUo34MqIKwBUX14d/wh/Tg0+RYsKLXI9t2m5ppwbeq5wblhCQqLQiU2J5UbIDY1gSVZCdiWMS2gY/U4lnDDSNSI+NZ7FVxezxnsNQXFB2V6nsmVlHkc/RiEo0JHrMKXBFOY0nZOroOmH4E19EPV/wfHBeT5fW66NUlCiFDK3ygKVWGDVIlUzBUAqWVZ65/ZiSelJ+Qp05NSmKztkyLA0sMTKyAorQyvx/4oUG07ctM31/P909lMeM59qk8AjfWO8RnlRyfL96sJ8CnzuNrDEaz6EzwSf/zOTV7+pos1+pjTtSIfKHT5bhz88MZxRB0ex138vAE3KNmFTt01UsKiQ5fEXn1+k+87uoij73r57qVeqXqHPa7ffbnrt6oWWTIurrlepU1KzfWFUchTlF5cnPi2e3S676VG9B5eDLtN4XWMMtA0Inhaco95AqUWlCIkP4eKwizQu25h1PusYsX8E7Sq148iAIznOTX3uddfr71WQXkJCouAolAr8I/w1NB59w3wzJRDpauniWNxRw28qZ6YKep57do5fzv/C+WfnMwnCqyluVBwlSsISVYEBpxJO/NP+HxqVafR+bzCPhCeGv/aZgi7iHeqd7b28jQwZWnKtHI8vaVIyUwCkulV1ihoWfad5K5QKopKj8uwzRSRF5Pm+3sRA2yCTz0RqZc7fqp3ruf9pnwny5Te1afIN81vNf/9z+sh81FZaAAcPHmTWrFkEBgZSoUIFpk2bxsiRI8X9giAwd+5cVq9eTUxMDE2aNOHff/+lSpUqeRr/czfw1X3yXsamZJNLKqCURxGkOwxkqsWiFhVa4OroSvfq3fOVDfup8CrhFSMPjOTAgwMAOJdzZmO3jdlm9yy/rhJlVwgKGpVpxJ4+ewpdlP1B5AMcVjqQnJHMio4rGFNnjMb+hLQEyi8uT2RyJBu6bmCIwxCx3NtMz4yQ6SHZlq3fD7+P7b+2GOoYEvdtHFpyLVpsbMGZp2fY0n0LA+wHZDsvdUBmkP0gNnXfVKj3LCEh8f5Q94F9M1By+9XtTIahlkwL+2L2qjLyUiphdx25Dj+f/5k9/nuyXYA30TURtTiKGxdnfsv5DKo16INmQr2pD3Ix6CKXgy4XKGDwNgbaBlQrWi1TAKSiRcU8LXAJgkB8Wnyes5LCk8I1BB3zipZMi6KGRTMZ7Rp/fuP/lgaWWc4/NztA6pdLng384cUrsf6VNw7FHbg8/DIGOgbvf24fkc/dBpbQ5H37TPD5PzN58ZsyiCBYfwTIlJQwLsFQh6GMcBzxWSaWCYLAhlsbmHR0klhB8U+7fxjqMDTLzN6nMU/pvL0z98Luoa+tz/qu6+lbo2+hz0vdssrWyhavUV6Z/NHvT3/Prxd+paZ1TW6NuYUMGbVW1uJu2F2WtFvCpPqTsh2707ZOHAo8xLL2yxhfbzxHAo/QYVsHahWrxa0xt7I9L02Rhv6v+ggIvPr6VaH7ihISEu+PuNQ4bgTfEFsWX3lxhYikiEzHFTMqphEoqVWsFrv8drHk6hLuR9zPsjpbR66DTCYTW00NtB/IH63+oKRJyfd+X2oEQeBx9GMuPL8gBkMCIgNyPzEPlDUrm2UAJKeuJG+SpkjL1OY3J78pKjkq2yr4nDDRNcmzz2RlaJVt22PJZ8oD+QiM+MiUHOh3QOyM8aXy0QMj75vP3cAHOHovlLFbVP3j3/wHUH+V/+lvT6r2Ndy83Tj+6Lj4IrI0sGSQ/SBGOI6gZrGaH3bS74ggCKz1WcuUo1NITE/EVM+Upe2XMsh+UJaG/olHJ3DxcCEmJYayZmU50O9AoYuyL7m6hCnHpmCkY8TdsXczZWSpBQFtLGzwn+CPXCan8lJV9va6LusY5jgsy3EVSgWm801JSk/i/vj7VCtajQGeA9h2dxt/tv6Trxt9ne2cxh4cy0qvlcz5ak6mcnUJCYnPi6T0JLxDvcVAyZUXVwiJD8l0nIW+BfVL16d+qfoYahty4MEBrgZfzTLb5s3+uvVK1WNp+6XvJUMUNPVBzj09h/fLvGc2ZYWxrvHrwMcbxnw583IaAR6loCQ6OTqTYR6RFJFtoCOrPru5oaulm7WBno3Rbq5vXmiBqNzsgBUDa793QcNPmjwa+K8G7KLG3gFEJEUwsvZIVnde/f7n9hH5EmxgiQ/Ll/DM5Pa+/K5LMQISdrLx9kbCk8LF/c3LN8e1tis9qvf47BLLnkQ/YfDewVx8rtI17FatG6s7rcbKyCrTsfGp8QzwHCAmoH3f9Ht+bPZjoSZORCZFYvevHa8SXzGz8cxM2abRydGUX1KeuNQ4PHp70NO2J8uvL2fCkQnYWtlyb+y9bFu2qIMqIxxH4NbFDZ9QH2qvrk0xo2K8/Dpzf301j6MfY/OPDfra+iTNTir09ssSEhIfDkEQeBLzRCPBzOelTya/Qy6TU9O6Jg1KN6CmdU28Qr049OBQpvZRb2OkY8R3X33H1IZT38vvQYYygzuv7nDx+UXOPzvPuWfnsgz05BUZMipaVMyUNFataDWMdY01jk1OT85X26rY1NgCzcnSwDJHf6moYVGNbYXV9UXymfJAHv2mBTU6MdN3Gxb6FniP9qa8efn3PrWPhRQY+Uw4ei+Unw74ERr7uh9eCTN95na21fhiP4t5xvpb61nns06j3Ur9UvVxre1KH7s+mOiZfNC5vwuPoh4xaM8grrxQtZjqWb0nKzutzLLELyAigM7bOxMYFYiRjhFbe2yla7WuhTYXpaCk2YZmXHh+gWblm3Fq8CkNJyIhLYEKSyoQkRTB+q7rGeowVKzoqF+qPlddsy/tb7i2IVdfXGVbj230q9mPr49/zcIrC5nWYBoL2y7M9rwOWztw5OERUbj9U+R9im9JSHxoPvTz/CLuhYao+82Qm6RkZO6LWq1INSwMLHgS/YSXidkvDAAMdRjK7y1/p3hGOiRlbuclYlgEzMtkuUsQBJ7FPuPCswucenKKs0/P8iz2Wb7uTY2ZnpmGmF/VolUpblQcHS2d18GNHIz2yKRIjV66ecVQxzBfgQ4TXZOPupCSVzvgP0lMECxzgoysew4DoK0HE7w4EelP2y1tERDY2G0jg2sN/nDz/MB8KTawxIfjS3lm8vK+TFOkcSDgAG4+bhx7eExMIrDQt2CQ/SBca7t+VollCqWCvy7/xfdnviddmY61kTVru6zNMstToVQw+9RsFlxeAKj8q43dNmaZgVtQ9vnvo9vObshlci4Nv5RJO2Tumbn8fP5naljX4PaY28SnxlNyUUmS0pO4MOwCTco2yXJcdauu2iVq4zXKi5cJLymxsAQyZKR9n5Zt5eiZJ2dosamFhnD7p4bkM0l8SXzo5zk5PRmflz4awZKs2g+b65tjZ2VHVHIUj6MfZ6tXAVDBvAKL2y2mc5XOyGJfFNhvSkxL5Hrwdc49O8fxR8fxCfUhRZF/nQstmRaVLCu9rvwoWp3y5uWxMLAgPjU+T4GON3UY84pcJs8UyMipmqOIYZGP2qZS8plyIY9+U9q4qzT17M+14GvUKVmHi8MuFrpswaeCFBj5jMjPj4tCqeDE4xOs8V7D/oD9YvTcSMeIvjX64lrblfql6n8W2TIZygwWXFrA3LNzyVBmUNy4OOu7rqddpXaZjo1KjsJllwunnpxChozfW/7OjMYzCu0+H0U9wn6lPUnpSSxtv5QJ9SZo7F9waQEzT86kokVF/Mf7E5UcRZm/y5CuTMdntI8oGvg24w6NY8XNFXzT6BsWtF7AwssL+frE1/Sr0Y9tPbdlOx+7f+3wC/fj2MBjtLFpUyj3WJhIP0oSXxKfwvOcrkjnzqs7Ys/dqy+u8jDqYabjdOQ6quOV6VmOU1muj59ggLYyh4DC/xeSMS+DQqngXtg9jj46ytHAo3iFeomtuvKKqZ4p5czKYW1kjZmeGfra+shlchLSEohIfl2inZMQeW7j59VgtzKyyra94aeMtGiSAzFBeXZYfzr7Ez+e+xEDbQOuj7xODesaH2iSH5YvyQaW+DB8Sc9Mft6Xz2Ofs95nPWt91mospNUrVQ9XR1f61uj72SSW3Xp5i4GeA/EN9wVgVO1RLGy7MFPWMMCGWxsYdWAU6cp0HIs7sr/f/kIVZR+0ZxBb7myhapGq+Iz20WhfGJ0cTYUlFYhNjcW9lzu97Xrjut+VtT5rGVBzAFt6bMlyTHXlh66WLgmzEpDL5Oj+qotSUBI8LTjb9jcbbm1g2L5htK7YmuODjhfaPRYWn4KNKSFRWHwqz3NwXDDXgq+JgZKbITdJzkjOdJy+tn6WiWdqXEo1YnvoA+Q5VZy/4TeFJ4Zz/tl59gfs58KzCzyNfZov30Zbrk0Z0zKUMCmBpb4lxrrGaMu1yVBmEJUSlSch8pzQkevkq22VhYHFJy1MnxWSz5QLefSbnsc+x3GVI1HJUYyrM47lHZd/uDl+QKTAyH+AVwmv2HR7E24+bjyIfCBur2FdA1dHVwbaD6SI4acvPuQd6s1Az4Hcj7gPwLg641jQekGm7KZ0RTpTjk7h35v/AipR9lWdVhVaGeS/N/5l/OHxGOoYcnvMbQ0B18S0RCosqUB4UrjYPquPRx/cfd0Z4zSGFZ1WZDnmGq81jDo4ilYVW3Fi0Am23d3GAM8BNCvfjDNDzmR5jiAImM43JSEtAf/x/lQtWrVQ7q+wUJcxvv3SkMoYJT5HPuXnOTwxnOvB18VgybUX13INWjgKcrzJvEjyNrMqNWZL2F1CEkKyFT1/Gx25Dvra+mK/3pwcjezITog8u/LrooZFv9gMFonCR6FU0H5re048PkHVIlW5MfLGZ7PomR8kG1giv/zXnxmFUsHJxydx83Fjr/9ejcSyPnZ9cK3tSoPSDT75xLKUjBS+O/Udi64uAsDGwobN3TfTsEzDTMdeen6J7ju7E54UTnHj4uzts5f6pesXyjyik6Ox+9eO0ITQLKvgfzz7Iz+d+wk7KzvujL2DV4gX9dzqoaelR/C04Cz9U0EQsPjDgtjUWG6NvkWt4rUoubAkoQmh3Bx5E6eSTlnORR0Qd3V0ZU2XNYVyf4XFp2xjSkjkl0/5eU5XpHM37K5GVUlgVGCu5+XVbxpQtDR7457mWZtQhgwDHQN05DpkKDNITk9GSd78rTfJSog8p0CHqZ7pJ/87JvHpoNbyAtjec/t70Sb72EiBkf8QgiBw8flF3HzccPd1FxerdLV06VG9B66OrjSv0PyTjgYnpycz69QsllxbAkBly8ps7r45SwP+3xv/MunIJBSCgoalG7Knzx6KGRd75zkoBSWtN7fm9JPTNC7TmHNDz6El1xL3/3X5L7458Q0VzCsQMCGAC88v0HJTS4x1jQmZFpLl4suN4BvUc6tHUcOihH0dxpmnZ2i5qSXVilbj/vj7Wc4jKjmKIgtUDkPS7KRPSkRWLXz1ZpbIm0jCVxKfE3l5nouZ6nF8WoNP4nlWKBUERAZwI+QGN4JvcD3kOvfDNQUH82rgq0XX3pXCEiKXkCgswhPDcVzlSHB8MH1r9GVbj21fnJMo2cAS+UV6Zl4TlhimSizzdtMQwbWzssO1tiqxLKvWvp8Sp5+cZsjeIbyIe4FcJmd2k9n84PwDOlo6Gsc9jXlKl+1duBt2Fz0tPdZ3XU+/mv0KZQ6HHhyi0/ZOyJBxfth5jRZZMSkxlF9cntjUWHb22klv2944rXbC56UPC9ssZFrDaVmO2WxDM849O8eGrhsY4jAEp9VOeId65ygQO3zfcNbfWs8vzX9hTtM5hXJvhYHkM0l8SXxuPhOoNJFuhtzkesh1bgTf4GboTeJS4zSO+dB+U2EIkUtIFCbfnfqO3y7+hpGOETdH3aRa0Wofe0qFihQY+Y8SkxLD9rvbWeO9Bp+XPuL2CuYVGOE4gqEOQyllWuojzjBnTj4+ydC9QwmOD0ZLpsWcpnP47qvvMhn6Jx+fpPeu3qIo+/6++6lVvNY7X/9pzFNqrqhJQloCi9osYmrDqeK+xLREKv5TkbDEMNZ2Wcswh2FUW16NB5EPWNVpFaOcRmUaLyUjBePfjFEICoKmBhGfGo/tv7aY6ZkR821MlnNQiw1aG1nz6utX73xPhcmVR5H0W5O9poqa7SMb0NDm069Wkvhvk9fn+aXuLFK17n6AGb0772rg68h1sDay/ihC5BIShcWl55dw3uCMQlCwvMNyxtUd97GnVKhINrBEfpGemcwIgsCloEu4easSy9RtWHS1dOlerTuutV1pUaHFJ/sbF5MSw4TDE9h6dysATiWc2NJjS6ZFjbdF2ed8NYefmv9UKPelDkpUsqzErdG3NBbx1JUctla23B17FzdvN0YfHE2VIlXwH++fZcB66tGpLL62mMn1J7O43WI6bevEocBDOWouttrUilNPTrGp2yYG1Rr0zvdUWEg+k8SXxJfoM8G7+03meuZYG1vnyWcqalj0vQi+S0i8CxnKDFpvbs3Zp2exs7Ljmuu1Lyoglx/799O09iQKhLm+OWPrjsV7tDdeo7wYW2cspnqmPIl5wpwzcyi7uCxdtnfR0Cf5lGhVsRV3x96lX41+KAQFP537icbrGhMQEZDpuGuu16hSpArPY5/TeF1j9vrvfefrlzcvz8I2qnLw2adna1zXSNeIGY1mAPDr+V/JUGYwqrYqGLLKa1WW4+lr61PdqjqgCniUMFGVl8amxpKcnrkPJiAKHZc1K/vO91PYhMXnrXVOXo+TkPiY5PU51RIs3vNMPjyD7Aextsta9vfdz5URV3g48SGx38aSOieVF9Ne4DPah+ODjrO1x1YWt1vMd02/Y5TTKLpX706Tsk2oWrQqlgaWn+yCkcR/m8ZlG7OgtUp8eOqxqdwIvvGRZyQhIfGpIZPJaFK2CRu6bSB0eigrOq7AqYQTaYo0dvrupPXm1tj8Y8Ov53/lRdyLjz3dTJjrm7OlxxZ29tqJhb4FXqFeOK5yZNn1ZRotMk30TNjTZ89rH+bCr/Te1ZvEtPwL9b7N323/prRpaR5GPWT2qdka+yY3mIyZnhl+4X7s8t1Fvxr9MNY15kHkA84+PZvleGrNRnVyXwljld8UmhCa7Rw+Vb9J8pkkviT+yz4TwDcNv2FHzx2cGnyKO2PuEDo9lLQ5aUR/G03AhAAuDr/Inj57WN15NfNazmNKgykMsB9AG5s2OJZwpLRpaSkoIvFJoi3XZnvP7RQ3Lo5vuC9jD43lM6ybKBSkipEvnKT0JDz8PHDzduPC8wvi9hLGJRjqMJQRjiOwsbT5iDPMmu13tzPu8DhiUmIw0DbgrzZ/MbbOWI0Mo+jkaFw8XDj5+CQyZMxrMY9vm3z7Tm0zBEGg3dZ2HH90nAalG3Bx2EWxpdabVSNund3oWq0rpRaVIk2Rxo2RN6hTsk6m8QbvGczmO5v5qdlPfN/0ewx/MyQlI4VHkx5R0aJipuOXXF3ClGNT6Fm9Jx4uHgW+j/fBUd9HjNnsn+txUvaTxOdAXrOf1g+rRb0Kn56hH5cax6HAQ3je9+Tk45MqkdU8Zj7VkSVRqmoHxjiNoY1NG422gRISXwKCINDTvSd7/PdQzqwc3qO9sTSw/NjTKhQkG1giv0jPTN7xCfXBzduNrXe3EpsaC4BcJqdD5Q64OrrSoXKHTJXsH5vguGCG7x/O8Ucq8fE2Nm1Y12Vdpi4BG29tZNTBUaQp0nAs7si+vvsoY1bmna59/NFx2m5pC8DZIWdxLu8s7vv53M/MPTsXWytb7oy5w/jD41nltYo+dn3Y0WtHprHuvLpDrZW1MNUzJXpmND+e/ZFfzv+SrZ6jUlBiMM+ANEUaTyY/obx5+Xe6l8JEqhiR+JL43H0mQRDwDvVm9/3d7PHfQ1BcEJD3ipHOJmY0rj+OYQ7DCqWFu4TEp8a5p+dosakFSkGZY5Xm54ZUMSIhYqhjyOBagzk/7Dz3x9/n64ZfY2VoRWhCKL9f/J1KSyvRYmMLtt/dXiAx3fdFv5r9uDv2Li0rtCQ5I5nxh8fTYVsHQuNfZw1ZGFhwuP9hxtcdj4DA7NOzGbx38Dvdh0wmw62zG6Z6plx9cZWFV14LChrpGjGz8UxAlXFlqmdKb9veAKy8uTLL8RyLOwKq7CeZTPY6+yk+6+wndeZTObNyBb6H90FgZCDjT7Yjg3CEbMTDZEAJM33qVfgyFp8kvmzqVbCkhJk+2YVR1c9z08qlMNI1+iT+UwgK9vrvpb9nfyosqcDIAyM58vAI6cr0fN27UlCyP2A/HbZ1wOYfG+adn5ftO0lC4nNEJpOxrus6KlpU5FnsM4bsHaKRRS0hISGRFY4lHFnecTkh00PY1G0TTcs1RSkoOfjgIN12dqPs4rLMOjmLh1EPP/ZURUqZluLogKMsa78MfW19jj86Ts0VNdl5b6fGcUMchnBmyBmsDK3weelD3TV1ufbi2jtdu41NG7GCfti+YSSkJYj7JtefjLm+uapqxG8Xo51GA+B535OwxLBMY1UvWh09LT3iUuN4Ev0k14qRVwmvSFOkIZfJKWXy6bSKVgpKdj/6Q/KZJL4YPkefyVDHkPsR9/np3E/UXFkT543O/HP9HzEoopp33pJpg+ODmXVqFmX+LoPLLhdOPT4l2ZQSXxTO5Z2Z12IeABOPTMQn1CeXM748pMDIf4hqRavxZ5s/eTHtBR69PWhXqR0yZJx5eob+nv0pubAkk49M5u6rT6M3ZGnT0hwfdJwl7Zagr63P0YdHqbGiBrv9dovH6GjpsKzDMpZ3WI6WTIstd7bQfGNzXia8LPB1y5iVYXHbxQB8f+Z7/ML9xH1j6oyhmFExnsY8ZdPtTaKRv/3edmJTYjONpS4Lv/XyFoDYTis7I/957HMAypl/OoGRy0GXabi2IY9jHqJtvhcZ8kxmhPrvczvbfjKiaxISOaEllzG3sy3AJ/08x6fGs+3uNrrt6Ib1n9YM3DOQ/QH7SVWkagiZlzUti3M55xxG0qR+qfqY6ZnxLPaZ2Gqxl3svTjw6IRn7El8E5vrmePT2QE9Lj4MPDvLnpT8/9pQkJCQ+Ewx1DBlUaxDnhp7Df7w/MxrNwNrImpcJL5l/aT6Vl1am+cbmbL2z9ZNILJPJZIyvNx6f0T7UKVmH6JRo+u7uywDPAUQnR4vHNSrTiBsjb2BfzJ5Xia9w3uDMtrvb3unaf7X5i3Jm5XgS84QZJ2aI2830zZjWQCW0/vO5n7EvZk+9UvVIV6az3md9pnF0tHSoYV0DUPlNuflM6mSyUialPpkqnpSMFPrt7sfCK38SpbsaWRZLr5+SjSkhkRc+F59JEARuhtxk5omZ2PxjQ901dfnz8p88jXmKlux1dbwcOb2q98JQxzBP41oaWOJY3JF0ZTq7/HbRanMrqi2rxl+X/yIiKeJ93Y6ExAdlRuMZdKrSiVRFKr139c5ybfNLRgqM/AfR1dKlp21Pjgw4wtMpT/nR+UfKmJYhOiWaf67/g/1Ke+q71WeN1xriU+M/6lzlMjmT6k/Ca5QXjsUdiUqOoteuXgzZO0Tjyzqu7jiODjyKub45V19cpd6aemIwoiAMdRhKh8odSFOkMWTvEFGTxVDH8HXVyPlfqVeqHtWLVicpPUkUQHwTdWDkacxTopOjP7uKkd1+u2mxsQWRyZHUKVmHaxNWsXJgbYqbafbJLG6mz4qBtWltW5wrjyLZdyuYK48iUSjfrVOfQikU6ngSEm/SrkYJVuTwPLerUeKjzEsdDOm+sztWf1oxwHMA+wL2kapIpbhRccz0zACVYFopk1Ks6LiC2V/NZvezsyST83ckGYEIBK4FX6NB6Qas6rSKRmUakaHMYPf93bTZ0oYqS6uw4NKCLDM6JSQ+JxxLOPJP+38A+O70d5x/dv4jz0hCQuJzo2rRqvzR+g+Cpgax22U37Su1R4aMs0/PMnDPQEouLMmkI5O48+rOx54q1YpW4/Lwy3zf9HvkMjnb7m7DfqU9px6fEo8pZ16OS8Mv0aVqF1IVqQzwHMB3p74rcFKEiZ4J67quA2DFzRWcfHxS3Dep/iTM9c25H3Efd193MaFstffqLK/3ZqV9rj5TzDPxfj4FIpMiab25Ne6+7ujIdVjVcywrBzrlaGMWtp8j+U0S74tP1WcSBAGvEC++PfmtGAxZcHkBT2KeYKBtQGnT0gAoBAUyZAy0H8jlEZfxDvXmWXpCnvymB8mRBEYGsqbTGsbWGYuJrgmBUYF8c+IbSi0qxQDPAZx/dv4/q80g8WUgl8nZ2G0j5czK8Sj6EcP2DftPPdOSxogEAAqlgpOPT+Lm48Ze/71iIMBIx4i+NfriWtuV+qXqv5N+x7uSpkjj53M/8/vF31EKSsqalWVTt00a/WwfRD6g8/bOPIh8gKGOIVt7bKVbtW4Ful5IfAh2/9oRkxLDvBbzmP2VSlgwKT2Jiksq8irxFas7rSY5I5nJRydT07omt8fczvQZVVhSgacxTzk9+DSe9z1ZdmMZs5rM4reWv2W6pvWf1oQnheMz2kcMqnws/r7yN9OPT0dAoHOVzmzvuR0jXSNAZXhffxJFWHwK1iaqUvATfi/56YAfobGvM+dKmOkzt7NtgYylo/dCC3U8CYnsyOp5/tBZT/Gp8Rx8cBB3P3eOBB4hVZEq7qtiWYVqRavh/dJbFIEtblyc2U1mM9JpJGeenKHjto4ICJQRZNQxr0C9knVx99vFMIdhnH56mmcxz5jr/AN25Zxp4NGLyORIACqYV+DYwGOkZKSwymsVm+9sJi41DgAduQ49qvdgtNNompVv9lHf/xISBUUQBAbvHcyWO1soblwcn9E+FDcu/rGnVWAkG1giv0jPTOETFBvE+lvrWeuzVqz2Bqhbsi6utV3pW6Mvpnof97O++uIqg/YMEtt+TW0wld9a/iaKACsFJbNPzeaPS38A0L1adzZ33yza+vllwuEJLL+xnLJmZbk79q54/7+e/5Xvz3xPtaLVuDbiGmUXlyU2NZZjA4/RxqaNxhjLry9nwpEJdKjcgRUdV1BucTl05DqkzknNZIP8eelPZpycwYCaA9jSY0uB5lxYPI5+TIetHQiIDMBMzwzPPp60qNACyN7GLGw/R/KbJD4En4LPJAgCPi99cPd1Z5ffLh5HPxb3GeoY0rRcUxLSErj4/KK43cXOhR+df6SceTlabmrJ1RcqzZQygowNrf/i6xPfoKOlw4xGM5h3YR4VzCvg3tudby//yV9+Kk0kGTIWtF7AaKfR7Li3g1Veq/AK9RKvUb1odUY7jWZwrcFYGHx6WisSEnnhevB1mqxrQroynUVtFjG14dSPPaUCkx/7VwqMSGQiLDGMTbc34ebtRkBkgLjdzsoO19quDLQfSFHDoh9tfpeeX2Lw3sE8jn6MDBnTG07n1xa/oqetB2iKsgP81uK3Aouyb7mzhUF7BqEj1+HmqJvYF7MHYPHVxUw9NpWyZmW57nqd8kvKk5KRwuXhl2lYpqHGGD129mCP/x4WtllISkYK353+jqEOQ1nfVbOMPCk9CaPfVM5I5IzIjyYUq1AqmHZsGv9cV2XZjqszjn/a/5OjQPPRe6GM3eKdKedC/YnnN5OksMeTkPgUSUhLUAVDfN058vCIRjuOypaV6W3bG1N9U9Z5r+NB1AMArAyt+LbJt4ytMxYDHQNuhtzEeb0zSRlJAGjJtHg06RGTjk5if8B+/u3wL7Gpscw6NYvGZRpzcfhFXiW8otmGZvhH+gNgoG3Azl476Vy1M4lpiaKxfyPkhjifqkWqMsppFENqDaGIoSQUKvF5kZiWSH23+viG+9K8fHNODDqR42/ap4xkA0vkF+mZeX8olApOPTmFm7cqsUyt+WWoY0gfuz641nalYemGHy2xICEtga+Pf80qr1UA2FrZsqX7FhxLOIrHbLq9iZEHRpKmSMOhuAP7++4vkCh7QloCtVbW4nH0Y1wdXVnTZQ0AcalxlF9cnuiUaLb22MqVoCssu7GMHtV7sNtlt8YYl4Mu03hdY0oYl+DJ5Cfoz1MFcSK+ichke6gDMdklm30obgTfoNP2ToQlhlHGtAxHBhzBztoux3Mkv0lCIn8IgsCtl7dw93XH3c9dIxhioG1AxyodcS7nzJWgK+zw3SFWpHWv1p2fmv1EzWI1USgV9HTvyb6AfeK5Q2oNYYTjCJpuaEpFi4qq5Jm/ipOckcyVEVdoULoBf13+i29OfCOe06t6LzZ024CRrhE3Q26y6uYqtt3bRlK6yhfT19bHxc6FMU5jaFC6gZRYJvHZoU5S0JZrc27oORqVafSxp1QgJPF1iXfC2siarxt9zf3x97kw7AJDag3BQNsA33Bfph6bSqlFpejr0ZeTj09+lF70jcs25tboW7g6uiIg8NeVv6i7pq5Ywm5hYMGRAUeYUHcCALNPz2bQnkEF6gE8oOYAulbtSroynSF7h5CuUDk8o51GU9y4OM9jn7MvYB99a/QFEB2PN8lrWbg648xY1xgL/Y+TZZCUnkSvXb3EoMifrf9kWYdlOS4gKZQCPx3wy7IQVb3tpwN+eS7nLuzxJCQ+JRLSEth5byc93Xti9acV/Xb3Y4//HlIyUqhsWZnvvvoO71He/NbiN/YF7OPbk9/yIOoBlgaWzG85n8eTHzOt4TQMdAx4HP2Yjts6ikERgJ+b/Uw583IExarEBcualWVwrcHIZXIuBV0iICKAYsbFuDnqppipmZyRTJcdXZhzeg762vqMqD2C6yOv4z3Km9FOozHWNSYgMoDpx6dTalEpBu0ZxMXnF/9T5bUSnzdGukbs6r0LIx0jzjw9w9yzcz/2lCQkJL4AtORatLFpg3tvd4KnBfNX67+oVrQaSelJrL+1nsbrGlNjRQ3+vvL3R+lFb6xrzMpOKznY7yDFjIrhF+5Hfbf6zL84H4VSAcDgWoM5M+QM1kbW3Hp5i7pr6orZ1Pm9ljrpy83HjaMPjwJgqmfK9IbTAZXWiGttVwD2+e8jJD5EYwz7YvbIkBGaEEpMSoyYJJaVzsin0H54f8B+nDc4E5YYhmNxR666Xs01KCL5TRISeUMQBHxCfZh9ajaVl1am9urazL80n8fRjzHQNqCXbS929tqJ1ygvzPXMmXpsKtvubUMpKOlUpRNeo7zw7ONJzWI1EQSBiUcmagRFihgUYU3nNaIge1mzspjqmdLbrjcA63xULQK/bvQ1ni6eorajx30P6qyuQ2BkIHVK1mFNlzWETAtheYfl2BezJyUjhU23N9FoXSNqrazF8uvL/3N6DRKfN+PqjqNvjb5kKDNw2eVCeGL4x57Se0cKjEhki0wmo0nZJmzotoHQ6aGs6LgCpxJOpCnS2Om7k9abW2Pzjw2/nv+V4LjgDzo3Ez0T1nRZw76++7AytOJu2F2VwNalP1EoFWjLtVnaYSkrOq5AS6bF1rtbCyTKLpPJWNlpJZYGltx6eYvfLqgykgx0DPi28bcAzLswj+EOwwHY6btTQ+QQNAXYcxISFIXXzcp9lMyCsMQwWmxswV7/vehq6bKj5w6+bvR1rnO5/iRKo2z7bQQgNDaF60+i8jSPwh5PQuJjow6G9HLvhfWf1vTd3RfP+56kZKRQybISs5vMxme0D/7j/alXqh7D9w+nt0dvfMN9Mdc355fmv/Bk8hNmNpmJsa4xABFJEbTb0k5DB6RqkarM+moW8Pp9UsasDCVNStKuUjsANtzaAKgWig/3P8xYp7Hi+fMuzKPjto5EJau+W44lHFnZaSUh00JY2XElDsUdSFWksuXOFr5a/xU1V9Rk6bWlxKTEvO+PUELinaluVZ01nVUZzPMuzONI4JGPPCMJCYkvCSsjK6Y3mo7fOD8uDrvIUIehGGgb4Bfux7Tj0yi5sCR9PPpw4tGJD55Y1rFKR+6OvUu3at1IV6Yz69QsnDc4i1nXjco04rrrdVGUvdmGZmy9k1k7MTealmvK5PqTAXDd7yraBxPrT8TSwJKAyADuhd2jcZnGKASFuPCoxljXmCpFqgD/95tySCj72Bojy68vp/vO7iRnJNOuUjvODT1HSZOSuZ4n+U0SEtmjrgz57tR3VFlWhdqra/P7xd95FP0IfW19elbvyc5eOwn7JozFbRdz7uk5aq2shZuPGxnKDNratOWa6zUO9DtA7RK1xXH/uPQHK26u0LjWvr770NHSee0zmaoq5YY5DANgx70dYhVI9+rduTDsgqjz6B/pj9NqJw4+OAiAmb4Z4+qO49boW1wZcYWhDkPR19bnbthdJhyZQMlFJXHd78qN4BtSYpnEJ49MJmN1p9VULVKV4PhgBu4ZKCZTfKlIgRGJPGGmb8aYOmO4Oeom3qO8GVdnHGZ6ZjyNecr3Z76n7OKydN7emX3++8Sqig9Bl6pduDfuHl2qdiFNkcaMkzNosakFT2OeAjCmzhiODTyGhb5FgUXZixsX598O/wLw64Vf8Qn1AWCU0yhKGJfgeexz7oXd08gQeBN1ufr98PtiJUhWAZqPaeA/iHxAw7UNuRZ8DQt9C04OOkmfGn3ydG5YXN4qccLicz8uLjWOjT57Cm08CYmPRWJaIu6+7vTe1VsMhuy+v5vkjGRsLGyY1WQWPqN9eDDhAb+2+JXQ+FDqr61P1x1dufXyFia6JvzQ9AeeTH7CnKZzNHqVJ6Un0Xl7ZwKjAtGSqaq5tGRaHBlwBJlMRlJ6kqghojby1cHbjbc3ihpSWnItlndczl+t/xLHPvboGE6rnTTekyZ6JoyuMxrvUd5cc73GcIfhYhXhpKOTKLmwJMP2DePai2uSsS/xSdOvZj/G1lEFAwfuGaihDSAhISFRGMhkMhqXbcz6rusJnR7Kyo4rcSrhRLoyHXdfd9psaYPNPzb8cu4XUTfsQ2BlZIWniyfru67HRNeES0GXqLWyFut81iEIgijK3rVqV1IVqQzcM7BAouy/tfyNypaVCY4PZuoxVW9yjaqR86+rRtZ4r8m02KL2m3xe+uSYUPaxKkaUgpKvj3/NhCMTUApKXB1d2d93PyZ6Jnk63z8sJPeDyN3PEQSBi88vMvvE/EIZT0LiYyEIArdf3ua7U99RdVlVHFc58tvF33gY9RB9bX16VO/Bjp47CP8mHA8XD5qWa8qc03Ow+ceGf2/+S7oynRYVWnBx2EWODjxKvVL1NMbffHszs07N0tg22H4wjcs2BhCr7NU+U9NyqrZa8Wnx7PZ73e6vQekGeI3yooJ5BQDi0+LpvL0zP5z5QXyPyWQyGpRuwPqu6wmZFsKSdkuwtbIlKT2JtT5rqedWD6fVTqz2Wk18avz7+UAlJAoBEz0TPFw8MNA24Pij48y7MO9jT+m9IgVGJPKNYwlHlndcTsj0EDZ120TTck1RCkoOPjhIt53dKLu4LLNOzhLF/t431kbW7O2zF7fObhjpGHH+2XnsV9iz8dZGBEGgZcWWXHO9RtUiVQmKC6LxusZ43vfM1zVc7FzoZduLDGUGQ/YOITUjVVU10kRVNfL7xd9xdVQZ+au8VmksDpYyKUVRw6IoBIVYTRKeGC4uTqr5WAb+5aDLNFrbiMfRj6lgXoErI67wVbmv8nSuf4Q/f1z9Lk/HWpvoZ7vvUdQjphydQulFpdlw5593Hk9C4mOQmJbILt9d9N7VG6s/rejj0QcPPw8xGPJt42/xHuVN4MRAfmv5G7WK1eLUk1M0XteYDts6cDPkJkY6RsxqMosnk5/wU/OfMNc317iGQqlggOcArr64iq6WLgpBZYjPdZ5LBQuVoa5eaDHWNRbP71y1M0UMihCaEMrxR8fF8WQyGdMbTce9lzs6ch0AnsY8peHahmy+vVnj2jKZjHql6rG261pCpoewtP1SaljXIDkjmQ23NtBgbQMcVzmy4sYKUcBdQuJT4++2f+NUwomo5ChcdrmQpkj72FOSkJD4QjHTN2N0ndFiYtn4uuPFxLIfzv5AucXl6LStk0qf5AMklslkMoY6DOX2mNs0KduEhLQERuwfQfed3QlLDMNY1xjPPp5iVfxvF3+jl3svEtIS8nwNQx1DNnTbgAwZG25tEDOqJ9ZTVY08iHyAUlBiaWDJ89jnHHt0TON8h2IOQM4tiGNTYkU7o6xZ2QJ9FgUhJSOFvh59WXhlIQDzWsxjdefV6Gjp5HpumiKNBZcWMO3EiDxdKzs/J02RxpY7W6i7pi5frf+KKyHHsjwur+NJSHwMBEHgzqs7zDk9h6rLquKwyoHfLv5GYFQg+tr6dK/Wne09txP+TTi7XXbTp0YfktOT+eb4N1RcUpEl15aQqkilSdkmnBlyhlODT4mBjjc5+fgkw/erksPUyWRFDIqwuvNq8Rh1Ky21tpJcJmdoraEArL+lqQlrY2nD9ZHXaVC6gbjtl/O/0Hl7Z7HiXo2FgQWT6k/i3th7XBh2gQE1B6CnpYfPSx9GHxxNyUUlGXNwjJh0KyHxqVHDugYrOqoqrX48+6Oo4fwlIgVGJAqMoY4hg2oN4tzQc/iP92dGoxlYG1nzMuEl8y/Np/LSyrTY2IJtd7cVSN8jP8hkMkbUHsHtMbdpVKYR8WnxDN03lF67ehGRFEHlIpW56nqV1hVbk5SeRE/3nsw7Py/P2c0ymYx/O/wrtu365fwvwOuqkaC4INIV6RjpGHE/4j4Xnl/QOFetM/I09ilaMi0EBF4lvNK4xscIjHj4edBiYwsikyOpW7IuV0ZcoWrRqrmel5CWwLcnv8V+hT1XXm1GIYuALLvbqoT/SpjpU6+Cppi8IAicfXqWbju6UXlpZZZcW0J8WjzlrTMwMcgguwZe2Y0nIfExUAdDXHa5YP2XNS4eLmIwpKJFRb5t/C1eo7wInBjI761+x7GEIzKZjPPPztNsYzNab27NlRdX0NfWZ3rD6Tye/JjfWv6WpcC5IAhMOjKJvf570ZZpi4solS0r813T1wHKN0vC1a3wdLV0GWg/ECBT6wqA3na9OTPkjBhISclIYfDewUw8PDHLhWNzfXMm1JvAnTF3uDT8EoPsB6GnpcftV7cZd3gcJReWZNSBUXiFeL3T5yshUdjoaeuxq/cuzPXNuRZ8jRknZnzsKUlISPwHcCzhyLIOywidHsrm7ptxLueMUlByKPAQ3Xd2p8zfZfj25LcERga+97lUsKjA2SFn+aPVH+jIddgXsI+aK2pyIOAAcpmc31v9zqZum9DV0mWP/x6arGuSrwq7RmUaiRUiIw+MJCo5ChM9E75u+DUA8y/OZ5D9IABW3lypca5YMRL6RmDkrYoRtc9U1LAoRrpGBfgE8k9kUiStNrVil98udOQ6bOm+hdlfzc5T++NTj09Ra2UtZp6cSYzSCy3t7JNHsvNzwhLD+OXcL5RbXI5BewbhFeqFvrY+g+o0oKixluQ3SXzyqIMh35/+nmrLq1FrZS3mXZhHYFQgelp6dK/WnW09thH2dRiefTzpW6MvxrrGRCVHMfvUbCosqcBfV/4iOSOZ+qXqc3zgcc4PPU+z8s2yvN7tl7fpsbMHGcoMihgUEZPJdrvsRk9bTzzuTY0RNUMchiBDxpmnZzSE3kH13jk9+DS9bHuJ2448PEKd1XW4/fJ2pnmo29Nv6bGF4GnBLGyzkCpFqpCQlsAqr1XUXl2b+m71WeezjsS0xAJ/vhIS74MhDkNEbef+u/t/cAmFD4UUGPkPoVAKXHkUyb5bwVx5FCmKsGW3PT9ULVqVP1r/QdDUIHa77KZ9pfbij8kAzwGUXFiSSUcmiQLp7wsbSxvODz3Pby1+Q1uujed9T2r8W4PDgYcx1zfn8IDDTKw3EYA5Z+YwcM9AktOT8zS2lZGVGDGdf3E+N4JvoK+tz6wmqtLMv6/9jYudC5BZhF0dGLn98jbFjIsBWRj5/2+l9SEynwRBYNGVRbjsciFVkUqXql04M+SMOLecztvlu4vqy6vzx6U/SFem06lqB37pWgsZskxGufrvczvboiVX/S0lI4UNtzbguMqR5hubsy9gHwIC7Sq14+iAo/iNv8efPetpnJ/TeBISH5qk9CQ8/Dzo49FHDIbs8ttFUnoSFcwrMLPxTG6OvMnDiQ/5vdXv1C5RW3ScrwRdodWmVjhvcOb8s/Poaekxqd4kHk96zF9t/sLayDrb6y64tIB/b6ra+pnrmyMgIJfJOdjvIHLZ659zsST8/5lPatQ9c/cH7M9SBLZx2cZcc70mlogDLLuxjOYbm2cSSFUjk8loVKYRm7pvImR6CH+3/ZtqRauRmJ7IGu811FlThzqr6+Dm7ZavjFMJifdJBYsKbOqmanu55NoSdvnu+sgzkpCQ+JTIyTd6V7/JQMeAgfYDOTv0LAETApjZeCbFjIrxKvEVf1z6gyrLqtBsQzO23NmSZx+lIGjJtZjReAY3Rt6ghnUNwhLD6LKjC6MOjCIhLYFBtQZxdshZrI2suf3qNvXW1ONK0JU8j/9z85+pVrQaLxNeMunIJAAm1JtAEYMiBEYFikGPQ4GHRLsFXvtMgVGBWBioWhB/TJ8JVJXtjdY14lLQJcz0zDg28BgD7Afket6LuBf08ehDq82t8I/wx9rImg3d1rG0jzMy8ubn3Hl1hxH7RlD277L8cPYHXia8pKRJSea1mEfQ1CDWdFnNr91qaZyf03gSEh8SQRC4++ouP5z5gerLq1NrZS1+vfArDyIfoKelR7dq3djWYxvh34Tj2ceTfjX7iW3pYlJimHtmLuUXl+f3i7+TmJ6IUwknDvU/xJURV2ht0zrbwOTz2Od02NaB+LR4KltWFlsMD6g5AOfyzpmOhdettED1bmlt0xp4rc/4JgY6BuzstVMMAAM8iXlCw7UN2XJnS7afRxHDIkxrOA3/8f6cHnyaPnZ90JHrcD34OiP2j6DUolJMPDyRe2H38vDpSkh8GP5p/w8OxR0ITwqnj0efDyqd8KGQCZ9hQ/C4uDjMzMyIjY3F1NQ09xMkOHovlJ8O+GmIs5Uw06dLrRLsvx2aafvczra0q1Hina4ZFBvE+lvrWeuzViPLqG7JurjWdqVfjX557sdaEHxCfRi4ZyB+4X4AjHEaw19t/sJI14iVN1cy4fAEFIKC+qXqs7fvXoobF8/TuP1292PHvR3YWtniNUqVDW3zjw0h8SHMbDyTPy79ga6WLsHTgilqWBSA7Xe309+zPw1KNyBdkY5XqBf7++6nc9XO4rjlFpfjeexzLg2/RKMyjQr503iNQqlg6rGpLL2+FIDxdcezpN0StORaOZ7nH+HPxCMTxRK6CuYVWNJuiXgP2T1j6mfpZcJLVt5cyYqbK0TBaANtA4bUGsKk+pOoblVd43q5jSch8SFJSk/iSOARdvnt4sCDA6IYH0B58/K42LrgYueiEQR5kxvBN/jh7A8cfXgUAB25Dq61XZn91WxKm5bO9fpb72xl4B5VxYdzOWfOPTsHwA9Nf+Cn5j9pHPvzuZ+Ze3YuIxxH4NbFTWOf02onvEO9Wdx2MZMbTM7yWmGJYXTZ3oVrwdfEbcWNi+Peyz1PbfYEQeD8s/Os8lqFh58H6UqV8WSia8JA+4GMdhpNreK1ch1HQuJ9M/PETBZcXoCJrgk3R90URX8/ZSQbWCK/SM9M/sjJ/gTei22arkjnUOAh3LzdOPLwiKjrYa5vzsCaA3Gt7fpefzdTMlKYc3oOi64sQkDAxsKGTd030ahMI57FPKPrjq7cfnUbXS1d1nZZK1ag5sa1F9dotK4RSkGJp4sn3at3Z/7F+cw6NYtKlpUoZVKKc8/OMdd5Lj82+1E8r/Si0gTHB/OT80/MPTeXr8p+xflh58X9y64vY+KRiXSv1h3PPvlrj5xfrr24RuftnQlPCqesWVkO9z+MnbVdjuekKdJYcnUJP537icT0ROQyOePrjufn5j+Llbk5PWdt7Ipx6MEhFl9bzOknp8X9dUrWYWqDqfSy7YWulq7GNSW/SeJTQRAEfMN9cfd1Z5ffLvwj/MV9elp6tKvUDhc7FzpV6aShoagmPjWeJdeWsPDKQmJSYgCwL2bPz81+pkvVLrlWaUUnR9N4XWPuR9ynimUVnsQ8IV2ZjqW+Jc+nPteoMktKT8LoN9Xfo2dGa7Qw3nFvB/1296OMaRmeTH6S7VrJ0mtLmXR0ksa2ifUm8lebvzJ9T7MiLDGM9T7rWe29WqM6pVGZRoxxGkMv214Y6BjkOo6ExPvkYdRDnFY7EZcax9cNv+bPNn9+7CnlSn7sXykw8h/g6L1Qxm7xzqbRUWbUPzUrBtYuFENKoVRw6skp3LzdVD10/79IZqRjRB+7PrjWdqVB6QZ5KkXOL8npycw+NZvF1xYDqpYzm7tvpn7p+px+cppe7r2ITommtGlp9vfdL5Zv50RkUiR2/9rxKvEVMxvPZH6r+aKBXsqkFMWMiuH90ps/W//J141UJeP+Ef5UX14dQx1DmpdvzqHAQ6zqtIpRTqMAyFBmoP+rPgpBwYupLyhlWqrQPwtQ/fj3392ffQH7APir9V9Mazgtx88+MS2RX8//ysIrC0lXpqOnpce3Tb5lZuOZmX6kFUqB60+iCItPwdpEVbZ959UtllxbwvZ728WWPKVNSzOh7gRGOo3E0iD70u6sxpMyniQ+FMnpyRx5eAR3X3cOPjhIYvrr8uby5uXpbdsbFzsXnEo4ZfsduvXyFj+c+YEDDw4Aqv62wxyGMafpHMqZ561t3qnHp2i/tT3pynT62fVju+92ACpZVMJ/gn8mQ33k/pG4+bjxU7Of+MH5B419y68vZ8KRCdgXs+fW6FvZzjspPYkBngPY679X3KYt12ZRm0VMqDchz+/r8MRwNtzawGrv1Rq6Uw1KN2C002hc7Fww1DHM01gSEoVNhjKDFhtbcOH5BeyL2XN1xNVP3vmUbGCJ/CI9M3knO59JRnYNYwvfbwqKDWLDrQ2s9VkrtowC1aK4q6Mr/Wr2y3IxsTA48+QMQ/YOISguCLlMzqwms/jB+QfSFGkM2jNItAlmNZnFry1+1ahWzY7Zp2bz+8XfsTayxnecL/ra+lRYUoGIpAjG1hnLipsrKGlSkmdTnqEt1wag8/bOHHxwkMn1J7Pk2hIqWVYicOLrFmPfHP+Gv678xZT6U/i73d/v5bMA2Oe/j367+5GckYxjcUcO9T8kCsJnx+knp5lweAL3I+4DqsXN5R2W41DcIdOxb/s51UvqsPnORv65/o9oM2nJtOhRvQdTGkyhYemGOdpfkt8k8THxDVMFQ9z93DWCIbpauqpgiK0Lnat2zvb9lZiWyLLry/jz8p9ihYetlS0/NfuJHtV75Ol9k5KRQtstbTn/7DwljUtiaWDJvXBV9cWJQSdoVbGVxvEBEQFUW14NY11j4r6N0/h+pWSkUGJhCWJSYjg+8LhYQZIV+/z30dejLymK14HJxmUas6v3rlzfGWqUgpKTj0+yymsV+/z3ia2/LPQtGFJrCKPrjKZa0Wp5GktC4n3ged+Tnu49AdjbZy9dq3X9yDPKGSkwIiGiUAo0+eO0RvZIXpABxc30uTizRaEaVOGJ4Wy6vQk3HzeNH0xbK1tcHV0ZVGuQWGVRmJx6fIqh+4byIu4FWjItvvvqO+Y0ncPTmKd03t6ZgMgADHUM2dx9Mz2q98h1vH3+++i2sxtymZxLwy/hUNyBSv9UIjg+mH41+rH93nYqW1YmYEIAMpkMhVKB6XxTktKT6G3bm11+u/jR+UfmNpsLqEo4yy0uh45ch5Q5KXn64c8vYYlhdN7emevB19HT0vv/vfbK1oAWBAHP+55MPTZV7L3ZoXIH/mn3DzaWNjleS6FUsD9gP4uvLeb8s9cZXg1LN2Ry/cn0qN4jT0KFEhIfGnUwZJffLg4EHNAIhpQzK4eLnQu9bXvjWNyJG0+js3U+74XdY+7ZuXjeV2UyymVyBtkP4vum3+f6/XmT2y9v89X6r4hPi6dn9Z5cDrpMaEIocpmcO2PuZJm12HZLW44/Os66LusY5jhMY19UchQlFpYgTZGG1ygvapeone21364uUzOg5gBWd16dr4CGUlBy5skZVnqtZK//XjKUGYAqG3aw/WBG1xmNrZVtnseTkCgsQuJDcFzliF5COCOqdmPuW8FEEcMiYF4m630fEMkGlsgv0jOTNwrqM8H78ZuUgpJTj0/h5uPGnvt7xMQyQx1DMbEst4XyghCTEsOkI5PYfGczALVL1GZL9y1ULVqVOafn8PvF3wHoVq0bm7tvxljXOMfxUjNScVrthG+4Ly52LuzstZMFlxYw8+RMbCxsiE2NJSIpQmOR5fvT3/PrhV/pWb0nu+/vxkjHiITZr9tx9vHog7uvO3+3/ZspDaYU6v2rWXptKZOPTkZAoH2l9rj3dsdA2yhbvyk4LpivT3zNjns7ALAytGJB6wUMrjU4V7/uSfQTll1fhpuPmygqb65vzqjaoxhfb/wHFZiXkMgPvmG+7PLbhbuvuxgMhNfBkN62velcpTPGuqbZfneS05NZeXMl8y/NF7tKVClShR+df8TFziXXrhZqlIKSfrv74e7rjqmeKaNqj+KvK38B0MeuDzt67ch0zsnHJ2m9uTW2Vrb4jvPNtH/8ofH8e/Nf+tXox7ae23K8/vXg63Ta1onwpHBkyBAQKG5cHI/eHlkKw+dESHwI63zWscZ7jUbnFedyzox2Gk2P6j00dFIkJD4UU49OZffVJVTQNWFrz22UNskiofsz9JmkwMgXzpVHkfRbc7XA528f2YCGNplFgN8VQRC4HHQZNx83dt7bSXKGqoeurpYu3ap1w9XRlZYVWxZqgCA6OZoJRyaw7a7qR61uybps7r6ZYsbF6OPRh+OPjgPwa/Nf8ySmN3jPYDbf2UyVIlW4NfoW63zWMeHIBEoYlyAhLYH4tHhODT5FiwotAGi0thFXXlyhe7Xu7PHfw2in0azspBIcvPDsAk03NKWiRUUeTXpUaPesJiAigA7bOvA4+jGWBpbs77uf+LiK2ZZcVywRz8QjE8XPpLx5eVXbrCqdc/xcYlNiWeezjqXXl/Ik5gmgyjLvbdubyfUnU790/UK/NwmJdyU5PZmjD4+KbbLe1MIoa1YWF1sXetv1pm7JushkshzbFZQvHsuPZ3/E3dcdAQEZMvrV7Mdc57n5btPzPPY5Ddc2JCQ+BOdyzthY2LDulko4fVaTWfzW8rcsz7Ndbsv9iPtZZkYB9PXoy07fnYyvO55lHZblOAdBEFh8dTHTjk8DEA19+2L2eLp45ivIo+ZlwkuxZPxpzFNx+1dlv2K002h62vZEX1s/3+NKSBSUi3d24OQ5CoNs5WsBbT2Y4PXRDX3JBpbIL9Izkzfe1WeC9+c3hSeGs/nOZty83TQWH6sXrY5rbVcG2Q/CysiqUK+5y3cXYw6NISo5Cn1tff5o9QcT6qn8KNf9rqQqUqlVrBb7++3PdeHeK8SL+m71UQgKdvbaSYfKHcSqkQ6VOnD44WHaV2rP4QGHgddZqfbW9twJU+lTxn0bJ7ZgbuDWgGvB18T2XIWJUlAy48QMFl5ZCMCo2qNY3nE5J/3Cs7T9vutYlYCEnfx47kcS0hKQy+SMqzOOn5v/LGqkZIUgCFx4foHFVxezL2Cf2D6tapGqTK4/mcG1Bn8wYXkJifzgF+7HLt9duPu5iy3LQbWO09amLS52LnSu0hkzfTMg+zZvsztU4VnqPn678JuoI1TRoiJznefSv2Z/sYIsr0w7No2/r/6NjlyHNZ3X4LrflQwhA3N9c55OfirO503W+axjxP4RtLVpy9GBRzPt9wrxos6aOuhp6RE6PTTH7zTA4+jHtN/angeRD5DL5CgFZYEq7tUolAqOPTrGKq9VHHxwUHxPFDUsyjCHYYxyGkUly0r5GlNC4l1Ii3qM8E9t9HLqR/QZ+kxSYOQLZ9+tYCbvuFXg81s5BjGysSO1S9R+bxn+sSmx7Li3gzXea/AK9RK3lzcvzwjHEQx1GJqnHvx5Zce9HYw9NJaYlBgMtA34q81fjKw9kq+Pf80/1/8BoF+NfqztsjbHlhrRydHUWFGDkPgQpjWYxm8tf8PmHxuC44NpUrYJF59fpLdtb9x7uwOvMw5aVWjFyScn6VK1C/v6qlpabbmzhUF7BtGsfDPODDlTaPcKcPH5Rbru6EpUchQVLSpyZMARHoea5NAqQCBKbwHx8gvoaekxs/FMvm3ybY6fxcOohyy9tpR1t9aJi8qWBpaMdhrNuLrjCvXfT0KiMEjJSBGDIfsD9mcKhqjbZKmDIWpybk0oEKE7n0StSwD0tu3NXOe5ufaizoro5GiarG+CX7gfdlZ2zGsxj247uwEqfZ+ACQFZvpMFQcB0vikJaQkETAjIMhhz/NFx2m5pi4W+BSHTQ/IUhPDw82Cg50BSFaloy7XJUKocja09ttKhcod83x+oFh+OPzrOKq9VHAg4IJaMFzEoIpaMfw6aDxJfACG3YLVzrocx6hyUdHjfs8kRyQaWyC/SM5M33tVnAhjwVRpTmjUp9CCFGkEQuPLiCm7ebuz03SnqnenIdVSJZbVdaVWxVaElloXEhzBs3zAxUapVxVas77qeF3Ev6LajG68SX2FtZM3ePntpWKZhjmP9cOYHfjn/C0UMiuA7zpdNtzcx4+QMypqW5Xncc2TIeDz5MeXNy/Mk+gkV/6mIjlwHPW29TDZNiYUq7cKbI2/iVNKpUO4VVIkyg/cOxsPPA4DfW/7OzMYzOeb7MkfbL0z3N5K1rtCwdEOWd1ieY2vm1IxUdvruZPHVxfi89BG3t7Fpw5T6U2hbqe176RwgIfEu3A+/L2qG+Ia/rqzQkevQtlJbXGxd6FK1S6bgQ/Z+k4AAhP//u1POrBzfN/2ewbUGF2jN6e8rf4tJXJu6bWL+pfli0OZAvwN0qtIpy/N+OvsTP577EVdHV9Z0WZN5loKAwyoH7ry6w78d/mVs3bG5ziUyKZJuO7tx8flFMaEMYKD9QFZ1WlXgFsJBsUGs9VnLGu81hMSHiNtbVWzFaKfRdK3aVerIIfH++UJ9Jikw8oXzrtlPL3Vnkap1F2NdY5qUbUKzcs1oVr7ZewuU+IT6sNZnLVvubCE2NRZQtaBpX6k9rrVd6Vi5Y6Fc90XcC4btGyYKibe1acu6rus4EHCACUcmkKHMoF6peuztszfHvpCHAw/TcVtHZMg4P+w8d17dYfzh8VgZWhGeFI62XJsXU19QzLgYa7zWMOrgKOyL2XPn1R3qlqzL9ZHXAZh3fh5zzsxhSK0hbOi24Z3vT80u310M2jOIVEUq9UrV40C/AxQxsMqxVYCAEgWR1Kyxi6UdlmSbhSAIAmefnmXxtcUcCDgg/uhXL1qdKQ2mMNB+oKQdIPFJkZKRwrGHx3D3c+dAwAHi0+LFfWVMy4jBkHql6mWZ0ZNbmw31d8ep1j5+bv5jgYVSUzNSabOljao/rklJjg88TrONzYhIikCGjBsjb2S7EBCdHI3lApVuT+LsxCy/gwqlgvJLyvMi7gU7eu6gT40+eZrX5aDLdNnehcjkSPS09EhVpCJDxlznuXzv/P07OfLBccGisf8i7oW4vXn55oypM4Zu1brlScBQQqJAfKFGvoQESM9MXimMihG132RnZUez8iqfqWm5plgbWRfSLF8TlxrHjns7cPN240bIDXF7ObNyjHAcwTDHYYWSmCQIAv/e+JdvTnxDckYy5vrmrOy4koZlGtJlexdRlN2tsxuDag3Kdpw0RRr11tTj9qvbdK/WnU3dNlHxn4qEJ4Vja2WLX7gfs5vMZl7LeQiCgMUfFsSmxlLWrCzPY59zdshZnMs7k5KRgsE8VbJW+DfhhdaCOSIpgq47unI56DK6Wrqs77qe/jX758n2E+TRzO2pYFjtIdnaQmGJYay8uZJ/b/zLq8RXAOhr6zPYfjCT6k8qUBKNhMT7xD/CXwyG3Au7J27XkevQxqYNLnaqYMibguVvkpfvDvIYZnRLYKTTiALb+e6+7vTxUPkyf7T6g+T0ZH489yMAPar1YHef3dme67rflbU+a/m52c987/x9lscsvrqYqcemUqdkHW6MvJHlMW+TkpHCkL1DcPdVJciqq0dqFauFZx9PKlpUzMcdapKhzODQg0Os8lrF0YdHxTWYYkbFGO44nJG1R1LBokKBx5eQyJEv1GeSAiNfOOofpJexKXkWX4fXC3yhBiORyyBDyNDY/74DJcnpyey+vxs3bzfOPTsnbi9mVIyhDkMZ4TiCykUqv9M1lIKS5deXM+PkDFIyUrA0sGRVp1UUMShCT/eeoij7vr77cuzDP2LfCNbdWoeNhQ3XXa9Ta1UtXsS9oLxZeZ7GPuX3lr/zbZNvuRlyk7pr6mKqZ0pcahylTUsTNFWl3THqwCjWeK/hh6Y/8FPzn97pvkDlxCy6soivT6jE37tW7cq2ntsw1DHMs+O3fWR9GtpkdjZSMlLYfnc7i68t5s6rO+L29pXaM6XBFFpXbF3o/Y4lJAqKOhiirgzJKhjS26439UrVy3VhP+/fnYK30nizP66JrgkXh19k/sX5bL+nElyf1nAaC9sszPb8O6/uUGtlLYoYFCFiRkS2x6n7d7exacOxgcfyPL/AyEDab23Po+hHYnAEoFOVTmzuvjlb5yivKJQKjjw8wsqbKzkceFg09q2NrMWS8XdxJiQk3kahVPAy8BiltvfL/eDPzMiXkADpmckrefOZBMii5Z7abwo3HEuakHkR8H0HSm6/vM1an7VsvrOZmJQYQLUQ165SO1wdXelUpdM7+2n+Ef4M2jOImyE3Aehfsz/zW85n8tHJ7PHfA8DMxjP5reVv2dpTt1/eps6aOmQoM9jaYysh8SF8c+IbrI2sCUsMo5hRMYKmBqGjpUOzDc049+wcVYpU4UHkAzGRIzAykCrLqmCoY0jCrIRC8TkeRT2i/db2BEYFYq5vzt4+e3Eur1r4eVfb7/bL2yy5toStd7eSpkgDoJRJKcbXHc8op1EUMSz81msSEgXFP8JfbJOVVTCkt21vulbrmid7/0P4Teefnaf15takKdKYUHcCwxyGUWdNHQQETPVMeTzpcY7fMbUu4/qu6xnqMDTLY8ITwym1qBTpynTujLlDzWI18zQ3paBk5omZos6JgbaBGFze1mMb7Su3z/f9vs3TmKes8VrDWp+1YsBVhoy2ldoy2mk0nap0yndLMgmJnIh/egGTDVlXYGnwmflMUmDkP4C6hBHIY3BEdVSy8VLCFMcz7VVHvN/kfQZKHkQ+YJ3POjbc2iC+8AGalW+Gq6MrPar3yLHNU274hfsxaM8gvENVn9Eg+0FMbTCV/p798Y/wx0DbgM3dN9PTtmeW58emxFJjRQ1exL1gYr2JVC9anXGHx2GmZ0ZsaiwVzCvwcNJD0hRpGP9mLLaL0ZZrkzonVeW4bGnHsUfHWNtlLcMdhxf4XkC1yDPl6BSW3VBpB0ysN5G/2/4tCpfltVXAkr4OdHV4Lab0MuElK26sYMXNFYQnhQMqAcihtYYysf5EqhWt9k7zlpAoLFIzUjn2SBUM2ee/TyMYUtq0tCoYYtub+qXr56vKoaDfnfww/dh0Fl1dhI5chyMDjhCfFk/3nar+2WXNyhIwISDH1leHHhyi0/ZOOBR3wGe0T7bHPYp6RKWllZAh49mUZ5Qxy3sP0PDEcLrs6MLVF1fRkmkhl8lJV6ZjY2HDnj578uww5Mbz2Oe4ebvh5u0m9h4GVbuJ0U6j6Vyls1QyLpEnlIKSkPgQAiMDeRD5gMCoQAKjVH9+HP0Yu4wMvMlZQBj47Ix8CQmQnpn8kJ3PJHvj7zLe9qdUfwvX/Z0krcsae7RkWqLd/ybvK1CSnJ6M531P3HzcOPv0rLjd2siaobWGMqL2iHdqUZmuSOfX878y78I8FIKC0qalWddlHeeenWPehXmAKhlrS48t2Yqy/3LuF344+wMW+hbcGHmDRusaEZYYJvpNu3rvopdtL6Yencria4upbFmZwKhAUWhdLZZcvWh1/Mb7ZXmN/HDtxTU6be9ERFIE5czKcXjAYWytbMX9BbH9FEoFhwIPsfjqYs48fd0iuV6pekxtMJWe1XtK9ovEJ0NARIAooH437K64XVuuraoM+X+brNz0Nd7mfftNvmG+NFnfhJiUGLpX687m7puptbIWj6JVeq3uvdzpbdc7xzGqL6+Of4Q/JwedpGXFltke19O9J573PZnaYCqL2i7K1zyXX1/OpKOTUApK8T0nQ8ZPzX7iu6bfFUrrvHRFOvsD9rPSa6XYEQVUQdgRjiNwre2aL19P4r9NQloCD6MeqnymyNc+U2BUIGUSo75In0kKjPxHyE70qkutEuy/HZqliHBbu+I8iHzAxecXuRh0kUvPLxEYFZhp7Dd7J6ox0jFSBUr+b/Q7lXB6ZwMwXZHOwQcHcfNx4+jDo2JwxlzfnIE1B+Ja27XArWvSFGn8fO5nfr/4O0pBSVmzsizvsJxl15dx7JEqm/rnZj8zp+mcLDOT1D37AY4NPIbrfleC4oLEzICjA47StlJb7FfYaxgc6hLwvP4o50ZiWiL9PfuzP2A/AAvbLGRqg6kacz54N4AJWx/mOpY6e8M71JvFVxez494O0pXpgCrTfmK9ibjWds23kSRRMBRKgetPogiLT8HaRJ96FSzRkkuVOWpSM1I5/ui4KhgSsI+41DhxX2nT0vSq3gsXO5d8B0Pe5H1nPqlLtQG2dN9Ca5vWVFlaRWwreHHYRRqXbZzjGCtvrmTsobEaGkbZoc7G/KX5L8xpOidfc01KT2Kg50AxS9RC34LolGgMdQxx6+xGv5p5yL7PI+p3/yqvVeL7GKCEcQnR2C9nXq7Qrifxfnlf7zJBEAhLDHttvP/fkA+MCiQwMpDkjORsz3UU5F+kkS8hAdIzk1+y85nmdlYtlme3r2ElQ668uMLF5xe5FHSJay+uZXrvZOUzAdha2YrJZc7lnQslUBIYGcg6n3Wsv7VeI7HMuZwzrrVd6Vm9Z4ETy66+uMqgPYN4GKXyJ6bUn4J9MXvGHhpLqiIV+2L27O+7P8vf5nRFOg3XNsQr1IvOVTrTtFxTvjnxjbhg2KpiK04MOsGm25sYsncIJU1KEhIfwoxGM/ij9R+iWHK7Su04MuBIwT6c/7PXfy/9d/cnOSOZ2iVqc6j/IYobFxf3C4LAjENr2HUx90Xb7SMbYFdah/U+6/nn+j88jn4MqIJjvWx7MaXBFBqUbvBO85XIG5LPlDsPIh+IbbLe7AChLdemdcXWuNi50LVq13fy89+n3xQSH0IDtwYExQXRqEwjTg46yZzTc1h0VRW06Fi5Iwf7H8xxDEEQMPndhMT0xGx1GdWoE8+KGhYleFpwvtt+7Q/YT1+PviRnJFPEoAiRyZEAdK7SmU3dN71zxf2bPIx6yBqvNay7tY6IJFX3ALlMTsfKHRntNJp2ldqJCbMSnzbv812WkpHCo6hHrxPGIgN5EKXyn95MSHybL9VnkgIj/yGy+2Ll5wv3KuEVl4Iucen5JS4GXcQ71JsMZUaWx75JYQdKgmKD2HBrA2t91vIs9pm4vU7JOrg6utKvZj9M9fL/bFwOuszgPYN5FP0IGTKmNJhCmiKN5TeWA9C3Rl/WdVmXpSMx5uAYVnmtorx5eaY2mMrko5Mx1DEkKT2J7tW649nHkyF7h7Dp9iYxYHJnzB1qWNfA6DcjkjOSCZwYmK2mR268SnhF5+2duRFyAz0tPbb02EIv217ifoVSwY9nf+T3C39QPHk1WhRBRuYFYhlQ3Eyf6V1i+ef6Yi48vyDua1SmEVPqT6F79e5SWeYHJCcnvV2N7DVwvnRSM1I58fgE7r7umYIhpUxK0ctWFQxpULpBoWTj5NZmQ/3duTizRb6NFg8/D1x2uSAgML/lfGY0nkGX7V04GKgy6sfXHc+yDstyHWf2qdn8fvH3PB2vXnSoaFGRwImB+f6MFEoF049PZ8m1JYAqAKXWB5lSfwoLWi8o9IzIx9GPRWM/LDEMUC00ta/cnjFOY2hfub30bvqEKYx3WVRyVKbsJXUlyJvVYW+jJdPCUt+SNGWaGGxU86Ua+RISID0zBSEn3yivflOaIg2fUB8uBV1SJZk9vyhWXOdGYQZK0hXpHA48zBrvNRx5eERMLDPTM2OgvSqxzKG4Q77HTUxL5OvjX7PSa6U45xmNZjDz5ExRlH1Pnz00KtMo07n3wu7htNqJNEUaqzutZs6ZOYQlhomBo8CJgSSnJ2O/0h5dLV3SFGkMsh/Epu6bmHtmLj+f/5nRTqNZ2WllgT+Xf679w5SjUxAQ6Fi5Izt67dCocrkVeoueu3ryOOoppVLW5ug3FTXRpnHto6y7tVb8HbLQt2CU0yjG1x0vZWp/QCSfKXseRD5gl+8udvnt4var2+J2bbk2rSq2wsXWha7VumJpYFko13tfflNcahxfrf+KO6/uUKVIFS4Pv4xfuB9NNzQFVJ1MAicGagQ5s+JNXcak2Uk5BoozlBmU/bssoQmheLp40r169zzPV82N4Bt02t6JsMQwLPQtSExPJE2RRiXLSni6eBZaxb2a1IxU9vjvYZXXKo0KwrJmZRlZeyTDHYdT0qRkoV5TovAojHdZuiKdJzFPMiWMPYh8QFBsUJaJGmrM9MzQ09IjOiVaTI6GL9dnkgIjEu9EUnoS14Oviwb/5aDLOS5MqCmsQIlSUHLq8SncfNzYc3+P+KU11DGkj10fXGu70rB0w3z1n01IS2D6sems9l4NQA3rGnSr2o35l+aTocygbsm67O27N9MPSXxqPDVX1ORZ7DNGOo7k2ONjPI99DqgWZJ5Pfc7OezuZdnyaqDNybOAxHIs7Yv2XyuFJ/i45xzY52REQEUD7re15EvOEIgZF2Nd3n0Zm+YVnF3DxcOFlwkvV56NohFXarP87IK9RtQcQwNyNZ6mqbHNtuTYudi5Mrj+ZeqXq5XtuEu+Guq3D2y9q9RO9YmDt/5Shrw6GqNtkvbnAWdKkpNgmq2GZhoUSDHmbnNpsQMH+PS48u0Drza1JVaQyrs44lnVYxuY7mxmydwiguq+ACQHZtqV4k0F7BrHlzhbmt5zPzCYzczw2MS2REgtLEJ8WL4qaFoTFVxcz7dg0BAQqWVYSM0iblmvKzl47c3VMCkKaIo19/vtY6bWS009Oi9tLm5bG1dEV19qulDItWDszifdDft5l8anxGgGPNw35qOSobK8hQ0ZZs7JUKVKFypaVKWZcjFcJr7gafFVsl/kmFnoWyOQyyiXFfJFGvoQESM/Mp4IgCDyMeij6TJeCLhEQGZCncwsrUPIi7oWYWPY05qm43amEE661XelXox9m+mb5GvNw4GGG7xvOq8RX6Mh1mNpgKscfHefWq1voaumypvMaBtcanOm8+RfnM+vULMz0zJhUfxK/nP9FTBz7ptE3zGsxD5PfTUQtM3UlydC9Q9l4eyPzWsxj9lez8/0ZKAUlXx//mr+v/g3AGKcxLO2wVEyqSExLZNSBUWy7t008p4xuZ+Sxo7NoowYgaLRRq1a0GpPrT2aQ/SCMdI3yPT+JgiP5TJkJjAwU22RlFQzpbdubbtW6FVow5G0K229KU6TRYWsHTj05RTGjYlwZcUXsvhEcHwzAxm4bs3znvM3tl7dxWOVAUcOihH+Te9D625Pf8selP+hUpRMH+h3I85zf5En0E9pvbU9AZADGOsYY6RrxKvEVhjqGrO2ylr41+hZo3Nzwj/BntddqNtzaQHRKNKBan+pStQujnUbT2qb1e/GbJQpGft5lCqWC57HPM1XMP4h8wNOYp1m281Rjqmcq+kw2FjYolAr8Ivw48/SMRsIpqKqOKlpUxCTy8RfpM0mBEYlCRaFUcC/snmjwX3h+QcwgzglDbUO+KvfVOwVKwhPD2XxnM27ebtyPuC9ur160Oq61XRlkPwgrI6s8j3fwwUFG7B9BWGIYOnIdhjkMw+O+B1HJUZQyKcX+fvszibKffnKalptUrbAm15/MkmtL0JHrkK5M5+dmP/NVua9ovrE5+tr6pGSksKHrBuys7ai7pi7FjYsTOj37srXsuPj8Il13dCUqOYqKFhU5MuCIWAoalRTFAM8BHH10VOPz2O2ym2evzDNFoRWyCCJ1VpGsdYUiBkUY7TSacXXHSQuMH4i3sxCdylng/OcZjX+jN3mXCoXPiTRFGiceqYIhe/33agRDShiXEAXUG5Vp9EGMusLMRvML96PxusbEpMTQrVo3PHp7EBwfTPXl1UlKTwLgxKATtKrYKk/jqdtjbeuxLU/trEbuH4mbjxuDaw1mY7eN+Zr7m3je92SA5wBSMlKwsbDhVeIrElKTKKXflCl159K4fM331srgQeQD1nitYf2t9WJpupZMi05VOjHaaTRtbNpIJeMfGXXWYHbvMhDQ003GuvwyAqMCNNq+ZEVJk5KiIV/ZsjKVi1SmSpEqVLSoSGRSJJ73PXH3c+fi84uZztWR69C5Smd62fZi3KFxxKTGUEaQEYAxBlmIKoto68EELzD/uJm/kg0skV+kZ+bTJTwxXKMS3yvESyMzMzveNVCiFJScfnIaN2839vjvEUXBDbQNcLFzYWTtkTQq0yjPiWURSRGMOjBKbK/ZoFQDTPVNOf5IpVU5o9EMfmv5m8ZvcYYyg8brGnM9+DqtK7bmzqs74ru/qGFRXkx9QeN1jfEK9QJUuiz3xt2j+cbmnH16li3dtzDAfkC+7js5PZmBewbied8TQKzQVd/nBp8NjD8yXrS/dLV0+bnZz3zT+BuO+77KZPtlEE6U7mqSta7Q1qYtUxpMoY1NG2mB8QPxpt9U1EiP6btu8zLuv+0zgaqVklpA/dbLW+J2LZmWqjLEzuW9BkPeprD8JkEQGLx3MFvubMFIx4hzQ8/hVNIJ1/2urPVZC6gCqMcHHs/Tu+vgg4N03t4Zx+KOeI/OnDzzNgERAVRbXg25TM6LqS8oYVKwIFtUchRdd3Tl4vOLaMu0qVq0Kr7hviDIGVhtLt2rDKWEmdF78ZuS05Px8PNgldcqLgVdErdXtKjIyNojGeYwjGLGxQr1mhL5Iy8+k4FeKpWrbSYwKoDH0Y/F3/CsMNQxFH2lypaVX/tPRSpjrmfOmadn8PDzwMPPg5jUmEznV7KsxIQ6E7gReoOtd7d+sT6TFBiReO88j32uMvj/r1Vy99XdHMu24N0CJYIgcOXFFdy83djpu1M0bnXkOnSr1o2RtUfSsmLLPBmt4YnhjDwwkn0BquqJOiXqEJ0SzaPoRxhoG7Cp+yaNdlUAEw5PYPmN5ZQ2KY1cJud5nKpqpIxpGXxG+1D0z6Lisb+3/J0qRarQ070n9UvV56pr7n0438Td153BewaTqkilfqn6HOh3ACsjKwRBYOGVhXx3+jvxRWmoY8jS9ksZ5jAMmUyGIAicfHSK38/s4vrzADJkUaTKfbGzrs6UBlMYUHPAO4naS+SPo/dCmbv/Hq/iXv+w6eukk5Ke+3NfUE2LT5k0RRonH58U22TFpMSI+0oYlxDbZH2oYMjbFEbPz5D4EBqubcjz2Oc0LN2QU4NPoaetR8uNLTn77CwAwx2Hs7bL2jyPWXFJRZ7EPOHCsAs0Kdsk1+MvB12m8brGGOoYEjo9tEAtCNVcCbpClx1diEiKoLROJ7QS+oDydW/i4mb6/PgeWxmkZKTged+TVV6rOP/svLi9vHl5sWT8fVSvSOROXvtMv9SdRaqWSofLytBKZbz/35BXG/OVLCtlysJ9FvOM3fd34+HnwZUXV7Ic26mEE2PrjMXFzoVzT8/R3b272ApUV65LMUU6VsgREETB5Pktf6eNTRvVAIZFPrqBD5INLJF/pGfm8yE5PZkbITc0KvHfbv2XFe8SKIlIimDLnS2s8V6DX/hrMfNqRavh6ujK4FqD85RYJggCm25vYuKRicSnxWOkY0Sz8s04FHgIgC5Vu7Cl+xZM9EzEc+6H38dxlSOpilRcbF1w93MX37/be24XuwIAWBpYEjkjMt92zpv32WV7F668uIKuli4bum4QE0geRj2k245uqsXJ/9POph1bemyhiKHKvn6V8Ip/b6xk9ZVTxCXLUMiikes+ZojDICbVn0R1q+p5novEu3PoTjA/HvAlPD73QOKbfIk+E7wOhuzy24XPSx9xu5ZMi5YVW+JiqwqGqJ/nD01h+E3qdsFaMi0O9j9Iu0rtOBx4mI7bOgKqtY774+9T1qxsnsZbcWMF4w6Py5Muo5rG6xpzOegyf7T6gxmNZ+Rr/m+SkpHC0L1D2em7E4A6FiMIDWmCNq/fte+7Bdy9sHus9lrNptubxN8ZHbkO3at3Z7TTaJqXb56vrisShUNBfCZdLV0qWVbS8JfU/lNJk5Ia/47q7hsefh7s89+XZTDEVM+UobWGMqL2CCpbVuar9V+JSQoADvpFkSVHYW1kLba2rl60Olt7bFEd8Bn6TFJgROKDE5MSw9UXV0Wj/3rw9RxFUaHggZK41Dh23NuBm7cbN0JuiNvLmZVjhOMIhjkOo7Rp6RzHEASB9bfWM/noZBLSEjDWMaaCRQVRRP2nZj/xfdPvxRdOYloi9ivteRz9mCZlmnAx6KLYM/dAvwNMOjKJJzFPAJhUbxLlzcsz7fg0XOxc2NlrZ673pJ7TwisL+ebENwB0q9aNrT22YqhjiHeoNz129tDQXulfsz+rO63GSNeI5PRktt3dxuJri7kXdk88pmPljkxpMIWWFVpKP4KFTLoindCEUELiQwiOCyY4Plj15/////krS9IiVW2TZG9E3wWUWfYzfpslfR3o6vD5V/WkKdI49fgU7n7u7PXfqxEMKW5cXBRQb1y28WefjReXGkfT9U25/eo2lS0rc3nEZYoaFmXptaVMOjoJAGsjax5MeJDnthZKQYn+r/qkK9N5OvlpngTJBUGg+vLqBEQGsKbzGlxru77TfT2Mekhbt5lkRA0DNJ9nEJAh+yCtDPzC/VjttZqNtzeKz5G2XJuuVbsyps4YWlRo8dk/Q58T+24FM3nHrVyP69M4id5OFahsWTnX5/5R1CMxGPLm7/ubWBlaMcxhGMMch1GtaDUAfjr7Ez+e+1E8xlTXlBImJQiIDKB5+eaceXpGFMZc0XEFY+qMyfN9fggkG1giv0jPzOeLUlDiG+YrVuJffH5Rw77PjmpFqtG8QnNVoKScc54ygAVB4OqLq7h5u7HDd4dGYlnXal1xdXTNU7uVpzFPGbxnsKhRWLtEbXzDfElVpFLTuiYH+h3QsE8WXl7I1ye+xljHGAMdA1GHxbmcMy52Low/PF48NnFWIuZ/mJOuTOf5lOd51u54GPWQ9lvb8zDqIeb65uzru4+m5ZqSpkhj4uGJrPFeIybtlTAuwc5eO/mq3FcA3Hp5i8VXF7P93nYx2ay0aWkm1J3ASKeRHyzr/r+CIAjEpMQQHB9McNxrfyk4LpiQBJUfFRpRDO24scDbdmbufCk+E6jsoF1+qmDIm+1CtWRatKjQQqwMKWpYNIdRPg/UQQyAdV3WMcxxGJFJkVRbXk0UGM+vzaYOtEyoO4GlHZbm6Zy13mtxPeBK1SJVuT/+/jutmSgFJbNOzmLphQtYpc3+/5OsOZ6M998CLik9iZ33drLKaxXXgq+J2ytbVma002iGOAz5Ip6hz4W8+kyd6obT1aEUlYtUpoxpmRy7IySnJ3Ps0TE8/DzYH7A/S+kDuUxOW5u2jHAcQacqndDT1uNJ9BPqu9XX0Edrb9OeI4+OYKRjhK6WrtiaraJFRR5NepT/G36PSIERic8KtTjhm0Z/buKEBtoGNCnbhOblVUZ/nZJ1cg2U3H55GzdvN7bc3SIulMllctpVaoeroyudqnTKcYzH0Y8ZvGewWHZoY2HDo2jVl/9tUfYLzy7gvMEZAUEjktqpSid0tXTFEu7etr0paVKSJdeW8E2jb1jQekGun5dCqWDy0cmiIPykepNY1HYRqYpUBu8ZzO77u8VjK1lUwrOvJzWtaxIaH8q/N/5lpddK0YAw1DFkmMMwJtWfJLbfksg7giAQlRyVyXjXMOLjQwhLDMu+SkqQ/1/UsWi+jXs1n3P2kzoYsstvF3v892QZDOlt15vGZRp/Me2Q0hRpdNzWkZOPT2JtZM2VEVeoaFGRgIgA7Ffai473/r776Vy1c57HfZnwkhILSyBDRuqc1DxX2S24tICZJ2fSqEwjLg2/lPsJOaBQCjScf5KwuFTeNu5VCFiZ6HB1VpsP0sogOT0Zd193Vnmt0qgksLGwYZTTKIY5DMtXi0WJgpHX7Kfc3mUPIh+I5d5vZkS+ibZcm05VOjHcYTjtKrUTvwcZygy67+jOwcCD4rFFDYsyud5kvj/7PWZ6ZvSy7cVan7XYWdnhG+7Lby1+Y9ZXs/J5t+8XyQaWyC/SM/NlERQbpNF+686rO6KgenZULVKVFhVa5DlQEpcax857O3HzceN68HVxezmzcgx3HM4wh2E5BiUUSgWLriziu9Pfka5Mx1zPHJlMRnRKNFaGVuzps0fUQlQoFTTd0JTLQZepUqQKDyIfiONs67GN/p79xb9fHXGVBmsboC3XJuW7lDzZhW9Ws5Y3L8/h/oepblUdz/ueDN83XMyU1pZr833T75nTdA6CIHDgwQEWX13MuWfnxLEalG7AlPpT6FG9R4G0Mf/rpGSkEBIfkmWimNpnCokPyTlh8h39ps/ZZwLVeoS6TVZWwZDetr3pXr37F7WQvc9/Hz3ce6AUlPzU7Cd+cP4BAJddLuzy2wXAV2W/4uzQs/lKehroOZCtd7fmq/ojPjWe4guLk5SexOXhl2lYpmH+b+gNFEoBh1/2E5eslc3zLFDCzOCDtYC79fIWq26uYsvdLSSkJQCqaoRetr0Y4zSGJmWbSAm075nC8pkS0xI58vAIHn4eHHxwkMT0xCyPq2RZieEOwxlca7BG+/xjj47RZXsXjTZdMxvNZNOdTYQmhDKj0QwWXF6AtlybDGUGFvoWRM3MXgfyYyAFRiQ+awRBIDAqUKP91ptGclboa+vTpGwTWpRvkWugJDk9Gc/7nrj5uHH26VlxezGjYgx1GMoIxxFULlI5y3MVSgV/Xv6TH878QLoyHRNdE5LSk1AIikyi7FOPTmXxtcWY6ZmJRrdcJmdK/SksuroIgCZlm1DUsCh7/feyrP0yxtcbn+V11SSmJdJvdz8OPDiADBmL2i5iSoMprL65minHpoiGpL62PovaLGJMnTF4h3qz+Npidt7bKfYtLmtWlon1JjLCcQQWBhY5XfI/S3J6ciZjPTj+DSP+/9vUopC5oSPXwcrICgt9C4x1jTHQNkAuk5OUWIrQ530KNMfPtV9uuiKdU09OsctXFQxRZxqA6nvYy7YXvW1706Rsky8mGKJGEASG7B3C5jubMdIx4uzQs9QpWYcMZQYN1zbkZshNAPrX6M/WnlvzNfaN4BvUc6tHKZNSvJiWu7aTmtD4UMr8XQaFoOD++PtiZn1ByKsxN72jFhO/alfg6xSEu6/ussprFZvvbBYF5XS1dOlRvQejnUbjXM5ZMvbfE+p+uS9jU7IMEef0LvML9xODIepKzaywtbJluMNwBtoPzLToF5EYQcO1DXkY/VDcVsK4BIf6H6Ld1naEJYaxqM0i3P3cufriKh0qdeDww8N83fBr/mzz57vceqEj2cAS+UV6Zr5s4lLjNCrxrwVfE6s9sqOyZWVaVWyVp0DJnVd3cPN2Y/OdzWLyigyZKrGstiudq3TO1ue6/fI2A/cMFCvU1dV4ulq6rO60miEOqmrpB5EPcFjpQHJGMqZ6puJv9IS6qvbE6uSiVZ1WMfrgaMqbl+fJ5Ce5fjZv6p85lXDiYP+DKJQKuu3sJtpbAM3LN8e9lzu62rqs81nHP9f+Eav7tWRa9LbrzeT6k2lQukGu1/wvohSUhCeG51jlERIfIurA5QULfQuKGBTBVN8UIx0jtOXayJCRkFCSV0H5F6j+XH0mUAl2qwXU32xnI5fJVZUhti5fXDBEzdUXV2mxsQXJGcm4OrqyuvNqZDIZO+7toN9uVSs8PS097o27RyXLSvka23mDM+efnc+zLqOaoXuHsvH2RlwdXVnTZU2+rvk2efWbNg53xLlKyXe6Vn6IT41n+73trPJapRGAq160OqOdRjO41mBpDek98S4+U3xqPIcCD+Hh58HhwMPZBpkNdQxxsXNhuMPwLINdv1/4ndmnZ2ts+7nZz6Qr0/nl/C9UMK/AvJbz6L+7PzWsa3Av7B4yZGT8kPFJdWSQAiMSXxxhiWFcDrqsqip5fomboTfF3uBZoa+lT6OyjWhVoVWOgZLAyEDW+axj/a31GmKvzuWcca3tSs/qPbPU2fAJ9WHgnoFiL149LT1SFamUNCnJ/r77cSrpRFJ6Eg4rHQiMCsRY11iMuvex6yP2k7SxsMFUzxSflz65Zoe/SnhFp+2duBlyE31tfbZ030IN6xp02dFFI3DUs3pP1nZZy8nHJ1l8bbGG+GzjMo2Z0mAK3ap1Q1uune21vmQUSgVhiWEaAY6sMpbeXKzPDVM9U8z0zFSGu5bKcFcICpLTk4lPjSc6JRqFoMjyXMOMplil579Hqfrn60O0JSoM0hXpnH5yGndfd/YG7CUq+XVGQTGjYvSs3hMXO5cvMhjyJt+d+o7fLv6GlkyLA/0O0L5yewB+Pf8r35/5HlAtHPhP8M+3g7Pbbze9dvWiQekGXBmRtc5CdnTe3pmDDw4yo9EM/mj9R77OfZO8lv9G6PzJ7DZt+LbJtx/cgEpMS2THvR2s9FqpsTBStUhVsWRcao1R+By9F8rYLSrn6k3D8+13mSAI3A27KwZD7kfcf+NYmUb1nameKf1q9GO443DqlqybZWDLJ9SHphuair/BoEoOODPkDKu9VvPHpT+oUqQKPqN9KLKgCCkZKUypP4XF1xYzwnEEbl3cCvVzeFckG1giv0jPzH+LdEU6t17eEivxLzy7QFhSWI7n2FjY0Lpia5pXaJ5toCQ5PZk9/ntw83bjzNMz4nZrI2uG1BrCCMcRVC1aNdN5KRkpfH/6exZeWYiAgJGOkZi5+k2jb/i95e9oybVYcnUJU45NQVeuS5pSlaFqoW9BUcOiBEYFAjC1/lT+vvY3Tcs15dzQc5mu9SaLry5m2rFpCAh0qtKJrd238tO5n1h8bbFYYWNlaMW2ntuoYF6BpdeXss5nndhixNLAklG1RzG+3vhc2y5/ycSnxmdKCns7USw0ITRHv/xNdLV0xSQxfW19tGRaKFGSmpFKYnoisSmx2WY2Q8H8ps/NZ4LXwZBdfrs0bFW5TE7z8s1xsXOhe7XuX3TV84PIBzRa24jI5Eg6VO7Avr770JZrExwXjN2/dmLi6cI2C5nWcFq+xy+oXtH5Z+dx3uCMsa4xL6e/zKR7lx/y6jcZW+/i4PAfKW9evsDXKig3Q26y8uZKtt/bLgbd9bX16WPXh9FOo2lQuoGUWFbI5NVnAohNieXAgwN4+Hlw9OFRjaRduUyuUVHaqEwjhjsMx8XORUPvS02GMoM+u/rg6e+psX1+y/n0q9mPqsuqkpKRgkdvD26G3GT+pfkMdxjOulvrAIiaEfVJBcykwIjEF09SehI3gm+IFSWXnl/KsleeGj0tPRqUbkBbm7ZZBkrSFekcCjyEm7cbRx4eEV8gZnpmDLQfiGttVxyKO2iMmZKRwuxTs/n76t8gyDHCHkFhirZ2Iqt7zKRPzd5cDrrMV+u/0nghvdlay1DHED0tPaJTork95jb2xeyznL9/hD/tt7bnacxTihgUwbOPJ+t81rHp9iZxkaicWTk2dtvIzZCbLL2+VOxBrC3Xpm+NvkyuP5k6Jevk/8P+TBAEgbjUuCyrPN7c9jLhZbZBirfRketgomeCvpY+WnItlIKSVEUqSWlJJGXknI2XFeb65lgbWVPMqBjWRtZYG1mjTKnE0RuZHcm3sTTSJSrxdSnj+xZkKwzSFemceXoGd1939vjv0QiGWBtZi22yvir71RcdDFGz8uZKxh5S9URe22Utwx2HA+Ad6k29NfXE53JHzx30qZH/KqLFVxcz9dhUetv2xr23e77O9bzvSU/3nhQ3Lk7Q1KACB07zKxjXtWpXNnbbmGcdlcLGO9SbVTdXsfXuVtER19PSo7ddb8Y4jaFRmUaZjP3CEJD8r3L0Xig/HfAjNDZF3FbCTJ8fOtliXSREFQy578HDqNeVHXKZHC2ZlljxCKrs3uGOw+lRvQeGOobZXm/z7c0M2zdM451fwbwCZ4acQSEoqL68OmmKNA70O0BZs7LUWlkLMz0zfm3xKxOPTKRH9R7sdtmd7fgfA8kGlsgv0jPz30YQBB5FPxIr8c89OycGGrKjvFl52lZqS4sKLbIMlDyMeigmlr1MeClu/6rsV4ysPZKetj0zvZvPPj3LkL1DeB7zAj2lHVqCBQpZNK2rVWBbzy0Y6RrRfGNzzj87j45cR3zn1y9VX+x736VqF/YH7GeQ/SA2dd+U5dwVSgXTj09nybUlAIytM5YuVbowcM9AsWJBS6bF1w2/ppVNK5ZeX8qBgAOiP1W9aHWmNJjCQPuBOf6+fO6kK9J5mfAy10SxnPzrN5Ehw1jXGEMdQ40WlsnpycSnxefa7u1tdLV0RV9J7TcVMypGWnJ59lzOm7i2ms/BZwKVPo9aQP1N7TS5TE6z8s3EyhBrI+uPOMsPw6uEVzRc25AnMU+oU7IOZ4acwVjXGEEQaL+1PcceHQOgXql6XB5+Od9+5Ju6jM+mPMuzYDuo3qmVl1bmUfQjNnbbyOBag/N17TfJj99kZBzM9p7baWPTpsDXexdiU2LZencrK2+u1KjgrmldkzF1xjCg5oBM/pzkMxWc7HymuZ1tqWejxz7/fey+v5vjj45r+EjqhG01xY2LM9h+sIbeYlZEJUfReF1j/CP8NbarA4/9d/dn+73tNC3XlLNDztJ2S1tOPD7Bqk6rmHpsKknpSTya9IiKFhUL8VN4N6TAiMR/DoVSgW+4L5eeX+LC8wucfXqW0ITQbI/X1dKlTsk6dKjUgRYVWmgESl7EvWDDrQ2s9VnL05in4jl1StbB1dGVfjX7Yar3+rlbcOo4y0+9QqZ8nWGcQTitHWJZ12cSM0/O5M/LfyJHjhKVUWiia5LJ0IyZGZPl4uCFZxfouqMr0SnR2FjYMK7uOOaenavR93Fag2nEpcWx8dZGcXGvqGFRxjiNYWzdsWJ7r8+VNEUaofGhuba2yinD6E1kyNDX1kdXSxdQGe4pGSl5Dpio0ZZri0b724a7uM1Y9WcrQyv0tPUyjZHXcslz3zTH61n0J29YqIMhu3x34envmSkY0rN6T3rb9qZpuab/iWCImv0B++m+sztKQcmPzj8yt9lcQBVgdVrlhF+EqvqsW9VuePbxLFDmzfRj01l0dRHTG07nrzZ/5evcNEUapRaVIiIpggP9DtCpSqd8Xx/y/jwPa/2EiUfHk6ZIo0qRKuzpswdbK9sCXbMwiEuNY9vdbazyWsWtl7fE7XZWdox2Gs2gWoMw1zfP0Uj91B3uTwXRSYpLITL1MX6x+9nt76Hxe6st18ZQx1BspwJQxrQMQx2GMtRhaK5GtyAITDo6iWXXl2lsr2xZmdNDTlPatDQ93Xvied+T1hVbc2zgMdbfWs+I/SNoXr45I2uPpL9nf5qXb87pIacL9f7fFckGlsgv0jMj8TYRSRFiJf65p+fwfumdY8Z/GdMytK7YmjY2bXAu70xx4+KAyn4+HHgYN283DgUe0kgsG1BzAK61XXEs4SiOs9v7EbP2epOW9jrgkEE4xlZHOTpiPkpBif0Kew17vpxZOTHZq3bx2ni/9GbOV3P4pcUvmeaZnJ7MwD0DRS3HH5r+wOknp7kY9Lp6vn6p+vSt0Zf1t9Zz59UdcXv7Su2Z0mAKrSu2/qyzn9X6h7kliuWof/gWulq66GnpIZfJERBIzUjNcyvhNzHTMxP9Ig1fSe0/Gb/eZqZnluW/Q17szGKmeix0cSAiIfWT9pkAnsU8E9tkZRUM6W3bmx7Ve/wngiFqEtISaL6xOTdDblLRoiJXRlwR73/VzVWMOaQSWNeR6+Az2gc7a7t8XyM0PpSSi0oil8lJnZOa74SweefnMefMHJzLOXN26Nl8X19NXp5nKxMdlFZz8Aq9gQwZ81rM49sm336095QgCFx9cZVVXqvY6buTlAyVT2SoY0i/Gv0YU2cMdUrWkXymQuDNwJKeTgrPkk/j6e/B6SenNX6zzfTMSExPFLdpy7XpXKUzwx1Veou5Pd93Xt6h6YamYhWWmqXtlzKh3gQuB12m8brGyJDhNcoLh+IOFFlQhOiUaG6OvEnXHV0Jjg/m5sibOJV0KvwPooBIgREJCV6LE154foHTT04TEBGQrQGoI9fBobgDnap0olXFVtQpWQdtuTann5zGzduNPf57ROEhdU8+V0dX4mIrMm6rd6ZRBZSAjCo259g5cFam6KulgaXGgrGZnhkx38ZkmtfOezsZvHcwaYo0HIs7kqZIwzfcV9xfr1Q9LPQtxKwJgBrWNZhSfwr9a/bPsg3Yp4QgCEQmR2pmKWWRsRSeFJ7nMbVkWmJ1R17Lut/ERNdEwzjPynBX7zfXNy+UNkD5KZf8FMlQZnDmyRl2+e3C876nRg9hK0MrVTDEThUM+S+2cHuzP+4IxxGs6bxGNGa/Of4Nf11RBTHM9My4P/4+JUwK9m/de1dvPPw8WNx2MZMbTM73+dOOTePvq3+/c5Z8Xp/nG8E36Onek6C4IIx0jFjfdT297XoX+LqFgSAI3Ai5wcqbK9lxb4fYm9VA24AWJaZx70FmkcXP5Xv6KaAUlFwJuoKHnwe77+8mKC5I3KenpYeVkRUvE16K725dLV26V+vOcMfhtKzQMk/B1IS0BNpvbS+2kVS336pWtBqnBp+ipElJzj49S/ONzZHL5Nwec5sa1jUYd2gcK26u4JtG39CiQgvab21PrWK1uDXm1nv5LAqKZANL5BfpmZHIjeT0ZG6G3ORS0CXOPDnDpaBLOSYblTQpSYvyLehUpZMYKAmOCxYTy9T6HAC1S9TG1dEVa602fO3un63PlGa8nF2Dv+POqzuMP5y15mIZ0zIExQWxpvMaXGu7auwLTwyny44uXH1xFV0tXTpX6cy+gH3i74m5vjntK7Xn5OOTol9hqGPIkFpDmFR/0jvpq30o1PqHOSWKhcSHiAuVuSFDJiYGpivS8xwoUaMl08oU0MguSSy7BLGC8Ln7Tc9inuHh54G7nzvXg6+L2+UyOc7lnMU2WTlp/3ypZCgz6LqjK4cDD1PEoAhXRlwRtV8fRj3EfoW9aJv/0vwX5jSdU6DrXA++Tn23+vnWZVTzIu4FZf8ui4DAw4kPsbG0KdA8IG/Pc7NqFkw8PBE3H1V7127VurGx20aNZN2PQXRyNJtub2KV1yqN1rd2pgNIeNWX13eh4nP5jn4qvEx4yZ77e/C478HZp2c1Ku+KGxUnVZGq0f7d1sqWEY4jGGg/MM/B1O13tzNoz6BMCcIrO65kdJ3RKAUlDdwacCPkhthi+HH0Y2z+sUFXS5e4b+Oos6YO98LucXzgcVrbtC6cmy8EpMCIhEQWxKbEiuKExx8dx+elj0bZ2Ztoy7WpYVWDjlU60qFyB8qbl2fnvZ24+biJuiIIcsqlbwKFGW+/9EFl6CuIpHjFf/mx2Q902d4lW4PTvpg9t8fcfn2uIPDn5T+ZeXImoGr98TTmqXi+uZ45lgaWPI55LJ7TqUonptSfQosKLT6JTKek9KTMAnxvZSyFxIeIAae88HZ/+bwgl8mxMrTSNNwNsw58WBtZf7Rg0qeUVZGXstcMZQZnn54V22RFJEWI+6wMrehRvQcudi7/2WCImsDIQBqta0REUgTtK7VnX999ohOq7lGrZl2XdQxzHFbgazVwa8C14GvsdtlNj+o98n3+3Vd3sV9pj7Zcm5BpIe/Utzivz3N4Yjh9d/fl9BNVVv7XDb/m91a/fxLPTExKDFvubGGV1yruvfKjVMpatCiKLIv3/ecs6vm+USgVXHx+UQyGvFnNaahjSAXzCrxMeKkRUHUs7shwx+H0r9k/X3ovT2Oe0nhdY0LiQwDVoo1CUGBnZcepwacoZlwMhVKB02onbr+6zbg641jecTkA9d3qcz34Ojt77aS8eXnqu9WnrFlZnk15VkifROEg2cAS+UV6ZiTyi1JQcj/8PhefX+TUk1Oce3ZObAOcFcWMiuFczplu1brhXN6Z++H3cfNxw/O+p8rOF+SUTl2HllCEnHymMMMxrOz8L1vvbhXtgjdR65O8vfgSGBlI+63teRT9CBNdE3S1dMXfFBkyqhWtxsOoh6LfV9q0NBPrTcS1tusnoSmmUCoITwrPNVEsP/qHBfGZ4HWCmOg3GWYT+CjEBLGC8Kn4TXltFfQ89rnYJkvdGg5U/07O5Z1xsXWhR/Ue/8lgiBpBEBh1YBRuPm4YaBtweshpGpRuAKi+I84bnLkUdAmAWsVqcWPkjSw1ZPOCWpexYemGXB5xuUBjtNvSjmOPjmVbwZYf8vo8r/Faw4QjE0hTpFG1SFU8+3h+1Ip7NYIgcPH5RVZ6rcTD1xOrxBWSz1RAguOC8bzvicd9Dy48u6DxHq9gXgEtuRaPoh6J2/Oit5gVgiAw/fh0lSzAG8iQ4dbFTWz5vfn2ZgbvHYyJrgmBEwMpZlyMXb67cPFwoU7JOtwYeYOm65ty4fkFdvbaiYudSyF9Eu+OFBiRkMgD6Yp0fF76cPH5RY4EHuFa8LVs+6hqy7WpWqQqbW3aUsWyCldeXGHvXV/Mk37M9TovdWdhYRpOu0rt2HB7Q5bHdKrSiQP9DgCqBedJRyax4uYKQLNPoBw5+jr6ovCVkY4RwxyGMan+JDGb4n2jUCp4lfgqc9AjQdOIj0mJeW9zMNQxzLUEW73N0sDys2nZ9Cn04czJMGtla8W5p+dw93XH099TIxhS1LCo2CbLubzzJ7Gw/bEJSwyj4dqGPI5+jFMJJ84OPYuxrjGgErO0X2HP09inALSxacPRAUffKahZalEpQuJDuO56nbql6hZojLpr6nIz5CaL2ixiasOpBZ4L5P15zlBmMPvUbP68/Ceg0o/Y0WvHJ9M2QBAE3K6eY96+3Fv1bR/ZgIY2RT7ArD5tMpQZnHt6Dg8/Dzz9PTUW1Ex0TahZrCZxKXHcC78nbrc0sGRgzYEMcxyWSdMrL5x6fIpO2zuJmbK6WrqkKdKwL2bPyUEnxUCfm7cbIw+MxFzfnMCJgRQ1LEqaIg3T301JVaTycOJDlIKSKsuqYKJrQtysuJwu+8GRbGCJ/CI9MxKFQXBcMJeCLnHy8UlOPTnFk+gn2S68Wxla0ah0I9pWaktEUgRbvW6QEjY612uo9cdG1h7J1jtbM+n5qRf7/cf7i0Lvl4Mu02V7FyKTIzHQNhCzyQGMdY3F1sOgEp6dXH8y3at1L/CCan6JS43LNlFM7TOFxofmu51vXnkzQezNYEdW1fFWRlafla7Kx/abclvMfh77HA8/D3b57eLqi9c6EjJkNC3XFBc7VTBE3Zruv87P535m7tm5yGVy9vTZQ5eqXcR9Cy4tEBNGtWRaXB95ndolahf4Wn9f+Ztpx6fhYufCzl47CzSGu687fTz6UNq0NE8nP33n9Ya8Ps/Xg6/T070nL+JeYKRjxIZuG+hl2+udrl2YHPV7zJhN93M9TvKZXvM89jm7/Xbjcd+Dy0GagboaVjUw1TflXtg9jRbDedVbzIrEtEQ6be/E2adngdeJZHKZnA1dNzCo1iBAVYVfdVlVQuJDmN9yPjObqL6DM0/MZMHlBYx2Gs3KTivptqMb+wL2iVUmnwr5sX+llSuJ/yw6WjrUK1WPeqXqMa3hNFGc8Pyz8xx6cIhLQZd4lfgKUC3y+Ib7im2stGRalNPriSIP+ttaggUvE++y9e5WSpuU5kV85nLNcmblANVLqu/uvhx8cFDcpw6KyJChRElSehLlzMoxqf4khjsOx1zf/B0/CRWCIBCbGps5SykumBfxLwiKDSI4PpiIpIh8C+jlhgwZRQyL5KrTod5mpGtUqNf/VNCSyz6qgaAu5X3bzQ2NTWHMFi9SjZfzUnFU3F7EoIjYJqtZ+WZSMOQNEtMS6bStE4+jH1PBvAKH+h8SgyIA049PF4MixrrGrO60+p2CIumKdELjVZn4+REQfJthDsO4GXKT9bfWM6XBlHeaU16fZ225NgtaL6BeqXoM2zeMM0/P4LTaid0uu6lXql6Br19YyGQyrA0qA7dyPTYsPm/tK75E0hRpnH5yGg8/D/b679WoADHXM6dx2cZkKDO4HHRZNPplyGhbqS3DHYbTpWqXArXZEASBhVcWMuPEDHGRTl9bn5SMFByLO3Ji0AmKGKqew7jUOL47/R0Ac53nUtSwKAC+Yb6kKlIx1zenokVFce7/Y++8w6I4uz5879IRpAuIqFgBe6+x9w72npBqqmmavCnG9LyJppnk8zVqEmssoGLBhl1iQayAWFABAZHey+58f2wYWQGl7NJ87usykZlnZs7Kzu45c875nfS8dArUBeKzTSAQPPG41HdhSpspcjVoem46/0T/w4GbBwi4EUBYQpjckZGQlcD2iO1sj9gOQAPlKMrSj20g2QCw4twKPO095flrhRR+xhf6OVtDtzLLbxY5BTkoUMhJkcIESkZeBoZKQ6a0mcIbPd7QqU+Rp8rTDC9/KGa6m3GXO6l3iEqNIj4zXi5m0yVmhmY4Wjg+MmYq3F6bCsTKS3XGTY+Lmaydt3Ah5U95e2EyZLLnZCZ6ThTJkIdYFbKKRYc18xd/GfWLVlLkYvxFPgx8IJm1oM+CSiVFAFnK1bW+a4XPMa71OGxMbYhOi+Zg5MFKD0Uv6/u5u0t3gl8IZtqWaRy6dYjJmyfzbu93+XLwlzXCX83NK5sv/yTHTAA3k2/K3fRFJfUAujfsjkt9F67ev6pVRFaeeYulcSvlFv1W95PvAXNDc7IKsjBQGLDGaw3T202X1/73xH+5m34XN2s3LZnus7FnAc0MZgAbM813d3m6Gmsa1X/nCAQ1BIVCQQvbFrSwbSG3jiVkJnA86jj+V/05fOuwLGelklTEZIZRFpfGyFDjEOer84lOj8ZVUmD/UFthN4Ux928cZH7AfC4kXCmpyxwJiacaP8X8nvMZ13pcub74cgtyic2I1apSup16m8jkSKJSo4jNiCUxO7FcslaPw1hprHHaizjupXV32Jvb14gv8icZlVpisX9oqU33EhIGGVOxszmLt6cXkz0nM9BtoPi9lUCBuoApW6Zw5u4Z7MzsCJgVoNUavytiFyvOrZB//nrw1zSxblKpa8akxyAhYWxgXCkJrOltp/PW3re4dO8SwbHBssNTFUzynISngydef3sRkRjBU6ufYtnIZTzf5fkqs6E0Glia6nRdXSG3IJf9N/ezJXQL269u1+oUtDe3Z3jz4ZgZmXH8znF2Xdsl72tm0wyfjj7M6TAHV6uKB6V5qjzm+s1l45WNgKYy1szQjMz8TLo17MbeWXtlZx00wzLvZd6jlV0rXu72srw9ODYY0Dj4CoVCq+AgJSdFTqAIBAKBQIOliSVDmw9laPOhfDP0GwrUBVyIu8C+G/vYGbGT8/Hn5aRAan5U2RIjBg+6O0Lvh9LSwBSLAu3YxMbUBrOEq6y7tJ7/BC0hR6Ep1iravSIhYWtmy0tdXuLlbi/jUt+lzK+rcP5h0UKxmLQYbibf5HbqbWLSY0jITCg2pLay2JnZlRozPVwkVlcLxGoLZYmZ7scOQGG6lqea9tEkQzwmVniGYF0n4HoAL/i/AMD7fd/npa4vyfvyVHnM8ZsjJ13d7d35uP/Hlb6mLhIjpoamzGw3k2VnlrEqZFWlEyPloUG9BuybvU/uuP/25LcExwazceLGSsWBOrFNxEylEpEYwZbQLWwJ3UJIXIi8XYGCpxo/RZsGbYhKjWLfzX2cvqtJllRk3mJpHIo8xOj1o+UiAnsze+5n38dQach67/Vasz5vp9yW1Ry+G/Ydpoaa35ckSQTffRA3geZ7GTQzZ2or4omWQPAIHOo54OXuhZe7F6AZenc65jR+4X7sv3GQtOj7KCVbFBTXVy3Uy02VzsmJDldJwVUsMHs483FqJZxayVogGwtaSxlEKTTulpHSiGltp/FGjzfo0rCL1mFqSc39rPvcTb9LdGo015Ovcz3pOrdSbnE3/S73Mu+RnJOss2qlQt3ZhpYNH1upZGlsWSNmnQjKxunIJK1W8IdRoMQQB7Z5X6ZvyydX//ZxSJLEy7teZve13ZgamuI/3Z9Wdq3k/YlZiTy741n556caP8W8bvMqfd2oVI2D36h+o0rpPduY2eDt4c2GyxtYHbK6ShMjoBkad+b5M8zdNpdt4dt4YecLnIo5xbJRy2SHrDro7maLs5Upcak5JQbChXq53d2qX6tc32TnZ7P3xl62hG7BP8Jfq63bsZ4j41uPx7W+K6fvnmbj5Y2yPIiZoRmT20zGp6MPTzV5qtK65PEZ8QxdM5RL9y4BGmlJgMz8THo16sWemXuwMrWS199IusEPp34AYMmwJRgbGMv7zt7VVD51cdZ8xxoqDbE0tiQ9L52k7CSRGBEIBILHYKg0pEvDLnRp2IX3n3ofSZKITIlk7/W9+IVtJzwsEYVk88iYKb1IZ6arpOBCgRFmGGsvzsmH//VnJuBNPa2YCTR+xPwe85nZfmYxeZGs/Cw54XEr9RYRiRFEJkcSnRZNbEYsSVlJpOam6kTWykhphL25PU4WTjhbOj+ySEwUiNUuyhoz7Zh0hTFtW1ehZbWP4LvBTNo0CZWkYnb72Xwx6Aut/YsPL+ZCvGYOqwIFK8et1Ek8UBg3VabLHsCnkw/LzixjW/g2krKTqnRmUWHHfbeG3Xhm+zMERgbKHfcVlVTWBSJm0iY0IVROhhTGLKBRoBnQdAD9mvQjOTuZzaGbOXrnqLy/s3NnfDr6ML3d9Eq/ryRJ4qdTP/Hm3jflIoJm1s24mXITI6URmyZvYoL7BK1j3jv4HjkFOfRv0l9+FgpwI/kGqbmpmBiY0MahDfAgMZKUnVQpO6sT8Q0sEJQDMyMz+jftT/+mmoHJuy/d5eV1IYBE0TYPCTWgIMn4f6B4IDtlj6J4UuTha6DpKMk0tWFym8l0durMvax7/HrmV6LSojRDarMSSc1NJSs/q0KD9QpRKpRYmVhhZ26Hs4UzrlauuFi6lOi425vbaz1IEtQtytrOmphZoGdLajefH/2cFedWoFQo2ThxI71ce8n7JEli3q55skSfqaEpv4/7XSeDKwsrnyrr4INGTmvD5Q2sv7ye74Z9h5lRWeo8dUd9k/psnbKVb45/w4eHPmRlyEouxF9g65StOnl9FcFAqWDRWE/mrT2HArQ+dQs/0ReN9ayzQwQz8zLZc30PW0K3sDNiJ5n5D+atuFi6MNFjIl0bduV8/HnWXlyrNVOkZ6Oe+HT0YWrbqdQ30c18g3Ox5xi6ZqjsgLtYupCam0pGXgZ9G/dl94zdWJpYah3z7v53yVPlMaz5MEa3HK21rzAxUjQRaGtmS3peeq2ufhIIBILqQqFQ0MymGfO6zWNet3kEXI7lpbXn0EfMFIXEoKaDGN5iOOZG5oTeD2W232xi0mJIyEogOTuZjLwMueq8opgbmmNjZoOjhSMuli40smyEk6VTiUViokCs7lLWmElVYPH4RU8wkcmRjF4/msz8TIY0G8Lv437XumeCooL46vhX8s+v93id3q69dXLtO6l3ACrVtQzQybkTHRw7cCH+AhsubeCV7q/owrxyMbnNZDwdPPHe5E1EYgR9V/fll1G/8Fzn56rcFhAxkyRJXLp3SU6GhN1/MG/FUGnIkGZDGNNyDGpJzZawLbKEHFR+3mJJ5Kny8Nnuw7pL6wBNgrG9Y3suxF/A2MCYrVO2MqbVGK1jTkadZOPljShQ8MOIH7Tuy8KYqYNTB3lWl5DSEgiecEa1a8j/zVIUG7xmaarCzG4XaVlhZFdAPlGBgqScJJYHLy/3scZKYyxMLLAx/ddxt3ChiXUTmlo3LdaibW1qLZx2ASDaXnXB6pDVfHxY097988ifGe8+Xmv/xssb2Ry6Wf750wGfanWTVAbZwa9ES3ghg9wG0diqMXdS77AtfJuW1mhVoVQoef+p9+nasCvTtk7j7N2zdPlfFzZO3MjgZoOr3B6AEW2d+W1W52Kf905FBm3WJdJz09l1bRdbQrew+9purYG2ja0aM8ljEiNbjORGyg3+OP8HP53+Sd7foF4D5naYyzMdn8HDwUOndq2/tJ652+ZSoNYkabs37M6VhCtk5mcysOlA/Kf7F5MZORR5CL9wPwwUBiwdtlTrey+3IJeL8RcB7cSIjZkNt1Nv12onXyAQCGoKI9o6838lfIfa1lPi7HKC8PQ47qQalLtbQ4kSUBN4K5DAW4HlOlaBgnpG9bAytcKhngNOFk64WrrSzLYZDS0bFhtMLgrEBCBiJl2QmJXIiHUjiM+Mp4NjB7ZO2ap1f2XmZTJn2xy5ANTN2q1YN0lFKZwPBLqJm3w6+fBGwBusOr+qWhIjAG0atOH0c6eZu20u269u53n/5zkVfYqfR/1cLR33T1rMJEkSIXEhcjLkWtI1eZ+xgTHDmg9jortGTm9L6BbeP/g+6XnpgG7mLZbGvcx7DF87nPNx5wFNcr+dYztOxZzC1NCUbVO3MbzFcK1j1JKaNwI080Se7fRssQSNLKPlrF1MBiIxIhA80Yxo68xQTydORyZxLz2HBpaa1kAD5QRgBak5qWy6sonNoZvJuh0EZSi4f7gLxEhpRD2jelibWmt1dzS3aU4L2xa41HfBsZ4jDvUcqlVuRlB7EW2vlSPgegDP+2tmYbzX5z2t+QUAMWkxzNv1QDKra8OuvNnrTZ1dv7AlXBcOvoHSgLkd5vLZ0c9YfX51tSRGChnafCjBLwQzcdNEzsWeY9jaYXw1+Cve7f1utSR1S/+8rxsJ5pScFPyv+rMlbAt7r+8lV5Ur72tm04xJHpOY6DGRrPwsVl9YzbiN4+SEiYHCgDGtxuDTyYeRLUbKVUS6QqVWseDAApYGLZW3TfGcgn+EP9kF2QxtNpRt07YVk05RqVW8uVdzr73U9SXaNGijtf/yvcvkq/OxNbOlidWDWT91QS9XIBAIahKlf4eOBr5ELak5FX2KNRfXcCfMHzLSHntONWqtn5UKJaaGptQ3qY+tqS0N6jXApb4LTa2a0tKuJU2tm+Jk4SQKxAQVRsRMlSM7P5uxG8YSkRhBY6vG7J65u1hH8YL9C7iedF3+ecXYFTqbrXM3/a5O5jIWMqPdDN7Z9w7nYs9xIe4CHZw66MDK8mNlaoXvVF++Pv41HwZ+yO8hv8sd95XtjKkIdT1mkiSJ0zGn5QHqkSmR8j4TAxNGthzJJI9JdGvYje1Xt/PNyW8Ivx8ur9HVvMXSCIkNYdjaYdzPug9o5LabWjXleNRxzAzN8J/uX2Kx4dqLazl79yyWxpZ8PujzYvsfHrwOdSNmEokRgUAHGCgV9Gpup7UtPTed43eOs+faHnZd38XN5Jt0kpRA+dtq89X5ZBdk42zkjKOFI02tm9LMphluNm6aP9ZuxWRDBILy8KS3vVaGc7HnZH3cWe1n8eXgL7X2S5LEszuelQd1GimNWDVulU71pOUhgjpyrJ7u+DSfHf2MAzcPcCf1TrVJWAE0tW7K8WeO8/Lul/nj/B8sPLCQ0zGnWT1+dbV87pX0eV+bScpOYnv4draEbWH/jf1aUiMtbVsy2XMykzwnYWdmx18X/2KG7wxuJN+Q13jYe+DTyYdZ7WfhZOGkFxtTc1Lx3uRNYKSmGthAYcCbPd9k2Zll5BTkMLLFSHyn+pZYGLAqZBUX4i9gbWrNJwM+Kba/qIxW0QdkhW3htVkvVyAQCGoaJX2HqiU1oQmhBEYG4hfmx6mYU7jn51KRmEktqcnKz8La1BobMxtcrVxxs3aT46ZmNppuEF3ImAqeTETMVHFUahUzfGcQFB2Etak1e2buoaFlQ601+27s49ezv8o/P9/5eZ12ixctJtPF54C9uT3j3cezJXQLq8+v5ocRP1T6nBVFqVDyn6f+QxfnLszwncGZu2fo/L/O/D3pbwa5Dapye+pazKSW1ARFBcnJkML4GzSzFEe3Gs0kj0kMbTaUY3eOser8KuZumyt3QpobmTPZczLPdHxGJ/MWS2PDpQ3M3TZXjul6uvTEyMCIY3eOUc+oHrtm7JJHAxQlIy+D9w68B8CH/T7E0UJ7rqxaUssdI0VnH9eFmEnviZGvv/6a999/nzfeeIMffvgBgJycHN5++202btxIbm4uw4cP59dff8XRUQz0FdReChMhh28dZt/NfVyIu1Cp+R8Pk6vKJex+mJZOYVHsze1lx7+ZTTOtIMC1vqvOq3cFdY8nre1VF0QmRzJq3Sgy8zMZ7DaYleNWFqs+XB68nL039so/f/DUB7RzbKdTO3Q5YwQ0VSwDmw7k0K1D/Hn+Tz7q/5FOzltRzIzMWDVuFT1cevD6ntfZGraV0IRQfKf64m7vXq221TRUaumx1VkJmQlsC9/GlrAtBEYGyrJUoBlcO8ljEpM8J9HStiU7Inbw/sH32Xdjn/ydZmlsybS20/Dp5EMPlx56rbiNSIxg+Jrh3Eq9BWhm0HzU7yM+CPyAPFUeY1uNZfPkzSW2nqfmpPJB4AcALOq/qMQh6sGxxVvCAWxNa39buKB2IWImwZNCYSLk8K3DBEYGcjDyIGm5D3eHVO6B0d30u9xNv8uJqBPF9hkbGD8oMiuMl4rETdam1pW6tqDuI2Km8iNJEm8EvMG28G0YGxizfdp2PB08tdYkZyfjs91H/tnF0oVvh36rUzt0NV+kKD4dfdgSuoW1F9fy36H/rXbZveEthhP8QjDef3sTEhfC0DVD+Xrw17zT+x3RJVeEssRMKrWK43eOy8mQ2IxYeZ+FsQVjWo1hksckRrQYwe3U26wOWc3rAa9rzVvs1agXPp18mNJmis7mLZb8elS8d/A9vjv5nbzt6Q5Pcz35OsfuHMPS2JI9M/fQp3GfEo//5vg3xGbE0symGW/0eKPY/utJ10nPS8fU0FTr3pU7RmpxzKTXxMiZM2dYvnw57du319r+5ptvsmvXLjZv3oyVlRWvvvoq3t7enDhR3HERCGoqablpnLhzgsO3DnP49mHOxpwt1s5diGt9V7w9vHnZpTdsff6x5/5i0Bd8dWM3IXEhZORllLpOgQKlQolKUnE/6z73s+5z5u6ZYusMFAa4WrlqOf5F/25vbi++JAVA3W971SWJWYmMXDeS+Mx42ju2L6aPCxoH4u19b8s/t2vQjvefel/ntuhyxkghz3R8hkO3DrH6/Go+6PdBtVdXKhQKXur6Eh2dOjJx00TC7ofRfUV3/pzwJ14eXtVqW00h4HJssSDd+d8gvWNTBX5hfmwJ28LhW4dRSw++rzo4dmCSp0Ymy8PBg/Nx51lxbgXrLq3Tqv7p36Q/Pp18mOgxUWeSBo98PdcDmLhJI90F0NymOQv7LOSV3a+Qr87H28ObDRM3lBqAfnHsCxKyEmht15pXupWs+1zYMVK08gmKDBKsxW3hgtqDiJkEdZmiiZDCP4nZiSWuNTEw4akmT/FO06Fw8PEzBXyn+PLV9d3subGHmPQYre+2hzFQaGaY5KnyiEiMICIxosR1NqY2DzpMrB90mrhZu9HEukm1P/QU1AxEzFQ+vj35Lb+c+QUFCtZ6raVfk37F1ry25zVi0mPkn/9vzP9hZWqlUzvkLnsdxkzDmg+joWVD7qbfxf+qPxM9J+rs3BWlqXVTTvicYN6uefx54U8WHFjA6bunWTVulVAa4dEx0xBPB47cOsKW0C34hvtqJTnqm9RnfOvxTPSYyLDmw8hT5fH3lb8Z/NdgTsWcktc51nNkToc5epm3WBKpOalM3jyZ/Tf3A5rnhN8M+Qa/cD+CooOob1KfvbP20rNRzxKPv51ym++CNAmV74Z+V2LBWWHM1Mmpk5byReGMkbTcNFRqFQZKA52+tqpAb4mRjIwMZs6cyYoVK/j88wfaZKmpqaxcuZL169czaJCmnWv16tV4eHjwzz//0LNnyb8ogaC6KU8iBKCzc2emtZmGl4cXLWxbaDbePV+ma41sMYKR/TRtbIUDcH8/9zunY07Lg5pAM4uk6JBCpUKJrZktDcwbYG5kTlpeGrdTbpOryuVWyi1updwq8Xr1jOppBQBF282bWjctptmua8qSrRdUHXWt7VUfZOdnM27jOK4mXsW1viu7Z+wu5rir1CrmbpsrP9RVKpSsGr9K5wF1Vn6W/PBal9VPEz0n8sruV4hMieTIrSMMdBuos3NXhp6NenLuhXNM3TKVI7eP4L3Jm/f6vMfngz6vlY6Yrgi4HMu8teeK9SnGpmbz0tpgEoy/IsvgpLy9i3MXORnS0q4lSdlJrL+0npm+MwmJC5HXNarfiLkd5vJ0x6cffJfpGUmS+O7kdyw8sFDuUhnsNpi5Hebis8OHAnUBU9pMYa3X2lK7Ia8nXeeHf34AYMmwJSWuyynI4dK9S4C2Vi7UjeonQe1AxEyCusbDiZAjt4/IOuclYWNqg5eHF5M8JjHIbZDmgczd82VKjDS1bsLyccsBzXfHpfhL/B7yOzuu7iAqLUorUfLwYHdzI3Mc6zlia2ZLgbqAu+l3SchKIDknmeDYYLmjsChKhZJG9RsV6zQpjJ0c6znqtdhMxEw1CxEzlY31l9az8MBCAJYOX8rkNpOLrdkSuoV1l9bJP89sN5Mxrcbo3JZCKS1dygQXzmf86vhXrDq/qkYkRkDTcb96/Gp6uPTgjYA32BK6hSv3ruA31Y/W9q2r27xqo/SYKYeX1gaTbfEz91T75O02pjZMcJ/AJM9JDHYbjJGBEUdvH+XFnS+yJXRLlc1bLI1ridcYvna4POfEzNCMtV5r+ebkN5yOOY21qTX7Z+8vFusUZeGBheQU5DCg6QAmuE8ocY1cTOasXUxWtMsyJScFO/Pa95mot8TIK6+8wujRoxkyZIiWkx8cHEx+fj5DhgyRt7m7u9O4cWOCgoKEky+oMTycCAm+G1zMoS6KodKQgU0H4uXuxXj38cX0MgEwtwNDEyjILb5PPpGJZt2/WJpoJEumtZ0GaCRQ9t7Yy5oLazgZfVKro0QtqeXOkUIc6znSwbEDnZ0706BeA1JzUolMjSQyOZKbyTe5m36XzPxMLt27JD8gehgnC6dSZbpcLF0q9TDyUdl60YYsqImo1Cpm+s7kZNRJWR/Xpb5LsXXfnfyOk1EnUaBAQuKdXu880iGpKIUOvqWxJVYmuquqMjcyZ1rbaaw4t4LV51fXmMQIgKOFI/tn7+e9A++x9J+lfH3ia4Jjg1k/cX2Jckl1HZVaYrF/aCnijQok1NjkPU/b5momt5nIRI+JuNm4oVKrOHDzAB8d+gi/cD/yVHmARmZkgvsEfDr6MKTZkCpNOGXnZ/PsjmfZcHmDvO317q/Tw6UHc7bNQSWpmNluJn9M+OORc3oW7F9Avjqf4c2HM6rlqBLXXIq/RIG6AAdzh2KVg3LHiEiMCPSMiJkEtZ3yJkIAmlg1wdvDGy93L3q79i7+PVOBmEmhUNDeqT0/jfyJn0b+RIG6gDMxZ9h0ZRPbrm7jdsptLZnjrPwsIlMi5YdJpoamdHTqSGenzrSya4WB0oCo1ChuptyU46bsgmzupN7hTuodjtw+UswkM0MzrQ6TorGTm40bFsbln5tSiIiZBLWRwMhAnt72NABv9nyT+T3nF1sTlxHHSztfkn92MHfQ26yOO2m677IHzXzGr45/RcD1AO6m3y35WVA1oFAomNdtHh2dOjJp8yTC7ofRbUW3J7bj/tExk6bw2ChjOva2IXh5aJIhA5sOxMjAiKjUKL49+S2rz6/mZvJN+ZiqmLdYGnuv72XS5knyM0EXSxc2T9nMq7tf5VzsOezM7Ng/ez+dnDuVeo4Td07w95W/UaDg++Hfl5rcl+WHH3qeYWRghIWxBRl5GSTnJIvESCEbN27k3LlznDlTXNInLi4OY2NjrK2ttbY7OjoSFxdX4vlyc3PJzX3gFKWlPaxBKhBUnrTcNHlGyOFbhwmODS7Wjl3Ygl2ImaEZw1sMx9vdmzGtxsgPUkrF2hVeDYasktvHAY2Db136F7VDPQdmtZ/FrPazALiVcot91/exJWwLJ6JOyNXphcRnxrPv5j723dRkvesZ1aO9Y3tGthjJ8BbDcbd3JzY9lsgUjcN/M/mm1t/TctOIy4gjLiOOoOigYvYYKY1oYt1E4/g/1G7ezKbZI/9NSsvWx6XmMG/tOX6b1Vk4+oIahSRJzA+Yj1+4H8YGxmybuo02DdoUW3cx/iIfHdLM5ZCQaGnbssTBz7qgqFaurqsUfTr5sOLcCraEbuHnkT/rvJ29MhgZGLFk+BK6uXTj2R3Psv/mfrr8rwu+U3yLySLVdU5HJmk9KHkYBUoMceCHQTvp1dyOm8k3+SjwI/648AfRadHyug6OHXi207PMaDejWpzamLQYxmwYw/m484CmMve3Ub9hZmTG7G2zUUtqnu74NL+P/f2RyZpDkYfwC/fDQGHAkmFLSr0vispoPbymsGOkNg8SFNR8dB0zgYibBPpHLam5cu+KXDx25NaRYtJYSoWyWBzVxqGNnAzp6NTx0T6LDmImQ6UhvVx70cu1F9+P+J7s/GxORJ1gW/g2dkbs5Hbqba31OQU5nI87L38HKVDQ1LopfRv3ZW7/ufRt3BcUyEmSwnip8P9RqVFkF2QTmhBKaEJoiTY5mDuUKNPVzKYZjeo3KjXhL2ImQW3kYvxFvP72Il+dz5Q2U/hu2HfF1kiSxPP+z2t9hiwbtUxvhU7y8HUddtkDtLJrRd/GfTl+5zh/XfiL9/q+p9PzV5Zerr0IfiGYqVumcvT2Ubw3efN+3/f5bOBnT1THfVljpo3el+nbogG5Bbn4hfuxKmRVsXmL09tOx6eTD91dule5LL0kSSwJWsKC/Qtkm3o26skf4/9g6papXIi/gIO5AwfnHHzkbFO1pOaNAM08kec6P0dHp44lrlOpVZyLPQcUT4yAJm7KyMuotXGTzhMjUVFRvPHGG+zfvx9TU1OdnPOrr75i8eLFOjmXQFBIWRIhFsYW5BXkkafWVNGqJBVWJlaMbT0WL3cvhjcfXn6ddWvXRzrx5aWpdVNe6PoCL3R9AUmSuHzvMgduHmBHxA6CooLIVWlXWmXmZxIUHURQdBAfH/4YA4UBzW2aM9BtICNbjGSy52Qc6jkAmg/c5JzkYgFA4d9vpdwiX53P9aTrXE+6XqJ9ViZWJcp0NbFy45MdUSVm6yVAASz2D2Wop5NoERfUGL47+R3LziwDYI3XGvo37V9sTW5BLrP9ZpOvzgc0gfWq8aswMzLTi0360MotpIdLDzzsPQhLuMq3h7bRzXlIjZNumNZ2muZhyyZvriddp8+qPvw2+jee6fQM8GTITtxLL93BL4rv5QP85/j/cfjWYXmbjakNM9vNxKeTzyOrifRNUFQQ4zaOk6uMLYws2DF9B5EpkczdNhcJiec6PcfyscsfOe9GpVYxf+98AF7q+lKJictCChMjDw9ehwd6uWLGiEBf6CNmAhE3CXRPWRIhhkpDTA1N5arVwpiqh0sPORnS0q5l+S6s45jJzMiMIc2GMKTZEJaNWkZydjKHbx1m97XdBFwPIDo9Wmu9hCR3lKy5uAYAW1Nburp0ZUzLMYxrPY42Dm3kh4p5qjzupN7RxEklxE7JOckkZCWQkJWgpUVfiIHCgCbWTYrJdDWxcuPjHakiZhLUKqJSoxi1bhRpuWn0a9KPPyf8WaL/tvr8anZG7JQ77L3cvZjsWVxqS2d26TFu8unow/E7x1kV8gf9nZ/jXnpujYo9nCycODD7AAv2L+CHUz/w1fGvOHv3LBsmbsDO3E7ETEU4F32dTdc+LzZvcUDTAfh09MHbw7tK5i2WRHZ+Ns/teI71l9fL2+a2n8tngz5j5LqRXEm4gmM9RwLnBmoNSS+JNRfWEBwbjKWxJZ8N/KzUdRGJEWTkZWBuZI67vXux/TZmNkSlRdXauEnniZHg4GDu3btH586d5W0qlYqjR4+ybNky9u7dS15eHikpKVoVUPHx8Tg5ldx29P777/PWW2/JP6elpeHqqvsPMkHdpiyJEAdzB8yMzIhNjyVfnS87904WTkxoPQEvDy8GNB1QY4fuKRQK2jm2o51jO97s9Sb5qnzO3j3LwciD7Lq2izMxZ4rJgakkFRFJEUQkRbA8WKPR62DuQK9GvRjZciR9G/elk3OnEiuwVWoVMekxWgFA0Xbz+Mx4UnNTCYkL0dKsBzBRtcMp76tSX4uERufxdGSS0G4V1AjWX1rPggMLAM3MgiltppS4bvGRxVyMvyhXS77S7RVNlaGekCuf9ODgKxQK+jm+TlqUKWuP2LOW80DNk25o59iOM8+fYY7fHPwj/PHZ4cOpmFOMdv2AL3dH1HnZiQaWZXuo+nPwF+QaXEKBgqHNh+LT0Yfx7uMxNdTdQ9mKsDpkNS/sfIECdQEAbtZuBMwK4FDkIV7apZFWeLnry/w86udHJkUAVoas5GL8RaxNrVk84NEPh0trCQchpSXQP/qImUDETYLKU5ZEiImBCU4WTqTnppOUk0SBuoCMvAwMFAYMaDoAL3cvJrhPKFFqtKZgY6aZbVIoJxOTFsPByIPsu7GPvdf3cj+7uBxYUk4S+27sY98NTSe+sdKYNg3aMKz5MAa5DaKHS49S53Gl5KQQmRz5oNMkOZKbKZqkya2UW+Sp8uQkysHIg/JxImYS1DZSclIYuW4kMekxeDp4sm3qthJ9zcjkSLlaXULC2tSaX0b9orfq+8y8TPkhty5njBQyuc1k3t6xhqyYOUxf8SD5WZNiDyMDI74f8T3dXbrznP9zcsf9gi7rWHM8R8RM/7Ig8CVyDTQy843qN+LpDk/zdMenaW7bXJ/mPZaYtBjGbRjHubhz8rZvBn/DrPazGLxmMOH3w2lo2ZDAOYGPnSOTkZfB+wffB+Cjfh/haOFY6trCmKmTU6cSO4zkgrJaGjfpPDEyePBgLl3SnlPwzDPP4O7uzsKFC3F1dcXIyIiDBw8ycaJmKNHVq1e5c+cOvXr1KvGcJiYmmJiY6NpUQR2nLImQJlZNaGjZkLTcNMLvh5OQlSDva2bTDG93b7w8vOjZqOdjH8bURIwMjOQW8g/7fUhWfhbH7xzn4M2D7L2xlwvxF0o8LiErgR0RO9gRsQMAUwNTOjh1YFjzYfRr0o8eLj2wNLHEQGlAY6vGNLZqzICmA4qdJzMvk1spt0qU6Yq5Vzb9xbJm9QUCfVJUH3d+j/m81eutEtedjDrJNye+ATQPFppYNeGrIaUHs7qgsPJJHw5+wOVYAs66YvBQnWJNlG6wNrVm27RtfHH0CxYdXsRfpy8ScPwCmlrKB9RE2ytLdzdbnK1MiUvNKaWiVI2KRJxtM/Hp9ClzO87Vy/ulvBSoC3h739v8dOoneVu/Jv3YNnUb6y6t47U9rwHwRo83Hql5W0hqTiofBn4IwCf9P3mkHFh2fjaX710GKDHxLw9fr6WVT4Kajz5iJhBxk6D8lCURYmZohoe9B4YGhtxIukFidqIsRWVqaMrw5sPxcvdiTKsxtVJfHMClvgtzOsxhToc5SJJERGIEByMPcuDmAQ7cPEB6XnqxY/LUeXIBWKH/17h+Y/o37c+QZkPo7dqb5jbNUSgUWJta08m5U4ndmWpJzd30uyV2mtyKs4e8x9svYiZBTSC3IJcJGydwJeEKDS0bsmfmnhKltdWSmme2P0NGXobcLfL98O9xttSfb14YM1kaW+pFHvh4RDr1s9+qFZJ309tNp22Dtnj97cXd+w34ZlfyvxHTA1+7JtpdWcoaM0lG15jiMaVa5i2Wxj/R/zBuwzj5maWpgSl/T/6bzs6dGfDnAK4lXcO1viuBcwNLTdAX5evjXxObEUszm2a83uP1R66Vu+xLmZda2+MmnSdGLC0tadu2rda2evXqYWdnJ29/9tlneeutt7C1taV+/fq89tpr9OrVSwwRFFSKsiRCmts0l7OcEYkRhMSFaOnLtndsLydD2jVoV+VagfrG3MicYc2HMaz5ML4Z+g1J2UkcvnWYgzcPsu/mvlLlsHJUOZyKOaXV9t3MuhmD3AbRv2l/erv2xs3ardi/Vz3jerRp0KZEKZOgG/e1KilKo6xZfYFAX1yKvyTr4072nMyS4UtKXJeZl8ncbXO1PndWjF1RqUGbZaHojBFdUjicDjRyYEWpqdINSoWSj/p/RGenLsz7475sZ1Fqqu2VwUCp4MPR7ryyvrAz78FrklCjQMH8YY14a+C1GpPkT8xKZPLmyRy6dUje9nyn5/ll9C8sO72Mt/Zpko/v9HqH/w79b5m+j7849gUJWQm0tmvNy91efuTaC/EXUEkqHOs54mJZvKK5MIjPzM8kT5VXYztFBbUXETMJqouyJELMjczp2agnTvWcSMxO5FTMKa0K1fom9RnbSiMtPKLFiGqTFNEXCoWC1vataW2v+T5RqVWExIVw8KYmUXLszrFicsWF3Em7w5qLa2T5LUtjS3q49GBIsyH0adyHLs5dismrKhVKGtVvRKP6jXiqyVNa+4JuJDJ9xT+PtVnETILqRi2pmbttLkduH8HS2JLdM3aXWojz4z8/cuT2EbnDfnjz4cztMFev9ulrvggUjZsejppqbuzRzrEdp547Q8+v9v2be60d8V5lMFAqWDTWk5fWnoOHIsXCmMm7u4pFI6JrVJJ/dchqXtz5oizV7WzhzO6Zu7ExtaH/H/25mXyTJlZNODT3EG42bo893+2U23x3UjPz57uh32Fi+OiCGnkuo3PJczxr+2xGvQxffxzff/89SqWSiRMnkpuby/Dhw/n111+rwxRBLaasiZD+TfrjZuNGQmYCByMPsiVsi7xfgYJerr3wcvfCy92r2lvjqhpbM1u8Pbzx9vAGIDotmoM3D8rVUbEZsaUeezPlJjdDbvJ7yO+AZpZIH9c+DHQbSG/X3nR27vxIeZbubnaPzNYrACcrjbalQFBdRKVGMXLdSNJy03iq8VP85fVXqQ+WF+xfwPWk6xgqDSlQF+DT0YehzYfq30Y9aeU+bjhdTZZusDXsgVIq/SFCTba9vITfD2dVyCrWXFxDqrEbtnkvYIiDvN+pvimLx7WtUZVel+9dZuz6sdxKvQVovouXDl/KGz3e4NuT37LwwEIA/tP3P3w+6PMyJUWuJ13nh39+AGDp8KUYGRg9cn3RyqeSzm9lYiVXMCZnJz+yvVwg0BciZhLogrImQvo27kuPhj0AuHDvAvtv7Ce7IFte41jPkQnuE/By92Kg28AnKmFsoDSga8OudG3YlYV9F5JbkEtQdJAcN52KPoUadYnHpuelcyDyAAciDwCaJIingyeD3QbTt3Fferv2pqFlw1Kv/bgKZxEzCWoKC/Yv4O8rf2OoNMR3qi8dnDqUuC40IVSW8FFLaiyMLfjf2P/pvShVn/NFamvcFBGrJj/folgyp5CaandFyMrPYmvoVladX8U949xiMZODhSGfT+hYo2KmAnUB7+x7hx9P/Shv6+LchZ0zdpKdn03/P/pzO/U2zWyacWjuoTIrAiw8sJBcVS4Dmw5kgvuER64tLAyAR3SM1HIJ4ipJjBw+fFjrZ1NTU3755Rd++eWXqri8oI6QmpP6IBFy+zDnYs+VmAgZ0HQA/Zr0w9zInBN3TuAX7sft8w+6QgyVhgxyG4SXuxfjW4/Xa7tmbaNR/UbM7TiXuR3nIkkSVxOvaiqjIg9wKPIQqbmppR6bmpvK7uu72X19N6AZINjBsYOcKOnt2hsniwfyWYXZ+nlrz6EALUe/8It50VjPOlGZIKidFNXH9bD3YNu0kvVxAfbd2MevZzUPqwrUBThbOJfaWaJLJEmSq590LY1UVkmGmijdUJttLwtpuWlsurKJVSGrCIoOkrc7WKqY2v4yXe2nYW7gXCMHJ24L38ZM35lk5WcBYG5ozuYpmxnVchSfH/2cjw59BMCi/otY1H9RmYPkd/e/S746n+HNhzOyxcjHri/Uyi2t8slAaYCVqRUpOSkk54jEiKBqEDGTQBeoJTWX712Wi8eO3D5SrIqzMBEyoMkA2jRow53UO2y/up2vTnwlz3sCzcwnL3cvvD286dmoZ42QE6kJmBiaMKDpAAY0HcBnfEZabhpHbh3hYKQmUVIo1VgShb+fy/cuyw+7HOs50r9Jf55q8hS9XXvT3rE9hkrNoxoRMwlqAz/+8yNLgjSxz+rxqxnSbEiJ6/JV+cz2m02uKhcDhQEqScU3Q76pEolXfcVMUHtjj9pqd1mRJInTMadZFbKKDZc3yJKICgMFbdpYMaDhs7S07oqLtWWNi5kSsxKZsmUKgZGB8rYpnlP4Y8IfxKTHMPDPgUSnRdPStiWBcwNpVL9Rmc57/M5x/r7yN0qFskxSxeH3w8nKz8LC2IJWdq1KXCPPGBFSWgKBbilLIqSFbQsGNNE4pT0b9SQiMQK/cD/e3f8u9zLvyevMDM0Y2XIkXu5ejG45ukSdS4E2CoUCd3t33O3deaX7K6jUKs7FnpMd/uN3jpNTUPoXpEpScS7uHOfizslOkoulC/2b9KdP4z70ce3DUM+2/DarM5/suEJc2oN2dMf6Jnwyrg1DPZ0IupHIvfScGvmAT1B3yS3IxetvL64kXMHZwpk9M/fIX/igaZc+HZnEvfQczE3y8dn9LIBcYf5/Y/4Pa1NrvdqoUkscvHoLKbsLJopknC10O+C0rJIMNVG6oTbbXhqSJHHszjFWhaxic+hmObFgoDBgVMtR+HTyYXTL0Y/tlKgu1JKaz49+zqLDi+RtjSwbsWfWHto4tGHRoUV8evRTAD4f+Dkf9PugzOcOjAxkW/g2DBQGLB2+tEzJlMdp5YKmLTwlJ6XWOvkCgeDJoLyJkAFNB2Btas3OiJ34hvvyn8D/aK1t16CdnAxp79i+zkkL64P6JvUZ23osY1uPBSA+I57AyEAO3DzAwciDWtLNJRGfGc+m0E1sCt0EaIbbd3fpTr8m/ejt2puezXs+MmYa0dZZyzcVcZOgKtkaupU3974JwFeDv2JW+1la+4u+N3ff2Mi5u+cxNNB02Pdr0o+Xur6kdxtVaokLd7IwL+iHYb4HKrWk0/ujtsYetdXuxxGfEc+ai2tYfX41oQmh8vZmNs14puMzzOkwp0bMWyyNK/euMGbDGG6l3JK3FRaNRSRGMPDPgcRmxOJu707gnMAyF3urJTXzA+YD8Fyn50rt6ipKYcxU2uB1KDJjRHSMCASVo7yJkP5N+2Ntas2ea3vwC/fj5d0vk5abJq+1NrVmbKuxeHt4M6z5MMyNzKv6JdUpDJQGdHPpRjeXbrzX9z1yCnI4GXVSbiE/c/dMsd/Xw8Skx7D+8nrWX14PaBJW7axmk547HCiqa6gg5E4yi/1DtVpSna1MWTTWs0a1NwrqHmpJzdPbn+bwrcMafdyZu2li3UTeH3A5tth7Ez6jvukq0hTHmNZ2GuNaj9OrjUVtcGABAEOXBun0/qjN0g212faHiU6L5q8Lf7H6/GqtOVCt7VrzbKdnmd1htlY3Xk0kIy+Dp7c9zdawrfK2no16sn3adhzMHfgg8AO+Ov4VAP8d8l/e7fNumc+tUqtkB39e13l4Ong+9pjMvEw5SCpp8HohNmY2RKZE1lonXyAQ1E3KkgipZ1RPkwj5t6uhs1NnQu+H4hfmx4s7X+TSvUta63s1+lda2MOrTENbBY/G0cKR6e2mM73ddCRJ4mbyTbm4LDAykPtZ97XWFxbWFJKryuXYnWMcu3NM3tbczBuDnGmAudaRULJvKuImQVVw7PYxZvrOREJiXtd5LOyzUGt/8femOy6sJMn4fxiahPD72N/1Pv/ugQ39cKAfu09DyNVAETdRe+0uiXxVPnuu72FVyCp2Xdsldz+aGZoxyXMSPp186NekX42Zt1ga28O3M9N3Jpn5mQAYKY34y+svprWdRmhCKIP+HER8ZjxtG7TlwOwD5epq/+vCXwTHBmNpbMlngz4r0zFlKiYTUloCQcWoSCKkUf1G3M+6j/9Vf17e9TL7buzTGnznbOHMBPcJeHt4079J/xpbOVsXMDU0ZZDbIAa5DeILviA1J5Ujt4/IiZIrCVe01heOISvq9JPbkbjosf/uf0BcWjbLj97k4QFgcak5zFt7jt9mdRZOvkBvLNy/kI2XN2KoNGTrlK10dOoo7wu4HMu8teeKOY4G2GGdswAzC3N+GvGTXu0rzQZd3x+1WbqhNtsOmo4l/wh/VoWsYu+NvfJ3o4WxBdPaTMOnkw89G/WsFVW8kcmRjN84Xush3Mx2M/l93O+YGJjw7v535a7C74d/z/ye88t1/pUhK7l07xI2pjZ8MuCTMh1zIf4CakmNs4XzI3XdC7vEausgQYFAUDeoSCKki3MXlAolQdFBbL6ymRlbZxCZEimvN1QaMrDpQI20sPv4R34WCiqHQqGguW1zmts254UuL6CW1FyKvyTPdDx6+6j8AKyQQomhQsxUvchPeoZ8isdML60N5uGYCUTcJNA/YQlhjN84nlxVLuNbj+fnkT9r+aaPipsc8v7DqPYxtLRrqVcbRdz0aGqr3UUJSwhj9fnV/HXhL+Iz4+XtPVx64NPJh6ltpmJlalWNFpYNtaTmi6Nf8PHhj+VtDuYO+E/3p0ejHlyMv8iQv4aQkJVAB8cO7J+9H4d6Do84ozYZeRnybJ+P+n1Eg3oNynRcofzw47rsofbGTCIxIqgyKpoIAY0epF+YH37hfhy9fVTLUWxh20Ju9+7u0r3GZ4DrKlamVoxrPU6ulI/LiNNqIb+TekdrvQFG2Oa/CDxImjxAUzX18FYJzRf0Yv9Qhno61egvaEHt5KdTP/Fd0HcArBq3Smt4ukotsdg/tJRqGiUSahzVr2BrZq83+x5lgz7ujxFtnfltVudiVYhOtaAKsSbZXlZ5iwtxF1h9fjVrL67VGozbr0k/fDr6MMlzEvWM61WZ3ZXlUOQhJm2epOUkfz7wc/7zlEa2ZX7AfH46rUkkLhu5jFe6v1Ku86fmpPJh4IcAfDLgE+zMyzYUsiyVT1CkLVxIaQkEgiqkookQIwMj8lR5HIo8xKu7X2X71e1aD4nMDM0Y3mI43u7ejGk1RkgLVxNKhZIOTh3o4NSBt3q9RZ4qj9Mxp+Xisn+i/yFfnf/gAEmJ3WNiJpCK7RNxk0CfxKbHMnLdSJJzkunZqCfrJ67Xktl5XNwEEuevtdC5pFVRRNxUNmqa3WWJm0qdt2juwJwOc3im4zO0adCmSu2uDCV117dr0I6dM3bS2KoxIbEhDFkzhKTsJLo4d2Hf7H1aMt9l4evjXxOXEUdzm+a83uP1Mh1ToC6QB6+XNpcRinSM1NKYSSRGBHojNSeVY3eOyU59SFxImRMhAFfvX+Xr41/jG+bLmbtntI7r6NRR0+7t7kXbBm1rRdXsk4aThRMz2s1gRrsZSJLEjeQbssMfGBlIRkZDDKXSHyAXd/w1SEBsag5z//6M8e096O3aG5f6up2tIHgy2Rq6VZbk+WLQF8zuMFtr/+nIpIfks7RRoCQ1S7OuV/OyPaAtL4+zofD+0KUNI9o6M9TTqVbqVtcE2x8nb5Gcncz6S+tZdX4V52LPyWsaWjbk6Q5P83THp/VeTadrJEni1zO/8kbAG3Ihg6mBKWu81zDJcxJqSc2ru1/lt7O/AbB8zHJe6PJCua/z+dHPSchKwN3enXld55X5uHInRmppW7hAIKgdFHYQFBaPHb19tMyJENDIA+64ugPfcF92RewiNTdVPs7KxIqxrcfi5e7F8ObDa1Vy/UnB2MCYvo370rdxXxYNWERmXibH7hzj4M2DHIg8QFiMCoMKxEzwwC9cuGsFUzt3oqNTR6GoIKg0ablpjFo/itupt2lp2xL/6f7FZMsfF7OAQucxy8OIuKns1BS7HxU3DW/jVOq8xdGtRuPT0YdRLUfVus+4Wym3GL9xPBfjL8rbxrYayzrvdViaWHIm5gzD1g4jJSeF7i7d2Ttrb7lnmd5KucV3JzXFn98N+w4TQ5PHHKEhNCGUnIIcLI0tHxmPysPXa2nMJBIjAp1RlkRIS9uWskPfv0l/rQfakiQRfDcYv3A/fMN8CbsfJu9ToKBP4z54uXsxwX0CzWyaVdnrElQehUJBC9sWtLBtwYtdX0QtqVl25B+WBlT8g9Mv9CDrIjRDfBtbNaa3a296N+pNb9fetHdsX+u+EAXVy/E7x2V93Je6vMT7fd8vtuZe+qOc+/KvqwjVZYOBUqG3oEXfVKftj2rff2ntOVo1P8LR+J9kSUgjpRHj3cfj09GHYc2HlTrgriaTp8rj1d2vsuLcCnmbUz0n/Gf407VhV9SSmhf8X2BlyEoUKFg5biXPdHqm3Ne5lniNH0/9CMDSYUvL9Zlf2BL+qMonqP3VTwKBoGZS2UQIaOQq/K/64xfux94be8kpKFLla+HEhNYT8PLwYkDTARgbGFfZaxNUnnrG9RjRYgQjWowAYO3pcD70vVGpc/52eh1Lzr2ImaEZ3Vy6yTFTL9de2Jvrr9NZUPfIV+UzadMkzsedp0G9BgTMCijxPSTiptoXN1W33aXFTbGpOby0NhilzSoic/zk7e727vh09KkV8xZL4/Ctw0zaNElLKeCdXu/w9ZCvMVAaEBQVxIh1I0jLTaO3a292z9hdIVmwhQcWkqvKZWDTgYxvPb7MxwXf/Tdmatjlkco8hcVkGXkZ5Kvya92zOJEYEVSYyiZCQDM09fid4/iFa2SyisotGSmNGOQ2CG8Pb8a1HldrP+wExVEqlHRzbQ38U+FzjPXoT0R6OhfiL3An9Q53Uu+w8fJGAMyNzOnu0l3L6S9vq6HgySEsIYxxG8aRq8plXOtxLBu1rMQutAaWpmU6X1nXVYSaYIOgbDyufV9CTegNT3JN82nv1J5nOz3LjHYzavUDiviMeCZumsiJqBPyto6OHfGf4U+j+o1QqVX47PDhrwt/oVQo+XPCn8xqP6tC13p3/7vkq/MZ0WIEI1uOLPNxGXkZhCVoCi8eNXgdiujl5tROvVyBQFAzKGsi5KkmT8md9J2dOxd7sBCTFsO28G34hftx+NZhLWnhZjbN8Hb3xsvDi56Negpp4TpEczsHoHKJkW6urbmUcpmk7CSO3j7K0dtH5X2t7FppFZh5OHiI94+gRCRJ4jn/59h/cz/mRubsmrGr1ILVmhCz1AQbBGXjUXETaObU5iWPw6L+Aaa1nVqr5i2WhCRJ/Hb2N94IeEMeEm+gMGD5mOU82/lZQFO4OXLdSDLyMujXpB87p+/E0sSy3Nc6dvsYm65sQqlQ8sOIH8r1b1bYZf+4YrKiHSzJOcllnl9SUxCJEUGZSclJeTAjpIKJENAMlT1w8wB+4X7suLqDhKwEeZ+5kTkjW4zE28ObUS1HlbtFTFB76O5mi7OVKXGpOaV+AZaEAo3e5bppizFQfkpGXganY05zMuokJ6NOEhQdREpOivw+LcTd3l12+Hu79qa1fWvh9Au09HF7uPRgw8QNpVbpP+49W/je7O6mvyRcTbBBUDbKIr1miAN/jj7O7K6117EvJPhuMBP+nkB0WrS8zcvdizVea6hnXI8CdQFzt81l/aX1GCgMWOe9jqltp1boWgdvHmT71e0YKAxYOmxpuY4NiQ1BQqJR/UaPLbiQ28JFx4hAICgHDydCjtw6UkxeoiyJEICIxAh5zuKpmFNa+9o7tpeTIe0atKv13yOCkqlozAQP/MKDzy1Hofg/IhIj5JjpZNRJwu6HEZEYQURiBH+c/wPQyK/1cu0lx03dXbpX6GGcoO7x0aGP+OvCXxgoDNg8efMjJUlrQsxSE2wQlI2yxk07JoYysHWjUtfVBkrqrrcxtcF3qi8Dmg4ANJ0kY9aPITM/k0Fug9gxbUeFpDDVkpr5e+cD8Fyn52jv2L5cx5+NLZv8sIHSgPom9UnLTSM5WyRGBHUIXSVCANJz09lzfQ++Yb7svrab9Lx0eZ+NqQ3jWo/Dy92LYc2HYWZkptfXJagZGCgVLBrryby151BAmRz9wnBv0VhPWe/SwtiCQW6DGOQ2CNB8+IffD9dy+q8mXiX8fjjh98NZdX4VoHnfFTr9fRr3oVvDbkJ3+QkjPTed0etHczv1Ni1sW5Soj1uUou/ZByP7NJT03tQHj7pvqsoGQdkoa1u+lVHjWv8wa8OlDfjs8NGScnm/7/t8PuhzlAol+ap8ZvrOZHPoZgyVhmycuJGJnhMrdK0CdQFv7n0TgJe7vYyHg0e5ji+rjBYUkdKqpXq5AoGgatBlIkSSJM7Hncc3zBe/cD+uJFyR9ylQ0Mu1lzxnsbltc72/NkH18zjfTyrh74U/Q1G/UIG7vbtGfqaTD6CRZPsn+h85ZjoVc4rU3FQCrgcQcD0A0HT6t3dsr1Vg1tS6aa33XQTlY/nZ5Xxx7AvN38csZ1TLUY9cX/R9K6H+d+C6BhE3CR6mrHFTWnbt/l2V1F3fyrYVu2buooVtCwAO3DzAuA3jyC7IZljzYfhN9XvkM4pH8deFvzgXe476JvX5bNBn5To2X5XPhbgLwOMTI6B5vpaWm1Yr4yaRGBHI6DIRAnA/675mEGCYLwduHpA11EEzVLbQqe/XpF+t06AT6IYRbZ35bVbnEgdsjevgzI4LsVrbnYoMLC4NpUKJp4Mnng6ePNf5OUDzXizq9J+OOU1yTjK7r+1m97XdgKZ1saNTR9nh7+3aG9f6rsLpr6Pkq/KZtHkSIXEhGn3cmQE41HN47HEj2jrzqZcr/9l2HgPpgQZrWd6buqK0+6YqbRA8niehfV+lVvFh4Id8feJreZuhwpCV41cyp8McQFMVNW3LNPzC/TBSGrFlyhbGtR5X4WuuPLeSS/cuYWNqw6L+i8p9fFkHr0OR4euiY0QgEBShLIkQC2MLzYyQxyRCQPNZejLqpCwtfCvllrzPUGnIILdBeLl7Mb71eJwtxXf8k8jjfD+gQn6hrZkto1qOkh9yF6gLuBh/UavA7Hbqbc7Hned83Hl+Pfur5twWTlryW52dO5d5mK+g9uF/1Z+Xd78MwKL+i2Spn8cxoq0zbVv9Q0hEcwx5EGeJuEnwME9C3HQu9hwTNk4gKi1K3jak2RA2TdokF2MFXA9gwsYJ5KpyGdVyFFunbMXUsGKvOT03nfcPauamftTvo3J3cVxJuEKuKhcrEyua2zy+EMPWzJbbqbdrZdwkEiNPMCk5KRy7fUx26gvlJYrSyq6V7ND3b9qfhpYNH3nOqNQo2ak/evuoVmKlpW1LvD288XL3optLNyFjJAA0zspQTydORyZxLz2HBpaadlYDpYIFIzxK3F5e7M3tGdNqDGNajQH+zX7HX9By+qPSogiODSY4NpifT/8MgIuli1aipKNTRzHAsg4gSRLP+z/Pvhv7MDcyZ+f0nWWuupQkiXXXFhBtsp8u9lP5sM9/caxvVuH3ZkV51H0jqBnU9fb91JxUZvrOZNe1XfI2OzM7tk3bRt/GfQGNdOakzZPYGbETEwMTfKf6PrbC8FGk5KTw4aEPAVg8YDF25uUfEFmuxMi/QcrDswAEAsGThVpSczH+olw8dvT20UolQkDz+RgYGYhfuB/br27nXuY9eZ+ZoRkjW47Ey92L0S1Hy59Fgiebx/l+uvALDZWGdHbuTGfnzrza/VVAM9smKDpIjpnOxZ4jLiMO3zBffMN8ATA2MKZrw65aXSWOFo66/QcQVAunok8xdctU1JIan44+5SpK2X9jPzujPkdhasDy4QdoYNayWmIWETfVfOp63LTx8kZ8tvuQXZAtb5vXdR4/jvhR9hV2Ruxk4qaJ5KnyGN96PH9P+rtSCeevj39NXEYczW2a81r318p9vDxfpGGXMhUL1+a4SSRGniD0kQgBzeDiwmRI4c1TSCenTnIyxNPBU1TfC0rEQKmgV/PiD7hK215ZjAyM6NqwK10bduX1Hq8DmqReUac/JC6EmPQYNoduZnPoZgBMDU3p1rCb7PD3atSrTF0GgprFx4c+5s8Lf2KgMGDTpE10c+lW5mP/vPAne2/sxcTQhHXTFtHavvo0TvV1fwh0Q11u349IjGDchnFcTbwqb/N08MR/ur88hDM7PxvvTd4EXA/A1NCU7dO2M6z5sEpd9/Ojn3M/6z4e9h681PWlch+flptGRGIEUDYpLXnGSC1sCRcIBBWnrImQpxo/JXfSd3bujKHy0aF1Rl4Ge67twS/cj13XdpGWmybvsza11pIWrqhshqBu8yjfT19+oUt9FyZ5TmKS5yRA8/0eHBusVWCWkJUg/50gzXHNbZprFZi1cWhT6hw/Qc3ketJ1xmwYQ3ZBNiNajOD/xvxfmZ/nZORl8Lz/8wC82uNlnu81QI+WPh4RN9Vs6mrcVFJ3vQIFP474kVe7vyrfT35hfkzdMpV8dT4TPSayfuL6ShXk3kq5xZKgJQAsGbakQgmW4Lsa+eGuzo8vJoMinfa1MG4SiZE6jL4SIZIkERwbLGvfht8Pl/cpUNC3cV+NTJaHF02tm+r6ZQkEesHVyhVXK1emtJkCQFZ+FmfvntVy+hOzEzl25xjH7hyTj2tp21LL6fd08BTdUDWY5WeX8/mxzwH4vzH/x+hWo8t8bGx6rDzbYPGAxbS2b60XGwV1h7rYvh9wPYBpW6aRmpsqbxvRYgQbJ27EytQK0Hx+jt84ngM3D2BuZI7/dH95DlRFuZZ4jZ9O/QTA0uFLKyTBWegHNbZqXKakdqGDn1OQQ05BToVb2QUCQc1GX4kQgMSsRHZc3YFfuB/7buzTkhZ2tnBmgvsEvD286d+kv5AWFtQKzIzM6Nu4r9wdKkkSN5JvaMVMl+9d5kbyDW4k32DNxTUAWBpb0rNRTzlm6uHSQ/YbBDWPe5n3GLF2BPez7tPFuQubJ28u12fU+wfe53bqbZpaN+XLwV/q0VJBXaGuxU0ldddbGFmwafImRrYcKW/bfGUz07dORyWpmNpmKmu81lTaH1iwfwG5qlwGuQ2qsIRx4eD1Lg0fX0wGtVuCWCRG6hD6SoSARm/0+J3j+IVpOkOK6uIZKY0Y0mwIXu5ejGs9TrTNCuoE5kbm9GvSj35N+gEapz8iMeKB0x99ktCEUK4lXeNa0jX+vPAnAFYmVsWcfksTy+p8KYJ/2RmxU9bH/bjfx/IMmrIgSRIv736ZlJwUujh34e3eb+vLTEEdo66070uSxHcnv+O9g+9pyWS+3v11lgxfIj8gzMjLYOyGsRy+dZh6RvXYPXO3/DlaGd7Z/w756nxGthjJiBYjKnSO8shoAViaWKJUKFFLapKzk4W2v0BQR9BnIgQgOi2abeHb8A3z5ejto6gklbyvhW0LvNy98PbwprtLd1FMI6j1KBQKWti2oIVtC3m+WGpOKqdiTslx0z/R/5Cel87+m/vZf3O/5jgUtG3QVqvArLlNc6EwUQPIzMtkzPox3Ei+gZu1G7tm7MLC2KLMxx+/c5xlZ5YBsGLsinIdK3iyqStxU0RiBOM3jtcqIm9q3ZSd03fSpkEbedv6S+uZ7TcbtaRmVvtZrB6/usy+Rmkcu32MzaGbUSqUfD/8+wp9puap8rgYfxEoe9xUmzvtRWKkFqPPRAhoKiQP3DyAX5hG+zYxO1HeV8+oHiNbjsTb3ZtRLUeJag9BnUehUNDavjWt7VvzTKdnAE02XB7qHn2SU9GnSM1NZe+Nvey9sRfQDINv16CdltPvZu0mnP4q5nTMaVkf95mOz/DJgE/Kdfzm0M1sC9+GodKQVeNXVdphETxZ1Pb2/ez8bF7Y+QJrL66VtylRsmzUMuZ1mydvS8tNY9S6UZyIOoGlsSUBswLo7dq70tc/cPMAO67uwEBhwNLhSyt8nuBYTUt4WWS0QPP5bW1qTVJ2Esk5IjEiENRW9J0IAbh6/6osLXw65rTWvo5OHTXd9O5etG3QVviAgjqPlakVw5oPkyU0VWoVVxKucOLOCU5Ga5IlN5NvcuneJS7du8Ty4OUAOJg7aMVMXZy7YGZkVp0v5YmjQF3AtK3TOHP3DHZmduyZuadcha/Z+dk8u0MznP3ZTs8ypNkQfZkqqKPU9rippO76Pq598Jvqp9Wx/uf5P/HZ4SM/n1gxdkWl5QbVkpr5e+cD8Hzn52nv2L5C57l87zJ5qjxsTG1ws3Yr0zGFM0ZEYkSgV8qSCGlt11p26Ps36V/uID4tN43d13bjF+7H7mu7ycjLkPfZmtkyrvU4vN29GdJsiHBSBE88NmY2jGw5Um6FLFAXcCn+kpwoORl1klspt7gQf4EL8Rf47exvADjWc9Ry+js7dxYSLXrketJ1Rq8fTVZ+FiNajGD5mOXleihxP+s+r+7WDKD8T9//VNjBEAhqI9Fp0Xj97aU1Q6y+cX22TNnC0OZD5W2pOamMWDeCf6L/wcrEin2z99HdpXulr1+gLpAl7F7p9gru9u4VPld5O0ZA0xaelJ1UKwcJCgRPKlWRCJEkiZC4EFlaODQhVN6nQEGfxn3wcvdigvsEefaSQPCkYqA0oL1je9o7tpcLKuIy4giKCpLjprN3z5KQlcD2q9vZfnU7oFGm6OzcWStuKk+hp6B8SJLEK7teYWfETkwNTfGf7l9u6eBPDn9CRGIEDS0b8t2w7/RkqUBQ85AkiSVBS1h4YKFWd/2cDnP435j/ac35WHluJc/7P4+ExAudX+C3Mb/ppIP0z/N/ci72HPVN6vPpwE8rfJ7yDl6HB1JatTFmEomRGkxydjLH7hyTnfrzced1nggBjX5kofbtgZsHyFPlyftcLF3kdu+nmjwlqqQFgkdgqDSkk3MnOjl34pXurwBwN/2ultMffDeY+Mx4uaoQwNjAmC7OXejt2ps+rn3o5doLJwun6nwpdYaEzARZH7ezc+dy6+MCzA+YT0JWAm0btOWDfh/oyVKBoOZxMuok3n97E58ZjwIFEhLNbZqzc8ZOrQRFcnYyw9YO4+zds9iY2rB/9v4y69E+jt/P/c7le5exNbNl0YBFFT5Pak4q15KuAWXvGAFNUciN5Bu1Ui9XIHhSUKlVDxIhtzWJkJScFK01lsaWPNXkKbmTvpNzp3LHNSq1ihNRJ/AN82Vb+DZup96W9xkpjRjkNghvD2/GtR4n/DiB4DE4WTjh5aGZSwqQW5DLudhzcsx04s4J4jPjORVzilMxp/j+n+8BaGLVRCtR0t6xvXhGoSO+OPYF/zv3PxQo2DBxA71ce5Xr+LN3z/JdkCYZ8tvo37A2tdaDlQJBzaOk7nqALwd9yXt939NKLvzf2f9j3i5NgviVbq/w08ifdJIUSc9N5z+B/wE0suEN6jWo8LnkYrIyDl6HIh0jtTBmEt8gNYiqSoQA3E65rdG+Dffl+J3jWhnNVnat8Hb3xsvDi64NuwrtW4GgEjS0bMhEz4lM9JwIaCTqgu8Ga3WV3Mu8R1B0EEHRQSwJWgJAM5tmGoe/kcbpb9ugbaVbK580MvMyGbNBo4/b1LppufVxQTOXZN2ldSgVSlaNW4WxgbGerBUIaharQlYxb9c8uVhCQqJfk374TvHFzvxBe3tiViJD1gzhfNx57M3tOTD7AB2cOujEhpScFD469BEAiwcslrVrK8K52HOARt+3qP2Poza3hQsEdZWqSoSA5mHtwciD+Ib5suPqDhKyEuR95kbmjGwxEm8PjbSweAgoEFQcE0MTern2opdrL97mbSRJ4lbKLa35jhfjL3I79Ta3U2+z4fIGQCPx3d2lu5wo6dmoZ6X8hSeVP87/IftcP4/8mQnuE8p1fJ4qD5/tGlmg6W2nV3jgs0BQ24hJi2HC3xO0uutNDUxZN3Ed3h7eWmt/PvUzrwe8DsD8HvNZOnypzuQ1vzr+FXEZcbSwbcFrPV6r1LkK5YfL22UPtTNmEokRHaJSS+UaElSViRBJkgi7H4ZfmB++4b7yA4JCOjt3lpMhHvYeQvtWINATpoam9Gnchz6N+wCae/Nm8k0tp/9S/CVuJt/kZvJNuerAwthCM9T930RJj0Y9RAD+CAr1cU/HnMbWzJaAmQHlrt5MzUnlpZ0vAfBWz7fo5tJNH6YKBDWKAnUBb+99m59O/6S13aejD7+N+U0rOXgv8x5D/hrCpXuXaFCvAQfnHKRtg7Y6s+WzI59xP+s+HvYevNjlxUqdqyIyWlDEya+F1U8CQU2lvDFTVSZCQFN1uef6HvzC/dgVsYv0vHR5n42pDeNaj8PL3YthzYcJaWGBQE8oFArcbNxws3FjZvuZgObePB1zWo6ZgqKCSM1N5dCtQxy6dUg+1sPeQ6urpLVda/F84xHsu7GP5/2fB2Bhn4Wy8kF5+OrYV1y6dwl7c3t+HPGjrk0UCGokQVFBeG/yJi4jTu6ub2jZEP/p/nR27qy1dmnQUt7e9zYAC3ov4OshX+vscykyOZKlQZo5jEuGLalUMWdOQQ6X4i8BlEsBQB6+XgtjJpEY0REBl2NZ7B9KbGqOvM3ZypRFYz0Z0VaTzKjKRAhoHrieuXsGvzCNZM/VxKvyPqVCSd/GffF292aC+wSaWDep8HUEAkHFUSgUNLdtTnPb5szuMBvQPJB/2OlPz0vnwM0DHLh5QHMcCto0aCMnSnq79qaFbQvh9KMbfVyAd/e/S0x6DC1tW1ZKo1MgqC0kZiUyZcsUAiMDtbZ/O/Rb3u71ttbnS1xGHIP/GkxoQihOFk4EzgnEw8FDZ7ZEJEbIyZnvh39fbgm8hzkbW/6WcKjderkCQU2kLDFTVSdCQDNPrFBaeP+N/eSqcuV9DS0bysPT+zXpV+nPI4FAUDEsTSwZ3Gwwg5sNBjTzhMISwrQ68SMSIwi7H0bY/TBWhqwENA/sinbid3PphrmReXW+lBrDudhzTNw0kQJ1ATPbzeTLwV+W+xyX713mi2NfALBs5DKtAdMCQV1ldchqXtr1klZ3fRfnLmyfth2X+i5aa78+/jXvH3wfgA+e+oDPBn6m0+c2Cw4sIFeVy2C3wYxtNbZS57oUf4l8dT52ZnY0sSr7c+LCLvvaGDOJxIgOCLgcy7y15x5KcUBcag4vrQ2mR9tLXMvcXGIixN3eXXbo+zXpV6lECGgqPY/ePopfmB/brm4jOi1a3mdsYMyQZkPwcvdiXOtxldKcEwgE+sPK1IqhzYfKg41VahWhCaFaTv/1pOtcvneZy/cu879z/wPA3txey+nv2rDrE1nJ+OWxL2V93PXe6+nt2rvc5zh48yArzq0A4Pdxvz+R/46CJ4vL9y4zfuN4bibflCue6hnVY/3E9cXkEO6m32XQn4O4mngVF0sXAucG0squlU7teWffOxSoCxjVchTDWwyv9PmC72pawss7+0SufqqFbeECQU3j0THTOUZ3u0t0/s4qSYQARKVGyTPfjt4+qiUt3NK2Jd4e3ni5e9HNpZuQFhYIaiBKhZI2DdrQpkEbnu+i6XhIyEzgn+h/5LjpdMxpkrKT2Bmxk50ROwEwUBjQybmTVoGZq5Vrdb6UauFWyi1Grx9NRl4Gg9wGsWr8qnJ/1hWoC/DZ7kO+Op/xrcczpc0UPVkrENQMCtQFvLPvHX48pd0ZNdFjIn95/VUs6frpkU9ZdFgzJ3HxgMV83P9jndpz9PZRtoRuQalQ8v3w7yudcCkqo1WecxUWk2UXZJNbkKs1bL6mIxIjlUSllljsH1rMwQeQ0GQNT1x2Jsb0AigkrURI/6b9dTKYL6cgh/039uMb7ov/VX8SsxPlfRbGFoxqOQovdy9GtRxFfZP6lb6eQCCoWgyUBrRzbEc7x3a82FUjJxOfEU9QdJAswXX27lm52nHH1R2AZhh8Z+fOWk7/w9ULdY0/z//Jh4c+BOCnkT/JAx3LQ2ZeptxO/nLXl+nXpJ9ObRQIahp+YX7M9ptNZn4mSoUStaTGtb4r/tP9i80LiUqNYtBfg7iedJ3GVo0JnBNIc9vmOrVn/439+Ef4Y6g0ZMmwJZU+X3J2MjeSbwDlG7wOYsaIQKArHh8zqdl+xogY052gUGNpbEm/Jv3kTvqOTh11MmA5/H44vmG++IX7aemBA3Ry6iQnQzwdPEUXrkBQC3Go58DY1mMZ21pTNZ2nyuNC3AWtoe4x6TGcvXuWs3fPyt2pjeo30iow6+jUsU53hyVlJzFy3UjiMuJo79ge3ym+FZLf+T7oe87cPYOViRW/jv5VfG4K6jSlddd/8NQHfDrwU63EoiRJfHzoYz4/9jmgGcT+/lPv69QelVrF/ID5ALzQ+QXaObar9DkLfaPyxkxWplZycV1yTrJOnnVXFSIxUklORyZptYI/jAIlhjjwRd+/8enZV2dvjtScVHZf241vuC97ru0hMz9T3mdnZsf41uPx8vBiSLMhmBqa6uSaAoGg5uBo4cgE9wnyYLzcglxC4kLkRMmJqBPEZcRxOuY0p2NO88OpHwBobNVYy+lv79i+zjj9+27s4zn/5wCNbuer3V+t0Hk+CPyAyJRIGls15ushX+vSRIGgRqGW1Hx+9HO5ikmBArWkprtLd7ZP217MZ7mVcotBfw4iMiWSptZNOTT3EE2tm+rUpgJ1AW/tewuAV7q9gru9e6XPWVj51NymuZzoKCtixohAoBvKGjO90flnZnXtrrNEiCRJBMcGy3MWw++HF7mmgr6N+2pksjy8dP55JhAIqh9jA2O6uXSjm0s33uANQFPkUXS+Y0hsCNFp0Wy6solNVzYBYGZoRjeXbnLM1Mu1F/bm9tX5UnRGdn424zaMI/x+OI3qN2L3jN1YmVqV+zwRiRF8fFhT/f798O9paNlQ16YKBDWGot31hYVkxgbGrBy3klntZ2mtlSSJ9w++zzcnvgE0ssTv9H5H5zb9eeFPQuJCsDKx0pn0d0XnMioVSqxMrUjJSSE5WyRGnijupZfu4BeljX2vSr8x7mXeY3v4dvzC/Thw8wD56nx5X6P6jeTh6X0b99VJICEQCGoPJoYm9GzUk56NevJWr7eQJInbqbcfOP1RJ7kQf4E7qXe4k3qHjZc3AmBuZE53l+5aTn+hdExtIiQ2RNbHnd52Ol8N+apC5zkZdZKfTmkqx1aMXYGliaUuzRQIagwZeRk8ve1ptoZtlbdJSExrO41V41YVk4+7kXSDQX8N4k7qHZrbNOfQ3EN6kZ1YEbyCy/cuY2tmq7NW84rKaIHoGBEIdC4UYkoAAQAASURBVEVZY6aBjcfTtWHlulsL1AUcv3NcnrMYlRYl7zNSGmlJCztaOFbqWgKBoPbhauXKVKupTG07FdB0i5+9e5YTUSc4GXWSoOggkrKTOHr7KEdvH5WPa2XXSqvAzMPBo9bJ7KnUKmb5zeJE1AmsTKwImBlQIUUBtaTmuR3PkVOQw7Dmw3i649O6N1YgqCFsC9/GbL/ZZORlYKAwQCWpcDB3YNu0bcVkuyVJ4u19b/P9P98D8OOIH3m9x+s6tyk9N53/HPwPAB/3/1gns32y87O5knAFKH9iBDQSxCk5KbUubhJPzytJA8uydWOUdd3D3Eq5JTv1x+8c15pR4m7vjpe7F94e3nRx7iLaFgUCgYxCoaCpdVOaWjdlRrsZgOZBqDzU/V+nPyUnRTPc9NZh+Vh3e3d6N+pNn8Z96O3am1Z2rR7r9KvUEqcjk7iXnkMDS1O6u9lioKyaz6RbKbcYtX4UGXkZDGw6kNXjV5crSCm0PSYlnfcPfYEkKXi601yGNR+mR6sFguojMjmS8RvHc+neJbnlGeCT/p/wcf+Pi/kT1xKvMfDPgcSkx9DKrhWBcwL1IsuXkpPCR4c+AuDTAZ/qLElb0cHrIIavCwS6Qt8xU05BDgduHsAvzI8dETu4n3Vf3lfPqJ6WtHBFKqMFAkHdpZ5xPfo37U//pv0BzUP/iMQIrQKzsPthRCRGEJEYwR/n/wDAysSKXq695ERJd5fujy2qqs6YSZIk3tr7Fr5hGtms7dO206ZBmzIfX9T2kzEBHLt9gnrG9Vg+Zrl4FiWokzzcXa9UKFFJKto4tGHnjJ3FOk0lSeL1Pa+z7MwyAH4d9Svzus3Ti21fHvuS+Mx4Wti2qLBSxsNcjL9IgboAB3MHGtVvVO7ja2vcJBIjlaS7my3OVqbEpeaUqJmrAJysNF94ZUGSJEITQmXt25C4EK39XRt21bR7u3vh4eBR+RcgEAieGCyMLRjkNohBboMAzRd9+P1wLaf/auJVwu+HE34/nFXnVwGazH+vRr3kOSXdGnajnnE9+bwBl2NZ7B+qJZHhbGXKorGejGjrrNfXVFQft12DdvhN9SvXoK/itr9MY+U0Rrv20o/BAkE1cyjyEJM3TyYxOxFDpSEF6gJMDU1ZPX4109pOK7Y+LCGMwX8NJjYjFk8HTw7OOai31uhPj3xKYnYing6e8jwlXVDRlnAoMnxdSGkJBJVC1zETQFpuGruv7cYv3I/d13aTkZch77M1s9VIC7trpIUf7oITCASC0lAqlLjbu+Nu745PJx9AE3PIQ92jTnIq5hSpuakEXA8g4HqAfFx7x/Za8x2bWjeVkwbVGTMBLAlaIs9U+WvCX3IiqCwUt90JF1bi3UEtZAgFdZKSuuvVkppRLUexYeKGYvOb1ZKal3e9zPLg5ShQ8L+x/+O5zs/pxbbI5EiW/rMUgCXDllRoPlBJFI2ZKpLslDvta1ncJBIjlcRAqWDRWE/mrT2HArQc/cK30aKxno+sAlBLas7EnJGTIdeSrsn7lAol/Zr0w8vdiwnuE2hs1Vgvr0MgEDx5KBVKPB088XTwlL+072fd13L6T8ecJik7iV3XdrHr2i4ADBQGdHTqSG/X3tSX+rH2aPGHDXGpOcxbe47fZnXWm6OfU5CjrY87s3z6uAGXY5m39lyxBzQKtQ3vbrqKhXG9KglSBIKqQJIkfjnzC/MD5qOSVHJSxLGeI9unbadHox7Fjrl87zKD/xrMvcx7tGvQjgNzDtCgXgO92BeRGMHPp38GYOmwpTqTBE3MSuRWyi0AOjt3LvfxRaW0JEkSFZECQQXRRcwEkJCZwI6rO/AN9+XAzQPkqfLkfS6WLnI3/VNNnhLSwgKBQGfYmtkyquUoRrUcBWgk+y7GX9QqMLudepvzcec5H3eeX8/+CoCThRO9XXvTQDmMPWeLV2BXRcwEsPHyRt7d/y4A3w39TpYRKwulxUyG2ON/SsGolrEiZhLUKSKTI5nw9wQuxl+U54kAzO8xn++GfYeB0kBrvUqt4gX/F1h1fhUKFKwev5q5Hefqzb4FBxaQp8pjSLMhjG01VmfnLZzLWJFiMigym1FIaT15jGjrzG+zOhfL/js9Ivufr8rn6O2j+IVrZLLupt+V9xkbGDOs+TC83L0Y22qsTrTiBAKBoCzYm9szptUYxrQaA2g+qy7EX9By+qPSogiODSb4bgguOZ0xwBQF2g8yJDQPOhb7hzLU00nnLeIqtYpZvg/0cffM3FOudk+VWmKxf2iJVauFj2j0ZbtAUNXkqfJ4Zdcr/B7yO6BJihaoC+jg2IEd03eUWHRxIe4CQ9YM4X7WfTo6dWT/7P16HTr6zr53KFAXMLrlaIa3GK6z8xY6+C1tW1ZIPqfQwc9T5ZFdkI25kbnObBMInjQqEjMB3Em9Iw9PP37nuPyAAjSa/4VzFrs27Frr9P4FAkHtxFBpSGfnznR27izL2MSkxRAUHSTHTOdizxGXEYdv6DZccsZigFTlMRPA4VuHmbtN85D2jR5v8Favt8p8rIiZBE8aRbvrjZRG5KvzMVQasmzkshI72lVqFc9sf4Y1F9egVChZ47VGljLXB0duHWFL6BaUCiVLhy3VadFWYcdIF+fyz2WE2ttpLxIjOmJEW2eGejo9Ui8yOz+bfTf24Rfux46rO7SyaBbGFoxuORpvD29GthgpBv4KBIIagZGBEV0bdqVrw67y0LCo1CiCooPYfjGMExdKT9xKQGxqDqcjk+jV3E5nNhXq424N24qxgTHbpm2jbYO25TrH6cgkrYcyxa6BfmwXCKqa+Ix4Jm6ayImoE/I8EbWkZlzrcazzXoeFsUWxY4LvBjN0zVCSc5Lp2rAre2ft1dm8j5LYf2M//hH+GCoNWTJsiU7PXRkZLdD4Z4VDFpOyk0RiRCCoJGWJmUAj41fYTV+Y4Cyks3NnORniYe8hOrkEAkGNwKW+C5M8JzHJcxKgef4THBvM5pDzbA+q+pgJ4FL8JSZsnECeKo9JnpNYOrx8D1JFzCR4UpAkiV/P/MobAW+gklQYGxiTp8rD2tSaLZO3MLjZ4GLHFKgLmO03m42XN2KgMGD9xPVMaTNFbzaq1Cre3PsmAC92eZF2ju10du6s/KxKDV4HMWPkieFRw7IMlIpiXwapOansurYL3zBf9lzfQ1Z+lrzP3tye8a3H4+3hzWC3weXSxRcIBILqwtXKFVcrV0zyYzhx4fxj199LL92ZrghLg5bK+rh/TviTAU0HlPscZbVJ17YLBFVJ8N1gJvw9gei0aLniCeDd3u/y1eCvirWBA5yOOc2wNcNIzU2lh0sPAmYFYG1qrTcbC9QFsoP/ardXaW3fWqfnL3ygWtHKJ4VCga2ZLQlZCSRnJ1doEKFA8KRSWtxUUswkSRJn756VkyFXE6/K+5QKJX0b98Xb3ZsJ7hNoYt2kql+KQCAQlBszIzP6Nu5LYpIb24POP3a9ruOO6LRoRq4bSWpuKn0b92WN15pyd9WJmEnwJJCnyuPV3a+y4twKQNMRlqfKo6VtS/yn+5cYn+Sr8pm+dTpbw7ZiqDTk70l/4+3hrVc7/7zwJyFxIViZWLF4wGKdnvtC3AXUkhonCycaWjas0DmKShDXJkRipByUdVhWfEY8269uxzfMl8DIQPlBBEBjq8ay9m0f1z4lPpQQCASC2kADS1OdrisLGy9v5J397wDw7dBvSxwWrUubdGm7QFCVbLi0AZ8dPuQU5GBqaEpOQQ6GSkOWj1kuDxJ9mJNRJxmxdgTpeen0ce3D7pm7iw0W1DX/C/4fVxKuYGtmy8f9P9b5+SvbMQIaJz8hK6HWOfkCQXVSlripQF3AsdvH8A3zZdvVbUSnRctrjQ2MGdJsCN7u3oxrPU5ICwsEglpLdcQdqTmpjFw3kpj0GDzsPdg+bTumhuU/v4iZBHWdh7vrQeOfDGw6kC1TtpTYNZ9bkMvULVPZfnU7xgbGbJm8hbGtdTfroyTSctP4z8H/APBx/4917hdVdvA6iBkjdZ7SBk4VDsv6ZEIjEqWD+Ib5cjLqJFKRlZ4Onni5e+Hl7kVn586i3VsgENQJurvZ4mxlSlxqTom6swo0uuHd3XQjwVNUH/f17q/zdq+3K3yuqrZdIKgqVGoVHwR+wDcnvgGQkyK2Zrb4TvGlf9P+JR539PZRRq8fTUZeBv2b9GfnjJ0lymzpkuTsZD4+pEmGfDrgU7nKSFfcy7zHndQ7KFDQyblThc8jO/m1TC9XIKguHhc3+QxUczPHF/+r/iRmJ8r7LYwtGNVyFF7uXoxqOUrviVmBQCCoCqo67sgtyMXrby8u37uMk4UTe2buqbAkqoiZBHWZot31hdJZAM91eo5fRv+CsYFxsWNyCnKYtGkSu67twsTABL+pfoxsOVLvtn517CviM+NpadtSnmukS87GVm6+CBTpGKllMZNIjJSBRw2ckv797wfbQogxfRcUmmGA3Rp2w9vDGy93L53LQggEAkFNwECpYNFYT+atPYcCtD4jC9O/i8Z6VmgQ38PyG2bmMbI+rreHd7n1cavSdoGgukjNSWWG7wx2X9sNgJHSiJyCHFrbtWbnjJ20sG1R4nGBkYGM3TCWrPwsBrsNZsf0HVUyS+Ozo5+RmJ2Ip4NnicMMK0vwXY2MViu7VpV6wFpb28IFgurgcXGThJrlhxKJMf0LFGrszOwY33o8Xh5eDGk2pEIVzQKBQFCT0XfcUTRucrA05ueQ+Ry6dQgLYwv2zNxTKflBETMJ6ipFu+vNjczJys9CgYIlw5Ywv+f8Ep81ZOdnM+HvCey7sQ9TQ1N2TNvB0OZD9W7rzeSbLP1nKQBLhi0pMWFTWXTRZS8PX69lMZNIjJSBxw2cAgWGONCzwUxmdOnGBPcJuFq5Vpl9AoFAUF2MaOvMb7M6F5PLcCpBZrCslCS/ISmTyDP0pE9TJWu91upEhlAftgsE1cXV+1cZv3E8VxOvYqg0pEBdQL46nyHNhrBp0qZSuzH23djH+I3jySnIYXjz4fhN9cPMyKxK7P359M8AfD/8ewyVundJC+eLVMbBhwdOfm0bJCgQVAePi5sUKDHEgRmtP+L5XgPo27ivXu5/gUAgqEnoK+4oKW4qYCgWJnfwnfIxHZ06VtZ0ETMJ6hQqtYoPAz/k6xNfA8hJEQtjCzZM3MCYVmNKPC4zL5NxG8cRGBmIuZE5O6fvZKDbwCqxecH+BeSp8hjabGip9lWGjLwMwu+HA5XsGBHD1+suZR0k9V7vrxjf0UXP1ggEAkHNYkRbZ4Z6OpU4YLW8lCa/gdqaBnn/4Y2OrXX60FaXtgsE1cWea3uYvnU6qbmpsnMPMK/rPH4c8SNGBkYlHrf72m68//YmV5XLmFZj2Dx5c5VVa7+z/x0K1AWMaTWGYc2H6eUauqh8AiGlJRCUh7LGTVM8nmdAUxE3CQSCJwddxx2lxU0G2GGXuxBVdtvKG/0vImYS1AUe7q43NTAlKz+LxlaN8Z/uT3vH9iUel56bzpgNYzh6+ygWxhbsnrGbp5o8VSU2H7l1hK1hW1EqlJVWzSiN83HnUUtqGlo2xNmy4olOIaVVhxEDpwQCgeDRGCgV9GpuV6lzPEp+Q4ESgKV77+DdsYVOnXBd2C4QVCWyZEJaDofubOOnkDeQFCrqm9QnLTcNpULJD8N/4NXur5bqPO+4uoNJmyaRr85ngvsE/p70t17askti34197IzYiaHSkO+Gfqe36xQmRipT+QS1d5CgQFAdiLhJIBAISkdXccfj4iYFsNg/lKGeTjqLm0TMJKiNFMZNF2Nv8d0/H3M9IwAjAyNUkoocVQ49G/Vk29RtOFo4lnh8Wm4aI9eN5GTUSeqb1CdgZgC9XHtVke0q5u+dD8CLXV6kbQPdJTuLoutislxVLtn52VWiQqALRGKkDIiBUwKBQKB/Hi9bCLGpOZyOTBJOueCJpbhkQlMa8jvZ5mtIyg3E0tiSTZM3MaLFiFLPsTV0K9O2TqNAXcBkz8ms815XaleJrilQF/Dm3jcBeLXbq3qbwxaXEUdMekylB6+DmDEiEJQHETcJBAKB/nlc3CQh4iaBoHjc9DKNFFNJNPo/8g2CmN52OqvGryq1Yz4lJ4URa0dwKuYU1qbW7J21l+4u3avM/j/O/8H5uPNYmVjx6cBP9XYdWX7YuXKJEUsTS5QKJWpJTXJOcq1JjCir24DaQOHAKXgwYKoQMXBKIBAIdENZ5TfKuk4gqGsUSiY8HAgbYIdF1ps0NZlA0LNBj0yK/H35b6ZumUqBuoAZ7WawfuL6KkuKAPwv+H+EJoRiZ2bHx/0/1tt1Cgevezh4YGFsUalz1Va9XIGgOhBxk0AgEOgfETcJBI/mQdyUrbVdKdngkPcffNx/Yp33ulKTIknZSQz5awinYk5ha2bLwTkHqzQpkpabxn8C/wPAov6LsDe319u15C77hpXrslcqlLUybhKJkTJSOHDKyUr7pnGyMuW3WZ3FwCmBQCCoJEJ+QyAonbJIJjRQv4y7vWep51h7cS0zfGegklTM6TCHvyb8VaVDj5Ozk/n4kCYZ8unAT0sdCK8LdCWjBQ+Gr9c2vVyBoLoQcZNAIBDoFxE3CQSlo1JLfLLjChISD5dpFMZNoTc9UZcUWAH3s+4z6M9BBMcGY29uT+CcQDo7d9a73UX58tiX3Mu8Ryu7VrzS/RW9XSc9N52r968CuombauOcESGlVQ7EwCmBQCDQH0J+QyAoncdLzSmIT8srVTLhj/N/4LPdBwmJZzs9y/IxyzFQGujP4BL49MinJGYn0sahDS90eUGv15JbwiuplQtCSksgqAgibhIIBAL9IeImgaB0dl25SlxaLsV7VwtRlCo1dy/zHoP/Gszle5dxrOfIwTkHadOgjd5tLsrN5Jt8/8/3ACwZtkSvcyBD4kKQkHCt71rqnJXyUBtnM4qOkXJSOHBqfEcXejW3E869QCAQ6AghvyEQlEy+Kp9vjy8v09qSJBNWBK/gme3PICHxUpeX+N/Y/1V5UiT8fjjLziwD4Pvh3+u9U0VXQwShiINfiyqfBIKagIibBAKBQD+IuEkgKJmTUSd5aceCMq19OG6KTY9lwB8DuHzvMs4Wzhx++nCVJ0UA3t3/LnmqPIY2G8rolqP1ei1dyWgVUhs7RkRiRCAQCAQ1BiG/IRBok5iVyIh1I9h9Y2OZ1j8smfDrmV95YaemO+O17q/x6+hfUSqq3v17Z987FKgLGNNqDEObD9Xrte6m3yU2IxalQklHp46VPl+hg5+UnYQkldJzLxAIBAKBQFCFiLhJINBmVcgqBv45kKTcW2VaXzRuikmLYcCfAwi7H0aj+o048vQR3O3d9WPoIzh86zC+Yb4oFUq+H/49CoV+k5tyMVklB68XUihBXJtmjAgpLYFAIBDUKIT8hkCg4VL8JcZvHE9kSiQWppZYG0qkZinKLJnwwz8/8ObeNwF4q+dbfDfsO7071yWx9/pedl3bhaHSkCXDluj9eoWD1z0dPDE3Mq/0+QodfJWkIiMvA0sTy0qfUyAQCAQCgaCyiLhJINB017+z7x1+Ov0TAF5tWhFzw5h7aXllipvupN5h0J+DuJF8g8ZWjTk09xDNbJpV3Qv4F5VaxfyA+QC81OWlKulW0aX8MNROKS2RGBEIBAJBjaNQfkMgeFLxC/Njtt9sMvMzcbN2Y8f0HUTfs2Pe2nMoQMvJL0ky4dsT37LggKaN/L0+7/Hl4C+rJSlSoC7grX1vAZqOlVZ2rfR+TV3KaAGYGZphbGBMniqP5JxkkRgRCAQCgUBQYxBxk+BJJjErkSlbphAYGQjApwM+5YN+H7DvSnyZ4qZbKbcY+OdAbqXcws3ajUNzD9HEuklVvwwAVp9fzYX4C1ibWrN44GK9Xy81J5WIxAhAh1JatVCCWEhpPUGo1BJBNxLZfj6GoBuJqNRCDkIgEAgEgpqEWlKz+PBivDd5k5mfySC3QZx5/gxtG7Qts2TCl8e+lJMiH/X7qNqSIgDLzy4nNCEUOzM7Pu7/cZVc82zsv1q5zrpx8BUKRa108gUCQcUQMZNAIBAIBDWfS/GX6LaiG4GRgVgYW+A31Y+P+n+EUqEsU9x0I+kG/Vb341bKLVrYtuDI00eqLSmSlpvGB4EfALCo/yLsze31fs1zsecAaGLVRGfXk2eMiI4RQU0j4HIsi/1DiU19MFzI2cqURWM9hfakQCAQCAQ1gIy8DOZum4tvmC8Ar3d/nSXDl2gNKn+UZIIkSSw+spjFRzQVRp8O+JSP+n9ULa8FNNqyHx/WJEM+G/gZ1qbWer+mJEmylJauOkZA4+THZ8bXKidfIBCUHxEzCQQCgUBQ8ympu75tg7Zaax4VN129f5VBfw3ibvpdWtu1JnBuIA0tG1bTq4Evjn7Bvcx7tLJrxcvdXq6Sa+paRguElJaghhJwOZZ5a88V09aLS81h3tpzYjCXQCAQCATVTGRyJOM3jufSvUsYGxjz2+jf8OnkU+LakiQTJEniw8AP+fL4lwB8PfhrFvZdqHe7H8WnRz4lKTuJtg3a8nyX56vkmjHpMcRnxmOgMKCDYwednbfQya9NgwQFAkH5EDGTQCAQCAQ1G7Wk5vOjn7Po8CIABrkNYtOkTdiZlywnV1LcFJoQyuC/BhOXEYengyeBcwJxtHDUu+2lcSPpBj+c+gGApcOWYmxgXCXXLZQf1lWXPdTO4es6l9L66quv6NatG5aWljRo0IAJEyZw9epVrTU5OTm88sor2NnZYWFhwcSJE4mPj9e1KQI0reCL/UNLHDhUuG2xf6hoERcIBAKBoJoIjAyk24puXLp3Ccd6jhyee7jUpEhJSJLEwgML5aTIkmFLqj0pEn4/nF/O/AJoHPyiXS/6pNDBb9OgDWZGZjo7b6GTL6S0BLpCxEw1CxEzCQQCgUBQs8nIy2Dy5slyUuSNHm+wd9beUpMiJXEp/hID/hhAXEYc7R3bc3ju4WpNigAsOLCAPFUew5oPY1TLUVV2XV3PZYQiUlq1KGbSeWLkyJEjvPLKK/zzzz/s37+f/Px8hg0bRmZmprzmzTffxN/fn82bN3PkyBHu3r2Lt7e3rk0RAKcjk7RawR9GAmJTczgdWXuyeQKBQCAQ1AUkSWLZ6WUMWzOMxOxEujbsytkXztLLtVe5zvHm3jf59uS3APw88mfe6vWWvkwuM2/ve5sCdQFjW41laPOhVXZdWUbLWXcOPtROvVxBzUbETDULETMJBAKBQFBziUyOpPfK3viG+WJsYMyqcav4YcQP5Sq+Oh93noF/DiQhK4FOTp0InBOIQz0HPVr9eA7fOoxvmC8GCgOWDltaZXMhk7OTuZF8A9Dd4HUQUloABAQEaP38xx9/0KBBA4KDg+nXrx+pqamsXLmS9evXM2jQIABWr16Nh4cH//zzDz179tS1SU8099JLd/Arsk4gEAgEAkHlyS3I5ZXdr7AyZCUAM9vNZMXYFeXqclBLal7b/Rq/nv0VgP8b/X+82PVFvdhbHgKuB7D72m6MlEYsGbakSq8tD17XoYMPiOHrAp0jYqaahYiZBAKBQCComRyKPMTkzZNJzE7EsZ4jflP9ylVIBpriqaFrhpKck0y3ht3YO2uvXPhUXajUKuYHzAfgpa4v0aZBmyq7duHgdTdrN7kzXhcU7RiRJKnKEj2VQecdIw+TmpoKgK2t5h86ODiY/Px8hgwZIq9xd3encePGBAUF6ducJ44GlqZlWrc1fBXRadF6tkZQVlRqiaAbiWw/H0PQjUTRti/QOeI9JhBUH/EZ8Qz6axArQ1aiVCj5dui3rPFaU+6kyEs7X+LXs7+iQMHKcStrRFIkX5XPW3s1HSuvdX+NlnYtq+zakiTppSUcxIwRgf4RMVP1UtaY6fMTC9gVsQtJEn5TTUD4swJ9I95jAkH1UdhdP3TN0Ap31wOcij7F4L8Gk5yTTK9Gvdg/e3+1J0UAVoWs4kL8BaxNrflkwCdVem19xUyFSZZ8dT6Z+ZmPWV0z0Kvgs1qtZv78+fTp04e2bdsCEBcXh7GxMdbW1lprHR0diYuLK/E8ubm55Obmyj+npaXpzea6Rnc3W5ytTIlLzSlRMxckCrjPmvBP2HjtM2a3n827fd7F3d69ii0VFBJwOZbF/qFa7fzOVqYsGuspBj4KdIJ4jwkE1cfZu2fx+tuL6LRorEys2DhpIyNajCjXOVRqFc/5P8cf5/9AqVDyx/g/mN1htp4sLh/Lg5cTdj8Me3N7Pur/UZVeOyotivtZ9zFUGtLesb1Ozy3PGKlFbeGC2oOuYiYQcVNFKUvMpFLc52zCRsZsWE+7Bu1Y2GchU9tOrbIZSgJthD8r0DfiPSYQVB+5Bbm8uvtVfg/5HahYdz3AiTsnGLluJOl56fRt3JfdM3ZjaWKpD5PLRWpOKh8EfgDAJ/0/wd7cvkqvHxz7r/ywjhMj9YzqYag0pEBdQHJ2MhbGFjo9vz7Qa8fIK6+8wuXLl9m4cWOlzvPVV19hZWUl/3F1ddWRhXUfA6WCRWM9AXi4gUkBKFDwymBH+jd9inx1PqvOr8LzF08mbprI6ZjTVW7vk07A5VjmrT1XTOM4LjWHeWvPEXA5tposE9QVxHtMIKg+1l9az1OrnyI6LZrWdq05/fzpcidFCtQFzN02lz/O/4GBwoC1XmtrTFIkKTtJHob42cDPsDa1rtLrF1Y+tW3QFlPDslV/lxUxY0SgT3QVM4GImypKWWKmb7y7826ft7EwtuDSvUvM8ptFi59asOz0MrLys6rc5icZ4c8K9I14jwkE1Udhd/3vIb9XuLse4MitIwxfO5z0vHQGNB1AwMyAGpEUAfjy2JckZCXQ2q41L3d7ucqvXxg3dXHWrfywQqGodXNG9JYYefXVV9m5cyeHDh2iUaNG8nYnJyfy8vJISUnRWh8fH4+Tk1OJ53r//fdJTU2V/0RFRenL7DrJiLbO/DarM05W2g8JnKxM+W1WZ94fOpLDTx/mpM9Jxrcej4SEb5gvPX7vweC/BrP/xn7RLl4FqNQSi/1DS6xSK9y22D9UtO8KKox4jwkE1YNKrWLh/oXM9J1JTkEOo1qO4tRzp2hl16pc58lX5TPLdxbrLq3DUGnIhokbmN5uup6sLj+LDy8mKTuJtg3a8lzn56r8+nJLuI4Hr4OYMSLQH7qMmUDETZXhcTHTjG6e/Hfof7kz/w5fDPoCB3MHbqfe5rU9r9HkhyZ8fvRz8RlRBQh/VqBvxHtMIKg+gu8G03VFV05GncTKxIpdM3bxTu93yj2r4uDNg4xcN5LM/EyGNBvCrhm7qGdcT09Wl48bSTf44dQPACwZtgQjA6MqvX5iViKRKZEAdHburPPzF50zUhvQed+vJEm89tpr+Pn5cfjwYdzc3LT2d+nSBSMjIw4ePMjEiRMBuHr1Knfu3KFXr5J14kxMTDAxMdG1qU8UI9o6M9TTidORSdxLz6GBpSnd3WwxUD74cOnl2ott07YRmhDKf0/8l3WX1hEYGUhgZCCdnDrxXt/3mOgxEQOlQTW+krrL6cikYhUpRZGA2NQcTkcm0au5XdUZJqgTpOem8+eZIGJT80tdI95jAoHuSclJYcbWGey5vgeA9/q8x+eDPi/3d2meKo/pW6fjG+aLkdKITZM3McF9gh4srhhhCWH8cuYXAH4Y/kO1SMvoqyUcRMeIQPfoI2YCETdVlrLETDZmNvznqf/wZs83+eP8H3x78lsiUyL56NBHfHPiG17s8iJv9nwTl/ou1fhK6i4iZhLoE7WkZsv58+I9JhBUAxsubcBnhw85BTm0tmvNjuk7yl1IBrD3+l4m/D2BnIIcRrYYie9UX513k1eGd/e/S54qj+HNhzOq5agqv37h4PUWti30MmultnWM6DxqfeWVV1i/fj3bt2/H0tJS1sC1srLCzMwMKysrnn32Wd566y1sbW2pX78+r732Gr169aJnz566NkdQBAOlokxf3J4Onvwx4Q8+HfgpS4OWsuLcCkLiQpi6ZSotbFvwbu93mdNhTo36YKkL3Esv3fmqyDrBk4skSdxKucXJqJOaP9EnuRh/EdP8vjiw4LHHi/eYQKAbrt6/yviN47maeBUzQzNWjltZoQ6P3IJcJm+ejH+EP8YGxmydspUxrcboweKK8/a+t1FJKsa1HsfgZoOr/PpFB693aajblnAQw9cFukfETDWXssZMZkZmzOs2j+e7PM/mK5v5+sTXXIy/yJKgJfx06ifmdJjDu73fpbV96yqw+slBxEwCXZKZl8mZu2c4cecEJ6NPEhQVRG5GOxEzCQRViEqt4oPAD/jmxDcAjGo5ivXe67EytSr3uXZF7MJ7kzd5qjzGthrL5smbMTGsOQUjhyIP4Rfuh4HCgKXDl5a7E0YX6EtGq5DC2Yy1JW7SeWLkt99+A2DAgAFa21evXs3TTz8NwPfff49SqWTixInk5uYyfPhwfv31V12bIqgkja0a88OIH/io30csO72Mn07/xPWk67y480UWHV7Emz3f5KWuL1HfpH51m1onaGBZtkRTWdcJnhxyC3IJiQt5kAiJOklsRnHdWwcLYyhD0r4uvsdUaumR1Z8Cga7Zc20P07dOJzU3lUb1G7F92vYKtSrnFOTg/bc3e67vwdTQlG1TtzG8xXA9WFx+Cu+r/ddOEXg1GiNDE74b+l212HIr5RZJ2UkYKY1o16Cdzs9f6OCn5KSgltQoFXod0yd4AhAxU93BUGnI9HbTmdZ2GgHXA/j6xNccvX2UlSErWRWyCm8Pbxb2WUg3l27VbWqdQMRMgsoQlRrFiagTcsx0Pu48Kkmltaa+YSaU3mQvU1ffYyJuElQlqTmpzPCdwe5ruwF4v+/7fDbwswop1WwP387kzZPJV+fj5e7FxkkbMTYw1rXJ5abwnopLy+LDwz+CpGRet3l4OnhWiz1nY/+VH9ZDlz0IKa0yzaIwNTXll19+4ZdfftH15QV6wM7cjkUDFvFO73f4/dzvfBf0HdFp0Sw8sJAvj33Jy91e5o0eb+Bo4VjdptZqurvZ4mxlSmxqNsXHPmq2OFlpHBPBk829zHsERQXJ3SBnYs6Qq8rVWmOkNKKzc2d6u/amt2tvejXqhZNFQ/p+E0hcak6Jmrl19T0WcDmWxf6hWi3xzlamLBrryYi2ztVomaAuIkkS3578lvcOvIeERB/XPmydsrVC35FZ+VlM2DiB/Tf3Y2Zohv90/2rpxiiJh+8rJ77CTJHDjVgLWlaDqkShjFZ7x/Z6qQordPDVkpr03PQKVbAJBEURMVPdQ6FQMLLlSEa2HMnJqJN8c+IbdlzdwdawrWwN28ogt0G83/d9BrsNrpYK0bpCYcz0pPmzgvKTr8rnfNx5OWY6GXWS6LToYutcLF3o07gPfVz70Nu1N20d2jPwu2NP5HtMxE2CquTh7vpV41cxre20Cp1rS+gWpm+dToG6gMmek1nnva7KZ3eURPF76nlcFd70cyxdFlXfBN/Vn/wwCCktQR2mnnE93uj5BvO6zWPDpQ18c+Ibwu6H8dXxr1gatBSfTj680/sdmtk0q25TayUGSgUfj/Fk3rpgJNQoeFCNWhg6LRrrKao1njDUkprQhFC5qulE1AmuJ10vts7e3F6TBGmkSYR0bdgVMyOzYusWjfVk3tpzKEDL0a+r77GAy7HMW3uuWFATl5rDvLXn+G1WZ+HkC3RGdn42z/k/x/pL6wF4vvPzLBu1rEKVSpl5mYzdMJZDtw5Rz6geu2bson/T/ro2uUKUdl/l5JpW232l75ZwU0NTTA1NySnIITknWSRGBALBI+nt2pvt07Zz5d4V/nvyv6y/tF6e3djZuTPv9XkPbw9vMbuxAhgoFSwa68lLa4ORkETMJJBJzEokKDpIjptOx5wmuyBba42BwoBOzp3kmKm3a29crVyLnetJi5lAxE2CqkVX3fUAGy9vZJbvLFSSihntZvDnhD+rZd7hw5R2TyklWxZsjsDSxKLK76mEzARup94GoJNTJ71cQ06MPKkdI4K6j3F6PHMbdGC21zqO3jrK6vOruHTvMv+cWc6Usyvo2Wo0zw38hI5OHavb1FqHo30s94y/xC7/RQwke3m7k6jSeGJIz03ndMxpOQnyT/Q/pOamFlvXxqGN7Mz3ce1DC9sWZao+HNHWmd9mdS5WCVQX32MqtcQn/qElVnpJaAKbxf6hDPV0qnOBjaDqiU6LZsLGCQTHBmOgMODHET/ycreXK1QVnJ6bzuj1ozl25xiWxpbsmbmHPo376MHq8qNSSyyugfdVYWJEX5VPoHHyYzNiScpOoql1U71dRyAQ1BFSomhTkM+f3d/ka8/prLu0Fr8wP7LvnuerzdP42boJs596nzkd5tQo/fPawIi2zji67CAmpjeGOMjb66I/KygZtaTm6v2rWjMVw++HF1tnY2ojx0y9XXvTrWE36hnXe+z5n6SYCf6Nm3ZcqXH+naDuIUkS3538joUHFla6ux5gzYU1PL39adSSmrkd5rJy3MoaUXTwqJipMMVaHfdUYZd9K7tWeiv0Kuy0T8p5QmeMCOo4KVGwrAsU5KIEBvz7Byw0+yXIvhpI66s7aNNyOO/1eY9+TfqJdvEysv7SerINgujZ1pW3uvwqdD3rOJIkcTv1tiYJ8u/Av4vxF1FLaq119Yzq0aNRD3o36k2fxn3o4dJD/rKpCCPaOjPU06nOaMdKksS9zHtcT7rOtaRrXE+6zvWk64TGFJCW+kzpxwGxqTmcjkwq05BVgaA0Ttw5wcRNE4nPjMfOzI4tU7YwoOmACp0rNSeVketGEhQdRH2T+uydtZeejWrOoOXTkUlaDwgepjruK0mSZCdfn4kRWzNbYjNia031k0AgqEaKxEwAzsA7wDsYUhg3Zafcp7X/g9mNL3Z9UcxuLCMxaTGcSfodyXQlvl4XUUrWtd6fFTyawiHphYmQoOigEgf7utu7a3WDtLZvXeG5YHUtZgJNd/PN5JtyvCTHT7EKSJtf6nEibhLoAl121wOsClnFczueQ0LiuU7PsXzs8hozB7AmxkygfxkteDCbsbbETCIxIigfWYmyg18aZihooDAg4HoAAdcD6NmoJ+/1eY+xrcfWmA+pmohKrWLD5Q0AzGw/XTgcdZA8VR4hsSFaA/9KGpLexKqJ3AnS27U37Rzb6bwV1ECpKPU9VhMH7kmSRGxGrJYTXzQRkpGXUewY84J+RWoIS+deeukOi0DwOH4/9zsv73qZfHU+7R3bs33a9gp3EyRnJzN87XDO3D2Dtak1+2fv16vTWhHKer9U1X2lUktsu3iJvIz2WBik426vvyGG1qa2mKjaERiWhrmUWCM+GwUCQQ2ljDFTGwsnAjJiWXBgAV8c+0LMbiwjf1/5W1Np3Lg3Xh3aVLc5Aj0QlRqlJSVc0pB0M0Mzurt015qpaGeu2xi6tsVMoJlRdyPphlbBWOGf6LRopBJq2EXcJNA3RbvrDZWG/DjiR+Z1nVfhIurlZ5fz0q6XAJjXdR7LRi2rUc8ba2LMdDoyiX1XkjBRtaOTk37khwGsjG0wUbXjbkJDgm7U/JhJJEYEesFvqh9f3djNqpBV/BP9DxP+noCHvQcL+yxkervpFc4I12WO3TnG3fS7WJtaM7LFyOo2R6ADyjIk3VBpSGfnznISpFejXrjUd6kmi6t34J5aUnM3/a4m4ZH4ryOf/MCRz8rPKvVYBQqaWDehhW0LWti0oIVtC6Tclizb+/jrNrA01eGrEDwp5KvyeWvvWyw7swyAiR4T+WPCH1gYW1TofIlZiQxbO4xzseewM7Nj/+z9dHLWj+5rZSjr/VIV91XRzysHFkA+DPruuF4+rwIuxxIf+QpO+RasOwbrjv0jhpEKBIJKs2Padtbdv8I3J74h/H64mN1YRgqrjWe2m1nNlgh0Qb4qnwvxF+QO+scNSS/sou/g2KHahitX95Dy9Nx0biTfKLFg7G763UceW9+kPi1tW9LSrqUcN+VlN+GL7ZmPva6ImwQV4WTUSbz/9tZJdz3AstPLeG3PawC80eMNvh/+fY1TqampMRMMwolBrD+ooG39WL3ETJ/5GeGU9xVp8TB9Rc2PmRSSJJUseVaDSUtLw8rKitTUVOrXF+3GVcrd8/C/Mgx/feEINOxIfEY8P576kV/O/EJabhoArvVdeavXWzzX+bkKP0Cqi7zg/wIrzq3guU7PsWLciuo2R1BOHh6SfjLqJNeSrhVbV9Yh6dVBacPBCl0MXQzcU6lVRKdFl+jE30i+QU5B6RUTSoWSptZN5eRHS7uWmr/btsDN2q2YPrdKLdH3m0DiUnNK1PZUoNEJPr5wUI2uYBDUPBKzEpm8eTKHbh0C4NMBn/JBvw8qXKWUkJnAkDVDuBh/EQdzBw7OOUg7x3a6NFln1JT7qio+r4pfq1BlW3/XehzCBxaUF/GeqSbKGTOpJTU7ru7g6+NfcyrmFKDxe6a2mcrCPgvp4NRBv/bWIq7ev4r7L+4YKg2JfTsWe3P7xx8kqFGUdUh6R6eOWl30JQ1Jrw6qygdJy00rtWAsLiPukcfamtnKcVJh8qMwdrIzsyv2ELmm+HeCusfKcyuZt2ueTrrrAb4P+p639r0FwDu93uG/Q/9b45IiUHPuqeqJmfR/rcdRHv9XdIzUYGpqa2Z5cLRw5MvBX7Kwz0KWBy/n+3++Jyotijf3vslnRz/jte6v8Vr313Te8lpTKOvvMLcgly2hWwCY0W5GVZtZK6nu+6PokPST0ScJigp67JD03q69aWnbssZ+cetqoHKBuoCo1KhiMz+uJ13nZvLNYl0zRTFUGuJm7fbAkf/3T0vbljSxblKubjMDpYJFYz2Zt/Ycin9fRyGFr2DRWM9a97kqqF4uxV9i/MbxRKZEYmFswRqvNUxwn1Dh88VnxDP4r8FcSbiCYz1HAucG4umgPzmoylIT7quqHACvfS3tc4lhpAJBzaC6fUJdoFQomeA+gfGtx3P09lG+PvE1AdcD2HB5Axsub2Bki5G81/c9nmr8VI30I3VBWX+PhdLDw5oPE0mRMlDd90d5hqT3cu0lJ0HKOiS9qtG1D5KcnVxiwdj1pOskZCU88lh7c3s5Tno4dirU+C8rNcG/E9Qt8lX5vL3vbX4+/TNQ+e56gP+e+C8LDywE4P2+7/PFoC9q7HdiTbinqi9m0u+1dI1IjNRQqrs1U9dYmVqxoM8CXu/xOn9d+Iv/nvgvN5JvsPjIYr49+S3Pd36et3q9RWOrxtVtqs4oz+9w7429JOck09CyIf2a9KtqU2sdVX1/FB2SXqhz+7gh6b1de9OzUc9KDUmvSv65mVCu4WD5qnxup94u0ZGPTI4kX51f6rmMlEY0s2lWoiPf2KqxTlviR7R15rdZnYu9X5xq8eepoPrwDfNljt8cMvMzaWbTjO3TttO2QdsKn+9u+l0G/zWY8PvhNLRsSOCcQFrbt9ahxfqhuu+rqhxmWFMHJwoEAg11LWZSKBT0b9qf/k37ExIbwn9P/pdNVzax5/oe9lzfQ69GvXiv73uMaTWmRmmpV5ay/h4lSZJltGa0FcVkj6M67o/qGJJelZTXL5AkiaTspBILxq4lXSvx36YojvUcixWLtbBtQXPb5libWuv0tVW3fyeoOyRmJTJlyxQCIwOBynfXA3x+9HM+OvQRAIv6L2JR/0U1NilSSHXfUyJmKhtCSqsGUpPaj4pRzrbw0lCpVWwN28rXx78mJC4E0FSKz2w3kwV9FtToatmyUN7f4f+zd9/xTVXvH8A/Sdqme29mW/beswzZQwTZIrKHDAEXov4U0K8ioogMGQ5EhmzBgUChyF5lz7JXJ917Jef3R821adI2adMB+bxfL0Rubm7OTU5uznOfM4ZvH44t17bgrTZv4eueX5dZOZ9FZfH90CySrkmCFLVIumaId2kskm5qcelxCI0JRWhsKG7F3kJobChCY0LxJMobzplvFvl83yr78FT9Nx4kPECOOqfA/ZQKJQJcA/QO367iWAUKucKUp1Wk8u4tR882tVDjk8OfYP7h+QCArn5dsWXwlhKNdnyS9ARd1nXB7bjbqOJYBcGjg1HDtYapilwmyut7tftiGGZuvljkft8Ob4L+TUq2ZlNZvpYhnvc2MJne81xnzCFmAoC7cXfx1YmvsPbiWmnUbT2PepjdbjZGNBxRbmssmIoxn2NIeAhaft8SNhY2iH43mtMyF6Ksvh95F0k/8eQELkRcKHKR9DaV21T40T7Zqmzci78nxUqauOlOuDOskicX+fya/seQIDuAO3F3kJCRUOi+PvY+BY78cFA6mOiMDMe4iUoi/+j6DS9vQP86/Yt9PCEE5v0zD58c+QQA8L8X/ocPO35oquKWCcZMpn0tQ3AqrWfYszz8yBgKuQJD6w/FkHpDcODeAXxx/AsE3w/GukvrsO7SOvSv3R9zAuegTeU25V1Uoxn7GSZnJuP30N8BcBqtopTW9+Np6lOcfHJSWvAvJDxEZ60LzSLpmsX+ynuR9MJk5mTibvzd3Ab8v0kQTSIkJi1G73OUwrDeG+ej/kGm4g4AwNrCWqf3kuZPZcfKFarXl0Iuq3A9E+jZkJKVglG/jcJvN38DkLvA31c9vipREvRhwkN0+aUL7sXfQzWnajg0+hD8XPxMVeQyU17fq7JczLAiLZxIRP8xl5gJAAJcA7DyxZWY23kuvj31Lb4L+Q7Xn17HmN1j8NGhj/B227cxodmECjntUFGM/Rw1o0X61+nPpEghSuv7oVkkPe8o+qIWSW9XpR2aeDepkAk8IQSiUqO0Eh+aRMi9+Hs6CR4AUKoawtuAYx998hcyFVekf1d2rKy3w1iAS0CF++4ybqLi+u3Gb3jtt9dMNrpeCIEPgz/EgmMLAAALuy3E7PazTVXcMsOYybSvZWpMjFQwFX74ka0bYKEEcgpeIwAWytz9DCCTydA9oDu6B3THmbAzWHh8IX678Rt2h+7G7tDd6FStE95r/x561ehV4YfJaRj7Ge4O3Y30nHTUcquFZj7Nyq6gzyBTfD/UQo0bT29II0EKWiTdzcZNa7G/irRIOpDbSIhIifgv8RETiltxuYmQ+wn3dab5ysvW0hZKhRLZ6mykZqVCQCBTfg05eAoF3CCDvoSGgK0yE0v7zUBt99yGvI+DT4VKfhCZ2r34e+i/uT+uRl+FlcIKq/quwtimY0t8zC7ruuBh4kP4u/jj0OhDz9U0kmWhlZ8rfJysi1zMsJWfcfNrl/drEZHhzC1mAgBve28s6LYAcwLnaK3dOGvfLGntxumtpj9Tazca8zm28nPG5qubAXAaraKY6vsRlx6Hk49PSkmQohZJ18ROFWWRdI207DTcjr0txUx5R84nZSYV+DwLuQXsLO0gk8mQmpWKbHW2QTGTtVU6Puk5CrXcakjJj4oURxKZmlqo8enhTzHv8DwAphldL4TAu0Hv4uuTuTOqfNPzG8xqM8sEpTUfjJkMw8RIBROdXHADJq+lJ39GWGY1tPRtiapOVcsuaeBcBZh+DkiLLXgfW7fc/YzUqlIr7Bi6AzdjbmLR8UVYf3k9Dj88jMMPD6OxV2O81/49DKk/pMJPVWToZ6jZb+OVjQByG/jPSvKnrGXmZOLkk5P4/uQFALWK3D/vZ2DoIun1POpJSZCKtEh6SlaK1sgPTSP+VuwtpGSlFPg8C7kFrC2soVarkZaTpvVYWnYa0rL/2+Zg5YAarjXgJr+G23c74b++ZLlk//538ZB2nFuWzEbw/WAM2TYEcelx8Lb3xs6hO9G2StsSHfN27G10+aULniQ9QU3Xmjg0+lCFHXlWkZXlYoYVYeFEItJlaHv7k0NL0DfWCy19W6Kxd2NYW5RRT8VSjJkKWrtx3uF5+PLEl5jUbBLeavtWhbs5rY8xcdM/D/5BREoEXKxd0LNGz1Iu2bPrfvx9bL58DEDRN5/yvv9qocat2Fu5SZB/R9EXtki6ZhR9RVkkXaVW4XHSY72dxh4nPS70ubaWtpDL5MjIydCaKjhHnaMVN8plclRzrgYvi9OIeNwXBcVMS4YGoleDISY9P6KKKiUrBaN3jcbOGzsBmGZ0vRACs/bOwtIzSwEAy3svx7RW00xSXnPCmMkwXGOkgjl5NxavfH+qyP0ird6XhmZ62HqghW8LtPRtiZaVWqKFbwt42xsywLNie5L0BN+c/Aarz61GanYqAMDP2Q/vtnsXY5qMqbC9Lgz9DH+d2AYB3ir4fu0LlVAhdHooarkVfdPfHAghcDX6Kg7cO4Cge0E4/PAw0rLTcocuZy0o8vkTuqUgMusoTjw+gUtRlyr8IukqtQoPEh78l/jIM/1VeHJ4oc+1trCGEEKac7ogTkonach2/iHcHrYeUhLoeVvElMhYQggsP7Mcb+57EyqhQkvflvht2G8lTmDcjLmJLuu6ICIlAnXc6yB4VDB8HPidKomyvF5VlGvj89wGptLxvNaZ4sRMFnILNPRsqBUz1feoXyGn+DFGQWs3jmw0ErPbzUZdj7rlXMKCGRM3/XB1Nn66+BMmNZuE1f1Wl0Hpng0JGQkIvh+MoLtBCLoXhLvxdw2Omd7rZ4149elCF0mv7VZbaxR9eS+SHp8er7PuR2hsKG7H3i40HrKUW8JCboFMVWahI+sVMgWqO1fPjZNc8ix67lYT1Z2rw0phBaDitAuIylNpjK5XCzWm75mOlSErAQCrX1yNSc0nmaK4ZosxU+HtXyZGKhiVWiBwYXCBw48AwNFGhTZN/8K5yBBcjrqsdwHkyo6V/0uW+OY2/Mvzxm9JxKXHYcWZFVh6Zqm0PoKnnSdmtZ6FKS2nwNnauXwLmE9Rn6FmCNmx97pgVch3mP73dLTwbYGzE8+WdVErlPDkcCkRcuDeAUSmRGo97mXnha5+3XHl6hAkpetfuFtAQIUYhFmPB2T/NXjzLpLerko7NPJqVC4jj2LSYvSu+3En7g6yVFkFPs9CbgEZZMhWZxd6fFcb1wIX7nOzcTN4BAwX3CNzlZmTiWl7puHHCz8CAEY2Gok1L64pcSL+WvQ1dP2lK6JSo9DAswEOvHYAXvZepiiy2SvL61VFuDY+z21gKh3Pa50xJGZythN4KTAE5yLO4mzYWTxNe6qzj7WFNZp6N9XqZFbLrdYzOVWoEAJB94LwxbEvcOjBIWn7gDoD8F779yrk2o2Gxk0H3m6HSot9kJiZiH9G/4NO1Q1Y2P45laXKwsnHJ6WY6Wz4Wa0b/RZyC7Su1BZxD99EWqZVAUcRyJHFIEypHTNZW1ijVaVWUhKkvBZJz1Jl4W7c3f8SH3lGzuv7HmvIIIOlwhLZqmyIAq8Mue+Rv4u/1GFM6jzmWgPVnKoZnCytCO0CovJSGqPr1UKNSX9Mwo8XfoQMMvz40o8lTrRQLsZMBWNipALaezUCUzacB6B/+NHKkc2kTFtGTgYuRV5CSHgIzoafRUh4CK4/va63IRDgEpDbO8qnBVpWaolmPs2eqUXr0rLT8NOFn7DoxCI8SnwEIHcKoCktpmBWm1kVquetoZ9h+5/a48TjE1jcYzHebPtmmZezPKVkpeDwg8NSMuTa02taj9tY2KBjtY7o7p+7Bk1Dz4aISYvBqmMn8eMhTbD638VVQA1AhjjlQtSrkiWNBmlbpS0qO1Yus/PKzMnEnbg7OkO4Q2ND9fbC0pBBBrlMrneRv7w8bD20Eh6aJEiAawBcbSrefI1Ez4rIlEgM2joIJx6fgFwmx8JuC/F227dLPKXe5ajL6PpLV8SkxaCxV2McGHWgXG4y0PPheW8Dk+k9z3XGmJhJCIHHSY9xNuysFDOFhIfonV7VwcoBzX2bS53LWvq2RHXn6hViilVDnX5yGguPL8Sum7ukuLBTtU6YEzgHPQN6VqhzMeRzTFecwsCtA1HZsTIeznr4TCauiksIgetPryPoXu6IkMMPDkuzKWjUca+TGzP5d0en6p1gY2GD1cdP46s9Cf/uoRszPbX6HK7Oj7QWSW/s3VgaEVEW5xWREqF3yuD78fcLjYkUMgXUQl1o8sNKYYUAlwCdzmI1XWuiilOVCj89N1FFJYTAirMrMGvvLJOOrlepVRj3+zj8cukXyGVyrBuwDiMbjTRRqcncMDHyHCjJ8KOUrBScjzgvJUvOhp3F3fi7OvvJIENdj7pao0rKdO7dYspWZWPLtS344tgX0s10K4UVRjcejXfbvYuabjXLuYS59l6NwNzfryEq6b8hvXk/w/vx9+G/1B8yyBD2VliFSuyUBpVahZDwEKlRf/LxSa0REDLI0Ny3Obr7d0c3/25oU7kN7sfflxb7y7tIuo2qLVyzJsECHtLz7ayzML6TE6YEti31adaEEAhLDtMZwh0aE4qHiQ8LHZ4tl8kLfRzIHR2Tf9orzR8naydTnw6R2QsJD8HLW17Gk6QncFI6YfPgzehVo1eJj3s+4jy6r++OuPQ4NPdpjv2v7WcCk0rEHNrAZFrPe50pScykFmrcibuTGzP9mzA5H3FeZ3FpAHCzcdOZutjXwdfk52NqN2Nu4svjX2LD5Q1Su7uxV2PMCZyDwfUGV5ibw0XFTUO2DcH269vxbrt38WX3L8uxpGUjIjkCB+4dwIH7B3Dg3gGdqXU9bD3Qzb+bFDfZWdlJi6SfeHICZ8LOIC07TW/MZK1Mx+DWwKT2rVDVqWqpn0tqVqrWyA9Np7FbsbeQnJVc4PNkkBWa+AByR7hokh/5R8xXdqwMhVz/LANEVDylNbo+R52D0btGY9OVTVDIFNgwcAOGNxhuiiKTmWJi5DlhyuFHcelxOBd+LjdR8m8vqSdJT3T2s5RboqFXQ2lUSUvflqjnUa9Czr2rFmrsub0HC44twInHJwDkNqAG1xuM99q/h+a+zcu5hEBSRgo8P28HhXDBnyM3omPNStJnuODoAnwQ/AG6+nXFgVEHyrmkpieEwN34u9KIkOD7wUjISNDap7pzdal3U6tKrXA3/q602F9hi6S3q9wObSu3h4OsCazgAU/H0hmel5yZrLPux63YW7gVe0unp5axfB189a73EeASAAelg4nOgIiKsvHyRkz4YwIycjJQx70Odg/fbZL1ns6GnUWPDT2QkJGAVpVaYd/IfRVu6kd69phLG5hMxxzqjCljphx1Dm48vSHFS2fDz+JS5CW905n6OvhqjSpp4dsCbrZuJT2dUqFv7UZ/F39p7caK0DGuoLgpKTMJnos8kanKxIXJF9DEu0l5F9XkUrNSceThEakD2dXoq1qPW1tYSyPpu/l1g5WFFU49OSV1INO3SLqztXPudFiV2sHdojXclP6o4uJUKjGTSq3Cw8SHejuNhSWHlejYtpa2/yU88q354evga1ajh4jKU/7R9V92+xJvtX2rxCMQs1XZeHXnq9h2fRss5BbYPGgzBtUbZKJSk7liYoQMEpkSibNh/zX6z4afldbwyEsz967U8K+Ac+8ee3QMXxz7An/d/kva1t2/O+YEzsEL1V8ot+HiqVmpsF+QO11ZyvspsLOykx5ruLIhrkZfxY8v/YhxTceVS/lMLS49DgfvHZQa9Q8SHmg97mztjC5+XdC1elfU96yPsOSw3J5NBSySbmtpi9aVWmvNc2vqtXJy1Dm5C5/HhOr0ZIpIiSjRsSs7Vta73keAS4BWXSCisqdSq/D+wfex6MQiAEDfmn2xceBGk4zKOvn4JHpt7IWkzCS0q9IOe0bs4WgvMgm2gclYrDMll5mTiSvRV7Sm4br29JreEcB+zn5aUxc392leoTq8aNZu/Pb0t4hNjwWQO1J5VptZmNJiSrn+VhUUN627uA5jdo9BXfe6uDb1WoWaBqy4VGoVzkWckxZMP/H4hM5I+qY+TdHdvzs6VO0AK4UVQsJDcPzx8SIXSdcslF4ai6THpsXqXffjTtydQhc+L4q9lb3ONMGaPz72Ps/FZ070LMs/un7L4C3oWaNniY+bpcrC8O3D8dvN32Apt8S2IdvQv05/E5SYzB0TI1QsQgg8Snyk1UMqJDwESZlJOvvmnXtXkzCpCHPvXo66jC+Pf4nNVzdL85K29G2JOYFzMKDOgDJP5hTUwL8SdQWNVjWClcIKUe9EPbO9iDNzMnHi8QkpEXIu/JzWkGdLuSXaVmmLF6q/gCqOVRCfEY/TYadx4vEJnSHhAFDVqaqUBDHlIulCCMSkxfyX+MjTk+lO7B3kiJxiHVcGGao6VdXbkPd38S/1Kb3o+VERFigzJwkZCRixYwT+vvM3AOD9wPfx6QufmmTKhWOPjqH3xt5IyUpBx2od8ecrf1aom2L0bGMbmIzFOlM6UrNScSHygtbUxZopX/OSQYba7rW1YqYm3k3KvY2YmpWKny78hK9OfiWt3eiodMSUFlMws/XMcpnit6C4qeeGnth/dz8+feFT/F/H/yvzcpnKvfh7UiIk+H4w4jPitR6v5lQN3f27o5lPM1gqLHEl6gpOPDmBi5EXkaPWjlU0i6S3q9wO7au2N+ki6Zk5mbgbf1dn3Y/QmFApmVYcjkpHnaSH5t+edp7lfh+Bnh2Mm8rWpiubMP738SYfXZ+Zk4nB2wbjz1t/QqlQYuewnehTs48JSkzExAiZkFqocTv2ttaokgsRF/TOvetu644Wvi20puEqr3UzHiQ8wNcnvsYPF35ARk7unMO13WpjdvvZeLXhq1BaKMukHAU18N8/8D6+OP4FXq7zMnYO21kmZTEFIQSuRF+RGvVHHh7RqQv1PeqjfZX28LLzQkp2ilR3NJ+DhoXcAs18mpl0kfSMnAzcjr2tM4Q7NCYUCZkJxTqmXCZHNadquVNd5Ru+7efsV2Z1iZ5fJZkfnYwXGhOKlza/hFuxt2BjYYOf+v9ksjls/3nwD/pu6ou07DR08euC34f/ztFhZFJsA5OxWGfKTkJGgjR1sab9q0k65GUht0ADzwZaMVMDzwblMnVxtiobm69uxsLjC7XWbhzTeAzebf8uarjWKLOy6IubolKi4LvYN3c9mDfuIMA1oMzKU1Jx6XEIvh+MoLtBOHD/AO7F39N63FHpiM7VO6OOWx1YKaxwO+42Tjw+gcdJj3WO5evgi/ZV2ksdyEq6SLoQAuHJ4Xo7jd2Pv1/k2h4FcbZ2lpId+ZMg7rbuTH5QiTFuKjsqtQofHPwAX57IXdfJlKPr07PTMXDrQOy9sxfWFtbYPXw3egT0KPFxiTSYGKFSlaPOwfWn17Wm4bocdbnQuXc1PaTKeu7d6NRoLDu9DMvPLpfWt6jkUAlvtX0LE5tNLPVevPoa+Gqhhv+3/niY+BDbhmzD4HqDS7UMJRWWFCatE3Lg3gFEpUZpPe5l54WWlVrCw9YDqdmpuBh5Ebdib+kcx83GTRoJ0q5KO7TwbQFbS1ujy6MWajxJeqK17kfehc+LQyFTwM/FT5q7Vlr43LUGqjtXL1HgQVSYvVcjMGXDeZ3wUxM2rhzZjI18E9pzew9e2fEKkjKTUNmxMnYP341mPs1McuwD9w7gpV9fQnpOOnoE9MBvw34r1jWOqDBsA5OxWGfKV1RKFM5FnJOm4TobfhbRqdE6+ykVSjTxbqI1dXFtt9pltni0vrUb5TK5tHajqX4rC6Mvblp2ehlm7J2B1pVa49SEU6VehpLIzMnEyScnpQ5k5yLOaU23ZiG3QAufFghwDYCF3AIPEh7gbPhZpGWnaR1HIVOgsXdjrVH0VRyrFCupkJyZLK2PmL/TWFpOWtEH0MPd1l1nzQ9N7ORq41qsYxIZgnFT2SnN0fVp2Wnov7k/Dtw7AFtLW/zxyh/o4telxMclyouJESpzmTmZuBx1WWtx9+tPr+ude9ffxV9rkcKymHs3OTMZa86tweJTi6UpnJytnTG95XTMaD0DHnYepfK6+hr4xx8dR+DaQDhYOSDqnahyH0qfX3JmMg4/PCw16m/E3NB63MbCBg09G8LV1hUpmSm4+vSqzqLqwH+LpGsa9LXcahnVoE/KTNJZ9+Pm05sIjQ0t1hy2lnJL+Lv466z3UdO1Jqo6VS2XXnpk3lRqgcCFwVo9nvKSAfB2ssax97pweHgJCSHw5fEv8f7B9yEgEFg1ENuHbIeXvZdJjr/3zl4M2DwAmapM9KnZBzuG7qgQC9nS84dtYDIW60zFIoTAk6QnOlMX62tL21vZo5lPM61OZv4u/qXe617f2o09AnpgTvs56Fy9c6m9vr64qe2PbXHqySl82+tbzGg9o1Ret7iEELgafVXqQHb44WGdJIe/sz/8XPwgl8nxKPERQmNDdY6jWSRdEze1rNQS9lb2BpcjR52DhwkPddb9uBFzA5EpkcU6N087T72jPgJcAky+3iORIRg3lZ3SHF2fkpWCfr/2wz8P/oGdpR32vLoHHat1NMmxifJiYoQqhJSsFFyIuKA1DdeduDs6+8kgQx33OlKypGWllmjs1bhUEgaZOZnYcHkDvjzxpTSqwcbCBuObjsfb7d5GdefqJn09fQ38qX9NxcqQlRjdeDR+HvCzSV+vOHLUOQgJD5ESISefnNSZx9bf2R8uNi5IykzC3fi7BS6Srlnsz9BF0rNV2bifcF9rCPeNmBu48fRGseawtVJYIcAlQG9DvopTFZOsV0LmTQiBTFUmUrNSkZqditSsVKRkpUj/X+i27BStfycmeSI1amKRr/nrxDZoG1B2I+2eN2nZaZjw+wT8evVXAMCkZpOwrM8yk40E+yP0DwzeNhhZqiz0r90fWwZv4RR7VGrYBiZjsc5UfEII3I2/qzWq5HzEeZ2b7ADgauOqM3Wxr4NvqSQr9K3d2KpSK7zX/r1SWbsxf9wUmRKJGstqQC6TI+ytMHjbe5v09YojPDlcayR9/sSDi7ULqjpVBQA8THyoN+GVd5H0dlXaoY57HYPey5i0GK3Ex82Ym7j+9DruJ9zXid0M4WPvo3e9jwDXADgqea2gklOpVVrxUEqWdixUYNykZ9+kZG9kPZ1S5GsybiqZvKPrqzhWwa7hu0w2YjApMwl9NvbB8cfH4WDlgL0j96JdlXYmOTZRfkyMUIUVnx4vDScPiQjB2bCzeudR1cy9Kw0nN/Hcuyq1Crtu7sIXx79ASHgIgNxhy680fAWz281GQ6+GJnmd/A18K4UVfL72QWx6LPaN3Fcu8ygKIXAn7o60YPqh+4eQmJmotY+bjRuclE6Iz4jXWRgQyF0kXdOzqX3V9oUuki6EQHRq9H+L98WE4vrT67gecx2PEh/pHVVUGKVC+d+Q7XxrflRyqFRmUw5QxZalytLb+C5ymwH7GltnC2Kb0xEe2bOL3O/b4U3Qv0klk7ymuXmc+BgDtgzA+YjzsJBb4Nte32JKiykmu4H0243fMHT7UOSoczCo7iBsGrSJU+9RqWIbmIzFOvNsUqlVuBFzI7eD2b8Jk0tRl5ClytLZ19veW2tUSctKLU22EDcA3I+/j69Pfo0fL/yos3bjyEYjTfa7lz9u+ubUN/jo0Efo7t8d+1/bb5LXMFZKVgqOPDwidSDTrMOiYSm3hI+DD4QQiEiJKHSRdM2aioV9Nhk5GbgTd0fqNHYz5iauPr2K27G3kZyVbHT5fex9UMutlu7ID9cAo0al0PNLLdRIy04rUdxUUCex4szyUBDGTaVLCIFFJxZhzoE5pTK6PjEjEb029sKpJ6fgpHTCvpH70Lpya5Mcm0gfJkbomRKVEqU1quRs2Fk8TXuqs1/euXdbVspt+Jd07l0hBILvB2Ph8YUIuhckbX+x1ot4r/17CKwaWOxjA7oN/MMPD6Pvpr7wtPNE2FthZTaCITYtFgfvH5Qa9fnX4lAqlHCwckBiZqLOWjEWcgs09W4qjQYpaJH0tOw0qSEfGhuKa0+v4Wr0VdyLu2f0HLbWFtYIcAlAbffaOg15Xwdfk/dQo/KRrco2etSF1CAvYt/i9JwzlpXCCvZW9rCztIOdlZ3W3/ZW9v9t+3d7/n2fxNjg679URb4Oez4VTaUWOHM/DtHJGfB0sEYrP1ecenICg7YOQlRqFNxs3LB96HZ0rt7ZZK+59dpWjNgxAiqhwvAGw7H+5fUclUaljm1gMhbrzPMjS5WFK1FXtKbhuhZ9TRrNkVc1p2rSiJKWvi3RzKdZiRfMjU6NxtLTS7Hi7IpSWbsxb9yUPCcZLX9oiZsxN7G2/1qMaTKmRMc2lEqtyh1J/28HspOPT+rERq42rshR5yApM0nn+ZpF0jVxk75F0jXTqWlGy998ehOXoy8jNDbU6KmvZJDBx8EHddzqaHUWq+FaA/4u/lzr7DmhFmqkZ6cbP1pds62QZEd6Tnqpl18Gmd5YSGtbQXHUv38/fmqNL/7QP41WXoybipY/bmpY2QaT/5qITVc2ATD96Pr49Hj02NADIeEhcLF2QdBrQWju29wkxyYqCBMj9EwTQuBx0mOtxd1DwkN0RjUAuXPvNvdprjUNl5+zX7F6A58LP4eFxxdi+/XtEP8u6dW+SnvMCZyDvjX7FuuY+RMjk/+cjI1XNuKNVm9gae+lRh/PUBk5GTj+6Lg0zPt8xHnpnIDcxom1hbXehpCrjavUmM+/SLpaqPE48bE0h+216Gu4FH0Jd+LuICYtxqgy2ljYIMAlAHU86kjJD83f3vbepT5/MhkmR51jfO+hQoZB592WP9AsDZZyy0Ib2XZWdrC31N2ub9/820p6E1wzV25kYobOIoIA58o11N6rEZj/x3WtOYcdbFR4qP4KyfKjaOTVCLuH7zbpVIkbL2/EqF2joBZqjGw0Emv7r2VShMoE28BkLNaZ51tadhouRl7UmoZLM11wfrXdaud2Lvt3Gq4m3k2KdeNc39qNLtYumN5qOt5o9Uax127MGzedGHcC7X5qB6VCiah3okqc1CnM3bi7UiIk+H6wzvRX1hbWyFHn6HS60SySrhlBn3+R9KTMJGm0/M2Ym7gUdQnXn17H46THekf+FERKfrjXQW232lodxvxd/LmmWQUhhEB6Tnqx46bCEhv6ptUrDQbFQgUlNgrZZm1hXeLYnnGTaeiLm+SKREQqliPb8iyW9lqK11u8brJ7MTFpMei+vjsuRl6Em40bDo46iMbejU1ybKLCMDFCzx21UONu3F1pRElIREiRc+/mnYarkqPhwylvxd7CVye+wrpL66RGawPPBniv/XsYVn+YUdN55W3gR70dBf+l/kjNTsXJ8SfRpnIbg49TFLVQ40rUFalRf/ThUZ2kh1wm1zsFUF33ulISRLNIemJmojSE+3LUZVyMuohbMbcQnhJuVE98WwtbVHepjvoe9XUa8p52nkx+mIhKrfpvCHQxew8VtK8ph0AXRCFT6DS+dRrZRjS+824z1fR7pWXv1QhM2XAeALQa+ZpvxsqRzdCrgU+Zl+tZoXn/8jdkBNQAZKjhfwi/j/kEdlZ2JnvNdRfXYezusRAQGNtkLL7v9z2n8KMywzYwGYt1xvwkZiTiXMS5/0bkh53VGS0O5La/6nvW14qZGno1NLiXcEFrN05oNgFvt30b1ZyrGVXuvHHTrNazsOT0EgyqOwjbh2436jhFiUuPw8F7B6UOZPcT7ms9XlDM5GztjLaV20odyFpWaglrC2vcj7+fO/Ij5ibOh5/HtafX8CDxgd4RJQWRy+TStFd1PeqilmstKWaq7lyda5eZSN61Ak056kLzt9B7y960bC1ti46FDOzklff5NhY2FT42Z9xUMkXFTTN62ODtLl1N9nrRqdHo9ks3XIm+Ak87TxwcdRANPBuY7PhEhWFihMxCjjoHN2NuavWQuhR5SW8vdB97H61RJS18WxQ59254cjiWnFqClSErkZKVAiB3WPo77d7BuKbjDOphlbeBv7b/WozdPRb+Lv6488adEjc8niQ9kabGOnDvgN7px/LLu0h6q0qt4GXnhajUKFyMvIjzEedxM+YmniQ9QWp2qsHlsLO0Q1WnqqjrURf1Peqjltt/DXk3G7cK38AqK5r5W40edaFn0e78+2rmey5Ncpm8yAa1IcOg9W2zUliZdT3R13PHx8kac/vVe6Yb9/qmtzJlDy5Nz7G875s2AR8nG5P2HPvh/A+Y9MckCAhMajYJK19cyan9qEyxDUzGYp0hAHia+lRrJP7Z8LN6p22yUlihsVdjrZiprnvdQjsAaNZuXHBsAc5FnAOQm3QZ0XAEZrefbfCNsLxxUyWHSghLDsPOoTvxct2Xi3HG/8nMycSJxyekDmSa9SWLUsutlrSmYh33OlALNUJjQhESEYIr0VdwL/4enqY+NfhmuFwmh7e9N2q61kRDz4ZaMVN15+oVvjNPWRFCIEuVZfJRF5ptplorsDDWFtYmH3VhZ2UHW0tbs293Mm4q/vELj5ty30dTxU2RKZHo+ktXXH96Hd723ggeFYy6HnVLfFwiQzExQmYrMycTV6KvaE3Dde3pNb0NoOrO1bV6SBU09258ejxWhqzEklNLpOSDu607ZraeiWktp8HFxqXA8uRt4Pep0Qd77uzB/3X4P3za5VOjzy05Mxn/PPgHQfeCsP/ufoTGhhb5nKpOVdHMuxmqOlWFQq5ARHIEQmND8TDxIeLT4w1uyNtZ2qGKUxXUcauDxt6NtRryrjauRp9LRSWEyE1eGNN7yMDF58py/tbCGtTFbZArFUqzTl6UttJuDJe1sghaTt6NxSvfnypyP1PNNbzy7EpM3TMVADCt5TQs672M3wkqc2wDk7FYZ0gfIQTCksN0pi6Oz4jX2dfO0g7NfJppdTILcAnQ+Q3UrN34xfEvcODeAWl7v1r98F7799C+avtCy5Q3bgIAJ6UTIt+JNHqqKCEErkRfkTqQHX5wGBmqwjsRWVtYo4VPC9R2rw0XaxckZybjdtxt3I2/i4iUCIOnvlLIFPCy84K/iz8aejVEA88GUsxU1anqczXtZpYqS3+HLgPjpsKSHfrWzTE1pUJZdCxUjOl2bS1tOZK4lDFuMl5Zxk3hyeHosq4LQmNDUcmhEoJHB6OWW60SHZPIWEyMEOWRmpWaO/fuv6NKQsJDijX3bnp2On6++DMWnVgkDbm2t7LHpGaT8GbbN/UuSJ63gW8ht0COOgfXp143KFueo87BmbAzCLobhD239yAkIqTQHi4KmQJVHKvA3soeWaosJGQkID4j3uB1HOws7VDJsRJqudZCE+8mUkM+wDUAztbOBh2jLAghkJGTYfyoCwOGQadlp5XJEGhDF+s2ZtSFvZW9SeZvJSqpgoZpm3qY++6LYZi5+WKR+307vAn6NzF8OkV9lp5eipl7ZwLInd5jcc/F/K5RuWAbmIzFOkOGEkLgXvw9rVEl58LP6R1J7mztrDN1cWXHytJvY0h4CBYeX4gd13dIbevAqoGY034O+tTso/c3NH9iZFyTcfix/48GlT0sKQwH7h3Avrv7sO/OPsRlxBW6v5uNmzStb0pmCuLS45CSnWLQaylkCnjaeaK6c3U08GyAJt5NUMutFmq61kRlx8oV6qZ43rUCTTnqoizXCiwyFjJy1IWp1gokMoXnLW56nPgYXX7pgjtxd1DVqSqCRwUjwDWg2McjKi4mRoiKkJCRgHPheebeDT+LR4mPdPZTyBRo4NlAq+Ff16Mudt/cjS+Of4HLUZcB5DbaXmv0Gma3n43a7rWBhMdAWizSc9LR/qdA6Xi13Wvj14GbAFs3wLmK1msJIXA77jb23dmH327+hpNPThY6RZKF3AKWckvkqHOMSn74OPighmsNNPFqgqY+TaUFzx2UDgYdwxB5528trEFd3MXnymIItI2FjclHXdhZ2sHG0sbsh0BT+RFCQC3UUAs1VEL13/+rVSbZnp2Tgzd+SUBcqv6mhSkXRiyrnk9fn/ga7wS9AwCY3W42vuj2BZMiVG7YBiZjsc5QSajUKoTGhkpTF4eEh+Bi5EW9a9B52XnpTF2ckJGARccX4ZfLv0ijLhp6Nsxdu7HBsNyb0wXETav6rkSrSq30xk3Jmck4/PAw/gj9A3/f+RuPkx4XeA4yyGBtYS3FJ4Z0glLIFHC3dUc152qo514PLXxboJ5HPdRwrYFKjpVM2pZXqVWlMuoiNTvVqEXei8tCbmFYLGTgWhd5t3F6MSovQggICJPGSfm356hUmPFL4nMTNz1IeIAu67rgfsJ9VHeujkOjD6G6c/ViHYuopJgYISqG6NTo3ETJv4u7nw07i6jUKJ39lAolGns3RnOf5rC2sMaRh0ek+XRlkGFijd5Yee805KpCkhUWSmD6OTy1tMZft//C1qtbceLJCSRmJpb4PGwtbeFt5w1/F3808m6EVr6tUNejLgJcAnQWIM5SZZl81IVmW1nO31poI9vIURecv9UwmsZiaTUUn7ntFaEMBmwv7RFRSlVDeGctKHI/UwzT1syVG5mYofesTBFMLDi6AB8EfwAA+LDDh/j0hU+ZFKFyxTYwGYt1hkwtS5WFq9FXtabhuhp9Ve/0R1WdqqKlb0vUcquFu3F38dftv6QRKNWdq2NekwkYdeRbyPQkWiQWSuRMO4OzKRHYfHUz/r7zN+7E3Slxm0YhU8DN1g1VHKugjnsdtPBtgSZeTVDLvRZ87H20fu81awUaNerCwOl29SWZTE0hUxgeCxk46kLzfCuFVamX/1knhKhwMUGF2F4RylDAdrUo/XsZz1PcdDfuLrr80gWPEh8hwCUAwaODUdWpaonKTFQSTIwQmYAQAk+SnmiNKgkJD0FCRoLOvjYWNrCxtEFcehyaCjnOw173gPl0sgKOZCcVq2xKhRJOSid42HnA294blRwqwd3WHdYW1tJidYb0NMpR5xTr9Y1hpbAqskFta2ELW0tb2Fja5I6q+Pf9tLGwgbWlNWwtbWGtsIa1pTWsFdZQWiilaaMqWiPKHBqKKrWqTKYco/Ijl8mlPwqZ4r//lysK3Y70FhAJY4o8vimmtwL+G34OQKtGmmL4+SeHP8Hcf+YCAOZ3no+PO31cgpISmQbbwGQs1hkqC2nZabgUeUlrGq7QmFC97UU3GzcpIWBo3NRCloZzMD5ukUMOeyt7uNq4wtvBG74OvvCx94G9lT1kkP2X7Cii41dZrhVYWHLC1sIWtla2Uuxka2WrHTdZWMPG8t+/LWygVCihtFTCUmYJNdQVIoYw6XZUgDIYsJ2eXzLIDI6T8m+XZbSEKn5Uka9R0eOm27G38cK6FxCWHIZabrUQPCoYlRxLXl6ikjCm/cuJFYkKIJPJUMWpCqo4VcHLdV8GkJssuRt/V6uH1PmI80jNNr7BnJyV8t+vkJEyVZmITotGdFo0rj29VryD5CGDDAq5AgpZ7h+5XK51Y1Tzgy+TySCDTPo7P03woxlNkLd3TGJmIuLS4/Q2IOn5pak7xjYUy217RShDOW/XfMeLw9Bh2p4Oxi2kWpBeDXywcmQznQULvUuwYKEQAh8f+hj/O/o/AMDnXT7H+x3eN0l5iYiInke2lrZoW6Ut2lZpK21LykzC+Yjz0jRcZ8PP4kHCA8Smxxp9fLVQFytuUkONpKwkJGUl4UHiA+MPoIem7aSJnfLGTJp4SQ45IIP0d0FxkyZmgoAUG6Vnp+eOvk8p+5G/VL4qWkygdzsqQBkq0PaSjCR/HuKmG09voOsvXRGREoG67nURPDoY3vbeJikvUVlhYoTICDKZDDVca6CGaw280vAVALnzwt6MuSn1kIq9FwzEhJVzSY0jIJCjzkFOMXpilaWK0PgpcjsqQBkqyPaSNhbp2dPKzxU+TtZFDtNu5edqstfs1cAH3et548z9OEQnZ8DTIff4xRkGLoTAnANz8OWJLwEAi7ovwjvt3jFZWYmIiMyFo9IRnat3RufqnaVtMWkxCAkPQUh4CE6HnUbKw+NAhu4UXBWZSqigEqoyWXy8uPK2xStCTMAOSUVvZ8xkfp71uOlq9FV0/aUrolOj0dCzIQ6MOgBPO0+TlZWorDAxQlRCmapMPEl6gitRV3DowSEoY0IBA4aEl4RCppCGSFtb5v5ta2kr/W1rZZs73NrSFvZW9tKUVfZW9rCUW5Z7w68429lYJKr4FHIZ5varhykbzkMG/cO05/arV+IFBPW9bknn3hVC4O39b+ObU98AAL7t9S1mtJ5hiuIRERGZPSEEYtNicTv2Nk6HncbBewdRJzsTpR03KRVKrZjJxtIGthb/TeGrmZoqb7xkb2UPawvr3NH0FSgeMmR7SUb+ElHZeZbjpkuRl9BtfTfEpMWgiXcTBL0WBHdbdxOVkKhsMTFCZCQhBC5HXcb+u/ux/95+HH14VGvRvKYwbNHufSP3IdrRB/EZ8YhLj0N8+r9/Z+T7O8/2+PR4qZeSZi5cGDnlraPSES7WLnC1cYWLzb9/W+f728Yl90+efztYObCRTURFKo1h2qVNLdSY8fcMrDi7AgDwXZ/vMKXllHIuFRER0bMtLj0OB+8dlOKmR4mP8u1hWNy0e/huRDl664+Z0uMRl6G7PS07DUBuJ7ZMVSZg5BrnVgorg2ImnRjK2gWWCkvjXoyIzNKzGDedCz+H7uu7Iz4jHs19mmP/a/vhamO6US1EZY2JESIDRKZEIuhuEPbf24+gu0GISo0qcF9PO08gNa3IY3rYusPDs75R5RBCIDkrucCgoLCkSlJm7kLvSZlJSMpMwsPEh0a9tkKmKLDxX1SAYG1hmnkxiejZYMph2qVNLdSY8ucUrDm/BjLIsKbfGkxoNqG8i0VERPTMyVZl49STU1Ii5GzY2QLXxVDIFOjh3w24e7LI41ZxrIwqvk2MKktmTqbUsayg+Chv57O823LUOchSZSEqNarQuK8gmgXfteIja+04SV/M5Kh0hFxmWLKIiJ4Pz1LcdCbsDHqs74HEzES0rtQae0fuhbO1c3kXi6hEmBgh0iM9Ox3HHh2TGvWXoy5rPW6lsIK9lT3i0uOkbe2qtMOs1rPwsrM/8H2XUimXTCaDo9IRjkpHVHeubtRzc9Q5SMhIKLinVSGjVTJVmVAJFWLSYhCTFmN0uW0sbPQ2/vMHCPkTK87WzlDIFUa/HhGVP1MM0y5tKrUKE/+YiLUX10IGGdb2X4vRTUaXd7GIiIieCUII3I67nRsz3d2PQw8OISUrRWsfNxs3JGclI0uVBQBwsXbBpOaTMK3lNFRJjQXudiqVsiktlPC29zZ6IWAhBFKzU4sVMyVmJgIAUrJSkJKVomeETOHkMjmcrZ2NjplcbVxhY2lj1GsRUcXxLMRNJx6fQK8NvZCclYz2Vdpjz6t74Kh0LO9iEZUYEyNEyG0AX4m+gv139yPoXhCOPDyCjJwMrX2aeDWBm60brj+9joiUCMSlx8FCboGh9YdiZuuZaFWpVe6OCY8BCyWQU8h4bQslYFu2P3wWcgu427oXa+7H9Oz0Qqf3KihAiM+Ih1qokZ6TjvTkdIQnhxv92k5KpwKHsBcWINhb2XPqLyIqUI46B2N3j8WGyxsgl8mx/uX1GNFwRHkXi4iIqEKLT4/HwfsHpWRI/lHobjZuaOLdBPEZ8bgYeRGx6bEAgDrudTCz9Uy81ug12FnZ5e4sUOHiJplMJq0zUtWpqlHPValVSMhIKDiRkmfar/z7pOekQy3UiEuP0+p8ZyilQmnwtF/5/99CzttCRFSwIw+PoO+mvkjJSkGnap3w54g/YW9VuutDEZUVmRBC/9jWCiwpKQlOTk5ITEyEoyMzlFQ8USlRCLoXJCVDIlMitR6v5FAJPQJ6oJFXI1x/eh2/Xv1V6gHlZuOGyc0nY2rLqajkWEn34AmPgbTYgl/c1g1wrmLK06mQ1EKN5MzkwntaFTAvcP7eZsaykFsUe15gpYXSRO8AEVVEOeocvPbba9h8dTMUMgU2DdqEofWHlnexiIrENjAZi3WGSipblY3TYaelRMjZ8LNQC7X0uKXcEoFVA9HFrwtUQoXdN3fjQuQF6fGeAT0xq80s9AjooX+aKMZNAICMnAy9CZOiYibNGpQl4WDlYHTM5GrjyjUoicxA8P1g9Pu1H9Ky09DVryt2D9/9X3KbqIIypv3LxAiZjYycjP+mx7q7H5eiLmk9bmNhg87VO6NHQA909++OqJQofHvmW/wR+oc0N249j3qY1XoWXm30KmwtbcvjNMxGtiq7wHmBC1tLJS49ThqqX1y2lrYFDmEvLEBwUjpx6i+iCkalFlpz9jat6oCRv43Ajhs7YCm3xJbBW/By3ZfLu5hEBmEbmIzFOkPGEkLgbvxdKWYKvh+M5KxkrX3qutdFj4Ae6BHQA3Xc62D9pfVYGbJSWo/DxsIGoxqPwozWM1DPo155nIbZ0KxBWZy1VDRrUBaXZg1KQzqj5d+Ha1ASVSz5Y6ZWfq44eD8I/Tf3R0ZOBnoG9MRvw37jtH30TDCm/csxk/TcEkLg2tNrUqP+8MPDOtNjNfVuKjXq21dpDwGBTVc2YcTOEVrrivSt2RczW89EN/9u7BVTRiwVlvC088xdzN4IQgik56QXa17ghIwECAikZachLTsNT5KeGPXaMsjgZO1UrHmBbS1tWbeITGzv1QjM/+M6IhL/u/ZbWqYgTBYOKysrbB+yHf1q9yvHEhIREZW/hIwEBN8PluKm+wn3tR53s3FDN/9uUgeyKk5VcDHyIr49/S02XdkkdUqq5FAJb7R6AxObT4SrjWt5nIrZybsGZTXnakY9V7MGpbExkynWoLS2sC58VEoB27kGJZHp6YuZnO2A+6ovkSHLQN+afbF96HYmNOm5xBEj9FyJTo3GgXsHpEZ9REqE1uM+9j5SIqSbfzfppntEcgRWhqzEqpBVeJr2FEDuqIGxTcbijVZvoLZ77TI/Fyp7aqFGYkZioUPYCwoQUrNTS/TalnJLo3taaeYFtlJYmegdIHp+7L0agSkbziN/I0dADUCGyV3l+KB7n/IoGlGxsQ1MxmKdIX1y1Dk4/eTf6bHu7ceZsDM602O1r9oePfxz46amPk0hl8mhUqvw560/seT0Evzz4B9p/zaV22BW61kYWHcgLBWW5XBGVNbSs9MLn/arkNEqeetacTgpnYyeKtnVxpVrUBLpUVTM5O93EPsmLOQ9B3qmcMTIs4BzqerQN3RPIS+84ZKZk4njj49LiZC889lCyOEoa4767u3Qtmo9jGrZHo28Gmg1hs5HnMeSU0uw+epmZKuzAQBVnarijVZvYHzT8XCxcSmVc6WKSS6T5zaebVzg7+Jv1HOzVFnFnhc4W52NbHU2olKjpCkIjGFnaVeseYEdlY7653qu4IpzrSDzolILzP/juk4DHwBkyK3zf4Qo8V5XwbpDRFTRMW7SUtx20N24u1IiJPh+8H/TKAk5lOr6qGJfH62q1Mbwpi3xgn8nrYV1kzKTsPbCWiw9sxT34u8ByJ1GaUj9IZjZeibaVG5TKudKFZeNpQ1sLG3g6+Br1PM0a1Aak1TRbNdM6ZaYmYjEzEQ8SHhg1Gtr1qA0NmZ6VtegZMxERSk6ZhLIiOsLhYwJb3p+MTFSHhIeA8ubAzmZBe9joQSmnzObRr6+oXs+TtaY268eejXwkbYJIXD96XVpwfR/HvyD9Jx0rWM18W6Cevav4Pq9+ohPBcIfAzseAyeuRmNuv0h0r+eJ3aG7seTUEhx9dFR6Xvsq7TGrzSwMqDMAFnJ+Ncg4VgoreNl7wcvey6jnCSGQmp1aaFBQUFIlMSMRArnPT81OxeOkx0a9tlwmh7O1c6FD2AsKEGwsbMqlx5Wh1woyb2fux2nVEX0iEjNw5n4c2ga4lVGpiIjIaIybtBjTDkrMSPxveqx7+6WEhoarjSuauYxDZHgHJGcpkB0HHI8D7j2whmW/ZPRqYI978few7PQy/HjhR+mmtIu1CyY3n4xpraahsmPl0j9peq7IZXI4WTvBydoJ1Z2rG/XcbFU2EjISDE6kaP5fswZljjoHT9OeSjNEGMPW0taoab80/19ea1AyZiJDFB0zyRCRmMmYiZ5rvPtbHtJiC2/cA7mPp8WaTQNf39C9yMQMTNlwHl8MrgG18jz238sdFRKeHK61n7e9d+70WP6502NdeKAu8HivbzgHOP+Ah5m7AeT2GhlWfxhmtp6JlpValt5JEhVAJpPB3soe9lb2qOJk3PddpVYhMTPR6HmB4zPikZadBrVQS8HC3fi7Rr22lcKq2PMCF3eKhaKuFStHNmNDnwAA0cmFJ0WM3Y+IiMoJ4yZJUe2g5SOawNXlkZQIOf3kNFRCJe1nIbdAuyrtpOmxnsb6YtqmiwXETOdRvXoQjkQthfh3j7rudTGz9Uy81vg12Fralu7JEulhqbCEh50HPOw8jHqeZg3K4sRM8enxWmtQhiWHGfXamjUojY2ZXGxcYGdpV6yOaIyZyFCMmYiYGKFyVtjQPfHvf9/efhJh1uMBWe5cpNYW1uhYraPUqG/g+d/0WLnHCy7weAICqoQBcHc9gcktJmFqy6lGD/8lqigUcgVcbVzhauOKAAQY9dzMnEyDhrDr25ajzkGWKguRKZGITIk0utwOVg5Gr6XipHTBvEKuFTIA8/+4ju71vDlEnODpYNjCgIbuR0REVJ4MiZmm/HoAj5XjpJgJAGq51ZJips7VO8NB6SAdL/CXwmImNe48aAJhLUPvmr0wq80sdPfvzvUZ6Jkkk8lga2kLW0tbVHKsZNRz1UKNpMwko6f9is+IR0pWCgQEEjISkJCRgPsJ9416bUu5pf7R+9YFr6XipHTBvN+vMWYigzBmIirnxMiKFSuwaNEiREZGonHjxli2bBlatWpVnkWiMmbI0D0LeKCeUz/0qV8TPQJ6ILBqIGwsbYp1PBnksIAHNg64iE61mBAh86W0UMLb3hve9t5GPU8IgZSslGLNC5yYmQgASM5KRnJWMh4lPjK8vKqG8M5aUHC5wKmR6D+t/Fzh42SNyMSMAubMBbydcudaJiKq6BgzkSExk1y4w82iNV6oXQk9/Huge0D3AqcqMjRm2vxSCIY1a1qywhM9wzRTDztbOwNGLj+apcr6b+ovI0eraNagjE6NRnRqtMGvyZiJjMGYiagcEyNbtmzBW2+9hVWrVqF169ZYsmQJevbsidDQUHh6epZXsaiMGTok7/MXVqB/k6J7dxh6vIQ0fZd9IiqKTCaDg9IBDkoHVHWqatRzc9Q5SMxILDIo0Bc4yHIMi0Q4zJcAQCGXYW6/epiy4TxkgFZDX9M3bm6/euwpR0QVHmMmAgxv33zfdwteblr0lGKGHs9azjpGVFxWCit42nnC086475EQuVN3FRoz6VmDMj49Hlkpht3AZsxEAGMmIqAcEyOLFy/GxIkTMXbsWADAqlWr8Ndff+Gnn37CnDlzyqtYVMZMPXSPQwGJKi4LuQXcbN3gZmt876TDtyIw+qfzRe7H7zZp9Grgg5Ujm+ksPOnNhSeJ6BnCmIkAw9s33o6Grf3BmImo4pLJZLCzsoOdlZ3Ra1AevxONV384W+R+/G6TBmMmMnflkhjJysrCuXPn8P7770vb5HI5unXrhpMnT+rsn5mZiczM/xbdS0pKKpNyUukz9dA9DgUkej4F1vDmd5uM1quBD7rX88aZ+3GITs6Ap0NuHWGvJyJ6FhgbMwGMm55XjJmIyBBt/D343SajMWYicyYvjxeNiYmBSqWCl5eX1nYvLy9ERuou5LtgwQI4OTlJf6pUMS5rThWXZuge8N9QPY3iDN0z9fGIqGLgd5uKSyGXoW2AG/o3qYS2AW6sI0T0zDA2ZgIYNz2vGDMRkSH43abiYsxE5qpcEiPGev/995GYmCj9efz4cXkXqWRs3QALZeH7WChz9zMDmqF73k7awzm9nayxcmQzo4fumfp4RFQx8LtNRERUOMZNzy/GTERkCH63iYgMVy5Tabm7u0OhUCAqKkpre1RUFLy9vXX2VyqVUCqLaBA/S5yrANPPAWmxBe9j65a7n5kw9dA9DgUkej7xu01ERObC2JgJYNz0vGPMRESG4HebiMgw5ZIYsbKyQvPmzXHw4EEMGDAAAKBWq3Hw4EFMnz69PIpU9pyrmE0D3lCaoXsV9XhEVDHwu01EROaAMdO/GDdpYcxERIbgd5uIqGjlkhgBgLfeegujR49GixYt0KpVKyxZsgSpqakYO3ZseRWJiIiIiIiowmDMRERERERUOsotMTJs2DA8ffoUH3/8MSIjI9GkSRPs3btXZ3FBIiIiIiIic8SYiYiIiIiodMiEEKK8C2GspKQkODk5ITExEY6OjuVdHCIiIiKiUsc2MBmLdYaIiIiIzIkx7V95GZWJiIiIiIiIiIiIiIio3DExQkREREREREREREREZoOJESIiIiIiIiIiIiIiMhvltvh6SWiWRUlKSirnkhARERERlQ1N2/cZXCKQygnjJiIiIiIyJ8bETM9kYiQ5ORkAUKVKlXIuCRERERFR2UpOToaTk1N5F4OeAYybiIiIiMgcGRIzycQz2OVMrVYjPDwcDg4OkMlkJTpWUlISqlSpgsePHxe5Uj2ZB9YJ0of1gvJjnSB9WC8oP1PWCSEEkpOT4evrC7mcM+JS0UwVN/HaRvqwXlB+rBOkD+sF5cc6QfmVV8z0TI4YkcvlqFy5skmP6ejoyC8jaWGdIH1YLyg/1gnSh/WC8jNVneBIETKGqeMmXttIH9YLyo91gvRhvaD8WCcov7KOmdjVjIiIiIiIiIiIiIiIzAYTI0REREREREREREREZDbMPjGiVCoxd+5cKJXK8i4KVRCsE6QP6wXlxzpB+rBeUH6sE/Q8YD0mfVgvKD/WCdKH9YLyY52g/MqrTjyTi68TEREREREREREREREVh9mPGCEiIiIiIiIiIiIiIvPBxAgREREREREREREREZkNJkaIiIiIiIiIiIiIiMhsMDFCRERERERERERERERmw6wTIytWrED16tVhbW2N1q1b48yZM+VdJCojCxYsQMuWLeHg4ABPT08MGDAAoaGhWvtkZGRg2rRpcHNzg729PQYNGoSoqKhyKjGVhy+++AIymQyzZs2StrFemJ+wsDCMHDkSbm5usLGxQcOGDRESEiI9LoTAxx9/DB8fH9jY2KBbt264fft2OZaYSptKpcJHH30EPz8/2NjYICAgAJ9++imEENI+rBfPtyNHjqBfv37w9fWFTCbDrl27tB435POPi4vDq6++CkdHRzg7O2P8+PFISUkpw7MgMhzjJvPFuImKwpiJNBg3UV6MmQio+HGT2SZGtmzZgrfeegtz587F+fPn0bhxY/Ts2RPR0dHlXTQqA4cPH8a0adNw6tQpBAUFITs7Gz169EBqaqq0z5tvvok//vgD27Ztw+HDhxEeHo6BAweWY6mpLJ09exarV69Go0aNtLazXpiX+Ph4tG/fHpaWlvj7779x/fp1fP3113BxcZH2+fLLL7F06VKsWrUKp0+fhp2dHXr27ImMjIxyLDmVpoULF2LlypVYvnw5bty4gYULF+LLL7/EsmXLpH1YL55vqampaNy4MVasWKH3cUM+/1dffRXXrl1DUFAQ/vzzTxw5cgSTJk0qq1MgMhjjJvPGuIkKw5iJNBg3UX6MmQh4BuImYaZatWolpk2bJv1bpVIJX19fsWDBgnIsFZWX6OhoAUAcPnxYCCFEQkKCsLS0FNu2bZP2uXHjhgAgTp48WV7FpDKSnJwsatasKYKCgkSnTp3EzJkzhRCsF+bovffeE4GBgQU+rlarhbe3t1i0aJG0LSEhQSiVSvHrr7+WRRGpHPTt21eMGzdOa9vAgQPFq6++KoRgvTA3AMRvv/0m/duQz//69esCgDh79qy0z99//y1kMpkICwsrs7ITGYJxE+XFuIk0GDNRXoybKD/GTJRfRYybzHLESFZWFs6dO4du3bpJ2+RyObp164aTJ0+WY8movCQmJgIAXF1dAQDnzp1Ddna2Vh2pU6cOqlatyjpiBqZNm4a+fftqff4A64U5+v3339GiRQsMGTIEnp6eaNq0Kb7//nvp8fv37yMyMlKrTjg5OaF169asE8+xdu3a4eDBg7h16xYA4NKlSzh27Bh69+4NgPXC3Bny+Z88eRLOzs5o0aKFtE+3bt0gl8tx+vTpMi8zUUEYN1F+jJtIgzET5cW4ifJjzERFqQhxk0WJj/AMiomJgUqlgpeXl9Z2Ly8v3Lx5s5xKReVFrVZj1qxZaN++PRo0aAAAiIyMhJWVFZydnbX29fLyQmRkZDmUksrK5s2bcf78eZw9e1bnMdYL83Pv3j2sXLkSb731Fj744AOcPXsWM2bMgJWVFUaPHi197vp+T1gnnl9z5sxBUlIS6tSpA4VCAZVKhc8++wyvvvoqALBemDlDPv/IyEh4enpqPW5hYQFXV1fWEapQGDdRXoybSIMxE+XHuInyY8xERakIcZNZJkaI8po2bRquXr2KY8eOlXdRqJw9fvwYM2fORFBQEKytrcu7OFQBqNVqtGjRAp9//jkAoGnTprh69SpWrVqF0aNHl3PpqLxs3boVGzduxKZNm1C/fn1cvHgRs2bNgq+vL+sFERE9txg3EcCYifRj3ET5MWaiZ4FZTqXl7u4OhUKBqKgore1RUVHw9vYup1JReZg+fTr+/PNPHDp0CJUrV5a2e3t7IysrCwkJCVr7s448386dO4fo6Gg0a9YMFhYWsLCwwOHDh7F06VJYWFjAy8uL9cLM+Pj4oF69elrb6tati0ePHgGA9Lnz98S8vPvuu5gzZw6GDx+Ohg0b4rXXXsObb76JBQsWAGC9MHeGfP7e3t46C1fn5OQgLi6OdYQqFMZNpMG4iTQYM5E+jJsoP8ZMVJSKEDeZZWLEysoKzZs3x8GDB6VtarUaBw8eRNu2bcuxZFRWhBCYPn06fvvtNwQHB8PPz0/r8ebNm8PS0lKrjoSGhuLRo0esI8+xrl274sqVK7h48aL0p0WLFnj11Vel/2e9MC/t27dHaGio1rZbt26hWrVqAAA/Pz94e3tr1YmkpCScPn2adeI5lpaWBrlcuwmlUCigVqsBsF6YO0M+/7Zt2yIhIQHnzp2T9gkODoZarUbr1q3LvMxEBWHcRIybKD/GTKQP4ybKjzETFaVCxE0lXr79GbV582ahVCrFzz//LK5fvy4mTZoknJ2dRWRkZHkXjcrAlClThJOTk/jnn39ERESE9CctLU3a5/XXXxdVq1YVwcHBIiQkRLRt21a0bdu2HEtN5aFTp05i5syZ0r9ZL8zLmTNnhIWFhfjss8/E7du3xcaNG4Wtra3YsGGDtM8XX3whnJ2dxe7du8Xly5dF//79hZ+fn0hPTy/HklNpGj16tKhUqZL4888/xf3798XOnTuFu7u7mD17trQP68XzLTk5WVy4cEFcuHBBABCLFy8WFy5cEA8fPhRCGPb59+rVSzRt2lScPn1aHDt2TNSsWVO88sor5XVKRAVi3GTeGDeRIRgzEeMmyo8xEwlR8eMms02MCCHEsmXLRNWqVYWVlZVo1aqVOHXqVHkXicoIAL1/1q5dK+2Tnp4upk6dKlxcXIStra14+eWXRURERPkVmspF/kY+64X5+eOPP0SDBg2EUqkUderUEWvWrNF6XK1Wi48++kh4eXkJpVIpunbtKkJDQ8uptFQWkpKSxMyZM0XVqlWFtbW18Pf3Fx9++KHIzMyU9mG9eL4dOnRIbzti9OjRQgjDPv/Y2FjxyiuvCHt7e+Ho6CjGjh0rkpOTy+FsiIrGuMl8MW4iQzBmIiEYN5E2xkwkRMWPm2RCCFHycSdEREREREREREREREQVn1muMUJEREREREREREREROaJiREiIiIiIiIiIiIiIjIbTIwQEREREREREREREZHZYGKEiIiIiIiIiIiIiIjMBhMjRERERERERERERERkNpgYISIiIiIiIiIiIiIis8HECBERERERERERERERmQ0mRoiIiIiIiIiIiIiIyGwwMUJERERERERERERERGaDiREiIiIiIiIiIiIiIjIbTIwQEREREREREREREZHZYGKEiIiIiIiIiIiIiIjMBhMjRERERERERERERERkNpgYISIiIiIiIiIiIiIis8HECBERERERERERERERmQ0mRoiIiIiIiIiIiIiIyGwwMUJERERERERERERERGaDiREiIiIiIiIiIiIiIjIbTIwQEREREREREREREZHZYGKEiIiIiIiIiIiIiIjMBhMjRERERERERERERERkNpgYISIiIiIiIiIiIiIis8HECBERERERERERERERmQ0mRoiIiIiIiIiIiIiIyGwwMUJERERERERERERERGaDiREiIiIiIiIiIiIiIjIbTIwQEREREREREREREZHZYGKEiIiIiIiIiIiIiIjMBhMjRERERERERERERERkNpgYISIiIiIiIiIiIiIis8HECBERERERERERERERmQ0mRoiIiIiIiIiIiIiIyGwwMUJERERERERERERERGaDiREiIiIiIiIiIiIiIjIbTIwQEREREREREREREZHZYGKEiIiIiIiIiIiIiIjMBhMjRERERERERERERERkNpgYISIiIiIiIiIiIiIis8HECBERERERERERERERmQ0mRoiIiIiIiIiIiIiIyGwwMUJERERERERERERERGaDiREiIiIiIiIiIiIiIjIbTIwQEREREREREREREZHZYGKEiIiIiIiIiIiIiIjMBhMjRERERERERERERERkNpgYISIiIiIiIiIiIiIis8HECBERERERERERERERmQ0mRoiIiIiIiIiIiIiIyGwwMUJERERERERERERERGaDiREiIiIiIiIiIiIiIjIbTIwQEREREREREREREZHZYGKEiIiIiIiIiIiIiIjMBhMjRERERERERERERERkNpgYISIiIiIiIiIiIiIis8HECBERERERERERERERmQ0mRoiIiIiIiIiIiIiIyGwwMUJERERERERERERERGaDiREiIiIiIiIiIiIiIjIbTIwQEREREREREREREZHZYGKEiIiIiIiIiIiIiIjMBhMjRERERERERERERERkNpgYISIiIiIiIiIiIiIis8HECBERERERERERERERmQ0mRoiIiIiIiIiIiIiIyGwwMUJERERERERERERERGaDiREiIiIiIiIiIiIiIjIbTIwQEREREREREREREZHZYGKEiIiIiIiIiIiIiIjMBhMjRERERERERERERERkNpgYISIiIiIiIiIiIiIis8HECBERERERERERERERmQ0mRoiIiIiIiIiIiIiIyGwwMUJERERERERERERERGaDiREiIiIiIiIiIiIiIjIbTIwQEREREREREREREZHZYGKEiIiIiIiIiIiIiIjMBhMjRERERERERERERERkNpgYISIiIiIiIiIiIiIis8HECBERERERERERERERmQ0mRoiIiIiIiIiIiIiIyGwwMUJERERERERERERERGaDiREiIiIiIiIiIiIiIjIbTIwQEREREREREREREZHZYGKEiIiIiIiIiIiIiIjMBhMjRERERERERERERERkNpgYISIiIiIiIiIiIiIis8HECBERERERERERERERmQ0mRoiIiIiIiIiIiIiIyGwwMUJERERERERERERERGaDiREiIiIiIiIiIiIiIjIbTIwQEREREREREREREZHZYGKEiIiIiIiIiIiIiIjMBhMjRERERERERERERERkNpgYISIiIiIiIiIiIiIis8HECBERERERERERERERmQ0mRoiIiIiIiIiIiIiIyGwwMUJERERERERERERERGaDiREiIiIiIiIiIiIiIjIbTIwQEREREREREREREZHZYGKEiIiIiIiIiIiIiIjMBhMjRERERERERERERERkNpgYISIiIiIiIiIiIiIis8HECBERERERERERERERmQ0mRoiIiIiIiIiIiIiIyGwwMUJERERERERERERERGaDiREiIiIiIiIiIiIiIjIbTIwQEREREREREREREZHZYGKEiIiIiIiIiIiIiIjMBhMjRERERERERERERERkNpgYISIiIiIiIiIiIiIis8HEyHPgwYMHkMlk+Pnnn6Vt8+bNg0wm09qvevXqGDNmTKmXZ8yYMahevXqpv05x6Xu/zE3nzp3RoEGD8i5Gsfz888+QyWR48OCB0c/V970obZ07d0bnzp3L9DUBw+u55v0MCQkpm4JVIJr36KuvvipyX1PWHX3XSJlMhnnz5pnk+KWpvOozlZ6K/ptNRFRcjJGMwxjp+ffPP/9AJpPhn3/+Mfq5JYnBiqs8vzOGtM017+f27dvLplAVjEwmw/Tp04vcz5R1pzyv4SVV0X8DyHjlcX+JTI+JkVKiufjr+zNnzpzyLh4A4Pr165g3b16ZNm7K0qZNm7BkyZLyLgYRUYW1Z8+eck/IZGZm4r333oOvry9sbGzQunVrBAUFGfz8sLAwDB06FM7OznB0dET//v1x7949rX3S09Mxfvx4NGjQAE5OTrC3t0fjxo3x7bffIjs729SnZNaSk5Mxe/Zs+Pn5QalUolKlShg8eDDS0tJ09j1w4AC6dOkCJycnODg4oHnz5tiyZYvWPikpKZg1axYqV64MpVKJunXrYuXKlTrHKqzdFRkZqbVvRkYGFixYgHr16sHW1haVKlXCkCFDcO3aNdO+GUSkgzFS+XtWY6TPP/8cu3btKu9iEBEBAE6cOIF58+YhISGh3MqgVqvx5Zdfws/PD9bW1mjUqBF+/fVXg5+fkJCASZMmwcPDA3Z2dnjhhRdw/vx5nf3efPNNNGvWDK6urrC1tUXdunUxb948pKSkmPJ0zF5WVhY+//xz1KlTB9bW1vDy8kLfvn3x5MkTnX3Pnz+Pl156SfpMGjRogKVLl2rtk52djfnz58Pf3x9KpRL+/v743//+h5ycHK39NElefX9OnTqlta9arcaqVavQpEkT2Nvbw8vLC71798aJEydM/4aUEYvyLsDz7pNPPoGfn5/WNlP31K9WrRrS09NhaWlZ6H6hoaGQy//LhV2/fh3z589H586dn8vM9aZNm3D16lXMmjVLa7uh7xcRkcb//d//leoNm/T0dFhYlP1P8p49e7BixQqDkyP79+83eRnGjBmD7du3Y9asWahZsyZ+/vln9OnTB4cOHUJgYGChz01JScELL7yAxMREfPDBB7C0tMQ333yDTp064eLFi3BzcwOQ+/5eu3YNffr0QfXq1SGXy3HixAm8+eabOH36NDZt2mTy8zJHiYmJ6NSpE548eYJJkyahRo0aePr0KY4ePYrMzEzY2tpK+65duxbjx49H9+7d8fnnn0OhUCA0NBSPHz+W9lGpVOjZsydCQkIwbdo01KxZE/v27cPUqVMRHx+PDz74QKcM+tpdzs7OWv9+9dVX8fvvv2PixIlo1qwZwsPDsWLFCrRt2xZXrlxBtWrVTPvGEJEOxkjl51mNkT7//HMMHjwYAwYMKO+iEJERXnvtNQwfPhxKpbJUjp//Gl5WTpw4gfnz52PMmDE6bU19vv/+e6jVapOW4cMPP8QXX3yBiRMnomXLlti9ezdGjBgBmUyG4cOHF/pctVqNvn374tKlS3j33Xfh7u6O7777Dp07d8a5c+dQs2ZNad+zZ8+iQ4cOGDt2LKytrXHhwgV88cUXOHDgAI4cOVIu7//zJjs7G3379sWJEycwceJENGrUCPHx8Th9+jQSExNRuXJlad/9+/ejX79+aNq0KT766CPY29vj7t27OgmUkSNHYtu2bRg3bhxatGiBU6dO4aOPPsKjR4+wZs0anTLMmDEDLVu21NpWo0YNrX+/++67WLx4MUaOHImpU6ciISEBq1evRqdOnXD8+HG0atXKhO9K2WBipJT17t0bLVq0KNXXkMlksLa2LnK/0vohetYY+n4R0bMnLS1N6+arqVhYWJRq4sKQa1Jqairs7OxKrQyGsLKyMunxzpw5g82bN2PRokV45513AACjRo1CgwYNMHv27CJ7nnz33Xe4ffs2zpw5IzXievfujQYNGuDrr7/G559/DgBwdXXV6e3y+uuvw8nJCcuXL8fixYvh7e1t0nMzR++//z4ePnyI8+fPa93wfO+997T2e/DgAaZNm4Y33ngD3377bYHH27lzJ06cOIEff/wR48aNAwBMmTIFgwcPxqeffooJEybA09NT6zlFtbvCwsKwc+dOvPPOO1i0aJG0vUOHDujSpQt27tyJN99806jzJiLjMUaqeJ6nGKkitJmInjWl9b1RKBRQKBQmP66GIdfwinBNMHXSOSwsDF9//TWmTZuG5cuXAwAmTJiATp064d1338WQIUMKfd+3b9+OEydOYNu2bRg8eDAAYOjQoahVqxbmzp2r1XHs2LFjOs8PCAjAO++8gzNnzqBNmzYmPTdz9M033+Dw4cM4duxYocmFpKQkjBo1Cn379sX27dsLTEqdPXsWW7duxUcffYRPPvkEQG786+7ujsWLF2P69Olo1KiR1nM6dOgg1QV9cnJysHLlSgwePBjr16+Xtg8ZMgT+/v7YuHHjM5kYYVqvnDx8+BBTp05F7dq1YWNjAzc3NwwZMkTvkO2EhAS8+eabqF69OpRKJSpXroxRo0YhJiYGgOHzweade/Hnn3/GkCFDAAAvvPCCNEzqn3/+wejRo+Hu7q53epEePXqgdu3aRp9vamoq3n77bVSpUgVKpRK1a9fGV199BSGEzr4bNmxAq1atYGtrCxcXF3Ts2FGrl/Lu3bvRt29f+Pr6QqlUIiAgAJ9++ilUKpW0T+fOnfHXX3/h4cOH0rlpenwV9H4FBwejQ4cOsLOzg7OzM/r3748bN25o7aOZQ/DOnTtSzwAnJyeMHTtW7zQheS1duhQKhUJrqOXXX38NmUyGt956S9qmUqng4OCgdSNJrVZjyZIlqF+/vjSkbvLkyYiPj9d6DUPem4Ls378ftra2eOWVV3SG1uWlWZ/k8uXL6NSpE2xtbVGjRg1pbtXDhw+jdevWsLGxQe3atXHgwAGdY1y4cAG9e/eGo6Mj7O3t0bVrV52blgBw7do1dOnSBTY2NqhcuTL+97//FdjL4u+//5Y+PwcHB/Tt27fY06Lcvn0bgwYNgre3N6ytrVG5cmUMHz4ciYmJ0j45OTn49NNPERAQAKVSierVq+ODDz5AZmZmgceNioqChYUF5s+fr/NYaGgoZDKZ1KgBcr/7s2bNkr43NWrUwMKFC3Xeg4SEBIwZMwZOTk5wdnbG6NGjjR7Sm5aWhsmTJ8PNzQ2Ojo4YNWqUVv0yxXVhxYoV8Pf3h42NDVq1aoWjR4/qrFlR0By0+uZE1tTFc+fOoWPHjrC1tZV6kEdHR2P8+PHw8vKCtbU1GjdujHXr1hVYtm+++QbVqlWDjY0NOnXqhKtXr2o9Xtz5Q3ft2oUGDRrA2toaDRo0wG+//aZ3v/zzGGte7/r16xgxYgRcXFy0Rk9s2LABzZs3h42NDVxdXTF8+HCtnvYap0+fRp8+feDi4gI7Ozs0atRIuhE9ZswYrFixQnp9zZ/C5P+8NJ/L1q1b8dlnn6Fy5cqwtrZG165dcefOnSLfn+3bt0OhUGDSpEnSNmtra4wfPx4nT57Ue075n9+yZUutni116tRB165dsXXr1iJfX/O7UNT3RTMMuWbNmrC2toabmxsCAwN1pvy6efMmBg8eDFdXV1hbW6NFixb4/fffdY5X1O86YFgdzrtOzpo1a6TrUcuWLXH27Fmd1zW0Pm7evBnNmzeHg4MDHB0d0bBhw0ITGJpzWrt2LSZNmgQ/Pz9kZWUVeD1ctWoVVCqV1EhPSUnR2x44evQoAOj0eBs+fDgyMjKwe/duvcdPTk4u8HcvOTkZAODl5aW13cfHBwBgY2NT0CkSURlgjGR+MRJQdNtbJpMhNTUV69atk8qt+cwKazMZ2l6vXr06XnzxRemGlLW1Nfz9/fHLL7/olFUTA+WNT9auXWvQGgpjxoyBvb09Hj16hBdffBH29vaoVKmS1B67cuUKunTpAjs7O1SrVk3viNZ79+5hyJAh0vQpbdq0wV9//aWz35MnTzBgwADY2dnB09MTb775ZoG/y6dPn0avXr3g5OQEW1tbqedvcURGRmLs2LHSFJg+Pj7o37+/znvz3XffoX79+lAqlfD19cW0adMKbY9lZ2fD1dUVY8eO1XksKSkJ1tbWUicbIHeq1rlz56JGjRpQKpWoUqUKZs+erfMeZGZm4s0334SHhwccHBzw0ksv6Z22pjAqlQoffPABvL29YWdnh5deekmrDTt37lxYWlri6dOnOs+dNGkSnJ2dkZGRUehrbNu2DfXq1dNqw+Vfs6KgNWT0fbc1dfHu3bvo06cPHBwc8OqrrwIw7roEABs3bkTt2rVhbW2N5s2b48iRI1qPF3eNkWPHjqFly5awtrZGQEAAVq9erXe//GuMaF7v8OHDmDp1Kjw9PbV62xt63+DmzZsYOnQoPDw8pHsbH374IYDc6867774LAPDz85OuS4WdY/7Py9h2fH67d+9GdnY2pk6dKm2TyWSYMmUKnjx5gpMnTxb6/O3bt8PLywsDBw6Utnl4eGDo0KHYvXt3ofc1AMPjKABYtmwZ6tevL/1+tWjRQuf6FhYWhnHjxsHLywtKpRL169fHTz/9pHOsjIwMzJs3D7Vq1YK1tTV8fHwwcOBA3L17V9rH0DqsWSdHEyNpXnfv3r06r2tofQwKCkJgYCCcnZ1hb2+P2rVr6x3lnpdarca3336Ll19+Ga1atUJOTk6Bv52bNm1CVFQUPvvsM8jlcqSmpuq9R1ZYHCWE0Jm+WCM5ObnA+4HZ2dlIT0/XiaM8PT0hl8uf2TiKI0ZKWWJiotaNDgBwd3fH2bNnceLECQwfPhyVK1fGgwcPsHLlSnTu3BnXr1+XejynpKSgQ4cOuHHjBsaNG4dmzZohJiYGv//+O548eQJ3d/dilatjx46YMWMGli5dig8++AB169YFANStWxevvfYafvnlF+zbtw8vvvii9JzIyEgEBwdj7ty5Rr2WEAIvvfQSDh06hPHjx6NJkybYt28f3n33XYSFheGbb76R9p0/fz7mzZuHdu3a4ZNPPoGVlRVOnz6N4OBg9OjRA0DuD529vT3eeust2NvbIzg4GB9//DGSkpKk3p8ffvghEhMT8eTJE+n49vb2BZbxwIED6N27N/z9/TFv3jykp6dj2bJlaN++Pc6fP68zjH7o0KHw8/PDggULcP78efzwww/w9PTEwoULC3yNDh06QK1W49ixY9L7evToUcjlcumiBeQmDVJSUtCxY0dp2+TJk/Hzzz9j7NixmDFjBu7fv4/ly5fjwoULOH78uNT7wJD3Rp8///wTgwcPxrBhw/DTTz8V2aMjPj4eL774IoYPH44hQ4Zg5cqVGD58ODZu3IhZs2bh9ddfx4gRI7Bo0SIMHjwYjx8/hoODA4DcZEeHDh3g6OiI2bNnw9LSEqtXr0bnzp2lpAqQW99eeOEF5OTkYM6cObCzs8OaNWv0XmzXr1+P0aNHo2fPnli4cCHS0tKwcuVKBAYG4sKFC0ZNg5CVlYWePXsiMzMTb7zxBry9vREWFoY///wTCQkJcHJyApDbG2PdunUYPHgw3n77bZw+fRoLFizAjRs3CrzZ6OXlhU6dOmHr1q0636MtW7ZAoVBIwXhaWho6deqEsLAwTJ48GVWrVsWJEyfw/vvvIyIiQpobWgiB/v3749ixY3j99ddRt25d/Pbbbxg9erTB5wwA06dPh7OzM+bNm4fQ0FCsXLkSDx8+lBrYJb0urFy5EtOnT0eHDh3w5ptv4sGDBxgwYABcXFy0GqrGio2NRe/evTF8+HCMHDkSXl5eSE9PR+fOnXHnzh1Mnz4dfn5+2LZtG8aMGYOEhATMnDlT6xi//PILkpOTMW3aNGRkZODbb79Fly5dcOXKFZ0ffWPs378fgwYNQr169bBgwQLExsZKgaKhhgwZgpo1a+Lzzz+XGnKfffYZPvroIwwdOhQTJkzA06dPsWzZMnTs2BEXLlyQhnIHBQXhxRdfhI+PD2bOnAlvb2/cuHEDf/75J2bOnInJkycjPDwcQUFBWj0+iuOLL76AXC7HO++8g8TERHz55Zd49dVXcfr06UKfd+HCBdSqVQuOjo5a2zU9TS5evIgqVarofa5arcbly5elkQT5n79//34kJydL1x4g9/udlJSE9PR0hISE4KuvvkK1atV0hgjnN2/ePCxYsAATJkxAq1atkJSUhJCQEJw/fx7du3cHkHtta9++PSpVqiRds7Zu3YoBAwZgx44dePnllwEY9rtubB3etGkTkpOTMXnyZMhkMnz55ZcYOHAg7t27J/0+GFofg4KC8Morr6Br167Sb9qNGzdw/PhxndfN69ixY8jIyECNGjUwePBg7Nq1C2q1Gm3btsWKFSvQpEkTad8DBw6gTp062LNnj9QWcHFxwbRp0zB//nyp51NmZiYUCoXOSCVNG+ncuXOYOHGi1mMvvPACUlJSYGVlhZ49e+Lrr7/WmgogICAAlStXxtdff43atWujadOmCA8Pl9ZFKWraASIyDcZIjJE0DGl7r1+/XvoN1nSmCAgI0DqOvjaTMe31O3fuYPDgwRg/fjxGjx6Nn376CWPGjEHz5s1Rv359ALk37jQJs/fffx92dnb44YcfjBp1pFKp0Lt3b3Ts2BFffvklNm7ciOnTp8POzg4ffvghXn31VQwcOBCrVq3CqFGj0LZtW2kUZlRUFNq1a4e0tDTMmDEDbm5uWLduHV566SVs375damukp6eja9euePToEWbMmAFfX1+sX78ewcHBOuUJDg5G79690bx5c8ydOxdyuRxr165Fly5dcPToUaN7/w4aNAjXrl3DG2+8gerVqyM6OhpBQUF49OiRVF/mzZuH+fPno1u3bpgyZYoUe5w9e1Yrts3L0tISL7/8Mnbu3InVq1drtQ127dqFzMxM6TdcrVbjpZdewrFjxzBp0iTUrVsXV65cwTfffINbt25prVUzYcIEbNiwASNGjEC7du0QHByMvn37GnXOn332GWQyGd577z1ER0djyZIl6NatGy5evAgbGxu89tpr+OSTT7BlyxatxcqzsrKwfft2DBo0qNDRWn/99ReGDRuGhg0bYsGCBYiPj8f48eNRqVIlo8qZX05ODnr27InAwEB89dVXsLW1Neq6BOR2ityyZQtmzJgBpVKJ7777Dr169cKZM2dKND3ilStX0KNHD3h4eGDevHnIycnB3LlzjYrNpk6dCg8PD3z88cdITU0FYPh9g8uXL6NDhw6wtLTEpEmTUL16ddy9exd//PEHPvvsMwwcOBC3bt3Cr7/+im+++Ub6zfHw8DD6XA1px+tz4cIF2NnZSb9TGprv7IULFwqdlvjChQto1qyZzoiDVq1aYc2aNbh16xYaNmwobc/JyUFCQgKysrJw9epV/N///R8cHByKvEZ8//33mDFjBgYPHoyZM2ciIyMDly9fxunTpzFixAgAude2Nm3aSIkKDw8P/P333xg/fjySkpKkqR9VKhVefPFFHDx4EMOHD8fMmTORnJyMoKAgXL16FQEBAUbX4WPHjmHnzp2YOnUqHBwcsHTpUgwaNAiPHj2SpmU2tD5eu3YNL774Iho1aoRPPvkESqUSd+7cKTLRfP36dYSHh6NRo0aYNGkS1q1bh6ysLKlz2gsvvCDte+DAATg6OiIsLAwDBgzArVu3YGdnh9deew3ffPONdC3RJLby3z/LG0flN3bsWKSkpEChUKBDhw5YtGiR1uhezXqgP//8M9q2bYsOHTogISEBn376KVxcXLQ6Oz5TBJWKtWvXCgB6/wghRFpams5zTp48KQCIX375Rdr28ccfCwBi586dOvur1WohhBD3798XAMTatWulx+bOnSvyf7zVqlUTo0ePlv69bds2AUAcOnRIaz+VSiUqV64shg0bprV98eLFQiaTiXv37hV67qNHjxbVqlWT/r1r1y4BQPzvf//T2m/w4MFCJpOJO3fuCCGEuH37tpDL5eLll18WKpVK77kKof+9mzx5srC1tRUZGRnStr59+2qVQ0Pf+9WkSRPh6ekpYmNjpW2XLl0ScrlcjBo1StqmeV/HjRundcyXX35ZuLm56Xk3/qNSqYSjo6OYPXu2dE5ubm5iyJAhQqFQiOTkZCFE7vssl8tFfHy8EEKIo0ePCgBi48aNWsfbu3evznZD35tOnTqJ+vXrCyGE2LFjh7C0tBQTJ07Ued/16dSpkwAgNm3aJG27efOmACDkcrk4deqUtH3fvn067/WAAQOElZWVuHv3rrQtPDxcODg4iI4dO0rbZs2aJQCI06dPS9uio6OFk5OTACDu378vhBAiOTlZODs7i4kTJ2qVMzIyUjg5OWlt1/e9yO/ChQsCgNi2bVuB+1y8eFEAEBMmTNDa/s477wgAIjg4WNrWqVMn0alTJ+nfq1evFgDElStXtJ5br1490aVLF+nfn376qbCzsxO3bt3S2m/OnDlCoVCIR48eCSH++359+eWX0j45OTmiQ4cOOu+9PpprVfPmzUVWVpa0/csvvxQAxO7du4UQJbsuZGZmCjc3N9GyZUuRnZ0tbf/5558FAK33R1MezeercejQIZ3rlaYurlq1SmvfJUuWCABiw4YN0rasrCzRtm1bYW9vL5KSkoQQ/10LbGxsxJMnT6R9T58+LQCIN998U9pmSN3Jr0mTJsLHx0ckJCRI2/bv3y8A6FybAIi5c+fqvN4rr7yitd+DBw+EQqEQn332mdb2K1euCAsLC2l7Tk6O8PPzE9WqVZOuJRp5r6fTpk0z6rzy12fN51K3bl2RmZkpbf/222/11vP86tevr1XvNa5du6b3s83r6dOnAoD45JNPdB5bsWKFACBu3ryptf3XX3/V+j1u0aKFuHz5cqFlFEKIxo0bi759+xa6T9euXUXDhg21rrVqtVq0a9dO1KxZU9pmyO+6sXXYzc1NxMXFSfvu3r1bABB//PGHtM3Q+jhz5kzh6OgocnJyinpbtCxevFgqS6tWrcTGjRvFd999J7y8vISLi4sIDw+X9nV0dBQuLi5CqVSKjz76SGzfvl2MGDFCABBz5syR9vv6668FAHH06FGt15ozZ44AIF588UVp25YtW8SYMWPEunXrxG+//Sb+7//+T9ja2gp3d3fpeqlx+vRpERAQoFUXmjdvLiIiIow6ZyIyHmOkatK/GSPlMqTtLYQQdnZ2Wp9T/tfO32Yypr1erVo1AUAcOXJE2hYdHS2USqV4++23pW1vvPGGkMlk4sKFC9K22NhY4erqqrf9mt/o0aMFAPH5559L2+Lj44WNjY2QyWRi8+bN0nZNfJW3faiJj/L+LiYnJws/Pz9RvXp1qX5o2hFbt26V9ktNTRU1atTQqttqtVrUrFlT9OzZU6cu+fn5ie7du0vbCmqj5xUfHy8AiEWLFhW4T3R0tLCyshI9evTQqs/Lly8XAMRPP/2k9X7lraua2DJv+0YIIfr06SP8/f2lf69fv17I5XKd9sOqVasEAHH8+HEhxH91ZOrUqVr7adoked97fTTt4EqVKkltMyGE2Lp1qwAgvv32W2lb27ZtRevWrbWev3PnTr3XmvwaNmwoKleuLN0vEEKIf/75R6cNpy9eEkL/d1tTF/O2u4Qw/LokhJCu3SEhIdK2hw8fCmtra/Hyyy9L2wypO/kNGDBAWFtbi4cPH0rbrl+/LhQKRZHXcM3rBQYGarVnjblv0LFjR+Hg4KD1+kJoX3MXLVpk1Hnlr8/GtOP16du3r1a910hNTdX72eZnZ2enc80WQoi//vpLABB79+7V2q75Ldb8qV27dpF1Vwgh+vfvL917Ksj48eOFj4+PiImJ0do+fPhw4eTkJP2+/fTTTwKAWLx4sc4xNJ+NsXXYyspKa9ulS5cEALFs2TJpm6H18ZtvvhEAxNOnTws93/w01wI3NzdRs2ZNsXbtWrF27VpRs2ZNYWVlJS5duiTt26hRI2FraytsbW3FG2+8IXbs2CHeeOMNAUAMHz5c2m/Hjh0CgFi/fr3Wa2mugw0aNJC2HT9+XAwaNEj8+OOPYvfu3WLBggXCzc1NWFtbi/Pnz2s9//bt26JZs2ZadcHf318n7n6WcCqtUrZixQoEBQVp/QG0s3bZ2dmIjY1FjRo14OzsjPPnz0uP7dixA40bN5Z6f+RVnGldDCGXy6WFSTVTTgC5QyTbtWuns1BiUfbs2QOFQoEZM2ZobX/77bchhMDff/8NAFLv0o8//lgna533XPO+d8nJyYiJiUGHDh2QlpaGmzdvGlU2AIiIiMDFixcxZswYuLq6StsbNWqE7t27Y8+ePTrPef3117X+3aFDB8TGxiIpKanA15HL5WjXrp00tPTGjRuIjY3FnDlzIISQhjoePXoUDRo0kHp9b9u2DU5OTujevTtiYmKkP82bN4e9vT0OHTpU7Pfm119/xbBhwzB58mSsXr3a4EWz7O3ttXrV1q5dG87Ozqhbt6404gOA9P/37t0DkJvh379/PwYMGAB/f39pPx8fH4wYMQLHjh2T3sM9e/agTZs2Wj0QPDw8pCG+GkFBQUhISMArr7yi9f4oFAq0bt1a6/0xhGZEyL59+wocvqipE3mnQANy6zQAvcPZNQYOHAgLCwutoYtXr17F9evXMWzYMGnbtm3b0KFDB7i4uGidV7du3aBSqaR6tGfPHlhYWGDKlCnScxUKBd544w1jThuTJk3S6pEyZcoUWFhYSOdakutCSEgIYmNjMXHiRK11Ol599VW4uLgYVc78lEqlzpD6PXv2wNvbG6+88oq0zdLSEjNmzEBKSgoOHz6stf+AAQO0ely1atUKrVu31vvdN5TmujJ69GipTgFA9+7dUa9ePYOPk/9as3PnTqjVagwdOlSrXnh7e6NmzZpSfb9w4QLu37+PWbNm6SwGWBq/HWPHjtXqudehQwcA/333C5Kenq63l6Wmp0t6enqhzwX0zytc0PNfeOEFBAUFYdu2bXj99ddhaWkp9SArjLOzM65du4bbt2/rfTwuLg7BwcEYOnSodO2NiYlBbGwsevbsidu3byMsLAyAYb/rxtbhYcOGaX2X8r//xtRHZ2dnpKam6kwTVpSUlBTpHA4ePIgRI0ZgypQp2LVrF+Lj46VpQjT7xsfHY/78+fjkk08waNAgbNy4Eb169cK3334rXWNGjBgBJycnjBs3DkFBQXjw4AHWrFmD7777DoD25zt06FCsXbsWo0aNwoABA/Dpp59i3759iI2NxWeffaZVVhcXFzRp0gRz5szBrl278NVXX+HBgwcYMmRIkVNZEJFpMEZijKRhSNvbEPlf29j2er169aTfTyA37qhdu7ZWW2bv3r1o27at1ihIV1dXnfikKBMmTJD+39nZGbVr14adnR2GDh0qbdfEV3lff8+ePWjVqpVWL3B7e3tMmjQJDx48wPXr16X9fHx8tOaKt7W11enNe/HiRdy+fRsjRoxAbGys1H5JTU1F165dceTIEaMWi7axsYGVlRX++ecfnSmfNQ4cOICsrCzMmjVLqz5PnDgRjo6OhcZRXbp0gbu7u1YcFR8fj6CgIJ04qm7duqhTp45We7lLly4AILWXNXUk/3dQ0zvdUKNGjdIaoTx48GD4+PhofUdGjRqF06dPa033s3HjRlSpUgWdOnUq8Njh4eG4cuUKRo0apTW6q1OnTlq9+YsrbwwJGH5d0mjbti2aN28u/btq1aro378/9u3bZ9B03vqoVCrs27cPAwYMQNWqVaXtdevWRc+ePQ0+zsSJE7VmwjD0vsHTp09x5MgRjBs3Tuv1gdL5fSmqHV+QksRRxXl+vXr1EBQUhF27dmH27Nmws7OT2v+FcXZ2xpMnTwqcHkwIgR07dqBfv34QQmh9Nj179kRiYqL0+79jxw64u7vrvdeRN44ypg5369ZNawRio0aN4OjoqHUPy9D6qIm7d+/ebdS1U/M+Jicn4+DBgxgzZgzGjBmDAwcOQAiBL7/8UmvftLQ0jBo1CkuXLsXAgQOxdOlSTJ48GZs3b5bi1T59+qBatWp45513sHPnTjx8+BBbt27Fhx9+CAsLC63Pt127dti+fTvGjRuHl156CXPmzMGpU6ek0ZF5OTg4oH79+pg2bRp27tyJ7777Djk5ORgwYIDOSOBnBRMjpaxVq1bo1q2b1h8g9yLz8ccfS3Peubu7w8PDAwkJCVrrGNy9e7dEQxCLa9SoUUhPT5eGGIeGhuLcuXN47bXXjD7Ww4cP4evrq9VYACAN+Xv48CGA3HOVy+VF3jS8du0aXn75ZTg5OcHR0REeHh4YOXIkAGi9d8aUD4DeeYHr1q0rNQ7zyv8DqfkhK6gBqNGhQwecO3cO6enpOHr0KHx8fNCsWTM0btxYmk7r2LFjWo3y27dvIzExEZ6envDw8ND6k5KSgujoaGlfY96b+/fvY+TIkRg0aBCWLVtm1I985cqVdfZ3cnLSmfJGE+ho3penT58iLS2twPdarVZL87E+fPhQa/oTjfzP1Vz4u3TpovP+7N+/X+v9MYSfnx/eeust/PDDD3B3d0fPnj2xYsUKrffv4cOHkMvlOtPveHt7w9nZWapT+ri7u+usf7BlyxZYWFhoze95+/Zt7N27V+ecNNcQzXk9fPgQPj4+OtMgGDvPdf732t7eHj4+PlrzpBb3uqB5P/K/XxYWFkZNc6ZPpUqVdKbZ0dSd/DcP8l9zNPTVs1q1ahk9D27+MhR0bGM+m/w3WW7fvg0hBGrWrKlTN27cuCHVC03QVVa/H8W9JtrY2Oidv1Zzc7qweUo1jxnzfC8vL3Tr1g2DBw/GypUr8eKLL6J79+6IjIwstJyffPIJEhISUKtWLTRs2BDvvvsuLl++LD1+584dCCHw0Ucf6XwumqlV8n42RX0uxtbhot5/Y+rj1KlTUatWLfTu3RuVK1fGuHHj9M6zm5/mve7Xr5/W9ahNmzbw8/PDiRMndPbNm/jR/Ds9PR0XLlwAkHtN/f3335GZmYkePXrAz88P7777LpYtWwag8OlfACAwMBCtW7fWWusqMTERHTp0QNu2bbFgwQL0798fb7/9Nnbs2IFjx45h7dq1RZ4rEZUcYyTGSBqGtL0Nkb/NZGx7PX/ZNeXPW/aHDx/qnX6zqCk587K2ttaZbsfJyanA+Cr/6xf0eWgez1vO/McrKI4aPXq0Tvvlhx9+QGZmplGfg1KpxMKFC/H333/Dy8tLmi4sbzuroHplZWUFf3//QuMoCwsLDBo0SGv9g507dyI7O1srMXL79m1cu3ZN55xq1aoFQDuOksvlOtOylTSOkslkqFGjhlYsMWzYMCiVSmzcuBFA7nfyzz//xKuvvlpoHF5QHFXQNmNYWFjoTKlq6HVJo6A4Ki0tTe+aKoZ4+vQp0tPTSyWOAoq+b6C5If48x1HFeb6joyO6deuG/v37Y+HChXj77bfRv39/XLp0qdDXee+992Bvb49WrVqhZs2amDZtmtbUUk+fPkVCQgLWrFmj87loOkDmjaNq166t1dkyP2PrcFHXfmPq47Bhw9C+fXtMmDABXl5eGD58OLZu3VpkkkTzXrdv317rnlrVqlURGBhoUBylmZZM0+Ha2toaf/31F9zc3DBo0CBUr14do0aNwscffwxXV9ci46gaNWqgf//+OHTokJTkzMnJQbdu3eDk5ITly5fj5ZdfxpQpU3DgwAHcvXu30On7KzKuMVJO3njjDaxduxazZs1C27Zt4eTkBJlMhuHDhxuVWSwt9erVQ/PmzbFhwwaMGjUKGzZsgJWVlVYvlvKQkJCATp06wdHREZ988gkCAgJgbW2N8+fP47333iuz966gNThEAQuSaQQGBiI7OxsnT57E0aNHpQRIhw4dcPToUdy8eRNPnz7VSoyo1Wp4enpKjaj8NA1rY98bHx8fqSdLSEiI1tyBxT3/4r4vJaE5r/Xr18Pb21vn8cJ+NAvy9ddfY8yYMdi9ezf279+PGTNmYMGCBTh16pRW47G4PUaGDx+OsWPH4uLFi2jSpAm2bt2Krl27as2HrVar0b17d8yePVvvMTQN+7JUFteFgt7TgnocPasLfBkq//mp1WrIZDL8/fffer9vRTVwSktxv/s+Pj7SSIq8IiIiAAC+vr4FPtfV1RVKpVLa19jnA7k9+j788EPs3r0bkydPLnC/jh074u7du9I14YcffsA333yDVatWYcKECdJ16J133imwJ1tJg9fCmPLa6+npiYsXL2Lfvn34+++/8ffff0sjMfIv/p6X5r3WN/ezp6enVnDn6+uL27dv6124D9AOBDt27Ih79+7hypUrSE1NRePGjREeHg7AsOtglSpVEBoaKv17x44diIqKwksvvaS1n+b38/jx4zq9J4mo7DBGKp5nPUYytO1dmILahIa218sqjqmIcdSiRYu0RsHkZWzbctasWejXrx927dqFffv24aOPPsKCBQsQHByMpk2blrTIGD58OFavXo2///4bAwYMwNatW1GnTh00btxY2ketVqNhw4ZYvHix3mMUtH5daXJxccGLL76IjRs34uOPP8b27duRmZkpJS9Nwdg4SqlUGjxjxLNIXxwFmPa+gSmUJI46dOgQhBBan72hcZCPj0+J4qiBAwfitddew+bNm7W+f/nVrVsXoaGh+PPPP7F3717s2LED3333HT7++GPMnz9f+lxGjhxZ4DqpjRo1KrQsJWHKa6+NjQ2OHDmCQ4cO4a+//sLevXuxZcsWdOnSBfv37y/wtYqKozSdxjT7Xrt2zaA4qn79+tLsJPHx8ahXrx5sbGzw5ptvFjpSTaNKlSrIyspCamoqHB0dceTIEVy9elXn2lqzZk3UrVu3yLVUKiomRsrJ9u3bMXr0aHz99dfStoyMDCQkJGjtFxAQgKtXr5ZKGYpqJI4aNQpvvfUWIiIisGnTJvTt27dY095Uq1YNBw4c0FkEVzOku1q1agByz1WtVuP69esFNsz++ecfxMbGYufOnVqLk9+/f19nX0MbwZrXz3vjJG8Z3d3dYWdnZ9CxitKqVStYWVnh6NGjOHr0KN59910AuTd+vv/+exw8eFD6t0ZAQAAOHDiA9u3bF3oT2Jj3BsjNIP/555/o0qULevXqhcOHD0sLC5YWDw8P2NraFvhey+VyqaFarVo1vdPW5H+upoePp6en1NvQFBo2bIiGDRvi//7v/3DixAm0b98eq1atwv/+9z9Uq1YNarUat2/f1lrsLCoqCgkJCVKdKsiAAQMwefJkaRj4rVu3dIYoBgQEICUlpchzqlatGg4ePIiUlBStwEXfe1yY27dvay3qlZKSgoiICPTp00drv+JcFzTvx507d7ReIycnBw8ePNBq6GiOlf9aWFjvMX2vd/nyZajVaq3Gfv5rjoa+enbr1q0SjWbRvIYhddgYmgXl/Pz8Cr0prPleXL16tdA6VFrTjRiqSZMmOHToEJKSkrQWYNcs2l7QbwGQO6VJw4YNERISovPY6dOn4e/vr9NTKD/NEGJDekO6urpi7Nix0qJ0HTt2xLx58zBhwgRpakBLS8siv7OG/K4bW4eLYmx9tLKyQr9+/dCvXz+o1WpMnToVq1evxkcffVRggkczjYK+RFd4eDjq1Kmjta9merG80ypqEh75e9IqFAqdxdsBGHTNv3fvntbxoqKiAOjeJBBCQKVSIScnp8hjElHpYYxknjESUHjb25hya5S0vV7QMe/cuaOzXd+20lCtWrUCPw/N45q/r169qnPDtKA4StMT3FQCAgLw9ttv4+2338bt27fRpEkTfP3119iwYYNWvcrbBsjKysL9+/eLLEfHjh3h4+ODLVu2IDAwEMHBwfjwww91Xv/SpUvo2rVrofVGU0c0vdA1ihNH5SWEwJ07d3Ru5o4aNQr9+/fH2bNnsXHjRjRt2rTI+DtvHJVf/m2miqMMuS5pFBRH2draFmshciC3HWhjY1MqcRRQ9H0DTb0s6jemIsRRP/zwA27cuKE1otCQOErz+NGjR3XijdOnT8PW1rbIDkiZmZlQq9UGxVF2dnYYNmwYhg0bhqysLAwcOBCfffYZ3n//fXh4eMDBwQEqlcqgOOr06dPIzs4ucGF6Y+twUYytj3K5HF27dkXXrl2xePFifP755/jwww9x6NChAs+vYcOGsLS0LDCOyvtdat68OYKCghAWFqZ13SoojpLJZFrXmT179kCtVhscR1lbW0v3mQqKo4Dc6U+f1Tjq+U0PV3AKhUInA7ls2TKdCjZo0CBcunRJGq6dV0l7j2gasvl/ODVeeeUVyGQyzJw5E/fu3St2b4Y+ffpApVJh+fLlWtu/+eYbyGQy9O7dG0DuzWK5XI5PPvlEp1eT5lw1Gda8556VlSXNN57//Ay5SPv4+KBJkyZYt26d1ntx9epV7N+/X+fGcElYW1ujZcuW+PXXX/Ho0SOtESPp6elYunQpAgIC4OPjIz1n6NChUKlU+PTTT3WOl5OTI5XZmPdGw8nJCfv27YOnpye6d++uNedpaVAoFOjRowd2796tNbQ4KioKmzZtQmBgoHRztE+fPjh16hTOnDkj7ff06VOdkTM9e/aEo6MjPv/8c2RnZ+u8prFDeJOSknQu6A0bNoRcLpeGmmrqxJIlS7T202TO+/btW+hrODs7o2fPnti6dSs2b94MKysrDBgwQGufoUOH4uTJk9i3b5/O8xMSEqQy9unTBzk5OVi5cqX0uEqlkqaaMdSaNWu03r+VK1ciJydH+n5qFOe60KJFC7i5ueH777/Xem83btyoM0RY02DVrKGiOZ81a9YYfC59+vRBZGSk1vzDOTk5WLZsGezt7XV6R+zatUurEXLmzBmcPn1a59yNkfe6kvc6FBQUJM3/XBwDBw6EQqHA/PnzdX4DhBCIjY0FADRr1gx+fn5YsmSJzjU+7/OK+h0obYMHD9b5fDMzM7F27Vq0bt1aq0ffo0ePdOZIHzx4MM6ePauVHAkNDUVwcDCGDBkibYuJidH7m/nDDz8AQJEj5jTvq4a9vT1q1KghXRM8PT3RuXNnrF69Wm/Pq7zXIUN+142tw0Uxpj7mP1e5XC4F9vqG22vUrl0bjRs3xu7du7Xml92/fz8eP36M7t27S9s00138+OOP0ja1Wo21a9fC1dVVa67q/J4+fYqFCxeiUaNGWg16fdf6PXv24Ny5c+jVq5e0TRPkbd68WWvf33//HampqSbpzUpExccYyfxiJEPa3ppyG9NeKWl7XZ+ePXvi5MmTuHjxorQtLi6uwJH9ptanTx+cOXNGmioFAFJTU7FmzRpUr15dujnap08fhIeHY/v27dJ+aWlpOu3p5s2bIyAgAF999ZXetQKMjaPS0tJ01uoKCAiAg4OD9Fl269YNVlZWWLp0qVZ9/fHHH5GYmFjk5yKXyzF48GD88ccfWL9+PXJycrSm0QJy46iwsDB8//33Os9PT0+XpoDTfMeWLl2qtU/+OlOUX375RWvdoe3btyMiIkInlujduzfc3d2xcOFCHD582KBrh6+vLxo0aIBffvlF6zM6fPgwrly5orVvtWrVoFAotOIoAIXeD8jP0OuSxsmTJ7XWf3r8+DF2796NHj16FNg7vigKhQI9e/bErl278OjRI2n7jRs39MbGhjL0voGHhwc6duyIn376Sev1gYoVR/Xv3x+WlpZan68QAqtWrUKlSpXQrl07aXtERARu3rypdd6DBw9GVFQUdu7cKW2LiYnBtm3b0K9fP2n9kYSEBL3vV3HjKCsrK9SrVw9CCGRnZ0OhUGDQoEHYsWOH3mRU/jgqJiZGp35qzh0wvg4XxZj6GBcXp/N8TYKqsDjKwcEBffr0wYkTJ7Ti3Rs3buDEiRNacZRmhGreOArI/TwsLCzQuXPnAl8nPT0dH330EXx8fLSm4tJ3rb906RJ+//139OjRQ0qcFRRHnT9/HqGhoc9sHMURI+XkxRdfxPr16+Hk5IR69erh5MmTOHDgANzc3LT2e/fdd7F9+3YMGTIE48aNQ/PmzREXF4fff/8dq1atKnTIWlGaNGkChUKBhQsXIjExEUqlEl26dJGGYHl4eKBXr17Ytm0bnJ2di9V4BHLnG3/hhRfw4Ycf4sGDB2jcuDH279+P3bt3Y9asWdKN0Bo1auDDDz/Ep59+ig4dOmDgwIFQKpU4e/YsfH19sWDBArRr1w4uLi4YPXo0ZsyYAZlMhvXr1+sNgJo3b44tW7bgrbfeQsuWLWFvb49+/frpLeOiRYvQu3dvtG3bFuPHj0d6ejqWLVsGJycnzJs3r1jnXZAOHTrgiy++gJOTk7RgmqenJ2rXro3Q0FCMGTNGa/9OnTph8uTJWLBgAS5evIgePXrA0tISt2/fxrZt2/Dtt99i8ODBRr03ebm7uyMoKAiBgYHo1q0bjh07prUQtan973//k15v6tSpsLCwwOrVq5GZmam1qNTs2bOxfv169OrVCzNnzoSdnR3WrFkj9aTWcHR0xMqVK/Haa6+hWbNmGD58ODw8PPDo0SP89ddfaN++vd4fzoIEBwdj+vTpGDJkCGrVqoWcnBysX79e+sEGgMaNG2P06NFYs2aNNHXBmTNnsG7dOgwYMEBrVERBhg0bhpEjR+K7775Dz549dRbIfvfdd/H777/jxRdfxJgxY9C8eXOkpqbiypUr2L59Ox48eAB3d3f069cP7du3x5w5c/DgwQPUq1cPO3fuNHpe5qysLHTt2hVDhw5FaGgovvvuOwQGBupMN1Oc64KVlRXmzZuHN954A126dMHQoUPx4MED/PzzzwgICNDqbVO/fn20adMG77//PuLi4uDq6orNmzcb1ftg0qRJWL16NcaMGYNz586hevXq2L59O44fP44lS5bojCKoUaMGAgMDMWXKFGRmZmLJkiVwc3MrcBozQy1YsAB9+/ZFYGAgxo0bh7i4OCxbtgz169c3aKE6fQICAvC///0P77//Ph48eIABAwbAwcEB9+/fx2+//YZJkybhnXfegVwux8qVK9GvXz80adIEY8eOhY+PD27evIlr165JjTjNDegZM2agZ8+eUCgUGD58eInO2xitW7fGkCFD8P777yM6Oho1atTAunXr8ODBA53G3qhRo3D48GGta9rUqVPx/fffo2/fvnjnnXdgaWmJxYsXw8vLS1pcFQA2bNiAVatWYcCAAfD390dycjL27duHoKAg9OvXT1qMsyD16tVD586d0bx5c7i6uiIkJATbt2/H9OnTpX1WrFiBwMBANGzYEBMnToS/vz+ioqJw8uRJPHnyRJp/15DfdWPrsCEMrY8TJkxAXFwcunTpgsqVK+Phw4dYtmwZmjRpotXjVp9vvvkG3bt3R2BgICZPnozExEQsXrwYtWrV0pqeqn///ujatSsWLFiAmJgYNG7cGLt27cKxY8ewevVqrYUgO3XqhLZt26JGjRqIjIzEmjVrkJKSgj///FOrd1u7du3QtGlTtGjRAk5OTjh//jx++uknVKlSBR988IG0X79+/VC/fn188sknePjwIdq0aYM7d+5g+fLl8PHxwfjx441+b4nIdBgjmV+MZEjbW1PuAwcOYPHixfD19YWfnx9at25d4HFN0V7Pb/bs2diwYQO6d++ON954A3Z2dvjhhx9QtWpVxMXFlXoP8jlz5uDXX39F7969MWPGDLi6umLdunW4f/8+duzYIf0uTpw4EcuXL8eoUaNw7tw5+Pj4YP369bC1tdU6nlwuxw8//IDevXujfv36GDt2LCpVqoSwsDAcOnQIjo6O+OOPPwwu361bt6R4ol69erCwsMBvv/2GqKgoqX3p4eGB999/H/Pnz0evXr3w0ksvSbFHy5YtDUoWDBs2DMuWLcPcuXPRsGFDnfbJa6+9hq1bt+L111/HoUOH0L59e6hUKty8eRNbt27Fvn370KJFCzRp0gSvvPIKvvvuOyQmJqJdu3Y4ePCg0SOAXF1dERgYiLFjxyIqKgpLlixBjRo1MHHiRK39LC0tMXz4cCxfvhwKhUJnjYCCfP755+jfvz/at2+PsWPHIj4+HsuXL0eDBg202nBOTk4YMmSItH5oQEAA/vzzT6PW3DT0uqTRoEED9OzZEzNmzIBSqZRu0s+fP9/g19Rn/vz52Lt3Lzp06ICpU6dKHYTq16+vdS/AGMbcN1i6dCkCAwPRrFkzTJo0CX5+fnjw4AH++usvKTGqiaM+/PBDDB8+HJaWlujXr59JR9IVpnLlypg1axYWLVqE7OxstGzZErt27cLRo0exceNGrcTU+++/L10rNLMiDB48GG3atMHYsWNx/fp1uLu747vvvoNKpdL6/P755x/MmDEDgwcPRs2aNZGVlYWjR49i586daNGiRZHf2R49esDb2xvt27eHl5cXbty4geXLl6Nv375STPPFF1/g0KFDaN26NSZOnIh69eohLi4O58+fx4EDB6SEw6hRo/DLL7/grbfewpkzZ9ChQwekpqbiwIEDmDp1Kvr37290HTaEofXxk08+wZEjR9C3b19Uq1YN0dHR+O6771C5cmUEBgYW+hqff/45Dh48iC5dukgLxy9duhSurq5asUzTpk3x/+ydd3hTZfvHvyd7NeledFCgjA4oIEu2TNmyiyBTZKg4eFH05Yf6unCDsmQIiIAM2YKyZO/ZwSotUKB7pDPNen5/1ISmSZrRtEnL87muXm1PnnNypz05ub/nXlOmTMHatWuhVqvRvXt3/PPPP9i2bRvmz59v0AJt9OjRCAwMREREBAoKCrB27VokJydj//79BnpyzJgxEAqFeP755+Hr64vExET8/PPPEIlE+PLLL/Xr2rZtiz59+mD9+vUoKChA3759kZaWhh9//BFCoRBvvfWWzX9bl4BQaoRffvmFACAXL140+XheXh6ZPHky8fb2JhKJhPTr14/cunWLhIaGkokTJxqszcnJIa+//jpp0KAB4fF4JCgoiEycOJFkZ2cTQghJSUkhAMgvv/yi32fhwoWk8r/X1LFXrVpFGjVqRNhsNgFAjh07ZvD41q1bCQAyffp0q1/7xIkTSWhoqMG2wsJC8vbbb5PAwEDC5XJJeHg4+frrr4lWqzXaf+3ataR169aEz+cTDw8P0r17d3Lo0CH946dPnyYdO3YkQqGQBAYGknnz5pG//vrLyP6ioiIybtw44u7uTgDobTL19yKEkMOHD5POnTsToVBIpFIpGTx4MElMTDRYo/u7ZmVlGWzX/b9TUlIs/n32799PAJAXX3zRYPu0adMIALJmzRqT+/3888+kbdu2RCgUEjc3NxIdHU3mzZtHnjx5YvPfpnv37iQyMtLg+ElJSSQgIIC0aNHC6PVVxNS+hJSfXwMHDjTaDoDMnj3bYNuVK1dIv379iEQiISKRiPTs2ZOcOXPGaN8bN26Q7t27E4FAQBo0aED+97//kTVr1pj8Wx87doz069ePyGQyIhAISOPGjcmkSZPIpUuX9GtMvS8qk5ycTKZMmUIaN25MBAIB8fT0JD179iSHDx82WKdSqcjHH39MwsLCCJfLJcHBwWT+/PlEoVAY/b26d+9u9DwFBQVEKBQSAGTjxo0mbSksLCTz588nTZo0ITwej3h7e5Pnn3+efPPNN0SpVOrX5eTkkAkTJhCpVEpkMhmZMGECuXr1qsnzvDK6c/f48eNk+vTpxMPDg0gkEvLyyy+TnJwck/vYc10ghJAlS5aQ0NBQwufzSfv27cnp06dJ27ZtSf/+/Q3W3bt3j/Tu3Zvw+Xzi5+dHPvjgA3Lo0CGrzmMdGRkZ+mssj8cj0dHRRn8L3bXg66+/Jt9++y0JDg4mfD6fdO3alVy/ft1grTXnjil27NhBWrRoQfh8PomIiCB//PGHyWskALJw4UKj5zP3XtyxYwfp0qULEYvFRCwWk+bNm5PZs2eT27dvG6w7deoU6dOnD3FzcyNisZi0bNmS/Pjjj/rH1Wo1eeONN4iPjw9hGMbia6x8Ph87dowAINu2bTNYZ+46a4rS0lIyd+5c4u/vT/h8PmnXrh05ePCgyec2ZV9qaioZOXIkkUqlRCKRkEGDBpG7d+8arLl48SIZNWoUCQkJIXw+n4jFYtKmTRvy3XffEZVKZdHGTz/9lLRv3564u7sToVBImjdvTj777DOD9yEh5efuK6+8Qvz9/QmXyyUNGjQggwYNItu3bzdYZ+lznRDbz+HKVD6nCLHufNy+fTvp27cv8fX1JTwej4SEhJDXXnuNpKWlWfw7EULIoUOHSMeOHfXXzwkTJpjct7CwkMyZM4f4+/vrX5+pa+Hbb79NGjVqRPh8PvHx8SHjxo0j9+7dM1r34YcfkpiYGCKTyQiXyyUhISFk5syZJD093Whtbm4uefvtt0nTpk0Jn88n3t7eZOzYsSQ5Odmq10ihUOyHaqRQg21UI1nve9+6dYt069ZN7z/r/mdV+UzW+uvmdIwpP/7q1auka9euhM/nk6CgIPLFF1+QJUuWEAAmP3MqMnHiRCIWi00+j7X66t69e2TkyJHE3d2dCAQC0r59e7Jv3z6jfR88eECGDBlCRCIR8fb2JnPmzCEHDx40eT5fvXqVDB8+nHh5eRE+n09CQ0PJ6NGjyZEjR/RrrPlfZmdnk9mzZ5PmzZsTsVhMZDIZ6dChA9m6davR2p9++ok0b96ccLlc4ufnR2bOnEny8vKM/l6V3zOEEKLVaklwcDABQD799FOTtiiVSrJo0SISGRmpf8+0bduWfPzxx0Qul+vXlZaWkjfffJN4eXkRsVhMBg8eTFJTU036UZXR+cGbN28m8+fPJ76+vkQoFJKBAweSBw8emNznwoULBADp27dvlceuzJYtW0jz5s0Jn88nUVFRZM+ePWTEiBGkefPmBuuysrLIiBEjiEgkIh4eHuS1114j8fHxRu9tc+ciIdZfl3Q6f+PGjSQ8PJzw+XzSunVro/PLlnslFTl+/Dhp27Yt4fF4pFGjRmTFihVWXcMtfc5Yc9+AEELi4+PJSy+9pH+vNWvWjCxYsMBgzf/+9z/SoEEDwmKxLL7GyuezrX68KTQaDfn8889JaGgo4fF4JDIy0qQ/PXHiRJP25ebmkqlTpxIvLy8iEolI9+7djf5uSUlJ5JVXXiGNGjUiQqGQCAQCEhkZSRYuXEiKioos2rhy5UrSrVs3/fWlcePG5D//+Y/B+5CQcu0ze/ZsEhwcTLhcLvH39ye9evUiP//8s8G6kpIS8uGHH+qv6/7+/mTkyJEG+sDWc7gypvwCa87HI0eOkKFDh5LAwEDC4/FIYGAgiY2NJXfu3LH4dyKEkMuXL5PevXsTsVhM3NzcyNChQ03uq1QqyUcffURCQ0MJl8slTZo0Id9//73RukWLFpHmzZsTgUBAPDw8yJAhQ8jVq1eN1i1evJi0b9+eeHp6Eg6HQwICAsj48eONNDUh5X//Tz75hERERBChUEhkMhkZNGiQyePWFRhCanCaF6XOs3v3bgwbNgwnTpwwGAhOoVCeXRx1XdBqtfDx8cHw4cNNlrpTKBQKhUKhuCJUI1Eq8tZbb2HlypUoKiqyu30Q5dng+vXriImJwYYNGzBhwoRqHSsmJgY+Pj44dOiQg6yjUCiUZw86Y4RSJatWrUKjRo0sln1RKJRnB3uuCwqFwqidw4YNG5Cbm1tlH0wKhUKhUCgUV4NqpGeX0tJSg99zcnLw66+/okuXLjQoQrHIqlWrIJFIMHz4cKv3MTXU+J9//sH169epjqJQKJRqQmeMUEyyZcsW3LhxA/v378fixYtrvF8qhUJxfapzXTh37hzefvttjBo1Cl5eXrhy5QrWrFmDqKgogyHZdQG5XG4kiivj7+9fS9ZQKBQKhUKpLahGonTq1Ak9evRAixYtkJGRgTVr1qCgoAALFixwtmkUF2bv3r36vv2vv/66TXMoHj9+jN69e2P8+PEIDAzErVu3sGLFCvj7+2PGjBk1aLXjKSoqsjhr0cfHhwYZKRRKrUFbaVFMwjAMJBIJxowZgxUrVoDDoTE0CuVZpzrXhfv37+PNN9/EhQsX9EPVBwwYgC+//FI/zLSuMGnSJKxfv77KNfSjlUKhUCiU+gfVSJQPPvgA27dvx6NHj8AwDNq0aYOFCxeid+/ezjaN4sI0bNgQGRkZ6NevH3799VeDwceWkMvlmD59Ok6fPo2srCyIxWL06tULX375pV2DpJ3JRx99ZHEwe8UB4RQKhVLT0MAIhUKhUCg2kJiYiCdPnlS5hopjCoVCoVAoFAqFQnlKcnIykpOTq1zTpUsXCASCWrKIQqE869DACIVCoVAoFAqFQqFQKBQKhUKhUCiUZwY6fJ1CoVAoFAqFQqFQKBQKhUKhUCgUyjNDnWyKqtVq8eTJE7i5udGBdxQKhUKhUCiUZwJCCAoLCxEYGAgWi+Y3USxDdROFQqFQKBQK5VnCFs1UJwMjT548QXBwsLPNoFAoFAqFQqFQap3U1FQEBQU52wxKHYDqJgqFQqFQKBTKs4g1msnmwMiJEyfw9ddf4/Lly0hLS8POnTsxbNgw/eOEECxcuBCrVq1Cfn4+OnfujOXLlyM8PFy/Jjc3F2+88Qb27t0LFouFESNGYPHixZBIJFbZ4Obmpn+BUqnU1pdAoVAoFAqFQqHUOQoKChAcHKz3hSmuiytoJoDqJgqFQqFQKBTKs4UtmsnmwEhxcTFatWqFKVOmYPjw4UaPf/XVV1iyZAnWr1+PsLAwLFiwAP369UNiYiIEAgEA4OWXX0ZaWhoOHToElUqFyZMnY/r06di0aZNVNujKwKVSKXXwKRQKhUKhUCjPFLQlkuvjCpoJoLqJQqFQKBQKhfJsYo1mYgghpDpPUDH7iRCCwMBAvPvuu5g7dy4AQC6Xw8/PD+vWrcPYsWNx8+ZNRERE4OLFi3juuecAAAcPHsSAAQPw6NEjBAYGWnzegoICyGQyyOVy6uBTKBQKhUKhUJ4JqA9cN3GWZgLoOUOhUCgUCoVCebawxf916NTGlJQUpKeno3fv3vptMpkMHTp0wNmzZwEAZ8+ehbu7u97BB4DevXuDxWLh/PnzjjSHQqFQKBQKhUKhUFwKqpkoFAqFQqFQKBTn49Dh6+np6QAAPz8/g+1+fn76x9LT0+Hr62toBIcDT09P/ZrKlJWVoaysTP97QUGBI82mUCgUCoVCoVAolFqhpjQTQHUThUKhUCgUCoViLQ6tGKkpvvjiC8hkMv1XcHCws02iUCgUCoVCoVAoFJeC6iYKhUKhUCgUCsU6HBoY8ff3BwBkZGQYbM/IyNA/5u/vj8zMTIPH1Wo1cnNz9WsqM3/+fMjlcv1XamqqI82mUCgUCoVCoVAolFqhpjQTQHUThUKhUCgUCoViLQ4NjISFhcHf3x9HjhzRbysoKMD58+fRqVMnAECnTp2Qn5+Py5cv69ccPXoUWq0WHTp0MHlcPp8PqVRq8EWhUCgUCoVCoVAodY2a0kwA1U0UCoVCoVAoFIq12DxjpKioCElJSfrfU1JScO3aNXh6eiIkJARvvfUWPv30U4SHhyMsLAwLFixAYGAghg0bBgBo0aIF+vfvj1dffRUrVqyASqXC66+/jrFjxyIwMNBhL4xCodRvNFqCCym5yCxUwNdNgPZhnmCzGGebRaHUS+x5v9H3KIVCeZahmolCobgC1B+jUGoXqpsolLqFzYGRS5cuoWfPnvrf33nnHQDAxIkTsW7dOsybNw/FxcWYPn068vPz0aVLFxw8eBACgUC/z2+//YbXX38dvXr1AovFwogRI7BkyRIHvBwKhfIscDA+DR/vTUSaXKHfFiATYOHgCPSPCnCiZRRK/cOe9xt9j1IolGcdqpkoFIqzof4YhVK7UN1EodQ9GEIIcbYRtlJQUACZTAa5XE7LwymUZ4yD8WmYufEKKl+4dPkUy8e3oQ4EheIg7Hm/0fcohVJzUB+YYiv0nKFQnk2oP0ah1C5UN1EoroMt/q9DZ4xQKBRKTaLREny8N9HIcQCg3/bx3kRotHUu3kuhuBz2vN/oe5RCoVAoFArFuVB/jEKpXahuolDqLjQwQqFQ6gwXUnINSkwrQwCkyRW4kJJbe0ZRKPUUe95v9D1KoVAoFAqF4lyoP0ah1C5UN1EodRebZ4xQKBSKs8gsNO84VOS13f9B+yYstPRriZZ+LRHtGw0vkVcNW0eh1C+sfb9VXGfPPhQKhUKhUCgUx2GtnxW77TW0aqhCS9+Wet3UxLMJ2Cx2DVtIodQvqG6iUOouNDBCoVDqDL5uAsuLANzJv4S4q3EG2xq4NdA7/LqvZl7NwGVza8JUCqXOY+37reI6e/ahUCgUCoVCoTgOa/2s9JI7eHA7Dntu79FvE3AEiPKNMgiWRPtFw1vkXVPmUih1HqqbKJS6Cw2MUCiUOkP7ME8EyARIlytM9uJkAHi7cfDV0P9DfNYN3Mgo/0rJT8Hjwsd4XPgYB5IO6NdzWVy08GlR7vRXcP79Jf5gGMbEM1Aozw6W3m8AQYBMiPZhnlbvwwDwlwkM9qFQKBQKhUKhOA5r/DFfKQ+/jF2C+Ky4cs2UeQPxmfEoUZXg0pNLuPTkksE+AZIAoySz5t7NwWPzauU1USiujD0aiOomCsU1YAghdW6Sjy3T5SkUSv3iYHwaZm68AgAGDoQujLF8fBv0jwow2KegrADxmfH6QInuq1BZaPI5vEXeRsGSCJ8ICLnCGnhFFIrrYu79RqAFwOC1Xix80GeA1fswYLBifFuj9yiFQrEO6gNTbIWeMxTKs4k9mkmj1SA5L/mpXsos/56cl2zyOTgsDlp4tzAIlkT7RiPQLZAmmVGeOSxpoKXjWmNgywZW78MCy+T7lEKhWMYW/5cGRigUSp3jYHwaPt6baDCsLEAmwMLBEVY7DoQQPJQ/NHL87+TcgZZojdazGBbCPcONMqVCZaHU8afUa0y93/i8EqTie7CFcTg1+RRa+beyuI8aWSgU/IJrc9YhzCOs1uynUOoT1Aem2Ao9ZyiUZxdHaCYAKCwrREJWglGSmbxMbnK9p9DTKMks0jcSIq6o2q+JQnFlTL3nNEw2crgrMalDDJYOWGp078CcbuoalY7N49+vNdsplPoEDYxQKJR6j0ZLcCElF5mFCvi6lZeYslnVD1CUqkqRmJVoFDDJLsk2uV7KlyLaN9ogWBLlGwUpn16bKPWHyu+3mBAJBm56EcfuH0OQNAjnp51HoFtgFfvw8eGpsTh2/whGRYzC1lFbnfRKKJS6DfWBKbZCzxkK5dmmpjQTIQSpBalGwZI7OXegIRqj9QwYhHuFGwVMQt1DwWJY1baHQnEVKr/nnihOYNT2ESAg+K7vd3i709tV7nO/4AbeOjoIXDYbCbMSEO4V7oRXQaHUbWhghEKhUBwIIQQZxRlGjn9iViJUWpXJfRq6NzRy/Jt4NgGbxa5l6ymUmiGvNA/Pr30et7JvoU1AG5yYdAJintjs+hsZN9B6ZWtoiRbHJx1Ht9ButWgthVI/oD4wxVboOUOhUGoThVqBm1k3DZLMrqdfR1ZJlsn1bjy38mHvldpxyQSyWracQqk5vjv7Hd79+10wYPDHmD8wrPmwKtcP+G0ADiQdwJBmQ7B77O7aMZJCqUfQwAjFJDWVLUKpu9BzonqoNCrczrltFDB5XPjY5HoBR1Du+FcIlkT7RcNb5F3LllMojiE5LxkdV3dEVkkWhjQbgj9G/1Fl8G/GvhlYeXklWvu3xsVXL9JAYR2HfobUPtQHptgKPWdsh17bKKag50X1yCjKMKrIT8xKhFKjNLk+VBZq1MK4iWcTcFicWracQqk+hBDM2j8LKy6vgIgrwvFJx/Fc4HNm19/Muono5dHQEA0OTTiE3o1616K1FEdDPz9qHxoYoRjhqP6ilPoDPSdqjtzSXMRlxBk4//GZ8ShRlZhcHyAJMHL8m3s3B4/Nq2XLKRTbOZt6Fj3X90SZpgxvdXgL3/f/3uzarOIsNPmxCQrKCrB2yFpMbj25Fi2lOBL6GeIcqA9MsRV6ztgGvbZRTEHPi5pBpVHhbu5doySz1IJUk+sFHAEifCKMqvJ9xD61bDmFYjtqrRqDNw/GwaSD8Jf44/y08wiRhZhdP+fAHCy5sARRvlG4+tpVGhSso9DPD+dAAyMUAw7Gp2Hmxiuo/I/WxSeXj29D35DPGPScqH00Wg2S85KNMqWS85JNruewOGjh3cKorDzQLZAOe6e4HFsTtmLM9jEAgJ9e/Amz2882u/bbM99i7qG58Jf4487rd+DGd6stMykOgn6GOA/qA1NshZ4z1kOvbRRT0POi9skrzUNcZpxBsCQuM85skpm/xN8oWNLcuzn4HH4tW06hVE1BWQG6rO2CuMw4RPtG49SUU2Znk+aW5iL8x3DkluZi+cDlmPHcjFq2llJd6OeH86CBEYoejZagy6KjBtHJijAA/GUCnHrvBVrK9YxAzwnXorCsEAlZCUaZUvIyucn1nkJPI8c/0jcSIq6oli2nUAz54uQX+ODoB2AxLOyN3YsB4QNMrlNqlIhcFomk3CTM7zIfn/f6vJYtpVQH+hniXKgPTLEVes5YB722UUxBzwvXQUu0SMlLMUoyu5d7D8TotmN5klkzr2ZGVfkN3BrQJDOKU3kof4gOqzsgvSgd/Rr3w75x+8xWg/x04Se8ceANeIu8cfeNu3AXuNeusRS7oZ8fzoUGRih6zt7LQeyqcxbXbX61Izo19qoFiyjOxtpzom+7RLRr6I5gWTCCpcEIkYXQzO5aghCC1IJUo2DJnZw70BCN0XoGDMK9wg0CJtF+0Wjo3hAshuWEV0B5FiGEYNqeaVh7bS0kPAlOTT6FVv6tTK7dc3sPhm4ZCj6bj5uzbyLMI6yWraXYC/UrnAv1gSm2Qs8Z66DXNooprD0vhnd+iE6NvPW6yV/iT+eo1RJFyiIkZCYYBUzyFfkm13sIPIyCJZE+kRDzxLVrOOWZ5vKTy+i2rhtKVCWY0XYGlg1cZjJgp9Ko0GpFK9zMvol3Or6Db/t96wRrKfZA/QrnYov/S5vU1XMyC01HJ+1dR6n7WPu//u3aPqyKP2GwTcaX6R1+XbBE/7ssGEHSIAg4gpow+5mCYRiEyEIQIgvBoKaD9NsVagVuZt00cPyvp19HVkkW7uTcwZ2cO9ieuF2/XsKTINo32qgdl0wgc8bLotRzGIbBikErcF9+H0dTjmLgpoE4P+08GkgbGK0d3HQweoX1wpGUI5h3eB62jdrmBIsptqDRanAk5Qi+PnIMQBeL66lfQaFQ6hJUM1FMYe3/e+WFLfj+ylPdxGFx0MCtgYFuCpb9q53+/dlL6EUrFxyAhCdBh6AO6BDUQb+NEILHhY+NksxuZd9CniIPxx8cx/EHx/XrGTBo7NnYqCo/zCOMJplRaoS2gW2xafgmvPT7S1hxeQXCvcLxTqd3jNZx2Vx81+87vPjbi1hyYQlee+41NPVq6gSLKbaQKk/Fqot7AYRaXEv9CudDAyP1HF83625SW7uOUjfRaAkupOQis1CB7MIyq/YZ0KwLSlgSpMpTkVqQinxFPuRlcsgz5YjPjDe7n6/YV+/wmwqgBLgF0MFhdiLgCNA6oDVaB7Q22J5RlGGUJZWYlYgiZRHOPjqLs4/OGqwPlYUaBUvCvcLp/4VSbbhsLnaM3oHn1zyPm9k3MXjzYJyYfAISnsRgHcMw+L7f94hZGYPtidtx4sEJdAvt5iSrKVVxO/s21l9fjw3XN+Bx4WPwNdHwtyIwQv0KCoVSl6CaiQIYaiZfNwG8JdbNqOgWFoMCqJEqT8WTwidQa9V4IH+AB/IHZvcRcoQIkgYZJppVCqDQan37YBgGQdIgBEmDDFq7lqnLcDP7plHAJKM4A0m5SUjKTcIfN//QrxdzxYj2izYIlkT7RdN2RhSHMLT5UHzb91u88/c7mPv3XDTyaIRhzYcZrevfpD8GhA/An3f/xNy/52JP7J7aN5ZikRJVCXbd2oV119bhcPJh8DRR8McXFvejfoXzoa206jm6vnbpcoWJzpu0r92zwMH4NHy8N9GgtyGLAbRm3vnmzonCskKkFqTqAyX67wWpeCh/iFR5KkrVpRbtYTNsBLgFPM2YqhhE+VcI+Ih8aAZVNVFpVLibe9fI8U8tSDW5ns/mI9I30ihTykfsU8uWU+oDKXkp6LC6A7JKsjC46WDsHLPTZEuJmftmYsXlFWjt3xoXX71I2064CPmKfGxN2Ip119YZBFY9BB4YGxmL89cGIbdIS/0KJ0B9YIqt0HPGOixpJgAIoNe2eo0pzeQv5UOh1kJeorL6M0+tVSO9KB2p8n81kgndlFmcaZVNFav1K1ab0Gp9x5JZnIm4jDiDJLOEzASUaUwnFAZLg43acTX1akqTzCg2QwjB7D9nY/ml5RByhDgx+QSeC3zOaN2t7FuIXh4NtVaNv8f/jT6N+zjBWkplCCE4++gs1l1bh98TfkdBWYH+sW4hPZD38G0UlrKpZnICdMYIxYCD8WmYufEKABi8IQm0YMBgxfi26B8V4BzjKDWK7n9v7ZtcdzlePr6NzecEIQS5pbl6518vBCqIgUcFj6DWqi0ei8/mI0gaVKUQkPFlNHhiB3mleYjLjDMIlsRnxqNYVWxyvb/E32h2SQvvFuBzrMugozy7nHt0Dj3X94RCrcCcDnPwQ/8fjNZkFWch/MdwyMvkWDNkDaa0nlL7hlIAPG2Vte7aOuy8tRMKdfmNIRbDQv8m/TGp1SQMbjYYAo7ArF9Rnc8QinVQH5hiK/ScsZ6qNBPA4PsxERjeupFTbKPULOY0E4On50LFn3W/A/Z95inUCjwueFylbjI3I6MytFq/ZlBr1bibc9eoKv+h/KHJ9Xw2HxE+EUYBE1+xby1bTqlrqLVqDN48GAeTDsJf4o/z084jRBZitO6tg29h8fnFiPKNwtXXrtL3tRNJlafi1xu/Yt21dbibe1e/vaF7Q0xsNRGvtHoFjTwaUc3kRGhghGKEqQwYNbJQwF+L07OWItov2onWUWoCXeZbxf95ZSpXjgTIBFg4OKLGLs4arQYZxRkGVSeVhUB6UTqIFaEcN55blX17g6XBEHKFNfI66htaokVKXoqR438v957J/wWHxUEzr2ZGjn8DtwY0WEUxYFvCNozePhoA8OOLP+L19q8brfnu7Hd49+934Sf2w9037tK2EbVM5VZZOiJ8IjA5ZjJejn4ZAW7Gnwmm/Iqa/gyhUB+YYjv0nLENU9c2sHKRyVmOCe2isXLwSucZR6kRLGkmBoBMxIWAw0Z6Qe195pmq1n9Y8NDg9+pW6+sCKLRa33ryFfmIz4w3SDKLy4xDkbLI5Hpfsa9RRX4Lnxa00odiQEFZAbqs7YK4zDhE+Ubh9JTTkPINP7NzS3MR/mM4cktzsWzAMsxsN9NJ1j6bVG6VpbtPIuaKMTJiJCbFTEK30G5Gc4moZnIONDBCMYlhz1Q+Pj8/Ffvu7kGbgDY4N/UcuGyus02kOJCz93IQu+qcxXU+fifg7caFv1SEqCAhAt384S/xh5/ED/4Sf3gIPGrVUVZqlAYZVBW/64IouaW5Vh3LS+hlGDCpJAQC3QLpeV8FRcoiJGQmGAVMzGWweQg8jGaXRPlGQcwT167hFJfiy1NfYv6R+WAxLOwZuwcDmw40eFypUSJyWSSScpPwfuf38UVvy71YKdUjX5GP3+N/x7rr63Du0dPPCQ+BB8ZFj8OkmEloG9DW4rW/ci/29mGetBS8hqE+MMVW6DljO5WvbaXMDfT69QUAwF/j/0Lfxn2dbCHFkVirmbyDNsNL5AERyx8BMjFigiUIlJbrJn+JP3zFvuCxebVgcTkVq/V1bY0rJps9lD/E48LHNlfrm9NNMoGsFl5V3URLtLiff9+ohXFSbpLJJDM2w0Yz72ZGAZMgaRANUD3DpMpT0WF1B6QVpaFv477YF7vP6F7FTxd+whsH3oCX0AtJbybReTc1DCEEZ1LP6FtlFSoL9Y/1aNgDk1pNwoiIEUbzNCtDNVPtQwMjFKtIK0xD5LJI5Cny8EmPT7Cg+wJnm0RxILuvPcacLdcsrsvifoUSzgmzj/PYPPiJ/fROf8Wf9dv+DaJY+kBwFMXKYjwqeFSlEDDXGqoiDBgEuAU8rTiRhhi06wqWBsNP4mcU9X+WIYTgceFjI8f/VvYtaIjGaD0DBo09Gxs5/mEeYfTv+oxACMGre1/FmqtrIOaKcWrKKcT4xxis2XN7D4ZuGQoem4dbs28hzCPMOcbWYzRaDQ4nH8a66+uw8+ZOfd9sNsMub5UVMwmDmw6mbfJcHOoDU2yFnjOO4c0Db+LHCz8iSBqE+Jnx9CZxPcJRmgkAPIWehhrJlG4S+8Fb5F0rc9UqV+ub0k32VusbDI2n1fomKVYWIzEr0SDJ7Hr6deQp8kyul/FlRhX5Ub5RtaaxKc7n8pPL6LauG0pUJXit7WtYPnC5QbBMrVWj1YpWSMxKxNsd38Z3/b5zorX1l4fyh/j1+q9Yd30dknKT9NsbujfEpFaT8EqrV6hedXFoYIRiNZvjNmPcH+PAYXFw8dWLRjerKNbhihFga7OfJvWUQygud4rTi9ORXpSOjKIMpBelm3XazCHmig2DJWLTARQ/sV+N3nwjhCBfkW+y2qTivBOlRmnxWFwW12DeiSkhUNtVNTWNPedzmboMN7NvGpWVpxelm1wv5ooR7RdtMLsk2jcaHkKPmnhJ9RJXvO5UpKJ9XmIOFp4Zj6P3D6OBWwOcn3YeDaQN9GsJIei7sS8OJx/GiBYjsH30didaXrepfF5I3TKx8cYGbLixAU8Kn+jXRfpEYlLMJLOtsiiuCfWBKbZCzxnHUKwsRszKGCTlJmFyzGSsHbrW2SbVSVzRd7FWM83oo4DELa1cM1X4yigu103WVGboYDEs+Ip9qwyg6La7C9xrVGeYqtavrJusrdb3FnkbzTupWIVS36r17TmfCSF4UvjEqCL/VvYts+dQY4/GRgGTRh6NaJKZDbjitaciFe27m3cZ844PB2E0+KbPN3j3+XcN1v6V9Bf6/9YfHBYHCbMS0NSrqZOsrttUPieiggTYc3sX1l1fhyPJRwxaZY2KHIVJrSaha2hX+r6rI9DACMVqCCEYuW0k/rj5B1r6tcTFVy/WaglwfcBVewbq+uWmyxUmc4AYAP4yAU6994JZp6BMXaZ39nXBEv1XhSBKWlEaSlQlNtnnIfCwKojiI/KpkYwqLdEiszjTbLuuVHkq0orSoCVai8cScUVV9u0NlgbXmXZSjj6fM4szEZcRZ+D4J2Qm6LPVKxMsDTZy/Jt6NaXD5SrhqtcdHabs85PykM9bjTvFW9HavzVOTD5hkAEXlxGHmJUx0BIt/pn4D7o37O4M0+s05uaJ5fJ+Rin7LDyFnhgXNQ4TYyZa1SqL4npQH5hiK/SccRynHp5Ct1+6gYBgX+w+o9aQlKpxVd/FEZpJS7TIK80zCpaYCqJkFWdZVaGhg8fmWVWF4i/xrzG9oavWrxwwqViFYk21PothwV/i/1QnVQyi/BtA8RX71okbj44+n5UaJW5l3zKqyk8rSjO5XsQVIco3yqAiP9ovGp5CT7tfU33FVa89OkzZJxGokKz9Cgr2OewYvQMvtXjJYJ9BmwZh/939GNx0MPbE7qltk+s8pv7mGiYHOdwVKGWfBWBbqyyK60EDIxSbyCzOROSySGSXZGNBtwX4pOcnzjapznAwPg0zN14xcm11LvPy8W2c+mGrsw+AgY01YV+Rsuip028iiFJxm0qrsvq4LIYFH5GPQbCkYhBFv60G5qGoNCqkFaUZlp1XCqBkl2RbdSwPgYfZvr3BsmAESYOcHpSsrfNZrVXjbs5do0yph/KHJtfz2XxE+EQYzS/xk/hV25a6SF257piyjwAoc/sJ6eqDGNR0EHaN2WUQ+Jy5byZWXF6B1v6tcfHVi7XSZqK+8OeNx5i16RrK/8pPr4MEWjBgMLG7Ch/0GUBbZdVxqA9MsRV6zjiWd/96F9+d+w4BkgAkzEqgla5WUld8F6DmNZNaq0ZWcVaVQRTdNnNz/cwh4UmsqkLxk/g5VHdUrtbXB1AqzYy0RgNWrtY3FUBxdrV+bZ7PWcVZiMuMMwiWJGQlQKFWmFwfJA0yamHc1KtpvarUsYW6cu0xrZsIMnmfA/xrOD7pONo1aKd//Fb2LUQvj4Zaq8bf4/9Gn8Z9atXuuszB+DTM2HgF5jRTz5h7+L9+Q2irrDoODYxQbGZbwjaM3j4abIaN89POo21gW2eb5PLososqRpkrYk12UW3gahkShBDkKfIsVqGkF6UjszjTpowqLotrVRWKI+ehlKpK9fNOTAmBh/KHBkO6zMGAgZ/Ez7jipMLv/hL/GrtR7Arnc74iH/GZ8UbtuIqURSbX+4p9jRz/Fj4tIOAIasQ+V8AV/k9VYY19nhIWEjESCk0J3mz/Jha/uFj/eFZxFsJ/DIe8TI7Vg1djapuptWR53eVW9i38cnU9thyLALQeYGD8f3f2eeFquHo7haqgPjDFVug541hKVaVovbI1bufcxoSWE7DhpQ3ONsnlcXXfRYeraSYAUKgVel1UVRVKWmEaStWlNh274jyUqqpQHDUPxVS1fmXdZG21vpgrNmrXVVvV+q5wPmu0GiTlJhklmd3Pv29yPY/NQwvvFkZV+X5iv3pdPewK/6uqsMY+NrcQ99gvw0/ig/PTziPUPVT/+FsH38Li84sR6ROJazOu0Q4LFihRlWB7wh/4eDsHarWEaiYrqau6iQZGKHYxdvtY/J7wOyJ9InF5+mWaVWoBa/vRbn61Izo19qoFi8xTVy9maq0a2SXZVlWhuPI8FLlCbpQx9bDAsArFXGupinBYHDRwa2C2b2+wLBheQi+7HFxrz+cWTf9CTIgYjT0bo5FHIzT2aIwgaVCNBWy0RIv7+feNysqTcpNMBs3YDBvNvJsZBEyi/aIRLA2uF46/q193rO7T3bcM80+OAAAs6b8Eb3R4Q//Yd2e/w7t/vws/sR/uvHEHUj79nK9MXmkefk/4HeuurcP5x+fB10TDX/mFxf1c4fPI2bjijS9boD4wxVboOeN4zj06h85rO0NLtNg1ZheGNh/qbJNcGlf3XSpSVzUTIcSwer+KIEpNzEPRbavuPJTaqtYPkYWggbSBXVUz1p7PwQ13IDpYoNdLjTwaoZFHI7jx3Wx+TmuRK+SGSWaZNxCXEWc2Sc9H5GMULInwiag3SWaufu2x1j6x3yokFuxGpE8kTk85DZlABqBcDzT5sQlyS3OxdMBSzGo3q6ZNrnMQQnA69TTWXVuHrQlboSxtSDWTDdRl3UQDIxS7yC7JRuSySGQWZ+L9zu/ji96WLxjPMruvPcacLdcsrls8NgZDYxpYXEepHpbmoei2VWceiqVWXvbOQyGEILsk22TfXl021ZPCJ9AQjcVjCTlCBEmDDAfEVxICphxya8/nLO5XKOGcMNjGZXER6h6qd/r13/8NntRET85iZTESsxKNMqXMDYeU8WVGjn+Ub1Sd6xdq7f/JP+gAXuvcFsNbDNc7z7WBLdfF28W/4b3D74HFsLB77G4MajoIQHmP5ahlUbibexfvdX4PX/b+soatrhtotBocSj6EddfWYdetXfpgKgMGEm0PeJa9a+EI9PPI1dspWAP1gSm2Qs+ZmuH9w+9j0elF8BX7ImFWArxF3s42yWWhmsm1sGYeim5bdeahVBVAqc48lIrV+gYBlGpW64dIQwzadZmr1q+OZgLKgxF6neTeyCDZLMAtwOHzVQgheCB/YJRkdjf3rsnqHBbDQlOvpkZV+SGykDqXZGbt/6pj5E2836c3Wvm1qtXXaK19C4eG4MMz/ZBWlIY+jfpg/7j9+tZoSy8sxesHXoeX0At337hL2zv+y0P5Q2y4vgHrr69HUm6SfrtU+wI8yt6xuD/9PKr7uokGRih2s/PmTgzfOhwshoUzU86gQ1AHZ5vksrh6BgLFPLqMKqMAigvPQ1Fr1UgvSjfMmqokBDKKM6w6lowvMwiahMhCoFaE4Zejlm+gj+icCiU7Affy7iE5Lxkp+SlQapRV7uMr9tVnSVUOnjhSABBC8KTwiVGw5Fb2LbOZcY09GhvNLmns2dhlhz5ae91J581HGTsOfDYfA5sORGxULAaGD4SQK3QJ+za/2hEdG3li+t7pWH11NcRcMU5OPonWAa0BAHtv78WQLUPAY/Nwc/ZNNPJoVKN2uzI3s25i/fX1+PXGr3hS+ES/ncPi6M9rWjFiGY2WoPOXR5BeYLo6r66UzlMfmGIr9JypGRRqBdr+3BaJWYkYGzUWm0dsdrZJLgvVTHWXivNQLFWhOHoeim6bPfNQKlfrGyWfVaNaH8qm+P2kv8V9J/bMg4Z7C8l5yXrdZKnahc/mI8wjzEgv6b4c6ceXqEoMk8z+/copzTG5XsqXGgVLonyjarQCprrYqptaeLdAbFQsYqNj0cSzicvYt/nVjuCLHqDrL11RoirB9DbTsWLQCjAMA7VWjVYrWiExKxFvd3wb3/X7rsbtdlWKlcXYeWsn1l1bh6MpR/VBXRbD0gcBqWayDo2W4PkvDyOjwPR9nrqgm2hghFItxv8xHr/F/Ybm3s1xZfqVGr+RVlfR9YRMlytM5tHUhYsFpWoszUOpuM3eeSimAij2zkMpU5cZzDsxJQTMihbCQgPFGrDhBQamggIEMhHB0omeCHUPQYBbADgsDjRaDZ4UPjFw+vXfc++Zda51CDgChLmHmaw0CXMPc8j1R6lR4lb2LSPHP60ozeR6EVeEKN8oA8c/2i8ankLPattSXay57ni7cTCkyyVsSdiExKxE/WNuPDe81OIljIsah16NetVIH1pL9hFooWFy8NFILaa1nQKVRoUBmwbgcPJhBLoF4vy08wiSBoEQgr4b++Jw8mGMaDEC20dvd7itrkzlVlk6Kjr2QHl/8JEtRmJsZCzm/65BBv08AiEEaUVpuJNzB3dz7uJu7l3cybmDW080UGTOsLi/qwsh6gNTbIWeMzXHpSeX0HF1R2iIBttGbcPIiJHONskloZrp2cDSPBTdturMQ6lqoLwt81AIIcgqyTLbritVnmq+Wt8KzSQVarAolo9Qj/I2XrrgQUFZAZLzkvU6qaJueiB/YLHFWYAkwKDCpOJ3X7FvtasdCCFIL0o3SjK7mXXTbLJgmHuYUVV+Y4/GNdZm2RasufbIRASNm63H/rt7DYJl7Ru0R2xULMZEjkGAW81kxVujmzicIpyb3xc+Yi/sub0Hw7YMAwHB132+xtzn5wIA/r73N/pt7AcOi4P4mfFo5t2sRux1RSq3yqpYLcaAMbg/0y20G8ZExmLdocbIKlDSzyOUB5OScpNwN/cu7ubcxZ3ccv10L50FfsF7Fvd3Zd1EAyOUapFbmouoZVFIK0rDu53exTd9v3G2SS5LXS8vozgOm+ahlMrB10aCTTygYfJQxkoAGPODBnXzUCxVoVgzD6WwrNAoY0pXdZKSLoMqZxIAYuDoE2gBMMjifY5S9lkA5bM8AtwCTPbt1fXz9RH5GAiAysGTB/kPLLYHC3QLNOn8N/ZsDB+RT7UEQFZxFuIy4wyCJQlZCVCoTQ/AC5IGGc0uaebVTF/KXFvorjsADK49la87hBDEZcZhU9wmbI7fjIfyh/q1PiIfjI4cjdioWHQK7uTQCpmq7CMgyPz3PFrQbQE+7vExCsoK8Pza55GYlYgY/xicmHQCbnw3xGfGo9WKVtASLf6Z+A+6N+zuMBtdEXOtsioj4oowrPkwxEbFom/jvvosSmvPi/qArv3gnZw7Ro58Um4SilXFRvuI1N3go5pn8diuXjpPfWCKrdBzpmZZcHQBPj35KbxF3kiYlQBfsa+zTXJJnqXPKErVWDMPRb+tMBNsdTOrNVPFeSiWWnlZmodSsVq/cqJZ0hMJ5BmjYY1mAgyr9SvOhtR9D5IGgcPiIFWeajbZTF4mr/LvKuaKjSv0/w2ihMpCqzUzU6lR4nb2baPZJY8LH5tcL+QIy5PMKlXle4lq/waqtdceuUKOXbd2YVP8JhxOPqxPRGLAoGdYT4yLGofhLYY7vFWVOfvKfyfI4n2OUL88/DnuT4R5hGHxucV466+3AADbR23HiIjymY2DNg3C/rv7MajpIOyN3etQG12RB/kP9K2y7uXd02+vHAxp7d8a46LHYUzkGATLggE8e59HZeoy3Mu7Z5AwptNP5t7D9UE30cAIpdrsu7MPgzcPBgMGJyefROeQzs42yWU5GJ+Gj/YkGLTnqCsDiSi1j6nzxU2oQfvmDyCQ3DIQB/bOQ6kYLLF1HsqBuDQs3BuPzAplkyK+AiHBF1DCPovUglQ8Knhk1dBGPpuPIGmQWSEQ4FbuhKbkpzzNnMov/34v7x4KygqqPL5OAJjq0RvqHmrXQEWNVoOk3CSjTKn7+fdNruexeWjh3cIoU8pP7FejPWptHYSmJVqcTT2LzfGbsTVhK7JKsvSPhcpCMTZqLMZFj0O0b7RD7DZn3/8NisDprKX47ORnAIAJLSdg9ZDVeFL4BB1Wd0BmcSYGhg/ErrG7wGFxMGv/LCy/tBwx/jG49Ooll8g+czQ3s25i3bV1+PXGr2armLgsLvo36Y9x0eMwuOlgs3256/KAPFPkK/INKj/0znzO3SpvELAZNhq6N0S4VzjCPcPR1KsptIrG+O5P8zdTdLhy5hNAfWCK7dBzpmZRapRot6odbmTcwIgWI7Bt1LY614e/tqhvn1GUmuVgfBo+2puI9Arni1SkRZfINEikSUZBFXvnoViqQjE3D8WUphMLlAhveB0q3kXL1fqV8BX7Gs2F1AdO3IIg4ArwUP7QqNLkXt49pMpTq3ztDBgEy4JNJps18mgET6GnXdetnJIcoySz+Mx4sxVBgW6BRu24mnk3s0uz2YKt156MogxsS9yGzfGbcSb1jH47l8XFgPABiI2KxeBmgyHiimrUvkldJfj04kg8KngEX7Ev9o/bj7YBbfHGgTew9OJSCDgCHJ90HO0btMft7NuIWh4FtVaNv8b/hb6N+zrENleiWFmMP27+gXXXy1tlmSPcM1zfEq25d3OTa+rb55FKo8L9/PtPE8Z0wY/cu3gof2hynpAOT6GnXi+Fe4Yj3CscZSUhWPhHnsXndWXdRAMjFIcwefdkrLu2Dk08m+D6jOsOu/DXRzRagsAvu6GolIWfh36NsW3aPROldxTbsKfCqKp5KJUzrOyZh2IqiOIj8kNBkQ+gkaGJjw9eaBoKDvtpNpRGq0FGcYZB1Yk+k+rf39OL0q0SJ248N6Mh8SGyEAS5BcGN7walRonHhY+NKk4sCQAWw0KQNMjsQHhb22LJFXLEZ8YbZUqZG+7oI/IxypKK8IlwaGtCjZbgQkouMgsV8HUToH2Yp1XXHbVWjSPJR7ApfhN23txp8BoifCIwLmocYqNjqz3Xoyr7Vl9ZjRn7ZkBDNHgh7AXsGL0Dd3LuoPu67lCoFXij/RtY8uISZJdko8mSJpCXybF68GpMbTO1Wja5CnmledgSvwXrrq/DhccXzK7r2bAnYqNiMSJihNXnrL3nhbMoUhYhKTfJqPXV3dy7Fntxh8hCyh14nTP/byAkzCPMSGTXl1Yu1Aem2Ao9Z2qeq2lX0X51e6i1amwesRljo8Y62ySXRaMleHvPUqy5vA29mjyHnRO+celrLsU52KOZLM1DqbjN3nkolYMoviJ/FBX7g9HK0NjLG31aNIKQa1iZYapa/2HBQ4PfrWktxmbYCHQLNKmb/MX+ICDIV+QjJT/FINksOS/ZZCVtRWR8mclks0YejRAiC7Gp/a5Gq8G9vHtGLYxT8lNMrueyuGjh08IoYOIv8XdokNle//h+/n1sid+CTXGbEJcZp98u5ooxrPkwjIsehz6N+lS7g4A5+x4XPMbATQNxPaP8ftzvI39H/yb9MXTLUPx590/4in1xftp5NHRviLcPvo0fzv+ACJ8IXJ9xvUbaJtc2hBCceniqvFVW4lYUKYtMrgt0C8TYyLGIjY5F24C2Vp07dU0zabQapBakPk0Yq1Axn5KfUmXiqhvPzSBhTBcACfcMN1nJVR90Ew2MUBxCviIfUcui8LjwMeZ0mIMf+v/gbJNcmpbLWyIuMw4HXz6Ifk36Odsciouh+3CpmJVQkep+uOjmoVgzUN6R81AMAisV5qEoNUo8LnhcpRDILc216vm9hF7lWVMVhIC/xB9cNhdKjRIFZQW4n3/fIHhiqdLGXeBudiB8sCzYKkeSEIIH8gdGjv/d3LsmszJYDAtNvZoaOf4hshCnZZeWqkqx/+5+bIrbhP1390OpeVop1KFBh/LeulFj4C+xPGTSVg4mHcSobaNQpCxCpE8kDrx8ABceX8DIbeU92hf3X4w3O7yJ789+j3f+fge+Yl/cfeMupPy6+bmv1qpx6N4hrLu+Drtv7TbbKuu5wOcwLmocRkeORgOpa5Ym24pCrcC93HsmW1+Zq5LRESAJMOnIN/ZobHOg0ZrS+T4R/i4tkqgPTLEVes7UDh//8zE+Ov4RPIWeSJiVUCOfm/WFDdc3YOKuiejdqDcOTTjkbHMoLkZNaybg6TwUSwEUR89DqbhNNw+FEILc0tynM04qtDnWJZ89Lnxsc7W+ruJEl2xGCEGpuhRpRWkGyWZPCp9UeUw2w0aoe6jJSpPGno2t9ssLywqNksxuZNww2yHAS+hlVJEf6RPp1Pm38Znx2By3GZviNxl0E/ASemFUxCjERseiS0gXh7YoBspn04zeNhp/3fsLLIaFn178CeNbjkfXX7riesZ1RPhE4MyUM9ASLcJ/DEdOaQ6WDliKWe1mOdSO2sRcq6yKeAg8MDJiJMZFj0PXkK71orOAuVmJd3Pv4l7uPbP6EShvYdfEswnCvcLR1LOpgX6yZwaRJd20dFwbeIh59UIz0cAIpUoOJh3Ei7+9CADPRI/36tBvYz/8fe9v/DL0F0yKmeRscyguxtl7OYhddc7iurcGAB0becFD4AFPoSfcBe4On2Ghm4diTRVKnsJyCWVFxFyxySqUygEUP7Ef1Fo1HhU8MurbW1EYWMpwAsrLwwPcAvRl50FuQfAQeoDFsKDWqlGoLERmcaY+g8rSjVgOi4NQWajJSpNGHo0sCoASVQkSsxKNAibmBtFL+VKj2SXRvtH6QY21Rb4iHztv7sTm+M04knJEH9xhMSy8EPYCYqNiMbzFcLgL3B32nNfSr2HAbwOQVpSGQLdA7B+3H4fuHcK8w/PAYljYNWYX+jXph+jl0biTcwfvdX4PX/b+0mHPXxskZiVi/bX1VbbKaubVDOOixyE2KhbhXuG1bKFjUGlUSMlPMdn6ylKFl7fI2yBzSRcAaeLZxOHvg6pK5wG4fFk99YEptkLPmdpBpVGhw+oOuJp+FUOaDcGuMbtoSy0zHLp3CH039kWkTyTiZ8U72xyKi2GtZprVT4n2YR56zeQh9ICYK3bo+67iPBRLQZT0onSrghc6dPNQrGnl5cZzQ2ZJpuGQ+EoBFHur9f0l/hBwBOWBE00p8kvz8UD+QJ9wVtWNWKA8KFB5ILzu5wbSBlUGCQgheCh/aBQsuZNzx2ySWbhnuFHAJFQWWqvXW0IIzj8+j01xm7A1YSsyijP0jwVJgzA2srxFcYx/jMPsUmlUmLl/JtZcXQMAmPf8PMxuPxud1nTCk8In6NOoD/aP249VV1Zh9p+z4SX0wt037jp8JkpNYk2rLCFHiKHNh2Jc1Dj0a9Kvxtuw1QT2zErUwWVx0dizscnKD0vvN3swp5uGtArAnutp9UYz0cAIxSLT907HqiurEOYehhszb+gzwimGTNo1Ceuvr8fnL3yO+V3nO9va+7+rAAEAAElEQVQcioux+9pjzNlyzeK6LO5XKOGcMNjmxnODh/Bfp19Q6Xvl7cKnAkHKl1bbGStTlyGzONO4CqVyRpUD56HotvmJ/SDkClGqKsWTwidPhUCFIMqjgkcGVQ7m4LK4+gyqAEkAJDwJuCwu1Fo1ilXFyC7JLh9An5diUQB4i7zNDoQPdAs06ZAQQpBelG7k+N/Mumm2BVqYe5iR49/Yo3GtZMOkF6VjW8I2bIrfhHOPnopTHpuHAeEDMC5qHAY1HeSQrK2H8ocY8NsAJGQlQMKTYOvIrdh5aydWXVkFMVeMk5NP4nHhYwzePBg8Ng+JsxLR2LNxtZ+3JtG3yrq2DheemG6V1cCtAWKjYh0unGoSjVaDh/KHBrM+dD/fz78PDdGY3VfKlz514Cu1vqpt0WaqdP5QYrrNbTucAfWBKbZCz5naIy4jDm1/bguVVoUNwzZgQqsJzjbJJYnPjEf08mh4Cj2RM8900gjl2aU6monL4prURp4C05pJ97uH0KPaN1i1RIu80jyTAZSanIei2+Yp9ISWaJFTmmMYQKmgm6yt1vcWeZdXm0iD4Cn0BJ/NB5hyXZivyEd6UTqS85INZhaaszvMPcxkslmYe5jZmXmlqlLczL5pkGB2PeO62Rarbjw3RPtFG1TkR/tF10qVuVqrxrGUY9gcvxk7bu4wqIBxdOITIQSfnfwMC44tAACMiRyDOR3moM+vfVCsKsarbV7F0gFL0XplayRkJeCtDm/h+/7fV/t5a5KKrbJ+T/jdZFCAzbDxYviLiI2KxZBmQ+rM/UhHzkrUBUBsbW3nCCrrprziMszedLVeaSYaGKFYpKCsANHLo/FQ/hCznpuFpQOXOtskl2T+4fn48vSX+t74FEpFrM1+kgasRSGuIK80r8oPTGtgMSy9s29tUEX3uz03vIuURVZVodgzD8Vb5G0oBHTzUMQ+EHAE0Gg1UGgUyCvNM6pCSStKq3LgmA4RV4RgaTB8xb5w47mBw+ZAq9WiWFWMnNIcPCl8YnHmgU4AmBoIH+YRZjSrSalR4nb2baPZJY8LH5s8vpAjRJRvlMHskpZ+LU32BnUUyXnJ+t66CVkJ+u0SngQvNX8JsVGx6N2od7Uqm/IV+RixdQSOphwFm2Fj6YCl2HFzBw4lH0KgWyDOTT2HqXum4lDyIQxvMRw7Ru9wxEtzKGqtGn/f+xvrr6/Hzps7TZ7jngJPjI4cXWOl9o5AS7R4UvjEaHDfnZw7SM5LrjIQKeKKTFZ+hHuFw0fk47LBn9po2+EoqA9MsRV6ztQun5/8HB8e/RDuAnfEz4yvNy0RHUlOSQ68v/YGACg+VIDP4VvYg/IsYa1m8g7aiGLmGvJK85BbmmuTtjCFmCs2SjKzRjPJBDKb/TndPBRrqlAcNQ/FX+IPGV8GBgzKNGUoVhUjrTDNrmp9FsOCv8QfgZJAeAg9IOAI9MeVl8mRUZSB1IJUixU0/hJ/swPhK88YIYQgozjDqCI/MSvR7P++oXtDoxbGTTyb1FiSmUKtwIG7B7ApfhP23dkHhfqpX/lc4HPlLYojx1T7c2HD9Q2Yumcq1Fo1uoZ0xYy2MzBh1wRoiRZf9f4KMf4x6LuxLzgsDuJmxpkdQO5M7uffx4brG/DLtV8M2pJVpHtod4yLHocRLUbUqNatDrU1K9FVqK+aiQZGKFZxOPkw+vzap/znCYfRq1EvJ1vkeiw5vwRzDs7ByIiR2DZqm7PNobgY9gywUmvVkCvkyC3NRZ6i3OnXOf/63ytsr/izrf1wKyPgCMyLgSpEgrvA3WIWQ1XzUCqLAXvmoVSuQvER+UDAFYBhGGi0GpSoSlBQVoD0onR9AMWS46LDne8OH7EPpHwpeGweNESDUlUpckpzkFmcaVEABEgCjGeb/Bs88RP76QVATkkO4jLjDBz/+Mx4s//XQLdAI8e/mXczhztVcRlx2By/GZviNuGB/IF+u7fIG6MiRmFc9Dg8H/y8XTf8lRolXt37KjZc3wAAmNtpLv68+ycSsxPRyq8VVg5aiefXPg8t0eLYxGPo0bCHo15WtUjMSsS6a+uw7to6k5lzIo4IL7V4yWHDGR0BIQSZxZlGlR+6cu6qrh88Nq+8f+2/jny419MASKBboMsGP3QoNUrklOQgqyQL2SXZyC7JxuX7hfj9pOV5AJtf7YhOjZ0rzKgPTLEVes7ULmqtGp3WdMKlJ5cwIHwA9sXuc/nrYm1DCIHgMwGUGiXuz7mPUPdQZ5tEcSHs0UyEEJSoSqrWTKV5yFUYb5cr5DZpDWN7GLgL3G3WTJ5CTwg5QovXB4VaYV31vp3zUCoGUPzEfpAJZOAwHGihRZm6DEXKIuSU5uBRwSN90pk1QSgOw4G/xB8eQg+IuCKwGBbKNGUoKCtAZnGm2dkiOoQcodmB8GHuYfqAqkqjwp2cO0ZV+Y8KHpk8roAjQKRPpFFVvrfI26a/nSUKygqw69YubI7fjEP3Dumrqhkw6N6wO8ZFjcOIiBHwFHradfwjyUcwfOtwFJQVoJlXM4yJHINPTnwCANg2ahvWX1+PfXf2YWD4QOwbt89hr6s6FCuLsePmDqy9uhbHHxw3uaaNfxuMix6HMVFjECQNqmULTeMqsxJrG0II5GVyZBU/1UwX7+djwzHL52xd00w0MEKxmln7Z2H5peUIkYUgbmZcnR2AW1NsS9iG0dtHo3NwZ5yacsrZ5lBcEGsG/zqq7FChVpgWBGaCKrrf80rzqmyHYw1SvtTqEvaKP7vx3IzEgUarQXZJtkUxUN15KD4iH4i5Yn0gQalRolhVjHxFPrJKspAqT0WhstCq43oIPCDjy8Dj8Mr79apKkavItdhqTMQVmR0I39C9ITgsDu7l3TMIlsRlxiE5L9nk8bgsLlr4tNAHTKL9yqtLAiQB1b5JQwjBuUfnsCluE35P+N0gIBAsDUZsVCxio2PRyq+VTc9FCMHCfxbifyf+BwB4qflLOP3wNDJLMjEgfABCZCFYcWkFWvm1wuXpl502ZC+3NBdb4rdg1ZVVuJZ+zehxDsPBgKblLccGNxtsVClUW+SW5hplL+kqQao6n9kMG2EeYSZbXwVLg11muKGWaCFXyJFdkm0Q6NA78KXZBs58VkmWSSEuUneDj2qexedbPDYGQ2Ocm/1NfWCKrdBzpvZJzEpEm5VtUKYpw9ohazG59WRnm+RyhP4Qiofyhzg79Sw6BnV0tjkUF6M2NZNGq4G8TG6UZGZNUMXWNsKV4bF5VQdQzGw3NYNSNw/FmlZe1ZmH4if2g7vAHQKOAGwWG2qtGgq1AgVlBcgpzUFaYZrV1foCjgCeQs/ywAlYUGlVKFQWIrc0t8r9GTBoIG1gdiC8l9ALeYo8xGXEGQRM4jPjzf7PAiQBRsGS5t7NHZJkllmcie2J27EpbhNOp57Wb+eyuOjfpL++RZS51mLmiM+Mx4DfBiC1IBW+Yl/0CO2BrYlbIeAIsGHYBoz7YxzUWjUOvnwQ/Zr0q/brsAdCCE4+PIlfrv6C3xN+Nxm8a+LZBOOjxyM2OhZNvZo6wcq6MyuxOijUCmOtVFlDVfg5uyTb6DpRXzUTDYxQrKZIWYSWy1siJT8Fr7Z5FT8P/tmhxzfV89vZ5Ve2cPLBSXRb1w2NPRoj6c0kZ5tDcVGqGvzrCr0YCSF6h9TWwIq1gQNzcFicpxlXNvQF9hR6gs/hm52HYkogWFMmXhF3gTt8RD6QCWQQcUXgsrjQEm15KbqyGLmlucgszrQ4nwQoFxdSnhR8Dh8EBAq1AoVlhVU6XAwYBEmDTFaa+Ip98aTgydMKk38zpcxlYnkJvYwc/wifCLtv3qu1ahxNOYpNcZvwx80/DM6DFt4t9EGSJp5NrD7m2qtrMX3vdGiIBm0D2iIhMwEKjQJTYqbgj1t/IF+Rj1WDV2Fam2l22WwPulZZq66swr47+0wKyh4Ne+Dl6JcxosWIWpubUVhWaBDwqOjIV9VLmgGDEFmIQfaS7ueG7g2dUtmiUCvMO+rFWUaBjuySbLsCuSyGBS+hF7xF3vAR+4CnjsbdpBct7vfbtA7o3MSxGYW2Qn1giq3Qc8Y5fH36a8w7PA9SvhTxM+MRLAt22LHrumYCgI6rO+L84/P4Y/QfeKnFS842h+KCuLpmAspnbugSy2xNRrMlMGEK3QxKWzWTlC8FATE7D6XyNnvmofiKfOEp9ISELwGfzQeLKQ96lKhKUKAoQFZJltUJbSKOCGKeGGwWGypNeeDE0nxJKV9qlGymqzRRa9VG80vu5d0zeRwOi4Pm3s2NqvKrUyH9IP9BeYvi+E24kXHj6evkijCs+TDERsWib+O+VgdknhQ+wcBNA3Et/RpEXBEivCNwKe0SfMW+GNx0MNZcXYMInwhcn3G9VmdT3M+/j/XX1mPVlVUmW0T7if0wvuV4xEbFok1Am1qprKwvsxKBpzONTCWGmQt0FCmL7HouCU8Cb5E3vEXeEGpi8PD+MIv71DXNRAMjFJs4fv84eqzvAQAOjTzXBcfHEkm5SQj/MRwirghF84to2TzFLPVB0JpCpVEhX5FvVbZV5TXWBBSqQsgR2pRpxWPz9IPXs4qzHDYPRVdOL+VLIeQKwWbY0BCNPviRp8izKoOKw3DA5/DBMAwUaoVF8aQTABWdfwlXglJ1KdIK05CQnYC4jDjczrlt8vlZDAvhnuFGs0sauje06VpWqirFn3f/xKb4Tdh/Z7/B/7V9g/b63roBbpav638l/YWR20aiSFmEYGkwUgtSAQDDmg3Drtu74Cv2xd037tZ49WJCZgLWXF2DX679YrLPc4xfDCbGTMToyNEIdAusERtKVaVIyk0y2foqvSi9yn0D3QINHHldAKSRRyMIOIIasRcoFx95ijyrMpJ0a2wNWOpw47npHXYfsU/5z8Ly3934bhBwBOCz+eCwOPqWeoXKQuQr8iFXyHEvnY0L8Z0sPs9vUzugc3jdcfIpFICeM85Co9Wgyy9dcO7ROfRp1Ad/jf/LIdqgPmgmABi2ZRh2396NZQOWYWa7mc42h+Ki1FfNpKvuqFIzmQms1PYMSl3Gu0Kt0A9ed9Q8FBFXBBlfBjFPDB6LBzDlerJYVWxTa2ghR2hQvVIVbIaNEFmIgW4KdAssv9GsyENSbpI+YGLub+0p9DQKlkT6RtqcZJaQmYDN8ZuxOX6zQQcAT6EnRrYYiXHR49A1tKvFFsWFZYUYtW0U/rr3F1gMC4FugXhU8AjNvJohqyQLuaW5+OnFnzC7/Wyb7LMVXauspReX4sLjC0aPu/HcMDZyLF5u+bJVr8se6uKsRF0rQLMV8CY0lKWqKnNwWBy9ZvIWecNH5KP/2UPoARFHBD6HDy6bCzbY+iTOfEU+5GVy3H3CwukbbS0+T13TTDQwQrGZOQfmYMmFJWjg1gDxs+LhLnCv1vF0pbKVT8SaKJWtSYqVxZB8IQEAyN+X01ZjFIoNlKpK7eoLnK/It8spqIi7wN18qTrfXR+gUGvVUGqUKFGVoEhZhNzSXMOMqpIsm2xhM2xIeBLwOeWZVGqtGqWqUqtvDrMZtt4uS+tC3UPRyKMRQqQhkPAkUJPy+TWPCh4hISvB7IwVN55beQuuCo5/tF+0Vdc3uUKOnbd2YnP8ZhxOPqz/2zBg0DOsJ8ZFjcPwFsOrzLK5ln4NAzcNxJPCJ5DypChQllfBBLoF4knhE8x7fh4W9Vlk0RZbyS3NxW9xv+GnCz/hTs4do8cbujfElJgpNlfCVIVSo0RyXrLJ1le6oJA5fEQ+BhUfOme+iWcTm8vyTUEIQbGq2Kby65ySHLt6duscdh+Rjz6zUcKTQMQVlQc32BywwAKY8huPOgEtL5PrAx3yMrn+uzXvyfpaFk6hAPSccSa3s28jZmUMFGoFVg5aieltp1frePVFMwHAzH0zseLyCizotgCf9PzE2eZQKHWGyjMordVMtTGD0o3nBhaLBUIIlBolFGqF3kerXNVvaxsyEUcEIVdYXrUPLZQaJYqURVZV3jBgwGFxoCEai36hp9BTHzTxFnmDzbBRrCpGZnGmfsi2qcoCBgyaeDYxqspv6N7QYgCAEIILjy/oWxRnFGfoH2vg1gBjo8ZarKxQaVSYtX8WVl9dDaC8ZXSxqhjNvZvjVvYteAo9cfeNu3bPNDGHlmhx6uEp/HThJ+y+vdso8MBj8zC02VC80uoVmyphqsLVZyWqtWrklOQY6aOqWv1aCuiZQ8aX6QMb7gJ3SHgS/f0FHotXnhQGBlqihZqooVApUKAs0Ac6dHopX5FvlQ31VTPRwIgDqa8ZDZUpVhYjZmUMknKTMDlmMtYOXWv3sXTD1SpmPVXE1HA1V0b6hRSFykLcmn0LzbybOdscCqXeoyVaFJQV2FXCbm85qQ4Oi2PU71fEFZVnWDBsEEKg1qpRpinTD3zPLc1Fdkm2zfNQOCwOuCwuGIaBSqOyqYrFEp5CT4TIQiDjy8BmsVGiKkFWcRYeyh+afZ6G7g2NZpeEe4abnT2RUZSBbYnbsCluE84+OqvfzmVxMSB8AGKjYs3O4kiVp2LgpoGIy4wDh8WBWqsGn81HmaYMPDYPibMS0dizcbX/DmqtGn8l/YXvzn6Hfx78YyScvIXeeKXVK5jQaoLNs1MqPseD/AcmW1/dz79fpVhzF7gbZS/pgh+2JiioNCrkluYaO+pVBDrsddilfClkfBkkPAnEPDH4bD54bB7YLPZTR/3f94lCVd6jukBZALlC7rDzXNemT8aXQSaQQcaXlf/+78+lxUH462ILi8epa4MEKRTANc+ZZ0UzAcD3Z7/HO3+/AwlPgriZcWjo3tCu49Q3zfTJ8U+w8J+FmNZ6GlYNWeVscyiUZwJnz6CsqJmkfCn47PLMdBBAQzRQapVQqBQoVBZCrpAjpzQHmcWZNvuDfDYfbBa7vO2xusyuRB1TcFlchLqHwlfsCwFbAA0pr45+VPDIbPtaCU+ir8SvWJkvE8hMrtdoNTh2/xg2x23Gjps7DKpWmno1LW9RHBVr8l4TIQSfn/wc/z32XwDQdy7wEHggT5GHOR3m4If+P1T/D4HyVlnLLy7H2mtrjRLsWAwLPRv2xNTWU+2anaLDFWYl6tqMW2r1W1FP2arzdfDYPP17Q8KVQMB9WvHOYsoDjhpSnhRWqi7V31+Ql8mrfV+jIm48N71GkglkTzUUXwZFSQiOXWlp8Rh1TTPRwIiDqC9lzdZy+uFpdP2lKwgI9sbuxaCmg+w6ztl7OYhddc7iOld4Y1lDs5+a4U7OHRybeAw9GvZwtjkUCqUKlBol8hX5Vpew67blluZW+4atiCOCVFCeCa8TBSywoCVaqLQqKNQKFCmLIC+T23xDWuc4OUIEcFnc8n6iHCE0RKPPLjGFgCNApE+kUaaUt8iwjDYlLwVb4rdgc/xmxGXG6beLuWIMaz4M46LHoU+jPgYzLuQKOUZsHYEjKUfAgAEBAY/Ng1KjxEvNX8IfY/6w+zUmZCbgmzPfYFviNqNqHRFXhNERozGl9RR0DulsVcm3lmjxqOCRSUc+OS+5ynNHzBUbVX7ofvcSepkMxhBCUFBWYFP5ta2tDnRwWVyIeWIIOALw2Dx9sE5LtPrqjVJ1edWTpf7P1sJiWPrgSsVghkwggzvf3WSgw8CJF8gg5AirDGTpbjimyxUm3zWudMPRFX1gimvjaufMs6aZtESLHut64OTDk+jZsCcOv3LYrvYh9U0zrbq8CtP3TcfA8IHYN26fs82hUChVYO8MyjxFntmZh9bCAgvuQne48dwg5Ar1M0sYMEYJaAVlBTbpHwaM3o91BDrfk838m2hWkmU2oBQiCzFqxxXuFW4wB6RMXYYDSQewKW4T9t7Za6AJ2wS0wbiocRgTNQZB0iCDY2+8sRFTdk8x0hwcFgdxM+PQ3Lu5Xa+vSFmEjTc2YvH5xbiVfcvo8db+rTGj7QyMjBxpdWVKbc9KVGqUNg8gt1fTiLni8op3Dh9cFlf/2a9LClOoFShRldjdStgUQo7QSAdVDGxUfqyyhpLypVUGjuqrZqKBEQdQn8qabWHu33Px7dlvESAJQPyseLvK8nZfe4w5W65ZXOcKpVjW0GNdDxx/cBybhm9CbHSss82hUCg1gK4PqD19gfMV+dUOWAg5Qgg4An3GvYZooFQrUaourXY2l63oslgUaoXZ5w6QBBjNLmnu3Rx8Dh/xmfHYHLcZm+I34X7+ff0+XkIvjIoYhdjoWHQJ6QIWw4JSo8T0vdOx/vp6o+c4+spR9AzrabXduaW5+PH8jyYHAnJZXPRp3Aevt3sdvRv1NulYE0KQXpSud+QrBkCScpOqDGbx2fzyEm6vcDT1bGrQx9Zf4m/gsFs7gNzeQJ0uuKFz1HVZSI6sSKqYdWQQvLAQzNA9LuFJamVml86XA2DwDnU1X87VfGCK6+NK58yzqpmScpPQakUrlKhK7O7zXt800747+zB482C0CWiDy9MvO9scCoVSQ6i1apsS0Rw5g5LL4kLIEZYnoP2bOKZLQKvusW2FzbAh4Aig0Wqg0JjWCXw2H5G+kQYBk2i/aPiKfVFYVohdt3Zhc/xm/H3vb73uYsCgW2g3xEbFYmTESHiJygPjx1KO4aXfXzJKaBsQPgD7x+232m4t0eJI8hF8ceoLnHhwwkjvhbmHYXrb6ZjQcgIaSE1/9tTUrEQem4d8Rb5NgQ57A3W67g06/U1AoNKooNQoHVaRxGPzqg5emAlm6NZL+VKHtCqzRH3UTDQwUk3qW1mzLZSqStF6ZWvczrmN8S3H49eXfrX5GPUt+yl2Ryy2xG/Bt32/xTud3nG2ORQKxcXQEq1BX2Bb5qnY2ou3MgwYsFlsfRmuM2EzbLTwafG0HZdvNNREjUPJh7A1YSsyizP1a4OkQRgbORbjosehlV8rfHLiE3x8/GMAQDBh4A0G4V7h2DR8E9iVs3BFXoB7MIByYbYlfgu+PfMtrmdcN3BiGTBo36A93uzwJoY1H6Zv6ZVTkmNYup371JmvqmSZw+KgkUcjNPFsglBZecm9u8AdEq4EWmj1LdVMVXhUVRpeFcy/7qijnHOgPAhnNnhRZTBDiuQMBkUKNvylojrTJqcuZLK7kg9MqRu4yjnzLGsmAPjpwk9448AbEHFFuDHjhs0tIOubZrr85DKeW/UcAiQBePLuE2ebQ6FQXBBnzqDUzXLUEq3DKkrsxVfki1b+rfSJZkHSICRkJmBr4lacenhKv47D4qB/k/6IjYrFkGZD8CD/AV787UX9rEKdbvrpxR/xfPDzxk9UQTfdzbmL/534H3be2mmkebyF3pjQagJmPDcDTb2aAnDMrMRGHo0QKAmEp8hT32qtsKzQbLAjpyTHbk3raN3EYlhVBy+qSAiT8KRISifILybwldaN9qL1TTPRwEg1qW9Oqq2cf3Qez699Hlqixc4xOzGs+TCb9q9LpVjW8M5f7+D7c99jbqe5+Lrv1842h0Kh1CPK1GXmhyzq2n2ZEQ7WDCZ0BaR8KSJ8IuAn8kNWaRaup183KC9u7t0csVGx4LF4WHl0ARKJEEJU8dnA4ePyiFX47+UVOHr/qFEpdFPPppgcMxkdgjroK0AqOvJV9YhlMSx4Cb3gKfSEG88NPA4PWq0WCo0ChYpC5CpyrR7+XRM4K+uoLjjKVeHqsw9cyQem1A1c5Zx51jWTlmjRe0NvHLt/DF1DuuKfSf/Y1FKrvmmmJ4VP0OC7BuUVof9V2tTznUKhUKrCmhmU5oIqjpzVUJOwwEIjj0Zo7t0caqLGnZw7SM5L1j8u4oowpNkQ9GvcDz+c+wG56TdwG5IqdRNh8/Htc+Pww83tRhX1Yq4Yg5oOKtdhbJ5+EL21sxLFXDF8RD76FrcsFgsqjQrFymK9hrV3nqEjsKZtr9kWVQIZxFyxXRXudVk31SfNRAMj1aS+lTXbw/zD8/Hl6S/hK/ZFwqwEo37yljBXigUQMGBcphTLGr4+/TXmHZ6Hl6NfxsbhG51tDoVCoYAQgmJVsV0l7ObmidQ2XBYXaq3aIKtnqLQhdsnN957V0QZFuMo8ddQlXAkaujeEkCtESn6K0cDAyugzxrRaaFE7QQ4GDDyEHnZlHel+FnAEtWJrRZ7VNjm1iSv5wJS6gaucM1QzlQ+rjV4ejSJlEb7v9z3e6viWTfub00wEWjBgYUUdusaqtWrw/scDAUHau2nwl/g72yQKhUKBSqOymIhmarsjZlA6AhbDAgssqMnTpDh3vjs6sAU4WGy5+0BF3cRiWGjg1gCBboHILc3F/fz7Vb5GZ3UnEHPFVle3m0oOc+O72TX7q7pQ3VSz2OL/cqp81A40Gg0++ugjbNy4Eenp6QgMDMSkSZPw3//+Vx9BI4Rg4cKFWLVqFfLz89G5c2csX74c4eHhjjanxvF1s+7Gg7Xr6iIf9fgIe+/sRUJWAl7/83VsGbnFpv37RwVg+fg2RpFSNbIxt3/DOnUxCHArtzWtKK1Gju/qUVkKxRT0vHUuDMNAwpNAwpMgRBZi074abfnAdWtL2LNLspFTmoN8Rb7Dhm8DMOmEP5Q/BCCx+VhFqiLEZ8VbvV5DNJWj9hYRcoRw47nBXeAOD6HH0yAGTwapQKp31nU/S/lSg6F39mYd6W3WalCsdNwgP+uek2DhngSTfyqCcif/472J6BPhT9//FAqoZqruurpIQ/eG+KbPN5ixfwbmH5mPAeED9G1IrMGcZtIgB+Fh19E/amBNmF0jcFgc+Ip9kVGcgbTCmgmMUP+TUteg56zz4bK58BX7wlfsa9N+ts6gzC3NRVZJFvJK8+xuo2sKLTFO5Movy0cmYcFW3aQlWqQWpFpshaWDgNjcpYDNsOHGc4NUIIU73x2eQk+DRLDKuknKk5ZXtv/7s5QvNTto3VpKVaXV2t8eqG5yLRweGFm0aBGWL1+O9evXIzIyEpcuXcLkyZMhk8nw5ptvAgC++uorLFmyBOvXr0dYWBgWLFiAfv36ITExEQJB3XKG24d5IkAmMFvWTKCFVKhF+zDbB5PXFfgcPtYNW4eOqzvi94TfMaLFCIyKHGXTMfpHBaBPhL/eEVgf9yN23vsaf6b2wlvoUTOG1wABkn8DI4WOD4zU5TI7yrMLPW9dA92wQd1g7Yrf1Vq1zY/x2Xx4i7zhLnBHkCbI5BqFWoEiZRGKlEUoUZWgWFWMUlUpStWlKFWWfy9RlaBMUwalWgk1UTt0PoYzKVWXv77MkkzLi+sJfE00/JVfmH2cAEiTK3AhJbdetsmhUGyFaiZDCLTgcIoQ5uvcGVg1zfS207H95nYcTj6MSbsm4eTkkza1kaqsmUq16Ri3Zygep2twLX0iYvxjas54BxPgFlAeGClKQ2u0duixqf9JqWvQc9Y10FU7WKuVVNp/HzfzGIthQcaXQcQVwVfsa1JrKTVKFKnKNVOxshglqhKUqEqgUCvK9ZLy3981Cig1SqjUKmihrRe6SUM0yC/LR35ZPh7iobPNqTWobnItHN5Ka9CgQfDz88OaNWv020aMGAGhUIiNGzeCEILAwEC8++67mDt3LgBALpfDz88P69atw9ixYy0+h6uUhOuoqhUUAZDF+xxTOrbBD/1/AIfl8FiUy7Dg6AJ8evJTeIu8kTArweYoe0VS8lLQ9KemUGvVODX5FDqHdHagpTVHYlYiIpdFwkPggdz3LLd4sRZaZkepi9TV89aUQ1ydIII1TrPJ/auzb6XHnD1svSZoTVi4YkXmU+VWWpSaQaTuBh/VPIvr6nObnNrA1Xxgiv3UhmYCXOucMa+ZylVTFu9z+HmlYW/sXkT5RtW+gbXEQ/lDRC2LQqGyEF/3+Rpzn59brePF7ojFlvgtGNZ8GHaO2ekgK2ueAb8NwIGkA1g9eDWmtpnqsOPWVf+T8uxSl89ZLdE6TA/ZrXeqqZUq718fobrJtaC6qeZxaiut559/Hj///DPu3LmDpk2b4vr16zh16hS+++47AEBKSgrS09PRu3dv/T4ymQwdOnTA2bNnrXbyXQlzZc0BMiGim9zG6sRzWHrxLG7n3MbWkVvhIfRworU1x4LuC7Dnzh7cyLiBWftnYduobXa3AgnzCMOkVpOw+upqLPxnIQ6/ctjB1tYMujJw3fAoR/R412gJPt6bSMvsKHUKS+ctAMzfeQUqDqCBk4MIajWIsjG0GjeokI1i3ACeAYeQxbCefoFldL0mIOXl2EQLjVbjlKwkDosDAUcAMVcMN76bvsTaW+SNtuAAcbuqdXwRR4QWPi0Q6ROJCJ8IRPpEItI30u7AvkZLcPlBPrIKlfBx46FtqPszc12+kJKHyb9ct7iuPrfJoVBsgWomw6zoqd1lWHQ5C0m599FpTSdsHrEZg5oOcqK1NUeILATf9/se0/ZOw3+P/hcDwweihU8Lu4/3f93+D7/H/45dt3bhatpVtA5wbPVFTaGvtHdgC2Kqmyh1DWs1k4bLQAO11Tf7qwoi2L2vWg2tsjGIxg0qko1i5ga0sK11Ul2FzbD1uolhGDAVhpgTEBBSQTc5ISGNAQM+hw8RVwQJTwIpTwoPoQe8RF7wE/uhNWEBl3+r1nM0dG/4VC/9q5maeDSxq5XVs6yZAKqbXA2HB0bef/99FBQUoHnz5mCz2dBoNPjss8/w8ssvAwDS09MBAH5+fgb7+fn56R+rTFlZGcrKyvS/FxQUONrsalO5rPlpT8heGHirAV7+42UcTj6Mjms6Ym/sXpv6ydYVeGwe1g9bj3ar2mHHzR3YEr8FsdGxdh/vw24fYt31dTiScgQnH5xE19CuDrS2ZvAQeIDP5qNMU4b0onQ0dG9Y7WNeSMk1EI+VoWV2FFfE0nkLAHnFwKhN81HGjqslq4wRajrBUzkdHPjot7kjC7m8n1HKPmuwlsvigsvmmv3OYXGsf8zM47qBdTqnWqPV6MWJUqOESlP+XalRokxThjJN2dP2VKryrxJ1CUqUJShSFlU5LFznvNcmUr4UnkJP+Ih84Cfxg7/EH74iX/iIfeAj8jH47i3yrjq4/OSaXYERBgykfCmKVcUoUZfgctplXE67bLDGV+yLKN8oRPtGl3/5RSPSJxJintjscZ/1FgjdwkUIkN022yaHAeAvE9Tr1qIUii3UhGYCXF83mddMDIa3Po9R20bhaMpRDNk8BIt6L8Lc5+dWa+aSqzKl9RTsuLkDB5IOYOKuiTgz9YzdnQVa+LTA2Kix2By/GR8f/xi7xu5yrLE1hH42owNbEFPdRKlrWKuZRvz2vstpJqkZzcRm2DZrJS7r38ereqzS7wzD6BO4NESjT47TfVdqK2gmVRlKNaVQqBXlLapUpfqWVUXKIpRpyiq/ZAM0RFOrAQ8emwdPoSe8hF7wFfvCX+IPP7GfSc3kI/KBu8C96s/KJ9fsCoyIOCIwDINiVTHu59/H/fz7+PPunwZ2NvdubqCZonyjECwNNmvPs66ZAKqbXA2HB0a2bt2K3377DZs2bUJkZCSuXbuGt956C4GBgZg4caJdx/ziiy/w8ccfO9hSx8NmMSYdrKHNh+L0lNMYsmUI7uTcQYfVHbBt1Db0btTbxFHqNjH+MVjQbQEW/rMQs/+cjR4Ne+idXltp6N4QU2Km4OcrP+Oj4x/hyCtHHGyt42EYBv4SfzyQP0BaYZpDAiOZhVU7Srauo1BqA2vPx3D3tnCTSaxzjB3lVP/78+UUDb75U25kEwc+8FN+iO/GRODF6AB9wMIcZeoyFJQVoFBZiMKyQoPvBWUFRtsKlYXIK8kz3l5WiGJVzQzM5rF54LF54LK4YDGs8moQrRYqrQplmjKbB+UB5RUnXkIvYwfdhLPuI/aBl9Cr2sPx7OH9Lu9jXvxveCB/AKA8q0teVv5/57K4aBPQBg3cGkCpVeJm1k0k5yUjszgTR1OO4mjKUf1xGDAI8wgzcvybejXF4cQsky0Q0uUKzNx4xaVbIDgKNovBwsERmLnxChgYtsnRyaKFgyOeqWwwCqUqakIzAXVDN5nTTJ5CTxx8+SDePPAmVlxegXmH5yExOxErBq4An8N3gqU1B8MwWDV4FSKXReLik4v4+vTXmN91vt3H+7/u/4ct8Vuw+/ZuXEm7gjYBbRxobc2gq7RPLzYf6LMVqpsodQ1rz8Um7m0gkYqs0ju26CFrAhhXUrT49oBxkJ0DH/gqP8S3o5vrNZMuYGEKjVaDImWRTZrJ5Pay8u01EahgM2zwOXy9/mPA6BPWlBolytRldlXRS3gS0xrJjG4Sc8VOSQro3ag3btw/ov/blqhL9I81dG+ICO8IiHliPJQ/RHxmPIpVxbiRcQM3Mm4YHEfGl+mTzKJ8oxDtV66fzt9TPPOaCaC6ydVw+IyR4OBgvP/++5g9e7Z+26effoqNGzfi1q1bSE5ORuPGjXH16lXExMTo13Tv3h0xMTFYvHix0TFNZT4FBwe7RK9cW8goysBLv7+Es4/Ogs2wseTFJZjVbpazzXI4Ko0KHVZ3wNX0qxjcdDB2j91t90X9Qf4DhP8YDpVWheOTjqNbaDcHW2s9Gi0xmd1WmU5rOuHco3PYMXoHhrcYXu3nPXsvB7Grzllct/nVjjTzieIyuPp5q9ESdFl0tIoMLQIhT4nWzW8gv1QLDZMHwr2LIqVxAKQmetFyWBy48dzgxneDhCuBmCcGj80Dh8UBi2EBKK/40A3s0w3mK1QWQl4mh1KjtPk5uSwuvEXeVjvsnkJPvS1OIT8V+KktoK4iw4vDB16/DK2sAf5K+gs/nPsBfyf/bXKpkCPEoKaDMKTZEITIQpCUm4S4jDjEZZZ/ZRabHqTOYwkQqFgDopECMP5M0GX8nHrvhWfCuaVZYDWLK82LoFSPmtBMQP3QTYQQLL24FG8dfAsaokHn4M74Y8wf1Zpf6KpsuL4BE3dNLE/YmH4Z0X7Rdh/r5T9exqa4TRjSbAh2j93tQCttw1rNtCNxB0ZuG4lOQZ1wZuoZhzy3q/ufFEplXP2ctUYziQUq9O94Bg+zeZCXEqiQAy3nDopUBbWSAKZruSvlSyHmisHn8MFj8fSBDQICjVYDpbY8sKGrEtElttmDu8DdKr3kIyqvghdyhQ5+1TZig256xGKw7OIyrLi0AnmKPJNLW/q1xMgWI9E5pDOKlEV6zRSfGY/bObdNJ90RFkKU68BoPUA1UzlUN9UcTp0xUlJSAhbL8EYJm82GVlveriMsLAz+/v44cuSI3skvKCjA+fPnMXPmTJPH5PP54PPrfpaQn8QPRycexfS90/HrjV8x+8/ZSMhMwA/9f3BKFm1NwWVzsX7YerT9uS323tmLjTc2YkKrCXYdK9Q9FFNaT8HKyyvx0T8f4ejEo5Z3qgFsuWDp++U6qCy8fZgnAmQCWmZHqVO4+nlruWydQamSjzM32um3qNH233LxeJN7iLgifTBD913Kl5b/XGG7mCcGm2EbBzb+ddLlZXLkluQiqyQLWSVZuFN4x66KDiFHaHWQw0fkAylfWrfalbgHA69fBkpyzK8ReQHuwWABeDH8RbwY/iISMhOw5PwSbLixAQp1+TnAZtgoVZdiW+I2bEvcBjFXjMHNBmN0xGh83utzCLlCZBZnIj4z3sDxj8+Mh1rRCEQjM2vCs9a2o6o2ORQK5Sk1oZmA+qGbGIbB6+1fRzOvZhi1bRROp55G+1XtsTd2b7UCB67IhJYTsD1xO/be2YtJuyfh3NRzduvCBd0WYEv8Fuy5vQeXn1xG28C2DrbWMjZpJjfHzxhxdf+TQqmMq5+z1mimYgUPW/+JARvu+q1qfZutK0Z7VEwAM9JMum08N0h4kvJqQQKoSXl7rDJNeWCjWFlcXoWvyENOSQ6ySrKQVphmV6CDAQMvkZdNgY46d//OBt0UBODzXp/jv93+i403NuKHcz/gZvZN/TIGjEGVSGv/1hgdORqfvfAZGns2Rpm6DLdzbiMuo1wv6ZLMMnJlYLTmz+NnTTMBVDe5Cg6vGJk0aRIOHz6MlStXIjIyElevXsX06dMxZcoULFq0CACwaNEifPnll1i/fj3CwsKwYMEC3LhxA4mJiRAILA+XqevZcoQQfHX6K8w/Mh8EBL3CemHbqG31bij7Fye/wAdHP4CML0PCrAQ0kDaw6zgP5Q/RZEkTqLQq/DPxH3Rv2N3BllbNwfg0k+V+uktV5XK/2ftnY9mlZfiw64f49IVPnWIDheIK6M5bwHR5qDPP293XHmPOlms27lX+Kmb24aJHM3e94y7gCKBQK5CnyENWcXkww+h7hZ9zSnLsKsF247nZFOioah4GBcguycaqy6vw08Wf8KTwCYDyAImQK0SRski/TsKTYEizIRgdMRr9mvQzmHuiJVqsOXMdn+19YvH5Fo+NwdAY+z4HKRQddd0HpjylNjQTUPfPmdvZtzF482Dczb0LCU+CTcM3YXCzwc42y6GkF6Ujclkkcktz8XGPj/F/3f/P7mON/2M8fov7DYObDsae2D0OtNIytuqVlLwUNFrSCHw2H6UfljosOeOpHbpx61XbQaE4m/qhmQzfb7rf3+wnxAstPPWBDgKCAkUBskuzq9RLuu+6JCZb4LA45VXwVmomT6FnlW2Tn3UIITiUfAg/nPsBB5IO6Le78dxQpCwy0LVtA9pidORojIoYhTCPMIPjbLmYhPd33Lb4fFQzURyBLf6vwwMjhYWFWLBgAXbu3InMzEwEBgYiNjYW//d//wcejweg/I21cOFC/Pzzz8jPz0eXLl2wbNkyNG1q3UByZzr41pYGW8Oe23swbsc4FKuK0dSrab0byq7WqvH8mudx8clFvNjkRewft99uh3fmvplYcXkFejTsgWMTjznYUvNYKh01Ve736YlPseDYAkyJmYI1Q9c4zJaD8WmYt+MiCkqffmjTMjuKq+Oq5aHWlq0bQ8DlFsOn4Y/ILslEVkkW8hX5dtngIfCwOtBhcRA5xW5UGhW2J27H9+e+x8UnF/Xbg6XBKFWVIrs0W7/NjeeGIc2GoY3nKIS6tUSguwRaLcHLa85bfB7atoPiCOr6TW7KU2pDMwH1QzflluZi9LbROJJyBAwYfNn7S/zn+f/UrSpHC2yO24xxf4wDh8XBxVcvIsY/xq7j3M6+jYhlEdASLS6+ehHPBT7nWEPNYI9mUqgVEH5W3l4md16uQ5MED8anYfqmw2BVyE52Bf+TQjFH/dNMAEDA4RRC1GARsksykV2SbVcLYgFHYNN8DhlfVq8+H1yJW9m3sOT8Eqy/vh4lqvL5I248N3iLvHE//75BkOS5gPbo7D8R0d6dEeEXRDUTpVZxamCkNnCWg18TH1Y3Mm5g8ObBeCh/CHeBe70byp6YlYg2K9ugTFOGNUPWYErrKXYdp2LVyLGJx9CjYQ/HGmoGe3p+rrmyBtP2TsOLTV7Eny//6VB7Pjn+KT4/shUvhA7Dgh5zaJkdpU7gyICyI23qsuio2bJ1S6Tz5qOMHaf/ncWwDDKT9D+72CByinkIITj36Bx+OP8DdiTu0A8dbODWAOGe4biTewd5+aHwVE4HBz76/dxFAAgH8lJ1lS0QnqV+uZSagwZGKLZSX3STSqPCnINzsPzScgDAxFYTsXLQynozlJ0QgpHbRuKPm3+gpV9LXHz1Inhsnl3HmrBzAjbe2IhBTQdhb+xeB1tqGnvnJHgs8kC+Ih8JsxIQ4RPhMHtKVaUQfSYBXxuJtYO2I8zLyyX8TwqlKuqjZgKMdVNdGUROMU9uaS5WX1mNHy/8iEcFjwCUz6tsG9AWGqJBYioP7sppBppJIlCBBQEKFRqqmSg1Dg2M1AA12coooygDw7cOx5nUM2AzbCzuvxiz28+2vGMd4evTX2Pe4XmQ8qWImxmHEFmIXceZtX8Wll9aju6h3fHPpH8ca6QZrC0drVju9+fdPzFw00DE+Mfg6mtXHWrPq3texeqrq/FR94+wsMdChx6bQnnWMFe2bg3ju6rQL8pL77R7CD2cO4ic4lBS5alYenEpfr78s37ooBfTC5KSt/5d8dRZJ9CivNuu4faKv9G2HRRHQQMjFFupb7pp6YWlmHNwTr0cyp5ZnInIZZHILsnGgm4L8EnPT+w6zp2cO2ixtAW0RIsL0y6gXYN2lneqJvZoJgCIWBqBm9k3cXjCYfRq1Mth9tzOvo3mS5tDwpOg4P0CelOVQqkG1dFMADC1JwsDW/rpAx20Cr7+oNKosPPWTvxw7gecfXQWACDUdIKv8oN/V5jTTIaPUc1EcTS2+L/0Lo4VaLQEH+9NNPkhoNv28d5EaLT2xZj8JH44+spRvNLqFWiIBq8feB2z9s+CSmN7maEr8k6nd9ApqBMKygowbc802BuLm99lPnhsHo4/OI5/7v9jcb1GS3D2Xg52X3uMs/dy7Pr/+LpZ96FdcZ2jh69X5IH8AYDyofQUCqV69I8KwPLxbeAvs905H9i8K7qGdkVz7+bwEnnRoEg9I1gWjC97f4nUt1OxfOByNPVsDkHJ+H8/8ysHP1gACDQogBpZBo/5y/jUwadQKM8UNa2bZrefjQMvH4C7wF0/lF03ALau4yv2xbIBywAAn5/8HJeeXLLrOE29mmJ8y/EAgI+Pf2xxvbM0E1AzA9iBCppJFkqDIhRKNTGnmTzF1lW/927SHm0C2iBYFkyDIvUMLpuL0ZGjcWbqGZybeg5jI8fBU/WaFZop2+AxHymXaiaK06B3cqzgQkqu2X6pQLmTnyZX4EJKrt3PwefwsW7oOizqvQgMGCy/tBwv/vYickvtP6arwGaxsW7YOgg4AhxKPoSfL/9s13GCZcGY1noaAGDhPwurDLAcjE9Dl0VHEbvqHOZsuYbYVefQZdFRHIy3zeluH+aJAJkA5txpBuVtAdqHVehf+6+Dn1mcCbVWbdPzWULn5NtbdUOhUAzpHxWAU++9gM2vdsTisTH4bWoH+Ette89T6i9inhgznpuBXwacAAc+BjlOFWHAAhsyaKS/IJ03H1ncr5DOm4+7rFj8kbIQh5MPO/zzgEKhUFyR2tBNfRr3wbmp5xDuGY4H8gd4fs3z2HO7dgeN1xSjIkdhTOQYaIgGE3dNRJm6zK7j/Lfrf8Fm2Nh/dz8uPL5gdp0zNRNQcwllD/KpZqJQHEllzbT51Y44N7+3Xe97Sv2kQ1AHvNl6CTjE26Jm8m9wyEAzXVIOwBeXxmLphaVIL0qvZcspzzo0MGIFmYXmnXt71pmDYRjM6zwPu8bugoQnwZGUI+i4uiNuZ9+u1nFdgaZeTfFFry8AAO/+/S5S8lLsOs78ruVVIycenMCx+6aHsOtKPSuLsnS5AjM3XrHJ0WezGCwcXN7vtvKlXff7wsERBj0QfUQ+YDEsEBBkFWfBURBC8FD+EEB59hOFQnEMbBaDTo29MDSmATqHe+OjIba95yn1n6xCpVXrlr24EQcmL8YrHSIgdUtHjiIbq66sQp9f+yDg2wDM2DcDx1KOQaPV1LDFFAqF4hxqSzc1826G89POo1dYLxSrijFsyzAsOrXI7sp0V+KnAT/BV+yLxKxEfPTPR3YdI9wrXF81Yu4YtaWZdJjyn/SBkRqsGKFQKI6hombq1NgLPA7L5nsllPqNtZ/tC7p+haS5f+KzgS+hTagEhNHgxIMTeP3A6wj8NhA91/fE8ovLkVmcWcMWUyg0MGIV1pYGSwSOudExpNkQnJ5yGqGyUNzNvYsOqzvg0L1DDjm2M3mzw5voGtIVxapiTN0zFVqitfkYQdIgvNrmVQDlTn5l8VMT5fvmSkf9ZQKT5X5sFlvf69iRTn5mcSYUagUYMAiWBTvsuBQKxRBb3/OU+o+1foC/VISeYT2xfNByPHn3CQ5POIzpbabDS+iF7JJsrLy8Ei9seAGB3wVi9v7ZOH7/OA2SUCiUeoW9LZXswUPogQMvH8Cs52aBgOD9I+9j0u5JdldZuAreIm+sHLQSAPDVma9w/tF5u47z327lVSMHkg4YHaM2NZO7iJj1n2qqlZY+mYy2H6ZQahSqmygVscUHCJIG4a2Ob+HM1DN48NYDfNv3W3Ro0AEEBP/c/wez/pyFgG8D0HtDb/x8+WeHJh1TKBWhgRErsFQaTKCFGlmYerAHTj446ZDnbOnXEhdevYDOwZ0hL5Pjxd9exE8XfqrTWVAshoVfhv4CEVeEY/ePYfnF5XYdRzdr5OTDkziactTgsZoq39eVjv48MUJf7rd/TluzH/Q1URauc/AD3ALAY/McdlwKhWKMqXLxU++9QJ37ZxR7WoRwWBz0atQLKwevRNq7afh7/N+Y1noaPIWeyCzOxLJLy9BjfQ8EfR+EN/58AycfnLQrYYBCoVBcCWt10457ixwSwOCyuVg6cCmWDlgKNsPGhusb0HN9T2QUZVT72M5kWPNhGN9yPLREi0m7J6FUVWrzMZp4NsGEVhMAAB8d/8jgsZrWTJtf7YjI8AtI583HoC4XalUzAbRihEKpTahuouiwt61iiCwE73R6B+emnUPKnBR83edrtAtsBy3R4kjKEby27zUEfBuAvr/2xeorq5FTklPjr4Xy7EADI1ZgqZ0SAxY47jvxQJ6C7uu6Y/7h+VBqrGu7URW+Yl8ceeUIJraaCA3R4I0Db9T5oeyNPRvjq95fAQDmHZ6HpNwkm4/RQNoA09tMB1Du5FcMFtVk+T6bxaBvizB4e91HGTsO8VnmBz3WRPYTdfAplNqlcrk4LQN/drGnrWJFuGwu+jTug1VDViH93XQcfPkgpsRMgbvAHelF6fjp4k/otq4bgr8PxpwDc3D64WkaJKFQKHUSy7qJQS7vZ3x79mu0W9XOYYPTZ7WbhYPjD8Jd4I6zj86i/er2uJ5+3SHHdhaL+y9GgCQAt7JvYcGxBXYdQzdr5GDSQZx7dE6/vaY1U6fGXngx2gdl7DjcyLhmdm2NDV//d8YIrRihUGoHqpsoQPU1EwA0dG+Iuc/PxYVXL+Dem/ewqPcitA1oCw3R4FDyIby691X4feOH/hv7Y+3VtfViLjPFudDAiJVUVSK4Ynwb3Hj7V0yKmQQCgi9Pf4n2q9ojPjO+2s/L5/Dxy9Bf8FXvr8CAwYrLK9D/t/51+s0/s91M9GzYEyWqEkzePdmumz/vd3kffDYfpx6ewpGUI/rttVG+H+MfAwC4mnbV7JqayH6iQwQpFArFeTiqVQCXzUW/Jv2wZugaZMzNwP5x+zGx1UTI+DI8KXyCJReWoMsvXRDyfQjePvg2zj06V6erRSkUyrNH1bqpLTaPew8+Ih/EZcah3ap2+ObMNw5pK9i7UW+cn3YeTb2a4qH8ITqv7Yzdt3ZX+7jOwlPoiZ8H/wwA+O7sdzj98LTNx2js2RivtHoFgOGskVrVTOnmNZO/xB8AHDpsV61V41HBIwBUN1EoFEpt48j2ao08GmFe53m4NP0S7r5xF5+/8Dli/GOgIRr8de8vTN0zFX7f+GHAbwOw/tp65CvyHfxqKM8CDKmDarugoAAymQxyuRxSqbRWn1ujJbiQkovMQgV83cpLwCpGO/+4+Qem752OnNIc8Nl8fNHrC8zpOAcspvoxqL2392LcH+NQpCxCE88m2Bu7F829m1f7uM7gfv59RC+PRpGyCN/3+x5vdXzL5mO8eeBN/HjhR3QO7oyTk0+CYRhotARdFh1Fulxhsmcug/IL8qn3XrA7i+Gjfz7Cx8c/xsRWE7Fu2DqTaxYcXYBPT36Kmc/NxLKBy+x6nsroXu+85+dhUZ9FDjkmhUKhUGzDkh9gL2XqMhxKPoStCVux69YuFCoL9Y+FyEIwKmIURkeORrvAdmAYmoX3rOJMH5hSN3FV3ZRRlIFpe6dh3519AIDuod2xfth6h2T455XmYfT20TicfBgMGHze63O81/m9OnvtnLx7MtZdW4cmnk1wfcZ1iLgim/a/l3sPzX5qBg3R4MyUM+gU3KlWNFNhWSFkX8pAQJD1nyx4i7yN1sgVcrgvcgcAFH9QbPNrM8VD+UOE/hAKDosDxYcKsFnsah+TQqFQKLZRU5oJAO7k3MG2hG3YmrjVoPKUyypPQBsdMRpDmg2BTCBzyPNR6h62+L+0YsRGLJUIDm8xHPGz4jEgfADKNGV45+930HtDb/18iOowuNlgnJlyBg3dGyIpNwkdV3fE3/f+rvZxnUFD94b4ps83AID5R+bjTs4dm4+hqxo5nXoah5MPA6i6dE83StBS6Z4lWvu3BlB19lONttKiJeGUSmi0BGfv5WD3tcc4ey/HpkGZFArFNmqqVQCfw8egpoOw4aUNyPxPJnaP3Y2Xo1+GhCfBQ/lDfHv2W3RY3QFhi8Mw79A8XHpyiVaSUCgUl6aq66WfxA97xu7BqsGrIOaKcfzBcbRc0RIbrm+o9rVNN5T99Xavg4Bg/pH5mLhrIhRq29tCuQLf9/seDdwaICk3CR8c+cDm/Rt7NsbEVhMBPJ01UpVmItCCoPqayY3vhiaeTQCYr7SX8qUQcoQAHFdpr9PdwdJgGhShGEA1E4VSe9Rke7WmXk3xYbcPcX3GddycfROf9PgEUb5RUGlV2HdnH17Z9Qp8v/HF0C1D8duN31BQVuCw56bUP2hgpAbwl/hjX+w+rBi4Qj9ovOXylvjtxm/VdvSj/aJxftp5/VD2Ab8NwI/nf6yTN0emt52OPo36QKFWYNKuSTaX0Ae6BeK1tq8BMJw1Yq50T8Pk4NsxLao9BKx1QHlgJDEr0ezQyJocvk5njFAqcjA+DV0WHUXsqnOYs+UaYledQ5dFR3Ew3rG9mikUSu0h4AgwpNkQbBy+EZlzM7FzzE7ERsVCzBXjgfwBvj5T3pu/8ZLGeP/w+7iSdqVO+gEUCuXZhmEYTGszDddnXEenoE4oKCvAxF0TMWrbKGSXZFfr2BwWBz8O+BHLBiwDm2Hj1xu/4oX1L9TJoezuAnesGbIGALD4/GIcv3/c5mN82O1DcFgc/H3vb5xJPQOgCs2EHPR/LtUhg5N1uslcQhnDMA5PKKPzRSimoJqJQqmfNPdujgXdFyBuZhwSZiXgo+4foYV3Cyg1Suy5vQfjd46H79e+eOn3l7A5bjMKywotH5TyTEEDIzUEwzB47bnXcO21a+jQoAPkZXKM3zkeY3eMrfZ8EN1Q9kkxk6AhGrx58E3M3D+zzg1lZxgGa4asgZQvxdlHZ/Hd2e9sPsb7Xd6HgCPAmdQzOJR8SL+9f1QATr33Aja/2hGLx8SA670Mj/hTkKmpfoVNsDQYnkJPqLVqJGQlmFxTIxUj1MmnVOJgfBpmbryCNLlhBmS6XIGZG69QR59CqQcIuUIMaz4Mm0ZsQuZ/MrF91HaMjhwNEVeElPwULDq9CG1/boumPzXFh0c+xPX06zRIQqFQ6hSNPRvjxOQT+OyFz8BhcbDj5g5EL4/GgbsHqn3sme1m4q/xf8FD4IGzj86i3ap2dXIoe78m/fBqm1cBlLfWKlIW2bR/I49GT6tGKswaMdBMY2MwvkcOHgum4kjat3bNgaxMjF8MAOBa+jWzaxydUKavsqfJZJR/oZqJQnk2iPCJwMIeC5EwKwFxM+OwoNsCNPVqijJNGXbd2oVxf4yD7ze+GLl1JLYmbEWxstjZJlNcABoYqWHCvcJxasopfNLjE7AZNrYmbEX08mj8lfRXtY7L5/CxdshafN3nazBgsPLySvTb2A85JTkOsrx2CJYF4/t+3wMAFhxbgMSsRJv2D3ALeFo18s9HBjeD9KV7rRtgVufeAKPFiksrqn3DiGEYiwPYdQ5+elG6Q25QFZYVIk+RB4AOEaSUo9ESfLw30WRfaN22j/cmOrREvDbLz2mpO4VijIgrwoiIEfh95O/InJuJrSO3YmTESAg5QiTlJuHzU58jZmUMmi9tjgVHFyAuI44GSSgUSp2Aw+Lgg64f4Py082jh3QLpRekYsGkAZu2fVe0bF70a9dIPZU8tSEXntZ2x69Yuxxhei3zT9xuEyEKQkp+C9w69Z/P+H3Ytrxo5lHzIYJB7xXYn778wHG58MZJyk3As5Vi1bbZUMQI4PqFMn0xGAyMUOEcz6Z6X6iYKxTkwDIMo3yh80vMT3Jp9C9dnXMeHXT9EE88mUKgV2HFzB8ZsHwOfr30wettobE/cjhJVibPNpjgJGhipBTgsDhZ0X4CzU8+imVczPCl8gv6/9ccbf75RrTcfwzCY+/xc7IndAwlPgmP3j6HD6g64lX3LgdbXPJNjJutnskzaNQlqrdqm/d/r/B4EHAHOPjprdubKxJiJ4LP5uJ5xHRceX6i2zZbmjPhL/AEASo2y2hVCwNPMJ3eBO6R8OmyVAlxIyTXKeqoIAZAmV+BCSvXPP6B2y89pqTuFYhkxT4xRkaOwbdQ2ZP4nE1tGbMHwFsMh4AhwJ+cOPj35KVquaImIZRFYeGwhEjJNVzhSKBSKK9EmoA0uT7+MOR3mAACWX1qO1itb4/yj89U6brhXOM5NPYc+jfqgWFWMl35/CV+c/KJOBY+lfCnWDlkLAFh2aRmOJB+xaf8wjzBMajUJwNNZI5WR8CQY33I8AGDF5RV226pDp5luZ982G+CqqYoRmkxGAWpfMwFUN1EorgTDMGjp1xKfvvAp7rx+B1dfu4r5XeajkUcjlKpLsS1xG0ZtGwWfr30wdvtY/HHzD5SqSp1tNqUWoYGRWqRdg3a48toVvN7udQDATxd/QpuVbXDpyaVqHXdQ00E4O/UsGro3xL28e+i4umO1K1JqE4Zh8POgn+EucMfFJxfx1emvbNo/wC0AM9rOAAAs/GehSYHjKfTE6MjRAICVl1dW22ZLgRE+hw9PoScAx2Q/0cwnSmUyC60bIGrtuqqozfJzWupOodiOhCfBmKgx2DF6BzLnZmLT8E0Y1nwY+Gw+bmXfwicnPkHU8ihELYvCJ8c/wc2sm842mUKhUMwi5ArxQ/8fcGjCITRwa4C7uXfReW1nfPTPR9VqHewh9MCfL/+p12IfHP0Ar+x6pU4NZe/VqBdmPTcLADBlzxSbB8rqZo0cTj6MUw9PmVyjq8bfdWsX0ovSq2Wvn8QPAZIAEBDcyLhhco0+MOKoihE5bT9MeYrVmqnAMdcBqpsoFNdF1/3l816fI+mNJFyefhnvdX4PDd0bokRVgt8TfseIrSPg+40vXv7jZey+tbtO+QgU+6CBkVpGxBXhxwE/4uDLBxEgCcDtnNvotKYT/nf8fzZXSlQkyjcKF6ZdQJeQLuVD2TcNwJLzS+pMFlQDaQMs6b8EQHlLrLiMOJv2f6/LexByhDj/+Dz+umc6KKRz8rfEb0G+Ir9a9urKwq+nXzc7NF5XNVJdQQFQB59ijK+bwPIiAEsvf449t/fYfSOhNsvPnVXqTqHUJ9z4boiNjsXOMTuR+Z9M/PrSrxjcdDB4bB4SshKw8J+FiFgWgZbLW+LTE5/iTs6dKo9H2zNQKBRn0btRb8TNjMPYqLHQEA0+Pv4xOq/tjNvZt+0+pm4o+/KBy8Fm2Nh4YyN6ru/pEH+9tljUZxHC3MPwUP4Qc/+ea9O+Dd0bYnLMZACGs0Yq0sq/FToGdYRaq8YvV3+prrkW22k5spUWIQQP5Q8B0IQySjnWaqa5R6bji5Nf4FHBI7ufi+omCqXuwDAM2gS0wZe9v0Tym8m4MO0C5naaixBZCIqURdgUtwnDfh8G3699MWHnBOy9vRdl6jKzx6Oaqe5CAyNOol+TfoibGYdREaOg1qrxf//8H7qs7YK7OXftPqaP2AeHJxzG5JjJ0BIt5hycgxn7ZtSZoezjW47HkGZDoNKqMHHXRJvs9pf4Y+ZzMwGYrxp5Pvh5RPpEolRdil+v/1otW5t5NYOQI0Sxqhj38u6ZXOPIsnDq4FMq0z7MEwEyARizKwjUyMKh1BUYumUoGnzXAG8dfKvK4ZemqM3yc2eUulMo9RkpX4rxLcdjT+weZMzNwPph6zEwfCC4LC7iMuOw4NgCNPupGWJWxODzk58jKTfJYH/anoFCoTgbD6EHNo/YjE3DN+mry1uvbI1lF5dVKwFsxnMz8PeEv+Eh8MC5R+fQflV7m30kZyHhSfDL0PKAxaorq2zuFKCbNXIk5QhOPjhpco0uoeznKz9Xewi7pQHsjtRMOaU5+lbVwbLgah+PUvexRjNpmGwkFR3EB0c/QMj3Iejzax9svLHR5rbnVDdRKHUThmHQrkE7fN33a9yfcx/npp7DOx3fQZA0CIXKQmy8sRFDtgyB7ze+mLhrIvbf2Q+lRqnfn2qmug0NjDgRL5EXfh/5Oza+tBEyvgznH59HzMoYrLy00m5Hn8/hY82QNfimzzdgwODnKz+j78a+dWIoO8MwWDloJTyFnriafhVfnPrCpv3ndZ4HIUeIC48v4GDSQZPHn/FcecutlZft/xsDAJvFRrRfNIAqBrA7MPtJXzFCAyOUf2GzGCwcHAEARo4+A4ABg/8Oao53Or0FP7EfskqysPj8YrRe2RqtVrTCd2e/Q0ZRhsXnqc2WXbX5XBTKs4a7wB2vtHoF+8btQ8bcDPwy9Be82ORFcFgcXM+4jg+PfojwH8PRZmUbfHnqS6w7d422Z6BQKC5DbHQsbsy4gV5hvVCqLsXsP2djwKYB1bqZ/kLYCzg/7TyaeTXTD2XfeXOnA62uObo37I43278JAJi6Z6pN1fCh7qGYEjMFgPlZI6MjR8Nd4I77+ffNznC0ltqsGNG1H/aX+EPAsa5SgFK/sUYzLR7dFWuGrkK30G4gIDicfBgTdk6A/zf+mLp7Kk48OGFVgJDqJgql7sMwDDoEdcC3/b7Fg7ce4MyUM3irw1to4NYABWUF2HB9AwZtHgS/b/wwefdkfH7oT6qZ6jg0MOJkGIbByy1fxo2ZN9CzYU+UqEowY/8MDNo8yO6SboZh8O7z72Jv7F648dzwz/1/0GF1hzrRU9xf4o+lA5YCAP534n9mgw6m8JP4YVa78p675qpGxrccDyFHiISsBJxJPVMtWy3NGXFk9pN+xghtpUWpQP+oACwf3wb+MkPh5y8TYPn4NpjRpSO+7fctHr3zCPti92FUxCjw2DzcyLiBd/9+Fw2+a4BBmwZhW8I2s70zrS0//+HiJziSfKRaAUdrn8tLwrX7OSgUSnkG9qSYSfjz5T+RMTcDa4asQb/G/cBm2LiafhXzD3+I/+66BmKiQQNtz0ChUJxFsCwYf0/4Gz/0+wF8Nh8Hkw4iankUdiTusPuY4V7hODftHPo27osSVQmGbx2Oz09+XifaEX/R+ws08WyCx4WP8fZfb9u07wddPwCXxcXRlKM48eCE0eMirgivtHwFQPXnM+o0U1xGnMmOADrNlF2SbZCBaw80mYxiCkuaaXjrRpjSegqOTzqOe2/ew0fdP0Ijj0YoVBZi7bW16L6uO5osaYKP/vkIyXnJZp/HWi1z9MFO5JZWr5LD2ueydh2FQjGGxbDQKbgTvu//PR6+/RCnJp/Cm+3fRIAkAPmKfKy7ugHLjmRCSzVTnYYGRlyEEFkIDr9yGN/2/RY8Ng9/3v0TUcuiqpW1NLDpQJydehZh7mHlQ9nXdDRZSeFqjIkcgxEtRkCtVWPirok2Ocj/ef4/EHKEuPjkIg4kHTB63F3gjtioWADAissrqmWn1YERB1aMhMhCqn0sSv2if1QATr33Aja/2hGLx8Zg86sdceq9F9A/KkC/hsPiYGDTgdg6aivS303H8oHL0TGoIzREg/1392P09tEI+DYAM/fNxLlH5wxuBljbsuufx6vR+9feaLmiJdZcWYNSVanNr8XScxFooUYWZvzdG0dTjtp8fAqFYoyn0BNTWk/BwfEHkT43HasGr8Lz/q+AAx8Y51aWQ9szUCgUZ8FiWJjTcQ6uvHYFrf1bI7c0FyO3jcTEXRMhV8jtOqa7wB37x+3HG+3fAAB8ePRDTNg5weUHroq4Iqwbug4MGKy7tg777uyzet9Q91BMaf1v1YiZWSOvPVfeTmvv7b14XPDYbjvDPMIg5UtRpinDrexbRo97ibzAYXEAAJnFmXY/D/A0mYxqJkplrNFMANDIoxEW9liIpDeScGLSCUxtPRVuPDek5Kfg4+Mfo/GSxuj2SzesubIGBWUFBvtaq2WWXJ2D4O+DMWv/LJPvCWuw5rk0TBZ2p3yLImWRXc9BoVCewmJY6BzSGYtfXIxH7zzCiUknMKbph+DABwzVTHUaGhhxIVgMC+90egeXp19GK79WyCnNwfCtwzFl9xSjD11rifSNxPlp59E1pCsKygowcNNALD632KWzoBiGwbKBy+At8kZcZhz+d/x/Vu/rJ/HD7HazAZivGtE5+dsStlWrxZi+LDztqsnncVRZuFKj1Fed0OwniinYLAadGnthaEwDdGrsBTbLfBjDQ+iBGc/NwNmpZ3Fr9i3M7zIfQdIg5CvyseLyCnRa0wktlrbQDx+0pvz8k6Et8UaH2RBzxYjPjMe0vdMQ8kMI/nv0v3hS+MSm12HpuVSSzUjIikOvDb0wYusIpOSlWH18CoVSNd4ib0xrMw3zOn5q1XranoFCoTiLCJ8InJt2Dh90+QAshoUN1zeg5YqWOH7/uF3H47A4WPLiEqwYuAIcFge/xf2GHut6uPxQ9s4hnfFOp3cAANP3TrcpC11XNXLs/jGTf7cInwh0DekKDdFgzdU1dtvIYliI8Y8BYDqhjMWw4Cf2A1D9Sns6l5FSFbZoJoZh0DW0K1YPWY30uenY+NJG9GnUBwwYnHx4EtP2ToP/N/4Y/8d4HLp3CBqtxqKWYYGFcZ15aOUfjRJVCZZfWo4WS1vgxd9exF9Jf9l0j6aq5yrfxiCH+zMWnf4CzX5qho03Nrr0PSAKpS7BYljoGtoVsRGvWbWeaibXhgZGXJAo3yicn3Ye73d+HwwY/HLtF7Ra0crscDxL+Ih9cPiVw5gSMwVaosVbf72F1/a9Vu1S5ZrEV+yL5QOXAwC+OPUFLj25ZPW+/+n8H4i4Ilx6cgl/3v3T6PF2ge0Q4x+DMk0ZNlzfYLeN0b7RYDEsZJVkmQx+OKqVVqo8FQQEAo4AvmLfah2LQqlIM+9m+LzX57j//+yddVhUaRuH76E7BQExEAsLEAWMtXvFzlWMFdu113Zd1167u7E71u5CUEJRbCwQBemOmfn+4GPWWWpAENRzXxeX38553/e8Z74zM89znviNfs0F1wuyVnNPw5/KiQ9+klxiWc9q2Zaf/1q3FivbrCRoXBBLWi6hrH5ZPiV8Yu6NuZRdXpY+R/oo/BnOqdR9fR8HHo/fy8g6I1EWKXPk8RFs1tgw4/IM4lPiC+x9ERD40RHaMwgICHwLqCmrMbfZXK73v055w/K8jX5Lkx1N+P387ySnJedrzSG1h3C+T7oou2ewJ46bHPPU2rcomN1kNlVKVCEkLoTRZ0crPK+MfhncarkB2WuNZIiwb/LZRJokLd97zFWAvYASymSttIT2wwIFiJaqFr1r9ua863nejn3L/GbzqVKiColpiez2301L95aUXV6WKRenUM4sOse2XX+7/ILvEF+u9rtKxyodESHi7IuztN7dmmprq7Hh3gaFRd+z85vM9TVY19uBvb9Morxhed7Hvsf1qCv1t9bP03MVAQGBnBF8pu8DkfQbDBvHxMSgr69PdHQ0enp6Rb2dQuXGmxv0PdaX11GvESFiYv2JzGo8C3UV9TyvJZVKWXZnGRPOT0CKlEZlG3G4+2GMtYwLYecFQ6/Dvdj3cB9VTariM9hH4eueeGEii24vorZFbbzcvBCJ5PMoNtzbwNB/hlLZuDKPRzzOdFxRqq2tRkBYAKd6neLnSj/LHXsW/ozKqyujo6ZD7JTYfK0PcOXVFZrubEol40o8Hfk03+sICChCTHIMhwIOseP+Drme0zpqOnS16YaTSW/MtCpTUk8TRyujLDOt0iRpnHh6guV3lnPj7b8B3fql6zPGeQwdq3SUtUzIDrFEiterCEJjkzDV1ch0roehDxl9drSspZalniWLWiyiR7Ue+f48CwgIpCOWSGmw8DIfopOy6Jibnplopq/BzUlNc8y2FCh4fiQbWKBg+FHumdjkWMadG8dm381AegKTe2d3apasma/1XkS8wGWvC08+PUFLVYtdnXbR2aZzQW65QPEM8qTe1npIpBKO9jhKxyodFZr3LvodFVZVIEWcwpV+V2hcrrHc8aS0JCyXWhKeGM6JnidwqeySr/1t99vOgOMDaFyuMVf6Xcl0vP3e9px8dpL1P6+XVffnB4eNDviE+HzRXgUEFEEqleIV7MWO+zvY93AfkUmRsmOOpRxxrdmPSrptSExWy9KXySAwMpBVnqvY4ruF2JT0ZwZGmkYMrjWYEY4jsNSzzHUvOflNSWlJLPVYytwbc0lITUCEiF/tf2Ves3lC0qWAwBci+EzFl7zYv0LFSDHnp7I/cX/ofX61+xUpUhbeWojTZicehj7M81oikYhxdcdx6pdT6Krpcu3NNRw3OxIQFlAIOy8YVrdZTUntkgSEBTDz6kyF502oN0FWNfLP838yHf+lxi/oqOnwNPwp197kr+QectYZyagYiUuJ+6K+noKIoMDXRE9dL0vxwbiUOLbf38awi80Zd70h596t4k101m2sVJRU6GzTmesDrnNv0D1ca7qiqqTKrXe36HawG9YrrVl8ezFRSVHZ7iO3UvfqptW56HqRQ90OUVa/LEExQfQ63ItG2xsV+8xOAYHiTm6tIABmulQVDHwBAYFig666Lpvab+J4z+OYaJngH+pPnU11WHRrEWKJOM/rVTCqgMdAD1pZtyIhNYEuB7ow9/rcYtuKxsnSiYn1JgIw5NQQPiV8Umheaf3SuNn/v2okC60RDRUN+tv1B75MhD3DZ/L74Jd1C+IC0mbM0BgRKkYEChuRSISTpRNrf15LyPgQDnY7SLtK7VAWKeMV7MVvZ0bgcrgK7s/HEC72QCLNuuKqvGF5lrVeRtC4IJa3Wk55w/JEJEaw4NYCyi0vR6/DvfAM8sxxLzn5TRoqGkz9aSrPRj6jd43eSJGyxXcLFVdVZJnHMlLFqQX6vggI/EgIPtP3gRAY+QbQU9djS4ctHOl+hBJaJbj/8T4OGx1Y6rEUiVSS5/XaVmwrE2UPjAyk7pa6nHmeWai8OGCsZcyGdulG+KLbi7gTdEeheabapoysMxJIN/L/a4DrquvyS/VfgIIx8rMKjOiq66Ktqg18WTstQURQoKj4EvHBDBwsHNjZaSdvxrzhj4Z/YKJlwtvot/x+4Xcsl1oy8vRInoU/y9f+RCIRXap24fGIx/zV+C80VTS58fYGDhsdGHpqqMIPBQQEBDKTU1u7dX1qZRIrFRAQECgOtK/cnofDH9K+cntSxClMvDiRpjub8jrqdZ7XMtAw4NQvpxjlOAqA6Vem0+doHxJTEwt41wXDn43/pJpJNULjQxl5eqTC86b8NAU1ZTWuvbnGlVeZqzkGOwwG4PTz0zK/JK9UNamKmrIaUUlRWf5/IWul9QU+U3xKPOGJ6fqRgt8k8DVRV1Gna9WunOx1kuBxwSxtuRTbkrakiFM4FHAIl70uWC6zZNy5cdz/cD/LNfTU9RjtPJpnI59xrMcxGpdrjFgqZt/DfThvcabulrrse7gv34GMUnqlcO/szq1fb+Fg7kBMcgzjzo+j5vqanHtx7ksuX0Dgh0bwmb59hFZa3xgf4j7gdsJNVgXRpFwTtnfcni/j71PCJ7oc6ML1N9dREimxpOUSRjuNLpZtaFyPuuL+wJ3KxpXxHeKLpqpmrnPC4sOwWmFFfGp8luXUviG+1NpYC1UlVYLGBeWrlPTyq8s029ksPcg0OjDT8YqrKvIi4gXX+l+jYdmGeV4f4Nfjv7LNbxt/Nf6LGY1m5GsNAYGCIiE1gaOPj7Lj/g4uBl5E+v+iUU0VTTrZdKKfbT+aWTVDWUk5y/lJaUns9d/Lcs/lPPj4QPZ624ptGeM0hublm+f7O+hd9DsmXpzIvof7gPQHGrMaz2JY7WGoKqvma00BgR+d3NraCXxdfmQbWCB//Kj3jFQqZavvVkafHU18ajy6arqsarOKvrZ982VnbPTeyIjTI0iTpOFYypFjPY7JHuYXJ+69v4fzZmfEUjEHuh6gW7VuCs0beXoka+6uoWHZhlztdzXTe9RsZzMuv7rM9J+mM7vp7HztLaPN1eHuhzO1Jctoc+xSyYUTvU7ka/2AsACqra2Gnroe0ZOj87WGgEBB4vfBjx1+O9jtv5uwhDDZ67Ylbeln24/eNXvn+AzC74MfKzxXsMd/j0wftpRuKUY6jmSww2CMNI3ytS+xRMw2v21MvTRVti+XSi4sbbWUCkYV8rWmgMCPjuAzFS+EVlrfMWY6ZpzsdZIN7TagparFlddXqLGuBu4P3PNc2l1CqwQXXC8w0H4gEqmEsefGMvjk4GIpyr6y9UrMdcx5Gv6UGVcUCw6YaJsw0vH/VSPXMleN2JvbU8eiDqmSVLb7bc/XvuzM7AB4FfUqy7ZABSHALogIChQnchIf3OO/h1burWTig08+Pck0X0NFgwH2A/Ab4sflvpdpX7k9IkScfn6alu4tqbGuBpu8N+UrG7O0fmn2dtnLtf7XsC1pS1RSFKPPjsZugx0XAy8WxOULCPxw5NbWTkBAQKA4IhKJGFhrIPeH3qde6XrEpsTS/3h/uh7smq+K0sEOgznf5zxGmkZ4BXvhuLl4irLXtqjNlAZTABh+ejih8aEKzZvcYDJqympcf3OdK68zV41kiLBv8d2S74z1nATYC0J8/W30W0BoPyxQfLAzs2NZ62UEjwvmRM8TdLHpgpqyGvc/3mfc+XFYLLHAZa8LhwMOk5yWnOX8bR228XbMW2Y1nkVJ7ZIExwYz5dIULJdaMvTUUB6HPc7zvpSVlHGr5caz354x1nksKkoqnHx2kmprqzH54mRik/Ovjyog8KMi+EzfLkJg5BtEJBIx2GEw94fex9nSmZjkGFyPutLjUA/CE8LztJaashqbXDaxtOVSlERKbPbdTMtdLYtdCxpDTUM2uWwCYKnHUm6+vanQvAn1JqCtqp0uwvc0c/ZRhpG/0XtjvtqSGWkayap1siqLNdMxA9IrffKLYOQLFFcs9SyZ3GAyAcMD8HTzZHjt4RhqGBIcG8yCWwuwWWOD02Yn1t5dS0RihNxckUhEE6smHO95nGe/PWOU4yh01HR4FPaIwacGU3pZaaZdmkZwTHCe99WwbEO8B3uz/uf1GGsaExAWQItdLei0vxOBkZkruwQEBL4eYokUj5fhHPcLxuNlOGLJN1e4LCAg8A1hbWTN9f7Xmdd0HipKKhx5fITqa6tz+vnpPK/VxKoJnm6eVClRhaCYIBpsa8CRx0cKYddfxoxGM6hZsiafEj4x7J9hCiXPWepZMrhWesusmVdnZprTsUpHTLVNCYkL4dSzU/nal7157tqMBdF+WEgmEyhuqCqr4lLZhUPdDxEyPoQ1bdfgWMoRsVTMqWen6HqwK+ZLzBnxzwi8gr0yff5K6pTkj0Z/8GbMG3Z03IGdmR2JaYls8N5A1bVVae3emrMvzub5eYaBhgFLWy3lwdAHtLRuSYo4hYW3FlJ5dWV23d+Vr+cjAgICBYPgM309hMDIN0wFowrcGHCD2U1mo6KkwsGAg9RYVyPPPSJFIhFj647lVK9/RdmdNjsVO1H2nyv9zAC7AUiRMuD4AOJT4nOdU0KrBL85/gZkXTXSs3pP9NT1eBn5kkuBl/K1L0UE2POb/SSRSv4NjAhGvkAxRSQS4VjKkTU/r8lSfHDE6RGYLzGn28FunHp2KlOmYQWjCqxos4KgsUEsbbmUcgblCE8MZ97NeZRbUY7eR3rjFeyVpz0pKykzpPYQnv/2nFGOo1AWKXPsyTGqrqnK9MvTFfr+EBAQKFjOPgyhwcLL9Np0h9H7/Oi16Q4NFl7m7MMvE9sVEBAQyAllJWWm/DQFTzdPbErY8DH+Iz/v+Zlhp4bl2R6oYFSBOwPvyImyz7k+p1iJsqspq7Gj4w5ZICijxWhuTG4wGXVldW6+vcnlV5czrfmr3a8ArPden699yXymLCptMipGPsZ/zPfDWFmVvZBMJlCMMdI0Ynid4Xi6eRIwPIBJ9SdhoWtBZFIka++txWmzE1XXVmXBzQWZEsTUVdTpa9sXn8E+XOt/jU5VOiFCxLmX52izuw3V1lZj/b31ef5eszGx4WzvsxzveRxrQ2tC4kLoe6wv9bfW527w3YK8fAEBAQUQfKavixAY+cZRUVJhesPpeAz0oLJxZULiQmi9uzUjT48kITUhT2u1qdim2IuyL221FEs9S15EvGDqpakKzRlfbzw6ajr4ffDj+NPjcse01bRxrekK5F+EPcfAyBeWhX+M+0iKOAUlkRKldEvlaw0Bga/Jl4gP6mvoM7buWF789oIj3Y/QsGxD0iRp7PHfg9NmJ+pvrc/BRwdJk6QpvB9DTUNWtFnB/aH3aWbVjGRxMnNvzKXy6srs9d9brB5kCAh8z5x9GMIwdx9CopPkXv8QncQwdx/B0BcQECh0apnXwnuwN6OdRgPpD/jtN9jjGeSZp3X0NfQ59csp2Tozrsyg95HexUqU3c7MjhkN09sPjzg9QqFKjFJ6pWRC61lVjQxyGATA+Zfn81WBa2tmiwgRwbHBhMWHyR0rqV0SESLSJGn57lwgBEYEvjVsTGxY0HwBb8e85Vyfc/xS4xc0VTR58ukJUy5NofSy0rTc1ZI9/nvknu2IRCIalm3IkR5HeDHqBWOdx6KrpsuTT08Y9s8wSi8rzeSLk3kX/U7hvYhEItpXbs+j4Y+Y32w+2qra3Am6g9NmJwYeH8jHuI+F8RYICAj8B8Fn+voIgZHvhNoWtfEZ4iOrjlhzdw32G+zzHOGvZloNr0FeNCzbkJjkGNrtbccyj2XF5uGhgYYBm102A7DSayXXXl/Ldc7nVSOzrs3KdC0Z7bSOPz2er/JtWVl4VtlPX1gWnmHgW+haCOLRAt8cJXVKMrbuWPyG+uE3xI+xzmMx1TYlND6UZXeWYbfBDrv1dizzWCbXA1tZSZn2lTuy4KcjLG90k/blxqMqUuf2u9t0P9Sd8ivK8/etv4lMjFR4L9VMq3HB9QJHuh+hnEE5gmOD+eXIL/y07Sd8QnwK4/IFBAT+j1giZdbJALKyJDJem3UyQCgRFxAQKHQ0VTVZ3no5F1wvUEq3FM8jnlN/a31mXpmZJ+0MFSUVlrdezsZ2G1FRUmHvw7003tH4i1pBFTRTGkyhlnktIpMiGXJqiEL+XEbVyK13t7j0Sr6avrxheVpatwRgk/emPO9HR02HisYVgcwJZarKqpTQKgF8gd/0/1ZaGW2OBQS+FZSVlGlp3ZLdnXfzYcIHNrts5qcyPyFFyoXAC/Q+0huzxWa4nXDjxpsbcp/l8oblWdRiCUc7PWRYtS1YabUiMjGahbcWYrXCih6HeuDxzkPhvairqDO5wWSe/faMPjX7IEXKVr+tVFpdiSW3lxRLPVoBge8FwWcqGoTAyHeElqoWK9us5Fyfc1joWvAs/Bl1t9Tlr2t/5SnDOkOU3c3eDYlUwrjz4xh0clCx+RFsVaGVrAfugOMDiEuJy3XO+Lr/Vo0ce3JM7liNkjWoV7oeaZI0tvpuzfN+MipGHn96TFKafFT3SytGZL1yhcwngW8cWzNblrZaStDYIE72Opmj+ODJ++9kpaPLzkZx/3ET7JRP0L/ycky0THgX845JFydhucyS4f8Mz1LkPStEIhGdbDrxeMRj5jSZg5aqFrfe3aL2xtoMPjk4U/aigIBAweD1KiJT1tPnSIGQ6CS8XkVkO0ZAQECgIGlevjn+w/zpVb0XYqmYv67/Rf2t9Xn66Wme1hnkMIgLrhdkoux1NtUpNgkXqsqq7Oi4A1UlVU4+O8muB7tynWOhayFLGsuqamSow1AAtvptzZdvaGdmBxSOALvQfljge0BPXY+BtQZyfcB1Xvz2gpmNZlLOoByxKbFs8d1Cw+0NqbCqArOuzuJV5CtZy52B2/05fa8kkvDfsFU6jqPRIMRSMQceHaDe1no4bXZir/9ehQPAFroW7Oq0i9u/3sbB3IGY5BgmXJhAzXU1i11XEQGB7wXBZyoahMDId0hL65b4D/One7XuiKViZl6dSYOtDXge/lzhNdSU1djospFlrZahJFJii+8WWuxqUWxE2Re3XExZ/bK8inrFxAsTcx1vrGXMKMdRQHrVyH9712Y4AJt8NiGWiPO0F0s9S4w0jUiTpPEo9JHcsYKqGBEMfIHvBVVlVdpVapet+KDrviWM3HufkGj5dhRhsalc9avA5pb32NZhG7YlbUlITWDdvXXYrLGh7e62nH95XqFsSA0VDaY1nMbTkU/pVb0XUqRs8tlExVUVWX5neZ4yRgUEBHInNDZ7Az8/4wQEBAQKAkNNQ/Z02cPeLnsx0DDg7vu72G+wZ+3dtXmqlm9crjFebl7YlLAhODaYBlsbcDjgcCHuXHGqm1ZnVuNZAIw6MyqTZkFWTG4wGQ0VDW6/u83FwItyx9pVaoe5jjmh8aGZks0UIacWxGY6ZgB8iPuQ53VTxakEx6Zfm5BQJvC9YG1kzZ+N/+TlqJdc7XeVAXYD0FHTITAykD+v/Um1Zb0Z6u6dyW+KThARGtyBdc08+NXuV9SV1fEK9uKXI79gtcKK+TfmE54QrtAe6paui9cgL7a034KptilPw5/Sdk9bXPa65On5koCAQO4IPlPRIARGvlOMNI3Y12UfuzvvRl9dH89gT+w22LHh3gaFDX2RSMQY5zGc6nUKPXU9rr+5juMmx0wP/4sCXXVdtrTfAsC6e+syGe1ZMa7uOHTVdLn/8X4mQ75b1W4YahjyJvoN51+ez9NeRCJRtkZ+RuZTeGJ4vrKqZJlPgoEvUMCIJVI8XoZz3C8Yj5fhRVKO+V/xwYn1JmOSNuz/R0VyYzN2N//0c1xr9sN3iC9X+l2hQ+UOiBBx5sUZWrm3ovq66mz03qiQxpKlniV7uuzhxoAb2JvZE50czdhzY7Fdb8uFlxcK9mIFBH5gTHU1CnScgICAQEHSs3pP/If507x8cxLTEhlxegRtdrfhfex7hdewNrLGY6AHbSq0ITEtka4HuzL72uxi0Y749/q/U8eiDtHJ0Qw6OSjXPZnrmmdbNaKqrMpA+4FA/vQZcxRg/4KEsuDYYCRSCWrKapTUKZnn+QIC2VEcfCYlkRKNyjVia4etfBj/gV2ddtHMqgVGKYP/7yNl7TftuBHPRpfNvB37lr8a/0VJ7ZIExwYz9fJULJdZMuTkEALCAhQ6/6/2v/Js5DPGOY9DRUmFU89OUW1tNSZdmERscmxBX7KAwA+J4DMVDUJg5DtGJBLxS41f8B/mT1OrpiSkJjD0n6G029suT5k4GaLs5Q3L8yrqFXW31OWfZ/8U4s4Vo1n5ZgyvPRyAgScGEpMck+N4Yy1jRjllXTWiqapJP9t+QLoQY17Jzsg31jRGVSldGyQ/2U+CiKBAYZBRct1r0x1G7/Oj16Y7NFh4uUiFvGxMbOhYfgIiiRGi/xj3GWSUjt548R6RSETjco051vMYz397zmin0eiq6RIQFsCQU0Movaw0Uy9NJSgmKNdzNyjTgLuD7rKx3UZKaJXg8afHtHRvScd9HfMlLiogICCPo5UR5voa2XyyAaSY62vgaGX0FXclICAg8C+Wepac63OOla1XoqGiwbmX56ixrgYHHx1UeA19DX1O9jrJWOexAPxx9Q9+OfJLkYuyqyipsKPjDtSV1Tnz4gzb/LblOmdS/UloqGjgEeTBhUD5ZJFBDoNQEilx+dVlnoU/y9NeMlppPQt/lqkdsiwwko9WWp/riyiJhEccAgVDcfSZtNW06VOzD7Pr70UFk1z9Jq9XEZhqmzKj0QzejHnDzo47sTezJyktiY0+G6m2thqt3Ftx+vnpTF01/ou+hj5LWi3Bf5g/rSu0JlWSyt+3/6bS6krs8NuR63wBAYGcEXymokGwGn4ASuuX5oLrBZa1Woa6sjqnn5+m+trqHHl8ROE1qppUxcvNi0ZlGxGbEovLXheWeiwt8iyohS0WUt6wPG+j3zLh/IRcx2dUjTz4+ICjj4/KHRvskK5bcurZKYUepn6OTID9PxUjIpFIVhaen+wnmcaI0EpLoIA4+zCEYe4+mXpXfohOYpi7T5Ea+oqWhHbc3Y/eh3vLxAetjaxZ3no5QeOCWNZqGVYGVkQkRjD/5nysVljR63AvPIM8c1xTWUmZQQ6DeDbyGaOdRqMsUub40+PYrLFh6qWpCmkZCQgIZI2ykoiZLlWB/+Y0ghQJUmBIE2OUlbJ3AwQEBAQKGyWREr85/Yb3YG9qmdciIjGC7oe643rUlaikKIXWUFZSZmmrpWxy2YSKkgr7Hu6j0fZGeao+KQxsTGyY03QOAGPPjZVVpWeHua65TE/kv1UjZfTL0KZCGwA2em/M0z5K6pTEXMccKVIefHyQ6ZyQz8CIkEwmUMAUZ58JFPeb+h8Zxbq764hMjERdRR1XW1e8B3tzvf91Ott0RkmkxPmX5/l5z8/YrLFh7d21xKfE57hmlRJVOP3LaU72Oom1oTUf4j7Q/3h/6m2ph1ewV0FcnoDAD4kiPlOFsn6Cz1TACIGRHwQlkRJjnMfgPdgbOzM7whPD6XKgCwOOD8i10iIDYy1jzrueZ1CtQUiRMv78eNxOuBWpKLuOmg7bOqRnPW3y2cTZF2dzHG+kacRop9FA5qoRGxMbGpZtiEQqYYvPljztI6Ni5MHHB5k0SgrCyC+jXybPcwUE/otYImXWyQCyCmdmvDbrZECRlIiD4iWhSdJQ9jzcQ8PtDTFbYsb0S9N5FfkKPXU9xjiP4flvzzna4yiNyzUmTZLGvof7cN7iTN0tddn/cH+OGiKGmoYsb72cB8Me0Lx8c1LEKcy/OZ/Kqyuz+8HuIg8GCwh8q7Subs66PrUw05f/nCurxBKmNo9VDwaSlCb0yxUQECh6qppUxWOgB9N+moaSSAn3B+7UXFeTq6+vKryGWy03LrpexFjTmLvv7+K4yRHv996Ft2kFGOs8lrqWdYlJjsHthFuuNs2kBulVI3eC7mRqNZzRamu73/Y8f3dnJJT9V4D9S1ppZQR6BJ9JoCAo7j4TKO43vYn1Z/jp4ZgsMqGNexv+efYPYqmYn8r+xOHuh3nx2wvGOY9DT12PZ+HPGHF6BJbLLJl4YWKOAVSRSES7Su14NPwRC5otQEdNB89gT5w2OzHg+IB8dcsQEBDI3mcy0IIwtXm4P5/A6eeni2h33ydCYOQHo5ppNTzdPJlcfzIiRGz3207NdTW5/ua6QvPVlNXY0G4Dy1stR0mkxFa/rTTf2Zyw+LBC3nn2NCzbUBbscDvhlmtG19i6Y9FT18M/1D9T1UxGZtQmn02kSdIU3kMl40poqmgSnxrPi4gXcsfya+RHJUXJglZC9pNAQeD1KiJT1tPnZJRcr799QeGAaUGSe+ko6GqmYWX6b/AxND6UuTfnUn5leWzX27LZZzMJqQl0rNKRK/2u4DvEl/52/VFTVuNO0B16Hu5J+ZXlWXhzIRGJEdmep6pJVc73Oc/RHkexMrDifex7+hztQ4NtDYr8wYaAwLdK6+rm3JzUlL2DnFnR0469g5y5PL4BWjrP8AnxYezZsUW9RQEBAQEg3eeZ03QONwbcoLxhed7FvKPpjqZMOD9B4UBAo3KN8BrkRVWTqgTHBvPTtp/y1JqroFFWUmZ7x+1oqGhwIfBCrtUeZjpmDKudrv3236qRthXbUlqvNOGJ4XkWms+uBfEXJZNFCRUjAgWHoj7T3Ev7eRHxokgSpxTxm9RU40E1/dmEWCrm7MuztNvbDqOFRgw/NZwHHx9gZWjFklZLCBobxKo2q6hgVIGopCgW3V5E+RXl6X6wO7ff3c72GtVV1JnUYBJPRz6lr21fID1gWmlVJRbfXlykSbQCAt8qWflMPtPbMcAp/ffT9ahrrpWfAoojBEZ+QNSU1ZjffD7XB1ynnEE53kS/ofH2xky8MJHktORc54tEIkY7j+afX/5BT12PG29v4LjZkYehD7/C7rNmXrN5VDSqSHBsMGPP5fxgJaeqkc42nSmhVYLg2OA8RWGVlZSpWbImkIUA+/8DI3nNmsgw8I01jdFW087TXAGBrFC05HriubkYLDCgxroaDDoxiC0+W3gU+qjQ+8bmVDoq+v/foi6OPB75iCcjnvB7vd8poVVCNubBxwcMOjkIo7+NaL+3PRcDL1LDtAbbOmzj7Zi3/NnoT0y1TQmKCWLypclYLrVk2KlhPA57nOV+RCIRHat0JGBEAHObzkVLVYvb725TZ1MdBp0YRGh8aOG8EQLFmuIgwvkto6wkoq61MR3sSlHX2phyhmVw7+yOCBHrvdezx39PUW9RQEBAQEa90vW4P/S+rGJ+iccS6myqw/0P9xWaX96wPLd/vS0TZe9+qDt/XfuryCpQKxlXYn6z+QCMPz+eV5Gvchw/sf5ENFU08Qz2lKvMV1ZSxq2WG5B3EXZZYCQbnykkNiTP74+slZbQfligAFDUZ1p4fR0VV1XEZJEJ7fa0Y871OVwMvEh0UnQh71Axv2llj5+ImPyJ3Z13U690PZkeSWxKLOu812G73pbyK8qz5PYSktKSGOk4kqcjn3Ky10maWTVDLBVzMOAg9bfWx2mzE3v892Qb6LDQtWBHxx14DPSgjkUdYlNi+f3C79RYV0PIbv9BEXymL+O/PpOykoilrZZS26J2eqvPg92FwGMBIZJ+g31BYmJi0NfXJzo6Gj09vaLezjdNTHIMY8+OZavfVgBqlqyJeyd3apSsodD8x2GPcdnrwsvIl+iq6bK3y15+rvRzYW45W26/u02DrQ2QIuVkr5O0q9Qu27GRiZFYrbAiOjmaA10P0K1aN9mx38//zmKPxbSt2JZ/flFcZH7YqWGs917PxHoTWdhioez1WVdn8ee1PxlUaxAbXRTvw3vy6Una72tPLfNaeA8WMtQFvhyPl+H02nQn94FGK3iTeCHTy3rqejiWcsS5lDPOls44WTrJBSYKirMPQ5h1MkAuU8tcX4OZLlVpXd1cbqxEKuHm25usu7eOo4+PkiyWD+4aaBjQz7Yfw2oPo3KJyiSnJbPv4T6Wey6Xa+HQukJrxjiNoaV1S0SirHOvgmOCmXRxErv9dwOgr67PzEYzGek4ElVl1QK6eoHiTF7uTYG88ceVP5h9fTbaqtqyDGuBzAg2sEBeEe6ZguPk05O4nXQjND4UVSVV5jSdw/i641FWUs51rlgi5vcLv7PszjIAelTrwbYO29BU1SzsbWdCIpXQeHtjbry9QZNyTbjY92KOguXjz41n6Z2lOJZy5M7AOzI7KTgmmLLLyyKWink0/JHC39uBkYFYr7RGTVmNuClxMhsqITUB7XnpyWBRk6LQ19BX+Joqr67Ms/BnXO57mSZWTRSeJyCQFYr6TMaldvEw+mimh5MiRFQ1qYqzpbPsz6aEjULfFXklL7bph7gPuD9wZ929dQRGBmbac/0y9RnjNAaXyi6oKavh/9GfFZ4rcH/gLvOxLHQtGFFnBIMdBmfrB0qkEnb47WDKpSl8jP8IpFeZLWu1jErGlQry8gWKKYLPVHi8jnpNrQ21iEyKZJTjKFa0WVHUWyqW5MX+FQIjAgAce3KMQScH8SnhE2rKasxrOo+xdcfmaCRnEJ4QTteDXbn6+ioiRCxqsYhxdcdl+3CxMMkIapjpmPFo+COMNI2yHfvn1T+ZdW0W1Uyq8WDYA9m1Pg9/TqXVlRAhInB0IOUMyil07o3eGxlyaggtyrfgvOv5TK+3q9SOk71OKnwtq71W89uZ3+hUpRNHehzJfYKAQC6IJVIaLLzMh+ikLHvmigAzfQ1uTmpKWMJHPIM8uRN0hzvBd/AK9iIhNSHTnApGFdIN/v8HS2qWrFkgQQKxRIrXqwhCY5Mw1dXA0cooV5GxxNRETjw9wSqvVXi880CCfIVLBaMK/FbnN1xtXTHQMOD6m+ss91zO8SfHkf7/HalSogqjnUbjWtM120qtW29vMersKHxCfGRzlrdaTqsKrb74ugWKLxkinP/97GTclev61BIM/S9ALBHTyr0Vl15dwqaEDV6DvNBR0ynqbRU7BBtYIK8I90zBEhofyqCTgzjx9AQAP5X5iZ2ddirsL2zx2cKwf4aRKkmltkVtjvc8joWuRSHuOGteRryk5vqaJKQmsKrNKkY6jsx27Me4j1itsCIxLZF/fvmHthXbyo512t+JY0+O5enhjEQqwXChITHJMdwfel9WdQ+gv0CfmOQYHo94TJUSVRRaTyqVojVPi6S0JF6Oekl5w/IKzRMQyI68+ExpkhTuf7yf7jP9/+9VVOZKLB01nUwJZqbapgW237z6TQ9DH7LReyO77u8iKjlK7piGigZdbboyymkUtS1q8ynhExu8N7Dm7hpZFwwNFQ361OjDaOfRVDetnuU5YpJjmH1tNss9l5MmSUNVSZUxzmOY3nA6eurC79H3iuAzFT6nnp3CZa8LQKZEb4F0hMCIQL74GPcRt5NunHp2CoDG5RqzvcN2hUqSU8Qp/Hb6Nzb6pFdEDLAbwLqf16Guol6oe/4viamJ1NpYiyefntC7Rm/cO7tnOzYqKYpyy8sRnRzN/q776V6tu+xY853NufTqEtN+msacpnMUOvfd4Ls4bnbERMuEjxM+ygJDGZUfDuYO3Bt8T+FryQjyjHEaw7LWyxSeJyCQExmGCiBnrORmqKRJ0ngU+kgWKLkTdIcnn55kGqehokFti9oyo9/Z0plSeqUK4UpyJjQ+lF0PdrHu7jpeRr6UO6YkUqJhmYaMqzuONhXb8Db6Lau9VrPZZzOxKbEAGGoYMthhMCPqjKC0fulM64slYrb5bWPqpamEJaRrLLlUcmFpq6VUMKpQ+Bco8FXJcJCz6zf9uYOcmyOa1dp5dWa/Vz7GfcR+gz0hcSH0rtGbXZ12FUmSRXFGsIEF8opwzxQ8UqmUbX7bGH12NHEpceiq6bKyzUr62fZT6Dvr+pvrdN7fmfDEcCx0LTje8zi1LWp/hZ3Ls8ZrDSPPjERLVYv7Q+/naL9k+CV1LOrg6eYpu86zL87SZncbDDQMeD/uvcIVMI22N+L6m+vs6LhDpksAUGV1FZ6GP81T5cfHuI+YLTFDhIik6UmoKaspNE9AICfy6zNB+j3pGZyeYOYZ7IlXsBdxKXGZxpU3LC+XYGZrZvvV71+xRMzV11dZ6bWSM8/PkCpJlTtupmPGEIchsgqRA48OsPzOcrxD/u1o0bx8c8Y4jaFNxTZZJtY+/fSUsefGcubFGQBKapdkQfMF9LXtq1AirsC3g+AzfT0mX5zMwlsL0VXT5d7ge0I11n8QAiMC+UYqlbLZZzNjz40lPjUePXU9VrdZTZ+afXI19KVSKau8VjH23FgkUgkNyjTgSPcjmGibfKXdp+MZ5Em9rfWQSCUc6X6ETjadsh2b0eaqqklVHgx9ICtvPfjoIN0PdcdMx4y3Y94qlAGfmJqI7nxdxFIxQWODZA+D772/R51NdbDQtSB4XLDC19H9YHcOBhxkaculjK0rCNIKFBwFVdoamRiJV7CXLFjiGeRJZFJkpnGWepbpmVGlnHC2dMbB3OGrto54HPaYdffWsevBLqKSouSOaatq071qd8bUHUM5g3Js99vOCs8VsvJyZZEyXat2ZYzzGJwtnTOtHZUUxayrs1h9dzVpkjTUlNUY5zyOaQ2nCdnu3xGKtlTYO8iZutbGCq8rlJln5sabGzTZ0QSxVMz6n9czpPaQot5SsUKwgQXyinDPFB6BkYH0PdqXW+9uAdCpSic2tNugkO8TGBmIy14XAsIC0FTRZHvH7XJJWl8DiVRC853NufL6Cg3KNOBa/2vZPqQMjQ/FaoUVCakJnOp1StY6WSKVYL3SmtdRr9neYTv97PopdO4xZ8ewwnNFpgSwJjuacPX1VXZ33s0vNX5RaK2M5LS8+loCArlRUHaaWCImICzg36qS4DsEhAVkGqeurI6DhYNcgpmlnuVXSxKJT4nnyOMjLPdcjm+Ir6yiPgM7MzvGOY+ji00XfD/4stxzOUceH5HpUFY0qshop9H0s+uXpR/0z7N/GHtuLM8jngPgWMqRla1X4mTpVPgXJ/BVEHymr0eaJI1mO5tx/c11apjW4I7bHbRUtYp6W8UGITAi8MW8iHhB36N98QjyAKBr1a6s/3k9xlq5f3mdfXGWHod6EJMcQzmDcpzsdTLb8srCYsrFKSy4tQBTbVMeDX+Ubf/Lz6tG9nXZR4/qPYD0Cpgyy8rwMf4jh7odokvVLgqdt/ra6jwKeySncRIcE4zlMkuURcokT09WuLeo02YnvIK9ONz9MJ1tOis0R0BAUQoj40IilfA8/Lmc0f/g44NMou0qSirYlrSV67trbWhd6Ea/RCrh2utrrPBcwZnnZ0iRyPcDttS1ZGjtoQy0H4jXey+W31nOlddXZMedSjkxxnkMXWy6ZAqWPg57zJhzYzj/Mr2NnrmOOX+3+JveNXoLGe/fKFKplFdRr7j59iYH7gXy8HmdXOes6GlHBzvFKqSEMvPs+fvW30y6OAk1ZTU8BnpQy7xWUW+p2CDYwAJ5RbhnChexRMyi24v448ofpEpSKaldki3ttyikuRiTHEOvw71kwsR/NvqTPxr98VXthtdRr6mxrgZxKXEsa7WMMc5jsh078cJEFt1eRG2L2ni5ecn2Of/GfKZenoqzpTMeAz0UOu8Ovx30P96fRmUbcbX/Vdnrvxz+hb0P97K4xWLG1xuv0FqHAg7R7WA36lrW5fbA2wrNERBQlMLKUo9KiuJu8F25avyIxIhM4yx0LeSqShwsHL7Kw8+Q2BC2+G5hg/cGgmKC5I6pKqnSukJrfq/3O5Z6lqy9u5ZNPpuITk4XnddX12dQrUGMdByZqftIijiFFXdW8Nf1v2RVNP1s+zG/2XzMdX9Mu/d7IC4lDs8gT3beCeDag9zbGQo+U8EQEhuC3QY7QuNDGWA3gK0dthb1looNQmBEoEBIk6Sx8OZC/rz2J2mSNMx1zNnaYSutK7TOde7nouw6ajrs7bI3RzH0giY5LRmHjQ48CntE92rd2d91f7Zj/7r2FzOvzsSmhA3+w/xlgYupl6Yy/+b8TJohOeF61BX3B+781fgvZjSaAaS/j2qz1ZAi5cP4D5TUKanQWuZLzPkQ94F7g+7hYOGg0BwBgeJGfEo83iHesmCJR5CHrDft5xhrGssFSupY1MmT6GZeSUhNSM+IurMcnxAfuYwoESIcLBwYX3c8FQwrsPbeWnb775YJK5bSLcVIx5EMqjVILlgslUo5+ewkY8+NlVWc1LWsy8o2K4ukRYZA7nzu7JbQUUVdMwiPoFvceHuDm29vEhIXAoC6uAZmKfNzXU/R7KfCLDP/HpBIJXTa34kTT09gZWCF92BvDDUNi3pbxQLBBhbIK8I983XwDfGlz9E+sizwIQ5DWNxyca7Vo2KJmIkXJrL0zlIAulfrzrYO275q1meGHqKGigZ+Q/yoXKJyluM+rxr5PAnsQ9wHSi8rTZokDb8hftia2eZ6zgcfH2C73hZ9dX0iJ0XKgiwZQu/j645nccvFCu1/ye0lTLgwgZ7Ve7K3y14Fr1pAoHghlUp5EfFCLsHs/of7iKViuXHKImVszWzlqkoqGFUo1IDqg48PWOm5kv2P9mdqCWaoYUg/23641XLj6uurrPBcIasIURIp0dmmM6OdRlO/dH25PYbEhjDl0hR23N8BpGuwzGg4g9FOo796O3aB3PlvgLCsSSp3gm9z8+1Nbr69iU+ID2KpWPCZioArr67QfFdzJFIJW9pv4Vf7X4t6S8UCITAiUKB4v/emz9E+Mj2B4bWHs6jlolwN9v+Ksv/d4m/G1x3/1bKgvN9747TZCbFUnElD5HOik6Ipt6IcUUlR7O2yl57VewLwKvIV1iutkSLl+W/PFdINWOqxlPHnx2cSTC+5uCSh8aH4DvHFzswu13WS0pLQnJveaijs97BsK14EBL41pFIp72LeyQkUeod4y4IOGYgQUdWkqlywxKaEjcIVV3nhY9xHtvhuYf299byLeSd3TF1ZnbYV2zKo1iC8gr1Yd28dH+M/AqCpoolrTVdGO4+mqklV2ZyktCSWeSxj7o25xKfGI0LEALsBzGs2T+HAqEDhc9zvDX+efERk/L9mUBphRKhtJFE5PeNVVUmV2ha1qV/6Jy7c+YmohKx/v/JqlN96EUrvzXdzHZfXMvPvicjESGptrMXrqNd0qNyBoz2OCtVXCDawQN4R7pmvR1JaElMvTWXZnfTWUBWMKrCr064sW3H+l/+Ksh/rceyrabRJpVJaubfiQuAFnC2duTngZrb21qQLk/j79t84mDtwd9Bd2fdyRgvgYbWHsfbntbmeM1Wcis58HVLEKXKC6YtuLWLixYm5akV+zqgzo1jltYpJ9SexoPkCBa9aQKD4k5CagPd7b1mgxOOdhyxp53OMNI1kLYudLZ1xLOWIgYZBge9HLBFzMfAiSzyWcOX1FdIkaXLHKxlXYmSdkZjrmLPBZwMXAy/KjjmYOzDGeQzdq3WX01HxDPJk1NlReAV7Aenfm8tbLVeo6k7g63DGP4QZxx/wKe7f/7//6zMBlNEvQ/3SP+H/sBuxiSpZrpVXn6mwWnN9b8y9PpfpV6ajoaLBnYF3FEpQ+N4RAiMCBU5iaiKTL05mpddKIP1Hb1enXTiWcsxxXqo4ld/O/MYG7w0A9Lfrz/qf13+1LIA/rvzB7OuzMdY05tHwR9k+lJx9bTZ/XP2DKiWq8HDYQ5kz0GZ3G86+OMvEehNZ2GJhrue78uoKTXc2xcrAisDRgbLX7dbbcf/jfU7/cpo2Fdvkus7z8OdUWl0JLVUt4qbECQ+DBL5rktOSuf/xvlyw5FXUq0zjdNV0cSzlKDP6nUo5FbiGUUBYAMs8lrH/0X6ZEHsGJbRK0LdmX8rol2HH/R34fvCVHWtp3ZIxTmNoVaGVrD93cEwwky9Nxv1BumOvp67HzEYzGek4UhAGLQI+JXzi1ttb3Hx7kwuPw4gM6QqkB+EykCJBhIgWtd7g6lSDOhZ1ZHo4+RHhTBWn8iLiBQFhAel/n9L/fRNigkFy7tpReSkz/x7xfu9Nva31SBGnsKjFIibUm1DUWypyBBtYIK8I98zX51LgJfof709QTBBKIiWm/TSNGQ1n5KpZ+Lkou7mOOSd6nfhqFafvot9RfV11YpJj+Lv53/xe//csx4XFh2G1wor41HhO9DyBS2UXIP2am+9qjq6aLu/Hv1dIZ81howM+IT5ybYPdH7jjetSVplZNudT3kkJ777CvAyeenmBt27UMqzNMwSsWEPj2kEqlBMUEyfwlz2BP7r2/R7I4OdNYmxI2cglm1UyqFWiCWVxKHHv997LCcwWPwh7JHVMWKfNTmZ/oUb0H94Lv4e7vLtujuY45w+sMZ4jDEJkfJ5FK2HV/F5MuTpIloLWp0IZlrZZlW8EmUHikSdLw++DHzbc3OXn/HS9eNQGy9plq2fjQrVZF6pepTxn9MkD+fCapVEpYQti/PtP//54E6aAWm7ve4I/uM0mkEtrtaceZF2eoaFSRe4Pvoaf+Y9t8QmBEoNC48PIC/Y/3533se5RFyvzR6A+m/jQVFaWsI8KQ/iW32ms1Y86NkYmyH+5+GFNt00Lfb4o4BcdNjtz/eJ9OVTpxuPvhLIMMn1eN7Om8h141egFw7MkxOu3vhImWCe/Gvss1oBORGIHx3+mR6shJkbJMjYwAi6KlbRcDL9JiVwuqlKjC4xGP83jVAgLfPh/jPuIZ7Ckz/L2CvYhPjc80ztrQWk7Y3dbMtkCCDhKphEuBl1h0e1GWGVE2JWxoW7EtLyJecPLZSZmOSmXjyox2Gk1f275oq2kDcPvdbUadGYV3iLdszPLWyxVqSyiQPz7XB8n4e/zp/9+lUiVKJW1BmRJyBn4GOWUyZSf8N6VtRcqZRWUy5p9HPM9070DBt+b6nll3dx3DTw9HWaTM1f5XaVCmQVFvqUgRbGCBvCLcM0VDVFIUI0+PZLf/biA9W9q9sztVSlTJcd6ryFe47HXhUdgjNFQ02N5hu0wDsbDZ6ruVgScGoq6sjs8QH7lq2M+ZfHEyC28tpJZ5Le4NuodIJEIilVB5dWVeRLxgk8sm3Gq55Xo+txNubPHdwvSfpjO76Wzg3wCLTQkbAkZkFqfOCvsN9vh98JMThRcQ+FFIEafw4OMDuQSzl5EvM43TUdOhjkUduQSzgqpkD44JZs3dNWz13SoLbMjOq6pDu0rtKKldkgMBB/5tU6usTp+afRjtNJoaJWsA6bpLc67PYfmd5aRKUlFRUmG002hmNJxRqC2Wf3TiU+K5E3Qn3Wd6dxOPdx7pfnch+Ex/tKuKbTlpJp8pICyA8MTwTOcQfCbFCU8Ix36DPe9i3tG1alcOdD3wQydYF3lgJDg4mEmTJnHmzBkSEhKoUKEC27Zto3bt9IwXqVTKzJkz2bRpE1FRUdSvX59169ZRsWJFhdYXDPyiJSIxguH/DGf/o3TdDsdSjuzqtItKxpVynHf+5Xm6H+xOdHI0ZfXLcrLXSdmPYGFy/8N9am+qTZokTS7o8V/mXJ/DjCsz5KpG0iRplF1elvex7+XabOVEueXleBP9hiv9rtC4XGMAfj3+K9v8tjGnyRymNZyW6xpbfLbgdtKNVtatONvnbJ6uV0Dge0QsEfMo7JGc0S970P0Z6srqOFg4yPXdtdSz/CKjICE1gT3+e1hxZwUPwx7KHVNRUsGplBPm2uacCzwnqzIx0DBgcK3BjHAcQRn9MkikErb7bWfKpSmExocC0K5SO5a1WqZQmz6BnBFLxDz4+EBm0N98e5P3se8zjatqUpUquu3xfpT7w/WsDOyE1AQehT7mTMBznnx8z8fE57xNvExg1AtZcOy/6KjpUNWkavpfifR/Kxvb0GfjKz5GJ2USEgShX+7nSKVSeh/pzd6He7HQtcB3iO9XSaworgg28PdFYftMINwzRc3+h/sZ+s9QopKi0FDRYFGLRYyoMyJHuyQmOYZfDv/CP8//AWBmo5n80egPWUVqYSGVSmm3tx2nn5+mjkUdbg+8nWXy26eET5RbXo741HiO9zxO+8rtAVh8ezG/X/gdB3MH7g2+l+v51nitYeSZkfxc8WdO/XIKSK/crba2GgYaBkROilRo30YLjYhMisR/mD/VTavn4YoFBL5PwuLDMiWY/bcSHsDKwEquqsTOzO6LE8z8QvxYeGshJ56eICEtQe6YpZ4lzqWceRH5Ar8PfrLXm1k1Y4zzGNpWbIuSSIln4c8Yd26c7DvQVNuU+c3m09+uf6F/D/4IhMaHyiWPZeiDfI6BhgG2ht14Hdgh1/Wy8pkkUgmvI99y8mEAAR+CCEt6yfuUGzz5FEB0cnSW64gQUd6w/L9+0/99plE7owiNSRF8JgW4E3SHhtsakipJZUXrFYxyGlXUWyoyijQwEhkZib29PU2aNGHYsGGYmJjw/PlzrK2tsba2BmDhwoXMnz+fHTt2YGVlxYwZM/D39ycgIAANDY1czyEY+MWDvf57GfbPMKKTo9FS1WJxi8UMrT00R0P/yacnuOx14UXEC3TUdNjTeY+sBLswyWiVZahhyKPhjzDXNc80JiY5hnLLyxGZFIl7J3d61+wNwMwrM/nr+l80LteYK/2u5HquTvs7cezJMZa2XMrYuumtUqZdmsa8m/MYUWcEq9uuznWNjBZgg2sNZoPLhjxerYDAj0FUUhR3g+/K+u7eCbpDRGJEpnEWuhbpBv//gyUOFg75FjUNiQ1hldeqLDOidNV0qW5SnaCYIN7FpmuVKIuU6WzTmTHOY6hrWZeY5Bj+uvYXK71WkiZJQ01ZjbHOY5n20zR01XXztacfkcTURDyDPWUG/e13tzM5fKpKqjhYOFDJqBI6ajrEp8bzKOwRz4L0MEwel+s5RrXSxcgwUC6T6XXUa6RZmuXpDsTnwY+Mv+wCc/kpM/9RiUuJw3GTI48/PaZ5+eac7X22UPSGvgUEG/j74Wv4TCDcM8WB4JhgBhwfwIXAC0B6+81tHbZhoWuR7RyxRMyki5NY4rEEgG5Vu7G94/ZCF2UPjgmm+rrqRCVFMbfpXKb+NDXLcVMuTmHBrQXYm9njPdgbkUjEp4RPlFpaihRxCvcG3cPBwiHHc91+d5v6W+tjoWtB8LhgIF1fyuhvIwASpibI2llmR2xyLHoL0u/rmMkxgi0lIJAFYomYx58eyyWYBYQFZLJp1ZXVqWVeSy5YUlqvdL4SzNIkaZx5foa/b/3N7aDbcglEIkRUNq6MgYYBnsGesn1UMKrAaKfR9LPth666Lqefn2bsubE8C38GQB2LOqxss1Ih3SaBdKRSKS8jX3Lz7U1uvLnBzXc3Ze/n55TRL0Mt81qYaZshJb1lm98rFVRiB+V6jmntLDAzCZJrG/w47HGW3R4g3T+uYFRBzl9KD4JUzvI7X/CZ8sZKz5WMPjsaVSVVrg+4/sN+Xoo0MDJ58mRu3brFjRs3sjwulUqxsLBg/PjxTJiQ3is6OjqakiVLsn37dnr2zD0j/3sy8MUSKV6vIgiNTcJUVwNHK6NvKtL5Lvod/Y/35/Kry0B6L8gt7bdkGXjIICIxgq4HunLl9RVEiFjYfCET6k0o1DKvVHEqzluc8QnxwaWSC8d7Hs/yfBmiRZWMKxEwPABlJWXeRb+j3IpySKQSHo94nGsJ/F/X/mLm1Zm41nRlZ6edAKzyXMWos6PoYtOFQ90P5brf/sf6s+P+jhwdEgEBAXmkUikvIl78a/QH3+H+h/uZMmCURcrYmtnKVZVUMKqQ5++gBx8fMP/m/PSMqFT5jChTbVN01XTlStnrWNRhjPMYulbtSmBkIGPOjuHcy3NAer/dBc0X0KdmHyETKgs+JXzi9rvbMoPe+703qZJUuTF66npUM6mGiZYJEqmE4NhgHoU9IkWcIjdO0ZLsD2pTSFb2z/S6saYx1UyrZQqAmOmY5fkeOvswhD9PBPAhRr7MfKZLVcHAB4h6BwnpZfWBUa9wPdKHxLQkBtcazNDaQ0DLGAxKF/Emvy7fkw38o/M1fCb4vu6Zb9lvkkglrPFaw8SLE0lKS8JQw5AN7TbQrVq3HOdt893GkFNDSJWk4mDuwPGexwtdlH3X/V30PdYXVSVVvAd7Z1nh/ynhE1YrrIhLieNYj2N0qJKeVfzL4V/Y+3Avg2oNYqPLxhzPE5cSh958PaRI+TjhI6bapkilUjTnapIsTiZwVCBWhlY5rvEw9CE11tXAUMOQiEmZk2MEBASyJjopmrvv78oFS7JqZWSmYyaXYFbborasXbCixCbHstV3K6vvruZFxAu5Y+rK6pTWL82H2A/EpcYB6Ta9m70bvzn9hoWuBSs9V/LXtb9kSVCuNV1Z0HxBjsHlH5U0SRr3P9xPD4S8vcHNtzczJfOJEFG5RGXK6ZdDQ1WD6KRoAsICMo37Up9JVUmVSsaVMgVAKhpVzLPmsOAzKcD//SYpUiZfnMKFwAuY6Zixp/MeDDT0fzi/qUgDI1WrVqVVq1YEBQVx7do1SpUqxfDhwxk0KD3SGBgYiLW1Nb6+vtjZ2cnmNWrUCDs7O1asWJFpzeTkZJKT/xWUiomJoXTp0t+8gZ9d371v7cMtkUpY6bmSyRcnkyxOxljTmA3tNtClapds56SKUxl1ZhTrvdcD0M+2HxvabShUUfaHoQ9x2OhAijiFHR130Ne2b6YxMckxWK2wIiIxgl2ddtGnZh8A2u9tz8lnJxnrPJalrZbmeJ6TT0/Sfl97qptWx39Y+g/EoYBDdDvYjXql63Hr11u57rXJjiZcfX1VrnJFQEAg7ySkJuD93lsWKPF45yHrbfs5RppGcka/YylHhXvZiiVizjw/w4JbC7gTdEcuECNChLGWMVGJUaRJ07UmLHQtGFFnBINqDeJO0B3GnhsrC6A4WzqzsvVK6pSqUwBX/20ilUp5HfVazqDPqm2aiZYJZfTLoKasRkRiBC8jXsre488x1DCkuml1LHUt0VbTJjktlVs+rUlL00ZE5iCUFAliwpGUmEZVUxtsStjIGfMZQpEFQbqR/4gPMf/aOGZ66vzZvto3ZQcUClHvYLUDpGUWFJWhog4jvQUjX+CbpDB8JhD8puLO47DH9DnaB5+Q9OzXPjX7sKrNKpkuYVbceHODzgc68ynhE+Y65hzvebxQ7QSpVErH/R058fQE9mb2eLp5ZikcP/XSVObfnI+dmR0+g30QiURcf3OdRtsboa2qzfvx73MVf628ujLPwp9xtvdZWlVoBYDVCiteR73m1q+3qFe6Xo7z/3n2D+32tsPOzA7fIb75v2gBgR+cjMqCz4Xd/T74ZdLKUxYpU6NkDbkEs4rGFRVO7HoX/Y5Ftxex2393pkp/HTUdVEQqRCVHAaAkUqJjlY6McRpDBaMKTLs8jW1+22Rjp/80nTHOYwr1GVJxJz4lXlZFf+PtjX/1QT5DTVkNa0NrDDUMSRIn8SbqTZZBMCWRElVKVKGCUQWMNY0RocT1ey1ITdWGLDRGMnymcJ0RVC5RMVMAxNrQOsvfjvwg+Ey5IPhNmSjSwEhGWfe4cePo1q0bd+/eZfTo0axfv55+/fpx+/Zt6tevz/v37zE3//cG7t69OyKRiP3792da888//2TWrFmZXv+WDfyMcrD/vvnfcjnYo9BH9DnaR9Yvsq9tX1a2Xpntw0WpVMqau2sYfXY0EqmE+qXrc6THkULtHb7g5gKmXJqCvro+j4Y/yjLjat6NeUy7PI1KxpV4NPwRKkoqMqPbSNOI4HHBaKhk377gXfQ7yiwvg7JImbipcWioaHDr7S0abGuAlYEVgaMDc91n+RXleRX1ihsDbvzwQrMCAgWJVJpeGvx5VYn3e2+SxfJGhAgRNiY2OJdyxskyXdi9mkm1XNv3xKfEs9l3M6s9V/MiUj4jSkVJBWWRsuxcGioauNZ0ZVjtYZx/eZ45N+YQl5KeKTXAbgDzms3DTMesAK++eCKWiPEP9ZcLhGSlD2KmY4a+uj4JqQm8j32fqRII0ttZlTcsj5GGESKRiOikaAKjAvmU8ElunKa4LiYpUwHpf4IjUkDE4u6V6VqrcLVfvkc7oEB57wcbG+U+bvA1sLAr7N0UG4TAyPdDYfhMIPhN3wIp4hRmX5vNvJvzkEgllNYrzY6OO2hi1STbOV9blP1D3Aeqra1GRGIEsxrP4o9Gf2QaE54QTrkV5YhLieNoj6N0rNIRqVRKtbXVePzpMWvbrmVYnWE5nqfnoZ7sf7SfBc0WMKnBJADqbamHR5AHh7odyjHRDmDt3bWMOD2CDpU7cKznsXxfr4CAQGYSUxPxCfGRa1scFBOUaZyhhmG6v/RZgpmhpmGOa0ulUu6+v8vc63M59/JcJl9MS1VLriK/lnktxjiNwcrAigkXJuAZ7Amkt99a2nIp7Sq1+yGEpkPjQ7n19pbMb8pKH0RLVQtzHXOUREqExodmqemhhBLWRtaY65qjpaJFUloSIXEhvIh4Ibdezj4T/NnRElfHGoXa4vZ7swEKBcFvykSRBkbU1NSoXbs2t2/flr02atQo7t69i4eHR76M/O8t80kskdJg4WW5jKfP+ZYFhFLEKfx59U8W3lqIRCqhrH5ZdnTcQaNy2X9I/yvKfqLXCWqWrFko+0uTpFF/a328gr1oXaE1p385nekHNDY5lnIryhGRGMHOjjtxtXVFLBFTfmV53ka/laskyQqpVIrJIhPCE8O5O+gutS1qExgZiPVKazRUNEiYmpDjj7ZYIkZjrgZpkjTejHlDGf0yBXb9AgICmUkRp3D/w305oz8wMnMAU0dNhzoWdeT67uYUyA2OCWbBzQXsebgnU0aUipKKXAZWi/ItcK3pyoXAC+x6sAtI1yz5o9EfjHIa9cVCiMWJxNREvIK9ZAZ9VvogyiJljDTTe4yHJ4QjIbOwuZ66HuY65mioaMiM+ZjkmGzPa2VgJZfFFBttjfutJD7G/Ntq62tlH3/PdkCBoaCBn+p2CVXL2oW/n2KCEBj5figMnwkEv+lbwuOdB65HXWVVo+OcxzG32dxsE7D+K8r+R8M/mNl4ZqG14Nz3cB+9DvdCRUkFLzcv7M3tM43J0FG0LWmLzxAflERKLL+znLHnxmJb0hbfIb45+j0Lby5k8qXJ9KjWg31d9wHQ5UAXjjw+wqo2qxjpODLHPU6+OJmFtxbym+NvrGyz8ssuWEBAIFeCYoLwDPKU+U333t8jKS3z93OVElXkqvGrmVZDRUklyzXTJGkcCjjE4tuL8QnxkdM+Ef3/8XfGa2Y6Zgx1GIqxljFzb8zlQ9wHAFpZt2J56+W5tj3/lvhcHyTDb8pKH0RXTRdtVW1iU2Kz1PVQFilTSq8U+urpCcuRiZEExwZnq5uop64np5uYHG/DUS9lwmL/9V0Fn6mYIQRGMlGkgZGyZcvSokULNm/eLHtt3bp1zJkzh+Dg4HyXhX/Ot+4UerwMp9emO7mO2zvImbrWxl9hRwXPrbe36HusL4GRgYgQMaHeBGY3mZ1tmeN/Rdl3d95N+8rtC2Vvj8MeY7/BnmRxMptdNjOw1sBMY+bfmM/Uy1OpaFSRgBEBqCipMOf6HGZcmUH90vW5+evNHM/RYlcLLgZeZGO7jQxyGERiaiJa89LFEiMnReZYLh8UE0TpZaVRFimTND0pWwNCQECg8AiLD8Mz2FOunDyjmuNzrAys5AIldmZ2WQYx7gbfZfb12Zx/eT5TRtTnVDKuhEtFF668voLPBx/Za8tbLadNxTYFd4FfkfCEcG69uyUz6u+9v5dJH0RVSRV1FXXiU+KzNNK1VbUx0DBAipTIxEgS0xKzPJeSSAlrQ+ssxfyy6odcmP3q0yRphCeEE5YQxqeET4TFhxGWEEZYfBiP34u588Ap1zW+ZTvgi1HQwF9aoyPjuuwo/P0UE751G1jgX76GzwTf/j3zvftNcSlxjD83no0+6Xoc1Uyq4d7ZHTszuyzHiyViJl+czGKPxQB0rdqVHR13FIoou1QqpdvBbhx+fJgapjW4N/heJhsnPCEcqxVWxKbEcqT7ETrZdCIiMYJSS0uRlJaEx0CPHIVfz788Tyv3VlQyrsTTkU8BGHl6JGvurmFqg6nMbTY3xz32OtyLfQ/3sbjFYsbXG//lFy0gIJAnUsWpPPj4QC7B7L86IpBuy9cpVUcWKHGydMqyMj4mOYaVnivZ5L2JtzFv5Y6JEMn8BHVldbpX7Y6KsgruD9xJlaSioqTCKMdR/NHoD4VbIhcnPtcHufku3W/KCPx8jraqNqmS1Ew6ipAeBDHWNEZNRY2E1IRMyXmfY6hhmKVuooWuRaaAdmH6TFKplLiUOJmf9Pm/j4JSueZrl+sa36oNUGAo6DeF9TmESYUWhb+fYkBe7N8Cf+Jav359nj59Kvfas2fPKFu2LABWVlaYmZlx6dIlmZEfExODp6cnw4blXGr7vRAam3W08798iEkAvs0Pd/0y9fEb4se4c+PY7LuZRbcXcfbFWdw7u2dZDVKlRBU83TzpdrAbl19dpuO+jixovoDf6/1e4CWRNiY2zGk6h98v/M7Yc2NpYd0iU1XGSMeRLPFYwvOI5+zx30Nf2778av8rf179k1vvbvEo9BHVTKtlew57M3suBl7E90N6r1tNVU301fWJTo4mJDYkx8DIm6g3AFjqWQpBEQGBIsJE24R2ldrRrlI7IP1BxONPj+UECgPCAngV9YpXUa/Y+3AvkG6k1zKvJRcsKa1Xmjql6nCi1wnEEjGHAg7x9+2/8Q3xzRQEeBb+jCXhS9BT06OVdSu833vzLPwZbfe05eeKP7Os1TIqGlf86u+HonyuD5KR2ZSVPsh/K2ZSJamkpqQHSzSUNWTGfMaY+NR4uQwoFSUVKhpl7mVbybhSjq0O/4uykkhhIzpFnJLJWM/072f/OzIxMttMLK20hpiQe2BEUXvhR8bd351yVTvQ2aZzUW9FQCBPCD6TYij6Pfitfl/qqOmwwWUDLpVdGHhiII/CHuG4yZHZTWYzod6ETO1JlJWUWdRyEdVMqzH45GAOBRwiMDKQ4z2PY6lnWaB7E4lErP15LdfeXMM/1J/Z12Yzu+lsuTHGWsaMchrF3Btz+fPan3So0gEjTSO6V+vOzvs72eC9IcfASEYA6Hn4c+JS4tBR08FcJz0DOStNuP+S4TeVNSibz6sUEBD4ElSVVXGwcMDBwoERjADgU8InuaoSzyBPYlNiufr6KldfX5XNLatfVs5nsjezR09dj+kNpzO94XReRb5i9vXZHH58mJjkGDm7OlmczC7/9Cp7p1JOSKQS7r6/y9I7S3H3d2de03kMsB9QaBV1BcHn+iA3397EI8gjUyKeCBFKIiW59lYZPpGSSAltVW0kUonsNbFUTGhCqNwaptqmchUgGX+m2qYKP2vLi88klUqJSopS2GcKiw/LNnEw3Weyy/Wc36oN8LWZcmkq68s3EZ4z/ocCrxi5e/cu9erVY9asWXTv3h0vLy8GDRrExo0b6d07XUR64cKFLFiwgB07dmBlZcWMGTN48OABAQEBsn67OfGjZD6l6i+iv2N9frX/FWsj66+ws8LhxNMTuJ1wIywhDDVlNeY2nctY57FZ9iFMFacy+uxo1t1bB6TrlGxst7HABbXEEjENtzfk9rvbNC/fnPN9zmf6UcjQI6lgVIHHIx6joqRC5/2dOfrkaK7l2nv99/LLkV9wtnTGY6AHADZrbHjy6QmX+l6iqVXTXOc2LNuQa/2vFcwFCwgIFDjRSdHcfX9XLliSlZCduY65nNHvYO6Atpo2scmxLL+znE0+m3gX8y7b81Q0qkhgZCBiqRhVJVXGOI9hesPpuQqafg0+1wfJ+AuODVZ4voqSChKpBIk0c6ssSBcLrGxcOVMApIJRhS9uL5aQmpCnQEdObbqyQ4QII00jTLRNMNEykf0rTrLmwr2quc7/obOfFMx8qkUcLzV08B7sTQWjwtWFKQ586zawwL98DZ8Jvv17RlG/qbz1CcY0/Jm2Fdt+sw5/WHwYg08N5tiTYwA0KNOAnR13YmVoleX4m29v0ml/J5ko+7Gex3As5Vjg+zoccJiuB7uiLFLmjtsdalvIty+MSIyg3PJyxKbEcrj7YTrbdOb2u9vU31ofTRVNgscF56g3UGppKd7HvufmgJvUL1Ofrb5bGXhiIK0rtOZM7zM57i1jrpebV6EK0gsICOQfsUTMk09P5DQeH4U+ypRApKashr2ZvZzfVFY/Peh57c01Zl+fzfU31zMJwmdgpm2GBAmh8emBAQdzB1a2WUm90vUK9wIVJCw+7F+f6d1NfEJ8sr2W/yJChLKSco7jLXQtMgVAbExsKKFV4ov2LZaIiUiMUNhn+pTwSeHr+hxNFc1MPhPJFbnuVyvXuT+0zwR58ptaNvidBc0XFP6eipgibaUFcOrUKaZMmcLz58+xsrJi3LhxDBo0SHZcKpUyc+ZMNm7cSFRUFA0aNGDt2rVUqlRJofW/dQM/o0/eh+ikbHJJpUiUIninNgBE6Q+Lmlo1xc3ejU42nfKUDVtc+Bj3kUEnB3Hy2UkAGpVtxI6OO7LN7lnjlS7KLpaKqVe6Hkd7HC1wUfZn4c+wW29HYloi635ex9DaQ+WOx6XEUW55OcITw9neYTv97PrJyr311fV5P/59tmXrj8MeU3VtVbRUtYiZHIOykjJNdzTlyusruHdyp3fN3tnuKyMg41rTlZ2ddhboNQsICBQeGX1gPw+U3P94P5NhqCxSpmbJmull5KXShd1VlVT56/pfHH1yNNsH8LpqujItDjMdMxY0W4CrretXzYT6XB/k5rub3H53O18Bg/+iqaJJlRJVMgVAyhuWV+gBl1QqJTYlVuGspLCEMDlBR0VRFilTQqtEJqNd7n9/9q+RplGW+8/NDhD65aKwgf+rWQW2ffTBzsyO27/eRlNVs/D3VoR86zawgDyF7TPBt3/PKOI3pfGJYI2BIJJgrmNOf7v+DLQf+E0mlkmlUrb7bWfU2VGyCoqVrVfS365/lpm9r6Ne47LXhYehD9FQ0WBbh230rN6zwPeV0bKqqklVvAd7Z/JHZ1yewZwbc6hhWgO/oX6IEGG73hb/UH9WtF7BKKdR2a7dbk87/nn+D6vbrGaE4wjOPD9D2z1tsS1pi99Qv2znpYhT0JijgRQpHyd8LHBfUUBAoPCISY7hbvBdWctijyAPPiV8yjSupHZJuUCJbUlbDgYcZMWdFTz+9DjL6mxVJVVEIpGs1VSfmn1Y2HwhFroWhX5dGUilUgIjA7nx9oYsGPI0/GnuExWgjH6ZLAMgOXUl+ZwUcUqmNr85+U0RiRHZVsHnhK6arsI+k4mWSbZtjwWfSQHyEBjxFUk42eukrDPG90qRB0YKm2/dwAc4+zCEYe7p/eM//z8g46O88peaJKt4stlnM+dfnpd9ERlpGuFa05WB9gOpUbLG1930FyKVStniu4UxZ8cQnxqPnroeq9qswrWma5aG/oWXF+h+qDtRSVGU0S/DyV4nC1yUfcWdFYw5NwZtVW38h/lnysjKEAS0NrTmycgnKImUqLgqPXt7a/utDLAfkOW6YokYvQV6JKQm8HjEY6qUqELvI73Z47+HRS0WMaHehGz3NOzUMNZ7r2f6T9MzlasLCAh8WySkJuAT4iMLlHgEefA+9n2mcYYahjhZOuFUygktFS1OPjvJneA7WWbbfN5f17GUI6varCqUDFGQ1we59voaPh8Uz2zKCh01nX8DH58Z82UNysoFeCRSCZGJkZkM808Jn7INdGTVZzc31JTVsjbQszHaDTQMCiwQlZsdsK5PrUIXNCzWKGjgf+x9kOrHevMp4RODag1io8vGwt9bEfI92MACX5fv4Z7J7ftyWvuSPI3bz477OwhLCJMdb1KuCW613Ohs0/mbSyx7FfmKvsf6cvNtuq5hxyod2dhuIybaJpnGxibH0vtIb1kC2oyGM/iz8Z8FmjgRnhBOtbXV+Bj/kUn1J2XKNo1MjKTcinLEJMdwqNshulTtwhqvNYw8M5KqJlV5OOxhti1bMoIqA+0Hsrn9ZnxDfKm1sRYltUvyYULm/voZBEYGYr3SGg0VDRKmJhR4+2UBAYGvh1Qq5VXUK7kEM98Pvpn8DiWREjVMa+Bs6UwN0xp4h3jzz7N/MrWP+i/aqtpM+2kaY+uOLZTfgzRJGg8+PuDm25tcf3Oda2+uZRnoURQRIsobls+UNFalRBV01HTkxiamJuapbVV0cnS+9mSkaZSjv1RCq4TcawXV9UXwmRRAQb/p7+rtmPRoD4YahvgM8aGcQblC31pRIQRGvhHOPgxh1skAQqL/7Ydnrq/BTJeqch/sN1Fv2Oa3ja2+W+XarTiVcsKtlhs9qvVAV133q+79S3gZ8RLXo654BKW3mOpi04X17dZnWeL39NNTXPa68DziOdqq2uzuvJsOVToU2F4kUgmNtzfmxtsbNC7XmEt9L8k5EXEpcVitsOJTwie2ddhGf7v+sooOp1JO3HHLvrS/7pa63Am6w57Oe+hVoxcTzk9giccSxjmPY0mrJdnOa7u7LWdenJEJtxdHClN8S0Dga/O17+egmCA5Ufd77++RlJa5L2oV4yoYahryKvIVH+KzfzAA0N+uP/ObzccsLRUSMrfzkqFlDAalszwklUp5E/2GG29ucOnVJa6+vsqb6Dd5urYM9NX15cT8KpeojJm2GarKqv8GN3Iw2sMTwuV66SqKlqpWngIdumq6RfogRVE74Ick6h2sdoC0rHsOA6CiDiO9uRD+hFburZAiZUfHHfS17fv19vmV+V5sYIGvx/dyzyjyfZkiTuHk05Ns9t3MuRfnZEkEhhqGuNZ0xa2W2zeVWCaWiFl8ezEzrswgVZKKqbYpW9pvyTLLUywRM/XSVP6+/TeQ7l/t6Lgjywzc/HL8yXE67u+IkkiJW7/eyqQdMvPKTP66/hfVTatzf+h9YpNjsVhqQUJqAjcG3KBBmQZZrpvRqquWeS28B3vzIe4D5kvMESEiZUZKtpWjV15doenOpnLC7cUNwWcS+J742vdzYmoivh985YIlWbUfNtAwoJpJNSISIwiMDMxWrwLAysCK5a2X41LJBVF0UL79pviUeLyCvbj25hrnX57HN8SXJHHedS6URcpUMKrwb+VHCRvKGZTDUNOQ2ORYhQIdn+swKoqSSClTICOnag5jLeMibVMp+Ey5oKDflDL8Dg2P/IJnsCe1LWpzc8DNApctKC4IgZFviLz8uIglYi4EXmCTzyZOPD0hi55rq2rTs3pP3Gq54VTK6ZvIlkmTpPH3rb+ZeXUmaZI0zHTM2NZhG60rtM40NiIxgu4Hu3Pp1SVEiJjfbD4T608ssOt8GfGSmutrkpCawKo2qxjpOFLu+N+3/mbSxUmUNyzPkxFPiEiMoPSy0qRKUvEd4isTDfwvw/8Zzrp76/i93u/83eJvltxewoQLE+hVvRd7uuzJdj/V1lYjICyAc33O0dK6ZYFcY0Ei/CgJfE8Uh/s5VZzKg48PZD137wTd4UXEi0zjVJVU08dLUrNcp6KSBgFSTVQkOQQU/v8gGYPSiCViHoY+5OzLs5x9fhbvEG9Zqy5F0VPXo6x+WUy1TdFX10dDRQMlkRJxKXF8Svy3RDsnIfLc1lfUYDfRNsm2vWFxRnhokgNR7xR2WGddncWf1/5EU0UTr0FeVDet/pU2+XX5nmxgga/D93TP5OX78m30W7b5bmOL7xa5B2mOpRxxs3ejZ/We30ximd8HP/oc6cOjsEcADK41mCWtlmTKGgbY7redwScHkypJxd7MnhO9ThSoKLvrUVfcH7hT2bgyvkN85doXRiZGYrXCiujkaA50PUC3at1wO+HGFt8t9K7RG/fO7lmumVH5oaasRtyUOJRESqjNUUMilRA8Ljjb9jfb/bYz4PgAWpRvwXnX8wV2jQVFcbAxBQQKiuJyPwfHBOMZ7CkLlNx7f4/EtMRM4zRUNLJMPMuge6l67A15hlJOFeef+U1h8WFcf3OdE09PcOPNDV5Hv86Tb6OipEJpvdKY65pjpGGEjpoOKkoqpEnSiEiKUEiIPCdUlVTz1LbKUNOwWAvTZ4XgM+WCgn7T2+i32G+wJyIxguG1h7Pm5zVfb49fESEw8gPwMe4jO+/vZLPvZp6FP5O9Xt20Om72bvSp2QdjreIvPuQT4kOfI314/OkxAMNrD+fvFn9nym5KFacy5uwY1t5bC6SLsm9ot6HAyiDX3l3LiNMj0FLV4v7Q+3ICrvEp8VitsCIsIUzWPqvHoR4ceHSAoQ5DWdduXZZrbvLexOBTg2levjkXXC+wx38PvY/0pnG5xlzpdyXLOVKpFL0FesSlxPFkxBMql6hcINdXUGSUMf73S0MoYxT4FinO93NYfBhewV6yYIlnkGeuQQt7qRI+ZH5I8l+mVKiPe6g/7+PeZyt6/l9UlVTRUNGQ9evNydHIjuyEyLMrvy6hVeK7zWARKHjEEjFtdrfhQuAFKhtX5u6gu9/MQ8+8INjAAnnlR79nxBIxFwMvstl3M8eeHJNLLOtRrQdutdxwtnQu9ollSWlJTLs0jaV3lgJgbWjNrk67qFu6bqaxt97eotP+ToQlhGGmY8axHsdwsnQqkH1EJkZSbW01QuJCsqyC//Pqn8y6NotqJtV4MOwB3u+9cdzsiLqyOsHjgrP0T6VSKYYLDYlOjsZviB+2ZrZYLLEgJC6Ee4Pu4WDhkOVeMgLibvZubGq/qUCur6AozjamgEBeKc73c6o4Ff9Qf7mqkucRz3Odp6jf1LuEJcdiXiusTShChKaqJqpKqqRJ0khMTUSCYv7W52QlRJ5ToENPXa/Y/44JFB8ytLwA9nbZWyjaZEWNEBj5gZBKpdx8e5PNvps58OiA7GGVmrIanW0642bvRhOrJsU6GpyYmsiUS1NY4bkCgIpGFdnVaVeWBvzau2sZdWYUYqmYupZ1OdrjKCV1Sn7xHiRSCS12teDyq8vUL12fa/2voaykLDu++PZifr/wO1YGVjwd+ZQbb2/QbGczdNR0eD/ufZYPX+4G38VxsyMltEoQOiGUK6+v0GxnM6qUqMLjEY+z3EdEYgTGf6c7DAlTE4qViGyG8NXnWSKfIwhfCXxLKHI/l9RT5/w452JxP4slYp6GP+Xu+7vcDb6L13svHofJCw4qauBniK59KQUlRC4gUFCExYdhv8Ge4NhgelbvyZ7Oe747J1GwgQXyinDP/EtofGh6YpnPZjkR3Gom1XCrlZ5YllVr3+LE5VeX6XesH0ExQSiJlJjaYCp/NPoDVWVVuXGvo17Tfm97/EP9UVdWZ1uHbfSq0atA9vDPs39ot7cdIkRcH3BdrkVWVFIU5ZaXIzo5mv1d99OtajccNjrg+8GXJS2XMK7uuCzXbLy9MdfeXGN7h+30s+uHw0YHfEJ8chSI/fX4r2zz28bsJrOZ3nB6gVxbQSD4TALfE9+azwTpmkj33t/D670Xd4Pvci/kHjHJMXJjvrbfVBBC5AICBcm0S9OYd3Me2qra3Bt8jyolqhT1lgoUITDygxKVFMVe/71s8tmE7wdf2etWBlYMtB9If7v+lNIrVYQ7zJmLgRfpf6w/wbHBKIuUmd5wOtN+mpbJ0L8YeJFuB7vJRNlP9DyBrZntF5//ddRraqyrQVxKHEtbLmVs3bGyY/Ep8ZRfWZ7Q+FC2tN/CALsBVFlThWfhz9jQbgODHQZnWi8pLQmdeTqIpWLejX1HbHIsVddWRV9dn6jJUVnuIUNs0FTblI8TPn7xNRUkHi/D6bUpe02VDPYOcqaudfGvVhL4sVH0fv6gNoVkZf+vsKMv50sNfFUlVUy1TYtEiFxAoKC49fYWjbY3QiwVs6btGobXGV7UWypQBBtYIK8I90xmpFIpt97dYrNPemJZRhsWNWU1OlXphFstN5paNS22v3FRSVGMPD2S3f67AXAwd8C9s3umhxr/FWWf/tN0ZjWZVSDXlRGUqGBUAb8hfnIP8TIqOaqaVMV/mD+bfTYz5NQQKhlX4smIJ1kGrMeeHctyz+WMdhrN8tbLabenHf88/ydHzcXmO5tz6dUldnbciaut6xdfU0Eh+EwC3xPfo88EX+43GagbYKpjqpDPVEKrRKEIvgsIfAlpkjRa7GrB1ddXqWZSDU83z+8qIJcX+7d4WnsC+cJAw4BhdYbhM8QH78HeDKs9DD11PV5FvWL6lemUWV6G9nvby+mTFCeal2+O/zB/elXvhVgqZta1WdTfWp+nn55mGufp5kkl40q8jX5L/a31Ofbk2Befv5xBOZa0TC8Hn3p5qtx5tdW0mVhvIgBzrs8hTZLG4FrpwZAN3huyXE9DRQMbExsgPeBhrpteXhqdHE1iauY+mIBM6LiMfpkvvp6CJjRWsdY5io4TEChKFL1PlaWGhbyTr49rTVe2tN/CiZ4n8BjowYvfXhA9OZrk6ckEjQvCd4gv513Ps7vzbpa3Xs60htMY7DCYTjadaFCmAZVLVMZI06jYPjAS+LGpX6Y+f7dIFx8ee24sd4PvFvGOBAQEihsikYgGZRqwveN2QsaHsO7ndTiYO5AiTmH/o/202NUC65XWzLk+h6CYoKLebiYMNAxw7+zO/q77MdQwxDvEG/sN9qz2Wi3XIlNXXZejPY7+68PcmEO3g92IT8m7UO9/WdZqGZZ6lryIeMHUS1Pljo12Ho2+uj4BYQEcfHSQXtV7oaOmw7PwZ1x9fTXL9TI0GzOS+8x10v2mkLiQbPdQXP0mwWcS+J74kX0mgN/r/s6+Lvu41PcSD4Y+IGR8CCnTU4icHMnTkU+5+etNjvY4ykaXjcxtNpcxzmPoXbM3La1bYm9uj6WepRAUESiWqCipsLfLXsx0zHgU9ohh/wzjG6ybKBCEipHvnITUBA4FHGKzz2ZuvL0he91cx5z+dv0ZaD8QayPrItxh1uz138vw08OJSopCU0WTxS0XM6z2MLkMo8jESLof6s7FwIuIEDG36VwmN5j8RW0zpFIprXe35vzL8zhbOnNzwE1ZS63Pq0Y2u2ymQ5UOlFpaihRxCncH3aW2Re1M6/U92pddD3Yxq/EsZjScgdY8LZLSkng56iXlDctnGr/izgrGnBtDF5suHOp+KN/XURicffSSobue5DpOyH4S+BZQNPtp2wBbHK2Kn6EfkxzDP8//4cjjI1wMvJgusqpg5lNtUQKlKrdlqMNQWlq3lGsbKCDwPSCVSulyoAtHnxylrH5ZfIb4YKRpVNTbKhAEG1ggrwj3jOL4hviy2Wczu/13E50cDYCSSIm2FdviZu9G24ptM1WyFzXBMcH8euJXzr9MFx9vad2Sre23ZuoSsMNvB4NPDSZFnIK9mT3Hex6ntH7pLzr3+ZfnaeXeCoCr/a7SqFwj2bG/rv3FzKszqWpSlQdDHzDi9Ag2eG+gR7Ue7Ou6L9NaDz4+wHa9LXrqekROiuTPq38y+/rsbPUcJVIJmnM1SRGn8Gr0K8oZlPuiaylIhIoRge+Jb91nkkql+IT4cPjxYY4+Ocq7mHeA4hUjLrr61HcazgC7AQXSwl1AoLhx7fU1mu5sikQqybFK81tDqBgRkKGlqkVf275cH3CdxyMeM6HuBEy0TAiJC2H+zflUWFWBpjuastd/b77EdAuLXjV64T/Mn2ZWzUhMS2TE6RG03dOWkNh/s4YMNQ05/ctpRtQZgRQpUy9Ppe+xvl90HSKRiM0um9FT1+NO0B2WePwrKKitps2k+pOA9IwrPXU9ulXtBsD6e+uzXM/ezB5Iz34SiUT/Zj/FZp39lJH5VFa/bL6voTB4Hv6cERdbk0YY0mzEw0SAub4Gjlbfx8Mnge8bRysjzPU1yC6MmnE/N6xYCm017WLxJ5aKOfbkGL8c+QWrFVYMOjmIMy/OkCpJzdO1S6QSTjw9Qds9bbFeac3c63Oz/U4SEPgWEYlEbO2wlfKG5XkT/YZ+x/rJZVELCAgIZIW9uT1rfl7D+/Hv2dlxJw3LNkQilXDq2Sk67u9ImeVlmHJxCi8iXhT1VmWU0ivF2d5nWd1mNRoqGpx/eZ4a62qw/+F+uXH97Ppxpd8VTLRM8P3gS51NdfAM8vyic7e0bimroB9wfABxKXGyY6OdRmOgYZBeNRJwkCEOQwA48vgIofGhmdayKWGDurI6MckxvIp8lWvFyMe4j6SIU1ASKVFKt/i0ipZIJRx+uVDwmQS+G75Fn0lLVYvHnx4z69osaqyvQaMdjVjptVIWFEnft2LJtMGxwUy5NIXSy0rT/WB3LgVeEmxKge+KRuUaMbfpXAB+O/MbviG+ucz4/hACIz8QVUpUYVHLRQSNC+JQt0O0rtAaESKuvL7CL0d+wWKJBaPPjMb/Y/HoDWmpZ8l51/OsaL0CDRUNzr44S/V11TkccFg2RlVZldVtV7Om7RqURcq4P3CnyY4mfIj7kO/zltYvzfJWywGYcWUGAWEBsmNDaw+lpHZJXke9Zuf9nTIjf+/DvUQnRWdaK6Ms3O+DH4CsnVZ2Rv7b6LcAlDUoPoGR2+9uU3dLXQKjXqBicAwRSpnMiIz/nulStdiIrgkI5ISykoiZLlUBivX9HJscyx7/PXTc1xHTRab0OdqHE09PkCxOlhMyL6NXhkZlG+WwkjxOpZzQV9fnTfQbWavFrge6cuHlBcHYF/guMNAw4FC3Q6grq3Pq2SkW3VpU1FsSEBD4RtBS1cLV1pVr/a/xZMQTJtabiKm2KR/iPrDg1gIqrqpIkx1N2P1gd7FILBOJRIxwHIHvEF9qW9QmMimSnod70vtIbyITI2Xj6pWux91Bd6lZsiYf4z/SaHsj9vjv+aJzL265mLL6ZXkV9YqJFybKXtfX0Gecc7rQ+l/X/qJmyZo4lnIkVZLKNt9tmdZRVValuml1IN1vys1nykgmK6VbqthU8SSlJdHrcC+WeCwiQm0joiwevRYnG1NAQBG+FZ9JKpVy7/09Jl2YhPVKa+psqsOi24t4HfUaZdG/1fFKKNHVpitaqloKrWukaYS9mT2pklQOBhyk+a7mVFldhcW3F/Mp4VNhXY6AwFdlYv2JtKvUjmRxMt0Odsvy2eb3jBAY+QFRU1ajS9UunOl9htdjXvNnoz8prVeayKRIVnqtpOb6mjhtdmKT9yZik2OLdK9KIiVGOY3Ce7A39mb2RCRG0PVgV/od6yf3YR1eZzhn+5zFQMOAO0F3cNzkKAtG5If+dv1pW7EtKeIU+h3rJ9Nk0VLV+rdq5PocHEs5YlPChoTUBJkA4udkBEZeR70mMjHym6sYORxwmKY7mhKeGE5ti9p4jtzA+j61MNOX75Nppq/Buj61aFHVDI+X4Rz3C8bjZThiyZd16hNLpAW6noDA57Subs66HO7n1tXNi2RfGcGQTvs7YbLIhN5HenP86XGSxcmYaZuhr64PpAumldItxbqf1zH1p6kcfnOVRHL+jCQi5RNSPIM9cbZ0ZkO7DdQrXY80SRqHHx+mpXtLKq2qxN+3/s4yo1NA4FvC3tyelW1WAjDt8jSuv7lexDsSEBD41qhcojILWyzk3dh3HO5+mDYV2iBCxNXXV+lztA8WSywYdWYUDz4+KOqtUqVEFW7/epsZDWegJFJij/8eaq6vyaXAS7IxZQ3KcuvXW7Sv3J5kcTK9j/Rm2qVp+U6K0FXXZWuHrQCsu7eOi4EXZcdGOY3CQMOAx58ec+DRAVlC2UafjVme7/NK+1x9pqg3suspDoQnhNNiVwsOPDqAqpIqG7oMY30fhxxtzIL2cwS/SaCwKK4+k1Qqxfu9N5MvTpYFQ/6+/Tevol6hqaKJpZ4lAGKpGBEi+tTsw+2Bt/EJ8eFNapxCftOzxHCehz9nU7tNDKs9DF01XZ5HPOf3C79Tamkpeh/pzfU3139YbQaB7wMlkRI7Ou6grH5ZXka+ZMDxAT/UPS1ojAgAIJaIuRh4kc2+mzn25JgsEKCtqk3P6j1xq+WGUymnL9Lv+FJSxCn8de0v5t+cj0QqoYx+GXZ23CnXz/ZZ+DNc9rrwLPwZWqpa7O68m45VOubrfO9j31NtbTWikqKY23QuU39KFxZMSE2g/IryfIz/yMZ2G0lMS2T02dHUMK3B/aH3M71HViuseB31mst9L3Pk8RFW313NlAZTmNdsXqZzmi4yJSwhDN8hvrKgSlGxzGMZ48+PR4oUl0ou7O2yF201bSDd8PZ6FUFobBKmuuml4BcCPjDrZAAh0f9mzpnrazDTpWq+jKWzD0MKdD0BgezI6n7+2llPscmxnHp2igMBBzjz/AzJ4mTZsUpGlahSogo+H3xkIrBmOmZMbTCVQQ6DuPLqCj/v+RkpUkpLRdQ2sMLRog4HAg4ywG4Al19f5k3UG2Y2+oNqZRvhfKgr4YnhAFgZWHGuzzmS0pLY4L2BXQ92EZMcA4CqkiqdbTozxGEIjcs1LtLvfwGB/CKVSul7rC/uD9wx0zHDd4gvZjpmRb2tfCPYwAJ5RbhnCp530e/Y5reNLb5bZNXeAHUs6uBWy42e1Xuip1607/WdoDu4HnWVtf0a6zyWec3myUSAJVIJUy9NZeGthQB0qtKJXZ12yWz9vDLy9EjW3F1DGf0y+A/zl13/nOtzmHFlBlVKVMFzoCdllpchOjmac33O0dK6pdwaa7zWMPLMSNpWbMu6n9dRdnlZVJVUSZ6enMkGWXRrERMvTqR3jd64d3bP154LisDIQNrubsvT8Kfoq+tzpMcRmlo1BbK3MQvazxH8JoGvQXHwmaRSKb4ffDnw6AAHAw4SGBkoO6alqkXDsg2JS4nj5tubste7V+vOn43+pKxBWZrtbMadoHTNlNJSEdtbLGbChd9RVVZlYr2JzL0xFysDKw50O8Dk24tYHJCuiSRCxN8t/maIwxD2PdzHBu8NeId4y85hU8KGIQ5D6GvbF0PN4qe1IiCgCF7BXjTY2oBUSSpLWy5lbN2xRb2lfJMX+1cIjAhkIjQ+lJ33d7LZZzNPw5/KXq9mUg23Wm70qdmHElolimx/t97eou+xvgRGBiJCxPi645nTdA7qKuqAvCg7wLym8/Ityu7+wB3Xo66oKqlyb/A9apasCcDyO8sZe24sZfTL4OXmRbkV5UhKS+L2r7epW7qu3Bqd93fm6JOjLGm5hKS0JKZdnkZ/u/5s6yBfRp6QmoD2vHRnJHxieJEJxYolYsadG8dKr/Qs2+G1h7OyzcocBZrPPgxhmLtPppyLjHc8r5kkBb2egEBxJC4lLj0Y8ugAZ16ckWvHUdGoIt2qdkNPQ4+tPlt5FvEMABMtEyY3mMyw2sPQVNXk3vt7NNrWiIS0BACURcq8HPWSUWdHceLpCda2XUt0cjRTLk2hfun63Pz1Jh/jPtJ4e2OehD8BQFNFk/1d9+NS2YX4lHiZsX/3/V3ZfiobV2aww2D62fbDWEsQChX4tohPicdpsxOPwh7RpFwTLrheyPE3rTgj2MACeUW4ZwoPsUTMpVeX2OyTnliWofmlpapFj2o9cKvlRl3LukWWWBCXEseE8xPY4L0BgKomVXHv5I69ub1szM77Oxl0chAp4hTszOw40fNEvkTZ41LisF1vS2BkIG72bmxqvwmAmOQYyi0vR2RSJLs778bjnQer766ms01nDnc/LLfG7Xe3qb+1PuY65rwa/QqNuelBnE+/f8pke2QEYrJLNvta3A2+S7u97QiND6W0XmnO9D5DNdNqOc4R/CYBgbwhlUrx++DHgUcHOBBwQC4Yoqmiyc+VfqZR2UZ4vPNg36N9soq0TlU6MavxLGqUrIFYIqbLgS4cf3pcNrefbT8G2g+k4faGlDcsn548s9iMxLREPAZ64GzpzOLbi/n9wu+yOV1turK943a01bS59/4eG+5tYM/DPSSkpvtiGioadK/WnaEOQ3G2dBYSywS+OTKSFFSUVLjW/xr1Stcr6i3lC0F8XeCLMNU2ZUK9CTwe8ZgbA27Qz7YfmiqaPAp7xNhzYym1tBQ9D/XkYuDFIulFX79MffyG+OFm74YUKYs9FlNnUx1ZCbuhpiFnep9hZJ2RAEy9PBXXo6756gHcu0ZvOlTuQKoklX7H+pEqTnd4hjgMwUzHjLfRbzn+9Dg9q/cEkDken6NoWXhGxpmOmg6GGkWTZZCQmkDXg11lQZFFLRaxuu3qHB8giSVSZp0MyLIQNeO1WScDFC7nLuj1BASKE3Epcex/uJ8uB7pgssiEXod7cfTJUZLSkqhoVJFpP03DZ7AP85rO4/jT40y+OJlnEc8w0jRiQbMFBI4OZFzdcWiqahIYGcjPe36WBUUA/mr8F2UNyvIuOl1csIx+Gfra9kVJpMStd7d4+ukpJXVKcm/wPVmmZmJaIu33tWf65eloqGgwsNZAvAZ54TPYhyEOQ9BR0+Fp+FPGnx9PqaWlcD3qys23N3+o8lqBbxttNW0OdjuItqo2V15fYebVmUW9JQEBge8AZSVlWlq35EC3AwSPC2Zxi8VUKVGFhNQEtvlto/7W+lRfV51lHsuKpBe9jpoO69ut51SvU5TULklAWABOm51YcHMBYokYgL62fbnS7wqm2qb4ffCjzqY6smzqvJ4rI+lrs+9mzr44C4Ceuh7j644H0rVG3Gq5AXD8yXHex76XW6NmyZqIEBESF0JUUpQsSSwrnZHi0H74xNMTNNreiND4UOzN7LnjdifXoIjgNwkIKIZUKsU3xJepl6ZScVVFam2sxYJbCwiMDERTRZOuVbuyv+t+vAd7Y6BuwNhzY9nzcA8SqYR2ldrhPdibIz2OUKNkDaRSKb+d+U0uKGKsacwml00yQfYy+mXQU9ejW7VuAGz1TW8ROKHeBI50PyLTdjz0+BC1N9bmefhzalvUZlP7Tbwf9541bddQs2RNktKS2Hl/J/W21sN2vS1rvNb8cHoNAt82w+sMp2f1nqRJ0uh+sDth8WFFvaVCRwiMCGSLSCSiQZkGbO+4nZDxIaz7eR0O5g6kiFPY/2g/LXa1wHqlNXOuzyE4Jvir7k1XXZdN7TdxvOdxTLRM8A/1TxfYurUIsUSMipIKq9quYt3P61AWKbPbf3e+RNlFIhHr263HSNMIvw9+zLuRnpGkqarJ5PqTAZh7Yy6/2v0KwP5H++VEDkFegD0nIUGZ8Lp+2SLJLAiND6XpjqYce3IMNWU19nXZx4R6E3Ldi9erCLmy7f8iBUKik/B6FaHQPgp6PQGBoiYjGNL1QFdMF5nS83BPjjw+QlJaEhWMKjC1wVR8h/jyZMQTHEs58uuJX+l2qBuPwh5hoGHA7CazeTX6FZMaTEJHTQeATwmfaO3eWk4HpLJxZab8NAX49/uktH5pLHQtaF2hNQDb/bYD6Q+KT/9ymmEOw2Tz596Yy897fiYiMf2zZW9uz/p263k/7j3rf16PnZkdyeJk3B+489O2n6ixrgarPFcRlRRV2G+hgMAXY2NiwyaX9AzmuTfmcub5mSLekYCAwPeEibYJ4+uNJ2B4ADcH3KS/XX80VTQJCAtg3PlxWCyxoMehHlx4eeGrJ5b9XOln/If507FKR1IlqUy5NIVG2xvJsq7rla6Hl5uXTJS98fbG7H6QWTsxNxqWbchop9EAuJ1wk9kHvzn9hpGmEU/Dn/Iw9CH1S9dHLBXLHjxmoKOmQyXjSsD//aYcEsqKWmNkjdcaOu3vRGJaIq0rtOZa/2tY6FrkOk/wmwQEsiejMmTapWlUWl2JWhtrMf/mfF5GvkRDRYMuNl3Y33U/ob+HsrzVcq69vobtels2+24mTZJGK+tWeLp5crLXSWqZ15Ktu/DWQtbdWyd3ruM9j6OqrPqvz6SXXik3wG4AAPse7pNVgXSy6cSNATdkOo9Pwp/gsNGBU89OAaCvoc/wOsPxG+KHx0AP+tv1R0NFA/9Qf0aeGYnFUgvcTrhxN/iukFgmUOwRiURsbLeRysaVCY4Nps/RPrJkiu8VITAioBD6GvoMrT2Ue4Pv4TPYh+G1h6Ovrs/rqNfMuDKDMsvL4LLXheNPjsuqKr4G7Su35+Hwh7Sv3J4UcQoTL06k6c6mvI56DcDQ2kM51+cchhqG+RZlN9MxY23btQDMuTEH3xBfAAY7DMZcx5y30W95GPpQLkPgczLK1R+HPZZVgmQVoClKA/9Z+DPqbqmLZ7AnhhqGXHS9SI/qPRSaGxqjWCVOaGzu42KSY9jhe7TA1hMQKCriU+I58OgA3Q52kwVDDj8+TGJaItaG1kxpMAXfIb48G/mMOU3nEBIbgtMWJzrs64DfBz901XT5o+EfvBr9iukNp8v1Kk9ITcBlrwvPI56jLEqv5lIWKXOm9xlEIhEJqQkyDZEMIz8jeLvj/g6ZhpSykjJrfl7D4haLZWufe3kOh40Oct+Tuuq6DKk9BJ/BPni6efKr3a+yKsJRZ0dhscSCAccH4BnkKRj7AsWaXjV6Max2ejCwz9E+ctoAAgICAgWBSCSifpn6bOuwjZDxIaz/eT0O5g6kSlI58OgALd1bYr3SmtnXZst0w74GJtomHOl+hG0dtqGrpsutd7ewXW/LVt+tSKVSmSh7h8odSBYn0+don3yJss9rNo+KRhUJjg1m7Ln03uRyVSPX/60a2eSzKdPDlgy/yfeDb44JZUVVMSKRSphwfgIjz4xEIpXgZu/GiZ4n0FXXVWj+k9D3uQ8idz9HKpVy8+1Npl5YUCDrCQgUFVKplPsf7jPt0jQqr66M/QZ75t2cx4uIF2ioaNDZpjP7uuwj7PcwDnU/RMOyDZl+eTrWK61Ze28tqZJUmlo15eaAm5ztcxbHUo5y6++6v4spl6bIvda3Zl/ql6kPIKuyz/CZGpZNb6sVmxLL4YB/2/05WzrjPdgbKwMrAGJTYnHZ68IfV/6QfY+JRCKcLZ3Z1mEb78e9Z0XrFVQ1qUpCagJbfLfguNkRh40ObPTeSGxybOG8oQICBYCuui6Huh9CU0WT8y/PM/fG3KLeUqEiBEYE8oy9uT1rfl7D+/Hv2dlxJw3LNkQilXDq2Sk67u9ImeVlmHJxikzsr7Ax1TblWI9jbHbZjLaqNtffXKfmuprs8NuBVCqlWflmeLp5Utm4Mu9i3lF/a32OPD6Sp3N0r9adrlW7kiZJo9+xfiSnJadXjTRIrxqZf3M+bvbpRv4G7w1yDwdL6ZaihFYJxFKxrJokLD5M9nAyg6Iy8G+/u029LfUIjAzEysAKj4Ee/FT2J4XmPvn0hIV3pik01lRXI9tjLyNeMubsGCyXWrL9wcovXk9AoCiIT4nn4KODdDvYDZNFJvQ41INDAYdkwZDJ9SfjM9iH5789Z16zediWtOXSq0vU31qftnvacu/9PbRVtZnSYAqvRr9iVpNZGGgYyJ1DLBHT+0hv7gTdQU1ZDbE03RCf2WgmVobphnrGgxYdNR3ZfJfKLhhrGhMSF8L5l+dl64lEIsbXG8+BrgdQVVIF4HXUa+puqcuu+7vkzi0SiXAs5ciWDlt4P/49q9qsorppdRLTEtnutx3nLc7Yb7Bn3d11MgF3AYHixrJWy3AwdyAiMYLuB7uTIk4p6i0JCAh8p+hr6DOk9hBZYtmIOiNkiWV/XP2DssvL0m5Pu3R9kq+QWCYSiehv15/7Q+/ToEwD4lLiGHhiIJ32dyI0PhQdNR2O9Dgiq4qfd3MeXQ90JS4lTuFzaKlqsb3jdkSI2O63XZZR/ZtjetXIs/BnSKQSjDSNeBv9lnMvz8nNtytpB+Tcgjg6KVpmZ5TRL5Ov9yI/JKUl0fNQT5Z4LAFgbtO5bHTZiKqyaq5zU8Qp/H3rb8ZdGKjQubLzc1LEKbg/cKfOpjr8tO0nPN6fy3KcousJCBQFUqmUBx8fMP3ydCqvrozdBjvm3ZzH84jnaKho0KlKJ/Z22UvY72Ec7n6YHtV7kJiayO/nf6f8ivKs8FxBsjiZBmUacKXfFS71vSQLdHzOxcCL/HoiPTksI5nMWNOYjS4bZWMyWmllaCspiZTob9sfgG1+8pqw1kbWeA3ywtnSWfba7OuzcdnrIqu4z8BQ05BRTqN4OOwhNwbcoHeN3qgrq+P7wZchp4ZgsdSCoaeGypJuBQSKG9VNq7Pu5/RKqz+v/inTcP4eEQIjAvlGS1ULV1tXrvW/xpMRT5hYbyKm2qZ8iPvAglsLqLiqIk13NGWP/5586XvkBZFIxMBaA7k/9D71StcjNiWW/sf70/VgVz4lfKKicUXuuN2hRfkWJKQm0OVAF+Zen6twdrNIJGJt27Wytl2zr88G/q0aeRfzjlRxKtqq2jz+9Jgbb2/Izc3QGXkd/RplkTJSpHyM+yh3jqIIjBwKOETTHU0JTwynjkUdPAZ6ULlE5VznxaXEMfniZGquq4nHx12IRZ8gy+626cJ/5voaOFrJi8lLpVKuvr5Kx30dqbiqIis8VxCbEks50zR0NdPIroFXdusJCBQFGcGQ7ge7Y7rYlO6HusuCIeUNyzO5/mS8B3vz/LfnzG8+H3tze0QiEdffXKfxjsa02NUCjyAPNFQ0GF93PIGjA5nXbF6WAudSqZRRZ0Zx7MkxVEQqsocoFY0qMq3hvwHKz0vCM1rhqSmr0admH4BMrSsAulXrxpV+V2SBlKS0JPoe68tvp3/L8sGxgYYBIx1H8mDoA279egvXmq6oK6tz/+N9hp8ejsUSCwafHIz3e+8ven8FBAoadRV1DnY7iIGGAZ7Bnky8MLGotyQgIPADYG9uz+q2qwkZH8KuTrtoVLYREqmEf57/Q6f9nSi9rDSTL07mefjzQt+LlaEVV/tdZWHzhagqqXL86XFqrKvByacnURIpMb/5fHZ23ImashpHnxylwdYGeaqwq1e6nqxCZNDJQUQkRqCrrsuEuhMAWHBzAa41XQFYf2+93FxZxUjIZ4GR/1SMZPhMJbRKoK2mnY93IO+EJ4TTfGdzDgYcRFVJFfdO7kz9aapC7Y8vBV7Cdr0tky5OIkrijbJK9skj2fk5ofGhzL42m7LLy+J61BXvEG80VDRwre1MCR1lwW8SKPZkBENmXJ5BlTVVsF1vy9wbc3ke8Rx1ZXU6VenEns57CJ0QypEeR+hZvSc6ajpEJEYw9dJUrFZYsdhjMYlpiTiVcuJ8n/Nc73+dxuUaZ3m++x/u03l/Z9IkaRhrGsuSyQ53P4y6irps3OcaIxn0s+uHCBFXXl+RE3qH9O+dy30v07VqV9lrZ16cofbG2tz/cD/TPjLa07t3did4XDBLWi6hknEl4lLi2OC9gVoba+G02YmtvluJT4nP9/srIFAY9LPrJ9N2/uXwL19dQuFrIQRGfiDEEikeL8M57heMx8twmQhbdq/nhcolKrOwxULejX3H4e6HaVOhjezHpPeR3lgssWDUmVEygfTCwtrImuv9rzOv6TxUlFQ48vgI1ddW5/Tz0xhoGHC692l+c/wNgOlXptPnaB8SUxMVWttE20QWMV1wcwF3g++ioaLBlAbppZnLPJfRvVp3ILMIe0Zg5P6H+5TUKQlkYeT/v5XW18h8kkqlLPVYSveD3UkWJ9O+cnuu9Lsi21tO8w4+OojNGhsW3lpIqiSVdpXbMruDLSJEmYzyjP+e6VIVZaX0/0pKS2K733bsN9jTZEcTjj89jhQprSu05mzvswSMeMiiLo5y83NaT0Dga5OQmsChgEP0ONRDFgw5GHCQhNQErAysmFR/EvcG3ePFby+Y33w+tcxryRxnj3ceNN/ZnEbbG3H9zXXUldUZ5TiKwFGBLG65GFNt02zP+/etv1l7L72tn4GGAVKkKImUONXrFEqif3/OZSXh/898yiCjZ+6JpyeyFIGtX6Y+nm6eshJxgNV3V9NkR5NMAqkZiEQi6pWux85OO3k//j3LWi2jSokqxKfGs8lnE7U31ab2xtps9tmcp4xTAYHCxMrQip0d09tervBcwcFHB4t4RwICAsWJnHyjL/WbNFU16VOzD1f7X+XpyKdMqj+Jktol+Rj/kYW3FlJpdSUab2+M+wN3hX2U/KCspMzE+hO5O+gu1U2rExofSvt97Rl8cjBxKXG42rpytd9VTLVNuf/xPo6bHPF456Hw+n81+YsqJarwIe4Do86MAmCk40iMNY15HvFcFvT45/k/MrsF/vWZnkc8x1AzvQVxUfpMkF7ZXm9rPW69u4W+uj7n+pyjd83euc4Ligmix6EeNN/VnCefnmCqbcr2jltZ1aMRIhTzcx58fMDA4wMps6wMf1z9gw9xH7DQtWBu07m8G/uOTe03Mqejrdz8nNYTEPiaSKVS/D/688eVP7BZY4Ptelvm3JjDs/BnqCur07FKR/Z03kPY72Ec6XGEXjV6ydrSRSVFMfPKTMotL8f8m/OJT43HwdyBf375B4+BHrSwbpFtYPJt9Fva7mlLbEosFY0qyloM967Rm0blGmUaC/+20oL075YW1i2Af/UZP0dTVZP9XffLAsAAr6JeUXdLXdwfuGf7fhhrGTOu7jiejHjC5b6X6VGtB6pKqngFe/2PvfMOi+Lc4vC7S+9FERAUBAvFAmJv2I3GhgV7QyyJxpKi6aZe02O6RkRjL4i9914BKyoqIEhXeofdvX9sdmSlI6iYeZ/nPjfMfDPz7To7c853zvkdpu6cis1PNry19y1uJN6owLcrIvJ8+LX/r7hZuZGUncSogFHPtXXC80KiqIWC4Onp6ZiYmJCWloaxsXH5B4iw/0Ycn+8KVWvOZm2iy+BW1uy8Glds+6JBLrzW3PqZrhmdFs3KKytZEbJCLcuobf22+Lb2ZUzzMRXWY60KIXEhjN82ntCkUABmeszkh74/YKBtwNLLS5m9dzYyhYz2Nu3ZPno7VoZWFTrvmK1j2HhjIy4WLgRNV2ZDO/7qSGxGLAs7L+TbM9+iraFNzNsx1NWvC8CG6xsYGziWDrYdKJAVEBQXxM7ROxnUbJBwXrsldkSlRXHG5wydGnSq5m/jCTK5jPkH5vPbxd8AmNV2Fr+89gsaUo0yj7v96DZv7XtLKKFrZNqIX177RfgMpd1jqnspPjOepZeX8tflv4SG0XqaekxqNYk57efgbOGsdr3yzici8jzJLshm3919bAndwq6wXUIzPgB7U3u8XbzxdvVWC4IU5VLMJT49/in77+0HQEuqhW9rXz7s+iG2xrblXn/dtXWM36as+PC08+TEgxMAfNrtUz7v8bna2C9OfMGi44uY6j4Vv8F+avs8/vYgOC6YJf2WMLfD3BKvlZiVyOANg7kQc0HYZmVoxeYRmysks6dQKDj54CTLgpYREBpAgVxpPBlpGzG+5XhmeMyglVWrcs8jIlLTLDy0kO/OfoeRthGXp18Wmv6+zIg2sEhlEe+ZylGW/QnUiG1aICtgz909+AX7se/ePqGvh6muKeNbjMe3tW+NvjdzC3P5+OjH/HTuJxQocDRzZLXXajo16MSD1AcM2TiEqwlX0dbQZsXgFUIFanlceHiBTv6dkCvkBHoH4uXsxTenv+GDIx/Q2LwxNkY2nHhwgkWei/is+2fCcbY/2RKTEcPnnp+z6MQiujbsyskpJ4X9v1/8nbf2vYWXkxeBoyonj1xZLjy8wKANg0jKTqKhSUP2jt2Laz3XMo/Jl+Xzy/lf+PzE52QVZCGVSJnVdhZf9PhCqMwt6z7r62rJnrA9LLmwhKMRR4X9beq3YX6H+YxwGYG2hrbaNUW/SeRlQaFQcDPpJptvbmZL6BZuP7ot7NPR0OG1xq/h7erNwKYD1XooqsjIy+CXC7/w47kfSc1NBaClZUu+6P4Fg5sNLrdKKyUnhc7+nbn16BZNzZsSkRpBgbwAc11zouZHqVWZZRdkY/A/5d8pC1PUJIw33tjImK1jaGDcgIi5EaWulfx24Tfm7J+jtu2tdm/xQ98fiv1OSyIxK5GVISv5O/hvteqUTg06MdNjJiNcRqCnpVfueUREapJ7yffw+NuD9Lx03u34Lt/3/f5FT6lcKmP/ioGR/wD7b8TxxtrgUoSOiqN61fw1vnW1GFIyuYwjEUfwC/ZTauj+u0hmoGXAKNdR+Lb2pYNthwqVIleWnIIcPjzyIUsuLAGUkjNrvNbQ3rY9RyOOMmLzCFJyU7A1tmXn6J1C+XZZPM5+jOufriRkJbCw80K+6f2NYKDbGNlgaWBJcHww3/f5nnc7KUvGbz+6jfMfzuhr6dPDvgd77u5h2cBlTPeYDkChvBDdr3SRKWQ8nP8QG2Obav8uQPnyH7t1LDvu7ADghz4/8HbHt8v87rPys/jq5Ff8eO5HCuQF6Gjo8H6X91nYeWGxl7RMruBiRDKJGbnUM1KWbV9LuMIvF35hw40NgiSPrbEts9vOZprHNMz1Si/tLul8YsaTyPMipyCHfff2sfnmZnaH7Sar4El5s72pPSNdRuLt6o2HtUepv6Er8Vf49Nin7ArbBSj1bae4TeHjbh9jZ1ox2bwj4Ufov64/BfICxriOYcPNDQA0NmvM7dm3ixnq03ZOwy/Ej8+7f86nnp+q7fvj4h/M3jeblpYtuTLjSqnzzi7IZlzgOLbf3i5s05Rq8lPfn5jdbnaFn9dJWUmsurKKv4P/Vus71cG2AzM8ZuDt6o2+ln6FziUiUt0Uygvp+U9PTkWdoqVlS85PPf/SO5+iDSxSWcR7puKU5jNJKE0wtvr9pui0aFZdWcWKkBWCZBQoF8V93X0Z02JMiYuJ1cGxiGNM2j6J6PRopBIpH3T5gE89PyVfls+EbRMEm+CDLh/wVc+v1KpVS+PDIx+y+PRi6hnU4+abN9HV1KXRL414lP2IN9q8wV+X/6K+UX0ezHuAplQTgEEbBrE7bDdz28/llwu/0Ni8MXffeiIx9t7B9/jh3A/Maz+Pn1/7uUa+C4Adt3cwZusYcgpzcLdyZ8/YPUJD+NI4GnGU2Xtnc+vRLUC5uPnHgD9ws3IrNvZpP8e5vhZrrv3Drxd/FWwmDYkGw5yHMa/DPDradizT/hL9JpEXyc1EZTBkc+hmtWCItoa2Mhji4s2gZoNKfX5l5Wfx+8Xf+f7s90KFh4uFC593/5xhzsMq9LzJLcyl39p+nHxwkvqG9THXM+dGkrL64tCEQ/R26K02/s6jOzj94YShtiHp76er/b5yC3Ox/tGa1NxUDo4/KFSQlMSO2zsYHTCaXNmTwGTnBp3ZMnJLuc8MFXKFnMPhh1kWtIwdt3cI0l9mumZMajWJGW1m4FTXqULnEhGpCQJvBTJ883AAto/azhCnIS94RmUjBkZEBGRyBV2+PaqWPVIRJICViS6nF/asVoMqKSuJ1VdX4xfip/bCdLFwwdfdlwmtJghVFtXJkfAjTN4xmYfpD9GQaPBR14/4uNvHRKZGMmjDIO48voO+lj5rvNYwzHlYuefbcXsHQzcNRSqRcsbnDG5WbjT+tTExGTGMaT6GDTc20MS8CXdm30EikSCTyzD+xpjsgmxGuoxkS+gWPvP8jEXdFwHKEk67JXZoSbXI/Ti3Qi/+ypKYlcigDYO4GHMRHQ2dfz/riFINaIVCQeCtQOYfmC9obw5oMoBfX/sVR3PHMq8lk8vYeWcnSy4s4eSDJxleHW07Mrf9XIY5D6tQo0IRkeeNKhiyJXQLu+7sUguG2JnY4e3qzUiXkbhbeXApMqVU5/NG4g0WHV9E4C1lJqNUImVCywl80u2Tcn8/Rbkaf5WuK7uSkZ/BcOfhnI0+S1xmHFKJlGszr5WYtdhvbT8O3j+I/2B/prhPUduXnJOM9Y/W5MvyCZoeRGvr1qVe++nqMhXjWozj70F/VyqgIVfIORZxjKVBS9l+ezuF8kJAmQ07seVEZrSZgYuFS4XPJyJSXcRmxOK+zB2dzCSmNhvKoqeCiQL6dcC0Qcn7niOiDSxSWcR7pmJU1WeCmvGb5Ao5R8KP4Bfix7Zb24TEMn0tfSGxrLyF8qqQmpvKnH1zWHNtDQCtrVuz1mstzeo24+OjH7P49GIAhjoNZY3XGgy1Dcs8X15hHh5/e3Az6Sbert5sGrGJ7858x8LDC3E0cyQtL41H2Y/UFlk+OfoJX536iuHOw9l6aysGWgZkfvhEjnNUwCg239zMz/1+Zl6HedX6+VX8duE35u6fiwIF/Rv3Z/PIzehpGpTqN8Wkx/DuoXfZeGMjABb6FnzX5zsmtppYrl8XkRLB7xd/xy/ET2gqb6pryvTW05nVbtZzbTAvIlIZbibeZEvoFjbf3CwEA+FJMGSky0gGNR2EobZxqb+dnIIcll5eyjdnvhFUJZrWacpnnp/h7epdrqqFCrlCzpitY9h8czPGOsZMbz2dH879AMAo11FsHLGx2DGHww/TZ00fXCxcuPnmzWL7Z+2ZxZ+X/2RM8zGsH76+zOtfjLnIwPUDScpOQoIEBQqsDK0IGBlQYmP4sojNiMU/xJ/lwcvVlFc87TyZ4TGDYc7D1PqkiIg8L+bvn8/W87/QSNuIdcPXY2tUQkJ3LfSZxMDIK865+48Zs/x8lY/fMK0DHR2LNwF+VhQKBWejz+IX4semG5vIKVRq6GpraDPUaSi+7r70cuhVrQGClJwUZu+bzfrrypda2/ptWeO1BktDS0YFjOLg/YMAfNXjqwo105u4bSJrrq2haZ2mXJlxBf8Qf2bvm421oTWZ+Zlk5GdwZOIRejbqCUCnFZ049/AcXk5ebLu9jRkeM1g6UNlw8NSDU3Rb1Q0HMwfuz7lfbZ9ZxZ1HdxiwfgDhKeGY65mzc/ROMtIdSi25drDO4K19bwnfib2pvVI2q+mgMr+XtNw0/EP8+e3ib0SkRgDKLPORLiOZ234u7W3bV/tnExF5VnIKcth/b78gk1W0F0ZDk4Z4u3gz0nUkbeu3RSKRlClXYG+VxmfHP2Pzzc0oUCBBwpgWY1jkuajSMj1RaVF0XNGR2IxYPO08cTRzxP+KsnH6B10+4H+9/lficS5/uHDr0a0SM6MARgeMZtPNTcxqO4vfB/xe5hwUCgVLzi/h7YNvAwiGfkvLlgR6B1YqyKMiPjNeKBmPTI0Utndt2JUZHjMY7jIcXU3dSp9XRKSqnL62EY/A6eiV2r4W0NSB2UEv3NAXbWCRyiLeMxXjWX0mqDm/KSkriTXX1uAX7Ke2+Ohc1xnf1r5MaDkBCwOLar3mlptbmLlnJsk5yehq6vJt72+Z3U7pR/nu9CVPlkcry1bsHLOz3IX7oNgg2vu1R6aQsWnEJgY0GSBUjQxoPIC99/bSv3F/9o7bCzzJSm1ZryXXEpX9KdPfTxckmDv4deBCzAVBnqs6kSvkLDi0gB/P/QjA9NbT+eP1PzgcmlSi7ffR6824k7mJz058RmZ+JlKJlDfbvMkXPb4QeqSUhEKh4FTUKZacX8KOOzsE+bRmdZoxt/1cJraa+Nway4uIVIbQpFC23NzC5tDNgmQ5KNdx+jn2w9vVm0FNB2GiawKULvP24YCmPMjbwf9O/U/oI+Rg5sAiz0WMbTFWqCCrKG8feJufz/+MllSL5YOW47vTl0JFIaa6pkTOjRTmUxT/EH+m7pxKP8d+7B+/v9j+oNgg2ixvg46GDnHvxJX5mwYITwmn/7r+hD0OQyqRIlfIq1Rxr0Iml3Hg/gGWBS1jd9hu4TlRV78uU9ymMN1jOo3NG1fqnCIiz0J+cjiKX1ujU5YeUS30mcTAyCvOjisxzN14pcrH93aPZlpnd1pbt66xDP+03DQ23tjI8uDlBMUFCdvtTe2Z6j6VyW6TK6TBX1E23tjIG3veIDU3FT1NPX7o+wPTWk/j3YPv8uvFXwEY03wMKwavKFNSIyUnheZ/NSc2I5a3O7zN/3r9D8dfHYnJiKFLwy6cjjrNSJeRbB65GXiScdC7UW8ORxxmcLPB7BitlLRae20tE7ZNoLt9d45NOlZtnxXgdNRphmwcQnJOMg5mDuwbt4/wOKMypAIUJOt8R4b0FDoaOizsvJD3u7xf5ndxL/kev134Df8r/sKisrmeOTM8ZvBm2zer9d9PRKQ6yC3MFYIhO+/sLBYMUclkqYIhKsqWJlTwSPsbsjTOADDSZSSLPBeVq0VdEik5KXRZ2YXQpFBcLVz5uufXDN00FFD297kz+06Jz2SFQoHxN8Zk5mdyZ/adEoMxB+8fpN/afpjpmhH7TmyFghABoQGMDxxPniwPTakmhXKlo7Fu2DoGNBlQ6c8HysWHg/cPsixoGbvu7BJKxuvo1RFKxmtDzweRV4DYK/C3Z7nDmH4C6rvV9GzKRLSBRSqLeM9UjGf1mQDGdc1nXvcu1R6kUKFQKDj38Bx+wX5surlJ6HemJdVSJpa19qW3Q+9qSyyLzYhlyo4pQqJUb4ferByykofpDxm6cSgJWQnUM6jH9lHb6digY5nn+vTYp3x58kvq6NXh5ps3WX11NQsOL6ChcUOi0qOQICF8bjj2pvZEpETg8KsDWlItdDR1itk01j8qexdennYZj/oe1fJZQZkoM3H7RAJCAwBY3GsxCzsv5MDN+DJtv0Tt/5GjcY6Oth35Y8AfZUoz5xXmsenmJpacX0JIfIiwva9jX+a1n0e/xv1qRDlARORZuJV0S+gZcjPpSWWFllSLfo374e3izeBmg4sFH0r3mxQogKR/fzt2JnZ80u0TJraaWKU1p5/P/Swkca0euppvznwjBG12jdnFwKYDSzzu8+Of89mJz/B192X54OXFZ6lQ4LbMjWsJ1/hzwJ+80faNcufyOPsxQzcN5XTUaSGhDGB8y/EsG7isyhLC0WnRrAhZwfLg5cRmxArbezv0ZobHDIY0GyIqcojUPK+ozyQGRl5xnjX7KV77A/I0rmOobUiXhl3obted7vbdayxQEhIXwoqQFay9tpa0vDRAKUHTv3F/fFv78nqT16vlug/THzJlxxShkXg/x374D/Fn151dzN43m0J5Ie1s2rF91PYydSH33t3L6+tfR4KEk1NOci3hGrP2zsJC34Kk7CQ0pZo8nP8QS0NLlgctZ/ru6bS0bMm1hGu0rd+Wi9MuAvD1ya/5+NjHTGo1iVVDVz3z51Ox5eYWJmybQJ4sj3Y27dg1Zhd19CzKlApQIEfGY1o038JvA34pNQtBoVBwPPI4Sy4sYdedXcJL37muM/M6zGN8y/Fi7wCRl4rcwlwO3DvA5tDN7Lqzi4z8DGFfA+MGQjCknU27EjN6ypPZUP12PFrt4Isen1W5UWpeYR591/ZV6uMa1efg+IN0/6c7j7IfIUHCpWmXSl0ISMlJwfw7Zd+erA+zSvwNyuQy7H+x52H6QzYO38io5qMqNK+z0WcZvGEwj3Meo6OhQ54sDwkSFnku4hPPT57JkY9JjxGM/YfpD4XtPex7MLPNTIY6Da1QA0MRkSrxihr5IiIg3jMVpToqRlR+k6uFK93tlT5TN7tu1DOoV02zfEJ6Xjobb2zEL9iPS7GXhO12JnZMdZ/KFPcp1ZKYpFAo+PPSn7x36D1yCnMw1TVl6etL6digI4M3DBaasvsN8mNCqwmlnidflk+75e24mnAVLycvVg9djcOvDiRlJ+Fi4UJoUigfdvmQr3t9jUKhwOxbM9Ly0mho0pCotCiOTzqOp70nuYW56H2tTNZKei+p2iSYH2U/YsjGIZyNPou2hjYrh6xkbIuxFbL9FNIUFg2XMaX1pFJtocSsRJZeXsqfl/4kISsBAF1NXSa2nMic9nOqlEQjIlKT3H50WwiG3Ei8IWzXkmrR17Ev3q7KYEjRhuVFqchvB2kqC4ZmMs1japXt/M03NzMqQOnLfNv7W3IKcvjsxGcADHMaxtZRW0s91nenLytCVvBF9y/4xPOTEscsOb+E+Qfm06Z+Gy5Nu1TimKfJLcxl0vZJbL6pTJBVVY+0smxF4KhAHMwcKvEJ1SmUF7InbA/Lgpax/95+YQ3G0sASH3cfprWeRiOzRlU+v4hImbyiPpMYGHnFUb2Q4tNyK9x8HZ4s8MXpTUMqgUJFodr+mg6U5BTksPXWVvyC/Tjx4ISw3dLAksluk5nqPpUmdZo80zXkCjl/XPyDBYcXkFuYi7meOcsGLqOOXh2Gbx4uNGXfMXpHmTr8U3dMxf+KP45mjlz0vUirZa14mP4QexN7ItMiWdxrMe93eZ/LsZdpu7wtxjrGpOelY2tsS/R8Ze+O6bumszx4OZ92+5TPe3z+TJ8LlE7MT+d+4t1DyubvQ5oNYf3w9ehr6VfY8dswrT0dHYs7G7mFuWy4voElF5ZwLeGasL1/4/7M6zCPPg59ql3vWESkqqiCIarKkJKCISNdR9LOpl25C/sV/+1UXUqjqD6ukbYRp31O883pb9hwQ9lw/e2Ob/Nj3x9LPf5awjVaLW1FHb06PFrwqNRxKv3uvo59OTD+QIXnd/fxXfqv68/9lPtCcARgYNOBrPFaU6pzVFFkchn77u1j6eWl7L27VzD26xnUE0rGn8WZEBF5GplcRvzdA9hsGFP+4Fpm5IuIgHjPVJSK+UwKKEFyT+U3Jem/Qb6i+CJgTQdKrsZfZUXICtZcW0NqbiqgXIh7rfFr+Lr7MrDpwGf2024/us2EbRO4HHsZgLEtxvJNr2+Yu38u225vA2Bh54X8r9f/SrWnrsZfpc3yNhTKC1k3bB2xGbG8d+g96hnUIzErEUsDS6LnR6OloUX3Vd058eAETes0JexxmJDIcffxXZr+3hR9LX0yP8isFp/jfvJ9+q/rz93ku5jqmrJ91HY87ZULP89q+12Nv8ovF35h3fV15MvyAbAxsmFW21lM95hOHf3ql14TEakqtx/dFmSySgqGjHQZyRCnIRWy95+H33TywUn6rOlDviyf2W1nM8VtCm2Wt0GBAmMdY8LnhJf5G1P1ZVw5ZCWT3SaXOCYpKwmbn2wokBdwbeY1Wli2qNDc5Ao5Cw8tFPqc6GnqCcHl9cPW079J/0p/3qeJTI1kedByVoSsEAKuEiT0a9yPGR4zGNh0YKUlyUREyiIj8hRGq0quwFKjlvlMYmDkP4CqhBGoYHBEOSrH8DcSZQeL7VVFvItSk4GSsMdh+If4s+rKKuGBD9Ddvju+7r4Mcx5WpsxTeYQmhTJh2wSC45Tf0YSWE5jfYT5jA8dy+9Ft9DT1WOO1huEuw0s8Pi03jeZ/Nedh+kPeavcWznWdeXPvm5jomJCWl0Yj00bcm3OPfFk+hv8zFORiNKWa5H2cp3Rc1r7GgfsHWDF4BT7uPlX+LKBc5Jm3fx6/X1L2Dnir3Vv83O9noXFZRaUCfhntxhC3J82U4jPj+evSX/x1+S+SspMAZQPIya0m81b7t3Cq6/RM8xYRqS7yCvM4cF8ZDNlxe4daMMTW2FYZDHEZSXvb9pWqcqjqb6cyvHPgHX46/xNaUi32jdtHRn4GXpuU+tkNTRpyZ/adMqWv9oTtYeCGgbhZuREyI6TUcfeT79P4t8ZIkPBg3gMamFRcAzQpK4nBGwdz/uF5NCQaSCVSCuQFOJo5sm3Utgo7DOURlRaFX7AffsF+gvYwKOUmZnjMYFDTQWLJuEiFkCvkxGbEcvfxXcIeh3E3+S53k5X/HZ4SjmthIcGU3UAYqHVGvogIiPdMZSjNZ5IU+VvC0/6U8q8k7cVka5xV26Mh0RDs/qLUVKAkpyCHwFuB+IX4cTzyuLC9nkE9JreazNTWU59JorJAVsBXJ7/i61NfI1PIsDW2xX+wPycenODrU18DymSstcPWltqU/csTX/Lp8U8x0zXj0rRLdPLvRGJWouA3bRm5hREuI5i/fz5LLiyhiXkT7ibfFRqtq5olO9d1JnRWaInXqAwXHl5g4IaBPMp+hJ2JHXvH7cXFwkXYXxXbTyaXsefuHpacX8KxyCcSye1s2jG/w3yGOw8X7ReRl4Y7j+4IDdSvJ14XtmtKNZWVIf/KZJXXX+Npatpvupl4ky4ru5Cam4qXkxdrvNbQamkr7qco+7VuHrGZka4jyzyH8x/O3H50m8MTDtPLoVep44ZvHk7grUDmd5jPT/1+qtQ8/7j4B3P2z0GukAvPOQkSPu/+OR91+6hapPMKZAXsvLOTpUFLBUUUUAZhp7pPxbe1b6V8PZH/Npn5mdxLvqf0mR4/8ZnuJt+lQVbyK+kziYGR/wilNb0a3MqanVfjSmwi3M/VirDHYZyOOs3p6NOciTrD3eS7xc5dVDtRhYGWgTJQ8q/R72Ht8cwGYIGsgN1hu/EL8WP/vf1CcMZU15TxLcbj29q3ytI1+bJ8vjjxBYtPL0aukNPQpCF/DPiD3y/+zoH7ymzqL7p/wcfdPi4xM0ml2Q9wYPwBfHf6Ep0eLWQG7B+3n36N+9Hyr5ZqBoeqBLyiL+XyyMrPYmzgWHbe2QnAj31/ZH6H+Wpz3n39DrPX3Sv3XKrsjeC4YJacX8LGGxspkBcAykz7t9q9hW9r30obSSJVQyZXcDEimcSMXOoZ6dKukTkaUrEyR0VeYR4H7x9UBkPu7CA9L13YZ2tsywjnEXi7elc6GFKUms58UpVqA6z1Wksfxz40/a2pICt4esppOjfsXOY5ll5eyht73lDrYVQaqmzML3t8ycfdPq7UXLMLshkfOF7IEjXTNSMlNwV9LX38BvkxpkUFsu8riOrZvyxomfA8BrA2tBaMfTtTu2q7nkjNUlPPMoVCQWJW4hPj/V9D/m7yXe4+vktOYU6px7orpK+kkS8iAuI9U1lK85kWDVIulpe2r2Njfc49PMfpqNOciT7DhYcXij13SvKZAFwsXITkMk97z2oJlNx9fBf/EH9WXlmplljmaeeJb2tfhjsPr3Ji2fmH55mwbQL3kpX+xLz282hp2ZI39rxBniyPlpYt2Tl6Z4nv5gJZAR1XdCQoLohBTQfRza4b7x16T1gw7O3Qm0MTDrH66mombZ9EfaP6xGbEsqDTAr7t863QLPm1xq+xb9y+qn05/7L99nbGbh1LTmEOra1bs2fsHqwMrYT9CoWCBXuWs+V0+Yu2G6Z1wNVWi5UhK/n14q+Ep4QDyuDYCJcRzOswjw62HZ5pviIVQ/SZyifscZggk1VUAUJTqkkfhz54u3ozpNmQZ/Lza9Jvis2IpYNfB6LTo+nUoBOHJxzm46Mf89N5ZdDi9Savs3vs7jLPoVAoMFpsRFZBVql9GVWoEs/q6tcl5u2YSst+7byzk9EBo8kpzKGOXh0e5zwGYFDTQaz2Wv3MFfdFuZd8j+VBy/G/4s+jbKV6gFQi5fUmrzPDYwavNX5NSJgVebmpyWdZbmEu95PvP0kYe3yXsGSl/1Q0IfFpXlWfSQyM/Ico7YdVmR9cQmYCZ6LPcCbqDKejTxMcF0yhvLDEsUWp7kBJdFo0q66sYkXICh6kPRC2t6nfBl93X8a0GIOxTuXvjbPRZ5m4bSL3U+4jQcK8DvPIl+Xzx6U/ABjdfDT+g/1LdCRm7p7JsqBl2JvaM7/DfObun4u+lj7ZBdl4OXkROCqQSdsnsfrqaiFgcm3mNZrXa47B/wzIKczh7lt3S+3pUR4JmQkM2jCIS7GX0NHQYe2wtYxwGSHsl8llfHb8Mxaf+harnL/RoA4Sii8QSwArE13eGZzGrxeXcCrqlLCvU4NOzGs/Dy9nL7Es8zlSlpP+WvPSe+C86uQV5nEo/BCbb24uFgyxMbJhhIsyGNLBtkO1ZOOUJ7Oh+u2cXtiz0kZLQGgA3lu8UaDgm17fsKDzAgZvGMzuu0qjflbbWfw+4Pdyz/PhkQ9ZfHpxhcarFh0czBy4+9bdSn9HMrmMdw6+wy8XfgGUAShVf5B57efxXZ/vqj0jMjwlXDD2E7MSAeVCU/8m/ZnpMZP+TfqLz6aXmOp4liXnJBfLXlJVghStDnsaDYkG5rrm5MvzhWCjilfVyBcRAfGeqQpl+UYV9ZvyZfmExIVwJvqMMsks6rRQcV0e1RkoKZAVsPfuXpYHL2ffvX1CYpmJjgnjWyoTy9ys3Cp93qz8LN49+C5Lg5YKc17QaQELDy8UmrJvG7WNTg06FTv2RuINPP72IF+Wz98D/+bjYx+TmJUoBI7uvnWXnIIcWi5tibaGNvmyfCa0nMBqr9UsOraIL05+wQyPGSwduLTK38uvF35l3v55KFDwepPX2Thio1qVy5W4KwzfMpzw5EhscleU6TfVNdKkc+v9+F9ZIbyHzHTNmO4xnVltZ4mZ2s8R0WcqnbDHYWy5uYUtoVu4mnBV2K4p1aS3Q2+8XbwZ4jQEcz3zarleTflN6XnpdF3ZlWsJ12hapylnfc4SmhRKt1XdAKWSyd237qoFOUuiaF/G7A+zywwUF8oLafhzQ+Iy4wj0DsTL2avC81VxKeYSAzcMJDErETNdM7IKssiX5dPYvDGB3oHVVnGvIq8wj223t7EsaJlaBWFDk4ZMaz0NH3cf6hvVr9ZrilQf1fEsK5AVEJEaUSxhLOxxGNFp0SUmaqgw0TFBR0OHlNwUITkaXl2fSQyMiDwT2QXZXIy5KBj8Z6PPlrkwoaK6AiVyhZwj4UfwC/Fj261two9WX0ufUa6j8G3tS0fbjpXSn83Mz+SdA+/wd/DfADSv15yhzYbyzZlvKJQX0rZ+W7aP3l7sRZKRl0GLv1rwIO0B09yncSD8AFFpUYByQSZqfhSbbmzi7YNvC31GDow/gLuVO/V+UDo8OR/llCmTUxp3Ht2h/7r+RKRGUEevDjtG71DLLD/14BTeAd7EZ8Yrvx9ZJyzyP/jXAXmCUh5AAaZ+PMhTZptrSjXxdvVmbvu5tLNp6sn1awABAABJREFUV+m5iTwbKlmHpx/Uqjv6r/Gt/1OGvioYopLJKrrAWd+oviCT1bFBx2oJhjxNWTIbULV/j1MPTtFnTR/yZHm82eZNfh/wO2uurWHS9kmA8nPdmX2nVFmKokzYNoG119byTa9vWNhlYZljs/KzsP7Rmoz8DKGpaVVYcn4Jbx94GwUKGps3FjJIu9l1Y9OITeU6JlUhX5bPjts7WBq0lKMRR4Xttsa2+Lr74tvaFxvjqsmZidQMlXmWZeRlqAU8ihryyTnJpV5DgoSGJg1pWqcpTcybYGloSUJmAudjzgtymUUx0zFDIpVgl536Shr5IiIg3jMvCwqFgnvJ9wSf6Uz0Ge48vlOhY6srUPIw/aGQWBaZGils97D2wLe1L2Oaj8FE16RS59x7dy8+O3xIyEpAS6rF/A7zOXj/IFcSrqCtoc3yQcuZ2GpiseO+Of0NHxz5ABMdE+a0n8OXJ78UEsfe6/QeX/f8GqPFRkIvM1UlyeTtk/nn6j983fNrPuz6YaW/A7lCzrsH3+Xn8z8DMNNjJr8N+E1IqsjKz2L6rumsv7FeOKaB9iCkaTNKkFEDUKjJqDnVdWJu+7lMaDkBA22DSs9PpOqIPlNx7j6+K8hklRQMGekykqFOQ6stGPI01e035cvyGbBuAEcijmBpYMm5qecE9Y2YjBgA/hn6T4nPnKe5Gn8Vt2Vu1NWvS9J75Qet3z/8Pt+e+ZaBTQeya8yuCs+5KBEpEfRf1587j+9gqGWIgbYBCVkJ6Gvps2LwCkY3H12l85bH7Ue3+Tvob1ZdWUVKbgqgXJ8a3GwwMzxm0MexT434zSJVozLPMplcRlRaVLGK+bDHYUSmRpYo56nCWMdY8JkczRyRyWWEPgrlWOQxtYRTUFYdOZg5YPQ4/JX0mcTAiEi1IpPLuJF4QzD4T0WdEjKIy0JfU5+udl2fKVCSlJXEmmtr8Av249ajW8J257rO+Lb2ZULLCVgYWFT4fLvDdjN151QSsxLRkmoxxW0KAbcCSM5JxsbIhp1jdhZryn404ii9ViulsOa2n8svF35BS6pFgbyAL7p/QVe7rvT4pwe6mrrkFuayasgqXOu50nZ5W6wMrYh7p/SytdI4HXWaIRuHkJyTjIOZA/vG7RNKQZOzkxkXOI799/erfR9bvbfyIMG0WBRaJnnEY61l5Gico45eHWZ4zODNtm+KC4zPiaezED3szPD8/pjav1FRnqVCoTaRL8vn0H1lMGT77e1qwRBrQ2uhgXqnBp2ei1FXndlooUmhdPbvTGpuKkOdhhIwMoCYjBic/3AmuyAbgEMTDtHboXeFzqeSx1o/bH2F5Kym7ZyGX4gfE1tN5J+h/1Rq7kUJvBXIuMBx5Bbm4mjmSEJWApl52djodmNe20V0tm9RY1IGYY/DWB60nJVXVgql6RoSDQY2HcgMjxn0dewrloy/YFRZg6U9y0CBjnYO9ex/527yHTXZl5Kob1RfMOSbmDehSZ0mNK3TFAczBx5nPybwViCbQzdzOup0sWO1pFoMajqIES4jeHPPm6TmpdJAIeEOhuiV0FRZQFMHZgeB6YvN/BVtYJHKIt4zLy9JWUlqlfhBsUFqmZml8ayBErlCztGIo/gF+7Ht9jahKbieph7ert5Maz2NTg06VTix7FH2I6bvmi7Ia3aw6YCxrjEH7yt7VS7otID/9fqf2ru4UF5IZ//OXIy5SB+HPlxLuCY8++vq1+Xh/Id09u9MUFwQoOzLcuPNG/T4pwfHI4+z1mst41qOq9TnzinIYfy28QTeCgQQKnRVn3NVyCpm7Zsl2F/aGtp80f0L3uv8HgdvJhSz/QpJIln7b3I0ztHPsR/zOsyjr2NfcYHxOVHUb6proMM7W64Sn/7f9plAKaWkaqB+Jf6KsF1DoqGsDHH1rtFgyNNUl9+kUCiYuH0ia6+txUDLgBOTT+BR3wPfnb6sCFkBKAOoB8cfrNCza3fYbgZtGIS7lTvBM4onzzzNnUd3cPrDCalEysP5D7E2qlqQLTknmSEbh3A66jSaEk2a1W3GzaSboJAy3mkRXk0nY21iUCN+U05BDgGhASwLWsaZ6DPCdgczB6a1nsYUtylYGlpW6zVFKkdFfCY9nTyaOK3hbvIdwlPChXd4Sehr6Qu+UhPzJk/8pzpNMNUx5VjkMQJCAwgIDSA1L7XY8Y3NGzO7zWwuxV1i3fV1r6zPJAZGRGqcqLQopcH/b6+S6wnXyyzbgmcLlCgUCs49PIdfsB+bbm4SjFstqRZDnYYyrfU0ejn0qpDRmpSVxLRd09hxR1k90ca6DSm5KdxPuY+eph6rvVaryVUBzN47mz8u/YGtkS1SiZSodGXVSAPjBoTMCKHu93WFsYt7LaZpnaYM3zyc9jbtOe9bvg5nUTbf3MzEbRPJk+XR3qY9u8bswsLAAoVCwY/nfuSjox8JD0p9LX1+6/8bU9ymIJFIUCgUHL5/hMXHtnAx6g6FkmTypDdxrefMvA7zGNdi3DM1tRepHPtvxLFo5w0S0p+82HS1CsgtKP++r2pPi5eZfFk+h8MPCzJZqbmpwj5rQ2tBJut5BUOepjo0P2MzYum4oiNRaVF0tO3IkYlH0NHUodc/vTj+4DgAPu4+rBi8osLndPjFgYjUCE5NOUWXhl3KHX82+iyd/Tujr6VP3DtxVZIgVHEu+hyDNw7mUfYjbLUGopE5CuRPtImtTHT5rAalDHILcwm8FciyoGWcfHBS2G5vai+UjNdE9YpI+VRUZzpe+wPyNJR9uCz0LZTG+7+GvMqYb2zeuFgW7oPUB2y9tZWA0ADOPTxX4rk9rD14o80beLt6cyLyBF6bvQQpUG2pNpayAiyQokAhNEz+ptdi+jr2VZ5Av84LN/BBtIFFKo94z9QecgpyuBR7Sa0S/2npv5J4lkDJo+xHrL22luXBywlNetLM3KmuE77uvkxsNbFCiWUKhYLVV1fz1r63yMjPwEDLgO723dlzdw8Ag5sNZq3XWox0jIRjbiXdwn2ZO3myPLxdvNkcull4/m4YvkFQBQAw1zPn8YLHlbZzin7OwRsGc+7hObQ1tFk1ZJWQQHIv+R5DNw5VLk7+y2uOr7F22Frq6Cvt64TMBP68tJS/zx0hPUeCTJKCVDucSW4TmNN+Ds4WzhWei8izs+daDJ/tuklSRvmBxKK8ij4TPAmGbAndQkh8iLBdQ6JBL4deeLsogyGq+/l5Ux1+k0ouWEOiwe6xu3mt8WvsvbuX19e/DijXOm7NukVDk4YVOt9fl/7izb1vVqgvo4rO/p05G32Wb3t/y4LOCyo1/6LkFuYyeftkNt3cBEAbs6nExXZBkyfP2pqWgLuReIO/g/5m9dXVwntGS6qFl7MXMzxm0MO+R6VUV0Sqh6r4TNoa2jQ2b6zmL6n8p/pG9dX+HVXqGwGhAey4vaPEYIixjjGTW01mauupNDFvQteVXYUkBQA33bpIcpKpZ1BPkLZ2ruvMumFrlQNqoc8kBkZEnjupuamcf3heMPovxlwssykqVD1Qkp6XzsYbG/EL9uNS7CVhu52JHVPdpzLFfQq2xrZlnkOhULDyykrm7p9LZn4mhlqGNDJrJDRR/7z753zS7RPhgZOVn0XLpS0JTwmnS4MunI4+LWjm7hqzizn75hCRGgHAnHZzsDe15+2Db+Pt6s2mEZvK/UyqOf147kfeO/QeAEOdhrJu2Dr0tfQJjgtm2KZhar1XxrYYy98D/8ZA24CcghzWX1/PkgtLuJF4QxjzepPXmddhHr0a9RJfgtVMgayAuMw4YjNiiUmPISYjRvnf//5/VII5+Y+VskmSItF3BfIS9Yyf5pfRbgxxq/1VPfmyfI6EH2Fz6Ga2396uFgyxMrQSGqh3bti51mfjpeel021lN64mXKWJeRPOTj1LXf26/HbhN+bsnwNAPYN6hM0Oq7CshVwhR/crXQrkBUTOjaxQQ3KFQoHzH87ceXyH5YOW49va95k+173ke/TzW0hh8hRA/X4GBRIkz0XKIDQplL+D/uafq/8I95GmVJMhzYYws81MejbqWevvodrEjisxzN14pdxxozpnM9KjEU3Mm5R7399Pvi8EQ4q+34tioW/BFLcpTHGfglNdJwA+P/45n534TBhjrG2MtZE1dx7foYd9D45FHhMaY/71+l/MbDOzwp/zeSDawCKVRbxnai9yhZybiTeFSvzTUafV7PvScKrjRI9GPZSBEjvPCmUAKxQKzj88j1+wHxtvblRLLBviNARfd98Kya1EpkYycdtEoUdha+vW3Ey8SZ4sjxb1WrBrzC41++THsz/y7qF3MdQyRE9LT+jD4mnniberN7P2zhLGZn2Qhem3phTIC4iaF1Xh3h33ku/Rf11/7iXfw1TXlB2jd9DNrhv5snze2vsWy4OXC0l71obWbBqxia52XQG4En+FJeeXsOHGBiHZzNbYltltZzPNY9pzy7r/r6BQKEjNTSUmI4aY9Cf+Ukx6DLGZSj8q7pElmulvAE/bmeXzqvhMoLSDtoQqgyFF5UI1JBr0bNRTqAypq1+3jLPUDlRBDAD/wf5McZ/C4+zHOP3hJDQYr6zNpgq0zG47m98G/FahY1YEr8B3ly/N6jTj1qxbz7RmIlfI+eDwB/x26hQW+R/+eyern09CzUvAZRdks+nGJpYFLeNCzAVhexPzJszwmMEkt0mvxD1UW6iozzSwbRJD3GxoUqcJDYwblKmOkFOQw4H7BwgIDWDnnZ0ltj6QSqT0c+zHVPepDGw6EB1NHSJSImjv116tP1p/x/7su78PAy0DtDW0BWk2BzMH7s+5X/kPXIOIgRGRWoWqOWFRo7+85oR6mnp0adiFHvZKo79N/TblBkquxl/FL9iPtdfXCgtlUomU1xq/hq+7LwObDizzHOEp4UzcNlEoO3Q0c+R+ivLH/3RT9lMPTuG5yhMFCrVI6sCmA9HW0BZKuEe6jKS+UX1+ufAL73V6j+/6fFfu9yWTy5i7f67QEH5Ouzn81O8n8mR5TNw2ka23tgpjG5s1JnB0IC3qtSAuI44/L/3J0qClggGhr6XPFLcpzGk/R5DfEqk4CoWC5JzkYsa7mhGfEUtiVmLpVVIK6b9NHetW2rhXUZuzn1TBkC2hW9h2e1uJwZCRriPp3KDzKyOHlC/L5/X1r3M4/DD1DOpxbuo5HMwcuPPoDi2XthQc752jdzKo2aAKnzc+Mx7rH62RICHv47wKV9l9d+Y7Fh5eSKcGnTjjc6b8A8pAJlfQ8ZvDJKbn8bRxr0SBhZEW5z/o+1ykDHIKcth8czPLgpapVRI4mjky3WM6U9ymVEpiUaRqVDT7qbxnWdjjMKHcu2hGZFE0pZoMbDoQHzcfXmv8mvA7KJQX4rXRi913dwtj6+rXZW67uXxy/BNMdEwY4TKCFSErcLVw5WbSTf7X83980PWDSn7amkW0gUUqi3jPvFpEp0WryW9dS7gmNFQvjWZ1mtGzUc8KB0rS89LZdGMTfiF+XIy5KGy3M7HDx92HKW5TygxKyOQyfjr3Ex8d/YgCeQGmOqZIJBJSclOw0Ldg26htQi9EmVxGt1XdOBt9lqZ1mhL2OEw4z/ph6xkbOFb4+/zU83RY0QFNqSa5H+VWyC4sWs1qb2rP3rF7cbZwJvBWID47fIRMaU2pJp90+4SPu32MQqFgV9gulpxfwokHJ4RzdbDtwLz28xjmPKxKvTH/6+QW5hKbEVtiopjKZ4rNiC07YfIZ/aba7DOBcj1CJZNVUjBkpMtIvJy9XqmF7B23dzBs8zDkCjmfd/+cTz0/BcB7izdbQrcA0LVhV45PPl6ppKfxgeNZd31dpao/MvIysPrRiuyCbM76nKVjg46V/0BFkMkVuH25k/QcjVLuZwXWJnrPTQLuSvwVll1extrra8nMzwSU1QgjXEYw02MmXRp2ERNoa5jq8pmy8rPYd28fAaEB7A7bTVZBVonjGps3xsfNh4mtJqrJ5x+4f4DBGwaryXQt7LSQ1ddWE5cZx4JOC/ju7HdoSjUplBdipmtG8sLS+0C+CMTAiEitRqFQcDf5rpr8VlEjuSR0NXXp0rALPe17lhsoySnIIfBWIH4hfhyPPC5stzSwZLLbZKa6T6VJnSYlHiuTy/j+7Pd8euxTCuQFGGkbkV2QjUwhK9aUff7++Sy5sAQTHRPB6JZKpMxrP4+fzv8EQJeGXairX5ftt7fze//fmdVuVonXVZGVn8WYrWPYFbYLCRJ+6vcT8zrM4+/LfzPvwDzBkNTV1OWnvj8xs81MguOCWXJhCZtubBJ0ixuaNOStdm8x1X0qZnpmZV3yP0tOQU4xYz0mo4gR/+82VVPI8tCSamFhYIGZrhmG2oboaeohlUjJzrIhLmpUleZYW/VyC2QFHIk4wpabymCIKtMAlL/DES4jGOkyki4Nu7wywRAVCoWCSdsnsebaGgy0DDg++Tht6rehUF5IxxUduRx7GYCxzceybvi6Sp37Uswl2vm1w8bIhodvl9/bSUVcRhwNfm6ATCHj1qxbQmZ9VaioMffO6xq81fW1Kl+nKlxPuM6yoGWsubZGaCinraHNMOdhzPCYgaedp2js1xAqvdz4tNwSQ8RlPctCk0KFYIiqUrMkXCxc8HHzYXzL8cUW/R5lPaLjio7cS7knbLM2tGbP2D28tu41ErMS+anvT2wO3cz5h+cZ0HgAe+/t5d2O7/J93++f5aNXO6INLFJZxHvm1SY9L12tEv9CzAWh2qM0mpg3obdD7woFSq4lXMMv2I8119YIySsSJMrEsta+DGo6qFSf62r8VcZvGy9UqKuq8bQ1tPl74N9MclNWS4c9DsNtqRs5hTkY6xgL7+jZbZXyxKrkomUDlzFj9wzsTe2JmBtR7ndTtP+Zh7UHu8fuRiaXMXTTUMHeAuhh34PNIzajramNf4g/v174Vaju15BoMNJ1JHPbz6WDbYdyr/lfRK6Qk5SVVGaVR2xGrNAHriKY6ZpRR68OxrrGGGgZoCnVRIKEzMz6JERXvkF1bfWZQNmwW9VAvaicjVQiVVaGuHi/csEQFecfnqfnPz3JKczB192Xvwf9jUQiYeONjYzZqpTC09HQ4cabN2hs3rhS5/Zc5cnJBycr3JdRxeTtk/nn6j/4uvuyfPDySl3zaSrqN/3j445n0/rPdK3KkJGXwYYbG1gWtEwtAOdc15kZHjOY2GqiuIZUQzyLz5SRl8Geu3sICA1g7929pQaZ9bX08Xb1xsfNp8Rg1+JTi/nw6Idq277o/gUF8gK+PPkljUwb8XWvrxm7dSzN6zXnRuINJEgo/LTwpVJkEAMjIq8ciVmJnI0+q6wqiTrD5bjLgjZ4Sehq6NKpYSd6N+pdZqDk7uO7+If4s/LKSrVmr552nvi29mW48/AS+2yExIUwftt4QYtXR0OHPFke9Y3qs3P0Tjzqe5BdkI3bUjfuJt/FUNtQiLqPch0l6Ek6mjlirGNMSHxIudnhCZkJDNwwkMuxl9HV1GWt11qa12vO4I2D1QJHw52Hs2LwCg6HH2bJhSVqzWc7N+jMvA7zGOo0FE2pZqnXepWRyWUkZiWqBThKylgqulhfHsY6xpjomCgNdw2l4S5TyMgpyCEjL4OU3BRkClmJx+oXdsOioPIaparX1/OQJaoOCmQFHI04yuabm9l+ZzvJOU8yCiwNLBnuPBxvV+9XMhhSlI+OfMT/Tv8PDYkGu8bson+T/gB8dfIrPjn2CaBcOLg9+3alHZytoVsZsWUEHWw7cG5qyX0WSmPQhkHsDtvNgk4L+LbPt5U6tigVLf99pPU9H/bty/td3n/uBlRWfhYbb2xkadBStYWRZnWaCSXjojRG9bP/RhxvrFU6V0UNz6efZQqFguuJ14VgyK1Ht4qMlahV3xnrGDOm+Rh83H1oW79tiYGtkLgQuq3qJryDQZkccGzSMf4O+ptvz3xL0zpNCZkRQp3v6pBbmMu89vNYcmEJU92n4jfYr1q/h2dFtIFFKot4z/y3KJAVcCX+ilCJf+rBKRKzE8s8xtHMkT4OfejRqEepgZKcghy23d6GX7AfxyKPCdvrGdRjUqtJTHWfSrO6zYodl1uYyydHP+HHcz+iQIGBloGQufpep/dY3GsxGlINfjn/C/MOzENbqk2+XJmhaqZrRl39utxNvgvA/Pbz+fnCz3Sz68aJySeKXasoS84v4e0Db6NAwcCmA1nntY7PT3zOkgtLhAobC30L1g9fTyPTRvx28Tf8Q/wFiRFzPXOmt57OrHazypVdfpXJyMsolhT2dKJYXGZcmX55UbQ1tIUkMV1NXTQkGsiRk1eYR1ZBFmm5aaVmNkPV/Kba5jPBk2DIltAtaraqVCKlh30PvF298XLyeqWrnsMeh9FpRSce5zxmQJMB7Bi9A02pJjHpMbj+6Soknv7Y90fe7vh2pc9f1X5FJx+cxHOVJ4bahsS/E1+s711lqKjfZFhvC7t9PsPe1L7K16oql2Mvs/TyUjbc2CAE3XU1dRnlOooZHjPoYNtBTCyrZirqMwGk5aaxK2wXAaEB7L+3Xy1pVyqRqlWUdmrQCR83H7xdvdX6fakolBcyassoAm8Hqm3/ptc3jGkxhma/NyO3MJeAkQFcjr3MN2e+wcfNB/8r/gAkL0h+qQJmYmBE5JUnuyCbSzGXhIqSM1FnStTKU6GjoUMH2w70c+xXYqCkQFbAnrt78Av2Y9+9fcIDxETHhPEtx+Pb2hc3Kze1c+YW5vLhkQ/5+fzPoJBiQEsUMmM0NbP4e9hCRrUYydnos3Rd2VXtgVRUWktfSx8dDR1SclO4OvMqLS1bljj/249u039dfyJTI6mjV4fAUYH4h/iz+upqYZHIzsSOf4b+w+XYy/x28TdBg1hTqsno5qOZ234ubeq3qfyXXUtQKBSk56WXWOVRdFt8ZnypQYqn0ZJqYaRjhK6GLhpSDeQKOXmyPLLzs8kuLDsbryRMdU2pZ1APSwNL6hnUo55BPeS5jdl/qbgj+TTmBtokZz0pZazphmzVQYGsgGORx9h8czPbbm9TC4bUM6gnyGR1bdj1lQ6GqFh6eSlv7FFqIq8YvAIfdx8AguOCabe8nXBfbhy+kVHNK19FtOT8EuYfmM9Il5FsHrm5UscG3gpk+ObhWBlaET0/usqB08o2jBvSbAj/DP2nwn1UqpvguGCWXV7GuuvrBEdcR0OHka4jmekxk04NOhUz9qujgeR/lf034vh8VyhxabnCNmsTXT4d6EK9OrHKYMitAO4lP6nskEqkaEg0hIpHUGb3+rj7MMx5GPpa+qVeb83VNUzZMUXtmd/ItBHHJh1DppDh/Icz+bJ8do3ZRUOThrRa2goTHRO+6vkVb+17i2HOw9jqvbXU878IRBtYpLKI98x/G4VCwf2U+0Il/okHJ4RAQ2nYm9jTr3E/ejbqWWKg5F7yPSGxLD4zXtjetWFXprWexnCX4cWezccjjzNp+ySiUh+iI3dFQ2GGTJJCH6dGrB++FgNtA3r804OTD06iJdUSnvntbdoLuveDmw1m552dTGg5gdVeq0ucu0wu452D7/DLhV8AeKPNGwxuOpjx28YLFQsaEg3e7fguvR1789vF39h1Z5fgTznXdWZeh3mMbzm+zPdLbadAVkB8Zny5iWJl+ddFkSDBUNsQfS19NQnLnIIcMvIzypV7exptDW3BV1L5TZYGluTn2LPtbMWaa6uoDT4TKPvzqBqoF+2dJpVI6W7fXagMqWdQ7wXO8vmQkJlAxxUdiUiNoE39NhybdAxDbUMUCgX91/XnwP0DALSzacdZn7OV9iOL9mV8MO9BhRu2g/KZ2uS3JtxPuc8/Q/9hYquJlbp2USrjNxkYxrBh+Ab6Ovat8vWehbTcNNZdX8fSy0vVKrhb1GvBzDYzGddiXDF/TvSZqk5pPtOiQS60c9Rhx+0dbL21lYP3D6r5SKqEbRVWhlZMbDlRrd9iSSTnJNPZvzO3H91W264KPI7dOpYNNzbQza4bxycdp9/afhwKP8SygcuYf2A+2QXZ3J9zHwczh2r8Fp4NMTAi8p9DJpdxM+kmZ6LOcCrqFMcjjxOXGVfqeG0NbdrUb8OAxgPo2ainWqDkYfpDVl1ZxYqQFUSmRgrHtKnfBl93X8a0GIOxzpP77rsjB/njSAIS+ZMM40KS6OOWhv+oOSw8vJDvz36PFClylEahkbZRMUMzdWFqiYuDpx6cYsjGIaTkpuBo5sibbd9k0fFFarqPb3d4m/T8dP658o+wuFdXvy4zPWbyRts3BHmv2kq+LJ+4jLhypa3KyjAqigQJupq6aGtoA0rDPbcwt8IBExWaUk3BaH/acBe2GSr/20LfAh1NnWLnqGi55In3ehD0IOWlNyxUwZAtN7cQeDuwWDBkuPNwRrqMpJtdt/9EMETFzjs78drkhVwh5zPPz1jUfRGgDLB6LPMg9JGy+mxos6EEjgqsUubNOwfe4afzP/FOx3f4oe8PlTo2X5aPzU82PMp+xK4xuxjYdGClrw8Vv5+n9Ingrf2zyJfl07ROU7aN2oaLhUuVrlkdpOels/76epYFLeNK/BVhu6uFKzM8ZjCh1QRMdU3LNFJfdof7ZUFwktJzeZwXTmjaTrbeDlB732pKNdHX0hfkVAAaGDdgsttkJrtNLtfoVigUzNk/h98v/q62vYl5E45OOoqtsS3DNw8n8FYgfRz6cGD8AVZeWcnUnVPpYd+Daa2nMTZwLD3se3B00tFq/fzPimgDi1QW8Z4ReZpH2Y+ESvwTkScIjg8uM+O/gXED+jj0oa9jXzztPbEytAKU9vPeu3vxC/Zjz909aoll41qMw7e1L+7W7sJ5tgbf54PtweTnPwk4FJKEocV+9k/9BrlCTsu/WqrZ83YmdkKyV2ur1gTHB/Nx14/5sueXxeaZU5DD+G3jhV6On3b7lKMRRzkd/aR6vr1Ne0Y3H83KKyu5lnBN2N6/cX/mdZhHH4c+tTr7WdX/sLxEsTL7Hz6FtoY2Oho6SCVSFCjIK8yrsJRwUUx0TAS/SM1XUvlPhk+2meiYlPjvUBE709JYhx+93XiUmfdS+0wAD1IfCDJZJQVDRrqMZJjzsP9EMERFZn4mPf7pweXYyziYOXBu6jnh8y+7vIyZe5QN1rWkWoTMCMG1nmulrxGXEUf9n+ojlUjJ+ziv0glhX5/8mo+PfYynnSfHJx+v9PVVVOR+tjDSQm7xMUFxl5Ag4eueX/N+l/df2HNKoVBw/uF5lgUtY9PNTeQWKn0ifS19xjQfw8w2M2lTv43oM1UDRQNLOlq5PMg5SuDtAI5GHFV7Z5vomJBVkCVs05RqMqjpIHzclf0Wy7u/r8Vfo9uqbkIVlorf+v/G7HazORt9ls7+nZEgIWh6EG5WbtT5rg4puSlcnnaZIRuHEJMRw+Vpl/Go71H9X0QVEQMjIiI8aU54KuoURyOOcufRnVINQC2pFm5WbgxsOpDeDr1pU78NmlJNjkYcxS/Yj223twmNh1SafL7uvqSnOfDmuuBiZ1UgByQ0dTzBpvEfFIu+muuZqy0Ym+iYkPp+arF5bbqxiYnbJ5Ivy8fdyp18WT43k24K+9vZtMNM10zImgBoXq8589rPY2yLsSXKgL1MKBQKHuc8Vs9SKiFjKSk7qcLn1JBoCNUdFS3rLoqRtpGacV6S4a7ab6prWi0yQJUpl3wZKZQXciziGFtCtxB4K1BNQ9hC30IZDHFVBkP+ixJuRfVxp7pPZfmg5YIx+97B9/jhnDKIYaJjwq1Zt7A2qtq/9cgtIwkIDWBJvyXM7TC30se/feBtfj7/8zNnyVf0fr4Uc4nhm4cTnR6NgZYBK4esZKTryCpftzpQKBRcir3E0stL2Xhjo6DNqqepR0/rt7kRVrzJYm35nb4MyBVyzkWfIyA0gK23thKdHi3s09HQwcLAgvjMeOHZra2hjZeTFz7uPvRq1KtCwdTM/Ez6r+svyEiq5Lec6jpxZOIR6hvV53jkcXr80wOpRMrVmVdpXq85b+55k78u/8V7nd6jZ6Oe9F/Xn1aWrbgy80qNfBdVRbSBRSqLeM+IlEdOQQ6XYy9zJvoMxyKOcSb6TJnJRvWN6tPTvicDmw4UAiUx6TFCYpmqPwdAa+vW+Lr7Uk+jL+9uvl2qz5Rv+AdbJn7EtYRrzNpbcs/FBsYNiE6PZvmg5fi29lXbl5SVxOCNgzn/8DzaGtoMajqIHXd2CO8TU11T+jfuz+Hww4Jfoa+lz6RWk5jTfs4z9Vd7Xqj6H5aVKBabESssVJaHBImQGFggK6hwoESFhkSjWECjtCSx0hLEqkJt95sepD4gIDSAzaGbuRhzUdgulUjxtPMUZLLK6v3zqlIoL2TIxiHsvbuXOnp1ODf1nND79V7yPVr+1VKwzb/s8SUfd/u4Ste5GHOR9n7tK92XUcXD9Ic0/LkhChTce+sejuaOVZoHVOx+7u5kxlt738IvRCnvOtRpKP8M/UctWfdFkJKTwuqrq1kWtExN+tbVeByZCaN58imU1Jbf6MtCfGY8225tI+BWAMcjj6tV3lkZWJEny1OTf3excGGq+1TGtxxf4WDqhusbmLBtQrEE4aWvL2VGmxnIFXI6+HXgUuwlQWI4PCUcx18d0dbQJv39dNosb8ONxBscHH+QPo59qufDVwNiYEREpATSctOE5oQH7x8kJD5EreysKJpSTZpbNOf1pq8zoMkA7E3t2XRjE34hfkJfERRS7ApWg8yEpx/6oDT0ZTzGyuFPPuv+KYM3DC7V4Gxp2ZKrM68+OVah4Puz37Pw8EJAKf0RmRopHG+qY4q5njnhqeHCMQObDmRe+3n0bNTzpch0yi7ILt6A76mMpdiMWCHgVBGe1pevCFKJFAt9C3XDXb/kwEc9g3ovLJj0MmVVVKTstVBeyPHI44JM1qPsR8I+C30LhjkPw9vV+z8bDFFx9/FdOvl34lH2I/o37s+O0TsEJ1SlUavCf7A/U9ynVPlaHfw6cCHmAlu9tzLMeVilj7+ecJ2WS1uiKdUk9u3YZ9Itruj9nJSVxOitozkaoczKf7fjuyzuvfiluGdSc1NZe20ty4KWcSMhFJvcFWhQF0kJz/va3NSzppHJZZyOOi0EQ4pWc+pr6dPItBHxmfFqAVV3K3d83H0Y22Jspfq9RKZG0tm/M7EZsYBy0UamkOFq4cqRiUewNLREJpfh8bcHVxOu8mabN/nj9T8AaO/XnosxF9k0YhP2pva092tPQ5OGPJj3oJq+iepBtIFFKot4z4hUFrlCzq2kW5yOOs2RiCOceHBCkAEuCUsDSzztPBnqNBRPe09uJd3CL8SPwFuBSjtfIcU2zx8NRR3K8pkS9WeydNCfrLu+TrALiqLqT/L04svdx3fpv64/91PuY6RthLaGtvBOkSDBqa4T95LvCX6frbEtb7V7C9/Wvi9FTzGZXEZSdlK5iWKV6X9YFZ8JniSICX6TfimBj2pMEKsKL4vfVFGpoKi0KEEmSyUNB8p/J097T7xdvBnmPOw/GQxRoVAomL5rOn4hfuhp6nF00lE62HYAlL8Rz1WenIk+A0Ary1ZcmnapxB6yFUHVl7GjbUfOTj1bpXO8tvY1Dtw/UGoFW2Wo6P28PGg5s/fNJl+WT7M6zQgcFfhCK+5VKBQKTkedZmnQUgJuBmKR9ZfoM1WRmPQYAm8FEnArgFMPTqk9xxuZNkJDqsH95PvC9or0WywJhULBOwffUbYFKIIECX6D/QTJ7zVX1zBx+0SMtI24+9ZdLA0t2XJzC94B3rSp34ZL0y7RbWU3TkWdYtOITXi7elfTN/HsiIEREZEKUCArICQ+hNNRp9l3dx8XYi6UqqOqKdWkWZ1m9HPsR1Pzppx7eI7t129imv1ZudeJ1/4AM+MkXmv8GquuripxzMCmA9k1ZhegXHCes28Of13+C1DXCZQiRVdLV2h8ZaBlwBS3KcxpP0fIpqhpZHIZCVkJxYMemepGfGpuao3NQV9Lv9wSbNU2cz3zWiPZ9DLocJZlmPV2seBE5Ak239xM4O1AtWBIXf26gkyWp73nS7Gw/aJJzEqk44qOhKeE42HtwfHJxzHUNgSUzSxb/tWSyLRIAPo69mX/uP3PFNS0+cmG2IxYLvpepK1N2yqdo+3ytlyOvcxPfX9ifsf5VZ4LVPx+LpQX8uGRD/n+7PeAsn/ExhEbXxrZAIVCgd/5E3y9o3ypvg3TOtDRsc5zmNXLTaG8kBORJwgIDSDwdqDagpqRthEtLFuQnpvOjaQbwnZzPXPGtxjPFPcpxXp6VYQj4UcYuGGgkCmrraFNviyflpYtOTzhsBDo8wv2Y9quaZjqmnL3rbvU1a9Lviwf48XG5MnyuPfWPeQKOU1/b4qRthHpH6SXddnnjmgDi1QW8Z4RqQ5i0mM4E32Gw+GHORJxhIiUiFIX3i30Lehk24l+jfvxKPsR64IukZs4o9xrqPqPTWs9jXXX1hXr56da7L8967bQ6P1s9FkGbxjM45zH6GnqCdnkAIbahoL0MCgbz85tPxcvJ68qL6hWlvS89FITxVQ+U1xGXKXlfCtK0QSxosGOkqrjLQwsalVflRftN5W3mB2VFkVAaABbQrdw/uGTPhISJHSz64a3qzIYopKm+6/zxYkvWHR8EVKJlG2jtjG42WBh33dnvhMSRjUkGlycdpHW1q2rfK2fz/3M2wffxtvVm00jNlXpHJtvbmZUwChsjW2JnBv5zOsNFb2fL8ZcZPjm4TxMf4iBlgGrhq5ihMuIZ7p2dbI/NJyZq2+VO070mZ4QlRbF1tCtBNwK4Gy0eqCuuUVzjHWNuZF4Q01iuKL9FksiKz+LgRsGcjzyOPAkkUwqkbJqyComtJoAKKvwm/3ejNiMWL7p9Q0Luyh/gwsPLeS7s98xw2MGSwcuZejGoey4s0OoMnlZqIz9K65cifxn0dLQop1NO9rZtOPtjm8LzQlPPjjJnrA9nIk+Q0JWAqBc5LmZdFOQsdKQaGCnMxxZBfpvayjMiM+6zrrr67A1suVhRvFyTTsTO0D5kBq9dTS7w3YL+1RBEQkS5MjJLsjGzsSOOe3n4OPug6mu6TN+E0oUCgVpeWnFs5TSY3iY8ZDotGhiMmJ4lP2o0g30ykOChDr6dcrt06HaZqBtUK3Xf1nQkEpeqIGgKuV92s2NS8tl5tog8gz/IF62X9heR6+OIJPV3b67GAwpQlZ+FgPXDyQ8JZxGpo3YM3aPEBQBeOfgO0JQxFDbkL8H/v1MQZECWQFxGcpM/Mo0EHyaKW5TuBx7mZVXVjKvw7xnmlNF72dNqSbf9fmOdjbtmLJjCscij+HxtwdbvbfSzqZdla9fXUgkEurpNQGulDs2MaNi8hWvIvmyfI5GHCUgNIDtt7erVYCY6pjSuWFnCuWFnI0+Kxj9EiT0a9wPHzcfBjcbXCWZDYVCwY/nfmTBoQXCIp2upi65hbm4W7lzaMIh6ugr78P0vHQ+OvoRAIs8F1FXvy4ANxNvkifLw1TXFAczB2HuGfkZFMoLxWebiIjIfx4bYxu8Xb2FbNCMvAzOPzzP4fDD7L+/n1tJt4SKjKTsJHaE7WBH2A4A6kkHUJF6bA2FGQDLg5fjUtdF6L+mQvWMV9k5W0O3Mn7beHILc5EgEYIiqgBKZn4mmlJNvF29mdt+brXaFPmyfGXz8qd8ptjMWKLSoohOiyYhK0FIZqtO9DT1sDS0LNNnUm2vTQlileVF+k3l+Uym1gFcTf1H2K4Khox0Gclwl+FiMOQp/EP8WXRc2X/xjwF/qAVFriVc4+OjTySzFnRe8ExBEUCQcm1g3KDK5xjcbDBmumY8TH/IkYgjz9wUvaL3czubdgRND2J0wGiORR5j5JaRvNfpPf7X638vhb2al18xW/6/7DMBhKeEC9X0RSX1ANrVb4eNsQ13Ht1RSyKrTL/F0ohMjaTbym7Cb0BfU5/swmw0JBqs8VrDmBZjhLHfnfmO2IxYGpk2UpPpvhx3GVD2YAYw01O+uytT1fiy8eJ/OSIiLwkSiYTG5o1pbN5YKB1LykridPRpdt3ZxfHI44KclUwhIybrFhUxabQ0lQZxgbyAhxkPaaCQUPepssK2Em0e3T/CvP3zuJp0s6QqcxQo6NqwK/M6zGNws8GVevHlFeYRlxmnlqX0IO0BESkRRKdFE5cZx+Ocx5WStSoPbam20mgvYriXVt1RV7/uS/Ei/y8jkyv4fFdoqUX3ChRoZI6ijtllhrl4MdJlJD0a9RD/3UqgUF6Id4A3l2IvUUevDvvH71crjd8TtoflwcuFv7/p9Q12pnbPdM2YjBgUKNDW0H4mCawxzcfw9oG3uZ54naC4IMHgeR6McBmBi4ULXpu8CHscRteVXfm9/+9M85j23OZQGvWMdKt13KtCXmEeh8IPERAawI47O9QqBevq16WfYz/0tPQ4HXWaPXf3CPsczBzwcfNhYquJNDCpulOaL8tn0rZJbLy5EVBmxupp6pFVkEXb+m05MP6AYKyDsllmYlYiTes05c22bwrbg+KCAKWBL5FI1BIOUnNThQCKiIiIiIgSIx0j+jj2oY9jH77t8y2F8kKuxl/l4P2D7A7bzZWEK0JQIK0gumKBEY0n1R2hj0JpoqGLYaG6b2Kma4Ze0h3WXV/Ph+d+JFeiTNYqWr2iQIG5njkzPWbyZts3sTG2qfDnUvU/LJooFpMeQ3hKOA/SHhCTEUNSVlKxJrXPSh29OqX6TE8nib2qCWK1hYr4TI/iuiPRXUtX+87KYIjz8Cr3EHzV2X9vP9N3TQfggy4fMLPNTGFfviyfidsmCkFXp7pOfOr56TNfszoCI7qauoxrMY7fL/2Of4j/MwdGKkM9g3ocnHBQqLj//uz3BMUFsXH4xmfyA6tlbqLPVCphj8MICA0gIDSAkPgQYbsECV0bdsW1nivRadEcDD/IxVhlsKQq/RZL41jEMV5f/7qQRFBXry6Pch6hKdVk/bD1ar0+H6Q+ENQcfuj7A7qayn8vhUJBUOwTvwmU72VQ9pyprYgrWiIiZWBhYIGXkxdeTl6AsundxZiLbLu9jUP3j5D+8BFShTkSiuurqvRy0xTBQqCjgULCHQzRezrycWEFXFjBWiAHQ5opMomWKM0tLakWo5uPZm77uXjU91A7TK6Q8yj7EbEZsTxMe8i9lHvcS75HZGoksRmxJGYlkpKbUm3ZSird2fpG9cvNVDLSNnopep2IVIyLEclqpeBPI0GKJhZsH3aDLk3+u/q35aFQKHhzz5vsvbsXXU1ddo3ZRdM6TYX9j7MfM3XnVOHvrg278kbbN575utFpSgPf1tj2mfSezfTMGOY8jA03NrAyZOVzDYyAsmncpWmXmLR9Ettvb2f67ulciLnA7wN+FwyyF0G7RuZYm+gSn5ZboiOs0stt1+jFa5XXNDkFORy4f4CA0AB2he1SK+u2NLBkSLMhNDBuwMXYi2y8sVGQB9HT1GOk60h83Hzoatf1mXXJEzIT6LOmD9cTrwNKaUmArIIsOtp2ZN+4fZjomgjj7yffZ8mFJQD82PdHtDW0hX2XY5WZTx7WynesplQTI20jMvIzSM5JFgMjIiIiIuWgKdXEo74HHvU9+KDrBygUCiJSIzhw7wDbbu3g9q3HSBRmZfpMGUUqMxsoJFwt1EIPbfXBuQXwtyfjgGEYqPlMoLQj5rWfx7iW44rJi2QXZAsBj8i0SMIehxGREsHD9IfEZcaRnJ1MWl5atchaaUm1qKtfFytDK6yNrMtMEhMTxGoXFfWZdo64ycDmzZ7jzGofQbFBjNg8AplCxoSWE/i659dq+z8//jlXE5R9WCVIWDF4RbX4Ayq/6Vmq7AF83H34/dLvbL+9neSc5Ofas0hVcd+2flum7JjC0YijQsV9VSWVqwPRZ1InNClUCIaofBZQKtB0t+9ON7tupOSksCV0CyejTgr7W1u3xsfNhzEtxjzzfaVQKPj1wq/MPzBfSCJwMHUgPDUcLakWm0duZqjTULVj3j/yPrmFuXjaeQproQD3U+6TlpeGjoYOrhauwJPASHJO8jPN80UivoFFRCqBnpYenvaeeNorGybvvR7Lm+tCAAVFyzwUyAEJydp/g+SJ7FRdJMWDIk9fA2VFSZauGSNdR9LaqjWJ2Yn8eelPotOjlU1qsx+TlpdGdkF2lRrrqZBKpJjomFBHvw7WhtY0MGmAjZFNiYZ7Xf26agtJIq8WFS1nfZxVWMMzqd18dfIrlgcvRyqRsnH4Rjo26CjsUygUvLHnDUGiT1dTF7/BftXSuFKV+fSsBj4o5bQ23NjA+hvr+aHvD+hpVSTPs/ow1jFmq/dWvj39LR8f+5gVISu4mnCVrd5bq+XzVQUNqYRFg1x4Y20wElB76qqe6IsGubyyTQSz8rPYd28fAaEB7A7bTVbBk34rNkY2DHceTpv6bbiScIW119aq9RTpYNsBHzcfRjUfhbFO9fQ3CI4Lps+aPoIBbmNkQ1peGpn5mXRp2IW9Y/dipGOkdsx7h94jX5ZPX8e+vN7kdbV9qsBI0UCguZ45GfkZtTr7SURERORFIZFIcDBz4I22b/BG2zfYfyOOmWuDqQmfKRoFPe170q9xP/S19Al9FMqEbROISY8hKTuJlJwUMvMzhazzqqKvqY+ZnhmWhpbYGNlga2SLlZFViUliYoLYq0tFfSZZoWH5g/7DRKRE8Pr618kqyKK3Q2/8Bvup/WbORZ9j8enFwt9z2s+hU4NO1XLtqLQogGeqWgZwt3anlWUrriZcZcP1DcxqN6s6plcpRrqOxMXChWGbhxH2OIwuK7vwx4A/8G3t+9znAqLPpFAouJ54XQiG3Hr0pN+KplST3g69GdhkIHKFnIBbAYKEHDx7v8WSyJfl47PDh3XX1wHKAGNLy5ZcTbiKtoY2W723MrDpQLVjzkafZeONjUiQsOS1JWq/S5XP1MqqldCrS5TSEhH5jzOgRX2WjpcUa7xmpCtDr84e0rNvkVMF+UQJEpJzk1kWtKzSx2pLtTHUMcRM91/D3dAGO1M77E3ti5Vom+qaika7CCCWvVYHK0NW8ulxZXn3b/1/Y4jTELX9G29sZEvoFuHvL7p/oVZN8iwIBv4zlISr6NmoJw1NGhKVFsX229vVtEafF1KJlA+6fkCb+m0YvXU0l2Mv4/G3BxuHb6SXQ6/nPh+A15pb89f41sWe91ZFGm2+SmTkZbDn7h4CQgPYe3evWkPbhiYNGeE8gv6N+3M/9T6rrqzi14u/CvvrGdRjUqtJTHGbgrOFc7XOa/319UzaPolCuTJI265+O24m3SSrIIse9j3YNWZXMZmRYxHH2HZ7GxoSDX7q+5Paey+vMI9rCdcA9cCImZ4ZD9Ie1GojX0RERORl4bXm1iwt4R1qbiDF2uYMtzPiiUrTqHS1hhQpIOdo5FGORh6t1LESJBhoGWCia4KFgQVWhlY0MGqAg7kD9Y3qF2tMLiaIiYDoM1UHj7Mf89q610jISqCVZSu2em9V+31l5WcxcftEIQG0kWmjYtUkVUXVHwiqx2/ycfdh7v65+F/xfyGBEQDXeq5c9L3IpO2T2HFnB9N2TePCwwv8NuC3F1Jx/1/zmRQKBSHxIUIw5G7yXWGftoY2fR37MtxJKacXEBrAB0c+ICM/A6iefoulkZiVSL+1/bgSfwVQBvdbWLbgQswFdDV12T5qO/0a91M7Rq6QM3e/sp/IVPepxQI0goyWtXoyGYiBERGR/zSvNbemj4sVFyOSSczIpZ6RsjRQQzoUWE5abhqbb25mS+gWsh+cgwok3D9dBaIl1cJAywBTXVO16g5HM0camzfGxtgGSwNLLAwsXqjcjEjtRSx7fTb239vPtF3KXhjvd35frX8BQEx6DG/seSKZ1aZ+G+Z3nF9t11eVhFeHga8h1WBSq0l8efJLVl5Z+UICIyr6OPYhaHoQwzcPJzgumL5r+7K412Le6/TeCwnqlv68fzUCzKm5qey6s4uAWwEcuHeAPFmesM/BzIERziMY7jyc7IJsVl5dyeCNg4WAiYZEg4FNB+Lj7kP/xv2FLKLqQiaXseDwAn4695OwzdvFm11hu8gpzKGPQx+2j95eTDpFJpcx/4DytzazzUxc67mq7b+ReIMCeQHmeubYmTzp9fMq6OWKiIiIvEyU/g59HfgfcoWcCw8vsObaGqJu7YLM9HLPKUeu9rdUIkVXUxdjHWPMdc2pZ1APG2Mb7E3saVKnCfam9lgZWokJYiJVRvSZno2cghwGbRhE2OMwGpo0ZO+4vcUqihccWsC95HvC38sHLa+23jqxGbHV0pdRxdgWY3n34LsExwVzNf4qraxaVcMsK4+JrgmBowL55vQ3fHz0Y/xC/ISK+2etjKkKr7rPpFAouBhzUWigHpEaIezT0dChf5P+jHAeQdv6bdlxZwffnv2W249uC2Oqq99iaYTEhdB3bV8eZT8ClHLb9ib2nI4+jZ6mHrvG7Cox2XDttbVcjr2MkbYRX/X8qtj+pxuvw6vhM4mBERGRakBDKqGjYx21bRl5GZyOOs2+u/vYc28P4SnhuCukQOXLagvkBeQU5mCtZY2loSX2pvY4mDnQyKyR8n+mjYrJhoiIVIb/etnrsxAcFyzo445vOZ7/9fqf2n6FQsHUnVOFRp1aUi38B/tXq5600ESwmgyryW6T+fLklxwOP0xUWtQLk7ACsDe15/SU07y5901WXVnFwsMLuRhzkZVDVr6Q515Jz/vaTHJOMjtu7yDgVgCH7h9SkxppYt6EkS4jGeEygjp6dVh9bTVjA8dyP+W+MMa5rjM+7j6MbzkeK0OrGpljWm4awzYP42iEMhtYQ6LB/A7z+f3S7+QW5tK/cX8CRwWWmBjgH+LP1YSrmOqa8ln3z4rtLyqjVXSBTFUWXpv1ckVEREReNkp6h8oVckKTQjkacZRtt7ZxIeYCTgV5VMVnkivkZBdkY6pripmeGQ1MGtDItJHgNzmYKatBqkPGVOS/iegzVR2ZXMbYwLGce3gOU11T9o3bR32j+mpjDt4/yJ+X/xT+ntZ6WrVWixdNJquO50Bd/boMcRpCQGgAK6+sZMlrS575nFVFKpHyYdcP8bD2YGzgWC7FXqL1363ZNGITPRv1fO7zedV8JrlCzrnoc0IwROV/g7KX4utNX2eE8wj6OPThVNQp/K/4M2n7JKESUl9Ln5EuI5niNqVa+i2WxobrG5i0fZLg03Ww6YCWhhanok5hoGXAnrF7hNYARcnMz+T9w+8D8HG3j7E0VO8rK1fIhYqRor2PXwWfqcYDI9988w0ffPABc+fOZcmSJQDk5ubyzjvvsHHjRvLy8ujXrx9//vknlpZiQ1+R2osqEHI88jgHww9yNf7qM/X/eJo8WR63Ht1S0yksSl39uoLh72DmoOYENDBuUO3ZuyKvHv+1stfqICIlggHrBpBVkEWvRr1YMXhFsezDZUHLOHD/gPD3R10/ooVli2qdR3X2GAFlFksP+x4cizzGP1f+4RPPT6rlvFVFT0sP/8H+tLdpz5x9c9h6ayuhSaEEjgrEqa7TC53by4ZMrig3OyspK4ntt7cTcCuAoxFHBVkqUDauHeE8ghEuI2hi3oSdYTv54MgHHLx/UHinGWkbMbr5aHzcfWhv075GM27DHofRb00/ItMiAWUPmk+6fcJHRz8iX5bPoKaD2DJyS4ml52m5aXx09CMAFnkuKrGJelBc8ZJwAHPd2l8WLlK7EH0mkf8KqkDI8cjjHI04ypGII6TnPV0d8mwLRrEZscRmxHIm+kyxfdoa2k+SzFT+UhG/yVTX9JmuLfLqI/pMlUehUDB3/1y2396OtoY2O0bvwMXCRW1MSk4KPjt8hL9tjGz4vs/31TqP6uovUhQfNx8CQgNYe20t3/X57oXL7vVr3I+g6UEM2zSMkPgQ+qzpwze9vuHdTu+KVXJFqIjPJJPLOB11WgiGxGXGCfsMtQ0Z2HQgI5xH8Frj13iQ9oCVISuZs3+OWr/FjrYd8XH3wdvVu9r6LZb8eWS8f+R9fjj7g7BtcqvJ3Eu5x6moUxhpG7Fv3D46N+xc4vHfnv6WuMw4HMwcmNt+brH995LvkZGfga6mrtpvV6gYqcU+U40GRi5dusSyZcto2bKl2vb58+ezZ88etmzZgomJCbNnz2bYsGGcOVPccBEReVlJz0vnTNQZjkce5/iD41yOuVysnFtFA+MGDHMexps2nWDrtHLP/XXPr1l8fy8h8SFk5meWOk6CBKlEikwh41H2Ix5lP+JS7KVi4zQkGjQwaaBm+Bf977r6dcWXpAjw6pe9ViePsx/Tf11/ErISaGnZspg+LigNiHcOviP83aJeCz7o+kG1z6U6e4yomOI2hWORx1h5ZSUfdfvohWdXSiQSZraZiZuVG8M3D+fWo1u0W96Of4b+g5ez1wud28vC/htxxZx063+ddDd7CdtubSPgVgDHI48jVzx5X7WybMUIF6VMlrOFM1fir7A8eDnrrq9Ty/7xtPPEx92H4c7Dq03SoMzPc28/wzcrpbsAHM0cWdh5IbP2zqJAXsAw52FsGL6hVAf061Nfk5SdRLM6zZjVtmTdZ1XFSNHMJyjSSLAWl4WL1B5En0nkVaZoIET1v8c5j0scq6OhQ1e7rrxr3weOlN9TINA7kMX39rLv/j5iMmLU3m1PoyFR9jDJl+UT9jiMsMdhJY4z0zV7UmFi+qTSpJFpI+xM7V74oqfIy4HoM1WO789+zx+X/kCChLVea+lm163YmLf2vUVMRozw99KBSzHRNanWeQhV9tXoM/V17Et9o/rEZsSy684uhrsMr7ZzVxV7U3vO+JzhjT1v8M/Vf1hweAEXYy/iP9hfVBqhbJ+pt4sFJyJPEBAaQODtQLUgh7GOMUOaDWG483D6OvYlX5bPppub6LW6FxdiLgjjLA0smdhqYo30WyyJtNw0Rm4ZyaHwQ4BynfDb3t+y7fY2zj08h7GOMQfGH6CDbYcSj3+Q+oAfzikDKj/0+aHEhDOVz+Ru5a6mfKHqMZKel45MLkNDqlGtn+15UGOBkczMTMaNG8fy5cv56qsn2mRpaWmsWLGC9evX07Onspxr5cqVODs7c/78eTp0KPkfSkTkRVOZQAhAa+vWjHYdjZezF43NGys3xl6p0LX6N36N/t2UZWyqBrh+wX5cjLkoNGoCZS+Sok0KpRIp5nrm1NOvh76WPun56TxIfUCeLI/I1EgiUyNLvJ6BloGaA1C03Nze1L6YZnt1U5Fovcjz41Ure60JcgpyGLxxMHce36GBcQP2jt1bzHCXyWVM2j5JWNSVSqT4D/Gvdoc6uyBbWLyuzuyn4S7DmbV3FhGpEZyIPEGPRj2q7dzPQgfbDgRPD2ZUwChOPDjBsM3DeL/z+3zV86taaYhVF/tvxPHG2uBidYpxaTnMXBtEkvZisjXOCts9rD2EYEiTOk1Izklm/fX1jAscR0h8iDDO1tiWSa0mMdlt8pN3WQ2jUCj44ewPLDy8UKhS6dWoF5NaTcJnpw+F8kK8Xb1Z67W21GrIe8n3WHJ+CQA/9v2xxHG5hblcT7wOqGvlwquR/SRSOxB9JpFXjacDIScenBB0zkvCTNcML2cvRjiPoGejnsoFmdgrFQqM2JvasWzwMkD57riecB2/ED923tlJdHq0WqDk6cbu+lr6WBpYYq5nTqG8kNiMWJKyk0jJTSEoLkioKCyKVCLF1ti2WKWJyneyNLCs0WQz0Wd6uRB9poqx/vp6Fh5eCMBP/X5ipOvIYmMCQgNYd32d8Pe4FuMY2HRgtc9FJaVVnTLBqv6Mi08vxv+K/0sRGAFlxf3KIStpb9OeufvnEhAawM3Em2wbtY1mdZu96Om9MEr3mXKZuTaIHMPfSJQdFLab6Zox1GkoI1xG0KtRL7Q0tDj54CQzds8gIDTgufVbLI27j+/Sb20/oc+JnqYea73W8u3Zb7kYcxFTXVMOTThUzNcpysLDC8ktzKW7fXeGOg0tcYyQTGatnkxWtMoyNTeVOvq175lYY4GRWbNm8frrr9O7d281Iz8oKIiCggJ69+4tbHNycqJhw4acO3dONPJFXhqeDoQExQYVM6iLoinVpId9D7ycvBjiNKSYXiYA+nVAUwcK84rvE06koxz3L0Y6SsmS0c1HA0oJlAP3D7Dm6hrOPjyrVlEiV8iFyhEVlgaWtLJsRWvr1tQzqEdabhoRaRFEpEQQnhJObEYsWQVZXE+8LiwQPY2VoVWpMl02RjbPtBhZVrReLEMWeRmRyWWMCxzH2eizgj6ujbFNsXE/nP2Bs9FnkSBBgYJ3O75bpkFSVVQGvpG2ESY61ZdVpa+lz+jmo1kevJyVV1a+NIERAEtDSw5NOMT7h9/np/M/8c2ZbwiKC2L98PUlyiW96sjkCj7fFVqKeKMEBXLM8qfR3FHOSNfhDHceTiOzRsjkMg6HH+aTY5+w7fY28mX5gFJmZKjTUHzcfOjt0Pu5BpxyCnKYunMqG25sELbNaTeH9jbtmbh9IjKFjHEtxrFq6Koy+/QsOLSAAnkB/Rz7MaDJgBLHXE+4TqG8EAt9i2KZg0LFiBgYEalhRJ9JpLZT2UAIgJ2JHcOch+Hl5EWnBp2Kv2eq4DNJJBJaWrXk1/6/8mv/XymUF3Ip5hKbb25m+53tPEh9oCZznF2QTURqhLCYpKupi5uVG62tWtO0TlM0pBpEp0UTnhou+E05hTlEpUURlRbFiQcnik1JT1NPrcKkqO/UyKwRhtqV75uiQvSZRGojRyOOMnn7ZADmd5jPvA7zio2Jz4xn5u6Zwt8W+hY11qsjKr36q+xB2Z9x8enF7L+3n9iM2JLXgl4AEomEN9q+gZuVGyO2jODWo1u0Xd72P1txX7bPpEw81socQ13zELyclcGQHvY90NLQIjotmu/Pfs/KKysJTwkXjnke/RZL48C9A4zYMkJYE7QxsmGL9xZm751NcFwwdfTqcGjCIdyt3Us9x5moM2y6uQkJEn7u93OpwX1Bfvip9QwtDS0MtQ3JzM8kJTdFDIyo2LhxI8HBwVy6VFzSJz4+Hm1tbUxNTdW2W1paEh8fX+L58vLyyMt7YhSlpz+tQSoi8uyk56ULPUKORx4nKC6oWDm2qgRbhZ6mHv0a92OY0zAGNh0oLKSUimkDmB0E2SWXjwNKA9+09Be1hYEF41uOZ3zL8QBEpkZy8N5BAm4FcCb6jJCdriIhK4GD4Qc5GK6MehtoGdDSsiX9G/enX+N+ONV1Ii4jjohUpcEfnhKu9t/peenEZ8YTnxnPuYfnis1HS6qFnamd0vB/qtzcwcyhzO+ktGh9fFoub6wN5q/xrUVDX+SlQqFQMG//PLbd3oa2hjbbR23HtZ5rsXHXEq7xyTFlXw4FCpqYNymx8XN1UFQrt7qzFH3cfVgevJyA0AB+6/9btZezPwtaGlr82O9H2tq0ZerOqRwKP4TH3x4EegcWk0V61bkYkay2UPI0EqRoYsGSnrvp6FiH8JRwPjn6CauuruJh+kNhXCvLVkx1n8rYFmNfiFEbkx7DwA0DuRJ/BVBm5v414C/0tPSYsH0CcoWcyW6T8RvkV2aw5ljEMbbd3oaGRIMf+/5Y6u+iqIzW02NUFSO1uZGgyMtPdftMIPpNIjWPXCHnZuJNIXnsROSJYtJYUom0mB/lauEqBEPcrNzKtlmqwWfSlGrSsUFHOjboyM+v/UxOQQ5nos+w/fZ2doft5kHaA7XxuYW5XIm/IryDJEiwN7WnS8MuTPKcRJeGXUCCECRR+Uuq/49OiyanMIfQpFBCk0JLnJOFvkWJMl0OZg7YGtuWGvAXfSaR2si1hGt4bfKiQF6At6s3P/T9odgYhULBtF3T1J4hvw/4vcYSnYTm69VYZQ/QtE5TujTswumo06y+upr3u7xfred/Vjo26EjQ9CBGBYzi5IOTDNs8jA+6fMCXPb78T1XcV9Rn2jjsBl0a1yOvMI9tt7fhH+JfrN/imOZj8HH3oZ1Nu+cuS69QKPjx3I8sOLRAmFMH2w6sGrKKUQGjuJpwFQt9C45MPFJmb1O5Qs7c/cp+Ir6tfXGzcitxnEwuIzguGCgeGAGl35SZn1lr/aZqD4xER0czd+5cDh06hK6ubrWcc/HixXz++efVci4RERUVCYQYahuSX5hPvlyZRStTyDDRMWFQs0F4OXnRz7Ff5XXWTRuUacRXFntTe6a3mc70NtNRKBTcSLzB4fDD7Azbybnoc+TJ1DOtsgqyOPfwHOcenuPT45+iIdHA0cyRHo160L9xf0a6jMTCwAJQPnBTclOKOQCq/45MjaRAXsC95HvcS75X4vxMdExKlOmyM2nEZzujS4zWKwAJ8PmuUPq4WIkl4iIvDT+c/YHfL/0OwBqvNXjaexYbk1eYx4RtEyiQFwBKx9p/iD96Wno1Mqea0MpV0d6mPc51nbmVdIfvj22nrXXvl066YXTz0crFls3DuJd8j87+nfnr9b+Y4j4F+G/ITiRmlG7gFyXwxmE+PL2U45HHhW1mumaMazEOH3efMrOJappz0ecYvHGwkGVsqGXIzjE7iUiNYNL2SShQ4Ovuy7JBy8rsdyOTy5h3YB4AM9vMLDFwqUIVGHm68To80csVe4yI1BQ14TOB6DeJVD8VCYRoSjXR1dQVslZVPlV7m/ZCMKRJnSaVu3A1+0x6Wnr0duhNb4fe/D7gd1JyUjgeeZy9d/ey/95+HmY8VBuvQCFUlKy5tgYAc11z2ti0YWCTgQxuNhhXC1dhUTFflk9UWpTSTyrBd0rJTSEpO4mk7CQ1LXoVGhIN7Eztisl02Zk04tOdaaLPJFKriE6LZsC6AaTnpdPNrhv/DP2nRPtt5ZWV7A7bLVTYezl5MdKluNRWtc2rBv0mHzcfTkedxj9kFZ7WviRm5L1UvoeVoRWHJxxmwaEFLLmwhMWnF3M59jIbhm+gjn4d0WcqQvDDe2y++1Wxfovd7bvj4+bDMOdhz6XfYknkFOTgu9OX9TfWC9smtZzElz2/pP+6/txMuomlgSVHJx1Va5JeEmuuriEoLggjbSO+7PFlqePCHoeRmZ+JvpY+TnWdiu030zMjOj261vpN1R4YCQoKIjExkdatWwvbZDIZJ0+e5Pfff+fAgQPk5+eTmpqqlgGVkJCAlVXJZUcffPABb7/9tvB3eno6DRpU/4NM5NWmIoEQC30L9LT0iMuIo0BeIBj3VoZWDG02FC9nL7rbd39pm+5JJBJaWLaghWUL5necT4GsgMuxlzkScYQ9d/dwKeZSMTkwmUJGWHIYYclhLAtSavRa6FvQ0bYj/Zv0p0vDLrhbu5eYgS2Ty4jJiFFzAIqWmydkJZCWl0ZIfIiaZj2AjqwFVvmLS/0sCpQ6jxcjkkXtVpGXgvXX17Pg8AJA2bPA29W7xHGfn/icawnXhGzJWW1nKbMMawgh86kGDHyJREI3yzmkR+uy9kRd1nIFePmkG1pYtuDStEtM3DaRXWG78Nnpw4WYC7ze4CP+tzfslZedqGdUsUXV34K+Jk/jOhIk9HHsg4+bD0OchqCrWX2LslVhZchKpu+eTqG8EIBGpo3YP34/xyKOMXOPUlrhzTZv8tuA38oMigCsCFnBtYRrmOqa8nn3sheHSysJB1FKS6TmqQmfCUS/SeTZqUggREdDBytDKzLyMkjOTaZQXkhmfiYaEg2623fHy8mLoU5DS5QafVkw01P2NlHJycSkx3Ak4ggH7x/kwL0DPMopLgeWnJvMwfsHOXhfWYmvLdXGtZ4rfR370rNRT9rbtC+1H1dqbioRKRFPKk1SIghPVQZNIlMjyZflC0GUIxFHhONEn0mktpGam0r/df2JyYjBxcKF7aO2l2hrRqRECNnqChSY6pryx4A/aiz7Pis/S1jkrs4eIypGuo7knZ1ryI6ZyJjlT4KfL5PvoaWhxc+v/Uw7m3b47vIVKu4XeKxjzelc0Wf6lwVHZ5KnoZSZtzW2ZXKryUx2m4yjuWNNTq9cYtJjGLxhMMHxwcK2b3t9y/iW4+m1phe3H92mvlF9jk48Wm4fmcz8TD448gEAn3T7BEtDy1LHqnwmdyv3EiuMhISyWuo3VXtgpFevXly/rt6nYMqUKTg5ObFw4UIaNGiAlpYWR44cYfhwZVOiO3fuEBUVRceOHUs8p46ODjo6OtU9VZFXnIoEQuxM7KhvVJ/0vHRuP7pNUnaSsM/BzIFhTsPwcvaig22HchdjXka0NLSEEvKPu31MdkE2p6NOcyT8CAfuH+BqwtUSj0vKTmJn2E52hu0EQFdDl1ZWrejr2Jdudt1ob9MeIx0jNKQaNDRpSEOThnS3717sPFn5WUSmRpYo0xWTWDH9xYpG9UVEapKi+rjz2s/j7Y5vlzjubPRZvj3zLaBcWLAzsWNx79Kd2epAlflUEwb+/htx7L/cAI2n8hRfRukGU11Tto/eztcnv2bR8UWsvniN/aevosylfMLLOPdnpV0jc6xNdIlPyy0lo1SOjMdYm2fh4/4Fk9wm1cj9UlkK5YW8c/Adfr3wq7Ctm103to/azrrr63hr31sAzG0/t0zNWxVpuWl8fPRjAD7z/KxMObCcghxuJN4AKDHwLzRfr6WZTyIvPzXhM4HoN4lUnooEQvQ09XCu64ymhib3k+/zOOexIEWlq6lLP8d+eDl5MbDpwFqpLw5gY2zDxFYTmdhqIgqFgrDHYRyJOMLh8MMcDj9MRn5GsWPy5flCApjK/mto3BBPe096O/SmU4NOOJo5IpFIMNU1xd3avcTqTLlCTmxGbImVJpHxdSG//PmLPpPIy0BeYR5DNw7lZtJN6hvVZ9+4fSVKa8sVcqbsmEJmfqZQLfJzv5+xNqo521zlMxlpG9WIPPDpsAyMc96uFZJ3Y1qMoXm95nht8iL2UT2+3ZPyr8f0xNZ+Gef9rFTUZ1Jo3cXb2fuF9FssjfMPzzN4w2BhzVJXQ5dNIzfR2ro13f/pzt3kuzQwbsDRSUdLDdAX5ZvT3xCXGYeDmQNz2s8pc6xQZV9Kv9Ta7jdVe2DEyMiI5s2bq20zMDCgTp06wvapU6fy9ttvY25ujrGxMW+99RYdO3YUmwiKPBMVCYQ4mjkKUc6wx2GExIeo6cu2tGwpBENa1Gvx3LUCaxp9LX36Ovalr2Nfvu3zLck5yRyPPM6R8CMcDD9YqhxWriyXCzEX1Mq+HUwd6NmoJ572nnRq0IlGpo2KfV8G2ga41nMtUcrk3P1HapkUpVHRqL6ISE1xPeG6oI870mUkP/b7scRxWflZTNo+Se25s3zQ8mdqtFkRivYYqU5UzelAKQdWlJdVukEqkfKJ5ye0tvLgjVWPhHkW5WWd+7OgIZXw8etOzFqvqsx78pkUyJEgYV5fW97ucfelCfI/zn7MyC0jORZ5TNg2zX0af7z+B79f/J23DyqDj+92fJfv+nxXoffx16e+Jik7iWZ1mvFm2zfLHHs14SoyhQxLA0tsjIpnNKuc+KyCLPJl+S9tpahI7UX0mUReFBUJhOhr6dPBtgNWBlY8znnMhZgLahmqxjrGDGqqlBZ+rfFrL0xSpKaQSCQ0q9uMZnWV7xOZXEZIfAhHwpWBklNRp4rJFauISo9izbU1gvyWkbYR7W3a09uhN50bdsbD2qOYvKpUIsXW2BZbY1u62nVV23fu/mPGLD9f7pxFn0nkRSNXyJm0fRInHpzASNuIvWP3lpqI88v5Xzjx4IRQYd/PsR+TWk2q0fnVVH8RKOo3Pe01vby+RwvLFlzwvUSHxQf/jb3WDn/vWdCQSlg0yIWZa4PhKU9R5TMNaydj0WsPX6og/8qQlczYPUOQ6rY2tGbvuL2Y6ZrhucqT8JRw7EzsODbpGI3MGpV7vgepD/jhrLLnzw99fkBHs+yEGqEvo3XJfTxre2/GGmm+Xh4///wzUqmU4cOHk5eXR79+/fjzzz9fxFREajEVDYR42nnSyKwRSVlJHIk4QsCtAGG/BAkdG3TEy8kLLyevF14a97wx1zNnmPMwhjkPA+Bh+kOOhB8RsqPiMuNKPTY8NZzwkHD8QvwAZS+Rzg0606NRDzo16ERr69ZlyrO0a1SnzGi9BLAyUWpbioi8KKLToum/rj/peel0bdiV1V6rS11YXnBoAfeS76Ep1aRQXoiPmw99HPvU/BxrSCu3vOZ0L7N0g7lme6SK0hcRXua5V5bbj27jH+LPmmtrSNNuhHn+dDSxEPZbGevy+eDmL1Wm143EGwxaP4jItEhA+S7+qd9PzG0/l+/Pfs/CwwsB+LDLh3zV86sKBUXuJd9jyfklAPzU7ye0NLTKHF8086mk85vomAgZjCk5KWWWl4uI1BSizyRSHVQ0ENKlYRfa128PwNXEqxy6f4icwhxhjKWBJUOdhuLl5EWPRj3+UwFjDakGbeq3oU39NizsspC8wjzOPTwn+E0XHl5AjrzEYzPyMzgccZjDEYcBZRDExcKFXo160aVhFzo16ER9o/qlXru8DGfRZxJ5WVhwaAGbbm5CU6pJ4KhAWlm1KnFcaFKoIOEjV8gx1Dbk70F/13hSak32F6mtflNYnJyCAsNiwRwVL+u8q0J2QTZbQ7fif8WfRO28Yj6ThaEmXw11e6l8pkJ5Ie8efJdfLvwibPOw9mD32N3kFOTgucqTB2kPcDBz4NikYxVWBFh4eCF5sjx62PdgqNPQMseqEgOgjIqRWi5B/FwCI8ePH1f7W1dXlz/++IM//vjjeVxe5BUhLTftSSDkwXGC44JLDIR0t+9ON7tu6GvpcybqDNtub+PBlSdVIZpSTXo26omXkxdDmg2p0XLN2oatsS2T3CYxyW0SCoWCO4/vKDOjIg5zLOIYaXlppR6blpfG3nt72XtvL6BsINjKspUQKOnUoBNWhk/ks1TR+jfWBiMBNUNf9WJeNMjllchMEKmdFNXHda7rzPbRJevjAhy8f5A/LysXqwrlhVgbWpdaWVKdKBQKIfupuqWRKirJ8DJKN9TmuVeE9Lx0Nt/cjH+IP+cenhO2WxjJGNXyBm3qjkZfw/qlbJy4/fZ2xgWOI7sgGwB9TX22eG9hQJMBfHXyKz459gkAizwXschzUYWd5PcOvUeBvIB+jv3o37h/ueNVWrmlZT5pSDUw0TUhNTeVlFwxMCLyfBB9JpHqQK6QcyPxhpA8duLBiWJZnKpASHe77rjWcyUqLYodd3aw+Mxiod8TKHs+eTl5Mcx5GB1sO7wUciIvAzqaOnS37053++58yZek56VzIvIERyKUgRKVVGNJqP59biTeEBa7LA0s8bTzpKtdVzo16ERLy5ZoSpVLNaLPJFIb+OX8L/x4Tun7rByykt4OvUscVyArYMK2CeTJ8tCQaCBTyPi297fPReK1pnwmqL2+R22dd0VRKBRcjLmIf4g/G25sECQRJRoSXF1N6F5/Kk1M22BjavTS+UyPsx/jHeDN0YijwjZvF29WDV1FTEYMPf7pwcP0hzQxb8LRSUexNbat0HlPR51m081NSCXSCkkV3350m+yCbAy1DWlap2mJY4QeI6KUlohI9VKRQEhj88Z0t1MapR1sOxD2OIxtt7fx3qH3SMxKFMbpaerRv0l/vJy8eL3J6yXqXIqoI5FIcKrrhFNdJ2a1m4VMLiM4Llgw+E9HnSa3sPQXpEwhIzg+mOD4YMFIsjGywdPOk84NO9O5QWf6uDTnr/Gt+WznTeLTn5SjWxrr8NlgV/q4WHHu/mMSM3JfygU+kVeXvMI8vDZ5cTPpJtaG1uwbt0944YOyXPpiRDKJGbno6xTgs3cqgJBhvnTgUkx1TWt0jjK5giN3IlHkeKAjScHasHobnFZUkuFllG6ozXMvDYVCwamoU/iH+LMldIsQWNCQaDCgyQB83H14vcnr5VZKvCjkCjlfnfyKRccXCdtsjWzZN34frhauLDq2iC9OfgHAVz2+4qNuH1X43EcjjrL99nY0JBr81O+nCgVTytPKBWVZeGpuaq018kVERP4bVDYQ0t2+O6a6puwO203g7UA+PPqh2tgW9VoIwZCWli1fOWnhmsBYx5hBzQYxqNkgABIyEzgacZTD4Yc5EnFETbq5JBKyEtgcupnNoZsBZXP7djbt6GbXjU4NOtHBsUOZPtNrza3VbFPRbxJ5nmwN3cr8A/MBWNxrMeNbjlfbX/Te3Ht/I8GxV9DUUFbYd7Prxsw2M2t8jjK5gqtR2egXdkOzwBmZXFGtv4/a6nvU1nmXR0JmAmuurWHllZWEJoUK2x3MHJjiNoWJrSa+FP0WS+Nm4k0GbhhIZGqksE2VNBb2OIwe//QgLjMOp7pOHJ14tMLJ3nKFnHn75wHg6+5balVXUVQ+U2mN16FIjxGxYkRE5NmobCDE094TU11T9t3dx7bb23hz75uk56ULY011TRnUdBDDnIfR17Ev+lr6z/sjvVJoSDVoa9OWtjZteb/L++QW5nI2+qxQQn4p9lKxf6+nicmIYf2N9ay/sR5QBqxamEwgI68fUFTXUEJIVAqf7wpVK0m1NtFl0SCXl6q8UeTVQ66QM3nHZI5HHlfq447bi52pnbB//424YvcmfImxrj/pklOMbj6awc0G1+gci87BggUA9PnpXLX+PmqzdENtnvvTPEx/yOqrq1l5ZaVaH6hmdZox1X0qE1pNUKvGexnJzM9k8vbJbL21VdjWwbYDO0bvwELfgo+OfsTi04sB+K73d7zX+b0Kn1smlwkG/htt3sDFwqXcY7LyswQnqaTG6yrM9MyISI2otUa+iIjIq0lFAiEGWgbKQMi/VQ2trVoT+iiUbbe2MWP3DK4nXlcb39H2X2lhZ68KNW0VKRtLQ0vGtBjDmBZjUCgUhKeEC8llRyOO8ij7kdp4VWKNijxZHqeiTnEq6pSwzVFvGBq5owF9tSOhZNtU9JtEngenHpxiXOA4FCh4o80bLOy8UG1/8XvTCRtWkKz9N5o6IfgN8qvx/ndP5tANC7qx9yKE3Dkq+k3U3nmXRIGsgH339uEf4s+eu3uE6kc9TT1GuIzAx92HbnbdXpp+i6Wx4/YOxgWOI6sgCwAtqRarvVYzuvloQpNC6flPTxKyEmherzmHJxyuVFX76qurCYoLwkjbiC97flmhYyqUTCZKaYmIVI2qBEJsjW15lP2IXXd28eaeNzl4/6Ba4ztrQ2uGOg1lmPMwPO08X9rM2VcBXU1dejbqSc9GPfmar0nLTePEgxNCoORm0k218ao2ZEWNfvLciH846N/9T4hPz2HZyXCebgAWn5bLG2uD+Wt8a9HIF6kxFh5ayMYbG9GUarLVeytuVm7Cvv034nhjbXAxw1GDOpjmLkDPUJ9fX/u1RudX2hyq+/dRm6UbavPcQVmxtCtsF/4h/hy4f0B4NxpqGzLadTQ+7j50sO1QK7J4I1IiGLJxiNoi3LgW4/Ab7IeOhg7vHXpPqCr8ud/PzOswr1LnXxGyguuJ1zHTNeOz7p9V6JirCVeRK+RYG1qXqeuuqhKrrY0ERUREXg2qEgjxsPZAKpFy7uE5ttzcwtitY4lIjRDGa0o16WHfQykt7DSkzGehyLMhkUhwNHfE0dyR6R7TkSvkXE+4LvR0PPngpLAApkIlMaRCT9aRguQpFFDcZ5q5NoinfSYQ/SaRmudW0i2GbBxCniyPIc2G8Fv/39Rs07L8Jov8DxnQMoYmdZrU6BxFv6lsauu8i3Ir6RYrr6xk9dXVJGQlCNvb27THx92HUa6jMNE1eYEzrBhyhZyvT37Np8c/FbZZ6Fuwa8wu2tu251rCNXqv7k1SdhKtLFtxaMIhLAwsyjijOpn5mUJvn0+6fUI9g3oVOk4lP1xelT3UXp9JDIyIPDeqGggBpR7ktlvb2HZ7GycfnFQzFBubNxbKvdvZtHvpI8CvKia6JgxuNljIlI/PjFcrIY9Ki1Ibr4EW5gUzgCdBkycos6ae3qpA+YL+fFcofVysXuoXtEjt5NcLv/LDuR8A8B/sr9Y8XSZX8Pmu0FKyaaQokGMpn4W5Xt0am19Zc6iJ38drza35a3zrYlmIVrUgC/FlmntF5S2uxl9l5ZWVrL22Vq0xbje7bvi4+TDCZQQG2gbPbd7PyrGIY4zYMkLNSP6qx1d82FUp2zJv/zx+vagMJP7e/3dmtZtVqfOn5abx8dGPAfis+2fU0a9YU8iKZD5BkbJwUUpLRETkOVLVQIiWhhb5snyORRxj9t7Z7LizQ22RSE9Tj36N+zHMaRgDmw4UpYVfEFKJlFZWrWhl1Yq3O75NviyfizEXheSy8w/PUyAveHKAQkqdcnwmUBTbJ/pNIjVJXEYc/df1JyU3hQ62HVg/fL2azE55fhMouHK3cbVLWhVF9Jsqxss274r4TaX2W9S3YGKriUxxm4JrPdfnOu9noaTq+hb1WrB77G4amjQkJC6E3mt6k5yTjIe1BwcnHFST+a4I35z+hvjMeBzNHJnTfk6FjimUFwqN10vrywhFKkZqqc8kBkZEaoy03DRORZ0SjPqQ+JAKB0IA7jy6wzenvyHwViCXYi+pHedm5aYs93byonm95rUia/a/hpWhFWNbjGVsi7EoFArup9wXDP6jEUfJzKyPpqL0BeTihr8SBRCXlsukTV8ypKUznRp0wsa4ensriPw32Rq6VZDk+brn10xoNUFt/8WI5Kfks9SRICUtWzmuo2PFFmgrS3lzUP0+qnMOrzW3po+LVa3UrX4Z5l6evEVKTgrrr6/H/4o/wXHBwpj6RvWZ3Goyk90m13g2XXWjUCj489KfzN0/V0hk0NXQZc2wNYxwGYFcIWf23tn8dfkvAJYNXMZ0j+mVvs5XJ78iKTsJp7pOvNHmjQofV+nASC0tCxcREakdqCoIVMljJx+crHAgBJTygDvv7CTwdiB7wvaQlpcmHGeiY8KgZoPwcvKin2O/WhVc/6+graFNl4Zd6NKwC4u6LyIrP4tTUac4En6EwxGHuRUjQ6MKPhM8sQsX7lnOqNbuuFm5iYoKIs9Mel46A9YP4EHaA5qYN2HXmF3FZMvL81lAUu0+y9OIflPFeVnmXZbf1M/VqtR+i683fR0fNx8GNBlQ655xkamRDNk4hGsJ14Rtg5oOYt2wdRjpGHEp5hJ91/YlNTeVdjbtODD+QKV7mUamRvLDWWXy5w99f0BHU6ecI5SEJoWSW5iLkbZRmf6o0Hy9lvpMYmBEpNqoSCCkiXkTwaD3tPNUW9BWKBQExQax7fY2Am8FcuvRLWGfBAmdG3bGy8mLoU5DcTBzeG6fS+TZkUgkNDZvTGPzxsxoMwO5Qs7vJ87z0/6qPzi3hR5hXZiyiW9Dk4Z0atCJTrad6NSgEy0tW9a6F6LIi+V01GlBH3emx0w+6PLB/9k77/im6vWPv5N070XpoKwyStmjbAHZQ7YDEOd14cSt159y1XvduJXrVVAUEBeVKbMMpWWUPQuUAt17j7RJzu+PmENDV9Imbdp+369XLZ7xPd+0J+nznOf7fD5VjskorC24N/+4+tBUc1ApFVZLWqxNU869tvb9R1YdpVvoXvalfypLQtor7ZkZNpP7+93PxNCJNRrc2TLl2nIe3/I4Xx/9Wt4W4BrAxgUbGRQ0CJ2k46GND7H82HIUKFg+Yzn39b/P7OtczL7IJwc/AeDDiR+a9ZlvaAmvbeUTNP/VTwKBwDZpaCEE9HIVG+M2Enk+km3x2yjTVFrl6xbArO6zmN1jNmM6jsFB5dBor03QcFwdXJncZTKTu0wGYNWh8/zfuvgGjbns0GqWHn0YZztnIoIj5JxpWMgw/Fys1+ksaHlUaCu49edbOZ52HH9Xf7Yu3FrtPSTypuaXNzX1vGvKm1Lzy3hk1RGU3itIKIuUt4f5hXF/v/ubhd9iTey5sodbf77VSCnguWHP8c74d1ApVcQkxjB59WQK1AUMDxnOlgVb6iUL9uLOF1Fr1dzc8WZmdp9p8nlHUv7OmYIG1qrMY1hMVlReRIW2otk9ixOFEUG9aWghBPSmqX9d+4vI83qZrMpyS/ZKe8Z2GsucHnOY0X1Gs/2wE1RFqVASEdIdOFDvMab3GM2FwkJOpJ/gWv41ruVfY+3ptQC42LswOHiwUdBvbquhoPVwLvMcM36cgVqrZkb3GXw+9fNqu9D83Z1MGs/U4+qDLcxBYBp1te9L6DgbH47aqYI+AX34R/9/sKD3gmb9gCK9KJ25P89lf+J+eVu/tv3YuGAj7TzaodVpuX/D/Xx/4nuUCiUrZ61kYZ+F9brW8zuep0JXweQuk5nSdYrJ5xWVF3EuU7/wojbjdaikl1vWPPVyBQKBbWBqIeSmDjfJnfQDAgdUebCQXJDM7+d/J/J8JHuu7DGSFu7s3Zk5YXOY3WM2Q9sNFdLCLYhQ3zZAwwojESHdOZV3mpzSHPZd3ce+q/vkfd18uxktMOvRpoe4fwTVIkkSD2x8gB2Xd+Bi78LmBZtrXLBqCzmLLcxBYBq15U2g96ktz52Bm8dO5vW6o1n5LVaHJEksi13GU1ufkk3iVQoVX93yFf8Y8A9Av3BzyuopFJUXMarDKDbN34S7o7vZ1/rz6p/8fOZnlAolH0/+2KyfmaHLvq7FZJU7WHLLck32L7EVRGFEYDJ5ZXnXPULqWQgBvanszss7iTwfyYa4DWSWZMr7XOxdmNJlCnN6zGFq16lmt4gJmg+DO/kQ6OlEWn5ZjX8Aq0OBXu9y9bzXUSnfoKi8iEPJh4hOjCY6MZqYpBjyyvLk+9RAmF+YHPAPDxlOd7/uIugXGOnjDgkewo9zf6xxlX5d96zh3hzcyXpFOFuYg8A0TJFes6MNK6f9xV2Dmm9gb+BIyhFm/TSLpIIkedvssNn8MPsHXB1c0eg03PP7Paw5tQaVQsXqOau5o9cd9brWrsu7WB+3HpVCxYcTPzTr3GOpx5CQaOfRrs4FF3JbuOgYEQgEZnBjIWTvlb1V5CVMKYQAXMi+IPssHkw+aLSvT9s+cjGkt3/vZv93RFA99c2Z4HpcuOuBr1Ao/suF7AtyzhSdGM25rHNcyL7AhewLfHf8O0AvvzYsZJicNw0OHlyvh3GClseru1/l+xPfo1Ko+OW2X2qVJLWFnMUW5iAwDVPzpg1zz3Jz93Y1HtccqK673tvJm3V3rGNMxzGAvpPkljW3UFxRzNhOY9kwb0O9pDB1ko7F2xYD8ED/B+jTto9Z58emmiY/rFKq8HD0oEBdQG6pKIwIWhCWKoQAFKoL+ePSH6w7t44tF7dQWF4o7/N28mZG9xnMDpvNxNCJONs7W/V1CWwDlVLBkunhLFp1FAWYFOgb0r0l08NlvUs3BzfGdhrL2E5jAf2H//ms80ZBf1x2HOezznM+6zwrjq8A9PedIegf0X4EEUERQne5lVGoLmTammlczb9KF58u1erjVqbyPXvdsk9PdfemNajtfdNYcxCYhqlt+Z727Zv9w6wfT/3I/RvuN5JyeXnky/x77L9RKpRUaCu4c92d/HL2F+yUdqydu5a54XPrdS2NTsPT254G4NGIR+nRpodZ55sqowWVpLSaqV6uQCBoHCxZCJEkieNpx1l3bh2R5yM5k3lG3qdAwbCQYbLPYqhPqNVfm6DpqSv2k6r5t+H/oXJcqCDML0wvP9P/fkAvyXYg6YCcMx1MPki+Op+tl7ay9dJWQN/p36dtH6MFZh29Ojb72EVgHl/FfsV//vyP/t+3fMXUrlNrPb7yfSuh+9twXY/ImwQ3YmreVFDavH9X1XXXd/PpxuY7N9PFpwsAOy/vZMaPMyjVlDIxdCKRd0TW+oyiNr4/8T1HU4/i4ejBm2PfNOvcCm0FJ9JOAHUXRkD/fK1AXdAs8yZRGBHIWLIQApBVkqU3Ajy3jp2Xd8oa6qA3lTUE9aM6jGp2GnQCyzC5VyDLFg6o1mBrRt9ANpxINdoeUMmwuCaUCiXhbcIJbxPOAwMeAPT3YuWg/1DyIXLLctlycQtbLm4B9K2L/QL6yQH/8JDhhHiEiKC/hVKhreDWX27lWNoxvT7unVtp49qmzvMm9wrkjdkh/PP346ik6xqsptyblqKm901jzkFQN62hfV+r0/J/Uf/HO/vfkbfZKexYPnM5d/e9G9Cvipr36zwiz0dir7Tn19t/ZUb3GfW+5vKjyzmVcQpvJ2+WjF5i9vmmGq9DJfN10TEiEAgqYUohxM3BTe8RUkchBPSfpdGJ0bK08JW8K/I+O6UdYzuNZXbYbGZ2n0mgu/gb3xqpK/YD6hUX+jj7MLXrVPkht0an4WT6SaMFZlfzr3I87TjH047zZeyX+rHdAozktwYEDjDZzFfQ/NgYt5FHtzwKwJLRS2Spn7qY3CuQXt0OcOxCKHZcz7NE3iS4kdaQNx1NPcqstbNILEiUt43vPJ6fb/1ZXoy19dJWZq2dhVqrZmrXqfx2+2842dXvNReqC3l5l9439dVRr5rdxXEm8wxqrRpPR09CveteiOHj7MPV/KvNMm8ShZFWTF5ZHn9e/VMO6g3yEpXp5ttNDuhHdxxNkHtQrWMm5ifKQf2+q/uMCitdfboyp8ccZofNJiI4QsgYCQB9sDIhPIBDCTlkFJbh765vZ1UpFbwwuUe1283Fz8WPW7rdwi3dbgH+rn6nnzAK+hMLEjmSeoQjqUf47NBnAAS7BxsVSvoF9BMGli0ASZJ4cOODbI/fjou9C5vmbzJ51aUkSay++AJJjjsY6HcH/zfiPdp6ONf73qwvtb1vBLZBS2/fzy/L5851d7L54mZ5m6+zL7/P+52R7UcCeunMW3+5lU0XNuGocmTdHevqXGFYG3llefzf7v8D4PUxr+PrYr5BpFmFkb+TlBu9AAQCQetCJ+k4mX5SXjy27+q+BhVCQP/5GJUQReT5SNbHrSejOEPe52znzJSuU5gdNptpXafJn0WC1k1dsZ8l4kI7pR0DAgcwIHAAjw9+HNB728Qkxcg509HUo6QVpbHu3DrWnVsHgIPKgUFBg4y6Stq6tbXsD0DQJBxMOsgdv96BTtJxf7/7zVqUsiN+B5sS/43CScVXk3bi79y1SXIWkTfZPi09b1p7ei33r7+fUk2pvG3RoEV8MvkTOVbYdGETc3+eS7m2nJndZ/LTrT81qOD8zl/vkFaURqh3KE8MfsLs82V/kaCBJi0Wbs55kyiMtCKsUQgBvXGxoRhiePMY6B/QXy6GhLcJF6vvBdWiUioYFlr1AVdN2xuKvcqeQUGDGBQ0iCeHPAnoi3qVg/5jacdILkzml7O/8MvZXwBwsnMiIihCDviHtRtmUpeBwLZ4bfdrrDyxEpVCxc+3/kxEcITJ5648sZJt8dtwtHNk9bwldPdrOo1Ta70/BJahJbfvX8i+wIwfZxCXHSdvC28Tzsb5G2UTztKKUub8PIetl7biZOfE+nnrmRg6sUHX/fe+f5NVkkUPvx48MugRs88vUBdwIfsCYJqUluwx0gxbwgUCQf0xtRByU/ub5E76AYEDsFPWnloXlRfxx8U/iDwfyeaLmylQF8j7vJy8jKSF6yubIWjZ1Bb7WSsuDPYI5tbwW7k1/FZA//f9SOoRowVmmSWZ8r+J0Z8X6h1qtMCsZ5ueNfr4CWyTSzmXuOXHWyjVlDK5y2T+e8t/TX6eU1RexIMbHwTg8SGP8uCwMVacad2IvMm2aal5U3Xd9QoUfDL5Ex4f/Lj8foo8F8kdv95Bha6CuT3msmbumgYtyL2Sd4WlMUsBWDpxab0KLEdS9PLDgwLrXkwGlTrtm2HeJAojLRhrFUIkSeJI6hFZ+/Z81nl5nwIFI9uP1Mtk9ZhNR6+Oln5ZAoFVCPEMIcQzhNt73g5ASUUJsSmxRkF/dmk2f177kz+v/Smf19Wnq1HQH94mXHRD2TBfxX7Fv//8NwD/veW/TOs2zeRzUwtTZW+D18e8Tne/7laZo6Dl0BLb97de2sq8X+eRr86Xt03uMpm1c9fi6eQJ6D8/Z66dyc7LO3Gxd2Hj/I2yD1R9uZh9kU8PfgrAh5M+rJcEpyEOau/Z3qSitiHAL9OUUaYpq3cru0AgsG2sVQgByC7JZkPcBiLPR7I9fruRtHCgWyCzwmYxp8ccRncYLaSFBc0CZ3tnRrYfKXeHSpJEfG68Uc50OuM08bnxxOfG88PJHwBwd3BnaLuhcs40JHiIHDcIbI+M4gwmr5pMVkkWAwMH8sttv5j1GfXyzpe5mn+Vjl4deWvcW1acqaCl0NLypuq6693s3fj5tp+Z0nWKvO2XM78w/7f5aCUtd/S8gx9m/9DgeOCFHS+g1qoZ22lsvSWMDcbrA4PqXkwGzVuCWBRGWhDWKoSAXm/0r2t/EXlO3xlSWRfPXmnP+M7jmR02mxndZ4i2WUGLwMXehVEdRjGqwyhAH/RfyL5wPehPiuZs5lku5lzkYs5FVp5YCYCno2eVoN/d0b0pX4rgbzZd2CTr47426jXZg8YUJEni0S2PkleWx8DAgTw7/FlrTVPQwmgp7fuSJPFB9Ae8tOslI5nMJwc/ydJJS+UHhEXlRUz/cTp7ruzB1d6VLXdukT9HG8JzO56jQlfBlC5TmNxlcr3GMEdGC8Dd0R2lQolO0pFbmiu0/QWCFoI1CyEASQVJ/H7+d9adW8e+q/vQSlp5XxefLswOm82cHnMYHDxYLKYRNHsUCgVdfLrQxaeL7C+WX5bPweSDct50IOkAheWF7Li8gx2Xd+jPQ0Ev/15GC8xCvUOFwoQNUFxezC1rbiE+N55OXp3YvGAzbg5uJp//17W/+Pzw5wB8Pf1rs84VtG5aSt50IfsCM9fONFpE3tGrI5vmb6Knf09525pTa7gr8i50ko6FfRby7cxvTY41auLPq3/yy9lfUCqUfDTpo3p9ppZryzmZfhIwPW9qzp32ojDSjLFmIQT0KyR3Xt5J5Dm99m12aba8z9XelSldpzAnbA5Tu04Vqz0ELR6FQkF3v+509+vOff3vA/TVcNnUPSmag0kHyVfnsy1+G9vitwF6M/je/r2Ngv5OXp1E0N/IHEo+JOvj3tfvPv415l9mnf/L2V/4/fzv2CntWDFzRYMDFkHrorm375dWlPLQpodYdXKVvE2Jks+nfs6iiEXytgJ1AVNXT2V/4n7cHdzZunArw0OGN/j6Oy/vZEPcBlQKFR9O+rDe4xxJ1beEmyKjBfrPby8nL3JKc8gtE4URgaC5Yu1CCEBcVpwsLXwo+ZDRvn4B/fTd9GGz6eXfS8SAghaPp5MnE0MnyhKaWp2WM5ln2H9tP9FJ+mLJ5dzLnMo4xamMU3x15CsA2ri0McqZBgYOxNneuSlfSqtDo9Mw77d5HE45jK+zL3/c+YdZC19LK0r5xwa9Ofs/+v+D8Z3HW2uqghZKc8+bquuuHxEygsg7Io061lceX8n9G+6Xn098Pf3rBssN6iQdi7ctBuDBAQ/Sp22feo1zOuM05dpyvJ286eTVyaRzDB4jojAisCqmFEK6+3aXA/rRHUabncQXqAvYcnELkecj2XJxC0XlRfI+H2cfZnSfwZywOYzvPF4EKYJWj7ezN1O6TpFbITU6DafST8mFkujEaK7kXeFE+glOpJ9gWewyANq6tjUK+gcEDhASLVbkUs4lpq2ZRklFCZO7TOarW74y66FEVkkWj2/RG1D+c+Q/6x1gCATNkaSCJGb/NNvIQ8zDwYNfb/+VCaET5G35ZflMXj2ZA0kH8HT0ZPtd2xkcPLjB19foNLKE3WMRjxHmF1bvscztGAF9W3hOaU6zNBIUCForjVEIkSSJY2nHZGnhs5ln5X0KFIxoP4LZYbOZFTZL9l4SCForKqWKPm370KdtH3lBRVpRGjGJMXLeFJsSS2ZJJuvj1rM+bj2gV6YYEDjAKG8yZ6GnwDwkSeKxzY+x6cImnOyc2Dh/o9nSwf/a8y8uZF8gyD2IDyZ+YKWZCgS2hyRJLI1Zyos7XzTqrr+7793875b/Gfl8LD+6nAc3PoiExEMDHmLZLcss0kG68vhKjqYexcPRgzdufqPe45hrvA7XpbSaY84kCiM2TG5pLn9e+1MO6o+nHbd4IQT0+pEG7dudl3dSri2X9wW7B8vt3jd1uEmskhYIasFOaUf/wP70D+zPY4MfAyClMMUo6D+ScoT04nR5VSGAg8qBgYEDGR4ynBEhIxgWMowAt4CmfCkthsziTFkfd0DgALP1cQEWb11MZkkmvfx78cqoV6w0U4HA9ohOjGbOT3NIL05HgQIJiVDvUDYt2GRUoMgtzWXiqonEpsTi7eTNjrt2mKxHWxffHP2G0xmn8XH2YcmYJfUeJ78sn4s5FwHTO0ZAvygkPje+WerlCgStBa1Oe70QclVfCMkryzM6xt3BnZs63CR30vcP7G92XqPVadmfuJ9159bx+/nfuZp/Vd5nr7RnbKexzOkxhxndZ4g4TiCogwC3AGb30PuSAqg1ao6mHpVzpv3X9pNenM7B5IMcTD7IRwc+AqCDZwejQkmftn3EMwoL8Z8//8P/jv4PBQp+nPsjw0KGmXV+bEosH8ToiyHLpi3Dy8nLCrMUCGyP6rrrAd4a+xYvjXzJqLjw39j/smizvkD8WMRjfDrlU4sURQrVhfwz6p+AXjbc39W/3mPJi8lMNF6HSh0jzTBnEn9BbIjGKoQAXM27qte+Pb+Ov679ZVTR7ObbjTlhc5jdYzaDggYJ7VuBoAEEuQcxN3wuc8PnAnqJuiMpR4y6SjKKM4hJiiEmKYalMUsB6OzdWR/wt9MH/b38ezW4tbK1UVxezC0/6vVxO3p1NFsfF/S+JKtPrUapULJixgocVA5Wmq1AYFusOLaCRZsXyYslJCRGdRjFutvX4etyvb09uySb8T+M53jacfxc/Nh51076BvS1yBzyyvJ4dferALw+5nVZu7Y+HE09Cuj1fSvPvy6ac1u4QNBSaaxCCOgf1u5K2MW6c+vYELeBzJJMeZ+LvQtTukxhTg+9tLB4CCgQ1B9HO0eGhQxjWMgwnuVZJEniSt4VI3/Hk+knuZp/lav5V/nx9I+AXuJ7cPBguVAytN3QBsULrZXvjn8nx1yfTfmMWWGzzDq/XFvO/ev1skDze82vt+GzQNDcSC5IZtZPs4y6651UTqyeu5o5PeYYHfvZwc94cuuTACwespgPJ31oMXnNt/96m7SiNLr4dOGJIU80aCyD/LC5XfbQPHMmURixIFqdZJZJUGMWQiRJ4lzWOSLPRbLu/Dr5AYGBAYED5GJID78eQvtWILASTnZOjGg/ghHtRwD69+bl3MtGQf+p9FNczr3M5dzL8qoDNwc3van734WSIe2GiAS8Fgz6uIeSD+Hj7MPWO7eavXozvyyfRzY9AsAzQ58hIjjCGlMVCGwKjU7Ds9ue5dNDnxptv7/f/Sy7ZZlRcTCjOIPx34/nVMYp/F392XX3Lnr597LYXN7c+yZZJVn08OvBwwMfbtBY9ZHRgkpBfjNc/SQQ2Crm5kyNWQgB/arLPy79QeT5SDZf2ExheaG8z9vJmxndZzA7bDYTQycKaWGBwEooFAo6eXeik3cn7uxzJ6B/bx5KPiTnTDGJMeSr89l9ZTe7r+yWz+3h18Ooq6S7b3fxfKMWtsdv58GNDwLw4ogXZeUDc3j7z7c5lXEKPxc/Ppn8iaWnKBDYJDGJMcz5eQ5pRWlyd32QexAb529kQOAAo2M/jPmQZ7c/C8ALw1/gnfHvWOxzKSE3gQ9j9D6MSycubdBizjJNGafSTwGYpQAgm683w5xJFEYsxNbTqby+8Syp+WXytkBPJ5ZMD2dyL30xozELIaB/4Ho45TCR5/SSPXHZcfI+pULJyPYjmRM2h1lhs+jg1aHe1xEIBPVHoVAQ6hNKqE8od/W9C9A/kL8x6C8sL2Tn5Z3svLxTfx4Kevr3lAslw0OG08Wniwj6sYw+LsDzO54nuTCZrj5dG6TRKRA0F7JLsrn919uJSogy2v7+hPd5dtizRp8vaUVpjPt+HGczzxLgFkDU3VH0aNPDYnO5kH1BLs58NOkjsyXwbiQ21fyWcGjeerkCgS1iSs7U2IUQ0PuJGaSFd8TvQK1Vy/uC3INk8/RRHUY1+PNIIBDUD3dHd8Z1Hse4zuMAvZ/QucxzRp34F7IvcC7rHOeyzrH82HJA/8Cucid+RHAELvYuTflSbIajqUeZ+/NcNDoNd/a+k7fGvWX2GKczTvOfP/8DwOdTPjcymBYIWirfHvuWRzY/YtRdPzBwIOvnrSfYI9jo2Hf+eoeXd70MwCs3vcKbN79p0ec2L+x8AbVWzbhO45jebXqDxjqVfooKXQW+zr508DT9ObGhy7455kyiMGIBtp5OZdGqozeUOCAtv4xHVh1hSK9TXCz+pdpCSJhfmBzQj+owqkGFENCv9Nx3dR+R5yL5Pe53kgqS5H0OKgfGdx7P7LDZzOg+o0GacwKBwHp4OnkyIXSCbGys1Wk5m3nWKOi/lHOJ0xmnOZ1xmv8d/R8Afi5+RkH/oKBBrXIl41t/viXr466Zs4bhIcPNHmPX5V18ffRrAL6Z8U2r/DkKWhenM04zc+1MLudellc8udq7smbumipyCCmFKYxdOZa47DiC3YOJuieKbr7dLDqf57Y/h0anYWrXqUzqMqnB4x1J0beEm+t9Iq9+aoZt4QKBrVF7znSUaREpJFVsapRCCEBifqLs+bbv6j4jaeGuPl2Z02MOs8NmExEcIaSFBQIbRKlQ0tO/Jz39e/LgQH3HQ2ZxJgeSDsh506HkQ+SU5rDpwiY2XdgEgEqhon9gf6MFZiGeIU35UpqEK3lXmLZmGkXlRYztNJYVM1eY/Vmn0Wm4f/39VOgqmNl9Jrf3vN1KsxUIbAONTsNz25/jk4PGnVFze8zl+9nfVym6vrH3DZbs0fskvj7mdV4b/ZpF57Pv6j5+PfsrSoWSjyZ91OCCS2UZLXPGMiwmK9WUotaojczmbR1RGGkgWp3E6xvPVgnwAST0VcP9pwNJdjoBCsmoEDK642iLGPOVacrYEb+DdefXsTFuI9ml2fI+Nwc3pnadyuyw2UztOhUPR48GX08gEDQuKqWK3m1707ttbx4epJeTSS9KJyYpRpbgik2JlVc7bojbAOjN4AcEDjAK+m9cvdDSWHl8Jf+3+/8A+HTKp7KhozkUlxfL7eSPDnqUUR1GWXSOAoGtEXkukrsi76K4ohilQolO0hHiEcLG+Rur+IUk5icy9vuxXMq5RHvP9kTdHUWoT6hF57MjfgcbL2zETmnH0olLGzxebmku8bnxgHnG6yA8RgQCS1F3zqRj/WF7kp02gUKHu4M7ozqMkjvp+wX0s4jB8vms86w7t47I85FGeuAA/QP6y8WQ8DbhogtXIGiGtHFtw/Tu05neXb9qulxbzom0E0am7smFycSmxBKbEit3p7bzaGe0wKxfQL8W3R2WU5rDlNVTSCtKo0/bPqy7fV295Hc+ivmIwymH8XT05MtpX4rPTUGLpqbu+ldueoU3bn7DqLAoSRKv7X6Nf//5b0BvxP7yTS9bdD5anZbFWxcD8NCAh+jdtneDxzTERubmTJ5OnvLiutyyXIs8624sRGGkgRxKyDFqBb8RBUrsaMN/Rv7E/UNHWuzmyC/LZ8vFLaw7v44/Lv5BcUWxvM/X2ZeZ3Wcyu8dsxncej5Odk0WuKRAIbIe2bm2ZFTZLNsZTa9QcSzsmF0r2J+4nrSiNQ8mHOJR8iI8PfgxAe8/2RkF/n7Z9WkzQvz1+Ow9sfADQ63Y+Pvjxeo3zStQrJOQl0N6zPe+Mf8eSUxQIbAqdpOPf+/4tr2JSoEAn6RgcPJj189ZXiVmu5F1h7MqxJOQl0NGrI7vv2U1Hr44WnZNGp+GZ7c8A8FjEY4T5hTV4TMPKp1DvULnQYSrCY0QgsAym5kxPDfiMhYMGW6wQIkkSR1KPyD6L57POV7qmgpHtR+plsnrMtvjnmUAgaHocVA5EBEcQERzBUzwF6Bd5VPZ3PJZ6jKSCJH4+8zM/n/kZAGc7ZyKCI+ScaVjIMPxc/JrypViM0opSZvw4g/NZ52nn0Y4tC7bg6eRp9jgXsi/w2h796vePJn1EkHuQpacqENgMlbvrDQvJHFQOLJ+xnIV9FhodK0kSL+96mXf3vwvoZYmfG/6cxee08sRKjqUdw9PR02LS3/X1ZVQqlHg6eZJXlkduqSiMtCoyCmsO8CvT029Yg2+MjOIM1p9fT+T5SHZe3kmFrkLe186jnWyePrL9SIskEgKBoPngaOfI0HZDGdpuKM8MewZJkriaf/V60J8YzYn0E1zLv8a1/GusPb0WABd7FwYHDzYK+g3SMc2JY6nHZH3c+b3m8/b4t+s1TnRiNJ8e1K8c+3r617g7ultymgKBzVBUXsS9v9/Lb+d+k7dJSMzrNY8VM1ZUkY+Lz4ln7PdjuZZ/jVDvUHbfs9sqshNfH/ma0xmn8XH2sVireX1ltEB0jAgElsLUnOnm9jMZFNSw7laNTsNf1/6SfRYTCxLlffZKeyNp4bZubRt0LYFA0PwI8QzhDs87uKPXHYC+Wzw2JZb9ifuJTowmJimGnNIc9l3dx76r++Tzuvl2M1pg1qNNj2Yns6fVaVkYuZD9ifvxdPRk651b66UooJN0PLDhAco0ZUwMnci9/e61/GQFAhvh9/O/c1fkXRSVF6FSqNBKWtq4tOH3eb9Xke2WJIlntz/LRwc+AuCTyZ/w5JAnLT6nQnUh/9z1TwBeG/2aRbx9SitKOZN5BjC/MAJ6CeK8srxmlzeJp+cNxN/dtG4MU4+7kSt5V+Sg/q9rfxl5lIT5hTE7bDZzesxhYOBA0bYoEAhkFAoFHb060tGrIwt6LwD0D0JlU/e/g/68sjy9uemVPfK5YX5hDG83nBHtRzA8ZDjdfLvVGfRrdRKHEnLIKCzD392JwZ18UCkb5zPpSt4Vpq6ZSlF5ETd3vJlvZ35rVpJimHtyXiEv7/4PkqTg3v73MDF0ohVnLRA0HQm5CcxcO5NTGafklmeAf43+F6+Nfq1KPHEx+yI3r7yZ5MJkuvl2I+ruKKvI8uWV5fHq7lcBeGPMGxYr0tbXeB2E+bpAYCmsnTOVacrYeXknkeci2XBhA1klWfI+V3tXI2nh+qyMFggELRdXB1dGdxzN6I6jAf1D/wvZF4wWmJ3LOseF7AtcyL7Ad8e/A8DT0ZNhIcPkQsng4MF1LqpqypxJkiSe2fYM687pZbPWz1tPT/+eJp9fee7RyVv58+p+XB1c+eqWr8SzKEGL5MbueqVCiVbS0rNNTzYt2FSl01SSJJ7840k+P/w5AF9O/ZJFEYusMre3/nyL9OJ0uvh0qbdSxo2cTD+JRqehjUsb2nm0M/v85po3icJIAxncyYdATyfS8suq1cxVAAGe+j94piBJEmczz8rat8fSjhntHxQ0SN/uHTabHm16NPwFCASCVoObgxtjO41lbKexgP4P/fms80ZBf1x2HOezznM+6zwrjq8A9JX/Ye2GyT4lEUERuDq4yuNuPZ3K6xvPGklkBHo6sWR6OJN7BVr1NVXWx+3t35vIOyLNMvqqOvdHaa+cx7SQYdaZsEDQxOxO2M1tv9xGdmk2dko7NDoNTnZOfDvzW+b1mlfl+HOZ5xj3/ThSi1IJbxPOrrt3Wa01+o29b5Bdmk14m3DZT8kS1LclHCqZrwspLYGgQVg6ZwIoUBew5eIWIs9HsuXiForKi+R9Ps4+emnhML208I1dcAKBQFATSoWSML8wwvzCuL///YA+55BN3ROjOZh8kHx1PlsvbWXrpa3yeX3a9jHyd+zo1VEuGjRlzgSwNGap7Kny/azv5UKQKVSdewDBLGdOX52QIRS0SKrrrtdJOqZ2ncqPc3+s4t+sk3Q8uvlRvjryFQoU/G/6/3hgwANWmVtCbgIfHvgQgKUTl9bLH6g6KudM9Sl2yp32zSxvEoWRBqJSKlgyPZxFq46iAKNA33AbLZkeXusqAJ2k43DyYbkYcjHnorxPqVAyqsMoZofNZlbYLNp7trfK6xAIBK0PpUJJeJtwwtuEy3+0s0qyjIL+Q8mHyCnNYfPFzWy+uBkAlUJFv4B+DA8Zjoc0ilX7qj5sSMsvY9GqoyxbOMBqgX6ZpsxYH/dO8/Rxt55OZdGqo1Ue0Ch03jz/cxxuDq6NkqQIBI2BJEl8cfgLFm9djFbSykWRtq5tWT9vPUPaDalyzumM04z7fhwZxRn09u/Nzrt34u/qb5X5Xci+wGeHPgPgw4kfWkwSNLskmyt5VwAYEDjA7PMrS2lJkiRWRAoE9cQSORNAZnEmG+I2sO78OnZe3km5tlzeF+weLHfT39ThJiEtLBAILIaPsw9Tu05latepgF6y72T6SaMFZlfzr3I87TjH047zZeyXAAS4BTA8ZDj+yon8EVt1BXZj5EwAa0+v5fkdzwPwwYQPZBkxU6gpZ7LDj40HFUztmipyJkGLIiE3gVk/zeJk+knZTwRg8ZDFfDDxA1RKldHxWp2WhzY+xIrjK1Cg4NuZ33JPv3usNr8Xdr5Aubac8Z3HM73bdIuNa/BlrM9iMqjkzSiktFofk3sFsmzhgCrV/4Baqv8V2gr2Xd1H5Hm9TFZKYYq8z0HlwMTQicwOm830btMtohUnEAgEpuDn4sct3W7hlm63APrPqhPpJ4yC/sSCRI6kHuFIyjGCywagwgkFxg8yJPQPOl7feJYJ4QEWbxHX6rQsXHddH/ePO/8wq91Tq5N4fePZaletGh7RWGvuAkFjU64t57HNj/HNsW8AfVFUo9PQt21fNszfUO2iixNpJxj/w3iySrLoF9CPHXftsKrp6HPbn0Oj0zCt6zQmdZlksXENAX5Xn671ks8xBPjl2nJKNaW42LtYbG4CQWujPjkTwLX8a7J5+l/X/pIfUIBe89/gszgoaFCz0/sXCATNEzulHQMCBzAgcIAsY5NckExMUoycMx1NPUpaURrrzv5OcNl0VEiNnjMB7Lmyh3t+1z+kfWrIUzwz7BmTzxU5k6C1Ubm73l5pT4WuAjulHZ9P+bzajnatTst96+/jh5M/oFQo+WH2D7KUuTXYe2Uvv579FaVCyYcTP7Tooi1Dx8jAQPN9GaH5dtqLwoiFmNwrkAnhAbXqRZZWlLI9fjuR5yPZELfBqIrm5uDGtK7TmNNjDlO6TBGGvwKBwCawV9kzKGgQg4IGyaZhifmJxCTFsP7kOfafqLlwKwGp+WUcSshhWKivxeZk0Mf97dxvOKgc+H3e7/Ty72XWGIcScoweylS5BtaZu0DQ2KQXpTP357nsT9wv+4noJB0zus9g9ZzVuDm4VTnnSMoRJvwwgdyyXAYFDWLbwm0W8/uojh3xO9h4YSN2SjuWTlxq0bEbIqMF+vjMYLKYU5ojCiMCQQMxJWcCvYyfoZveUOA0MCBwgFwM6eHXQ3RyCQQCmyDYI5hbw2/l1vBbAf3znyOpR/jl2HHWxzR+zgRwKv0Us9bOolxbzq3ht/LhJPMepIqcSdBakCSJLw9/yVNbn0IraXFQOVCuLcfLyYtfb/uVcZ3HVTlHo9NwV+RdrD29FpVCxZq5a7i95+1Wm6NWp+XpbU8D8PDAh+ndtrfFxi6pKGmQ8ToIj5FWQ21mWSqlosofg/yyfDZf3My6c+v449IflFSUyPv8XPyY2X0mc3rMYVyncWbp4gsEAkFTEeIZQohnCI4Vyew/cbzO4zMKaw6m68OHMR/K+rgrZ61kTMcxZo9h6pwsPXeBoDE5knKEWT/NIqkgSV7xBPD88Od5e9zbVdrAAQ4lH2LiDxPJV+czJHgIWxduxcvJy2pz1Og0coD/eMTjdPfrbtHxDQ9U67vySaFQ4OPsQ2ZJJrmlufUyIhQIWis15U3V5UySJBGbEisXQ+Ky4+R9SoWSke1HMidsDrPCZtHBq0NjvxSBQCAwG2d7Z0a2H0l2TifWxxyv83hL5x1JBUlMWT2FfHU+I9uP5IfZP5jdVSdyJkFroFxbzuNbHufro18D+o6wcm05XX26snH+xmrzkwptBfN/m89v537DTmnHT7f+xJwec6w6z5UnVnIs7Riejp68PuZ1i459Iu0EOklHgFsAQe5B9RqjsgRxc0IURszAVLOs9KJ01setZ925dUQlRMkPIgDae7aXtW9HhIyo9qGEQCAQNAf83Z0sepwprD29lud2PAfA+xPer9Ys2pJzsuTcBYLG5MdTP3L/hvsp05ThZOdEmaYMO6UdX93ylWwkeiPRidFMXjWZwvJCRoSMYMudW6oYC1qa/x35H2cyz+Dj7MNro1+z+PgN7RgBfZCfWZLZ7IJ8gaApMSVv0ug0/Hn1T9adW8fvcb+TVJAkH+ugcmB85/HMCZvDjO4zhLSwQCBotjRF3pFfls+U1VNILkymh18P1s9bj5Od+eOLnEnQ0rmxux708cnNHW/m19t/rbZrXq1Rc8evd7A+bj0OKgd+ve1Xpne3nNdHdRSoC/jnrn8C8Nro1yweFzXUeB2Ex0iLpybDKYNZ1r9mtSNb2sW6c+uIToxGqnRkeJtwZofNZnbYbAYEDhDt3gKBoEUwuJMPgZ5OpOWXVas7q0CvGz64k2UkeCrr4z45+EmeHfZsvcdq7LkLBI2FVqfllahXeHf/uwByUcTH2Yd1t69jdMfR1Z637+o+pq2ZRlF5EaM7jGbTgk3VymxZktzSXF7brS+GvDHmDXmVkaXIKM7gWv41FCjoH9i/3uPIQX4z08sVCJqKuvKm+2/WcblsHRvjNpJdmi3vd3NwY2rXqcwOm83UrlOtXpgVCASCxqCx8w61Rs3sn2ZzOuM0AW4B/HHnH/WWRBU5k6AlU7m73iCdBfBA/wf4YtoXOKgcqpxTpinj1p9vZfPFzTiqHIm8I5IpXadYfa5v//k26cXpdPXpKvsaWZLY1Ib5i0CljpFmljOJwogJ1GY4Jf3931d+P0ay0/Og0JsBRgRFMKfHHGaHzba4LIRAIBDYAiqlgiXTw1m06igKMPqMNJR/l0wPr5cR343yG84uybI+7pwec8zWx23MuQsETUV+WT4L1i1gy8UtANgr7SnTlNHdtzubFmyii0+Xas+LSohi+o/TKakoYVyncWyYv6FRvDTe3Pcm2aXZhLcJr9bMsKEcSdHLaHXz7dagB6zNtS1cIGgK6sqbJHR8tTubZKfvQaHD19mXmd1nMrvHbMZ3Hl+vFc0CgUBgy1g776icN7Vxd+CzY4vZfWU3bg5u/HHnHw2SHxQ5k6ClUrm73sXehZKKEhQoWDpxKYuHLq72WUNpRSmzfprF9vjtONk5sWHeBiaETrD6XC/nXubDAx8CsHTi0moLNg3FEl32svl6M8uZRGHEBOoynAIFdrRhqP+dLBgYwaywWYR4hjTa/AQCgaCpmNwrkGULB1SRywioRmbQVKqT35CUOZTbhTOio5JVs1dZRIbQGnMXCJqKuKw4Zq6dSVx2HHZKOzQ6DRW6CsZ3Hs/Pt/5cYzfG9vjtzFw7kzJNGZNCJxF5RyTO9s6NMt/PDn0GwEeTPsJOafmQ1OAv0pAAH64H+c3NSFAgaArqypsUKLGjDQu6v8qDw8Ywsv1Iq7z/BQKBwJawVt5RXd6kYQJujtdYd/tr9Avo19Cpi5xJ0KLQ6rT8X9T/8c7+dwDkooibgxs/zv2RW7rdUu15xeXFzFg7g6iEKFzsXdg0fxM3d7q5Ueb8wo4XKNeWM6HzhBrn1xCKyos4n3UeaGDHiDBfb7mYaiT10vC3mdkv2MqzEQgEAtticq9AJoQHVGuwai41yW+g88K//J881a+7RR/aWnLuAkFT8cfFP5j/23zy1flycA+waNAiPpn8CfYq+2rP23JxC3N+moNaq+aWbrfwy22/NNpq7ed2PIdGp+GWbrcwMXSiVa5hiZVPIKS0BAJzMDVvur3Hg4zpKPImgUDQerB03lFT3qTCF1/1i2hLezV80n8jciZBS+DG7nonlRMlFSW092zPxvkb6dO2T7XnFaoLueXHW9h3dR9uDm5sWbCFmzrc1Chz3ntlL7+d+w2lQtlg1YyaOJ52HJ2kI8g9iED3+hc6hZRWC0YYTgkEAkHtqJQKhoX6NmiM2uQ3FCgB+HDbNeb062LRINwScxcIGhNZMqGgjN3XfufTY08hKbR4OHpQoC5AqVDy8aSPeXzw4zUGzxviNnDrz7dSoatgVtgsfrr1J6u0ZVfH9vjtbLqwCTulHR9M+MBq1zEURhqy8gmar5GgQNAUiLxJIBAIasZSeUddeZMCeH3jWSaEB1gsbxI5k6A5YsibTqZe4YMDr3GpaCv2Knu0kpYybRlD2w3l9zt+p61b22rPL1AXMGX1FKITo/Fw9GDrnVsZFjKskeauZfG2xQA8PPBhevlbrthZGUsvJlNr1ZRWlDaKCoElEIURExCGUwKBQGB96pYthNT8Mg4l5IigXNBqqSqZ0JEgvqHU5Qdy1FG4O7jz820/M7nL5BrH+O3sb8z7bR4anYbbwm9j9ZzVNXaVWBqNTsPT254G4PGIx63mw5ZWlEZyYXKDjddBeIwIBOYg8iaBQCCwPnXlTRIibxIIquZNj9JOcQfZ9v+lQhXD/F7zWTFzRY0d83lleUxeNZmDyQfxcvJi28JtDA4e3Gjz/+74dxxPO46noydv3PyG1a4jyw8HNqww4u7ojlKhRCfpyC3LbTaFEWVTT6A5YDCcgusGUwaE4ZRAIBBYBlPlN0w9TiBoaRgkE25MhFX44lbyNB0dZxHzj5haiyI/nf6JO369A41Ow4LeC1gzd02jFUUA/nfkf5zNPIuvsy+vjX7NatcxGK/3aNMDNwe3Bo3VXPVyBYKmQORNAoFAYH1E3iQQ1M71vKnUaLtS8qZN+T+5P+xTVs9ZXWNRJKc0h/Hfj+dg8kF8nH3YdfeuRi2KFKgL+GfUPwFYMnoJfi5+VruW3GUf1LAue6VC2SzzJlEYMRGD4VSAp/GbJsDTiWULBwjDKYFAIGggQn5DIKgZUyQT/HWPEuYXXuMYq06uYsG6BWglLXf3vZvvZ33fqKbHuaW5vLZbXwx54+Y3ajSEtwSWktGC6+brzU0vVyBoKkTeJBAIBNZF5E0CQc1odRL/2nAGCYkbl2kY8qazl8PRVZdYAVklWYxdOZYjqUfwc/Ej6u4oBgQOsPq8K/PWn2+RUZxBN99uPDb4Matdp1BdSFxWHGCZvKk5+owIKS0zEIZTAoFAYD2E/IZAUDN1S80pSC8or1Ey4bvj33H/+vuRkPhH/3/w1S1foVKqrDfhanhj7xtkl2bTs01PHhr4kFWvJbeEN1ArF4SUlkBQH0TeJBAIBNZD5E0CQc1sPhNHWoGaqr2rBhQ1Ss1lFGcw7vtxnM44TVvXtuy6exc9/Xtafc6VuZx7mY8OfATA0olLreoDeSztGBISIR4hNfqsmENz9GYUHSNmYjCcmtkvmGGhviK4FwgEAgsh5DcEguqp0Fbw/l9fmXRsdZIJXx/5mvvW34eExCMDH+F/0//X6EWR81nn+fzw5wB8NOkjq3eqWMpEECoF+M1o5ZNAYAuIvEkgEAisg8ibBILqiU6M5pENL5h07I15U2phKmO+G8PpjNMEugWy5949jV4UAXh+x/OUa8uZ0HkC07pOs+q1LCWjZaA5doyIwohAIBAIbAYhvyEQGJNdks3k1ZPZEr/WpONvlEz48vCXPLRJ353xxOAn+HLalygVjR/+Pbf9OTQ6Dbd0u4UJoROseq2UwhRSi1JRKpT0C+jX4PEMAX5OaQ6SVEPPvUAgEAgEAkEjIvImgcCYFcdWcPPKm8lRXzHp+Mp5U3JBMmNWjuFc1jnaebRj7717CfMLs85Ea2HPlT2sO7cOpULJR5M+QqGwbnFTXkzWQON1AwYJ4ubkMSKktAQCgUBgUwj5DYFAz6n0U8xcO5OEvATcnNzxspPIL1GYLJnw8YGPeXrb0wA8M/QZPpj4gdWD6+rYdmkbmy9uxk5px9KJS61+PYPxenibcFzsXRo8niHA10paisqLcHd0b/CYAoFAIBAIBA1F5E0Cgb67/rntz/HpoU8BmN2zG8nxDmQUlJuUN13Lv8bYlWOJz42nvWd7dt+zm87enRvvBfyNVqdl8dbFADwy8JFG6VaxpPwwNE8pLVEYEQgEAoHNYZDfEAhaK5HnIrkr8i6KK4rp5NWJDfM3kJThy6JVR1GAUZBfnWTC+/vf54Wd+jbyl0a8xFvj3mqSoohGp+GZ7c8A+o6Vbr7drH5NS8poATjbOeOgcqBcW05uWa4ojAgEAoFAILAZRN4kaM1kl2Rz+6+3E5UQBcAbY97glVGvsP1Mukl505W8K9y88mau5F2hk1cndt+zmw5eHRr7ZQDw7fFvOZF+Ai8nL16/+XWrXy+/LJ8L2RcAC0ppNUMJYiGl1YrQ6iRi4rNZfzyZmPhstDohByEQCAQCgS2hk3S8vud15vw8h+KKYsZ2GsvhBw/Ty7+XyZIJb/35llwUeXXUq01WFAH4KvYrzmaexdfZl9dGv9Yo14xN/VsrN9AyAb5CoWiWQb5AIKgfImcSCAQCgcD2OZV+ioivI4hKiMLNwY3IOyJ5dfSrKBVKk/Km+Jx4Rn07iit5V+ji04W99+5tsqJIgbqAV6JeAWDJ6CX4ufhZ/ZpHU48C0MGzg8WuJ3uMiI4Rga2x9XQqr288S2r+dXOhQE8nlkwPF9qTAoFAIBDYAEXlRdzz+z2sO7cOgCcHP8nSSUuNjMprk0yQJInX977O63v1K4zeGPMGr45+tUleC+i1ZV/boy+GvHnzm3g5eVn9mpIkyVJaluoYAX2Qn16c3qyCfIFAYD4iZxIIBAKBwPaprru+l38vo2Nqy5visuIY+/1YUgpT6O7bnah7oghyD2qiVwP/2fcfMooz6ObbjUcjHm2Ua1paRguElJbARtl6OpVFq45W0dZLyy9j0aqjwphLIBAIBIImJiE3gZlrZ3Iq4xQOKgeWTVvG/f3vr/bY6iQTJEni/6L+j7f+eguAd8a9w4sjX7T6vGvjjb1vkFOaQy//Xjw48MFGuWZyYTLpxemoFCr6tu1rsXENQX5zMhIUCATmIXImgUAgEAhsG52k49/7/s2SPUsAGNtpLD/f+jO+LtXLyVWXN53NPMu478eRVpRGeJtwou6Ooq1bW6vPvSbic+L5+ODHAHw48UMcVA6Ncl2D/LCluuyheZqvW1xK6+233yYiIgJ3d3f8/f2ZNWsWcXFxRseUlZXx2GOP4evri5ubG3PnziU9Pd3SUxGgbwV/fePZag2HDNte33hWtIgLBAKBQNBERCVEEfF1BKcyTtHWtS177tlTY1GkOiRJ4sWdL8pFkaUTlzZ5UeR81nm+OPwFoA/wK3e9WBNDgN/TvyfO9s4WG9cQ5AspLYGlEDmTbSFyJoFAIBAIbJui8iJu++U2uSjy1JCn2LZwW41Fkeo4lX6KMd+NIa0ojT5t+7Dnnj1NWhQBeGHnC5Rry5kYOpGpXac22nUt7csIlaS0mlHOZPHCyN69e3nsscc4cOAAO3bsoKKigokTJ1JcXCwf8/TTT7Nx40Z++eUX9u7dS0pKCnPmzLH0VATAoYQco1bwG5GA1PwyDiU0n2qeQCAQCAQtAUmS+PzQ50z8YSLZpdkMChpE7EOxDAsZZtYYT297mvej3wfgsymf8cywZ6w1ZZN5dvuzaHQapnebzoTQCY12XVlGK9ByAT40T71cgW0jcibbQuRMAoFAIBDYLgm5CQxfPpx159bhoHJgxYwVfDz5Y7MWXx1PO87NK28msyST/gH9ibo7ijaubaw467rZc2UP686tQ6VQ8eHEDxvNFzK3NJf43HjAcsbrIKS0ANi6davR/3/33Xf4+/tz5MgRRo0aRX5+PsuXL2fNmjWMHTsWgG+//ZYePXpw4MABhg4daukptWoyCmsO8OtznEAgEAgEgoaj1qh5bMtjLD+2HIA7e9/J19O/NqvLQSfpeGLLE3wZ+yUA/532Xx4e9LBV5msOWy9tZcvFLdgr7Vk6cWmjXls2XrdggA8I83WBxRE5k20hciaBQCAQCGyT3Qm7ue2X28guzaata1si74g0ayEZ6BdPTfhhArlluUQERbBt4TZ54VNTodVpWbx1MQCPDHqEnv49G+3aBuP1Tl6d5M54S1C5Y0SSpEYr9DQEi3eM3Eh+fj4APj76H/SRI0eoqKhg/Pjx8jFhYWG0b9+emJgYa0+n1eHv7mTScb+dX0FSQZKVZyMwFa1OIiY+m/XHk4mJzxZt+wKLI+4xgaDpSC9KZ+z3Y1l+bDlKhZL3J7zPD7N/MLso8simR/gy9ksUKFg+Y7lNFEUqtBU8s03fsfLE4Cfo6tu10a4tSZJVWsJBeIwIrI/ImZoWU3Omf+9/gc0XNiNJIm6yBUQ8K7A24h4TCJoOQ3f9hB8m1Lu7HuBg0kHGfT+O3LJchrUbxo67djR5UQRgxbEVnEg/gZeTF/8a869Gvba1ciZDkaVCV0FxRXEdR9sGVhV81ul0LF68mBEjRtCrVy8A0tLScHBwwMvLy+jYtm3bkpaWVu04arUatVot/39BQYHV5tzSGNzJh0BPJ9Lyy6rVzAUJDVn8cP5frL34Jnf1uYvnRzxPmF9YI89UYGDr6VRe33jWqJ0/0NOJJdPDheGjwCKIe0wgaDpiU2KZ/dNskgqS8HT0ZO2ta5ncZbJZY2h1Wh7Y+ADfHf8OpULJdzO/466+d1lpxubx1ZGvOJd1Dj8XP14d/WqjXjuxIJGskizslHb0advHomPLHiPNqC1c0HywVM4EIm+qL6bkTFpFFrGZa7nlxzX09u/NiyNe5I5edzSah5LAGBHPCqyNuMcEgqZDrVHz+JbH+ebYN0D9uusB9l/bz5TVUygsL2Rk+5FsWbAFd0d3a0zZLPLL8nkl6hUA/jX6X/i5+DXq9Y+k/i0/bOHCiKu9K3ZKOzQ6Dbmlubg5uFl0fGtg1Y6Rxx57jNOnT7N27doGjfP222/j6ekpf4WEhFhohi0flVLBkunhANzYwKQAFCh4bFxbRne8iQpdBSuOryD8i3Dm/jyXQ8mHGn2+rZ2tp1NZtOpoFY3jtPwyFq06ytbTqU00M0FLQdxjAkHTsebUGm769iaSCpLo7tudQw8eMrsootFpuOf3e/ju+HeoFCpWzV5lM0WRnNIc2QzxzZvfxMvJq1Gvb1j51Mu/F052pq3+NhXhMSKwJpbKmUDkTfXFlJzp3TmDeX7Es7g5uHEq4xQLIxfS5dMufH7oc0oqShp9zq0ZEc8KrI24xwSCpsPQXf/NsW/q3V0PsPfKXiatmkRheSFjOo5h651bbaIoAvDWn2+RWZJJd9/uPBrxaKNf35A3DQy0rPywQqFodj4jViuMPP7442zatIndu3fTrl07eXtAQADl5eXk5eUZHZ+enk5AQEC1Y7388svk5+fLX4mJidaadotkcq9Ali0cQICn8UOCAE8nli0cwMsTprDn3j1E3x/NzO4zkZBYd24dQ74Zwrjvx7EjfodoF28EtDqJ1zeerXaVmmHb6xvPivZdQb0R95hA0DRodVpe3PEid667kzJNGVO7TuXgAwfp5tvNrHEqtBUsXLeQ1adWY6e048e5PzK/93wrzdp8Xt/zOjmlOfTy78UDAx5o9OvLLeEWNl4H4TEisB6WzJlA5E0Noa6caUFEOO9NeI9ri6/xn7H/oY1LG67mX+WJP56gw8cd+Pe+f4vPiEZAxLMCayPuMYGg6TiScoRBXw8iOjEaT0dPNi/YzHPDnzPbq2LX5V1MWT2F4opixncez+YFm3F1cLXSrM0jPieejw9+DMDSiUuxV9k36vWzS7JJyEsAYEDgAIuPX9lnpDlg8b5fSZJ44okniIyMZM+ePXTq1Mlo/8CBA7G3t2fXrl3MnTsXgLi4OK5du8awYdXrxDk6OuLo6GjpqbYqJvcKZEJ4AIcScsgoLMPf3YnBnXxQKa9/uAwLGcbv837nbOZZ3tv/HqtPrSYqIYqohCj6B/TnpZEvMbfHXFRKVRO+kpbLoYScKitSKiMBqfllHErIYViob+NNTNAiKFQXsvJwDKn5FTUeI+4xgcDy5JXlseC3Bfxx6Q8AXhrxEv8e+2+z/5aWa8uZ/9t81p1bh73Snp9v+5lZYbOsMOP6cS7zHF8c/gKAjyd93CTSMtZqCQfRMSKwPNbImUDkTQ3FlJzJ29mbf970T54e+jTfHf+O96PfJyEvgVd3v8q7+9/l4YEP8/TQpwn2CG7CV9JyETmTwJroJB2/Hj8u7jGBoAn48dSP3L/hfso0ZXT37c6G+RvMXkgGsO3SNmb9NIsyTRlTukxh3R3rLN5N3hCe3/E85dpyJoVOYmrXqY1+fYPxehefLlbxWmluHSMWz1ofe+wx1qxZw/r163F3d5c1cD09PXF2dsbT05N//OMfPPPMM/j4+ODh4cETTzzBsGHDGDp0qKWnI6iESqkw6Q93eJtwvpv1HW/c/AYfxnzI10e/5ljaMe749Q66+HTh+eHPc3ffu23qg6UlkFFYc/BVn+MErRdJkriSd4XoxGj9V1I0J9NP4lQxkja8UOf54h4TCCxDXFYcM9fOJC47Dmc7Z5bPWF6vDg+1Rs1tv9zGxgsbcVA58Nvtv3FLt1usMOP68+z2Z9FKWmZ0n8G4zuMa/fqVjdcHBlm2JRyE+brA8oicyXYxNWdytndmUcQiHhz4IL+c+YV39r/DyfSTLI1ZyqcHP+Xuvnfz/PDn6e7XvRFm3XoQOZPAkhSXF3M45TD7r+0nOimamMQY1EW9Rc4kEDQiWp2WV6Je4d397wIwtetU1sxZg6eTp9ljbb6wmTk/z6FcW870btP55bZfcLSznQUjuxN2E3k+EpVCxYeTPjS7E8YSWEtGy4DBm7G55E0WL4wsW7YMgDFjxhht//bbb7n33nsB+Oijj1AqlcydOxe1Ws2kSZP48ssvLT0VQQNp79mejyd/zKujXuXzQ5/z6aFPuZRziYc3PcySPUt4eujTPDLoETwcPZp6qi0Cf3fTCk2mHidoPag1ao6lHbteCEmMJrWoqu5tGzcHMKFo3xLvMa1OqnX1p0Bgaf64+Afzf5tPvjqfdh7tWD9vfb1alcs0Zcz5aQ5/XPoDJzsnfr/jdyZ1mWSFGZuP4X214+JBouKSsLdz5IMJHzTJXK7kXSGnNAd7pT29/XtbfHxDgJ9XlodO0qFUWNWmT9AKEDlTy8FOacf83vOZ12seWy9t5Z3977Dv6j6WH1vOimMrmNNjDi+OeJGI4IimnmqLQORMgoaQmJ/I/sT9cs50PO04WklrdIyHXTHU3GQv01LvMZE3CRqT/LJ8FqxbwJaLWwB4eeTLvHnzm/VSqll/fj23/XIbFboKZofNZu2ta3FQOVh6ymZjeE+lFZTwf3s+AUnJoohFhLcJb5L5xKb+LT9shS57EFJaJnlRODk58cUXX/DFF19Y+vICK+Dr4suSMUt4bvhzfHP0Gz6I+YCkgiRe3Pkib/35Fo9GPMpTQ56irVvbpp5qs2ZwJx8CPZ1IzS+lqu2jfkuApz4wEbRuMooziEmMkbtBDicfRq1VGx1jr7RnQOAAhocMZ3jIcIa1G0aAWxAj340iLb+sWs3clnqPbT2dyusbzxq1xAd6OrFkejiTewU24cwELRFJkng/+n1e2vkSEhIjQkbw2+2/1etvZElFCbPWzmLH5R042zmzcf7GJunGqI4b31cBvI2zooz4VDe6NoGqhEFGq0/bPlZZFWYI8HWSjkJ1Yb1WsAkElRE5U8tDoVAwpesUpnSdQnRiNO/uf5cNcRv47dxv/HbuN8Z2GsvLI19mXKdxTbJCtKVgyJlaWzwrMJ8KbQXH047LOVN0YjRJBUlVjgt2D2ZE+xGMCBnB8JDh9GrTh5s/+LNV3mMibxI0Jjd216+YuYJ5vebVa6xfz/7K/N/mo9FpuC38NlbPWd3o3h3VUfU99SAhijmMaluzLKq1OZJiPflhEFJaghaMq4MrTw19ikURi/jx1I+8u/9dzmWd4+2/3ubDmA+5v//9PDf8OTp7d27qqTZLVEoFr90SzqLVR5DQoeD6alRD6rRkerhYrdHK0Ek6zmaelVc17U/cz6WcS1WO83Px0xdB2ukLIYOCBuFs71zluCXTw1m06igKMAr0W+o9tvV0KotWHa2S1KTll7Fo1VGWLRwggnyBxSitKOWBjQ+w5tQaAB4c8CCfT/28XiuVisuLmf7jdHZf2Y2rvSubF2xmdMfRlp5yvajpfVWmdmqy95W1W8Kd7JxwsnOiTFNGblmuKIwIBIJaGR4ynPXz1nMm4wzvRb/HmlNrZO/GAYEDeGnES8zpMUd4N9YDlVLBkunhPLLqCBKSyJkEMtkl2cQkxch506HkQ5RqSo2OUSlU9A/sL+dMw0OGE+IZUmWs1pYzgcibBI2LpbrrAdaeXsvCdQvRSloW9F7Aylkrm8Tv8EZqek8pJR9e+OUC7o5ujf6eyizO5Gr+VQD6B/S3yjXkwkhr7RgRtHwcCtO5x78vd81ezb4r+/j2+ApOZZzmwOGvuD32a4Z2m8YDN/+LfgH9mnqqzY62fqlkOLyFb8XDqCQ/eXuAWKXRaihUF3Io+ZBcBDmQdIB8dX6V43q26SkH8yNCRtDFp4tJqw8n9wpk2cIBVVYCtcR7TKuT+NfGs9Wu9JLQJzavbzzLhPCAFpfYCBqfpIIkZq2dxZHUI6gUKj6Z/AmPRjxar1XBhepCpq2Zxp/X/sTdwZ0/7vyDEe1HWGHW5qPVSbxug+8rQ2HEWiufQB/kpxalklOaQ0evjla7jkAgaCHkJdJTU8HKwU/zTvh8Vp9aReS5SEpTjvP2L/P4zKsDd930Mnf3vdum9M+bA5N7BdI2eAPJycOxo428vSXGs4Lq0Uk64rLijDwVz2edr3Kct5O3nDMNDxlORFAErg6udY7fmnIm+Dtv2nDG5uI7QctDkiQ+iP6AF3e+2ODueoAfTvzAvevvRSfpuKfvPSyfsdwmFh3UljMZSqxN8Z4ydNl38+1mtYVehk77nLJW6jEiaOHkJcLnA0GjRgmM+fsL3PT7JSiNi6J73AZ6dp3ESyNeYlSHUaJd3ETWnFpDqSqGob1CeGbgl0LXs4UjSRJX86/qiyB/G/6dTD+JTtIZHedq78qQdkMY3m44I9qPYEjwEPmPTX2Y3CuQCeEBLUY7VpIkMoozuJRziYs5F7mUc4lLOZc4m6yhIP++ms8DUvPLOJSQY5LJqkBQE/uv7Wfuz3NJL07H19mXX2//lTEdx9RrrPyyfKasnkJMUgwejh5sW7iNoe1sx2j5UEKO0QOCG2mK95UkSXKQb83CiI+zD6lFqc1m9ZNAIGhCKuVMAIHAc8Bz2GHIm0rzsui+8bp348ODHhbejSaSXJDM4ZxvkJyWs272SZSSV7OPZwW1YzBJNxRCYpJiqjX2DfMLM+oG6e7Xvd6+YC0tZwJ9d/Pl3MtyviTnT6kKKFhc43kibxJYAkt21wOsOLaCBzY8gITEA/0f4KvpX9mMD6At5kxgfRktuO7N2FxyJlEYEZhHSbYc4NeEMwr8FSq2XtrK1ktbGdpuKC+NeInp3afbzIeULaLVafnx9I8A3Nlnvgg4WiDl2nKOpR4zMvyrziS9g2cHuRNkeMhwerftbfFWUJVSUeM9ZouGe5IkkVqUahTEVy6EFJUXVTnHRTOq0hrCmskorDlgEQjq4puj3/Do5kep0FXQp20f1s9bX+9ugtzSXCatmsThlMN4OXmx464dVg1a64Op75fGel9pdRK/nzxFeVEf3FSFhPlZz8TQy8kHR21vos4V4CJl28Rno0AgsFFMzJl6ugWwtSiVF3a+wH/+/I/wbjSRn878pF9p3H44s/v2bOrpCKxAYn6ikZRwdSbpznbODA4ebOSp6Oti2Ry6ueVMoPeoi8+JN1owZvhKKkhCqmYNu8ibBNamcne9ndKOTyZ/wqJBi+q9iPqr2K94ZPMjACwatIjPp35uU88bbTFnOpSQw/YzOThqe9M/wDrywwCeDt44anuTkhlETLzt50yiMCKwCpF3RPJ2/BZWHFvBgaQDzPppFj38evDiiBeZ33t+vSvCLZk/r/1JSmEKXk5eTOkypamnI7AAppik2yntGBA4QC6CDGs3jGCP4CaacdMa7ukkHSmFKfqCR/bfgXzu9UC+pKKkxnMVKOjg1YEuPl3o4t2FLj5dkNRd+Xxb3df1d3ey4KsQtBYqtBU8s+0ZPj/8OQBze8zlu1nf4ebgVq/xskuymbhqIkdTj+Lr7MuOu3bQP9A6uq8NwdT3S2O8ryp/XrXhBaiAsR/8ZZXPq62nU0lPeIyACjdW/wmr/zwgzEgFAkGD2TBvPauzzvDu/nc5n3VeeDeaiGG18Z2972zimQgsQYW2ghPpJ+QO+rpM0g1d9H3b9m0yc+WmNikvVBcSnxtf7YKxlMKUWs/1cPSgq09Xuvp2lfOm8tIO/Gd9cZ3XFXmToD5EJ0Yz56c5FumuB/j80Oc88ccTADw15Ck+mvSRzanU2GrOBGMJYCxrdino5ZFqlZzpzUh7AsrfpiAd5n9t+zmTQpKk6iXPbJiCggI8PT3Jz8/Hw0O0GzcqKcfhfyaYvz60F4L6kV6UzicHP+GLw19QoC4AIMQjhGeGPcMDAx6o9wOklshDGx/i66Nf80D/B/h6xtdNPR2Bmdxokh6dGM3FnItVjjPVJL0pqMkczBBiWMJwT6vTklSQVG0QH58bT5mm5hUTSoWSjl4d5eJHV9+u+n/7dKGTV6cq+txancTId6NIyy+rVttTgV4n+K8Xx9r0CgaB7ZFdks1tv9zG7iu7AXhjzBu8MuqVeq9SyizOZPwP4zmZfpI2Lm3YdfcuerftbckpWwxbeV81xudV1WsZVLatd626EDGwwFzEPdNEmJkz6SQdG+I28M5f73Aw+SCgj3vu6HkHL454kb4Bfa0732ZEXFYcYV+EYae0I/XZVPxc/Oo+SWBTmGqS3i+gn1EXfXUm6U1BY8UgBeqCGheMpRWl1Xquj7OPnCcZih+G3MnX2bfKQ2Rbie8ELY/lR5ezaPMii3TXA3wU8xHPbH8GgOeGPcd7E96zuaII2M57qmlyJutfqy7MiX9Fx4gNY6utmebQ1q0tb417ixdHvMhXR77iowMfkViQyNPbnubNfW/yxOAneGLwExZvebUVTP0dqjVqfj37KwALei9o7Gk2S5r6/VHZJD06KZqYxJg6TdKHhwynq09Xm/3DbSlDZY1OQ2J+YhXPj0s5l7ice7lK10xl7JR2dPLqdD2Q//urq09XOnh1MKvbTKVUsGR6OItWHUXx9+swYHgFS6aHN7vPVUHTcir9FDPXziQhLwE3Bzd+mP0Ds8Jm1Xu89KJ0xn0/jjOZZ2jr2paoe6IIb2M9OaiGYgvvq8Y0gDe+lvFYwoxUILANmjomtARKhZJZYbOY2X0m+67u453977D10lZ+PP0jP57+kSldpvDSyJe4qf1NNhlHWgJTf48G6eGJoRNFUcQEmvr9YY5J+rCQYXIRxFST9MbG0jFIbmlutQvGLuVcIrMks9Zz/Vz85DzpxtzJoPFvKrYQ3wlaFhXaCp7d/iyfHfoMaHh3PcB7+9/jxZ0vAvDyyJf5z9j/2OzfRFt4TzVdzmTda1kaURixUZq6NdPSeDp58sKIF3hyyJN8f+J73tv/HvG58by+93Xej36fBwc8yDPDnqG9Z/umnqrFMOd3uC1+G7lluQS5BzGqw6jGnmqzo7HfH5VN0g06t3WZpA8PGc7QdkMbZJLemBy4nGmWOViFtoKr+VerDeQTchOo0FXUOJa90p7O3p2rDeTbe7a3aEv85F6BLFs4oMr9EtCMP08FTce6c+u4O/JuiiuK6ezdmfXz1tPLv1e9x0spTGHc9+M4n3WeIPcgou6OortfdwvO2Do09fuqMc0MbdU4USAQ6GlpOZNCoWB0x9GM7jiaY6nHeC/6PX4+8zN/XPqDPy79wbB2w3hp5Evc0u0Wm9JSbyim/h4lSZJltBb0EovJ6qIp3h9NYZLemJgbF0iSRE5pTrULxi7mXKz2Z1OZtq5tqywW6+LThVCfULycvCz62po6vhO0HLJLsrn919uJSogCGt5dD/Dvff/m1d2vArBk9BKWjF5is0URA039nhI5k2kIKS0bxJbaj6pgZlt4TWh1Wn479xvv/PUOx9KOAfqV4nf2vpMXRrxg06tlTcHc3+G8X+fx05mfeGboMyydtLTR5tkcaYz3h8Ek3VAEqcsk3dDibQ2TdEuTU5pDXFYccdlxXMi+QFx2HHFZcSSlB+ClfrrO84NCtpGp+4MreVfQ6DQ1HueociTUJ7Ta9u0QjxBUSpUlX1adNPVqOUHzRifpeGPvG7y+93UAxnUax0+3/tSgbsekgiTGrhzLxZyLhHiEEHVPFF18ulhqyo1CU72v1h9P5qm1x+s87pN5/ZjZr2GeTY15LVNo6TGwwPK05HumNeRMAPE58XwQ/QHfHv9W7roNbxPOC8NfYEHvBU3msWApzPk9xqbEEvF1BM52zmQ8nyFkmWuhsd4flU3So5OiOZZ6rE6T9KHthtp8t0+FtoLLuZflXMmQN11K8cKh8OE6z+/a+S/yFDu5lHOJvLK8Wo8NdAussfPD3dHdQq/IdETeJGgIN3bXr5q9iplhM+s9niRJ/GvPv3hj3xsA/Pvmf/PKqFcsNd1GQeRMlr2WKQgprWZMc24/MgeVUsXtPW/ntvDb2Hl5J+/sf4eohChWnljJyhMrmdl9Ji+NfImh7YY29VTNxtzfYaG6kA1xGwAho1UX1np/ZBZnEpMUIxv+xabEVvG6MJikG8z+mtokvTbUGjXxufH6AP7vIoihEJJVklXtOY6Saas3jqbvQa26BICTnVOV1UuGr3Ye7Wxq1ZdKqbC5lQmC5kFReRF3R95N5PlIQG/w98HEDxpUBL2ad5Wx34/lcu5lOnh2YPc9u+nk3clSU240mup91ZhmhrZknCgQCK7TWnImgFCfUJbdsowlY5bwyYFP+DL2S85mnuXe9ffy6u5XeXbYszww4AGblB2qC3N/j4ZukZlhM0VRpBas9f4wmKRX7qKvyyR9eMhw+gX0s8kCniRJpBenGxU+DIWQy7mXqxR4ABy1vQkwYew/kzajVp2S/7+dR7tqF4yFeofa3HtX5E2C+hJ5LpK7Iu+yWHe9JEm8EvUKb//1NgDvjn+XF0a8YKnpNhoiZ7LstSyNKIzYGDbffuTiC3aOoKnZIwA7R/1xJqBQKJgQOoEJoRM4lHyId/e/S+S5SNbHrWd93HpGdxjNiyNeZHKXyTbfJmfA3N/h+rj1lGpK6ebbjQGBAxpvos0QS7w/dJKOc5nn5E6QmkzSfZ19jcz+bMkkHfRBQmpR6vXCR1YcF3L0hZCEvIQqMl+VcbF3wVHlSIWuguLyYiQk1MozaMhEhS8KqitoSLg4qvl0+pN099MH8oHugTZV/BAILM3l3MvMXDuT0xmncVA58N9p/+W+/vc1eMyxK8dyNf8qnb07s/ue3S1KRrIxGNzJh0BPpzrNDAd3Mk9fu6mvJRAITKe15UwAAW4BvD3+bV4a+ZKRd+PibYtl78bHBz/erLwbzfk9Du7kxdrTawEho1UXlnp/5JTmEJMYIxdB6jJJN+ROtmKSbqCkooSL2RflnKly53yBuqDG8+yUdrjau6JQKCguL6ZCV2FSzuTkUMobk+6mm28XufhhS3mkQGBpdJKON/e+yb/2/guwTHe9JEk8v+N5lsboFVU+mvQRi4cutsBsWw8iZzINURixMTIKaw5gKvNpzHckqzsQERRBe8/2jVc08AqBx49ASXbNx7j46o8zk8HBg/nt9t84n3We9/e/zw8nf2Dv1b3svbqXvm378uKIF7mt5202L1Vk6u/QcNzqU6sBfYDfXIo/jY1aoyYmKYavY44B3eo8vvLvwFST9PA24XIRxJZM0ovKi4w6PwxB/IXsCxSVF9V4np3SDic7J3Q6HSWaEqN9JRUllFRc3+bu4E4Xny74Ks9wMX4019eS6VH8/d8PbxsutGUFrYaohChu++U2ckpzCHALYN3t6xgWMqxBY17MvsjY78eSVJBEV5+u7L5nt812ntkyjWlmaAvGiQKBoCqmxttv7P6YadltiQiKoG9AX5zsGmmlohVzppq8G/+191+8F/0eDw14iGeGPWNzD6erw5y8ac+VPaQWpeLt5M2kLpOsPLPmS0JuAmtP/gXU/fCp8s9fJ+m4kH1BXwT5u4u+NpN0Qxe9rZika3VaEgsSq100lliQWOu5LvYuKBVKyjRlRlLBGp3GKG9UKpR08OpAW7uDpCZOo6ac6ePbRzK5120WfX0Cga1SVF7EPb/fw7pz6wDLdNdLksTirYv59NCnAHw+5XMeG/yYRebbmhA5k2kIjxEbIyY+m/lfH6jzuDSHl+XWzDYubRgUNIiIoAgigiMYFDSIADdTGjxtm6SCJD6K+YivjnxFcUUxAJ28OvH88Oe5t9+9NrvqwtTf4Y8PDiU0QEvQ0iC0kpa4x+Po5lv3Q//WgCRJnM44zc7LO9lxeQd7r+6lpKJE37pc/nad5z8wvoi08j+JTozmRPoJmzdJ1+q0XMm7cr3wUUn+KqUwpdZzneyckCRJ1pyuCU9HT7ll+8YW7jYubeQiUEszMRUIzEWSJD4/9DlPb3saraQlIiiCyDsiG1zAOJ91nrErx5JalEqYXxhRd0cR6C7eUw2hMT+vbOWzsSXHwALr0FLvmfrkTHZKO3r79zbKmXq26WmTEj/mUJN348I+C3lh+Av0aNOjiWdYM+bkTd+cfoEVx1fw0ICH+Gr6V40wu+ZBXlkeUQlR7IjfwY7LO4jPjTc5Z3pxuhO5uoO1mqR39+1u1EXf1CbpuaW5VXw/4rLjuJh9sdZ8yF5pj53SDrVWXWtnvUqhoqNXR32e5F3J9Ny3Kx29OuKgcgBsJy4QCJoSa3TX6yQdj295nGWxywD46paveGjgQ5aYbqtF5Ey1x7+iMGJjaHUSI9+NqrH9CMDDWcvQ/ps5khbLyfST1Rogt/Nod71YEqQP/JvywW9DyCnN4YtDX/DpoU9lfwR/V38WD1nMoohFeDl5Ne0Eb6Cu36GhheyvF8fy39gvefyPxxkUNIjDDx5u7KnaFCmFKXIhZOflnaQVpRntb+valnGdJnDq9G0UlFZv3C0hoSWLZKd/gOJ6wFvZJH14yHD6tO3TJJ1HWSVZ1fp+XMq5RLm2vMbz7JR2KFBQoauodXwfZ58ajft8nX1N7oARhnuC1opao+axLY+x/NhyABb2Wcj/bvlfgwvxZzLOMO77caQXp9PLvxc779pJW7e2lphyq6cxP69s4bOxJcfAAuvQUu8ZU3ImL1eJGSNjOZJ6mMPJh8ksyaxyjJOdE/0D+hstMuvm261ZSoVKksSOyzt456932H1lt7x9VtgsXhzxok16N5qaN+18djjBHwaSr85nzz17GN3RBGP7Fkq5tpyYxBg5ZzqcctjoQb+d0o4hwcPIufo0JWqHGkaR0CiySHY0zpmc7JwYHDxYLoI0lUl6ubac+Jz464WPSp3z1b2PDShQYK+yp0JbgVTjJ4P+Z9TZu7O8YExePObThQ6eHUwultpCXCAQNBXW6K7XSToe2vgQy48tR4GC5TOWN7jQItAjcqaaEYURG2Tr6VQWrToKVN9+tGzhALnSVqYp40TaCWJTYjmccpjYlFjOZp6tNhAI9Q7Vr44KHEREcAQDAgc0K9O6kooSVhxbwfvR73Mt/xqglwBaNGgRi4cutqmVt6b+DkesGEF0YjQfTvyQp4c93ejzbEqKyovYe2WvXAw5k3nGaL+znTOjOoxiQme9B01v/95klWTx379iWL7bkKxe/3CV0AEKchzfJTykXO4GGRYyjHYe7Rrtdak1ai7lXKrSwh2XHVftKiwDChQoFcpqTf4q08aljVHBw1AECfUJxcfZ9vQaBYLmQlpRGnN/nkt0YjRKhZJ3x7/Ls8OebbCk3sn0k4z7fhxZJVn0bduXnXfvbJKHDIKWQUuPgQWWpyXfM+bkTJIkkViQyOHkw3LOFJsSW628qruDOwODBsqLyyKCIujo1dEmJFZN5WDSQd7d/y6/n/9dzgtHdxjNSyNfYlLoJJt6Lab8HktVB5jz8xzaebTj6uKrzbJwVV8kSeJs5ll2XNZ3hOy9sldWUzAQ5hemz5k6T2B0x9E42znz1f6DfLAl7+8jquZMmQ5v4eN1zcgkvW9AX7kjojFeV2pRarWSwQm5CbXmRCqFCp2kq7X44aByINQ7tMpisa4+XQnxDLF5eW6BwFaRJIkvDn/B4q2LLdpdr9VpuX/D/Xx/4nuUCiUrZ61kYZ+FFpq1oLUhCiMtgIa0HxWVF3E09ahcLDmcfJj43PgqxylQ0KNND6OukkbV3q0nFdoKfjrzE+/89Y78MN1B5cA9fe/h+eHP09W3axPPUM/W06ks2XCG9ILrLb2Vf4cJuQl0/rQzChQkP5NsU4Uda6DVaYlNiZWD+pjEGKMOCAUKBgYNZELnCYzvPJ6h7YaSkJsgm/1VNkl31g7Dp/wh7Ggjn+/qVM4/RnuyaOQwq8usSZJEcmFylRbuuKw4ruZfrbU9W6lQ1rof9N0xN8peGb48nTwt/XIEglZPbEoss3+aTVJBEp6Onqy9dS2Tu0xu8LhHU48y4YcJ5JTmMDBwINvv2i4KmIIG0RpiYIFlaen3TENyJp2k41LOJX3O9HfB5Gjq0Srm0gC+zr5VpIuD3IMs/noszfms87y3/z1WnVwlx9192/blpZEvcWv4rTbzcLiuvOm2X27j17O/8vzw53lvwntNONPGIbUwlZ2Xd7IzYSc7L++sIq3bxqUN4zuPl/MmVwdX2SQ9OimaQ8mHKKkoqTZncnIs5dYh8NCIwbT3bG/111JcXmzU+WFYNHYh+wKF5YU1nqdAUWvhA/QdLobix40d8+082qFSVq8yIBAI6oe1uus1Og33/H4Pa06tQaVQsWrOKub1mmeJKQtaKaIw0kKwZPtRTmkOR1KO6Aslf6+SSipIqnKcvdKe3m17y10lEUERhLcJt0ntXZ2kY8vFLbz919tEJ0YD+gDq1vBbeXHEiwwMGtjEM4SCsiL83xqOSvJm08LVjOoaLP8O3/7zbf4Z9U/GdRrHzrt3NvFMLY8kScTnxssdIVEJUeSV5Rkd09Gro7y6aXDwYOJz42Wzv9pM0oe3G86wdiNwV/TDgTb4e1inPa9QXVjF9+NC9gUuZF+oslLLXILcg6r1+wj1DsXd0d1Cr0AgENTF6pOreWDjA5RpygjzC2P9vPUW8Xs6nHyYiasmkleWx+DgwWxbuM3mpB8FzY/WEgMLLEdruGcsmTNpdBrOZZ6T86XDKYc5kXaiWjnTIPcgo66SQUGD8HXxbejLsQrVeTd29u4sezfawsK4mvKmAnUB/u/7o9aqOfbwMfoF9GvqqVqc4vJi9l3dJy8gO51x2mi/k52T3Ek/vtN4HOwcOJB0QF5AVp1JupeTl14OK3g4fnZD8HXsTIi3p1VyJq1Oy9X8q9UuGksuTG7Q2C72LtcLHjd4fgS5B7Wq7iGBoCm5sbv+vfHv8cywZxrcgVihreDOdXfyy9lfsFPasXbuWuaGz7XQrAWtFVEYEZhEWlEah5OvB/2HUw7LHh6VMWjvyoG/DWrv/nXtL9756x02X9wsb5vQeQIvjXyJmzve3GTt4sXlxbi9rZcrK3q5CFcHV3lf72W9OZ1xmuUzlnN///ubZH6WJqc0h12Xd8lB/ZW8K0b7vZy8GNtpLOM6jqOnf0+SC5P1K5tqMEl3sXdhSPAQI51bS3vlaHQavfF5VlyVlUypRakNGrudR7tq/T5CvUON7gWBQND4aHVaXt71Mu9Hvw/AtK7TWD1ntUW6smISY5i8ejIF6gKGhwxny4ItottLYBFEDCwwF3HPNBy1Rs2pjFNGMlxnMs9U2wHcyauTkXTxwMCBNrXgxeDd+MnBT8guzQb0ncqLhy5m0aBFTfq3qqa8aeXxldy7/l56+PXgzKNnbEoGrL5odVqOpB6RDdOjE6OrdNL3D+zPhM4TuKn9TTioHIhNiWV/4v46TdINRunWMEnPLsmu1vfjUs6lWo3P68LNwa2KTLDhK9AtsEX8zgWC5syN3fU/3foTk7pMavC45dpy5v06j8jzkdgr7fnltl+YGTbTAjMWtHZEYURQLyRJ4lr+NaMVUrEpsRSoC6ocW1l711AwsQXt3ZPpJ3lv/3usPb1W1iWNCIrgpZEvMStsVqMXc2oK8E+ln6LPf/vgoHIg/bn0ZruKWK1RE50YLRdCjqQcMWp5tlfaMyxkGDd3vJkQjxByy3I5mHyQ6MToKi3hAO0928tFEEuapEuSRFZJ1vXCR6WVTJeyL6GRNPUaV4GC9p7tqw3kO3t3trqkl6DlYAsGZa2JvLI8Fvy2gD8u/QHAyyNf5s2b37SI5MJf1/5iyuopFJUXMarDKDbN32RTD8UEzRsRAwvMRdwz1qG4vJhjaceMpIsNkq+VUaCgu193o5ypX0C/Jo8Ri8uLWXFsBR/EfCB7N3o4erBo0CKeGvJUk0j81pQ3TVo1ie3x23nz5jf5v1H/1+jzshSXcy/LhZCohChyy3KN9nfw7MCEzhMYEDgAe5U9p9JPEZ0UzfG042h0xrmKwSR9eLvhjGg/wqIm6WqNmvjc+Cq+H3FZcXIxrT54OHpUKXoY/t/f1b/JnyMImg8ib2pc1pxawz82/MPi3fVqjZpbf7mVTRc24ahyZN0d65jadaoFZiwQiMKIwILoJB0Xsy8adZUcSz1Wrfaun4sfg4IGGclwNZVvxpW8KyyNXso3x76hTKPXHO7u250XRrzAnb3vxNHOsVHmUVOA//LOl3ln/zvMDpvNujvWNcpcLIEkSZzKOCUH9fuu7qtyL/Rs05MRISNo69qWoooi+d4x/B4M2CntGBA4wKIm6WWaMi5mX6zSwh2XFUeeOq9eYyoVSjp4dtBLXd3Qvt3Jq1Oj3UuClktD9NEF5hOXFceMtTO4kH0BZztnVsxcYTEN2z1X9jBtzTRKKkoY22ksG+ZtEN1hAosiYmCBuYh7pvHIK8uTpYsN8a+h6FAZO6Udvfx7GeVMvfx7NYl0cYW2grWn1/Lu/neNvBvv7Xsvz494ni4+XRptLtXlTelF6QR9GKT3g3niEqE+oY02n4aSU5pDVEIUO+J3sDNhJ5dzLxvt93D0YEzHMYT5huGgcuBizkWiE6NJLEisMlaQexAjQkbIC8gaapIuSRIphSnVLhpLyE2o09ujJrycvORix41FED8XP1H8EDQYkTc1Hlqdln/u+ifvRet9nSzZXV9aUcqcn+ew9dJWnOycWD9vPRNDJzZ4XIHAgCiMCKyKRqfhbOZZIxmuk+kna9XeNayQamzt3YziDD47+BmfH/5c9rcIdg/mmWHP8OCAB62+ire6AF8n6ej8SWeu5l/ll9t+4dbwW606h4aSXJAs+4TsvLyT9OJ0o/1tXdsSERxBG5c2FFcUczztOBeyL1QZx9fZV+4EGR4ynEFBg3CxdzF7PjpJR1JBkpHvR2Xj8/qgUqjo5N1J1q6Vjc99utDRq2ODEg+BoDa2nk5l0aqjVdJPQ9q4bOEAEeRbkC0XtzD/t/kUqAto59GO9fPWMyBwgEXG3nl5JzN+nEGpppSJoROJvCOyXp9xAkFtiBhYYC7inmla0ovSOZJ6RJbhOpxymIzijCrHOaoc6RfQz0i6uLtv90Yzj67Ou1GpUMrejZb6W1kb1eVNnx38jCe3PsmQ4CEceOCA1efQENQaNTFJMfICsiOpR4zk1uyUdgwKHESoTyh2Sjuu5F3hcMphSipKjMZRKVT0Dehr1EUf4hFSr6JCobpQ9ke8cdFYiaak7gGqwc/Fr4rnhyF38nH2qdeYAoEpiLyp8bBmd31JRQkz185k5+WduNi7sHH+RsZ2GtvgcQWCyojCiKDRUWvUnEw/aWTufjbzbLXau529OxuZFDaG9m6hupD/HfkfHx74UJZw8nLy4vGIx3lyyJO0cW1jletWF+Dvv7afkd+OxN3BnfTn0pu8lf5GCtWF7L26Vw7qz2WdM9rvbOdMb//e+Lj4UKQu4nTm6Sqm6nDdJN0Q0Hfz7WZWQF+gLqji+3E+8zxx2XH10rC1V9rT2btzFb+Prj5dae/ZvklW6QlaN1qdxMh3o4xWPFVGAQR4OvHXi2NFe3gDkSSJ9/a/x8u7XkZCYmT7kfx626+0dWtrkfG3XtrKrLWzUGvVTO06ld9u/80mjGwFLQ8RAwvMRdwztoUkSSQVJFWRLq4ulnZzcGNA4ACjRWadvTtbfdV9dd6NE0Mn8tKIlxjTcYzVrl9d3jRs+TAOJB3gk8mf8OSQJ61y3foiSRKnM07LC8j2Xt1bpcjR2asznbw7oVQouZZ/jbjsuCrjGEzSDXlTRHAEbg5uJs9Do9NwNe9qFd+Pc1nnSCtKq9dr83f1r7brI9Q71OJ+jwKBKYi8qfGwZnd9UXkR03+czp4re3C1d2XLnVsY1WGURcYWCCojCiMCm6CovIhjqceMZLgu5VyqcpwCBWF+YXKxJCI4gr5t+1qlYKDWqFl1chXvRb8ndzU42znzj/7/4Nnhz9LRq6NFr1ddgP/o5kdZFruMe/rew3ezvrPo9eqDRqchNiVWLoTEJMVU0bHt7NUZb2dvCtQFxOfG12iSbjD7M9UkvUJbQUJeglEL97msc5zLPFcvDVsHlQOh3qHVBvIhniEW8SsRtG4kSUKtVVNcXkxxRTHF5cUUlRfJ/651W0WR0f/nF/hTnP5gndf88cGhDAttvE67lkZJRQkPbHiAH0//CMBDAx7is6mfWawTbGPcRm795VbKteXM7D6Tn279SUjsCayGiIEF5iLuGdtHkiTic+ONukqOph6t8pAdwMfZp4p0cZB7kFWKFdV5Nw4OHsyLI160infjjXlTWlEaXT7rglKhJPmZZALcAix6vfqQUphi1El/Y+HB28mb9p7tAbiaf7Xagldlk/ThIcMJ8wsz6WeZVZJlVPg4n3Wes5lnSchLqJK7mUKgW2C1fh+hPqF4OIrPCkHD0eq0RvlQUblxLlRj3lTNsQWFAZRnLqrzmiJvahiVu+tDPEL4fd7vFusYLFAXMHX1VPYn7sfdwZ2tC7cyPGS4RcYWCG5EFEYENktuaa7cTh6bGsvh5MPV6qgatHfldnILa+9qdVp+P/877+x/h9iUWEDftjy/93xeGP4Cvdv2tsh1bgzwHVQOBC4NJLs0m20LtzWJjqIkSVzKuSQbpu9O2E2+Ot/oGF9nXzwdPckty61iDAh6k3TDyqYR7UfUapIuSRIZxRnXzfuy4jibeZazWWe5ln+t2q6i2nBUOV5v2b7B8yPYPbjRJAcEtk25trza4LvObSYca+49WxMumlG0qXihzuM+mdePmf2CLXLN1kZifiKzfprF0dSj2Cnt+GTyJywatMhiD5Aiz0Vy+6+3o9FpmNtjLmvmrhHSewKrImJggbmIe6Z5otVpOZd1Tr/A7O+CyYn0E5Rry6scG+AWYNRVEhEcYTEjboCE3ASWxixl+bHlVbwbF/ZZaLG/ezfmTR8d+IhXd7/KhM4T2H7Xdotcw1yKyovYd3WfvIDM4MNiwF5pT6B7IJIkkVqUWqtJusFTsbbfTZmmjEs5l+RFY+ezznM68zQXsy9SWF5o9vwD3QLp5tutaueHT6hZXSmClotO0lFSUdKgvKmmRWL1UXmoCZE3WRdJkng/+n1e2vmSVbrr88vymbx6MgeSDuDp6Mm2hdsY0m6IRcYWCKpDFEYEzYr0onSjrpLDyYfJLMmsclxl7d2IYH3g31DtXUmSiEqI4t3977Lj8g55+y3dbuHFES8ysv3Ieo8NVQP8vVf3Mm3NNPxd/Ul+JrnROhiyS7LZlbBLDupv9OJwVDni7uBOvjq/ileMndKO/gH95W6QmkzSSypK5EA+LjuOM5lnOJ1xmss5l83WsHWycyLUO5Tuft2rBPJB7kEWX6EmaBoqtBVmd13IAXkdx9Zn5Zy5OKgccHNww9XeFVcHV6Pvbg5u17f9vf3GY5OynFm6WVvndcTKp7rR6iQOJeSQUViGv7sTgzv5cCApmrk/zyW9OB1fZ19+vf1XxnQcY7Fr/nzmZxb8tgCtpGVer3n8MPsH0ZUmsDoiBhaYi7hnWg7l2nJOpZ8ykuE6k3FG7uaoTAfPDnJHSURQBAMCBzTYMDejOINPD37KF4e/sIp3Y+W8qfClQiK+ieB81nm+nfkt9/a7t0Fjm4pWp9V30v+9gCwmMaZKbuTj7INGp6FAXVDlfINJuiFvqs4k3SCnZuiWP595npMZJ4nLjjNb+kqBgkD3QMJ8w4wWi3Xx6UJn787C66yFoJN0lFaUmt+tbthWS7GjVFNq9fkrUFSbCxltqymP+vt7YqYT72ysXkarMiJvqpsb86be7Zx5ePODrDm1BrB8d31uaS4TV00kNiUWbydvdty1g4FBAy0ytkBQE6IwImjWSJJEYkGikbl7bEpsla4G0GvvDgwcaCTD1cmrU71WAx9JOcK7+9/l17O/Iv1t6TUiZAQvjXyJaV2n1WvMGwsjD296mNWnVvPE4Cf4dMqnZo9nKmWaMvZf2y+3eR9NPSq/JtAHJ052TtUGQj7OPnIwf6NJuk7SkZifKGvYnsk4w4mME1zKuURWSZZZc3S2cybUO5SwNmFy8cPwPcAtwOr6yQLT0Og05q8eqqUNuvK2GxNNa2CvtK81yHZ1cMXNvur26o69cVtDH4IbtHLT8suqmAiC0Mo1la2nU3l941kjzWF3Zy1XdR9QqPyTPm37sH7eeotKJa4+uZq7f78bnaRjYZ+FfDvzW1EUETQKIgYWmIu4Z1o2JRUlHE87biTDZZALvpHuvt31i8v+luHqF9CvXg/Oq/Nu9Hby5vHBj/PE4Cfq7d1YOW+Kvj+a4SuG46hyJP259AYXdWojPideLoREJURVkb9ysnNCo9NUWXRjMEk3dNDfaJJeoC6Qu+XPZ53nRPoJzmaeJbEgsdrOn5qQix9+YXT37W60YKyzd2fhaWYjSJJEqaa03nlTbYWN6mT1rIFJuVBNhY1atjnZOTU4txd5k2WoLm9SqvJJU31Ohf1hPp38KY8MesRiz2KySrKY8MMEjqcdx9fZl11376JvQF+LjC0Q1IYojAhaHDpJR3xOvNxREpsaW6f2bmUZrmAP09spL2Rf4IPoD1h5YqUctPby78WLI17kjp53mCXnVTnAT382nc6fdqa4opiYf8QwtN1Qk8epC52k41T6KTmo//Pqn1WKHkqFsloJoB5+PeQiiMEkPV+dL7dwn0w/yfH041zIukBKUYpZK/Fd7Fzo6N2Rnm16Vgnk/V39RfHDQmh12ust0PVcPVTTsZZsga4JlUJVJfiuEmSbEXxX3mYp+T1rsfV0KotWHQUwCvIN74xlCwcwuVdgo8+ruWD4+d0YyEjoAAVdOu9mw71v4OrgarFrrjy+kvvW34eExH397uPr6V8LCT9BoyFiYIG5iHum9ZFfls+R1CPXO/KTD1fpFgd9/NXTv6dRztS7bW+TVwnX5N34wIAHeHbYs3Tw6mDWvCvnTYuHLObjgx8zt8dcfr39V7PGqYuc0hx2Xd4lLyBLyEsw2l9TzuTl5MWwdsPkBWQRwRE42TmRkJug7/zIOs/RlKOcyTzDlfwr1XaU1IRSoZRlr3q06UE3n25yztTRq6PwLrMQlb0CLdl1YfguVfvI3rK42LvUnQuZuMir8vnOds42n5uLvKlh1JU3PTnRmWfHjrPY9TKKMxj//XhOZZzC39WfXXfvopd/L4uNLxDUhiiMCFoFGp2G81nnjVZInUg7Ue0q9EC3QKOukkFBg+rU3k0pTOHjAx+zLHYZReVFgL4t/bnhz3F///tNWmFVOcD/dua33Lf+Pjp7d+bSE5caHHgkFSTJ0lg7L++sVn7sRiqbpA8OHkxb17akF6dzPO04R1OPcj7rPEkFSRRXFJs8D1d7V9p7tqdHmx70bNOTbr7XA3lfZ1+bD7AaC4N+q9ldF9WYdt94rEHv2ZooFco6A2pT2qCr2+agcmjV90l1K3cCPZ1YMj28WQf31clbWXIFl2HlWOWfmzESgZ7OFl059s3Rb3ho40NISDw04CGW3bJMSPsJGhURAwvMRdwzAoDM4kyjTvzDKYerlW1yUDnQt21fo5yph1+PWhcAGLwb3/7rbY6kHgH0RZcFvRfwwogXTH4QVjlvCnYPJrkwmXW3r2N2j9n1eMXXUWvURCdGywvIDP6SddHNt5vsqRjmF4ZO0hGXFUdsaiynMk5xOfcymcWZJj8MVyqUBLgF0NWnK739exvlTB29Otr8Yp7GQpIkyrXlFu+6MGyzlFdgbTjZOVm868LVwRUXe5dWH3eKvKn+49eeN+l/jpbKm9KK0hj3/TjOZp4lwC2AqLuj6NGmR4PHFQhMRRRGBK0WtUbNqYxTRjJcZzLPVBsAdfTqaLRCqibt3dzSXJbFLuPjAx/LxQc/Fz+eGvIUj0U8hrezd43zqRzgT+0ylS2XtvB/N/0fb4590+zXVqguZM+VPey4vIPt8duJy46r85z2nu0ZEDCA9p7tUSlVpBamEpcdx9X8q+SW5pocyLvauxLiGUKYbxh9A/oaBfI+zj5mvxZbRZIkffHCnNVDJprPNaZ+a20BdX0DckeVY6suXlgbawfDjU1jJC0x8dnM//pAncdZSmt42eFlPLrlUQAei3iMz6Z8Jt4TgkZHxMACcxH3jKA6JEkiuTC5inRxbllulWNd7V0ZEDjAaJFZqHdolb+BBu/Gd/a/w87LO+Xt07tN58URLzKi/Yha51Q5bwLwdPQk7bk0s6WiJEniVMYpeQHZ3it7KdPWvojIyc6JQYGD6O7XHW8nbwrVhVzMuUh8bjypRakmS1+pFCraurals3dnerftTS//XnLO1N6zfYuS3SzXlle/oMvEvKm2Ykd1vjmWxlHlWHcuVA+5XRd7F9FJbGVE3mQ+jZk3pRSmMHblWOKy4wh2Dybqnii6+XZr0JgCgbmIwohAUIni8mK99u7fXSWxKbH10t4trSjlu+Pf8X70+3LLtZuDGw8NeIinhz1drSF55QDfTmmHRqfh7KNnTaqWa3QaDiUfYkf8DrZc3EJsamytK1xUChUhHiG4ObhRri0nryyP3LJck30cXO1dCfYIpptPN/oF9JMD+VCfULycvEwaozGQJIkyTZn5XRcmtEGXVJQ0Sgu0qWbd5nRduDm4WUS/VSBoKDW1aVu6zX398WSeWnu8zuM+mdePmf1Ml1Osjk8PfspTW58C9PIeH076ULzXBE2CiIEF5iLuGYGpSJLE5dzLRl0lR1KOVNtJ7uXkVUW6uJ1HO/lvY2xKLO/uf5ffzv4mx9Yj24/kpREvMbXr1Gr/ht5YGLm/3/0sn7ncpLknFySz8/JOtsVvY9ulbeSU5dR6vK+zryzrW6QuIqc0h6KKIpOupVKo8Hf1p6NXR3r596JfQD+6+Xajq09X2nm0s6mH4pW9Ai3ZddGYXoF15kJmdl1YyitQILAELS1vSsxPZOz3Y7mUc4n2nu2JujuKUJ/Qeo8nENQXURgRCOogryyPIymVtHdTDnMt/1qV41QKFb38exkF/j3a9GD9+fW8s/8dTqafBPRB21197uKFES/Q3a875CVCSTalmlJGrBgpj9fdrzs/zlkDLr7gFWJ0LUmSuJhzkW2XthF5PpKYpJhaJZLslHbYK+3R6DRmFT8C3QPp4tOFfm370T+wv2x47u7obtIYplBZv7W2gLq+5nON0QLtbOds8a4LV3tXnO2dW30LtKDpkCQJnaRDJ+nQStrr/9ZpLbK9QqPhie/zyCmuPrSwpDFiY618Whq9lOd2PAfAC8Nf4J3x74iiiKDJEDGwwFzEPSNoCFqdlrjsOFm6ODYlluNpx6v1oGvr2raKdHFeWR7v73+f709+L3dd9Pbvrfdu7HWH/uF0DXnTf6ctY3Dw4GrzpkJ1IXuv7mVj3Eb+uPQHiQWJNb4GBQqc7Jzk/MSURVAqhQo/Fz86eHUg3C+cQUGDCG8TThefLgR7BFs0ltfqtFbpuiiuKDbL5L2+2CntTMuFTPS6qLxNyIsJmgpJkpCQLJon3bhdo9Xy5Pf5LSZvupJ3hbErx5KQl0BHr47svmc3Hb061mssgaChiMKIQFAPMooz9IWSv83dDycfJr04vcpxjipH+gb0ZWDgQJzsnNh3dZ+sp6tAwYNdprDs8kGU2lqKFXaO8PgRMu2d2HxxMz+f/pnopGjy1fkNfh0u9i4EuAbQ2bszfQL6MDhoMD3a9CDUO7SKAXG5ttziXReGbY2p31prkG1m14XQbzUNQ7BorUCx2W23hTmYsN3aHVGO2t4ElL9d53GWaNM2aOWm5ZdV+6oskUy8/efb/DPqnwC8ctMrvHnzm6IoImhSRAwsMBdxzwgsTbm2nNMZp41kuE5nnK5W/qi9Z3sigiLo5tuN+Jx4Nl/cLHegdPTqyL/6PcDd+z5BUU2hRcbOEc1jhzhclMra02v549IfXMq51OCYRqVQ4eviS4hHCGF+YQwKGkS/tv3o5teNQLdAo7/3Bq9As7ouTJTbra7IZGlUCpXpuZCJXReG8x1UDlaff3NHkiSbywlsYrstzKGG7TrJ+s8yWlLeFJ8Tz9jvx3It/xqh3qFE3RNFe8/2DZqzQNAQRGFEILAAkiSRVJBk1FUSmxJLXllelWOd7ZxxtncmpzSH/pKSo7hVHfAGRjvAvoqCes3NUeWIp6MnbVzbEOAWQLB7MH4ufjjZOclmdaasNNLoNPW6vjk4qBzqDKhd7FxwsXfB2d5Z31Xx98/T2c4ZJ3snXOxdcFI54WTvhJPKCUc7R1k2ytaCqNYQKGp12kaRHBM0HUqFUv5SKVTX/61U1bqd0kFIeffWOb4l5K3gevs5YHRHWqL9/I29b7BkzxIAXh/zOq+Nfq0BMxUILIOIgQXmIu4ZQWNQUlHCibQTRjJccVlx1caLvs6+ckHA1LxpkKKEI5iftyhR4ubgho+zDwHuAQS5BxHoFoibgxsKFNeLHXUs/GpMr8DaihMudi64OLjIuZOLg4tx3mTnhLP939/tnHFUOeJo74i9wh4dOpvIISy6HRuYgwnbBS0XBQqT86QbtyvKItDm3l3nNWw9b7qYfZGbV95McmEy3Xy7EXV3FMEeDZ+vQNAQzIl/hbCiQFADCoWCEM8QQjxDmN1jNqAvlsTnxhutkDqaepTiCvMD5sLyout/hcxErVWTUZJBRkkGZzLP1G+QSihQoFKqUCn0X0ql0ujBqOEPvkKhQIFC/n4jhuTH0E1QeXVMvjqfnNKcagNIQcvFcO+YGyg22XZbmEMTbze8x+uDqW3a/u7mGanWxORegSxbOKCKYWFAAwwLJUnitd2v8e8//w3AW2Pf4uWbXrbIfAUCgUAgaIm42LswLGQYw0KGydsK1AUcTT0qy3AdTjnMlbwrZJdmmz2+TtLVK2/SoaOgvICC8gKu5F8xf4BqMMROhtypcs5kyJeUKEGB/L2mvMmQMyEh50alFaX67vuixu/8FTQttpYTVLsdG5iDDW1vSCd5S8ibzmWeY9z340gtSqWHXw+i7okiwC3AIvMVCBoLURgRCMxAoVDQxacLXXy6ML/3fECvC3s+67y8Qir7chRkJTfxTM1DQkKj06Cpx0qsxsQWgp86t2MDc7CR7Q0NFgXNj8GdfAj0dKqzTXtwJx+LXXNyr0AmhAdwKCGHjMIy/N3149enDVySJF7a+RLvRb8HwPsT3ue54c9ZbK4CgUAgELQWPBw9GNNxDGM6jpG3ZZVkEZsSS2xKLAeTD1J0dT+UVZXgsmW0khatpG0U8/H6UjkWt4WcQCxIqnu7yJlaH809bzqdcZpx348joziD3v692Xn3Tvxd/S02V4GgsRCFEYGggai1apIKkjiVfordV3bjmBUHJrSENwSVQiW3SDvZ67+72LvI310cXPTt1vYuuDm4yZJVbg5u2Cvtmzzwq892ESwKBLaPSqlgyfRwFq06ioLq27SXTA9vsIFgdddtqPauJEk8u/1ZPjrwEQCfTP6EJ4c8aYnpCQQCgUDQ6pEkieySbC5mX+Rg8kF2Xd5FWIUaa+dNjipHo5zJ2d4ZF7vrEr4GaarK+ZKbgxtOdk76bnobyodM2d6Qzl+BQNB4NOe86UTaCcb/MJ6skiz6BfRjx1078HPxs9AMBYLGRRRGBAIzkSSJk+kn2R6/ne2Xt/Pn1T+NTPP6Y5pp97aF28jwCCS3LJec0hxyS//+XnbD90rbc0tz5VVKBi1czJS89XD0wNvJGx9nH7yd//7udMN3Z2/9V6X/d3dwF0G2QCCoE2u0aVsbnaTjyT+e5IvDXwDw5dQvWRSxqIlnJRAIBAJB8yanNIddl3fJedO1/Gs3HGFa3rR+3nrSPQKqz5lKc8kpq7q9pKIE0C9iU2vVYKbHuYPKwaScqUoO5eSNvcrevIsJBIJWSXPMm46kHGHCDxPILctlYOBAtt+1HR9ny3W1CASNjSiMCAQmkFaUxo74HWy/vJ0d8TtIL06v8Vh/V38oLqlzzDYufrTx72nWPCRJorC8sMakoLaiSoFab/ReoC6gQF3A1fyrZl1bpVDVGPzXlSA42VlGF1MgEDQPLNmmbW10ko5Fmxbxv6P/Q4GC/03/Hw8MeKCppyUQCAQCQbOjQlvBgaQDciHkcPLhGn0xVAoVEzuPh/iYOscN8WhHSFA/s+ai1qjlhWU15UeVF59V3qbRaSjXlpNenF5r3lcTBsN3o/zIyThPqi5n8nD0QKkwrVgkEAhaBs0pbzqUfIiJP0wkX53PkOAhbF24FS8nr6aelkDQIERhRCCohtKKUv669pcc1J9MP2m030HlgJuDGzmlOfK24SHDWTxkMbO9OsPXY60yL4VCgYejBx6OHnT06mjWuRqdhryyvJpXWtXSraLWqtFKWrJKssgqyTJ73s52ztUG/zcmCDcWVrycvFApVWZfTyAQND2WaNO2Nlqdlgc3Psi3x79FgYJvZ37LPf3uaeppCQQCgUDQLJAkiYs5F/U5U/x2dl/ZTVF5kdExvs6+FJYXUq4tB8DbyZuHBj7EYxGPEVKcDfGjrTI3RztHAtwCzDYCliSJ4orieuVM+ep8AIrKiygqL6qmQ6Z2lAolXk5eZudMPs4+ONs7m3UtgUBgOzSHvCk6MZrJqyZTWF7IiJARbLlzCx6OHk09LYGgwYjCiECAPgA+lXGK7fHb2XF5B/uu7qNMU2Z0TL+2/fB18eVs5llSi1LJKc3BTmnH7T1v56khTzE4eLD+wLxEsHMETS392naO4NK4f/jslHb4ufjVS/uxtKK0VnmvmhKE3LJcdJKOUk0ppYWlpBSmmH1tT0fPGlvYa0sQ3BzchPSXQCCoEY1Ow33r72PVyVUoFUp+mP0DC3ovaOppCQQCgUBg0+SW5rIrYZdcDLmxC93X2Zd+Af3ILcvleNpxskuzAQjzC+OpIU9xV5+7cHVw1R8sYXN5k0KhkH1G2nu2N+tcrU5LXllezYWUSrJfNx5TqilFJ+nIKc0xWnxnKo4qR5Nlv278t51SPBYSCAQ1s+/qPqatmUZReRGjO4xm04JNuDlY1x9KIGgsFJIkVd/basMUFBTg6elJfn4+Hh6iQimoH+lF6ey4vEMuhqQVpRntD3YPZmLoRPq07cPZzLP8ePpHeQWUr7MvDw98mEcjHiXYI7jq4HmJUJJd88VdfMErxJIvxybRSToK1YW1r7SqQRf4xtVm5mKntKu3LrCjnaOFfgICgcAW0eg03BV5F2tPr0WlULFm7hpu73l7U09LIKgTEQMLzEXcM4KGUqGt4GDyQbkQcjjlMDpJJ++3V9ozsv1IxnYai1bSsv78eo6lHZP3TwqdxOKhi5kYOrF6mSiRNwFQpimrtmBSV85k8KBsCO4O7mbnTD7OPsKDUiBoBUQlRDH9x+mUVJQwrtM41s9bf724LRDYKObEv6IwImg1lGnKrstjxW/nRPoJo/3Ods6M6TiGiaETmdB5AulF6Xxy6BM2xm2UtXHD24SzeMhi7uxzJy72Lk3xMloNFdqKGnWBa/NSySnNkVv164uLvUuNLey1JQiejp5C+ksgsDG0OslIs7d/e3cWRi7gt3O/Ya+056dbf2J2j9lNPU2BwCREDCwwF3HPCMxFkiTic+PlnCkqIYrC8kKjY3r49WBi6EQmhk4kzC+MH078wLLYZbIfh7OdM3f3vZsnhzxJeJvwpngZrQaDB2V9vFQMHpT1xeBBacpitBuPER6UAoFtcWPONLiTD7sSdjBz7UzKNGVMCp1E5B2RQrZP0CwwJ/4VPZOCFoskSZzJPCMH9Xuv7q0ij9U/oL8c1I8IGYGExJpTa1iwboGRr8i0rtN4ashTjO88XqyKaSTsVfb4u/rrzezNQJIkSjWl9dIFzivLQ0KipKKEkooSkgqSzLq2AgWeTp710gV2sXcR95ZAYGG2nk7l9Y1nSc2//tlvb19EsiIFBwcHfr3tV6Z3n96EMxQIBAKBoOnJK8sjKiFKzpsS8hKM9vs6+zK+83h5AVmIZwjH047zycFPWHNqjbwoKdg9mCcGP8GDAx/Ex9mnKV5Kq6OyB2UHrw5mnWvwoDQ3Z7KEB6WTnVPtXSk1bBcelAKB5akuZ/JyhQTte5QpypjWdRq/3v6rKGgKWiSiY0TQosgozmDn5Z1yUJ9alGq0P9AtUC6EjO88Xn7onlqYyrLYZfw39r9klmQC+q6B+/rdxxODn6C7X/dGfy2Cxkcn6cgvy6+1hb2mBKG4orhB17ZX2pu90sqgC+ygcrDQT0AgaDlsPZ3KolVHuTHIkdABCh4ep+SfE6Y2xdQEgnojYmCBuYh7RlAdGp2Gg0l/y2Nd3s6h5ENV5LFGtB/BxM76vKl/YH+UCiVanZZNFzbx8cGP2XNlj3z80HZDWTxkMXN6zMFeZd8Er0jQ2JRWlNYu+1VLt0rle60+eDp6mi2V7OPsIzwoBYJqqCtn6txpF9seeFc8cxA0K0THSHNAaKlWobrWPZWy9sBFrVGzP3G/XAiprGeLpMRDMZCefsMZ1j6cuyNG0KdtL6Ng6GjqUT4+8DFrT6+lQlcBQHvP9jwx+An+0f8feDt7W+W1CmwTpUKpD56dvens3dmsc8u15fXWBa7QVVChqyC9OF2WIDAHV3vXeukCezh6VK/1bOPU57NC0LrQ6iRe33i2SoAPoEB/z2+MdeTFcZK4dwQCgcDWEXmTEfWNg+Jz4uVCSFRC1HUZJUmJo64nIW49GRzSnXn9I7i582gjY90CdQHfHvuWTw99yuXcy4BeRum2nrfx1JCnGNpuqFVeq8B2cbZ3xtnemSD3ILPOM3hQmlNUMWw3SLrlq/PJV+dzJe+KWdc2eFCamzM1Vw9KkTMJ6qLunEmiLGcaKoUoeAtaLqIw0hTkJcLnA0GjrvkYO0d4/EirCfKra90L9HRiyfRwJvcKlLdJksTZzLOyYfqeK3so1ZQajdUvoB/hbvM5e7knucWQkgi/JUL06QyWTE9jQrg/6+PW8/GBj/nz2p/yeSNCRrB46GJmhc3CTineGgLzcFA50NatLW3d2pp1niRJFFcU15oU1FRUyS/LR0J/fnFFMYkFiWZdW6lQ4uXkVWsLe00JgrOdc5OsuDL1s0LQujmUkGN0j1RHan4ZhxJyGBbq20izEggEAoHZiLzJCHPioPyy/OvyWJe3ywUNAz7OPgzwvp+0lJsoLFdRkQP7c+DyFSfspxcyuZcbl3Mv89nBz1h+bLn8UNrbyZuHBz7MY4Mfo51HO+u/aEGLQqlQ4unkiaeTJx29Opp1boW2gryyPJMLKYZ/GzwoNToNmSWZskKEObjYu5gl+2X4d1N5UIqcSWAKdedMClLz1SJnErRoxNPfpqAku/bgHvT7S7JbTYBfXeteWn4Zi1Yd5Z1bu6BzPMr2y/qukJTCFKPjAtwC9PJYnfXyWMeu6Goc75FVR8DrG66q1wP6VSN39LyDp4Y8RURwhPVepEBQAwqFAjcHN9wc3AjxNO/9rtVpyVfnm60LnFuWS0lFCTpJJycL8bnxZl3bQeVQb13g+kos1PVZsWzhABHoCwDIKKy9KGLucQKBQCBoIkTeJFNXHPT5gn74eF+TCyEHkw6ilbTycXZKO4aHDJflsTKzg3hszfEacqajdOy4g33pnyL9fUQPvx48NeQp7up7Fy72LtZ9sQJBNdir7Gnj2oY2rm3MOs/gQVmfnCm3NNfIgzK5MNmsaxs8KM3NmbydvXG1d63XQjSRMwlMReRMAoEojAiamNpa96S///vsrzEkO/0DFHotUic7J0Z1GCUH9b38r8tj6ceLqnE8CQlt3iz8fKJ5eNBDPBrxqNntvwKBraBSqvBx9sHH2YdQQs06V61Rm9TCXt02jU5DubactKI00orSzJ63u4O72V4qno7e/KuWzwoF8PrGs0wIDxAt4gL83U0zBjT1OIFAIBAImhJTcqZFP+4k0fF+OWcC6ObbTc6ZxnQcg7ujuzzeyO9ry5l0XLrSD8lJwZSuk1k8dDETOk8Q/gyCZolCocDF3gUXexeCPYLNOlcn6ShQF5gt+5VblktReRESEnlleeSV5ZGQl2DWte2V9tV37zvV7KXi6ejNvzacETmTwCREziQQNHFh5IsvvuD9998nLS2Nvn378tlnnzF48OCmnJKgkTGldc+ONoR7Tmdqz65MDJ3IyPYjcbZ3rtd4CpTY0YbVs44zupsoiAhaL452jgS4BRDgFmDWeZIkUVReVC9d4Hx1PgCF5YUUlhdyLf+a6fPV9iag/O2a54WQRhJcZ3AnHwI9nUjLL6tBMxcCPPVaywKBQGDriJxJYErOpJT88LUbws3dg5nYeSITQifUKFVkas60dkYsdwzo37DJCwTNGIP0sJeTF5hpP1quLb8u/WVmt4rBgzKjOIOM4gyTrylyJoE5iJxJIGjCwshPP/3EM888w3//+1+GDBnCxx9/zKRJk4iLi8Pf37+ppiVoZExtyXvr5i+Y2a/u1R2mjpdXUt3HvkAgqAuFQoG7ozvuju6092xv1rkanYb8svw6k4LqEgeFxrRMRLT5CgBUSgVLpoezaNVRFGAU6BvWxi2ZHi5WygkEAptH5EwCMD2++XraT8zuX7ekmKnjOSnFPSYQ1BcHlQP+rv74u5r3PpIkvXRXrTlTNR6UuaW5lBeZ9gBb5EwCEDmTQABNWBj58MMPefDBB7nvvvsA+O9//8vmzZtZsWIFL730UlNNS9DIWLp1T7QCCgS2i53SDl8XX3xdzF+dtPdCKvesOFrnceK9LTAwuVcgyxYOqGI8GSCMJwUCQTNC5EwCMD2+CfAwzftD5EwCge2iUChwdXDF1cHVbA/K/ZcyuPObw3UeJ97bAgMiZxK0dpqkMFJeXs6RI0d4+eWX5W1KpZLx48cTExNT5Xi1Wo1afd10r6CgoFHmKbA+lm7dE62AAkHLZGSXAPHeFpjN5F6BTAgP4FBCDhmFZfi76+8Rserp/9u735gq6/+P4y/+HjQFFL+cIwlFzs1KM5PgR7R5Q5Y11zJbK0eNWZurYIFsldXUG81QW61pTqsbdSPLcstKNtsYGs5NEREr09Atl0w9kBl/Qk3jvH83vj/Oz3M8xiH1XAeu52M7m1zXZ8f32fW+4HrtzcUFYDgYamaSyE0jFZkJQDT+57b/cG5jyMhMcLNEJ/7TM2fOqL+/X16vN2S71+uV33/lg3xra2uVkZERfOXmDm1qjvg1cOue9P+36g34N7fuXe/3AxAfOLfxbyUlJqh4cpYeuftmFU/OokcADBtDzUwSuWmkIjMBiAbnNv4tMhPcypHByFC9+uqr6u7uDr7a29udLunajM6Skj3/vCbZ8991LjBw654vI/R2Tl9GmjY8dc+Qb9273u8HID5wbgMA8M/ITSMXmQlANDi3ASB6jvwprQkTJigpKUkdHR0h2zs6OuTz+a5Y7/F45PEMckE8nGTmSpUt0rnfr75mdNZ/17nE9b51j1sBgZGJcxsA4BZDzUwSuWmkIzMBiAbnNgBEx5HBSGpqqmbNmqWGhgbNnz9fkhQIBNTQ0KDKykonSoq9zFzXXMBHa+DWvXh9PwDxgXMbAOAGZKb/Q24KQWYCEA3ObQAYnCODEUmqqalReXm5CgoKVFhYqHfffVd9fX1atGiRUyUBAAAAQNwgMwEAAAA3hmODkSeeeEK//fabli9fLr/fr7vvvlvffvvtFQ8XBAAAAAA3IjMBAAAAN0aCmZnTRQxVT0+PMjIy1N3drfT0dKfLAQAAAG44roExVPQMAAAA3GQo17+JMaoJAAAAAAAAAADAcQxGAAAAAAAAAACAazAYAQAAAAAAAAAAruHYw9evxcBjUXp6ehyuBAAAAIiNgWvfYfiIQDiE3AQAAAA3GUpmGpaDkd7eXklSbm6uw5UAAAAAsdXb26uMjAyny8AwQG4CAACAG0WTmRJsGP7KWSAQ0KlTpzR27FglJCRc03v19PQoNzdX7e3tgz6pHu5ATyAS+gLh6AlEQl8g3PXsCTNTb2+vcnJylJjIX8TF4K5XbuJ7GyKhLxCOnkAk9AXC0RMI51RmGpZ3jCQmJmrSpEnX9T3T09M5GRGCnkAk9AXC0ROIhL5AuOvVE9wpgqG43rmJ722IhL5AOHoCkdAXCEdPIFysMxO/agYAAAAAAAAAAFyDwQgAAAAAAAAAAHAN1w9GPB6PVqxYIY/H43QpiBP0BCKhLxCOnkAk9AXC0RMYCehjREJfIBw9gUjoC4SjJxDOqZ4Ylg9fBwAAAAAAAAAA+Ddcf8cIAAAAAAAAAABwDwYjAAAAAAAAAADANRiMAAAAAAAAAAAA12AwAgAAAAAAAAAAXMPVg5H169fr1ltvVVpamoqKirRv3z6nS0KM1NbW6t5779XYsWOVnZ2t+fPnq62tLWTNhQsXVFFRoaysLI0ZM0aPPfaYOjo6HKoYTli1apUSEhJUXV0d3EZfuM/Jkyf11FNPKSsrS6NGjdL06dO1f//+4H4z0/LlyzVx4kSNGjVKpaWlOnbsmIMV40br7+/XsmXLlJ+fr1GjRmny5Ml64403ZGbBNfTFyLZr1y49/PDDysnJUUJCgr766quQ/dEc/7Nnz6qsrEzp6enKzMzUs88+qz///DOGnwKIHrnJvchNGAyZCQPITbgcmQlS/Ocm1w5GPv/8c9XU1GjFihU6cOCAZsyYoblz56qzs9Pp0hADjY2Nqqio0N69e1VfX69Lly7pgQceUF9fX3DNkiVLtG3bNm3ZskWNjY06deqUFixY4GDViKXm5ma9//77uuuuu0K20xfu8scff6ikpEQpKSnavn27Dh8+rLffflvjxo0LrlmzZo3Wrl2rjRs3qqmpSTfddJPmzp2rCxcuOFg5bqTVq1drw4YNeu+993TkyBGtXr1aa9as0bp164Jr6IuRra+vTzNmzND69esj7o/m+JeVlemnn35SfX296urqtGvXLi1evDhWHwGIGrnJ3chN+CdkJgwgNyEcmQnSMMhN5lKFhYVWUVER/Lq/v99ycnKstrbWwarglM7OTpNkjY2NZmbW1dVlKSkptmXLluCaI0eOmCTbs2ePU2UiRnp7e23KlClWX19vsxEKznsAAAZ1SURBVGfPtqqqKjOjL9zolVdesfvvv/+q+wOBgPl8PnvrrbeC27q6uszj8dhnn30WixLhgHnz5tkzzzwTsm3BggVWVlZmZvSF20iyrVu3Br+O5vgfPnzYJFlzc3Nwzfbt2y0hIcFOnjwZs9qBaJCbcDlyEwaQmXA5chPCkZkQLh5zkyvvGLl48aJaWlpUWloa3JaYmKjS0lLt2bPHwcrglO7ubknS+PHjJUktLS26dOlSSI9MnTpVeXl59IgLVFRUaN68eSHHX6Iv3Oibb75RQUGBHn/8cWVnZ2vmzJn68MMPg/uPHz8uv98f0hMZGRkqKiqiJ0aw++67Tw0NDTp69Kgk6fvvv9fu3bv10EMPSaIv3C6a479nzx5lZmaqoKAguKa0tFSJiYlqamqKec3A1ZCbEI7chAFkJlyO3IRwZCYMJh5yU/I1v8MwdObMGfX398vr9YZs93q9+vnnnx2qCk4JBAKqrq5WSUmJpk2bJkny+/1KTU1VZmZmyFqv1yu/3+9AlYiVzZs368CBA2pubr5iH33hPr/88os2bNigmpoavfbaa2pubtaLL76o1NRUlZeXB497pJ8n9MTItXTpUvX09Gjq1KlKSkpSf3+/Vq5cqbKyMkmiL1wumuPv9/uVnZ0dsj85OVnjx4+nRxBXyE24HLkJA8hMCEduQjgyEwYTD7nJlYMR4HIVFRU6dOiQdu/e7XQpcFh7e7uqqqpUX1+vtLQ0p8tBHAgEAiooKNCbb74pSZo5c6YOHTqkjRs3qry83OHq4JQvvvhCmzZt0qeffqo777xTBw8eVHV1tXJycugLAMCIRW6CRGZCZOQmhCMzYThw5Z/SmjBhgpKSktTR0RGyvaOjQz6fz6Gq4ITKykrV1dVp586dmjRpUnC7z+fTxYsX1dXVFbKeHhnZWlpa1NnZqXvuuUfJyclKTk5WY2Oj1q5dq+TkZHm9XvrCZSZOnKg77rgjZNvtt9+uEydOSFLwuPPzxF1eeuklLV26VE8++aSmT5+up59+WkuWLFFtba0k+sLtojn+Pp/vigdX//333zp79iw9grhCbsIAchMGkJkQCbkJ4chMGEw85CZXDkZSU1M1a9YsNTQ0BLcFAgE1NDSouLjYwcoQK2amyspKbd26VTt27FB+fn7I/lmzZiklJSWkR9ra2nTixAl6ZASbM2eOfvzxRx08eDD4KigoUFlZWfDf9IW7lJSUqK2tLWTb0aNHdcstt0iS8vPz5fP5Qnqip6dHTU1N9MQIdu7cOSUmhl5CJSUlKRAISKIv3C6a419cXKyuri61tLQE1+zYsUOBQEBFRUUxrxm4GnITyE0IR2ZCJOQmhCMzYTBxkZuu+fHtw9TmzZvN4/HYxx9/bIcPH7bFixdbZmam+f1+p0tDDDz//POWkZFh3333nZ0+fTr4OnfuXHDNc889Z3l5ebZjxw7bv3+/FRcXW3FxsYNVwwmzZ8+2qqqq4Nf0hbvs27fPkpOTbeXKlXbs2DHbtGmTjR492j755JPgmlWrVllmZqZ9/fXX9sMPP9gjjzxi+fn5dv78eQcrx41UXl5uN998s9XV1dnx48ftyy+/tAkTJtjLL78cXENfjGy9vb3W2tpqra2tJsneeecda21ttV9//dXMojv+Dz74oM2cOdOampps9+7dNmXKFFu4cKFTHwm4KnKTu5GbEA0yE8hNCEdmgln85ybXDkbMzNatW2d5eXmWmppqhYWFtnfvXqdLQoxIivj66KOPgmvOnz9vL7zwgo0bN85Gjx5tjz76qJ0+fdq5ouGI8It8+sJ9tm3bZtOmTTOPx2NTp061Dz74IGR/IBCwZcuWmdfrNY/HY3PmzLG2tjaHqkUs9PT0WFVVleXl5VlaWprddttt9vrrr9tff/0VXENfjGw7d+6MeB1RXl5uZtEd/99//90WLlxoY8aMsfT0dFu0aJH19vY68GmAwZGb3IvchGiQmWBGbkIoMhPM4j83JZiZXft9JwAAAAAAAAAAAPHPlc8YAQAAAAAAAAAA7sRgBAAAAAAAAAAAuAaDEQAAAAAAAAAA4BoMRgAAAAAAAAAAgGswGAEAAAAAAAAAAK7BYAQAAAAAAAAAALgGgxEAAAAAAAAAAOAaDEYAAAAAAAAAAIBrMBgBAAAAAAAAAACuwWAEAAAAAAAAAAC4BoMRAAAAAAAAAADgGgxGAAAAAAAAAACAa/wvEAeN669HV2oAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "installation, service, xC, yC, xF, yF = GenerateFacilityLocationInstance(8, 88)\n", + "weak = FacilityLocationWeak(installation, service)\n", + "strong = FacilityLocationStrong(installation, service)\n", + "\n", + "solver_names = [\"cplex_direct\", \"gurobi_direct\", \"xpress_direct\", \"appsi_highs\"]\n", + "solver_names = sorted(set(solver_names) & set(ListAvailableSolvers()))\n", + "\n", + "_, axs = plt.subplots(len(solver_names), 2, figsize=(20, 10))\n", + "plt.subplots_adjust(hspace=0.5)\n", + "\n", + "for i, solver_name in enumerate(solver_names):\n", + " solver = SwitchCutsOff(pyo.SolverFactory(solver_name))\n", + " ShowFacilityLocation(xC, yC, xF, yF, *Solve(solver, weak), ax=axs[i, 0])\n", + " ShowFacilityLocation(xC, yC, xF, yF, *Solve(solver, strong), ax=axs[i, 1])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ktcxGDIimSje" + }, + "source": [ + "We now run a more extensive performance comparison considering increasingly larger instances of the problem. We will see that the strong formulation is consistently faster than the weak formulation." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "id": "aPhtOddQChEG" + }, + "outputs": [], + "source": [ + "def SolveInstances(dimensions, solvers, seed, modify=lambda s: s):\n", + " np.random.seed(seed)\n", + " model = {\"weak\": FacilityLocationWeak, \"strong\": FacilityLocationStrong}\n", + " df = pd.DataFrame(\n", + " index=dimensions,\n", + " columns=[f\"{s}_{m}\" for s, m in it.product(solvers, model.keys())],\n", + " )\n", + " for n, m in tqdm(df.index):\n", + " installation, service, *_ = GenerateFacilityLocationInstance(n, m)\n", + " instance = {\n", + " option: model[option](installation, service) for option in model.keys()\n", + " }\n", + " values = dict.fromkeys(solvers)\n", + " for column in df.columns:\n", + " solver = column[: column.rfind(\"_\")]\n", + " option = column[column.rfind(\"_\") + 1 :]\n", + " t = pc()\n", + " modify(pyo.SolverFactory(solver)).solve(instance[option])\n", + " df.at[(n, m), column] = pc() - t\n", + " *_, v = GetSolution(instance[option])\n", + " values[solver] = v\n", + " if len(set(values.values())) > 1:\n", + " print(values)\n", + " return df" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Fuo0eiU4mSje" + }, + "source": [ + "We solve instances with 10 to 100 facilities and 100 to 1000 customers. We then plot the run-time of the strong and weak formulations as a function of the number of facilities." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 495, + "referenced_widgets": [ + "072163be46894e5fb2d9d09667429996", + "cd2e2ee82e564282a80e76bc9abbce69", + "77257b9d0f5043568a2bac799a6c819b", + "165d87bc12a847388d237ea630f4a8c9", + "474ff661f4a84c40bfe6f87c441e8308", + "cdd37d14626e4374a0d803cc92d42bdd", + "731431f8547b46f89b6d2e2830a4fdd7", + "6335e575f2624d6396d528e3cac6ae1f", + "e5dbd7c509cd44b59b432a0b14b890aa", + "60b4bc35757d40a5a116fa9df5190284", + "c699442d513a4094a70685f352d5468c", + "5282f70e18cc4df5ad2f549aabeb9e32", + "ba00c6dd28df48c29cad735edab10e99", + "176d4885237e4508a5e44884b79aaa26", + "f0f95d15d24b4e7da7fe94979db2e489", + "e51b92f48e5348bfaf250d7c230117e4", + "0210e96365904b709f9711521393067f", + "7cf53e1b34ee45db8432a23ac32ede32", + "0a301c0524224055960e46964f54e2f5", + "c65dee8ab2dd48e08e91f71a97c7c240", + "0039195756be48469c78c89c309c92c5", + "d4cbe258db7f4b7e8dbf8f7f579dfb94", + "fac4728a5f3f4e93947154d87bc24f49", + "0af04d4a53f143a4bf6b260e21124098", + "c445b382d7434495a63bccfcd397bb6c", + "58a18087c376431c84adc35eeddc1411", + "9127974355fa44b09e35fb3c9a0ef86b", + "ef3c798fbc094460ac7efeb6e8759af6", + "6847d30161354479b72b3d5cb96a9583", + "c8dba2a8629d408aa2bb4010753c2fcf", + "6b4cf0fc34004c8c82398fb43ba2dbca", + "cd1f6a2c515641ddac388ec112632c52", + "21146e302ea644779302ca9ceefdf876", + "c7aae13494d44f33a22b2113dd12812a", + "4cd3df9aac8041d4b2aeaced5e8c47f7", + "ee3469ee85834698835a54a3ac2b0956", + "264d9ba8d8ed40be89d44dcb6bc33aee", + "0d4417f042ef49549d069bb829fce678", + "467d2af922954c7c9743fa4b196d70a3", + "9a17ae9b0ed74628a73d345592f3067b", + "bfbcefb4f223464abdbfefdf83dd8edc", + "605413d957af4a7f8dc80c1fcc4bcef0", + "83e4a6ff48f2495e95e4183afafd9466", + "31440c4c479d44b1a87ff8dd5d70ab96", + "8f2a530dba02479a987a038a5c8c5a93", + "e52bfecd1d514aa4886233163d78d8ea", + "679832d3146d4cfa80b12460d797960f", + "640afb7ef22a4a28a41dcbae77e864e3", + "29b918fdb4a545f48498a665d15aa557", + "2c7fd7cea38a4b6ebabf7f9f35c3d241", + "b9c73d15781a4548824a671183943c8e", + "ed9c9243a92545559bb5ef7f3f495368", + "eed1f8dac1974df8aa7a71420f5414bb", + "f0913472ebf645a7b2c37e253c384a2e", + "2e200afece75499eb5ac8fccaaf2aa78", + "02e4ad5bd56b4a35aed597f3f635d585", + "78ef2f297ae4460da045363bb6092ed3", + "137fac635ab041258a87221dd40d70e9", + "6bef2d23dbc446caa12c04b567aea01c", + "334526415ffb4a3093a174015acc53d7", + "fa4069965d534138ac847d5260b1d5bc", + "cb28ea11229048639cc44aede8da2acb", + "09a5b70127d748a3a976acf9040bb7ed", + "5346c4066dc847bb8682f0170ef2e4fe", + "e2a70d7f926d4b05a3dd73dec602c4cd", + "ed287d7cdb8e4f09811dd5b8645a8d06", + "a9765b6554c84ad4b962f7cd39282bb7", + "96ff01f793f84fdeba69b91246307897", + "f0c70021d6864b7b863708a7585285d4", + "93dcdf6814f741188da28a72a8835cd2", + "00c04e53247c4fb797e2fcb348c3bf74", + "ea6f7a4915814433865c6905d4843057", + "5c08e1a9afc240debbaaf9536338948e", + "7a729f255a8b44f3a290fa6842a954de", + "228b0aaf0f454864b5668bde4a6e0751", + "8a5e9cff650e4e90a4f37a67e6722846", + "9ab7930ae7bc4b589fd109d4151959e4", + "789de8c9e2cc49088ad9b308e4f47a00", + "e2bf7fae58c145c39794a6eb277cd2bc", + "0600de01691649d3be4eed2c39d760c2", + "e6b404556e6f4d50833bd404bcaa1f32", + "59d580cc363b4a999494937df36a1ff0", + "40a49f03ad6d4e57a132a59103c07782", + "c39fb6a39fb54c488f67c0841804e6a2", + "27bc2478a1494353b59ef30dc6c4c04c", + "498a59a1827d4f3c81705eb9df57d051", + "b763b174fb764631bd4c81bdbb0ef0ae", + "c8912e8284a34bc89863c43c47d218be", + "607c82b6ff22460397704afb7302c4ad", + "f576af6969ba4aa693a91b439453eaaa", + "d77c5d6f82ad486e9f2dbe2570f9f570", + "98694874a8e249d78cde7c8d811747a7", + "ebf1f8123c7f4e289a98dab51938446d", + "c6f7e46119fd43fda31a181407bf2f6e", + "5c299f5d2edd4d7182871aa103ad63ee", + "a0da15cab04c40cabde8fd5b7d301777", + "47d54bd6957c43dfa689a179c5f3a29c", + "1cf5564591574664878bed9e60176bb3", + "b278858c80b740e1a9dd1f06c8eebd7a", + "48819bcad9fa44d89a4436fb21542d4b", + "cbe8a1af6e90448d9ba465f919dbb8f5", + "b989b18af609490d9f9e1b58961f711d", + "28e45e0536d54afeb6ce0213a5902e51", + "66843e746cb84d2ab2045423d955b8d0", + "28e4a9b3aa714645b133cb0c8d19fbb4", + "4b118cfb1ca948d6a13844eee6771e83", + "335e32a1bdb14773b77219dce136d84b", + "1073687e38144cbf959a02c7a1edc0ef", + "e3bff2ba80814042af7b394ef751ed31", + "2024a6b35a8e49ed956dc6577e899ce6" + ] + }, + "id": "JBsS9otSAFxp", + "outputId": "1df9de62-0e85-439c-df35-a7023cd07998" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f1df101b86464b33ae67dfb114dc3d9b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/9 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "if \"google.colab\" in sys.modules:\n", + " solvers = [\"cbc\"]\n", + "else:\n", + " solvers = [\"gurobi_direct\", \"cplex_direct\"]\n", + "dimensions = [(n, 10 * n) for n in range(10, 51, 5)]\n", + "\n", + "SolveInstances(dimensions, solvers, 2023).plot(figsize=(8, 5))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 625, + "referenced_widgets": [ + "8c7086a7cfd7460aad559245cef7ff77", + "625f74db8a634c0b8cc312bc9d105f5e", + "1d0ddd9712e844d2a296bb609ec3fff5", + "dda03857c5944c80a6b0fdff79df4847", + "3ea18ef2302340c684ea614cb1e0cd18", + "93ba0848c35b4259bff79e47a62f84b3", + "04cd85a43cc742cea18c680a330b3e5a", + "c5da6771ede5465ca850795a762d6cbb", + "68ceffbb96d9411c911a088047ef8210", + "a95b4ab28ca74e2ab235ba2bdb048723", + "89a68d44723140ba827948a9ba93ef17", + "642df90b5e1b41408a81074ea013358d", + "edb5cbfd04ac4822ac2a5eccd3cf6666", + "b0e5a3f34fa94ee382af945506190cc3", + "38de3a672dbc4c5d9620a283e428bcb3", + "96968612455b4cfdbac09f761a8b760a", + "7876f2c265164fa29d9f57b3716f5850", + "9c81568cfc05430bb94d0bcf5d348ee9", + "2d69bed4be844104b908c017c22443eb", + "f85aadc89bce49c79b16ab574167a7d1", + "99c38d42e32f415ba894524a52536328", + "7a6ec07624f84daa8c9d46c21208f070", + "396b75923524457cb5142db3f4af0c4d", + "5534d740bd254cb9bcdcd546650a84da", + "a6b3488dce324c27b7ac47b00cb7afcb", + "49ca84b82a6e40ac92d2efc1a5bbafc9", + "996c329766a34c2686553501c096958e", + "59ed3adc94c64b078a5bc2df9042654f", + "44d2e56aaabd4c019ef6ebad1572a7ff", + "1438ec6ec58946c48a8c180ae0a1946b", + "3a2f1d392d7d4f1cb1e1b2be6a28dfec", + "c770e86620384eb698dc9d2b2454fbc6", + "2a086a827bff4b4cbb9db9f78b6da267", + "14a3160cb16c46b7a13d9780b33914da", + "9cfc136c44c045c3b472b019eec4c312", + "7cf700de12ab411da5ac9cdb1d0d4b19", + "2f1f2004c80943e5ba17ef3b2a132d4b", + "1c6c5ceb12af45c1bb9a9295ca142294", + "d6ccbdb27c464881a1f9e10341916ba0", + "007afb7342c74bc2bd0945b9e8c5f0f1", + "40d4ab0078304ecba831ab77bb9fb84b", + "468332aff46e42e49d0e20858d0a2026", + "18c2f46a33a1475f9e20b09ed96f4309", + "591597f211084bd0b2f44dc35edac400", + "0acf882b5e864cde8f6fc362257a49c8", + "c7b04cbfa91d4c389e2916fbfff36469", + "edb8bbc204384c77bf5b8e1a429c2bba", + "c6e68ae189e548cd882b35a0a9517b0c", + "8bd3b2e672654723a006cbec5120a8f3", + "e5f97f96e30c4da289153abf2663332f", + "15a853bb96ae476cbfa78754c7164fae", + "49cdd1f1b5944379a5da8c67ef15dc21", + "28e1b9d68e0a49c984fff1dfb76b5777", + "31ac4b264ab4415ba96807ee4d0e06ad", + "3e45ba09bc184a2cb7290f88b31bd5d2", + "66bf0d682fc34f4e98fa1211f66a0d86", + "645597e4eed64b5cab7e1d1675f9578e", + "c37d4d2cf2eb4452beac434bb6ce6068", + "cf3abef3b7504796a90a236a3cd3fbfe", + "28102cc074114ea1acf2a3a3b89038f7", + "61595fdc15de46f59be378b329c23270", + "c91812476862455c95871615bc50705d", + "4829e9cb01a24b81948f58fa562803dd", + "0ef9438e841f4db496122205eef24486", + "82c94dd7d81d45dcb99e536befb198ff", + "98f88a65d0344c1eac141ae1d785f9ab", + "a6388465ec334509ad4b28a1bf68ed45", + "556c5ed9f4bd4c72bdfc12b35af4749a", + "4fba6ac047ee4347b151cba97f6a297a", + "e271a8ab10944015a3be933b24663c7c", + "16adf58866ef4b12a18098367ec7e97f", + "90c52e72a18d4f7aa519a4b03a83db60", + "5c519d7149904a91badcc572aa3c1f91", + "73382149cd2845209238fcf3c9788335", + "829f26b3ee6d48629887b83c0e60f983", + "dee52cc7414843a6a366d67c7c4d704c", + "a33017fd785f429d9021ef56858b0465", + "bd419397f35e41b181e9d27801cf0ebe", + "add771f12a394c58af97586453413df9", + "3906cd318d414f438b8ae30664e8e510", + "433f368380d54ce6b98873956dbc91a1", + "2ca39efc251640a388627a1570dad519", + "5c8293d798dd4615b512899915435b44", + "ea3554a8554045ec9223b3e134664989", + "500cf76011fe45a683e06f8419b0b63a", + "ada1ac7e7a76477486e593e55442895e", + "967ef5059a3b4b808d0b1362b876aba8", + "1e06349ebb494303acf76d783fb9da67", + "1a909a2324e841299ae8e4573479c641", + "aa6f16444c6940a18f7f6a9870c9927d", + "957e6b15bb47489f834c7e824ea2bb97", + "934fd49155fd45faa1fe0200ff81c8c8", + "0c53603aca8c4d1595d3b704fb40504a", + "48a471a2841e4a0fad4d8e3720bd3e5f", + "978e1da737f543b1a90fbfde3eb14ec8", + "b10d500d3b3c4cb9ad5316404fbed8f8", + "7b5e382d691e43789122b23044a6a194", + "4c8af45c03994d5585834ba8e889c50b", + "aac100fba4be415cbe0973b16a8680ec", + "3dd533f28a5245f2ab55c1d445bc9104", + "e2f71b4308724c2bbe827e292c9f45ac", + "a8e76377609d4397a086f7e75f0f1fff", + "3716355844164b24a588e39d39fd6f58", + "aebde985ee394558a181784bb24ff3d8", + "e720c7dc426a471486fa7c95fca993d2", + "8d04329a03f148018cc3cf13225d5c0c", + "b426e565409e4ea496f566b5f6c083cb", + "457ef66d94164abd8cb7afed6d61f01b", + "03a45b815fc3428e80f1a3b0e0f84970", + "e069acd4535c4b1c8d58a39fae727403" + ] + }, + "id": "JjbJjN1ru3vM", + "outputId": "b2fb124e-9582-4c96-f5d9-82d389aa1554" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1ebc3796db2b458fb09228a935f5aed4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/9 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "modify = compose(ClosureForMaxTime(10), SwitchCutsOff)\n", + "SolveInstances(dimensions, solvers, 2023, modify).plot(figsize=(8, 5))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 495, + "referenced_widgets": [ + "80b50f091f824bf581da1f4acc14a7b9", + "2b9c9f47ab9a4bec9bb81e30451d6284", + "64d77d0bec484bd09bdbd989f96f1106", + "810da8e965b74ca48e9be524f6172625", + "8223d0cb5665477ba0c2273bde5dc066", + "552c8fcbbb3d4a9e97c5b723c6a835cb", + "5b134799e124401998885dd3284d8234", + "edec5d52b907433fb6810c504abafc26", + "649d01972e304b338ccfc5c60da52a3b", + "2e582be8221c459e96df73cce70b66eb", + "9143c06ee03641b7bb4919f03d2cc46c", + "cd189c3366634e63961a523adade1895", + "c846cbccc2b6453182b37f0bdd8925fc", + "67ffbfc0c6024cae989b0841ff9124b0", + "e566bc5f53a84edcaca0d9a5b5aa22b5", + "eaad7a53f5ad41f8b9d2833f04e28f52", + "f0db76fbd07e4b52a8bf19f6d6087d17", + "2eb8078c5d6242fba118b461ddf326f8", + "f8dfd1a002e74b74b9272ba374ac4ca8", + "53ff29fa5d6f4725917315ba9975722c", + "5c698883183c49afb09f2a54b5f1c717", + "8025ba94d49640a0ab26b58aa73eb694", + "0a72801cb28e4885b31120dc6aece997", + "573b54fb59f146699436d2956c0bd63a", + "9cf96e7620c64cd88a4258f4a75a2530", + "f340a0b32caa466e967f004d55851c1b", + "ea0d0fe1a8d444fcaf9cfc6383a3dc62", + "376fe78cb3c540c4a220ed186188da31", + "52ccf02fa430430d9ef9e05ff3b71d69", + "25c3d5dfe949490db446a02d9b059d19", + "94f97d042e9640af942dc5eedc46e8b3", + "b369107bece6428fb7aa4a31fb4bf555", + "7b2d5b467e8f470b909fa4e9362e6937", + "ef7b8d5473a64de0901f904a83022884", + "f31395285b5c44049f57f099329641de", + "b8e4b5c864e648f9b84d821cd7113c51", + "b315b2bdfaff427ea5bd76effcfe1477", + "1533677646974ac4ae31c8039d75f828", + "1134d02f65aa450d9965863d3c404477", + "44f92ec072ce40e48afe6cd371719276", + "dfe5ad2c602e4a87aa3c294c7285c905", + "360c633b95b14b61ae22126a06891e5b", + "e0e5bae586834b1a9fd4b76522088c9b", + "381db092432a43f7aa320c7ed9dc466a", + "7933f9200c4e4b10b838a900407119a0", + "39460fbe052d43bca951e6b2c2cc7bb9", + "ee3b059fb8684fce9576f7e4d39e3842", + "8498a2d4766649a59e91009418d25a88", + "68a5a12069c145cfbac9b1c73573fd5c", + "93c5f0b7798848b4b33ad22461794d18", + "7260dd9b253a4ad48a950f4bfdadf718", + "ab0d3854aefb4e2a8872929c98a39e63", + "77ec5f624fb8498b8548e8f088d937a0", + "81b2366d9b3a43a6ba5aa9389ca6b178", + "86bfe1cdddb74c0ca0e3082a4dc835ba", + "f2247d826a1941af99873314c0bacba5", + "68ef6fb4be4a454e83f66b020bb7391f", + "9fcf9855749b4f19b9a8780d68cdc8fe", + "7b1ae36ed08647ccace82fdeee3f3e24", + "5dcba6d4508e4b548d98b70d40d88c4d", + "4151f1f974de4d9caac54d86654207d3", + "c3b7a39f314b40c18fb8ccdbfb8ca3b3", + "27cd3760950a44deb7cfaf9e38dc6a7b", + "ea86851eeae74975a56623b77c8359e7", + "b2961a36fd7b493e94f788fd8c59315a", + "4b246903555445ec94cb5c32d2124b3a", + "4e3bb73f18764060bcb6b7ee2f6fe485", + "8337fc4ac16946698e312ebcf3ac04ca", + "4d6fbf9dc9714ae28490df603971cb5a", + "c6cc64e709694bbd9d8b5cfe61e6f5a3", + "b3678115674744cda88561ea1c573378", + "985eafb953fa46499539d986161ae925", + "e9f02fa8c02846ec92c0c98354f7b57b", + "73480f5d144b4b71ba1d60b6090edf68", + "9003370e7ac644aea13745f95cdbcc40", + "53c7ac1ad2584257838784914b991e56", + "f09cc7e7f9164e35bfbc896753efcaba", + "473a1c307fb0453684a33f1df2418ba9", + "bfd6ce6e77c045acb94760a1f9324ec6", + "99823a253a014addb9eca48c2afee8f8", + "4a961c5e0aa3439281b152c4f5af59ae", + "15e5fb815c034f6faae4160a3a0c82b1", + "9330af137bf244f889e247d25e6e558c", + "08ddd5f58e354efa88bceab4767f3fb9", + "35343359cab04e7885ff633c8069a6bf", + "18d0f80e84a1469ead9f82d3bb48913b", + "95a7706b521d4dabbb4af9ac99e29619", + "8a609b1eb4c54c099171188cadf8682d", + "8f50142f64244cdb8ba137f5e29fa70f", + "4251d033b4714dd690e7488f3f468ebb", + "5fe315366e2d4065847ecb5620e5f6c4", + "afdc6fb0d6b4440da5b1fd09dd4d8c19", + "9a7c634d7e0646c1be57ed33bcb6efd7", + "be32d666dd0d4b4898cd26a6533f3fda", + "1155dbabf1db4bf48b567e75ee11e9fa", + "8e0e4cf35e4b4aa1bbf59a599150b11a", + "c74eebbfa22442c7ba756708f5110a68", + "1c891fe6ac6f4cd4a99c7cdc1c618ccd", + "97584ec732df478c87a7a36cfc933fdc", + "d3f3df0d05ef48b8929943660e4e395f", + "caaf55d8eae74a39872c86ceedb5685c", + "54fec21ccc8a4ee7b26a2b6bf7f218f4", + "3cd0272ed30a45deb92258eefc4fe86f", + "46a76fbe44404ef99e2888cb8886dfca", + "53246238e747442899aca531a8f27bd5", + "943bca12541347c5bbea3d35a9c2496a", + "b67cd5e62a01452391260c93b66d28d9", + "8ee3a4a6374e4af99e6f694eb9266e20", + "076146cd0e694d9480beb78f4c29ce8a", + "195b5f677e274fd0ae935287d9ea37e5" + ] + }, + "id": "4Ji7zifgu6kH", + "outputId": "bbd266ea-0408-4a6c-c6c8-1a2a96a8477e" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "480558b0b5cb45c0ba4c6f75ce5d51ab", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/9 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "SolveInstances(dimensions, solvers, 2023, SwitchPresolveOff).plot(figsize=(8, 5))\n", + "plt.show()" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "0039195756be48469c78c89c309c92c5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "007afb7342c74bc2bd0945b9e8c5f0f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "00c04e53247c4fb797e2fcb348c3bf74": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "0210e96365904b709f9711521393067f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "02e4ad5bd56b4a35aed597f3f635d585": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_78ef2f297ae4460da045363bb6092ed3", + "IPY_MODEL_137fac635ab041258a87221dd40d70e9", + "IPY_MODEL_6bef2d23dbc446caa12c04b567aea01c" + ], + "layout": "IPY_MODEL_334526415ffb4a3093a174015acc53d7" + } + }, + "03a45b815fc3428e80f1a3b0e0f84970": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "04cd85a43cc742cea18c680a330b3e5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0600de01691649d3be4eed2c39d760c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_27bc2478a1494353b59ef30dc6c4c04c", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_498a59a1827d4f3c81705eb9df57d051", + "value": 2 + } + }, + "072163be46894e5fb2d9d09667429996": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cd2e2ee82e564282a80e76bc9abbce69", + "IPY_MODEL_77257b9d0f5043568a2bac799a6c819b", + "IPY_MODEL_165d87bc12a847388d237ea630f4a8c9" + ], + "layout": "IPY_MODEL_474ff661f4a84c40bfe6f87c441e8308" + } + }, + "076146cd0e694d9480beb78f4c29ce8a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "08ddd5f58e354efa88bceab4767f3fb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "09a5b70127d748a3a976acf9040bb7ed": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0a301c0524224055960e46964f54e2f5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0a72801cb28e4885b31120dc6aece997": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_573b54fb59f146699436d2956c0bd63a", + "IPY_MODEL_9cf96e7620c64cd88a4258f4a75a2530", + "IPY_MODEL_f340a0b32caa466e967f004d55851c1b" + ], + "layout": "IPY_MODEL_ea0d0fe1a8d444fcaf9cfc6383a3dc62" + } + }, + "0acf882b5e864cde8f6fc362257a49c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c7b04cbfa91d4c389e2916fbfff36469", + "IPY_MODEL_edb8bbc204384c77bf5b8e1a429c2bba", + "IPY_MODEL_c6e68ae189e548cd882b35a0a9517b0c" + ], + "layout": "IPY_MODEL_8bd3b2e672654723a006cbec5120a8f3" + } + }, + "0af04d4a53f143a4bf6b260e21124098": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ef3c798fbc094460ac7efeb6e8759af6", + "placeholder": "​", + "style": "IPY_MODEL_6847d30161354479b72b3d5cb96a9583", + "value": "100%" + } + }, + "0c53603aca8c4d1595d3b704fb40504a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "0d4417f042ef49549d069bb829fce678": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "0ef9438e841f4db496122205eef24486": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1073687e38144cbf959a02c7a1edc0ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1134d02f65aa450d9965863d3c404477": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1155dbabf1db4bf48b567e75ee11e9fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "137fac635ab041258a87221dd40d70e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_09a5b70127d748a3a976acf9040bb7ed", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5346c4066dc847bb8682f0170ef2e4fe", + "value": 2 + } + }, + "1438ec6ec58946c48a8c180ae0a1946b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "14a3160cb16c46b7a13d9780b33914da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9cfc136c44c045c3b472b019eec4c312", + "IPY_MODEL_7cf700de12ab411da5ac9cdb1d0d4b19", + "IPY_MODEL_2f1f2004c80943e5ba17ef3b2a132d4b" + ], + "layout": "IPY_MODEL_1c6c5ceb12af45c1bb9a9295ca142294" + } + }, + "1533677646974ac4ae31c8039d75f828": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "15a853bb96ae476cbfa78754c7164fae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "15e5fb815c034f6faae4160a3a0c82b1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "165d87bc12a847388d237ea630f4a8c9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_60b4bc35757d40a5a116fa9df5190284", + "placeholder": "​", + "style": "IPY_MODEL_c699442d513a4094a70685f352d5468c", + "value": " 9/9 [01:01<00:00, 9.89s/it]" + } + }, + "16adf58866ef4b12a18098367ec7e97f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "176d4885237e4508a5e44884b79aaa26": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0a301c0524224055960e46964f54e2f5", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c65dee8ab2dd48e08e91f71a97c7c240", + "value": 2 + } + }, + "18c2f46a33a1475f9e20b09ed96f4309": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "18d0f80e84a1469ead9f82d3bb48913b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "195b5f677e274fd0ae935287d9ea37e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1a909a2324e841299ae8e4573479c641": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aa6f16444c6940a18f7f6a9870c9927d", + "IPY_MODEL_957e6b15bb47489f834c7e824ea2bb97", + "IPY_MODEL_934fd49155fd45faa1fe0200ff81c8c8" + ], + "layout": "IPY_MODEL_0c53603aca8c4d1595d3b704fb40504a" + } + }, + "1c6c5ceb12af45c1bb9a9295ca142294": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "1c891fe6ac6f4cd4a99c7cdc1c618ccd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1cf5564591574664878bed9e60176bb3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1d0ddd9712e844d2a296bb609ec3fff5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c5da6771ede5465ca850795a762d6cbb", + "max": 9, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_68ceffbb96d9411c911a088047ef8210", + "value": 9 + } + }, + "1e06349ebb494303acf76d783fb9da67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2024a6b35a8e49ed956dc6577e899ce6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "21146e302ea644779302ca9ceefdf876": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "228b0aaf0f454864b5668bde4a6e0751": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "25c3d5dfe949490db446a02d9b059d19": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "264d9ba8d8ed40be89d44dcb6bc33aee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_83e4a6ff48f2495e95e4183afafd9466", + "placeholder": "​", + "style": "IPY_MODEL_31440c4c479d44b1a87ff8dd5d70ab96", + "value": " 2/2 [00:02<00:00, 1.33s/it]" + } + }, + "27bc2478a1494353b59ef30dc6c4c04c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "27cd3760950a44deb7cfaf9e38dc6a7b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "28102cc074114ea1acf2a3a3b89038f7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "28e1b9d68e0a49c984fff1dfb76b5777": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "28e45e0536d54afeb6ce0213a5902e51": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e3bff2ba80814042af7b394ef751ed31", + "placeholder": "​", + "style": "IPY_MODEL_2024a6b35a8e49ed956dc6577e899ce6", + "value": " 2/2 [00:10<00:00, 4.90s/it]" + } + }, + "28e4a9b3aa714645b133cb0c8d19fbb4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "29b918fdb4a545f48498a665d15aa557": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "2a086a827bff4b4cbb9db9f78b6da267": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2b9c9f47ab9a4bec9bb81e30451d6284": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_552c8fcbbb3d4a9e97c5b723c6a835cb", + "placeholder": "​", + "style": "IPY_MODEL_5b134799e124401998885dd3284d8234", + "value": "100%" + } + }, + "2c7fd7cea38a4b6ebabf7f9f35c3d241": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2ca39efc251640a388627a1570dad519": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "2d69bed4be844104b908c017c22443eb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2e200afece75499eb5ac8fccaaf2aa78": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2e582be8221c459e96df73cce70b66eb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2eb8078c5d6242fba118b461ddf326f8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2f1f2004c80943e5ba17ef3b2a132d4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_18c2f46a33a1475f9e20b09ed96f4309", + "placeholder": "​", + "style": "IPY_MODEL_591597f211084bd0b2f44dc35edac400", + "value": " 2/2 [00:10<00:00, 4.58s/it]" + } + }, + "31440c4c479d44b1a87ff8dd5d70ab96": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "31ac4b264ab4415ba96807ee4d0e06ad": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "334526415ffb4a3093a174015acc53d7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "335e32a1bdb14773b77219dce136d84b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "35343359cab04e7885ff633c8069a6bf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "360c633b95b14b61ae22126a06891e5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3716355844164b24a588e39d39fd6f58": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_03a45b815fc3428e80f1a3b0e0f84970", + "placeholder": "​", + "style": "IPY_MODEL_e069acd4535c4b1c8d58a39fae727403", + "value": " 2/2 [00:15<00:00, 7.01s/it]" + } + }, + "376fe78cb3c540c4a220ed186188da31": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "381db092432a43f7aa320c7ed9dc466a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "38de3a672dbc4c5d9620a283e428bcb3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_99c38d42e32f415ba894524a52536328", + "placeholder": "​", + "style": "IPY_MODEL_7a6ec07624f84daa8c9d46c21208f070", + "value": " 2/2 [00:01<00:00, 1.64it/s]" + } + }, + "3906cd318d414f438b8ae30664e8e510": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_500cf76011fe45a683e06f8419b0b63a", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ada1ac7e7a76477486e593e55442895e", + "value": 2 + } + }, + "39460fbe052d43bca951e6b2c2cc7bb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_93c5f0b7798848b4b33ad22461794d18", + "placeholder": "​", + "style": "IPY_MODEL_7260dd9b253a4ad48a950f4bfdadf718", + "value": "100%" + } + }, + "396b75923524457cb5142db3f4af0c4d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5534d740bd254cb9bcdcd546650a84da", + "IPY_MODEL_a6b3488dce324c27b7ac47b00cb7afcb", + "IPY_MODEL_49ca84b82a6e40ac92d2efc1a5bbafc9" + ], + "layout": "IPY_MODEL_996c329766a34c2686553501c096958e" + } + }, + "3a2f1d392d7d4f1cb1e1b2be6a28dfec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3cd0272ed30a45deb92258eefc4fe86f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_076146cd0e694d9480beb78f4c29ce8a", + "placeholder": "​", + "style": "IPY_MODEL_195b5f677e274fd0ae935287d9ea37e5", + "value": " 2/2 [00:08<00:00, 3.98s/it]" + } + }, + "3dd533f28a5245f2ab55c1d445bc9104": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e2f71b4308724c2bbe827e292c9f45ac", + "IPY_MODEL_a8e76377609d4397a086f7e75f0f1fff", + "IPY_MODEL_3716355844164b24a588e39d39fd6f58" + ], + "layout": "IPY_MODEL_aebde985ee394558a181784bb24ff3d8" + } + }, + "3e45ba09bc184a2cb7290f88b31bd5d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3ea18ef2302340c684ea614cb1e0cd18": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "40a49f03ad6d4e57a132a59103c07782": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "40d4ab0078304ecba831ab77bb9fb84b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4151f1f974de4d9caac54d86654207d3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4251d033b4714dd690e7488f3f468ebb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_be32d666dd0d4b4898cd26a6533f3fda", + "placeholder": "​", + "style": "IPY_MODEL_1155dbabf1db4bf48b567e75ee11e9fa", + "value": "100%" + } + }, + "433f368380d54ce6b98873956dbc91a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_967ef5059a3b4b808d0b1362b876aba8", + "placeholder": "​", + "style": "IPY_MODEL_1e06349ebb494303acf76d783fb9da67", + "value": " 2/2 [00:14<00:00, 6.56s/it]" + } + }, + "44d2e56aaabd4c019ef6ebad1572a7ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "44f92ec072ce40e48afe6cd371719276": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "457ef66d94164abd8cb7afed6d61f01b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "467d2af922954c7c9743fa4b196d70a3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "468332aff46e42e49d0e20858d0a2026": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "46a76fbe44404ef99e2888cb8886dfca": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "473a1c307fb0453684a33f1df2418ba9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bfd6ce6e77c045acb94760a1f9324ec6", + "IPY_MODEL_99823a253a014addb9eca48c2afee8f8", + "IPY_MODEL_4a961c5e0aa3439281b152c4f5af59ae" + ], + "layout": "IPY_MODEL_15e5fb815c034f6faae4160a3a0c82b1" + } + }, + "474ff661f4a84c40bfe6f87c441e8308": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "47d54bd6957c43dfa689a179c5f3a29c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4829e9cb01a24b81948f58fa562803dd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "48819bcad9fa44d89a4436fb21542d4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cbe8a1af6e90448d9ba465f919dbb8f5", + "IPY_MODEL_b989b18af609490d9f9e1b58961f711d", + "IPY_MODEL_28e45e0536d54afeb6ce0213a5902e51" + ], + "layout": "IPY_MODEL_66843e746cb84d2ab2045423d955b8d0" + } + }, + "48a471a2841e4a0fad4d8e3720bd3e5f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "498a59a1827d4f3c81705eb9df57d051": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "49ca84b82a6e40ac92d2efc1a5bbafc9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c770e86620384eb698dc9d2b2454fbc6", + "placeholder": "​", + "style": "IPY_MODEL_2a086a827bff4b4cbb9db9f78b6da267", + "value": " 2/2 [00:02<00:00, 1.04s/it]" + } + }, + "49cdd1f1b5944379a5da8c67ef15dc21": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4a961c5e0aa3439281b152c4f5af59ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_95a7706b521d4dabbb4af9ac99e29619", + "placeholder": "​", + "style": "IPY_MODEL_8a609b1eb4c54c099171188cadf8682d", + "value": " 2/2 [00:05<00:00, 2.87s/it]" + } + }, + "4b118cfb1ca948d6a13844eee6771e83": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4b246903555445ec94cb5c32d2124b3a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4c8af45c03994d5585834ba8e889c50b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4cd3df9aac8041d4b2aeaced5e8c47f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_467d2af922954c7c9743fa4b196d70a3", + "placeholder": "​", + "style": "IPY_MODEL_9a17ae9b0ed74628a73d345592f3067b", + "value": "100%" + } + }, + "4d6fbf9dc9714ae28490df603971cb5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_73480f5d144b4b71ba1d60b6090edf68", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9003370e7ac644aea13745f95cdbcc40", + "value": 2 + } + }, + "4e3bb73f18764060bcb6b7ee2f6fe485": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8337fc4ac16946698e312ebcf3ac04ca", + "IPY_MODEL_4d6fbf9dc9714ae28490df603971cb5a", + "IPY_MODEL_c6cc64e709694bbd9d8b5cfe61e6f5a3" + ], + "layout": "IPY_MODEL_b3678115674744cda88561ea1c573378" + } + }, + "4fba6ac047ee4347b151cba97f6a297a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_73382149cd2845209238fcf3c9788335", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_829f26b3ee6d48629887b83c0e60f983", + "value": 2 + } + }, + "500cf76011fe45a683e06f8419b0b63a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5282f70e18cc4df5ad2f549aabeb9e32": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ba00c6dd28df48c29cad735edab10e99", + "IPY_MODEL_176d4885237e4508a5e44884b79aaa26", + "IPY_MODEL_f0f95d15d24b4e7da7fe94979db2e489" + ], + "layout": "IPY_MODEL_e51b92f48e5348bfaf250d7c230117e4" + } + }, + "52ccf02fa430430d9ef9e05ff3b71d69": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "53246238e747442899aca531a8f27bd5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5346c4066dc847bb8682f0170ef2e4fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "53c7ac1ad2584257838784914b991e56": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "53ff29fa5d6f4725917315ba9975722c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "54fec21ccc8a4ee7b26a2b6bf7f218f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b67cd5e62a01452391260c93b66d28d9", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_8ee3a4a6374e4af99e6f694eb9266e20", + "value": 2 + } + }, + "552c8fcbbb3d4a9e97c5b723c6a835cb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5534d740bd254cb9bcdcd546650a84da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_59ed3adc94c64b078a5bc2df9042654f", + "placeholder": "​", + "style": "IPY_MODEL_44d2e56aaabd4c019ef6ebad1572a7ff", + "value": "100%" + } + }, + "556c5ed9f4bd4c72bdfc12b35af4749a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_90c52e72a18d4f7aa519a4b03a83db60", + "placeholder": "​", + "style": "IPY_MODEL_5c519d7149904a91badcc572aa3c1f91", + "value": "100%" + } + }, + "573b54fb59f146699436d2956c0bd63a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_376fe78cb3c540c4a220ed186188da31", + "placeholder": "​", + "style": "IPY_MODEL_52ccf02fa430430d9ef9e05ff3b71d69", + "value": "100%" + } + }, + "58a18087c376431c84adc35eeddc1411": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cd1f6a2c515641ddac388ec112632c52", + "placeholder": "​", + "style": "IPY_MODEL_21146e302ea644779302ca9ceefdf876", + "value": " 2/2 [00:01<00:00, 1.37it/s]" + } + }, + "591597f211084bd0b2f44dc35edac400": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "59d580cc363b4a999494937df36a1ff0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "59ed3adc94c64b078a5bc2df9042654f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5b134799e124401998885dd3284d8234": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5c08e1a9afc240debbaaf9536338948e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5c299f5d2edd4d7182871aa103ad63ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5c519d7149904a91badcc572aa3c1f91": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5c698883183c49afb09f2a54b5f1c717": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5c8293d798dd4615b512899915435b44": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5dcba6d4508e4b548d98b70d40d88c4d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "5fe315366e2d4065847ecb5620e5f6c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8e0e4cf35e4b4aa1bbf59a599150b11a", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c74eebbfa22442c7ba756708f5110a68", + "value": 2 + } + }, + "605413d957af4a7f8dc80c1fcc4bcef0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "607c82b6ff22460397704afb7302c4ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f576af6969ba4aa693a91b439453eaaa", + "IPY_MODEL_d77c5d6f82ad486e9f2dbe2570f9f570", + "IPY_MODEL_98694874a8e249d78cde7c8d811747a7" + ], + "layout": "IPY_MODEL_ebf1f8123c7f4e289a98dab51938446d" + } + }, + "60b4bc35757d40a5a116fa9df5190284": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "61595fdc15de46f59be378b329c23270": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "625f74db8a634c0b8cc312bc9d105f5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_93ba0848c35b4259bff79e47a62f84b3", + "placeholder": "​", + "style": "IPY_MODEL_04cd85a43cc742cea18c680a330b3e5a", + "value": "100%" + } + }, + "6335e575f2624d6396d528e3cac6ae1f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "640afb7ef22a4a28a41dcbae77e864e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f0913472ebf645a7b2c37e253c384a2e", + "placeholder": "​", + "style": "IPY_MODEL_2e200afece75499eb5ac8fccaaf2aa78", + "value": " 2/2 [00:03<00:00, 1.77s/it]" + } + }, + "642df90b5e1b41408a81074ea013358d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_edb5cbfd04ac4822ac2a5eccd3cf6666", + "IPY_MODEL_b0e5a3f34fa94ee382af945506190cc3", + "IPY_MODEL_38de3a672dbc4c5d9620a283e428bcb3" + ], + "layout": "IPY_MODEL_96968612455b4cfdbac09f761a8b760a" + } + }, + "645597e4eed64b5cab7e1d1675f9578e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_61595fdc15de46f59be378b329c23270", + "placeholder": "​", + "style": "IPY_MODEL_c91812476862455c95871615bc50705d", + "value": "100%" + } + }, + "649d01972e304b338ccfc5c60da52a3b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "64d77d0bec484bd09bdbd989f96f1106": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_edec5d52b907433fb6810c504abafc26", + "max": 9, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_649d01972e304b338ccfc5c60da52a3b", + "value": 9 + } + }, + "66843e746cb84d2ab2045423d955b8d0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "66bf0d682fc34f4e98fa1211f66a0d86": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_645597e4eed64b5cab7e1d1675f9578e", + "IPY_MODEL_c37d4d2cf2eb4452beac434bb6ce6068", + "IPY_MODEL_cf3abef3b7504796a90a236a3cd3fbfe" + ], + "layout": "IPY_MODEL_28102cc074114ea1acf2a3a3b89038f7" + } + }, + "679832d3146d4cfa80b12460d797960f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ed9c9243a92545559bb5ef7f3f495368", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_eed1f8dac1974df8aa7a71420f5414bb", + "value": 2 + } + }, + "67ffbfc0c6024cae989b0841ff9124b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f8dfd1a002e74b74b9272ba374ac4ca8", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_53ff29fa5d6f4725917315ba9975722c", + "value": 2 + } + }, + "6847d30161354479b72b3d5cb96a9583": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "68a5a12069c145cfbac9b1c73573fd5c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "68ceffbb96d9411c911a088047ef8210": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "68ef6fb4be4a454e83f66b020bb7391f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4151f1f974de4d9caac54d86654207d3", + "placeholder": "​", + "style": "IPY_MODEL_c3b7a39f314b40c18fb8ccdbfb8ca3b3", + "value": "100%" + } + }, + "6b4cf0fc34004c8c82398fb43ba2dbca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6bef2d23dbc446caa12c04b567aea01c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e2a70d7f926d4b05a3dd73dec602c4cd", + "placeholder": "​", + "style": "IPY_MODEL_ed287d7cdb8e4f09811dd5b8645a8d06", + "value": " 2/2 [00:03<00:00, 1.67s/it]" + } + }, + "7260dd9b253a4ad48a950f4bfdadf718": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "731431f8547b46f89b6d2e2830a4fdd7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "73382149cd2845209238fcf3c9788335": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "73480f5d144b4b71ba1d60b6090edf68": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "77257b9d0f5043568a2bac799a6c819b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6335e575f2624d6396d528e3cac6ae1f", + "max": 9, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e5dbd7c509cd44b59b432a0b14b890aa", + "value": 9 + } + }, + "77ec5f624fb8498b8548e8f088d937a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7876f2c265164fa29d9f57b3716f5850": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "789de8c9e2cc49088ad9b308e4f47a00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e2bf7fae58c145c39794a6eb277cd2bc", + "IPY_MODEL_0600de01691649d3be4eed2c39d760c2", + "IPY_MODEL_e6b404556e6f4d50833bd404bcaa1f32" + ], + "layout": "IPY_MODEL_59d580cc363b4a999494937df36a1ff0" + } + }, + "78ef2f297ae4460da045363bb6092ed3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fa4069965d534138ac847d5260b1d5bc", + "placeholder": "​", + "style": "IPY_MODEL_cb28ea11229048639cc44aede8da2acb", + "value": "100%" + } + }, + "7933f9200c4e4b10b838a900407119a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_39460fbe052d43bca951e6b2c2cc7bb9", + "IPY_MODEL_ee3b059fb8684fce9576f7e4d39e3842", + "IPY_MODEL_8498a2d4766649a59e91009418d25a88" + ], + "layout": "IPY_MODEL_68a5a12069c145cfbac9b1c73573fd5c" + } + }, + "7a6ec07624f84daa8c9d46c21208f070": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7a729f255a8b44f3a290fa6842a954de": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7b1ae36ed08647ccace82fdeee3f3e24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b2961a36fd7b493e94f788fd8c59315a", + "placeholder": "​", + "style": "IPY_MODEL_4b246903555445ec94cb5c32d2124b3a", + "value": " 2/2 [00:02<00:00, 1.28s/it]" + } + }, + "7b2d5b467e8f470b909fa4e9362e6937": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7b5e382d691e43789122b23044a6a194": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7cf53e1b34ee45db8432a23ac32ede32": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7cf700de12ab411da5ac9cdb1d0d4b19": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_40d4ab0078304ecba831ab77bb9fb84b", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_468332aff46e42e49d0e20858d0a2026", + "value": 2 + } + }, + "8025ba94d49640a0ab26b58aa73eb694": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "80b50f091f824bf581da1f4acc14a7b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2b9c9f47ab9a4bec9bb81e30451d6284", + "IPY_MODEL_64d77d0bec484bd09bdbd989f96f1106", + "IPY_MODEL_810da8e965b74ca48e9be524f6172625" + ], + "layout": "IPY_MODEL_8223d0cb5665477ba0c2273bde5dc066" + } + }, + "810da8e965b74ca48e9be524f6172625": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2e582be8221c459e96df73cce70b66eb", + "placeholder": "​", + "style": "IPY_MODEL_9143c06ee03641b7bb4919f03d2cc46c", + "value": " 9/9 [00:49<00:00, 8.71s/it]" + } + }, + "81b2366d9b3a43a6ba5aa9389ca6b178": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8223d0cb5665477ba0c2273bde5dc066": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "829f26b3ee6d48629887b83c0e60f983": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "82c94dd7d81d45dcb99e536befb198ff": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8337fc4ac16946698e312ebcf3ac04ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_985eafb953fa46499539d986161ae925", + "placeholder": "​", + "style": "IPY_MODEL_e9f02fa8c02846ec92c0c98354f7b57b", + "value": "100%" + } + }, + "83e4a6ff48f2495e95e4183afafd9466": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8498a2d4766649a59e91009418d25a88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_81b2366d9b3a43a6ba5aa9389ca6b178", + "placeholder": "​", + "style": "IPY_MODEL_86bfe1cdddb74c0ca0e3082a4dc835ba", + "value": " 2/2 [00:01<00:00, 1.39it/s]" + } + }, + "86bfe1cdddb74c0ca0e3082a4dc835ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "89a68d44723140ba827948a9ba93ef17": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8a5e9cff650e4e90a4f37a67e6722846": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8a609b1eb4c54c099171188cadf8682d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8bd3b2e672654723a006cbec5120a8f3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "8c7086a7cfd7460aad559245cef7ff77": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_625f74db8a634c0b8cc312bc9d105f5e", + "IPY_MODEL_1d0ddd9712e844d2a296bb609ec3fff5", + "IPY_MODEL_dda03857c5944c80a6b0fdff79df4847" + ], + "layout": "IPY_MODEL_3ea18ef2302340c684ea614cb1e0cd18" + } + }, + "8d04329a03f148018cc3cf13225d5c0c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8e0e4cf35e4b4aa1bbf59a599150b11a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8ee3a4a6374e4af99e6f694eb9266e20": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8f2a530dba02479a987a038a5c8c5a93": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e52bfecd1d514aa4886233163d78d8ea", + "IPY_MODEL_679832d3146d4cfa80b12460d797960f", + "IPY_MODEL_640afb7ef22a4a28a41dcbae77e864e3" + ], + "layout": "IPY_MODEL_29b918fdb4a545f48498a665d15aa557" + } + }, + "8f50142f64244cdb8ba137f5e29fa70f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4251d033b4714dd690e7488f3f468ebb", + "IPY_MODEL_5fe315366e2d4065847ecb5620e5f6c4", + "IPY_MODEL_afdc6fb0d6b4440da5b1fd09dd4d8c19" + ], + "layout": "IPY_MODEL_9a7c634d7e0646c1be57ed33bcb6efd7" + } + }, + "9003370e7ac644aea13745f95cdbcc40": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "90c52e72a18d4f7aa519a4b03a83db60": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9127974355fa44b09e35fb3c9a0ef86b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "9143c06ee03641b7bb4919f03d2cc46c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9330af137bf244f889e247d25e6e558c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "934fd49155fd45faa1fe0200ff81c8c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4c8af45c03994d5585834ba8e889c50b", + "placeholder": "​", + "style": "IPY_MODEL_aac100fba4be415cbe0973b16a8680ec", + "value": " 2/2 [00:13<00:00, 6.30s/it]" + } + }, + "93ba0848c35b4259bff79e47a62f84b3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "93c5f0b7798848b4b33ad22461794d18": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "93dcdf6814f741188da28a72a8835cd2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8a5e9cff650e4e90a4f37a67e6722846", + "placeholder": "​", + "style": "IPY_MODEL_9ab7930ae7bc4b589fd109d4151959e4", + "value": " 2/2 [00:06<00:00, 3.13s/it]" + } + }, + "943bca12541347c5bbea3d35a9c2496a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "94f97d042e9640af942dc5eedc46e8b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "957e6b15bb47489f834c7e824ea2bb97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b10d500d3b3c4cb9ad5316404fbed8f8", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7b5e382d691e43789122b23044a6a194", + "value": 2 + } + }, + "95a7706b521d4dabbb4af9ac99e29619": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "967ef5059a3b4b808d0b1362b876aba8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "96968612455b4cfdbac09f761a8b760a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "96ff01f793f84fdeba69b91246307897": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ea6f7a4915814433865c6905d4843057", + "placeholder": "​", + "style": "IPY_MODEL_5c08e1a9afc240debbaaf9536338948e", + "value": "100%" + } + }, + "97584ec732df478c87a7a36cfc933fdc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "978e1da737f543b1a90fbfde3eb14ec8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "985eafb953fa46499539d986161ae925": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "98694874a8e249d78cde7c8d811747a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1cf5564591574664878bed9e60176bb3", + "placeholder": "​", + "style": "IPY_MODEL_b278858c80b740e1a9dd1f06c8eebd7a", + "value": " 2/2 [00:07<00:00, 3.83s/it]" + } + }, + "98f88a65d0344c1eac141ae1d785f9ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "996c329766a34c2686553501c096958e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "99823a253a014addb9eca48c2afee8f8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_35343359cab04e7885ff633c8069a6bf", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_18d0f80e84a1469ead9f82d3bb48913b", + "value": 2 + } + }, + "99c38d42e32f415ba894524a52536328": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9a17ae9b0ed74628a73d345592f3067b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9a7c634d7e0646c1be57ed33bcb6efd7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "9ab7930ae7bc4b589fd109d4151959e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9c81568cfc05430bb94d0bcf5d348ee9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9cf96e7620c64cd88a4258f4a75a2530": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_25c3d5dfe949490db446a02d9b059d19", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_94f97d042e9640af942dc5eedc46e8b3", + "value": 2 + } + }, + "9cfc136c44c045c3b472b019eec4c312": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d6ccbdb27c464881a1f9e10341916ba0", + "placeholder": "​", + "style": "IPY_MODEL_007afb7342c74bc2bd0945b9e8c5f0f1", + "value": "100%" + } + }, + "9fcf9855749b4f19b9a8780d68cdc8fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_27cd3760950a44deb7cfaf9e38dc6a7b", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ea86851eeae74975a56623b77c8359e7", + "value": 2 + } + }, + "a0da15cab04c40cabde8fd5b7d301777": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a33017fd785f429d9021ef56858b0465": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a6388465ec334509ad4b28a1bf68ed45": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_556c5ed9f4bd4c72bdfc12b35af4749a", + "IPY_MODEL_4fba6ac047ee4347b151cba97f6a297a", + "IPY_MODEL_e271a8ab10944015a3be933b24663c7c" + ], + "layout": "IPY_MODEL_16adf58866ef4b12a18098367ec7e97f" + } + }, + "a6b3488dce324c27b7ac47b00cb7afcb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1438ec6ec58946c48a8c180ae0a1946b", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3a2f1d392d7d4f1cb1e1b2be6a28dfec", + "value": 2 + } + }, + "a8e76377609d4397a086f7e75f0f1fff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b426e565409e4ea496f566b5f6c083cb", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_457ef66d94164abd8cb7afed6d61f01b", + "value": 2 + } + }, + "a95b4ab28ca74e2ab235ba2bdb048723": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a9765b6554c84ad4b962f7cd39282bb7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_96ff01f793f84fdeba69b91246307897", + "IPY_MODEL_f0c70021d6864b7b863708a7585285d4", + "IPY_MODEL_93dcdf6814f741188da28a72a8835cd2" + ], + "layout": "IPY_MODEL_00c04e53247c4fb797e2fcb348c3bf74" + } + }, + "aa6f16444c6940a18f7f6a9870c9927d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_48a471a2841e4a0fad4d8e3720bd3e5f", + "placeholder": "​", + "style": "IPY_MODEL_978e1da737f543b1a90fbfde3eb14ec8", + "value": "100%" + } + }, + "aac100fba4be415cbe0973b16a8680ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ab0d3854aefb4e2a8872929c98a39e63": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ada1ac7e7a76477486e593e55442895e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "add771f12a394c58af97586453413df9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5c8293d798dd4615b512899915435b44", + "placeholder": "​", + "style": "IPY_MODEL_ea3554a8554045ec9223b3e134664989", + "value": "100%" + } + }, + "aebde985ee394558a181784bb24ff3d8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "afdc6fb0d6b4440da5b1fd09dd4d8c19": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1c891fe6ac6f4cd4a99c7cdc1c618ccd", + "placeholder": "​", + "style": "IPY_MODEL_97584ec732df478c87a7a36cfc933fdc", + "value": " 2/2 [00:06<00:00, 3.11s/it]" + } + }, + "b0e5a3f34fa94ee382af945506190cc3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2d69bed4be844104b908c017c22443eb", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f85aadc89bce49c79b16ab574167a7d1", + "value": 2 + } + }, + "b10d500d3b3c4cb9ad5316404fbed8f8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b278858c80b740e1a9dd1f06c8eebd7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b2961a36fd7b493e94f788fd8c59315a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b315b2bdfaff427ea5bd76effcfe1477": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e0e5bae586834b1a9fd4b76522088c9b", + "placeholder": "​", + "style": "IPY_MODEL_381db092432a43f7aa320c7ed9dc466a", + "value": " 2/2 [00:01<00:00, 1.80it/s]" + } + }, + "b3678115674744cda88561ea1c573378": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "b369107bece6428fb7aa4a31fb4bf555": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b426e565409e4ea496f566b5f6c083cb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b67cd5e62a01452391260c93b66d28d9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b763b174fb764631bd4c81bdbb0ef0ae": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b8e4b5c864e648f9b84d821cd7113c51": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dfe5ad2c602e4a87aa3c294c7285c905", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_360c633b95b14b61ae22126a06891e5b", + "value": 2 + } + }, + "b989b18af609490d9f9e1b58961f711d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_335e32a1bdb14773b77219dce136d84b", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1073687e38144cbf959a02c7a1edc0ef", + "value": 2 + } + }, + "b9c73d15781a4548824a671183943c8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ba00c6dd28df48c29cad735edab10e99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0210e96365904b709f9711521393067f", + "placeholder": "​", + "style": "IPY_MODEL_7cf53e1b34ee45db8432a23ac32ede32", + "value": "100%" + } + }, + "bd419397f35e41b181e9d27801cf0ebe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_add771f12a394c58af97586453413df9", + "IPY_MODEL_3906cd318d414f438b8ae30664e8e510", + "IPY_MODEL_433f368380d54ce6b98873956dbc91a1" + ], + "layout": "IPY_MODEL_2ca39efc251640a388627a1570dad519" + } + }, + "be32d666dd0d4b4898cd26a6533f3fda": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bfbcefb4f223464abdbfefdf83dd8edc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bfd6ce6e77c045acb94760a1f9324ec6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9330af137bf244f889e247d25e6e558c", + "placeholder": "​", + "style": "IPY_MODEL_08ddd5f58e354efa88bceab4767f3fb9", + "value": "100%" + } + }, + "c37d4d2cf2eb4452beac434bb6ce6068": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4829e9cb01a24b81948f58fa562803dd", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0ef9438e841f4db496122205eef24486", + "value": 2 + } + }, + "c39fb6a39fb54c488f67c0841804e6a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c3b7a39f314b40c18fb8ccdbfb8ca3b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c445b382d7434495a63bccfcd397bb6c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c8dba2a8629d408aa2bb4010753c2fcf", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6b4cf0fc34004c8c82398fb43ba2dbca", + "value": 2 + } + }, + "c5da6771ede5465ca850795a762d6cbb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c65dee8ab2dd48e08e91f71a97c7c240": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c699442d513a4094a70685f352d5468c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c6cc64e709694bbd9d8b5cfe61e6f5a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_53c7ac1ad2584257838784914b991e56", + "placeholder": "​", + "style": "IPY_MODEL_f09cc7e7f9164e35bfbc896753efcaba", + "value": " 2/2 [00:05<00:00, 2.42s/it]" + } + }, + "c6e68ae189e548cd882b35a0a9517b0c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_31ac4b264ab4415ba96807ee4d0e06ad", + "placeholder": "​", + "style": "IPY_MODEL_3e45ba09bc184a2cb7290f88b31bd5d2", + "value": " 2/2 [00:11<00:00, 5.05s/it]" + } + }, + "c6f7e46119fd43fda31a181407bf2f6e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c74eebbfa22442c7ba756708f5110a68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c770e86620384eb698dc9d2b2454fbc6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c7aae13494d44f33a22b2113dd12812a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4cd3df9aac8041d4b2aeaced5e8c47f7", + "IPY_MODEL_ee3469ee85834698835a54a3ac2b0956", + "IPY_MODEL_264d9ba8d8ed40be89d44dcb6bc33aee" + ], + "layout": "IPY_MODEL_0d4417f042ef49549d069bb829fce678" + } + }, + "c7b04cbfa91d4c389e2916fbfff36469": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e5f97f96e30c4da289153abf2663332f", + "placeholder": "​", + "style": "IPY_MODEL_15a853bb96ae476cbfa78754c7164fae", + "value": "100%" + } + }, + "c846cbccc2b6453182b37f0bdd8925fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f0db76fbd07e4b52a8bf19f6d6087d17", + "placeholder": "​", + "style": "IPY_MODEL_2eb8078c5d6242fba118b461ddf326f8", + "value": "100%" + } + }, + "c8912e8284a34bc89863c43c47d218be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c8dba2a8629d408aa2bb4010753c2fcf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c91812476862455c95871615bc50705d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "caaf55d8eae74a39872c86ceedb5685c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_53246238e747442899aca531a8f27bd5", + "placeholder": "​", + "style": "IPY_MODEL_943bca12541347c5bbea3d35a9c2496a", + "value": "100%" + } + }, + "cb28ea11229048639cc44aede8da2acb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cbe8a1af6e90448d9ba465f919dbb8f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_28e4a9b3aa714645b133cb0c8d19fbb4", + "placeholder": "​", + "style": "IPY_MODEL_4b118cfb1ca948d6a13844eee6771e83", + "value": "100%" + } + }, + "cd189c3366634e63961a523adade1895": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c846cbccc2b6453182b37f0bdd8925fc", + "IPY_MODEL_67ffbfc0c6024cae989b0841ff9124b0", + "IPY_MODEL_e566bc5f53a84edcaca0d9a5b5aa22b5" + ], + "layout": "IPY_MODEL_eaad7a53f5ad41f8b9d2833f04e28f52" + } + }, + "cd1f6a2c515641ddac388ec112632c52": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cd2e2ee82e564282a80e76bc9abbce69": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cdd37d14626e4374a0d803cc92d42bdd", + "placeholder": "​", + "style": "IPY_MODEL_731431f8547b46f89b6d2e2830a4fdd7", + "value": "100%" + } + }, + "cdd37d14626e4374a0d803cc92d42bdd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cf3abef3b7504796a90a236a3cd3fbfe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_82c94dd7d81d45dcb99e536befb198ff", + "placeholder": "​", + "style": "IPY_MODEL_98f88a65d0344c1eac141ae1d785f9ab", + "value": " 2/2 [00:12<00:00, 5.74s/it]" + } + }, + "d3f3df0d05ef48b8929943660e4e395f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_caaf55d8eae74a39872c86ceedb5685c", + "IPY_MODEL_54fec21ccc8a4ee7b26a2b6bf7f218f4", + "IPY_MODEL_3cd0272ed30a45deb92258eefc4fe86f" + ], + "layout": "IPY_MODEL_46a76fbe44404ef99e2888cb8886dfca" + } + }, + "d4cbe258db7f4b7e8dbf8f7f579dfb94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d6ccbdb27c464881a1f9e10341916ba0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d77c5d6f82ad486e9f2dbe2570f9f570": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a0da15cab04c40cabde8fd5b7d301777", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_47d54bd6957c43dfa689a179c5f3a29c", + "value": 2 + } + }, + "dda03857c5944c80a6b0fdff79df4847": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a95b4ab28ca74e2ab235ba2bdb048723", + "placeholder": "​", + "style": "IPY_MODEL_89a68d44723140ba827948a9ba93ef17", + "value": " 9/9 [01:49<00:00, 15.81s/it]" + } + }, + "dee52cc7414843a6a366d67c7c4d704c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dfe5ad2c602e4a87aa3c294c7285c905": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e069acd4535c4b1c8d58a39fae727403": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e0e5bae586834b1a9fd4b76522088c9b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e271a8ab10944015a3be933b24663c7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dee52cc7414843a6a366d67c7c4d704c", + "placeholder": "​", + "style": "IPY_MODEL_a33017fd785f429d9021ef56858b0465", + "value": " 2/2 [00:13<00:00, 5.88s/it]" + } + }, + "e2a70d7f926d4b05a3dd73dec602c4cd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e2bf7fae58c145c39794a6eb277cd2bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_40a49f03ad6d4e57a132a59103c07782", + "placeholder": "​", + "style": "IPY_MODEL_c39fb6a39fb54c488f67c0841804e6a2", + "value": "100%" + } + }, + "e2f71b4308724c2bbe827e292c9f45ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e720c7dc426a471486fa7c95fca993d2", + "placeholder": "​", + "style": "IPY_MODEL_8d04329a03f148018cc3cf13225d5c0c", + "value": "100%" + } + }, + "e3bff2ba80814042af7b394ef751ed31": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e51b92f48e5348bfaf250d7c230117e4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "e52bfecd1d514aa4886233163d78d8ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2c7fd7cea38a4b6ebabf7f9f35c3d241", + "placeholder": "​", + "style": "IPY_MODEL_b9c73d15781a4548824a671183943c8e", + "value": "100%" + } + }, + "e566bc5f53a84edcaca0d9a5b5aa22b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5c698883183c49afb09f2a54b5f1c717", + "placeholder": "​", + "style": "IPY_MODEL_8025ba94d49640a0ab26b58aa73eb694", + "value": " 2/2 [00:00<00:00, 2.76it/s]" + } + }, + "e5dbd7c509cd44b59b432a0b14b890aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e5f97f96e30c4da289153abf2663332f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e6b404556e6f4d50833bd404bcaa1f32": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b763b174fb764631bd4c81bdbb0ef0ae", + "placeholder": "​", + "style": "IPY_MODEL_c8912e8284a34bc89863c43c47d218be", + "value": " 2/2 [00:06<00:00, 3.45s/it]" + } + }, + "e720c7dc426a471486fa7c95fca993d2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e9f02fa8c02846ec92c0c98354f7b57b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ea0d0fe1a8d444fcaf9cfc6383a3dc62": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "ea3554a8554045ec9223b3e134664989": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ea6f7a4915814433865c6905d4843057": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ea86851eeae74975a56623b77c8359e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "eaad7a53f5ad41f8b9d2833f04e28f52": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "ebf1f8123c7f4e289a98dab51938446d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "ed287d7cdb8e4f09811dd5b8645a8d06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ed9c9243a92545559bb5ef7f3f495368": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "edb5cbfd04ac4822ac2a5eccd3cf6666": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7876f2c265164fa29d9f57b3716f5850", + "placeholder": "​", + "style": "IPY_MODEL_9c81568cfc05430bb94d0bcf5d348ee9", + "value": "100%" + } + }, + "edb8bbc204384c77bf5b8e1a429c2bba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_49cdd1f1b5944379a5da8c67ef15dc21", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_28e1b9d68e0a49c984fff1dfb76b5777", + "value": 2 + } + }, + "edec5d52b907433fb6810c504abafc26": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ee3469ee85834698835a54a3ac2b0956": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bfbcefb4f223464abdbfefdf83dd8edc", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_605413d957af4a7f8dc80c1fcc4bcef0", + "value": 2 + } + }, + "ee3b059fb8684fce9576f7e4d39e3842": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ab0d3854aefb4e2a8872929c98a39e63", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_77ec5f624fb8498b8548e8f088d937a0", + "value": 2 + } + }, + "eed1f8dac1974df8aa7a71420f5414bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ef3c798fbc094460ac7efeb6e8759af6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ef7b8d5473a64de0901f904a83022884": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f31395285b5c44049f57f099329641de", + "IPY_MODEL_b8e4b5c864e648f9b84d821cd7113c51", + "IPY_MODEL_b315b2bdfaff427ea5bd76effcfe1477" + ], + "layout": "IPY_MODEL_1533677646974ac4ae31c8039d75f828" + } + }, + "f0913472ebf645a7b2c37e253c384a2e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f09cc7e7f9164e35bfbc896753efcaba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f0c70021d6864b7b863708a7585285d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7a729f255a8b44f3a290fa6842a954de", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_228b0aaf0f454864b5668bde4a6e0751", + "value": 2 + } + }, + "f0db76fbd07e4b52a8bf19f6d6087d17": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f0f95d15d24b4e7da7fe94979db2e489": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0039195756be48469c78c89c309c92c5", + "placeholder": "​", + "style": "IPY_MODEL_d4cbe258db7f4b7e8dbf8f7f579dfb94", + "value": " 2/2 [00:00<00:00, 2.53it/s]" + } + }, + "f2247d826a1941af99873314c0bacba5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_68ef6fb4be4a454e83f66b020bb7391f", + "IPY_MODEL_9fcf9855749b4f19b9a8780d68cdc8fe", + "IPY_MODEL_7b1ae36ed08647ccace82fdeee3f3e24" + ], + "layout": "IPY_MODEL_5dcba6d4508e4b548d98b70d40d88c4d" + } + }, + "f31395285b5c44049f57f099329641de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1134d02f65aa450d9965863d3c404477", + "placeholder": "​", + "style": "IPY_MODEL_44f92ec072ce40e48afe6cd371719276", + "value": "100%" + } + }, + "f340a0b32caa466e967f004d55851c1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b369107bece6428fb7aa4a31fb4bf555", + "placeholder": "​", + "style": "IPY_MODEL_7b2d5b467e8f470b909fa4e9362e6937", + "value": " 2/2 [00:01<00:00, 1.72it/s]" + } + }, + "f576af6969ba4aa693a91b439453eaaa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c6f7e46119fd43fda31a181407bf2f6e", + "placeholder": "​", + "style": "IPY_MODEL_5c299f5d2edd4d7182871aa103ad63ee", + "value": "100%" + } + }, + "f85aadc89bce49c79b16ab574167a7d1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f8dfd1a002e74b74b9272ba374ac4ca8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fa4069965d534138ac847d5260b1d5bc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fac4728a5f3f4e93947154d87bc24f49": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0af04d4a53f143a4bf6b260e21124098", + "IPY_MODEL_c445b382d7434495a63bccfcd397bb6c", + "IPY_MODEL_58a18087c376431c84adc35eeddc1411" + ], + "layout": "IPY_MODEL_9127974355fa44b09e35fb3c9a0ef86b" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/_sources/notebooks/03/07-bim-production-revisited.ipynb b/_sources/notebooks/03/07-bim-production-revisited.ipynb new file mode 100644 index 00000000..62bd1671 --- /dev/null +++ b/_sources/notebooks/03/07-bim-production-revisited.ipynb @@ -0,0 +1,1808 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{index} single: Pyomo; block\n", + "```\n", + "```{index} single: Pyomo; sets\n", + "```\n", + "```{index} single: Pyomo; parameters\n", + "```\n", + "```{index} single: solver; cbc\n", + "```\n", + "```{index} single: application; production planning\n", + "```\n", + "```{index} pandas dataframe\n", + "```\n", + "\n", + "# 3.7 BIM production revisited" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Preamble: Install Pyomo and a solver\n", + "\n", + "The following cell sets and verifies a global SOLVER for the notebook. If run on Google Colab, the cell installs Pyomo and the HiGHS solver, while, if run elsewhere, it \n", + "assumes Pyomo and HiGHS have been previously installed. It then sets to use HiGHS as solver via the appsi module and a test is performed to verify that it is available. The solver interface is stored in a global object `SOLVER` for later use." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5ssUqKOaPVaE", + "outputId": "38c1005a-39f4-4307-e305-19a4c9819396" + }, + "outputs": [], + "source": [ + "import sys\n", + " \n", + "if 'google.colab' in sys.modules:\n", + " %pip install pyomo >/dev/null 2>/dev/null\n", + " %pip install highspy >/dev/null 2>/dev/null\n", + " \n", + "solver = 'appsi_highs'\n", + " \n", + "import pyomo.environ as pyo\n", + "SOLVER = pyo.SolverFactory(solver)\n", + " \n", + "assert SOLVER.available(), f\"Solver {solver} is not available.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Problem description\n", + "\n", + "We consider again the [BIM raw material planning problem](../02/01-bim-rawmaterialplanning.ipynb) from Chapter 2 but with more sophisticated pricing and acquisition protocols. There are now three suppliers, each of which can deliver the following materials:\n", + " - A: **silicon**, **germanium** and **plastic**\n", + " - B: **copper**\n", + " - C: all the above\n", + " \n", + "For the suppliers, the following conditions apply: copper should be acquired in multiples of 100 gram, since it is delivered in sheets of that weight. Unitary materials such as silicon, germanium and plastic may be acquired in any number, but the price is in batches of 100. Meaning that 30 units of silicon with 10 units of germanium and 50 units of plastic cost as much as 1 unit of silicon but half as much as 30 units of silicon with 30 units of germanium and 50 units of plastic. Furthermore, supplier C sells all materials and offers a discount if purchased together: 100 gram of copper and a batch of unitary material cost only 7. This set price is only applied to pairs, meaning that 100 gram of copper and 2 batches cost 13.\n", + "\n", + "The summary of the prices in $ is given in the following table:\n", + "\n", + "
\n", + "\n", + "|Supplier|Copper per sheet of 100 gram| Batches|Together|\n", + "|:-------|---------------------:|-----------------:|-------:|\n", + "| A | - | 5 | - |\n", + "| B | 3 | - | - |\n", + "| C | 4 | 6 | 7 |\n", + "\n", + "
\n", + "\n", + "Next, for stocked products inventory costs are incurred, whose summary is given in the following table:\n", + "\n", + "
\n", + "\n", + "|Copper per 10 gram| Silicon per unit| Germanium per unit|Plastic per unit|\n", + "|---:|-------:|---:|-----:|\n", + "| 0.1| 0.02 |0.02| 0.02 |\n", + "\n", + "
\n", + "\n", + "The holding price of copper is per 10 gram and the copper stocked is rounded up to multiples of 10 grams, meaning that 12 grams pay for 20. The capacity limitations of the warehouse allow for a maximum of $10$ kilograms of copper in stock at any moment, but there are no practical limitations to the number of units of unitary products in stock. The production is made-to-order, meaning that no inventory of chips is kept.\n", + "\n", + "Recall that BIM has the following stock at the beginning of the year:\n", + "\n", + "
\n", + "\n", + "|Copper |Silicon |Germanium |Plastic|\n", + "|---:|-------:|---:|-----:|\n", + "| 480| 1000 |1500| 1750 |\n", + "\n", + "
\n", + "\n", + "The company would like to have at least the following stock at the end of the year:\n", + "\n", + "
\n", + "\n", + "|Copper |Silicon |Germanium |Plastic|\n", + "|---:|-------:|---:|-----:|\n", + "| 200| 500 | 500| 1000 |\n", + "\n", + "
\n", + "\n", + "The goal is to build an optimization model using the data above and solve it to minimize the acquisition and holding costs of the products while meeting the required quantities for production. \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data import\n", + "\n", + "In the next cell we import and store the data described in dictionaries or Pandas dataframes." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 143 + }, + "id": "rvWwY74i7qEy", + "outputId": "47766087-eb87-44e7-d3e2-ac2c00af78f4" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
JanFebMarAprMayJunJulAugSepOctNovDec
chip
logic88125260217238286248238265293259244
memory4762816595118868982828466
\n", + "
" + ], + "text/plain": [ + " Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec\n", + "chip \n", + "logic 88 125 260 217 238 286 248 238 265 293 259 244\n", + "memory 47 62 81 65 95 118 86 89 82 82 84 66" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
logicmemory
silicon10
plastic11
copper42
germanium01
\n", + "
" + ], + "text/plain": [ + " logic memory\n", + "silicon 1 0\n", + "plastic 1 1\n", + "copper 4 2\n", + "germanium 0 1" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
JanFebMarAprMayJunJulAugSepOctNovDec
silicon88125260217238286248238265293259244
plastic135187341282333404334327347375343310
copper446624120299811421380116411301224133612041108
germanium4762816595118868982828466
\n", + "
" + ], + "text/plain": [ + " Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov \\\n", + "silicon 88 125 260 217 238 286 248 238 265 293 259 \n", + "plastic 135 187 341 282 333 404 334 327 347 375 343 \n", + "copper 446 624 1202 998 1142 1380 1164 1130 1224 1336 1204 \n", + "germanium 47 62 81 65 95 118 86 89 82 82 84 \n", + "\n", + " Dec \n", + "silicon 244 \n", + "plastic 310 \n", + "copper 1108 \n", + "germanium 66 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from io import StringIO\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pyomo.environ as pyo\n", + "\n", + "demand_data = \"\"\"\n", + "chip, Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec\n", + "logic, 88, 125, 260, 217, 238, 286, 248, 238, 265, 293, 259, 244\n", + "memory, 47, 62, 81, 65, 95, 118, 86, 89, 82, 82, 84, 66\n", + "\"\"\"\n", + "\n", + "demand_chips = pd.read_csv(StringIO(demand_data), index_col=\"chip\")\n", + "display(demand_chips)\n", + "\n", + "use = dict()\n", + "use[\"logic\"] = {\"silicon\": 1, \"plastic\": 1, \"copper\": 4}\n", + "use[\"memory\"] = {\"germanium\": 1, \"plastic\": 1, \"copper\": 2}\n", + "use = pd.DataFrame.from_dict(use).fillna(0).astype(int)\n", + "display(use)\n", + "\n", + "demand = use.dot(demand_chips)\n", + "display(demand)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimization model\n", + "\n", + "As usual, we need to start modeling by naming our decisions and identifying the relevant index sets. In the [previous BIM notebook](../02/bim-rawmaterialplanning.ipynb) we already had a set $T$ time periods (i.e., the months) and a set $P$ for the products. Since we want to keep track of how much we buy for which material and from which supplier, we need an additional index set $S$ for the suppliers.\n", + "\n", + "In the [previous BIM notebook](../02/bim-rawmaterialplanning.ipynb) all decision variables were continuous, but now we also need to take care of a number of integer decision variables:\n", + "\n", + "- number of batches of the unitary products;\n", + "- number of copper sheets;\n", + "- number of volume units in stock, since the inventory of copper pays per $10$ g;\n", + "- number of copper sheet-batch of unitary product pairs acquired in the same month from supplier C, yielding discount.\n", + "\n", + "Given the above, we can clearly reuse the variables $s_{pt}$ from [previous BIM notebook](../02/bim-rawmaterialplanning.ipynb) to account for the total number of grams/units of each product. With respect to purchasing variables, however, we now need to keep track of unitary products and suppliers. For this reason, we introduce the integer variables $y_{ts}$ for the number of copper sheets purchased from supplier $s$, and continuous variables $x_{pts}$ for the number of units of unitary product $p$ purchased from supplier $s$. To translate these variables into `amounts of a product purchased regardless of the supplier', we introduce another variable $u_{pt}$.\n", + "\n", + "Further, we introduce the variables that we use to account for the tricky integer quantities in our model. To account for the number of batches of unitary products at supplier $s$, we introduce integer variables $b_{ts}$, and, similarly, we introduce an integer variable $r_t$ for the number of 10 g copper batches in the inventory. Buying a copper sheet together with a batch of unitary products from supplier C is advantageous as we get a discount of $\\beta = 4 + 6 - 7$. For this reason, we introduce an extra integer variable $p_t$ to count the number of such pairs, so that $\\beta p_t$ describes the amount to the total discount acquired in month $t$. We need to include additional constraints to make sure that these three variables `take the values they should' in relation to the purchasing and inventory variables.\n", + "\n", + "Taking all the above into account, we shall use the following decision variables:\n", + "\n", + "- $y_{ts}$: number of sheets of copper purchased in month $t$ from supplier $s$\n", + "- $x_{pts}$: number of units of unitary product $p$ purchased in month $t$ from supplier $s$\n", + "- $u_{pt}$: total number of units of product $p$ purchased in month $t$ (from all suppliers combined)\n", + "- $b_{ts}$: number of batches of 100 unitary products purchased in month $t$ from supplier $s$\n", + "- $p_{t}$: number of batch-copper sheet pairs purchased in month $t$ from supplier C \n", + "- $r_t$: number of 10-unit amounts of copper (rounded up) in month $t$.\n", + "\n", + "We begin by formulating the objective function using \\$ cents as unit. If we denote by $\\alpha_s$ the per-batch cost of unitary products at supplier $s$, then the total material acquisition cost is\n", + "\n", + "$$\n", + "\\begin{equation*}\n", + " \\sum_{t \\in T} \\Big( \\sum_{s \\in S} \\pi_{s} b_{ts} + \\alpha_{s} y_{ts} \\Big) - \\beta p_t \\Big),\n", + "\\end{equation*}\n", + "$$\n", + "\n", + "where we count the acquisition costs for supplier $C$ as the total cost of the sheets of copper plus the batches of unitary materials minus the discount due to purchasing the pairs:\n", + "\n", + "$$\n", + "\\begin{equation*}\n", + " \\pi_{\\text{C}} b_{t, \\text{C}} + \\alpha_{\\text{C}} y_{t, \\text{C}} - \\beta p_t.\n", + "\\end{equation*}\n", + "$$\n", + "\n", + "The total inventory cost is\n", + "\n", + "$$\n", + "\\begin{equation*}\n", + " \\sum_{t \\in T} \\Big( 0.1 r_t + \\sum_{p \\in P \\setminus\\{\\text{copper}\\}} h_p s_{pt} \\Big).\n", + "\\end{equation*}\n", + "$$\n", + "\n", + "Now, we need to construct a system of constraints to ensure that the above costs are computed correctly. To transform the amounts of unitary materials purchased into batches of $100$, we construct the following constraints:\n", + "\n", + "$$\n", + "\\begin{equation*}\n", + " \\sum_{p \\in P \\setminus\\{\\text{copper}\\}} x_{pts} \\leq 100 b_{ts}.\n", + "\\end{equation*}\n", + "$$\n", + "\n", + "Because the inventory costs for copper are computed by rounding up to 10 g amounts, we account for this via the following constraint\n", + "\n", + "$$\n", + "\\begin{equation*}\n", + " s_{\\text{copper}, t} \\leq 10 r_t.\n", + "\\end{equation*}\n", + "$$\n", + "\n", + "In the end, we can account for the number of sheets of copper-unitary material batch pairs purchased at supplier C, we can use the following constraints:\n", + "\n", + "$$\n", + "\\begin{equation*}\n", + " p_t \\leq b_{t,\\text{C}}, \\quad \\text{ and } \\quad p_t \\leq y_{t, \\text{C}}.\n", + "\\end{equation*}\n", + "$$\n", + "\n", + "Choosing the maximum possible amount $p_t$ that satisfies such constraints will naturally lead to maximizing the number of pairs and, thus, the total discount.\n", + "\n", + "The remaining constraints such as the inventory balance constraints, total inventory capacity etc.~are straightforward, which gives us the following complete model formulation:\n", + "\n", + "$$\n", + "\\begin{align*}\n", + " \\min \\quad & \\sum_{t \\in T} \\Big( \\Big( \\sum_{s \\in S} \\pi_{s} b_{ts} + \\alpha_{s} y_{ts} \\Big) - \\beta p_t \\Big) +&\n", + " \\sum_{t \\in T} \\Big ( \\gamma_{\\text{copper}} r_t + \\sum_{p \\in P \\setminus \\{ \\text{copper}\\}} \\gamma_{p} s_{pt} \\Big) \\\\\n", + " \\textup{s.t.} \\quad \n", + " & \\sum_{p \\in P \\setminus \\{ \\text{copper}\\}} x_{pts} \\leq 100 \\cdot b_{ts} & \\forall \\, t \\in T, \\, \\forall \\, s \\in S\\\\\n", + " & s_{\\text{copper}, t} \\leq 10 \\cdot r_t & \\forall \\, t \\in T\\\\\n", + " & s_{\\text{copper}, t} \\leq 10000 & \\forall \\, t \\in T\\\\\n", + " & u_{\\text{copper}, t} = 100 \\sum_{s \\in S} y_{ts} & \\forall \\, t \\in T\\\\\n", + " & p_t \\leq b_{t,\\text{C}}, \\quad p_t \\leq y_{t, \\text{C}} & \\forall \\, t \\in T \\\\\n", + " & u_{pt} = \\sum_{s \\in S} x_{pts} & \\forall \\, t \\in T, \\, \\forall P \\setminus \\{ \\text{copper}\\}\\\\\n", + " & s_{p,t-1} + u_{p,t} = \\delta_{pt} + s_{pt} & \\forall \\, t \\in T, \\, \\forall p \\in P\\\\ \n", + " & s_{p \\textrm{Dec}} \\geq \\Omega_p & \\forall \\, p \\in P \\\\\n", + " & b_{ts}, r_t \\in \\mathbb{Z}_{+} & \\forall \\, t \\in T, \\, \\forall \\, s \\in S,\n", + "\\end{align*}\n", + "$$\n", + "\n", + "where we assume that $s_{p,t-1}$ represents the initial inventory state. Note that because $r_t$, $b_{ts}$ appear with a non-negative coefficient and $p_t$ with a positive coefficient in the objective functions, at the optimal solution these variables will automatically take their minimal ($r_t$, $b_{ts}$) and maximal ($p_t$) values allowed by the corresponding constraints." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pyomo implementation\n", + "\n", + "In the next cell, we implement the model described above in Pyomo using a function that can take the data as input arguments, so we can then easily use it with different data." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "def BIMproduction_v1(\n", + " demand,\n", + " existing,\n", + " desired,\n", + " stock_limit,\n", + " supplying_copper,\n", + " supplying_batches,\n", + " price_copper_sheet,\n", + " price_batch,\n", + " discounted_price,\n", + " batch_size,\n", + " copper_sheet_mass,\n", + " copper_bucket_size,\n", + " unitary_products,\n", + " unitary_holding_costs,\n", + "):\n", + " m = pyo.ConcreteModel(\n", + " \"BIM product acquisition and inventory with sophisticated prices\"\n", + " )\n", + "\n", + " periods = demand.columns\n", + " products = demand.index\n", + " first = periods[0]\n", + " prev = {j: i for i, j in zip(periods, periods[1:])}\n", + " last = periods[-1]\n", + "\n", + " @m.Param(products, periods)\n", + " def delta(m, p, t):\n", + " return demand.loc[p, t]\n", + "\n", + " @m.Param(supplying_batches)\n", + " def pi(m, s):\n", + " return price_batch[s]\n", + "\n", + " @m.Param(supplying_copper)\n", + " def kappa(m, s):\n", + " return price_copper_sheet[s]\n", + "\n", + " @m.Param()\n", + " def beta(m):\n", + " return price_batch[\"C\"] + price_copper_sheet[\"C\"] - discounted_price\n", + "\n", + " @m.Param(products)\n", + " def gamma(m, p):\n", + " return unitary_holding_costs[p]\n", + "\n", + " @m.Param(products)\n", + " def Alpha(m, p):\n", + " return existing[p]\n", + "\n", + " @m.Param(products)\n", + " def Omega(m, p):\n", + " return desired[p]\n", + "\n", + " m.y = pyo.Var(periods, supplying_copper, domain=pyo.NonNegativeIntegers)\n", + " m.x = pyo.Var(\n", + " unitary_products, periods, supplying_batches, domain=pyo.NonNegativeReals\n", + " )\n", + " m.s = pyo.Var(products, periods, domain=pyo.NonNegativeReals)\n", + " m.u = pyo.Var(products, periods, domain=pyo.NonNegativeReals)\n", + " m.b = pyo.Var(periods, supplying_batches, domain=pyo.NonNegativeIntegers)\n", + " m.p = pyo.Var(periods, domain=pyo.NonNegativeIntegers)\n", + " m.r = pyo.Var(periods, domain=pyo.NonNegativeIntegers)\n", + "\n", + " @m.Constraint(periods, supplying_batches)\n", + " def units_in_batches(m, t, s):\n", + " return (\n", + " pyo.quicksum(m.x[p, t, s] for p in unitary_products)\n", + " <= batch_size * m.b[t, s]\n", + " )\n", + "\n", + " @m.Constraint(periods)\n", + " def copper_in_buckets(m, t):\n", + " return m.s[\"copper\", t] <= copper_bucket_size * m.r[t]\n", + "\n", + " @m.Constraint(periods)\n", + " def inventory_capacity(m, t):\n", + " return m.s[\"copper\", t] <= stock_limit\n", + "\n", + " @m.Constraint(periods)\n", + " def pairs_in_batches(m, t):\n", + " return m.p[t] <= m.b[t, \"C\"]\n", + "\n", + " @m.Constraint(periods)\n", + " def pairs_in_sheets(m, t):\n", + " return m.p[t] <= m.y[t, \"C\"]\n", + "\n", + " @m.Constraint(periods, products)\n", + " def bought(m, t, p):\n", + " if p == \"copper\":\n", + " return m.u[p, t] == copper_sheet_mass * pyo.quicksum(\n", + " m.y[t, s] for s in supplying_copper\n", + " )\n", + " else:\n", + " return m.u[p, t] == pyo.quicksum(m.x[p, t, s] for s in supplying_batches)\n", + "\n", + " @m.Expression()\n", + " def acquisition_cost(m):\n", + " return pyo.quicksum(\n", + " pyo.quicksum(m.pi[s] * m.b[t, s] for s in supplying_batches)\n", + " + pyo.quicksum(m.kappa[s] * m.y[t, s] for s in supplying_copper)\n", + " - m.beta * m.p[t]\n", + " for t in periods\n", + " )\n", + "\n", + " @m.Expression()\n", + " def inventory_cost(m):\n", + " return pyo.quicksum(\n", + " m.gamma[\"copper\"] * m.r[t]\n", + " + pyo.quicksum(m.gamma[p] * m.s[p, t] for p in unitary_products)\n", + " for t in periods\n", + " )\n", + "\n", + " @m.Objective(sense=pyo.minimize)\n", + " def total_cost(m):\n", + " return m.acquisition_cost + m.inventory_cost\n", + "\n", + " @m.Constraint(products, periods)\n", + " def balance(m, p, t):\n", + " if t == first:\n", + " return m.Alpha[p] + m.u[p, t] == m.delta[p, t] + m.s[p, t]\n", + " else:\n", + " return m.u[p, t] + m.s[p, prev[t]] == m.delta[p, t] + m.s[p, t]\n", + "\n", + " @m.Constraint(products)\n", + " def finish(m, p):\n", + " return m.s[p, last] >= m.Omega[p]\n", + "\n", + " SOLVER.solve(m)\n", + "\n", + " return m" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We then solve the model using the provided data. We introduce three auxiliary function to more quickly parse the output of the model and use them to report the solution as a set of Pandas dataframes and visualize the monthly stock levels." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running HiGHS 1.5.3 [date: 2023-05-16, git hash: 594fa5a9d]\n", + "Copyright (c) 2023 HiGHS under MIT licence terms\n", + "Optimal cost is 110216 cents, that is $1102.16\n", + "\n", + "Monthly purchased material\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
JanFebMarAprMayJunJulAugSepOctNovDec
silicon00000228233274228349257690
plastic0000002663263713513431310
copper000001000120011001300130012003100
germanium000000000000
\n", + "
" + ], + "text/plain": [ + " Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov \\\n", + "silicon 0 0 0 0 0 228 233 274 228 349 257 \n", + "plastic 0 0 0 0 0 0 266 326 371 351 343 \n", + "copper 0 0 0 0 0 1000 1200 1100 1300 1300 1200 \n", + "germanium 0 0 0 0 0 0 0 0 0 0 0 \n", + "\n", + " Dec \n", + "silicon 690 \n", + "plastic 1310 \n", + "copper 3100 \n", + "germanium 0 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Acquisition plan for copper sheet and batch pairs from supplier C\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
JanFebMarAprMayJunJulAugSepOctNovDec
00000035667620
\n", + "
" + ], + "text/plain": [ + " Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec\n", + "0 0 0 0 0 0 3 5 6 6 7 6 20" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Acquisition plan for copper sheets materials\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
JanFebMarAprMayJunJulAugSepOctNovDec
B0000077476611
C0000035667620
\n", + "
" + ], + "text/plain": [ + " Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec\n", + "B 0 0 0 0 0 7 7 4 7 6 6 11\n", + "C 0 0 0 0 0 3 5 6 6 7 6 20" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Acquisition plan for unitary materials (batches)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
JanFebMarAprMayJunJulAugSepOctNovDec
A000000000000
C0000035667620
\n", + "
" + ], + "text/plain": [ + " Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec\n", + "A 0 0 0 0 0 0 0 0 0 0 0 0\n", + "C 0 0 0 0 0 3 5 6 6 7 6 20" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Acquisition plan for unitary materials (quantities)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
JanFebMarAprMayJunJulAugSepOctNovDec
suppliermaterials
Asilicon000000000000
germanium000000000000
plastic000000000000
Csilicon00000228233274228349257690
germanium000000000000
plastic0000002663263713513431310
\n", + "
" + ], + "text/plain": [ + " Jan Feb Mar Apr May Jun Jul Aug Sep \\\n", + "supplier materials \n", + "A silicon 0 0 0 0 0 0 0 0 0 \n", + " germanium 0 0 0 0 0 0 0 0 0 \n", + " plastic 0 0 0 0 0 0 0 0 0 \n", + "C silicon 0 0 0 0 0 228 233 274 228 \n", + " germanium 0 0 0 0 0 0 0 0 0 \n", + " plastic 0 0 0 0 0 0 266 326 371 \n", + "\n", + " Oct Nov Dec \n", + "supplier materials \n", + "A silicon 0 0 0 \n", + " germanium 0 0 0 \n", + " plastic 0 0 0 \n", + "C silicon 349 257 690 \n", + " germanium 0 0 0 \n", + " plastic 351 343 1310 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The stock levels at the end of each month resulting from the optimal acquisition and production plan\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
JanFebMarAprMayJunJulAugSepOctNovDec
silicon912787527310721403605654500
plastic161514281087805472680024001000
copper4354373025281530388844149054502042
germanium145313911310124511501032946857775693609543
\n", + "
" + ], + "text/plain": [ + " Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov \\\n", + "silicon 912 787 527 310 72 14 0 36 0 56 54 \n", + "plastic 1615 1428 1087 805 472 68 0 0 24 0 0 \n", + "copper 4354 3730 2528 1530 388 8 44 14 90 54 50 \n", + "germanium 1453 1391 1310 1245 1150 1032 946 857 775 693 609 \n", + "\n", + " Dec \n", + "silicon 500 \n", + "plastic 1000 \n", + "copper 2042 \n", + "germanium 543 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQkAAAGGCAYAAADYVwfrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbe0lEQVR4nO3deXxU1f3/8fdNMklmEsIeAiUCiqyyBFDJlxYjW1C0otQVCVQUoaACKtQFZFFRlE1FrKKALahg1aKoIaBxQTZZlAKiPxXByuKGATJJ7mTu7w+aKcOihATuvTOvpw8eZu69M/O5+WQyyTvn3GNYlmUJAAAAAAAAQNSKsbsAAAAAAAAAAPYiJAQAAAAAAACiHCEhAAAAAAAAEOUICQEAAAAAAIAoR0gIAAAAAAAARDlCQgAAAAAAACDKERICAAAAAAAAUY6QEAAAAAAAAIhycXYXcKoEg0F99913qlKligzDsLscAAAAAAAA4LSzLEv79+9XvXr1FBNz/PGCERsSfvfdd0pPT7e7DAAAAAAAAMB2O3fuVP369Y+7P2JDwipVqkg69AlISUmxuZrKZ5qmli5dqh49esjj8dhdDkRPnIieOA89cSb64jz0xHnoifPQE2eiL85DT5yHnjhPpPekoKBA6enpoazseCI2JCybYpySkhKxIaHP51NKSkpEfgG7ET1xHnriPPTEmeiL89AT56EnzkNPnIm+OA89cR564jzR0pPfuhwfC5cAAAAAAAAAUY6QEAAAAAAAAIhyhIQAAAAAAABAlIvYaxICAAAAAABEk9LSUpmmaXcZrmOapuLi4lRUVKTS0lK7yyk3j8ej2NjYCj8OISEAAAAAAICLWZal3bt3a9++fXaX4kqWZSktLU07d+78zcU9nKpatWpKS0urUP2EhAAAAAAAAC5WFhCmpqbK5/O5NuiySzAY1IEDB5ScnKyYGHddmc+yLBUWFmrv3r2SpLp16570YxESAgAAAAAAuFRpaWkoIKxZs6bd5bhSMBhUSUmJEhMTXRcSSpLX65Uk7d27V6mpqSc99dh9Zw4AAAAAAABJCl2D0Ofz2VwJ7FTW/4pck5KQEAAAAAAAwOWYYhzdKqP/hIQAAAAAAABAlCMkBAAAAAAAgGMMGDBAvXv3Dt3OysrS8OHDQ7cbNmyo6dOnn/a6Ih0Ll7iQZVnyB/wqsUrkD/hl6uTnmzuBN87LsGgAAAAAACBJmjFjhizLOu7+tWvXKikp6TRWFB0ICV3IH/Cr08JOkqQJCyfYXE3FZaRmaF7PeQSFAAAAAABAVatW/dX9tWvXPk2VRBemG8N2G/ZukD/gt7sMAAAAAABwGr388stq1aqVvF6vatasqW7duungwYNHTTc+0pHTjfft26ebb75ZderUUWJios455xy98cYbof3//Oc/1bJlSyUkJKhhw4aaMmVK2OOdeeaZmjJligYOHKgqVarojDPO0NNPP13Zp+t4jCR0IW+cVyuuWqHc3FxlZ2crLs6dbfQH/MpamGV3GQAAAAAARBTLsuQ3S215bq8n9oRmCu7atUvXXnutJk+erMsvv1z79+/XBx988KvTjI8lGAzqoosu0v79+/WPf/xDZ511lrZs2aLY2FhJ0rp163TVVVdp3Lhxuvrqq/XRRx/pL3/5i2rWrKkBAwaEHmfmzJmaOHGi7rnnHr388ssaMmSILrjgAjVt2rRc9biZO9OlKGcYhrxxXsUb8fLGeeXxeOwuCQAAAAAAOITfLFWLsbm2PPeWCdnyxf923LRr1y4FAgFdccUVatCggSSpVatW5X6+ZcuWac2aNdq6dauaNGki6dDIwDJTp05V165dNWbMGElSkyZNtGXLFj3yyCNhIWH37t01ZMgQxcTEaPTo0Zo2bZrefffdqAoJmW4MAAAAAACA06pNmzbq2rWrWrVqpSuvvFLPPPOMfv7553I/zsaNG1W/fv1QQHikrVu3qlOnTmHbOnXqpC+++EKlpf8bbdmyZcvQx4ZhKC0tTXv37i13PW7GSEIAAAAAAIAI4vXEasuEbNue+0TExsYqLy9PH330kZYuXarHH39c99xzj1avXl2+5/N6T6bMoxw5S9MwDAWDwUp5bLcgJAQAAAAAAIgghmGc0JRfuxmGoU6dOqlTp04aO3asGjRooFdffbVcj9G6dWt9++23+vzzz485mrB58+ZasWJF2LYVK1aoSZMmoesW4hDnf8UAAAAAAAAgoqxevVrLly9Xjx49lJqaqtWrV+v7779X8+bN9emnn57w41xwwQXq3Lmz+vTpo6lTp6px48b67LPPZBiGevbsqdtvv13nnnuuJk6cqKuvvlorV67UE088oSeffPIUnp07cU1CAAAAAAAAnFYpKSl6//33dfHFF6tJkya69957NWXKFF100UXlfqx//vOfOvfcc3XttdeqRYsWGjVqVOh6g+3atdPChQv14osv6pxzztHYsWM1YcKEsEVLcAgjCQEAAAAAAHBaNW/eXG+//fYx982dOzfsdn5+ftjt7du3h92uUaOGnnvuueM+V58+fdSnT5/j7v/qq69UUFAQtm3jxo3HPT5SMZIQAAAAAAAAiHKEhAAAAAAAAECUIyQEAAAAAAAAohwhIQAAAAAAABDlCAkBAAAAAACAKEdICAAAAAAAAEQ5QkIAAAAAAAAgyhESAgAAAAAAAFGOkBAAAAAAAACO07BhQ02fPv2UPkdWVpZGjBhxSp/DLeLsLgAAAAAAAAA4lfLz83XhhRfq559/VrVq1ULbX3nlFcXGxsqyLPuKcwhGEgIAAAAAACAq1ahRQ1WqVLG7DEcgJAQAAAAAAMBpl5WVpWHDhmnYsGGqWrWqatWqpTFjxhx3VN/UqVPVqlUrJSUlKT09XX/5y1904MCB0P5vvvlGl156qapXr66kpCS1bNlSb775prZv364LL7xQklS9enUZhqEBAwaEajh8unFxcbFGjx6t9PR0JSQkqHHjxnr22WdP3SfBQSoUEj700EMyDEPDhw8PbSsqKtLQoUNVs2ZNJScnq0+fPtqzZ0/Y/Xbs2KFevXrJ5/MpNTVVd955pwKBQNgx+fn5ateuXaghc+fOrUipAAAAAAAAcJh58+YpLi5Oa9as0YwZMzR16lTNnj37mMfGxMToscce0+bNmzVv3jy98847GjVqVGj/0KFDVVxcrPfff1+bNm3Sww8/rOTkZKWnp+uf//ynJGnbtm3atWuXZsyYccznyMnJ0QsvvKDHHntMW7du1d/+9jclJydX/ok70Elfk3Dt2rX629/+ptatW4dtHzFihJYsWaJFixapatWqGjZsmK644gqtWLFCklRaWqpevXopLS1NH330kXbt2qWcnBx5PB49+OCDkqSvv/5avXr10uDBgzV//nwtX75cN954o+rWravs7OwKnC4AAAAAAECEsyzJLLTnuT0+yTBO+PD09HRNmzZNhmGoadOm2rRpk6ZNm6abbrrpqGMPH6TWsGFD3X///Ro8eLCefPJJSYcGpfXp00etWrWSJJ155pmh42vUqCFJSk1NDbsm4eE+//xzLVy4UHl5eerWrdtRjxHpTiokPHDggPr27atnnnlG999/f2j7L7/8omeffVYLFixQly5dJElz5sxR8+bNtWrVKnXs2FFLly7Vli1btGzZMtWpU0dt27bVxIkTNXr0aI0bN07x8fF66qmn1KhRI02ZMkWS1Lx5c3344YeaNm0aISEAAAAAAMCvMQulB+vZ89x3fyfFJ53w4R07dpRxWKiYmZmpKVOmqLS09Khjly1bpkmTJumzzz5TQUGBAoGAioqKVFhYKJ/Pp1tvvVVDhgzR0qVL1a1bN/Xp0+eowW2/ZuPGjYqNjdUFF1xwwveJJCcVEg4dOlS9evVSt27dwkLCdevWyTTNUNoqSc2aNdMZZ5yhlStXqmPHjlq5cqVatWqlOnXqhI7Jzs7WkCFDtHnzZmVkZGjlypVhj1F2zOGJ8ZGKi4tVXFwcul1QUCBJMk1TpmmezGk6Wtk5ufncDp9iHggEZMq95yJFRk8iDT1xHnriTPTFeeiJ89AT56EnzkRfnIeeOE9l98Q0TVmWpWAwqGAweGhjMGjbIhTBYFAqq+MElNUedv/D/l+2f/v27brkkks0ePBgTZw4UTVq1NCHH36om266SUVFRUpMTNQNN9yg7t27a8mSJcrLy9OkSZP06KOPatiwYWGPGzxOfYmJib95jFMFg0FZliXTNBUbGxu270S/1sodEr744otav3691q5de9S+3bt3Kz4+/qhhm3Xq1NHu3btDxxweEJbtL9v3a8cUFBTI7/fL6/Ue9dyTJk3S+PHjj9q+dOlS+Xy+Ez9Bl8nLy7O7hJNWYpWEPs7NzVW8EW9jNZXHzT2JVPTEeeiJM9EX56EnzkNPnIeeOBN9cR564jyV1ZO4uDilpaXpwIEDKin57+/ZliUN3Vopj19u/oBUVHBChwYCAa1atSo00EuS3n//fZ111lk6ePCggsGgioqKVFBQoA8//FDBYFBjx45VTMyhCHT79u2SpP3794e2Va1aVdddd52uu+46jR8/Xn/729+Uk5MTCsr27dsXOrashrLP25lnnqlgMKi33npLWVlZFf1MnFYlJSXy+/16//33j1r3o7DwxKaelysk3Llzp2677Tbl5eWF0lWnuOuuuzRy5MjQ7YKCAqWnp6tHjx5KSUmxsbJTwzRN5eXlqXv37vJ4PHaXc1L8Ab8mLJwg6dBIUW/c0eGvm0RCTyINPXEeeuJM9MV56Inz0BPnoSfORF+ch544T2X3pKioSDt37lRycvIRWU3VCj/2qRYXF6dvv/1W48eP16BBg7R+/Xo988wzeuSRR5SSkqKYmBglJiYqJSVFrVq1kmmaev7553XJJZdoxYoVoUVuq1SpopSUFI0YMUI9e/ZUkyZN9PPPP2vlypVq2bKlUlJS1KJFCxmGoffee08XX3yxvF6vkpOTFRcXp/j4Q4OWWrZsqZycHN16662aPn262rRpo2+++UZ79+7VVVddZeNn6rcVFRXJ6/Wqc+fOR2V2h4ewv6ZcIeG6deu0d+9etWvXLrSttLRU77//vp544gnl5uaqpKRE+/btCxtNuGfPHqWlpUmS0tLStGbNmrDHLVv9+PBjjlwRec+ePUpJSTnmKEJJSkhIUEJCwlHbPR5PRH8jdPP5HT69OC4uzrXncSQ39yRS0RPnoSfORF+ch544Dz1xHnriTPTFeeiJ81RWT0pLS2UYhmJiYsJGyLlFTk6OioqK1LFjR8XGxuq2227T4MGDQ9cpLDu3jIwMTZ06VZMnT9bdd9+tzp07a9KkScrJyQmdezAY1C233KJvv/1WKSkp6tmzp6ZNm6aYmBilp6dr/PjxuvvuuzVw4EDl5OSEQsYyhmHoqaee0t13361hw4bpxx9/1BlnnKG7777b8Z/bmJgYGYZxzK+rE/06K1dI2LVrV23atCls25///Gc1a9ZMo0ePVnp6ujwej5YvX64+ffpIOrS09I4dO5SZmSnp0AUoH3jgAe3du1epqamSDg2xLUt1y4558803w54nLy8v9BgAAAAAAABwP4/Ho+nTp2vWrFlH7SubTlxmxIgRGjFiRNi2fv36hT5+/PHHf/W5xowZozFjxoRty8/PVzAYDI22S0xM1NSpUzV16tTynEZEKFdIWKVKFZ1zzjlh25KSklSzZs3Q9oEDB2rkyJGqUaOGUlJSdMsttygzM1MdO3aUJPXo0UMtWrRQv379NHnyZO3evVv33nuvhg4dGhoJOHjwYD3xxBMaNWqUbrjhBr3zzjtauHChlixZUhnnDAAAAAAAAOAwJ7W68a8pG8bZp08fFRcXKzs7W08++WRof2xsrN544w0NGTJEmZmZSkpKUv/+/TVhwoTQMY0aNdKSJUs0YsQIzZgxQ/Xr19fs2bOVnZ1d2eUCAAAAAAAAUa/CIWF+fn7Y7cTERM2cOVMzZ8487n0aNGhw1HTiI2VlZWnDhg0VLQ8AAAAAAAAOdGSmBHs5+6qLAAAAAAAAAE45QkIAAAAAAAAgyhESAgAAAAAAAFGOkBAAAAAAAACIcoSEAAAAAAAAQJQjJAQAAAAAAACiHCEhAAAAAAAAEOUICQEAAAAAAIAoR0gIAAAAAAAAnIDS0lIFg0G7yzglCAkBAAAAAABw2gWDQU2ePFmNGzdWQkKCzjjjDD3wwAOSpE2bNqlLly7yer2qWbOmBg0apAMHDoTuO2DAAPXu3Vvjx49X7dq1lZKSosGDB6ukpCR0TFZWloYNG6Zhw4apatWqqlWrlsaMGSPLskLHFBcX684771SLFi1UpUoVnX/++crPzw/tnzt3rqpVq6bFixerRYsWSkhI0I4dO079J8cGhIQAAAAAAAA47e666y499NBDGjNmjLZs2aIFCxaoTp06OnjwoLKzs1W9enWtXbtWixYt0rJlyzRs2LCw+y9fvlxbt25Vfn6+XnjhBb3yyisaP3582DHz5s1TXFyc1qxZoxkzZmjq1KmaPXt2aP+wYcO0atUqzZ49Wxs3btSVV16pnj176osvvggdU1hYqIcfflizZ8/W5s2blZqaemo/MTaJs7sAQJL8Ab/dJVRYIBBQiVUif8AvU6bd5VSIN84rwzDsLgMAAAAAcBIsy7Lt9+wT/X1y//79mjFjhp544gn1799fknTWWWfp97//vZ555hkVFRXp+eefV1JSkiTpiSee0KWXXqqHH35YderUkSTFx8frueeek8/nU8uWLTVhwgTdeeedmjhxomJiDo2LS09P17Rp02QYhpo2bapNmzZp2rRpuummm7Rjxw7NmTNH27dvV3JyslJSUnTHHXfo7bff1pw5c/Tggw9KkkzT1JNPPqk2bdqcik+ZYxASwhGyFmbZXUKlmbBwgt0lVFhGaobm9ZxHUAgAAAAALuQP+HX+gvNtee7V162Wz+P7zeO2bt2q4uJide3a9Zj72rRpEwoIJalTp04KBoPatm1bKCRs06aNfL7/PVdmZqYOHDignTt3qkGDBpKkjh07hv1um5mZqSlTpqi0tFSbNm1SaWmpmjVrFvb8xcXFqlmzZuh2fHy8WrdufYKfAfciJIRtvHFeZaRmaMPeDXaXgiNs2LtB/oD/hL6xAwAAAABQXl6v1+4SdODAAcXGxmrt2rXy+/1KTk4OjUBMTk4OHef1RsdsO0JC2MYwDM3rOS8iphpLh6Yb5+bmKjs7W3Fx7nxp+QP+iBrVCQAAAADRyBvn1errVtv23Cfi7LPPltfr1fLly3XjjTeG7WvevLnmzp2rgwcPhkYTrlixQjExMWratGnouE8++UR+vz8UOK5atUrJyclKT08PHbN6dfjnYdWqVTr77LMVGxurjIwMlZaWau/evWrTpo1SUlJCIWE0cmeSgYhhGEbEjFYzZSreiJc3ziuPx2N3OQAAAACAKOWG37UTExM1evRojRo1SvHx8erUqZO+//57bd68WX379tV9992n/v37a9y4cfr+++91yy23qF+/fqGpxpJUUlKigQMH6t5779X27dt13333adiwYWFB344dOzRy5EjdfPPNWr9+vR5//HFNmTJFktSkSRP17dtXAwYM0IQJE/R///d/+vHHH7V8+XK1bt1avXr1Ou2fFzsREgIAAAAAAOC0GzNmjOLi4jR27Fh99913qlu3rgYPHiyfz6fc3FzddtttOvfcc+Xz+dSnTx9NnTo17P5du3bV2Wefrc6dO6u4uFjXXnutxo0bF3ZMTk6O/H6/zjvvPMXGxuq2227ToEGDQvvnzJmjiRMn6t5779WuXbtUq1YtdezYUZdccsnp+BQ4CiEhAAAAAAAATruYmBjdc889uueee47a16pVK73zzju/+Rjjx4/X+PHjj7vf4/Fo+vTpmjVr1nH3jxs3TiNHjjzmdOMBAwZowIABv1lHJIjeidYAAAAAAAAAJBESAgAAAAAAAFGP6cYAAAAAAABwlblz5/7mMfn5+ae8jkjCSEIAAAAAAAAgyhESAgAAAAAAAFGOkBAAAAAAAACIcoSEAAAAAAAAQJQjJAQAAAAAAACiHCEhAAAAAAAAEOUICQEAAAAAAIBKYBiGXnvtNbvLOClxdhcAAAAAAAAARIJdu3apevXqdpdxUggJAQAAAAAA4HqlpaUyDEMxMfZNnE1LS7PtuSuK6cYAAAAAAAA47fbv36++ffsqKSlJdevW1bRp05SVlaXhw4dLkoqLi3XHHXfod7/7nZKSknT++ecrPz8/dP+5c+eqWrVqWrx4sVq0aKGEhATt2LFDDRs21P3336+cnBwlJyerQYMGWrx4sb7//ntddtllSk5OVuvWrfXxxx+HHuunn37Sddddp9/97nfy+Xxq1aqVXnjhhbB6s7KydOutt2rUqFGqUaOG0tLSNG7cuLBjDp9unJ+fL8MwtG/fvtD+jRs3yjAMbd++Pewc3njjDTVt2lQ+n09/+tOfVFhYqHnz5qlhw4aqXr26br31VpWWllbWp/6YCAkBAAAAAAAiiGVZChYW2vLPsqwTrnPkyJFasWKFFi9erLy8PH3wwQdav359aP+wYcO0cuVKvfjii/r000915ZVXqmfPnvriiy9CxxQWFurhhx/W7NmztXnzZqWmpkqSpk2bpk6dOmnDhg3q1auX+vXrp5ycHF1//fVav369zjrrLOXk5ITqLSoqUvv27bVkyRL9+9//1qBBg9SvXz+tWbMmrOZ58+YpKSlJq1ev1uTJkzVhwgTl5eVVpF0qLCzUY489phdffFFvv/228vPzdfnll+vNN9/Um2++qb///e/629/+ppdffrlCz/NbmG4MAAAAAAAQQSy/X9vatbfluZuuXyfD5/vN4/bv36958+ZpwYIF6tq1qyRpzpw5qlevniRpx44dmjNnjnbs2BHadscdd+jtt9/WnDlz9OCDD0qSTNPUk08+qTZt2oQ9/sUXX6ybb75ZkjR27FjNmjVL5557rq688kpJ0ujRo5WZmak9e/YoNTVV9erV0+233x6aqnzLLbcoNzdXCxcu1HnnnRd63NatW+u+++6TJJ199tl64okntHz5cnXv3v2kP2emaWrWrFk666yzJEl/+tOf9Pe//1179uxRcnKyWrRooQsvvFDvvvuurr766pN+nt9CSAgAAAAAAIDT6quvvpJpmmEBXNWqVdW0aVNJ0qZNm1RaWqomTZqE3a+4uFg1a9YM3Y6Pj1fr1q2PevzDt9WpU0eS1KpVq6O27d27V6mpqSotLdX999+vRYsW6T//+Y9KSkpUXFws3xGB55HPVbduXe3du7dc534kn88XCgjLamvYsKGSk5PDtlX0eX4LISEAAAAAAEAEMbxeNV2/zrbnrgwHDhxQbGys1q1bp9jY2LB9h4dnXq9XhmEcdX+Px/O/mv67/1jbgsGgJOmxxx7TzJkzNX36dLVq1UpJSUkaPny4SkpKjvu4ZY9T9hhHKhuVePgUbNM0f7XWsscsz/NUFkJCAAAAAACACGIYxglN+bXTmWeeKY/Ho7Vr1+qMM86QJP3yyy/6/PPP1blzZ2VkZKi0tFR79+7VH/7wh1Nez+rVq/XHP/5R119/vaRD4eHnn3+uFi1anPRj1q5dW5K0a9cuVa9eXdKhhUucioVLAAAAAAAAcFpVqVJF/fv315133ql3331Xmzdv1sCBAxUTEyPDMNSkSRP17dtXOTk5euWVV/T1119rzZo1mjRpkpYsWVLp9Zx11llatmyZPvroI23dulU333yz9uzZU6HHbNy4sdLT0zVu3Dh98cUXWrJkiaZMmVJJFVc+QkIAAAAAAACcdlOnTlVmZqYuueQSdevWTZ06dVLz5s2VmJgo6dBCJjk5Obr99tvVtGlT9e7dO2zkYWW64447lJGRoezsbGVlZSktLU29e/eu0GN6PB698MIL+uyzz9S6dWs9/PDDuv/++yun4FOA6cYAAAAAAAA47apUqaL58+eHbh88eFDjx4/XoEGDJB0K2caPH6/x48cf8/4DBgzQgAEDjtq+ffv2o7Ydfl1ASWrYsGFoWzAYVPXq1fXqq6+GriN4LPn5+Udte+211371eTp16qRPP/30uMcc6xzGjRuncePGhW2bO3fuceuqLISEAAAAAAAAOO02bNigzz77TOedd55++eUXTZgwQZJ02WWX2VxZdCIkBAAAAAAAgC0effRRbdu2TfHx8Wrfvr0++OAD1apVy+6yohIhIQAAAAAAAE67jIwMrVu3zu4y8F8sXAIAAAAAAABEOUJCAAAAAAAAIMoREgIAAAAAALjckavqIrpURv8JCQEAAAAAAFzK4/FIkgoLC22uBHYq63/Z18PJYOESAAAAAAAAl4qNjVW1atW0d+9eSZLP55NhGDZX5S7BYFAlJSUqKipSTIy7xtNZlqXCwkLt3btX1apVU2xs7Ek/FiEhAAAAAACAi6WlpUlSKChE+ViWJb/fL6/X69qAtVq1aqGvg5NFSAgAAAAAAOBihmGobt26Sk1NlWmadpfjOqZp6v3331fnzp0rNF3XLh6Pp0IjCMsQEgIAAAAAAESA2NjYSgmLok1sbKwCgYASExNdGRJWFndNtAYAAAAAAABQ6QgJAQAAAAAAgChHSAgAAAAAAABEOUJCAAAAAAAAIMoREgIAAAAAAABRjpAQAAAAAAAAiHKEhAAAAAAAAECUIyQEAAAAAAAAohwhIQAAAAAAABDlCAkBAAAAAACAKEdICAAAAAAAAES5coWEs2bNUuvWrZWSkqKUlBRlZmbqrbfeCu0vKirS0KFDVbNmTSUnJ6tPnz7as2dP2GPs2LFDvXr1ks/nU2pqqu68804FAoGwY/Lz89WuXTslJCSocePGmjt37smfIQAAAAAAAIBfVa6QsH79+nrooYe0bt06ffzxx+rSpYsuu+wybd68WZI0YsQIvf7661q0aJHee+89fffdd7riiitC9y8tLVWvXr1UUlKijz76SPPmzdPcuXM1duzY0DFff/21evXqpQsvvFAbN27U8OHDdeONNyo3N7eSThkAAAAAAADA4eLKc/Cll14advuBBx7QrFmztGrVKtWvX1/PPvusFixYoC5dukiS5syZo+bNm2vVqlXq2LGjli5dqi1btmjZsmWqU6eO2rZtq4kTJ2r06NEaN26c4uPj9dRTT6lRo0aaMmWKJKl58+b68MMPNW3aNGVnZ1fSaQMAAAAAAAAoc9LXJCwtLdWLL76ogwcPKjMzU+vWrZNpmurWrVvomGbNmumMM87QypUrJUkrV65Uq1atVKdOndAx2dnZKigoCI1GXLlyZdhjlB1T9hgAAAAAAAAAKle5RhJK0qZNm5SZmamioiIlJyfr1VdfVYsWLbRx40bFx8erWrVqYcfXqVNHu3fvliTt3r07LCAs21+279eOKSgokN/vl9frPWZdxcXFKi4uDt0uKCiQJJmmKdM0y3uajld2TpF4bm4VCT05/PqggUBAptx7LlJk9CTS0BNnoi/OQ0+ch544Dz1xJvriPPTEeeiJ80R6T070vModEjZt2lQbN27UL7/8opdffln9+/fXe++9V+4CK9ukSZM0fvz4o7YvXbpUPp/PhopOj7y8PLtLwBHc3JMSqyT0cW5uruKNeBurqTxu7kmkoifORF+ch544Dz1xHnriTPTFeeiJ89AT54nUnhQWFp7QceUOCePj49W4cWNJUvv27bV27VrNmDFDV199tUpKSrRv376w0YR79uxRWlqaJCktLU1r1qwJe7yy1Y8PP+bIFZH37NmjlJSU444ilKS77rpLI0eODN0uKChQenq6evTooZSUlPKepuOZpqm8vDx1795dHo/H7nKgyOiJP+DXhIUTJB2a5u+NO/5rzg0ioSeRhp44E31xHnriPPTEeeiJM9EX56EnzkNPnCfSe1I22/a3lDskPFIwGFRxcbHat28vj8ej5cuXq0+fPpKkbdu2aceOHcrMzJQkZWZm6oEHHtDevXuVmpoq6VBKm5KSohYtWoSOefPNN8OeIy8vL/QYx5OQkKCEhISjtns8nohscJlIPz83cnNPDp9eHBcX59rzOJKbexKp6Ikz0RfnoSfOQ0+ch544E31xHnriPPTEeSK1Jyd6TuUKCe+66y5ddNFFOuOMM7R//34tWLBA+fn5ys3NVdWqVTVw4ECNHDlSNWrUUEpKim655RZlZmaqY8eOkqQePXqoRYsW6tevnyZPnqzdu3fr3nvv1dChQ0MB3+DBg/XEE09o1KhRuuGGG/TOO+9o4cKFWrJkSTk/BQAAAAAAAABORLlCwr179yonJ0e7du1S1apV1bp1a+Xm5qp79+6SpGnTpikmJkZ9+vRRcXGxsrOz9eSTT4buHxsbqzfeeENDhgxRZmamkpKS1L9/f02YMCF0TKNGjbRkyRKNGDFCM2bMUP369TV79mxlZ2dX0ikDAAAAAAAAOFy5QsJnn332V/cnJiZq5syZmjlz5nGPadCgwVHTiY+UlZWlDRs2lKc0AAAAAAAAACcpxu4CAAAAAAAAANiLkBAAAAAAAACIcoSEAAAAAAAAQJQjJAQAAAAAAACiHCEhAAAAAAAAEOUICQEAAAAAAIAoR0gIAAAAAAAARDlCQgAAAAAAACDKERICAAAAAAAAUY6QEAAAAAAAAIhyhIQAAAAAAABAlCMkBAAAAAAAAKIcISEAAAAAAAAQ5QgJAQAAAAAAgChHSAgAAAAAAABEOUJCAAAAAAAAIMoREgIAAAAAAABRjpAQAAAAAAAAiHKEhAAAAAAAAECUIyQEAAAAAAAAohwhIQAAAAAAABDlCAkBAAAAAACAKEdICAAAAAAAAEQ5QkIAAAAAAAAgyhESAgAAAAAAAFGOkBAAAAAAAACIcnF2FwDAmfwBv90lVFggEFCJVSJ/wC9Tpt3lVJg3zivDMOwuAwAAAAAQgQgJARxT1sIsu0uoNBMWTrC7hEqRkZqheT3nERQCAAAAACod040BhHjjvMpIzbC7DBzHhr0bImKEJwAAAADAeRhJCCDEMAzN6zkvYoKoQCCg3NxcZWdnKy7Ovd/u/AF/RI3sBAAAAAA4j3t/awZwShiGIZ/HZ3cZlcKUqXgjXt44rzwej93lAAAAAADgWEw3BgAAAAAAAKIcISEAAAAAAAAQ5QgJAQAAAAAAgChHSAgAAAAAAABEOUJCAAAAAAAAIMoREgIAAAAAAABRjpAQAAAAAAAAiHKEhAAAAAAAAECUIyQEAAAAAAAAohwhIQAAAAAAABDlCAkBAAAAAACAKEdICAAAAAAAAEQ5QkIAAAAAAAAgyhESAgAAAAAAAFGOkBAAAAAAAACIcoSEAAAAAAAAQJQjJAQAAAAAAACiHCEhAAAAAAAAEOUICQEAAAAAAIAoR0gIAAAAAAAARDlCQgAAAAAAACDKERICAAAAAAAAUY6QEAAAAAAAAIhyhIQAAAAAAABAlCMkBAAAAAAAAKIcISEAAAAAAAAQ5QgJAQAAAAAAgChHSAgAAAAAAABEOUJCAAAAAAAAIMoREgIAAAAAAABRrlwh4aRJk3TuueeqSpUqSk1NVe/evbVt27awY4qKijR06FDVrFlTycnJ6tOnj/bs2RN2zI4dO9SrVy/5fD6lpqbqzjvvVCAQCDsmPz9f7dq1U0JCgho3bqy5c+ee3BkCAAAAAACg0lmWpUKz0PX//AG/SqwSWZZl96fUVnHlOfi9997T0KFDde655yoQCOjuu+9Wjx49tGXLFiUlJUmSRowYoSVLlmjRokWqWrWqhg0bpiuuuEIrVqyQJJWWlqpXr15KS0vTRx99pF27diknJ0cej0cPPvigJOnrr79Wr169NHjwYM2fP1/Lly/XjTfeqLp16yo7O7uSPwUAAAAAAAAoD8uylPNWjjZ+v9HuUipNdmm24hVvdxm2KVdI+Pbbb4fdnjt3rlJTU7Vu3Tp17txZv/zyi5599lktWLBAXbp0kSTNmTNHzZs316pVq9SxY0ctXbpUW7Zs0bJly1SnTh21bdtWEydO1OjRozVu3DjFx8frqaeeUqNGjTRlyhRJUvPmzfXhhx9q2rRphIQAAAAAAAA28wf8ERUQopwh4ZF++eUXSVKNGjUkSevWrZNpmurWrVvomGbNmumMM87QypUr1bFjR61cuVKtWrVSnTp1QsdkZ2dryJAh2rx5szIyMrRy5cqwxyg7Zvjw4RUpFwAAAAAAAJUs/6p8eeO8dpdx0gKBgHJzc5UYm2h3KbY66ZAwGAxq+PDh6tSpk8455xxJ0u7duxUfH69q1aqFHVunTh3t3r07dMzhAWHZ/rJ9v3ZMQUGB/H6/vN6jv/CKi4tVXFwcul1QUCBJMk1Tpmme7Gk6Vtk5ReK5uRU9cZ5I6cnh12wNBAIy5d7ziZSeRBr64jz0xHnoifPQE2eiL85DT5wnUnpy+O8pnv/+51qWFG/EKxAIyDAMu6updCf6tXbSIeHQoUP173//Wx9++OHJPkSlmjRpksaPH3/U9qVLl8rn89lQ0emRl5dndwk4Aj1xHrf3pMQqCX2cm5ureMP918hwe08iFX1xHnriPPTEeeiJM9EX56EnzuP2nvB7insUFhae0HEnFRIOGzZMb7zxht5//33Vr18/tD0tLU0lJSXat29f2GjCPXv2KC0tLXTMmjVrwh6vbPXjw485ckXkPXv2KCUl5ZijCCXprrvu0siRI0O3CwoKlJ6erh49eiglJeVkTtPRTNNUXl6eunfvLo/HxWl9BKEnzhMpPfEH/JqwcIKkQ5decPMw/kjpSaShL85DT5yHnjgPPXEm+uI89MR5IqUn/J7iHmWzbX9LuUJCy7J0yy236NVXX1V+fr4aNWoUtr99+/byeDxavny5+vTpI0natm2bduzYoczMTElSZmamHnjgAe3du1epqamSDiW1KSkpatGiReiYN998M+yx8/LyQo9xLAkJCUpISDhqu8fjicgGl4n083MjeuI8bu/J4dOL4+LiXH0uZdzek0hFX5yHnjgPPXEeeuJM9MV56InzuL0n/J7iHid6TuUKCYcOHaoFCxboX//6l6pUqRK6hmDVqlXl9XpVtWpVDRw4UCNHjlSNGjWUkpKiW265RZmZmerYsaMkqUePHmrRooX69eunyZMna/fu3br33ns1dOjQUMg3ePBgPfHEExo1apRuuOEGvfPOO1q4cKGWLFlSnnIBAAAAAAAAnICY8hw8a9Ys/fLLL8rKylLdunVD/1566aXQMdOmTdMll1yiPn36qHPnzkpLS9Mrr7wS2h8bG6s33nhDsbGxyszM1PXXX6+cnBxNmDAhdEyjRo20ZMkS5eXlqU2bNpoyZYpmz56t7OzsSjhlAAAAAAAAAIcr93Tj35KYmKiZM2dq5syZxz2mQYMGR00nPlJWVpY2bNhQnvIAAAAAAAAAnIRyjSQEAAAAAAAAEHkICQEAAAAAAIAoR0gIAAAAAAAARDlCQgAAAAAAACDKERICAAAAAAAAUY6QEAAAAAAAAIhyhIQAAAAAAABAlCMkBAAAAAAAAKIcISEAAAAAAAAQ5QgJAQAAAAAAgChHSAgAAAAAAABEOUJCAAAAAAAAIMoREgIAAAAAAABRjpAQAAAAAAAAiHKEhAAAAAAAAECUIyQEAAAAAAAAohwhIQAAAAAAABDlCAkBAAAAAACAKEdICAAAAAAAAEQ5QkIAAAAAAAAgysXZXQBOgmVJJQcVW1oslRyULI/dFVWMxycZht1VAAAAAAAARC1CQjcyC+V5pIEukaRP7S6mEqR3lG54m6AQAAAAAADAJkw3hv12rpLMQrurAAAAAAAAiFqMJHQjj0/mnd8oN3epsrN7yONx6XTjkkLp0cZ2VwEAAAAAABD1CAndyDCk+CSVxiZI8UmSW0NCAAAAAAAAOALTjQEAAAAAAIAox0hCAHARf8BvdwkVEggEVGKVyB/wy5RpdzkV5o3zymDRJQAAAAARgJAQAFwka2GW3SVUigkLJ9hdQqXISM3QvJ7zCAoBAAAAuB7TjQHA4bxxXmWkZthdBo5hw94Nrh/dCQAAAAASIwkBwPEMw9C8nvMiIowKBALKzc1Vdna24uLc+xbkD/gjZlQnAAAAAEiEhADgCoZhyOfx2V1GhZkyFW/EyxvnlYeV2QEAAADAMQgJXciyLAULC2WUlChYWKigW3/RLvFLAUNGrCWu5gUAAAAAAGAfQkIXsvx+fXV+R50t6asxY+0up4LqylurWA3uJigEAAAAAACwCyEhbOf/IUFWwU8yqro8JjRNxZYWSyUHJculozvLeHwSq7UCAAAAABA1CAldyPB6debqVcpdulTZPXq49rpewV9+1BcX9jh0Y0ZrKc6yt6AK8ki6RJI+tbmQypDeUbrhbYJCAAAAAACiBCGhCxmGoRifT1Z8vGJ8PsW4NCSU5e5QMKLtXCWZhVJ8kt2VAAAAAACA04CQEPY5bJRacOgmyeu1sZiKMwOmli1brm7dusoT59Lg1iyUZrRmMRkAAAAAAKIMISEcITTt2OXOlPTVuAfsLqOCWEwGAAAAAIBoE2N3AYhehtcrb7t2dpeBY/D/kCDLX2R3GQAAAAAA4DRhJCFsYxiGGsz/hyy/3+5SKoVpmpG1mAwAAAAAAIgahISwlWEYMnw+u8uoFDGm6f7FZEoK7a4AAAAAAADYgOnGAAAAAAAAQJRjJCGAYwr6/VK8u0cWBk1TRkmJgoWFCrp1dOdhDK9XhsFyMgAAAACAykdICOCYIuXahGdL+mrMWLvLqBTedu3UYP4/CAoBAAAAAJWO6cYAQgxvory1iu0uA8fhX78+Yhb6AQAAAAA4CyMJAYQYhqEGXX+UVWpId/w/Kd7di8pEworT0qGp3190+r3dZQAAAAAAIhghIYAwhiEZcZbk87o+JIyIFacBAAAAADgNCAkBwEWCLp9uHCmLyQRNvxJKLBW79xQAAAAAIAwhIQC4SCRMO46UxWT+Lumz+pJ1nWV3KQAAAABQYSxcAgAOZ3i98rZrZ3cZOIZm30qWv8juMgAAAACgwhhJCAAOZxiGGsz/R0SsbBwpi8kcLPhJ32Z1t7sMAAAAAKg0hIQA4AKGYcjwuXshGSlyFpMxTPcHtgAAAABwOKYbAwAAAAAAAFGOkYQAAFSA5fcr6Cm0u4wKiZRVp6VD1/A0DMPuMgAAAADXISQEAKACIuXahJGy6rS3XTs1mP8PgkIAAACgnJhuDABAORneRH1W3+4qcCz+9esjYpEfAAAA4HRjJCEAAOVkGIbGXh+rBFPKv+o9+Txeu0uqkEhYdTro9+uLTr+3uwwAAADAtQgJAQA4GYah4ngpxudVjMfdK09HyqrTAAAAAE4eISGAYytx90IMkiTTVGxpsVRyULIiIPjw+CSuswYAAAAAOAUICQEc26ON7a6gwjySLpGkT20upLKkd5RueJugEAAAAABQ6Vi4BMD/eHyHgig4085VkhkBIzwBAAAAAI7DSEIA/2MYh0aqRUgQZZqmcnOXKjvbvYsxSDo09TsCRnYCAAAAAJyr3CHh+++/r0ceeUTr1q3Trl279Oqrr6p3796h/ZZl6b777tMzzzyjffv2qVOnTpo1a5bOPvvs0DE//fSTbrnlFr3++uuKiYlRnz59NGPGDCUnJ4eO+fTTTzV06FCtXbtWtWvX1i233KJRo0ZV7GwB/DbDkOKT7K6ichimSmMTDp2Pm0NCAOUS9PvtLqHCgqYpo6REwcJCBV3+/cvwemVwmQQAAADHK3dIePDgQbVp00Y33HCDrrjiiqP2T548WY899pjmzZunRo0aacyYMcrOztaWLVuUmJgoSerbt6927dqlvLw8maapP//5zxo0aJAWLFggSSooKFCPHj3UrVs3PfXUU9q0aZNuuOEGVatWTYMGDargKQMAgEj2Raff211CpThb0ldjxtpdRoV527VTg/n/ICgEAABwuHKHhBdddJEuuuiiY+6zLEvTp0/Xvffeq8suu0yS9Pzzz6tOnTp67bXXdM0112jr1q16++23tXbtWnXo0EGS9Pjjj+viiy/Wo48+qnr16mn+/PkqKSnRc889p/j4eLVs2VIbN27U1KlTCQkBAMBRDK9X3nbt5F+/3u5ScAT/+vWy/H4ZPp/dpQAAgFPFLJQsy+4qTp5pKra02N3nUAkq9ZqEX3/9tXbv3q1u3bqFtlWtWlXnn3++Vq5cqWuuuUYrV65UtWrVQgGhJHXr1k0xMTFavXq1Lr/8cq1cuVKdO3dWfHx86Jjs7Gw9/PDD+vnnn1W9evWjnru4uFjFxcWh2wUFBZIOXZPMNM3KPE1HKDunSDw3t6InzhMxPTFNeUIfmpLh3vOJlJ4EAoGwj025+3wipS/15s6RFQFTjSXJDAT0zjvvqEuXLvLEufMS0kG/X9uzLpR06GsrxuVfX5HyOokk9MSZ6Ivz0BPniZSeBA6v/5HGrg7YPJIukVTYpYtkVLW7nEp3ol9rlfpT5+7duyVJderUCdtep06d0L7du3crNTU1vIi4ONWoUSPsmEaNGh31GGX7jhUSTpo0SePHjz9q+9KlS+WL4L9c5+Xl2V0CjkBPnMftPYktLdYl//04N3fpoessupzbe1JilYQ+zs3NVbwR/ytHu4fb+xJx4uO1/MMP7a7ipBklJSq7InXu0qWy4nmd4NSgJ85EX5yHnjiP23tSGthvdwmV7p133omI37eOVFh4YouTuvNP08dw1113aeTIkaHbBQUFSk9PV48ePZSSkmJjZaeGaZrKy8tT9+7d3b1qawShJ84TMT0pOSh9eujD7Owerl5YJlJ64g/4NWHhBEmHRrp747w2V1QxkdKXSBIJPQkWFoauqZjdo4diXP5H20joSaShJ85EX5yHnjhPpPTEX/iD7nvtYUlSYOh6md4aNld08kzzv7M4snvJEyF/2Dxc2Wzb31KpIWFaWpokac+ePapbt25o+549e9S2bdvQMXv37g27XyAQ0E8//RS6f1pamvbs2RN2TNntsmOOlJCQoISEo9Nej8fj6hfdb4n083MjeuI8ru+J9b/aPR5PRKzU7PaeHD69OC4uztXncji39yUSubknh6/KHBsIuH66cdmK07GmqVi7i6kEkbTqtJtfJ5GMvjgPPXEet/fEPKz2OF+KPL5q9hVTUaap0tgEeeLjXd2T4znRc6rUkLBRo0ZKS0vT8uXLQ6FgQUGBVq9erSFDhkiSMjMztW/fPq1bt07t27eXdGg4ZzAY1Pnnnx865p577pFpmqETycvLU9OmTY851RgAAADOxYrTzsOq0wAA4Egx5b3DgQMHtHHjRm3cuFHSocVKNm7cqB07dsgwDA0fPlz333+/Fi9erE2bNiknJ0f16tVT7969JUnNmzdXz549ddNNN2nNmjVasWKFhg0bpmuuuUb16tWTJF133XWKj4/XwIEDtXnzZr300kuaMWNG2HRiAAAAOFfZitNwprJVpwEAAMqUeyThxx9/rAsvvDB0uyy469+/v+bOnatRo0bp4MGDGjRokPbt26ff//73evvtt5WYmBi6z/z58zVs2DB17dpVMTEx6tOnjx577LHQ/qpVq2rp0qUaOnSo2rdvr1q1amns2LEaNGhQRc41YliWpcKSgIpLpcKSgDyWu/8C7PXE8ldsAAAijGEYajD/HxETRJmmqdylS5Xdo4erpyEF/f6IGdkJAAAqV7lDwqysLFm/sqy1YRiaMGGCJkyYcNxjatSooQULFvzq87Ru3VoffPBBecuLCn6zVG0mviMpTqPWvGN3ORXWoUF1LRqcSVAIAECEMQxDhssXLCkTY5qy4uMV4/MpxsUhIQAAwPGUe7oxUNk+/uZn+c1Su8sAAAAAAACIWpW6cAlOD68nVp+M6aLc3KXKznbvlJfCklJ1uH+Z3WUAAAAAAABEPUJCFzIMQ774OCXESr74OHk8tBEAAADlE3T59SKDpimjpETBwkIFXfpH88MZXi+X3wEA2Ip0CQAAAIhCkbCAydmSvhoz1u4yKoW3XTs1mP8PgkIAgG24JiEAAAAQJQyvV9527ewuA8fgX78+YlYDBwC4EyMJAcBNSgrtrqBiTFOxpcVSyUHJcvHUsAC/xAFwJ8Mw1GD+PyIijDJNU7lLlyq7h3uv0S0dmvYdCaM6AQDuR0gIAG7yaGO7K6gQj6RLJOlTmwupKMOQGqYf+tiy7K0FAMrJMAwZPp/dZVRYjGnKio9XjM+nGBeHhAAAOAUhIRyhsKTU7hIqzDQDKi6VCksC8ljuvpaM1xPL9XCcxOOT0jtKO1fZXQmOJeCX4pPsrgIAAAAAKoSQEI7Q4f5ldpdQSeI0as07dhdRYR0aVNeiwZkEhU5hGNINb0umy6ca679Tw3KXKjvb3VPDVPij9K9edlcBAIgwbl9xWoqsVadZcRpAtCEkhG28nlh1aFBdH3/zs92l4Agff/Oz/GapfPF8i3AMw4iM0WqGqdLYhEPn4uZfHLgmIQDgFIiUaxNGyqrTrDgNINqQAMA2hmFo0eBM+U33TzWWImOEVGFJaQSN6gQAAHC+shWn/evX210KjlC24nQkXMMTAE4EISFsZRhGxIxWMw1LCbGSLz5OHk9knBMAAABOrUhacVqKjFWnWXEaQLQiyQAAAAAAG0XKitMSq04DgJsREgIAAAAAcAwsJuMsLCYDnFqEhAAAAAAAHEOkTDtmMRkAJyLG7gIAAAAAAHCKssVk4Dxli8kAODUYSQgAAAAAwH+xmIzzsJgMcHoQEgIAAAAAcBgWkwEQjZhuDAAAAAAAAEQ5QkIAAAAAAAAgyjHdGAAAAAAAuEIwAq4VGTRNGSUlChYWKujiKeBBv18JJZaK3XsKOAIhIQAAAAAAcIVIWcDkbElfjRlrdxkV9ndJn9WXrCstu0tBJWC6MQAAAAAAcCzD65W3XTu7y8BxNPtWsoqK7C4DlYCRhAAAAAAAwLEMw1CD+f+QFQFTjSXJNE3lLl2q7B495HHxdOODP/1H33b7o91loBIREgIAAAAAAEczDEOGz2d3GZUixjRlxccrxudTjItDQsOfGPrY8hcpWFhoYzUVU3adSMuK7mnThIQAjqmwpNTuEirMNAMqLpUKSwLyWIbd5VSY1xMrw3D/eQAAAACILJEwovBsSVaPHlJ8vN2l2IaQEMAxdbh/md0lVJI4jVrzjt1FVIoODapr0eBMgkIAAAAAtjMSE/VZ/UPXJERkICQEEOL1xKpDg+r6+Juf7S4Fx/DxNz/Lb5bKF8+3bgAAAAD2MgxDY6+PVYIpvX3J60r01rS7pJNmBgJatmy5zkxM/O2DIxi/aQIIMQxDiwZnym+6f6qx9N8LAucuVXa2uy8IXFhSGkEjOwEAAABEAsuyJMNQcbz0h8dWyW+l2F1SBfnU49KgEhLsrsM+hIQAwhiGETEj1UzDUkKs5IuPk8cTGecEByoplOIO2l1FxZimYkuLpZKDkuXeQF2S5PFJTMkHAAA45YoiZHAJ/offmgEAqIgZrSWXr4LmkXSJJH1qcyGVIb2jdMPbBIUAAACn0dIRnVWzWh27yzhpZbPQvJ5Yu0uxFSEhAADlFee1uwIcz85VklkoxSfZXQkAAEDU8MXHunpGWtkstGhfJNK9HQQAwC6H//Bw5/9zfWgYEdfvLCmUHm1sdxUAAACAaxESAgBQER7foX9uZpgqjU04NPrOrSEhAAAAgAqJsbsAAAAAAAAAAPZiJCEAABXgD/jtLqHCAoGASqwS+QN+mTLtLufkBPySYchrWYruK8kAAAAAJ4eQEACACshamGV3CZVmwsIJdpdQMQ3TlVFUpHkEhQAAAEC5Md0YAIBy8sZ5lZGaYXcZOIYNiYnylxbZXQYAAADgOowkBACgnAzD0Lye8yJiqrF0aLpxbm6usrOzFRfnzh8N/P4flfXqxXaXAQAAALiWO38TAADAZoZhyOf2VY3/y5SpeCNe3jivPG5d3dgstLsCAAAAwNWYbgwAAAAAAABEOUYSAoCLFJaU2l1ChZhmQMWlUmFJQB7L/UtLeD2xMgz3nwcAAAAAEBICgIt0uH+Z3SVUgjiNWvOO3UVUig4NqmvR4EyCQgAAAACux3RjAHA4rydWHRpUt7sMHMPH3/wsv+nu0Z0AAAAAIDGSEAAczzAMLRqcGRFhlGmays1dquzsHu5dIEOHpn1HxqhOAAAAADiEkBAAXMAwDPni3f8t2zQsJcRKvvg4eTzuPx8AAAAAiBRMNwYAAAAAAACiHCEhAAAAAAAAEOUICQEAAAAAAIAoR0gIAAAAAAAARDlCQgAAAAAAACDKERICAAAAAAAAUY6QEAAAAAAAAIhyhIQAAAAAAABAlCMkBAAAAAAAAKIcISEAAAAAAAAQ5QgJAQAAAAAAgCgXZ3cBAAAAABDNLMuSP+C3u4xKEQgEVGKVyB/wy5RpdzkV4o3zyjAMu8sAgNOGkBAAgAooLCm1u4QKM82AikulwpKAPJY7fxnylwTsLgEAToplWcp5K0cbv99odymVasLCCXaXUGEZqRma13MeQSGAqEFICABABXS4f5ndJVSSOI1a847dRZw0r1GguGaHPrZKDkpxXnsLqijTVGxpsVRyULI8dldTMR6fxC/YwHH5A/6ICwgjxYa9G/ST/4C8Ln9PiYQ/BpbxemIJbYFTiJAQAIBy8npi1aFBdX38zc92l4JjMGa0kSzL7jIqxCPpEkn61OZCKsiS5E8/T+r3muuDwkiaQikxjdKp8q/Kd30gFQgElJubq+zsbMXFufPXzUKzUBcuulCS1OGBN2UF422uqHKMWvu23SVUWLO0KvrHjee7/S1Fpmlqf6BEPxbul8fj3j8G/uQ/aHcJqGSO/q49c+ZMPfLII9q9e7fatGmjxx9/XOedd57dZQEAopxhGFo0OFN+0/1TjaVDP6jm5i5VdnYP1/6g+uPB/bp48YN2l4HDWJJy6tbRxrjd0gsd7S6n0kTCFEpJal2rrZ7u9pyrg8JIGR3lD/zvvcQb55XP47OxmoozZSreiJc3zuva95TD39+Tm9xvYyU40n8kXfiy3VVUnodfi4z3FEQOx4aEL730kkaOHKmnnnpK559/vqZPn67s7Gxt27ZNqampdpcHAIhyhmHIF+/Yt9FyMQ1LCbGSLz5OHo87z8kf+F/d/ts+k89XxcZqKi4Sglt/4Y/a+K9edpeB4/j0h41qOe4NyXL7CCl3XypBkmSUqMrhl0tw+UjoSLhcQmJpqazCdBm+nXaXArhCRlGRqicm2V0GKoFjfxOYOnWqbrrpJv35z3+WJD311FNasmSJnnvuOf31r3+1uToAAOBUPwUsKRC0u4wKMQNB7bMM/RgIymO481z8h/Ug//I35fXWtLGaiouEKZSS9JP/gC56taskyYgpkeXOL6+IYsQU/+/jR892fUgYCZdLSJK0SdIK62w1H/WOvC7/o2CkfP+yLEtFLn9/L2OappYtW65u3bq69o+BkqSSg/LOaCavZcmIibG7GlQCR36HKCkp0bp163TXXXeFtsXExKhbt25auXKljZUBAACnu2JJD7tLqDSRMg3JKjKlGHdfx88yTcUELFlFJZLHvSGOVfS/PjCNEjg+Q9LvjS9UWHJQPk+K3eVUiBkMyhu05A0G5XF5CJ0UFxlBlGnFqJphqWZcjDxuPqdgrOv/sIFwjgwJf/jhB5WWlqpOnTph2+vUqaPPPvvsmPcpLi5WcfH//gpXUFAg6VBCb5ru/qH0WMrOKRLPza3oifPQE+ehJ84UCX1Jjo1XYulZKor90u5ScISMoiLVfDJD7r1i3P/0kaR/211FxXglZdRN1YbERLtLwREyior0e/9M+UVv7OZTsdYlDjn08YxmNldTcZEwujPSRGJPTNOUDPf+LBkJPw//mhM9L0eGhCdj0qRJGj9+/FHbly5dKp/P3Rf//TV5eXl2l4Aj0BPnoSfOQ0+cye19ubv6AB0MRuYPdq5kWTp782SdZ+2IiIAwUhiS5u3aK7+LFyyJVP8ubayrVFXiFWM7vxK0NthE58Z8bncpgCv8mHS2PszLl+uXnZb7fx4+nsLCwhM6zrAs540NLSkpkc/n08svv6zevXuHtvfv31/79u3Tv/71r6Puc6yRhOnp6frhhx+UkuLu4eHHYpqm8vLy1L17d3dfwyCC0BPnoSfOQ0+cib44T6T0xAoG5S/cb3cZlcIMlOq9997TBRdcIE9crN3lVJjXE+vqlY2lQ6sbv/POO+rSpYtrF10qY1mW/EqIiF+wI6YvliWvil3/OpEiqCcRJOJ64vG5/vtXpPzsdTwFBQWqVauWfvnll1/NyBz51RgfH6/27dtr+fLloZAwGAxq+fLlGjZs2DHvk5CQoISEhKO2ezyeiGxwmUg/PzeiJ85DT5yHnjgTfXGeSOhJ/DF+PnMj0zQV50lQ1Wo1XN+TiGGaKo1NkCepakT0xO3rTJcxTVMJsVLVpMQI6EuEzEiLsNdKRKAnjhUJP3sdy4mekyNDQkkaOXKk+vfvrw4dOui8887T9OnTdfDgwdBqxwAAAAAAAAAqh2NDwquvvlrff/+9xo4dq927d6tt27Z6++23j1rMBAAAAAAAAEDFODYklKRhw4Ydd3oxAAAAAAAAgMoRY3cBAAAAAAAAAOxFSAgAAAAAAABEOUJCAAAAAAAAIMoREgIAAAAAAABRjpAQAAAAAAAAiHKEhAAAAAAAAECUIyQEAAAAAAAAohwhIQAAAAAAABDl4uwu4FSxLEuSVFBQYHMlp4ZpmiosLFRBQYE8Ho/d5UD0xInoifPQE2eiL85DT5yHnjgPPXEm+uI89MR56InzRHpPyrKxsqzseCI2JNy/f78kKT093eZKAAAAAAAAAHvt379fVatWPe5+w/qtGNGlgsGgvvvuO1WpUkWGYdhdTqUrKChQenq6du7cqZSUFLvLgeiJE9ET56EnzkRfnIeeOA89cR564kz0xXnoifPQE+eJ9J5YlqX9+/erXr16iok5/pUHI3YkYUxMjOrXr293GadcSkpKRH4Buxk9cR564jz0xJnoi/PQE+ehJ85DT5yJvjgPPXEeeuI8kdyTXxtBWIaFSwAAAAAAAIAoR0gIAAAAAAAARDlCQpdKSEjQfffdp4SEBLtLwX/RE+ehJ85DT5yJvjgPPXEeeuI89MSZ6Ivz0BPnoSfOQ08OidiFSwAAAAAAAACcGEYSAgAAAAAAAFGOkBAAAAAAAACIcoSEAAAAAAAAQJQjJAROgwEDBqh37952lwEAAE4h3u8BAICbERI6WH5+vgzD0L59++wuJeqV9eLIf/fee6/dpUWtsp5Ur15dRUVFYfvWrl0b6hHs06xZMyUkJGj37t12lxKVeI04H+/zzkZ/nIP3E+d45pln1KZNGyUnJ6tatWrKyMjQpEmT7C4LkkpLSzVt2jS1atVKiYmJql69ui666CKtWLGiXI/TsGFDTZ8+/dQUGQXK3jtatmyp0tLSsH3VqlXT3Llz7Sksyh3++3xMTIyqVq2qjIwMjRo1Srt27bK7PEchJATKYdu2bdq1a1fo31//+le7S4p6VapU0auvvhq27dlnn9UZZ5xR4ccuKSmp8GNEqw8//FB+v19/+tOfNG/evEp5TNM0K+Vxos2pfI0AwKl2Kt5PcHKee+45DR8+XLfeeqs2btyoFStWaNSoUTpw4IDdpUU9y7J0zTXXaMKECbrtttu0detW5efnKz09XVlZWXrttdfsLjHqfPXVV3r++eftLgNH2LZtm7777jutXbtWo0eP1rJly3TOOedo06ZNdpfmGISELvLjjz/q2muv1e9+9zv5fD61atVKL7zwQtgxWVlZuvXWWzVq1CjVqFFDaWlpGjdunD0FR6DU1FSlpaWF/iUnJ0uSdu7cqauuukrVqlVTjRo1dNlll2n79u1H3X/8+PGqXbu2UlJSNHjwYEKoStC/f38999xzodt+v18vvvii+vfvH3bcib5+hg0bpuHDh6tWrVrKzs4+LecQiZ599lldd9116tevX1h/yjRs2FATJ07Utddeq6SkJP3ud7/TzJkzw44xDEOzZs3SH//4RyUlJemBBx44XeVHlMp6jTz//POqWbOmiouLw+7Xu3dv9evX79SeRJQYN26c2rZtG7Zt+vTpatiwYeh22XTWRx99VHXr1lXNmjU1dOhQQvTT4ET6g8r3W+8nhmEcFYAcOVrno48+Utu2bZWYmKgOHTrotddek2EY2rhx46ktPsIsXrxYV111lQYOHKjGjRurZcuWuvbaa496f549e7aaN2+uxMRENWvWTE8++WRo3/bt22UYhl588UX93//9nxITE3XOOefovffeO92nE1EWLlyol19+Wc8//7xuvPFGNWrUSG3atNHTTz+tP/7xj7rxxht18ODB0PGvv/66zj33XCUmJqpWrVq6/PLLJR36Wfibb77RiBEjmHFQQbfccovuu+++o35uOtyOHTt02WWXKTk5WSkpKbrqqqu0Z88eSdLnn38uwzD02Wefhd1n2rRpOuuss05p7ZGs7Pf5Jk2a6JprrtGKFStUu3ZtDRkyJOy4X/s+Jknffvutrr32WtWoUUNJSUnq0KGDVq9efTpP5ZQhJHSRoqIitW/fXkuWLNG///1vDRo0SP369dOaNWvCjps3b56SkpK0evVqTZ48WRMmTFBeXp5NVUc+0zSVnZ2tKlWq6IMPPtCKFSuUnJysnj17hoWAy5cvD/1V74UXXtArr7yi8ePH21h5ZOjXr58++OAD7dixQ5L0z3/+Uw0bNlS7du3CjivP6yc+Pl4rVqzQU089ddrOI5Ls379fixYt0vXXX6/u3bvrl19+0QcffHDUcY888ojatGmjDRs26K9//atuu+22o75XjRs3Tpdffrk2bdqkG2644XSdQkSprNfIlVdeqdLSUi1evDh0n71792rJkiX05jR799139eWXX+rdd9/VvHnzNHfuXKYvISKd6PvJrykoKNCll16qVq1aaf369Zo4caJGjx59iiqObGlpaVq1apW++eab4x4zf/58jR07Vg888IC2bt2qBx98UGPGjDlqFOidd96p22+/XRs2bFBmZqYuvfRS/fjjj6f6FCLWggUL1KRJE1166aVH7bv99tv1448/hn7GWrJkiS6//HJdfPHF2rBhg5YvX67zzjtPkvTKK6+ofv36mjBhQmjmFE7O8OHDFQgE9Pjjjx9zfzAY1GWXXaaffvpJ7733nvLy8vTVV1/p6quvliQ1adJEHTp00Pz588PuN3/+fF133XWnvP5o4fV6NXjwYK1YsUJ79+6V9Nvfxw4cOKALLrhA//nPf7R48WJ98sknGjVqlILBoJ2nUnksONa7775rSbJ+/vnn4x7Tq1cv6/bbbw/dvuCCC6zf//73Ycece+651ujRo09VmVGhrBdJSUlh/3744Qfr73//u9W0aVMrGAyGji8uLra8Xq+Vm5trWZZl9e/f36pRo4Z18ODB0DGzZs2ykpOTrdLS0tN+PpHg8NdH7969rfHjx1uWZVkXXnihNWPGDOvVV1+1futb3LFePxkZGae07mjw9NNPW23btg3dvu2226z+/fuHHdOgQQOrZ8+eYduuvvpq66KLLgrdlmQNHz78lNYayU7Fa2TIkCFhPZoyZYp15plnhn3/w4k78n3+vvvus9q0aRN2zLRp06wGDRqEbvfv399q0KCBFQgEQtuuvPJK6+qrrz4NFUeXk+3PZZdddtpqjHQn8n4iyXr11VfDtlWtWtWaM2eOZVmHft6qWbOm5ff7Q/ufeeYZS5K1YcOGU1R5ZPruu++sjh07WpKsJk2aWP3797deeumlsJ9lzzrrLGvBggVh95s4caKVmZlpWZZlff3115Yk66GHHgrtN03Tql+/vvXwww+fnhOJQM2aNTvu956ffvrJkhT6/GZmZlp9+/Y97mM1aNDAmjZt2imoMjoc/t7x1FNPWTVq1LD27dtnWVb496alS5dasbGx1o4dO0L33bx5syXJWrNmjWVZh95jzjrrrND+bdu2WZKsrVu3nr4TihC/lq289dZbliRr9erVlmX99vexv/3tb1aVKlWsH3/88ZTXbQdGErpIaWmpJk6cqFatWqlGjRpKTk5Wbm5uaHRImdatW4fdrlu3bigVR8V88MEH2rhxY+hf9erV9cknn+j//b//pypVqig5OVnJycmqUaOGioqK9OWXX4bu26ZNG/l8vtDtzMxMHThwQDt37rTjVCLKDTfcoLlz5+qrr77SypUr1bdv36OOOdHXT/v27U9X2RHrueee0/XXXx+6ff3112vRokXav39/2HGZmZlH3d66dWvYtg4dOpy6QqNIZb1GbrrpJi1dulT/+c9/JElz587VgAEDmI50mrVs2VKxsbGh27zPI1Kd6PvJr9m2bZtat26txMTE0LayUVMon7p162rlypXatGmTbrvtNgUCAfXv3189e/ZUMBjUwYMH9eWXX2rgwIGhn4mTk5N1//33h/1MLIX/DBAXF6cOHToc9TMAyseyrBM6buPGjeratesprgaSNHDgQNWsWVMPP/zwUfu2bt2q9PR0paenh7a1aNFC1apVC70WrrnmGm3fvl2rVq2SdGiEW7t27dSsWbPTcwJRouy1YxjGCX0f27hxozIyMlSjRg07yz5l4uwuACfukUce0YwZMzR9+nS1atVKSUlJGj58+FHXtfN4PGG3DcOInKGvNmvUqJGqVasWtu3AgQNq3779UUPBJal27dqnqbLodtFFF2nQoEEaOHCgLr30UtWsWfOoY0709ZOUlHS6yo5IW7Zs0apVq7RmzZqw6VylpaV68cUXddNNN5Xr8ehH5ais10hGRobatGmj559/Xj169NDmzZu1ZMmS03kqES0mJuaoX/KOda1B3uftcaL9QeU40fcTwzDoy2l2zjnn6JxzztFf/vIXDR48WH/4wx/03nvvqUWLFpIOrYB8/vnnh93n8D9soPI1adLkuCFr2fYmTZpIOjS9EqdHXFycHnjgAQ0YMEDDhg0r9/3T0tLUpUsXLViwQB07dtSCBQuOunYeKq7sNdKwYcPQQky/9n0s0l9DjCR0kRUrVuiyyy7T9ddfrzZt2ujMM8/U559/bndZUa9du3b64osvlJqaqsaNG4f9q1q1aui4Tz75RH6/P3R71apVSk5ODvvrEU5OXFyccnJylJ+ff9xro/H6OT2effZZde7cWZ988knYqNuRI0fq2WefDTu27K+ih99u3rz56Sw3alTma+TGG2/U3LlzNWfOHHXr1o3vYZWodu3a2r17d1jgwcIKzkF/Tq8TfT+pXbt22HXTvvjiCxUWFoZuN23aVJs2bQpbPGDt2rWn5ySiQFkwePDgQdWpU0f16tXTV199ddTPxI0aNQq73+E/AwQCAa1bt46fASrgmmuu0RdffKHXX3/9qH1TpkxRzZo11b17d0mHZp0tX778uI8VHx+v0tLSU1ZrtLnyyivVsmXLo65F37x5c+3cuTNsVtmWLVu0b9++0OtKkvr27auXXnpJK1eu1FdffaVrrrnmtNUeDfx+v55++ml17txZtWvXPqHvY61bt9bGjRv1008/2Vz9qUFI6CJnn3228vLy9NFHH2nr1q26+eabQ6sfwT59+/ZVrVq1dNlll+mDDz7Q119/rfz8fN1666369ttvQ8eVlJRo4MCB2rJli958803dd999GjZsmGJieBlWhokTJ+r7778/7orEvH5OPdM09fe//13XXnttaJRB2b8bb7xRq1ev1ubNm0PHr1ixQpMnT9bnn3+umTNnatGiRbrttttsPIPIVlmvkeuuu07ffvutnnnmGRYsqWRZWVn6/vvvNXnyZH355ZeaOXOm3nrrLbvLwn/Rn9OnPO8nXbp00RNPPKENGzbo448/1uDBg8NG21533XUKBoMaNGiQtm7dqtzcXD366KOSxKUSymnIkCGaOHGiVqxYoW+++UarVq1STk6OateuHZo+PH78eE2aNEmPPfaYPv/8c23atElz5szR1KlTwx5r5syZevXVV/XZZ59p6NCh+vnnn3lPqYBrrrlGl19+ufr3769nn31W27dv16effqqbb75Zixcv1uzZs0OzM+677z698MILuu+++7R161Zt2rQpbDpsw4YN9f777+s///mPfvjhB7tOKaI89NBDeu6558JWmO7WrZtatWqlvn37av369VqzZo1ycnJ0wQUXhF1u54orrtD+/fs1ZMgQXXjhhapXr54dpxAx9u7dq927d+uLL77Qiy++qE6dOumHH37QrFmzQsf81vexa6+9Vmlpaerdu7dWrFihr776Sv/85z+1cuVKu06rUpFOOFjZ1KG4uEOzwu+99161a9dO2dnZysrKCn1hwl4+n0/vv/++zjjjDF1xxRVq3ry5Bg4cqKKiIqWkpISO69q1q84++2x17txZV199tf74xz9q3Lhx9hUeYeLj41WrVq3j/sDP6+fUW7x4sX788UddfvnlR+1r3ry5mjdvHjb64/bbb9fHH3+sjIwM3X///Zo6depxAyxUXGW9RqpWrao+ffooOTmZ11AFHfk+37x5cz355JOaOXOm2rRpozVr1uiOO+6ws8SoRn/sU573kylTpig9PV1/+MMfdN111+mOO+4IuwZ0SkqKXn/9dW3cuFFt27bVPffco7Fjx0pS2HUK8du6deumVatW6corr1STJk3Up08fJSYmavny5aHLWNx4442aPXu25syZo1atWumCCy7Q3LlzjxpJ+NBDD+mhhx5SmzZt9OGHH2rx4sWqVauWHacVEQzD0MKFC3X33Xdr2rRpatq0qf7whz/om2++UX5+ftj7dVZWlhYtWqTFixerbdu26tKli9asWRPaP2HCBG3fvl1nnXUWl06qJF26dFGXLl0UCARC2wzD0L/+9S9Vr15dnTt3Vrdu3XTmmWfqpZdeCrtvlSpVdOmll+qTTz455jWlUT5NmzZVvXr11L59ez300EPq1q2b/v3vf4eN3vyt72Px8fFaunSpUlNTdfHFF6tVq1Z66KGHIuayCoZ1olc4xWlXdr2V8lycGQDcoGHDhho+fLiGDx9udyk4CV27dlXLli312GOP2V2Kq/E+72z0J3LNnz9ff/7zn/XLL79E/LWlnGb79u1q1KiRNmzYoLZt29pdDgDgCCxc4kDFxcX68ssv9cQTT7DyFADAMX7++Wfl5+crPz9fTz75pN3luBbv885GfyLP888/rzPPPFO/+93v9Mknn2j06NG66qqrCAgBADgC040d6K233tL555+vpKQkRmkAABwjIyNDAwYM0MMPP6ymTZvaXY5r8T7vbPQn8uzevVvXX3+9mjdvrhEjRujKK6/U008/bXdZAAA4DtONAQAAAAAAgCjHSEIAAAAAAAAgyhESAgAAAAAAAFGOkBAAAAAAAACIcoSEAAAAAAAAQJQjJAQAAAAAAACiHCEhAAAAAAAAEOUICQEAAAAAAIAoR0gIAAAAAAAARDlCQgAAAAAAACDK/X8T+XbpHk9XJgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def Table1d(m, J, retriever):\n", + " return pd.DataFrame([int(0 + retriever(m, j)) for j in J], index=J).T\n", + "\n", + "\n", + "def Table2d(m, I, J, retriever):\n", + " return pd.DataFrame.from_records(\n", + " [[int(0 + retriever(m, i, j)) for j in J] for i in I], index=I, columns=J\n", + " )\n", + "\n", + "\n", + "def Table3d(m, I, J, names, K, retriever):\n", + " index = pd.MultiIndex.from_product([I, J], names=names)\n", + " return pd.DataFrame.from_records(\n", + " [[int(0 + retriever(m, i, j, k)) for k in K] for i in I for j in J],\n", + " index=index,\n", + " columns=K,\n", + " )\n", + "\n", + "\n", + "m1 = BIMproduction_v1(\n", + " demand=demand,\n", + " existing={\"silicon\": 1000, \"germanium\": 1500, \"plastic\": 1750, \"copper\": 4800},\n", + " desired={\"silicon\": 500, \"germanium\": 500, \"plastic\": 1000, \"copper\": 2000},\n", + " stock_limit=10000,\n", + " supplying_copper=[\"B\", \"C\"],\n", + " supplying_batches=[\"A\", \"C\"],\n", + " price_copper_sheet={\"B\": 300, \"C\": 400},\n", + " price_batch={\"A\": 500, \"C\": 600},\n", + " discounted_price=700,\n", + " batch_size=100,\n", + " copper_sheet_mass=100,\n", + " copper_bucket_size=10,\n", + " unitary_products=[\"silicon\", \"germanium\", \"plastic\"],\n", + " unitary_holding_costs={\"copper\": 10, \"silicon\": 2, \"germanium\": 2, \"plastic\": 2},\n", + ")\n", + "\n", + "print(\n", + " f\"Optimal cost is {pyo.value(m1.total_cost):.0f} cents, that is ${pyo.value(m1.total_cost) / 100:.2f}\\n\"\n", + ")\n", + "\n", + "print(\"Monthly purchased material\")\n", + "display(Table2d(m1, demand.index, demand.columns, lambda m, i, j: pyo.value(m.u[i, j])))\n", + "\n", + "print(\"Acquisition plan for copper sheet and batch pairs from supplier C\")\n", + "display(Table1d(m1, J=demand.columns, retriever=lambda m, j: pyo.value(m.p[j])))\n", + "\n", + "print(\"Acquisition plan for copper sheets materials\")\n", + "display(Table2d(m1, [\"B\", \"C\"], demand.columns, lambda m, i, j: pyo.value(m.y[j, i])))\n", + "\n", + "print(\"Acquisition plan for unitary materials (batches)\")\n", + "display(Table2d(m1, [\"A\", \"C\"], demand.columns, lambda m, i, j: pyo.value(m.b[j, i])))\n", + "\n", + "print(\"Acquisition plan for unitary materials (quantities)\")\n", + "display(\n", + " Table3d(\n", + " m1,\n", + " I=[\"A\", \"C\"],\n", + " J=[\"silicon\", \"germanium\", \"plastic\"],\n", + " names=[\"supplier\", \"materials\"],\n", + " K=demand.columns,\n", + " retriever=lambda m, i, j, k: 0 + pyo.value(m.x[j, k, i]),\n", + " )\n", + ")\n", + "\n", + "print(\n", + " \"The stock levels at the end of each month resulting from the optimal acquisition and production plan\"\n", + ")\n", + "stock = Table2d(m1, demand.index, demand.columns, lambda m, i, j: pyo.value(m.s[i, j]))\n", + "display(stock)\n", + "stock.T.plot(drawstyle=\"steps-mid\", grid=True, figsize=(13, 4))\n", + "plt.xticks(np.arange(len(stock.columns)), stock.columns)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Alternative Pyomo implementation using blocks\n", + "\n", + "In the next cell, we implement a second version of the same model, which is equivalent to the previous one, but uses Pyomo sets and block components to iterate over all the time indices." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def BIMproduction_v2(\n", + " demand,\n", + " existing,\n", + " desired,\n", + " stock_limit,\n", + " supplying_copper,\n", + " supplying_batches,\n", + " price_copper_sheet,\n", + " price_batch,\n", + " discounted_price,\n", + " batch_size,\n", + " copper_sheet_mass,\n", + " copper_bucket_size,\n", + " unitary_products,\n", + " unitary_holding_costs,\n", + "):\n", + " m = pyo.ConcreteModel(\n", + " \"BIM product acquisition and inventory with sophisticated prices (using blocks)\"\n", + " )\n", + "\n", + " periods = demand.columns\n", + " products = demand.index\n", + " first = periods[0]\n", + " prev = {j: i for i, j in zip(periods, periods[1:])}\n", + " last = periods[-1]\n", + "\n", + " m.T = pyo.Set(initialize=periods)\n", + " m.P = pyo.Set(initialize=products)\n", + "\n", + " m.PT = m.P * m.T # to avoid internal set bloat\n", + "\n", + " @m.Block(m.T)\n", + " def A(b):\n", + " b.x = pyo.Var(supplying_batches, products, domain=pyo.NonNegativeReals)\n", + " b.b = pyo.Var(supplying_batches, domain=pyo.NonNegativeIntegers)\n", + " b.y = pyo.Var(supplying_copper, domain=pyo.NonNegativeIntegers)\n", + " b.p = pyo.Var(domain=pyo.NonNegativeIntegers)\n", + "\n", + " @b.Constraint(supplying_batches)\n", + " def in_batches(b, s):\n", + " return pyo.quicksum(b.x[s, p] for p in products) <= batch_size * b.b[s]\n", + "\n", + " @b.Constraint()\n", + " def pairs_in_batches(b):\n", + " return b.p <= b.b[\"C\"]\n", + "\n", + " @b.Constraint()\n", + " def pairs_in_sheets(b):\n", + " return b.p <= b.y[\"C\"]\n", + "\n", + " @b.Expression(products)\n", + " def u(b, p):\n", + " if p == \"copper\":\n", + " return copper_sheet_mass * pyo.quicksum(\n", + " b.y[s] for s in supplying_copper\n", + " )\n", + " return pyo.quicksum(b.x[s, p] for s in supplying_batches)\n", + "\n", + " @b.Expression()\n", + " def cost(b):\n", + " discount = price_batch[\"C\"] + price_copper_sheet[\"C\"] - discounted_price\n", + " return (\n", + " pyo.quicksum(price_copper_sheet[s] * b.y[s] for s in supplying_copper)\n", + " + pyo.quicksum(price_batch[s] * b.b[s] for s in supplying_batches)\n", + " - discount * b.p\n", + " )\n", + "\n", + " @m.Block(m.T)\n", + " def I(b):\n", + " b.s = pyo.Var(products, domain=pyo.NonNegativeReals)\n", + " b.r = pyo.Var(domain=pyo.NonNegativeIntegers)\n", + "\n", + " @b.Constraint()\n", + " def copper_in_buckets(b):\n", + " return b.s[\"copper\"] <= copper_bucket_size * b.r\n", + "\n", + " @b.Constraint()\n", + " def capacity(b):\n", + " return b.s[\"copper\"] <= stock_limit\n", + "\n", + " @b.Expression()\n", + " def cost(b):\n", + " return unitary_holding_costs[\"copper\"] * b.r + pyo.quicksum(\n", + " unitary_holding_costs[p] * b.s[p] for p in unitary_products\n", + " )\n", + "\n", + " @m.Param(m.PT)\n", + " def delta(m, t, p):\n", + " return demand.loc[t, p]\n", + "\n", + " @m.Expression()\n", + " def acquisition_cost(m):\n", + " return pyo.quicksum(m.A[t].cost for t in m.T)\n", + "\n", + " @m.Expression()\n", + " def inventory_cost(m):\n", + " return pyo.quicksum(m.I[t].cost for t in m.T)\n", + "\n", + " @m.Objective(sense=pyo.minimize)\n", + " def total_cost(m):\n", + " return m.acquisition_cost + m.inventory_cost\n", + "\n", + " @m.Constraint(m.PT)\n", + " def balance(m, p, t):\n", + " if t == first:\n", + " return existing[p] + m.A[t].u[p] == m.delta[p, t] + m.I[t].s[p]\n", + " else:\n", + " return m.A[t].u[p] + m.I[prev[t]].s[p] == m.delta[p, t] + m.I[t].s[p]\n", + "\n", + " @m.Constraint(m.P)\n", + " def finish(m, p):\n", + " return m.I[last].s[p] >= desired[p]\n", + "\n", + " SOLVER.solve(m)\n", + "\n", + " return m" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can then pass the parameters and data to this Pyomo model and solve it, as illustrated in the following code cell. We report the solution as a set of Pandas dataframes and visualize the monthly stock levels." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running HiGHS 1.5.3 [date: 2023-05-16, git hash: 594fa5a9d]\n", + "Copyright (c) 2023 HiGHS under MIT licence terms\n", + "Optimal cost is 110216 cents, that is $1102.16\n", + "\n", + "The stock levels at the end of each month resulting from the optimal acquisition and production plan\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
JanFebMarAprMayJunJulAugSepOctNovDec
silicon912787527310721503524054500
plastic161514271086804471670005601000
copper4354373025281530388844149054502042
germanium145313911310124511501032946857775693609543
\n", + "
" + ], + "text/plain": [ + " Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov \\\n", + "silicon 912 787 527 310 72 15 0 35 24 0 54 \n", + "plastic 1615 1427 1086 804 471 67 0 0 0 56 0 \n", + "copper 4354 3730 2528 1530 388 8 44 14 90 54 50 \n", + "germanium 1453 1391 1310 1245 1150 1032 946 857 775 693 609 \n", + "\n", + " Dec \n", + "silicon 500 \n", + "plastic 1000 \n", + "copper 2042 \n", + "germanium 543 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQkAAAGGCAYAAADYVwfrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbpElEQVR4nO3deXxU1f3/8fdNMklmEsIeAhIBRRCQJYBKvrQY2YKiBaWuSKCiCAUVUKEuIIuKomwqYhUFbEEFqxZFDQGNC7LJohQQ/VURrCxuGCCT5E7m/v6gmTIsSkjg3jvzevrgYWbunZnPzSez5J1z7jEsy7IEAAAAAAAAIGrF2F0AAAAAAAAAAHsREgIAAAAAAABRjpAQAAAAAAAAiHKEhAAAAAAAAECUIyQEAAAAAAAAohwhIQAAAAAAABDlCAkBAAAAAACAKEdICAAAAAAAAES5OLsLOFWCwaC+++47ValSRYZh2F0OAAAAAAAAcNpZlqX9+/erXr16iok5/njBiA0Jv/vuO6Wnp9tdBgAAAAAAAGC7nTt3qn79+sfdHrEhYZUqVSQd+gakpKTYXE3lM01TS5cuVffu3eXxeOwuB6InTkRPnIeeOBN9cR564jz0xHnoiTPRF+ehJ85DT5wn0ntSUFCg9PT0UFZ2PBEbEpZNMU5JSYnYkNDn8yklJSUif4DdiJ44Dz1xHnriTPTFeeiJ89AT56EnzkRfnIeeOA89cZ5o6clvnY6PhUsAAAAAAACAKEdICAAAAAAAAEQ5QkIAAAAAAAAgykXsOQkBAAAAAACiSWlpqUzTtLsM1zFNU3FxcSoqKlJpaand5ZSbx+NRbGxshe+HkBAAAAAAAMDFLMvS7t27tW/fPrtLcSXLspSWlqadO3f+5uIeTlWtWjWlpaVVqH5CQgAAAAAAABcrCwhTU1Pl8/lcG3TZJRgM6sCBA0pOTlZMjLvOzGdZlgoLC7V3715JUt26dU/6vggJAQAAAAAAXKq0tDQUENasWdPuclwpGAyqpKREiYmJrgsJJcnr9UqS9u7dq9TU1JOeeuy+IwcAAAAAAIAkhc5B6PP5bK4Edirrf0XOSUlICAAAAAAA4HJMMY5uldF/QkIAAAAAAAAgyhESAgAAAAAAwDEGDBig3r17hy5nZWVp+PDhocsNGzbU9OnTT3tdkY6FS1zIsiz5A36VWCXyB/wydfLzzZ3AG+dlWDQAAAAAAJAkzZgxQ5ZlHXf72rVrlZSUdBorig6EhC7kD/jVcWFHSdKEhRNsrqbiMlIzNK/HPIJCAAAAAACgqlWr/ur22rVrn6ZKogvTjWG7DXs3yB/w210GAAAAAAA4jV555RW1bNlSXq9XNWvWVNeuXXXw4MGjphsf6cjpxvv27dMtt9yiOnXqKDExUeedd57efPPN0PZ//OMfatGihRISEtSwYUNNmTIl7P7OOussTZkyRQMHDlSVKlV05pln6plnnqnsw3U8RhK6kDfOqxVXr1Bubq6ys7MVF+fONvoDfmUtzLK7DAAAAAAAIoplWfKbpbY8ttcTe0IzBXft2qXrrrtOkydP1hVXXKH9+/frww8//NVpxscSDAZ1ySWXaP/+/fr73/+us88+W1u2bFFsbKwkad26dbr66qs1btw4XXPNNfr444/15z//WTVr1tSAAQNC9zNz5kxNnDhR9957r1555RUNGTJEF110kZo2bVquetzMnelSlDMMQ944r+KNeHnjvPJ4PHaXBAAAAAAAHMJvlqr52FxbHnvLhGz54n87btq1a5cCgYCuvPJKNWjQQJLUsmXLcj/esmXLtGbNGm3dulVNmjSRdGhkYJmpU6eqS5cuGjNmjCSpSZMm2rJlix599NGwkLBbt24aMmSIYmJiNHr0aE2bNk3vvfdeVIWETDcGAAAAAADAadW6dWt16dJFLVu21FVXXaVnn31WP//8c7nvZ+PGjapfv34oIDzS1q1b1bFjx7DrOnbsqC+//FKlpf8bbdmiRYvQ14ZhKC0tTXv37i13PW7GSEIAAAAAAIAI4vXEasuEbNse+0TExsYqLy9PH3/8sZYuXaonnnhC9957r1avXl2+x/N6T6bMoxw5S9MwDAWDwUq5b7cgJAQAAAAAAIgghmGc0JRfuxmGoY4dO6pjx44aO3asGjRooNdee61c99GqVSt9++23+uKLL445mrBZs2ZasWJF2HUrVqxQkyZNQuctxCHO/4kBAAAAAABARFm9erWWL1+u7t27KzU1VatXr9b333+vZs2a6bPPPjvh+7nooovUqVMn9enTR1OnTlXjxo31+eefyzAM9ejRQ3fccYfOP/98TZw4Uddcc41WrlypJ598Uk899dQpPDp34pyEAAAAAAAAOK1SUlL0wQcf6NJLL1WTJk103333acqUKbrkkkvKfV//+Mc/dP755+u6665T8+bNNWrUqND5Btu2bauFCxfqpZde0nnnnaexY8dqwoQJYYuW4BBGEgIAAAAAAOC0atasmd55551jbps7d27Y5fz8/LDL27dvD7tco0YNPf/888d9rD59+qhPnz7H3f7VV1+poKAg7LqNGzced/9IxUhCAAAAAAAAIMoREgIAAAAAAABRjpAQAAAAAAAAiHKEhAAAAAAAAECUIyQEAAAAAAAAohwhIQAAAAAAABDlCAkBAAAAAACAKEdICAAAAAAAAEQ5QkIAAAAAAAA4TsOGDTV9+vRT+hhZWVkaMWLEKX0Mt4izuwAAAAAAAADgVMrPz9fFF1+sn3/+WdWqVQtd/+qrryo2NlaWZdlXnEMwkhAAAAAAAABRqUaNGqpSpYrdZTgCISEAAAAAAABOu6ysLA0bNkzDhg1T1apVVatWLY0ZM+a4o/qmTp2qli1bKikpSenp6frzn/+sAwcOhLZ/8803uvzyy1W9enUlJSWpRYsWeuutt7R9+3ZdfPHFkqTq1avLMAwNGDAgVMPh042Li4s1evRopaenKyEhQY0bN9Zzzz136r4JDlKhkPDhhx+WYRgaPnx46LqioiINHTpUNWvWVHJysvr06aM9e/aE3W7Hjh3q2bOnfD6fUlNTdddddykQCITtk5+fr7Zt24YaMnfu3IqUCgAAAAAAAIeZN2+e4uLitGbNGs2YMUNTp07V7Nmzj7lvTEyMHn/8cW3evFnz5s3Tu+++q1GjRoW2Dx06VMXFxfrggw+0adMmPfLII0pOTlZ6err+8Y9/SJK2bdumXbt2acaMGcd8jJycHL344ot6/PHHtXXrVv31r39VcnJy5R+4A530OQnXrl2rv/71r2rVqlXY9SNGjNCSJUu0aNEiVa1aVcOGDdOVV16pFStWSJJKS0vVs2dPpaWl6eOPP9auXbuUk5Mjj8ejhx56SJL09ddfq2fPnho8eLDmz5+v5cuX66abblLdunWVnZ1dgcMFAAAAAACIcJYlmYX2PLbHJxnGCe+enp6uadOmyTAMNW3aVJs2bdK0adN08803H7Xv4YPUGjZsqAceeECDBw/WU089JenQoLQ+ffqoZcuWkqSzzjortH+NGjUkSampqWHnJDzcF198oYULFyovL09du3Y96j4i3UmFhAcOHFDfvn317LPP6oEHHghd/8svv+i5557TggUL1LlzZ0nSnDlz1KxZM61atUodOnTQ0qVLtWXLFi1btkx16tRRmzZtNHHiRI0ePVrjxo1TfHy8nn76aTVq1EhTpkyRJDVr1kwfffSRpk2bRkgIAAAAAADwa8xC6aF69jz2Pd9J8UknvHuHDh1kHBYqZmZmasqUKSotLT1q32XLlmnSpEn6/PPPVVBQoEAgoKKiIhUWFsrn8+m2227TkCFDtHTpUnXt2lV9+vQ5anDbr9m4caNiY2N10UUXnfBtIslJhYRDhw5Vz5491bVr17CQcN26dTJNM5S2StK5556rM888UytXrlSHDh20cuVKtWzZUnXq1Antk52drSFDhmjz5s3KyMjQypUrw+6jbJ/DE+MjFRcXq7i4OHS5oKBAkmSapkzTPJnDdLSyY3LzsR0+xTwQCMiUe49FioyeRBp64jz0xJnoi/PQE+ehJ85DT5yJvjgPPXGeyu6JaZqyLEvBYFDBYPDQlcGgbYtQBINBqayOE1BWe9jtD/t/2fbt27frsssu0+DBgzVx4kTVqFFDH330kW6++WYVFRUpMTFRN954o7p166YlS5YoLy9PkyZN0mOPPaZhw4aF3W/wOPUlJib+5j5OFQwGZVmWTNNUbGxs2LYT/Vkrd0j40ksvaf369Vq7du1R23bv3q34+Pijhm3WqVNHu3fvDu1zeEBYtr1s26/tU1BQIL/fL6/Xe9RjT5o0SePHjz/q+qVLl8rn8534AbpMXl6e3SWctBKrJPR1bm6u4o14G6upPG7uSaSiJ85DT5yJvjgPPXEeeuI89MSZ6Ivz0BPnqayexMXFKS0tTQcOHFBJyX9/z7YsaejWSrn/cvMHpKKCE9o1EAho1apVoYFekvTBBx/o7LPP1sGDBxUMBlVUVKSCggJ99NFHCgaDGjt2rGJiDkWg27dvlyTt378/dF3VqlV1/fXX6/rrr9f48eP117/+VTk5OaGgbN++faF9y2oo+76dddZZCgaDevvtt5WVlVXR78RpVVJSIr/frw8++OCodT8KC09s6nm5QsKdO3fq9ttvV15eXihddYq7775bI0eODF0uKChQenq6unfvrpSUFBsrOzVM01ReXp66desmj8djdzknxR/wa8LCCZIOjRT1xh0d/rpJJPQk0tAT56EnzkRfnIeeOA89cR564kz0xXnoifNUdk+Kioq0c+dOJScnH5HVVK3wfZ9qcXFx+vbbbzV+/HgNGjRI69ev17PPPqtHH31UKSkpiomJUWJiolJSUtSyZUuZpqkXXnhBl112mVasWBFa5LZKlSpKSUnRiBEj1KNHDzVp0kQ///yzVq5cqRYtWiglJUXNmzeXYRh6//33demll8rr9So5OVlxcXGKjz80aKlFixbKycnRbbfdpunTp6t169b65ptvtHfvXl199dU2fqd+W1FRkbxerzp16nRUZnd4CPtryhUSrlu3Tnv37lXbtm1D15WWluqDDz7Qk08+qdzcXJWUlGjfvn1hown37NmjtLQ0SVJaWprWrFkTdr9lqx8fvs+RKyLv2bNHKSkpxxxFKEkJCQlKSEg46nqPxxPRL4RuPr7DpxfHxcW59jiO5OaeRCp64jz0xJnoi/PQE+ehJ85DT5yJvjgPPXGeyupJaWmpDMNQTExM2Ag5t8jJyVFRUZE6dOig2NhY3X777Ro8eHDoPIVlx5aRkaGpU6dq8uTJuueee9SpUydNmjRJOTk5oWMPBoO69dZb9e233yolJUU9evTQtGnTFBMTo/T0dI0fP1733HOPBg4cqJycnFDIWMYwDD399NO65557NGzYMP34448688wzdc899zj+exsTEyPDMI75c3WiP2flCgm7dOmiTZs2hV33pz/9Seeee65Gjx6t9PR0eTweLV++XH369JF0aGnpHTt2KDMzU9KhE1A++OCD2rt3r1JTUyUdGmJbluqW7fPWW2+FPU5eXl7oPgAAAAAAAOB+Ho9H06dP16xZs47aVjaduMyIESM0YsSIsOv69esX+vqJJ5741ccaM2aMxowZE3Zdfn6+gsFgaLRdYmKipk6dqqlTp5bnMCJCuULCKlWq6Lzzzgu7LikpSTVr1gxdP3DgQI0cOVI1atRQSkqKbr31VmVmZqpDhw6SpO7du6t58+bq16+fJk+erN27d+u+++7T0KFDQyMBBw8erCeffFKjRo3SjTfeqHfffVcLFy7UkiVLKuOYAQAAAAAAABzmpFY3/jVlwzj79Omj4uJiZWdn66mnngptj42N1ZtvvqkhQ4YoMzNTSUlJ6t+/vyZMmBDap1GjRlqyZIlGjBihGTNmqH79+po9e7ays7Mru1wAAAAAAAAg6lU4JMzPzw+7nJiYqJkzZ2rmzJnHvU2DBg2Omk58pKysLG3YsKGi5QEAAAAAAMCBjsyUYC9nn3URAAAAAAAAwClHSAgAAAAAAABEOUJCAAAAAAAAIMoREgIAAAAAAABRjpAQAAAAAAAAiHKEhAAAAAAAAECUIyQEAAAAAAAAohwhIQAAAAAAABDlCAkBAAAAAACAE1BaWqpgMGh3GacEISEAAAAAAABOu2AwqMmTJ6tx48ZKSEjQmWeeqQcffFCStGnTJnXu3Fler1c1a9bUoEGDdODAgdBtBwwYoN69e2v8+PGqXbu2UlJSNHjwYJWUlIT2ycrK0rBhwzRs2DBVrVpVtWrV0pgxY2RZVmif4uJi3XXXXWrevLmqVKmiCy+8UPn5+aHtc+fOVbVq1bR48WI1b95cCQkJ2rFjx6n/5tiAkBAAAAAAAACn3d13362HH35YY8aM0ZYtW7RgwQLVqVNHBw8eVHZ2tqpXr661a9dq0aJFWrZsmYYNGxZ2++XLl2vr1q3Kz8/Xiy++qFdffVXjx48P22fevHmKi4vTmjVrNGPGDE2dOlWzZ88ObR82bJhWrVql2bNna+PGjbrqqqvUo0cPffnll6F9CgsL9cgjj2j27NnavHmzUlNTT+03xiZxdhcASJI/4Le7hAoLBAIqsUrkD/hlyrS7nArxxnllGIbdZQAAAAAAToJlWbb9nn2iv0/u379fM2bM0JNPPqn+/ftLks4++2z97ne/07PPPquioiK98MILSkpKkiQ9+eSTuvzyy/XII4+oTp06kqT4+Hg9//zz8vl8atGihSZMmKC77rpLEydOVEzMoXFx6enpmjZtmgzDUNOmTbVp0yZNmzZNN998s3bs2KE5c+Zo+/btSk5OVkpKiu6880698847mjNnjh566CFJkmmaeuqpp9S6detT8S1zDEJCOELWwiy7S6g0ExZOsLuECstIzdC8HvMICgEAAADAhfwBvy5ccKEtj736+tXyeXy/ud/WrVtVXFysLl26HHNb69atQwGhJHXs2FHBYFDbtm0LhYStW7eWz/e/x8rMzNSBAwe0c+dONWjQQJLUoUOHsN9tMzMzNWXKFJWWlmrTpk0qLS3VueeeG/b4xcXFqlmzZuhyfHy8WrVqdYLfAfciJIRtvHFeZaRmaMPeDXaXgiNs2LtB/oD/hF7YAQAAAAAoL6/Xa3cJOnDggGJjY7V27Vr5/X4lJyeHRiAmJyeH9vN6o2O2HSEhbGMYhub1mBcRU42lQ9ONc3NzlZ2drbg4dz61/AF/RI3qBAAAAIBo5I3zavX1q2177BNxzjnnyOv1avny5brpppvCtjVr1kxz587VwYMHQ6MJV6xYoZiYGDVt2jS036effiq/3x8KHFetWqXk5GSlp6eH9lm9Ovz7sGrVKp1zzjmKjY1VRkaGSktLtXfvXrVu3VopKSmhkDAauTPJQMQwDCNiRquZMhVvxMsb55XH47G7HAAAAABAlHLD79qJiYkaPXq0Ro0apfj4eHXs2FHff/+9Nm/erL59++r+++9X//79NW7cOH3//fe69dZb1a9fv9BUY0kqKSnRwIEDdd9992n79u26//77NWzYsLCgb8eOHRo5cqRuueUWrV+/Xk888YSmTJkiSWrSpIn69u2rAQMGaMKECfq///s//fjjj1q+fLlatWqlnj17nvbvi50ICQEAAAAAAHDajRkzRnFxcRo7dqy+++471a1bV4MHD5bP51Nubq5uv/12nX/++fL5fOrTp4+mTp0advsuXbronHPOUadOnVRcXKzrrrtO48aNC9snJydHfr9fF1xwgWJjY3X77bdr0KBBoe1z5szRxIkTdd9992nXrl2qVauWOnTooMsuu+x0fAschZAQAAAAAAAAp11MTIzuvfde3XvvvUdta9mypd59993fvI/x48dr/Pjxx93u8Xg0ffp0zZo167jbx40bp5EjRx5zuvGAAQM0YMCA36wjEkTvRGsAAAAAAAAAkggJAQAAAAAAgKjHdGMAAAAAAAC4yty5c39zn/z8/FNeRyRhJCEAAAAAAAAQ5QgJAQAAAAAAgChHSAgAAAAAAABEOUJCAAAAAAAAIMoREgIAAAAAAABRjpAQAAAAAAAAiHKEhAAAAAAAAEAlMAxDr7/+ut1lnJQ4uwsAAAAAAAAAIsGuXbtUvXp1u8s4KYSEAAAAAAAAcL3S0lIZhqGYGPsmzqalpdn22BXFdGMAAAAAAACcdvv371ffvn2VlJSkunXratq0acrKytLw4cMlScXFxbrzzjt1xhlnKCkpSRdeeKHy8/NDt587d66qVaumxYsXq3nz5kpISNCOHTvUsGFDPfDAA8rJyVFycrIaNGigxYsX6/vvv1evXr2UnJysVq1a6ZNPPgnd108//aTrr79eZ5xxhnw+n1q2bKkXX3wxrN6srCzddtttGjVqlGrUqKG0tDSNGzcubJ/Dpxvn5+fLMAzt27cvtH3jxo0yDEPbt28PO4Y333xTTZs2lc/n0x//+EcVFhZq3rx5atiwoapXr67bbrtNpaWllfWtPyZCQgAAAAAAgAhiWZaChYW2/LMs64TrHDlypFasWKHFixcrLy9PH374odavXx/aPmzYMK1cuVIvvfSSPvvsM1111VXq0aOHvvzyy9A+hYWFeuSRRzR79mxt3rxZqampkqRp06apY8eO2rBhg3r27Kl+/fopJydHN9xwg9avX6+zzz5bOTk5oXqLiorUrl07LVmyRP/61780aNAg9evXT2vWrAmred68eUpKStLq1as1efJkTZgwQXl5eRVplwoLC/X444/rpZde0jvvvKP8/HxdccUVeuutt/TWW2/pb3/7m/7617/qlVdeqdDj/BamGwMAAAAAAEQQy+/XtrbtbHnspuvXyfD5fnO//fv3a968eVqwYIG6dOkiSZozZ47q1asnSdqxY4fmzJmjHTt2hK6788479c4772jOnDl66KGHJEmmaeqpp55S69atw+7/0ksv1S233CJJGjt2rGbNmqXzzz9fV111lSRp9OjRyszM1J49e5Samqp69erpjjvuCE1VvvXWW5Wbm6uFCxfqggsuCN1vq1atdP/990uSzjnnHD355JNavny5unXrdtLfM9M0NWvWLJ199tmSpD/+8Y/629/+pj179ig5OVnNmzfXxRdfrPfee0/XXHPNST/ObyEkBAAAAAAAwGn11VdfyTTNsACuatWqatq0qSRp06ZNKi0tVZMmTcJuV1xcrJo1a4Yux8fHq1WrVkfd/+HX1alTR5LUsmXLo67bu3evUlNTVVpaqgceeECLFi3Sf/7zH5WUlKi4uFi+IwLPIx+rbt262rt3b7mO/Ug+ny8UEJbV1rBhQyUnJ4ddV9HH+S2EhAAAAAAAABHE8HrVdP062x67Mhw4cECxsbFat26dYmNjw7YdHp55vV4ZhnHU7T0ez/9q+u/2Y10XDAYlSY8//rhmzpyp6dOnq2XLlkpKStLw4cNVUlJy3Pstu5+y+zhS2ajEw6dgm6b5q7WW3Wd5HqeyEBICAAAAAABEEMMwTmjKr53OOusseTwerV27VmeeeaYk6ZdfftEXX3yhTp06KSMjQ6Wlpdq7d69+//vfn/J6Vq9erT/84Q+64YYbJB0KD7/44gs1b978pO+zdu3akqRdu3apevXqkg4tXOJULFwCAAAAAACA06pKlSrq37+/7rrrLr333nvavHmzBg4cqJiYGBmGoSZNmqhv377KycnRq6++qq+//lpr1qzRpEmTtGTJkkqv5+yzz9ayZcv08ccfa+vWrbrlllu0Z8+eCt1n48aNlZ6ernHjxunLL7/UkiVLNGXKlEqquPIREgIAAAAAAOC0mzp1qjIzM3XZZZepa9eu6tixo5o1a6bExERJhxYyycnJ0R133KGmTZuqd+/eYSMPK9Odd96pjIwMZWdnKysrS2lpaerdu3eF7tPj8ejFF1/U559/rlatWumRRx7RAw88UDkFnwJMNwYAAAAAAMBpV6VKFc2fPz90+eDBgxo/frwGDRok6VDINn78eI0fP/6Ytx8wYIAGDBhw1PXbt28/6rrDzwsoSQ0bNgxdFwwGVb16db322muh8wgeS35+/lHXvf7667/6OB07dtRnn3123H2OdQzjxo3TuHHjwq6bO3fuceuqLISEAAAAAAAAOO02bNigzz//XBdccIF++eUXTZgwQZLUq1cvmyuLToSEAAAAAAAAsMVjjz2mbdu2KT4+Xu3atdOHH36oWrVq2V1WVCIkBAAAAAAAwGmXkZGhdevW2V0G/ouFSwAAAAAAAIAoR0gIAAAAAAAARDlCQgAAAAAAAJc7clVdRJfK6D8hIQAAAAAAgEt5PB5JUmFhoc2VwE5l/S/7eTgZLFwCAAAAAADgUrGxsapWrZr27t0rSfL5fDIMw+aq3CUYDKqkpERFRUWKiXHXeDrLslRYWKi9e/eqWrVqio2NPen7IiQEAAAAAABwsbS0NEkKBYUoH8uy5Pf75fV6XRuwVqtWLfRzcLIICQEAAAAAAFzMMAzVrVtXqampMk3T7nJcxzRNffDBB+rUqVOFpuvaxePxVGgEYRlCQgAAAAAAgAgQGxtbKWFRtImNjVUgEFBiYqIrQ8LK4q6J1gAAAAAAAAAqHSEhAAAAAAAAEOUICQEAAAAAAIAoR0gIAAAAAAAARDlCQgAAAAAAACDKERICAAAAAAAAUY6QEAAAAAAAAIhyhIQAAAAAAABAlCMkBAAAAAAAAKIcISEAAAAAAAAQ5QgJAQAAAAAAgChXrpBw1qxZatWqlVJSUpSSkqLMzEy9/fbboe1FRUUaOnSoatasqeTkZPXp00d79uwJu48dO3aoZ8+e8vl8Sk1N1V133aVAIBC2T35+vtq2bauEhAQ1btxYc+fOPfkjBAAAAAAAAPCryhUS1q9fXw8//LDWrVunTz75RJ07d1avXr20efNmSdKIESP0xhtvaNGiRXr//ff13Xff6corrwzdvrS0VD179lRJSYk+/vhjzZs3T3PnztXYsWND+3z99dfq2bOnLr74Ym3cuFHDhw/XTTfdpNzc3Eo6ZAAAAAAAAACHiyvPzpdffnnY5QcffFCzZs3SqlWrVL9+fT333HNasGCBOnfuLEmaM2eOmjVrplWrVqlDhw5aunSptmzZomXLlqlOnTpq06aNJk6cqNGjR2vcuHGKj4/X008/rUaNGmnKlCmSpGbNmumjjz7StGnTlJ2dXUmHDQAAAAAAAKDMSZ+TsLS0VC+99JIOHjyozMxMrVu3TqZpqmvXrqF9zj33XJ155plauXKlJGnlypVq2bKl6tSpE9onOztbBQUFodGIK1euDLuPsn3K7gMAAAAAAABA5SrXSEJJ2rRpkzIzM1VUVKTk5GS99tprat68uTZu3Kj4+HhVq1YtbP86depo9+7dkqTdu3eHBYRl28u2/do+BQUF8vv98nq9x6yruLhYxcXFocsFBQWSJNM0ZZpmeQ/T8cqOKRKPza0ioSeHnx80EAjIlHuPRYqMnkQaeuJM9MV56Inz0BPnoSfORF+ch544Dz1xnkjvyYkeV7lDwqZNm2rjxo365Zdf9Morr6h///56//33y11gZZs0aZLGjx9/1PVLly6Vz+ezoaLTIy8vz+4ScAQ396TEKgl9nZubq3gj3sZqKo+bexKp6Ikz0RfnoSfOQ0+ch544E31xHnriPPTEeSK1J4WFhSe0X7lDwvj4eDVu3FiS1K5dO61du1YzZszQNddco5KSEu3bty9sNOGePXuUlpYmSUpLS9OaNWvC7q9s9ePD9zlyReQ9e/YoJSXluKMIJenuu+/WyJEjQ5cLCgqUnp6u7t27KyUlpbyH6XimaSovL0/dunWTx+OxuxwoMnriD/g1YeEESYem+Xvjjv+cc4NI6EmkoSfORF+ch544Dz1xHnriTPTFeeiJ89AT54n0npTNtv0t5Q4JjxQMBlVcXKx27drJ4/Fo+fLl6tOnjyRp27Zt2rFjhzIzMyVJmZmZevDBB7V3716lpqZKOpTSpqSkqHnz5qF93nrrrbDHyMvLC93H8SQkJCghIeGo6z0eT0Q2uEykH58bubknh08vjouLc+1xHMnNPYlU9MSZ6Ivz0BPnoSfOQ0+cib44Dz1xHnriPJHakxM9pnKFhHfffbcuueQSnXnmmdq/f78WLFig/Px85ebmqmrVqho4cKBGjhypGjVqKCUlRbfeeqsyMzPVoUMHSVL37t3VvHlz9evXT5MnT9bu3bt13333aejQoaGAb/DgwXryySc1atQo3XjjjXr33Xe1cOFCLVmypJzfAgAAAAAAAAAnolwh4d69e5WTk6Ndu3apatWqatWqlXJzc9WtWzdJ0rRp0xQTE6M+ffqouLhY2dnZeuqpp0K3j42N1ZtvvqkhQ4YoMzNTSUlJ6t+/vyZMmBDap1GjRlqyZIlGjBihGTNmqH79+po9e7ays7Mr6ZABAAAAAAAAHK5cIeFzzz33q9sTExM1c+ZMzZw587j7NGjQ4KjpxEfKysrShg0bylMaAAAAAAAAgJMUY3cBAAAAAAAAAOxFSAgAAAAAAABEOUJCAAAAAAAAIMoREgIAAAAAAABRjpAQAAAAAAAAiHKEhAAAAAAAAECUIyQEAAAAAAAAohwhIQAAAAAAABDlCAkBAAAAAACAKEdICAAAAAAAAEQ5QkIAAAAAAAAgyhESAgAAAAAAAFGOkBAAAAAAAACIcoSEAAAAAAAAQJQjJAQAAAAAAACiHCEhAAAAAAAAEOUICQEAAAAAAIAoR0gIAAAAAAAARDlCQgAAAAAAACDKERICAAAAAAAAUY6QEAAAAAAAAIhyhIQAAAAAAABAlCMkBAAAAAAAAKIcISEAAAAAAAAQ5QgJAQAAAAAAgChHSAgAAAAAAABEuTi7CwDgTP6A3+4SKiwQCKjEKpE/4Jcp0+5yKswb55VhGHaXAQAAAACIQISEAI4pa2GW3SVUmgkLJ9hdQqXISM3QvB7zCAoBAAAAAJWO6cYAQrxxXmWkZthdBo5jw94NETHCEwAAAADgPIwkBBBiGIbm9ZgXMUFUIBBQbm6usrOzFRfn3pc7f8AfUSM7AQAAAADO497fmgGcEoZhyOfx2V1GpTBlKt6IlzfOK4/HY3c5AAAAAAA4FtONAQAAAAAAgChHSAgAAAAAAABEOUJCAAAAAAAAIMoREgIAAAAAAABRjpAQAAAAAAAAiHKEhAAAAAAAAECUIyQEAAAAAAAAohwhIQAAAAAAABDlCAkBAAAAAACAKEdICAAAAAAAAEQ5QkIAAAAAAAAgyhESAgAAAAAAAFGOkBAAAAAAAACIcoSEAAAAAAAAQJQjJAQAAAAAAACiHCEhAAAAAAAAEOUICQEAAAAAAIAoR0gIAAAAAAAARDlCQgAAAAAAACDKERICAAAAAAAAUY6QEAAAAAAAAIhyhIQAAAAAAABAlCMkBAAAAAAAAKIcISEAAAAAAAAQ5QgJAQAAAAAAgChHSAgAAAAAAABEOUJCAAAAAAAAIMoREgIAAAAAAABRjpAQAAAAAAAAiHKEhAAAAAAAAECUK1dIOGnSJJ1//vmqUqWKUlNT1bt3b23bti1sn6KiIg0dOlQ1a9ZUcnKy+vTpoz179oTts2PHDvXs2VM+n0+pqam66667FAgEwvbJz89X27ZtlZCQoMaNG2vu3Lknd4QAAAAAAACodJZlqdAsdP0/f8CvEqtElmXZ/S21VVx5dn7//fc1dOhQnX/++QoEArrnnnvUvXt3bdmyRUlJSZKkESNGaMmSJVq0aJGqVq2qYcOG6corr9SKFSskSaWlperZs6fS0tL08ccfa9euXcrJyZHH49FDDz0kSfr666/Vs2dPDR48WPPnz9fy5ct10003qW7dusrOzq7kbwEAAAAAAADKw7Is5bydo43fb7S7lEqTXZqteMXbXYZtyhUSvvPOO2GX586dq9TUVK1bt06dOnXSL7/8oueee04LFixQ586dJUlz5sxRs2bNtGrVKnXo0EFLly7Vli1btGzZMtWpU0dt2rTRxIkTNXr0aI0bN07x8fF6+umn1ahRI02ZMkWS1KxZM3300UeaNm0aISEAAAAAAIDN/AF/RAWEKGdIeKRffvlFklSjRg1J0rp162Saprp27Rra59xzz9WZZ56plStXqkOHDlq5cqVatmypOnXqhPbJzs7WkCFDtHnzZmVkZGjlypVh91G2z/DhwytSLgAAAAAAACpZ/tX58sZ57S7jpAUCAeXm5ioxNtHuUmx10iFhMBjU8OHD1bFjR5133nmSpN27dys+Pl7VqlUL27dOnTravXt3aJ/DA8Ky7WXbfm2fgoIC+f1+eb1H/+AVFxeruLg4dLmgoECSZJqmTNM82cN0rLJjisRjcyt64jyR0pPDz9kaCARkyr3HEyk9iTT0xXnoifPQE+ehJ85EX5yHnjhPpPTk8N9TPP/9z7UsKd6IVyAQkGEYdldT6U70Z+2kQ8KhQ4fqX//6lz766KOTvYtKNWnSJI0fP/6o65cuXSqfz2dDRadHXl6e3SXgCPTEedzekxKrJPR1bm6u4g33nyPD7T2JVPTFeeiJ89AT56EnzkRfnIeeOI/be8LvKe5RWFh4QvudVEg4bNgwvfnmm/rggw9Uv3790PVpaWkqKSnRvn37wkYT7tmzR2lpaaF91qxZE3Z/ZasfH77PkSsi79mzRykpKcccRShJd999t0aOHBm6XFBQoPT0dHXv3l0pKSknc5iOZpqm8vLy1K1bN3k8Lk7rIwg9cZ5I6Yk/4NeEhRMkHTr1gpuH8UdKTyINfXEeeuI89MR56Ikz0RfnoSfOEyk94fcU9yibbftbyhUSWpalW2+9Va+99pry8/PVqFGjsO3t2rWTx+PR8uXL1adPH0nStm3btGPHDmVmZkqSMjMz9eCDD2rv3r1KTU2VdCipTUlJUfPmzUP7vPXWW2H3nZeXF7qPY0lISFBCQsJR13s8nohscJlIPz43oifO4/aeHD69OC4uztXHUsbtPYlU9MV56Inz0BPnoSfORF+ch544j9t7wu8p7nGix1SukHDo0KFasGCB/vnPf6pKlSqhcwhWrVpVXq9XVatW1cCBAzVy5EjVqFFDKSkpuvXWW5WZmakOHTpIkrp3767mzZurX79+mjx5snbv3q377rtPQ4cODYV8gwcP1pNPPqlRo0bpxhtv1LvvvquFCxdqyZIl5SkXAAAAAAAAwAmIKc/Os2bN0i+//KKsrCzVrVs39O/ll18O7TNt2jRddtll6tOnjzp16qS0tDS9+uqroe2xsbF68803FRsbq8zMTN1www3KycnRhAkTQvs0atRIS5YsUV5enlq3bq0pU6Zo9uzZys7OroRDBgAAAAAAAHC4ck83/i2JiYmaOXOmZs6cedx9GjRocNR04iNlZWVpw4YN5SkPAAAAAAAAwEko10hCAAAAAAAAAJGHkBAAAAAAAACIcoSEAAAAAAAAQJQjJAQAAAAAAACiHCEhAAAAAAAAEOUICQEAAAAAAIAoR0gIAAAAAAAARDlCQgAAAAAAACDKERICAAAAAAAAUY6QEAAAAAAAAIhyhIQAAAAAAABAlCMkBAAAAAAAAKIcISEAAAAAAAAQ5QgJAQAAAAAAgChHSAgAAAAAAABEOUJCAAAAAAAAIMoREgIAAAAAAABRjpAQAAAAAAAAiHKEhAAAAAAAAECUIyQEAAAAAAAAolyc3QXgJFiWVHJQsaXFUslByfLYXVHFeHySYdhdBQAAAAAAQNQiJHQjs1CeRxvoMkn6zO5iKkF6B+nGdwgKAQAAAAAAbMJ0Y9hv5yrJLLS7CgAAAAAAgKjFSEI38vhk3vWNcnOXKju7uzwel043LimUHmtsdxUAAAAAAABRj5DQjQxDik9SaWyCFJ8kuTUkBAAAAAAAgCMw3RgAAAAAAACIcowkBAAX8Qf8dpdQIYFAQCVWifwBv0yZdpdTYd44rwwWXQIAAAAQAQgJAcBFshZm2V1CpZiwcILdJVSKjNQMzesxj6AQAAAAgOsx3RgAHM4b51VGaobdZeAYNuzd4PrRnQAAAAAgMZIQABzPMAzN6zEvIsKoQCCg3NxcZWdnKy7OvW9B/oA/YkZ1AgAAAIBESAgArmAYhnwen91lVJgpU/FGvLxxXnlYmR0AAAAAHIOQ0IUsy1KwsFBGSYmChYUKuvUX7RK/FDBkxFribF4AAAAAAAD2ISR0Icvv11cXdtA5kr4aM9buciqorry1itXgHoJCAAAAAAAAuxASwnb+HxJkFfwko6rLY0LTVGxpsVRyULJcOrqzjMcnsVorAAAAAABRg5DQhQyvV2etXqXcpUuV3b27a8/rFfzlR315cfdDF2a0kuIsewuqII+kyyTpM5sLqQzpHaQb3yEoBAAAAAAgShASupBhGIrx+WTFxyvG51OMS0NCWe4OBSPazlWSWSjFJ9ldCQAAAAAAOA0ICWGfw0apBYdukrxeG4upODNgatmy5eratYs8cS4Nbs1CaUYrFpMBAAAAACDKEBLCEULTjl3uLElfjXvQ7jIqiMVkAAAAAACINjF2F4DoZXi98rZta3cZOAb/Dwmy/EV2lwEAAAAAAE4TRhLCNoZhqMH8v8vy++0upVKYphlZi8kAAAAAAICoQUgIWxmGIcPns7uMShFjmu5fTKak0O4KAAAAAACADZhuDAAAAAAAAEQ5RhICOKag3y/Fu3tkYdA0ZZSUKFhYqKBbR3cexvB6ZRgsJwMAAAAAqHyEhACOKVLOTXiOpK/GjLW7jErhbdtWDeb/naAQAAAAAFDpmG4MIMTwJspbq9juMnAc/vXrI2ahHwAAAACAszCSEECIYRhq0OVHWaWGdOf/k+LdvahMJKw4LR2a+v1lx9/ZXQYAAAAAIIIREgIIYxiSEWdJPq/rQ8KIWHEaAAAAAIDTgJAQAFwk6PLpxpGymEzQ9CuhxFKxew8BAAAAAMIQEgKAi0TCtONIWUzmb5I+ry9Z11t2lwIAAAAAFcbCJQDgcIbXK2/btnaXgWM491vJ8hfZXQYAAAAAVBgjCQHA4QzDUIP5f4+IlY0jZTGZgwU/6dusbnaXAQAAAACVhpAQAFzAMAwZPncvJCNFzmIyhun+wBYAAAAADsd0YwAAAAAAACDKMZIQAIAKsPx+BT2FdpdRIZGy6rR06ByehmHYXQYAAADgOoSEAABUQKScmzBSVp32tm2rBvP/TlAIAAAAlBPTjQEAKCfDm6jP69tdBY7Fv359RCzyAwAAAJxujCQEAKCcDMPQ2BtilWBK+Ve/L5/Ha3dJFRIJq04H/X592fF3dpcBAAAAuBYhIQAAJ8MwVBwvxfi8ivG4e+XpSFl1GgAAAMDJIyQEcGwl7l6IQZJkmootLZZKDkpWBAQfHp/EedYAAAAAAKcAISGAY3ussd0VVJhH0mWS9JnNhVSW9A7Sje8QFAIAAAAAKh0LlwD4H4/vUBAFZ9q5SjIjYIQnAAAAAMBxGEkI4H8M49BItQgJokzTVG7uUmVnu3cxBkmHpn5HwMhOAAAAAIBzlTsk/OCDD/Too49q3bp12rVrl1577TX17t07tN2yLN1///169tlntW/fPnXs2FGzZs3SOeecE9rnp59+0q233qo33nhDMTEx6tOnj2bMmKHk5OTQPp999pmGDh2qtWvXqnbt2rr11ls1atSoih0tgN9mGFJ8kt1VVA7DVGlswqHjcXNICKBcgn6/3SVUWNA0ZZSUKFhYqKDLX78Mr1cGp0kAAABwvHKHhAcPHlTr1q1144036sorrzxq++TJk/X4449r3rx5atSokcaMGaPs7Gxt2bJFiYmJkqS+fftq165dysvLk2ma+tOf/qRBgwZpwYIFkqSCggJ1795dXbt21dNPP61NmzbpxhtvVLVq1TRo0KAKHjIAAIhkX3b8nd0lVIpzJH01ZqzdZVSYt21bNZj/d4JCAAAAhyt3SHjJJZfokksuOeY2y7I0ffp03XffferVq5ck6YUXXlCdOnX0+uuv69prr9XWrVv1zjvvaO3atWrfvr0k6YknntCll16qxx57TPXq1dP8+fNVUlKi559/XvHx8WrRooU2btyoqVOnEhICAICjGF6vvG3byr9+vd2l4Aj+9etl+f0yfD67SwEAAKeKWShZlt1VnDzTVGxpsbuPoRJU6jkJv/76a+3evVtdu3YNXVe1alVdeOGFWrlypa699lqtXLlS1apVCwWEktS1a1fFxMRo9erVuuKKK7Ry5Up16tRJ8fHxoX2ys7P1yCOP6Oeff1b16tWPeuzi4mIVFxeHLhcUFEg6dE4y0zQr8zAdoeyYIvHY3IqeOE/E9MQ05Ql9aUqGe48nUnoSCATCvjbl7uOJlL7UmztHVgRMNZYkMxDQu+++q86dO8sT585TSAf9fm3PuljSoZ+tGJf/fEXK8ySS0BNnoi/OQ0+cJ1J6Eji8/kcbuzpg80i6TFJh586SUdXucirdif6sVeqnzt27d0uS6tSpE3Z9nTp1Qtt2796t1NTU8CLi4lSjRo2wfRo1anTUfZRtO1ZIOGnSJI0fP/6o65cuXSpfBP/lOi8vz+4ScAR64jxu70lsabEu++/XublLD51n0eXc3pMSqyT0dW5uruKN+F/Z2z3c3peIEx+v5R99ZHcVJ80oKVHZGalzly6VFc/zBKcGPXEm+uI89MR53N6T0sB+u0uodO+++25E/L51pMLCE1uc1J1/mj6Gu+++WyNHjgxdLigoUHp6urp3766UlBQbKzs1TNNUXl6eunXr5u5VWyMIPXGeiOlJyUHps0NfZmd3d/XCMpHSE3/ArwkLJ0g6NNLdG+e1uaKKiZS+RJJI6EmwsDB0TsXs7t0V4/I/2kZCTyINPXEm+uI89MR5IqUn/sIfdP/rj0iSAkPXy/TWsLmik2ea/53Fkd1Tngj5w+bhymbb/pZKDQnT0tIkSXv27FHdunVD1+/Zs0dt2rQJ7bN3796w2wUCAf3000+h26elpWnPnj1h+5RdLtvnSAkJCUpIODrt9Xg8rn7S/ZZIPz43oifO4/qeWP+r3ePxRMRKzW7vyeHTi+Pi4lx9LIdze18ikZt7cviqzLGBgOunG5etOB1rmoq1u5hKEEmrTrv5eRLJ6Ivz0BPncXtPzMNqj/OlyOOrZl8xFWWaKo1NkCc+3tU9OZ4TPaZKDQkbNWqktLQ0LV++PBQKFhQUaPXq1RoyZIgkKTMzU/v27dO6devUrl07SYeGcwaDQV144YWhfe69916Zphk6kLy8PDVt2vSYU40BAADgXKw47TysOg0AAI4UU94bHDhwQBs3btTGjRslHVqsZOPGjdqxY4cMw9Dw4cP1wAMPaPHixdq0aZNycnJUr1499e7dW5LUrFkz9ejRQzfffLPWrFmjFStWaNiwYbr22mtVr149SdL111+v+Ph4DRw4UJs3b9bLL7+sGTNmhE0nBgAAgHOVrTgNZypbdRoAAKBMuUcSfvLJJ7r44otDl8uCu/79+2vu3LkaNWqUDh48qEGDBmnfvn363e9+p3feeUeJiYmh28yfP1/Dhg1Tly5dFBMToz59+ujxxx8Pba9ataqWLl2qoUOHql27dqpVq5bGjh2rQYMGVeRYI4ZlWSosCai4VCosCchjufsvwF5PLH/FBgAgwhiGoQbz/x4xQZRpmspdulTZ3bu7ehpS0O+PmJGdAACgcpU7JMzKypL1K8taG4ahCRMmaMKECcfdp0aNGlqwYMGvPk6rVq304Ycflre8qOA3S9V64ruS4jRqzbt2l1Nh7RtU16LBmQSFAABEGMMwZLh8wZIyMaYpKz5eMT6fYlwcEgIAABxPuacbA5Xtk29+lt8stbsMAAAAAACAqFWpC5fg9PB6YvXpmM7KzV2q7Gz3TnkpLClV+weW2V0GAAAAAABA1CMkdCHDMOSLj1NCrOSLj5PHQxsBAABQPkGXny8yaJoySkoULCxU0KV/ND+c4fVy+h0AgK1IlwAAAIAoFAkLmJwj6asxY+0uo1J427ZVg/l/JygEANiGcxICAAAAUcLweuVt29buMnAM/vXrI2Y1cACAOzGSEADcpKTQ7goqxjQVW1oslRyULBdPDQvwSxwAdzIMQw3m/z0iwijTNJW7dKmyu7v3HN3SoWnfkTCqEwDgfoSEAOAmjzW2u4IK8Ui6TJI+s7mQijIMqWH6oa8ty95aAKCcDMOQ4fPZXUaFxZimrPh4xfh8inFxSAgAgFMQEsIRCktK7S6hwkwzoOJSqbAkII/l7nPJeD2xnA/HSTw+Kb2DtHOV3ZXgWAJ+KT7J7ioAAAAAoEIICeEI7R9YZncJlSROo9a8a3cRFda+QXUtGpxJUOgUhiHd+I5kunyqsf47NSx3qbKz3T01TIU/Sv/saXcVAIAI4/YVp6XIWnWaFacBRBtCQtjG64lV+wbV9ck3P9tdCo7wyTc/y2+WyhfPS4RjGEZkjFYzTJXGJhw6Fjf/4sA5CQEAp0CknJswUladZsVpANGGBAC2MQxDiwZnym+6f6qxFBkjpApLSiNoVCcAAIDzla047V+/3u5ScISyFacj4RyeAHAiCAlhK8MwIma0mmlYSoiVfPFx8ngi45gAAABwakXSitNSZKw6zYrTAKIVSQYAAAAA2ChSVpyWWHUaANyMkBAAAAAAgGNgMRlnYTEZ4NQiJAQAAAAA4BgiZdoxi8kAOBExdhcAAAAAAIBTlC0mA+cpW0wGwKnBSEIAAAAAAP6LxWSch8VkgNODkBAAAAAAgMOwmAyAaMR0YwAAAAAAACDKERICAAAAAAAAUY7pxgAAAAAAwBWCEXCuyKBpyigpUbCwUEEXTwEP+v1KKLFU7N5DwBEICQEAAAAAgCtEygIm50j6asxYu8uosL9J+ry+ZF1l2V0KKgHTjQEAAAAAgGMZXq+8bdvaXQaO49xvJauoyO4yUAkYSQgAAAAAABzLMAw1mP93WREw1ViSTNNU7tKlyu7eXR4XTzc++NN/9G3XP9hdBioRISEAAAAAAHA0wzBk+Hx2l1EpYkxTVny8Ynw+xbg4JDT8iaGvLX+RgoWFNlZTMWXnibSs6J42TUgI4JgKS0rtLqHCTDOg4lKpsCQgj2XYXU6FeT2xMgz3HwcAAACAyBIJIwrPkWR17y7Fx9tdim0ICQEcU/sHltldQiWJ06g179pdRKVo36C6Fg3OJCgEAAAAYDsjMVGf1z90TkJEBkJCACFeT6zaN6iuT7752e5ScAyffPOz/GapfPG8dAMAAACwl2EYGntDrBJM6Z3L3lCit6bdJZ00MxDQsmXLdVZi4m/vHMH4TRNAiGEYWjQ4U37T/VONpf+eEDh3qbKz3X1C4MKS0gga2QkAAAAgEliWJRmGiuOl3z++Sn4rxe6SKsin7pcHlZBgdx32ISQEEMYwjIgZqWYalhJiJV98nDyeyDgmOFBJoRR30O4qKsY0FVtaLJUclCz3BuqSJI9PYko+AADAKVcUIYNL8D/81gwAQEXMaCW5fBU0j6TLJOkzmwupDOkdpBvfISgEAAA4jZaO6KSa1erYXcZJK5uF5vXE2l2KrQgJAQAorziv3RXgeHauksxCKT7J7koAAACihi8+1tUz0spmoUX7IpHu7SAAAHY5/MPDXf/P9aFhRJy/s6RQeqyx3VUAAAAArkVICABARXh8h/65mWGqNDbh0Og7t4aEAAAAACokxu4CAAAAAAAAANiLkYQAAFSAP+C3u4QKCwQCKrFK5A/4Zcq0u5yTE/BLhiGvZSm6zyQDAAAAnBxCQgAAKiBrYZbdJVSaCQsn2F1CxTRMV0ZRkeYRFAIAAADlxnRjAADKyRvnVUZqht1l4Bg2JCbKX1pkdxkAAACA6zCSEACAcjIMQ/N6zIuIqcbSoenGubm5ys7OVlycOz8a+P0/Kuu1S+0uAwAAAHAtd/4mAACAzQzDkM/tqxr/lylT8Ua8vHFeedy6urFZaHcFAAAAgKsx3RgAAAAAAACIcowkBAAXKSwptbuECjHNgIpLpcKSgDyW+5eW8HpiZRjuPw4AAAAAICQEABdp/8Ayu0uoBHEateZdu4uoFO0bVNeiwZkEhQAAAABcj+nGAOBwXk+s2jeobncZOIZPvvlZftPdozsBAAAAQGIkIQA4nmEYWjQ4MyLCKNM0lZu7VNnZ3d27QIYOTfuOjFGdAAAAAHAIISEAuIBhGPLFu/8l2zQsJcRKvvg4eTzuPx4AAAAAiBRMNwYAAAAAAACiHCEhAAAAAAAAEOUICQEAAAAAAIAoR0gIAAAAAAAARDlCQgAAAAAAACDKERICAAAAAAAAUY6QEAAAAAAAAIhyhIQAAAAAAABAlCMkBAAAAAAAAKIcISEAAAAAAAAQ5QgJAQAAAAAAgCgXZ3cBAAAAABDNLMuSP+C3u4xKEQgEVGKVyB/wy5RpdzkV4o3zyjAMu8sAgNOGkBAAgAooLCm1u4QKM82AikulwpKAPJY7fxnylwTsLgEAToplWcp5O0cbv99odymVasLCCXaXUGEZqRma12MeQSGAqEFICABABbR/YJndJVSSOI1a867dRZw0r1GguHMPfW2VHJTivPYWVFGmqdjSYqnkoGR57K6mYjw+iV+wgePyB/wRFxBGig17N8jv/1E+3lOcg/cU4JQiJAQAoJy8nli1b1Bdn3zzs92l4BiMGa0ly7K7jArxSLpMkj6zuZAKsiT50y+Q+r3u+l/qImkKpcQ0SqfKvzpfXpcHUoFAQLm5ucrOzlZcnDt/3fSbhcpadPGhrx87x/XvKZLUWZK5Sa5/9Qqe0V7F173q+vcU0zS1P1CiHwv3y+Nxb3D7k/+g3SWgkjn6VXvmzJl69NFHtXv3brVu3VpPPPGELrjgArvLAgBEOcMwtGhwpvym+6caS4c+qObmLlV2dnfXflD98eB+Xbr4IbvLwGEsSTl162hj3G7pxQ52l1NpImEKpSS1qtVGz3R93tVBYSScKkGS/IH/vZd447zyeXw2VlNxpkzFG/Hyxnld+54iszD0ZVaD+jYWgqPtkV7paHcRleaR1yPjPQWRw7Eh4csvv6yRI0fq6aef1oUXXqjp06crOztb27ZtU2pqqt3lAQCinGEY8sU79m20XEzDUkKs5IuPk8fjzmPyB/5X949DNku+ZBurqTjTNLVs+bvq2qWza3/J9vt/1Ma3etldBo7jsx82qsW4NyUr3u5SKsjdp0qQJBklqvLf0yUUlpRKlrvPsRoJ4a1VGqeMoiJtSEy0uxTAFTKKilQ9McnuMlAJHPubwNSpU3XzzTfrT3/6kyTp6aef1pIlS/T888/rL3/5i83VAQAAp+o04yNZQbcHH5LkkdZ9aHcRJ80bU6C4Joe+fq/3Evl8tewtqIIiYQqlJP3kP6BLXusiSTJiSmQFbS4IMmJKQl+3f2BZBAS3ktvDW6+KtCVxr/yGIevOL2XEuzv8iITXL//BAnlnHErTfxyyWb7kFJsrqhjTNLVs2XJ17drFtX8MlCSVHJR3xrnyWpaMmBi7q0ElcOQrRElJidatW6e77747dF1MTIy6du2qlStX2lgZAABwosS4/30wTW7ygI2V4FiKDpTIF+vuM2FZpqmYgCWrqETyuPf8ZFbR//rAc8V5vCqSRHJrN5+KZUjyWZZ+KI6Vz+Pu4NYKGrKC8bKCHtcuXGIF4+UrOzekJ0a+OHcHUqYVo2qGpZpxMfK4+ViCsRFxzk78jyNDwh9++EGlpaWqU6dO2PV16tTR559/fszbFBcXq7i4OHS5oKBA0qGE3jTd/aH0WMqOKRKPza3oifPQE+ehJ84UCX3xyKPWtVrr0x8+tbsUHCGjqEhnPNtO7px0GK6PJP3L7ioqxispo24q0ygdKKOoSPMSBkfEcyWS/H7ye/IrEp4v7h/dufW/bfD9d0Shm0XKAmWHM01TMtz7WTISPg//mhM9LkeGhCdj0qRJGj9+/FHXL126VD6fu0/++2vy8vLsLgFHoCfOQ0+ch544k9v78kfrj+pVlXPgOYUVtNToX5PVPriD0MNBDEnzdh2aRgln8VoWzxWHWRtsIr8S7C4DkvxK0NpgE50f84XdpeAYfkw6Rx/l5bt+1WnJ/Z+Hj6ewsPC3d5JkWJbzxoaWlJTI5/PplVdeUe/evUPX9+/fX/v27dM///nPo25zrJGE6enp+uGHH5SS4u7zFRyLaZrKy8tTt27d3H0OgwhCT5yHnjgPPXEm+uI8kdITKxiUv3C/3WVUCjNQqvfff18XXXSRPHGxdpdTYV5PrKtXNpYOLZDx7rvvqnPnzq5ddCkSRUpfLMs6FBC6/HkiRU5PZFnyqtj1r11SBPWkjMfn+udKpHz2Op6CggLVqlVLv/zyy69mZI78aYyPj1e7du20fPnyUEgYDAa1fPlyDRs27Ji3SUhIUELC0X/l8Xg8EdngMpF+fG5ET5yHnjgPPXEm+uI8kdCT+GN8PnMj0zQV50lQ1Wo1XN+TiGGaKo1NkCepKj1xkgjqi7vPRPg/pmkqIVaqmpTo+p5IETJLMIKeJ5EmEj57HcuJHpMjQ0JJGjlypPr376/27dvrggsu0PTp03Xw4MHQascAAAAAAAAAKodjQ8JrrrlG33//vcaOHavdu3erTZs2euedd45azAQAAAAAAABAxTg2JJSkYcOGHXd6MQAAAAAAAIDKEWN3AQAAAAAAAADsRUgIAAAAAAAARDlCQgAAAAAAACDKERICAAAAAAAAUY6QEAAAAAAAAIhyhIQAAAAAAABAlCMkBAAAAAAAAKIcISEAAAAAAAAQ5eLsLuBUsSxLklRQUGBzJaeGaZoqLCxUQUGBPB6P3eVA9MSJ6Inz0BNnoi/OQ0+ch544Dz1xJvriPPTEeeiJ80R6T8qysbKs7HgiNiTcv3+/JCk9Pd3mSgAAAAAAAAB77d+/X1WrVj3udsP6rRjRpYLBoL777jtVqVJFhmHYXU6lKygoUHp6unbu3KmUlBS7y4HoiRPRE+ehJ85EX5yHnjgPPXEeeuJM9MV56Inz0BPnifSeWJal/fv3q169eoqJOf6ZByN2JGFMTIzq169vdxmnXEpKSkT+ALsZPXEeeuI89MSZ6Ivz0BPnoSfOQ0+cib44Dz1xHnriPJHck18bQViGhUsAAAAAAACAKEdICAAAAAAAAEQ5QkKXSkhI0P3336+EhAS7S8F/0RPnoSfOQ0+cib44Dz1xHnriPPTEmeiL89AT56EnzkNPDonYhUsAAAAAAAAAnBhGEgIAAAAAAABRjpAQAAAAAAAAiHKEhAAAAAAAAECUIyQEToMBAwaod+/edpcBAABOId7vAQCAmxESOlh+fr4Mw9C+ffvsLiXqlfXiyH/33Xef3aVFrbKeVK9eXUVFRWHb1q5dG+oR7HPuuecqISFBu3fvtruUqMRzxPl4n3c2+uMcvJ84x7PPPqvWrVsrOTlZ1apVU0ZGhiZNmmR3WZBUWlqqadOmqWXLlkpMTFT16tV1ySWXaMWKFeW6n4YNG2r69OmnpsgoUPbe0aJFC5WWloZtq1atmubOnWtPYVHu8N/nY2JiVLVqVWVkZGjUqFHatWuX3eU5CiEhUA7btm3Trl27Qv/+8pe/2F1S1KtSpYpee+21sOuee+45nXnmmRW+75KSkgrfR7T66KOP5Pf79cc//lHz5s2rlPs0TbNS7ifanMrnCACcaqfi/QQn5/nnn9fw4cN12223aePGjVqxYoVGjRqlAwcO2F1a1LMsS9dee60mTJig22+/XVu3blV+fr7S09OVlZWl119/3e4So85XX32lF154we4ycIRt27bpu+++09q1azV69GgtW7ZM5513njZt2mR3aY5BSOgiP/74o6677jqdccYZ8vl8atmypV588cWwfbKysnTbbbdp1KhRqlGjhtLS0jRu3Dh7Co5AqampSktLC/1LTk6WJO3cuVNXX321qlWrpho1aqhXr17avn37UbcfP368ateurZSUFA0ePJgQqhL0799fzz//fOiy3+/XSy+9pP79+4ftd6LPn2HDhmn48OGqVauWsrOzT8sxRKLnnntO119/vfr16xfWnzINGzbUxIkTdd111ykpKUlnnHGGZs6cGbaPYRiaNWuW/vCHPygpKUkPPvjg6So/olTWc+SFF15QzZo1VVxcHHa73r17q1+/fqf2IKLEuHHj1KZNm7Drpk+froYNG4Yul01nfeyxx1S3bl3VrFlTQ4cOJUQ/DU6kP6h8v/V+YhjGUQHIkaN1Pv74Y7Vp00aJiYlq3769Xn/9dRmGoY0bN57a4iPM4sWLdfXVV2vgwIFq3LixWrRooeuuu+6o9+fZs2erWbNmSkxM1LnnnqunnnoqtG379u0yDEMvvfSS/u///k+JiYk677zz9P7775/uw4koCxcu1CuvvKIXXnhBN910kxo1aqTWrVvrmWee0R/+8AfddNNNOnjwYGj/N954Q+eff74SExNVq1YtXXHFFZIOfRb+5ptvNGLECGYcVNCtt96q+++//6jPTYfbsWOHevXqpeTkZKWkpOjqq6/Wnj17JElffPGFDMPQ559/HnabadOm6eyzzz6ltUeyst/nmzRpomuvvVYrVqxQ7dq1NWTIkLD9fu11TJK+/fZbXXfddapRo4aSkpLUvn17rV69+nQeyilDSOgiRUVFateunZYsWaJ//etfGjRokPr166c1a9aE7Tdv3jwlJSVp9erVmjx5siZMmKC8vDybqo58pmkqOztbVapU0YcffqgVK1YoOTlZPXr0CAsBly9fHvqr3osvvqhXX31V48ePt7HyyNCvXz99+OGH2rFjhyTpH//4hxo2bKi2bduG7Vee5098fLxWrFihp59++rQdRyTZv3+/Fi1apBtuuEHdunXTL7/8og8//PCo/R599FG1bt1aGzZs0F/+8hfdfvvtR71WjRs3TldccYU2bdqkG2+88XQdQkSprOfIVVddpdLSUi1evDh0m71792rJkiX05jR777339O9//1vvvfee5s2bp7lz5zJ9CRHpRN9Pfk1BQYEuv/xytWzZUuvXr9fEiRM1evToU1RxZEtLS9OqVav0zTffHHef+fPna+zYsXrwwQe1detWPfTQQxozZsxRo0Dvuusu3XHHHdqwYYMyMzN1+eWX68cffzzVhxCxFixYoCZNmujyyy8/atsdd9yhH3/8MfQZa8mSJbriiit06aWXasOGDVq+fLkuuOACSdKrr76q+vXra8KECaGZUzg5w4cPVyAQ0BNPPHHM7cFgUL169dJPP/2k999/X3l5efrqq690zTXXSJKaNGmi9u3ba/78+WG3mz9/vq6//vpTXn+08Hq9Gjx4sFasWKG9e/dK+u3XsQMHDuiiiy7Sf/7zHy1evFiffvqpRo0apWAwaOehVB4LjvXee+9Zkqyff/75uPv07NnTuuOOO0KXL7roIut3v/td2D7nn3++NXr06FNVZlQo60VSUlLYvx9++MH629/+ZjVt2tQKBoOh/YuLiy2v12vl5uZalmVZ/fv3t2rUqGEdPHgwtM+sWbOs5ORkq7S09LQfTyQ4/PnRu3dva/z48ZZlWdbFF19szZgxw3rttdes33qJO9bzJyMj45TWHQ2eeeYZq02bNqHLt99+u9W/f/+wfRo0aGD16NEj7LprrrnGuuSSS0KXJVnDhw8/pbVGslPxHBkyZEhYj6ZMmWKdddZZYa9/OHFHvs/ff//9VuvWrcP2mTZtmtWgQYPQ5f79+1sNGjSwAoFA6LqrrrrKuuaaa05DxdHlZPvTq1ev01ZjpDuR9xNJ1muvvRZ2XdWqVa05c+ZYlnXo81bNmjUtv98f2v7ss89akqwNGzacosoj03fffWd16NDBkmQ1adLE6t+/v/Xyyy+HfZY9++yzrQULFoTdbuLEiVZmZqZlWZb19ddfW5Kshx9+OLTdNE2rfv361iOPPHJ6DiQCnXvuucd97fnpp58sSaHvb2ZmptW3b9/j3leDBg2sadOmnYIqo8Ph7x1PP/20VaNGDWvfvn2WZYW/Ni1dutSKjY21duzYEbrt5s2bLUnWmjVrLMs69B5z9tlnh7Zv27bNkmRt3br19B1QhPi1bOXtt9+2JFmrV6+2LOu3X8f++te/WlWqVLF+/PHHU163HRhJ6CKlpaWaOHGiWrZsqRo1aig5OVm5ubmh0SFlWrVqFXa5bt26oVQcFfPhhx9q48aNoX/Vq1fXp59+qv/3//6fqlSpouTkZCUnJ6tGjRoqKirSv//979BtW7duLZ/PF7qcmZmpAwcOaOfOnXYcSkS58cYbNXfuXH311VdauXKl+vbte9Q+J/r8adeu3ekqO2I9//zzuuGGG0KXb7jhBi1atEj79+8P2y8zM/Ooy1u3bg27rn379qeu0ChSWc+Rm2++WUuXLtV//vMfSdLcuXM1YMAApiOdZi1atFBsbGzoMu/ziFQn+n7ya7Zt26ZWrVopMTExdF3ZqCmUT926dbVy5Upt2rRJt99+uwKBgPr3768ePXooGAzq4MGD+ve//62BAweGPhMnJyfrgQceCPtMLIV/BoiLi1P79u2P+gyA8rEs64T227hxo7p06XKKq4EkDRw4UDVr1tQjjzxy1LatW7cqPT1d6enpoeuaN2+uatWqhZ4L1157rbZv365Vq1ZJOjTCrW3btjr33HNPzwFEibLnjmEYJ/Q6tnHjRmVkZKhGjRp2ln3KxNldAE7co48+qhkzZmj69Olq2bKlkpKSNHz48KPOa+fxeMIuG4YROUNfbdaoUSNVq1Yt7LoDBw6oXbt2Rw0Fl6TatWufpsqi2yWXXKJBgwZp4MCBuvzyy1WzZs2j9jnR509SUtLpKjsibdmyRatWrdKaNWvCpnOVlpbqpZde0s0331yu+6MflaOyniMZGRlq3bq1XnjhBXXv3l2bN2/WkiVLTuehRLSYmJijfsk71rkGeZ+3x4n2B5XjRN9PDMOgL6fZeeedp/POO09//vOfNXjwYP3+97/X+++/r+bNm0s6tALyhRdeGHabw/+wgcrXpEmT44asZdc3adJE0qHplTg94uLi9OCDD2rAgAEaNmxYuW+flpamzp07a8GCBerQoYMWLFhw1LnzUHFlz5GGDRuGFmL6tdexSH8OMZLQRVasWKFevXrphhtuUOvWrXXWWWfpiy++sLusqNe2bVt9+eWXSk1NVePGjcP+Va1aNbTfp59+Kr/fH7q8atUqJScnh/31CCcnLi5OOTk5ys/PP+650Xj+nB7PPfecOnXqpE8//TRs1O3IkSP13HPPhe1b9lfRwy83a9bsdJYbNSrzOXLTTTdp7ty5mjNnjrp27cprWCWqXbu2du/eHRZ4sLCCc9Cf0+tE309q164ddt60L7/8UoWFhaHLTZs21aZNm8IWD1i7du3pOYgoUBYMHjx4UHXq1FG9evX01VdfHfWZuFGjRmG3O/wzQCAQ0Lp16/gMUAHXXnutvvzyS73xxhtHbZsyZYpq1qypbt26STo062z58uXHva/4+HiVlpaeslqjzVVXXaUWLVocdS76Zs2aaefOnWGzyrZs2aJ9+/aFnleS1LdvX7388stauXKlvvrqK1177bWnrfZo4Pf79cwzz6hTp06qXbv2Cb2OtWrVShs3btRPP/1kc/WnBiGhi5xzzjnKy8vTxx9/rK1bt+qWW24JrX4E+/Tt21e1atVSr1699OGHH+rrr79Wfn6+brvtNn377beh/UpKSjRw4EBt2bJFb731lu6//34NGzZMMTE8DSvDxIkT9f333x93RWKeP6eeaZr629/+puuuuy40yqDs30033aTVq1dr8+bNof1XrFihyZMn64svvtDMmTO1aNEi3X777TYeQWSrrOfI9ddfr2+//VbPPvssC5ZUsqysLH3//feaPHmy/v3vf2vmzJl6++237S4L/0V/Tp/yvJ907txZTz75pDZs2KBPPvlEgwcPDhtte/311ysYDGrQoEHaunWrcnNz9dhjj0kSp0oopyFDhmjixIlasWKFvvnmG61atUo5OTmqXbt2aPrw+PHjNWnSJD3++OP64osvtGnTJs2ZM0dTp04Nu6+ZM2fqtdde0+eff66hQ4fq559/5j2lAq699lpdccUV6t+/v5577jlt375dn332mW655RYtXrxYs2fPDs3OuP/++/Xiiy/q/vvv19atW7Vp06aw6bANGzbUBx98oP/85z/64Ycf7DqkiPLwww/r+eefD1thumvXrmrZsqX69u2r9evXa82aNcrJydFFF10UdrqdK6+8Uvv379eQIUN08cUXq169enYcQsTYu3evdu/erS+//FIvvfSSOnbsqB9++EGzZs0K7fNbr2PXXXed0tLS1Lt3b61YsUJfffWV/vGPf2jlypV2HValIp1wsLKpQ3Fxh2aF33fffWrbtq2ys7OVlZUV+sGEvXw+nz744AOdeeaZuvLKK9WsWTMNHDhQRUVFSklJCe3XpUsXnXPOOerUqZOuueYa/eEPf9C4cePsKzzCxMfHq1atWsf9wM/z59RbvHixfvzxR11xxRVHbWvWrJmaNWsWNvrjjjvu0CeffKKMjAw98MADmjp16nEDLFRcZT1Hqlatqj59+ig5OZnnUAUd+T7frFkzPfXUU5o5c6Zat26tNWvW6M4777SzxKhGf+xTnveTKVOmKD09Xb///e91/fXX68477ww7B3RKSoreeOMNbdy4UW3atNG9996rsWPHSlLYeQrx27p27apVq1bpqquuUpMmTdSnTx8lJiZq+fLlodNY3HTTTZo9e7bmzJmjli1b6qKLLtLcuXOPGkn48MMP6+GHH1br1q310UcfafHixapVq5YdhxURDMPQwoULdc8992jatGlq2rSpfv/73+ubb75Rfn5+2Pt1VlaWFi1apMWLF6tNmzbq3Lmz1qxZE9o+YcIEbd++XWeffTanTqoknTt3VufOnRUIBELXGYahf/7zn6pevbo6deqkrl276qyzztLLL78cdtsqVaro8ssv16effnrMc0qjfJo2bap69eqpXbt2evjhh9W1a1f961//Chu9+VuvY/Hx8Vq6dKlSU1N16aWXqmXLlnr44Ycj5rQKhnWiZzjFaVd2vpXynJwZANygYcOGGj58uIYPH253KTgJXbp0UYsWLfT444/bXYqr8T7vbPQncs2fP19/+tOf9Msvv0T8uaWcZvv27WrUqJE2bNigNm3a2F0OAOAILFziQMXFxfr3v/+tJ598kpWnAACO8fPPPys/P1/5+fl66qmn7C7HtXifdzb6E3leeOEFnXXWWTrjjDP06aefavTo0br66qsJCAEAOALTjR3o7bff1oUXXqikpCRGaQAAHCMjI0MDBgzQI488oqZNm9pdjmvxPu9s9Cfy7N69WzfccIOaNWumESNG6KqrrtIzzzxjd1kAADgO040BAAAAAACAKMdIQgAAAAAAACDKERICAAAAAAAAUY6QEAAAAAAAAIhyhIQAAAAAAABAlCMkBAAAAAAAAKIcISEAAAAAAAAQ5QgJAQAAAAAAgChHSAgAAAAAAABEOUJCAAAAAAAAIMr9f+NIdvQoQ8HEAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "m2 = BIMproduction_v2(\n", + " demand=demand,\n", + " existing={\"silicon\": 1000, \"germanium\": 1500, \"plastic\": 1750, \"copper\": 4800},\n", + " desired={\"silicon\": 500, \"germanium\": 500, \"plastic\": 1000, \"copper\": 2000},\n", + " stock_limit=10000,\n", + " supplying_copper=[\"B\", \"C\"],\n", + " supplying_batches=[\"A\", \"C\"],\n", + " price_copper_sheet={\"B\": 300, \"C\": 400},\n", + " price_batch={\"A\": 500, \"C\": 600},\n", + " discounted_price=700,\n", + " batch_size=100,\n", + " copper_sheet_mass=100,\n", + " copper_bucket_size=10,\n", + " unitary_products=[\"silicon\", \"germanium\", \"plastic\"],\n", + " unitary_holding_costs={\"copper\": 10, \"silicon\": 2, \"germanium\": 2, \"plastic\": 2},\n", + ")\n", + "\n", + "print(\n", + " f\"Optimal cost is {pyo.value(m2.total_cost):.0f} cents, that is ${pyo.value(m2.total_cost) / 100:.2f}\\n\"\n", + ")\n", + "\n", + "Table3d(\n", + " m2,\n", + " I=[\"A\", \"C\"],\n", + " J=[\"silicon\", \"germanium\", \"plastic\"],\n", + " names=[\"supplier\", \"materials\"],\n", + " K=m2.T,\n", + " retriever=lambda m, i, j, k: 0 + pyo.value(m.A[k].x[i, j]),\n", + ")\n", + "\n", + "print(\n", + " \"The stock levels at the end of each month resulting from the optimal acquisition and production plan\"\n", + ")\n", + "stock = Table2d(m2, I=m2.P, J=m2.T, retriever=lambda m, i, j: pyo.value(m.I[j].s[i]))\n", + "display(stock)\n", + "stock.T.plot(drawstyle=\"steps-mid\", grid=True, figsize=(13, 4))\n", + "plt.xticks(np.arange(len(stock.columns)), stock.columns)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/_sources/notebooks/04/dinner-seat-allocation.ipynb b/_sources/notebooks/04/01-dinner-seat-allocation.ipynb similarity index 99% rename from _sources/notebooks/04/dinner-seat-allocation.ipynb rename to _sources/notebooks/04/01-dinner-seat-allocation.ipynb index bebdf7ff..7df0d0a6 100644 --- a/_sources/notebooks/04/dinner-seat-allocation.ipynb +++ b/_sources/notebooks/04/01-dinner-seat-allocation.ipynb @@ -23,7 +23,7 @@ "```{index} feasibility problem\n", "```\n", "\n", - "# Dinner seating arrangement" + "# 4.1 Dinner seating arrangement" ] }, { diff --git a/_sources/notebooks/04/mincost-flow.ipynb b/_sources/notebooks/04/02-mincost-flow.ipynb similarity index 99% rename from _sources/notebooks/04/mincost-flow.ipynb rename to _sources/notebooks/04/02-mincost-flow.ipynb index 4d23254e..4c04e0c9 100644 --- a/_sources/notebooks/04/mincost-flow.ipynb +++ b/_sources/notebooks/04/02-mincost-flow.ipynb @@ -17,7 +17,7 @@ "```{index} networkx\n", "```\n", "\n", - "# Minimum-Cost Flow Problem" + "# 4.2 Minimum-Cost Flow Problem" ] }, { diff --git a/_sources/notebooks/04/gasoline-distribution.ipynb b/_sources/notebooks/04/03-gasoline-distribution.ipynb similarity index 99% rename from _sources/notebooks/04/gasoline-distribution.ipynb rename to _sources/notebooks/04/03-gasoline-distribution.ipynb index 539f54b1..6500cc43 100644 --- a/_sources/notebooks/04/gasoline-distribution.ipynb +++ b/_sources/notebooks/04/03-gasoline-distribution.ipynb @@ -17,7 +17,7 @@ "```{index} single: Pyomo; display\n", "```\n", "\n", - "# Gasoline distribution\n", + "# 4.3 Gasoline distribution\n", " \n", "This notebook presents a transportation model to optimally allocate the delivery of a commodity from multiple sources to multiple destinations. The model invites a discussion of the pitfalls in optimizing a global objective for customers who may have an uneven share of the resulting benefits, then through model refinement arrives at a group cost-sharing plan to delivery costs." ] diff --git a/_sources/notebooks/04/graph-coloring.ipynb b/_sources/notebooks/04/04-exam-room-scheduling.ipynb similarity index 99% rename from _sources/notebooks/04/graph-coloring.ipynb rename to _sources/notebooks/04/04-exam-room-scheduling.ipynb index 6496259a..759d9628 100644 --- a/_sources/notebooks/04/graph-coloring.ipynb +++ b/_sources/notebooks/04/04-exam-room-scheduling.ipynb @@ -17,7 +17,7 @@ "```{index} networkx\n", "```\n", "\n", - "# Exam room scheduling" + "# 4.4 Exam room scheduling" ] }, { diff --git a/_sources/notebooks/04/04.00.md b/_sources/notebooks/04/04.00.md index d6e491b5..7e4e32b2 100644 --- a/_sources/notebooks/04/04.00.md +++ b/_sources/notebooks/04/04.00.md @@ -4,12 +4,12 @@ In the previous chapters, we dealt with general problems by first formulating al This chapter includes several examples with companion Pyomo implementation that explore various modeling and implementation aspects of network optimization: -* [A dinner seating arrangement problem](dinner-seat-allocation.ipynb) -* [A transportation problem](mincost-flow.ipynb), using the minimum-cost flow formulation. -* [A franchise gasoline distribution problem](gasoline-distribution.ipynb) -* [A scheduling problem](graph-coloring.ipynb) formulated and solved as a graph coloring problem. -* [A cryptocurrency arbitrage problem](cryptocurrency-arbitrage.ipynb) -* [Extra material: Energy dispatch problem](power-network.ipynb) -* [Extra material: Forex arbitrage](forex-arbitrage.ipynb) +* [A dinner seating arrangement problem](01-dinner-seat-allocation.ipynb) +* [A transportation problem](02-mincost-flow.ipynb), using the minimum-cost flow formulation. +* [A franchise gasoline distribution problem](03-gasoline-distribution.ipynb) +* [A scheduling problem](04-exam-room-scheduling.ipynb) formulated and solved as a graph coloring problem. +* [A cryptocurrency arbitrage problem](05-cryptocurrency-arbitrage.ipynb) +* [Extra material: Energy dispatch problem](06-power-network.ipynb) +* [Extra material: Forex arbitrage](07-forex-arbitrage.ipynb) Go to the [next chapter](../05/05.00.md) about convex optimization. \ No newline at end of file diff --git a/_sources/notebooks/04/cryptocurrency-arbitrage.ipynb b/_sources/notebooks/04/05-cryptocurrency-arbitrage.ipynb similarity index 99% rename from _sources/notebooks/04/cryptocurrency-arbitrage.ipynb rename to _sources/notebooks/04/05-cryptocurrency-arbitrage.ipynb index c7bf30d6..1bb4c582 100644 --- a/_sources/notebooks/04/cryptocurrency-arbitrage.ipynb +++ b/_sources/notebooks/04/05-cryptocurrency-arbitrage.ipynb @@ -19,7 +19,7 @@ "```{index} network optimization\n", "```\n", "\n", - "# Cryptocurrency arbitrage search" + "# 4.5 Cryptocurrency arbitrage search" ] }, { diff --git a/_sources/notebooks/04/power-network.ipynb b/_sources/notebooks/04/06-power-network.ipynb similarity index 100% rename from _sources/notebooks/04/power-network.ipynb rename to _sources/notebooks/04/06-power-network.ipynb diff --git a/_sources/notebooks/04/forex-arbitrage.ipynb b/_sources/notebooks/04/07-forex-arbitrage.ipynb similarity index 100% rename from _sources/notebooks/04/forex-arbitrage.ipynb rename to _sources/notebooks/04/07-forex-arbitrage.ipynb diff --git a/_sources/notebooks/05/milk-pooling.ipynb b/_sources/notebooks/05/01-milk-pooling.ipynb similarity index 99% rename from _sources/notebooks/05/milk-pooling.ipynb rename to _sources/notebooks/05/01-milk-pooling.ipynb index cc630809..62095ddc 100644 --- a/_sources/notebooks/05/milk-pooling.ipynb +++ b/_sources/notebooks/05/01-milk-pooling.ipynb @@ -19,7 +19,7 @@ "```\n", "```{index} single: solver; ipopt\n", "```\n", - "# Milk pooling and blending\n", + "# 5.1 Milk pooling and blending\n", "\n", "Pooling and blending operations involve the \"pooling\" of various streams to create intermediate mixtures that are subsequently blended with other streams to meet final product specifications. These operations are common to the chemical processing and petroleum sectors where limited tankage may be available, or when it is necessary to transport materials by train, truck, or pipeline to remote blending terminals. Similar applications arise in agriculture, food, mining, wastewater treatment, and other industries.\n", "\n", diff --git a/_sources/notebooks/05/ols-regression.ipynb b/_sources/notebooks/05/02-ols-regression.ipynb similarity index 99% rename from _sources/notebooks/05/ols-regression.ipynb rename to _sources/notebooks/05/02-ols-regression.ipynb index 3e2cdc11..a5900861 100644 --- a/_sources/notebooks/05/ols-regression.ipynb +++ b/_sources/notebooks/05/02-ols-regression.ipynb @@ -11,9 +11,9 @@ "```{index} scatterplot\n", "```\n", "\n", - "# Ordinary Least Squares (OLS) Regression\n", + "# 5.2 Ordinary Least Squares (OLS) Regression\n", "\n", - "In Chapter 2 we introduced linear regression with least absolute deviations (LAD), see [this notebook](../02/lad-regression.ipynb). Here we consider the same problem setting, but slightly change the underlying optimization problem, in particular its objective function, obtaining the classical ordinary least squares (OLS) regression." + "In Chapter 2 we introduced linear regression with least absolute deviations (LAD), see [this notebook](../02/02-lad-regression.ipynb). Here we consider the same problem setting, but slightly change the underlying optimization problem, in particular its objective function, obtaining the classical ordinary least squares (OLS) regression." ] }, { diff --git a/_sources/notebooks/05/markowitz_portfolio.ipynb b/_sources/notebooks/05/03-markowitz-portfolio.ipynb similarity index 99% rename from _sources/notebooks/05/markowitz_portfolio.ipynb rename to _sources/notebooks/05/03-markowitz-portfolio.ipynb index e772fd79..6f2b6349 100644 --- a/_sources/notebooks/05/markowitz_portfolio.ipynb +++ b/_sources/notebooks/05/03-markowitz-portfolio.ipynb @@ -14,7 +14,7 @@ "```{index} single: solver; cplex\n", "```\n", "\n", - "# Markowitz portfolio optimization" + "# 5.3 Markowitz portfolio optimization" ] }, { diff --git a/_sources/notebooks/05/svm.ipynb b/_sources/notebooks/05/04-svm-binary-classification.ipynb similarity index 99% rename from _sources/notebooks/05/svm.ipynb rename to _sources/notebooks/05/04-svm-binary-classification.ipynb index 2504fc5f..4cac9604 100644 --- a/_sources/notebooks/05/svm.ipynb +++ b/_sources/notebooks/05/04-svm-binary-classification.ipynb @@ -15,7 +15,7 @@ "```\n", "```{index} single: application; counterfeit banknotes\n", "```\n", - "# Support Vector Machines for Binary Classification\n", + "# 5.4 Support Vector Machines for Binary Classification\n", "\n", "Support Vector Machines (SVM) are a type of supervised machine learning model. Similar to other machine learning techniques based on regression, training an SVM classifier uses examples with known outcomes, and involves optimization some measure of performance. The resulting classifier can then be applied to classify data with unknown outcomes.\n", "\n", diff --git a/_sources/notebooks/05/refinery-production.ipynb b/_sources/notebooks/05/05-refinery-production.ipynb similarity index 100% rename from _sources/notebooks/05/refinery-production.ipynb rename to _sources/notebooks/05/05-refinery-production.ipynb diff --git a/_sources/notebooks/05/05.00.md b/_sources/notebooks/05/05.00.md index ab96d63e..d78bdb1c 100644 --- a/_sources/notebooks/05/05.00.md +++ b/_sources/notebooks/05/05.00.md @@ -6,11 +6,11 @@ Luckily, it will turn out that the real separation between simple and difficult This chapter includes several examples with companion Pyomo implementation that explore various modeling and implementation aspects of convex optimization: -* [Milk pooling and blending](milk-pooling.ipynb) -* [Ordinary Least Squares (OLS) regression](ols-regression.ipynb) -* [Markowitz portfolio optimization problem](markowitz_portfolio.ipynb) -* [Support Vector Machines for binary classification](svm.ipynb) -* [Extra material: Refinery production](refinery-production.ipynb) -* [Extra material: Cutting stock](cutting-stock.ipynb) +* [Milk pooling and blending](01-milk-pooling.ipynb) +* [Ordinary Least Squares (OLS) regression](02-ols-regression.ipynb) +* [Markowitz portfolio optimization problem](03-markowitz-portfolio.ipynb) +* [Support Vector Machines for binary classification](04-svm-binary-classification.ipynb) +* [Extra material: Refinery production](05-refinery-production.ipynb) +* [Extra material: Cutting stock](06-cutting-stock.ipynb) Go to the [next chapter](../06/06.00.md) about conic optimization. \ No newline at end of file diff --git a/_sources/notebooks/05/cutting-stock.ipynb b/_sources/notebooks/05/06-cutting-stock.ipynb similarity index 100% rename from _sources/notebooks/05/cutting-stock.ipynb rename to _sources/notebooks/05/06-cutting-stock.ipynb diff --git a/_sources/notebooks/06/economic-order-quantity.ipynb b/_sources/notebooks/06/01-economic-order-quantity.ipynb similarity index 100% rename from _sources/notebooks/06/economic-order-quantity.ipynb rename to _sources/notebooks/06/01-economic-order-quantity.ipynb diff --git a/_sources/notebooks/06/kelly-criterion.ipynb b/_sources/notebooks/06/02-kelly-criterion.ipynb similarity index 100% rename from _sources/notebooks/06/kelly-criterion.ipynb rename to _sources/notebooks/06/02-kelly-criterion.ipynb diff --git a/_sources/notebooks/06/markowitz_portfolio_revisited.ipynb b/_sources/notebooks/06/03-markowitz-portfolio-revisited.ipynb similarity index 100% rename from _sources/notebooks/06/markowitz_portfolio_revisited.ipynb rename to _sources/notebooks/06/03-markowitz-portfolio-revisited.ipynb diff --git a/_sources/notebooks/06/building-insulation.ipynb b/_sources/notebooks/06/04-building-insulation.ipynb similarity index 100% rename from _sources/notebooks/06/building-insulation.ipynb rename to _sources/notebooks/06/04-building-insulation.ipynb diff --git a/_sources/notebooks/06/svm-conic.ipynb b/_sources/notebooks/06/05-svm-conic.ipynb similarity index 99% rename from _sources/notebooks/06/svm-conic.ipynb rename to _sources/notebooks/06/05-svm-conic.ipynb index cd22f02c..6ff94fa1 100644 --- a/_sources/notebooks/06/svm-conic.ipynb +++ b/_sources/notebooks/06/05-svm-conic.ipynb @@ -19,7 +19,7 @@ "```\n", "```{index} single: application; counterfeit banknotes\n", "```\n", - "# Training Support Vector Machines with Conic Optimization\n" + "# Support Vector Machines with Conic Optimization\n" ] }, { diff --git a/_sources/notebooks/06/investment-wheel.ipynb b/_sources/notebooks/06/06-investment-wheel.ipynb similarity index 100% rename from _sources/notebooks/06/investment-wheel.ipynb rename to _sources/notebooks/06/06-investment-wheel.ipynb diff --git a/_sources/notebooks/06/06.00.md b/_sources/notebooks/06/06.00.md index dc5c0921..bd60ff51 100644 --- a/_sources/notebooks/06/06.00.md +++ b/_sources/notebooks/06/06.00.md @@ -2,12 +2,12 @@ In this chapter, there is a number of examples with companion Pyomo implementation that explore various modeling and implementation aspects of conic problems: -* [Economic order quantity](economic-order-quantity.ipynb) -* [The Kelly Criterion](kelly-criterion.ipynb) -* [Markowitz portfolio optimization problem revisited](markowitz_portfolio_revisited.ipynb) -* [Optimal design of multi-layered building insulation](building-insulation.ipynb) -* [Training Support Vector Machines with Conic Programming](svm-conic.ipynb) -* [Extra material: Luenberger's Investment Wheel](investment-wheel.ipynb) -* [Extra material: Optimal Growth Portfolio](optimal-growth-portfolios.ipynb) +* [Economic order quantity](01-economic-order-quantity.ipynb) +* [The Kelly criterion](02-kelly-criterion.ipynb) +* [Markowitz portfolio optimization problem revisited](03-markowitz-portfolio-revisited.ipynb) +* [Optimal design of multi-layered building insulation](04-building-insulation.ipynb) +* [Support Vector Machines with conic optimization](05-svm-conic.ipynb) +* [Extra material: Luenberger's investment wheel](06-investment-wheel.ipynb) +* [Extra material: Optimal growth portfolio](07-optimal-growth-portfolios.ipynb) Go to the [next chapter](../07/07.00.md) about what happens when optimization meets reality and needs to account for uncertainty. \ No newline at end of file diff --git a/_sources/notebooks/06/optimal-growth-portfolios.ipynb b/_sources/notebooks/06/07-optimal-growth-portfolios.ipynb similarity index 100% rename from _sources/notebooks/06/optimal-growth-portfolios.ipynb rename to _sources/notebooks/06/07-optimal-growth-portfolios.ipynb diff --git a/_sources/notebooks/07/fleet-assignment.ipynb b/_sources/notebooks/07/01-fleet-assignment.ipynb similarity index 100% rename from _sources/notebooks/07/fleet-assignment.ipynb rename to _sources/notebooks/07/01-fleet-assignment.ipynb diff --git a/_sources/notebooks/07/bim-robustness-analysis.ipynb b/_sources/notebooks/07/02-bim-robustness-analysis.ipynb similarity index 100% rename from _sources/notebooks/07/bim-robustness-analysis.ipynb rename to _sources/notebooks/07/02-bim-robustness-analysis.ipynb diff --git a/_sources/notebooks/07/07.00.md b/_sources/notebooks/07/07.00.md index 18211ca6..28ea3dc9 100644 --- a/_sources/notebooks/07/07.00.md +++ b/_sources/notebooks/07/07.00.md @@ -22,7 +22,7 @@ Since there is so much uncertainty, natural questions are: We will show three examples of how one can inspect solutions for their sensitivity to data changes. -* [Fleet assignment problem](fleet-assignment.ipynb) -* [Robustness analysis of BIM production plan via simulations](bim-robustness-analysis.ipynb) +* [Fleet assignment problem](01-fleet-assignment.ipynb) +* [Robustness analysis of BIM production plan via simulations](02-bim-robustness-analysis.ipynb) Go to the [next chapter](../08/08.00.md) about robust optimization and to [Chapter 9](../09/09.00.md) about stochastic optimization. \ No newline at end of file diff --git a/_sources/notebooks/08/bim-robust-optimization.ipynb b/_sources/notebooks/08/01-bim-robust-optimization.ipynb similarity index 100% rename from _sources/notebooks/08/bim-robust-optimization.ipynb rename to _sources/notebooks/08/01-bim-robust-optimization.ipynb diff --git a/_sources/notebooks/08/08.00.md b/_sources/notebooks/08/08.00.md index 44d8d3bd..2c20c746 100644 --- a/_sources/notebooks/08/08.00.md +++ b/_sources/notebooks/08/08.00.md @@ -2,6 +2,6 @@ In this chapter, there is a number of examples with companion Pyomo implementation that explore various modeling and implementation aspects of robust optimization: -* [Robust version of BIM production problem](bim-robust-optimization.ipynb) +* [Robust version of BIM production problem](01-bim-robust-optimization.ipynb) Go to the [next chapter](../09/09.00.md) about stochastic optimization. \ No newline at end of file diff --git a/_sources/notebooks/09/pop-up_shop.ipynb b/_sources/notebooks/09/01-pop-up-shop.ipynb similarity index 100% rename from _sources/notebooks/09/pop-up_shop.ipynb rename to _sources/notebooks/09/01-pop-up-shop.ipynb diff --git a/_sources/notebooks/09/markowitz_portfolio_with_chance_constraint.ipynb b/_sources/notebooks/09/02-markowitz-portfolio-with-chance-constraint.ipynb similarity index 100% rename from _sources/notebooks/09/markowitz_portfolio_with_chance_constraint.ipynb rename to _sources/notebooks/09/02-markowitz-portfolio-with-chance-constraint.ipynb diff --git a/_sources/notebooks/09/seafood.ipynb b/_sources/notebooks/09/03-seafood-distribution-center.ipynb similarity index 100% rename from _sources/notebooks/09/seafood.ipynb rename to _sources/notebooks/09/03-seafood-distribution-center.ipynb diff --git a/_sources/notebooks/09/economicdispatch.ipynb b/_sources/notebooks/09/04-economic-dispatch.ipynb similarity index 99% rename from _sources/notebooks/09/economicdispatch.ipynb rename to _sources/notebooks/09/04-economic-dispatch.ipynb index 948c9396..3f66ce2c 100644 --- a/_sources/notebooks/09/economicdispatch.ipynb +++ b/_sources/notebooks/09/04-economic-dispatch.ipynb @@ -173,7 +173,9 @@ "outputs": [], "source": [ "def read_economic_dispatch_data():\n", - " base_url = \"https://raw.githubusercontent.com/mobook/MO-book/main/notebooks/09/\"\n", + " base_url = (\n", + " \"https://raw.githubusercontent.com/mobook/MO-book/main/notebooks/09/data/\"\n", + " )\n", " nodes_df = pd.read_csv(base_url + \"nodes.csv\", index_col=0)[\n", " [\"node_id\", \"d\", \"p_min\", \"p_max\", \"c_var\"]\n", " ]\n", diff --git a/_sources/notebooks/09/09.00.md b/_sources/notebooks/09/09.00.md index 6578af9a..6bb75ccc 100644 --- a/_sources/notebooks/09/09.00.md +++ b/_sources/notebooks/09/09.00.md @@ -2,9 +2,9 @@ In this chapter, there is a number of examples with companion Pyomo implementation that explore various modeling and implementation aspects of stochastic optimization: -* [Optimal management of a pop-up shop](pop-up_shop.ipynb) -* [Markowitz portfolio with chance constraints](markowitz_portfolio_with_chance_constraint.ipynb) -* [Stock optimization for seafood distribution center](seafood.ipynb) -* [Economic dispatch in energy systems](economicdispatch.ipynb) +* [Optimal management of a pop-up shop](01-pop-up-shop.ipynb) +* [Markowitz portfolio with chance constraints](02-markowitz-portfolio-with-chance-constraint.ipynb) +* [Stock optimization for seafood distribution center](03-seafood-distribution-center.ipynb) +* [Economic dispatch in energy systems](04-economic-dispatch.ipynb) Go to the [next chapter](../10/10.00.md) about two-stage (robust and stochastic) optimization. \ No newline at end of file diff --git a/_sources/notebooks/10/opf-ldr.ipynb b/_sources/notebooks/10/02-opf-linear-decision-rule.ipynb similarity index 96% rename from _sources/notebooks/10/opf-ldr.ipynb rename to _sources/notebooks/10/02-opf-linear-decision-rule.ipynb index 1f9fd469..f79b82da 100644 --- a/_sources/notebooks/10/opf-ldr.ipynb +++ b/_sources/notebooks/10/02-opf-linear-decision-rule.ipynb @@ -277,9 +277,7 @@ " )\n", " model.NG = pyo.Set(\n", " initialize=[\n", - " i\n", - " for i, data in network[\"nodes\"].items()\n", - " if pd.isna(data[\"energy_type\"])\n", + " i for i, data in network[\"nodes\"].items() if pd.isna(data[\"energy_type\"])\n", " ]\n", " )\n", "\n", @@ -307,10 +305,7 @@ " / len(model.T)\n", " * sum(\n", " sum(\n", - " 2\n", - " * data[\"c_var\"]\n", - " * model.alpha[i]\n", - " * model.abs_total_imbalance[t]\n", + " 2 * data[\"c_var\"] * model.alpha[i] * model.abs_total_imbalance[t]\n", " for i, data in network[\"nodes\"].items()\n", " if data[\"energy_type\"] in [\"coal\", \"gas\"]\n", " )\n", @@ -339,9 +334,7 @@ " )\n", "\n", " # Participation factors must sum to one\n", - " model.sum_one = pyo.Constraint(\n", - " rule=sum(model.alpha[i] for i in model.V) == 1\n", - " )\n", + " model.sum_one = pyo.Constraint(rule=sum(model.alpha[i] for i in model.V) == 1)\n", "\n", " if uniformparticipationfactors:\n", " # Participation factors must be equal\n", @@ -353,8 +346,7 @@ " model.power_withrecourse = pyo.Constraint(\n", " model.V,\n", " model.T,\n", - " rule=lambda m, i, t: m.r[i, t]\n", - " == m.p[i] - m.alpha[i] * m.total_imbalance[t],\n", + " rule=lambda m, i, t: m.r[i, t] == m.p[i] - m.alpha[i] * m.total_imbalance[t],\n", " )\n", " model.generation_upper_bound_withrecourse = pyo.Constraint(\n", " model.CG,\n", @@ -371,16 +363,12 @@ " model.outgoing_flow = pyo.Expression(\n", " model.V,\n", " model.T,\n", - " rule=lambda m, i, t: sum(\n", - " m.f[i, j, t] for j in model.V if (i, j) in model.E\n", - " ),\n", + " rule=lambda m, i, t: sum(m.f[i, j, t] for j in model.V if (i, j) in model.E),\n", " )\n", " model.incoming_flow = pyo.Expression(\n", " model.V,\n", " model.T,\n", - " rule=lambda m, i, t: sum(\n", - " m.f[j, i, t] for j in model.V if (j, i) in model.E\n", - " ),\n", + " rule=lambda m, i, t: sum(m.f[j, i, t] for j in model.V if (j, i) in model.E),\n", " )\n", "\n", " # Net power production at each node after recourse actions\n", @@ -401,14 +389,12 @@ " model.flows_upper_bound = pyo.Constraint(\n", " model.E,\n", " model.T,\n", - " rule=lambda m, i, j, t: m.f[(i, j), t]\n", - " <= network[\"edges\"][(i, j)][\"f_max\"],\n", + " rule=lambda m, i, j, t: m.f[(i, j), t] <= network[\"edges\"][(i, j)][\"f_max\"],\n", " )\n", " model.flows_lower_bound = pyo.Constraint(\n", " model.E,\n", " model.T,\n", - " rule=lambda m, i, j, t: -m.f[(i, j), t]\n", - " <= network[\"edges\"][(i, j)][\"f_max\"],\n", + " rule=lambda m, i, j, t: -m.f[(i, j), t] <= network[\"edges\"][(i, j)][\"f_max\"],\n", " )\n", "\n", " # Solve the model\n", @@ -454,12 +440,8 @@ " }\n", " for t in range(T)\n", "]\n", - "totalimbalances = {\n", - " t: sum(imbalances[t].values()) for t in range(len(imbalances))\n", - "}\n", - "abstotalimbalances = {\n", - " t: abs(totalimbalances[t]) for t in range(len(totalimbalances))\n", - "}" + "totalimbalances = {t: sum(imbalances[t].values()) for t in range(len(imbalances))}\n", + "abstotalimbalances = {t: abs(totalimbalances[t]) for t in range(len(totalimbalances))}" ] }, { diff --git a/_sources/notebooks/10/ccg.ipynb b/_sources/notebooks/10/03-two-stage-production-planning.ipynb similarity index 99% rename from _sources/notebooks/10/ccg.ipynb rename to _sources/notebooks/10/03-two-stage-production-planning.ipynb index 959361aa..940fa60a 100644 --- a/_sources/notebooks/10/ccg.ipynb +++ b/_sources/notebooks/10/03-two-stage-production-planning.ipynb @@ -10,7 +10,7 @@ "```\n", "```{index} single: application; production planning\n", "```\n", - "```{index} single: solver; cbc\n", + "```{index} single: solver; highs\n", "```\n", "```{index} single: Pyomo; persistent solvers\n", "```\n", @@ -21,7 +21,7 @@ "```{index} constraint and column generation\n", "```\n", "\n", - "# Two-stage Production Planning\n", + "# Two-stage production planning using constraint and column generation\n", "\n", "The purpose of this notebook is to demonstrate a range of techniques for two-stage optimization (robust and stochastic) using a range of techniques:\n", "* Robust Optimization (including Constraint and Column Generation)\n", @@ -645,9 +645,7 @@ "worst_case_ps = np.zeros(len(Z))\n", "for s in range(len(Z)):\n", " c, q, R, S, t = model_params(**Z[s])\n", - " worst_case_ps[s] = (\n", - " sum(c[i] * m.x[i]() for i in c.keys()) + m.scenario[s].y[\"y3\"]()\n", - " )\n", + " worst_case_ps[s] = sum(c[i] * m.x[i]() for i in c.keys()) + m.scenario[s].y[\"y3\"]()\n", "\n", "xopt_avg = 637.08\n", "print(\n", @@ -685,7 +683,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAIPCAYAAAB5Qe+aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7B0lEQVR4nO3deXhU5cH+8XvIMiQQhj1DfgQIEJRdJUoByyIQFVyhCgVlccMiSGSrSFsCbRM2Q7RUlNYGii/FLkDRt1IiQpAGSwhEFBGsxgQ0MZWGJARIQnJ+f/gyZQwgzzAwk+H7ua5cl+c5z5y5J5xLuX3mnGOzLMsSAAAAAOCS1fN1AAAAAACoayhSAAAAAGCIIgUAAAAAhihSAAAAAGCIIgUAAAAAhihSAAAAAGCIIgUAAAAAhihSAAAAAGCIIgUAAAAAhihSAAAAAGAo2JdvvmPHDi1ZskTZ2dkqKCjQhg0bdN9990mSqqqq9JOf/ER/+9vf9Nlnn8nhcGjIkCFauHChoqKiXMeoqKjQzJkz9Yc//EGnTp3S4MGD9dJLL6l169aXnKOmpkZffvmlIiIiZLPZvP0xAQAAANQRlmWprKxMUVFRqlfvwutOPi1S5eXl6tmzpyZOnKiRI0e67Tt58qT27t2rn/70p+rZs6eKi4uVkJCge+65R3v27HHNS0hI0BtvvKF169apWbNmmjFjhu666y5lZ2crKCjoknJ8+eWXio6O9upnAwAAAFB3HTly5KKLMzbLsqyrmOeCbDab24rU+WRlZemWW25RXl6e2rRpo5KSErVo0UJr1qzRqFGjJP23FP3tb3/T7bfffknvXVJSosaNG+vIkSNq1KiRNz4OAAAAgDqotLRU0dHROn78uBwOxwXn+XRFylRJSYlsNpsaN24sScrOzlZVVZXi4+Ndc6KiotStWzdlZmZesEhVVFSooqLCtV1WViZJatSoEUUKAAAAwHde8lNnbjZx+vRpPfvssxozZoyr7BQWFio0NFRNmjRxmxsZGanCwsILHis5OVkOh8P1w9f6AAAAAJioE0WqqqpKo0ePVk1NjV566aXvnG9Z1kUb5Jw5c1RSUuL6OXLkiDfjAgAAAAhwfl+kqqqq9OCDDyo3N1fp6eluX71zOp2qrKxUcXGx22uKiooUGRl5wWPa7XbX1/j4Oh8AAAAAU359jdTZEvXJJ59o27Ztatasmdv+Xr16KSQkROnp6XrwwQclSQUFBfrwww+1ePFiX0QGAABAALAsS2fOnFF1dbWvo8DLgoKCFBwcfNmPPfJpkTpx4oT+9a9/ubZzc3OVk5Ojpk2bKioqSj/4wQ+0d+9evfnmm6qurnZd99S0aVOFhobK4XDo0Ucf1YwZM9SsWTM1bdpUM2fOVPfu3TVkyBBffSwAAADUYZWVlSooKNDJkyd9HQVXSHh4uFq1aqXQ0FCPj+HT259v375dgwYNqjU+fvx4JSYmKiYm5ryv27ZtmwYOHCjpm5tQzJo1S2vXrnV7IK/JDSRKS0vlcDhUUlLC1/wAAACuYTU1Nfrkk08UFBSkFi1aKDQ09LJXLuA/LMtSZWWl/v3vf6u6ulqxsbG1Hrp7qd3Ab54j5UsUKQAAAEjf/E/63NxctW3bVuHh4b6Ogyvk5MmTysvLU0xMjOrXr++271K7gd/fbAIAAAC42r69SoHA4o0/X84QAAAAADBEkQIAAAAAQ359+3MAAADAXyxLP3zV3uuZoZ2u2nud9fnnnysmJkb79u3TDTfccNXfv65hRQoAAAAIABMmTJDNZpPNZlNwcLDatGmjH/3oRyouLvZ1NJdVq1apcePGvo7hFRQpAAAAIEDccccdKigo0Oeff67f/va3euONNzR58mRfxwpIFCkAAAAgQNjtdjmdTrVu3Vrx8fEaNWqUtmzZIumbZ2QtWLBArVu3lt1u1w033KDNmzfXOsbHH3+svn37qn79+uratau2b9/u2ne+FaWNGze6PWvr/fff16BBgxQREaFGjRqpV69e2rNnj7Zv366JEyeqpKTEtXKWmJh4JX4NVwVFCgAAAAhAn332mTZv3qyQkBBJ0gsvvKDnn39eS5cu1f79+3X77bfrnnvu0SeffOL2ulmzZmnGjBnat2+f+vbtq3vuuUfHjh275PcdO3asWrduraysLGVnZ+vZZ59VSEiI+vbtq9TUVDVq1EgFBQUqKCjQzJkzvfqZryaKFAAAABAg3nzzTTVs2FBhYWHq0KGDPvroI/34xz+WJC1dulQ//vGPNXr0aF133XVatGiRbrjhBqWmprodY8qUKRo5cqQ6d+6sFStWyOFw6NVXX73kDPn5+RoyZIiuv/56xcbG6oEHHlDPnj0VGhoqh8Mhm80mp9Mpp9Ophg0bevPjX1UUKQAAACBADBo0SDk5OfrnP/+pqVOn6vbbb9fUqVNVWlqqL7/8Uv369XOb369fPx08eNBtrE+fPq5/Dg4OVlxcXK05FzN9+nQ99thjGjJkiBYuXKhPP/308j6Un6JIAQAAAAGiQYMG6tixo3r06KEXX3xRFRUVmj9/vmv/udcySZJlWbXGzufsnHr16smyLLd9VVVVbtuJiYk6cOCAhg8frnfeeUddunTRhg0bPP1IfosiBQAAAASoefPmaenSpTpx4oSioqK0c+dOt/2ZmZnq3Lmz29h7773n+uczZ84oOztb119/vSSpRYsWKisrU3l5uWtOTk5Orfft1KmTnnnmGW3ZskUjRoxQWlqaJCk0NFTV1dXe+ng+xQN5AeAadDUfKvldfPHQSQC4VgwcOFBdu3ZVUlKSZs2apXnz5qlDhw664YYblJaWppycHP3P//yP22t+/etfKzY2Vp07d9ayZctUXFysRx55RJLUu3dvhYeH67nnntPUqVO1e/durVq1yvXaU6dOadasWfrBD36gmJgYHT16VFlZWRo5cqQkqV27djpx4oS2bt2qnj17Kjw8XOHh4Vft9+FNFCkAAADgEtTV//Ezffp0TZw4UYcPH1ZpaalmzJihoqIidenSRZs2bVJsbKzb/IULF2rRokXat2+fOnTooL/+9a9q3ry5JKlp06Z67bXXNGvWLK1cuVJDhgxRYmKinnjiCUlSUFCQjh07pnHjxumrr75S8+bNNWLECNfXC/v27asnn3xSo0aN0rFjxzRv3rw6ewt0m/XtLzleg0pLS+VwOFRSUqJGjRr5Og4AXHGsSAHA+Z0+fVq5ubmKiYlR/fr1fR0HV8jF/pwvtRtwjRQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGAr2dQAAAACgTtiWfPXea9Ccq/del2HVqlVKSEjQ8ePHr4n3PRcrUgAAAEAAKCoq0qRJk9SmTRvZ7XY5nU7dfvvt2rVrlyTJZrNp48aNvg3pgXbt2ik1NdVtbNSoUTp8+LBvAv0fVqQAAACAADBy5EhVVVVp9erVat++vb766itt3bpV//nPf3wdzevCwsIUFhbm0wysSAEAAAB13PHjx7Vz504tWrRIgwYNUtu2bXXLLbdozpw5Gj58uNq1aydJuv/++2Wz2VzbkrRixQp16NBBoaGhuu6667RmzZpax37iiScUGRmp+vXrq1u3bnrzzTfd5vz9739X586d1bBhQ91xxx0qKChw7cvKytLQoUPVvHlzORwODRgwQHv37nV7fWJiomslLSoqSk8//bQkaeDAgcrLy9Mzzzwjm80mm80m6Zuv9jVu3NjtGJs2bVJcXJzq16+v5s2ba8SIEZfzK/1OFCkAAACgjmvYsKEaNmyojRs3qqKiotb+rKwsSVJaWpoKCgpc2xs2bNC0adM0Y8YMffjhh5o0aZImTpyobdu2SZJqamp05513KjMzU6+99po++ugjLVy4UEFBQa5jnzx5UkuXLtWaNWu0Y8cO5efna+bMma79ZWVlGj9+vN5991299957io2N1bBhw1RWViZJ+vOf/6xly5bplVde0SeffKKNGzeqe/fukqT169erdevWWrBggQoKCtwK2rn+93//VyNGjNDw4cO1b98+bd26VXFxcV74zV4YX+0DAAAA6rjg4GCtWrVKjz/+uF5++WXddNNNGjBggEaPHq0ePXqoRYsWkqTGjRvL6XS6Xrd06VJNmDBBkydPliRNnz5d7733npYuXapBgwbp7bff1u7du3Xw4EF16tRJktS+fXu3966qqtLLL7+sDh06SJKmTJmiBQsWuPbfdtttbvNfeeUVNWnSRBkZGbrrrruUn58vp9OpIUOGKCQkRG3atNEtt9wiSWratKmCgoIUERHhlvvbfvnLX2r06NGaP3++a6xnz57Gv0cTrEgBAAAAAWDkyJH68ssvtWnTJt1+++3avn27brrpJq1ateqCrzl48KD69evnNtavXz8dPHhQkpSTk6PWrVu7StT5hIeHu0qUJLVq1UpFRUWu7aKiIj355JPq1KmTHA6HHA6HTpw4ofz8fEnSAw88oFOnTql9+/Z6/PHHtWHDBp05c8bos+fk5Gjw4MFGr7lcFCkAAAAgQNSvX19Dhw7Vz372M2VmZmrChAmaN2/eRV9z9rqjsyzLco1dyg0dQkJCah3PsizX9oQJE5Sdna3U1FRlZmYqJydHzZo1U2VlpSQpOjpahw4d0q9//WuFhYVp8uTJ6t+/v6qqqi7pM19qTm+jSAEAAAABqkuXLiovL5f0TeGprq5229+5c2ft3LnTbSwzM1OdO3eWJPXo0UNHjx69rFuNv/vuu3r66ac1bNgwde3aVXa7XV9//bXbnLCwMN1zzz168cUXtX37du3atUsffPCBJCk0NLRW7m/r0aOHtm7d6nFGT3CNFAAAAFDHHTt2TA888IAeeeQR9ejRQxEREdqzZ48WL16se++9V9I3z2PaunWr+vXrJ7vdriZNmmjWrFl68MEHddNNN2nw4MF64403tH79er399tuSpAEDBqh///4aOXKkUlJS1LFjR3388cey2Wy64447Lilbx44dtWbNGsXFxam0tFSzZs1yW0FatWqVqqur1bt3b4WHh2vNmjUKCwtT27ZtXbl37Nih0aNHy263q3nz5rXeY968eRo8eLA6dOig0aNH68yZM3rrrbc0e/bsy/3VXhBFCgAAALgUg+b4OsEFNWzYUL1799ayZcv06aefqqqqStHR0Xr88cf13HPPSZKef/55TZ8+Xb/5zW/0//7f/9Pnn3+u++67Ty+88IKWLFmip59+WjExMUpLS9PAgQNdx/7LX/6imTNn6oc//KHKy8vVsWNHLVy48JKz/e53v9MTTzyhG2+8UW3atFFSUpLbXf0aN26shQsXavr06aqurlb37t31xhtvqFmzZpKkBQsWaNKkSerQoYMqKircvjZ41sCBA/WnP/1JP//5z7Vw4UI1atRI/fv39/C3eWls1vmSXGNKS0vlcDhUUlKiRo0a+ToOAFxxy9J9+zT4cz0z9MIXMAPA1Xb69Gnl5uYqJiZG9evX93UcXCEX+3O+1G7ANVIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAADAt3A/tsDmjT9fihQAAADwf0JCQiRJJ0+e9HESXEln/3zP/nl7gudIAQAAAP8nKChIjRs3VlFRkSQpPDxcNpvNx6ngLZZl6eTJkyoqKlLjxo0VFBTk8bEoUgAAAMA5nE6nJLnKFAJP48aNXX/OnqJIAQAAAOew2Wxq1aqVWrZsqaqqKl/HgZeFhIRc1krUWRQpAAAA4DyCgoK88hduBCZuNgEAAAAAhihSAAAAAGCIIgUAAAAAhihSAAAAAGCIm00AAHxqWfphX0dweWZoJ19HAADUEaxIAQAAAIAhihQAAAAAGKJIAQAAAIAhrpECAMBPcf0YAPgvVqQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwJBPi9SOHTt09913KyoqSjabTRs3bnTbb1mWEhMTFRUVpbCwMA0cOFAHDhxwm1NRUaGpU6eqefPmatCgge655x4dPXr0Kn4KAAAAANcanxap8vJy9ezZU8uXLz/v/sWLFyslJUXLly9XVlaWnE6nhg4dqrKyMtechIQEbdiwQevWrdPOnTt14sQJ3XXXXaqurr5aHwMAAADANSbYl29+55136s477zzvPsuylJqaqrlz52rEiBGSpNWrVysyMlJr167VpEmTVFJSoldffVVr1qzRkCFDJEmvvfaaoqOj9fbbb+v2228/77ErKipUUVHh2i4tLfXyJwMAAAAQyPz2Gqnc3FwVFhYqPj7eNWa32zVgwABlZmZKkrKzs1VVVeU2JyoqSt26dXPNOZ/k5GQ5HA7XT3R09JX7IAAAAAACjt8WqcLCQklSZGSk23hkZKRrX2FhoUJDQ9WkSZMLzjmfOXPmqKSkxPVz5MgRL6cHAAAAEMh8+tW+S2Gz2dy2LcuqNfZt3zXHbrfLbrd7JR8AAACAa4/frkg5nU5JqrWyVFRU5FqlcjqdqqysVHFx8QXnAAAAAIC3+W2RiomJkdPpVHp6umussrJSGRkZ6tu3rySpV69eCgkJcZtTUFCgDz/80DUHAAAAALzNp1/tO3HihP71r3+5tnNzc5WTk6OmTZuqTZs2SkhIUFJSkmJjYxUbG6ukpCSFh4drzJgxkiSHw6FHH31UM2bMULNmzdS0aVPNnDlT3bt3d93FDwAAAAC8zadFas+ePRo0aJBre/r06ZKk8ePHa9WqVZo9e7ZOnTqlyZMnq7i4WL1799aWLVsUERHhes2yZcsUHBysBx98UKdOndLgwYO1atUqBQUFXfXPAwAAAODaYLMsy/J1CF8rLS2Vw+FQSUmJGjVq5Os4AHDFLUs/7OsIfumZoZ18HcGNP/05+dvvBgCulEvtBn57jRQAAAAA+CuKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGfPpAXAK4l/vRMIFzAtmRfJ/iWkb4OAAC4AFakAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQz5ECAADfyZ+eg/bM0E6+jgAArEgBAAAAgCmKFAAAAAAYokgBAAAAgCGukQIA4P/s+uyYryO4+Z5W+jqCn1rq6wAAwIoUAAAAAJiiSAEAAACAIYoUAAAAABjiGikAAFCn8EwrAP6AFSkAAAAAMESRAgAAAABDFCkAAAAAMESRAgAAAABDFCkAAAAAMESRAgAAAABDFCkAAAAAMESRAgAAAABDFCkAAAAAMESRAgAAAABDwb4OAABXyrL0w76OAAAAAhQrUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIaCfR0AAHBt+17+Sl9HQB3jX+fMUl8HAOAjrEgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCG/LlJnzpzRT37yE8XExCgsLEzt27fXggULVFNT45pjWZYSExMVFRWlsLAwDRw4UAcOHPBhagAAAACBzq+L1KJFi/Tyyy9r+fLlOnjwoBYvXqwlS5boV7/6lWvO4sWLlZKSouXLlysrK0tOp1NDhw5VWVmZD5MDAAAACGR+XaR27dqle++9V8OHD1e7du30gx/8QPHx8dqzZ4+kb1ajUlNTNXfuXI0YMULdunXT6tWrdfLkSa1du9bH6QEAAAAEKr8uUrfeequ2bt2qw4cPS5Lef/997dy5U8OGDZMk5ebmqrCwUPHx8a7X2O12DRgwQJmZmRc8bkVFhUpLS91+AAAAAOBSBfs6wMX8+Mc/VklJia6//noFBQWpurpav/zlL/XDH/5QklRYWChJioyMdHtdZGSk8vLyLnjc5ORkzZ8//8oFBwAAABDQ/HpF6vXXX9drr72mtWvXau/evVq9erWWLl2q1atXu82z2Wxu25Zl1Ro715w5c1RSUuL6OXLkyBXJDwAAACAw+fWK1KxZs/Tss89q9OjRkqTu3bsrLy9PycnJGj9+vJxOp6RvVqZatWrlel1RUVGtVapz2e122e32KxseAAAAQMDy6yJ18uRJ1avnvmgWFBTkuv15TEyMnE6n0tPTdeONN0qSKisrlZGRoUWLFl31vAAA4BqzLdnXCdwNmuPrBMA1w6+L1N13361f/vKXatOmjbp27ap9+/YpJSVFjzzyiKRvvtKXkJCgpKQkxcbGKjY2VklJSQoPD9eYMWN8nB4AAABAoPLrIvWrX/1KP/3pTzV58mQVFRUpKipKkyZN0s9+9jPXnNmzZ+vUqVOaPHmyiouL1bt3b23ZskURERE+TA4AAAAgkNksy7J8HcLXSktL5XA4VFJSokaNGvk6DgAvWZZ+2NcRcAm+l7/S1xEAj/Vp38zXEdzx1T7gsl1qN/Dru/YBAAAAgD+iSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAoWBfBwAAXH3fy1/p6wgAANRprEgBAAAAgCGKFAAAAAAY4qt9AAAAHtr12TFfR3DTZ5CvEwDXDlakAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADHlUpHJzc72dAwAAAADqDI+KVMeOHTVo0CC99tprOn36tLczAQAAAIBf86hIvf/++7rxxhs1Y8YMOZ1OTZo0Sbt37/Z2NgAAAADwSx4VqW7duiklJUVffPGF0tLSVFhYqFtvvVVdu3ZVSkqK/v3vf3s7JwAAAAD4jcu62URwcLDuv/9+/fGPf9SiRYv06aefaubMmWrdurXGjRungoICb+UEAAAAAL9xWUVqz549mjx5slq1aqWUlBTNnDlTn376qd555x198cUXuvfee72VEwAAAAD8RrAnL0pJSVFaWpoOHTqkYcOG6fe//72GDRumevW+6WUxMTF65ZVXdP3113s1LAAAAAD4A4+K1IoVK/TII49o4sSJcjqd553Tpk0bvfrqq5cVDgAAAAD8kUdF6pNPPvnOOaGhoRo/frwnhwcAAAAAv+bRNVJpaWn605/+VGv8T3/6k1avXn3ZoQAAAADAn3lUpBYuXKjmzZvXGm/ZsqWSkpIuOxQAAAAA+DOPilReXp5iYmJqjbdt21b5+fmXHQoAAAAA/JlHRaply5bav39/rfH3339fzZo1u+xQAAAAAODPPCpSo0eP1tNPP61t27apurpa1dXVeueddzRt2jSNHj3a2xkBAAAAwK94dNe+X/ziF8rLy9PgwYMVHPzNIWpqajRu3DiukQIAAAAQ8DwqUqGhoXr99df185//XO+//77CwsLUvXt3tW3b1tv5AAAAAMDveFSkzurUqZM6derkrSwAAAAAUCd4VKSqq6u1atUqbd26VUVFRaqpqXHb/84773glHAAAAAD4I4+K1LRp07Rq1SoNHz5c3bp1k81m83YuAAAAAPBbHhWpdevW6Y9//KOGDRvm7TwAAAAA4Pc8uv15aGioOnbs6O0sAAAAAFAneFSkZsyYoRdeeEGWZXk7DwAAAAD4PY++2rdz505t27ZNb731lrp27aqQkBC3/evXr/dKOAAAABjYluzrBP81aI6vEwBXlEdFqnHjxrr//vu9nQUAAAAA6gSPilRaWpq3cwAAAABAneHRNVKSdObMGb399tt65ZVXVFZWJkn68ssvdeLECa+FAwAAAAB/5NGKVF5enu644w7l5+eroqJCQ4cOVUREhBYvXqzTp0/r5Zdf9nZOAAAAAPAbHq1ITZs2TXFxcSouLlZYWJhr/P7779fWrVu9Fg4AAAAA/JHHd+37xz/+odDQULfxtm3b6osvvvBKMAAAAADwVx6tSNXU1Ki6urrW+NGjRxUREXHZoQAAAADAn3lUpIYOHarU1FTXts1m04kTJzRv3jwNGzbMW9kkSV988YUeeughNWvWTOHh4brhhhuUnZ3t2m9ZlhITExUVFaWwsDANHDhQBw4c8GoGAAAAADiXR0Vq2bJlysjIUJcuXXT69GmNGTNG7dq10xdffKFFixZ5LVxxcbH69eunkJAQvfXWW/roo4/0/PPPq3Hjxq45ixcvVkpKipYvX66srCw5nU4NHTrUdSdBAAAAAPA2j66RioqKUk5Ojv7whz9o7969qqmp0aOPPqqxY8e63Xzici1atEjR0dFuz61q166d658ty1Jqaqrmzp2rESNGSJJWr16tyMhIrV27VpMmTTrvcSsqKlRRUeHaLi0t9VpmAAAAAIHP4+dIhYWF6ZFHHtHy5cv10ksv6bHHHvNqiZKkTZs2KS4uTg888IBatmypG2+8Ub/5zW9c+3Nzc1VYWKj4+HjXmN1u14ABA5SZmXnB4yYnJ8vhcLh+oqOjvZobAAAAQGDzaEXq97///UX3jxs3zqMw3/bZZ59pxYoVmj59up577jnt3r1bTz/9tOx2u8aNG6fCwkJJUmRkpNvrIiMjlZeXd8HjzpkzR9OnT3dtl5aWUqYAAAAAXDKPitS0adPctquqqnTy5EmFhoYqPDzca0WqpqZGcXFxSkpKkiTdeOONOnDggFasWOH2Hjabze11lmXVGjuX3W6X3W73SkYAAAAA1x6PvtpXXFzs9nPixAkdOnRIt956q/7whz94LVyrVq3UpUsXt7HOnTsrPz9fkuR0OiXJtTJ1VlFRUa1VKgAAAADwFo9WpM4nNjZWCxcu1EMPPaSPP/7YK8fs16+fDh065DZ2+PBhtW3bVpIUExMjp9Op9PR03XjjjZKkyspKZWRkePXugQDgDd/LX+nrCAAAwEu8VqQkKSgoSF9++aXXjvfMM8+ob9++SkpK0oMPPqjdu3dr5cqVWrnym7+M2Gw2JSQkKCkpSbGxsYqNjVVSUpLCw8M1ZswYr+UAAAAAgHN5VKQ2bdrktm1ZlgoKCrR8+XL169fPK8Ek6eabb9aGDRs0Z84cLViwQDExMUpNTdXYsWNdc2bPnq1Tp05p8uTJKi4uVu/evbVlyxZFRER4LQcAAAAAnMtmWZZl+qJ69dwvrbLZbGrRooVuu+02Pf/882rVqpXXAl4NpaWlcjgcKikpUaNGjXwdB4CXLEs/7OsIbvhqH4ArrU/7Zr6O8F+D5vg6AeCRS+0GHq1I1dTUeBwMAAAAAOo6jx/ICwAAAADXKo9WpM59mO13SUlJ8eQtAAAAAMBveVSk9u3bp7179+rMmTO67rrrJH1zW/KgoCDddNNNrnkXeyguAAAAANRVHhWpu+++WxEREVq9erWaNGki6ZuH9E6cOFHf//73NWPGDK+GBAAAAAB/4tE1Us8//7ySk5NdJUqSmjRpol/84hd6/vnnvRYOAAAAAPyRR0WqtLRUX331Va3xoqIilZWVXXYoAAAAAPBnHhWp+++/XxMnTtSf//xnHT16VEePHtWf//xnPfrooxoxYoS3MwIAAACAX/HoGqmXX35ZM2fO1EMPPaSqqqpvDhQcrEcffVRLlizxakAAAAAA8DceFanw8HC99NJLWrJkiT799FNZlqWOHTuqQYMG3s4HAAAAAH7nsh7IW1BQoIKCAnXq1EkNGjSQZVneygUAAAAAfsujInXs2DENHjxYnTp10rBhw1RQUCBJeuyxx7j1OQAAAICA51GReuaZZxQSEqL8/HyFh4e7xkeNGqXNmzd7LRwAAAAA+COPrpHasmWL/v73v6t169Zu47GxscrLy/NKMAAAAADwVx6tSJWXl7utRJ319ddfy263X3YoAAAAAPBnHhWp/v376/e//71r22azqaamRkuWLNGgQYO8Fg4AAAAA/JFHX+1bsmSJBg4cqD179qiyslKzZ8/WgQMH9J///Ef/+Mc/vJ0RAAAAAPyKRytSXbp00f79+3XLLbdo6NChKi8v14gRI7Rv3z516NDB2xkBAAAAwK8Yr0hVVVUpPj5er7zyiubPn38lMgEAAACAXzNekQoJCdGHH34om812JfIAAAAAgN/z6Kt948aN06uvvurtLAAAAABQJ3h0s4nKykr99re/VXp6uuLi4tSgQQO3/SkpKV4JBwAAAAD+yKhIffbZZ2rXrp0+/PBD3XTTTZKkw4cPu83hK38AAAAAAp1RkYqNjVVBQYG2bdsmSRo1apRefPFFRUZGXpFwAAAAAOCPjK6RsizLbfutt95SeXm5VwMBAAAAgL/z6GYTZ327WAEAAADAtcCoSNlstlrXQHFNFAAAAIBrjdE1UpZlacKECbLb7ZKk06dP68knn6x1177169d7LyGAOmVZ+uHvngQAwNW0LdnXCf5r0BxfJ4CXGBWp8ePHu20/9NBDXg0DAAAAAHWBUZFKS0u7UjkAAAAAoM7w6IG8AAAA8D+7Pjvm6wgufQb5OgFwZV3WXfsAAAAA4FpEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQ3WqSCUnJ8tmsykhIcE1ZlmWEhMTFRUVpbCwMA0cOFAHDhzwXUgAAAAAAa/OFKmsrCytXLlSPXr0cBtfvHixUlJStHz5cmVlZcnpdGro0KEqKyvzUVIAAAAAga5OFKkTJ05o7Nix+s1vfqMmTZq4xi3LUmpqqubOnasRI0aoW7duWr16tU6ePKm1a9f6MDEAAACAQFYnitRTTz2l4cOHa8iQIW7jubm5KiwsVHx8vGvMbrdrwIAByszMvODxKioqVFpa6vYDAAAAAJcq2NcBvsu6deu0d+9eZWVl1dpXWFgoSYqMjHQbj4yMVF5e3gWPmZycrPnz53s3KAAAAP5rW7KvEwBXlF+vSB05ckTTpk3Ta6+9pvr1619wns1mc9u2LKvW2LnmzJmjkpIS18+RI0e8lhkAAABA4PPrFans7GwVFRWpV69errHq6mrt2LFDy5cv16FDhyR9szLVqlUr15yioqJaq1TnstvtstvtVy44AAAAgIDm1ytSgwcP1gcffKCcnBzXT1xcnMaOHaucnBy1b99eTqdT6enprtdUVlYqIyNDffv29WFyAAAAAIHMr1ekIiIi1K1bN7exBg0aqFmzZq7xhIQEJSUlKTY2VrGxsUpKSlJ4eLjGjBnji8gAAAAArgF+XaQuxezZs3Xq1ClNnjxZxcXF6t27t7Zs2aKIiAhfRwMAAAAQoOpckdq+fbvbts1mU2JiohITE32SBwAAAMC1x6+vkQIAAAAAf0SRAgAAAABDFCkAAAAAMESRAgAAAABDFCkAAAAAMESRAgAAAABDFCkAAAAAMESRAgAAAABDde6BvAD82/fyV/o6gst7bZ7wdQQAABCgWJECAAAAAEMUKQAAAAAwRJECAAAAAEMUKQAAAAAwRJECAAAAAEMUKQAAAAAwRJECAAAAAEM8RwpAwPKnZ1oBAIDAwooUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAoWBfBwDgBduSfZ0AAADgmsKKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgKFgXwcA6qxtyb5OAACA39r12TFfR3Dp076ZryMgALEiBQAAAACGKFIAAAAAYIgiBQAAAACG/LpIJScn6+abb1ZERIRatmyp++67T4cOHXKbY1mWEhMTFRUVpbCwMA0cOFAHDhzwUWIAAAAA1wK/LlIZGRl66qmn9N577yk9PV1nzpxRfHy8ysvLXXMWL16slJQULV++XFlZWXI6nRo6dKjKysp8mBwAAABAIPPru/Zt3rzZbTstLU0tW7ZUdna2+vfvL8uylJqaqrlz52rEiBGSpNWrVysyMlJr167VpEmTznvciooKVVRUuLZLS0uv3IcAAAAAEHD8ukh9W0lJiSSpadOmkqTc3FwVFhYqPj7eNcdut2vAgAHKzMy8YJFKTk7W/Pnzr3xgAAAA4Fz+9PiUQXN8naBO8+uv9p3LsixNnz5dt956q7p16yZJKiwslCRFRka6zY2MjHTtO585c+aopKTE9XPkyJErFxwAAABAwKkzK1JTpkzR/v37tXPnzlr7bDab27ZlWbXGzmW322W3272eEQAAAMC1oU6sSE2dOlWbNm3Stm3b1Lp1a9e40+mUpFqrT0VFRbVWqQAAAADAW/y6SFmWpSlTpmj9+vV65513FBMT47Y/JiZGTqdT6enprrHKykplZGSob9++VzsuAAAAgGuEX3+176mnntLatWv117/+VREREa6VJ4fDobCwMNlsNiUkJCgpKUmxsbGKjY1VUlKSwsPDNWbMGB+nBwAAABCo/LpIrVixQpI0cOBAt/G0tDRNmDBBkjR79mydOnVKkydPVnFxsXr37q0tW7YoIiLiKqcFAAAAcK3w6yJlWdZ3zrHZbEpMTFRiYuKVDwQAAAAA8vMiBdTiT89eAAAAwDXLr282AQAAAAD+iCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIaCfR0AAAAAgA9sS/Z1AneD5vg6gRFWpAAAAADAEEUKAAAAAAxRpAAAAADAENdIAQFg12fHfB0BAADgmsKKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgKFgXwfAeWxL9nWC/xo0x9cJAAAAAL/DihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGOI5Urg4f3qmFQAAAOAnWJECAAAAAEMUKQAAAAAwRJECAAAAAEMUKQAAAAAwRJECAAAAAEMUKQAAAAAwRJECAAAAAEMUKQAAAAAwRJECAAAAAEMUKQAAAAAwFOzrAAAAAMCVtOuzY76O4NKnfTNfR4CXsCIFAAAAAIYoUgAAAABgiCIFAAAAAIYCpki99NJLiomJUf369dWrVy+9++67vo4EAAAAIEAFRJF6/fXXlZCQoLlz52rfvn36/ve/rzvvvFP5+fm+jgYAAAAgAAVEkUpJSdGjjz6qxx57TJ07d1Zqaqqio6O1YsUKX0cDAAAAEIDq/O3PKysrlZ2drWeffdZtPD4+XpmZmed9TUVFhSoqKlzbJSUlkqTS0tIrF9RE+WlfJ0AdU36q4rsnAQAAnyvl73kX5id/Fz/bCSzLuui8Ol+kvv76a1VXVysyMtJtPDIyUoWFhed9TXJysubPn19rPDo6+opkBAAAAPBdFvg6gJuysjI5HI4L7q/zReosm83mtm1ZVq2xs+bMmaPp06e7tmtqavSf//xHzZo1u+BrrrbS0lJFR0fryJEjatSoka/jABfEuYq6gnMVdQXnKuqKQD1XLctSWVmZoqKiLjqvzhep5s2bKygoqNbqU1FRUa1VqrPsdrvsdrvbWOPGja9UxMvSqFGjgDoxEbg4V1FXcK6iruBcRV0RiOfqxVaizqrzN5sIDQ1Vr169lJ6e7jaenp6uvn37+igVAAAAgEBW51ekJGn69Ol6+OGHFRcXpz59+mjlypXKz8/Xk08+6etoAAAAAAJQQBSpUaNG6dixY1qwYIEKCgrUrVs3/e1vf1Pbtm19Hc1jdrtd8+bNq/UVRMDfcK6iruBcRV3BuYq64lo/V23Wd93XDwAAAADgps5fIwUAAAAAVxtFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaT80EsvvaSYmBjVr19fvXr10rvvvuvrSAhwO3bs0N13362oqCjZbDZt3LjRbb9lWUpMTFRUVJTCwsI0cOBAHThwwG1ORUWFpk6dqubNm6tBgwa65557dPToUbc5xcXFevjhh+VwOORwOPTwww/r+PHjV/jTIVAkJyfr5ptvVkREhFq2bKn77rtPhw4dcpvDuQp/sGLFCvXo0cP1kNI+ffrorbfecu3nPIW/Sk5Ols1mU0JCgmuM8/XCKFJ+5vXXX1dCQoLmzp2rffv26fvf/77uvPNO5efn+zoaAlh5ebl69uyp5cuXn3f/4sWLlZKSouXLlysrK0tOp1NDhw5VWVmZa05CQoI2bNigdevWaefOnTpx4oTuuusuVVdXu+aMGTNGOTk52rx5szZv3qycnBw9/PDDV/zzITBkZGToqaee0nvvvaf09HSdOXNG8fHxKi8vd83hXIU/aN26tRYuXKg9e/Zoz549uu2223Tvvfe6/vLJeQp/lJWVpZUrV6pHjx5u45yvF2HBr9xyyy3Wk08+6TZ2/fXXW88++6yPEuFaI8nasGGDa7umpsZyOp3WwoULXWOnT5+2HA6H9fLLL1uWZVnHjx+3QkJCrHXr1rnmfPHFF1a9evWszZs3W5ZlWR999JElyXrvvfdcc3bt2mVJsj7++OMr/KkQiIqKiixJVkZGhmVZnKvwb02aNLF++9vfcp7CL5WVlVmxsbFWenq6NWDAAGvatGmWZfHv1e/CipQfqaysVHZ2tuLj493G4+PjlZmZ6aNUuNbl5uaqsLDQ7by02+0aMGCA67zMzs5WVVWV25yoqCh169bNNWfXrl1yOBzq3bu3a873vvc9ORwOzm94pKSkRJLUtGlTSZyr8E/V1dVat26dysvL1adPH85T+KWnnnpKw4cP15AhQ9zGOV8vLtjXAfBfX3/9taqrqxUZGek2HhkZqcLCQh+lwrXu7Ll3vvMyLy/PNSc0NFRNmjSpNefs6wsLC9WyZctax2/ZsiXnN4xZlqXp06fr1ltvVbdu3SRxrsK/fPDBB+rTp49Onz6thg0basOGDerSpYvrL42cp/AX69at0969e5WVlVVrH/9evTiKlB+y2Wxu25Zl1RoDrjZPzstvzznffM5veGLKlCnav3+/du7cWWsf5yr8wXXXXaecnBwdP35cf/nLXzR+/HhlZGS49nOewh8cOXJE06ZN05YtW1S/fv0LzuN8PT++2udHmjdvrqCgoFrNvKioqNb/CQCuFqfTKUkXPS+dTqcqKytVXFx80TlfffVVreP/+9//5vyGkalTp2rTpk3atm2bWrdu7RrnXIU/CQ0NVceOHRUXF6fk5GT17NlTL7zwAucp/Ep2draKiorUq1cvBQcHKzg4WBkZGXrxxRcVHBzsOpc4X8+PIuVHQkND1atXL6Wnp7uNp6enq2/fvj5KhWtdTEyMnE6n23lZWVmpjIwM13nZq1cvhYSEuM0pKCjQhx9+6JrTp08flZSUaPfu3a45//znP1VSUsL5jUtiWZamTJmi9evX65133lFMTIzbfs5V+DPLslRRUcF5Cr8yePBgffDBB8rJyXH9xMXFaezYscrJyVH79u05Xy/m6t/fAhezbt06KyQkxHr11Vetjz76yEpISLAaNGhgff75576OhgBWVlZm7du3z9q3b58lyUpJSbH27dtn5eXlWZZlWQsXLrQcDoe1fv1664MPPrB++MMfWq1atbJKS0tdx3jyySet1q1bW2+//ba1d+9e67bbbrN69uxpnTlzxjXnjjvusHr06GHt2rXL2rVrl9W9e3frrrvuuuqfF3XTj370I8vhcFjbt2+3CgoKXD8nT550zeFchT+YM2eOtWPHDis3N9fav3+/9dxzz1n16tWztmzZYlkW5yn827l37bMszteLoUj5oV//+tdW27ZtrdDQUOumm25y3doXuFK2bdtmSar1M378eMuyvrn96bx58yyn02nZ7Xarf//+1gcffOB2jFOnTllTpkyxmjZtaoWFhVl33XWXlZ+f7zbn2LFj1tixY62IiAgrIiLCGjt2rFVcXHyVPiXquvOdo5KstLQ01xzOVfiDRx55xPXf8RYtWliDBw92lSjL4jyFf/t2keJ8vTCbZVmWb9bCAAAAAKBu4hopAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAuYuXKlYqOjla9evWUmpqqxMRE3XDDDb6OBQDwMZtlWZavQwAAcLkmTJig1atXS5KCg4MVHR2tESNGaP78+WrQoIFHxywtLVXz5s2VkpKikSNHyuFwqKamRhUVFWrWrJnrfY8fP66NGzd666MAAOqAYF8HAADAW+644w6lpaWpqqpK7777rh577DGVl5drxYoVbvOqqqoUEhLyncfLz89XVVWVhg8frlatWrnGGzZs6PXsAIC6ha/2AQACht1ul9PpVHR0tMaMGaOxY8dq48aNrq/j/e53v1P79u1lt9tlWZby8/N17733qmHDhmrUqJEefPBBffXVV5KkVatWqXv37pKk9u3by2az6fPPP3f7al9iYqJWr16tv/71r7LZbLLZbNq+fbuPPj0A4GpiRQoAELDCwsJUVVUlSfrXv/6lP/7xj/rLX/6ioKAgSdJ9992nBg0aKCMjQ2fOnNHkyZM1atQobd++XaNGjVJ0dLSGDBmi3bt3Kzo6Wi1atHA7/syZM3Xw4EGVlpYqLS1NktS0adOr+yEBAD5BkQIABKTdu3dr7dq1Gjx4sCSpsrJSa9ascZWh9PR07d+/X7m5uYqOjpYkrVmzRl27dlVWVpZuvvlm13VQLVq0kNPprPUeDRs2VFhYmCoqKs67HwAQuPhqHwAgYLz55ptq2LCh6tevrz59+qh///761a9+JUlq27at24rSwYMHFR0d7SpRktSlSxc1btxYBw8evOrZAQB1CytSAICAMWjQIK1YsUIhISGKiopyu6HEt+/cZ1mWbDZbrWNcaBwAgHNRpAAAAaNBgwbq2LHjJc3t0qWL8vPzdeTIEdeq1EcffaSSkhJ17tz5kt8zNDRU1dXVHuUFANRdfLUPAHBNGjJkiHr06KGxY8dq79692r17t8aNG6cBAwYoLi7uko/Trl077d+/X4cOHdLXX3/turkFACCwUaQAANckm82mjRs3qkmTJurfv7+GDBmi9u3b6/XXXzc6zuOPP67rrrtOcXFxatGihf7xj39cocQAAH9isyzL8nUIAAAAAKhLWJECAAAAAEMUKQAAAAAwRJECAAAAAEMUKQAAAAAwRJECAAAAAEMUKQAAAAAwRJECAAAAAEMUKQAAAAAwRJECAAAAAEMUKQAAAAAwRJECAAAAAEP/H0tcVTpfixSiAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAIPCAYAAAB5Qe+aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7B0lEQVR4nO3deXhU5cH+8XvIMiQQhj1DfgQIEJRdJUoByyIQFVyhCgVlccMiSGSrSFsCbRM2Q7RUlNYGii/FLkDRt1IiQpAGSwhEFBGsxgQ0MZWGJARIQnJ+f/gyZQwgzzAwk+H7ua5cl+c5z5y5J5xLuX3mnGOzLMsSAAAAAOCS1fN1AAAAAACoayhSAAAAAGCIIgUAAAAAhihSAAAAAGCIIgUAAAAAhihSAAAAAGCIIgUAAAAAhihSAAAAAGCIIgUAAAAAhihSAAAAAGAo2JdvvmPHDi1ZskTZ2dkqKCjQhg0bdN9990mSqqqq9JOf/ER/+9vf9Nlnn8nhcGjIkCFauHChoqKiXMeoqKjQzJkz9Yc//EGnTp3S4MGD9dJLL6l169aXnKOmpkZffvmlIiIiZLPZvP0xAQAAANQRlmWprKxMUVFRqlfvwutOPi1S5eXl6tmzpyZOnKiRI0e67Tt58qT27t2rn/70p+rZs6eKi4uVkJCge+65R3v27HHNS0hI0BtvvKF169apWbNmmjFjhu666y5lZ2crKCjoknJ8+eWXio6O9upnAwAAAFB3HTly5KKLMzbLsqyrmOeCbDab24rU+WRlZemWW25RXl6e2rRpo5KSErVo0UJr1qzRqFGjJP23FP3tb3/T7bfffknvXVJSosaNG+vIkSNq1KiRNz4OAAAAgDqotLRU0dHROn78uBwOxwXn+XRFylRJSYlsNpsaN24sScrOzlZVVZXi4+Ndc6KiotStWzdlZmZesEhVVFSooqLCtV1WViZJatSoEUUKAAAAwHde8lNnbjZx+vRpPfvssxozZoyr7BQWFio0NFRNmjRxmxsZGanCwsILHis5OVkOh8P1w9f6AAAAAJioE0WqqqpKo0ePVk1NjV566aXvnG9Z1kUb5Jw5c1RSUuL6OXLkiDfjAgAAAAhwfl+kqqqq9OCDDyo3N1fp6eluX71zOp2qrKxUcXGx22uKiooUGRl5wWPa7XbX1/j4Oh8AAAAAU359jdTZEvXJJ59o27Ztatasmdv+Xr16KSQkROnp6XrwwQclSQUFBfrwww+1ePFiX0QGAABAALAsS2fOnFF1dbWvo8DLgoKCFBwcfNmPPfJpkTpx4oT+9a9/ubZzc3OVk5Ojpk2bKioqSj/4wQ+0d+9evfnmm6qurnZd99S0aVOFhobK4XDo0Ucf1YwZM9SsWTM1bdpUM2fOVPfu3TVkyBBffSwAAADUYZWVlSooKNDJkyd9HQVXSHh4uFq1aqXQ0FCPj+HT259v375dgwYNqjU+fvx4JSYmKiYm5ryv27ZtmwYOHCjpm5tQzJo1S2vXrnV7IK/JDSRKS0vlcDhUUlLC1/wAAACuYTU1Nfrkk08UFBSkFi1aKDQ09LJXLuA/LMtSZWWl/v3vf6u6ulqxsbG1Hrp7qd3Ab54j5UsUKQAAAEjf/E/63NxctW3bVuHh4b6Ogyvk5MmTysvLU0xMjOrXr++271K7gd/fbAIAAAC42r69SoHA4o0/X84QAAAAADBEkQIAAAAAQ359+3MAAADAXyxLP3zV3uuZoZ2u2nud9fnnnysmJkb79u3TDTfccNXfv65hRQoAAAAIABMmTJDNZpPNZlNwcLDatGmjH/3oRyouLvZ1NJdVq1apcePGvo7hFRQpAAAAIEDccccdKigo0Oeff67f/va3euONNzR58mRfxwpIFCkAAAAgQNjtdjmdTrVu3Vrx8fEaNWqUtmzZIumbZ2QtWLBArVu3lt1u1w033KDNmzfXOsbHH3+svn37qn79+uratau2b9/u2ne+FaWNGze6PWvr/fff16BBgxQREaFGjRqpV69e2rNnj7Zv366JEyeqpKTEtXKWmJh4JX4NVwVFCgAAAAhAn332mTZv3qyQkBBJ0gsvvKDnn39eS5cu1f79+3X77bfrnnvu0SeffOL2ulmzZmnGjBnat2+f+vbtq3vuuUfHjh275PcdO3asWrduraysLGVnZ+vZZ59VSEiI+vbtq9TUVDVq1EgFBQUqKCjQzJkzvfqZryaKFAAAABAg3nzzTTVs2FBhYWHq0KGDPvroI/34xz+WJC1dulQ//vGPNXr0aF133XVatGiRbrjhBqWmprodY8qUKRo5cqQ6d+6sFStWyOFw6NVXX73kDPn5+RoyZIiuv/56xcbG6oEHHlDPnj0VGhoqh8Mhm80mp9Mpp9Ophg0bevPjX1UUKQAAACBADBo0SDk5OfrnP/+pqVOn6vbbb9fUqVNVWlqqL7/8Uv369XOb369fPx08eNBtrE+fPq5/Dg4OVlxcXK05FzN9+nQ99thjGjJkiBYuXKhPP/308j6Un6JIAQAAAAGiQYMG6tixo3r06KEXX3xRFRUVmj9/vmv/udcySZJlWbXGzufsnHr16smyLLd9VVVVbtuJiYk6cOCAhg8frnfeeUddunTRhg0bPP1IfosiBQAAAASoefPmaenSpTpx4oSioqK0c+dOt/2ZmZnq3Lmz29h7773n+uczZ84oOztb119/vSSpRYsWKisrU3l5uWtOTk5Orfft1KmTnnnmGW3ZskUjRoxQWlqaJCk0NFTV1dXe+ng+xQN5AeAadDUfKvldfPHQSQC4VgwcOFBdu3ZVUlKSZs2apXnz5qlDhw664YYblJaWppycHP3P//yP22t+/etfKzY2Vp07d9ayZctUXFysRx55RJLUu3dvhYeH67nnntPUqVO1e/durVq1yvXaU6dOadasWfrBD36gmJgYHT16VFlZWRo5cqQkqV27djpx4oS2bt2qnj17Kjw8XOHh4Vft9+FNFCkAAADgEtTV//Ezffp0TZw4UYcPH1ZpaalmzJihoqIidenSRZs2bVJsbKzb/IULF2rRokXat2+fOnTooL/+9a9q3ry5JKlp06Z67bXXNGvWLK1cuVJDhgxRYmKinnjiCUlSUFCQjh07pnHjxumrr75S8+bNNWLECNfXC/v27asnn3xSo0aN0rFjxzRv3rw6ewt0m/XtLzleg0pLS+VwOFRSUqJGjRr5Og4AXHGsSAHA+Z0+fVq5ubmKiYlR/fr1fR0HV8jF/pwvtRtwjRQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGAr2dQAAAACgTtiWfPXea9Ccq/del2HVqlVKSEjQ8ePHr4n3PRcrUgAAAEAAKCoq0qRJk9SmTRvZ7XY5nU7dfvvt2rVrlyTJZrNp48aNvg3pgXbt2ik1NdVtbNSoUTp8+LBvAv0fVqQAAACAADBy5EhVVVVp9erVat++vb766itt3bpV//nPf3wdzevCwsIUFhbm0wysSAEAAAB13PHjx7Vz504tWrRIgwYNUtu2bXXLLbdozpw5Gj58uNq1aydJuv/++2Wz2VzbkrRixQp16NBBoaGhuu6667RmzZpax37iiScUGRmp+vXrq1u3bnrzzTfd5vz9739X586d1bBhQ91xxx0qKChw7cvKytLQoUPVvHlzORwODRgwQHv37nV7fWJiomslLSoqSk8//bQkaeDAgcrLy9Mzzzwjm80mm80m6Zuv9jVu3NjtGJs2bVJcXJzq16+v5s2ba8SIEZfzK/1OFCkAAACgjmvYsKEaNmyojRs3qqKiotb+rKwsSVJaWpoKCgpc2xs2bNC0adM0Y8YMffjhh5o0aZImTpyobdu2SZJqamp05513KjMzU6+99po++ugjLVy4UEFBQa5jnzx5UkuXLtWaNWu0Y8cO5efna+bMma79ZWVlGj9+vN5991299957io2N1bBhw1RWViZJ+vOf/6xly5bplVde0SeffKKNGzeqe/fukqT169erdevWWrBggQoKCtwK2rn+93//VyNGjNDw4cO1b98+bd26VXFxcV74zV4YX+0DAAAA6rjg4GCtWrVKjz/+uF5++WXddNNNGjBggEaPHq0ePXqoRYsWkqTGjRvL6XS6Xrd06VJNmDBBkydPliRNnz5d7733npYuXapBgwbp7bff1u7du3Xw4EF16tRJktS+fXu3966qqtLLL7+sDh06SJKmTJmiBQsWuPbfdtttbvNfeeUVNWnSRBkZGbrrrruUn58vp9OpIUOGKCQkRG3atNEtt9wiSWratKmCgoIUERHhlvvbfvnLX2r06NGaP3++a6xnz57Gv0cTrEgBAAAAAWDkyJH68ssvtWnTJt1+++3avn27brrpJq1ateqCrzl48KD69evnNtavXz8dPHhQkpSTk6PWrVu7StT5hIeHu0qUJLVq1UpFRUWu7aKiIj355JPq1KmTHA6HHA6HTpw4ofz8fEnSAw88oFOnTql9+/Z6/PHHtWHDBp05c8bos+fk5Gjw4MFGr7lcFCkAAAAgQNSvX19Dhw7Vz372M2VmZmrChAmaN2/eRV9z9rqjsyzLco1dyg0dQkJCah3PsizX9oQJE5Sdna3U1FRlZmYqJydHzZo1U2VlpSQpOjpahw4d0q9//WuFhYVp8uTJ6t+/v6qqqi7pM19qTm+jSAEAAAABqkuXLiovL5f0TeGprq5229+5c2ft3LnTbSwzM1OdO3eWJPXo0UNHjx69rFuNv/vuu3r66ac1bNgwde3aVXa7XV9//bXbnLCwMN1zzz168cUXtX37du3atUsffPCBJCk0NLRW7m/r0aOHtm7d6nFGT3CNFAAAAFDHHTt2TA888IAeeeQR9ejRQxEREdqzZ48WL16se++9V9I3z2PaunWr+vXrJ7vdriZNmmjWrFl68MEHddNNN2nw4MF64403tH79er399tuSpAEDBqh///4aOXKkUlJS1LFjR3388cey2Wy64447Lilbx44dtWbNGsXFxam0tFSzZs1yW0FatWqVqqur1bt3b4WHh2vNmjUKCwtT27ZtXbl37Nih0aNHy263q3nz5rXeY968eRo8eLA6dOig0aNH68yZM3rrrbc0e/bsy/3VXhBFCgAAALgUg+b4OsEFNWzYUL1799ayZcv06aefqqqqStHR0Xr88cf13HPPSZKef/55TZ8+Xb/5zW/0//7f/9Pnn3+u++67Ty+88IKWLFmip59+WjExMUpLS9PAgQNdx/7LX/6imTNn6oc//KHKy8vVsWNHLVy48JKz/e53v9MTTzyhG2+8UW3atFFSUpLbXf0aN26shQsXavr06aqurlb37t31xhtvqFmzZpKkBQsWaNKkSerQoYMqKircvjZ41sCBA/WnP/1JP//5z7Vw4UI1atRI/fv39/C3eWls1vmSXGNKS0vlcDhUUlKiRo0a+ToOAFxxy9J9+zT4cz0z9MIXMAPA1Xb69Gnl5uYqJiZG9evX93UcXCEX+3O+1G7ANVIAAAAAYIgiBQAAAACGKFIAAAAAYIgiBQAAAACGKFIAAADAt3A/tsDmjT9fihQAAADwf0JCQiRJJ0+e9HESXEln/3zP/nl7gudIAQAAAP8nKChIjRs3VlFRkSQpPDxcNpvNx6ngLZZl6eTJkyoqKlLjxo0VFBTk8bEoUgAAAMA5nE6nJLnKFAJP48aNXX/OnqJIAQAAAOew2Wxq1aqVWrZsqaqqKl/HgZeFhIRc1krUWRQpAAAA4DyCgoK88hduBCZuNgEAAAAAhihSAAAAAGCIIgUAAAAAhihSAAAAAGCIm00AAHxqWfphX0dweWZoJ19HAADUEaxIAQAAAIAhihQAAAAAGKJIAQAAAIAhrpECAMBPcf0YAPgvVqQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaQAAAAAwJBPi9SOHTt09913KyoqSjabTRs3bnTbb1mWEhMTFRUVpbCwMA0cOFAHDhxwm1NRUaGpU6eqefPmatCgge655x4dPXr0Kn4KAAAAANcanxap8vJy9ezZU8uXLz/v/sWLFyslJUXLly9XVlaWnE6nhg4dqrKyMtechIQEbdiwQevWrdPOnTt14sQJ3XXXXaqurr5aHwMAAADANSbYl29+55136s477zzvPsuylJqaqrlz52rEiBGSpNWrVysyMlJr167VpEmTVFJSoldffVVr1qzRkCFDJEmvvfaaoqOj9fbbb+v2228/77ErKipUUVHh2i4tLfXyJwMAAAAQyPz2Gqnc3FwVFhYqPj7eNWa32zVgwABlZmZKkrKzs1VVVeU2JyoqSt26dXPNOZ/k5GQ5HA7XT3R09JX7IAAAAAACjt8WqcLCQklSZGSk23hkZKRrX2FhoUJDQ9WkSZMLzjmfOXPmqKSkxPVz5MgRL6cHAAAAEMh8+tW+S2Gz2dy2LcuqNfZt3zXHbrfLbrd7JR8AAACAa4/frkg5nU5JqrWyVFRU5FqlcjqdqqysVHFx8QXnAAAAAIC3+W2RiomJkdPpVHp6umussrJSGRkZ6tu3rySpV69eCgkJcZtTUFCgDz/80DUHAAAAALzNp1/tO3HihP71r3+5tnNzc5WTk6OmTZuqTZs2SkhIUFJSkmJjYxUbG6ukpCSFh4drzJgxkiSHw6FHH31UM2bMULNmzdS0aVPNnDlT3bt3d93FDwAAAAC8zadFas+ePRo0aJBre/r06ZKk8ePHa9WqVZo9e7ZOnTqlyZMnq7i4WL1799aWLVsUERHhes2yZcsUHBysBx98UKdOndLgwYO1atUqBQUFXfXPAwAAAODaYLMsy/J1CF8rLS2Vw+FQSUmJGjVq5Os4AHDFLUs/7OsIfumZoZ18HcGNP/05+dvvBgCulEvtBn57jRQAAAAA+CuKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGfPpAXAK4l/vRMIFzAtmRfJ/iWkb4OAAC4AFakAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQz5ECAADfyZ+eg/bM0E6+jgAArEgBAAAAgCmKFAAAAAAYokgBAAAAgCGukQIA4P/s+uyYryO4+Z5W+jqCn1rq6wAAwIoUAAAAAJiiSAEAAACAIYoUAAAAABjiGikAAFCn8EwrAP6AFSkAAAAAMESRAgAAAABDFCkAAAAAMESRAgAAAABDFCkAAAAAMESRAgAAAABDFCkAAAAAMESRAgAAAABDFCkAAAAAMESRAgAAAABDwb4OAABXyrL0w76OAAAAAhQrUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIaCfR0AAHBt+17+Sl9HQB3jX+fMUl8HAOAjrEgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCG/LlJnzpzRT37yE8XExCgsLEzt27fXggULVFNT45pjWZYSExMVFRWlsLAwDRw4UAcOHPBhagAAAACBzq+L1KJFi/Tyyy9r+fLlOnjwoBYvXqwlS5boV7/6lWvO4sWLlZKSouXLlysrK0tOp1NDhw5VWVmZD5MDAAAACGR+XaR27dqle++9V8OHD1e7du30gx/8QPHx8dqzZ4+kb1ajUlNTNXfuXI0YMULdunXT6tWrdfLkSa1du9bH6QEAAAAEKr8uUrfeequ2bt2qw4cPS5Lef/997dy5U8OGDZMk5ebmqrCwUPHx8a7X2O12DRgwQJmZmRc8bkVFhUpLS91+AAAAAOBSBfs6wMX8+Mc/VklJia6//noFBQWpurpav/zlL/XDH/5QklRYWChJioyMdHtdZGSk8vLyLnjc5ORkzZ8//8oFBwAAABDQ/HpF6vXXX9drr72mtWvXau/evVq9erWWLl2q1atXu82z2Wxu25Zl1Ro715w5c1RSUuL6OXLkyBXJDwAAACAw+fWK1KxZs/Tss89q9OjRkqTu3bsrLy9PycnJGj9+vJxOp6RvVqZatWrlel1RUVGtVapz2e122e32KxseAAAAQMDy6yJ18uRJ1avnvmgWFBTkuv15TEyMnE6n0tPTdeONN0qSKisrlZGRoUWLFl31vAAA4BqzLdnXCdwNmuPrBMA1w6+L1N13361f/vKXatOmjbp27ap9+/YpJSVFjzzyiKRvvtKXkJCgpKQkxcbGKjY2VklJSQoPD9eYMWN8nB4AAABAoPLrIvWrX/1KP/3pTzV58mQVFRUpKipKkyZN0s9+9jPXnNmzZ+vUqVOaPHmyiouL1bt3b23ZskURERE+TA4AAAAgkNksy7J8HcLXSktL5XA4VFJSokaNGvk6DgAvWZZ+2NcRcAm+l7/S1xEAj/Vp38zXEdzx1T7gsl1qN/Dru/YBAAAAgD+iSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAoWBfBwAAXH3fy1/p6wgAANRprEgBAAAAgCGKFAAAAAAY4qt9AAAAHtr12TFfR3DTZ5CvEwDXDlakAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADFGkAAAAAMAQRQoAAAAADHlUpHJzc72dAwAAAADqDI+KVMeOHTVo0CC99tprOn36tLczAQAAAIBf86hIvf/++7rxxhs1Y8YMOZ1OTZo0Sbt37/Z2NgAAAADwSx4VqW7duiklJUVffPGF0tLSVFhYqFtvvVVdu3ZVSkqK/v3vf3s7JwAAAAD4jcu62URwcLDuv/9+/fGPf9SiRYv06aefaubMmWrdurXGjRungoICb+UEAAAAAL9xWUVqz549mjx5slq1aqWUlBTNnDlTn376qd555x198cUXuvfee72VEwAAAAD8RrAnL0pJSVFaWpoOHTqkYcOG6fe//72GDRumevW+6WUxMTF65ZVXdP3113s1LAAAAAD4A4+K1IoVK/TII49o4sSJcjqd553Tpk0bvfrqq5cVDgAAAAD8kUdF6pNPPvnOOaGhoRo/frwnhwcAAAAAv+bRNVJpaWn605/+VGv8T3/6k1avXn3ZoQAAAADAn3lUpBYuXKjmzZvXGm/ZsqWSkpIuOxQAAAAA+DOPilReXp5iYmJqjbdt21b5+fmXHQoAAAAA/JlHRaply5bav39/rfH3339fzZo1u+xQAAAAAODPPCpSo0eP1tNPP61t27apurpa1dXVeueddzRt2jSNHj3a2xkBAAAAwK94dNe+X/ziF8rLy9PgwYMVHPzNIWpqajRu3DiukQIAAAAQ8DwqUqGhoXr99df185//XO+//77CwsLUvXt3tW3b1tv5AAAAAMDveFSkzurUqZM6derkrSwAAAAAUCd4VKSqq6u1atUqbd26VUVFRaqpqXHb/84773glHAAAAAD4I4+K1LRp07Rq1SoNHz5c3bp1k81m83YuAAAAAPBbHhWpdevW6Y9//KOGDRvm7TwAAAAA4Pc8uv15aGioOnbs6O0sAAAAAFAneFSkZsyYoRdeeEGWZXk7DwAAAAD4PY++2rdz505t27ZNb731lrp27aqQkBC3/evXr/dKOAAAABjYluzrBP81aI6vEwBXlEdFqnHjxrr//vu9nQUAAAAA6gSPilRaWpq3cwAAAABAneHRNVKSdObMGb399tt65ZVXVFZWJkn68ssvdeLECa+FAwAAAAB/5NGKVF5enu644w7l5+eroqJCQ4cOVUREhBYvXqzTp0/r5Zdf9nZOAAAAAPAbHq1ITZs2TXFxcSouLlZYWJhr/P7779fWrVu9Fg4AAAAA/JHHd+37xz/+odDQULfxtm3b6osvvvBKMAAAAADwVx6tSNXU1Ki6urrW+NGjRxUREXHZoQAAAADAn3lUpIYOHarU1FTXts1m04kTJzRv3jwNGzbMW9kkSV988YUeeughNWvWTOHh4brhhhuUnZ3t2m9ZlhITExUVFaWwsDANHDhQBw4c8GoGAAAAADiXR0Vq2bJlysjIUJcuXXT69GmNGTNG7dq10xdffKFFixZ5LVxxcbH69eunkJAQvfXWW/roo4/0/PPPq3Hjxq45ixcvVkpKipYvX66srCw5nU4NHTrUdSdBAAAAAPA2j66RioqKUk5Ojv7whz9o7969qqmp0aOPPqqxY8e63Xzici1atEjR0dFuz61q166d658ty1Jqaqrmzp2rESNGSJJWr16tyMhIrV27VpMmTTrvcSsqKlRRUeHaLi0t9VpmAAAAAIHP4+dIhYWF6ZFHHtHy5cv10ksv6bHHHvNqiZKkTZs2KS4uTg888IBatmypG2+8Ub/5zW9c+3Nzc1VYWKj4+HjXmN1u14ABA5SZmXnB4yYnJ8vhcLh+oqOjvZobAAAAQGDzaEXq97///UX3jxs3zqMw3/bZZ59pxYoVmj59up577jnt3r1bTz/9tOx2u8aNG6fCwkJJUmRkpNvrIiMjlZeXd8HjzpkzR9OnT3dtl5aWUqYAAAAAXDKPitS0adPctquqqnTy5EmFhoYqPDzca0WqpqZGcXFxSkpKkiTdeOONOnDggFasWOH2Hjabze11lmXVGjuX3W6X3W73SkYAAAAA1x6PvtpXXFzs9nPixAkdOnRIt956q/7whz94LVyrVq3UpUsXt7HOnTsrPz9fkuR0OiXJtTJ1VlFRUa1VKgAAAADwFo9WpM4nNjZWCxcu1EMPPaSPP/7YK8fs16+fDh065DZ2+PBhtW3bVpIUExMjp9Op9PR03XjjjZKkyspKZWRkePXugQDgDd/LX+nrCAAAwEu8VqQkKSgoSF9++aXXjvfMM8+ob9++SkpK0oMPPqjdu3dr5cqVWrnym7+M2Gw2JSQkKCkpSbGxsYqNjVVSUpLCw8M1ZswYr+UAAAAAgHN5VKQ2bdrktm1ZlgoKCrR8+XL169fPK8Ek6eabb9aGDRs0Z84cLViwQDExMUpNTdXYsWNdc2bPnq1Tp05p8uTJKi4uVu/evbVlyxZFRER4LQcAAAAAnMtmWZZl+qJ69dwvrbLZbGrRooVuu+02Pf/882rVqpXXAl4NpaWlcjgcKikpUaNGjXwdB4CXLEs/7OsIbvhqH4ArrU/7Zr6O8F+D5vg6AeCRS+0GHq1I1dTUeBwMAAAAAOo6jx/ICwAAAADXKo9WpM59mO13SUlJ8eQtAAAAAMBveVSk9u3bp7179+rMmTO67rrrJH1zW/KgoCDddNNNrnkXeyguAAAAANRVHhWpu+++WxEREVq9erWaNGki6ZuH9E6cOFHf//73NWPGDK+GBAAAAAB/4tE1Us8//7ySk5NdJUqSmjRpol/84hd6/vnnvRYOAAAAAPyRR0WqtLRUX331Va3xoqIilZWVXXYoAAAAAPBnHhWp+++/XxMnTtSf//xnHT16VEePHtWf//xnPfrooxoxYoS3MwIAAACAX/HoGqmXX35ZM2fO1EMPPaSqqqpvDhQcrEcffVRLlizxakAAAAAA8DceFanw8HC99NJLWrJkiT799FNZlqWOHTuqQYMG3s4HAAAAAH7nsh7IW1BQoIKCAnXq1EkNGjSQZVneygUAAAAAfsujInXs2DENHjxYnTp10rBhw1RQUCBJeuyxx7j1OQAAAICA51GReuaZZxQSEqL8/HyFh4e7xkeNGqXNmzd7LRwAAAAA+COPrpHasmWL/v73v6t169Zu47GxscrLy/NKMAAAAADwVx6tSJWXl7utRJ319ddfy263X3YoAAAAAPBnHhWp/v376/e//71r22azqaamRkuWLNGgQYO8Fg4AAAAA/JFHX+1bsmSJBg4cqD179qiyslKzZ8/WgQMH9J///Ef/+Mc/vJ0RAAAAAPyKRytSXbp00f79+3XLLbdo6NChKi8v14gRI7Rv3z516NDB2xkBAAAAwK8Yr0hVVVUpPj5er7zyiubPn38lMgEAAACAXzNekQoJCdGHH34om812JfIAAAAAgN/z6Kt948aN06uvvurtLAAAAABQJ3h0s4nKykr99re/VXp6uuLi4tSgQQO3/SkpKV4JBwAAAAD+yKhIffbZZ2rXrp0+/PBD3XTTTZKkw4cPu83hK38AAAAAAp1RkYqNjVVBQYG2bdsmSRo1apRefPFFRUZGXpFwAAAAAOCPjK6RsizLbfutt95SeXm5VwMBAAAAgL/z6GYTZ327WAEAAADAtcCoSNlstlrXQHFNFAAAAIBrjdE1UpZlacKECbLb7ZKk06dP68knn6x1177169d7LyGAOmVZ+uHvngQAwNW0LdnXCf5r0BxfJ4CXGBWp8ePHu20/9NBDXg0DAAAAAHWBUZFKS0u7UjkAAAAAoM7w6IG8AAAA8D+7Pjvm6wgufQb5OgFwZV3WXfsAAAAA4FpEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQ3WqSCUnJ8tmsykhIcE1ZlmWEhMTFRUVpbCwMA0cOFAHDhzwXUgAAAAAAa/OFKmsrCytXLlSPXr0cBtfvHixUlJStHz5cmVlZcnpdGro0KEqKyvzUVIAAAAAga5OFKkTJ05o7Nix+s1vfqMmTZq4xi3LUmpqqubOnasRI0aoW7duWr16tU6ePKm1a9f6MDEAAACAQFYnitRTTz2l4cOHa8iQIW7jubm5KiwsVHx8vGvMbrdrwIAByszMvODxKioqVFpa6vYDAAAAAJcq2NcBvsu6deu0d+9eZWVl1dpXWFgoSYqMjHQbj4yMVF5e3gWPmZycrPnz53s3KAAAAP5rW7KvEwBXlF+vSB05ckTTpk3Ta6+9pvr1619wns1mc9u2LKvW2LnmzJmjkpIS18+RI0e8lhkAAABA4PPrFans7GwVFRWpV69errHq6mrt2LFDy5cv16FDhyR9szLVqlUr15yioqJaq1TnstvtstvtVy44AAAAgIDm1ytSgwcP1gcffKCcnBzXT1xcnMaOHaucnBy1b99eTqdT6enprtdUVlYqIyNDffv29WFyAAAAAIHMr1ekIiIi1K1bN7exBg0aqFmzZq7xhIQEJSUlKTY2VrGxsUpKSlJ4eLjGjBnji8gAAAAArgF+XaQuxezZs3Xq1ClNnjxZxcXF6t27t7Zs2aKIiAhfRwMAAAAQoOpckdq+fbvbts1mU2JiohITE32SBwAAAMC1x6+vkQIAAAAAf0SRAgAAAABDFCkAAAAAMESRAgAAAABDFCkAAAAAMESRAgAAAABDFCkAAAAAMESRAgAAAABDde6BvAD82/fyV/o6gst7bZ7wdQQAABCgWJECAAAAAEMUKQAAAAAwRJECAAAAAEMUKQAAAAAwRJECAAAAAEMUKQAAAAAwRJECAAAAAEM8RwpAwPKnZ1oBAIDAwooUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAIYoUAAAAABiiSAEAAACAoWBfBwDgBduSfZ0AAADgmsKKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgKFgXwcA6qxtyb5OAACA39r12TFfR3Dp076ZryMgALEiBQAAAACGKFIAAAAAYIgiBQAAAACG/LpIJScn6+abb1ZERIRatmyp++67T4cOHXKbY1mWEhMTFRUVpbCwMA0cOFAHDhzwUWIAAAAA1wK/LlIZGRl66qmn9N577yk9PV1nzpxRfHy8ysvLXXMWL16slJQULV++XFlZWXI6nRo6dKjKysp8mBwAAABAIPPru/Zt3rzZbTstLU0tW7ZUdna2+vfvL8uylJqaqrlz52rEiBGSpNWrVysyMlJr167VpEmTznvciooKVVRUuLZLS0uv3IcAAAAAEHD8ukh9W0lJiSSpadOmkqTc3FwVFhYqPj7eNcdut2vAgAHKzMy8YJFKTk7W/Pnzr3xgAAAA4Fz+9PiUQXN8naBO8+uv9p3LsixNnz5dt956q7p16yZJKiwslCRFRka6zY2MjHTtO585c+aopKTE9XPkyJErFxwAAABAwKkzK1JTpkzR/v37tXPnzlr7bDab27ZlWbXGzmW322W3272eEQAAAMC1oU6sSE2dOlWbNm3Stm3b1Lp1a9e40+mUpFqrT0VFRbVWqQAAAADAW/y6SFmWpSlTpmj9+vV65513FBMT47Y/JiZGTqdT6enprrHKykplZGSob9++VzsuAAAAgGuEX3+176mnntLatWv117/+VREREa6VJ4fDobCwMNlsNiUkJCgpKUmxsbGKjY1VUlKSwsPDNWbMGB+nBwAAABCo/LpIrVixQpI0cOBAt/G0tDRNmDBBkjR79mydOnVKkydPVnFxsXr37q0tW7YoIiLiKqcFAAAAcK3w6yJlWdZ3zrHZbEpMTFRiYuKVDwQAAAAA8vMiBdTiT89eAAAAwDXLr282AQAAAAD+iCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIYoUgAAAABgiCIFAAAAAIaCfR0AAAAAgA9sS/Z1AneD5vg6gRFWpAAAAADAEEUKAAAAAAxRpAAAAADAENdIAQFg12fHfB0BAADgmsKKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgCGKFAAAAAAYokgBAAAAgKFgXwfAeWxL9nWC/xo0x9cJAAAAAL/DihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGKJIAQAAAIAhihQAAAAAGOI5Urg4f3qmFQAAAOAnWJECAAAAAEMUKQAAAAAwRJECAAAAAEMUKQAAAAAwRJECAAAAAEMUKQAAAAAwRJECAAAAAEMUKQAAAAAwRJECAAAAAEMUKQAAAAAwFOzrAAAAAMCVtOuzY76O4NKnfTNfR4CXsCIFAAAAAIYoUgAAAABgiCIFAAAAAIYCpki99NJLiomJUf369dWrVy+9++67vo4EAAAAIEAFRJF6/fXXlZCQoLlz52rfvn36/ve/rzvvvFP5+fm+jgYAAAAgAAVEkUpJSdGjjz6qxx57TJ07d1Zqaqqio6O1YsUKX0cDAAAAEIDq/O3PKysrlZ2drWeffdZtPD4+XpmZmed9TUVFhSoqKlzbJSUlkqTS0tIrF9RE+WlfJ0AdU36q4rsnAQAAnyvl73kX5id/Fz/bCSzLuui8Ol+kvv76a1VXVysyMtJtPDIyUoWFhed9TXJysubPn19rPDo6+opkBAAAAPBdFvg6gJuysjI5HI4L7q/zReosm83mtm1ZVq2xs+bMmaPp06e7tmtqavSf//xHzZo1u+BrrrbS0lJFR0fryJEjatSoka/jABfEuYq6gnMVdQXnKuqKQD1XLctSWVmZoqKiLjqvzhep5s2bKygoqNbqU1FRUa1VqrPsdrvsdrvbWOPGja9UxMvSqFGjgDoxEbg4V1FXcK6iruBcRV0RiOfqxVaizqrzN5sIDQ1Vr169lJ6e7jaenp6uvn37+igVAAAAgEBW51ekJGn69Ol6+OGHFRcXpz59+mjlypXKz8/Xk08+6etoAAAAAAJQQBSpUaNG6dixY1qwYIEKCgrUrVs3/e1vf1Pbtm19Hc1jdrtd8+bNq/UVRMDfcK6iruBcRV3BuYq64lo/V23Wd93XDwAAAADgps5fIwUAAAAAVxtFCgAAAAAMUaQAAAAAwBBFCgAAAAAMUaT80EsvvaSYmBjVr19fvXr10rvvvuvrSAhwO3bs0N13362oqCjZbDZt3LjRbb9lWUpMTFRUVJTCwsI0cOBAHThwwG1ORUWFpk6dqubNm6tBgwa65557dPToUbc5xcXFevjhh+VwOORwOPTwww/r+PHjV/jTIVAkJyfr5ptvVkREhFq2bKn77rtPhw4dcpvDuQp/sGLFCvXo0cP1kNI+ffrorbfecu3nPIW/Sk5Ols1mU0JCgmuM8/XCKFJ+5vXXX1dCQoLmzp2rffv26fvf/77uvPNO5efn+zoaAlh5ebl69uyp5cuXn3f/4sWLlZKSouXLlysrK0tOp1NDhw5VWVmZa05CQoI2bNigdevWaefOnTpx4oTuuusuVVdXu+aMGTNGOTk52rx5szZv3qycnBw9/PDDV/zzITBkZGToqaee0nvvvaf09HSdOXNG8fHxKi8vd83hXIU/aN26tRYuXKg9e/Zoz549uu2223Tvvfe6/vLJeQp/lJWVpZUrV6pHjx5u45yvF2HBr9xyyy3Wk08+6TZ2/fXXW88++6yPEuFaI8nasGGDa7umpsZyOp3WwoULXWOnT5+2HA6H9fLLL1uWZVnHjx+3QkJCrHXr1rnmfPHFF1a9evWszZs3W5ZlWR999JElyXrvvfdcc3bt2mVJsj7++OMr/KkQiIqKiixJVkZGhmVZnKvwb02aNLF++9vfcp7CL5WVlVmxsbFWenq6NWDAAGvatGmWZfHv1e/CipQfqaysVHZ2tuLj493G4+PjlZmZ6aNUuNbl5uaqsLDQ7by02+0aMGCA67zMzs5WVVWV25yoqCh169bNNWfXrl1yOBzq3bu3a873vvc9ORwOzm94pKSkRJLUtGlTSZyr8E/V1dVat26dysvL1adPH85T+KWnnnpKw4cP15AhQ9zGOV8vLtjXAfBfX3/9taqrqxUZGek2HhkZqcLCQh+lwrXu7Ll3vvMyLy/PNSc0NFRNmjSpNefs6wsLC9WyZctax2/ZsiXnN4xZlqXp06fr1ltvVbdu3SRxrsK/fPDBB+rTp49Onz6thg0basOGDerSpYvrL42cp/AX69at0969e5WVlVVrH/9evTiKlB+y2Wxu25Zl1RoDrjZPzstvzznffM5veGLKlCnav3+/du7cWWsf5yr8wXXXXaecnBwdP35cf/nLXzR+/HhlZGS49nOewh8cOXJE06ZN05YtW1S/fv0LzuN8PT++2udHmjdvrqCgoFrNvKioqNb/CQCuFqfTKUkXPS+dTqcqKytVXFx80TlfffVVreP/+9//5vyGkalTp2rTpk3atm2bWrdu7RrnXIU/CQ0NVceOHRUXF6fk5GT17NlTL7zwAucp/Ep2draKiorUq1cvBQcHKzg4WBkZGXrxxRcVHBzsOpc4X8+PIuVHQkND1atXL6Wnp7uNp6enq2/fvj5KhWtdTEyMnE6n23lZWVmpjIwM13nZq1cvhYSEuM0pKCjQhx9+6JrTp08flZSUaPfu3a45//znP1VSUsL5jUtiWZamTJmi9evX65133lFMTIzbfs5V+DPLslRRUcF5Cr8yePBgffDBB8rJyXH9xMXFaezYscrJyVH79u05Xy/m6t/fAhezbt06KyQkxHr11Vetjz76yEpISLAaNGhgff75576OhgBWVlZm7du3z9q3b58lyUpJSbH27dtn5eXlWZZlWQsXLrQcDoe1fv1664MPPrB++MMfWq1atbJKS0tdx3jyySet1q1bW2+//ba1d+9e67bbbrN69uxpnTlzxjXnjjvusHr06GHt2rXL2rVrl9W9e3frrrvuuuqfF3XTj370I8vhcFjbt2+3CgoKXD8nT550zeFchT+YM2eOtWPHDis3N9fav3+/9dxzz1n16tWztmzZYlkW5yn827l37bMszteLoUj5oV//+tdW27ZtrdDQUOumm25y3doXuFK2bdtmSar1M378eMuyvrn96bx58yyn02nZ7Xarf//+1gcffOB2jFOnTllTpkyxmjZtaoWFhVl33XWXlZ+f7zbn2LFj1tixY62IiAgrIiLCGjt2rFVcXHyVPiXquvOdo5KstLQ01xzOVfiDRx55xPXf8RYtWliDBw92lSjL4jyFf/t2keJ8vTCbZVmWb9bCAAAAAKBu4hopAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAAADBEkQIAAAAAQxQpAAAuYuXKlYqOjla9evWUmpqqxMRE3XDDDb6OBQDwMZtlWZavQwAAcLkmTJig1atXS5KCg4MVHR2tESNGaP78+WrQoIFHxywtLVXz5s2VkpKikSNHyuFwqKamRhUVFWrWrJnrfY8fP66NGzd666MAAOqAYF8HAADAW+644w6lpaWpqqpK7777rh577DGVl5drxYoVbvOqqqoUEhLyncfLz89XVVWVhg8frlatWrnGGzZs6PXsAIC6ha/2AQACht1ul9PpVHR0tMaMGaOxY8dq48aNrq/j/e53v1P79u1lt9tlWZby8/N17733qmHDhmrUqJEefPBBffXVV5KkVatWqXv37pKk9u3by2az6fPPP3f7al9iYqJWr16tv/71r7LZbLLZbNq+fbuPPj0A4GpiRQoAELDCwsJUVVUlSfrXv/6lP/7xj/rLX/6ioKAgSdJ9992nBg0aKCMjQ2fOnNHkyZM1atQobd++XaNGjVJ0dLSGDBmi3bt3Kzo6Wi1atHA7/syZM3Xw4EGVlpYqLS1NktS0adOr+yEBAD5BkQIABKTdu3dr7dq1Gjx4sCSpsrJSa9ascZWh9PR07d+/X7m5uYqOjpYkrVmzRl27dlVWVpZuvvlm13VQLVq0kNPprPUeDRs2VFhYmCoqKs67HwAQuPhqHwAgYLz55ptq2LCh6tevrz59+qh///761a9+JUlq27at24rSwYMHFR0d7SpRktSlSxc1btxYBw8evOrZAQB1CytSAICAMWjQIK1YsUIhISGKiopyu6HEt+/cZ1mWbDZbrWNcaBwAgHNRpAAAAaNBgwbq2LHjJc3t0qWL8vPzdeTIEdeq1EcffaSSkhJ17tz5kt8zNDRU1dXVHuUFANRdfLUPAHBNGjJkiHr06KGxY8dq79692r17t8aNG6cBAwYoLi7uko/Trl077d+/X4cOHdLXX3/turkFACCwUaQAANckm82mjRs3qkmTJurfv7+GDBmi9u3b6/XXXzc6zuOPP67rrrtOcXFxatGihf7xj39cocQAAH9isyzL8nUIAAAAAKhLWJECAAAAAEMUKQAAAAAwRJECAAAAAEMUKQAAAAAwRJECAAAAAEMUKQAAAAAwRJECAAAAAEMUKQAAAAAwRJECAAAAAEMUKQAAAAAwRJECAAAAAEP/H0tcVTpfixSiAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -881,10 +879,7 @@ " def at_least_one_violated(\n", " b,\n", " ): # only care for violations related to the `actual' constraints, not the profit constraint\n", - " return (\n", - " sum(b.u[k] for k in L.keys() if k != \"profit\")\n", - " <= len(L.keys()) - 2\n", - " )\n", + " return sum(b.u[k] for k in L.keys() if k != \"profit\") <= len(L.keys()) - 2\n", "\n", " @b.Constraint(L.keys())\n", " def model_constraints(b, k):\n", diff --git a/_sources/notebooks/10/farmer.ipynb b/_sources/notebooks/10/04-farmer-problem.ipynb similarity index 99% rename from _sources/notebooks/10/farmer.ipynb rename to _sources/notebooks/10/04-farmer-problem.ipynb index 4560b1a3..760bd86f 100644 --- a/_sources/notebooks/10/farmer.ipynb +++ b/_sources/notebooks/10/04-farmer-problem.ipynb @@ -435,20 +435,12 @@ " df[\"plant [acres]\"] = pd.Series({c: m.acres[c]() for c in m.CROPS})\n", " df[\"grow [tons]\"] = pd.Series({c: m.grow[s, c]() for c in m.CROPS})\n", " df[\"buy [tons]\"] = pd.Series({c: m.buy[s, c]() for c in m.CROPS})\n", - " df[\"feed [tons]\"] = pd.Series(\n", - " {c: crops.loc[c, \"required\"] for c in m.CROPS}\n", - " )\n", - " df[\"quota [tons]\"] = pd.Series(\n", - " {c: crops.loc[c, \"quota\"] for c in m.CROPS}\n", - " )\n", + " df[\"feed [tons]\"] = pd.Series({c: crops.loc[c, \"required\"] for c in m.CROPS})\n", + " df[\"quota [tons]\"] = pd.Series({c: crops.loc[c, \"quota\"] for c in m.CROPS})\n", " df[\"sell [tons]\"] = pd.Series({c: m.sell[s, c]() for c in m.CROPS})\n", " df[\"excess [tons]\"] = pd.Series({c: m.excess[s, c]() for c in m.CROPS})\n", - " df[\"revenue [euro]\"] = pd.Series(\n", - " {c: m.revenue[s, c]() for c in m.CROPS}\n", - " )\n", - " df[\"expense [euro]\"] = pd.Series(\n", - " {c: m.expense[s, c]() for c in m.CROPS}\n", - " )\n", + " df[\"revenue [euro]\"] = pd.Series({c: m.revenue[s, c]() for c in m.CROPS})\n", + " df[\"expense [euro]\"] = pd.Series({c: m.expense[s, c]() for c in m.CROPS})\n", " df[\"profit [euro]\"] = pd.Series(\n", " {c: m.revenue[s, c]() - m.expense[s, c]() for c in m.CROPS}\n", " )\n", @@ -580,10 +572,12 @@ "source": [ "m = farmer(crops, pd.DataFrame(yields.mean(), columns=[\"mean\"]).T)\n", "\n", + "\n", "@m.Objective(sense=pyo.maximize)\n", "def objective(m):\n", " return pyo.summation(m.scenario_profit)\n", "\n", + "\n", "pyo.SolverFactory(SOLVER).solve(m)\n", "farm_report(m)" ] @@ -1673,7 +1667,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGwCAYAAAB1mRuuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABV30lEQVR4nO3de1xUZf4H8M/cGW4DiFxGETUVRdC8tF5XtBQ0wcxKy6Ls4rbbT13XS627lWSlu1p20Vdtte5Wamu7a7l5CdFS1MBLEireLyiKICrInZlh5vn9gYyMIDLMwBng8369eCXnPHPmO99IPp3nPOfIhBACREREROQ0cqkLICIiImptGLCIiIiInIwBi4iIiMjJGLCIiIiInIwBi4iIiMjJGLCIiIiInIwBi4iIiMjJlFIX0NZYLBZcvnwZXl5ekMlkUpdDREREDSCEQHFxMfR6PeTyu5+fYsBqZpcvX0ZISIjUZRAREVEjXLx4ER07drzrOAasZubl5QWg6l+Qt7e3xNW4DpPJhKSkJERHR0OlUkldTovEHjqOPXQce+g49tBxTdHDoqIihISEWH+P3w0DVjOrnhb09vZmwKrBZDLB3d0d3t7e/AulkdhDx7GHjmMPHcceOq4pe9jQy3t4kTsRERGRkzFgERERETkZAxYRERGRk/EaLCIiIhdnNpthMpmkLqPFMJlMUCqVqKiogNlsbtBrVCoVFAqF02pgwCIiInJRQgjk5ubixo0bUpfSogghEBQUhIsXL9p1z0kfHx8EBQU55T6VDFhEREQuqjpcBQQEwN3dnTeobiCLxYKSkhJ4eno26KagQgiUlZUhLy8PABAcHOxwDQxYRERELshsNlvDVbt27aQup0WxWCwwGo1wc3NrUMACAK1WCwDIy8tDQECAw9OFvMidiIjIBVVWVgIA3N3dJa6k7ajutTOud2PAIiIickFCCAANv7ElOc6ZvWbAIiIiInIyBiwiIiIiJ2PAIiIiInIyBqxWIut6GXIKy5FfakSpoRKVZovUJRERETXYyJEjMXv2bKnLcBrepqGViHl/F8pNtnerVchlcFPKoVEpoFHKb34poFHd+rOb6uY2pfzm9hpjq1932+utr6lxnLpezwsziYgIAIxGI9RqdbO8l8lkcuod2RuLAauVUClkqLTIYDIL6zazRaDUaEapsWGPCXA2tdI2gN0pmLmpFFApgNxsOdK/PwmtWmkdZxsQbYPc7eHQTamAh0YJtZInZomodRJC1Pqf6eagVSns+p/mkSNHIiIiAmq1Gl9++SV69+6Njz/+GPPmzcOuXbvg4eGB6OhovPfee/D398e0adOQnJyM5ORkfPDBBwCAzMxM7Ny5E7Nnz7a5k/2GDRvw8MMPW1dZJiQkYMOGDZg1axbeeustnD9/HiaTCb6+vvjkk0/w/fffY+vWrejQoQPeffddTJgwwam9uRMGrFbicEIMgKpQZay0wFBphqHSAoPp1p8rTGZUmCwwms03t9vuq95WYTLDaL712ooax6h+jXXbbccRt/IdjJUWGCstKEZlAz+FHD9dueBwL9RKObw0Sni6KeGhrvpn9feeGiV0WhV83FXQaVXQadXwca/63kerhk6rgpuKZ9+IyDWVm8wIf31rs7/vsUUxcFfbFxm++OIL/O53v8NPP/2E/Px8REVFYfr06Vi+fDnKy8vxyiuvYPLkyfjxxx/xwQcf4NSpU4iIiMCiRYsAAO3bt2/we505cwb//ve/sX79epuzV2+++SaWLl2KZcuWYcWKFXjyySdx4cIF+Pn52fVZGoMBq5VRyGXQqhXQqpv/9KgQAiazsAaw24OaNaCZaoe1coMJGcdPolOXrjBZUGc4rPl6Y6Xltu1m69k7Y6UF1yuNuF5qbNTnUCvl8NHeCl3e1j/fDGbuavhoVdag5qNVQ+eugpdGCbmcwYyICAC6deuGpUuXAgBef/119O/fH4sXL7bu/8c//oGQkBCcOnUKPXr0gFqthru7O4KCgux+L6PRiNWrV1tDmcVSdR3yM888gyeeeAIAsHjxYqxYsQL79+/H2LFjHf14d8WARU4jk8mgVsqqziC52fdak8mELSXH8WB0D6hUqka9f6XZglKjGSWGSpRUVKLEYEJxRWWN7ytRVFGJonITCstNuFFmrPpnuQmFZVX/rD4DmFdsQF6xwa73l8tQFca0t0JY9ZmymtuswcxddXO8mtOaRNQgWpUCxxbFSPK+9ho4cKD1zwcPHsSOHTvg6elZa9zZs2fRo0cPh+oLDQ2t84xXZGSk9c8eHh7w8vKyPm+wqTFgUauhVMih08qh0zYuoAlRdc1aQWlV8Cq0BjETbpQbq0JY2c1t5cZbfy4zodxkhkWgamyZCbheZtd7u6sV1hCm0yrhc3PqUnfzDJltUFPB52ZYc1fbd10EEbVsMpnM7qk6qXh4eFj/bLFYEBcXh7/+9a+1xtX3YGW5XG691qpaXY+xqfleNd3+P+wymcx6dquptYx/S0TNQCaTwVNTdZ1WiJ2vNVSaqwLZzTNhVUHLeFtIuxnayozWMUUVJggBlBnNKDOacbmwwq73VcplNa4nU8FQLMeOsiPw9dTcvKZMCR939c2gVn32TA1vNyWUCp41I6Lm0b9/f6xfvx6dO3eGUll39FCr1TCbbS/gb9++PYqLi1FaWmoNUenp6U1drlMwYBE5gUapQICXAgF2zo1aLAJFFbefLbsZwmqEMut0ZtmtKU2j2YJKi8C1EiOulVRfbybH0YKcBr23l5uyxpmxWyGs5gX/t7bdOovm1oipAiJq2/7v//4Pn332GZ544gnMnz8f/v7+OHPmDNatW4fPPvsMCoUCnTt3xr59+3D+/Hl4enrCz88PgwYNgru7O/70pz9h5syZ2L9/Pz7//HOpP06DMGARSUgul90ML/bdH0YIgQqTxTpVeaPMhOvF5dizPw2duvdEscFSdYbstunMwjITig1VqzqLKypRXFGJiyi36701SrnNxf3VU5fWM2m1rj/jIgCitk6v1+Onn37CK6+8gpiYGBgMBoSGhmLs2LGQy6vOps+bNw/PPPMMwsPDUV5ejszMTHTu3Blr1qzB/Pnz8emnn2L06NFISEjAb37zG4k/0d0xYBG1QDJZ9WpRLYJ1WgBV1yWYLwg8OLxLvQsFTGbLzeBlqjGteSuo3WkBQOHNRQCGSguuFBlwpcj+RQDVU5k1Q9ita89qnEFzr7qFRvV4LgIgall27txZa1v37t3xzTff3PE1PXr0QGpqaq3tEydOxMSJE222TZ8+3frnhIQEJCQk1HpdQUEBvL29bbbVvJ9WU2PAImpjVAo52nlq0M5TY9frhBAoMVTaXNx/+wX/NcNazTHViwAKykwoaMQiAA+1oupasjuswvSpcY0ZFwEQkStgwCKiBpHJZPByU8HLTWX3IoAKk/nW7TFuWwRwK6jV3la9CKDqiQTlyL5h33SmSiGrEcrUt1Zh3jw7dutsWdV+DxVQaqq6YW/j1qISEVVhwCKiJuemUsBNpUCAt32LAMwWgeIK0x0v+L/1z6ptBTXOpBnNFpjMNRcBlDbwXZX488Ft8NIorWfNaq7UrPv6My4CICJbDFhE5LIUDiwCKDeZb628vBnCbINajW01pjtLDWYIgaqb0lY09DFPt7ip5HWuzKw+S1YzpN1aGFC1CIDTmVRT9c/D7feBoqbjzF4zYBFRq1N9M0Z3tdK6CKAhTCYTNm7agiEjH0CpCTdvn2EbwqrPotkuEri1CKDqMVH2LwJQyG9NZ9Y8a3anpwDoagQ0Fe9p1ipV3y+qrKwMWm3Df46p8crKqq4PbewTRWpiwCIiqkEhB/w9NQi28y/YuhYB2CwAqA5mNwNZUY0xFSYLzBaB/FIj8hvxDM2aiwBqXlemq7EAoNaiAHcVtCouAnBlCoUCPj4+1ke7uLu7899XA1ksFhiNRlRUVFhvA1EfIQTKysqQl5cHHx8fmwdGNxYDFhGREzi6CMDmZrO1ngJwe1CrGlNsqHTCIoA6VmHWfDyTu+0iAR/3qs+o4D3NmkX1g4+b6/l5rYUQAuXl5dBqtXaFUh8fn0Y9bLouDFhERBKrXgQQ6OAigFrBrMZzNG9fqWkyi5uLAAy4VmLfdCYAeLspbS7urw5jXhoFci7LUJ6WjXZe2hrXnFWdQeMiAPvIZDIEBwcjICCgzmfwUd1MJhN27dqFESNGNHi6T6VSOeXMVTUGLCKiFsqRRQBlRrPNGbJbU5a2KzNvv/6s5OaTAKoXAWTl11kZNlw4Wud7u6nk1jNk3jY3l1XXWqnJRQC3KBQKp/7yb+0UCgUqKyvh5ubmlOupGoMBi4iojZHJZPDQKOGhUULvY9/F0yazpZ6pTBMKSipw7OwFePoGoLCi0maMRQAVJgtyTRXILbLvwebViwCq72VW8xYZNa89i+zgg24BnnYdm6gpMGAREVGDqRRy+Htq4H+HJwGYTCZs2ZKJBx/sb3PmwGIRKDFWVq26rOspALctAiisMcaeRQAKuQyrn/sVhnbzd+rnJrIXAxYRETU5uVwGbzcVvN1UCPGz77UVJnM9z8m8FcrO5pXgRG4xXl5/GFtnj4CHhr/iSDr86SMiIpfmplIgSKdAkK7+RQAlhkrEvLcLlwrKseT743hrYmQzVUhUG+9OR0RErYKnRollj/YBAKzZm4WUM9ckrojaMgYsIiJqNYZ288dTgzsBAOb/97B11SNRc2PAIiKiVuWP43qhg48W2TfKsWTLcanLoTaKAYuIiFqVmlOFa/dl4SdOFZIEGLCIiKjVqTlV+DKnCkkCDFhERNQqLRjXCx19OVVI0mDAIiKiVslDo8TSRzhVSNJgwCIiolaLU4UkFQYsIiJq1WpOFS7mVCE1EwYsIiJq1Tw0Siy9uarwq31Z2HOaU4XU9BiwiIio1Rt6jz/iB4cCAF5ZfxjFFSaJK6LWjgGLiIjahD+O62mdKvxg+2mpy6FWjgGLiIjaBA+NEm9OjAAAfJ5yHmfySiSuiFozBiwiImozRoUF4P6eAai0CLy56RiEEFKXRK0UAxYREbUpr8WGQ6WQIfnUVfx4Ik/qcqiVYsAiIqI2pYu/B54b3gUAsGjTMRgqzRJXRK0RAxYREbU5M+/vjvZeGly4XoZ/7DkvdTnUCjFgERFRm+OpUeKVsT0BACt/PI28ogqJK6LWhgGLiIjapEn9OuDeEB+UGs34S+IJqcuhVoYBi4iI2iS5XIaECb0BAN+kZSMtq0Diiqg1YcAiIqI2694QHzw6oCMA4I3vjsJi4W0byDkYsIiIqE17eWwYPDVKHLpUiP+mXZK6HGolGLCIiKhNC/Byw8z7uwEAliae5HMKySkYsIiIqM17dlgXdPX3wLUSA1b8eEbqcqgVYMAiIqI2T62U47XYcADAP/Zk4uxVPqeQHMOARUREBGBUzwCMCmtvfU4hkSMYsIiIiG6qfk7hzpNX8eOJK1KXQy2YpAFr165diIuLg16vh0wmw4YNG2z2CyGQkJAAvV4PrVaLkSNH4ujRozZjRo4cCZlMZvP1+OOP24wpKChAfHw8dDoddDod4uPjcePGDZsxWVlZiIuLg4eHB/z9/TFr1iwYjUabMUeOHEFUVBS0Wi06dOiARYsW8UnsREStSNf2nnhuWNVzCt/cdBzGSovEFVFLJWnAKi0tRd++fbFy5co69y9duhTLly/HypUrceDAAQQFBWHMmDEoLi62GTd9+nTk5ORYvz755BOb/VOnTkV6ejoSExORmJiI9PR0xMfHW/ebzWaMHz8epaWl2LNnD9atW4f169dj7ty51jFFRUUYM2YM9Ho9Dhw4gBUrVuCdd97B8uXLndgRIiKS2oz7u8HfU4PMa6X450+ZUpdDLZRSyjcfN24cxo0bV+c+IQTef/99/PnPf8akSZMAAF988QUCAwPx1Vdf4cUXX7SOdXd3R1BQUJ3HOX78OBITE7F3714MGjQIAPDZZ59hyJAhOHnyJMLCwpCUlIRjx47h4sWL0Ov1AIB3330X06ZNw9tvvw1vb2+sXbsWFRUV+Pzzz6HRaBAREYFTp05h+fLlmDNnDmQyWZ3vbzAYYDAYrN8XFRUBAEwmE0wmLgWuVt0L9qTx2EPHsYeOaw09dFMA88Z0wx+/PYoPfziN2MhABHhpmu39W0MPpdYUPbT3WJIGrPpkZmYiNzcX0dHR1m0ajQZRUVFISUmxCVhr167FmjVrEBgYiHHjxmHhwoXw8vICAKSmpkKn01nDFQAMHjwYOp0OKSkpCAsLQ2pqKiIiIqzhCgBiYmJgMBhw8OBBjBo1CqmpqYiKioJGo7EZs2DBApw/fx5dunSp83MsWbIEb7zxRq3tSUlJcHd3b3yDWqlt27ZJXUKLxx46jj10XEvvoUYAoZ4KXCgx4w//3IEnuzX/VGFL76ErcGYPy8rK7BrvsgErNzcXABAYGGizPTAwEBcuXLB+/+STT6JLly4ICgpCRkYGFixYgEOHDlmbmpubi4CAgFrHDwgIsL5Hbm5urffx9fWFWq22GdO5c+datVTvu1PAWrBgAebMmWP9vqioCCEhIYiOjoa3t/dd+9BWmEwmbNu2DWPGjIFKpZK6nBaJPXQce+i41tTDjn1u4LFP92P/VTnmPzwY94b4NMv7tqYeSqUpelg9A9VQLhuwqt0+9SaEsNk2ffp0658jIiLQvXt3DBw4EGlpaejfv3+dx6jrOI0ZU32B+52mB4Gqs241z3pVU6lU/A+nDuyL49hDx7GHjmsNPbyva3s80r8j1qddwlvfn8K3vxsKufzOf987W2voodSc2UN7j+Oyt2movqaq+gxStby8vFpnm2rq378/VCoVTp8+bT3OlSu1l9pevXrVepygoKBa71NQUACTyVTvmLy8PAC1z7IREVHr8MrYMHioFTh08Qa++SVb6nKoBXHZgFU97Vdz/tRoNCI5ORlDhw694+uOHj0Kk8mE4OBgAMCQIUNQWFiI/fv3W8fs27cPhYWF1uMMGTIEGRkZyMnJsY5JSkqCRqPBgAEDrGN27dplc+uGpKQk6PX6WlOHRETUOgR4u2HmA90BAH9NPIESQ6XEFVFLIWnAKikpQXp6OtLT0wFUXdienp6OrKwsyGQyzJ49G4sXL8a3336LjIwMTJs2De7u7pg6dSoA4OzZs1i0aBF+/vlnnD9/Hlu2bMFjjz2Gfv36YdiwYQCAXr16YezYsZg+fTr27t2LvXv3Yvr06YiNjUVYWBgAIDo6GuHh4YiPj8cvv/yCH374AfPmzcP06dOt10lNnToVGo0G06ZNQ0ZGBr799lssXry43hWERETU8j07rDM6t3PH1WIDVvx4WupyqIWQNGD9/PPP6NevH/r16wcAmDNnDvr164fXX38dAPDyyy9j9uzZeOmllzBw4EBkZ2cjKSnJukJQrVbjhx9+QExMDMLCwjBr1ixER0dj+/btUCgU1vdZu3YtIiMjER0djejoaPTp0werV6+27lcoFNi8eTPc3NwwbNgwTJ48GRMnTsQ777xjHaPT6bBt2zZcunQJAwcOxEsvvYQ5c+bYXMBOREStj0apsHlO4Tk+p5AaQNKL3EeOHFnvndBlMhkSEhKQkJBQ5/6QkBAkJyff9X38/PywZs2aesd06tQJmzZtqndMZGQkdu3addf3IyKi1uX+ngEYGdYeO09exVubj+Mf0+6TuiRycS57DRYREZGrkMlkeC02HEq5DD+eyMOOk3lSl0QujgGLiIioAe5p74lnh3UGALy58RifU0j1YsAiIiJqoJkPdIe/pxrnrpXii5TzUpdDLowBi4iIqIG83VR4OaYnAOCDH04jr7hC4orIVTFgERER2eHRAR3Rp6MOJYZKLEs8KXU55KIYsIiIiOwgl8uwMK43AOC/aZdw7LJ9z6ijtoEBi4iIyE4DQn0xvk8whACWfH9c6nLIBTFgERERNcIrMT2hUsiw+/Q1JJ+6KnU55GIYsIiIiBqhUzt3PDOkMwBgyZbjMFvufONsansYsIiIiBppxv3d4O2mxIncYqw/eEnqcsiFMGARERE1ko+7GrMe6A4AeCfpJMqMlRJXRK6CAYuIiMgB8UNCEeKnRV6xAX/fnSl1OeQiGLCIiIgcoFEqrDcf/VvyWd58lAAwYBERETkstk8w7g3xQZnRjPe3n5a6HHIBDFhEREQOkslk+PP4XgCAdfuzcPpKscQVkdQYsIiIiJzgvs5+iOkdCIsA/vL9CanLIYkxYBERETnJK2N7QimX4YcTeUg5c03qckhCDFhERERO0rW9J54c1AkA8PaW47Dw5qNtFgMWERGRE816oDu8NEocvVyE/x3KlrockggDFhERkRO189Tgd6PuAQAsSzyJCpNZ4opICgxYRERETvbcsC7Q69xwubAC//zpvNTlkAQYsIiIiJzMTaXAvJgwAMBHO86guMIkcUXU3BiwiIiImsDEezvgnvYeKDZU4t8/80HQbQ0DFhERUROQy2V4fnhXAMA/f8qEmSsK2xQGLCIioiYyqX8H+LqrcKmgHElHc6Uuh5oRAxYREVETcVMp8OSgUADAqj2ZEldDzYkBi4iIqAk9PSQUKoUMP18oQPrFG1KXQ82EAYuIiKgJBXi7Ia6vHgDPYrUlDFhERERN7PnhXQAAW47k4PKNcomroebAgEVERNTEeut1GNzVD2aLwBep56Uuh5oBAxYREVEzeOHmLRv+tS8LpYZKiauhpsaARURE1Azu7xmALv4eKKqoxH8P8sajrR0DFhERUTOQy2V4dlhnAFU3HrXwxqOtGgMWERFRM3l0QEfotCqcv16GH07kSV0ONSEGLCIiombirlbiiV91AgCs2nNO4mqoKTFgERERNaNnhoZCKZdh77l8ZGQXSl0ONREGLCIiomYUrNPiwchgAMA/eOPRVosBi4iIqJm98OuqG49uPHwZV4oqJK6GmgIDFhERUTPr09EH93X2hcks8CVvPNoqMWARERFJoPrxOWv3ZaHcaJa4GnI2BiwiIiIJjAkPQoifFjfKTPjmF954tLVhwCIiIpKAQi7Ds0OrzmL9Yw9vPNraMGARERFJZPJ9IfDSKHH2aimST12VuhxyIgYsIiIiiXhqlHj8VyEAgFW8ZUOrwoBFREQkoWeGdoZcBuw5cw0ncoukLoechAGLiIhIQh193TEuourGo6t28yxWa8GARUREJLHnbt6y4X/pl3GtxCBxNeQMDFhEREQSGxDqi36dfGA0W/DV/otSl0NOwIBFRETkAqw3Ht1/ESaLxMWQwxiwiIiIXMDY3kHo4KNFfqkJP1+VSV0OOYgBi4iIyAUoFXJMG9oZALAzRw4heOPRlowBi4iIyEVM+VUIPNQK5JbLsOfsdanLIQcwYBEREbkIbzcVHunfAQDwecoFiashRzBgERERuZCnh3SCDAK7Tl/H6SvFUpdDjcSARURE5EJC/dwR6Vd1/dU/fuKNR1sqBiwiIiIXMzK46j4N36RlI7/UKHE11BgMWERERC6mqxcQofeGodKCtXt5LVZLxIBFRETkYmQy4NmhoQCAL/degKHSLHFFZC8GLCIiIhc0LiIQQd5uuFpswMZDOVKXQ3ZiwCIiInJBKoUcT988i7VqTyZvPNrCMGARERG5qKm/6gStSoHjOUVIPccbj7YkDFhEREQuysddjUcHdAQArNrNWza0JAxYRERELuzZYZ0BAD+cyMO5qyXSFkMNxoBFRETkwrq298QDPQMAAF8fuChxNdRQDFhEREQubvJ9IQCAb3/JhtnCi91bAgYsIiIiFzcqLAA+7irkFRvw05lrUpdDDSBpwNq1axfi4uKg1+shk8mwYcMGm/1CCCQkJECv10Or1WLkyJE4evSozRiDwYCZM2fC398fHh4emDBhAi5dumQzpqCgAPHx8dDpdNDpdIiPj8eNGzdsxmRlZSEuLg4eHh7w9/fHrFmzYDTaPp7gyJEjiIqKglarRYcOHbBo0SIumyUioianVsoxoa8eALA+7dJdRpMraHTAMhqNuHTpErKysmy+7FFaWoq+ffti5cqVde5funQpli9fjpUrV+LAgQMICgrCmDFjUFx86+nis2fPxrfffot169Zhz549KCkpQWxsLMzmW3e9nTp1KtLT05GYmIjExESkp6cjPj7eut9sNmP8+PEoLS3Fnj17sG7dOqxfvx5z5861jikqKsKYMWOg1+tx4MABrFixAu+88w6WL19u12cmIiJqjEn9q1YTbj2ai+IKk8TV0N0o7X3B6dOn8dxzzyElJcVmuxACMpnMJtjczbhx4zBu3Lg69wkh8P777+PPf/4zJk2aBAD44osvEBgYiK+++govvvgiCgsLsWrVKqxevRqjR48GAKxZswYhISHYvn07YmJicPz4cSQmJmLv3r0YNGgQAOCzzz7DkCFDcPLkSYSFhSEpKQnHjh3DxYsXoddX/R/Cu+++i2nTpuHtt9+Gt7c31q5di4qKCnz++efQaDSIiIjAqVOnsHz5csyZMwcymazOz2EwGGAwGKzfFxUVAQBMJhNMJv4HUq26F+xJ47GHjmMPHcceOu5OPQwPdEdXf3ecu1aGTYey8Wj/DlKU1yI0xc+hvceyO2BNmzYNSqUSmzZtQnBw8B2DhaMyMzORm5uL6Oho6zaNRoOoqCikpKTgxRdfxMGDB2EymWzG6PV6REREICUlBTExMUhNTYVOp7OGKwAYPHgwdDodUlJSEBYWhtTUVERERFjDFQDExMTAYDDg4MGDGDVqFFJTUxEVFQWNRmMzZsGCBTh//jy6dOlS5+dYsmQJ3njjjVrbk5KS4O7u7lCPWqNt27ZJXUKLxx46jj10HHvouLp62EsrwzkosOqHI3DPPSRBVS2LM38Oy8rK7Bpvd8BKT0/HwYMH0bNnT3tfapfc3FwAQGBgoM32wMBAXLhwwTpGrVbD19e31pjq1+fm5iIgIKDW8QMCAmzG3P4+vr6+UKvVNmM6d+5c632q990pYC1YsABz5syxfl9UVISQkBBER0fD29v7zg1oY0wmE7Zt24YxY8ZApVJJXU6LxB46jj10HHvouPp6eO+NcmxZvhtniuToOzQKHXy0ElXp2pri57B6Bqqh7A5Y4eHhuHat+VYw3H6GrHoqsj63j6lrvDPGVF/gXl89Go3G5qxXNZVKxb986sC+OI49dBx76Dj20HF19TC0vQpDurZDytnr2HTkCmbc312i6loGZ/4c2nscuy9y/+tf/4qXX34ZO3fuxPXr11FUVGTz5SxBQUEAbp3JqpaXl2c9cxQUFASj0YiCgoJ6x1y5cqXW8a9evWoz5vb3KSgogMlkqndMXl4egNpn2YiIiJpK9cXu36RlcyW7C7M7YI0ePRp79+7FAw88gICAAPj6+sLX1xc+Pj61puoc0aVLFwQFBdnMnxqNRiQnJ2Po0KEAgAEDBkClUtmMycnJQUZGhnXMkCFDUFhYiP3791vH7Nu3D4WFhTZjMjIykJOTYx2TlJQEjUaDAQMGWMfs2rXL5tYNSUlJ0Ov1taYOiYiImsrYiCBoVQqcu1aK9Is3pC6H7sDuKcIdO3Y47c1LSkpw5swZ6/eZmZlIT0+Hn58fOnXqhNmzZ2Px4sXo3r07unfvjsWLF8Pd3R1Tp04FAOh0Ojz//POYO3cu2rVrBz8/P8ybNw+RkZHWVYW9evXC2LFjMX36dHzyyScAgN/85jeIjY1FWFgYACA6Ohrh4eGIj4/HsmXLkJ+fj3nz5mH69OnW66SmTp2KN954A9OmTcOf/vQnnD59GosXL8brr7/eZBf6ExER3c5To8TYiCB8+0s21qddQr9Ozju5QU4k7GA0GsXIkSPFyZMn7XnZHe3YsUMAqPX1zDPPCCGEsFgsYuHChSIoKEhoNBoxYsQIceTIEZtjlJeXixkzZgg/Pz+h1WpFbGysyMrKshlz/fp18eSTTwovLy/h5eUlnnzySVFQUGAz5sKFC2L8+PFCq9UKPz8/MWPGDFFRUWEz5vDhw+LXv/610Gg0IigoSCQkJAiLxWLXZy4sLBQARGFhoV2va+2MRqPYsGGDMBqNUpfSYrGHjmMPHcceOq4hPdx1Kk+EvrJJ9EnYKipMlc1YXcvQFD+H9v7+tusMlkqlQkZGhtPO2IwcObLe+WOZTIaEhAQkJCTccYybmxtWrFiBFStW3HGMn58f1qxZU28tnTp1wqZNm+odExkZiV27dtU7hoiIqKkNvccfQd5uyC2qwI4TeRgbESx1SXQbu6/Bevrpp7Fq1aqmqIWIiIgaQCGXYWK/qhuNrk/Llrgaqovd12AZjUb8/e9/x7Zt2zBw4EB4eHjY7OejY4iIiJrepP4d8Lfks9hxIg/5pUb4eailLolqsDtgZWRkoH///gCAU6dO2ezjxd5ERETNo0egFyI76HAkuxAbD13GM0M7S10S1SDpKkIiIiJqvEn9O+BIdiG+SbvEgOVi7L4Gi4iIiFxDXF89lHIZDl0qxJm8YqnLoRrsPoM1atSoeqcCf/zxR4cKIiIioobx99RgZFh7bD+eh/Vp2XhlbNM+J5gazu4zWPfeey/69u1r/QoPD4fRaERaWhoiIyObokYiIiK6g0duPjpnwy/ZMFv46BxXYfcZrPfee6/O7QkJCSgpKXG4ICIiImq4+3sFwNtNiZzCCuw9dx3DuvlLXRLBiddgPfXUU/jHP/7hrMMRERFRA2iUCsT11QMA1qddkrgaqua0gJWamgo3NzdnHY6IiIgaaNLNacLEjFyUGiolroaARkwRTpo0yeZ7IQRycnLw888/47XXXnNaYURERNQw/Tv5oHM7d5y/XobEjFw8MqCj1CW1eXafwfL29oZOp7N++fn5YeTIkdiyZQsWLlzYFDUSERFRPWQymfUs1v8OXZa4GgIacQbr888/b4IyiIiIyBET+uqxfNsp/HTmGq6XGNDOUyN1SW2a3WewunbtiuvXr9fafuPGDXTt2tUpRREREZF9Ovt7ILKDDmaLwPcZuVKX0+bZHbDOnz8Ps9lca7vBYEB2Np/oTUREJJW4vsEAgI2cJpRcg6cIv/vuO+uft27dCp1OZ/3ebDbjhx9+QOfOnZ1aHBERETXc+D56LN5yAvvP5yO3sAJBOq7ul0qDA9bEiRMBVF1I98wzz9jsU6lU6Ny5M959912nFkdEREQN18FHi4Ghvvj5QgE2H8nB88O7SF1Sm9XgKUKLxQKLxYJOnTohLy/P+r3FYoHBYMDJkycRGxvblLUSERHRXVTfdJTThNKy+xqszMxM+PtX3Ya/oqLC6QURERFR442LDIJcBqRfvIGL+WVSl9Nm2R2wLBYL3nzzTXTo0AGenp44d+4cAOC1117DqlWrnF4gERERNVyAlxuG3NMOALDxMM9iScXugPXWW2/h888/x9KlS6FWq63bIyMj8fe//92pxREREZH94vpUTRNuOpQjcSVtl90B68svv8Snn36KJ598EgqFwrq9T58+OHHihFOLIyIiIvuNjQiCUi7DsZwinMkrkbqcNsnugJWdnY1u3brV2m6xWGAymZxSFBERETWej7saI3q0BwBs4jShJOwOWL1798bu3btrbf/Pf/6Dfv36OaUoIiIickzNm44KISSupu2x+1mECxcuRHx8PLKzs2GxWPDNN9/g5MmT+PLLL7Fp06amqJGIiIjsNLpXIDRKOc5eLcXxnGKE672lLqlNsfsMVlxcHL7++mts2bIFMpkMr7/+Oo4fP46NGzdizJgxTVEjERER2cnLTYX7ewYA4GpCKdgVsCorK/HGG28gPDwcycnJKCkpQVlZGfbs2YPo6OimqpGIiIgaIbbPrZuOcpqwedkVsJRKJZYtW1bnw56JiIjItdzfMwDuagUuFZQj/eINqctpU+yeIhw9ejR27tzZBKUQERGRM2nVCowJDwQAbOQ9sZqV3Re5jxs3DgsWLEBGRgYGDBgADw8Pm/0TJkxwWnFERETkmLg+evwv/TI2Hb6MP4/vBYVcJnVJbYLdAet3v/sdAGD58uW19slkMk4fEhERuZBf9/CHt5sSecUGHDifj8Fd20ldUpvQqGcR3umL4YqIiMi1aJQKjI0IAlB1sTs1D7sDFhEREbUscX2rVhN+n5GLSrNF4mraBgYsIiKiVm5I13Zo56FGfqkRKWevS11Om8CARURE1MopFXI8GHnr0TnU9BiwiIiI2oDqacLEo7kwVPKa6abGgEVERNQGDAz1RZC3G4orKrHr1DWpy2n17L5NA1C1kvDMmTPIy8uDxWJ7sdyIESOcUhgRERE5j1wuQ2yfYPx9Tya+O3TZegNSahp2B6y9e/di6tSpuHDhQq3nGvE+WERERK4rrq8ef9+Tie3HrqDMWAl3daPOs1AD2D1F+Nvf/hYDBw5ERkYG8vPzUVBQYP3Kz89vihqJiIjICfp01KGTnzvKTWb8eCJP6nJaNbuj6+nTp/Hf//4X3bp1a4p6iIiIqInIZFXThB/tPIuNhy4jto9e6pJaLbvPYA0aNAhnzpxpilqIiIioiVWvJtxx8iqKKkwSV9N62X0Ga+bMmZg7dy5yc3MRGRkJlUpls79Pnz5OK46IiIicq2eQF7oFeOJMXgm2Hb2CRwZ0lLqkVsnugPXII48AAJ577jnrNplMBiEEL3InIiJycTKZDHF99Hhv+ylsPHyZAauJ2B2wMjMzm6IOIiIiaiaxfYPx3vZT2HP6GgpKjfD1UEtdUqtjd8AKDQ1tijqIiIiomdzT3hO99d44erkIiUdz8cSvOkldUqvT6BtgHDt2DFlZWTAajTbbJ0yY4HBRRERE1LTi+upx9HIRNh66zIDVBOwOWOfOncPDDz+MI0eOWK+9AqrmdAHwGiwiIqIWYHxkMP7y/QmknruOvKIKBHi7SV1Sq2L3bRp+//vfo0uXLrhy5Qrc3d1x9OhR7Nq1CwMHDsTOnTuboEQiIiJythA/d/Tr5AMhgC1HcqQup9WxO2ClpqZi0aJFaN++PeRyOeRyOYYPH44lS5Zg1qxZTVEjERERNYG4mzca3XiYAcvZ7A5YZrMZnp6eAAB/f39cvnwZQNXF7ydPnnRudURERNRkxvcJhkwGHLxQgEsFZVKX06rYHbAiIiJw+PBhAFV3dV+6dCl++uknLFq0CF27dnV6gURERNQ0Ar3dMKiLHwBgM89iOZXdAevVV1+FxWIBALz11lu4cOECfv3rX2PLli348MMPnV4gERERNZ3qR+dsPHxZ4kpaF7tXEcbExFj/3LVrVxw7dgz5+fnw9fW1riQkIiKilmFcRDBe/99RZGQX4dzVEnRt7yl1Sa2C3Wewqp05cwZbt25FeXk5/Pz8nFkTERERNRM/DzWGd/MHAGziNKHT2B2wrl+/jgceeAA9evTAgw8+iJycqn8ZL7zwAubOnev0AomIiKhpVU8TfnfosvX+luQYuwPWH/7wB6hUKmRlZcHd3d26fcqUKUhMTHRqcURERNT0onsHQq2Q40xeCU5eKZa6nFbB7oCVlJSEv/71r+jY0fbp2927d8eFCxecVhgRERE1D283FaLC2gMANh7ixe7OYHfAKi0ttTlzVe3atWvQaDROKYqIiIiaV/U04abDOZwmdAK7A9aIESPw5ZdfWr+XyWSwWCxYtmwZRo0a5dTiiIiIqHmM7hUArUqBC9fLcCS7UOpyWjy7b9OwbNkyjBw5Ej///DOMRiNefvllHD16FPn5+fjpp5+aokYiIiJqYu5qJR7oFYBNh3Ow8dBl9OnoI3VJLZrdZ7DCw8Nx+PBh/OpXv8KYMWNQWlqKSZMm4ZdffsE999zTFDUSERFRM6g5TWixcJrQEXafwQKAoKAgvPHGG86uhYiIiCQU1aM9vDRK5BRW4GBWAe7rzPtcNlajAlZFRQUOHz6MvLw862Nzqk2YMMEphREREVHzclMpEN07COvTLmHjocsMWA6wO2AlJibi6aefxrVr12rtk8lkMJvNTimMiIiIml9s32CsT7uELUdy8HpsOJSKRj/0pU2zu2szZszAY489hpycHFgsFpsvhisiIqKWbXg3f/i6q3CtxIi95/KlLqfFsjtg5eXlYc6cOQgMDGyKemopLi7G7NmzERoaCq1Wi6FDh+LAgQPW/dOmTYNMJrP5Gjx4sM0xDAYDZs6cCX9/f3h4eGDChAm4dOmSzZiCggLEx8dDp9NBp9MhPj4eN27csBmTlZWFuLg4eHh4wN/fH7NmzYLRaGyyz05ERNTcVAo5xkYEA+BNRx1hd8B69NFHsXPnziYopW4vvPACtm3bhtWrV+PIkSOIjo7G6NGjkZ2dbR0zduxY5OTkWL+2bNlic4zZs2fj22+/xbp167Bnzx6UlJQgNjbW5ozb1KlTkZ6ejsTERCQmJiI9PR3x8fHW/WazGePHj0dpaSn27NmDdevWYf369Xz+IhERtTpxfasC1vcZOTBWWu4ymupi9zVYK1euxGOPPYbdu3cjMjISKpXKZv+sWbOcVlx5eTnWr1+P//3vfxgxYgQAICEhARs2bMDHH3+Mt956CwCg0WgQFBRU5zEKCwuxatUqrF69GqNHjwYArFmzBiEhIdi+fTtiYmJw/PhxJCYmYu/evRg0aBAA4LPPPsOQIUNw8uRJhIWFISkpCceOHcPFixeh11ctY3333Xcxbdo0vP322/D29q7z/Q0GAwwGg/X7oqIiAIDJZILJZHJCl1qH6l6wJ43HHjqOPXQce+g4V+hh/47eaO+pxtUSI3acyMX9Nx+j01I0RQ/tPZbdAeurr77C1q1bodVqsXPnTshkMus+mUzm1IBVWVkJs9kMNzc3m+1arRZ79uyxfr9z504EBATAx8cHUVFRePvttxEQEAAAOHjwIEwmE6Kjo63j9Xo9IiIikJKSgpiYGKSmpkKn01nDFQAMHjwYOp0OKSkpCAsLQ2pqKiIiIqzhCgBiYmJgMBhw8ODBO97FfsmSJXXe0iIpKanORw61ddu2bZO6hBaPPXQce+g49tBxUvewl6ccV0vk+DTxICrOtsyzWM7sYVlZmV3j7Q5Yr776KhYtWoQ//vGPkMubdmWBl5cXhgwZgjfffBO9evVCYGAg/vWvf2Hfvn3o3r07AGDcuHF47LHHEBoaiszMTLz22mu4//77cfDgQWg0GuTm5kKtVsPX19fm2IGBgcjNzQUA5ObmWgNZTQEBATZjbr/uzNfXF2q12jqmLgsWLMCcOXOs3xcVFSEkJATR0dF3POvVFplMJmzbtg1jxoypdVaUGoY9dBx76Dj20HGu0sPgrBvY9dl+nChS4f4xI+GmUkhWi72aoofVM1ANZXfAMhqNmDJlSpOHq2qrV6/Gc889hw4dOkChUKB///6YOnUq0tLSAABTpkyxjo2IiMDAgQMRGhqKzZs3Y9KkSXc8rhCi1tk3Z4y5nUajqfMh2CqVin/51IF9cRx76Dj20HHsoeOk7uF9Xf3RwUeL7Bvl2HO2AOMigyWrpbGc2UN7j2N3SnrmmWfw9ddf2/uyRrvnnnuQnJyMkpISXLx4Efv374fJZEKXLl3qHB8cHIzQ0FCcPn0aQNVd541GIwoKCmzG5eXlWc9IBQUF4cqVK7WOdfXqVZsxt5+pKigogMlkarYVlURERM1FJpMh9ubF7hsPczWhvewOWGazGUuXLkVUVBRmzpyJOXPm2Hw1FQ8PDwQHB6OgoABbt27FQw89VOe469ev4+LFiwgOrvqhGDBgAFQqlc08bE5ODjIyMjB06FAAwJAhQ1BYWIj9+/dbx+zbtw+FhYU2YzIyMpCTk2Mdk5SUBI1GgwEDBjj98xIREUktrk/Vdcc/HM9DiaFS4mpaFrunCI8cOYJ+/foBADIyMmz21TdV1lhbt26FEAJhYWE4c+YM5s+fj7CwMDz77LMoKSlBQkICHnnkEQQHB+P8+fP405/+BH9/fzz88MMAAJ1Oh+effx5z585Fu3bt4Ofnh3nz5iEyMtK6qrBXr14YO3Yspk+fjk8++QQA8Jvf/AaxsbEICwsDAERHRyM8PBzx8fFYtmwZ8vPzMW/ePEyfPp3XUhERUavUW++Nrv4eOHetFNuPXcHEfh2kLqnFsDtg7dixoynquKPCwkIsWLAAly5dgp+fHx555BG8/fbbUKlUqKysxJEjR/Dll1/ixo0bCA4OxqhRo/D111/Dy8vLeoz33nsPSqUSkydPRnl5OR544AF8/vnnUChuXbC3du1azJo1y7racMKECVi5cqV1v0KhwObNm/HSSy9h2LBh0Gq1mDp1Kt55553mawYREVEzqpom1OPDH05j46HLDFh2aNTDnpvT5MmTMXny5Dr3abVabN269a7HcHNzw4oVK7BixYo7jvHz88OaNWvqPU6nTp2wadOmu74fERFRaxHXJxgf/nAau05fxY0yI3zc1VKX1CLwCY5ERER0R90DvdAzyAsms8DWo3e+LRHZYsAiIiKiesX1rbrYfeOhnLuMpGoMWERERFSv2D5VK/NTzl7D1WLDXUYTwIBFREREdxHazgN9O+pgEVUPgKa7Y8AiIiKiu7o1TcibjjYEAxYRERHd1fib04QHzhfg8o1yiatxfQxYREREdFfBOi1+1dkPALDlCKcJ74YBi4iIiBokrvrZhJwmvCsGLCIiImqQcZHBkMuAQ5cKceF6qdTluDQGLCIiImoQf08NhnXzBwBsOsxpwvowYBEREVGDxfXhasKGYMAiIiKiBovpHQSVQoYTucU4daVY6nJcFgMWERERNZjOXYUR3dsDADbxLNYdMWARERGRXaw3HT2cAyGExNW4JgYsIiIissvo8EBolHJkXitFRnaR1OW4JAYsIiIisounRokHegUAADYd5jRhXRiwiIiIyG7Vqwk3cZqwTgxYREREZLdRPQPgoVYg+0Y50rJuSF2Oy2HAIiIiIru5qRSI7h0EgPfEqgsDFhERETVK9bMJNx/JgdnCacKaGLCIiIioUYZ3aw+dVoWrxQbsy7wudTkuhQGLiIiIGkWtlGNcRPU0IZ9NWBMDFhERETVa9U1Hv8/Igclskbga18GARURERI02qIsf/D3VuFFmwp4z16Qux2UwYBEREVGjKRVyPBhZdbE7VxPewoBFREREDqmeJkw6egUVJrPE1bgGBiwiIiJyyIBOvgjWuaHEUInkU1elLsclMGARERGRQ+RyGWL7cJqwJgYsIiIiclj1NOEPx/NQZqyUuBrpMWARERGRwyI76BDazh3lJjO2H8+TuhzJMWARERGRw2QyGeL6VJ3F4jQhAxYRERE5SfU0YfLJqygsN0lcjbQYsIiIiMgpwoK80CPQE0azBUlHc6UuR1IMWEREROQ01mnCw2372YQMWEREROQ0sTenCX86cw35pUaJq5EOAxYRERE5TRd/D0R08IbZIvB9Rts9i8WARURERE7F1YQMWERERORk42/e1X1fZj6uFFVIXI00GLCIiIjIqTr6umNAqC+EADa30YvdGbCIiIjI6eKqn014uG1OEzJgERERkdM92CcYchnwS9YNXMwvk7qcZseARURERE4X4OWGwV3bAWibZ7EYsIiIiKhJVD86Z9OhtncdFgMWERERNYmxvYOglMtwLKcIZ6+WSF1Os2LAIiIioibh66HGr7v7A2h7Z7EYsIiIiKjJVE8TfncoG0IIiatpPgxYRERE1GTGhAdCrZTj7NVSnMgtlrqcZsOARURERE3Gy02FUWHtAbStR+cwYBEREVGTqp4m3Hj4cpuZJmTAIiIioiZ1f88AuKsVuJhfjkOXCqUup1kwYBEREVGTclcrMbpXIIC2M03IgEVERERNznrT0cOXYbG0/mlCBiwiIiJqciN6+MPLTYkrRQYcOJ8vdTlNjgGLiIiImpxGqcDY3kEA2sazCRmwiIiIqFlUTxNuOZKLSrNF4mqaFgMWERERNYuh97SDn4ca+aVGpJy9LnU5TYoBi4iIiJqFUiHHg5FV04SbWvk0IQMWERERNZu4PlXThIkZuTBUmiWupukwYBEREVGzua+zHwK9NSiqqMTuU9ekLqfJMGARERFRs5HLZRgfeevROa0VAxYRERE1q7i+wQCAbceuoNzYOqcJGbCIiIioWd0b4oOOvlqUGc348USe1OU0CQYsIiIialYymcx6T6zW+mxCBiwiIiJqdtWrCX88mYfiCpPE1TgfAxYRERE1u17BXrinvQeMlRZsO3ZF6nKcjgGLiIiIml1rnyZ0+YBVXFyM2bNnIzQ0FFqtFkOHDsWBAwes+4UQSEhIgF6vh1arxciRI3H06FGbYxgMBsycORP+/v7w8PDAhAkTcOnSJZsxBQUFiI+Ph06ng06nQ3x8PG7cuGEzJisrC3FxcfDw8IC/vz9mzZoFo9HYZJ+diIioNYu9OU24+/Q1FJS2rt+nLh+wXnjhBWzbtg2rV6/GkSNHEB0djdGjRyM7OxsAsHTpUixfvhwrV67EgQMHEBQUhDFjxqC4uNh6jNmzZ+Pbb7/FunXrsGfPHpSUlCA2NhZm862loVOnTkV6ejoSExORmJiI9PR0xMfHW/ebzWaMHz8epaWl2LNnD9atW4f169dj7ty5zdcMIiKiVqRbgCfCg71RaRH4PiNX6nKcSil1AfUpLy/H+vXr8b///Q8jRowAACQkJGDDhg34+OOP8eabb+L999/Hn//8Z0yaNAkA8MUXXyAwMBBfffUVXnzxRRQWFmLVqlVYvXo1Ro8eDQBYs2YNQkJCsH37dsTExOD48eNITEzE3r17MWjQIADAZ599hiFDhuDkyZMICwtDUlISjh07hosXL0Kvr0rc7777LqZNm4a3334b3t7edX4Gg8EAg8Fg/b6oqAgAYDKZYDK1vov6Gqu6F+xJ47GHjmMPHcceOq6t9fDBiEAcyynCxkPZeKx/sFOO2RQ9tPdYLh2wKisrYTab4ebmZrNdq9Viz549yMzMRG5uLqKjo637NBoNoqKikJKSghdffBEHDx6EyWSyGaPX6xEREYGUlBTExMQgNTUVOp3OGq4AYPDgwdDpdEhJSUFYWBhSU1MRERFhDVcAEBMTA4PBgIMHD2LUqFF1foYlS5bgjTfeqLU9KSkJ7u7uje5Na7Vt2zapS2jx2EPHsYeOYw8d11Z66F4BAErsPXcd6zZsgbfaecd2Zg/LysrsGu/SAcvLywtDhgzBm2++iV69eiEwMBD/+te/sG/fPnTv3h25uVWnEwMDA21eFxgYiAsXLgAAcnNzoVar4evrW2tM9etzc3MREBBQ6/0DAgJsxtz+Pr6+vlCr1dYxdVmwYAHmzJlj/b6oqAghISGIjo6+41mvtshkMmHbtm0YM2YMVCqV1OW0SOyh49hDx7GHjmuLPfzf1X04dKkQpqAIPDi4k8PHa4oeVs9ANZRLBywAWL16NZ577jl06NABCoUC/fv3x9SpU5GWlmYdI5PJbF4jhKi17Xa3j6lrfGPG3E6j0UCj0dTarlKp2sx/OPZgXxzHHjqOPXQce+i4ttTDCfd2wKFLhdiScQXP/foepx3XmT209zguf5H7Pffcg+TkZJSUlODixYvYv38/TCYTunTpgqCgIACodQYpLy/PerYpKCgIRqMRBQUF9Y65cqX2PTiuXr1qM+b29ykoKIDJZKp1ZouIiIgabnxkMGQy4OcLBci+US51OU7h8gGrmoeHB4KDg1FQUICtW7fioYcesoasmnOsRqMRycnJGDp0KABgwIABUKlUNmNycnKQkZFhHTNkyBAUFhZi//791jH79u1DYWGhzZiMjAzk5ORYxyQlJUGj0WDAgAFN+tmJiIhasyCdG37V2Q8AsPlw67gnlstPEW7duhVCCISFheHMmTOYP38+wsLC8Oyzz0Imk2H27NlYvHgxunfvju7du2Px4sVwd3fH1KlTAQA6nQ7PP/885s6di3bt2sHPzw/z5s1DZGSkdVVhr169MHbsWEyfPh2ffPIJAOA3v/kNYmNjERYWBgCIjo5GeHg44uPjsWzZMuTn52PevHmYPn06r6UiIiJyUFxfPfZl5mPjoRz8ZoTzpgml4vJnsAoLC/F///d/6NmzJ55++mkMHz4cSUlJ1rnQl19+GbNnz8ZLL72EgQMHIjs7G0lJSfDy8rIe47333sPEiRMxefJkDBs2DO7u7ti4cSMUCoV1zNq1axEZGYno6GhER0ejT58+WL16tXW/QqHA5s2b4ebmhmHDhmHy5MmYOHEi3nnnneZrBhERUSs1LiIICrkMR7ILkXmtVOpyHObyZ7AmT56MyZMn33G/TCZDQkICEhIS7jjGzc0NK1aswIoVK+44xs/PD2vWrKm3lk6dOmHTpk13rZmIiIjs085Tg2Hd/LHr1FVsOnQZMx/oLnVJDnH5M1hERETUNsT1qbrR6MZWcB0WAxYRERG5hOjeQVAr5Dh1pQQnc4vv/gIXxoBFRERELkGnVWFEj/YAgI2HWvZZLAYsIiIichlxfW9NEwohJK6m8RiwiIiIyGWM7hUIN5UcF66XISPbvsfTuBIGLCIiInIZHholHuhV9YSUlnyxOwMWERERuZS4PnoAwKZDl2GxtMxpQgYsIiIicikjw9rDU6PE5cIKpGUV3P0FLogBi4iIiFyKm0qB6N43pwlb6GpCBiwiIiJyOXF9q6YJNx/JQaXZInE19mPAIiIiIpczvJs/fNxVuFZixL7MfKnLsRsDFhEREbkclUKOcRFBAFrmNCEDFhEREbmk6tWE32fkwljZsqYJGbCIiIjIJQ3q2g7+nhoUlpuw58xVqcuxCwMWERERuSSFXIbYPjcfnXMoR+Jq7MOARURERC6r+tmESUdzUWEyS1xNwzFgERERkcvqF+KLDj5alBrN2HEiT+pyGowBi4iIiFyWvOY0YQt6NiEDFhEREbm06puO/ngiDyWGSomraRgGLCIiInJpvfXe6NzOHRUmC344fkXqchqEAYuIiIhcmkwms57Faik3HWXAIiIiIpdXHbCST11FYZlJ4mrujgGLiIiIXF6PQC+EBXrBZBbYejRX6nLuigGLiIiIWoTqe2K1hNWEDFhERETUIsTefDbhT2eu4VqJQeJq6seARURERC1CZ38P9Omog0UA3x9x7UfnMGARERFRixF38yzWxsMMWEREREROMf7mXd0PnM9HTmG5xNXcGQMWERERtRh6Hy3u6+wLIYDNLnwWiwGLiIiIWhTrTUcZsIiIiIicY1xEMOQy4NDFG8i6XiZ1OXViwCIiIqIWpb2XBkPv8QfguvfEYsAiIiKiFsd601EXfTYhAxYRERG1ODG9g6BSyHAitxinrxRLXU4tDFhERETU4vi4qzGie3sArnmxOwMWERERtUixN6cJNx2+DCGExNXYYsAiIiKiFml0r0BolHKcu1qKYzlFUpdjgwGLiIiIWiQvNxXu7xkAANh4yLWmCRmwiIiIqMWy3nT0kGtNEzJgERERUYs1KiwAHmoFsm+U45eLN6Qux4oBi4iIiFosrVqBMeGBAFzrnlgMWERERNSiVU8Tbj6cA7PFNaYJGbCIiIioRft19/bwdlMir9iA/Zn5UpcDgAGLiIiIWji1Uo5xETcfneMizyZkwCIiIqIWr3qaMDEjFyazReJqAKXUBRARERE5anBXP/h7quHtpkJOYYXU5TBgERERUcunVMixZdav0d5Lg8rKSmRIXY/E709ERETkFAHeblKXYMVrsIiIiIicjAGLiIiIyMkYsIiIiIicjAGLiIiIyMkYsIiIiIicjAGLiIiIyMkYsIiIiIicjAGLiIiIyMkYsIiIiIicjAGLiIiIyMkYsIiIiIicjAGLiIiIyMkYsIiIiIicTCl1AW2NEAIAUFRUJHElrsVkMqGsrAxFRUVQqVRSl9MisYeOYw8dxx46jj10XFP0sPr3dvXv8bthwGpmxcXFAICQkBCJKyEiIiJ7FRcXQ6fT3XWcTDQ0ipFTWCwWXL58GV5eXpDJZFKX4zKKiooQEhKCixcvwtvbW+pyWiT20HHsoePYQ8exh45rih4KIVBcXAy9Xg+5/O5XWPEMVjOTy+Xo2LGj1GW4LG9vb/6F4iD20HHsoePYQ8exh45zdg8bcuaqGi9yJyIiInIyBiwiIiIiJ2PAIpeg0WiwcOFCaDQaqUtpsdhDx7GHjmMPHcceOs4VesiL3ImIiIicjGewiIiIiJyMAYuIiIjIyRiwiIiIiJyMAYuIiIjIyRiwqFESEhIgk8lsvoKCgqz7hRBISEiAXq+HVqvFyJEjcfToUZtjGAwGzJw5E/7+/vDw8MCECRNw6dIlmzEFBQWIj4+HTqeDTqdDfHw8bty4YTMmKysLcXFx8PDwgL+/P2bNmgWj0dhkn91Z6uuhyWTCK6+8gsjISHh4eECv1+Ppp5/G5cuXbY7BHtb/c1jTiy++CJlMhvfff99mO3t49x4eP34cEyZMgE6ng5eXFwYPHoysrCzrfvaw/h6WlJRgxowZ6NixI7RaLXr16oWPP/7Y5hhtvYcAkJ2djaeeegrt2rWDu7s77r33Xhw8eNC6v8X9XhFEjbBw4ULRu3dvkZOTY/3Ky8uz7v/LX/4ivLy8xPr168WRI0fElClTRHBwsCgqKrKO+e1vfys6dOggtm3bJtLS0sSoUaNE3759RWVlpXXM2LFjRUREhEhJSREpKSkiIiJCxMbGWvdXVlaKiIgIMWrUKJGWlia2bdsm9Hq9mDFjRvM0wgH19fDGjRti9OjR4uuvvxYnTpwQqampYtCgQWLAgAE2x2AP6/85rPbtt9+Kvn37Cr1eL9577z2bfexh/T08c+aM8PPzE/PnzxdpaWni7NmzYtOmTeLKlSvWMexh/T184YUXxD333CN27NghMjMzxSeffCIUCoXYsGGDdUxb72F+fr4IDQ0V06ZNE/v27ROZmZli+/bt4syZM9YxLe33CgMWNcrChQtF375969xnsVhEUFCQ+Mtf/mLdVlFRIXQ6nfjb3/4mhKgKECqVSqxbt846Jjs7W8jlcpGYmCiEEOLYsWMCgNi7d691TGpqqgAgTpw4IYQQYsuWLUIul4vs7GzrmH/9619Co9GIwsJCp33eplBfD+uyf/9+AUBcuHBBCMEeCtGwHl66dEl06NBBZGRkiNDQUJuAxR7evYdTpkwRTz311B33s4d372Hv3r3FokWLbLb1799fvPrqq0II9lAIIV555RUxfPjwO+5vib9XOEVIjXb69Gno9Xp06dIFjz/+OM6dOwcAyMzMRG5uLqKjo61jNRoNoqKikJKSAgA4ePAgTCaTzRi9Xo+IiAjrmNTUVOh0OgwaNMg6ZvDgwdDpdDZjIiIioNfrrWNiYmJgMBhsTi27qjv1sC6FhYWQyWTw8fEBwB5Wq6+HFosF8fHxmD9/Pnr37l3rtexhlTv10GKxYPPmzejRowdiYmIQEBCAQYMGYcOGDdbXsodV6vs5HD58OL777jtkZ2dDCIEdO3bg1KlTiImJAcAeAsB3332HgQMH4rHHHkNAQAD69euHzz77zLq/Jf5eYcCiRhk0aBC+/PJLbN26FZ999hlyc3MxdOhQXL9+Hbm5uQCAwMBAm9cEBgZa9+Xm5kKtVsPX17feMQEBAbXeOyAgwGbM7e/j6+sLtVptHeOq6uvh7SoqKvDHP/4RU6dOtT64lD28ew//+te/QqlUYtasWXW+nj2sv4d5eXkoKSnBX/7yF4wdOxZJSUl4+OGHMWnSJCQnJwNgD4G7/xx++OGHCA8PR8eOHaFWqzF27Fh89NFHGD58OAD2EADOnTuHjz/+GN27d8fWrVvx29/+FrNmzcKXX34JAC3y94qywSOJahg3bpz1z5GRkRgyZAjuuecefPHFFxg8eDAAQCaT2bxGCFFr2+1uH1PX+MaMcUX19XDOnDnWfSaTCY8//jgsFgs++uijux6XPazqYVRUFD744AOkpaXZ/TnYw6oePv744wCAhx56CH/4wx8AAPfeey9SUlLwt7/9DVFRUXc8Lnt467/lDz/8EHv37sV3332H0NBQ7Nq1Cy+99BKCg4MxevToOx63LfXQYrFg4MCBWLx4MQCgX79+OHr0KD7++GM8/fTT1nEt6fcKz2CRU3h4eCAyMhKnT5+2rp65Penn5eVZ/68gKCgIRqMRBQUF9Y65cuVKrfe6evWqzZjb36egoAAmk6nW/4G4upo9rGYymTB58mRkZmZi27Zt1rNXAHtYl5o93L17N/Ly8tCpUycolUoolUpcuHABc+fORefOnQGwh3Wp2UN/f38olUqEh4fbjOnVq5d1FSF7WFvNHpaXl+NPf/oTli9fjri4OPTp0wczZszAlClT8M477wBgDwEgODj4rj9nQMv6vcKARU5hMBhw/PhxBAcHo0uXLggKCsK2bdus+41GI5KTkzF06FAAwIABA6BSqWzG5OTkICMjwzpmyJAhKCwsxP79+61j9u3bh8LCQpsxGRkZyMnJsY5JSkqCRqPBgAEDmvQzO1vNHgK3wtXp06exfft2tGvXzmY8e1hbzR7Gx8fj8OHDSE9Pt37p9XrMnz8fW7duBcAe1qVmD9VqNe677z6cPHnSZsypU6cQGhoKgD2sS80emkwmmEwmyOW2v24VCgUsFgsA9hAAhg0bVu/PWYv8vdLgy+GJapg7d67YuXOnOHfunNi7d6+IjY0VXl5e4vz580KIquW0Op1OfPPNN+LIkSPiiSeeqHM5bceOHcX27dtFWlqauP/+++tcTtunTx+RmpoqUlNTRWRkZJ3LaR944AGRlpYmtm/fLjp27NgiliXX10OTySQmTJggOnbsKNLT022WfxsMBusx2MP6fw5vd/sqQiHYw7v18JtvvhEqlUp8+umn4vTp02LFihVCoVCI3bt3W4/BHtbfw6ioKNG7d2+xY8cOce7cOfHPf/5TuLm5iY8++sh6jLbew/379wulUinefvttcfr0abF27Vrh7u4u1qxZYx3T0n6vMGBRo1Tff0SlUgm9Xi8mTZokjh49at1vsVjEwoULRVBQkNBoNGLEiBHiyJEjNscoLy8XM2bMEH5+fkKr1YrY2FiRlZVlM+b69eviySefFF5eXsLLy0s8+eSToqCgwGbMhQsXxPjx44VWqxV+fn5ixowZoqKiosk+u7PU18PMzEwBoM6vHTt2WI/BHtb/c3i7ugIWe3j3Hq5atUp069ZNuLm5ib59+9rcv0kI9vBuPczJyRHTpk0Ter1euLm5ibCwMPHuu+8Ki8ViHdPWeyiEEBs3bhQRERFCo9GInj17ik8//dRmf0v7vSITQoiGn+8iIiIiorvhNVhERERETsaARURERORkDFhERERETsaARURERORkDFhERERETsaARURERORkDFhERERETsaARURERORkDFhERERETsaARUTkAJlMhg0bNkhdBhG5GAYsIqI7MBqNUpdARC0UAxYRtUgbN26Ej48PLBYLACA9PR0ymQzz58+3jnnxxRfxxBNPWL9fv349evfuDY1Gg86dO+Pdd9+1OWbnzp3x1ltvYdq0adDpdJg+fTqMRiNmzJiB4OBguLm5oXPnzliyZIl1PAA8/PDDkMlk1u/rcunSJTz++OPw8/ODh4cHBg4ciH379gEAzp49i4ceegiBgYHw9PTEfffdh+3bt9u8/qOPPkL37t3h5uaGwMBAPProo9Z9QggsXboUXbt2hVarRd++ffHf//7X/qYSkdMopS6AiKgxRowYgeLiYvzyyy8YMGAAkpOT4e/vj+TkZOuYnTt34g9/+AMA4ODBg5g8eTISEhIwZcoUpKSk4KWXXkK7du0wbdo062uWLVuG1157Da+++ioA4MMPP8R3332Hf//73+jUqRMuXryIixcvAgAOHDiAgIAA/POf/8TYsWOhUCjqrLWkpARRUVHo0KEDvvvuOwQFBSEtLc0aDktKSvDggw/irbfegpubG7744gvExcXh5MmT6NSpE37++WfMmjULq1evxtChQ5Gfn4/du3dbj//qq6/im2++wccff4zu3btj165deOqpp9C+fXtERUU5te9E1ECCiKiF6t+/v3jnnXeEEEJMnDhRvP3220KtVouioiKRk5MjAIjjx48LIYSYOnWqGDNmjM3r58+fL8LDw63fh4aGiokTJ9qMmTlzprj//vuFxWKpswYA4ttvv623zk8++UR4eXmJ69evN/izhYeHixUrVgghhFi/fr3w9vYWRUVFtcaVlJQINzc3kZKSYrP9+eefF0888USD34+InItThETUYo0cORI7d+6EEAK7d+/GQw89hIiICOzZswc7duxAYGAgevbsCQA4fvw4hg0bZvP6YcOG4fTp0zCbzdZtAwcOtBkzbdo0pKenIywsDLNmzUJSUpLddaanp6Nfv37w8/Orc39paSlefvllhIeHw8fHB56enjhx4gSysrIAAGPGjEFoaCi6du2K+Ph4rF27FmVlZQCAY8eOoaKiAmPGjIGnp6f168svv8TZs2ftrpWInINThETUYo0cORKrVq3CoUOHIJfLER4ejqioKCQnJ6OgoMBmekwIAZlMZvN6IUStY3p4eNh8379/f2RmZuL777/H9u3bMXnyZIwePdqua5y0Wm29++fPn4+tW7finXfeQbdu3aDVavHoo49aL7L38vJCWloadu7ciaSkJLz++utISEjAgQMHrNOMmzdvRocOHWyOq9FoGlwjETkXAxYRtVjV12G9//77iIqKgkwmQ1RUFJYsWYKCggL8/ve/t44NDw/Hnj17bF6fkpKCHj163PHaqWre3t6YMmUKpkyZgkcffRRjx45Ffn4+/Pz8oFKpbM6A1aVPnz74+9//bn3N7Xbv3o1p06bh4YcfBlB1Tdb58+dtxiiVSowePRqjR4/GwoUL4ePjgx9//BFjxoyBRqNBVlYWr7ciciEMWETUYul0Otx7771Ys2YNPvjgAwBVoeuxxx6DyWTCyJEjrWPnzp2L++67D2+++SamTJmC1NRUrFy5Eh999FG97/Hee+8hODgY9957L+RyOf7zn/8gKCgIPj4+AKpWEv7www8YNmwYNBoNfH19ax3jiSeewOLFizFx4kQsWbIEwcHB+OWXX6DX6zFkyBB069YN33zzDeLi4iCTyfDaa69Zz0wBwKZNm3Du3DmMGDECvr6+2LJlCywWC8LCwuDl5YV58+bhD3/4AywWC4YPH46ioiKkpKTA09MTzzzzjOONJiL7SXwNGBGRQ+bOnSsAiIyMDOu2vn37ivbt29e6MP2///2vCA8PFyqVSnTq1EksW7bMZn9oaKh47733bLZ9+umn4t577xUeHh7C29tbPPDAAyItLc26/7vvvhPdunUTSqVShIaG3rHO8+fPi0ceeUR4e3sLd3d3MXDgQLFv3z4hhBCZmZli1KhRQqvVipCQELFy5UoRFRUlfv/73wshhNi9e7eIiooSvr6+QqvVij59+oivv/7aemyLxSI++OADERYWJlQqlWjfvr2IiYkRycnJ9rSSiJxIJkQdFyEQERERUaNxFSERERGRkzFgERERETkZAxYRERGRkzFgERERETkZAxYRERGRkzFgERERETkZAxYRERGRkzFgERERETkZAxYRERGRkzFgERERETkZAxYRERGRk/0/B0gVO76dKDoAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGwCAYAAAB1mRuuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABV30lEQVR4nO3de1xUZf4H8M/cGW4DiFxGETUVRdC8tF5XtBQ0wcxKy6Ls4rbbT13XS627lWSlu1p20Vdtte5Wamu7a7l5CdFS1MBLEireLyiKICrInZlh5vn9gYyMIDLMwBng8369eCXnPHPmO99IPp3nPOfIhBACREREROQ0cqkLICIiImptGLCIiIiInIwBi4iIiMjJGLCIiIiInIwBi4iIiMjJGLCIiIiInIwBi4iIiMjJlFIX0NZYLBZcvnwZXl5ekMlkUpdDREREDSCEQHFxMfR6PeTyu5+fYsBqZpcvX0ZISIjUZRAREVEjXLx4ER07drzrOAasZubl5QWg6l+Qt7e3xNW4DpPJhKSkJERHR0OlUkldTovEHjqOPXQce+g49tBxTdHDoqIihISEWH+P3w0DVjOrnhb09vZmwKrBZDLB3d0d3t7e/AulkdhDx7GHjmMPHcceOq4pe9jQy3t4kTsRERGRkzFgERERETkZAxYRERGRk/EaLCIiIhdnNpthMpmkLqPFMJlMUCqVqKiogNlsbtBrVCoVFAqF02pgwCIiInJRQgjk5ubixo0bUpfSogghEBQUhIsXL9p1z0kfHx8EBQU55T6VDFhEREQuqjpcBQQEwN3dnTeobiCLxYKSkhJ4eno26KagQgiUlZUhLy8PABAcHOxwDQxYRERELshsNlvDVbt27aQup0WxWCwwGo1wc3NrUMACAK1WCwDIy8tDQECAw9OFvMidiIjIBVVWVgIA3N3dJa6k7ajutTOud2PAIiIickFCCAANv7ElOc6ZvWbAIiIiInIyBiwiIiIiJ2PAIiIiInIyBqxWIut6GXIKy5FfakSpoRKVZovUJRERETXYyJEjMXv2bKnLcBrepqGViHl/F8pNtnerVchlcFPKoVEpoFHKb34poFHd+rOb6uY2pfzm9hpjq1932+utr6lxnLpezwsziYgIAIxGI9RqdbO8l8lkcuod2RuLAauVUClkqLTIYDIL6zazRaDUaEapsWGPCXA2tdI2gN0pmLmpFFApgNxsOdK/PwmtWmkdZxsQbYPc7eHQTamAh0YJtZInZomodRJC1Pqf6eagVSns+p/mkSNHIiIiAmq1Gl9++SV69+6Njz/+GPPmzcOuXbvg4eGB6OhovPfee/D398e0adOQnJyM5ORkfPDBBwCAzMxM7Ny5E7Nnz7a5k/2GDRvw8MMPW1dZJiQkYMOGDZg1axbeeustnD9/HiaTCb6+vvjkk0/w/fffY+vWrejQoQPeffddTJgwwam9uRMGrFbicEIMgKpQZay0wFBphqHSAoPp1p8rTGZUmCwwms03t9vuq95WYTLDaL712ooax6h+jXXbbccRt/IdjJUWGCstKEZlAz+FHD9dueBwL9RKObw0Sni6KeGhrvpn9feeGiV0WhV83FXQaVXQadXwca/63kerhk6rgpuKZ9+IyDWVm8wIf31rs7/vsUUxcFfbFxm++OIL/O53v8NPP/2E/Px8REVFYfr06Vi+fDnKy8vxyiuvYPLkyfjxxx/xwQcf4NSpU4iIiMCiRYsAAO3bt2/we505cwb//ve/sX79epuzV2+++SaWLl2KZcuWYcWKFXjyySdx4cIF+Pn52fVZGoMBq5VRyGXQqhXQqpv/9KgQAiazsAaw24OaNaCZaoe1coMJGcdPolOXrjBZUGc4rPl6Y6Xltu1m69k7Y6UF1yuNuF5qbNTnUCvl8NHeCl3e1j/fDGbuavhoVdag5qNVQ+eugpdGCbmcwYyICAC6deuGpUuXAgBef/119O/fH4sXL7bu/8c//oGQkBCcOnUKPXr0gFqthru7O4KCgux+L6PRiNWrV1tDmcVSdR3yM888gyeeeAIAsHjxYqxYsQL79+/H2LFjHf14d8WARU4jk8mgVsqqziC52fdak8mELSXH8WB0D6hUqka9f6XZglKjGSWGSpRUVKLEYEJxRWWN7ytRVFGJonITCstNuFFmrPpnuQmFZVX/rD4DmFdsQF6xwa73l8tQFca0t0JY9ZmymtuswcxddXO8mtOaRNQgWpUCxxbFSPK+9ho4cKD1zwcPHsSOHTvg6elZa9zZs2fRo0cPh+oLDQ2t84xXZGSk9c8eHh7w8vKyPm+wqTFgUauhVMih08qh0zYuoAlRdc1aQWlV8Cq0BjETbpQbq0JY2c1t5cZbfy4zodxkhkWgamyZCbheZtd7u6sV1hCm0yrhc3PqUnfzDJltUFPB52ZYc1fbd10EEbVsMpnM7qk6qXh4eFj/bLFYEBcXh7/+9a+1xtX3YGW5XG691qpaXY+xqfleNd3+P+wymcx6dquptYx/S0TNQCaTwVNTdZ1WiJ2vNVSaqwLZzTNhVUHLeFtIuxnayozWMUUVJggBlBnNKDOacbmwwq73VcplNa4nU8FQLMeOsiPw9dTcvKZMCR939c2gVn32TA1vNyWUCp41I6Lm0b9/f6xfvx6dO3eGUll39FCr1TCbbS/gb9++PYqLi1FaWmoNUenp6U1drlMwYBE5gUapQICXAgF2zo1aLAJFFbefLbsZwmqEMut0ZtmtKU2j2YJKi8C1EiOulVRfbybH0YKcBr23l5uyxpmxWyGs5gX/t7bdOovm1oipAiJq2/7v//4Pn332GZ544gnMnz8f/v7+OHPmDNatW4fPPvsMCoUCnTt3xr59+3D+/Hl4enrCz88PgwYNgru7O/70pz9h5syZ2L9/Pz7//HOpP06DMGARSUgul90ML/bdH0YIgQqTxTpVeaPMhOvF5dizPw2duvdEscFSdYbstunMwjITig1VqzqLKypRXFGJiyi36701SrnNxf3VU5fWM2m1rj/jIgCitk6v1+Onn37CK6+8gpiYGBgMBoSGhmLs2LGQy6vOps+bNw/PPPMMwsPDUV5ejszMTHTu3Blr1qzB/Pnz8emnn2L06NFISEjAb37zG4k/0d0xYBG1QDJZ9WpRLYJ1WgBV1yWYLwg8OLxLvQsFTGbLzeBlqjGteSuo3WkBQOHNRQCGSguuFBlwpcj+RQDVU5k1Q9ita89qnEFzr7qFRvV4LgIgall27txZa1v37t3xzTff3PE1PXr0QGpqaq3tEydOxMSJE222TZ8+3frnhIQEJCQk1HpdQUEBvL29bbbVvJ9WU2PAImpjVAo52nlq0M5TY9frhBAoMVTaXNx/+wX/NcNazTHViwAKykwoaMQiAA+1oupasjuswvSpcY0ZFwEQkStgwCKiBpHJZPByU8HLTWX3IoAKk/nW7TFuWwRwK6jV3la9CKDqiQTlyL5h33SmSiGrEcrUt1Zh3jw7dutsWdV+DxVQaqq6YW/j1qISEVVhwCKiJuemUsBNpUCAt32LAMwWgeIK0x0v+L/1z6ptBTXOpBnNFpjMNRcBlDbwXZX488Ft8NIorWfNaq7UrPv6My4CICJbDFhE5LIUDiwCKDeZb628vBnCbINajW01pjtLDWYIgaqb0lY09DFPt7ip5HWuzKw+S1YzpN1aGFC1CIDTmVRT9c/D7feBoqbjzF4zYBFRq1N9M0Z3tdK6CKAhTCYTNm7agiEjH0CpCTdvn2EbwqrPotkuEri1CKDqMVH2LwJQyG9NZ9Y8a3anpwDoagQ0Fe9p1ipV3y+qrKwMWm3Df46p8crKqq4PbewTRWpiwCIiqkEhB/w9NQi28y/YuhYB2CwAqA5mNwNZUY0xFSYLzBaB/FIj8hvxDM2aiwBqXlemq7EAoNaiAHcVtCouAnBlCoUCPj4+1ke7uLu7899XA1ksFhiNRlRUVFhvA1EfIQTKysqQl5cHHx8fmwdGNxYDFhGREzi6CMDmZrO1ngJwe1CrGlNsqHTCIoA6VmHWfDyTu+0iAR/3qs+o4D3NmkX1g4+b6/l5rYUQAuXl5dBqtXaFUh8fn0Y9bLouDFhERBKrXgQQ6OAigFrBrMZzNG9fqWkyi5uLAAy4VmLfdCYAeLspbS7urw5jXhoFci7LUJ6WjXZe2hrXnFWdQeMiAPvIZDIEBwcjICCgzmfwUd1MJhN27dqFESNGNHi6T6VSOeXMVTUGLCKiFsqRRQBlRrPNGbJbU5a2KzNvv/6s5OaTAKoXAWTl11kZNlw4Wud7u6nk1jNk3jY3l1XXWqnJRQC3KBQKp/7yb+0UCgUqKyvh5ubmlOupGoMBi4iojZHJZPDQKOGhUULvY9/F0yazpZ6pTBMKSipw7OwFePoGoLCi0maMRQAVJgtyTRXILbLvwebViwCq72VW8xYZNa89i+zgg24BnnYdm6gpMGAREVGDqRRy+Htq4H+HJwGYTCZs2ZKJBx/sb3PmwGIRKDFWVq26rOspALctAiisMcaeRQAKuQyrn/sVhnbzd+rnJrIXAxYRETU5uVwGbzcVvN1UCPGz77UVJnM9z8m8FcrO5pXgRG4xXl5/GFtnj4CHhr/iSDr86SMiIpfmplIgSKdAkK7+RQAlhkrEvLcLlwrKseT743hrYmQzVUhUG+9OR0RErYKnRollj/YBAKzZm4WUM9ckrojaMgYsIiJqNYZ288dTgzsBAOb/97B11SNRc2PAIiKiVuWP43qhg48W2TfKsWTLcanLoTaKAYuIiFqVmlOFa/dl4SdOFZIEGLCIiKjVqTlV+DKnCkkCDFhERNQqLRjXCx19OVVI0mDAIiKiVslDo8TSRzhVSNJgwCIiolaLU4UkFQYsIiJq1WpOFS7mVCE1EwYsIiJq1Tw0Siy9uarwq31Z2HOaU4XU9BiwiIio1Rt6jz/iB4cCAF5ZfxjFFSaJK6LWjgGLiIjahD+O62mdKvxg+2mpy6FWjgGLiIjaBA+NEm9OjAAAfJ5yHmfySiSuiFozBiwiImozRoUF4P6eAai0CLy56RiEEFKXRK0UAxYREbUpr8WGQ6WQIfnUVfx4Ik/qcqiVYsAiIqI2pYu/B54b3gUAsGjTMRgqzRJXRK0RAxYREbU5M+/vjvZeGly4XoZ/7DkvdTnUCjFgERFRm+OpUeKVsT0BACt/PI28ogqJK6LWhgGLiIjapEn9OuDeEB+UGs34S+IJqcuhVoYBi4iI2iS5XIaECb0BAN+kZSMtq0Diiqg1YcAiIqI2694QHzw6oCMA4I3vjsJi4W0byDkYsIiIqE17eWwYPDVKHLpUiP+mXZK6HGolGLCIiKhNC/Byw8z7uwEAliae5HMKySkYsIiIqM17dlgXdPX3wLUSA1b8eEbqcqgVYMAiIqI2T62U47XYcADAP/Zk4uxVPqeQHMOARUREBGBUzwCMCmtvfU4hkSMYsIiIiG6qfk7hzpNX8eOJK1KXQy2YpAFr165diIuLg16vh0wmw4YNG2z2CyGQkJAAvV4PrVaLkSNH4ujRozZjRo4cCZlMZvP1+OOP24wpKChAfHw8dDoddDod4uPjcePGDZsxWVlZiIuLg4eHB/z9/TFr1iwYjUabMUeOHEFUVBS0Wi06dOiARYsW8UnsREStSNf2nnhuWNVzCt/cdBzGSovEFVFLJWnAKi0tRd++fbFy5co69y9duhTLly/HypUrceDAAQQFBWHMmDEoLi62GTd9+nTk5ORYvz755BOb/VOnTkV6ejoSExORmJiI9PR0xMfHW/ebzWaMHz8epaWl2LNnD9atW4f169dj7ty51jFFRUUYM2YM9Ho9Dhw4gBUrVuCdd97B8uXLndgRIiKS2oz7u8HfU4PMa6X450+ZUpdDLZRSyjcfN24cxo0bV+c+IQTef/99/PnPf8akSZMAAF988QUCAwPx1Vdf4cUXX7SOdXd3R1BQUJ3HOX78OBITE7F3714MGjQIAPDZZ59hyJAhOHnyJMLCwpCUlIRjx47h4sWL0Ov1AIB3330X06ZNw9tvvw1vb2+sXbsWFRUV+Pzzz6HRaBAREYFTp05h+fLlmDNnDmQyWZ3vbzAYYDAYrN8XFRUBAEwmE0wmLgWuVt0L9qTx2EPHsYeOaw09dFMA88Z0wx+/PYoPfziN2MhABHhpmu39W0MPpdYUPbT3WJIGrPpkZmYiNzcX0dHR1m0ajQZRUVFISUmxCVhr167FmjVrEBgYiHHjxmHhwoXw8vICAKSmpkKn01nDFQAMHjwYOp0OKSkpCAsLQ2pqKiIiIqzhCgBiYmJgMBhw8OBBjBo1CqmpqYiKioJGo7EZs2DBApw/fx5dunSp83MsWbIEb7zxRq3tSUlJcHd3b3yDWqlt27ZJXUKLxx46jj10XEvvoUYAoZ4KXCgx4w//3IEnuzX/VGFL76ErcGYPy8rK7BrvsgErNzcXABAYGGizPTAwEBcuXLB+/+STT6JLly4ICgpCRkYGFixYgEOHDlmbmpubi4CAgFrHDwgIsL5Hbm5urffx9fWFWq22GdO5c+datVTvu1PAWrBgAebMmWP9vqioCCEhIYiOjoa3t/dd+9BWmEwmbNu2DWPGjIFKpZK6nBaJPXQce+i41tTDjn1u4LFP92P/VTnmPzwY94b4NMv7tqYeSqUpelg9A9VQLhuwqt0+9SaEsNk2ffp0658jIiLQvXt3DBw4EGlpaejfv3+dx6jrOI0ZU32B+52mB4Gqs241z3pVU6lU/A+nDuyL49hDx7GHjmsNPbyva3s80r8j1qddwlvfn8K3vxsKufzOf987W2voodSc2UN7j+Oyt2movqaq+gxStby8vFpnm2rq378/VCoVTp8+bT3OlSu1l9pevXrVepygoKBa71NQUACTyVTvmLy8PAC1z7IREVHr8MrYMHioFTh08Qa++SVb6nKoBXHZgFU97Vdz/tRoNCI5ORlDhw694+uOHj0Kk8mE4OBgAMCQIUNQWFiI/fv3W8fs27cPhYWF1uMMGTIEGRkZyMnJsY5JSkqCRqPBgAEDrGN27dplc+uGpKQk6PX6WlOHRETUOgR4u2HmA90BAH9NPIESQ6XEFVFLIWnAKikpQXp6OtLT0wFUXdienp6OrKwsyGQyzJ49G4sXL8a3336LjIwMTJs2De7u7pg6dSoA4OzZs1i0aBF+/vlnnD9/Hlu2bMFjjz2Gfv36YdiwYQCAXr16YezYsZg+fTr27t2LvXv3Yvr06YiNjUVYWBgAIDo6GuHh4YiPj8cvv/yCH374AfPmzcP06dOt10lNnToVGo0G06ZNQ0ZGBr799lssXry43hWERETU8j07rDM6t3PH1WIDVvx4WupyqIWQNGD9/PPP6NevH/r16wcAmDNnDvr164fXX38dAPDyyy9j9uzZeOmllzBw4EBkZ2cjKSnJukJQrVbjhx9+QExMDMLCwjBr1ixER0dj+/btUCgU1vdZu3YtIiMjER0djejoaPTp0werV6+27lcoFNi8eTPc3NwwbNgwTJ48GRMnTsQ777xjHaPT6bBt2zZcunQJAwcOxEsvvYQ5c+bYXMBOREStj0apsHlO4Tk+p5AaQNKL3EeOHFnvndBlMhkSEhKQkJBQ5/6QkBAkJyff9X38/PywZs2aesd06tQJmzZtqndMZGQkdu3addf3IyKi1uX+ngEYGdYeO09exVubj+Mf0+6TuiRycS57DRYREZGrkMlkeC02HEq5DD+eyMOOk3lSl0QujgGLiIioAe5p74lnh3UGALy58RifU0j1YsAiIiJqoJkPdIe/pxrnrpXii5TzUpdDLowBi4iIqIG83VR4OaYnAOCDH04jr7hC4orIVTFgERER2eHRAR3Rp6MOJYZKLEs8KXU55KIYsIiIiOwgl8uwMK43AOC/aZdw7LJ9z6ijtoEBi4iIyE4DQn0xvk8whACWfH9c6nLIBTFgERERNcIrMT2hUsiw+/Q1JJ+6KnU55GIYsIiIiBqhUzt3PDOkMwBgyZbjMFvufONsansYsIiIiBppxv3d4O2mxIncYqw/eEnqcsiFMGARERE1ko+7GrMe6A4AeCfpJMqMlRJXRK6CAYuIiMgB8UNCEeKnRV6xAX/fnSl1OeQiGLCIiIgcoFEqrDcf/VvyWd58lAAwYBERETkstk8w7g3xQZnRjPe3n5a6HHIBDFhEREQOkslk+PP4XgCAdfuzcPpKscQVkdQYsIiIiJzgvs5+iOkdCIsA/vL9CanLIYkxYBERETnJK2N7QimX4YcTeUg5c03qckhCDFhERERO0rW9J54c1AkA8PaW47Dw5qNtFgMWERGRE816oDu8NEocvVyE/x3KlrockggDFhERkRO189Tgd6PuAQAsSzyJCpNZ4opICgxYRERETvbcsC7Q69xwubAC//zpvNTlkAQYsIiIiJzMTaXAvJgwAMBHO86guMIkcUXU3BiwiIiImsDEezvgnvYeKDZU4t8/80HQbQ0DFhERUROQy2V4fnhXAMA/f8qEmSsK2xQGLCIioiYyqX8H+LqrcKmgHElHc6Uuh5oRAxYREVETcVMp8OSgUADAqj2ZEldDzYkBi4iIqAk9PSQUKoUMP18oQPrFG1KXQ82EAYuIiKgJBXi7Ia6vHgDPYrUlDFhERERN7PnhXQAAW47k4PKNcomroebAgEVERNTEeut1GNzVD2aLwBep56Uuh5oBAxYREVEzeOHmLRv+tS8LpYZKiauhpsaARURE1Azu7xmALv4eKKqoxH8P8sajrR0DFhERUTOQy2V4dlhnAFU3HrXwxqOtGgMWERFRM3l0QEfotCqcv16GH07kSV0ONSEGLCIiombirlbiiV91AgCs2nNO4mqoKTFgERERNaNnhoZCKZdh77l8ZGQXSl0ONREGLCIiomYUrNPiwchgAMA/eOPRVosBi4iIqJm98OuqG49uPHwZV4oqJK6GmgIDFhERUTPr09EH93X2hcks8CVvPNoqMWARERFJoPrxOWv3ZaHcaJa4GnI2BiwiIiIJjAkPQoifFjfKTPjmF954tLVhwCIiIpKAQi7Ds0OrzmL9Yw9vPNraMGARERFJZPJ9IfDSKHH2aimST12VuhxyIgYsIiIiiXhqlHj8VyEAgFW8ZUOrwoBFREQkoWeGdoZcBuw5cw0ncoukLoechAGLiIhIQh193TEuourGo6t28yxWa8GARUREJLHnbt6y4X/pl3GtxCBxNeQMDFhEREQSGxDqi36dfGA0W/DV/otSl0NOwIBFRETkAqw3Ht1/ESaLxMWQwxiwiIiIXMDY3kHo4KNFfqkJP1+VSV0OOYgBi4iIyAUoFXJMG9oZALAzRw4heOPRlowBi4iIyEVM+VUIPNQK5JbLsOfsdanLIQcwYBEREbkIbzcVHunfAQDwecoFiashRzBgERERuZCnh3SCDAK7Tl/H6SvFUpdDjcSARURE5EJC/dwR6Vd1/dU/fuKNR1sqBiwiIiIXMzK46j4N36RlI7/UKHE11BgMWERERC6mqxcQofeGodKCtXt5LVZLxIBFRETkYmQy4NmhoQCAL/degKHSLHFFZC8GLCIiIhc0LiIQQd5uuFpswMZDOVKXQ3ZiwCIiInJBKoUcT988i7VqTyZvPNrCMGARERG5qKm/6gStSoHjOUVIPccbj7YkDFhEREQuysddjUcHdAQArNrNWza0JAxYRERELuzZYZ0BAD+cyMO5qyXSFkMNxoBFRETkwrq298QDPQMAAF8fuChxNdRQDFhEREQubvJ9IQCAb3/JhtnCi91bAgYsIiIiFzcqLAA+7irkFRvw05lrUpdDDSBpwNq1axfi4uKg1+shk8mwYcMGm/1CCCQkJECv10Or1WLkyJE4evSozRiDwYCZM2fC398fHh4emDBhAi5dumQzpqCgAPHx8dDpdNDpdIiPj8eNGzdsxmRlZSEuLg4eHh7w9/fHrFmzYDTaPp7gyJEjiIqKglarRYcOHbBo0SIumyUioianVsoxoa8eALA+7dJdRpMraHTAMhqNuHTpErKysmy+7FFaWoq+ffti5cqVde5funQpli9fjpUrV+LAgQMICgrCmDFjUFx86+nis2fPxrfffot169Zhz549KCkpQWxsLMzmW3e9nTp1KtLT05GYmIjExESkp6cjPj7eut9sNmP8+PEoLS3Fnj17sG7dOqxfvx5z5861jikqKsKYMWOg1+tx4MABrFixAu+88w6WL19u12cmIiJqjEn9q1YTbj2ai+IKk8TV0N0o7X3B6dOn8dxzzyElJcVmuxACMpnMJtjczbhx4zBu3Lg69wkh8P777+PPf/4zJk2aBAD44osvEBgYiK+++govvvgiCgsLsWrVKqxevRqjR48GAKxZswYhISHYvn07YmJicPz4cSQmJmLv3r0YNGgQAOCzzz7DkCFDcPLkSYSFhSEpKQnHjh3DxYsXoddX/R/Cu+++i2nTpuHtt9+Gt7c31q5di4qKCnz++efQaDSIiIjAqVOnsHz5csyZMwcymazOz2EwGGAwGKzfFxUVAQBMJhNMJv4HUq26F+xJ47GHjmMPHcceOu5OPQwPdEdXf3ecu1aGTYey8Wj/DlKU1yI0xc+hvceyO2BNmzYNSqUSmzZtQnBw8B2DhaMyMzORm5uL6Oho6zaNRoOoqCikpKTgxRdfxMGDB2EymWzG6PV6REREICUlBTExMUhNTYVOp7OGKwAYPHgwdDodUlJSEBYWhtTUVERERFjDFQDExMTAYDDg4MGDGDVqFFJTUxEVFQWNRmMzZsGCBTh//jy6dOlS5+dYsmQJ3njjjVrbk5KS4O7u7lCPWqNt27ZJXUKLxx46jj10HHvouLp62EsrwzkosOqHI3DPPSRBVS2LM38Oy8rK7Bpvd8BKT0/HwYMH0bNnT3tfapfc3FwAQGBgoM32wMBAXLhwwTpGrVbD19e31pjq1+fm5iIgIKDW8QMCAmzG3P4+vr6+UKvVNmM6d+5c632q990pYC1YsABz5syxfl9UVISQkBBER0fD29v7zg1oY0wmE7Zt24YxY8ZApVJJXU6LxB46jj10HHvouPp6eO+NcmxZvhtniuToOzQKHXy0ElXp2pri57B6Bqqh7A5Y4eHhuHat+VYw3H6GrHoqsj63j6lrvDPGVF/gXl89Go3G5qxXNZVKxb986sC+OI49dBx76Dj20HF19TC0vQpDurZDytnr2HTkCmbc312i6loGZ/4c2nscuy9y/+tf/4qXX34ZO3fuxPXr11FUVGTz5SxBQUEAbp3JqpaXl2c9cxQUFASj0YiCgoJ6x1y5cqXW8a9evWoz5vb3KSgogMlkqndMXl4egNpn2YiIiJpK9cXu36RlcyW7C7M7YI0ePRp79+7FAw88gICAAPj6+sLX1xc+Pj61puoc0aVLFwQFBdnMnxqNRiQnJ2Po0KEAgAEDBkClUtmMycnJQUZGhnXMkCFDUFhYiP3791vH7Nu3D4WFhTZjMjIykJOTYx2TlJQEjUaDAQMGWMfs2rXL5tYNSUlJ0Ov1taYOiYiImsrYiCBoVQqcu1aK9Is3pC6H7sDuKcIdO3Y47c1LSkpw5swZ6/eZmZlIT0+Hn58fOnXqhNmzZ2Px4sXo3r07unfvjsWLF8Pd3R1Tp04FAOh0Ojz//POYO3cu2rVrBz8/P8ybNw+RkZHWVYW9evXC2LFjMX36dHzyyScAgN/85jeIjY1FWFgYACA6Ohrh4eGIj4/HsmXLkJ+fj3nz5mH69OnW66SmTp2KN954A9OmTcOf/vQnnD59GosXL8brr7/eZBf6ExER3c5To8TYiCB8+0s21qddQr9Ozju5QU4k7GA0GsXIkSPFyZMn7XnZHe3YsUMAqPX1zDPPCCGEsFgsYuHChSIoKEhoNBoxYsQIceTIEZtjlJeXixkzZgg/Pz+h1WpFbGysyMrKshlz/fp18eSTTwovLy/h5eUlnnzySVFQUGAz5sKFC2L8+PFCq9UKPz8/MWPGDFFRUWEz5vDhw+LXv/610Gg0IigoSCQkJAiLxWLXZy4sLBQARGFhoV2va+2MRqPYsGGDMBqNUpfSYrGHjmMPHcceOq4hPdx1Kk+EvrJJ9EnYKipMlc1YXcvQFD+H9v7+tusMlkqlQkZGhtPO2IwcObLe+WOZTIaEhAQkJCTccYybmxtWrFiBFStW3HGMn58f1qxZU28tnTp1wqZNm+odExkZiV27dtU7hoiIqKkNvccfQd5uyC2qwI4TeRgbESx1SXQbu6/Bevrpp7Fq1aqmqIWIiIgaQCGXYWK/qhuNrk/Llrgaqovd12AZjUb8/e9/x7Zt2zBw4EB4eHjY7OejY4iIiJrepP4d8Lfks9hxIg/5pUb4eailLolqsDtgZWRkoH///gCAU6dO2ezjxd5ERETNo0egFyI76HAkuxAbD13GM0M7S10S1SDpKkIiIiJqvEn9O+BIdiG+SbvEgOVi7L4Gi4iIiFxDXF89lHIZDl0qxJm8YqnLoRrsPoM1atSoeqcCf/zxR4cKIiIioobx99RgZFh7bD+eh/Vp2XhlbNM+J5gazu4zWPfeey/69u1r/QoPD4fRaERaWhoiIyObokYiIiK6g0duPjpnwy/ZMFv46BxXYfcZrPfee6/O7QkJCSgpKXG4ICIiImq4+3sFwNtNiZzCCuw9dx3DuvlLXRLBiddgPfXUU/jHP/7hrMMRERFRA2iUCsT11QMA1qddkrgaqua0gJWamgo3NzdnHY6IiIgaaNLNacLEjFyUGiolroaARkwRTpo0yeZ7IQRycnLw888/47XXXnNaYURERNQw/Tv5oHM7d5y/XobEjFw8MqCj1CW1eXafwfL29oZOp7N++fn5YeTIkdiyZQsWLlzYFDUSERFRPWQymfUs1v8OXZa4GgIacQbr888/b4IyiIiIyBET+uqxfNsp/HTmGq6XGNDOUyN1SW2a3WewunbtiuvXr9fafuPGDXTt2tUpRREREZF9Ovt7ILKDDmaLwPcZuVKX0+bZHbDOnz8Ps9lca7vBYEB2Np/oTUREJJW4vsEAgI2cJpRcg6cIv/vuO+uft27dCp1OZ/3ebDbjhx9+QOfOnZ1aHBERETXc+D56LN5yAvvP5yO3sAJBOq7ul0qDA9bEiRMBVF1I98wzz9jsU6lU6Ny5M959912nFkdEREQN18FHi4Ghvvj5QgE2H8nB88O7SF1Sm9XgKUKLxQKLxYJOnTohLy/P+r3FYoHBYMDJkycRGxvblLUSERHRXVTfdJTThNKy+xqszMxM+PtX3Ya/oqLC6QURERFR442LDIJcBqRfvIGL+WVSl9Nm2R2wLBYL3nzzTXTo0AGenp44d+4cAOC1117DqlWrnF4gERERNVyAlxuG3NMOALDxMM9iScXugPXWW2/h888/x9KlS6FWq63bIyMj8fe//92pxREREZH94vpUTRNuOpQjcSVtl90B68svv8Snn36KJ598EgqFwrq9T58+OHHihFOLIyIiIvuNjQiCUi7DsZwinMkrkbqcNsnugJWdnY1u3brV2m6xWGAymZxSFBERETWej7saI3q0BwBs4jShJOwOWL1798bu3btrbf/Pf/6Dfv36OaUoIiIickzNm44KISSupu2x+1mECxcuRHx8PLKzs2GxWPDNN9/g5MmT+PLLL7Fp06amqJGIiIjsNLpXIDRKOc5eLcXxnGKE672lLqlNsfsMVlxcHL7++mts2bIFMpkMr7/+Oo4fP46NGzdizJgxTVEjERER2cnLTYX7ewYA4GpCKdgVsCorK/HGG28gPDwcycnJKCkpQVlZGfbs2YPo6OimqpGIiIgaIbbPrZuOcpqwedkVsJRKJZYtW1bnw56JiIjItdzfMwDuagUuFZQj/eINqctpU+yeIhw9ejR27tzZBKUQERGRM2nVCowJDwQAbOQ9sZqV3Re5jxs3DgsWLEBGRgYGDBgADw8Pm/0TJkxwWnFERETkmLg+evwv/TI2Hb6MP4/vBYVcJnVJbYLdAet3v/sdAGD58uW19slkMk4fEhERuZBf9/CHt5sSecUGHDifj8Fd20ldUpvQqGcR3umL4YqIiMi1aJQKjI0IAlB1sTs1D7sDFhEREbUscX2rVhN+n5GLSrNF4mraBgYsIiKiVm5I13Zo56FGfqkRKWevS11Om8CARURE1MopFXI8GHnr0TnU9BiwiIiI2oDqacLEo7kwVPKa6abGgEVERNQGDAz1RZC3G4orKrHr1DWpy2n17L5NA1C1kvDMmTPIy8uDxWJ7sdyIESOcUhgRERE5j1wuQ2yfYPx9Tya+O3TZegNSahp2B6y9e/di6tSpuHDhQq3nGvE+WERERK4rrq8ef9+Tie3HrqDMWAl3daPOs1AD2D1F+Nvf/hYDBw5ERkYG8vPzUVBQYP3Kz89vihqJiIjICfp01KGTnzvKTWb8eCJP6nJaNbuj6+nTp/Hf//4X3bp1a4p6iIiIqInIZFXThB/tPIuNhy4jto9e6pJaLbvPYA0aNAhnzpxpilqIiIioiVWvJtxx8iqKKkwSV9N62X0Ga+bMmZg7dy5yc3MRGRkJlUpls79Pnz5OK46IiIicq2eQF7oFeOJMXgm2Hb2CRwZ0lLqkVsnugPXII48AAJ577jnrNplMBiEEL3InIiJycTKZDHF99Hhv+ylsPHyZAauJ2B2wMjMzm6IOIiIiaiaxfYPx3vZT2HP6GgpKjfD1UEtdUqtjd8AKDQ1tijqIiIiomdzT3hO99d44erkIiUdz8cSvOkldUqvT6BtgHDt2DFlZWTAajTbbJ0yY4HBRRERE1LTi+upx9HIRNh66zIDVBOwOWOfOncPDDz+MI0eOWK+9AqrmdAHwGiwiIqIWYHxkMP7y/QmknruOvKIKBHi7SV1Sq2L3bRp+//vfo0uXLrhy5Qrc3d1x9OhR7Nq1CwMHDsTOnTuboEQiIiJythA/d/Tr5AMhgC1HcqQup9WxO2ClpqZi0aJFaN++PeRyOeRyOYYPH44lS5Zg1qxZTVEjERERNYG4mzca3XiYAcvZ7A5YZrMZnp6eAAB/f39cvnwZQNXF7ydPnnRudURERNRkxvcJhkwGHLxQgEsFZVKX06rYHbAiIiJw+PBhAFV3dV+6dCl++uknLFq0CF27dnV6gURERNQ0Ar3dMKiLHwBgM89iOZXdAevVV1+FxWIBALz11lu4cOECfv3rX2PLli348MMPnV4gERERNZ3qR+dsPHxZ4kpaF7tXEcbExFj/3LVrVxw7dgz5+fnw9fW1riQkIiKilmFcRDBe/99RZGQX4dzVEnRt7yl1Sa2C3Wewqp05cwZbt25FeXk5/Pz8nFkTERERNRM/DzWGd/MHAGziNKHT2B2wrl+/jgceeAA9evTAgw8+iJycqn8ZL7zwAubOnev0AomIiKhpVU8TfnfosvX+luQYuwPWH/7wB6hUKmRlZcHd3d26fcqUKUhMTHRqcURERNT0onsHQq2Q40xeCU5eKZa6nFbB7oCVlJSEv/71r+jY0fbp2927d8eFCxecVhgRERE1D283FaLC2gMANh7ixe7OYHfAKi0ttTlzVe3atWvQaDROKYqIiIiaV/U04abDOZwmdAK7A9aIESPw5ZdfWr+XyWSwWCxYtmwZRo0a5dTiiIiIqHmM7hUArUqBC9fLcCS7UOpyWjy7b9OwbNkyjBw5Ej///DOMRiNefvllHD16FPn5+fjpp5+aokYiIiJqYu5qJR7oFYBNh3Ow8dBl9OnoI3VJLZrdZ7DCw8Nx+PBh/OpXv8KYMWNQWlqKSZMm4ZdffsE999zTFDUSERFRM6g5TWixcJrQEXafwQKAoKAgvPHGG86uhYiIiCQU1aM9vDRK5BRW4GBWAe7rzPtcNlajAlZFRQUOHz6MvLw862Nzqk2YMMEphREREVHzclMpEN07COvTLmHjocsMWA6wO2AlJibi6aefxrVr12rtk8lkMJvNTimMiIiIml9s32CsT7uELUdy8HpsOJSKRj/0pU2zu2szZszAY489hpycHFgsFpsvhisiIqKWbXg3f/i6q3CtxIi95/KlLqfFsjtg5eXlYc6cOQgMDGyKemopLi7G7NmzERoaCq1Wi6FDh+LAgQPW/dOmTYNMJrP5Gjx4sM0xDAYDZs6cCX9/f3h4eGDChAm4dOmSzZiCggLEx8dDp9NBp9MhPj4eN27csBmTlZWFuLg4eHh4wN/fH7NmzYLRaGyyz05ERNTcVAo5xkYEA+BNRx1hd8B69NFHsXPnziYopW4vvPACtm3bhtWrV+PIkSOIjo7G6NGjkZ2dbR0zduxY5OTkWL+2bNlic4zZs2fj22+/xbp167Bnzx6UlJQgNjbW5ozb1KlTkZ6ejsTERCQmJiI9PR3x8fHW/WazGePHj0dpaSn27NmDdevWYf369Xz+IhERtTpxfasC1vcZOTBWWu4ymupi9zVYK1euxGOPPYbdu3cjMjISKpXKZv+sWbOcVlx5eTnWr1+P//3vfxgxYgQAICEhARs2bMDHH3+Mt956CwCg0WgQFBRU5zEKCwuxatUqrF69GqNHjwYArFmzBiEhIdi+fTtiYmJw/PhxJCYmYu/evRg0aBAA4LPPPsOQIUNw8uRJhIWFISkpCceOHcPFixeh11ctY3333Xcxbdo0vP322/D29q7z/Q0GAwwGg/X7oqIiAIDJZILJZHJCl1qH6l6wJ43HHjqOPXQce+g4V+hh/47eaO+pxtUSI3acyMX9Nx+j01I0RQ/tPZbdAeurr77C1q1bodVqsXPnTshkMus+mUzm1IBVWVkJs9kMNzc3m+1arRZ79uyxfr9z504EBATAx8cHUVFRePvttxEQEAAAOHjwIEwmE6Kjo63j9Xo9IiIikJKSgpiYGKSmpkKn01nDFQAMHjwYOp0OKSkpCAsLQ2pqKiIiIqzhCgBiYmJgMBhw8ODBO97FfsmSJXXe0iIpKanORw61ddu2bZO6hBaPPXQce+g49tBxUvewl6ccV0vk+DTxICrOtsyzWM7sYVlZmV3j7Q5Yr776KhYtWoQ//vGPkMubdmWBl5cXhgwZgjfffBO9evVCYGAg/vWvf2Hfvn3o3r07AGDcuHF47LHHEBoaiszMTLz22mu4//77cfDgQWg0GuTm5kKtVsPX19fm2IGBgcjNzQUA5ObmWgNZTQEBATZjbr/uzNfXF2q12jqmLgsWLMCcOXOs3xcVFSEkJATR0dF3POvVFplMJmzbtg1jxoypdVaUGoY9dBx76Dj20HGu0sPgrBvY9dl+nChS4f4xI+GmUkhWi72aoofVM1ANZXfAMhqNmDJlSpOHq2qrV6/Gc889hw4dOkChUKB///6YOnUq0tLSAABTpkyxjo2IiMDAgQMRGhqKzZs3Y9KkSXc8rhCi1tk3Z4y5nUajqfMh2CqVin/51IF9cRx76Dj20HHsoeOk7uF9Xf3RwUeL7Bvl2HO2AOMigyWrpbGc2UN7j2N3SnrmmWfw9ddf2/uyRrvnnnuQnJyMkpISXLx4Efv374fJZEKXLl3qHB8cHIzQ0FCcPn0aQNVd541GIwoKCmzG5eXlWc9IBQUF4cqVK7WOdfXqVZsxt5+pKigogMlkarYVlURERM1FJpMh9ubF7hsPczWhvewOWGazGUuXLkVUVBRmzpyJOXPm2Hw1FQ8PDwQHB6OgoABbt27FQw89VOe469ev4+LFiwgOrvqhGDBgAFQqlc08bE5ODjIyMjB06FAAwJAhQ1BYWIj9+/dbx+zbtw+FhYU2YzIyMpCTk2Mdk5SUBI1GgwEDBjj98xIREUktrk/Vdcc/HM9DiaFS4mpaFrunCI8cOYJ+/foBADIyMmz21TdV1lhbt26FEAJhYWE4c+YM5s+fj7CwMDz77LMoKSlBQkICHnnkEQQHB+P8+fP405/+BH9/fzz88MMAAJ1Oh+effx5z585Fu3bt4Ofnh3nz5iEyMtK6qrBXr14YO3Yspk+fjk8++QQA8Jvf/AaxsbEICwsDAERHRyM8PBzx8fFYtmwZ8vPzMW/ePEyfPp3XUhERUavUW++Nrv4eOHetFNuPXcHEfh2kLqnFsDtg7dixoynquKPCwkIsWLAAly5dgp+fHx555BG8/fbbUKlUqKysxJEjR/Dll1/ixo0bCA4OxqhRo/D111/Dy8vLeoz33nsPSqUSkydPRnl5OR544AF8/vnnUChuXbC3du1azJo1y7racMKECVi5cqV1v0KhwObNm/HSSy9h2LBh0Gq1mDp1Kt55553mawYREVEzqpom1OPDH05j46HLDFh2aNTDnpvT5MmTMXny5Dr3abVabN269a7HcHNzw4oVK7BixYo7jvHz88OaNWvqPU6nTp2wadOmu74fERFRaxHXJxgf/nAau05fxY0yI3zc1VKX1CLwCY5ERER0R90DvdAzyAsms8DWo3e+LRHZYsAiIiKiesX1rbrYfeOhnLuMpGoMWERERFSv2D5VK/NTzl7D1WLDXUYTwIBFREREdxHazgN9O+pgEVUPgKa7Y8AiIiKiu7o1TcibjjYEAxYRERHd1fib04QHzhfg8o1yiatxfQxYREREdFfBOi1+1dkPALDlCKcJ74YBi4iIiBokrvrZhJwmvCsGLCIiImqQcZHBkMuAQ5cKceF6qdTluDQGLCIiImoQf08NhnXzBwBsOsxpwvowYBEREVGDxfXhasKGYMAiIiKiBovpHQSVQoYTucU4daVY6nJcFgMWERERNZjOXYUR3dsDADbxLNYdMWARERGRXaw3HT2cAyGExNW4JgYsIiIissvo8EBolHJkXitFRnaR1OW4JAYsIiIisounRokHegUAADYd5jRhXRiwiIiIyG7Vqwk3cZqwTgxYREREZLdRPQPgoVYg+0Y50rJuSF2Oy2HAIiIiIru5qRSI7h0EgPfEqgsDFhERETVK9bMJNx/JgdnCacKaGLCIiIioUYZ3aw+dVoWrxQbsy7wudTkuhQGLiIiIGkWtlGNcRPU0IZ9NWBMDFhERETVa9U1Hv8/Igclskbga18GARURERI02qIsf/D3VuFFmwp4z16Qux2UwYBEREVGjKRVyPBhZdbE7VxPewoBFREREDqmeJkw6egUVJrPE1bgGBiwiIiJyyIBOvgjWuaHEUInkU1elLsclMGARERGRQ+RyGWL7cJqwJgYsIiIiclj1NOEPx/NQZqyUuBrpMWARERGRwyI76BDazh3lJjO2H8+TuhzJMWARERGRw2QyGeL6VJ3F4jQhAxYRERE5SfU0YfLJqygsN0lcjbQYsIiIiMgpwoK80CPQE0azBUlHc6UuR1IMWEREROQ01mnCw2372YQMWEREROQ0sTenCX86cw35pUaJq5EOAxYRERE5TRd/D0R08IbZIvB9Rts9i8WARURERE7F1YQMWERERORk42/e1X1fZj6uFFVIXI00GLCIiIjIqTr6umNAqC+EADa30YvdGbCIiIjI6eKqn014uG1OEzJgERERkdM92CcYchnwS9YNXMwvk7qcZseARURERE4X4OWGwV3bAWibZ7EYsIiIiKhJVD86Z9OhtncdFgMWERERNYmxvYOglMtwLKcIZ6+WSF1Os2LAIiIioibh66HGr7v7A2h7Z7EYsIiIiKjJVE8TfncoG0IIiatpPgxYRERE1GTGhAdCrZTj7NVSnMgtlrqcZsOARURERE3Gy02FUWHtAbStR+cwYBEREVGTqp4m3Hj4cpuZJmTAIiIioiZ1f88AuKsVuJhfjkOXCqUup1kwYBEREVGTclcrMbpXIIC2M03IgEVERERNznrT0cOXYbG0/mlCBiwiIiJqciN6+MPLTYkrRQYcOJ8vdTlNjgGLiIiImpxGqcDY3kEA2sazCRmwiIiIqFlUTxNuOZKLSrNF4mqaFgMWERERNYuh97SDn4ca+aVGpJy9LnU5TYoBi4iIiJqFUiHHg5FV04SbWvk0IQMWERERNZu4PlXThIkZuTBUmiWupukwYBEREVGzua+zHwK9NSiqqMTuU9ekLqfJMGARERFRs5HLZRgfeevROa0VAxYRERE1q7i+wQCAbceuoNzYOqcJGbCIiIioWd0b4oOOvlqUGc348USe1OU0CQYsIiIialYymcx6T6zW+mxCBiwiIiJqdtWrCX88mYfiCpPE1TgfAxYRERE1u17BXrinvQeMlRZsO3ZF6nKcjgGLiIiIml1rnyZ0+YBVXFyM2bNnIzQ0FFqtFkOHDsWBAwes+4UQSEhIgF6vh1arxciRI3H06FGbYxgMBsycORP+/v7w8PDAhAkTcOnSJZsxBQUFiI+Ph06ng06nQ3x8PG7cuGEzJisrC3FxcfDw8IC/vz9mzZoFo9HYZJ+diIioNYu9OU24+/Q1FJS2rt+nLh+wXnjhBWzbtg2rV6/GkSNHEB0djdGjRyM7OxsAsHTpUixfvhwrV67EgQMHEBQUhDFjxqC4uNh6jNmzZ+Pbb7/FunXrsGfPHpSUlCA2NhZm862loVOnTkV6ejoSExORmJiI9PR0xMfHW/ebzWaMHz8epaWl2LNnD9atW4f169dj7ty5zdcMIiKiVqRbgCfCg71RaRH4PiNX6nKcSil1AfUpLy/H+vXr8b///Q8jRowAACQkJGDDhg34+OOP8eabb+L999/Hn//8Z0yaNAkA8MUXXyAwMBBfffUVXnzxRRQWFmLVqlVYvXo1Ro8eDQBYs2YNQkJCsH37dsTExOD48eNITEzE3r17MWjQIADAZ599hiFDhuDkyZMICwtDUlISjh07hosXL0Kvr0rc7777LqZNm4a3334b3t7edX4Gg8EAg8Fg/b6oqAgAYDKZYDK1vov6Gqu6F+xJ47GHjmMPHcceOq6t9fDBiEAcyynCxkPZeKx/sFOO2RQ9tPdYLh2wKisrYTab4ebmZrNdq9Viz549yMzMRG5uLqKjo637NBoNoqKikJKSghdffBEHDx6EyWSyGaPX6xEREYGUlBTExMQgNTUVOp3OGq4AYPDgwdDpdEhJSUFYWBhSU1MRERFhDVcAEBMTA4PBgIMHD2LUqFF1foYlS5bgjTfeqLU9KSkJ7u7uje5Na7Vt2zapS2jx2EPHsYeOYw8d11Z66F4BAErsPXcd6zZsgbfaecd2Zg/LysrsGu/SAcvLywtDhgzBm2++iV69eiEwMBD/+te/sG/fPnTv3h25uVWnEwMDA21eFxgYiAsXLgAAcnNzoVar4evrW2tM9etzc3MREBBQ6/0DAgJsxtz+Pr6+vlCr1dYxdVmwYAHmzJlj/b6oqAghISGIjo6+41mvtshkMmHbtm0YM2YMVCqV1OW0SOyh49hDx7GHjmuLPfzf1X04dKkQpqAIPDi4k8PHa4oeVs9ANZRLBywAWL16NZ577jl06NABCoUC/fv3x9SpU5GWlmYdI5PJbF4jhKi17Xa3j6lrfGPG3E6j0UCj0dTarlKp2sx/OPZgXxzHHjqOPXQce+i4ttTDCfd2wKFLhdiScQXP/foepx3XmT209zguf5H7Pffcg+TkZJSUlODixYvYv38/TCYTunTpgqCgIACodQYpLy/PerYpKCgIRqMRBQUF9Y65cqX2PTiuXr1qM+b29ykoKIDJZKp1ZouIiIgabnxkMGQy4OcLBci+US51OU7h8gGrmoeHB4KDg1FQUICtW7fioYcesoasmnOsRqMRycnJGDp0KABgwIABUKlUNmNycnKQkZFhHTNkyBAUFhZi//791jH79u1DYWGhzZiMjAzk5ORYxyQlJUGj0WDAgAFN+tmJiIhasyCdG37V2Q8AsPlw67gnlstPEW7duhVCCISFheHMmTOYP38+wsLC8Oyzz0Imk2H27NlYvHgxunfvju7du2Px4sVwd3fH1KlTAQA6nQ7PP/885s6di3bt2sHPzw/z5s1DZGSkdVVhr169MHbsWEyfPh2ffPIJAOA3v/kNYmNjERYWBgCIjo5GeHg44uPjsWzZMuTn52PevHmYPn06r6UiIiJyUFxfPfZl5mPjoRz8ZoTzpgml4vJnsAoLC/F///d/6NmzJ55++mkMHz4cSUlJ1rnQl19+GbNnz8ZLL72EgQMHIjs7G0lJSfDy8rIe47333sPEiRMxefJkDBs2DO7u7ti4cSMUCoV1zNq1axEZGYno6GhER0ejT58+WL16tXW/QqHA5s2b4ebmhmHDhmHy5MmYOHEi3nnnneZrBhERUSs1LiIICrkMR7ILkXmtVOpyHObyZ7AmT56MyZMn33G/TCZDQkICEhIS7jjGzc0NK1aswIoVK+44xs/PD2vWrKm3lk6dOmHTpk13rZmIiIjs085Tg2Hd/LHr1FVsOnQZMx/oLnVJDnH5M1hERETUNsT1qbrR6MZWcB0WAxYRERG5hOjeQVAr5Dh1pQQnc4vv/gIXxoBFRERELkGnVWFEj/YAgI2HWvZZLAYsIiIichlxfW9NEwohJK6m8RiwiIiIyGWM7hUIN5UcF66XISPbvsfTuBIGLCIiInIZHholHuhV9YSUlnyxOwMWERERuZS4PnoAwKZDl2GxtMxpQgYsIiIicikjw9rDU6PE5cIKpGUV3P0FLogBi4iIiFyKm0qB6N43pwlb6GpCBiwiIiJyOXF9q6YJNx/JQaXZInE19mPAIiIiIpczvJs/fNxVuFZixL7MfKnLsRsDFhEREbkclUKOcRFBAFrmNCEDFhEREbmk6tWE32fkwljZsqYJGbCIiIjIJQ3q2g7+nhoUlpuw58xVqcuxCwMWERERuSSFXIbYPjcfnXMoR+Jq7MOARURERC6r+tmESUdzUWEyS1xNwzFgERERkcvqF+KLDj5alBrN2HEiT+pyGowBi4iIiFyWvOY0YQt6NiEDFhEREbm06puO/ngiDyWGSomraRgGLCIiInJpvfXe6NzOHRUmC344fkXqchqEAYuIiIhcmkwms57Faik3HWXAIiIiIpdXHbCST11FYZlJ4mrujgGLiIiIXF6PQC+EBXrBZBbYejRX6nLuigGLiIiIWoTqe2K1hNWEDFhERETUIsTefDbhT2eu4VqJQeJq6seARURERC1CZ38P9Omog0UA3x9x7UfnMGARERFRixF38yzWxsMMWEREREROMf7mXd0PnM9HTmG5xNXcGQMWERERtRh6Hy3u6+wLIYDNLnwWiwGLiIiIWhTrTUcZsIiIiIicY1xEMOQy4NDFG8i6XiZ1OXViwCIiIqIWpb2XBkPv8QfguvfEYsAiIiKiFsd601EXfTYhAxYRERG1ODG9g6BSyHAitxinrxRLXU4tDFhERETU4vi4qzGie3sArnmxOwMWERERtUixN6cJNx2+DCGExNXYYsAiIiKiFml0r0BolHKcu1qKYzlFUpdjgwGLiIiIWiQvNxXu7xkAANh4yLWmCRmwiIiIqMWy3nT0kGtNEzJgERERUYs1KiwAHmoFsm+U45eLN6Qux4oBi4iIiFosrVqBMeGBAFzrnlgMWERERNSiVU8Tbj6cA7PFNaYJGbCIiIioRft19/bwdlMir9iA/Zn5UpcDgAGLiIiIWji1Uo5xETcfneMizyZkwCIiIqIWr3qaMDEjFyazReJqAKXUBRARERE5anBXP/h7quHtpkJOYYXU5TBgERERUcunVMixZdav0d5Lg8rKSmRIXY/E709ERETkFAHeblKXYMVrsIiIiIicjAGLiIiIyMkYsIiIiIicjAGLiIiIyMkYsIiIiIicjAGLiIiIyMkYsIiIiIicjAGLiIiIyMkYsIiIiIicjAGLiIiIyMkYsIiIiIicjAGLiIiIyMkYsIiIiIicTCl1AW2NEAIAUFRUJHElrsVkMqGsrAxFRUVQqVRSl9MisYeOYw8dxx46jj10XFP0sPr3dvXv8bthwGpmxcXFAICQkBCJKyEiIiJ7FRcXQ6fT3XWcTDQ0ipFTWCwWXL58GV5eXpDJZFKX4zKKiooQEhKCixcvwtvbW+pyWiT20HHsoePYQ8exh45rih4KIVBcXAy9Xg+5/O5XWPEMVjOTy+Xo2LGj1GW4LG9vb/6F4iD20HHsoePYQ8exh45zdg8bcuaqGi9yJyIiInIyBiwiIiIiJ2PAIpeg0WiwcOFCaDQaqUtpsdhDx7GHjmMPHcceOs4VesiL3ImIiIicjGewiIiIiJyMAYuIiIjIyRiwiIiIiJyMAYuIiIjIyRiwqFESEhIgk8lsvoKCgqz7hRBISEiAXq+HVqvFyJEjcfToUZtjGAwGzJw5E/7+/vDw8MCECRNw6dIlmzEFBQWIj4+HTqeDTqdDfHw8bty4YTMmKysLcXFx8PDwgL+/P2bNmgWj0dhkn91Z6uuhyWTCK6+8gsjISHh4eECv1+Ppp5/G5cuXbY7BHtb/c1jTiy++CJlMhvfff99mO3t49x4eP34cEyZMgE6ng5eXFwYPHoysrCzrfvaw/h6WlJRgxowZ6NixI7RaLXr16oWPP/7Y5hhtvYcAkJ2djaeeegrt2rWDu7s77r33Xhw8eNC6v8X9XhFEjbBw4ULRu3dvkZOTY/3Ky8uz7v/LX/4ivLy8xPr168WRI0fElClTRHBwsCgqKrKO+e1vfys6dOggtm3bJtLS0sSoUaNE3759RWVlpXXM2LFjRUREhEhJSREpKSkiIiJCxMbGWvdXVlaKiIgIMWrUKJGWlia2bdsm9Hq9mDFjRvM0wgH19fDGjRti9OjR4uuvvxYnTpwQqampYtCgQWLAgAE2x2AP6/85rPbtt9+Kvn37Cr1eL9577z2bfexh/T08c+aM8PPzE/PnzxdpaWni7NmzYtOmTeLKlSvWMexh/T184YUXxD333CN27NghMjMzxSeffCIUCoXYsGGDdUxb72F+fr4IDQ0V06ZNE/v27ROZmZli+/bt4syZM9YxLe33CgMWNcrChQtF375969xnsVhEUFCQ+Mtf/mLdVlFRIXQ6nfjb3/4mhKgKECqVSqxbt846Jjs7W8jlcpGYmCiEEOLYsWMCgNi7d691TGpqqgAgTpw4IYQQYsuWLUIul4vs7GzrmH/9619Co9GIwsJCp33eplBfD+uyf/9+AUBcuHBBCMEeCtGwHl66dEl06NBBZGRkiNDQUJuAxR7evYdTpkwRTz311B33s4d372Hv3r3FokWLbLb1799fvPrqq0II9lAIIV555RUxfPjwO+5vib9XOEVIjXb69Gno9Xp06dIFjz/+OM6dOwcAyMzMRG5uLqKjo61jNRoNoqKikJKSAgA4ePAgTCaTzRi9Xo+IiAjrmNTUVOh0OgwaNMg6ZvDgwdDpdDZjIiIioNfrrWNiYmJgMBhsTi27qjv1sC6FhYWQyWTw8fEBwB5Wq6+HFosF8fHxmD9/Pnr37l3rtexhlTv10GKxYPPmzejRowdiYmIQEBCAQYMGYcOGDdbXsodV6vs5HD58OL777jtkZ2dDCIEdO3bg1KlTiImJAcAeAsB3332HgQMH4rHHHkNAQAD69euHzz77zLq/Jf5eYcCiRhk0aBC+/PJLbN26FZ999hlyc3MxdOhQXL9+Hbm5uQCAwMBAm9cEBgZa9+Xm5kKtVsPX17feMQEBAbXeOyAgwGbM7e/j6+sLtVptHeOq6uvh7SoqKvDHP/4RU6dOtT64lD28ew//+te/QqlUYtasWXW+nj2sv4d5eXkoKSnBX/7yF4wdOxZJSUl4+OGHMWnSJCQnJwNgD4G7/xx++OGHCA8PR8eOHaFWqzF27Fh89NFHGD58OAD2EADOnTuHjz/+GN27d8fWrVvx29/+FrNmzcKXX34JAC3y94qywSOJahg3bpz1z5GRkRgyZAjuuecefPHFFxg8eDAAQCaT2bxGCFFr2+1uH1PX+MaMcUX19XDOnDnWfSaTCY8//jgsFgs++uijux6XPazqYVRUFD744AOkpaXZ/TnYw6oePv744wCAhx56CH/4wx8AAPfeey9SUlLwt7/9DVFRUXc8Lnt467/lDz/8EHv37sV3332H0NBQ7Nq1Cy+99BKCg4MxevToOx63LfXQYrFg4MCBWLx4MQCgX79+OHr0KD7++GM8/fTT1nEt6fcKz2CRU3h4eCAyMhKnT5+2rp65Penn5eVZ/68gKCgIRqMRBQUF9Y65cuVKrfe6evWqzZjb36egoAAmk6nW/4G4upo9rGYymTB58mRkZmZi27Zt1rNXAHtYl5o93L17N/Ly8tCpUycolUoolUpcuHABc+fORefOnQGwh3Wp2UN/f38olUqEh4fbjOnVq5d1FSF7WFvNHpaXl+NPf/oTli9fjri4OPTp0wczZszAlClT8M477wBgDwEgODj4rj9nQMv6vcKARU5hMBhw/PhxBAcHo0uXLggKCsK2bdus+41GI5KTkzF06FAAwIABA6BSqWzG5OTkICMjwzpmyJAhKCwsxP79+61j9u3bh8LCQpsxGRkZyMnJsY5JSkqCRqPBgAEDmvQzO1vNHgK3wtXp06exfft2tGvXzmY8e1hbzR7Gx8fj8OHDSE9Pt37p9XrMnz8fW7duBcAe1qVmD9VqNe677z6cPHnSZsypU6cQGhoKgD2sS80emkwmmEwmyOW2v24VCgUsFgsA9hAAhg0bVu/PWYv8vdLgy+GJapg7d67YuXOnOHfunNi7d6+IjY0VXl5e4vz580KIquW0Op1OfPPNN+LIkSPiiSeeqHM5bceOHcX27dtFWlqauP/+++tcTtunTx+RmpoqUlNTRWRkZJ3LaR944AGRlpYmtm/fLjp27NgiliXX10OTySQmTJggOnbsKNLT022WfxsMBusx2MP6fw5vd/sqQiHYw7v18JtvvhEqlUp8+umn4vTp02LFihVCoVCI3bt3W4/BHtbfw6ioKNG7d2+xY8cOce7cOfHPf/5TuLm5iY8++sh6jLbew/379wulUinefvttcfr0abF27Vrh7u4u1qxZYx3T0n6vMGBRo1Tff0SlUgm9Xi8mTZokjh49at1vsVjEwoULRVBQkNBoNGLEiBHiyJEjNscoLy8XM2bMEH5+fkKr1YrY2FiRlZVlM+b69eviySefFF5eXsLLy0s8+eSToqCgwGbMhQsXxPjx44VWqxV+fn5ixowZoqKiosk+u7PU18PMzEwBoM6vHTt2WI/BHtb/c3i7ugIWe3j3Hq5atUp069ZNuLm5ib59+9rcv0kI9vBuPczJyRHTpk0Ter1euLm5ibCwMPHuu+8Ki8ViHdPWeyiEEBs3bhQRERFCo9GInj17ik8//dRmf0v7vSITQoiGn+8iIiIiorvhNVhERERETsaARURERORkDFhERERETsaARURERORkDFhERERETsaARURERORkDFhERERETsaARURERORkDFhERERETsaARUTkAJlMhg0bNkhdBhG5GAYsIqI7MBqNUpdARC0UAxYRtUgbN26Ej48PLBYLACA9PR0ymQzz58+3jnnxxRfxxBNPWL9fv349evfuDY1Gg86dO+Pdd9+1OWbnzp3x1ltvYdq0adDpdJg+fTqMRiNmzJiB4OBguLm5oXPnzliyZIl1PAA8/PDDkMlk1u/rcunSJTz++OPw8/ODh4cHBg4ciH379gEAzp49i4ceegiBgYHw9PTEfffdh+3bt9u8/qOPPkL37t3h5uaGwMBAPProo9Z9QggsXboUXbt2hVarRd++ffHf//7X/qYSkdMopS6AiKgxRowYgeLiYvzyyy8YMGAAkpOT4e/vj+TkZOuYnTt34g9/+AMA4ODBg5g8eTISEhIwZcoUpKSk4KWXXkK7du0wbdo062uWLVuG1157Da+++ioA4MMPP8R3332Hf//73+jUqRMuXryIixcvAgAOHDiAgIAA/POf/8TYsWOhUCjqrLWkpARRUVHo0KEDvvvuOwQFBSEtLc0aDktKSvDggw/irbfegpubG7744gvExcXh5MmT6NSpE37++WfMmjULq1evxtChQ5Gfn4/du3dbj//qq6/im2++wccff4zu3btj165deOqpp9C+fXtERUU5te9E1ECCiKiF6t+/v3jnnXeEEEJMnDhRvP3220KtVouioiKRk5MjAIjjx48LIYSYOnWqGDNmjM3r58+fL8LDw63fh4aGiokTJ9qMmTlzprj//vuFxWKpswYA4ttvv623zk8++UR4eXmJ69evN/izhYeHixUrVgghhFi/fr3w9vYWRUVFtcaVlJQINzc3kZKSYrP9+eefF0888USD34+InItThETUYo0cORI7d+6EEAK7d+/GQw89hIiICOzZswc7duxAYGAgevbsCQA4fvw4hg0bZvP6YcOG4fTp0zCbzdZtAwcOtBkzbdo0pKenIywsDLNmzUJSUpLddaanp6Nfv37w8/Orc39paSlefvllhIeHw8fHB56enjhx4gSysrIAAGPGjEFoaCi6du2K+Ph4rF27FmVlZQCAY8eOoaKiAmPGjIGnp6f168svv8TZs2ftrpWInINThETUYo0cORKrVq3CoUOHIJfLER4ejqioKCQnJ6OgoMBmekwIAZlMZvN6IUStY3p4eNh8379/f2RmZuL777/H9u3bMXnyZIwePdqua5y0Wm29++fPn4+tW7finXfeQbdu3aDVavHoo49aL7L38vJCWloadu7ciaSkJLz++utISEjAgQMHrNOMmzdvRocOHWyOq9FoGlwjETkXAxYRtVjV12G9//77iIqKgkwmQ1RUFJYsWYKCggL8/ve/t44NDw/Hnj17bF6fkpKCHj163PHaqWre3t6YMmUKpkyZgkcffRRjx45Ffn4+/Pz8oFKpbM6A1aVPnz74+9//bn3N7Xbv3o1p06bh4YcfBlB1Tdb58+dtxiiVSowePRqjR4/GwoUL4ePjgx9//BFjxoyBRqNBVlYWr7ciciEMWETUYul0Otx7771Ys2YNPvjgAwBVoeuxxx6DyWTCyJEjrWPnzp2L++67D2+++SamTJmC1NRUrFy5Eh999FG97/Hee+8hODgY9957L+RyOf7zn/8gKCgIPj4+AKpWEv7www8YNmwYNBoNfH19ax3jiSeewOLFizFx4kQsWbIEwcHB+OWXX6DX6zFkyBB069YN33zzDeLi4iCTyfDaa69Zz0wBwKZNm3Du3DmMGDECvr6+2LJlCywWC8LCwuDl5YV58+bhD3/4AywWC4YPH46ioiKkpKTA09MTzzzzjOONJiL7SXwNGBGRQ+bOnSsAiIyMDOu2vn37ivbt29e6MP2///2vCA8PFyqVSnTq1EksW7bMZn9oaKh47733bLZ9+umn4t577xUeHh7C29tbPPDAAyItLc26/7vvvhPdunUTSqVShIaG3rHO8+fPi0ceeUR4e3sLd3d3MXDgQLFv3z4hhBCZmZli1KhRQqvVipCQELFy5UoRFRUlfv/73wshhNi9e7eIiooSvr6+QqvVij59+oivv/7aemyLxSI++OADERYWJlQqlWjfvr2IiYkRycnJ9rSSiJxIJkQdFyEQERERUaNxFSERERGRkzFgERERETkZAxYRERGRkzFgERERETkZAxYRERGRkzFgERERETkZAxYRERGRkzFgERERETkZAxYRERGRkzFgERERETkZAxYRERGRk/0/B0gVO76dKDoAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1702,9 +1696,7 @@ " df.loc[wc, \"return\"] = m.objective()\n", " df.loc[wc, \"wc\"] = wc\n", "\n", - "df.plot(\n", - " x=\"wc\", y=\"return\", xlabel=\"worst case\", ylabel=\"mean return\", grid=True\n", - ")" + "df.plot(x=\"wc\", y=\"return\", xlabel=\"worst case\", ylabel=\"mean return\", grid=True)" ] }, { @@ -1733,7 +1725,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAGwCAYAAABrUCsdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeXElEQVR4nO3dfVxUZf4//tdhGIb7QeQeQTBvwkTTSEQrMAOz0sq2NSmU3XL9rrXlUttn/ZSFbuFvzahW2/1Ua6mpZVq6lS2BlZJxo6JT4j0qoAiicn87A3P9/sCZHLmR0RkOMK/n48Ej55wz13lfV0O+Ouea60hCCAEiIiIiumF2chdARERE1F8wWBERERFZCIMVERERkYUwWBERERFZCIMVERERkYUwWBERERFZCIMVERERkYXYy12ArdHr9Th37hzc3NwgSZLc5RAREVE3CCFQW1uLgIAA2Nl1fl2KwaqHnTt3DkFBQXKXQURERNfhzJkzGDRoUKf7Gax6mJubG4C2fzHu7u4Wa1en0yE9PR1xcXFQKpUWa7evsPX+AxwDW+8/wDGw9f4DHANr9r+mpgZBQUHGv8c7w2DVwwy3/9zd3S0erJydneHu7m6zv0y23H+AY2Dr/Qc4Brbef4Bj0BP9v9Y0Hk5eJyIiIrIQBisiIiIiC2GwIiIiIrIQzrEiIiLq5VpbW6HT6a55nE6ng729PZqamtDa2toDlfUuN9J/pVIJhUJxwzUwWBEREfVSQgiUlZWhqqqq28f7+fnhzJkzNrlW4o3238PDA35+fjc0dgxWREREvZQhVPn4+MDZ2fmaf+Hr9XrU1dXB1dW1y0Us+6vr7b8QAg0NDSgvLwcA+Pv7X3cNDFZERES9UGtrqzFUDRw4sFvv0ev10Gq1cHR0tNlgdb39d3JyAgCUl5fDx8fnum8L2t6oExER9QGGOVXOzs4yV2I7DGPdnflsnWGwIiIi6sVsca6UXCwx1gxWRERERBbCYEVERERkIQxWRERERBbCYNVPnLxQj1odoNcLuUshIiIyW0xMDBYuXCh3GTeMyy30E799Pxc1TfZ4df8OeLk6wMfNET5uKni7qdr+6W762stVBUflja8wS0REdC1arRYODg49cq4b+UafJTBY9QPaFj2UiraLj616gfM1zThf03zN96mdlL8GLzcVvF1V8HE3hC9H4z61k5LfSiEi6gWEEGjUdf6oFr1ej0ZtK+y1LRZdx8pJqTDr74GYmBiMGjUKDg4OWLduHW655Rb861//wgsvvIDMzEy4uLggLi4Ob731Fry8vJCYmIhdu3Zh165deOeddwAAp0+fxs6dO7Fw4UKTlee3bduGhx9+GEK03aFJTk7Gtm3b8Oyzz+K1115DYWEhdDodJEnCBx98gO3bt+Pbb79FYGAg3nzzTcyYMcNi49IRBqt+wMHeDjl/jcFXX3+D2++6G5WNrSivacaFumaU1zSjvLYJF2qbUV7bjAuXf7StelQ36lDdqENBeV3X7Svs2oLXlVfALocv45/d266CGQIeERFZXqOuFSNf+bbHz3t46VQ4O5gXGdauXYs//vGP+Omnn1BRUYHo6GjMmzcPqampaGxsxP/8z//gt7/9Lb7//nu88847OH78OEaNGoWlS5cCALy9vbt9roKCAnz22WfYvHkzGhsbjduXLFmC5cuX44033sDKlSvx+OOPo6ioCJ6enmb1xRwMVv2Iwg7wc3dE0EBll8cJIVDdqDOGrHLjP5uuet2M6kYdtK16lFQ1oqSqsct2AcDTxeHXK2BXXfm68p+uKnteBSMi6seGDh2K5cuXAwBeeeUVjBs3DikpKcb9H374IYKCgnD8+HEMHz4cDg4OcHZ2hp+fn9nn0mq1+PjjjzFw4EDU1NQY/35JTEzE7NmzAQApKSlYuXIl9uzZg3vvvdcCPewYg5UNkiQJHs4O8HB2wDBfty6PbW5pbRe22gJZk8lVsYt1zWjRC1TUa1FRr8XRstou23VSKjoMXD5ujvB2//W25EAXFRR2DGBEREDbfzsPL53a6X69Xo/amlq4ubtZ/FaguSIiIox/zsvLww8//ABXV9d2x508eRLDhw+/ofoGDx4Mb29v6PV6k+2jR482/tnFxQVubm7G5wFaC4MVdUllr8CgAc4YNKDrRyro9QKVDVqUd3EFzPBT19yCRl0riisaUFzR0GW7dhIw0LUteHV1JWyAIyfiE1H/J0lSl7fk9Ho9WhwUcHawl/1ZgS4uLsY/6/V6TJ8+HX//+9/bHdfVA4/t7OyMc6kMOpqcfuW5rqRUmt7BkSSpXfiyNAYrsgg7OwkDXVUY6KpC2DUeCt6gbTG5DVle03TFfLBft1+qb4ZewHjsoWvUoFIo8Pbx3Vd9A/LXAOZz+UrYAGcH2PEqGBFRjxk3bhw+//xzhISEwN6+4+jh4OCA1lbTifne3t6ora1FfX29MTxpNBprl3tDGKyoxzk72GPwQHsMHtjx/2EYtLTqUVFvuArW1MGcsF+vjDXp9GhulXD6UgNOX+r6Kpi9nQSvy7caf70KZrochY+7I7xcHaCy55UwIqIb9fTTT+ODDz7A7Nmz8Ze//AVeXl4oKCjAp59+ig8++AAKhQIhISHIzc1FYWEhXF1d4enpicjISDg7O+N///d/8ac//Ql79uzBmjVr5O5OlxisqNeyV9jBx90RPu6OANSdHieEQGVdE7ZsT8fIcRNQ0dhqcivyykBWUa9Fi16grKYJZTVN16yhoyUpvI1Xv369GubhzCUpiIg6ExAQgJ9++gn/8z//g6lTp6K5uRmDBw/Gvffea7xl+cILL2Du3LkYOXIkGhsbcfr0aYSEhGD9+vX4y1/+gvfffx/33HMPkpOT8Yc//EHmHnWOwYr6PEmS4OZoD18nIDLUs9099StpW/S4VH/1bccm06tgl29N6lpFt5ekUCqkttB11UKsV88F83JVwcGeS1IQUf+2c+fOdtuGDRuGL774otP3DB8+HNnZ2e22P/TQQ3jooYdMts2bN8/45+TkZCQnJ7d739VzswCYrIdlLQxWZFMc7O3gr3aCv9qpy+M6W5LiQl37iflVDTroWgXOVTfhXPW1r4J5ujj8uhirq+qKb0GahjIuSUFE1PcwWBF1wNwlKS7WaVFec9WVryuWpDAEtCuXpDh2vvtLUvhcEb4MtyMN+zxdHGDPhVmJiHoFBiuiG6SyVyDQwwmBHl1fBdPrBaoadW23Hmuu+FbkFVe/Ll7+p7lLUni6qODl6gA02mFXUz781E4dLkvhouKvPBGRNfG/skQ9xM5OgqeLAzxdHHDzNRYWNixJ0bYcxVUT8S8vTXGhrhmX6tqWpLhY17ZIK2CHowfOddqui4Oiw4VYTZalcOOSFES9SUdzhcg6LDHWDFZEvVB3l6Ro1Qtcqm8LXKWV9fguax8CQkfgUkOLyZWw8ppmNOpaUa9tRf2lBhSasSSF6XwwxyvCWNtkfMfrWJGZiK7N8EWchoYGODl1fUWcLKOhoe2/jV19CepaGKyI+jCFnXT5YdiOGO7tjPoCgfuih3T4H4W65stXwa6aC3b1GmHXsyRFR48mMg1ljnB34mR8InMoFAp4eHgYH8Hi7Ox8zd8hvV4PrVaLpqYm2Vdel8P19l8IgYaGBpSXl8PDwwMKxfX/DyODFZGNcFXZw1Vlj1Cvrq+C6Vr1uGj49uNVy1Jc/YgibaveuCTFiWssSeFgb/frOmBdPJ7I200FJSfjEwGA8YHE3X2+nRACjY2NcHJyssn/kbnR/nt4eFzXQ6CvxGBFRCaUCvOXpDCZhN9BGKtpaoG2RY+SqkaUVDVeswaTJSmuvAp21ZUxLklB/Z0kSfD394ePj0+Hz8i7mk6nQ2ZmJu66664bup3VV91I/5VK5Q1dqTJgsCKi62LOkhRNutZ2E+8vWGhJCsMtRy9XB9RfskPRrlPwUzubTM4f6KKCgpPxqQ9TKBTd+ktfoVCgpaUFjo6ONhmsekP/GayIyOoclQoEeTojyNO5y+P0eoHKBm0HD+VuMrkFeeGKJSmKLjWgyDgZ3w4/lhW0a9ewJIXp8yA7WpjVEU4OnIxPRNePwYqIeg07OwkDXVUY6Koye0mKsuoGZGsOQ+07CBfrdMYrZO2WpCjtul03lb3x9mNHc8AMgYxLUhBRRxisiKhPunpJCp1OB6+KfNx33yiTWwAtrXpUNGh/veVYY7gl2f7bkU06PWqbW1Db3IJTF+u7PH+HS1JctR6YIZyp7HkVjMhWMFgRUb9mr7AzLknRFSEE6ppbjFfADOHryvlf17skhYez0mQ9MJ8r1gPjkhRE/QuDFRER2ibjuzkq4eaoxE3erl0e29WSFOVXPJ7IsCRFVYMOVQ3dX5Li6sBlXKD18q1IL1cuSUHUWzFYERGZyZwlKaoadMarXlc/J/LKMFZ7I0tSuKrg7a7CQGclSi5KGHi6Av4DXODtpoIbl6Qg6lEMVkREViJJEga4OGCAiwOGd3NJil+//dhkskSFYfvFumstSaHA2hP7jK8clXa/TsK/4nFEV0/M93RxgD2vghHdMAYrIqJe4HqXpLgyfJ2vbsSx4lK0Kl1wsU6L2uYWNOn0OFPRiDMVXV8F62hJil//afqIImcH/tVB1Bn+dhAR9SFdLUmh0+nwzTdncd99d0CpVKJR22qyAn75VX82/NPcJSlc2y1JYXr1i0tSkC2TNVhlZmbijTfeQF5eHkpLS7F161Y89NBDxv1CCCxZsgTvv/8+KisrERkZiXfffRe33HILAKCwsBChoaEdtv3ZZ5/h0UcfBQC8/vrr2L59OzQaDRwcHFBVVdXu+OLiYjz99NP4/vvv4eTkhPj4eKxYsQIODg7GYw4ePIhnnnkGe/bsgaenJ+bPn4/Fixdz/gIR9UpODgoED3RG8MCur4K16gUu1V8x96vmiodz1135LclmNOpaUdfcgrrmFpzuxpIU3lddATMsSWEyP8xNBUcll6Sg/kHWYFVfX48xY8bgd7/7HR555JF2+5cvX47U1FSsWbMGw4cPx2uvvYbY2FgcO3YMbm5uCAoKQmmp6f9avf/++1i+fDmmTZtm3KbVavHoo48iKioKq1evbnee1tZW3H///fD29sbu3btx6dIlzJ07F0IIrFy5EgBQU1OD2NhYTJ48GXv37sXx48eRmJgIFxcXPP/88xYeGSKinqOwk4xLUtzSxXFCCNRrW41rgF39TEjDtyQv1P26JEVpdRNKq6+9JIW7o/1Vq+B3dBWMS1JQ7ydrsJo2bZpJALqSEAJvv/02XnrpJcycORMAsHbtWvj6+mLjxo2YP38+FApFu6dQb926FbNmzYKr669fl16yZAkAYM2aNR2eKz09HYcPH8aZM2cQEBAAAHjzzTeRmJiI119/He7u7tiwYQOampqwZs0aqFQqjBo1CsePH0dqaiqSkpL4i05E/Z4kSXBV2cPV2xVDrrEkhbalbUmKqx9FdPWtSMOSFDVNLahpqkPBDSxJMcBJgUvXznBEVtVr51idPn0aZWVliIuLM25TqVSIjo5GVlYW5s+f3+49eXl50Gg0ePfdd806V3Z2NkaNGmUMVQAwdepUNDc3Iy8vD5MnT0Z2djaio6OhUqlMjlm0aFGXtySbm5vR3NxsfF1TUwOgbS5Ed55U3l2GtizZZl9i6/0HOAa23n+gd42BBMDbxR7eLvaAn0unxwkhUN3Y8utCrHXaX4OYcZmKtsn63VmSQiEpMGFiNYb5qa3Us96tN30G5GDN/ne3zV4brMrKygAAvr6+Jtt9fX1RVFTU4XtWr16NsLAwTJw40exzXX2eAQMGwMHBwVhHWVkZQkJC2tVi2NdZsFq2bJnxitmV0tPT4ezc9byH65GRkWHxNvsSW+8/wDGw9f4DfXsMlAACLv/A5fLP5RsT2lagVgfU6IAarYQaHVB7+Z81OuBsvYRqrYT/7/NsPBKql6sLvUJf/gxYgjX639DQcO2D0IuDlcHVt9iEEB3edmtsbMTGjRuxePFii5yno3N1VEtn7zVYtGgRkpKSjK9ramoQFBSEuLg4uLu7X1etHdHpdMjIyEBsbKzJc9Jsha33H+AY2Hr/AY7BrqPn8dSGn5FXocQ7T0XDVdXr/4qzOFv/DFiz/4Y7TtfSaz91hrlTZWVl8Pf3N24vLy9vd3UJALZs2YKGhgbMmTPnus6Vm5trsq2yshI6nc54Lj8/P+PVqytrAdpfVbuSSqUyuX1ooFQqrfKht1a7fYWt9x/gGNh6/wHbHYM7h/vAx1GgvKkVXx88j4SoELlLko2tfgYMrNH/7rbXa5fZDQ0NhZ+fn8nlPK1Wi127dnV4q2/16tWYMWMGvL29zT5XVFQU8vPzTb5hmJ6eDpVKhdtuu814TGZmJrRarckxAQEB7W4REhFRz7Ozk3CnX9stwLXZRca7CkQ9SdZgVVdXB41GA41GA6BtwrpGo0FxcTEkScLChQuRkpKCrVu3Ij8/H4mJiXB2dkZ8fLxJOwUFBcjMzMRTTz3V4XmKi4uN7ba2thrPWVfX9u2TuLg4jBw5EgkJCThw4AC+++47vPDCC5g3b57xdl18fDxUKhUSExORn5+PrVu3IiUlhd8IJCLqRcZ7C7g4KFBQXofsk5fkLodskKy3Avft24fJkycbXxvmIs2dOxdr1qzBiy++iMbGRixYsMC4QGh6ejrc3EyfufXhhx8iMDDQ5BuEV3rllVewdu1a4+uxY8cCAH744QfExMRAoVBg+/btWLBgASZNmmSyQKiBWq1GRkYGnn76aURERGDAgAFISkoymT9FRETycrQHHh4bgPW5Z7A2uxATh3rJXRLZGFmDVUxMTJeXaiVJQnJyMpKTk7tsJyUlBSkpKZ3uX7NmTadrWBkEBwfj66+/7vKY8PBwZGZmdnkMERHJ6/HxQVifewYZh8+jpKoRgR5OcpdENqTXzrEiIiK6HkN9XDFp6EDoBbA+p+PleYishcGKiIj6nTmXvxH46Z5iNOla5S2GbAqDFRER9TtTbvZBoIcTKht0+PqX0mu/gchCGKyIiKjfsVfY4fEJwQCAtVmFXHqBegyDFRER9UuP3R4MB3s7HCyphuZMldzlkI1gsCIion7J08UBM8YEAADWZXMSO/UMBisiIuq35l6exL79l1JcqG2WtxiyCQxWRETUb4UPUmNssAe0rXps2lssdzlkAxisiIioXzNctVqfU4yWVr28xVC/x2BFRET92rRwP3i5OqCspgnph8/LXQ71cwxWRETUr6nsFZg9/telF4isicGKiIj6vfjIYCjsJOSersDRshq5y6F+jMGKiIj6PX+1E6be4guASy+QdTFYERGRTTA8P3Dr/hJUN+rkLYb6LQYrIiKyCZGhnrjZzw2NulZs3ndG7nKon2KwIiIimyBJkvGq1fqcIuj1fH4gWR6DFRER2YyHxgbAzdEehZcakHnigtzlUD/EYEVERDbD2cEev40IAsBJ7GQdDFZERGRTEiYMBgD8cKwcRZfqZa6G+hsGKyIisikhXi6IGeENIYCPedWKLIzBioiIbI7h+YGf7TuDBm2LvMVQv8JgRURENid6uDeCPZ1R09SC/2jOyV0O9SMMVkREZHPs7CTMiWqba7U2qxBCcOkFsgwGKyIiskmP3hYER6UdjpbVYm9hpdzlUD/BYEVERDZJ7azEw2MDAQBrswvlLYb6DQYrIiKyWQkTQgAA3+aXoay6Sd5iqF9gsCIiIps1MsAd40M80aIX2LinWO5yqB9gsCIiIps2Z2LbJPaNucXQtuhlrob6OgYrIiKyaVNv8YOvuwoX65rx3/xSucuhPo7BioiIbJpSYYfHI9uuWvH5gXSjGKyIiMjmPTY+CEqFhLyiSuSXVMtdDvVhDFZERGTzfNwccV+4P4C2BUOJrheDFREREYA5l58f+J+fz6GyXitvMdRnMVgREREBGBfsgVGB7tC26LFp3xm5y6E+isGKiIgIgCRJxqtWH2cXoVXP5weS+RisiIiILpsxJgAezkqUVDXiuyPn5S6H+iAGKyIiossclQrMuj0IAPBxDpdeIPMxWBEREV3hicjBkCTgxxMXUVBeJ3c51McwWBEREV0hyNMZU272BQCs51UrMhODFRER0VXmXn5+4Ja8s6hrbpG5GupLGKyIiIiuMukmLwzxdkFdcwu+2H9W7nKoD2GwIiIiuoqdnYS5l5deWJtVCCG49AJ1D4MVERFRB2aOC4SLgwInL9Qj6+QlucuhPoLBioiIqANujko8ctsgAHx+IHUfgxUREVEn5kS1TWLfceQ8zlY2yFwN9QUMVkRERJ0Y6uOGSUMHQi+ADbnFcpdDfQCDFRERURcMzw/8dE8xmnSt8hZDvR6DFRERURem3OyDQA8nVDbo8PUvpXKXQ70cgxUREVEX7BV2eHxCMAAuvUDXxmBFRER0DY/dHgwHezscLKnGgTNVcpdDvRiDFRER0TV4ujhgxpgAAMA6Lr1AXWCwIiIi6gbDSuzbD5biQm2zvMVQr8VgRURE1A3hg9QYG+wBXavAp3u49AJ1jMGKiIiomwxXrTbkFkPXqpe3GOqVGKyIiIi6aVq4H7xcHVBW04SMw+flLod6IQYrIiKiblLZKzB7/K9LLxBdjcGKiIjIDPGRwVDYScg9XYEjpTVyl0O9jKzBKjMzE9OnT0dAQAAkScK2bdtM9gshkJycjICAADg5OSEmJgaHDh0y7i8sLIQkSR3+bN682XhcZWUlEhISoFaroVarkZCQgKqqKpNz7d27F1OmTIGHhwcGDBiAuLg4aDQak2MOHjyI6OhoODk5ITAwEEuXLuVCcURENsZf7YSpt/gCANZlF8pbDPU6sgar+vp6jBkzBqtWrepw//Lly5GamopVq1Zh79698PPzQ2xsLGprawEAQUFBKC0tNflZsmQJXFxcMG3aNGM78fHx0Gg0SEtLQ1paGjQaDRISEoz7a2trMXXqVAQHByM3Nxe7d++Gu7s7pk6dCp1OBwCoqalBbGwsAgICsHfvXqxcuRIrVqxAamqqFUeIiIh6I8PzA7cdOIfqBp28xVCvYi/nyadNm2YSgK4khMDbb7+Nl156CTNnzgQArF27Fr6+vti4cSPmz58PhUIBPz8/k/dt3boVs2bNgqurKwDgyJEjSEtLQ05ODiIjIwEAH3zwAaKionDs2DGMGDECx44dQ2VlJZYuXYqgoCAAwKuvvorRo0ejuLgYN910EzZs2ICmpiasWbMGKpUKo0aNwvHjx5GamoqkpCRIktRhP5qbm9Hc/Ot6JzU1bZeNdTqdMbRZgqEtS7bZl9h6/wGOga33H+AY9GT/xw1yw3AfVxwvr8OmvUX43cTBVj9nd/AzYL3+d7dNSfSSe1mSJGHr1q146KGHAACnTp3CTTfdhP3792Ps2LHG4x588EF4eHhg7dq17drIy8tDREQEfvrpJ0ycOBEA8OGHHyIpKandrT8PDw+89dZb+N3vfofa2loMGTIETz/9NP73f/8Xra2tWLRoEXbs2AGNRgN7e3vMmTMH1dXV+M9//mNs48CBAxg3bhxOnTqF0NDQDvuVnJyMJUuWtNu+ceNGODs7mztMRETUS2Sdl7DplAJeKoGXxrbCruP/v6Z+oqGhAfHx8aiuroa7u3unx8l6xaorZWVlAABfX1+T7b6+vigqKurwPatXr0ZYWJgxVBna8fHxaXesj4+P8Rxubm7YuXMnHnzwQfztb38DAAwfPhzffvst7O3tje2EhIS0q8Wwr7NgtWjRIiQlJRlf19TUICgoCHFxcV3+izGXTqdDRkYGYmNjoVQqLdZuX2Hr/Qc4Brbef4Bj0NP9j9G24Js3MnGxqQVuw25H9HBvq5/zWvgZsF7/DXecrqXXBiuDq2+xCSE6vO3W2NiIjRs3YvHixdds4+p2Ghsb8fvf/x6TJk3CJ598gtbWVqxYsQL33Xcf9u7dCycnp05r6ax9A5VKBZVK1W67Uqm0yofeWu32Fbbef4BjYOv9BzgGPdV/tVKJ30YEYfXu09iw5yzuuSXA6ufsLn4GLN//7rbXa5dbMMydMlxVMigvL293FQsAtmzZgoaGBsyZM6ddO+fPt1/E7cKFC8Z2Nm7ciMLCQnz00Ue4/fbbMWHCBGzcuBGnT5823vrz8/PrsBag/VU1IiKyDQkT2uZW7Tx+AYUX62WuhnqDXhusQkND4efnh4yMDOM2rVaLXbt2mdzqM1i9ejVmzJgBb2/TS7FRUVGorq7Gnj17jNtyc3NRXV1tbKehoQF2dnYmV54Mr/V6vbGdzMxMaLVa4zHp6ekICAhod4uQiIhsQ4iXC2JGeEMIYH1Ox9NUyLbIGqzq6uqg0WiM60WdPn0aGo0GxcXFkCQJCxcuREpKCrZu3Yr8/HwkJibC2dkZ8fHxJu0UFBQgMzMTTz31VLtzhIWF4d5778W8efOQk5ODnJwczJs3Dw888ABGjBgBAIiNjUVlZSWefvppHDlyBIcOHcLvfvc72NvbY/LkyQDalmxQqVRITExEfn4+tm7dipSUlC6/EUhERP2f4fmBn+07gwZti7zFkOxkDVb79u3D2LFjjd/6S0pKwtixY/HKK68AAF588UUsXLgQCxYsQEREBEpKSpCeng43NzeTdj788EMEBgYiLi6uw/Ns2LAB4eHhiIuLQ1xcHEaPHo2PP/7YuP/mm2/GV199hV9++QVRUVG48847ce7cOaSlpcHf3x8AoFarkZGRgbNnzyIiIgILFixAUlKSycR0IiKyPdHDvRHs6Yyaphb8R3NO7nJIZrJOXo+Jiely5XJJkpCcnIzk5OQu20lJSUFKSkqn+z09PbF+/fou24iNjUVsbGyXx4SHhyMzM7PLY4iIyLbY2UmYEzUYr20/grVZhXjs9iDeybBhvXaOFRERUV/x6G1BcFIqcLSsFnsLK+Uuh2TEYEVERHSD1M5KPDQ2EACwls8PtGkMVkRERBYwJ6pt6YW0/DKUVTfJXA3JhcGKiIjIAsL83TE+1BOteoGNuVx6wVYxWBEREVmIYemFjXuK0dzSKm8xJAsGKyIiIguJu8UXvu4qXKzTIi2/7NpvoH6HwYqIiMhClAo7PB7ZNtdqbVahvMWQLBisiIiILOix8UFQKiTsL67CwbPVcpdDPYzBioiIyIJ83BxxX3jbUzvWcekFm8NgRUREZGFzLk9i/8/P51BZr5W3GOpRDFZEREQWNi7YA6MC3aFt0WPTvjNyl0M9iMGKiIjIwiRJMi698HF2EVr1nT8Xl/oXBisiIiIrmD4mAAOclSipasT3R8vlLod6CIMVERGRFTgqFZh1ezAATmK3JQxWREREVvJ4ZDDsJODHExdRUF4ndznUAxisiIiIrCTI0xlTwnwBAOtz+PxAW8BgRUREZEWGSexb8s6irrlF3mLI6hisiIiIrGjS0IEY4u2CuuYWfLH/rNzlkJUxWBEREVnRlUsvrM0qhBBceqE/Y7AiIiKyspnjAuHioMDJC/XIOnlJ7nLIihisiIiIrMzNUYlHbhsEoO2qFfVf9tf7Rq1Wi/Lycuj1epPtwcHBN1wUERFRfzMnKgTrsouw48h5nK1swKABznKXRFZg9hWrEydO4M4774STkxMGDx6M0NBQhIaGIiQkBKGhodaokYiIqM8b6uOKO4Z6QS+ADbnFcpdDVmL2FavExETY29vj66+/hr+/PyRJskZdRERE/c6cqMHYXXARn+4pxnNThsFRqZC7JLIws4OVRqNBXl4ebr75ZmvUQ0RE1G9NCfNFoIcTSqoa8fUvpfjN5XlX1H+YfStw5MiRuHjxojVqISIi6tcUdhKemDAYAJde6K/MDlZ///vf8eKLL2Lnzp24dOkSampqTH6IiIioc7NuD4KDvR0OllRDc6ZK7nLIwsy+FXjPPfcAAKZMmWKyXQgBSZLQ2tpqmcqIiIj6IU8XB8wYE4AteWexNqsQY4MHyF0SWZDZweqHH36wRh1EREQ2Y25UCLbkncX2g6V46f6R8HZTyV0SWYhZwUqn0yE5ORnvvfcehg8fbq2aiIiI+rXwQWqMDfbAgeIqfLqnGH+aMkzukshCzJpjpVQqkZ+fzyUWiIiIbpDh+YEbcouha9V3fTD1GWZPXp8zZw5Wr15tjVqIiIhsxrRwP3i5OqCspgkZh8/LXQ5ZiNlzrLRaLf79738jIyMDERERcHFxMdmfmppqseKIiIj6K5W9ArPHB2Pl9wVYm1WI+8L95S6JLMDsYJWfn49x48YBAI4fP26yj7cIiYiIuu/xyMH4586TyD1dgaNlNbjZz13ukugG8VuBREREMvFTO+LeW/yw/WAp1mUXIeXhcLlLohtk9hwrIiIispw5UW0rsW/dX4LqRp3M1dCNMvuK1eTJk7u85ff999/fUEFERES2ZHyoJ272c8PRslpsyTuLJ+8IlbskugFmX7G69dZbMWbMGOPPyJEjodVqsX//foSH8xImERGROSRJwpzLSy98nF0IvZ7PD+zLzL5i9dZbb3W4PTk5GXV1dTdcEBERka15aGwAlv33CAovNWDXiQuYPMJH7pLoOllsjtUTTzyBDz/80FLNERER2QxnB3v8NiIIALAuq1DeYuiGWCxYZWdnw9HR0VLNERER2ZSECW2T2Hcev4DCi/UyV0PXy+xbgTNnzjR5LYRAaWkp9u3bh8WLF1usMCIiIlsS4uWCmBHe2HnsAtbnFOHlB0bKXRJdB7OvWLm7u0OtVht/PD09ERMTg2+++QavvvqqNWokIiKyCXMnhgAAPtt3Bg3aFnmLoeti9hWrNWvWWKEMIiIiih7mjcEDnVF0qQH/0ZzD7PHBcpdEZjL7itWQIUNw6dKldturqqowZMgQixRFRERki+zsJONcq7VZhRCCSy/0NWYHq8LCQrS2trbb3tzcjJKSEosURUREZKsevS0ITkoFjpbVYs/pCrnLITN1+1bgl19+afzzt99+C7VabXzd2tqK7777DiEhIRYtjoiIyNaonZV4aGwgPtlTjHXZRYgcMlDuksgM3Q5WDz30EIC2FWLnzp1rsk+pVCIkJARvvvmmRYsjIiKyRXOiBuOTPcVIO1SGsuom+Km5nFFf0e1bgXq9Hnq9HsHBwSgvLze+1uv1aG5uxrFjx/DAAw9Ys1YiIiKbEObvjvGhnmjVC2zMLZK7HDKD2XOsTp8+DS8vLwBAU1OTxQsiIiIiYO7l5wdu3FOM5pb2c5updzI7WOn1evztb39DYGAgXF1dcerUKQDA4sWLsXr1aosXSEREZIvibvGFr7sKF+u0SMsvk7sc6iazg9Vrr72GNWvWYPny5XBwcDBuDw8Px7///W+LFkdERGSrlAo7PB7569IL1DeYHazWrVuH999/H48//jgUCoVx++jRo3H06FGLFkdERGTLZo8PhlIhYX9xFQ6erZa7HOoGs4NVSUkJhg4d2m67Xq+HTqezSFFEREQEeLupcH+4PwBgbXahvMVQt5gdrG655Rb8+OOP7bZv3rwZY8eOtUhRRERE1GbO5ecHfvnzOVTUa+Uthq7J7GcFvvrqq0hISEBJSQn0ej2++OILHDt2DOvWrcPXX39tjRqJiIhs1tggD4QHqnGwpBqf7i3Ggpj2d42o9zD7itX06dOxadMmfPPNN5AkCa+88gqOHDmCr776CrGxsdaokYiIyGZJkoQ5UW2T2DfkFKNVz+cH9mZmBauWlhYsWbIEI0eOxK5du1BXV4eGhgbs3r0bcXFxZp88MzMT06dPR0BAACRJwrZt20z2CyGQnJyMgIAAODk5ISYmBocOHTLuLywshCRJHf5s3rzZeFxlZSUSEhKgVquhVquRkJCAqqqqdvWsWbMGo0ePhqOjI/z8/PDMM8+Y7D948CCio6Ph5OSEwMBALF26lA/IJCIiq5s+JgADnJUoqWrEd0fOy10OdcGsYGVvb4833nijw4cwX4/6+nqMGTMGq1at6nD/8uXLkZqailWrVmHv3r3w8/NDbGwsamtrAQBBQUEoLS01+VmyZAlcXFwwbdo0Yzvx8fHQaDRIS0tDWloaNBoNEhISTM6VmpqKl156CX/9619x6NAhfPfdd5g6dapxf01NDWJjYxEQEIC9e/di5cqVWLFiBVJTUy0yFkRERJ1xVCow6/ZgAMC6bK7E3puZPcfqnnvuwc6dO5GYmHjDJ582bZpJALqSEAJvv/02XnrpJcycORMAsHbtWvj6+mLjxo2YP38+FAoF/Pz8TN63detWzJo1C66urgCAI0eOIC0tDTk5OYiMjAQAfPDBB4iKisKxY8cwYsQIVFZW4uWXX8ZXX32FKVOmGNu65ZZbjH/esGEDmpqasGbNGqhUKowaNQrHjx9HamoqkpKSIElSh/1obm5Gc3Oz8XVNTQ0AQKfTWfRblIa2bPWbmbbef4BjYOv9BzgG/b3/s24LwPuZJ7G74CKOlFRiqI9ru2P6+xhcizX73902zQ5W06ZNw6JFi5Cfn4/bbrsNLi4uJvtnzJhhbpMdOn36NMrKykxuMapUKkRHRyMrKwvz589v9568vDxoNBq8++67xm3Z2dlQq9XGUAUAEyZMgFqtRlZWFkaMGIGMjAzo9XqUlJQgLCwMtbW1mDhxIt58800EBQUZ24mOjoZKpTK2M3XqVCxatAiFhYUIDQ3tsB/Lli3DkiVL2m1PT0+Hs7Oz+QNzDRkZGRZvsy+x9f4DHANb7z/AMejP/b/Fww4HK+2Qsnk3fhOq7/S4/jwG3WGN/jc0NHTrOLOD1R//+EcA6PAWmCRJFrtNWFbWtny/r6+vyXZfX18UFXV8GXT16tUICwvDxIkTTdrx8fFpd6yPj4/xHKdOnYJer0dKSgreeecdqNVqvPzyy4iNjcUvv/wCBwcHlJWVISQkpF0thnN0FqwWLVqEpKQk4+uamhoEBQUhLi4O7u7u1xiF7tPpdMjIyEBsbCyUSqXF2u0rbL3/AMfA1vsPcAxsof/qEZeQuCYP+yuUeOfJaLg5mv41bgtj0BVr9t9wx+lazA5Wen3nCdkarr7FJoTo8LZbY2MjNm7ciMWLF1+zjavbMSxu+o9//MN4heyTTz6Bn58ffvjhB+Ncq45q6ax9A5VKZXKVy0CpVFrlQ2+tdvsKW+8/wDGw9f4DHIP+3P/oEb4Y4u2CUxfq8XX+ecy5/KDmq/XnMegOa/S/u+2ZvdxCTzHMnTJcVTIoLy9vdxULALZs2YKGhgbMmTOnXTvnz7f/BsWFCxeM7fj7t61qO3LkSON+b29veHl5obi42NhOR7UA7a+qERERWYMkSZh7OUytzSrkN9N7oV4brEJDQ+Hn52dyn1Sr1WLXrl0mt/oMVq9ejRkzZsDb29tke1RUFKqrq7Fnzx7jttzcXFRXVxvbmTRpEgDg2LFjxmMqKipw8eJFDB482NhOZmYmtNpfV71NT09HQEBAu1uERERE1jJzXCBcHBQ4eaEeWScvyV0OXUXWYFVXVweNRgONRgOgbcK6RqNBcXExJEnCwoULkZKSgq1btyI/Px+JiYlwdnZGfHy8STsFBQXIzMzEU0891e4cYWFhuPfeezFv3jzk5OQgJycH8+bNwwMPPIARI0YAAIYPH44HH3wQzz33HLKyspCfn4+5c+fi5ptvxuTJkwG0LdmgUqmQmJiI/Px8bN26FSkpKV1+I5CIiMjS3ByVeOS2QQCANVmF8hZD7cgarPbt24exY8canzGYlJSEsWPH4pVXXgEAvPjii1i4cCEWLFiAiIgIlJSUID09HW5ubibtfPjhhwgMDOx0kdINGzYgPDwccXFxiIuLw+jRo/Hxxx+bHLNu3TpERkbi/vvvR3R0NJRKJdLS0oz3VNVqNTIyMnD27FlERERgwYIFSEpKMpmYTkRE1BMMK7F/d+Q8zlR079tq1DPMnrxuSTExMV3eH5YkCcnJyUhOTu6ynZSUFKSkpHS639PTE+vXr++yDXd3d6xevRqrV6/u9Jjw8HBkZmZ22Q4REZG1DfVxw6ShA/FTwSVsyC3GX6fdLHdJdNl1BSu9Xo+CggKUl5e3+5bgXXfdZZHCiIiIqHNzokLwU8ElbNpbjIX3DIOjUiF3SYTrCFY5OTmIj49HUVFRu6tNllzHioiIiDo35WYfBHo4oaSqEV/9fA6PRgTJXRLhOuZY/b//9/8QERGB/Px8VFRUoLKy0vhTUVFhjRqJiIjoKvYKOzw+oe35gWuzufRCb2H2FasTJ05gy5YtGDp0qDXqISIiom6aFRGEt3ecQH5JDQ6cqUK4f/vnB1LPMvuKVWRkJAoKCqxRCxEREZlhoKsK00cHAADWcemFXsHsK1Z/+tOf8Pzzz6OsrAzh4eHtlngfPXq0xYojIiKirs2dOBif7z+L7QdL8T9Th8ldjs0zO1g98sgjAIDf//73xm2SJBmfvcfJ60RERD1n9CAP3BrkAc2ZKmzaV4JQuQuycWYHq9OnT1ujDiIiIrpOcycOhmZTFT7Zewb/EyZ3NbbN7GBleHYeERER9Q73hfvj9e1HcL6mGb9USpgud0E27LpXXj98+DCKi4tNHkoMADNmzLjhooiIiKj7VPYKzB4fjJXfF2B3maxPq7N5ZgerU6dO4eGHH8bBgweNc6sAGB9EzDlWREREPS8+Mhj/3HkSBTXA0bJahAd5yl2STTI71j733HMIDQ3F+fPn4ezsjEOHDiEzMxMRERHYuXOnFUokIiKia/FXOyE2zAcAsD73jMzV2C6zg1V2djaWLl0Kb29v2NnZwc7ODnfccQeWLVuGZ5991ho1EhERUTc8Edn2WJsvfz6H6gadzNXYJrODVWtrK1xd21Z29fLywrlz5wC0TWo/duyYZasjIiKibhsfMgD+TgKNOj025/GqlRzMDlajRo3CL7/8AqBtFfbly5fjp59+wtKlSzFkyBCLF0hERETdI0kS7vTXAwA+zimCXs/nB/Y0s4PVyy+/DL2+7V/aa6+9hqKiItx555345ptv8I9//MPiBRIREVH3RXgJuDnao+hSA3aduCB3OTbH7G8FTp061fjnIUOG4PDhw6ioqMCAAQOM3wwkIiIieagUwCNjA7AmuxjrsgoxeYSP3CXZlOte7KKgoADffvstGhsb4enJr3QSERH1Fo9fnsS+8/gFFF6sl7ka22J2sLp06RKmTJmC4cOH47777kNpaSkA4KmnnsLzzz9v8QKJiIjIPCEDXRAzwhtCAOtziuQux6aYHaz+/Oc/Q6lUori4GM7Ozsbts2bNQlpamkWLIyIiouszNyoEAPDZvjNo0LbIW4wNMTtYpaen4+9//zsGDRpksn3YsGEoKmIqJiIi6g2ih3sj2NMZNU0t2HbgnNzl2Ayzg1V9fb3JlSqDixcvQqVSWaQoIiIiujF2dhLmRA0GAKzLLjQ+go6sy+xgddddd2HdunXG15IkQa/X44033sDkyZMtWhwRERFdv0dvC4Kj0g5Hy2qx53SF3OXYBLOXW3jjjTcQExODffv2QavV4sUXX8ShQ4dQUVGBn376yRo1EhER0XVQOyvx8NhAfLLnDNZlFyFyyEC5S+r3zL5iNXLkSPzyyy8YP348YmNjUV9fj5kzZ+LAgQO46aabrFEjERERXaeECSEAgLRDZSirbpK3GBtg9hUrAPDz88OSJUssXQsRERFZ2MgAd4wP8cSewgpszC1CUtwIuUvq164rWDU1NeGXX35BeXm58fE2BjNmzLBIYURERGQZcyeGtAWrPcV4+u6hUNkr5C6p3zI7WKWlpWHOnDm4ePFiu32SJKG1tdUihREREZFlxN3iC193Fc7XNCMtvwwP3hood0n9ltlzrJ555hk8+uijKC0thV6vN/lhqCIiIup9lAo7PB7ZtvTC2qxCeYvp58wOVuXl5UhKSoKvr6816iEiIiIreGx8EJQKCfuLq3DwbLXc5fRbZger3/zmN9i5c6cVSiEiIiJr8XFzxH3h/gCANbxqZTVmz7FatWoVHn30Ufz4448IDw+HUqk02f/ss89arDgiIiKynDlRIfiP5hy++uUcXro/DJ4uDnKX1O+YHaw2btyIb7/9Fk5OTti5cyckSTLukySJwYqIiKiXGhfsgVGB7sgvqcGmvWfwxxiuP2lpZt8KfPnll7F06VJUV1ejsLAQp0+fNv6cOnXKGjUSERGRBUiShLlRIQCA9TlFaNXz+YGWZnaw0mq1mDVrFuzszH4rERERyWz6mAAMcFaipKoR3x05L3c5/Y7Z6Wju3LnYtGmTNWohIiIiK3NUKjDr9mAAwLrsIpmr6X/MnmPV2tqK5cuX49tvv8Xo0aPbTV5PTU21WHFERERkeY9HBuP9zJPYXXARBeW1GOrjJndJ/YbZwergwYMYO3YsACA/P99k35UT2YmIiKh3CvJ0xpQwX2QcPo+Ps4uw5MFRcpfUb5gdrH744Qdr1EFEREQ9aG5UCDIOn8eWvLN4YeoIuDkqr/0muibOQCciIrJBk4YOxBBvF9RrW/HF/hK5y+k3GKyIiIhs0JVLL6zNLoQQXHrBEhisiIiIbNQjtw2Cq8oepy7U46eCS3KX0y8wWBEREdkoV5U9HhkXCKDtqhXdOAYrIiIiG5Zw+Xbgd0fO40xFg7zF9AMMVkRERDZsqI8r7hjqBb0ANuQWy11On8dgRUREZOPmRA0GAGzaW4wmXavM1fRtDFZEREQ2bkqYLwI9nFDZoMNXP5+Tu5w+jcGKiIjIxinsJDwxoe2qFZdeuDEMVkRERIRZtwfBwd4O+SU12F9cJXc5fRaDFREREcHTxQEPjgkAAKzj0gvXjcGKiIiIAABzJ4YAAL45WIry2iZ5i+mjGKyIiIgIADAqUI1xwR7QtQp8uueM3OX0SQxWREREZGS4arUhtwi6Vr28xfRBDFZERERkNG2UP7xcVThf04z0Q+flLqfPYbAiIiIiIwd7O8SPDwLA5wdeDwYrIiIiMhEfORgKOwl7TlfgSGmN3OX0KbIGq8zMTEyfPh0BAQGQJAnbtm0z2S+EQHJyMgICAuDk5ISYmBgcOnTIuL+wsBCSJHX4s3nzZuNxlZWVSEhIgFqthlqtRkJCAqqqqjqs6dKlSxg0aBAkSWp3zMGDBxEdHQ0nJycEBgZi6dKlXESNiIj6HT+1I+69xQ8AsC67SOZq+hZZg1V9fT3GjBmDVatWdbh/+fLlSE1NxapVq7B37174+fkhNjYWtbW1AICgoCCUlpaa/CxZsgQuLi6YNm2asZ34+HhoNBqkpaUhLS0NGo0GCQkJHZ7zySefxOjRo9ttr6mpQWxsLAICArB3716sXLkSK1asQGpqqgVGgoiIqHcxPD9w24ESVDfoZK6m77CX8+TTpk0zCUBXEkLg7bffxksvvYSZM2cCANauXQtfX19s3LgR8+fPh0KhgJ+fn8n7tm7dilmzZsHV1RUAcOTIEaSlpSEnJweRkZEAgA8++ABRUVE4duwYRowYYXzvv/71L1RVVeGVV17Bf//7X5N2N2zYgKamJqxZswYqlQqjRo3C8ePHkZqaiqSkJEiSZLFxISIiktv4UE/c7OeGo2W12Jx3Bk/dOUTukvoEWYNVV06fPo2ysjLExcUZt6lUKkRHRyMrKwvz589v9568vDxoNBq8++67xm3Z2dlQq9XGUAUAEyZMgFqtRlZWljFYHT58GEuXLkVubi5OnTrVru3s7GxER0dDpVIZt02dOhWLFi1CYWEhQkNDO+xHc3Mzmpubja9ratruVet0Ouh0lvs/AENblmyzL7H1/gMcA1vvP8AxsPX+A5Yfgycig/Dyfw5jXXYhEsYPgp1d776IYM3PQHfb7LXBqqysDADg6+trst3X1xdFRR3f7129ejXCwsIwceJEk3Z8fHzaHevj42M8R3NzM2bPno033ngDwcHBHQarsrIyhISEtKvFsK+zYLVs2TIsWbKk3fb09HQ4Ozt3+J4bkZGRYfE2+xJb7z/AMbD1/gMcA1vvP2C5MXBoBZwUChRXNCL1kzSMHNA35hVb4zPQ0NDQreN6bbAyuPoWmxCiw9tujY2N2LhxIxYvXnzNNq5uZ9GiRQgLC8MTTzxhdi2dtW+waNEiJCUlGV/X1NQgKCgIcXFxcHd37/J85tDpdMjIyEBsbCyUSqXF2u0rbL3/AMfA1vsPcAxsvf+AdcbgqP0xfJhVhKOtvnjhvnEWadNarPkZMNxxupZeG6wMc6fKysrg7+9v3F5eXt7uKhYAbNmyBQ0NDZgzZ067ds6fb7/A2YULF4ztfP/99zh48CC2bNkC4NfA5OXlhZdeeglLliyBn5+f8QrXlbUA7a+qXUmlUpncPjRQKpVW+cW3Vrt9ha33H+AY2Hr/AY6BrfcfsOwYzJkYio+yi7DrxEWUVGsR4uVikXatyRqfge6212vXsQoNDYWfn5/J5TytVotdu3aZ3OozWL16NWbMmAFvb2+T7VFRUaiursaePXuM23Jzc1FdXW1s5/PPP8fPP/8MjUYDjUaDf//73wCAH3/8EU8//bSxnczMTGi1WmM76enpCAgIaHeLkIiIqL8I8XJBzPC2v1s/zuHSC9cia7Cqq6szhhmgbcK6RqNBcXExJEnCwoULkZKSgq1btyI/Px+JiYlwdnZGfHy8STsFBQXIzMzEU0891e4cYWFhuPfeezFv3jzk5OQgJycH8+bNwwMPPGCcuH7TTTdh1KhRxh/DfKmwsDDj/Kz4+HioVCokJiYiPz8fW7duRUpKCr8RSERE/d6cy88P/GzfGTRoW+QtppeT9Vbgvn37MHnyZONrw1ykuXPnYs2aNXjxxRfR2NiIBQsWoLKyEpGRkUhPT4ebm5tJOx9++CECAwNNvkF4pQ0bNuDZZ5817p8xY0ana2d1Rq1WIyMjA08//TQiIiIwYMAAJCUlmcyfIiIi6o+ih3lj8EBnFF1qwLYD5xAfGSx3Sb2WrMEqJiamy5XLJUlCcnIykpOTu2wnJSUFKSkpne739PTE+vXrb7iu8PBwZGZmdrsdIiKi/sDOTkLChMF4bfsRrMsuxOzxQbxb04leO8eKiIiIeo9HbwuCk1KBo2W12HO6Qu5yei0GKyIiIromtbMSD40NBMDnB3aFwYqIiIi6Ze7EtucHph0qQ1l1k8zV9E4MVkRERNQtN/u5IzLUE616gY25vGrVEQYrIiIi6ra5l5de2LinGM0trfIW0wsxWBEREVG3xY70hZ+7Iy7WaZGWX3btN9gYBisiIiLqNqXCDo9fXsdqbVahvMX0QgxWREREZJbHxgdDqZCwv7gKB89Wy11Or8JgRURERGbxdlPh/nB/AMDa7EJ5i+llGKyIiIjIbIbnB3758zlU1GvlLaYXYbAiIiIis40N8kB4oBraFj027T0jdzm9BoMVERERmU2SJMyJalswdH1OEVr1nT/715YwWBEREdF1mT4mAAOclSipasR3R87LXU6vwGBFRERE18VRqcBj49uWXuDzA9swWBEREdF1ezwyGHYSsLvgIgrKa+UuR3YMVkRERHTdBg1wxj1hvgCAj3nVisGKiIiIbozh+YFb8s6itkknbzEyY7AiIiKiGzLxpoG4ydsF9dpWfLG/RO5yZMVgRURERDdEkiTjVau12YUQwnaXXmCwIiIiohs2c9wguKrscepCPX4quCR3ObJhsCIiIqIb5qqyxyPjAgHY9vMDGayIiIjIIhKiQgAA3x05jzMVDfIWIxMGKyIiIrKIoT6uuHOYF/QC2JBbLHc5smCwIiIiIouZc/mq1ad7i9Gka5W3GBkwWBEREZHF3H2zDwI9nFDVoMOXP5+Tu5wex2BFREREFqOwk5AQNRgAsDbL9pZeYLAiIiIii5oVEQSVvR0OnavB/uIqucvpUQxWREREZFEDXBwwY0wAAGCdjS29wGBFREREFmdYif2bg6Uor22St5gexGBFREREFjcqUI1xwR7QtQp8kntG7nJ6DIMVERERWYXhqtXGPUXQterlLaaHMFgRERGRVUwb5Q8vVxXO1zQj/dB5ucvpEQxWREREZBUO9naIjwwG0Lb0gi1gsCIiIiKreTwyGPZ2EvYUVuDwuRq5y7E6BisiIiKyGl93R0wd5QcA+DinUN5iegCDFREREVnV3MvPD9x6oATVDTp5i7EyBisiIiKyqttDBuBmPzc06fTYnNe/l15gsCIiIiKrkiTJuPTCuuwi6PX99/mBDFZERERkdQ/eGgB3R3sUVzRg1/ELcpdjNQxWREREZHXODvb4bUQQAGBtP35+IIMVERER9YgnJgyGJAE7j11A4cV6ucuxCgYrIiIi6hEhXi6IGe4NoG2uVX/EYEVEREQ9Zs7lSeyb886gvrlF3mKsgMGKiIiIekz0MG8MHuiM2qYWbNOUyF2OxTFYERERUY+xs5OQMGEwAGBdVhGE6F9LLzBYERERUY969LYgOCkVOHa+FrmnK+Qux6IYrIiIiKhHqZ2VeGhsIABgXT9beoHBioiIiHrc3IlttwO/PXQepdWNMldjOQxWRERE1ONu9nNHZKgnWvUCG3OL5S7HYhisiIiISBaG5wd+sqcYzS2t8hZjIQxWREREJIvYkb7wc3fExTotvjlYKnc5FsFgRURERLJQKuzweGQwAGBtVv9YiZ3BioiIiGTz2PhgKBUSNGeq8POZKrnLuWEMVkRERCQbbzcV7g/3B9A/nh/IYEVERESyMjw/8KtfzuFSXbO8xdwgBisiIiKS1dggD4QHqqFt0WPTvjNyl3NDGKyIiIhIVpIkYU5U24KhG3KK0dKql7mi6ydrsMrMzMT06dMREBAASZKwbds2k/1CCCQnJyMgIABOTk6IiYnBoUOHjPsLCwshSVKHP5s3bzYeV1lZiYSEBKjVaqjVaiQkJKCqqsq4/+eff8bs2bMRFBQEJycnhIWF4Z133mlX78GDBxEdHQ0nJycEBgZi6dKl/e7hkURERHKYPiYAA5yVKKlqxHdHy+Uu57rJGqzq6+sxZswYrFq1qsP9y5cvR2pqKlatWoW9e/fCz88PsbGxqK2tBQAEBQWhtLTU5GfJkiVwcXHBtGnTjO3Ex8dDo9EgLS0NaWlp0Gg0SEhIMO7Py8uDt7c31q9fj0OHDuGll17CokWLTOqqqalBbGwsAgICsHfvXqxcuRIrVqxAamqqlUaHiIjIdjgqFZh1e9vSC335+YH2cp582rRpJgHoSkIIvP3223jppZcwc+ZMAMDatWvh6+uLjRs3Yv78+VAoFPDz8zN539atWzFr1iy4uroCAI4cOYK0tDTk5OQgMjISAPDBBx8gKioKx44dw4gRI/D73//epI0hQ4YgOzsbX3zxBZ555hkAwIYNG9DU1IQ1a9ZApVJh1KhROH78OFJTU5GUlARJkiw6NkRERLbmiQnBeD/zJH4quISC8loM9XGTuySzyRqsunL69GmUlZUhLi7OuE2lUiE6OhpZWVmYP39+u/fk5eVBo9Hg3XffNW7Lzs6GWq02hioAmDBhAtRqNbKysjBixIgOz19dXQ1PT0+TdqKjo6FSqYzbpk6dikWLFqGwsBChoaEdttPc3Izm5l+/4VBTUwMA0Ol00Ol01xqGbjO0Zck2+xJb7z/AMbD1/gMcA1vvP9D3x8DXVYkpN/sg40g51vx0Gq8+EGbW+63Z/+622WuDVVlZGQDA19fXZLuvry+Kijpe52L16tUICwvDxIkTTdrx8fFpd6yPj4/xHFfLzs7GZ599hu3bt5u0ExIS0q4Ww77OgtWyZcuwZMmSdtvT09Ph7Ozc4XtuREZGhsXb7Etsvf8Ax8DW+w9wDGy9/0DfHoNhkoQMKLB5bzHC9afheB1JxRr9b2ho6NZxvTZYGVx9i00I0eFtt8bGRmzcuBGLFy++ZhtdtXPo0CE8+OCDeOWVVxAbG3vNWjpr32DRokVISkoyvq6pqUFQUBDi4uLg7u7e6fvMpdPpkJGRgdjYWCiVSou121fYev8BjoGt9x/gGNh6/4H+MQbThEDaP7Jw6mI96n1GYeaE4G6/15r9N9xxupZeG6wMc6fKysrg7+9v3F5eXt7uKhYAbNmyBQ0NDZgzZ067ds6fP9/u+AsXLrRr5/Dhw7j77rsxb948vPzyy+3aufoKV3l527cWOqrHQKVSmdw+NFAqlVb50Fur3b7C1vsPcAxsvf8Ax8DW+w/0/TFInBSCV/5zCOv3nMHv7hhi9jxma/S/u+312nWsQkND4efnZ3I5T6vVYteuXSa3+gxWr16NGTNmwNvb22R7VFQUqqursWfPHuO23NxcVFdXm7Rz6NAhTJ48GXPnzsXrr7/erv2oqChkZmZCq9Uat6WnpyMgIKDdLUIiIiK6fjPHDYKryh6nLtTjp4JLcpdjFlmDVV1dHTQaDTQaDYC2CesajQbFxcWQJAkLFy5ESkoKtm7divz8fCQmJsLZ2Rnx8fEm7RQUFCAzMxNPPfVUu3OEhYXh3nvvxbx585CTk4OcnBzMmzcPDzzwgHHiuiFUxcbGIikpCWVlZSgrK8OFCxeM7cTHx0OlUiExMRH5+fnYunUrUlJS+I1AIiIiC3NV2eORcYEAgLV9bOkFWYPVvn37MHbsWIwdOxYAkJSUhLFjx+KVV14BALz44otYuHAhFixYgIiICJSUlCA9PR1ubqZfv/zwww8RGBho8g3CK23YsAHh4eGIi4tDXFwcRo8ejY8//ti4f/Pmzbhw4QI2bNgAf39/48/tt99uPEatViMjIwNnz55FREQEFixYgKSkJJP5U0RERGQZCVEhAIDvjpzHmYruTRzvDWSdYxUTE9PlyuWSJCE5ORnJycldtpOSkoKUlJRO93t6emL9+vWd7u/OOQAgPDwcmZmZ1zyOiIiIbsxQH1fcMdQLuwsuYkNuMf467Wa5S+qWXjvHioiIiGyb4fmBm/YWo0nXKnM13cNgRURERL3SlDBfBHo4obJBh69+Pid3Od3CYEVERES9ksJOwhMT2q5arc0u7HL6UG/BYEVERES91qzbg+Bgb4f8khocOFMldznXxGBFREREvZaniwMeHBMAAFibVShvMd3AYEVERES92tyJIQCAbw6W4kJts7zFXAODFREREfVqowLVGBfsAV2rwKd7iuUup0sMVkRERNTrGa5abcgthq5VL28xXWCwIiIiol5v2ih/eLmqUFbThPRD5+Uup1MMVkRERNTrOdjbIX58EIDe/fxABisiIiLqE+IjB0NhJ2HP6QocKa2Ru5wOMVgRERFRn+CndsS9t/gBANZlF8lcTccYrIiIiKjPMExi33agBNUNOnmL6QCDFREREfUZt4cMwM1+bmjUtWJz3hm5y2mHwYqIiIj6DEmSjFetPs4pgl7fu54fyGBFREREfcqDtwbA3dEeRZcasOv4BbnLMcFgRURERH2Ks4M9fhvRO5deYLAiIiKiPueJCYMhScDOYxdQeLFe7nKMGKyIiIiozwnxckHMcG8AbXOtegsGKyIiIuqT5lyexP7ZvjNo0LbIW8xlDFZERETUJ0UP80bIQGfUNrVg24FzcpcDgMGKiIiI+ig7OwkJUSEAgHXZhRBC/qUXGKyIiIioz/rNbYPgpFTgaFkt9hZVyl0OgxURERH1XWonJR4eFwgA+DhH/pXYGayIiIioT5sTNRgAkHGkHFXN8tbCYEVERER92s1+7ogM9USrXuCn8/JGGwYrIiIi6vMMzw/MKpfQ3KKXrQ4GKyIiIurz4kb6ws9dBVd7oLS6UbY6GKyIiIioz7NX2OGzP0Tir2NaETLQRbY6GKyIiIioX/BXO0KS5K2BwYqIiIjIQhisiIiIiCyEwYqIiIjIQhisiIiIiCyEwYqIiIjIQhisiIiIiCyEwYqIiIjIQhisiIiIiCyEwYqIiIjIQhisiIiIiCyEwYqIiIjIQhisiIiIiCyEwYqIiIjIQuzlLsDWCCEAADU1NRZtV6fToaGhATU1NVAqlRZtuy+w9f4DHANb7z/AMbD1/gMcA2v23/D3tuHv8c4wWPWw2tpaAEBQUJDMlRAREZG5amtroVarO90viWtFL7IovV6Pc+fOwc3NDZIkWazdmpoaBAUF4cyZM3B3d7dYu32Frfcf4BjYev8BjoGt9x/gGFiz/0II1NbWIiAgAHZ2nc+k4hWrHmZnZ4dBgwZZrX13d3eb/GUysPX+AxwDW+8/wDGw9f4DHANr9b+rK1UGnLxOREREZCEMVkREREQWwmDVT6hUKrz66qtQqVRylyILW+8/wDGw9f4DHANb7z/AMegN/efkdSIiIiIL4RUrIiIiIgthsCIiIiKyEAYrIiIiIgthsCIiIiKyEAYrmSQnJ0OSJJMfPz8/k2OOHDmCGTNmQK1Ww83NDRMmTEBxcTEAoLCwsN37DT+bN282thESEtJu/1//+leT8xQXF2P69OlwcXGBl5cXnn32WWi12n7RfwDYvn07IiMj4eTkBC8vL8ycOVP2/gM9MwY7d+7s9Ji9e/fKOgY99Rk4fvw4HnzwQXh5ecHd3R2TJk3CDz/8YHKe/vwZAID9+/cjNjYWHh4eGDhwIP7whz+grq5O9jG40f4DQFlZGRISEuDn5wcXFxeMGzcOW7ZsMWmjsrISCQkJUKvVUKvVSEhIQFVVlckx/bn/r7/+OiZOnAhnZ2d4eHh0WEtf/R0Arj0GhYWFePLJJxEaGgonJyfcdNNNePXVV9v1z1JjwJXXZXTLLbdgx44dxtcKhcL455MnT+KOO+7Ak08+iSVLlkCtVuPIkSNwdHQE0PaswdLSUpP23n//fSxfvhzTpk0z2b506VLMmzfP+NrV1dX459bWVtx///3w9vbG7t27cenSJcydOxdCCKxcudKi/b1aT/T/888/x7x585CSkoK7774bQggcPHjQuF/O/gPWH4OJEye2O2bx4sXYsWMHIiIiAPT/z8D999+P4cOH4/vvv4eTkxPefvttPPDAAzh58iT8/Pz6/Wfg3LlzuOeeezBr1iysWrUKNTU1WLhwIRITE41/+fTVzwAAJCQkoLq6Gl9++SW8vLywceNGzJo1C/v27cPYsWMBAPHx8Th79izS0tIAAH/4wx+QkJCAr776yib6r9Vq8eijjyIqKgqrV69uV0Nf/h0Arj0GR48ehV6vx3vvvYehQ4ciPz8f8+bNQ319PVasWGH5MRAki1dffVWMGTOm0/2zZs0STzzxhFlt3nrrreL3v/+9ybbBgweLt956q9P3fPPNN8LOzk6UlJQYt33yySdCpVKJ6upqs85vjp7ov06nE4GBgeLf//53p++Rq/9C9Nxn4EparVb4+PiIpUuXGrf158/AhQsXBACRmZlp3FZTUyMAiB07dggh+v9n4L333hM+Pj6itbXVuO3AgQMCgDhx4oQQom9/BlxcXMS6detMtnl6ehp/7w8fPiwAiJycHOP+7OxsAUAcPXpUCNG/+3+ljz76SKjV6nbb+/rvgDljYLB8+XIRGhpqfG3JMeCtQBmdOHECAQEBCA0NxWOPPYZTp04BaHtQ8/bt2zF8+HBMnToVPj4+iIyMxLZt2zptKy8vDxqNBk8++WS7fX//+98xcOBA3HrrrXj99ddNLm1mZ2dj1KhRCAgIMG6bOnUqmpubkZeXZ7nOdsDa/d+/fz9KSkpgZ2eHsWPHwt/fH9OmTcOhQ4eMx8jZf6DnPgMGX375JS5evIjExETjtv78GRg4cCDCwsKwbt061NfXo6WlBe+99x58fX1x2223Aej/n4Hm5mY4ODiYPDTWyckJALB7924AffszcMcdd2DTpk2oqKiAXq/Hp59+iubmZsTExBj7plarERkZaXzPhAkToFarkZWV1e/73x19/Xfgesaguroanp6extcWHQOzYhhZzDfffCO2bNkifvnlF5GRkSGio6OFr6+vuHjxoigtLRUAhLOzs0hNTRUHDhwQy5YtE5IkiZ07d3bY3h//+EcRFhbWbntqaqrYuXOn+Pnnn8UHH3wgvLy8xJNPPmncP2/ePBEbG9vufQ4ODmLjxo2W6/BVeqL/n3zyiQAggoODxZYtW8S+ffvE7NmzxcCBA8WlS5eEEPL1X4ie+wxcadq0aWLatGkm2/rzZ0AIIc6ePStuu+02IUmSUCgUIiAgQBw4cMC4v79/BvLz84W9vb1Yvny5aG5uFhUVFWLmzJkCgEhJSRFC9O3PQFVVlZg6daoAIOzt7YW7u7tIT0837n/99dfFsGHD2p172LBhNtH/K3V2xaqv/w6YMwZCCFFQUCDc3d3FBx98YNxmyTFgsOol6urqhK+vr3jzzTdFSUmJACBmz55tcsz06dPFY4891u69DQ0NQq1WixUrVlzzPFu2bBEAxMWLF4UQbR+muLi4dscplUrxySefXGdvzGeN/m/YsEEAEO+9955xW1NTk/Dy8hL/93//J4ToPf0XwvqfgTNnzgg7OzuxZcsWk+29ZQys0X+9Xi9mzJghpk2bJnbv3i3y8vLEH//4RxEYGCjOnTsnhOg9/RfCep+BDRs2CF9fX6FQKISDg4N44YUXhK+vr/j73/8uhOg9Y3A9/X/mmWfE+PHjxY4dO4RGoxHJyclCrVaLX375RQjRFqyGDx/e7lxDhw4Vy5YtE0L07/5fqatg1Rv6L4T1x6CkpEQMHTrU5AKDEJYdA94K7CVcXFwQHh6OEydOwMvLC/b29hg5cqTJMWFhYSbfhDDYsmULGhoaMGfOnGueZ8KECQCAgoICAICfnx/KyspMjqmsrIROp4Ovr+/1dsds1ui/v78/AJi0o1KpMGTIEGM7vaX/gPU/Ax999BEGDhyIGTNmmGzvLWNgjf5///33+Prrr/Hpp59i0qRJGDduHP75z3/CyckJa9euBdB7+g9Y7zMQHx+PsrIylJSU4NKlS0hOTsaFCxcQGhoKoPeMgbn9P3nyJFatWoUPP/wQU6ZMwZgxY/Dqq68iIiIC7777LoC2vp0/f77duS5cuGDsW3/uf3f0lv4D1h2Dc+fOYfLkyYiKisL7779vss+SY8Bg1Us0NzfjyJEj8Pf3h4ODA26//XYcO3bM5Jjjx49j8ODB7d67evVqzJgxA97e3tc8z4EDBwD8GjqioqKQn59v8s2i9PR0qFQq4xyUnmCN/t92221QqVQm7eh0OhQWFhrb6S39B6z7GRBC4KOPPsKcOXOgVCpN9vWWMbBG/xsaGgDAZH6R4bVerwfQe/oPWP+/A76+vnB1dcWmTZvg6OiI2NhYAL1nDMztf2f/fhUKhcm/3+rqauzZs8e4Pzc3F9XV1Zg4caLxmP7a/+7oLf0HrDcGJSUliImJwbhx4/DRRx+1O96iY2DW9S2ymOeff17s3LlTnDp1SuTk5IgHHnhAuLm5icLCQiGEEF988YVQKpXi/fffFydOnBArV64UCoVC/PjjjybtnDhxQkiSJP773/+2O0dWVpbxvvSpU6fEpk2bREBAgJgxY4bxmJaWFjFq1CgxZcoUsX//frFjxw4xaNAg8cwzz/T5/gshxHPPPScCAwPFt99+K44ePSqefPJJ4ePjIyoqKmTtvxA9NwZCCLFjxw4BQBw+fLjdvv78Gbhw4YIYOHCgmDlzptBoNOLYsWPihRdeEEqlUmg0Gln731NjIIQQK1euFHl5eeLYsWNi1apVwsnJSbzzzjvG/X31M6DVasXQoUPFnXfeKXJzc0VBQYFYsWKFkCRJbN++3Xiee++9V4wePVpkZ2eL7OxsER4eLh544AGb6X9RUZE4cOCAWLJkiXB1dRUHDhwQBw4cELW1tbL2v6fGwHD77+677xZnz54VpaWlxh8DS44Bg5VMZs2aJfz9/YVSqRQBAQFi5syZ4tChQybHrF69WgwdOlQ4OjqKMWPGiG3btrVrZ9GiRWLQoEEmX6U2yMvLE5GRkUKtVgtHR0cxYsQI8eqrr4r6+nqT44qKisT9998vnJychKenp3jmmWdEU1OTZTt8lZ7ovxBtv3TPP/+88PHxEW5ubuKee+4R+fn5JsfI0X8hem4MhBBi9uzZYuLEiZ3u78+fgb1794q4uDjh6ekp3NzcxIQJE8Q333xjckx//wwkJCQIT09P4eDgIEaPHt3uq+lC9N3PwPHjx8XMmTOFj4+PcHZ27rB/ly5dEo8//rhwc3MTbm5u4vHHHxeVlZUmx/Tn/s+dO1cAaPfzww8/GI/py78D1xqDjz76qMP+X31tyVJjIAkhhHnXuIiIiIioI5xjRURERGQhDFZEREREFsJgRURERGQhDFZEREREFsJgRURERGQhDFZEREREFsJgRURERGQhDFZEREREFsJgRURERGQhDFZERDdAkiRs27ZN7jKIqJdgsCIi6oRWq5W7BCLqYxisiKhP+uqrr+Dh4QG9Xg8A0Gg0kCQJf/nLX4zHzJ8/H7Nnzza+/vzzz3HLLbdApVIhJCQEb775pkmbISEheO2115CYmAi1Wo158+ZBq9XimWeegb+/PxwdHRESEoJly5YZjweAhx9+GJIkGV935OzZs3jsscfg6ekJFxcXREREIDc3FwBw8uRJPPjgg/D19YWrqytuv/127Nixw+T9//znPzFs2DA4OjrC19cXv/nNb4z7hBBYvnw5hgwZAicnJ4wZMwZbtmwxf1CJ6IbZy10AEdH1uOuuu1BbW4sDBw7gtttuw65du+Dl5YVdu3YZj9m5cyf+/Oc/AwDy8vLw29/+FsnJyZg1axaysrKwYMECDBw4EImJicb3vPHGG1i8eDFefvllAMA//vEPfPnll/jss88QHByMM2fO4MyZMwCAvXv3wsfHBx999BHuvfdeKBSKDmutq6tDdHQ0AgMD8eWXX8LPzw/79+83hsK6ujrcd999eO211+Do6Ii1a9di+vTpOHbsGIKDg7Fv3z48++yz+PjjjzFx4kRUVFTgxx9/NLb/8ssv44svvsC//vUvDBs2DJmZmXjiiSfg7e2N6Ohoi447EV2DICLqo8aNGydWrFghhBDioYceEq+//rpwcHAQNTU1orS0VAAQR44cEUIIER8fL2JjY03e/5e//EWMHDnS+Hrw4MHioYceMjnmT3/6k7j77ruFXq/vsAYAYuvWrV3W+d577wk3Nzdx6dKlbvdt5MiRYuXKlUIIIT7//HPh7u4uampq2h1XV1cnHB0dRVZWlsn2J598UsyePbvb5yMiy+CtQCLqs2JiYrBz504IIfDjjz/iwQcfxKhRo7B792788MMP8PX1xc033wwAOHLkCCZNmmTy/kmTJuHEiRNobW01bouIiDA5JjExERqNBiNGjMCzzz6L9PR0s+vUaDQYO3YsPD09O9xfX1+PF198ESNHjoSHhwdcXV1x9OhRFBcXAwBiY2MxePBgDBkyBAkJCdiwYQMaGhoAAIcPH0ZTUxNiY2Ph6upq/Fm3bh1Onjxpdq1EdGN4K5CI+qyYmBisXr0aP//8M+zs7DBy5EhER0dj165dqKysNLkNJoSAJEkm7xdCtGvTxcXF5PW4ceNw+vRp/Pe//8WOHTvw29/+Fvfcc49Zc5icnJy63P+Xv/wF3377LVasWIGhQ4fCyckJv/nNb4yT593c3LB//37s3LkT6enpeOWVV5CcnIy9e/cabydu374dgYGBJu2qVKpu10hElsFgRUR9lmGe1dtvv43o6GhIkoTo6GgsW7YMlZWVeO6554zHjhw5Ert37zZ5f1ZWFoYPH97p3CgDd3d3zJo1C7NmzcJvfvMb3HvvvaioqICnpyeUSqXJFa+OjB49Gv/+97+N77najz/+iMTERDz88MMA2uZcFRYWmhxjb2+Pe+65B/fccw9effVVeHh44Pvvv0dsbCxUKhWKi4s5n4qoF2CwIqI+S61W49Zbb8X69evxzjvvAGgLW48++ih0Oh1iYmKMxz7//PO4/fbb8be//Q2zZs1CdnY2Vq1ahX/+859dnuOtt96Cv78/br31VtjZ2WHz5s3w8/ODh4cHgLZvBn733XeYNGkSVCoVBgwY0K6N2bNnIyUlBQ899BCWLVsGf39/HDhwAAEBAYiKisLQoUPxxRdfYPr06ZAkCYsXLzZeiQKAr7/+GqdOncJdd92FAQMG4JtvvoFer8eIESPg5uaGF154AX/+85+h1+txxx13oKamBllZWXB1dcXcuXNvfKCJqPtknuNFRHRDnn/+eQFA5OfnG7eNGTNGeHt7t5twvmXLFjFy5EihVCpFcHCweOONN0z2Dx48WLz11lsm295//31x6623ChcXF+Hu7i6mTJki9u/fb9z/5ZdfiqFDhwp7e3sxePDgTussLCwUjzzyiHB3dxfOzs4iIiJC5ObmCiGEOH36tJg8ebJwcnISQUFBYtWqVSI6Olo899xzQgghfvzxRxEdHS0GDBggnJycxOjRo8WmTZuMbev1evHOO++IESNGCKVSKby9vcXUqVPFrl27zBlKIrIASYgOJhkQERERkdn4rUAiIiIiC2GwIiIiIrIQBisiIiIiC2GwIiIiIrIQBisiIiIiC2GwIiIiIrIQBisiIiIiC2GwIiIiIrIQBisiIiIiC2GwIiIiIrIQBisiIiIiC/n/AXz3NrVhA9H+AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAGwCAYAAABrUCsdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeXElEQVR4nO3dfVxUZf4//tdhGIb7QeQeQTBvwkTTSEQrMAOz0sq2NSmU3XL9rrXlUttn/ZSFbuFvzahW2/1Ua6mpZVq6lS2BlZJxo6JT4j0qoAiicn87A3P9/sCZHLmR0RkOMK/n48Ej55wz13lfV0O+Ouea60hCCAEiIiIiumF2chdARERE1F8wWBERERFZCIMVERERkYUwWBERERFZCIMVERERkYUwWBERERFZCIMVERERkYXYy12ArdHr9Th37hzc3NwgSZLc5RAREVE3CCFQW1uLgIAA2Nl1fl2KwaqHnTt3DkFBQXKXQURERNfhzJkzGDRoUKf7Gax6mJubG4C2fzHu7u4Wa1en0yE9PR1xcXFQKpUWa7evsPX+AxwDW+8/wDGw9f4DHANr9r+mpgZBQUHGv8c7w2DVwwy3/9zd3S0erJydneHu7m6zv0y23H+AY2Dr/Qc4Brbef4Bj0BP9v9Y0Hk5eJyIiIrIQBisiIiIiC2GwIiIiIrIQzrEiIiLq5VpbW6HT6a55nE6ng729PZqamtDa2toDlfUuN9J/pVIJhUJxwzUwWBEREfVSQgiUlZWhqqqq28f7+fnhzJkzNrlW4o3238PDA35+fjc0dgxWREREvZQhVPn4+MDZ2fmaf+Hr9XrU1dXB1dW1y0Us+6vr7b8QAg0NDSgvLwcA+Pv7X3cNDFZERES9UGtrqzFUDRw4sFvv0ev10Gq1cHR0tNlgdb39d3JyAgCUl5fDx8fnum8L2t6oExER9QGGOVXOzs4yV2I7DGPdnflsnWGwIiIi6sVsca6UXCwx1gxWRERERBbCYEVERERkIQxWRERERBbCYNVPnLxQj1odoNcLuUshIiIyW0xMDBYuXCh3GTeMyy30E799Pxc1TfZ4df8OeLk6wMfNET5uKni7qdr+6W762stVBUflja8wS0REdC1arRYODg49cq4b+UafJTBY9QPaFj2UiraLj616gfM1zThf03zN96mdlL8GLzcVvF1V8HE3hC9H4z61k5LfSiEi6gWEEGjUdf6oFr1ej0ZtK+y1LRZdx8pJqTDr74GYmBiMGjUKDg4OWLduHW655Rb861//wgsvvIDMzEy4uLggLi4Ob731Fry8vJCYmIhdu3Zh165deOeddwAAp0+fxs6dO7Fw4UKTlee3bduGhx9+GEK03aFJTk7Gtm3b8Oyzz+K1115DYWEhdDodJEnCBx98gO3bt+Pbb79FYGAg3nzzTcyYMcNi49IRBqt+wMHeDjl/jcFXX3+D2++6G5WNrSivacaFumaU1zSjvLYJF2qbUV7bjAuXf7StelQ36lDdqENBeV3X7Svs2oLXlVfALocv45/d266CGQIeERFZXqOuFSNf+bbHz3t46VQ4O5gXGdauXYs//vGP+Omnn1BRUYHo6GjMmzcPqampaGxsxP/8z//gt7/9Lb7//nu88847OH78OEaNGoWlS5cCALy9vbt9roKCAnz22WfYvHkzGhsbjduXLFmC5cuX44033sDKlSvx+OOPo6ioCJ6enmb1xRwMVv2Iwg7wc3dE0EBll8cJIVDdqDOGrHLjP5uuet2M6kYdtK16lFQ1oqSqsct2AcDTxeHXK2BXXfm68p+uKnteBSMi6seGDh2K5cuXAwBeeeUVjBs3DikpKcb9H374IYKCgnD8+HEMHz4cDg4OcHZ2hp+fn9nn0mq1+PjjjzFw4EDU1NQY/35JTEzE7NmzAQApKSlYuXIl9uzZg3vvvdcCPewYg5UNkiQJHs4O8HB2wDBfty6PbW5pbRe22gJZk8lVsYt1zWjRC1TUa1FRr8XRstou23VSKjoMXD5ujvB2//W25EAXFRR2DGBEREDbfzsPL53a6X69Xo/amlq4ubtZ/FaguSIiIox/zsvLww8//ABXV9d2x508eRLDhw+/ofoGDx4Mb29v6PV6k+2jR482/tnFxQVubm7G5wFaC4MVdUllr8CgAc4YNKDrRyro9QKVDVqUd3EFzPBT19yCRl0riisaUFzR0GW7dhIw0LUteHV1JWyAIyfiE1H/J0lSl7fk9Ho9WhwUcHawl/1ZgS4uLsY/6/V6TJ8+HX//+9/bHdfVA4/t7OyMc6kMOpqcfuW5rqRUmt7BkSSpXfiyNAYrsgg7OwkDXVUY6KpC2DUeCt6gbTG5DVle03TFfLBft1+qb4ZewHjsoWvUoFIo8Pbx3Vd9A/LXAOZz+UrYAGcH2PEqGBFRjxk3bhw+//xzhISEwN6+4+jh4OCA1lbTifne3t6ora1FfX29MTxpNBprl3tDGKyoxzk72GPwQHsMHtjx/2EYtLTqUVFvuArW1MGcsF+vjDXp9GhulXD6UgNOX+r6Kpi9nQSvy7caf70KZrochY+7I7xcHaCy55UwIqIb9fTTT+ODDz7A7Nmz8Ze//AVeXl4oKCjAp59+ig8++AAKhQIhISHIzc1FYWEhXF1d4enpicjISDg7O+N///d/8ac//Ql79uzBmjVr5O5OlxisqNeyV9jBx90RPu6OANSdHieEQGVdE7ZsT8fIcRNQ0dhqcivyykBWUa9Fi16grKYJZTVN16yhoyUpvI1Xv369GubhzCUpiIg6ExAQgJ9++gn/8z//g6lTp6K5uRmDBw/Gvffea7xl+cILL2Du3LkYOXIkGhsbcfr0aYSEhGD9+vX4y1/+gvfffx/33HMPkpOT8Yc//EHmHnWOwYr6PEmS4OZoD18nIDLUs9099StpW/S4VH/1bccm06tgl29N6lpFt5ekUCqkttB11UKsV88F83JVwcGeS1IQUf+2c+fOdtuGDRuGL774otP3DB8+HNnZ2e22P/TQQ3jooYdMts2bN8/45+TkZCQnJ7d739VzswCYrIdlLQxWZFMc7O3gr3aCv9qpy+M6W5LiQl37iflVDTroWgXOVTfhXPW1r4J5ujj8uhirq+qKb0GahjIuSUFE1PcwWBF1wNwlKS7WaVFec9WVryuWpDAEtCuXpDh2vvtLUvhcEb4MtyMN+zxdHGDPhVmJiHoFBiuiG6SyVyDQwwmBHl1fBdPrBaoadW23Hmuu+FbkFVe/Ll7+p7lLUni6qODl6gA02mFXUz781E4dLkvhouKvPBGRNfG/skQ9xM5OgqeLAzxdHHDzNRYWNixJ0bYcxVUT8S8vTXGhrhmX6tqWpLhY17ZIK2CHowfOddqui4Oiw4VYTZalcOOSFES9SUdzhcg6LDHWDFZEvVB3l6Ro1Qtcqm8LXKWV9fguax8CQkfgUkOLyZWw8ppmNOpaUa9tRf2lBhSasSSF6XwwxyvCWNtkfMfrWJGZiK7N8EWchoYGODl1fUWcLKOhoe2/jV19CepaGKyI+jCFnXT5YdiOGO7tjPoCgfuih3T4H4W65stXwa6aC3b1GmHXsyRFR48mMg1ljnB34mR8InMoFAp4eHgYH8Hi7Ox8zd8hvV4PrVaLpqYm2Vdel8P19l8IgYaGBpSXl8PDwwMKxfX/DyODFZGNcFXZw1Vlj1Cvrq+C6Vr1uGj49uNVy1Jc/YgibaveuCTFiWssSeFgb/frOmBdPJ7I200FJSfjEwGA8YHE3X2+nRACjY2NcHJyssn/kbnR/nt4eFzXQ6CvxGBFRCaUCvOXpDCZhN9BGKtpaoG2RY+SqkaUVDVeswaTJSmuvAp21ZUxLklB/Z0kSfD394ePj0+Hz8i7mk6nQ2ZmJu66664bup3VV91I/5VK5Q1dqTJgsCKi62LOkhRNutZ2E+8vWGhJCsMtRy9XB9RfskPRrlPwUzubTM4f6KKCgpPxqQ9TKBTd+ktfoVCgpaUFjo6ONhmsekP/GayIyOoclQoEeTojyNO5y+P0eoHKBm0HD+VuMrkFeeGKJSmKLjWgyDgZ3w4/lhW0a9ewJIXp8yA7WpjVEU4OnIxPRNePwYqIeg07OwkDXVUY6Koye0mKsuoGZGsOQ+07CBfrdMYrZO2WpCjtul03lb3x9mNHc8AMgYxLUhBRRxisiKhPunpJCp1OB6+KfNx33yiTWwAtrXpUNGh/veVYY7gl2f7bkU06PWqbW1Db3IJTF+u7PH+HS1JctR6YIZyp7HkVjMhWMFgRUb9mr7AzLknRFSEE6ppbjFfADOHryvlf17skhYez0mQ9MJ8r1gPjkhRE/QuDFRER2ibjuzkq4eaoxE3erl0e29WSFOVXPJ7IsCRFVYMOVQ3dX5Li6sBlXKD18q1IL1cuSUHUWzFYERGZyZwlKaoadMarXlc/J/LKMFZ7I0tSuKrg7a7CQGclSi5KGHi6Av4DXODtpoIbl6Qg6lEMVkREViJJEga4OGCAiwOGd3NJil+//dhkskSFYfvFumstSaHA2hP7jK8clXa/TsK/4nFEV0/M93RxgD2vghHdMAYrIqJe4HqXpLgyfJ2vbsSx4lK0Kl1wsU6L2uYWNOn0OFPRiDMVXV8F62hJil//afqIImcH/tVB1Bn+dhAR9SFdLUmh0+nwzTdncd99d0CpVKJR22qyAn75VX82/NPcJSlc2y1JYXr1i0tSkC2TNVhlZmbijTfeQF5eHkpLS7F161Y89NBDxv1CCCxZsgTvv/8+KisrERkZiXfffRe33HILAKCwsBChoaEdtv3ZZ5/h0UcfBQC8/vrr2L59OzQaDRwcHFBVVdXu+OLiYjz99NP4/vvv4eTkhPj4eKxYsQIODg7GYw4ePIhnnnkGe/bsgaenJ+bPn4/Fixdz/gIR9UpODgoED3RG8MCur4K16gUu1V8x96vmiodz1135LclmNOpaUdfcgrrmFpzuxpIU3lddATMsSWEyP8xNBUcll6Sg/kHWYFVfX48xY8bgd7/7HR555JF2+5cvX47U1FSsWbMGw4cPx2uvvYbY2FgcO3YMbm5uCAoKQmmp6f9avf/++1i+fDmmTZtm3KbVavHoo48iKioKq1evbnee1tZW3H///fD29sbu3btx6dIlzJ07F0IIrFy5EgBQU1OD2NhYTJ48GXv37sXx48eRmJgIFxcXPP/88xYeGSKinqOwk4xLUtzSxXFCCNRrW41rgF39TEjDtyQv1P26JEVpdRNKq6+9JIW7o/1Vq+B3dBWMS1JQ7ydrsJo2bZpJALqSEAJvv/02XnrpJcycORMAsHbtWvj6+mLjxo2YP38+FApFu6dQb926FbNmzYKr669fl16yZAkAYM2aNR2eKz09HYcPH8aZM2cQEBAAAHjzzTeRmJiI119/He7u7tiwYQOampqwZs0aqFQqjBo1CsePH0dqaiqSkpL4i05E/Z4kSXBV2cPV2xVDrrEkhbalbUmKqx9FdPWtSMOSFDVNLahpqkPBDSxJMcBJgUvXznBEVtVr51idPn0aZWVliIuLM25TqVSIjo5GVlYW5s+f3+49eXl50Gg0ePfdd806V3Z2NkaNGmUMVQAwdepUNDc3Iy8vD5MnT0Z2djaio6OhUqlMjlm0aFGXtySbm5vR3NxsfF1TUwOgbS5Ed55U3l2GtizZZl9i6/0HOAa23n+gd42BBMDbxR7eLvaAn0unxwkhUN3Y8utCrHXaX4OYcZmKtsn63VmSQiEpMGFiNYb5qa3Us96tN30G5GDN/ne3zV4brMrKygAAvr6+Jtt9fX1RVFTU4XtWr16NsLAwTJw40exzXX2eAQMGwMHBwVhHWVkZQkJC2tVi2NdZsFq2bJnxitmV0tPT4ezc9byH65GRkWHxNvsSW+8/wDGw9f4DfXsMlAACLv/A5fLP5RsT2lagVgfU6IAarYQaHVB7+Z81OuBsvYRqrYT/7/NsPBKql6sLvUJf/gxYgjX639DQcO2D0IuDlcHVt9iEEB3edmtsbMTGjRuxePFii5yno3N1VEtn7zVYtGgRkpKSjK9ramoQFBSEuLg4uLu7X1etHdHpdMjIyEBsbKzJc9Jsha33H+AY2Hr/AY7BrqPn8dSGn5FXocQ7T0XDVdXr/4qzOFv/DFiz/4Y7TtfSaz91hrlTZWVl8Pf3N24vLy9vd3UJALZs2YKGhgbMmTPnus6Vm5trsq2yshI6nc54Lj8/P+PVqytrAdpfVbuSSqUyuX1ooFQqrfKht1a7fYWt9x/gGNh6/wHbHYM7h/vAx1GgvKkVXx88j4SoELlLko2tfgYMrNH/7rbXa5fZDQ0NhZ+fn8nlPK1Wi127dnV4q2/16tWYMWMGvL29zT5XVFQU8vPzTb5hmJ6eDpVKhdtuu814TGZmJrRarckxAQEB7W4REhFRz7Ozk3CnX9stwLXZRca7CkQ9SdZgVVdXB41GA41GA6BtwrpGo0FxcTEkScLChQuRkpKCrVu3Ij8/H4mJiXB2dkZ8fLxJOwUFBcjMzMRTTz3V4XmKi4uN7ba2thrPWVfX9u2TuLg4jBw5EgkJCThw4AC+++47vPDCC5g3b57xdl18fDxUKhUSExORn5+PrVu3IiUlhd8IJCLqRcZ7C7g4KFBQXofsk5fkLodskKy3Avft24fJkycbXxvmIs2dOxdr1qzBiy++iMbGRixYsMC4QGh6ejrc3EyfufXhhx8iMDDQ5BuEV3rllVewdu1a4+uxY8cCAH744QfExMRAoVBg+/btWLBgASZNmmSyQKiBWq1GRkYGnn76aURERGDAgAFISkoymT9FRETycrQHHh4bgPW5Z7A2uxATh3rJXRLZGFmDVUxMTJeXaiVJQnJyMpKTk7tsJyUlBSkpKZ3uX7NmTadrWBkEBwfj66+/7vKY8PBwZGZmdnkMERHJ6/HxQVifewYZh8+jpKoRgR5OcpdENqTXzrEiIiK6HkN9XDFp6EDoBbA+p+PleYishcGKiIj6nTmXvxH46Z5iNOla5S2GbAqDFRER9TtTbvZBoIcTKht0+PqX0mu/gchCGKyIiKjfsVfY4fEJwQCAtVmFXHqBegyDFRER9UuP3R4MB3s7HCyphuZMldzlkI1gsCIion7J08UBM8YEAADWZXMSO/UMBisiIuq35l6exL79l1JcqG2WtxiyCQxWRETUb4UPUmNssAe0rXps2lssdzlkAxisiIioXzNctVqfU4yWVr28xVC/x2BFRET92rRwP3i5OqCspgnph8/LXQ71cwxWRETUr6nsFZg9/telF4isicGKiIj6vfjIYCjsJOSersDRshq5y6F+jMGKiIj6PX+1E6be4guASy+QdTFYERGRTTA8P3Dr/hJUN+rkLYb6LQYrIiKyCZGhnrjZzw2NulZs3ndG7nKon2KwIiIimyBJkvGq1fqcIuj1fH4gWR6DFRER2YyHxgbAzdEehZcakHnigtzlUD/EYEVERDbD2cEev40IAsBJ7GQdDFZERGRTEiYMBgD8cKwcRZfqZa6G+hsGKyIisikhXi6IGeENIYCPedWKLIzBioiIbI7h+YGf7TuDBm2LvMVQv8JgRURENid6uDeCPZ1R09SC/2jOyV0O9SMMVkREZHPs7CTMiWqba7U2qxBCcOkFsgwGKyIiskmP3hYER6UdjpbVYm9hpdzlUD/BYEVERDZJ7azEw2MDAQBrswvlLYb6DQYrIiKyWQkTQgAA3+aXoay6Sd5iqF9gsCIiIps1MsAd40M80aIX2LinWO5yqB9gsCIiIps2Z2LbJPaNucXQtuhlrob6OgYrIiKyaVNv8YOvuwoX65rx3/xSucuhPo7BioiIbJpSYYfHI9uuWvH5gXSjGKyIiMjmPTY+CEqFhLyiSuSXVMtdDvVhDFZERGTzfNwccV+4P4C2BUOJrheDFREREYA5l58f+J+fz6GyXitvMdRnMVgREREBGBfsgVGB7tC26LFp3xm5y6E+isGKiIgIgCRJxqtWH2cXoVXP5weS+RisiIiILpsxJgAezkqUVDXiuyPn5S6H+iAGKyIiossclQrMuj0IAPBxDpdeIPMxWBEREV3hicjBkCTgxxMXUVBeJ3c51McwWBEREV0hyNMZU272BQCs51UrMhODFRER0VXmXn5+4Ja8s6hrbpG5GupLGKyIiIiuMukmLwzxdkFdcwu+2H9W7nKoD2GwIiIiuoqdnYS5l5deWJtVCCG49AJ1D4MVERFRB2aOC4SLgwInL9Qj6+QlucuhPoLBioiIqANujko8ctsgAHx+IHUfgxUREVEn5kS1TWLfceQ8zlY2yFwN9QUMVkRERJ0Y6uOGSUMHQi+ADbnFcpdDfQCDFRERURcMzw/8dE8xmnSt8hZDvR6DFRERURem3OyDQA8nVDbo8PUvpXKXQ70cgxUREVEX7BV2eHxCMAAuvUDXxmBFRER0DY/dHgwHezscLKnGgTNVcpdDvRiDFRER0TV4ujhgxpgAAMA6Lr1AXWCwIiIi6gbDSuzbD5biQm2zvMVQr8VgRURE1A3hg9QYG+wBXavAp3u49AJ1jMGKiIiomwxXrTbkFkPXqpe3GOqVGKyIiIi6aVq4H7xcHVBW04SMw+flLod6IQYrIiKiblLZKzB7/K9LLxBdjcGKiIjIDPGRwVDYScg9XYEjpTVyl0O9jKzBKjMzE9OnT0dAQAAkScK2bdtM9gshkJycjICAADg5OSEmJgaHDh0y7i8sLIQkSR3+bN682XhcZWUlEhISoFaroVarkZCQgKqqKpNz7d27F1OmTIGHhwcGDBiAuLg4aDQak2MOHjyI6OhoODk5ITAwEEuXLuVCcURENsZf7YSpt/gCANZlF8pbDPU6sgar+vp6jBkzBqtWrepw//Lly5GamopVq1Zh79698PPzQ2xsLGprawEAQUFBKC0tNflZsmQJXFxcMG3aNGM78fHx0Gg0SEtLQ1paGjQaDRISEoz7a2trMXXqVAQHByM3Nxe7d++Gu7s7pk6dCp1OBwCoqalBbGwsAgICsHfvXqxcuRIrVqxAamqqFUeIiIh6I8PzA7cdOIfqBp28xVCvYi/nyadNm2YSgK4khMDbb7+Nl156CTNnzgQArF27Fr6+vti4cSPmz58PhUIBPz8/k/dt3boVs2bNgqurKwDgyJEjSEtLQ05ODiIjIwEAH3zwAaKionDs2DGMGDECx44dQ2VlJZYuXYqgoCAAwKuvvorRo0ejuLgYN910EzZs2ICmpiasWbMGKpUKo0aNwvHjx5GamoqkpCRIktRhP5qbm9Hc/Ot6JzU1bZeNdTqdMbRZgqEtS7bZl9h6/wGOga33H+AY9GT/xw1yw3AfVxwvr8OmvUX43cTBVj9nd/AzYL3+d7dNSfSSe1mSJGHr1q146KGHAACnTp3CTTfdhP3792Ps2LHG4x588EF4eHhg7dq17drIy8tDREQEfvrpJ0ycOBEA8OGHHyIpKandrT8PDw+89dZb+N3vfofa2loMGTIETz/9NP73f/8Xra2tWLRoEXbs2AGNRgN7e3vMmTMH1dXV+M9//mNs48CBAxg3bhxOnTqF0NDQDvuVnJyMJUuWtNu+ceNGODs7mztMRETUS2Sdl7DplAJeKoGXxrbCruP/v6Z+oqGhAfHx8aiuroa7u3unx8l6xaorZWVlAABfX1+T7b6+vigqKurwPatXr0ZYWJgxVBna8fHxaXesj4+P8Rxubm7YuXMnHnzwQfztb38DAAwfPhzffvst7O3tje2EhIS0q8Wwr7NgtWjRIiQlJRlf19TUICgoCHFxcV3+izGXTqdDRkYGYmNjoVQqLdZuX2Hr/Qc4Brbef4Bj0NP9j9G24Js3MnGxqQVuw25H9HBvq5/zWvgZsF7/DXecrqXXBiuDq2+xCSE6vO3W2NiIjRs3YvHixdds4+p2Ghsb8fvf/x6TJk3CJ598gtbWVqxYsQL33Xcf9u7dCycnp05r6ax9A5VKBZVK1W67Uqm0yofeWu32Fbbef4BjYOv9BzgGPdV/tVKJ30YEYfXu09iw5yzuuSXA6ufsLn4GLN//7rbXa5dbMMydMlxVMigvL293FQsAtmzZgoaGBsyZM6ddO+fPt1/E7cKFC8Z2Nm7ciMLCQnz00Ue4/fbbMWHCBGzcuBGnT5823vrz8/PrsBag/VU1IiKyDQkT2uZW7Tx+AYUX62WuhnqDXhusQkND4efnh4yMDOM2rVaLXbt2mdzqM1i9ejVmzJgBb2/TS7FRUVGorq7Gnj17jNtyc3NRXV1tbKehoQF2dnYmV54Mr/V6vbGdzMxMaLVa4zHp6ekICAhod4uQiIhsQ4iXC2JGeEMIYH1Ox9NUyLbIGqzq6uqg0WiM60WdPn0aGo0GxcXFkCQJCxcuREpKCrZu3Yr8/HwkJibC2dkZ8fHxJu0UFBQgMzMTTz31VLtzhIWF4d5778W8efOQk5ODnJwczJs3Dw888ABGjBgBAIiNjUVlZSWefvppHDlyBIcOHcLvfvc72NvbY/LkyQDalmxQqVRITExEfn4+tm7dipSUlC6/EUhERP2f4fmBn+07gwZti7zFkOxkDVb79u3D2LFjjd/6S0pKwtixY/HKK68AAF588UUsXLgQCxYsQEREBEpKSpCeng43NzeTdj788EMEBgYiLi6uw/Ns2LAB4eHhiIuLQ1xcHEaPHo2PP/7YuP/mm2/GV199hV9++QVRUVG48847ce7cOaSlpcHf3x8AoFarkZGRgbNnzyIiIgILFixAUlKSycR0IiKyPdHDvRHs6Yyaphb8R3NO7nJIZrJOXo+Jiely5XJJkpCcnIzk5OQu20lJSUFKSkqn+z09PbF+/fou24iNjUVsbGyXx4SHhyMzM7PLY4iIyLbY2UmYEzUYr20/grVZhXjs9iDeybBhvXaOFRERUV/x6G1BcFIqcLSsFnsLK+Uuh2TEYEVERHSD1M5KPDQ2EACwls8PtGkMVkRERBYwJ6pt6YW0/DKUVTfJXA3JhcGKiIjIAsL83TE+1BOteoGNuVx6wVYxWBEREVmIYemFjXuK0dzSKm8xJAsGKyIiIguJu8UXvu4qXKzTIi2/7NpvoH6HwYqIiMhClAo7PB7ZNtdqbVahvMWQLBisiIiILOix8UFQKiTsL67CwbPVcpdDPYzBioiIyIJ83BxxX3jbUzvWcekFm8NgRUREZGFzLk9i/8/P51BZr5W3GOpRDFZEREQWNi7YA6MC3aFt0WPTvjNyl0M9iMGKiIjIwiRJMi698HF2EVr1nT8Xl/oXBisiIiIrmD4mAAOclSipasT3R8vlLod6CIMVERGRFTgqFZh1ezAATmK3JQxWREREVvJ4ZDDsJODHExdRUF4ndznUAxisiIiIrCTI0xlTwnwBAOtz+PxAW8BgRUREZEWGSexb8s6irrlF3mLI6hisiIiIrGjS0IEY4u2CuuYWfLH/rNzlkJUxWBEREVnRlUsvrM0qhBBceqE/Y7AiIiKyspnjAuHioMDJC/XIOnlJ7nLIihisiIiIrMzNUYlHbhsEoO2qFfVf9tf7Rq1Wi/Lycuj1epPtwcHBN1wUERFRfzMnKgTrsouw48h5nK1swKABznKXRFZg9hWrEydO4M4774STkxMGDx6M0NBQhIaGIiQkBKGhodaokYiIqM8b6uOKO4Z6QS+ADbnFcpdDVmL2FavExETY29vj66+/hr+/PyRJskZdRERE/c6cqMHYXXARn+4pxnNThsFRqZC7JLIws4OVRqNBXl4ebr75ZmvUQ0RE1G9NCfNFoIcTSqoa8fUvpfjN5XlX1H+YfStw5MiRuHjxojVqISIi6tcUdhKemDAYAJde6K/MDlZ///vf8eKLL2Lnzp24dOkSampqTH6IiIioc7NuD4KDvR0OllRDc6ZK7nLIwsy+FXjPPfcAAKZMmWKyXQgBSZLQ2tpqmcqIiIj6IU8XB8wYE4AteWexNqsQY4MHyF0SWZDZweqHH36wRh1EREQ2Y25UCLbkncX2g6V46f6R8HZTyV0SWYhZwUqn0yE5ORnvvfcehg8fbq2aiIiI+rXwQWqMDfbAgeIqfLqnGH+aMkzukshCzJpjpVQqkZ+fzyUWiIiIbpDh+YEbcouha9V3fTD1GWZPXp8zZw5Wr15tjVqIiIhsxrRwP3i5OqCspgkZh8/LXQ5ZiNlzrLRaLf79738jIyMDERERcHFxMdmfmppqseKIiIj6K5W9ArPHB2Pl9wVYm1WI+8L95S6JLMDsYJWfn49x48YBAI4fP26yj7cIiYiIuu/xyMH4586TyD1dgaNlNbjZz13ukugG8VuBREREMvFTO+LeW/yw/WAp1mUXIeXhcLlLohtk9hwrIiIispw5UW0rsW/dX4LqRp3M1dCNMvuK1eTJk7u85ff999/fUEFERES2ZHyoJ272c8PRslpsyTuLJ+8IlbskugFmX7G69dZbMWbMGOPPyJEjodVqsX//foSH8xImERGROSRJwpzLSy98nF0IvZ7PD+zLzL5i9dZbb3W4PTk5GXV1dTdcEBERka15aGwAlv33CAovNWDXiQuYPMJH7pLoOllsjtUTTzyBDz/80FLNERER2QxnB3v8NiIIALAuq1DeYuiGWCxYZWdnw9HR0VLNERER2ZSECW2T2Hcev4DCi/UyV0PXy+xbgTNnzjR5LYRAaWkp9u3bh8WLF1usMCIiIlsS4uWCmBHe2HnsAtbnFOHlB0bKXRJdB7OvWLm7u0OtVht/PD09ERMTg2+++QavvvqqNWokIiKyCXMnhgAAPtt3Bg3aFnmLoeti9hWrNWvWWKEMIiIiih7mjcEDnVF0qQH/0ZzD7PHBcpdEZjL7itWQIUNw6dKldturqqowZMgQixRFRERki+zsJONcq7VZhRCCSy/0NWYHq8LCQrS2trbb3tzcjJKSEosURUREZKsevS0ITkoFjpbVYs/pCrnLITN1+1bgl19+afzzt99+C7VabXzd2tqK7777DiEhIRYtjoiIyNaonZV4aGwgPtlTjHXZRYgcMlDuksgM3Q5WDz30EIC2FWLnzp1rsk+pVCIkJARvvvmmRYsjIiKyRXOiBuOTPcVIO1SGsuom+Km5nFFf0e1bgXq9Hnq9HsHBwSgvLze+1uv1aG5uxrFjx/DAAw9Ys1YiIiKbEObvjvGhnmjVC2zMLZK7HDKD2XOsTp8+DS8vLwBAU1OTxQsiIiIiYO7l5wdu3FOM5pb2c5updzI7WOn1evztb39DYGAgXF1dcerUKQDA4sWLsXr1aosXSEREZIvibvGFr7sKF+u0SMsvk7sc6iazg9Vrr72GNWvWYPny5XBwcDBuDw8Px7///W+LFkdERGSrlAo7PB7569IL1DeYHazWrVuH999/H48//jgUCoVx++jRo3H06FGLFkdERGTLZo8PhlIhYX9xFQ6erZa7HOoGs4NVSUkJhg4d2m67Xq+HTqezSFFEREQEeLupcH+4PwBgbXahvMVQt5gdrG655Rb8+OOP7bZv3rwZY8eOtUhRRERE1GbO5ecHfvnzOVTUa+Uthq7J7GcFvvrqq0hISEBJSQn0ej2++OILHDt2DOvWrcPXX39tjRqJiIhs1tggD4QHqnGwpBqf7i3Ggpj2d42o9zD7itX06dOxadMmfPPNN5AkCa+88gqOHDmCr776CrGxsdaokYiIyGZJkoQ5UW2T2DfkFKNVz+cH9mZmBauWlhYsWbIEI0eOxK5du1BXV4eGhgbs3r0bcXFxZp88MzMT06dPR0BAACRJwrZt20z2CyGQnJyMgIAAODk5ISYmBocOHTLuLywshCRJHf5s3rzZeFxlZSUSEhKgVquhVquRkJCAqqqqdvWsWbMGo0ePhqOjI/z8/PDMM8+Y7D948CCio6Ph5OSEwMBALF26lA/IJCIiq5s+JgADnJUoqWrEd0fOy10OdcGsYGVvb4833nijw4cwX4/6+nqMGTMGq1at6nD/8uXLkZqailWrVmHv3r3w8/NDbGwsamtrAQBBQUEoLS01+VmyZAlcXFwwbdo0Yzvx8fHQaDRIS0tDWloaNBoNEhISTM6VmpqKl156CX/9619x6NAhfPfdd5g6dapxf01NDWJjYxEQEIC9e/di5cqVWLFiBVJTUy0yFkRERJ1xVCow6/ZgAMC6bK7E3puZPcfqnnvuwc6dO5GYmHjDJ582bZpJALqSEAJvv/02XnrpJcycORMAsHbtWvj6+mLjxo2YP38+FAoF/Pz8TN63detWzJo1C66urgCAI0eOIC0tDTk5OYiMjAQAfPDBB4iKisKxY8cwYsQIVFZW4uWXX8ZXX32FKVOmGNu65ZZbjH/esGEDmpqasGbNGqhUKowaNQrHjx9HamoqkpKSIElSh/1obm5Gc3Oz8XVNTQ0AQKfTWfRblIa2bPWbmbbef4BjYOv9BzgG/b3/s24LwPuZJ7G74CKOlFRiqI9ru2P6+xhcizX73902zQ5W06ZNw6JFi5Cfn4/bbrsNLi4uJvtnzJhhbpMdOn36NMrKykxuMapUKkRHRyMrKwvz589v9568vDxoNBq8++67xm3Z2dlQq9XGUAUAEyZMgFqtRlZWFkaMGIGMjAzo9XqUlJQgLCwMtbW1mDhxIt58800EBQUZ24mOjoZKpTK2M3XqVCxatAiFhYUIDQ3tsB/Lli3DkiVL2m1PT0+Hs7Oz+QNzDRkZGRZvsy+x9f4DHANb7z/AMejP/b/Fww4HK+2Qsnk3fhOq7/S4/jwG3WGN/jc0NHTrOLOD1R//+EcA6PAWmCRJFrtNWFbWtny/r6+vyXZfX18UFXV8GXT16tUICwvDxIkTTdrx8fFpd6yPj4/xHKdOnYJer0dKSgreeecdqNVqvPzyy4iNjcUvv/wCBwcHlJWVISQkpF0thnN0FqwWLVqEpKQk4+uamhoEBQUhLi4O7u7u1xiF7tPpdMjIyEBsbCyUSqXF2u0rbL3/AMfA1vsPcAxsof/qEZeQuCYP+yuUeOfJaLg5mv41bgtj0BVr9t9wx+lazA5Wen3nCdkarr7FJoTo8LZbY2MjNm7ciMWLF1+zjavbMSxu+o9//MN4heyTTz6Bn58ffvjhB+Ncq45q6ax9A5VKZXKVy0CpVFrlQ2+tdvsKW+8/wDGw9f4DHIP+3P/oEb4Y4u2CUxfq8XX+ecy5/KDmq/XnMegOa/S/u+2ZvdxCTzHMnTJcVTIoLy9vdxULALZs2YKGhgbMmTOnXTvnz7f/BsWFCxeM7fj7t61qO3LkSON+b29veHl5obi42NhOR7UA7a+qERERWYMkSZh7OUytzSrkN9N7oV4brEJDQ+Hn52dyn1Sr1WLXrl0mt/oMVq9ejRkzZsDb29tke1RUFKqrq7Fnzx7jttzcXFRXVxvbmTRpEgDg2LFjxmMqKipw8eJFDB482NhOZmYmtNpfV71NT09HQEBAu1uERERE1jJzXCBcHBQ4eaEeWScvyV0OXUXWYFVXVweNRgONRgOgbcK6RqNBcXExJEnCwoULkZKSgq1btyI/Px+JiYlwdnZGfHy8STsFBQXIzMzEU0891e4cYWFhuPfeezFv3jzk5OQgJycH8+bNwwMPPIARI0YAAIYPH44HH3wQzz33HLKyspCfn4+5c+fi5ptvxuTJkwG0LdmgUqmQmJiI/Px8bN26FSkpKV1+I5CIiMjS3ByVeOS2QQCANVmF8hZD7cgarPbt24exY8canzGYlJSEsWPH4pVXXgEAvPjii1i4cCEWLFiAiIgIlJSUID09HW5ubibtfPjhhwgMDOx0kdINGzYgPDwccXFxiIuLw+jRo/Hxxx+bHLNu3TpERkbi/vvvR3R0NJRKJdLS0oz3VNVqNTIyMnD27FlERERgwYIFSEpKMpmYTkRE1BMMK7F/d+Q8zlR079tq1DPMnrxuSTExMV3eH5YkCcnJyUhOTu6ynZSUFKSkpHS639PTE+vXr++yDXd3d6xevRqrV6/u9Jjw8HBkZmZ22Q4REZG1DfVxw6ShA/FTwSVsyC3GX6fdLHdJdNl1BSu9Xo+CggKUl5e3+5bgXXfdZZHCiIiIqHNzokLwU8ElbNpbjIX3DIOjUiF3SYTrCFY5OTmIj49HUVFRu6tNllzHioiIiDo35WYfBHo4oaSqEV/9fA6PRgTJXRLhOuZY/b//9/8QERGB/Px8VFRUoLKy0vhTUVFhjRqJiIjoKvYKOzw+oe35gWuzufRCb2H2FasTJ05gy5YtGDp0qDXqISIiom6aFRGEt3ecQH5JDQ6cqUK4f/vnB1LPMvuKVWRkJAoKCqxRCxEREZlhoKsK00cHAADWcemFXsHsK1Z/+tOf8Pzzz6OsrAzh4eHtlngfPXq0xYojIiKirs2dOBif7z+L7QdL8T9Th8ldjs0zO1g98sgjAIDf//73xm2SJBmfvcfJ60RERD1n9CAP3BrkAc2ZKmzaV4JQuQuycWYHq9OnT1ujDiIiIrpOcycOhmZTFT7Zewb/EyZ3NbbN7GBleHYeERER9Q73hfvj9e1HcL6mGb9USpgud0E27LpXXj98+DCKi4tNHkoMADNmzLjhooiIiKj7VPYKzB4fjJXfF2B3maxPq7N5ZgerU6dO4eGHH8bBgweNc6sAGB9EzDlWREREPS8+Mhj/3HkSBTXA0bJahAd5yl2STTI71j733HMIDQ3F+fPn4ezsjEOHDiEzMxMRERHYuXOnFUokIiKia/FXOyE2zAcAsD73jMzV2C6zg1V2djaWLl0Kb29v2NnZwc7ODnfccQeWLVuGZ5991ho1EhERUTc8Edn2WJsvfz6H6gadzNXYJrODVWtrK1xd21Z29fLywrlz5wC0TWo/duyYZasjIiKibhsfMgD+TgKNOj025/GqlRzMDlajRo3CL7/8AqBtFfbly5fjp59+wtKlSzFkyBCLF0hERETdI0kS7vTXAwA+zimCXs/nB/Y0s4PVyy+/DL2+7V/aa6+9hqKiItx555345ptv8I9//MPiBRIREVH3RXgJuDnao+hSA3aduCB3OTbH7G8FTp061fjnIUOG4PDhw6ioqMCAAQOM3wwkIiIieagUwCNjA7AmuxjrsgoxeYSP3CXZlOte7KKgoADffvstGhsb4enJr3QSERH1Fo9fnsS+8/gFFF6sl7ka22J2sLp06RKmTJmC4cOH47777kNpaSkA4KmnnsLzzz9v8QKJiIjIPCEDXRAzwhtCAOtziuQux6aYHaz+/Oc/Q6lUori4GM7Ozsbts2bNQlpamkWLIyIiouszNyoEAPDZvjNo0LbIW4wNMTtYpaen4+9//zsGDRpksn3YsGEoKmIqJiIi6g2ih3sj2NMZNU0t2HbgnNzl2Ayzg1V9fb3JlSqDixcvQqVSWaQoIiIiujF2dhLmRA0GAKzLLjQ+go6sy+xgddddd2HdunXG15IkQa/X44033sDkyZMtWhwRERFdv0dvC4Kj0g5Hy2qx53SF3OXYBLOXW3jjjTcQExODffv2QavV4sUXX8ShQ4dQUVGBn376yRo1EhER0XVQOyvx8NhAfLLnDNZlFyFyyEC5S+r3zL5iNXLkSPzyyy8YP348YmNjUV9fj5kzZ+LAgQO46aabrFEjERERXaeECSEAgLRDZSirbpK3GBtg9hUrAPDz88OSJUssXQsRERFZ2MgAd4wP8cSewgpszC1CUtwIuUvq164rWDU1NeGXX35BeXm58fE2BjNmzLBIYURERGQZcyeGtAWrPcV4+u6hUNkr5C6p3zI7WKWlpWHOnDm4ePFiu32SJKG1tdUihREREZFlxN3iC193Fc7XNCMtvwwP3hood0n9ltlzrJ555hk8+uijKC0thV6vN/lhqCIiIup9lAo7PB7ZtvTC2qxCeYvp58wOVuXl5UhKSoKvr6816iEiIiIreGx8EJQKCfuLq3DwbLXc5fRbZger3/zmN9i5c6cVSiEiIiJr8XFzxH3h/gCANbxqZTVmz7FatWoVHn30Ufz4448IDw+HUqk02f/ss89arDgiIiKynDlRIfiP5hy++uUcXro/DJ4uDnKX1O+YHaw2btyIb7/9Fk5OTti5cyckSTLukySJwYqIiKiXGhfsgVGB7sgvqcGmvWfwxxiuP2lpZt8KfPnll7F06VJUV1ejsLAQp0+fNv6cOnXKGjUSERGRBUiShLlRIQCA9TlFaNXz+YGWZnaw0mq1mDVrFuzszH4rERERyWz6mAAMcFaipKoR3x05L3c5/Y7Z6Wju3LnYtGmTNWohIiIiK3NUKjDr9mAAwLrsIpmr6X/MnmPV2tqK5cuX49tvv8Xo0aPbTV5PTU21WHFERERkeY9HBuP9zJPYXXARBeW1GOrjJndJ/YbZwergwYMYO3YsACA/P99k35UT2YmIiKh3CvJ0xpQwX2QcPo+Ps4uw5MFRcpfUb5gdrH744Qdr1EFEREQ9aG5UCDIOn8eWvLN4YeoIuDkqr/0muibOQCciIrJBk4YOxBBvF9RrW/HF/hK5y+k3GKyIiIhs0JVLL6zNLoQQXHrBEhisiIiIbNQjtw2Cq8oepy7U46eCS3KX0y8wWBEREdkoV5U9HhkXCKDtqhXdOAYrIiIiG5Zw+Xbgd0fO40xFg7zF9AMMVkRERDZsqI8r7hjqBb0ANuQWy11On8dgRUREZOPmRA0GAGzaW4wmXavM1fRtDFZEREQ2bkqYLwI9nFDZoMNXP5+Tu5w+jcGKiIjIxinsJDwxoe2qFZdeuDEMVkRERIRZtwfBwd4O+SU12F9cJXc5fRaDFREREcHTxQEPjgkAAKzj0gvXjcGKiIiIAABzJ4YAAL45WIry2iZ5i+mjGKyIiIgIADAqUI1xwR7QtQp8uueM3OX0SQxWREREZGS4arUhtwi6Vr28xfRBDFZERERkNG2UP7xcVThf04z0Q+flLqfPYbAiIiIiIwd7O8SPDwLA5wdeDwYrIiIiMhEfORgKOwl7TlfgSGmN3OX0KbIGq8zMTEyfPh0BAQGQJAnbtm0z2S+EQHJyMgICAuDk5ISYmBgcOnTIuL+wsBCSJHX4s3nzZuNxlZWVSEhIgFqthlqtRkJCAqqqqjqs6dKlSxg0aBAkSWp3zMGDBxEdHQ0nJycEBgZi6dKlXESNiIj6HT+1I+69xQ8AsC67SOZq+hZZg1V9fT3GjBmDVatWdbh/+fLlSE1NxapVq7B37174+fkhNjYWtbW1AICgoCCUlpaa/CxZsgQuLi6YNm2asZ34+HhoNBqkpaUhLS0NGo0GCQkJHZ7zySefxOjRo9ttr6mpQWxsLAICArB3716sXLkSK1asQGpqqgVGgoiIqHcxPD9w24ESVDfoZK6m77CX8+TTpk0zCUBXEkLg7bffxksvvYSZM2cCANauXQtfX19s3LgR8+fPh0KhgJ+fn8n7tm7dilmzZsHV1RUAcOTIEaSlpSEnJweRkZEAgA8++ABRUVE4duwYRowYYXzvv/71L1RVVeGVV17Bf//7X5N2N2zYgKamJqxZswYqlQqjRo3C8ePHkZqaiqSkJEiSZLFxISIiktv4UE/c7OeGo2W12Jx3Bk/dOUTukvoEWYNVV06fPo2ysjLExcUZt6lUKkRHRyMrKwvz589v9568vDxoNBq8++67xm3Z2dlQq9XGUAUAEyZMgFqtRlZWljFYHT58GEuXLkVubi5OnTrVru3s7GxER0dDpVIZt02dOhWLFi1CYWEhQkNDO+xHc3Mzmpubja9ratruVet0Ouh0lvs/AENblmyzL7H1/gMcA1vvP8AxsPX+A5Yfgycig/Dyfw5jXXYhEsYPgp1d776IYM3PQHfb7LXBqqysDADg6+trst3X1xdFRR3f7129ejXCwsIwceJEk3Z8fHzaHevj42M8R3NzM2bPno033ngDwcHBHQarsrIyhISEtKvFsK+zYLVs2TIsWbKk3fb09HQ4Ozt3+J4bkZGRYfE2+xJb7z/AMbD1/gMcA1vvP2C5MXBoBZwUChRXNCL1kzSMHNA35hVb4zPQ0NDQreN6bbAyuPoWmxCiw9tujY2N2LhxIxYvXnzNNq5uZ9GiRQgLC8MTTzxhdi2dtW+waNEiJCUlGV/X1NQgKCgIcXFxcHd37/J85tDpdMjIyEBsbCyUSqXF2u0rbL3/AMfA1vsPcAxsvf+AdcbgqP0xfJhVhKOtvnjhvnEWadNarPkZMNxxupZeG6wMc6fKysrg7+9v3F5eXt7uKhYAbNmyBQ0NDZgzZ067ds6fb7/A2YULF4ztfP/99zh48CC2bNkC4NfA5OXlhZdeeglLliyBn5+f8QrXlbUA7a+qXUmlUpncPjRQKpVW+cW3Vrt9ha33H+AY2Hr/AY6BrfcfsOwYzJkYio+yi7DrxEWUVGsR4uVikXatyRqfge6212vXsQoNDYWfn5/J5TytVotdu3aZ3OozWL16NWbMmAFvb2+T7VFRUaiursaePXuM23Jzc1FdXW1s5/PPP8fPP/8MjUYDjUaDf//73wCAH3/8EU8//bSxnczMTGi1WmM76enpCAgIaHeLkIiIqL8I8XJBzPC2v1s/zuHSC9cia7Cqq6szhhmgbcK6RqNBcXExJEnCwoULkZKSgq1btyI/Px+JiYlwdnZGfHy8STsFBQXIzMzEU0891e4cYWFhuPfeezFv3jzk5OQgJycH8+bNwwMPPGCcuH7TTTdh1KhRxh/DfKmwsDDj/Kz4+HioVCokJiYiPz8fW7duRUpKCr8RSERE/d6cy88P/GzfGTRoW+QtppeT9Vbgvn37MHnyZONrw1ykuXPnYs2aNXjxxRfR2NiIBQsWoLKyEpGRkUhPT4ebm5tJOx9++CECAwNNvkF4pQ0bNuDZZ5817p8xY0ana2d1Rq1WIyMjA08//TQiIiIwYMAAJCUlmcyfIiIi6o+ih3lj8EBnFF1qwLYD5xAfGSx3Sb2WrMEqJiamy5XLJUlCcnIykpOTu2wnJSUFKSkpne739PTE+vXrb7iu8PBwZGZmdrsdIiKi/sDOTkLChMF4bfsRrMsuxOzxQbxb04leO8eKiIiIeo9HbwuCk1KBo2W12HO6Qu5yei0GKyIiIromtbMSD40NBMDnB3aFwYqIiIi6Ze7EtucHph0qQ1l1k8zV9E4MVkRERNQtN/u5IzLUE616gY25vGrVEQYrIiIi6ra5l5de2LinGM0trfIW0wsxWBEREVG3xY70hZ+7Iy7WaZGWX3btN9gYBisiIiLqNqXCDo9fXsdqbVahvMX0QgxWREREZJbHxgdDqZCwv7gKB89Wy11Or8JgRURERGbxdlPh/nB/AMDa7EJ5i+llGKyIiIjIbIbnB3758zlU1GvlLaYXYbAiIiIis40N8kB4oBraFj027T0jdzm9BoMVERERmU2SJMyJalswdH1OEVr1nT/715YwWBEREdF1mT4mAAOclSipasR3R87LXU6vwGBFRERE18VRqcBj49uWXuDzA9swWBEREdF1ezwyGHYSsLvgIgrKa+UuR3YMVkRERHTdBg1wxj1hvgCAj3nVisGKiIiIbozh+YFb8s6itkknbzEyY7AiIiKiGzLxpoG4ydsF9dpWfLG/RO5yZMVgRURERDdEkiTjVau12YUQwnaXXmCwIiIiohs2c9wguKrscepCPX4quCR3ObJhsCIiIqIb5qqyxyPjAgHY9vMDGayIiIjIIhKiQgAA3x05jzMVDfIWIxMGKyIiIrKIoT6uuHOYF/QC2JBbLHc5smCwIiIiIouZc/mq1ad7i9Gka5W3GBkwWBEREZHF3H2zDwI9nFDVoMOXP5+Tu5wex2BFREREFqOwk5AQNRgAsDbL9pZeYLAiIiIii5oVEQSVvR0OnavB/uIqucvpUQxWREREZFEDXBwwY0wAAGCdjS29wGBFREREFmdYif2bg6Uor22St5gexGBFREREFjcqUI1xwR7QtQp8kntG7nJ6DIMVERERWYXhqtXGPUXQterlLaaHMFgRERGRVUwb5Q8vVxXO1zQj/dB5ucvpEQxWREREZBUO9naIjwwG0Lb0gi1gsCIiIiKreTwyGPZ2EvYUVuDwuRq5y7E6BisiIiKyGl93R0wd5QcA+DinUN5iegCDFREREVnV3MvPD9x6oATVDTp5i7EyBisiIiKyqttDBuBmPzc06fTYnNe/l15gsCIiIiKrkiTJuPTCuuwi6PX99/mBDFZERERkdQ/eGgB3R3sUVzRg1/ELcpdjNQxWREREZHXODvb4bUQQAGBtP35+IIMVERER9YgnJgyGJAE7j11A4cV6ucuxCgYrIiIi6hEhXi6IGe4NoG2uVX/EYEVEREQ9Zs7lSeyb886gvrlF3mKsgMGKiIiIekz0MG8MHuiM2qYWbNOUyF2OxTFYERERUY+xs5OQMGEwAGBdVhGE6F9LLzBYERERUY969LYgOCkVOHa+FrmnK+Qux6IYrIiIiKhHqZ2VeGhsIABgXT9beoHBioiIiHrc3IlttwO/PXQepdWNMldjOQxWRERE1ONu9nNHZKgnWvUCG3OL5S7HYhisiIiISBaG5wd+sqcYzS2t8hZjIQxWREREJIvYkb7wc3fExTotvjlYKnc5FsFgRURERLJQKuzweGQwAGBtVv9YiZ3BioiIiGTz2PhgKBUSNGeq8POZKrnLuWEMVkRERCQbbzcV7g/3B9A/nh/IYEVERESyMjw/8KtfzuFSXbO8xdwgBisiIiKS1dggD4QHqqFt0WPTvjNyl3NDGKyIiIhIVpIkYU5U24KhG3KK0dKql7mi6ydrsMrMzMT06dMREBAASZKwbds2k/1CCCQnJyMgIABOTk6IiYnBoUOHjPsLCwshSVKHP5s3bzYeV1lZiYSEBKjVaqjVaiQkJKCqqsq4/+eff8bs2bMRFBQEJycnhIWF4Z133mlX78GDBxEdHQ0nJycEBgZi6dKl/e7hkURERHKYPiYAA5yVKKlqxHdHy+Uu57rJGqzq6+sxZswYrFq1qsP9y5cvR2pqKlatWoW9e/fCz88PsbGxqK2tBQAEBQWhtLTU5GfJkiVwcXHBtGnTjO3Ex8dDo9EgLS0NaWlp0Gg0SEhIMO7Py8uDt7c31q9fj0OHDuGll17CokWLTOqqqalBbGwsAgICsHfvXqxcuRIrVqxAamqqlUaHiIjIdjgqFZh1e9vSC335+YH2cp582rRpJgHoSkIIvP3223jppZcwc+ZMAMDatWvh6+uLjRs3Yv78+VAoFPDz8zN539atWzFr1iy4uroCAI4cOYK0tDTk5OQgMjISAPDBBx8gKioKx44dw4gRI/D73//epI0hQ4YgOzsbX3zxBZ555hkAwIYNG9DU1IQ1a9ZApVJh1KhROH78OFJTU5GUlARJkiw6NkRERLbmiQnBeD/zJH4quISC8loM9XGTuySzyRqsunL69GmUlZUhLi7OuE2lUiE6OhpZWVmYP39+u/fk5eVBo9Hg3XffNW7Lzs6GWq02hioAmDBhAtRqNbKysjBixIgOz19dXQ1PT0+TdqKjo6FSqYzbpk6dikWLFqGwsBChoaEdttPc3Izm5l+/4VBTUwMA0Ol00Ol01xqGbjO0Zck2+xJb7z/AMbD1/gMcA1vvP9D3x8DXVYkpN/sg40g51vx0Gq8+EGbW+63Z/+622WuDVVlZGQDA19fXZLuvry+Kijpe52L16tUICwvDxIkTTdrx8fFpd6yPj4/xHFfLzs7GZ599hu3bt5u0ExIS0q4Ww77OgtWyZcuwZMmSdtvT09Ph7Ozc4XtuREZGhsXb7Etsvf8Ax8DW+w9wDGy9/0DfHoNhkoQMKLB5bzHC9afheB1JxRr9b2ho6NZxvTZYGVx9i00I0eFtt8bGRmzcuBGLFy++ZhtdtXPo0CE8+OCDeOWVVxAbG3vNWjpr32DRokVISkoyvq6pqUFQUBDi4uLg7u7e6fvMpdPpkJGRgdjYWCiVSou121fYev8BjoGt9x/gGNh6/4H+MQbThEDaP7Jw6mI96n1GYeaE4G6/15r9N9xxupZeG6wMc6fKysrg7+9v3F5eXt7uKhYAbNmyBQ0NDZgzZ067ds6fP9/u+AsXLrRr5/Dhw7j77rsxb948vPzyy+3aufoKV3l527cWOqrHQKVSmdw+NFAqlVb50Fur3b7C1vsPcAxsvf8Ax8DW+w/0/TFInBSCV/5zCOv3nMHv7hhi9jxma/S/u+312nWsQkND4efnZ3I5T6vVYteuXSa3+gxWr16NGTNmwNvb22R7VFQUqqursWfPHuO23NxcVFdXm7Rz6NAhTJ48GXPnzsXrr7/erv2oqChkZmZCq9Uat6WnpyMgIKDdLUIiIiK6fjPHDYKryh6nLtTjp4JLcpdjFlmDVV1dHTQaDTQaDYC2CesajQbFxcWQJAkLFy5ESkoKtm7divz8fCQmJsLZ2Rnx8fEm7RQUFCAzMxNPPfVUu3OEhYXh3nvvxbx585CTk4OcnBzMmzcPDzzwgHHiuiFUxcbGIikpCWVlZSgrK8OFCxeM7cTHx0OlUiExMRH5+fnYunUrUlJS+I1AIiIiC3NV2eORcYEAgLV9bOkFWYPVvn37MHbsWIwdOxYAkJSUhLFjx+KVV14BALz44otYuHAhFixYgIiICJSUlCA9PR1ubqZfv/zwww8RGBho8g3CK23YsAHh4eGIi4tDXFwcRo8ejY8//ti4f/Pmzbhw4QI2bNgAf39/48/tt99uPEatViMjIwNnz55FREQEFixYgKSkJJP5U0RERGQZCVEhAIDvjpzHmYruTRzvDWSdYxUTE9PlyuWSJCE5ORnJycldtpOSkoKUlJRO93t6emL9+vWd7u/OOQAgPDwcmZmZ1zyOiIiIbsxQH1fcMdQLuwsuYkNuMf467Wa5S+qWXjvHioiIiGyb4fmBm/YWo0nXKnM13cNgRURERL3SlDBfBHo4obJBh69+Pid3Od3CYEVERES9ksJOwhMT2q5arc0u7HL6UG/BYEVERES91qzbg+Bgb4f8khocOFMldznXxGBFREREvZaniwMeHBMAAFibVShvMd3AYEVERES92tyJIQCAbw6W4kJts7zFXAODFREREfVqowLVGBfsAV2rwKd7iuUup0sMVkRERNTrGa5abcgthq5VL28xXWCwIiIiol5v2ih/eLmqUFbThPRD5+Uup1MMVkRERNTrOdjbIX58EIDe/fxABisiIiLqE+IjB0NhJ2HP6QocKa2Ru5wOMVgRERFRn+CndsS9t/gBANZlF8lcTccYrIiIiKjPMExi33agBNUNOnmL6QCDFREREfUZt4cMwM1+bmjUtWJz3hm5y2mHwYqIiIj6DEmSjFetPs4pgl7fu54fyGBFREREfcqDtwbA3dEeRZcasOv4BbnLMcFgRURERH2Ks4M9fhvRO5deYLAiIiKiPueJCYMhScDOYxdQeLFe7nKMGKyIiIiozwnxckHMcG8AbXOtegsGKyIiIuqT5lyexP7ZvjNo0LbIW8xlDFZERETUJ0UP80bIQGfUNrVg24FzcpcDgMGKiIiI+ig7OwkJUSEAgHXZhRBC/qUXGKyIiIioz/rNbYPgpFTgaFkt9hZVyl0OgxURERH1XWonJR4eFwgA+DhH/pXYGayIiIioT5sTNRgAkHGkHFXN8tbCYEVERER92s1+7ogM9USrXuCn8/JGGwYrIiIi6vMMzw/MKpfQ3KKXrQ4GKyIiIurz4kb6ws9dBVd7oLS6UbY6GKyIiIioz7NX2OGzP0Tir2NaETLQRbY6GKyIiIioX/BXO0KS5K2BwYqIiIjIQhisiIiIiCyEwYqIiIjIQhisiIiIiCyEwYqIiIjIQhisiIiIiCyEwYqIiIjIQhisiIiIiCyEwYqIiIjIQhisiIiIiCyEwYqIiIjIQhisiIiIiCyEwYqIiIjIQuzlLsDWCCEAADU1NRZtV6fToaGhATU1NVAqlRZtuy+w9f4DHANb7z/AMbD1/gMcA2v23/D3tuHv8c4wWPWw2tpaAEBQUJDMlRAREZG5amtroVarO90viWtFL7IovV6Pc+fOwc3NDZIkWazdmpoaBAUF4cyZM3B3d7dYu32Frfcf4BjYev8BjoGt9x/gGFiz/0II1NbWIiAgAHZ2nc+k4hWrHmZnZ4dBgwZZrX13d3eb/GUysPX+AxwDW+8/wDGw9f4DHANr9b+rK1UGnLxOREREZCEMVkREREQWwmDVT6hUKrz66qtQqVRylyILW+8/wDGw9f4DHANb7z/AMegN/efkdSIiIiIL4RUrIiIiIgthsCIiIiKyEAYrIiIiIgthsCIiIiKyEAYrmSQnJ0OSJJMfPz8/k2OOHDmCGTNmQK1Ww83NDRMmTEBxcTEAoLCwsN37DT+bN282thESEtJu/1//+leT8xQXF2P69OlwcXGBl5cXnn32WWi12n7RfwDYvn07IiMj4eTkBC8vL8ycOVP2/gM9MwY7d+7s9Ji9e/fKOgY99Rk4fvw4HnzwQXh5ecHd3R2TJk3CDz/8YHKe/vwZAID9+/cjNjYWHh4eGDhwIP7whz+grq5O9jG40f4DQFlZGRISEuDn5wcXFxeMGzcOW7ZsMWmjsrISCQkJUKvVUKvVSEhIQFVVlckx/bn/r7/+OiZOnAhnZ2d4eHh0WEtf/R0Arj0GhYWFePLJJxEaGgonJyfcdNNNePXVV9v1z1JjwJXXZXTLLbdgx44dxtcKhcL455MnT+KOO+7Ak08+iSVLlkCtVuPIkSNwdHQE0PaswdLSUpP23n//fSxfvhzTpk0z2b506VLMmzfP+NrV1dX459bWVtx///3w9vbG7t27cenSJcydOxdCCKxcudKi/b1aT/T/888/x7x585CSkoK7774bQggcPHjQuF/O/gPWH4OJEye2O2bx4sXYsWMHIiIiAPT/z8D999+P4cOH4/vvv4eTkxPefvttPPDAAzh58iT8/Pz6/Wfg3LlzuOeeezBr1iysWrUKNTU1WLhwIRITE41/+fTVzwAAJCQkoLq6Gl9++SW8vLywceNGzJo1C/v27cPYsWMBAPHx8Th79izS0tIAAH/4wx+QkJCAr776yib6r9Vq8eijjyIqKgqrV69uV0Nf/h0Arj0GR48ehV6vx3vvvYehQ4ciPz8f8+bNQ319PVasWGH5MRAki1dffVWMGTOm0/2zZs0STzzxhFlt3nrrreL3v/+9ybbBgweLt956q9P3fPPNN8LOzk6UlJQYt33yySdCpVKJ6upqs85vjp7ov06nE4GBgeLf//53p++Rq/9C9Nxn4EparVb4+PiIpUuXGrf158/AhQsXBACRmZlp3FZTUyMAiB07dggh+v9n4L333hM+Pj6itbXVuO3AgQMCgDhx4oQQom9/BlxcXMS6detMtnl6ehp/7w8fPiwAiJycHOP+7OxsAUAcPXpUCNG/+3+ljz76SKjV6nbb+/rvgDljYLB8+XIRGhpqfG3JMeCtQBmdOHECAQEBCA0NxWOPPYZTp04BaHtQ8/bt2zF8+HBMnToVPj4+iIyMxLZt2zptKy8vDxqNBk8++WS7fX//+98xcOBA3HrrrXj99ddNLm1mZ2dj1KhRCAgIMG6bOnUqmpubkZeXZ7nOdsDa/d+/fz9KSkpgZ2eHsWPHwt/fH9OmTcOhQ4eMx8jZf6DnPgMGX375JS5evIjExETjtv78GRg4cCDCwsKwbt061NfXo6WlBe+99x58fX1x2223Aej/n4Hm5mY4ODiYPDTWyckJALB7924AffszcMcdd2DTpk2oqKiAXq/Hp59+iubmZsTExBj7plarERkZaXzPhAkToFarkZWV1e/73x19/Xfgesaguroanp6extcWHQOzYhhZzDfffCO2bNkifvnlF5GRkSGio6OFr6+vuHjxoigtLRUAhLOzs0hNTRUHDhwQy5YtE5IkiZ07d3bY3h//+EcRFhbWbntqaqrYuXOn+Pnnn8UHH3wgvLy8xJNPPmncP2/ePBEbG9vufQ4ODmLjxo2W6/BVeqL/n3zyiQAggoODxZYtW8S+ffvE7NmzxcCBA8WlS5eEEPL1X4ie+wxcadq0aWLatGkm2/rzZ0AIIc6ePStuu+02IUmSUCgUIiAgQBw4cMC4v79/BvLz84W9vb1Yvny5aG5uFhUVFWLmzJkCgEhJSRFC9O3PQFVVlZg6daoAIOzt7YW7u7tIT0837n/99dfFsGHD2p172LBhNtH/K3V2xaqv/w6YMwZCCFFQUCDc3d3FBx98YNxmyTFgsOol6urqhK+vr3jzzTdFSUmJACBmz55tcsz06dPFY4891u69DQ0NQq1WixUrVlzzPFu2bBEAxMWLF4UQbR+muLi4dscplUrxySefXGdvzGeN/m/YsEEAEO+9955xW1NTk/Dy8hL/93//J4ToPf0XwvqfgTNnzgg7OzuxZcsWk+29ZQys0X+9Xi9mzJghpk2bJnbv3i3y8vLEH//4RxEYGCjOnTsnhOg9/RfCep+BDRs2CF9fX6FQKISDg4N44YUXhK+vr/j73/8uhOg9Y3A9/X/mmWfE+PHjxY4dO4RGoxHJyclCrVaLX375RQjRFqyGDx/e7lxDhw4Vy5YtE0L07/5fqatg1Rv6L4T1x6CkpEQMHTrU5AKDEJYdA94K7CVcXFwQHh6OEydOwMvLC/b29hg5cqTJMWFhYSbfhDDYsmULGhoaMGfOnGueZ8KECQCAgoICAICfnx/KyspMjqmsrIROp4Ovr+/1dsds1ui/v78/AJi0o1KpMGTIEGM7vaX/gPU/Ax999BEGDhyIGTNmmGzvLWNgjf5///33+Prrr/Hpp59i0qRJGDduHP75z3/CyckJa9euBdB7+g9Y7zMQHx+PsrIylJSU4NKlS0hOTsaFCxcQGhoKoPeMgbn9P3nyJFatWoUPP/wQU6ZMwZgxY/Dqq68iIiIC7777LoC2vp0/f77duS5cuGDsW3/uf3f0lv4D1h2Dc+fOYfLkyYiKisL7779vss+SY8Bg1Us0NzfjyJEj8Pf3h4ODA26//XYcO3bM5Jjjx49j8ODB7d67evVqzJgxA97e3tc8z4EDBwD8GjqioqKQn59v8s2i9PR0qFQq4xyUnmCN/t92221QqVQm7eh0OhQWFhrb6S39B6z7GRBC4KOPPsKcOXOgVCpN9vWWMbBG/xsaGgDAZH6R4bVerwfQe/oPWP+/A76+vnB1dcWmTZvg6OiI2NhYAL1nDMztf2f/fhUKhcm/3+rqauzZs8e4Pzc3F9XV1Zg4caLxmP7a/+7oLf0HrDcGJSUliImJwbhx4/DRRx+1O96iY2DW9S2ymOeff17s3LlTnDp1SuTk5IgHHnhAuLm5icLCQiGEEF988YVQKpXi/fffFydOnBArV64UCoVC/PjjjybtnDhxQkiSJP773/+2O0dWVpbxvvSpU6fEpk2bREBAgJgxY4bxmJaWFjFq1CgxZcoUsX//frFjxw4xaNAg8cwzz/T5/gshxHPPPScCAwPFt99+K44ePSqefPJJ4ePjIyoqKmTtvxA9NwZCCLFjxw4BQBw+fLjdvv78Gbhw4YIYOHCgmDlzptBoNOLYsWPihRdeEEqlUmg0Gln731NjIIQQK1euFHl5eeLYsWNi1apVwsnJSbzzzjvG/X31M6DVasXQoUPFnXfeKXJzc0VBQYFYsWKFkCRJbN++3Xiee++9V4wePVpkZ2eL7OxsER4eLh544AGb6X9RUZE4cOCAWLJkiXB1dRUHDhwQBw4cELW1tbL2v6fGwHD77+677xZnz54VpaWlxh8DS44Bg5VMZs2aJfz9/YVSqRQBAQFi5syZ4tChQybHrF69WgwdOlQ4OjqKMWPGiG3btrVrZ9GiRWLQoEEmX6U2yMvLE5GRkUKtVgtHR0cxYsQI8eqrr4r6+nqT44qKisT9998vnJychKenp3jmmWdEU1OTZTt8lZ7ovxBtv3TPP/+88PHxEW5ubuKee+4R+fn5JsfI0X8hem4MhBBi9uzZYuLEiZ3u78+fgb1794q4uDjh6ekp3NzcxIQJE8Q333xjckx//wwkJCQIT09P4eDgIEaPHt3uq+lC9N3PwPHjx8XMmTOFj4+PcHZ27rB/ly5dEo8//rhwc3MTbm5u4vHHHxeVlZUmx/Tn/s+dO1cAaPfzww8/GI/py78D1xqDjz76qMP+X31tyVJjIAkhhHnXuIiIiIioI5xjRURERGQhDFZEREREFsJgRURERGQhDFZEREREFsJgRURERGQhDFZEREREFsJgRURERGQhDFZEREREFsJgRURERGQhDFZERDdAkiRs27ZN7jKIqJdgsCIi6oRWq5W7BCLqYxisiKhP+uqrr+Dh4QG9Xg8A0Gg0kCQJf/nLX4zHzJ8/H7Nnzza+/vzzz3HLLbdApVIhJCQEb775pkmbISEheO2115CYmAi1Wo158+ZBq9XimWeegb+/PxwdHRESEoJly5YZjweAhx9+GJIkGV935OzZs3jsscfg6ekJFxcXREREIDc3FwBw8uRJPPjgg/D19YWrqytuv/127Nixw+T9//znPzFs2DA4OjrC19cXv/nNb4z7hBBYvnw5hgwZAicnJ4wZMwZbtmwxf1CJ6IbZy10AEdH1uOuuu1BbW4sDBw7gtttuw65du+Dl5YVdu3YZj9m5cyf+/Oc/AwDy8vLw29/+FsnJyZg1axaysrKwYMECDBw4EImJicb3vPHGG1i8eDFefvllAMA//vEPfPnll/jss88QHByMM2fO4MyZMwCAvXv3wsfHBx999BHuvfdeKBSKDmutq6tDdHQ0AgMD8eWXX8LPzw/79+83hsK6ujrcd999eO211+Do6Ii1a9di+vTpOHbsGIKDg7Fv3z48++yz+PjjjzFx4kRUVFTgxx9/NLb/8ssv44svvsC//vUvDBs2DJmZmXjiiSfg7e2N6Ohoi447EV2DICLqo8aNGydWrFghhBDioYceEq+//rpwcHAQNTU1orS0VAAQR44cEUIIER8fL2JjY03e/5e//EWMHDnS+Hrw4MHioYceMjnmT3/6k7j77ruFXq/vsAYAYuvWrV3W+d577wk3Nzdx6dKlbvdt5MiRYuXKlUIIIT7//HPh7u4uampq2h1XV1cnHB0dRVZWlsn2J598UsyePbvb5yMiy+CtQCLqs2JiYrBz504IIfDjjz/iwQcfxKhRo7B792788MMP8PX1xc033wwAOHLkCCZNmmTy/kmTJuHEiRNobW01bouIiDA5JjExERqNBiNGjMCzzz6L9PR0s+vUaDQYO3YsPD09O9xfX1+PF198ESNHjoSHhwdcXV1x9OhRFBcXAwBiY2MxePBgDBkyBAkJCdiwYQMaGhoAAIcPH0ZTUxNiY2Ph6upq/Fm3bh1Onjxpdq1EdGN4K5CI+qyYmBisXr0aP//8M+zs7DBy5EhER0dj165dqKysNLkNJoSAJEkm7xdCtGvTxcXF5PW4ceNw+vRp/Pe//8WOHTvw29/+Fvfcc49Zc5icnJy63P+Xv/wF3377LVasWIGhQ4fCyckJv/nNb4yT593c3LB//37s3LkT6enpeOWVV5CcnIy9e/cabydu374dgYGBJu2qVKpu10hElsFgRUR9lmGe1dtvv43o6GhIkoTo6GgsW7YMlZWVeO6554zHjhw5Ert37zZ5f1ZWFoYPH97p3CgDd3d3zJo1C7NmzcJvfvMb3HvvvaioqICnpyeUSqXJFa+OjB49Gv/+97+N77najz/+iMTERDz88MMA2uZcFRYWmhxjb2+Pe+65B/fccw9effVVeHh44Pvvv0dsbCxUKhWKi4s5n4qoF2CwIqI+S61W49Zbb8X69evxzjvvAGgLW48++ih0Oh1iYmKMxz7//PO4/fbb8be//Q2zZs1CdnY2Vq1ahX/+859dnuOtt96Cv78/br31VtjZ2WHz5s3w8/ODh4cHgLZvBn733XeYNGkSVCoVBgwY0K6N2bNnIyUlBQ899BCWLVsGf39/HDhwAAEBAYiKisLQoUPxxRdfYPr06ZAkCYsXLzZeiQKAr7/+GqdOncJdd92FAQMG4JtvvoFer8eIESPg5uaGF154AX/+85+h1+txxx13oKamBllZWXB1dcXcuXNvfKCJqPtknuNFRHRDnn/+eQFA5OfnG7eNGTNGeHt7t5twvmXLFjFy5EihVCpFcHCweOONN0z2Dx48WLz11lsm295//31x6623ChcXF+Hu7i6mTJki9u/fb9z/5ZdfiqFDhwp7e3sxePDgTussLCwUjzzyiHB3dxfOzs4iIiJC5ObmCiGEOH36tJg8ebJwcnISQUFBYtWqVSI6Olo899xzQgghfvzxRxEdHS0GDBggnJycxOjRo8WmTZuMbev1evHOO++IESNGCKVSKby9vcXUqVPFrl27zBlKIrIASYgOJhkQERERkdn4rUAiIiIiC2GwIiIiIrIQBisiIiIiC2GwIiIiIrIQBisiIiIiC2GwIiIiIrIQBisiIiIiC2GwIiIiIrIQBisiIiIiC2GwIiIiIrIQBisiIiIiC/n/AXz3NrVhA9H+AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1762,9 +1754,7 @@ " df.loc[wc, \"return\"] = m.objective()\n", " df.loc[wc, \"wc\"] = wc\n", "\n", - "df.plot(\n", - " x=\"wc\", y=\"return\", xlabel=\"worst case\", ylabel=\"mean return\", grid=True\n", - ")" + "df.plot(x=\"wc\", y=\"return\", xlabel=\"worst case\", ylabel=\"mean return\", grid=True)" ] }, { diff --git a/_sources/notebooks/10/opf-wind-curtailment.ipynb b/_sources/notebooks/10/05-opf-wind-curtailment.ipynb similarity index 95% rename from _sources/notebooks/10/opf-wind-curtailment.ipynb rename to _sources/notebooks/10/05-opf-wind-curtailment.ipynb index 124d8e7d..c454e5e0 100644 --- a/_sources/notebooks/10/opf-wind-curtailment.ipynb +++ b/_sources/notebooks/10/05-opf-wind-curtailment.ipynb @@ -28,12 +28,7 @@ "source": [ "## Preamble: Install Pyomo and a solver\n", "\n", - "This cell selects and verifies a global SOLVER for the notebook.\n", - "\n", - "If run on Google Colab, the cell installs Pyomo and HiGHS, then sets SOLVER to \n", - "use the Highs solver via the appsi module. If run elsewhere, it assumes Pyomo and CBC\n", - "have been previously installed and sets SOLVER to use the CBC solver via the Pyomo \n", - "SolverFactory. It then verifies that SOLVER is available." + "The following cell sets and verifies a global SOLVER for the notebook. If run on Google Colab, the cell installs Pyomo and the HiGHS solver, while, if run elsewhere, it assumes Pyomo and HiGHS have been previously installed. It then sets to use HiGHS as solver via the appsi module and a test is performed to verify that it is available. The solver interface is stored in a global object `SOLVER` for later use." ] }, { @@ -43,14 +38,17 @@ "outputs": [], "source": [ "import sys\n", - "import os\n", - "\n", - "if \"google.colab\" in sys.modules:\n", - " !pip install pyomo >/dev/null 2>/dev/null\n", - " !pip install highspy >/dev/null 2>/dev/null\n", - " SOLVER = \"appsi_highs\"\n", - "else:\n", - " SOLVER = \"cbc\"" + " \n", + "if 'google.colab' in sys.modules:\n", + " %pip install pyomo >/dev/null 2>/dev/null\n", + " %pip install highspy >/dev/null 2>/dev/null\n", + " \n", + "solver = 'appsi_highs'\n", + " \n", + "import pyomo.environ as pyo\n", + "SOLVER = pyo.SolverFactory(solver)\n", + " \n", + "assert SOLVER.available(), f\"Solver {solver} is not available.\"" ] }, { @@ -169,13 +167,12 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { "id": "bxwjVztvKQpk" }, "outputs": [], "source": [ - "# Load packages\n", "import pyomo.environ as pyo\n", "import numpy as np\n", "import pandas as pd\n", @@ -185,7 +182,7 @@ "import time\n", "\n", "# Download the data\n", - "base_url = \"https://raw.githubusercontent.com/mobook/MO-book/main/notebooks/10/\"\n", + "base_url = \"https://raw.githubusercontent.com/mobook/MO-book/main/notebooks/10/data/\"\n", "nodes_df = pd.read_csv(base_url + \"nodes.csv\", index_col=0)\n", "edges_df = pd.read_csv(base_url + \"edges.csv\", index_col=0)\n", "\n", @@ -891,10 +888,16 @@ ], "source": [ "def g_offshore(v):\n", - " return np.piecewise(v, [v <= 3.5, v > 15], [0, 600, lambda v: 0.18007 * v**3 - 7.72049])\n", + " return np.piecewise(\n", + " v, [v <= 3.5, v > 15], [0, 600, lambda v: 0.18007 * v**3 - 7.72049]\n", + " )\n", + "\n", "\n", "def g_onshore(v):\n", - " return np.piecewise(v, [v <= 3, v > 14], [0, 450, lambda v: 0.16563 * v**3 - 4.4718])\n", + " return np.piecewise(\n", + " v, [v <= 3, v > 14], [0, 450, lambda v: 0.16563 * v**3 - 4.4718]\n", + " )\n", + "\n", "\n", "# assign wind generators\n", "g = {64: g_onshore, 65: g_offshore}\n", @@ -906,7 +909,7 @@ "\n", "plt.legend()\n", "plt.xlabel(\"Wind Speed\")\n", - "plt.ylabel(\"Power Output\") " + "plt.ylabel(\"Power Output\")" ] }, { @@ -928,38 +931,61 @@ " model.T = pyo.Set(initialize=range(len(samples)))\n", " model.V = pyo.Set(initialize=network[\"nodes\"].keys())\n", " model.E = pyo.Set(initialize=network[\"edges\"].keys())\n", - " model.W = pyo.Set(initialize=[i for i, data in network[\"nodes\"].items() if data[\"energy_type\"] == \"wind\"])\n", - " \n", + " model.W = pyo.Set(\n", + " initialize=[\n", + " i for i, data in network[\"nodes\"].items() if data[\"energy_type\"] == \"wind\"\n", + " ]\n", + " )\n", + "\n", " # Set including all generator nodes except wind generators\n", - " model.NW = pyo.Set(initialize=[i for i, data in network[\"nodes\"].items() if data[\"energy_type\"] != \"wind\"]) \n", - " \n", + " model.NW = pyo.Set(\n", + " initialize=[\n", + " i for i, data in network[\"nodes\"].items() if data[\"energy_type\"] != \"wind\"\n", + " ]\n", + " )\n", + "\n", " model.M = 1000\n", "\n", " # Declare decision variables\n", - " \n", + "\n", " # Binary variable indicating whether a generator is on or off\n", - " model.x = pyo.Var(model.V, domain=pyo.Binary) \n", - " \n", + " model.x = pyo.Var(model.V, domain=pyo.Binary)\n", + "\n", " # Power generation of each generator\n", - " model.p = pyo.Var(model.V, model.T, domain=pyo.NonNegativeReals) \n", - " \n", + " model.p = pyo.Var(model.V, model.T, domain=pyo.NonNegativeReals)\n", + "\n", " # Voltage angle of each node\n", - " model.theta = pyo.Var(model.V, model.T) \n", - " \n", + " model.theta = pyo.Var(model.V, model.T)\n", + "\n", " # Power flow on each edge\n", - " model.f = pyo.Var(model.E, model.T, bounds=lambda m, i, j, t: (-network[\"edges\"][(i, j)][\"f_max\"], network[\"edges\"][(i, j)][\"f_max\"]))\n", - " \n", + " model.f = pyo.Var(\n", + " model.E,\n", + " model.T,\n", + " bounds=lambda m, i, j, t: (\n", + " -network[\"edges\"][(i, j)][\"f_max\"],\n", + " network[\"edges\"][(i, j)][\"f_max\"],\n", + " ),\n", + " )\n", + "\n", " # Binary variable indicating whether a wind turbine is curtailed (0) or not (1)\n", - " model.y = pyo.Var(model.W, model.T, domain=pyo.Binary) \n", + " model.y = pyo.Var(model.W, model.T, domain=pyo.Binary)\n", "\n", " # Objective function, with the goal of minimizing the total cost of generation\n", " @model.Expression(model.T)\n", " def term2(model, t):\n", - " return sum(data[\"c_var\"] * model.p[i, t] for i, data in network[\"nodes\"].items() if data[\"is_generator\"])\n", - " \n", + " return sum(\n", + " data[\"c_var\"] * model.p[i, t]\n", + " for i, data in network[\"nodes\"].items()\n", + " if data[\"is_generator\"]\n", + " )\n", + "\n", " @model.Objective(sense=pyo.minimize)\n", " def objective(model):\n", - " term1 = sum(1000 * model.x[i] for i, data in network[\"nodes\"].items() if data[\"energy_type\"] in [\"coal\", \"gas\"])\n", + " term1 = sum(\n", + " 1000 * model.x[i]\n", + " for i, data in network[\"nodes\"].items()\n", + " if data[\"energy_type\"] in [\"coal\", \"gas\"]\n", + " )\n", " return term1 + sum(model.term2[t] for t in model.T) / len(model.T)\n", "\n", " # Declare constraints\n", @@ -968,7 +994,7 @@ " @model.Constraint(model.W, model.T)\n", " def wind_speed_to_power(m, i, t):\n", " return model.p[i, t] == (1 - model.y[i, t]) * g[i](samples[t][i])\n", - " \n", + "\n", " @model.Constraint(model.W, model.T)\n", " def wind_curtailment(m, i, t):\n", " return samples[t][i] <= vmax[i] + model.y[i, t] * model.M\n", @@ -976,7 +1002,7 @@ " @model.Constraint(model.NW, model.T)\n", " def generation_upper_bound(m, i, t):\n", " return m.p[i, t] <= m.x[i] * network[\"nodes\"][i][\"p_max\"]\n", - " \n", + "\n", " @model.Constraint(model.NW, model.T)\n", " def generation_lower_bound(m, i, t):\n", " return m.p[i, t] >= m.x[i] * network[\"nodes\"][i][\"p_min\"]\n", @@ -987,10 +1013,12 @@ " incoming_flow = sum(m.f[j, i, t] for j in model.V if (j, i) in model.E)\n", " outgoing_flow = sum(m.f[i, j, t] for j in model.V if (i, j) in model.E)\n", " return incoming_flow - outgoing_flow == m.p[i, t] - nodes[i][\"d\"]\n", - " \n", + "\n", " @model.Constraint(model.E, model.T)\n", " def susceptance(m, i, j, t):\n", - " return m.f[(i, j), t] == network[\"edges\"][(i, j)][\"b\"] * (m.theta[i, t] - m.theta[j, t])\n", + " return m.f[(i, j), t] == network[\"edges\"][(i, j)][\"b\"] * (\n", + " m.theta[i, t] - m.theta[j, t]\n", + " )\n", "\n", " return model" ] @@ -1028,15 +1056,24 @@ "scale65 = 18\n", "shape65 = 3\n", "\n", - "samples = [{64: scale64 * rng.weibull(shape64), 65: scale65 * rng.weibull(shape65)} for i in range(100)]\n", + "samples = [\n", + " {64: scale64 * rng.weibull(shape64), 65: scale65 * rng.weibull(shape65)}\n", + " for i in range(100)\n", + "]\n", "\n", "model = UC_windcurtailment(network, samples)\n", - "results = pyo.SolverFactory(SOLVER).solve(model)\n", + "results = SOLVER.solve(model)\n", "\n", "print(f\"Objective value: {model.objective():.2f}\")\n", - "turbineactivity = np.sum([[model.y[x, t].value for x in model.W] for t in model.T], axis=0)\n", - "print(f\"Number of scenarios wind tubine 64 is active: {turbineactivity[0]:2.0f} out of {len(model.T)}\")\n", - "print(f\"Number of scenarios wind tubine 65 is active: {turbineactivity[1]:2.0f} out of {len(model.T)}\")" + "turbineactivity = np.sum(\n", + " [[model.y[x, t].value for x in model.W] for t in model.T], axis=0\n", + ")\n", + "print(\n", + " f\"Number of scenarios wind tubine 64 is active: {turbineactivity[0]:2.0f} out of {len(model.T)}\"\n", + ")\n", + "print(\n", + " f\"Number of scenarios wind tubine 65 is active: {turbineactivity[1]:2.0f} out of {len(model.T)}\"\n", + ")" ] }, { @@ -1057,14 +1094,19 @@ "outputs": [], "source": [ "def UC_windcurtailment_fixed_x(network, samples, fixed_x=None):\n", - "\n", " model = UC_windcurtailment(network, samples)\n", - " model.G = pyo.Set(initialize=[i for i, data in network[\"nodes\"].items() if data[\"is_generator\"] and data[\"energy_type\"] != \"wind\"])\n", + " model.G = pyo.Set(\n", + " initialize=[\n", + " i\n", + " for i, data in network[\"nodes\"].items()\n", + " if data[\"is_generator\"] and data[\"energy_type\"] != \"wind\"\n", + " ]\n", + " )\n", "\n", " if fixed_x is not None:\n", " for i in model.G:\n", " model.x[i].fix(fixed_x[i]())\n", - " \n", + "\n", " return model" ] }, @@ -1091,10 +1133,12 @@ "source": [ "T = len(samples)\n", "\n", - "mean_sample = {i: np.array([samples[t][i] for t in range(T)]).mean() for i in samples[0].keys()}\n", + "mean_sample = {\n", + " i: np.array([samples[t][i] for t in range(T)]).mean() for i in samples[0].keys()\n", + "}\n", "\n", "m_nominal = UC_windcurtailment_fixed_x(network, [mean_sample])\n", - "pyo.SolverFactory(SOLVER).solve(m_nominal)\n", + "SOLVER.solve(m_nominal)\n", "\n", "print(f\"Nominal objective = {m_nominal.objective():0.2f}\")\n", "fixed_x = m_nominal.x" @@ -1124,17 +1168,16 @@ "import logging\n", "\n", "# don't log pyomo warning messages\n", - "logging.getLogger('pyomo.core').setLevel(logging.ERROR)\n", + "logging.getLogger(\"pyomo.core\").setLevel(logging.ERROR)\n", "\n", "# Variable to count the number of infeasible second stage problems\n", "n_infeasible = 0\n", "\n", - "solver = pyo.SolverFactory(SOLVER)\n", "for t in range(T):\n", " m_single = UC_windcurtailment_fixed_x(network, [samples[t]], fixed_x)\n", - " results = solver.solve(m_single)\n", + " results = SOLVER.solve(m_single)\n", " n_infeasible += 1 if results.solver.termination_condition == \"infeasible\" else 0\n", - " \n", + "\n", "print(f\"The second stage problem is infeasible in {n_infeasible} out of {T} instances\")" ] }, @@ -1162,7 +1205,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.2" + "version": "3.10.10" }, "vscode": { "interpreter": { diff --git a/_sources/notebooks/10/10.00.md b/_sources/notebooks/10/10.00.md index 7c2877d4..96dbb288 100644 --- a/_sources/notebooks/10/10.00.md +++ b/_sources/notebooks/10/10.00.md @@ -2,8 +2,8 @@ In this chapter, there is a number of examples with companion Pyomo implementation that explore various modeling and implementation aspects of two-stage problems affected by uncertainty: -* [Airline seating splitting](airline-seating.ipynb) -* [Optimal power flow problem with recourse actions](opf-ldr.ipynb), a two-stage revisitation of the problem from [Chapter 4](../04/04.00.md) that uses linear decision rules. -* [Two-stage production planning](ccg.ipynb), a multi-stage revisitation of the introductory problem from [Chapter 1](../01/01.00.md) solved both with SAA and CCG. -* [Extra: Farmer land allocation](farmer.ipynb) -* [Extra: Two-stage energy dispatch optimization with wind curtailment](opf-wind-curtailment.ipynb), a two-stage revisitation of the problem from [Chapter 4](../04/04.00.md) with binary second-stage variables. \ No newline at end of file +* [Airline seating splitting](01-airline-seating.ipynb) +* [Optimal power flow problem with recourse actions](02-opf-linear-decision-rule.ipynb), a two-stage variant of the problem from [Chapter 4](../04/04.00.md) that uses linear decision rules. +* [Two-stage production planning](03-column-constraint-generation.ipynb), a multi-stage variant of the introductory problem from [Chapter 1](../01/01.00.md) solved both with SAA and CCG. +* [Extra: Farmer land allocation](04-farmer-problem.ipynb) +* [Extra: Two-stage energy dispatch optimization with wind curtailment](05-opf-wind-curtailment.ipynb), a two-stage variant of the problem from [Chapter 4](../04/04.00.md) with binary second-stage variables. \ No newline at end of file diff --git a/_sources/notebooks/10/airline-seating.ipynb b/_sources/notebooks/10/airline-seating.ipynb deleted file mode 100644 index 38695c0e..00000000 --- a/_sources/notebooks/10/airline-seating.ipynb +++ /dev/null @@ -1,3061 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "dcadad27-4c87-4222-b248-17b1068311ff", - "metadata": { - "tags": [] - }, - "source": [ - "```{index} single: application; airline seating allocation\n", - "```\n", - "```{index} single: solver; cbc\n", - "```\n", - "```{index} pandas dataframe\n", - "```\n", - "```{index} single: Pyomo; sets\n", - "```\n", - "```{index} stochastic optimization\n", - "```\n", - "```{index} chance constraints\n", - "```\n", - "```{index} sample average approximation\n", - "```\n", - "```{index} two-stage problem\n", - "```\n", - "\n", - "# Airline seat allocation problem\n", - "\n", - "## Attribution\n", - "\n", - "The following problem statement is adapted from an exercise and examples presented by Birge and Louveaux (2011). \n", - "\n", - "* Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming. Springer Science & Business Media.\n", - "\n", - "The adaptations include a change to parameters for consistency among reformulations of the problem, and additional treatments for sample average approximation (SAA) with chance constraints." - ] - }, - { - "cell_type": "markdown", - "id": "78a7e349-0b92-4f23-b76b-b1d0e1e153f0", - "metadata": { - "tags": [] - }, - "source": [ - "## Problem description\n", - "\n", - "An airline is deciding how to partition a new plane for the Amsterdam-Buenos Aires route. This plane can seat 200 economy-class passengers. A section can be created for first-class seats, but each of these seats takes the space of 2 economy-class seats. A business-class section can also be created, but each of these takes the space of 1.5 economy-class seats. The profit for a first-class ticket is three times the profit of an economy ticket, while a business-class ticket has a profit of two times an economy ticket's profit. Once the plane is partitioned into these seating classes, it cannot be changed. \n", - "\n", - "The airlines knows that the plane will not always be full in every section. The airline has initially identified three scenarios to consider with about equal frequency: \n", - "\n", - "1. Weekday morning and evening traffic;\n", - "2. Weekend traffic; and\n", - "3. Weekday midday traffic. \n", - "\n", - "Under Scenario 1 the airline thinks they can sell as many as 20 first-class tickets, 50 business-class tickets, and 200 economy tickets. Under Scenario 2 these figures are 10 , 24, and 175, while under Scenario 3, they are 6, 10, and 150, respectively. The following table summarizes the forecast demand for these three scenarios.\n", - "\n", - "
\n", - "\n", - "| Scenario | First-class seats | Business-class seats | Economy-class seats |\n", - "| :-- | :-: | :-: | :-: |\n", - "| (1) weekday morning and evening | 20 | 50 | 200 |\n", - "| (2) weekend | 10 | 24 | 175 |\n", - "| (3) weekday midday | 6 | 10 | 150 |\n", - "| **Average Scenario** | **12** | **28** | **175** |\n", - "\n", - "
\n", - "\n", - "The goal of the airline is to maximize ticket revenue. For marketing purposes, the airline will not sell more tickets than seats in each of the sections (hence no overbooking strategy). We further assume customers seeking a first-class or business-class seat will not downgrade if those seats are unavailable." - ] - }, - { - "cell_type": "markdown", - "id": "347cbd20-15e4-4634-8a05-e782dc0e0929", - "metadata": {}, - "source": [ - "## Installation and imports" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "ea71de65", - "metadata": { - "ExecuteTime": { - "end_time": "2022-09-30T21:49:05.660595Z", - "start_time": "2022-09-30T21:49:05.457825Z" - } - }, - "outputs": [], - "source": [ - "# install pyomo and select solver\n", - "import sys\n", - "\n", - "SOLVER = \"cbc\"\n", - "\n", - "if \"google.colab\" in sys.modules:\n", - " !pip install highspy >/dev/null\n", - " SOLVER = \"appsi_highs\"" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "e91fbe82", - "metadata": { - "ExecuteTime": { - "end_time": "2022-09-30T21:49:07.404490Z", - "start_time": "2022-09-30T21:49:05.663157Z" - } - }, - "outputs": [], - "source": [ - "import pyomo.environ as pyo\n", - "import numpy as np\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "markdown", - "id": "2f7df9f7-9a96-4358-9e47-50cd63d7611a", - "metadata": {}, - "source": [ - "## Problem data\n", - "\n", - "Pandas DataFrames and Series are used to encode problem data in the following cell, and to encode problem solutions in subsequent cells." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "51e9fdd8-d586-48e6-be86-0d97fbad8a3f", - "metadata": {}, - "outputs": [], - "source": [ - "# scenario data\n", - "demand = pd.DataFrame(\n", - " {\n", - " \"morning and evening\": {\"F\": 20, \"B\": 50, \"E\": 200},\n", - " \"weekend\": {\"F\": 10, \"B\": 24, \"E\": 175},\n", - " \"midday\": {\"F\": 6, \"B\": 10, \"E\": 150},\n", - " }\n", - ").T\n", - "\n", - "# global revenue and seat factor data\n", - "capacity = 200\n", - "revenue_factor = pd.Series({\"F\": 3.0, \"B\": 2.0, \"E\": 1.0})\n", - "seat_factor = pd.Series({\"F\": 2.0, \"B\": 1.5, \"E\": 1.0})" - ] - }, - { - "cell_type": "markdown", - "id": "cfbd3423-f10d-49a4-b7f7-f6545729c9cc", - "metadata": {}, - "source": [ - "## Analytics\n", - "\n", - "Prior to optimization, a useful first step is to prepare an analytics function to display performance for any given allocation of seats. The first-stage decision variables are the number of seats allocated for each class $c\\in C$. We would like to provide a analysis showing the operational consequences for any proposed allocation of seats. For this purpose, we create a function ``seat_report()`` that show the tickets that can be sold in each scenario, the resulting revenue, and the unsatisfied demand ('spillage'). \n", - "\n", - "To establish a basis for analyzing possible solutions to the airline's problem, this function first is demonstrated for the case where the airplane is configured as entirely economy-class." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "3eed107a-1fec-4d6c-9b01-f399fbe3bb99", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Seat Allocation\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBETOTAL
seat allocation0.00.0200.0200.0
economy equivalent seat allocation0.00.0200.0200.0
\n", - "
" - ], - "text/plain": [ - " F B E TOTAL\n", - "seat allocation 0.0 0.0 200.0 200.0\n", - "economy equivalent seat allocation 0.0 0.0 200.0 200.0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Tickets Sold\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBE
morning and evening00200
weekend00175
midday00150
\n", - "
" - ], - "text/plain": [ - " F B E\n", - "morning and evening 0 0 200\n", - "weekend 0 0 175\n", - "midday 0 0 150" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Seats not Sold\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBE
morning and evening000
weekend0025
midday0050
\n", - "
" - ], - "text/plain": [ - " F B E\n", - "morning and evening 0 0 0\n", - "weekend 0 0 25\n", - "midday 0 0 50" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Spillage (Unfulfilled Demand)\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBE
morning and evening20500
weekend10240
midday6100
\n", - "
" - ], - "text/plain": [ - " F B E\n", - "morning and evening 20 50 0\n", - "weekend 10 24 0\n", - "midday 6 10 0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Expected Revenue (in units of economy ticket price): 175.00\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1fklEQVR4nO3deXyMV///8fdkkT2DqCy2qC22xlZFSxJF7EW/RSliK2otaiktulF3q73vtlRbhJZqe1NVW1slSu272pfYKpFSJEIikuv3h5+5OyILI5lEXs/HYx6PzLnOdZ3PdXJmMp9c51xjMgzDEAAAAADYwMHeAQAAAADI/0gsAAAAANiMxAIAAACAzUgsAAAAANiMxAIAAACAzUgsAAAAANiMxAIAAACAzUgsAAAAANiMxAIAAACAzUgsAACKjIyUyWSyPJycnOTv76/OnTvr6NGj9g4vzwoNDVW1atVyvJ3ExES9++67Cg4Olre3t7y8vFSuXDl17NhR69aty/H2c0NUVJRMJpOioqLsHQqA++Rk7wAAAHnHnDlzFBQUpKSkJP3+++96++23tXbtWh06dEhFihSxd3gFUmpqqpo1a6Z9+/bplVdeUd26dSVJR48e1Y8//qj169crJCTEzlHarlatWtq0aZOqVKli71AA3CcSCwCARbVq1VSnTh1Jt/4bn5qaqgkTJmjJkiXq2bOnnaMrmH777Tdt3LhRs2fPtvodhIeHa9CgQUpLS7NjdLZLSUmRyWSSt7e36tWrZ+9wANiAqVAAgAzdTjLOnz9vVb59+3a1bdtWRYsWlaurq2rWrKlvv/3Wsn3Pnj0ymUyaNWtWumOuXLlSJpNJS5cutZQdPXpUXbp0UfHixeXi4qLKlSvrk08+sdrv9lSZr7/+WuPGjVNAQIC8vb3VpEkTHT582KpuYGCgIiIi0rUdGhqq0NBQq7L4+HiNHDlSZcuWVaFChVSiRAkNGzZMiYmJ2eojSVq/fr3q1asnNzc3lShRQq+99ppSU1MlSYZhqEKFCgoPD0+339WrV2U2mzVw4MAMj33x4kVJkr+//123OzhY/yn/888/9eKLL6pUqVIqVKiQAgIC9H//939Wv8PsnrPJZNKgQYP05ZdfqnLlynJ3d1dwcLCWLVtmVe/YsWPq2bOnKlSoIHd3d5UoUUJt2rTRvn37rOrd/h1++eWXGjFihEqUKCEXFxcdO3Ysw6lQS5cuVf369eXu7i4vLy81bdpUmzZtyrC/ANgPiQUAIEPR0dGSpIoVK1rK1q5dqyeffFKXL1/Wp59+qh9++EE1atRQp06dFBkZKUkKDg5WzZo1NWfOnHTHjIyMVPHixdWyZUtJ0oEDB/T444/rjz/+0Pvvv69ly5apVatWGjJkiCZNmpRu/1dffVWnTp3SF198oc8++0xHjx5VmzZtLB/k78W1a9cUEhKiuXPnasiQIVq5cqVGjx6tyMhItW3bVoZhZHmM2NhYde7cWV27dtUPP/yg//u//9Nbb72loUOHSrr14Xzw4MH65Zdf0q1XmTdvnuLj4zNNLOrUqSNnZ2cNHTpU8+fPV0xMTIZ1//zzTz3++OP6/vvvNXz4cK1cuVIffvihzGazLl26dF/nvHz5cn388cd64403tGjRIhUtWlTt27fXiRMnLHXOnTsnHx8fTZkyRatWrdInn3wiJycnPfHEE+mSPkkaO3asTp8+rU8//VQ//vijihcvftfzWbBggZ555hl5e3vr66+/1qxZs3Tp0iWFhoZqw4YNGfYDADsxAAAF3pw5cwxJxubNm42UlBQjISHBWLVqleHn52c0atTISElJsdQNCgoyatasaVVmGIbRunVrw9/f30hNTTUMwzD+85//GJKMw4cPW+r8/fffhouLizFixAhLWXh4uFGyZEnjypUrVscbNGiQ4erqavz999+GYRjG2rVrDUlGy5Ytrep9++23hiRj06ZNlrIyZcoYPXr0SHeeISEhRkhIiOX55MmTDQcHB2Pbtm1W9f773/8akowVK1Zk1m1GSEiIIcn44YcfrMr79u1rODg4GKdOnTIMwzDi4+MNLy8vY+jQoVb1qlSpYoSFhWXahmEYxqxZswxPT09DkiHJ8Pf3N7p372789ttvVvV69eplODs7GwcOHMjwWPdyzpIMX19fIz4+3lIWGxtrODg4GJMnT86wjZs3bxo3btwwKlSoYLz88suW8tu/w0aNGqXb5/a2tWvXGoZhGKmpqUZAQIBRvXp1y5gyDMNISEgwihcvbjRo0CDD9gHYB1csAAAW9erVk7Ozs7y8vNS8eXMVKVJEP/zwg5ycbi3JO3bsmA4dOqSuXbtKkm7evGl5tGzZUjExMZb/UHft2lUuLi6WqxiS9PXXXys5OdmyViApKUm//vqr2rdvL3d393THS0pK0ubNm61ibNu2rdXzxx57TJJ06tSpez7fZcuWqVq1aqpRo4ZV2+Hh4dm+Q5GXl1e6mLp06aK0tDT99ttvljo9e/ZUZGSkZbrRmjVrdODAAQ0aNCjLNnr16qWzZ89qwYIFGjJkiEqVKqWvvvpKISEh+te//mWpt3LlSoWFhaly5coP7JzDwsLk5eVlee7r66vixYtb9ffNmzf1zjvvqEqVKipUqJCcnJxUqFAhHT16VAcPHkwXw7PPPpvlOR8+fFjnzp1Tt27drKZ7eXp66tlnn9XmzZt17dq1LI8DIPeQWAAALObNm6dt27ZpzZo16tevnw4ePKjnn3/esv32PP2RI0fK2dnZ6vHSSy9Jki5cuCBJKlq0qNq2bat58+ZZpilFRkaqbt26qlq1qqRb6wdu3rypjz76KN3xbk+Vun2823x8fKyeu7i4SJKuX79+z+d7/vx57d27N13bXl5eMgwjXdt34+vrm67Mz8/Pcn63DR48WAkJCZo/f74k6eOPP1bJkiX1zDPPZCtWs9ms559/Xv/+97+1ZcsW7d27V76+vho3bpwuX74sSfrrr79UsmTJB3rOd/a3dKvP/9nfw4cP12uvvaZ27drpxx9/1JYtW7Rt2zYFBwff9feS0XqRf8psbUlAQIDS0tIs07sA5A3cFQoAYFG5cmXLgu2wsDClpqbqiy++0H//+1/93//9n4oVKybp1hz5Dh063PUYlSpVsvzcs2dPfffdd/rll19UunRpbdu2TTNmzLBsL1KkiBwdHdWtW7cM1xmULVv2ns/D1dVVycnJ6covXLhgOQdJKlasmNzc3DR79uy7HuefdTNy58J26da6C8n6Q3n58uXVokULffLJJ2rRooWWLl2qSZMmydHRMcs27qZq1arq3LmzPvzwQx05ckR169bVI488orNnz2a634M45zt99dVX6t69u9555x2r8gsXLqhw4cLp6ptMpiyPebvv7ram5Ny5c3JwcOAWyEAeQ2IBAMjQ1KlTtWjRIr3++uvq0KGDKlWqpAoVKmjPnj3pPkTeTbNmzVSiRAnNmTNHpUuXlqurq9UVEHd3d4WFhWnXrl167LHHVKhQoQcSd2BgoPbu3WtVduTIER0+fNjqg3Pr1q31zjvvyMfH574SGElKSEjQ0qVLraZDLViwQA4ODmrUqJFV3aFDh6pZs2bq0aOHHB0d1bdv3yyPf/HiRXl5ed21bw4dOiTp1n/wJalFixb68ssvdfjwYasE758exDnfyWQyWa4c3bZ8+XL9+eefKl++/H0ds1KlSipRooQWLFigkSNHWpKRxMRELVq0yHKnKAB5B4kFACBDRYoU0dixYzVq1CgtWLBAL7zwgmbOnKkWLVooPDxcERERKlGihP7++28dPHhQO3fu1HfffWfZ39HRUd27d9e0adPk7e2tDh06yGw2W7Xx73//W0899ZQaNmyoAQMGKDAwUAkJCTp27Jh+/PFHrVmz5p7j7tatm1544QW99NJLevbZZ3Xq1ClNnTpVjzzyiFW9YcOGadGiRWrUqJFefvllPfbYY0pLS9Pp06f1888/a8SIEXriiScybcvHx0cDBgzQ6dOnVbFiRa1YsUKff/65BgwYoNKlS1vVbdq0qapUqaK1a9fqhRdeyPBuSP+0du1aDR06VF27dlWDBg3k4+OjuLg4ff3111q1apW6d+9umf70xhtvaOXKlWrUqJFeffVVVa9eXZcvX9aqVas0fPhwBQUFPZBzvlPr1q0VGRmpoKAgPfbYY9qxY4f+9a9/ZTktKzMODg6aOnWqunbtqtatW6tfv35KTk7Wv/71L12+fFlTpky572MDyCH2Xj0OALC/23eFuvNOQYZhGNevXzdKly5tVKhQwbh586ZhGIaxZ88eo2PHjkbx4sUNZ2dnw8/Pz2jcuLHx6aefptv/yJEjlrsZ/fLLL3dtPzo62ujVq5dRokQJw9nZ2XjkkUeMBg0aGG+99Zalzu27Bn333Xfp9pVkzJkzx1KWlpZmTJ061Xj00UcNV1dXo06dOsaaNWvS3RXKMAzj6tWrxvjx441KlSoZhQoVMsxms1G9enXj5ZdfNmJjYzPtt5CQEKNq1apGVFSUUadOHcPFxcXw9/c3Xn311XR3zbpt4sSJljtwZceZM2eM8ePHG08++aTh5+dnODk5GV5eXsYTTzxhfPTRR5bfyT/r9+rVy/Dz8zOcnZ2NgIAAo2PHjsb58+fv+ZwlGQMHDkwX05133bp06ZLRu3dvo3jx4oa7u7vx1FNPGevXr0/X3xn9Dv+57fZdoW5bsmSJ8cQTTxiurq6Gh4eH8fTTTxu///57tvoOQO4yGUY2btINAAAeiDp16shkMmnbtm32DgUAHiimQgEAkMPi4+P1xx9/aNmyZdqxY4e+//57e4cEAA8ciQUAADls586dCgsLk4+PjyZMmKB27drZOyQAeOCYCgUAAADAZnxBHgAAAACbkVgAAAAAsBmJBQAAAACbsXgbeVZaWprOnTsnLy8vyzeuAgAAIPcYhqGEhAQFBATIwSHzaxIkFsizzp07p1KlStk7DAAAgALvzJkzKlmyZKZ1SCyQZ3l5eUm6NZC9vb3tHA0AAMhJNd/4RZK06/Wmdo4E/xQfH69SpUpZPpdlhsQCedbt6U/e3t4kFgAAPOQcXdwlib/5eVR2pqWzeBsAAACAzUgsAAAAANiMxAIAAACAzUgsAAAAANiMxdsAAACwO1+zi71DgI1ILAAAAGB360c1tncIsBFToQAAAADYjMQCAAAAgM1ILAAAAGB3FcetVMVxK+0dBmxAYgEAAADAZiQWAAAAAGxGYgEAAADAZiQWAAAAAGxGYgEAAADAZiQWAAAAAGzGN28jz6s24Sc5uLjbOwwAAGxyckore4eQpy1+qYG9Q4CNSCwAAABgd9VKmO0dAmzEVCgAAAAANiOxAAAAgN31+3K7+n253d5hwAZMhQIAAIDdrT30l71DgI24YgEAAADAZiQWAAAAAGxGYgEAAADAZiQWAAAAAGxGYgEAAADAZtwVCgAAAHY3qHF5e4cAG5FYAAAAwO6GPF3B3iHARkyFeshFRUXJZDLp8uXLGdaJjIxU4cKFMz3OxIkTVaNGjQcaGwAAAB4eJBYPuQYNGigmJkZms9neoQAAAGTo221n9O22M/YOAzZgKtRDrlChQvLz87N3GAAAAJkav+QPSVLHx0vZORLcL65Y5DOhoaEaPHiwhg0bpiJFisjX11efffaZEhMT1bNnT3l5ealcuXJauXKlpLtPhYqMjFTp0qXl7u6u9u3b6+LFi+namTJlinx9feXl5aXevXsrKSnJavu2bdvUtGlTFStWTGazWSEhIdq5c6dle69evdS6dWurfW7evCk/Pz/Nnj37AfYIAAAA8gISi3xo7ty5KlasmLZu3arBgwdrwIABeu6559SgQQPt3LlT4eHh6tatm65du5Zu3y1btqhXr1566aWXtHv3boWFhemtt96yqvPtt99qwoQJevvtt7V9+3b5+/tr+vTpVnUSEhLUo0cPrV+/Xps3b1aFChXUsmVLJSQkSJL69OmjVatWKSYmxrLPihUrdPXqVXXs2DEHegUAAAD2ZDIMw7B3EMi+0NBQpaamav369ZKk1NRUmc1mdejQQfPmzZMkxcbGyt/fX5s2bVJSUpLCwsJ06dIlFS5cWF26dNGlS5csVzQkqXPnzlq1apXlqkaDBg0UHBysGTNmWOrUq1dPSUlJ2r17913jSk1NVZEiRbRgwQLLlYqqVauqR48eGjVqlCSpffv2Kly4sObMmXPXYyQnJys5OdnyPD4+XqVKlVKpYd/KwcX9/joMAIA84uSUVvYOIU+rOO7WZ5Mjb7ewcyT4p/j4eJnNZl25ckXe3t6Z1uWKRT702GOPWX52dHSUj4+Pqlevbinz9fWVJMXFxaXb9+DBg6pfv75V2Z3Ps1MnLi5O/fv3V8WKFWU2m2U2m3X16lWdPn3aUqdPnz6WJCIuLk7Lly9Xr169MjyvyZMnW45lNptVqhRzLAEAAPILEot8yNnZ2eq5yWSyKjOZTJKktLS0dPs+qAtUERER2rFjhz788ENt3LhRu3fvlo+Pj27cuGGp0717d504cUKbNm3SV199pcDAQDVs2DDDY44dO1ZXrlyxPM6c4c4QAAAA+QV3hSpgqlSpos2bN1uV3fm8cuXK2rx5s7p3755hnfXr12v69Olq2bKlJOnMmTO6cOGCVR0fHx+1a9dOc+bM0aZNm9SzZ89MY3NxcZGLi8s9nxMAAMj/KgdkPs0GeR+JRQEzZMgQNWjQQFOnTlW7du30888/a9WqVVZ1hg4dqh49eqhOnTp66qmnNH/+fO3fv1+PPvqopU758uX15Zdfqk6dOoqPj9crr7wiNze3dO316dNHrVu3Vmpqqnr06JHj5wcAAPKnHwY+ae8QYCOmQhUw9erV0xdffKGPPvpINWrU0M8//6zx48db1enUqZNef/11jR49WrVr19apU6c0YMAAqzqzZ8/WpUuXVLNmTXXr1k1DhgxR8eLF07XXpEkT+fv7Kzw8XAEBATl6bgAAALAf7gqFHHXt2jUFBARo9uzZ6tChwz3te/suBNwVCgDwMOCuUJm7ePXWnSF9PJkWnZfcy12hmAqFHJGWlqbY2Fi9//77MpvNatu2rb1DAgAAeVj9yWskcbvZ/IzEAjni9OnTKlu2rEqWLKnIyEg5OTHUAAAAHmZ82kOOCAwMfGC3tgUAAEDex+JtAAAAADYjsQAAAABgMxILAAAAADYjsQAAAABgMxZvAwAAwO7WjQq1dwiwEYkFAAAA7M7f7GbvEGAjpkIBAAAAsBmJBQAAAOyu46eb1PHTTfYOAzZgKhQAAADsbveZy/YOATYisUCe98ekcHl7e9s7DAAAAGSCqVAAAAAAbEZiAQAAAMBmJBYAAAAAbEZiAQAAAMBmLN4GAACA3b3Wpoq9Q4CNSCwAAABgd93qlbF3CLARU6EAAAAA2IzEAgAAAHb36brj+nTdcXuHARswFQoAAAB2N+3nI5Kk/iHl7BwJ7hdXLAAAAADYjMQCAAAAgM1ILAAAAADYjMQCAAAAgM1ILAAAAADYjLtCAQAAwO6eqlDM3iHARiQWAAAAsLvZEY/bOwTYiKlQAAAAAGxGYgEAAAC7O3o+QUfPJ9g7DNiAqVAAAACwu1b/2SBJOvJ2CztHgvvFFQsAAAAANiOxAAAAAGAzEgsAAAAANiOxAAAAAGAzEgsAAAAANiOxAAAAAGAzbjcLAAAAu9s3qZm9Q4CNSCwAAABgdy5OjvYOATZiKhQAAAAAm5FYAAAAwO6aTFunJtPW2TsM2ICpUAAAALC70xev2TsE2IgrFgAAAABsRmIBAAAAwGYkFgAAAABsRmIBAAAAwGYs3kaeV23CT3Jwcbd3GAAAIIcVcuR/3vkZvz0AAADkCf/uXMPeIcAGJBYAAADIE1pU97d3CLABiQUAAAAAm5FYAAAAIE94Z8VBe4cAG5BYAAAAIE+I/P2kvUOADUgsAAAAANiMxAIAAACAzUgsAAAAANiMxAIAAACAzUgsAAAAANiMxAIAAAB5QpvgAHuHABuQWAAAACBPeL9jsL1DgA1ILAqgyMhIFS5cONfbnThxomrUqJHr7QIAACDnkVgAAAAgT9h84qK9Q4ANSCwAAACQJ3SftdXeIcAGJBZ5wI8//qjChQsrLS1NkrR7926ZTCa98sorljr9+vXT888/L0nauHGjGjVqJDc3N5UqVUpDhgxRYmKipe6NGzc0atQolShRQh4eHnriiScUFRWVYfsXL15U3bp11bZtWyUlJckwDE2dOlWPPvqo3NzcFBwcrP/+97+W+lFRUTKZTPr1119Vp04dubu7q0GDBjp8+LDVcadMmSJfX195eXmpd+/eSkpKehDdBQAAgDyIxCIPaNSokRISErRr1y5J0rp161SsWDGtW7fOUicqKkohISHat2+fwsPD1aFDB+3du1fffPONNmzYoEGDBlnq9uzZU7///rsWLlyovXv36rnnnlPz5s119OjRdG2fPXtWDRs2VFBQkBYvXixXV1eNHz9ec+bM0YwZM7R//369/PLLeuGFF6zikaRx48bp/fff1/bt2+Xk5KRevXpZtn377beaMGGC3n77bW3fvl3+/v6aPn16pv2QnJys+Ph4qwcAAADyB5NhGIa9g4BUu3ZtdenSRSNGjFD79u31+OOPa9KkSbpw4YISExPl7++vgwcP6p133pGbm5tmzpxp2XfDhg0KCQlRYmKi/vzzT1WoUEFnz55VQMD/btnWpEkT1a1bV++8844iIyM1bNgwbd26VU2bNtUzzzyjf//73zKZTEpMTFSxYsW0Zs0a1a9f37J/nz59dO3aNS1YsEBRUVEKCwvT6tWr9fTTT0uSVqxYoVatWun69etydXVVgwYNFBwcrBkzZliOUa9ePSUlJWn37t137YOJEydq0qRJ6cpLDftWDi7utnYxAADI4wo5OujI2y3sHQb+IT4+XmazWVeuXJG3t3emdblikUeEhoYqKipKhmFo/fr1euaZZ1StWjVt2LBBa9eula+vr4KCgrRjxw5FRkbK09PT8ggPD1daWpqio6O1c+dOGYahihUrWtVZt26djh8/bmnv+vXreuqpp9SuXTv95z//kclkkiQdOHBASUlJatq0qdX+8+bNs9pfkh577DHLz/7+/pKkuLg4SdLBgwetEhNJ6Z7faezYsbpy5YrlcebMmfvvUAAAAOQqJ3sHgFtCQ0M1a9Ys7dmzRw4ODqpSpYpCQkK0bt06Xbp0SSEhIZKktLQ09evXT0OGDEl3jNKlS2vv3r1ydHTUjh075OjoaLXd09PT8rOLi4uaNGmi5cuX65VXXlHJkiUtx5ek5cuXq0SJElb7u7i4WD13dna2/Hw7Mbm9//1wcXFJ1wYAAADyBxKLPOL2OosPP/xQISEhMplMCgkJ0eTJk3Xp0iUNHTpUklSrVi3t379f5cuXv+txatasqdTUVMXFxalhw4YZtufg4KAvv/xSXbp0UePGjRUVFaWAgABVqVJFLi4uOn36tCWZuR+VK1fW5s2b1b17d0vZ5s2b7/t4AADg4efh4ph1JeRZTIXKI8xms2rUqKGvvvpKoaGhkm4lGzt37tSRI0csZaNHj9amTZs0cOBA7d69W0ePHtXSpUs1ePBgSVLFihXVtWtXde/eXYsXL1Z0dLS2bdumd999VytWrLBq09HRUfPnz1dwcLAaN26s2NhYeXl5aeTIkXr55Zc1d+5cHT9+XLt27dInn3yiuXPnZvt8hg4dqtmzZ2v27Nk6cuSIJkyYoP379z+QvgIAAA+nXa83s3cIsAGJRR4SFham1NRUSxJRpEgRValSRY888ogqV64s6da6hnXr1uno0aNq2LChatasqddee82yxkGS5syZo+7du2vEiBGqVKmS2rZtqy1btqhUqVLp2nRyctLXX3+tqlWrqnHjxoqLi9Obb76p119/XZMnT1blypUVHh6uH3/8UWXLls32uXTq1Emvv/66Ro8erdq1a+vUqVMaMGCAbR0EAACAPIu7QiHPun0XAu4KBQBAwXBySit7h4A7cFcoAAAA5Ds13/jZ3iHABiQWAAAAyBMSk1PtHQJsQGIBAAAAwGYkFgAAAABsRmIBAAAAwGYkFgAAAABsRmIBAAAAwGYkFgAAAMgT5vWua+8QYAMSCwAAAOQJ9R71sXcIsAGJBQAAAACbkVgAAAAgTxjx7R57hwAbmAzDMOwdBHA38fHxMpvNunLliry9ve0dDgAAyEEVx62UJB15u4WdI8E/3cvnMa5YAAAAALAZiQUAAAAAm5FYAAAAALAZiQUAAAAAm5FYAAAAALCZk70DAAAAACKeDLR3CLARiQUAAADs7tWWle0dAmzEVCgAAAAANiOxAAAAgN2t3Bejlfti7B0GbMBUKAAAANjd0IW7JUktqvvbNxDcN65YAAAAALAZiQUAAAAAm5FYAAAAALAZiQUAAAAAm5FYAAAAALAZd4UCAACA3ZX2cbd3CLARiQUAAADsbvXwEHuHABsxFQoAAACAzUgsAAAAYHfJN1OVfDPV3mHABkyFAgAAgN1Vn/CzJOnI2y3sHAnuF1csAAAAANiMxAIAAACAzUgsAAAAANiMxAIAAACAzUgsAAAAANiMxAIAAACAzbjdLAAAAOxu+ZCn7B0CbERiAQAAALur4Otl7xBgI6ZCAQAAALAZiQUAAADsrlfkNvWK3GbvMGADpkIBAADA7jYcvWDvEGAjrlgAAAAAsBmJBQAAAACbkVgAAAAAsBmJBQAAAACbsXgbeV61CT/JwcXd3mEAAIBcEDhmub1DyNNOTmll7xAyxBULAAAAADYjsQAAAABgMxILAAAAADYjsQAAAABgMxILAAAAADYjsQAAAABgMxILAAAAADYjsQAAAABgMxILAAAAADYjsQAAAABgMxILAAAAADbL14nFxIkTVaNGDXuHcd+ioqJkMpl0+fJle4eSJZPJpCVLltg7DAAAAORRTvYOwBYjR47U4MGD7R1GgRATE6MiRYrYOwwAAADkUXkysbhx44YKFSqUZT1PT095enrmQkTw8/OzdwgAAADIw+5pKlRoaKgGDx6sYcOGqUiRIvL19dVnn32mxMRE9ezZU15eXipXrpxWrlxptd+6detUt25dubi4yN/fX2PGjNHNmzetjjto0CANHz5cxYoVU9OmTS3ThH799VfVqVNH7u7uatCggQ4fPmzZ786pUBEREWrXrp3ee+89+fv7y8fHRwMHDlRKSoqlTkxMjFq1aiU3NzeVLVtWCxYsUGBgoD788MMMz3vbtm1q2rSpihUrJrPZrJCQEO3cudOqjslk0hdffKH27dvL3d1dFSpU0NKlS63qrFixQhUrVpSbm5vCwsJ08uTJLPv8ypUrevHFF1W8eHF5e3urcePG2rNnjyTp8OHDMplMOnTokNU+06ZNU2BgoAzDkCQdOHBALVu2lKenp3x9fdWtWzdduHDBqv+HDBmiUaNGqWjRovLz89PEiRPTnd/tqVAnT56UyWTS4sWLFRYWJnd3dwUHB2vTpk1W+3z++ecqVaqU3N3d1b59e02bNk2FCxfO8pwBAACQ/9zzGou5c+eqWLFi2rp1qwYPHqwBAwboueeeU4MGDbRz506Fh4erW7duunbtmiTpzz//VMuWLfX4449rz549mjFjhmbNmqW33nor3XGdnJz0+++/a+bMmZbycePG6f3339f27dvl5OSkXr16ZRrf2rVrdfz4ca1du1Zz585VZGSkIiMjLdu7d++uc+fOKSoqSosWLdJnn32muLi4TI+ZkJCgHj16aP369dq8ebMqVKigli1bKiEhwarepEmT1LFjR+3du1ctW7ZU165d9ffff0uSzpw5ow4dOqhly5bavXu3+vTpozFjxmTarmEYatWqlWJjY7VixQrt2LFDtWrV0tNPP62///5blSpVUu3atTV//nyr/RYsWKAuXbrIZDIpJiZGISEhqlGjhrZv365Vq1bp/Pnz6tixo9U+c+fOlYeHh7Zs2aKpU6fqjTfe0C+//JJpfOPGjdPIkSO1e/duVaxYUc8//7wlYfz999/Vv39/DR06VLt371bTpk319ttvZ3o8AAAA5F8m4/a/tbMhNDRUqampWr9+vSQpNTVVZrNZHTp00Lx58yRJsbGx8vf316ZNm1SvXj2NGzdOixYt0sGDB2UymSRJ06dP1+jRo3XlyhU5ODgoNDRUV65c0a5duyxtRUVFKSwsTKtXr9bTTz8t6dZ//Fu1aqXr16/L1dVVEydO1JIlS7R7925Jt65YREVF6fjx43J0dJQkdezYUQ4ODlq4cKEOHTqkypUra9u2bapTp44k6dixY6pQoYI++OADDRs2LFv9kJqaqiJFimjBggVq3br1rY40mTR+/Hi9+eabkqTExER5eXlpxYoVat68uV599VUtWbJE+/fvt/TDmDFj9O677+rSpUt3/U/+mjVr1L59e8XFxcnFxcVSXr58eY0aNUovvviiPvjgA3388cc6fvy4JOnIkSOqVKmS9u/frypVquj111/Xli1b9NNPP1n2P3v2rEqVKqXDhw+rYsWK6X6vklS3bl01btxYU6ZMsZzf999/r3bt2unkyZMqW7asvvjiC/Xu3VvSrasiVatW1cGDBxUUFKTOnTvr6tWrWrZsmeWYL7zwgpYtW5bhYvXk5GQlJydbnsfHx6tUqVIqNexbObi4Z+t3AwAA8DA7OaVVrrYXHx8vs9msK1euyNvbO9O693zF4rHHHrP87OjoKB8fH1WvXt1S5uvrK0mWqwAHDx5U/fr1LR+mJenJJ5/U1atXdfbsWUvZ7Q/6mbXn7+9vdey7qVq1qiWpuL3P7fqHDx+Wk5OTatWqZdlevnz5LBclx8XFqX///qpYsaLMZrPMZrOuXr2q06dPZxirh4eHvLy8rPqhXr16Vv1Qv379TNvdsWOHrl69Kh8fH8t6Ek9PT0VHR1sSic6dO+vUqVPavHmzJGn+/PmqUaOGqlSpYjnG2rVrrfYPCgqSJMsx7oz9zn7LSGa/m8OHD6tu3bpW9e98fqfJkydb+tdsNqtUqVKZ1gcAAEDecc+Lt52dna2em0wmq7LbH5zT0tIk3ZrO888P07fL/llXuvVBPKv27jx2duP7Zyx3k9VFm4iICP3111/68MMPVaZMGbm4uKh+/fq6ceOGzW1nJi0tTf7+/oqKikq37fYVDn9/f4WFhWnBggWqV6+evv76a/Xr18/qGG3atNG7776b7hi3k4GsYs/I/f7eMzJ27FgNHz7c8vz2FQsAAADkfTl+V6gqVapo0aJFVh80N27cKC8vL5UoUSKnm7cSFBSkmzdvateuXapdu7akW1OhsvoeifXr12v69Olq2bKlpFvrJf65+Dk7qlSpku57IG5fZchIrVq1FBsbKycnJwUGBmZYr2vXrho9erSef/55HT9+XJ07d7Y6xqJFixQYGCgnp9y7CVhQUJC2bt1qVbZ9+/ZM93FxcbGa8gUAAID8I8e/IO+ll17SmTNnNHjwYB06dEg//PCDJkyYoOHDh8vBIXe/ny8oKEhNmjTRiy++qK1bt2rXrl168cUX5ebmlu6/6/9Uvnx5ffnllzp48KC2bNmirl27ys3N7Z7a7t+/v44fP67hw4fr8OHDWrBggdWi8rtp0qSJ6tevr3bt2umnn37SyZMntXHjRo0fP97qQ3qHDh0UHx+vAQMGKCwszCphGzhwoP7++289//zz2rp1q06cOKGff/5ZvXr1Umpq6j2dw70YPHiwVqxYoWnTpuno0aOaOXOmVq5cmWk/AwAAIP/K8U/2JUqU0IoVK7R161YFBwerf//+6t27t8aPH5/TTd/VvHnz5Ovrq0aNGql9+/bq27evvLy85OrqmuE+s2fP1qVLl1SzZk1169ZNQ4YMUfHixe+p3dKlS2vRokX68ccfFRwcrE8//VTvvPNOpvuYTCatWLFCjRo1Uq9evVSxYkV17txZJ0+etKxlkSRvb2+1adNGe/bsUdeuXa2OERAQoN9//12pqakKDw9XtWrVNHToUJnN5hxN7J588kl9+umnmjZtmoKDg7Vq1Sq9/PLLmfYzAAAA8q97uivUw+j2HZL+efcp5Iy+ffvq0KFDVnefysztuxBwVygAAIBb8vJdofLkN2/npDVr1ujq1auqXr26YmJiNGrUKAUGBqpRo0b2Du2h895776lp06by8PDQypUrNXfuXE2fPt3eYQEAACAHFLjEIiUlRa+++qpOnDghLy8vNWjQQPPnz093VyTYbuvWrZo6daoSEhL06KOP6j//+Y/69Olj77AAAACQAwpcYhEeHq7w8HB7h1EgfPvtt/YOAQAAALkkd2/LBAAAAOChRGIBAAAAwGYkFgAAAABsRmIBAAAAwGYkFgAAAABsRmIBAAAAwGYkFgAAAABsRmIBAAAAwGYF7gvykP/8MSlc3t7e9g4DAADkoP/8elSSNOTpCnaOBPeLKxYAAACwu4/XHNPHa47ZOwzYgMQCAAAAgM1ILAAAAADYjMQCAAAAgM1ILAAAAADYjMQCAAAAgM243SwAAADsLizoEXuHABuRWAAAAMDuZnarY+8QYCOmQgEAAACwGYkFAAAA7O6PP6/ojz+v2DsM2ICpUAAAALC7DtM3SpKOvN3CzpHgfnHFAgAAAIDNSCwAAAAA2IzEAgAAAIDNSCwAAAAA2IzEAgAAAIDNuCsU8izDMCRJ8fHxdo4EAADktNTka5L4u5/X3P593P5clhkSC+RZFy9elCSVKlXKzpEAAIDcYn7f3hHgbhISEmQ2mzOtQ2KBPKto0aKSpNOnT2c5kAuq+Ph4lSpVSmfOnJG3t7e9w8mT6KOs0UeZo3+yRh9ljT7KGn2UNXv0kWEYSkhIUEBAQJZ1SSyQZzk43FoCZDabeYPJgre3N32UBfooa/RR5uifrNFHWaOPskYfZS23+yi7/+Bl8TYAAAAAm5FYAAAAALAZiQXyLBcXF02YMEEuLi72DiXPoo+yRh9ljT7KHP2TNfooa/RR1uijrOX1PjIZ2bl3FAAAAABkgisWAAAAAGxGYgEAAADAZiQWAAAAAGxGYgEAAADAZiQWyJOmT5+usmXLytXVVbVr19b69evtHZLdTJ48WY8//ri8vLxUvHhxtWvXTocPH7aqExERIZPJZPWoV6+enSLOfRMnTkx3/n5+fpbthmFo4sSJCggIkJubm0JDQ7V//347Rpz7AgMD0/WRyWTSwIEDJRXMMfTbb7+pTZs2CggIkMlk0pIlS6y2Z2fcJCcna/DgwSpWrJg8PDzUtm1bnT17NhfPImdl1kcpKSkaPXq0qlevLg8PDwUEBKh79+46d+6c1TFCQ0PTja3OnTvn8pnkjKzGUHZeVwV5DEm66/uSyWTSv/71L0udh3kMSdn7O59f3o9ILJDnfPPNNxo2bJjGjRunXbt2qWHDhmrRooVOnz5t79DsYt26dRo4cKA2b96sX375RTdv3lSzZs2UmJhoVa958+aKiYmxPFasWGGniO2jatWqVue/b98+y7apU6dq2rRp+vjjj7Vt2zb5+fmpadOmSkhIsGPEuWvbtm1W/fPLL79Ikp577jlLnYI2hhITExUcHKyPP/74rtuzM26GDRum77//XgsXLtSGDRt09epVtW7dWqmpqbl1Gjkqsz66du2adu7cqddee007d+7U4sWLdeTIEbVt2zZd3b59+1qNrZkzZ+ZG+DkuqzEkZf26KshjSJJV38TExGj27NkymUx69tlnreo9rGNIyt7f+XzzfmQAeUzdunWN/v37W5UFBQUZY8aMsVNEeUtcXJwhyVi3bp2lrEePHsYzzzxjv6DsbMKECUZwcPBdt6WlpRl+fn7GlClTLGVJSUmG2Ww2Pv3001yKMO8ZOnSoUa5cOSMtLc0wDMaQJOP777+3PM/OuLl8+bLh7OxsLFy40FLnzz//NBwcHIxVq1blWuy55c4+uputW7cakoxTp05ZykJCQoyhQ4fmbHB5wN36J6vXFWMovWeeecZo3LixVVlBGUO33fl3Pj+9H3HFAnnKjRs3tGPHDjVr1syqvFmzZtq4caOdospbrly5IkkqWrSoVXlUVJSKFy+uihUrqm/fvoqLi7NHeHZz9OhRBQQEqGzZsurcubNOnDghSYqOjlZsbKzVmHJxcVFISEiBHVM3btzQV199pV69eslkMlnKC/oY+qfsjJsdO3YoJSXFqk5AQICqVatWYMfWlStXZDKZVLhwYavy+fPnq1ixYqpatapGjhxZoK4WZva6YgxZO3/+vJYvX67evXun21aQxtCdf+fz0/uRU661BGTDhQsXlJqaKl9fX6tyX19fxcbG2imqvMMwDA0fPlxPPfWUqlWrZilv0aKFnnvuOZUpU0bR0dF67bXX1LhxY+3YsSPPfjvng/TEE09o3rx5qlixos6fP6+33npLDRo00P79+y3j5m5j6tSpU/YI1+6WLFmiy5cvKyIiwlJW0MfQnbIzbmJjY1WoUCEVKVIkXZ2C+H6VlJSkMWPGqEuXLvL29raUd+3aVWXLlpWfn5/++OMPjR07Vnv27LFMx3uYZfW6YgxZmzt3rry8vNShQwer8oI0hu72dz4/vR+RWCBP+ud/UaVbL7Q7ywqiQYMGae/evdqwYYNVeadOnSw/V6tWTXXq1FGZMmW0fPnydG/QD6MWLVpYfq5evbrq16+vcuXKae7cuZaFkoyp/5k1a5ZatGihgIAAS1lBH0MZuZ9xUxDHVkpKijp37qy0tDRNnz7dalvfvn0tP1erVk0VKlRQnTp1tHPnTtWqVSu3Q81V9/u6KohjSJJmz56trl27ytXV1aq8II2hjP7OS/nj/YipUMhTihUrJkdHx3TZdVxcXLpMvaAZPHiwli5dqrVr16pkyZKZ1vX391eZMmV09OjRXIoub/Hw8FD16tV19OhRy92hGFO3nDp1SqtXr1afPn0yrVfQx1B2xo2fn59u3LihS5cuZVinIEhJSVHHjh0VHR2tX375xepqxd3UqlVLzs7OBXJs3fm6Ygz9z/r163X48OEs35ukh3cMZfR3Pj+9H5FYIE8pVKiQateune7y5i+//KIGDRrYKSr7MgxDgwYN0uLFi7VmzRqVLVs2y30uXryoM2fOyN/fPxcizHuSk5N18OBB+fv7Wy6f/3NM3bhxQ+vWrSuQY2rOnDkqXry4WrVqlWm9gj6GsjNuateuLWdnZ6s6MTEx+uOPPwrM2LqdVBw9elSrV6+Wj49Plvvs379fKSkpBXJs3fm6Ygz9z6xZs1S7dm0FBwdnWfdhG0NZ/Z3PV+9HubZMHMimhQsXGs7OzsasWbOMAwcOGMOGDTM8PDyMkydP2js0uxgwYIBhNpuNqKgoIyYmxvK4du2aYRiGkZCQYIwYMcLYuHGjER0dbaxdu9aoX7++UaJECSM+Pt7O0eeOESNGGFFRUcaJEyeMzZs3G61btza8vLwsY2bKlCmG2Ww2Fi9ebOzbt894/vnnDX9//wLTP7elpqYapUuXNkaPHm1VXlDHUEJCgrFr1y5j165dhiRj2rRpxq5duyx3NMrOuOnfv79RsmRJY/Xq1cbOnTuNxo0bG8HBwcbNmzftdVoPVGZ9lJKSYrRt29YoWbKksXv3bqv3p+TkZMMwDOPYsWPGpEmTjG3bthnR0dHG8uXLjaCgIKNmzZoPRR9l1j/ZfV0V5DF025UrVwx3d3djxowZ6fZ/2MeQYWT9d94w8s/7EYkF8qRPPvnEKFOmjFGoUCGjVq1aVrdWLWgk3fUxZ84cwzAM49q1a0azZs2MRx55xHB2djZKly5t9OjRwzh9+rR9A89FnTp1Mvz9/Q1nZ2cjICDA6NChg7F//37L9rS0NGPChAmGn5+f4eLiYjRq1MjYt2+fHSO2j59++smQZBw+fNiqvKCOobVr1971tdWjRw/DMLI3bq5fv24MGjTIKFq0qOHm5ma0bt36oeq3zPooOjo6w/entWvXGoZhGKdPnzYaNWpkFC1a1ChUqJBRrlw5Y8iQIcbFixfte2IPSGb9k93XVUEeQ7fNnDnTcHNzMy5fvpxu/4d9DBlG1n/nDSP/vB+Z/v8JAQAAAMB9Y40FAAAAAJuRWAAAAACwGYkFAAAAAJuRWAAAAACwGYkFAAAAAJuRWAAAAACwGYkFAAAAAJuRWAAAAACwGYkFAAAAAJuRWAAACoyIiAiZTCaZTCY5OTmpdOnSGjBggC5dumTv0AAg3yOxAAAUKM2bN1dMTIxOnjypL774Qj/++KNeeukle4cFAPkeiQUAoEBxcXGRn5+fSpYsqWbNmqlTp076+eefLdvnzJmjypUry9XVVUFBQZo+fbplW/369TVmzBir4/31119ydnbW2rVrJUk3btzQqFGjVKJECXl4eOiJJ55QVFSUpX5kZKQKFy6sn376SZUrV5anp6cl2bktNDRUw4YNs2qnXbt2ioiIsDzPqh0AyG0kFgCAAuvEiRNatWqVnJ2dJUmff/65xo0bp7ffflsHDx7UO++8o9dee01z586VJHXt2lVff/21DMOwHOObb76Rr6+vQkJCJEk9e/bU77//roULF2rv3r167rnn1Lx5cx09etSyz7Vr1/Tee+/pyy+/1G+//abTp09r5MiR9xR7dtoBgNxEYgEAKFCWLVsmT09Pubm5qVy5cjpw4IBGjx4tSXrzzTf1/vvvq0OHDipbtqw6dOigl19+WTNnzpQkderUSefOndOGDRssx1uwYIG6dOkiBwcHHT9+XF9//bW+++47NWzYUOXKldPIkSP11FNPac6cOZZ9UlJS9Omnn6pOnTqqVauWBg0apF9//TXb55DddgAgNznZOwAAAHJTWFiYZsyYoWvXrumLL77QkSNHNHjwYP311186c+aMevfurb59+1rq37x5U2azWZL0yCOPqGnTppo/f74aNmyo6Ohobdq0STNmzJAk7dy5U4ZhqGLFilZtJicny8fHx/Lc3d1d5cqVszz39/dXXFxcts8hu+0AQG4isQAAFCgeHh4qX768JOk///mPwsLCNGnSJA0aNEjSrelQTzzxhNU+jo6Olp+7du2qoUOH6qOPPtKCBQtUtWpVBQcHS5LS0tLk6OioHTt2WO0jSZ6enpafb0+9us1kMllNr3JwcLB6Lt26ynFbdtsBgNxEYgEAKNAmTJigFi1aaMCAASpRooROnDihrl27Zli/Xbt26tevn1atWqUFCxaoW7dulm01a9ZUamqq4uLi1LBhw/uO6ZFHHrFazJ2amqo//vhDYWFhD7QdAHiQSCwAAAVaaGioqlatqnfeeUcTJ07UkCFD5O3trRYtWig5OVnbt2/XpUuXNHz4cEm3rng888wzeu2113Tw4EF16dLFcqyKFSuqa9eu6t69u95//33VrFlTFy5c0Jo1a1S9enW1bNkyWzE1btxYw4cP1/Lly1WuXDl98MEHunz58gNvBwAeJBZvAwAKvOHDh+vzzz9XeHi4vvjiC0VGRqp69eoKCQlRZGSkypYta1W/a9eu2rNnjxo2bKjSpUtbbZszZ466d++uESNGqFKlSmrbtq22bNmiUqVKZTueXr16qUePHurevbtCQkJUtmxZy9WKB9kOADxIJuPOSZwAAAAAcI+4YgEAAADAZiQWAAAAAGxGYgEAAADAZiQWAAAAAGxGYgEAAADAZiQWAAAAAGxGYgEAAADAZiQWAAAAAGxGYgEAAADAZiQWAAAAAGxGYgEAAADAZiQWAAAAAGxGYgEAAADAZiQWAAAAAGxGYgEAAADAZiQWAAAAAGxGYgEAyJbIyEiZTCbLw9XVVX5+fgoLC9PkyZMVFxdn7xBzxe1+OHnyZJZ1f/rpJzVr1kwBAQFycXFRQECAQkNDNWXKlJwPNJcEBgYqIiLC3mEAyAOc7B0AACB/mTNnjoKCgpSSkqK4uDht2LBB7777rt577z198803atKkib1DzBM+/fRTDRgwQM8++6w+/vhjFS1aVGfOnNHGjRv13//+V2PGjLF3iA/E999/L29vb3uHASAPMBmGYdg7CABA3hcZGamePXtq27ZtqlOnjtW206dP66mnntLly5d19OhR+fr62inKnHe7H6KjoxUYGJhhvTJlyigwMFDr1q1Lty0tLU0ODvl70sD169fl5uZm7zAA5CH5+10NAJAnlC5dWu+//74SEhI0c+ZMq23bt29X27ZtVbRoUbm6uqpmzZr69ttvrercnl60Zs0a9e3bVz4+PvL29lb37t2VmJio2NhYdezYUYULF5a/v79GjhyplJQUq2NMmjRJTzzxhIoWLSpvb2/VqlVLs2bN0p3/PwsMDFTr1q21atUq1apVS25ubgoKCtLs2bPTndfmzZv15JNPytXVVQEBARo7dmy6djNy8eJF+fv733XbnUlFWlqaPvroI9WoUUNubm4qXLiw6tWrp6VLl1rV++abb1S/fn15eHjI09NT4eHh2rVrl1WdiIgIeXp66tixY2rZsqU8PT1VqlQpjRgxQsnJyTb12eLFi1WzZk25urpq0qRJlm13ToU6ffq0XnjhBRUvXlwuLi6qXLmy3n//faWlpVnVmzFjhoKDg+Xp6SkvLy8FBQXp1VdfzbxjAeRZTIUCADwQLVu2lKOjo3777TdL2dq1a9W8eXM98cQT+vTTT2U2m7Vw4UJ16tRJ165dS/eBtE+fPurQoYMWLlyoXbt26dVXX9XNmzd1+PBhdejQQS+++KJWr16td999VwEBARo+fLhl35MnT6pfv34qXbq0pFtJweDBg/Xnn3/q9ddft2pnz549GjFihMaMGSNfX1998cUX6t27t8qXL69GjRpJkg4cOKCnn35agYGBioyMlLu7u6ZPn64FCxZkqz/q16+vRYsWaeLEiWrfvr2qVasmR0fHu9aNiIjQV199pd69e+uNN95QoUKFtHPnTqt1HO+8847Gjx+vnj17avz48bpx44b+9a9/qWHDhtq6dauqVKliqZuSkqK2bduqd+/eGjFihH777Te9+eabMpvNVn1xL322c+dOHTx4UOPHj1fZsmXl4eFx13P566+/1KBBA924cUNvvvmmAgMDtWzZMo0cOVLHjx/X9OnTJUkLFy7USy+9pMGDB+u9996Tg4ODjh07pgMHDmSrfwHkQQYAANkwZ84cQ5Kxbdu2DOv4+voalStXtjwPCgoyatasaaSkpFjVa926teHv72+kpqZaHXvw4MFW9dq1a2dIMqZNm2ZVXqNGDaNWrVoZxpGammqkpKQYb7zxhuHj42OkpaVZtpUpU8ZwdXU1Tp06ZSm7fv26UbRoUaNfv36Wsk6dOhlubm5GbGyspezmzZtGUFCQIcmIjo7OsH3DMIxjx44Z1apVMyQZkgw3Nzfj6aefNj7++GPjxo0blnq//fabIckYN25chsc6ffq04eTklK5/EhISDD8/P6Njx46Wsh49ehiSjG+//daqbsuWLY1KlSpl2EZWfebo6GgcPnw43X5lypQxevToYXk+ZswYQ5KxZcsWq3oDBgwwTCaT5RiDBg0yChcunGE8APIfpkIBAB4Y4x9TaI4dO6ZDhw6pa9eukqSbN29aHi1btlRMTIwOHz5stX/r1q2tnleuXFmS1KpVq3Tlp06dsipbs2aNmjRpIrPZLEdHRzk7O+v111/XxYsX092xqkaNGpb/0kuSq6urKlasaHXMtWvX6umnn7ZaL+Lo6KhOnTplqy/KlSunPXv2aN26dZo0aZKaNGmibdu2adCgQapfv76SkpIkSStXrpQkDRw4MMNj/fTTT7p586a6d+9u1Y+urq4KCQlRVFSUVX2TyaQ2bdpYlT322GM29dljjz2mihUrZnnea9asUZUqVVS3bl2r8oiICBmGoTVr1kiS6tatq8uXL+v555/XDz/8oAsXLmR5bAB5G4kFAOCBSExM1MWLFxUQECBJOn/+vCRp5MiRcnZ2tnq89NJLkpTuw2TRokWtnhcqVCjD8tsfzCVp69atatasmSTp888/1++//65t27Zp3Lhxkm4tNP4nHx+fdPG7uLhY1bt48aL8/PzS1btbWUYcHBzUqFEjvf7661q6dKnOnTunTp06aceOHZY1HX/99ZccHR0zPe7tvnz88cfT9eU333yTrh/d3d3l6uqa7vxs6bOM1ovcKaO1JbfHxcWLFyVJ3bp10+zZs3Xq1Ck9++yzKl68uJ544gn98ssv2WoHQN7DGgsAwAOxfPlypaamKjQ0VJJUrFgxSdLYsWPVoUOHu+5TqVKlB9L2woUL5ezsrGXLlll9oF6yZMl9H9PHx0exsbHpyu9Wll0eHh4aO3asvvnmG/3xxx+SpEceeUSpqamKjY3N8MP77b7873//qzJlytx3+/90r31mMpmydVwfHx/FxMSkKz937pyk/52LJPXs2VM9e/ZUYmKifvvtN02YMEGtW7fWkSNHHth5Asg9JBYAAJudPn1aI0eOlNlsVr9+/STdShoqVKigPXv26J133snR9k0mk5ycnKwWR1+/fl1ffvnlfR8zLCxMS5cu1fnz5y3ToVJTU/XNN99ka/+YmJi7JgoHDx6U9L//4Ldo0UKTJ0/WjBkz9MYbb9z1WOHh4XJyctLx48f17LPP3s/ppJMTfSZJTz/9tCZPnqydO3eqVq1alvJ58+bJZDIpLCws3T4eHh5q0aKFbty4oXbt2mn//v0kFkA+RGIBALgnf/zxh2WOf1xcnNavX685c+bI0dFR33//vR555BFL3ZkzZ6pFixYKDw9XRESESpQoob///lsHDx7Uzp079d133z2QmFq1aqVp06apS5cuevHFF3Xx4kW99957cnFxue9jjh8/XkuXLlXjxo31+uuvy93dXZ988okSExOztX/VqlX19NNPq0WLFipXrpySkpK0ZcsWvf/++/L19VXv3r0lSQ0bNlS3bt301ltv6fz582rdurVcXFy0a9cuubu7a/DgwQoMDNQbb7yhcePG6cSJE2revLmKFCmi8+fPa+vWrfLw8LDc/jW7cqLPJOnll1/WvHnz1KpVK73xxhsqU6aMli9frunTp2vAgAGWdRp9+/aVm5ubnnzySfn7+ys2NlaTJ0+W2WzW448/blMMAOyDxAIAcE969uwp6dY6h8KFC6ty5coaPXq0+vTpY5VUSLf+679161a9/fbbGjZsmC5duiQfHx9VqVJFHTt2fGAxNW7cWLNnz9a7776rNm3aqESJEurbt6+KFy9u+QB/r6pVq6bVq1drxIgR6tGjh4oUKaJu3brp2Wef1Ysvvpjl/lOmTNFPP/2kt99+W7Gxsbp586ZKlSqlLl26aNy4cVZXMyIjIy3fIREZGSk3NzdVqVLF6jsdxo4dqypVqujf//63vv76ayUnJ8vPz0+PP/64+vfvf8/nlxN9Jt2a2rVx40aNHTtWY8eOVXx8vB599FFNnTrV6vbADRs2VGRkpL799ltdunRJxYoV01NPPaV58+alG0cA8ge+eRsAAACAzbgrFAAAAACbkVgAAAAAsBmJBQAAAACbkVgAAAAAsBmJBQAAAACbkVgAAAAAsBmJBQAAAACb8QV5yLPS0tJ07tw5eXl5yWQy2TscAACAAscwDCUkJCggIEAODplfkyCxQJ517tw5lSpVyt5hAAAAFHhnzpxRyZIlM61DYoE8y8vLS9Ktgezt7W3naAAAAOyr4cKGkqT1ndfnWpvx8fEqVaqU5XNZZkgskGfdnv7k7e1NYgEAAAo8RzdHSbLL56LsTEtn8TYAAAAAm5FYAAAAALAZiQUAAAAAm7HGAgAAAMhAamqqUlJS7B2GJMmvkJ8kKSkp6YEd09nZWY6Ojg/kWCQWAAAAwB0Mw1BsbKwuX75s71AsRpUfJUmKjo5+oMctXLiw/Pz8bP7eMBILAAAA4A63k4rixYvL3d09T3xZb1mVfaDHMwxD165dU1xcnCTJ39/fpuORWAAAAAD/kJqaakkqfHx87B1OjnJzc5MkxcXFqXjx4jZNi2LxNgAAAPAPt9dUuLu72zmS3HH7PG1dS0JiAQAAANxFXpj+9E8HLh7QgYsHHvhxH9R5klgAAAAAsBmJBQAAAPCQiIiIkMlkSvc4duxYjrfN4m0AAAAgmwLHLM/V9k5OaXXP+zRv3lxz5syxKnvkkUceVEgZIrEAAAAAHiIuLi7y8/PL9XaZCgUAAADAZiQWAAAAwENk2bJl8vT0tDyee+65XGmXqVDI8+otqCdHt/v/shYAAPKCfT322TsE5HNlzdn75u2wsDDNmDHD8tzDwyOnQrJCYgEAAADkA25Obtmq5+HhofLly+dwNOkxFQoAAACAzUgsAAAAgHzgdPxpnY4/be8wMsRUKAAAACAfuJpy1d4hZIrEAgAAAMim+/nCutwUGRlpt7aZCgUAAADAZiQWAAAAAGxGYgEAAADAZiQWAAAAAGzG4m0AAAAgHyjmVszeIWSKxAIAAADIB4q7F7d3CJkisXjIRUVFKSwsTJcuXVLhwoXvWicyMlLDhg3T5cuXMzzOxIkTtWTJEu3evTtH4szM5rCZ8vbyzL0GA2rmXlsAAAAPCdZYPOQaNGigmJgYmc1me4cCAAAAG1xKuqRLSZfsHUaGuGLxkCtUqJD8/PzsHQYAAABsFJMYI0kq4lrEzpHcHVcs8pnQ0FANHjxYw4YNU5EiReTr66vPPvtMiYmJ6tmzp7y8vFSuXDmtXLlS0q2pUCaTyWqaU2RkpEqXLi13d3e1b99eFy9eTNfOlClT5OvrKy8vL/Xu3VtJSUlW27dt26amTZuqWLFiMpvNCgkJ0c6dOy3be/XqpdatW1vtc/PmTfn5+Wn27NkPsEcAAACQF5BY5ENz585VsWLFtHXrVg0ePFgDBgzQc889pwYNGmjnzp0KDw9Xt27ddO3atXT7btmyRb169dJLL72k3bt3KywsTG+99ZZVnW+//VYTJkzQ22+/re3bt8vf31/Tp0+3qpOQkKAePXpo/fr12rx5sypUqKCWLVsqISFBktSnTx+tWrVKMTExln1WrFihq1evqmPHjnc9r+TkZMXHx1s9AAAAkH0REREymUyWh4+Pj5o3b669e/fmeNsmwzCMHG8FD0xoaKhSU1O1fv16SVJqaqrMZrM6dOigefPmSZJiY2Pl7++vTZs2KSkpyWrxdpcuXXTp0iXLFQ1J6ty5s1atWmW5qtGgQQMFBwdrxowZljr16tVTUlJShou3U1NTVaRIES1YsMBypaJq1arq0aOHRo0aJUlq3769ChcurDlz5tz1GBMnTtSkSZPSlV859BuLtwEAQK5JSkpSdHS0ypYtK1dXV+uNE3N53erEK5YfD1w8IEmq4lMlw+oRERE6f/685fNWbGysxo8fr7179+r06dN33Sez842Pj5fZbNaVK1fk7e2daahcsciHHnvsMcvPjo6O8vHxUfXq1S1lvr6+kqS4uLh0+x48eFD169e3KrvzeXbqxMXFqX///qpYsaLMZrPMZrOuXr1qNWD79OljGdRxcXFavny5evXqleF5jR07VleuXLE8zpw5k2FdAAAA3J2Li4v8/Pzk5+enGjVqaPTo0Tpz5oz++uuvHG2Xxdv5kLOzs9Vzk8lkVWYymSRJaWlp6fZ9UBeoIiIi9Ndff+nDDz9UmTJl5OLiovr16+vGjRuWOt27d9eYMWO0adMmbdq0SYGBgWrYsGGGx3RxcZGLi8sDiQ8AAADS1atXNX/+fJUvX14+Pj452haJRQFTpUoVbd682arszueVK1fW5s2b1b179wzrrF+/XtOnT1fLli0lSWfOnNGFCxes6vj4+Khdu3aaM2eONm3apJ49ez7IUwEAAChQXB1ds64kadmyZfL0vDWNPDExUf7+/lq2bJkcHHJ2shKJRQEzZMgQNWjQQFOnTlW7du30888/a9WqVVZ1hg4dqh49eqhOnTp66qmnNH/+fO3fv1+PPvqopU758uX15Zdfqk6dOoqPj9crr7wiNze3dO316dNHrVu3Vmpqqnr06JHj5wcAAPCwerTwo1lXkhQWFmZZK/v3339r+vTpatGihbZu3aoyZcrkWHyssShg6tWrpy+++EIfffSRatSooZ9//lnjx4+3qtOpUye9/vrrGj16tGrXrq1Tp05pwIABVnVmz56tS5cuqWbNmurWrZuGDBmi4sXTf818kyZN5O/vr/DwcAUEBOTouQEAAEDy8PBQ+fLlVb58edWtW1ezZs1SYmKiPv/88xxtl7tCIUddu3ZNAQEBmj17tjp06HBP+96+C8HGA6fl6ZX5XQgyU70k3zoOAACyL6/eFepm2k1JkpNDxpOOIiIidPnyZS1ZssRSlpaWpsKFC6tv3756//330+3zoO4KxVQo5Ii0tDTFxsbq/fffl9lsVtu2be0dEgAAQL525NIRSZnfbla69d1gsbGxkqRLly7p448/1tWrV9WmTZscjY/EAjni9OnTKlu2rEqWLKnIyEg5OTHUAAAAcsOqVavk7+8vSfLy8lJQUJC+++47hYaG5mi7fNpDjggMDHxgt7YFAADIM/4xNSkvioyMVGRkpF3aZvE2AAAAAJuRWAAAAACwGYkFAAAAAJuRWAAAAACwGYu3AQAAgHygQuEK9g4hUyQWAAAAQD7g7Ohs7xAyxVQoAAAAADYjsQAAAADygegr0Yq+Em3vMDLEVCjkeVVLmOXt7W3vMAAAAOzq+s3r9g4hU1yxAAAAAGAzEgsAAADgIRERESGTyZTu0bx58xxvm6lQAAAAQDZVn1s9V9vb12PfPe/TvHlzzZkzx6rMxcXlQYWUIRILAAAA4CHi4uIiPz+/XG+XqVAAAAAAbEZiAQAAAOQDfu5+8nPP+krEsmXL5OnpafV48803czw+pkIBAAAA+UBRt6LZqhcWFqYZM2ZY71s0e/vagsQCAAAAeIh4eHiofPnyud4uU6EAAACAfODC9Qu6cP2CvcPIEFcsAAAAgHwg7lqcJKmYW7FM6yUnJys2NtaqzMnJScWKZb6frUgsAAAAgIfIqlWr5O/vb1VWqVIlHTp0KEfbJbEAAAAAsul+vrAuN0VGRioyMtIubbPGAgAAAIDNSCwAAAAA2IzEAgAAAIDNWGMBAAAA5AMezh72DiFTJBYAAABAPlDGu4y9Q8gUU6EAAAAA2IzEAgAAAMgHkm4mKelmkr3DyBCJBQAAAJAPnLhyQieunLB3GBkisQAAAABgMxILAAAAADbjrlAAAABANu07eyVX26te0nxP9SMiIjR37tx05UePHlX58uUfVFh3RWIBAAAAPESaN2+uOXPmWJU98sgjOd4uiQUAAADwEHFxcZGfn1+ut8saCwAAAAA2I7EAAAAA8oGgokEKKhqUZb1ly5bJ09PT8njuuedyITqmQgEAAAD5goMpe9cEwsLCNGPGDMtzDw+PnArJCokFAAAA8BDx8PDI8TtA3Q1ToQAAAIB84NilYzp26Zi9w8gQVywAAACAfOBG2g17h5AprlgAAAAAsBlXLAAAAIBsutdvws5tkZGRdmubKxYAAAAAbEZiAQAAAMBmTIVCnldvQT05ujnaOwwAAJDD9vXYZ+8QYAMSCwAAACAfKOlZ0t4hZIrEAgAAAMgHvF287R1CplhjAQAAAMBmJBYAAABAPhCbGKvYxFh7h5EhEgsAAAAgH/g76W/9nfS3vcPIEIkFAAAAAJuRWAAAAACwGXeFAgAAALLr3K7cbS+g5j1Vj4iI0Ny5cy3PixYtqscff1xTp07VY4899qCjs8IVCwAAAOAh0rx5c8XExCgmJka//vqrnJyc1Lp16xxvl8QCAAAAeIi4uLjIz89Pfn5+qlGjhkaPHq0zZ87or7/+ytF2mQoFAAAA5APmQuZ73ufq1auaP3++ypcvLx8fnxyI6n9ILAqgyMhIDRs2TJcvX87VdidOnKglS5Zo9+7d97Tf5rCZ8vbyzJmg8qt7nG8JAADyvxJeJbJVb9myZfL0vPXZKTExUf7+/lq2bJkcHHJ2shJToQAAAICHSFhYmHbv3q3du3dry5YtatasmVq0aKFTp07laLtcsQAAAADygcSUREmSh7NHpvU8PDxUvnx5y/PatWvLbDbr888/11tvvZVj8XHFIg/48ccfVbhwYaWlpUmSdu/eLZPJpFdeecVSp1+/fnr++eclSRs3blSjRo3k5uamUqVKaciQIUpMTLTUvXHjhkaNGqUSJUrIw8NDTzzxhKKiojJs/+LFi6pbt67atm2rpKQkGYahqVOn6tFHH5Wbm5uCg4P13//+11I/KipKJpNJv/76q+rUqSN3d3c1aNBAhw8ftjrulClT5OvrKy8vL/Xu3VtJSUkPorsAAAAKpFPxp3Qq/t6vOphMJjk4OOj69es5ENX/kFjkAY0aNVJCQoJ27bp1X+R169apWLFiWrdunaVOVFSUQkJCtG/fPoWHh6tDhw7au3evvvnmG23YsEGDBg2y1O3Zs6d+//13LVy4UHv37tVzzz2n5s2b6+jRo+naPnv2rBo2bKigoCAtXrxYrq6uGj9+vObMmaMZM2Zo//79evnll/XCCy9YxSNJ48aN0/vvv6/t27fLyclJvXr1smz79ttvNWHCBL399tvavn27/P39NX369AfddQAAALhDcnKyYmNjFRsbq4MHD2rw4MG6evWq2rRpk6PtMhUqDzCbzapRo4aioqJUu3ZtRUVF6eWXX9akSZOUkJCgxMREHTlyRKGhoXrnnXfUpUsXDRs2TJJUoUIF/ec//1FISIhmzJihP//8U19//bXOnj2rgIAASdLIkSO1atUqzZkzR++8846l3SNHjqhp06Z65pln9O9//1smk0mJiYmaNm2a1qxZo/r160uSHn30UW3YsEEzZ85USEiIZf+3337b8nzMmDFq1aqVkpKS5Orqqg8//FC9evVSnz59JElvvfWWVq9enelVi+TkZCUnJ1uex8fHP5gOBgAAKEBWrVolf39/SZKXl5eCgoL03XffKTQ0NEfbJbHII0JDQxUVFaXhw4dr/fr1euutt7Ro0SJt2LBBly9flq+vr4KCgrRjxw4dO3ZM8+fPt+xrGIbS0tIUHR2tP/74Q4ZhqGLFilbHT05OtrrF2PXr1/XUU0/p+eef17///W9L+YEDB5SUlKSmTZta7X/jxg3VrGl9J6J/fnvj7cEbFxen0qVL6+DBg+rfv79V/fr162vt2rUZ9sHkyZM1adKkrLoKAADAfvL4nRkjIyMVGRlpl7ZJLPKI0NBQzZo1S3v27JGDg4OqVKmikJAQrVu3TpcuXbJcGUhLS1O/fv00ZMiQdMcoXbq09u7dK0dHR+3YsUOOjo5W22/fdky69cUpTZo00fLly/XKK6+oZMmSluNL0vLly1WihPUtzVxcXKyeOzs7W342mUxW+9+PsWPHavjw4Zbn8fHxKlWq1H0fDwAAALmHxCKPuL3O4sMPP1RISIhMJpNCQkI0efJkXbp0SUOHDpUk1apVS/v377da6f9PNWvWVGpqquLi4tSwYcMM23NwcNCXX36pLl26qHHjxoqKilJAQICqVKkiFxcXnT592mra072qXLmyNm/erO7du1vKNm/enOk+Li4u6ZIXAAAA5A8s3s4jbq+z+Oqrryzz3xo1aqSdO3da1ldI0ujRo7Vp0yYNHDhQu3fv1tGjR7V06VINHjxYklSxYkV17dpV3bt31+LFixUdHa1t27bp3Xff1YoVK6zadHR01Pz58xUcHKzGjRsrNjZWXl5eGjlypF5++WXNnTtXx48f165du/TJJ59o7ty52T6foUOHavbs2Zo9e7aOHDmiCRMmaP/+/Q+krwAAAAoiB5ODHEx59+N73o2sAAoLC1NqaqoliShSpIiqVKmiRx55RJUrV5Z0a13DunXrdPToUTVs2FA1a9bUa6+9ZlnjIElz5sxR9+7dNWLECFWqVElt27bVli1b7jqtyMnJSV9//bWqVq2qxo0bKy4uTm+++aZef/11TZ48WZUrV1Z4eLh+/PFHlS1bNtvn0qlTJ73++usaPXq0ateurVOnTmnAgAG2dRAAAEABFlQ0SEFFg+wdRoZMhmEY9g4CuJv4+HiZzWZdOfSbvL08s96hIMnjC8cAAMjPkpKSFB0drbJly8rV1dXe4eS4zM7X8nnsyhV5e3tnehzWWCDP258WKM+0zAfyg1S9pDnX2gIAAHhYMBUKAAAAyAcO/X1Ih/4+ZO8wMsQVCwAAACAfSDPu/7b+uYErFgAAAABsRmIBAAAAwGZMhQIAAACyaf/F3P1erqo+Ve+pfkRExF2/eyw8PFyrVq16UGHdFYkFAAAA8BBp3ry55syZY1Xm4uKS4+2SWAAAAAAPERcXF/n5+eV6uyQWAAAAQD5QxruMvUPIFIu3AQAAgHzAw9lDHs4eWdZbtmyZPD09rR5vvvlmjsfHFQsAAADgIRIWFqYZM2ZYlRUtWjTH2yWxAAAAAPKBPxP+lCSV8CqRaT0PDw+VL18+N0KyQmKBPK9qCbO8vb3tHQYAAIBdXblxRZJUQpknFvZCYgEAAAA8RJKTkxUbG2tV5uTkpGLFiuVouyQWAAAAwENk1apV8vf3tyqrVKmSDh06lKPtklgAAAAA2XSv34Sd2yIjIxUZGWmXtrndLAAAAACbkVgAAAAAsBlToQAAAIB8oKhrzn8XhS1ILAAAAIB8wM/Dz94hZIqpUAAAAABsRmIBAAAA3IVhGPYOwUp8crzik+Mf+HEf1HmSWAAAAAD/4OzsLEm6du2anSOxdvbqWZ29evaBH/f2ed4+7/vFGgsAAADgHxwdHVW4cGHFxcVJktzd3WUymewclZR2I02SlJSU9ECOZxiGrl27pri4OBUuXFiOjo42HY/EAgAAALiDn9+thdK3k4u8IO7qrVgcL9uWANypcOHClvO1BYkFAAAAcAeTySR/f38VL15cKSkp9g5HkjTihxGSpMXPLH5gx3R2drb5SsVtJBYAAABABhwdHR/YB29bxd6IlSS5urraOZK7Y/E2AAAAAJtxxQIAAADIB0p5lbJ3CJkisQAAAADygR/a/WDvEDLFVCgAAAAANiOxAAAAAPKBG6k3dCP1hr3DyBBToQAAAIB8oN6CepKknd122jmSu+OKBQAAAACbkVgAAAAAsBmJBQAAAACbkVgAAAAAsBmJBQAAAACbkVgAAAAAsBm3mwUAAADyge/afGfvEDJFYgEAAADkA+UKl7N3CJliKhQAAAAAm5FYAAAAAPnAwF8HauCvA+0dRoaYCgUAAADkA5vObbJ3CJniigUAAAAAm5FYAAAAALAZiQUAAAAAm7HGAnlevQX15OjmaO8wAAAA7M7ZwdneIWSIKxYAAAAAbEZiAQAAAOQTg2oOsncIGSKxAAAAAPKJXtV62TuEDJFYAAAAALAZiQUAAACQT3xz6Bt7h5AhEgsAAAAgn3h327v2DiFDJBYAAAAAbEZiAQAAAMBmJBYAAAAAbEZiAQAAAMBmJBYAAAAAbOZk7wCArGwOmylvL097h4H8LKCmvSMAAMBmPVb2sHcImcrXVywmTpyoGjVq2DuM+xYVFSWTyaTLly/bO5QsmUwmLVmyxN5hAAAAFFhzW8zV3BZz7R1GhvL1FYuRI0dq8ODB9g6jQIiJiVGRIkXsHQYAAADyqDyZWNy4cUOFChXKsp6np6c8PZkikxv8/PzsHQIAAECBFpsYK0ny88ibn8vuaSpUaGioBg8erGHDhqlIkSLy9fXVZ599psTERPXs2VNeXl4qV66cVq5cabXfunXrVLduXbm4uMjf319jxozRzZs3rY47aNAgDR8+XMWKFVPTpk0t04R+/fVX1alTR+7u7mrQoIEOHz5s2e/OqVARERFq166d3nvvPfn7+8vHx0cDBw5USkqKpU5MTIxatWolNzc3lS1bVgsWLFBgYKA+/PDDDM9727Ztatq0qYoVKyaz2ayQkBDt3LnTqo7JZNIXX3yh9u3by93dXRUqVNDSpUut6qxYsUIVK1aUm5ubwsLCdPLkySz7/MqVK3rxxRdVvHhxeXt7q3HjxtqzZ48k6fDhwzKZTDp06JDVPtOmTVNgYKAMw5AkHThwQC1btpSnp6d8fX3VrVs3Xbhwwar/hwwZolGjRqlo0aLy8/PTxIkT053f7alQJ0+elMlk0uLFixUWFiZ3d3cFBwdr06ZNVvt8/vnnKlWqlNzd3dW+fXtNmzZNhQsXzvKcAQAAkF7LxS3VcnFLe4eRoXteYzF37lwVK1ZMW7du1eDBgzVgwAA999xzatCggXbu3Knw8HB169ZN165dkyT9+eefatmypR5//HHt2bNHM2bM0KxZs/TWW2+lO66Tk5N+//13zZw501I+btw4vf/++9q+fbucnJzUq1evTONbu3atjh8/rrVr12ru3LmKjIxUZGSkZXv37t117tw5RUVFadGiRfrss88UFxeX6TETEhLUo0cPrV+/Xps3b1aFChXUsmVLJSQkWNWbNGmSOnbsqL1796ply5bq2rWr/v77b0nSmTNn1KFDB7Vs2VK7d+9Wnz59NGbMmEzbNQxDrVq1UmxsrFasWKEdO3aoVq1aevrpp/X333+rUqVKql27tubPn2+134IFC9SlSxeZTCbFxMQoJCRENWrU0Pbt27Vq1SqdP39eHTt2tNpn7ty58vDw0JYtWzR16lS98cYb+uWXXzKNb9y4cRo5cqR2796tihUr6vnnn7ckjL///rv69++voUOHavfu3WratKnefvvtTI+XnJys+Ph4qwcAAADyB5Nx+9/a2RAaGqrU1FStX79ekpSamiqz2awOHTpo3rx5kqTY2Fj5+/tr06ZNqlevnsaNG6dFixbp4MGDMplMkqTp06dr9OjRunLlihwcHBQaGqorV65o165dlraioqIUFham1atX6+mnn5Z06z/+rVq10vXr1+Xq6qqJEydqyZIl2r17t6RbVyyioqJ0/PhxOTo6SpI6duwoBwcHLVy4UIcOHVLlypW1bds21alTR5J07NgxVahQQR988IGGDRuWrX5ITU1VkSJFtGDBArVu3fpWR5pMGj9+vN58801JUmJiory8vLRixQo1b95cr776qpYsWaL9+/db+mHMmDF69913denSpbv+J3/NmjVq37694uLi5OLiYikvX768Ro0apRdffFEffPCBPv74Yx0/flySdOTIEVWqVEn79+9XlSpV9Prrr2vLli366aefLPufPXtWpUqV0uHDh1WxYsV0v1dJqlu3rho3bqwpU6ZYzu/7779Xu3btdPLkSZUtW1ZffPGFevfuLenWVZGqVavq4MGDCgoKUufOnXX16lUtW7bMcswXXnhBy5Yty3Cx+sSJEzVp0qR05VcO/cZdoWAb7goFAHgI1PqyliRpZ7edWdR8cOLj42U2m3XlyhV5e3tnWveer1g89thjlp8dHR3l4+Oj6tWrW8p8fX0lyXIV4ODBg6pfv77lw7QkPfnkk7p69arOnj1rKbv9QT+z9vz9/a2OfTdVq1a1JBW397ld//Dhw3JyclKtWrUs28uXL5/louS4uDj1799fFStWlNlsltls1tWrV3X69OkMY/Xw8JCXl5dVP9SrV8+qH+rXr59puzt27NDVq1fl4+NjWU/i6emp6OhoSyLRuXNnnTp1Sps3b5YkzZ8/XzVq1FCVKlUsx1i7dq3V/kFBQZJkOcadsd/ZbxnJ7Hdz+PBh1a1b16r+nc/vNHbsWF25csXyOHPmTKb1AQAAkHfc8+JtZ2dnq+cmk8mq7PYH57S0NEm3pvP888P07bJ/1pVufRDPqr07j53d+P4Zy91kddEmIiJCf/31lz788EOVKVNGLi4uql+/vm7cuGFz25lJS0uTv7+/oqKi0m27fYXD399fYWFhWrBggerVq6evv/5a/fr1szpGmzZt9O6776Y7xu1kIKvYM3K/v/eMuLi4WF2ZAQAAQP6R43eFqlKlihYtWmT1QXPjxo3y8vJSiRIlcrp5K0FBQbp586Z27dql2rVrS7o1FSqr75FYv369pk+frpYtby2WOXPmjNXi5+yoUqVKuu+BuH2VISO1atVSbGysnJycFBgYmGG9rl27avTo0Xr++ed1/Phxde7c2eoYixYtUmBgoJyccu8mYEFBQdq6datV2fbt23OtfQAAAOSuHP+CvJdeeklnzpzR4MGDdejQIf3www+aMGGChg8fLgeH3P1+vqCgIDVp0kQvvviitm7dql27dunFF1+Um5tbuv+u/1P58uX15Zdf6uDBg9qyZYu6du0qNze3e2q7f//+On78uIYPH67Dhw9rwYIFVovK76ZJkyaqX7++2rVrp59++kknT57Uxo0bNX78eKsP6R06dFB8fLwGDBigsLAwq4Rt4MCB+vvvv/X8889r69atOnHihH7++Wf16tVLqamp93QO92Lw4MFasWKFpk2bpqNHj2rmzJlauXJlpv0MAACA/CvHP9mXKFFCK1as0NatWxUcHKz+/furd+/eGj9+fE43fVfz5s2Tr6+vGjVqpPbt26tv377y8vKSq6trhvvMnj1bly5dUs2aNdWtWzcNGTJExYsXv6d2S5curUWLFunHH39UcHCwPv30U73zzjuZ7mMymbRixQo1atRIvXr1UsWKFdW5c2edPHnSspZFkry9vdWmTRvt2bNHXbt2tTpGQECAfv/9d6Wmpio8PFzVqlXT0KFDZTabczSxe/LJJ/Xpp59q2rRpCg4O1qpVq/Tyyy9n2s8AAADI2OrnVmv1c6vtHUaG7umuUA+j23dI+ufdp5Az+vbtq0OHDlndfSozt+9CsPHAaXl6ZX4XgvyuekmzvUMAAABI517uCpUnv3k7J61Zs0ZXr15V9erVFRMTo1GjRikwMFCNGjWyd2gPnffee09NmzaVh4eHVq5cqblz52r69On2DgsAAAA5oMAlFikpKXr11Vd14sQJeXl5qUGDBpo/f366uyLBdlu3btXUqVOVkJCgRx99VP/5z3/Up08fe4cFAACQL3VZ3kWStKDVAjtHcncFLrEIDw9XeHi4vcMoEL799lt7hwAAAPDQOPT3IXuHkKncvS0TAAAAgIcSiQUAAAAAm5FYAAAAALAZiQUAAAAAm5FYAAAAALBZgbsrFAAAAJAfvVbvNXuHkCkSCwAAACAfaF+hvb1DyBRToQAAAADYjCsWyPOqljDL29vb3mEAAADY1ad7PpUk9Q/ub+dI7o4rFgAAAEA+8Nnez/TZ3s/sHUaGSCwAAAAA2IzEAgAAAIDNSCwAAAAA2IzEAgAAAIDNSCwAAAAA2IzbzQIAAAD5QKOSjewdQqZILAAAAIB84MOwD+0dQqaYCgUAAADAZiQWAAAAQD5w8OJBHbx40N5hZIipUAAAAEA+0HVFV0nSzm477RzJ3XHFAgAAAIDNSCwAAAAA2IzEAgAAAIDNSCwAAAAA2IzEAgAAAIDNuCsU8izDMCRJ8fHxdo4EAADA/lKvp0rK3c9Gt9u6/bksMyQWyLMuXrwoSSpVqpSdIwEAAMg7zP3Mud5mQkKCzObM2yWxQJ5VtGhRSdLp06ezHMgFVXx8vEqVKqUzZ87I29vb3uHkSfRR1uijzNE/WaOPskYfZY0+ypo9+sgwDCUkJCggICDLuiQWyLMcHG4tATKbzbzBZMHb25s+ygJ9lDX6KHP0T9boo6zRR1mjj7KW232U3X/wsngbAAAAgM1ILAAAAADYjMQCeZaLi4smTJggFxcXe4eSZ9FHWaOPskYfZY7+yRp9lDX6KGv0Udbyeh+ZjOzcOwoAAAAAMsEVCwAAAAA2I7EAAAAAYDMSCwAAAAA2I7FAnjR9+nSVLVtWrq6uql27ttavX2/vkOxm8uTJevzxx+Xl5aXixYurXbt2Onz4sFWdiIgImUwmq0e9evXsFHHumzhxYrrz9/Pzs2w3DEMTJ05UQECA3NzcFBoaqv3799sx4twXGBiYro9MJpMGDhwoqWCOod9++01t2rRRQECATCaTlixZYrU9O+MmOTlZgwcPVrFixeTh4aG2bdvq7NmzuXgWOSuzPkpJSdHo0aNVvXp1eXh4KCAgQN27d9e5c+esjhEaGppubHXu3DmXzyRnZDWGsvO6KshjSNJd35dMJpP+9a9/Weo8zGNIyt7f+fzyfkRigTznm2++0bBhwzRu3Djt2rVLDRs2VIsWLXT69Gl7h2YX69at08CBA7V582b98ssvunnzppo1a6bExESres2bN1dMTIzlsWLFCjtFbB9Vq1a1Ov99+/ZZtk2dOlXTpk3Txx9/rG3btsnPz09NmzZVQkKCHSPOXdu2bbPqn19++UWS9Nxzz1nqFLQxlJiYqODgYH388cd33Z6dcTNs2DB9//33WrhwoTZs2KCrV6+qdevWSk1Nza3TyFGZ9dG1a9e0c+dOvfbaa9q5c6cWL16sI0eOqG3btunq9u3b12pszZw5MzfCz3FZjSEp69dVQR5Dkqz6JiYmRrNnz5bJZNKzzz5rVe9hHUNS9v7O55v3IwPIY+rWrWv079/fqiwoKMgYM2aMnSLKW+Li4gxJxrp16yxlPXr0MJ555hn7BWVnEyZMMIKDg++6LS0tzfDz8zOmTJliKUtKSjLMZrPx6aef5lKEec/QoUONcuXKGWlpaYZhMIYkGd9//73leXbGzeXLlw1nZ2dj4cKFljp//vmn4eDgYKxatSrXYs8td/bR3WzdutWQZJw6dcpSFhISYgwdOjRng8sD7tY/Wb2uGEPpPfPMM0bjxo2tygrKGLrtzr/z+en9iCsWyFNu3LihHTt2qFmzZlblzZo108aNG+0UVd5y5coVSVLRokWtyqOiolS8eHFVrFhRffv2VVxcnD3Cs5ujR48qICBAZcuWVefOnXXixAlJUnR0tGJjY63GlIuLi0JCQgrsmLpx44a++uor9erVSyaTyVJe0MfQP2Vn3OzYsUMpKSlWdQICAlStWrUCO7auXLkik8mkwoULW5XPnz9fxYoVU9WqVTVy5MgCdbUws9cVY8ja+fPntXz5cvXu3TvdtoI0hu78O5+f3o+ccq0lIBsuXLig1NRU+fr6WpX7+voqNjbWTlHlHYZhaPjw4XrqqadUrVo1S3mLFi303HPPqUyZMoqOjtZrr72mxo0ba8eOHXn2S3QepCeeeELz5s1TxYoVdf78eb311ltq0KCB9u/fbxk3dxtTp06dske4drdkyRJdvnxZERERlrKCPobulJ1xExsbq0KFCqlIkSLp6hTE96ukpCSNGTNGXbp0kbe3t6W8a9euKlu2rPz8/PTHH39o7Nix2rNnj2U63sMsq9cVY8ja3Llz5eXlpQ4dOliVF6QxdLe/8/np/YjEAnnSP/+LKt16od1ZVhANGjRIe/fu1YYNG6zKO3XqZPm5WrVqqlOnjsqUKaPly5ene4N+GLVo0cLyc/Xq1VW/fn2VK1dOc+fOtSyUZEz9z6xZs9SiRQsFBARYygr6GMrI/Yybgji2UlJS1LlzZ6WlpWn69OlW2/r27Wv5uVq1aqpQoYLq1KmjnTt3qlatWrkdaq6639dVQRxDkjR79mx17dpVrq6uVuUFaQxl9Hdeyh/vR0yFQp5SrFgxOTo6psuu4+Li0mXqBc3gwYO1dOlSrV27ViVLlsy0rr+/v8qUKaOjR4/mUnR5i4eHh6pXr66jR49a7g7FmLrl1KlTWr16tfr06ZNpvYI+hrIzbvz8/HTjxg1dunQpwzoFQUpKijp27Kjo6Gj98ssvVlcr7qZWrVpydnYukGPrztcVY+h/1q9fr8OHD2f53iQ9vGMoo7/z+en9iMQCeUqhQoVUu3btdJc3f/nlFzVo0MBOUdmXYRgaNGiQFi9erDVr1qhs2bJZ7nPx4kWdOXNG/v7+uRBh3pOcnKyDBw/K39/fcvn8n2Pqxo0bWrduXYEcU3PmzFHx4sXVqlWrTOsV9DGUnXFTu3ZtOTs7W9WJiYnRH3/8UWDG1u2k4ujRo1q9erV8fHyy3Gf//v1KSUkpkGPrztcVY+h/Zs2apdq1ays4ODjLug/bGMrq73y+ej/KtWXiQDYtXLjQcHZ2NmbNmmUcOHDAGDZsmOHh4WGcPHnS3qHZxYABAwyz2WxERUUZMTExlse1a9cMwzCMhIQEY8SIEcbGjRuN6OhoY+3atUb9+vWNEiVKGPHx8XaOPneMGDHCiIqKMk6cOGFs3rzZaN26teHl5WUZM1OmTDHMZrOxePFiY9++fcbzzz9v+Pv7F5j+uS01NdUoXbq0MXr0aKvygjqGEhISjF27dhm7du0yJBnTpk0zdu3aZbmjUXbGTf/+/Y2SJUsaq1evNnbu3Gk0btzYCA4ONm7evGmv03qgMuujlJQUo23btkbJkiWN3bt3W70/JScnG4ZhGMeOHTMmTZpkbNu2zYiOjjaWL19uBAUFGTVr1nwo+iiz/snu66ogj6Hbrly5Yri7uxszZsxIt//DPoYMI+u/84aRf96PSCyQJ33yySdGmTJljEKFChm1atWyurVqQSPpro85c+YYhmEY165dM5o1a2Y88sgjhrOzs1G6dGmjR48exunTp+0beC7q1KmT4e/vbzg7OxsBAQFGhw4djP3791u2p6WlGRMmTDD8/PwMFxcXo1GjRsa+ffvsGLF9/PTTT4Yk4/Dhw1blBXUMrV279q6vrR49ehiGkb1xc/36dWPQoEFG0aJFDTc3N6N169YPVb9l1kfR0dEZvj+tXbvWMAzDOH36tNGoUSOjaNGiRqFChYxy5coZQ4YMMS5evGjfE3tAMuuf7L6uCvIYum3mzJmGm5ubcfny5XT7P+xjyDCy/jtvGPnn/cj0/08IAAAAAO4baywAAAAA2IzEAgAAAIDNSCwAAAAA2IzEAgAAAIDNSCwAAAAA2IzEAgAAAIDNSCwAAAAA2IzEAgAAAIDNSCwAAAAA2IzEAgCADMTFxalfv34qXbq0XFxc5Ofnp/DwcG3atOmBtREYGKgPP/zwgR0PAOzFyd4BAACQVz377LNKSUnR3Llz9eijj+r8+fP69ddf9ffff9s7NADIc7hiAQDAXVy+fFkbNmzQu+++q7CwMJUpU0Z169bV2LFj1apVK0nSlStX9OKLL6p48eLy9vZW48aNtWfPHssxjh8/rmeeeUa+vr7y9PTU448/rtWrV1u2h4aG6tSpU3r55ZdlMplkMpkkSadOnVKbNm1UpEgReXh4qGrVqlqxYkXudgAA3CMSCwAA7sLT01Oenp5asmSJkpOT0203DEOtWrVSbGysVqxYoR07dqhWrVp6+umnLVc0rl69qpYtW2r16tXatWuXwsPD1aZNG50+fVqStHjxYpUsWVJvvPGGYmJiFBMTI0kaOHCgkpOT9dtvv2nfvn1699135enpmXsnDwD3wWQYhmHvIAAAyIsWLVqkvn376vr166pVq5ZCQkLUuXNnPfbYY1qzZo3at2+vuLg4ubi4WPYpX768Ro0apRdffPGux6xataoGDBigQYMGSbq1xmLYsGEaNmyYpc5jjz2mZ599VhMmTMjR8wOAB4krFgAAZODZZ5/VuXPntHTpUoWHhysqKkq1atVSZGSkduzYoatXr8rHx8dydcPT01PR0dE6fvy4JCkxMVGjRo1SlSpVVLhwYXl6eurQoUOWKxYZGTJkiN566y09+eSTmjBhgvbu3ZsbpwsANiGxAAAgE66urmratKlef/11bdy4UREREZowYYLS0tLk7++v3bt3Wz0OHz6sV155RZL0yiuvaNGiRXr77be1fv167d69W9WrV9eNGzcybbNPnz46ceKEunXrpn379qlOnTr66KOPcuN0AeC+kVgAAHAPqlSposTERNWqVUuxsbFycnJS+fLlrR7FihWTJK1fv14RERFq3769qlevLj8/P508edLqeIUKFVJqamq6dkqVKqX+/ftr8eLFGjFihD7//PPcOD0AuG8kFgAA3MXFixfVuHFjffXVV9q7d6+io6P13XffaerUqXrmmWfUpEkT1a9fX+3atdNPP/2kkydPauPGjRo/fry2b98u6dZ6i8WLF2v37t3as2ePunTporS0NKt2AgMD9dtvv+nPP//UhQsXJEnDhg3TTz/9pOjoaO3cuVNr1qxR5cqVc70PAOBe8D0WAADchaenp5544gl98MEHOn78uFJSUlSqVCn17dtXr776qkwmk1asWKFx48apV69e+uuvv+Tn56dGjRrJ19dXkvTBBx+oV69eatCggYoVK6bRo0crPj7eqp033nhD/fr1U7ly5ZScnCzDMJSamqqBAwfq7Nmz8vb2VvPmzfXBBx/YoxsAINu4KxQAAAAAmzEVCgAAAIDNSCwAAAAA2IzEAgAAAIDNSCwAAAAA2IzEAgAAAIDNSCwAAAAA2IzEAgAAAIDNSCwAAAAA2IzEAgAAAIDNSCwAAAAA2IzEAgAAAIDNSCwAAAAA2Oz/AWZVX/0MO5jeAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# function to report analytics for any given seat allocations\n", - "def seat_report(seats, demand):\n", - " classes = seats.index\n", - "\n", - " # report seat allocation\n", - " equivalent_seats = pd.DataFrame(\n", - " {\n", - " \"seat allocation\": {c: seats[c] for c in classes},\n", - " \"economy equivalent seat allocation\": {\n", - " c: seats[c] * seat_factor[c] for c in classes\n", - " },\n", - " }\n", - " ).T\n", - " equivalent_seats[\"TOTAL\"] = equivalent_seats.sum(axis=1)\n", - " print(\"\\nSeat Allocation\")\n", - " display(equivalent_seats)\n", - "\n", - " # tickets sold is the minimum of available seats and demand\n", - " tickets = pd.DataFrame()\n", - " for c in classes:\n", - " tickets[c] = np.minimum(seats[c], demand[c])\n", - " print(\"\\nTickets Sold\")\n", - " display(tickets)\n", - "\n", - " # seats unsold\n", - " unsold = pd.DataFrame()\n", - " for c in classes:\n", - " unsold[c] = seats[c] - tickets[c]\n", - " print(\"\\nSeats not Sold\")\n", - " display(unsold)\n", - "\n", - " # spillage (unmet demand)\n", - " spillage = demand - tickets\n", - " print(\"\\nSpillage (Unfulfilled Demand)\")\n", - " display(spillage)\n", - "\n", - " # compute revenue\n", - " revenue = tickets.dot(revenue_factor)\n", - " print(\n", - " f\"\\nExpected Revenue (in units of economy ticket price): {revenue.mean():.2f}\"\n", - " )\n", - "\n", - " # charts\n", - " fig, ax = plt.subplots(2, 1, figsize=(8, 6))\n", - " revenue.plot(ax=ax[0], kind=\"barh\", title=\"Revenue by Scenario\")\n", - " ax[0].plot([revenue.mean()] * 2, ax[0].get_ylim(), \"--\", lw=1.4)\n", - " ax[0].set_xlabel(\"Revenue\")\n", - "\n", - " tickets[classes].plot(\n", - " ax=ax[1], kind=\"barh\", rot=0, stacked=False, title=\"Demand Scenarios\"\n", - " )\n", - " demand[classes].plot(\n", - " ax=ax[1],\n", - " kind=\"barh\",\n", - " rot=0,\n", - " stacked=False,\n", - " title=\"Demand Scenarios\",\n", - " alpha=0.2,\n", - " )\n", - " for c in classes:\n", - " ax[1].plot([seats[c]] * 2, ax[1].get_ylim(), \"--\", lw=1.4)\n", - " ax[1].set_xlabel(\"Seats\")\n", - " fig.tight_layout()\n", - "\n", - " return\n", - "\n", - "\n", - "# a trial solution\n", - "seats_all_economy = pd.Series({\"F\": 0, \"B\": 0, \"E\": 200})\n", - "seat_report(seats_all_economy, demand)" - ] - }, - { - "cell_type": "markdown", - "id": "60309d8c-a2e4-48ee-9510-d2cccb2fd1af", - "metadata": {}, - "source": [ - "## Model 1. Deterministic solution for the average demand scenario\n", - "\n", - "A common starting point in stochastic optimization is to solve the deterministic problem where future demands are fixed at their mean values and compute the corresponding optimal solution. The resulting value of the objective has been called the *expectation of the expected value problem (EEV)* by Birge, or the *expected value of the mean (EVM)* solution by others.\n", - "\n", - "Let us introduce the set $C$ of the three possible classes, i.e., $C=\\{F,B,E\\}$. The objective function is to maximize ticket revenue.\n", - "\n", - "$$\n", - "\\max_{s_c, t_c} \\quad \\sum_{c\\in C} r_c t_c \n", - "$$\n", - "\n", - "where $r_c$ is the revenue from selling a ticket for a seat in class $c\\in C$.\n", - "\n", - "Let $s_c$ denote the number of seats of class $c \\in C$ installed in the new plane. Let $f_c$ be the scale factor denoting the number of economy seats displaced by one seat in class $c \\in C$. Then, since there is a total of 200 economy-class seats that could fit on the plane, the capacity constraint reads as\n", - "\n", - "$$\n", - " \\sum_{c\\in C} f_c s_c \\leq 200,\n", - "$$\n", - "\n", - "Let $\\mu_c$ be the mean demand for seats of class $c\\in C$, and let $t_c$ be the number of tickets of class $c\\in C$ that are sold. To ensure we do not sell more tickets than available seats nor more than demand, we need to add two more constraints:\n", - "\n", - "$$\n", - "\\begin{align*}\n", - " t_c & \\leq s_c \\qquad \\forall \\, c\\in C \\\\\n", - " t_c & \\leq \\mu_c \\qquad \\forall \\, c\\in C\n", - "\\end{align*}\n", - "$$\n", - "\n", - "Lastly, both ticket and seat variables need to be nonnegative integers, so we add the constraints $\\bm{t}, \\bm{s} \\in \\mathbb{Z}_+$. \n", - "\n", - "The following cell presents a Pyomo model implementing this model." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "434a69fc-3bd2-4eb8-95f2-2613e82432b0", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Seat Allocation\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBETOTAL
seat allocation12.028.0134.0174.0
economy equivalent seat allocation24.042.0134.0200.0
\n", - "
" - ], - "text/plain": [ - " F B E TOTAL\n", - "seat allocation 12.0 28.0 134.0 174.0\n", - "economy equivalent seat allocation 24.0 42.0 134.0 200.0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Tickets Sold\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBE
morning and evening12.028.0134.0
weekend10.024.0134.0
midday6.010.0134.0
\n", - "
" - ], - "text/plain": [ - " F B E\n", - "morning and evening 12.0 28.0 134.0\n", - "weekend 10.0 24.0 134.0\n", - "midday 6.0 10.0 134.0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Seats not Sold\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBE
morning and evening0.00.00.0
weekend2.04.00.0
midday6.018.00.0
\n", - "
" - ], - "text/plain": [ - " F B E\n", - "morning and evening 0.0 0.0 0.0\n", - "weekend 2.0 4.0 0.0\n", - "midday 6.0 18.0 0.0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Spillage (Unfulfilled Demand)\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBE
morning and evening8.022.066.0
weekend0.00.041.0
midday0.00.016.0
\n", - "
" - ], - "text/plain": [ - " F B E\n", - "morning and evening 8.0 22.0 66.0\n", - "weekend 0.0 0.0 41.0\n", - "midday 0.0 0.0 16.0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Expected Revenue (in units of economy ticket price): 203.33\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3IElEQVR4nO3deXxMZ///8fdkkT2DqCz2Whpb7WtLEkXsRb9FqZ2i1qKW0qK11V3a+75bdCO0VPWmqrZWS5Tad1V7rZVIq0gEQXJ+f6j5dSQhMklOEq/n4zEP5sx1zvU+V44xn5zrnLEYhmEIAAAAABzgZHYAAAAAADkfhQUAAAAAh1FYAAAAAHAYhQUAAAAAh1FYAAAAAHAYhQUAAAAAh1FYAAAAAHAYhQUAAAAAh1FYAAAAAHAYhQUAQBEREbJYLLaHi4uLAgMD1aFDBx07dszseNlWaGioKlSokOn9xMfH6+2331alSpXk6+srHx8flSxZUu3atdOGDRsyvf+sEBkZKYvFosjISLOjAEgnF7MDAACyj7lz5yo4OFg3btzQzz//rEmTJmn9+vU6fPiw8uXLZ3a8R1JiYqIaN26sAwcO6NVXX1XNmjUlSceOHdO3336rjRs3KiQkxOSUjqtataq2bNmicuXKmR0FQDpRWAAAbCpUqKDq1atLuvPb+MTERI0bN07Lli1T9+7dTU73aPrpp5+0efNmzZkzx+5nEB4ergEDBigpKcnEdI67deuWLBaLfH19Vbt2bbPjAHAAU6EAAKm6W2RcuHDBbvnOnTvVqlUr5c+fX+7u7qpSpYoWL15se33fvn2yWCz69NNPk21z9erVslgsWr58uW3ZsWPH1LFjRxUsWFBubm4qW7asPvjgA7v17k6V+eKLLzRmzBgFBQXJ19dXDRs21JEjR+zaFi9eXN26dUvWd2hoqEJDQ+2WxcbGavjw4SpRooTy5MmjQoUKaciQIYqPj0/TGEnSxo0bVbt2bXl4eKhQoUJ6/fXXlZiYKEkyDEOlS5dWeHh4svWuXr0qq9Wq/v37p7rtixcvSpICAwNTfN3Jyf6/8t9//10vvfSSihQpojx58igoKEj/93//Z/czTOs+WywWDRgwQJ999pnKli0rT09PVapUSStWrLBrd/z4cXXv3l2lS5eWp6enChUqpJYtW+rAgQN27e7+DD/77DMNGzZMhQoVkpubm44fP57qVKjly5erTp068vT0lI+Pjxo1aqQtW7akOl4AzENhAQBI1cmTJyVJZcqUsS1bv369nnrqKV2+fFmzZ8/WN998o8qVK6t9+/aKiIiQJFWqVElVqlTR3Llzk20zIiJCBQsWVLNmzSRJv/76q2rUqKFffvlF06dP14oVK9S8eXMNGjRIEyZMSLb+a6+9ptOnT+uTTz7RRx99pGPHjqlly5a2D/IP49q1awoJCdG8efM0aNAgrV69WiNHjlRERIRatWolwzAeuI3o6Gh16NBBnTp10jfffKP/+7//08SJEzV48GBJdz6cDxw4UGvXrk12vcr8+fMVGxt738KievXqcnV11eDBg7VgwQJFRUWl2vb3339XjRo19PXXX2vo0KFavXq13nvvPVmtVl26dCld+7xy5Uq9//77evPNN7VkyRLlz59fbdq00W+//WZrc/78efn5+Wnq1Klas2aNPvjgA7m4uKhWrVrJij5JGj16tM6cOaPZs2fr22+/VcGCBVPcn4ULF+rZZ5+Vr6+vvvjiC3366ae6dOmSQkNDtWnTplTHAYBJDADAI2/u3LmGJGPr1q3GrVu3jLi4OGPNmjVGQECAUb9+fePWrVu2tsHBwUaVKlXslhmGYbRo0cIIDAw0EhMTDcMwjP/85z+GJOPIkSO2Nn/99Zfh5uZmDBs2zLYsPDzcKFy4sHHlyhW77Q0YMMBwd3c3/vrrL8MwDGP9+vWGJKNZs2Z27RYvXmxIMrZs2WJbVqxYMaNr167J9jMkJMQICQmxPZ8yZYrh5ORk7Nixw67d//73P0OSsWrVqvsNmxESEmJIMr755hu75b179zacnJyM06dPG4ZhGLGxsYaPj48xePBgu3blypUzwsLC7tuHYRjGp59+anh7exuSDElGYGCg0aVLF+Onn36ya9ejRw/D1dXV+PXXX1Pd1sPssyTD39/fiI2NtS2Ljo42nJycjClTpqTax+3bt42bN28apUuXNl555RXb8rs/w/r16ydb5+5r69evNwzDMBITE42goCCjYsWKtmPKMAwjLi7OKFiwoFG3bt1U+wdgDs5YAABsateuLVdXV/n4+KhJkybKly+fvvnmG7m43Lkk7/jx4zp8+LA6deokSbp9+7bt0axZM0VFRdl+Q92pUye5ubnZzmJI0hdffKGEhATbtQI3btzQjz/+qDZt2sjT0zPZ9m7cuKGtW7faZWzVqpXd8yeffFKSdPr06Yfe3xUrVqhChQqqXLmyXd/h4eFpvkORj49PskwdO3ZUUlKSfvrpJ1ub7t27KyIiwjbdaN26dfr11181YMCAB/bRo0cPnTt3TgsXLtSgQYNUpEgRff755woJCdG//vUvW7vVq1crLCxMZcuWzbB9DgsLk4+Pj+25v7+/ChYsaDfet2/f1uTJk1WuXDnlyZNHLi4uypMnj44dO6ZDhw4ly/Dcc889cJ+PHDmi8+fPq3PnznbTvby9vfXcc89p69atunbt2gO3AyDrUFgAAGzmz5+vHTt2aN26derTp48OHTqkF154wfb63Xn6w4cPl6urq93j5ZdfliT9+eefkqT8+fOrVatWmj9/vm2aUkREhGrWrKny5ctLunP9wO3bt/Xf//432fbuTpW6u727/Pz87J67ublJkq5fv/7Q+3vhwgXt378/Wd8+Pj4yDCNZ3ynx9/dPtiwgIMC2f3cNHDhQcXFxWrBggSTp/fffV+HChfXss8+mKavVatULL7ygf//739q2bZv2798vf39/jRkzRpcvX5Yk/fHHHypcuHCG7vO94y3dGfN/jvfQoUP1+uuvq3Xr1vr222+1bds27dixQ5UqVUrx55La9SL/dL9rS4KCgpSUlGSb3gUge+CuUAAAm7Jly9ou2A4LC1NiYqI++eQT/e9//9P//d//qUCBApLuzJFv27Ztitt44oknbH/v3r27vvrqK61du1ZFixbVjh07NGvWLNvr+fLlk7Ozszp37pzqdQYlSpR46P1wd3dXQkJCsuV//vmnbR8kqUCBAvLw8NCcOXNS3M4/26bm3gvbpTvXXUj2H8pLlSqlpk2b6oMPPlDTpk21fPlyTZgwQc7Ozg/sIyXly5dXhw4d9N577+no0aOqWbOmHnvsMZ07d+6+62XEPt/r888/V5cuXTR58mS75X/++afy5s2brL3FYnngNu+OXUrXlJw/f15OTk7cAhnIZigsAACpmjZtmpYsWaI33nhDbdu21RNPPKHSpUtr3759yT5EpqRx48YqVKiQ5s6dq6JFi8rd3d3uDIinp6fCwsK0Z88ePfnkk8qTJ0+G5C5evLj2799vt+zo0aM6cuSI3QfnFi1aaPLkyfLz80tXASNJcXFxWr58ud10qIULF8rJyUn169e3azt48GA1btxYXbt2lbOzs3r37v3A7V+8eFE+Pj4pjs3hw4cl3fkNviQ1bdpUn332mY4cOWJX4P1TRuzzvSwWi+3M0V0rV67U77//rlKlSqVrm0888YQKFSqkhQsXavjw4bZiJD4+XkuWLLHdKQpA9kFhAQBIVb58+TR69GiNGDFCCxcu1IsvvqgPP/xQTZs2VXh4uLp166ZChQrpr7/+0qFDh7R792599dVXtvWdnZ3VpUsXzZgxQ76+vmrbtq2sVqtdH//+97/19NNPq169eurXr5+KFy+uuLg4HT9+XN9++63WrVv30Lk7d+6sF198US+//LKee+45nT59WtOmTdNjjz1m127IkCFasmSJ6tevr1deeUVPPvmkkpKSdObMGX3//fcaNmyYatWqdd++/Pz81K9fP505c0ZlypTRqlWr9PHHH6tfv34qWrSoXdtGjRqpXLlyWr9+vV588cVU74b0T+vXr9fgwYPVqVMn1a1bV35+foqJidEXX3yhNWvWqEuXLrbpT2+++aZWr16t+vXr67XXXlPFihV1+fJlrVmzRkOHDlVwcHCG7PO9WrRooYiICAUHB+vJJ5/Url279K9//euB07Lux8nJSdOmTVOnTp3UokUL9enTRwkJCfrXv/6ly5cva+rUqeneNoBMYvbV4wAA8929K9S9dwoyDMO4fv26UbRoUaN06dLG7du3DcMwjH379hnt2rUzChYsaLi6uhoBAQFGgwYNjNmzZydb/+jRo7a7Ga1duzbF/k+ePGn06NHDKFSokOHq6mo89thjRt26dY2JEyfa2ty9a9BXX32VbF1Jxty5c23LkpKSjGnTphmPP/644e7ublSvXt1Yt25dsrtCGYZhXL161Rg7dqzxxBNPGHny5DGsVqtRsWJF45VXXjGio6PvO24hISFG+fLljcjISKN69eqGm5ubERgYaLz22mvJ7pp11/jx42134EqLs2fPGmPHjjWeeuopIyAgwHBxcTF8fHyMWrVqGf/9739tP5N/tu/Ro4cREBBguLq6GkFBQUa7du2MCxcuPPQ+SzL69++fLNO9d926dOmS0bNnT6NgwYKGp6en8fTTTxsbN25MNt6p/Qz/+drdu0LdtWzZMqNWrVqGu7u74eXlZTzzzDPGzz//nKaxA5C1LIaRhpt0AwCADFG9enVZLBbt2LHD7CgAkKGYCgUAQCaLjY3VL7/8ohUrVmjXrl36+uuvzY4EABmOwgIAgEy2e/duhYWFyc/PT+PGjVPr1q3NjgQAGY6pUAAAAAAcxhfkAQAAAHAYhQUAAAAAh1FYAAAAAHAYF28j20pKStL58+fl4+Nj+8ZVAAAAZB3DMBQXF6egoCA5Od3/nASFBbKt8+fPq0iRImbHAAAAeOSdPXtWhQsXvm8bCgtkWz4+PpLuHMi+vr4mpwEAANlRlTfXSpL2vNHI5CS5U2xsrIoUKWL7XHY/FBbItu5Of/L19aWwAAAAKXJ285QkPitksrRMS+fibQAAAAAOo7AAAAAA4DAKCwAAAAAOo7AAAAAA4DAu3gYAAECO5W91MzsC/kZhAQAAgBxr44gGZkfA35gKBQAAAMBhFBYAAAAAHEZhAQAAgByrzJjVKjNmtdkxIAoLAAAAABmAwgIAAACAwygsAAAAADiMwgIAAACAwygsAAAAADiMwgIAAACAw/jmbWR7FcZ9Jyc3T7NjAACQaU5NbW52hBxr6ct1zY6Av1FYAAAAIMeqUMhqdgT8jalQAAAAABxGYQEAAIAcq89nO9Xns51mx4CYCgUAAIAcbP3hP8yOgL9xxgIAAACAwygsAAAAADiMwgIAAACAwygsAAAAADiMwgIAAACAw7grFAAAAHKsAQ1KmR0Bf6OwAAAAQI416JnSZkfA35gKlctFRkbKYrHo8uXLqbaJiIhQ3rx577ud8ePHq3LlyhmaDQAAALkHhUUuV7duXUVFRclqtZodBQAAIMMt3nFWi3ecNTsGxFSoXC9PnjwKCAgwOwYAAECmGLvsF0lSuxpFTE4CzljkMKGhoRo4cKCGDBmifPnyyd/fXx999JHi4+PVvXt3+fj4qGTJklq9erWklKdCRUREqGjRovL09FSbNm108eLFZP1MnTpV/v7+8vHxUc+ePXXjxg2713fs2KFGjRqpQIECslqtCgkJ0e7du22v9+jRQy1atLBb5/bt2woICNCcOXMycEQAAACQHVBY5EDz5s1TgQIFtH37dg0cOFD9+vXT888/r7p162r37t0KDw9X586dde3atWTrbtu2TT169NDLL7+svXv3KiwsTBMnTrRrs3jxYo0bN06TJk3Szp07FRgYqJkzZ9q1iYuLU9euXbVx40Zt3bpVpUuXVrNmzRQXFydJ6tWrl9asWaOoqCjbOqtWrdLVq1fVrl27TBgVAAAAmMliGIZhdgikXWhoqBITE7Vx40ZJUmJioqxWq9q2bav58+dLkqKjoxUYGKgtW7boxo0bCgsL06VLl5Q3b1517NhRly5dsp3RkKQOHTpozZo1trMadevWVaVKlTRr1ixbm9q1a+vGjRvau3dvirkSExOVL18+LVy40Hamonz58uratatGjBghSWrTpo3y5s2ruXPnpriNhIQEJSQk2J7HxsaqSJEiKjJksZzcPNM3YAAA5ACnpjY3O0KOVWbMnc80Ryc1NTlJ7hQbGyur1aorV67I19f3vm05Y5EDPfnkk7a/Ozs7y8/PTxUrVrQt8/f3lyTFxMQkW/fQoUOqU6eO3bJ7n6elTUxMjPr27asyZcrIarXKarXq6tWrOnPmjK1Nr169bEVETEyMVq5cqR49eqS6X1OmTLFty2q1qkgR5koCAADkFBQWOZCrq6vdc4vFYrfMYrFIkpKSkpKtm1EnqLp166Zdu3bpvffe0+bNm7V37175+fnp5s2btjZdunTRb7/9pi1btujzzz9X8eLFVa9evVS3OXr0aF25csX2OHuWOzwAAADkFNwV6hFTrlw5bd261W7Zvc/Lli2rrVu3qkuXLqm22bhxo2bOnKlmzZpJks6ePas///zTro2fn59at26tuXPnasuWLerevft9s7m5ucnNze2h9wkAADy6ygbdf3oOsg6FxSNm0KBBqlu3rqZNm6bWrVvr+++/15o1a+zaDB48WF27dlX16tX19NNPa8GCBTp48KAef/xxW5tSpUrps88+U/Xq1RUbG6tXX31VHh4eyfrr1auXWrRoocTERHXt2jXT9w8AADxavun/lNkR8DemQj1iateurU8++UT//e9/VblyZX3//fcaO3asXZv27dvrjTfe0MiRI1WtWjWdPn1a/fr1s2szZ84cXbp0SVWqVFHnzp01aNAgFSxYMFl/DRs2VGBgoMLDwxUUFJSp+wYAAADzcFcoZKpr164pKChIc+bMUdu2bR9q3bt3IeCuUACA3I67QqXfxat37ijp58106szwMHeFYioUMkVSUpKio6M1ffp0Wa1WtWrVyuxIAAAgF6ozZZ0kbjebHVBYIFOcOXNGJUqUUOHChRURESEXFw41AACA3IxPe8gUxYsXz7Bb2wIAACD74+JtAAAAAA6jsAAAAADgMAoLAAAAAA6jsAAAAADgMC7eBgAAQI61YUSo2RHwNwoLAAAA5FiBVg+zI+BvTIUCAAAA4DAKCwAAAORY7WZvUbvZW8yOATEVCgAAADnY3rOXzY6Av1FYINv7ZUK4fH19zY4BAACA+2AqFAAAAACHUVgAAAAAcBiFBQAAAACHUVgAAAAAcBgXbwMAACDHer1lObMj4G8UFgAAAMixOtcuZnYE/I2pUAAAAAAcRmEBAACAHGv2hhOaveGE2TEgpkIBAAAgB5vx/VFJUt+QkiYnAWcsAAAAADiMwgIAAACAwygsAAAAADiMwgIAAACAwygsAAAAADiMu0IBAAAgx3q6dAGzI+BvFBYAAADIseZ0q2F2BPyNqVAAAAAAHEZhAQAAgBzr2IU4HbsQZ3YMiKlQAAAAyMGa/2eTJOnopKYmJwFnLAAAAAA4jMICAAAAgMMoLAAAAAA4jMICAAAAgMMoLAAAAAA4jMICAAAAgMO43SwAAAByrAMTGpsdAX+jsAAAAECO5ebibHYE/I2pUAAAAAAcRmEBAACAHKvhjA1qOGOD2TEgpkIBAAAgBztz8ZrZEfA3zlgAAAAAcBiFBQAAAACHUVgAAAAAcBiFBQAAAACHcfE2sr0K476Tk5un2TEAAEA2VnzUykzZ7qmpzTNlu7kRZywAAAAAOIzCAgAAAIDDKCwAAAAAOIzCAgAAAIDDKCwAAAAAOIzCAgAAAIDDKCwAAAAAOIzCAgAAAIDDKCwAAAAAOIzCAgAAAIDDKCwAAAAAOIzCAgAAAIDDKCweQREREcqbN2+W9zt+/HhVrlw5y/sFAABA5qOwAAAAAOAwCgsAAAAADqOwyAa+/fZb5c2bV0lJSZKkvXv3ymKx6NVXX7W16dOnj1544QVJ0ubNm1W/fn15eHioSJEiGjRokOLj421tb968qREjRqhQoULy8vJSrVq1FBkZmWr/Fy9eVM2aNdWqVSvduHFDhmFo2rRpevzxx+Xh4aFKlSrpf//7n619ZGSkLBaLfvzxR1WvXl2enp6qW7eujhw5YrfdqVOnyt/fXz4+PurZs6du3LiREcMFAACAbIjCIhuoX7++4uLitGfPHknShg0bVKBAAW3YsMHWJjIyUiEhITpw4IDCw8PVtm1b7d+/X19++aU2bdqkAQMG2Np2795dP//8sxYtWqT9+/fr+eefV5MmTXTs2LFkfZ87d0716tVTcHCwli5dKnd3d40dO1Zz587VrFmzdPDgQb3yyit68cUX7fJI0pgxYzR9+nTt3LlTLi4u6tGjh+21xYsXa9y4cZo0aZJ27typwMBAzZw5877jkJCQoNjYWLsHAAAAcgaLYRiG2SEgVatWTR07dtSwYcPUpk0b1ahRQxMmTNCff/6p+Ph4BQYG6tChQ5o8ebI8PDz04Ycf2tbdtGmTQkJCFB8fr99//12lS5fWuXPnFBQUZGvTsGFD1axZU5MnT1ZERISGDBmi7du3q1GjRnr22Wf173//WxaLRfHx8SpQoIDWrVunOnXq2Nbv1auXrl27poULFyoyMlJhYWH64Ycf9Mwzz0iSVq1apebNm+v69etyd3dX3bp1ValSJc2aNcu2jdq1a+vGjRvau3dvimMwfvx4TZgwIdnyIkMWy8nN09EhBgAAeGinpjY3O4KpYmNjZbVadeXKFfn6+t63LWcssonQ0FBFRkbKMAxt3LhRzz77rCpUqKBNmzZp/fr18vf3V3BwsHbt2qWIiAh5e3vbHuHh4UpKStLJkye1e/duGYahMmXK2LXZsGGDTpw4Yevv+vXrevrpp9W6dWv95z//kcVikST9+uuvunHjhho1amS3/vz58+3Wl6Qnn3zS9vfAwEBJUkxMjCTp0KFDdoWJpGTP7zV69GhduXLF9jh79mz6BxQAAABZysXsALgjNDRUn376qfbt2ycnJyeVK1dOISEh2rBhgy5duqSQkBBJUlJSkvr06aNBgwYl20bRokW1f/9+OTs7a9euXXJ2drZ73dvb2/Z3Nzc3NWzYUCtXrtSrr76qwoUL27YvSStXrlShQoXs1ndzc7N77urqavv73cLk7vrp4ebmlqwPAAAA5AwUFtnE3ess3nvvPYWEhMhisSgkJERTpkzRpUuXNHjwYElS1apVdfDgQZUqVSrF7VSpUkWJiYmKiYlRvXr1Uu3PyclJn332mTp27KgGDRooMjJSQUFBKleunNzc3HTmzBlbMZMeZcuW1datW9WlSxfbsq1bt6Z7ewAAAMjemAqVTVitVlWuXFmff/65QkNDJd0pNnbv3q2jR4/alo0cOVJbtmxR//79tXfvXh07dkzLly/XwIEDJUllypRRp06d1KVLFy1dulQnT57Ujh079Pbbb2vVqlV2fTo7O2vBggWqVKmSGjRooOjoaPn4+Gj48OF65ZVXNG/ePJ04cUJ79uzRBx98oHnz5qV5fwYPHqw5c+Zozpw5Onr0qMaNG6eDBw9myFgBAAAg+6GwyEbCwsKUmJhoKyLy5cuncuXK6bHHHlPZsmUl3bmuYcOGDTp27Jjq1aunKlWq6PXXX7dd4yBJc+fOVZcuXTRs2DA98cQTatWqlbZt26YiRYok69PFxUVffPGFypcvrwYNGigmJkZvvfWW3njjDU2ZMkVly5ZVeHi4vv32W5UoUSLN+9K+fXu98cYbGjlypKpVq6bTp0+rX79+jg0QAAAAsi3uCoVs6+5dCLgrFAAAMAt3heKuUAAAAACyEIUFAAAAAIdRWAAAAABwGIUFAAAAAIdRWAAAAABwGIUFAAAAAIdRWAAAAABwGIUFAAAAAIdRWAAAAABwGIUFAAAAAIdRWAAAAABwmIvZAYAH+WVCuHx9fc2OAQAAsqEyY1ZLko5OampyEnDGAgAAAIDDKCwAAAAAOIzCAgAAAIDDKCwAAAAAOIzCAgAAAIDDuCsUAAAAcqxuTxU3OwL+RmEBAACAHOu1ZmXNjoC/MRUKAAAAgMMoLAAAAJBjrT4QpdUHosyOATEVCgAAADnY4EV7JUlNKwaaGwScsQAAAADgOAoLAAAAAA6jsAAAAADgMAoLAAAAAA6jsAAAAADgMO4KBQAAgByrqJ+n2RHwNwoLAAAA5Fg/DA0xOwL+xlQoAAAAAA6jsAAAAECOlXA7UQm3E82OATEVCgAAADlYxXHfS5KOTmpqchJwxgIAAACAwygsAAAAADiMwgIAAACAwygsAAAAADiMwgIAAACAwygsAAAAADiM280CAAAgx1o56GmzI+BvFBYAAADIsUr7+5gdAX9jKhQAAAAAh1FYAAAAIMfqEbFDPSJ2mB0DYioUAAAAcrBNx/40OwL+xhkLAAAAAA6jsAAAAADgMAoLAAAAAA6jsAAAAADgMC7eRrZXYdx3cnLzNDsGAADIxoqPWml2hCxxampzsyOkijMWAAAAABxGYQEAAADAYRQWAAAAABxGYQEAAADAYRQWAAAAABxGYQEAAADAYRQWAAAAABxGYQEAAADAYRQWAAAAABxGYQEAAADAYRQWAAAAAByWowuL8ePHq3LlymbHSLfIyEhZLBZdvnzZ7CgPZLFYtGzZMrNjAAAAIJtyMTuAI4YPH66BAweaHeOREBUVpXz58pkdAwAAANlUtiwsbt68qTx58jywnbe3t7y9vbMgEQICAsyOAAAAgGzsoaZChYaGauDAgRoyZIjy5csnf39/ffTRR4qPj1f37t3l4+OjkiVLavXq1XbrbdiwQTVr1pSbm5sCAwM1atQo3b592267AwYM0NChQ1WgQAE1atTINk3oxx9/VPXq1eXp6am6devqyJEjtvXunQrVrVs3tW7dWu+8844CAwPl5+en/v3769atW7Y2UVFRat68uTw8PFSiRAktXLhQxYsX13vvvZfqfu/YsUONGjVSgQIFZLVaFRISot27d9u1sVgs+uSTT9SmTRt5enqqdOnSWr58uV2bVatWqUyZMvLw8FBYWJhOnTr1wDG/cuWKXnrpJRUsWFC+vr5q0KCB9u3bJ0k6cuSILBaLDh8+bLfOjBkzVLx4cRmGIUn69ddf1axZM3l7e8vf31+dO3fWn3/+aTf+gwYN0ogRI5Q/f34FBARo/Pjxyfbv7lSoU6dOyWKxaOnSpQoLC5Onp6cqVaqkLVu22K3z8ccfq0iRIvL09FSbNm00Y8YM5c2b94H7DAAAgJznoa+xmDdvngoUKKDt27dr4MCB6tevn55//nnVrVtXu3fvVnh4uDp37qxr165Jkn7//Xc1a9ZMNWrU0L59+zRr1ix9+umnmjhxYrLturi46Oeff9aHH35oWz5mzBhNnz5dO3fulIuLi3r06HHffOvXr9eJEye0fv16zZs3TxEREYqIiLC93qVLF50/f16RkZFasmSJPvroI8XExNx3m3Fxceratas2btyorVu3qnTp0mrWrJni4uLs2k2YMEHt2rXT/v371axZM3Xq1El//fWXJOns2bNq27atmjVrpr1796pXr14aNWrUffs1DEPNmzdXdHS0Vq1apV27dqlq1ap65pln9Ndff+mJJ55QtWrVtGDBArv1Fi5cqI4dO8pisSgqKkohISGqXLmydu7cqTVr1ujChQtq166d3Trz5s2Tl5eXtm3bpmnTpunNN9/U2rVr75tvzJgxGj58uPbu3asyZcrohRdesBWMP//8s/r27avBgwdr7969atSokSZNmnTf7QEAACDnshh3f62dBqGhoUpMTNTGjRslSYmJibJarWrbtq3mz58vSYqOjlZgYKC2bNmi2rVra8yYMVqyZIkOHToki8UiSZo5c6ZGjhypK1euyMnJSaGhobpy5Yr27Nlj6ysyMlJhYWH64Ycf9Mwzz0i68xv/5s2b6/r163J3d9f48eO1bNky7d27V9KdMxaRkZE6ceKEnJ2dJUnt2rWTk5OTFi1apMOHD6ts2bLasWOHqlevLkk6fvy4SpcurXfffVdDhgxJ0zgkJiYqX758WrhwoVq0aHFnIC0WjR07Vm+99ZYkKT4+Xj4+Plq1apWaNGmi1157TcuWLdPBgwdt4zBq1Ci9/fbbunTpUoq/yV+3bp3atGmjmJgYubm52ZaXKlVKI0aM0EsvvaR3331X77//vk6cOCFJOnr0qJ544gkdPHhQ5cqV0xtvvKFt27bpu+++s61/7tw5FSlSREeOHFGZMmWS/VwlqWbNmmrQoIGmTp1q27+vv/5arVu31qlTp1SiRAl98skn6tmzp6Q7Z0XKly+vQ4cOKTg4WB06dNDVq1e1YsUK2zZffPFFrVixItWL1RMSEpSQkGB7HhsbqyJFiqjIkMVycvNM088GAAAgNzs1tXmW9hcbGyur1aorV67I19f3vm0f+ozFk08+afu7s7Oz/Pz8VLFiRdsyf39/SbKdBTh06JDq1Klj+zAtSU899ZSuXr2qc+fO2Zbd/aB/v/4CAwPttp2S8uXL24qKu+vcbX/kyBG5uLioatWqttdLlSr1wIuSY2Ji1LdvX5UpU0ZWq1VWq1VXr17VmTNnUs3q5eUlHx8fu3GoXbu23TjUqVPnvv3u2rVLV69elZ+fn+16Em9vb508edJWSHTo0EGnT5/W1q1bJUkLFixQ5cqVVa5cOds21q9fb7d+cHCwJNm2cW/2e8ctNff72Rw5ckQ1a9a0a3/v83tNmTLFNr5Wq1VFihS5b3sAAABkHw998barq6vdc4vFYrfs7gfnpKQkSXem8/zzw/TdZf9sK935IP6g/u7ddlrz/TNLSh500qZbt276448/9N5776lYsWJyc3NTnTp1dPPmTYf7vp+kpCQFBgYqMjIy2Wt3z3AEBgYqLCxMCxcuVO3atfXFF1+oT58+dtto2bKl3n777WTbuFsMPCh7atL7c0/N6NGjNXToUNvzu2csAAAAkP1l+l2hypUrpyVLlth90Ny8ebN8fHxUqFChzO7eTnBwsG7fvq09e/aoWrVqku5MhXrQ90hs3LhRM2fOVLNmzSTduV7inxc/p0W5cuWSfQ/E3bMMqalataqio6Pl4uKi4sWLp9quU6dOGjlypF544QWdOHFCHTp0sNvGkiVLVLx4cbm4ZN1NwIKDg7V9+3a7ZTt37rzvOm5ubnZTvgAAAJBzZPoX5L388ss6e/asBg4cqMOHD+ubb77RuHHjNHToUDk5Ze338wUHB6thw4Z66aWXtH37du3Zs0cvvfSSPDw8kv12/Z9KlSqlzz77TIcOHdK2bdvUqVMneXh4PFTfffv21YkTJzR06FAdOXJECxcutLuoPCUNGzZUnTp11Lp1a3333Xc6deqUNm/erLFjx9p9SG/btq1iY2PVr18/hYWF2RVs/fv3119//aUXXnhB27dv12+//abvv/9ePXr0UGJi4kPtw8MYOHCgVq1apRkzZujYsWP68MMPtXr16vuOMwAAAHKuTP9kX6hQIa1atUrbt29XpUqV1LdvX/Xs2VNjx47N7K5TNH/+fPn7+6t+/fpq06aNevfuLR8fH7m7u6e6zpw5c3Tp0iVVqVJFnTt31qBBg1SwYMGH6rdo0aJasmSJvv32W1WqVEmzZ8/W5MmT77uOxWLRqlWrVL9+ffXo0UNlypRRhw4ddOrUKdu1LJLk6+urli1bat++ferUqZPdNoKCgvTzzz8rMTFR4eHhqlChggYPHiyr1Zqphd1TTz2l2bNna8aMGapUqZLWrFmjV1555b7jDAAAgJzroe4KlRvdvUPSP+8+hczRu3dvHT582O7uU/dz9y4E3BUKAADgjux8V6hs+c3bmWndunW6evWqKlasqKioKI0YMULFixdX/fr1zY6W67zzzjtq1KiRvLy8tHr1as2bN08zZ840OxYAAAAywSNXWNy6dUuvvfaafvvtN/n4+Khu3bpasGBBsrsiwXHbt2/XtGnTFBcXp8cff1z/+c9/1KtXL7NjAQAAIBM8coVFeHi4wsPDzY7xSFi8eLHZEQAAAJBFsva2TAAAAAByJQoLAAAAAA6jsAAAAADgMAoLAAAAAA6jsAAAAADgMAoLAAAAAA6jsAAAAADgMAoLAAAAAA575L4gDznPLxPC5evra3YMAACQDf3nx2OSpEHPlDY5CThjAQAAgBzr/XXH9f6642bHgCgsAAAAAGQACgsAAAAADqOwAAAAAOAwCgsAAAAADqOwAAAAAOAwbjcLAACAHCss+DGzI+BvFBYAAADIsT7sXN3sCPgbU6EAAAAAOIzCAgAAADnWL79f0S+/XzE7BsRUKAAAAORgbWduliQdndTU5CTgjAUAAAAAh1FYAAAAAHAYhQUAAAAAh1FYAAAAAHAYhQUAAAAAh3FXKGRbhmFIkmJjY01OAgAAsqvEhGuS+LyQWe6O693PZfdDYYFs6+LFi5KkIkWKmJwEAABkd9bpZifI3eLi4mS1Wu/bhsIC2Vb+/PklSWfOnHnggYzcKTY2VkWKFNHZs2fl6+trdhyYgGMAHAPgGDCXYRiKi4tTUFDQA9tSWCDbcnK6cwmQ1WrljeQR5+vryzHwiOMYAMcAOAbMk9Zf8HLxNgAAAACHUVgAAAAAcBiFBbItNzc3jRs3Tm5ubmZHgUk4BsAxAI4BcAzkHBYjLfeOAgAAAID74IwFAAAAAIdRWAAAAABwGIUFAAAAAIdRWAAAAABwGIUFsqWZM2eqRIkScnd3V7Vq1bRx40azIyGTjB8/XhaLxe4REBBge90wDI0fP15BQUHy8PBQaGioDh48aGJiOOqnn35Sy5YtFRQUJIvFomXLltm9npafeUJCggYOHKgCBQrIy8tLrVq10rlz57JwL+CIBx0D3bp1S/a+ULt2bbs2HAM515QpU1SjRg35+PioYMGCat26tY4cOWLXhveBnInCAtnOl19+qSFDhmjMmDHas2eP6tWrp6ZNm+rMmTNmR0MmKV++vKKiomyPAwcO2F6bNm2aZsyYoffff187duxQQECAGjVqpLi4OBMTwxHx8fGqVKmS3n///RRfT8vPfMiQIfr666+1aNEibdq0SVevXlWLFi2UmJiYVbsBBzzoGJCkJk2a2L0vrFq1yu51joGca8OGDerfv7+2bt2qtWvX6vbt22rcuLHi4+NtbXgfyKEMIJupWbOm0bdvX7tlwcHBxqhRo0xKhMw0btw4o1KlSim+lpSUZAQEBBhTp061Lbtx44ZhtVqN2bNnZ1FCZCZJxtdff217npaf+eXLlw1XV1dj0aJFtja///674eTkZKxZsybLsiNj3HsMGIZhdO3a1Xj22WdTXYdjIHeJiYkxJBkbNmwwDIP3gZyMMxbIVm7evKldu3apcePGdssbN26szZs3m5QKme3YsWMKCgpSiRIl1KFDB/3222+SpJMnTyo6OtrueHBzc1NISAjHQy6Vlp/5rl27dOvWLbs2QUFBqlChAsdFLhIZGamCBQuqTJky6t27t2JiYmyvcQzkLleuXJEk5c+fXxLvAzkZhQWylT///FOJiYny9/e3W+7v76/o6GiTUiEz1apVS/Pnz9d3332njz/+WNHR0apbt64uXrxo+5lzPDw60vIzj46OVp48eZQvX75U2yBna9q0qRYsWKB169Zp+vTp2rFjhxo0aKCEhARJHAO5iWEYGjp0qJ5++mlVqFBBEu8DOZmL2QGAlFgsFrvnhmEkW4bcoWnTpra/V6xYUXXq1FHJkiU1b94828WaHA+PnvT8zDkuco/27dvb/l6hQgVVr15dxYoV08qVK9W2bdtU1+MYyHkGDBig/fv3a9OmTcle430g5+GMBbKVAgUKyNnZOdlvG2JiYpL95gK5k5eXlypWrKhjx47Z7g7F8fDoSMvPPCAgQDdv3tSlS5dSbYPcJTAwUMWKFdOxY8ckcQzkFgMHDtTy5cu1fv16FS5c2Lac94Gci8IC2UqePHlUrVo1rV271m752rVrVbduXZNSISslJCTo0KFDCgwMVIkSJRQQEGB3PNy8eVMbNmzgeMil0vIzr1atmlxdXe3aREVF6ZdffuG4yKUuXryos2fPKjAwUBLHQE5nGIYGDBigpUuXat26dSpRooTd67wP5FxMhUK2M3ToUHXu3FnVq1dXnTp19NFHH+nMmTPq27ev2dGQCYYPH66WLVuqaNGiiomJ0cSJExUbG6uuXbvKYrFoyJAhmjx5skqXLq3SpUtr8uTJ8vT0VMeOHc2OjnS6evWqjh8/bnt+8uRJ7d27V/nz51fRokUf+DO3Wq3q2bOnhg0bJj8/P+XPn1/Dhw9XxYoV1bBhQ7N2Cw/hfsdA/vz5NX78eD333HMKDAzUqVOn9Nprr6lAgQJq06aNJI6BnK5///5auHChvvnmG/n4+NjOTFitVnl4eKTpvZ9jIJsy7X5UwH188MEHRrFixYw8efIYVatWtd2CDrlP+/btjcDAQMPV1dUICgoy2rZtaxw8eND2elJSkjFu3DgjICDAcHNzM+rXr28cOHDAxMRw1Pr16w1JyR5du3Y1DCNtP/Pr168bAwYMMPLnz294eHgYLVq0MM6cOWPC3iA97ncMXLt2zWjcuLHx2GOPGa6urkbRokWNrl27Jvv5cgzkXCn97CUZc+fOtbXhfSBnshiGYWR9OQMAAAAgN+EaCwAAAAAOo7AAAAAA4DAKCwAAAAAOo7AAAAAA4DAKCwAAAAAOo7AAAAAA4DAKCwAAAAAOo7AAAAAA4DAKCwAAAAAOo7AAADwyunXrJovFIovFIhcXFxUtWlT9+vXTpUuXzI4GADkehQUA4JHSpEkTRUVF6dSpU/rkk0/07bff6uWXXzY7FgDkeBQWAIBHipubmwICAlS4cGE1btxY7du31/fff297fe7cuSpbtqzc3d0VHBysmTNn2l6rU6eORo0aZbe9P/74Q66urlq/fr0k6ebNmxoxYoQKFSokLy8v1apVS5GRkbb2ERERyps3r7777juVLVtW3t7etmLnrtDQUA0ZMsSun9atW6tbt2625w/qBwCyGoUFAOCR9dtvv2nNmjVydXWVJH388ccaM2aMJk2apEOHDmny5Ml6/fXXNW/ePElSp06d9MUXX8gwDNs2vvzyS/n7+yskJESS1L17d/38889atGiR9u/fr+eff15NmjTRsWPHbOtcu3ZN77zzjj777DP99NNPOnPmjIYPH/5Q2dPSDwBkJQoLAMAjZcWKFfL29paHh4dKliypX3/9VSNHjpQkvfXWW5o+fbratm2rEiVKqG3btnrllVf04YcfSpLat2+v8+fPa9OmTbbtLVy4UB07dpSTk5NOnDihL774Ql999ZXq1aunkiVLavjw4Xr66ac1d+5c2zq3bt3S7NmzVb16dVWtWlUDBgzQjz/+mOZ9SGs/AJCVXMwOAABAVgoLC9OsWbN07do1ffLJJzp69KgGDhyoP/74Q2fPnlXPnj3Vu3dvW/vbt2/LarVKkh577DE1atRICxYsUL169XTy5Elt2bJFs2bNkiTt3r1bhmGoTJkydn0mJCTIz8/P9tzT01MlS5a0PQ8MDFRMTEya9yGt/QBAVqKwAAA8Ury8vFSqVClJ0n/+8x+FhYVpwoQJGjBggKQ706Fq1aplt46zs7Pt7506ddLgwYP13//+VwsXLlT58uVVqVIlSVJSUpKcnZ21a9cuu3Ukydvb2/b3u1Ov7rJYLHbTq5ycnOyeS3fOctyV1n4AICtRWAAAHmnjxo1T06ZN1a9fPxUqVEi//fabOnXqlGr71q1bq0+fPlqzZo0WLlyozp07216rUqWKEhMTFRMTo3r16qU702OPPWZ3MXdiYqJ++eUXhYWFZWg/AJCRKCwAAI+00NBQlS9fXpMnT9b48eM1aNAg+fr6qmnTpkpISNDOnTt16dIlDR06VNKdMx7PPvusXn/9dR06dEgdO3a0batMmTLq1KmTunTpounTp6tKlSr6888/tW7dOlWsWFHNmjVLU6YGDRpo6NChWrlypUqWLKl3331Xly9fzvB+ACAjcfE2AOCRN3ToUH388ccKDw/XJ598ooiICFWsWFEhISGKiIhQiRIl7Np36tRJ+/btU7169VS0aFG71+bOnasuXbpo2LBheuKJJ9SqVStt27ZNRYoUSXOeHj16qGvXrurSpYtCQkJUokQJ29mKjOwHADKSxbh3EicAAAAAPCTOWAAAAABwGIUFAAAAAIdRWAAAAABwGIUFAAAAAIdRWAAAAABwGIUFAAAAAIdRWAAAAABwGIUFAAAAAIdRWAAAAABwGIUFAAAAAIdRWAAAAABwGIUFAAAAAIdRWAAAAABwGIUFAAAAAIdRWAAAAABwGIUFAAAAAIdRWAAA0iQiIkIWi8X2cHd3V0BAgMLCwjRlyhTFxMSYHTFL3B2HU6dOPbDtd999p8aNGysoKEhubm4KCgpSaGiopk6dmvlBs0jx4sXVrVs3s2MAyAZczA4AAMhZ5s6dq+DgYN26dUsxMTHatGmT3n77bb3zzjv68ssv1bBhQ7MjZguzZ89Wv3799Nxzz+n9999X/vz5dfbsWW3evFn/+9//NGrUKLMjZoivv/5avr6+ZscAkA1YDMMwzA4BAMj+IiIi1L17d+3YsUPVq1e3e+3MmTN6+umndfnyZR07dkz+/v4mpcx8d8fh5MmTKl68eKrtihUrpuLFi2vDhg3JXktKSpKTU86eNHD9+nV5eHiYHQNANpKz39UAANlC0aJFNX36dMXFxenDDz+0e23nzp1q1aqV8ufPL3d3d1WpUkWLFy+2a3N3etG6devUu3dv+fn5ydfXV126dFF8fLyio6PVrl075c2bV4GBgRo+fLhu3bplt40JEyaoVq1ayp8/v3x9fVW1alV9+umnuvf3Z8WLF1eLFi20Zs0aVa1aVR4eHgoODtacOXOS7dfWrVv11FNPyd3dXUFBQRo9enSyflNz8eJFBQYGpvjavUVFUlKS/vvf/6py5cry8PBQ3rx5Vbt2bS1fvtyu3Zdffqk6derIy8tL3t7eCg8P1549e+zadOvWTd7e3jp+/LiaNWsmb29vFSlSRMOGDVNCQoJDY7Z06VJVqVJF7u7umjBhgu21e6dCnTlzRi+++KIKFiwoNzc3lS1bVtOnT1dSUpJdu1mzZqlSpUry9vaWj4+PgoOD9dprr91/YAFkW0yFAgBkiGbNmsnZ2Vk//fSTbdn69evVpEkT1apVS7Nnz5bVatWiRYvUvn17Xbt2LdkH0l69eqlt27ZatGiR9uzZo9dee023b9/WkSNH1LZtW7300kv64Ycf9PbbbysoKEhDhw61rXvq1Cn16dNHRYsWlXSnKBg4cKB+//13vfHGG3b97Nu3T8OGDdOoUaPk7++vTz75RD179lSpUqVUv359SdKvv/6qZ555RsWLF1dERIQ8PT01c+ZMLVy4ME3jUadOHS1ZskTjx49XmzZtVKFCBTk7O6fYtlu3bvr888/Vs2dPvfnmm8qTJ492795tdx3H5MmTNXbsWHXv3l1jx47VzZs39a9//Uv16tXT9u3bVa5cOVvbW7duqVWrVurZs6eGDRumn376SW+99ZasVqvdWDzMmO3evVuHDh3S2LFjVaJECXl5eaW4L3/88Yfq1q2rmzdv6q233lLx4sW1YsUKDR8+XCdOnNDMmTMlSYsWLdLLL7+sgQMH6p133pGTk5OOHz+uX3/9NU3jCyAbMgAASIO5c+cakowdO3ak2sbf398oW7as7XlwcLBRpUoV49atW3btWrRoYQQGBhqJiYl22x44cKBdu9atWxuSjBkzZtgtr1y5slG1atVUcyQmJhq3bt0y3nzzTcPPz89ISkqyvVasWDHD3d3dOH36tG3Z9evXjfz58xt9+vSxLWvfvr3h4eFhREdH25bdvn3bCA4ONiQZJ0+eTLV/wzCM48ePGxUqVDAkGZIMDw8P45lnnjHef/994+bNm7Z2P/30kyHJGDNmTKrbOnPmjOHi4pJsfOLi4oyAgACjXbt2tmVdu3Y1JBmLFy+2a9usWTPjiSeeSLWPB42Zs7OzceTIkWTrFStWzOjatavt+ahRowxJxrZt2+za9evXz7BYLLZtDBgwwMibN2+qeQDkPEyFAgBkGOMfU2iOHz+uw4cPq1OnTpKk27dv2x7NmjVTVFSUjhw5Yrd+ixYt7J6XLVtWktS8efNky0+fPm23bN26dWrYsKGsVqucnZ3l6uqqN954QxcvXkx2x6rKlSvbfksvSe7u7ipTpozdNtevX69nnnnG7noRZ2dntW/fPk1jUbJkSe3bt08bNmzQhAkT1LBhQ+3YsUMDBgxQnTp1dOPGDUnS6tWrJUn9+/dPdVvfffedbt++rS5dutiNo7u7u0JCQhQZGWnX3mKxqGXLlnbLnnzySYfG7Mknn1SZMmUeuN/r1q1TuXLlVLNmTbvl3bp1k2EYWrdunSSpZs2aunz5sl544QV98803+vPPPx+4bQDZG4UFACBDxMfH6+LFiwoKCpIkXbhwQZI0fPhwubq62j1efvllSUr2YTJ//vx2z/PkyZPq8rsfzCVp+/btaty4sSTp448/1s8//6wdO3ZozJgxku5caPxPfn5+yfK7ubnZtbt48aICAgKStUtpWWqcnJxUv359vfHGG1q+fLnOnz+v9u3ba9euXbZrOv744w85Ozvfd7t3x7JGjRrJxvLLL79MNo6enp5yd3dPtn+OjFlq14vcK7VrS+4eFxcvXpQkde7cWXPmzNHp06f13HPPqWDBgqpVq5bWrl2bpn4AZD9cYwEAyBArV65UYmKiQkNDJUkFChSQJI0ePVpt27ZNcZ0nnngiQ/petGiRXF1dtWLFCrsP1MuWLUv3Nv38/BQdHZ1seUrL0srLy0ujR4/Wl19+qV9++UWS9NhjjykxMVHR0dGpfni/O5b/+9//VKxYsXT3/08PO2YWiyVN2/Xz81NUVFSy5efPn5f0//dFkrp3767u3bsrPj5eP/30k8aNG6cWLVro6NGjGbafALIOhQUAwGFnzpzR8OHDZbVa1adPH0l3iobSpUtr3759mjx5cqb2b7FY5OLiYndx9PXr1/XZZ5+le5thYWFavny5Lly4YJsOlZiYqC+//DJN60dFRaVYKBw6dEjS//8NftOmTTVlyhTNmjVLb775ZorbCg8Pl4uLi06cOKHnnnsuPbuTTGaMmSQ988wzmjJlinbv3q2qVavals+fP18Wi0VhYWHJ1vHy8lLTpk118+ZNtW7dWgcPHqSwAHIgCgsAwEP55ZdfbHP8Y2JitHHjRs2dO1fOzs76+uuv9dhjj9nafvjhh2ratKnCw8PVrVs3FSpUSH/99ZcOHTqk3bt366uvvsqQTM2bN9eMGTPUsWNHvfTSS7p48aLeeecdubm5pXubY8eO1fLly9WgQQO98cYb8vT01AcffKD4+Pg0rV++fHk988wzatq0qUqWLKkbN25o27Ztmj59uvz9/dWzZ09JUr169dS5c2dNnDhRFy5cUIsWLeTm5qY9e/bI09NTAwcOVPHixfXmm29qzJgx+u2339SkSRPly5dPFy5c0Pbt2+Xl5WW7/WtaZcaYSdIrr7yi+fPnq3nz5nrzzTdVrFgxrVy5UjNnzlS/fv1s12n07t1bHh4eeuqppxQYGKjo6GhNmTJFVqtVNWrUcCgDAHNQWAAAHkr37t0l3bnOIW/evCpbtqxGjhypXr162RUV0p3f+m/fvl2TJk3SkCFDdOnSJfn5+alcuXJq165dhmVq0KCB5syZo7ffflstW7ZUoUKF1Lt3bxUsWND2Af5hVahQQT/88IOGDRumrl27Kl++fOrcubOee+45vfTSSw9cf+rUqfruu+80adIkRUdH6/bt2ypSpIg6duyoMWPG2J3NiIiIsH2HREREhDw8PFSuXDm773QYPXq0ypUrp3//+9/64osvlJCQoICAANWoUUN9+/Z96P3LjDGT7kzt2rx5s0aPHq3Ro0crNjZWjz/+uKZNm2Z3e+B69eopIiJCixcv1qVLl1SgQAE9/fTTmj9/frLjCEDOwDdvAwAAAHAYd4UCAAAA4DAKCwAAAAAOo7AAAAAA4DAKCwAAAAAOo7AAAAAA4DAKCwAAAAAOo7AAAAAA4DC+IA/ZVlJSks6fPy8fHx9ZLBaz4wAAADxyDMNQXFycgoKC5OR0/3MSFBbIts6fP68iRYqYHQMAAOCRd/bsWRUuXPi+bSgskG35+PhIunMg+/r6mpqlyptrJUl73mhkao50ebvEnT9HnjQ3BwBkgHqL6kmSNnbYaHIS4NEQGxurIkWK2D6X3Q+FBbKtu9OffH19TS8snN08bVlyHPe/T1vmxOwAcA9nD2dJOfT9GMjB0jItnYu3AQAAADiMwgIAAACAwygsAAAAADiMaywAAACAVCQmJurWrVtmx8g0rq6ucnZ2zpBtUVgAaeBvdTM7Qvr5BJqdAAAyTEHPgmZHwCPCMAxFR0fr8uXLZkfJdHnz5lVAQIDD3xtmMQzDyKBMQIaKjY2V1WrVlStXuPsHAADIUlFRUbp8+bIKFiwoT0/PXPllvYZh6Nq1a4qJiVHevHkVGJj8l5EP83mMMxYAAADAPyQmJtqKCj8/P7PjZCoPDw9JUkxMjAoWLOjQtCgu3gYAAAD+4e41FZ6eniYnyRp399PRa0koLIA0KDNmtcqMWW12jPR567E7DwDIBap+VlVVP6tqdgw8InLj9KeUZNR+UlgAAAAAcBiFBQAAAJBLdOvWTRaLJdnj+PHjmd43F28DAAAAaVR81Mos7e/U1OYPvU6TJk00d+5cu2WPPZb506IpLAAAAIBcxM3NTQEBAVneL1OhAAAAADiMwgIAAADIRVasWCFvb2/b4/nnn8+SfpkKhWyv9sLacvZI/5e1ZASXokGSpIrzRpiaIz2C/fNLkg7Pq2hyEgDIGFPqTdHBiwfNjvHQyvuVNzsCHhFhYWGaNWuW7bmXl1eW9EthAaSBs/t5syOk22G3PGZHAIAMVcJawuwIQLbm5eWlUqVKZXm/TIUCAAAA4DAKCyANrp97UdfPvWh2jHR598IfevfCH2bHAIAMM33ndLMjAEgBU6GANLh9NdjsCOlW/9p1syMAQIbaE7PH7AgAUkBhAQAAAKRRer6wLitFRESY1jdToQAAAAA4jMICAAAAgMMoLAAAAAA4jMICAAAAgMO4eBtIgzx+68yOkG4f5bWaHQEAMlSbUm3MjgAgBRQWQBq4PZZzC4sP81FYAMhdnivznNkRAKSAwiKXi4yMVFhYmC5duqS8efOm2CYiIkJDhgzR5cuXU93O+PHjtWzZMu3duzdTct7P1tPn5OtmyboOx1/Jur4AAAByCa6xyOXq1q2rqKgoWa381toRi3ec1eIdZ82OkT67P7vzAIBc4OtjX+vrY1+bHQNACjhjkcvlyZNHAQEBZsfI8cYu+0WS1K5GEZOTpMPKoXf+rNrZ3BwAkAHe2vqWJKlNaa6zALIbzljkMKGhoRo4cKCGDBmifPnyyd/fXx999JHi4+PVvXt3+fj4qGTJklq9erWkO1OhLBaL3TSniIgIFS1aVJ6enmrTpo0uXryYrJ+pU6fK399fPj4+6tmzp27cuGH3+o4dO9SoUSMVKFBAVqtVISEh2r17t+31Hj16qEWLFnbr3L59WwEBAZozZ04GjggAAACyAwqLHGjevHkqUKCAtm/froEDB6pfv356/vnnVbduXe3evVvh4eHq3Lmzrl27lmzdbdu2qUePHnr55Ze1d+9ehYWFaeLEiXZtFi9erHHjxmnSpEnauXOnAgMDNXPmTLs2cXFx6tq1qzZu3KitW7eqdOnSatasmeLi4iRJvXr10po1axQVFWVbZ9WqVbp69aratWuX4n4lJCQoNjbW7gEAAIC069atmywWi+3h5+enJk2aaP/+/Znet8UwDCPTe0GGCQ0NVWJiojZu3ChJSkxMlNVqVdu2bTV//nxJUnR0tAIDA7VlyxbduHHD7uLtjh076tKlS7YzGpLUoUMHrVmzxnZWo27duqpUqZJmzZpla1O7dm3duHEj1Yu3ExMTlS9fPi1cuNB2pqJ8+fLq2rWrRowYIUlq06aN8ubNq7lz56a4jfHjx2vChAnJll8Z5WP6xdtlxtwZr6OTmmZdjozy1mN3/nz9D3NzAEAGqPpZVUnS7s67H9ASSL8bN27o5MmTKlGihNzd3e1fHJ/F160+5E1lunXrpgsXLtg+b0VHR2vs2LHav3+/zpw5k+I699vf2NhYWa1WXblyRb6+vvftmzMWOdCTTz5p+7uzs7P8/PxUsWJF2zJ/f39JUkxMTLJ1Dx06pDp16tgtu/d5WtrExMSob9++KlOmjKxWq6xWq65evWp3wPbq1ct2UMfExGjlypXq0aNHqvs1evRoXblyxfY4ezaHXiwNAABgIjc3NwUEBCggIECVK1fWyJEjdfbsWf3xR+b+kpGLt3MgV1dXu+cWi8VumcVy57f7SUlJydbNqBNU3bp10x9//KH33ntPxYoVk5ubm+rUqaObN2/a2nTp0kWjRo3Sli1btGXLFhUvXlz16tVLdZtubm5yc3PLkHwAAACQrl69qgULFqhUqVLy8/PL1L4oLB4x5cqV09atW+2W3fu8bNmy2rp1q7p06ZJqm40bN2rmzJlq1qyZJOns2bP6888/7dr4+fmpdevWmjt3rrZs2aLu3btn5K5kqbJB9z/1l60FVHxwGwDIIYLzB5sdAcj2VqxYIW9vb0lSfHy8AgMDtWLFCjk5Ze5kJQqLR8ygQYNUt25dTZs2Ta1bt9b333+vNWvW2LUZPHiwunbtqurVq+vpp5/WggULdPDgQT3++OO2NqVKldJnn32m6tWrKzY2Vq+++qo8PDyS9derVy+1aNFCiYmJ6tq1a6bvX2b5pv9TZkdIv94591vDAeBeC5svNDsCkO2FhYXZrpX966+/NHPmTDVt2lTbt29XsWLFMq1frrF4xNSuXVuffPKJ/vvf/6py5cr6/vvvNXbsWLs27du31xtvvKGRI0eqWrVqOn36tPr162fXZs6cObp06ZKqVKmizp07a9CgQSpYsGCy/ho2bKjAwECFh4crKCgoU/cNAAAAkpeXl0qVKqVSpUqpZs2a+vTTTxUfH6+PP/44U/vlrlDIVNeuXVNQUJDmzJmjtm3bPtS6d+9CUGTIYjm5eaY7w6mpzdO97l0XryZIkvy8c+A1IPF/T1HzKmBuDgDIAH/d+EuSlN89v8lJkJvl9LtCXb58WcuWLbMtS0pKUt68edW7d29Nnz492ToZdVcopkIhUyQlJSk6OlrTp0+X1WpVq1atzI7kkDpT7kwnypG3m51R9s6f3G4WQC7Q8KuGkrjdLHA/CQkJio6OliRdunRJ77//vq5evaqWLVtmar8UFsgUZ86cUYkSJVS4cGFFRETIxYVDDQAAICusWbNGgYGBkiQfHx8FBwfrq6++UmhoaKb2y6c9ZIrixYtn2K1tAQAAso2HnJqU1SIiIhQREWFK31y8DQAAAMBhFBYAAAAAHEZhAQAAAMBhFBYAAAAAHMbF20AabBgRanaE9Bu01+wEAJBhVrVdZXYEAKmgsADSINDqYXaE9LMWMjsBAGSYAK8AsyMASAVToQAAAAA4jMICSIN2s7eo3ewtZsdInzlN7zwAIBfourqruq7uanYMAClgKhSyvV8mhMvX19fUDHvPXja1f4f8vtPsBACQYQ78ecDsCABSwRkLAAAAAA6jsAAAAAByiW7duslisSR7NGnSJNP7ZioUAAAAkEYV51XM0v4OdH346X9NmjTR3Llz7Za5ubllVKRUUVgAAAAAuYibm5sCArL+1sxMhQIAAADgMM5YAGnwestyZkdIvyZTzE4AABlmZI2RZkcAsr0VK1bI29vbbtnIkSP1+uuvZ2q/FBZAGnSuXczsCOlXo5fZCQAgw7QPbm92BCDbCwsL06xZs+yW5c+fP9P7pbAAAAAAchEvLy+VKlUqy/vlGgsgDWZvOKHZG06YHSN9Nr135wEAucCcX+Zozi9zzI4BIAWcsQDSYMb3RyVJfUNKmpwkHdZPuvPn00NMjQEAGeH9Pe9LknpU6GFyEiD7SkhIUHR0tN0yFxcXFShQIFP7pbAAAAAAcpE1a9YoMDDQbtkTTzyhw4cPZ2q/FBYAAABAGqXnC+uyUkREhCIiIkzpm2ssAAAAADiMwgIAAACAwygsAAAAADiMayyANHi6dObeRSFTPR5mdgIAyDB1guqYHQFAKigsgDSY062G2RHSr9NisxMAQIb54JkPzI4AIBVMhQIAAADgMAoLIA2OXYjTsQtxZsdIn5jDdx4AkAucuHxCJy6fMDsGgBQwFQpIg+b/2SRJOjqpqclJ0uHDenf+fP0Pc3MAQAZ4/tvnJUm7O+82OQmAe3HGAgAAAIDDKCwAAAAAOIypUAAAAEAaHTh3JUv7q1jY+lDtu3Xrpnnz5iVbfuzYMZUqVSqjYqWIwgIAAADIRZo0aaK5c+faLXvssccyvV8KCwAAACAXcXNzU0BAQJb3yzUWAAAAABzGGQsgDQ5MaGx2hPQbfc7sBACQYbZ23Gp2BCDbW7Fihby9vW3PmzZtqq+++irT+6WwANLAzcXZ7Ajp5+JmdgIAyDB5nPOYHQHI9sLCwjRr1izbcy8vryzpl8ICAAAAyEW8vLwy/Q5QKeEaCyANGs7YoIYzNpgdI33er3nnAQC5wLPLntWzy541OwaAFHDGAkiDMxevmR0h/S6dNDsBAGSYs3FnzY4AIBWcsQAAAADgMM5YAAAAAGn0sN+EndUiIiJM65szFgAAAAAcRmEBAAAAwGFMhUK2V3thbTl7mPs9EjeTJkqSKs6raGqO9NiVeFOSVC0HZgeAlLg4uejgxYNmx0AmKO9X3uwIcACFBZAG7kGLzI6QbiMLFjA7AgBkqIFVBpodAUAKKCyANHD1/cXsCOn2g5en2REAIEPVCqxldgQAKeAaCwAAAAAOo7AA0uDGhaa6caGp2THSZehflzT0r0tmxwCADPP5r5+bHQFACigsgDS4dekp3br0lNkx0qXTlTh1uhJndgwAyDBrTq0xOwKAFFBYAAAAAHAYhQUAAAAAh3FXKAAAACCtzu/J2v6CqjxU827dumnevHm25/nz51eNGjU0bdo0Pfnkkxmdzg5nLAAAAIBcpEmTJoqKilJUVJR+/PFHubi4qEWLFpneL4UFAAAAkIu4ubkpICBAAQEBqly5skaOHKmzZ8/qjz/+yNR+mQoFpIGL7z6zI6Tbam8vsyMAQIaqG1TX7AhAjnH16lUtWLBApUqVkp+fX6b2RWHxCIqIiNCQIUN0+fLlLO13/PjxWrZsmfbu3ftQ6209fU6+bpbMCZVm0+/8cdLcFDbjrzz0Ks9mQgwAAJD9rFixQt7e3pKk+Ph4BQYGasWKFXJyytzJSkyFAgAAAHKRsLAw7d27V3v37tW2bdvUuHFjNW3aVKdPn87UfjljAaTB1qRgSVJtp8MmJ0mHU5vu/Fn8aXNzAEAG2BG9Q5JUI6CGyUmA7MvLy0ulSpWyPa9WrZqsVqs+/vhjTZw4MdP65YxFNvDtt98qb968SkpKkiTt3btXFotFr776qq1Nnz599MILL0iSNm/erPr168vDw0NFihTRoEGDFB8fb2t78+ZNjRgxQoUKFZKXl5dq1aqlyMjIVPu/ePGiatasqVatWunGjRsyDEPTpk3T448/Lg8PD1WqVEn/+9//bO0jIyNlsVj0448/qnr16vL09FTdunV15MgRu+1OnTpV/v7+8vHxUc+ePXXjxo2MGC5TdLk5Wl1ujjY7Rvp81ubOAwBygT5r+6jP2j5mxwByFIvFIicnJ12/fj1T+6GwyAbq16+vuLg47dlz577IGzZsUIECBbRhwwZbm8jISIWEhOjAgQMKDw9X27ZttX//fn355ZfatGmTBgwYYGvbvXt3/fzzz1q0aJH279+v559/Xk2aNNGxY8eS9X3u3DnVq1dPwcHBWrp0qdzd3TV27FjNnTtXs2bN0sGDB/XKK6/oxRdftMsjSWPGjNH06dO1c+dOubi4qEePHrbXFi9erHHjxmnSpEnauXOnAgMDNXPmzIweOgAAANwjISFB0dHRio6O1qFDhzRw4EBdvXpVLVu2zNR+mQqVDVitVlWuXFmRkZGqVq2aIiMj9corr2jChAmKi4tTfHy8jh49qtDQUE2ePFkdO3bUkCFDJEmlS5fWf/7zH4WEhGjWrFn6/fff9cUXX+jcuXMKCgqSJA0fPlxr1qzR3LlzNXnyZFu/R48eVaNGjfTss8/q3//+tywWi+Lj4zVjxgytW7dOderUkSQ9/vjj2rRpkz788EOFhITY1p80aZLt+ahRo9S8eXPduHFD7u7ueu+999SjRw/16tVLkjRx4kT98MMP9z1rkZCQoISEBNvz2NjYjBlgAACAR8iaNWsUGBgoSfLx8VFwcLC++uorhYaGZmq/FBbZRGhoqCIjIzV06FBt3LhREydO1JIlS7Rp0yZdvnxZ/v7+Cg4O1q5du3T8+HEtWLDAtq5hGEpKStLJkyf1yy+/yDAMlSlTxm77CQkJdrcYu379up5++mm98MIL+ve//21b/uuvv+rGjRtq1KiR3fo3b95UlSr23/z4z29vvHvwxsTEqGjRojp06JD69u1r175OnTpav359qmMwZcoUTZgw4UFDBQAAYJ6H/CbsrBYREaGIiAhT+qawyCZCQ0P16aefat++fXJyclK5cuUUEhKiDRs26NKlS7YzA0lJSerTp48GDRqUbBtFixbV/v375ezsrF27dsnZ2dnu9bu3HZPufHFKw4YNtXLlSr366qsqXLiwbfuStHLlShUqVMhufTc3N7vnrq6utr9bLBa79dNj9OjRGjp0qO15bGysihQpku7tAQAAIOtQWGQTd6+zeO+99xQSEiKLxaKQkBBNmTJFly5d0uDBgyVJVatW1cGDB+2u9P+nKlWqKDExUTExMapXr16q/Tk5Oemzzz5Tx44d1aBBA0VGRiooKEjlypWTm5ubzpw5Yzft6WGVLVtWW7duVZcuXWzLtm7det913NzckhUvAAAAyBm4eDubuHudxeeff26b/1a/fn3t3r3bdn2FJI0cOVJbtmxR//79tXfvXh07dkzLly/XwIEDJUllypRRp06d1KVLFy1dulQnT57Ujh079Pbbb2vVqlV2fTo7O2vBggWqVKmSGjRooOjoaPn4+Gj48OF65ZVXNG/ePJ04cUJ79uzRBx98oHnz5qV5fwYPHqw5c+Zozpw5Onr0qMaNG6eDBw9myFiZwUs35KUcelerPN53HgCQC3i5esnL1cvsGABSwBmLbCQsLEy7d++2FRH58uVTuXLldP78eZUtW1bSnesaNmzYoDFjxqhevXoyDEMlS5ZU+/btbduZO3euJk6cqGHDhun333+Xn5+f6tSpo2bNmiXr08XFRV988YXat29vO3Px1ltvqWDBgpoyZYp+++035c2bV1WrVtVrr72W5n1p3769Tpw4oZEjR+rGjRt67rnn1K9fP3333XeODZJJ9rjn4FsbjswuXxcOAI7b2GGj2REApMJiGIZhdgggJbGxsbJarboyyke+bhaz42Qv46+YnQAAgFzrxo0bOnnypEqUKCF3d3ez42S6++2v7fPYlSvy9fW973Y4Y4Fsr8KNT+VkeGZZf6emNs+yvgAAAHILrrEA0qDKm9+rypvfmx0jfd4ucecBALlAvUX1VG9R6jcnAWAezlgAaRCfkGh2hPS7edXsBACQYeJvxZsdAUAqOGMBAAAAwGEUFgAAAAAcxlQoAAAAII0OXsza7+Uq71f+odp369Ytxe8eCw8P15o1azIqVoooLAAAAIBcpEmTJpo7d67dMjc3t0zvl8ICAAAAyEXc3NwUEBCQ5f1SWABpML9nTbMjpF/nr81OAAAZ5sNGH5odAUAqKCyANKj9uJ/ZEdKv+NNmJwCADFMjoIbZEYBsb8WKFfL29rZbNnLkSL3++uuZ2i+FBQAAAJCLhIWFadasWXbL8ufPn+n9UlgAaTBs8T5J0vR2lUxOkg5f97vzZ5tZ928HADnAmE1jJEmTnp5kchIg+/Ly8lKpUqWyvF8KC2R7v0wIl6+vr6kZvt13XlIOLSx++d+dPyksAOQCq0+ulkRhAWRHFBYAAABALpKQkKDo6Gi7ZS4uLipQoECm9kthAQAAAOQia9asUWBgoN2yJ554QocPH87UfiksAAAAgDR62G/CzmoRERGKiIgwpW8nU3oFAAAAkKtQWAAAAABwGFOhgDTo9lRxsyOkX60+ZicAgAzTqWwnsyMASAWFBZAGrzUra3aE9Gs80ewEAJBhhlUfZnYEAKlgKhQAAAAAh1FYAGmw+kCUVh+IMjtG+vz6zZ0HAOQCa0+v1drTa82OgUeEYRhmR8gSGbWfTIUC0mDwor2SpKYVA+/fMDta0uvOn+WeNTcHAGSAkT+NlCQ16tzI5CTIzVxdXSVJ165dk4eHh8lpMt+1a9ck/f/9Ti8KCwAAAOAfnJ2dlTdvXsXExEiSPD09ZbFYTE6V8QzD0LVr1xQTE6O8efPK2dnZoe1RWAAAAAD3CAgIkCRbcZGb5c2b17a/jqCwAAAAAO5hsVgUGBioggUL6tatW2bHyTSurq4On6m4i8ICAAAASIWzs3OGffDO7bgrFAAAAACHccYCSIOifp5mR0i/fCXMTgAAGaaITxGzIwBIhcV4VG7QixwnNjZWVqtVV65cka+vr9lxAAAAHjkP83mMqVAAAAAAHEZhAaRBwu1EJdxONDtG+txOuPMAgFzgZuJN3Uy8aXYMACngGgsgDSqO+16SdHRSU5OTpMOUwnf+fP0Pc3MAQAaovbC2JGl3590mJwFwL85YAAAAAHAYhQUAAAAAh1FYAAAAAHAYhQUAAAAAh1FYAAAAAHAYhQUAAAAAh3G7WSANVg562uwI6ddno9kJACDDfNXyK7MjAEgFhQWQBqX9fcyOkH4Fg81OAAAZpmTekmZHAJAKpkIBAAAAcBiFBZAGPSJ2qEfEDrNjpM+CdnceAJAL9P+xv/r/2N/sGABSwFQoIA02HfvT7Ajp99t6sxMAQIbZcn6L2REApIIzFgAAAAAcRmEBAAAAwGEUFgAAAAAcxjUWyPZqL6wtZw9nUzPcTJooSao4r6KpOdJjV+JNSVK1HJgdAFLi4uSigxcPmh0DMEV5v/JmR0gVZywAAAAAOIwzFkAa5Hnse7MjpNv7+fKaHQEAMlS7MtxCG8iOKCyANHDz+8nsCOk2N6+v2REAIEO1KtXK7AgAUsBUKAAAAAAOo7AA0uDmpVq6eamW2THSpV1snNrFxpkdAwAyzPencu70VCA3o7AA0iDhQkslXGhpdox0GXnxkkZevGR2DADIMPN/nW92BAApoLAAAAAA4DAKCwAAAAAOo7AAAAAA4DAKCwAAAAAOo7AAAAAA4DC+IA/Z3tbT5+TrZjE1QzsdkyQtPnnG1BzpFvCkDjT6j9kpzBNUxewEADJI19VdJUnl/cqbnATAvXL0GYvx48ercuXKZsdIt8jISFksFl2+fNnsKA9ksVi0bNkys2OYZrHbW1rs9pbZMdKv1SNcVADIVeY1nad5TeeZHQNACnL0GYvhw4dr4MCBZsd4JERFRSlfvnxmxwAAAEA2lS3PWNy8eTNN7by9veXn55fJaSBJAQEBcnNzMzuGaaKM/Ioy8psdI/2uxpidAAAyRHR8tKLjo82OASAFD1VYhIaGauDAgRoyZIjy5csnf39/ffTRR4qPj1f37t3l4+OjkiVLavXq1XbrbdiwQTVr1pSbm5sCAwM1atQo3b592267AwYM0NChQ1WgQAE1atTINk3oxx9/VPXq1eXp6am6devqyJEjtvXunQrVrVs3tW7dWu+8844CAwPl5+en/v3769atW7Y2UVFRat68uTw8PFSiRAktXLhQxYsX13vvvZfqfu/YsUONGjVSgQIFZLVaFRISot27d9u1sVgs+uSTT9SmTRt5enqqdOnSWr58uV2bVatWqUyZMvLw8FBYWJhOnTr1wDG/cuWKXnrpJRUsWFC+vr5q0KCB9u3bJ0k6cuSILBaLDh8+bLfOjBkzVLx4cRmGIUn69ddf1axZM3l7e8vf31+dO3fWn3/+aTf+gwYN0ogRI5Q/f34FBARo/Pjxyfbv7lSoU6dOyWKxaOnSpQoLC5Onp6cqVaqkLVu22K3z8ccfq0iRIvL09FSbNm00Y8YM5c2b94H7nB2FJLyrkIR3zY6Rfos6mZ0AADJEs6XN1GxpM7NjAEjBQ5+xmDdvngoUKKDt27dr4MCB6tevn55//nnVrVtXu3fvVnh4uDp37qxr165Jkn7//Xc1a9ZMNWrU0L59+zRr1ix9+umnmjhxYrLturi46Oeff9aHH35oWz5mzBhNnz5dO3fulIuLi3r06HHffOvXr9eJEye0fv16zZs3TxEREYqIiLC93qVLF50/f16RkZFasmSJPvroI8XE3P+3uXFxceratas2btyorVu3qnTp0mrWrJni4uLs2k2YMEHt2rXT/v371axZM3Xq1El//fWXJOns2bNq27atmjVrpr1796pXr14aNWrUffs1DEPNmzdXdHS0Vq1apV27dqlq1ap65pln9Ndff+mJJ55QtWrVtGDBArv1Fi5cqI4dO8pisSgqKkohISGqXLmydu7cqTVr1ujChQtq166d3Trz5s2Tl5eXtm3bpmnTpunNN9/U2rVr75tvzJgxGj58uPbu3asyZcrohRdesBWMP//8s/r27avBgwdr7969atSokSZNmnTf7SUkJCg2NtbuAQAAgJzBYtz9tXYahIaGKjExURs3bpQkJSYmymq1qm3btpo/f74kKTo6WoGBgdqyZYtq166tMWPGaMmSJTp06JAsljt39pk5c6ZGjhypK1euyMnJSaGhobpy5Yr27Nlj6ysyMlJhYWH64Ycf9Mwzz0i68xv/5s2b6/r163J3d9f48eO1bNky7d27V9KdMxaRkZE6ceKEnJ2dJUnt2rWTk5OTFi1apMOHD6ts2bLasWOHqlevLkk6fvy4SpcurXfffVdDhgxJ0zgkJiYqX758WrhwoVq0aHFnIC0WjR07Vm+9decC3/j4ePn4+GjVqlVq0qSJXnvtNS1btkwHDx60jcOoUaP09ttv69KlSyn+Jn/dunVq06aNYmJi7KYhlSpVSiNGjNBLL72kd999V++//75OnDghSTp69KieeOIJHTx4UOXKldMbb7yhbdu26bvvvrOtf+7cORUpUkRHjhxRmTJlkv1cJalmzZpq0KCBpk6datu/r7/+Wq1bt9apU6dUokQJffLJJ+rZs6ekO2dFypcvr0OHDik4OFgdOnTQ1atXtWLFCts2X3zxRa1YsSLVi9XHjx+vCRMmJFt+ZZSP6XeFKnPjzoWCR927mpoj3ZxcpV73LxRzNe4KBeQaVT+rKkna3Xn3A1oCyAixsbGyWq26cuWKfH1979v2oc9YPPnkk7a/Ozs7y8/PTxUrVrQt8/f3lyTbWYBDhw6pTp06tg/TkvTUU0/p6tWrOnfunG3Z3Q/69+svMDDQbtspKV++vK2ouLvO3fZHjhyRi4uLqlatanu9VKlSD7woOSYmRn379lWZMmVktVpltVp19epVnTljf+vRf2b18vKSj4+P3TjUrl3bbhzq1Klz33537dqlq1evys/PT97e3rbHyZMnbYVEhw4ddPr0aW3dulWStGDBAlWuXFnlypWzbWP9+vV26wcHB0uSbRv3Zr933FJzv5/NkSNHVLNmTbv29z6/1+jRo3XlyhXb4+zZs/dtDwAAgOzjoe8K5erqavfcYrHYLbv7wTkpKUnSnek8//wwfXfZP9tKdz6IP6i/e7ed1nz/zJKSB5206datm/744w+99957KlasmNzc3FSnTp1kF5mnp+/7SUpKUmBgoCIjI5O9dvcMR2BgoMLCwrRw4ULVrl1bX3zxhfr06WO3jZYtW+rtt99Oto27xcCDsqcmvT/31Li5uT3SF4gDAADkZJl+u9ly5cppyZIldh80N2/eLB8fHxUqVCizu7cTHBys27dva8+ePapWrZqkO1OhHvQ9Ehs3btTMmTPVrNmdi8XOnj1rd/FzWpQrVy7Z90DcPcuQmqpVqyo6OlouLi4qXrx4qu06deqkkSNH6oUXXtCJEyfUoUMHu20sWbJExYsXl4tL1t1dODg4WNu3b7dbtnPnzizrHwAAAFkr0283+/LLL+vs2bMaOHCgDh8+rG+++Ubjxo3T0KFD5eSUtXe7DQ4OVsOGDfXSSy9p+/bt2rNnj1566SV5eHgk++36P5UqVUqfffaZDh06pG3btqlTp07y8PB4qL779u2rEydOaOjQoTpy5IgWLlxod1F5Sho2bKg6deqodevW+u6773Tq1Clt3rxZY8eOtfuQ3rZtW8XGxqpfv34KCwuzK9j69++vv/76Sy+88IK2b9+u3377Td9//7169OihxMTEh9qHhzFw4ECtWrVKM2bM0LFjx/Thhx9q9erV9x1nAAAA5FyZ/sm+UKFCWrVqlbZv365KlSqpb9++6tmzp8aOHZvZXado/vz58vf3V/369dWmTRv17t1bPj4+cnd3T3WdOXPm6NKlS6pSpYo6d+6sQYMGqWDBgg/Vb9GiRbVkyRJ9++23qlSpkmbPnq3Jkyffdx2LxaJVq1apfv366tGjh8qUKaMOHTro1KlTtmtZJMnX11ctW7bUvn371KmT/W1Fg4KC9PPPPysxMVHh4eGqUKGCBg8eLKvVmqmF3VNPPaXZs2drxowZqlSpktasWaNXXnnlvuOcnW1xG6AtbgPMjpF+nb4yOwEAZIgfnv9BPzz/g9kxAKTgoe4KlRvdvUPSP+8+hczRu3dvHT582O7uU/dz9y4ERYYslpObZyane7BvBzydaduuWNiaadsGAABIr4e5K1TWTbrPJtatW6erV6+qYsWKioqK0ogRI1S8eHHVr1/f7Gi5zjvvvKNGjRrJy8tLq1ev1rx58zRz5kyzYwEAACATZO1FDtnArVu39Nprr6l8+fJq06aNHnvsMUVGRia7KxIct337djVq1EgVK1bU7Nmz9Z///Ee9evUyO1a6Dftqr9kR0ufjBnceAJALdFzZUR1XdjQ7BoAUPHJnLMLDwxUeHm52jEfC4sWLzY6QoX77I97sCOkTfcDsBACQYQ7/ddjsCABS8cidsQAAAACQ8SgsAAAAADiMwgIAAACAwygsAAAAADiMwgIAAACAwx65u0IB6fVyaEmzI6RP8xlmJwCADPN67dfNjgAgFRQWQBo1KhdgdoT0qdrZ7AQAkGHalG5jdgQAqWAqFAAAAACHWQzDMMwOAaQkNjZWVqtVV65cka+vr6lZ/vPjMUnSoGdKm5ojXTZMu/NnyAhzcwBABpi9b7YkqW+lviYnAR4ND/N5jDMWQBq8v+643l933OwY6fPTv+48ACAX+Gj/R/po/0dmxwCQAgoLAAAAAA6jsAAAAADgMAoLAAAAAA6jsAAAAADgMAoLAAAAAA7jC/KANAgLfszsCOlXurHZCQAgw9QvXN/sCABSwfdYINvKTt9jAQAA8CjieywAAAAAZCkKCyANfvn9in75/YrZMdInat+dBwDkAocuHtKhi4fMjgEgBVxjAaRB25mbJUlHJzU1OUk6fNLwzp+v/2FuDgDIAJ1WdZIk7e682+QkAO7FGQsAAAAADqOwAAAAAOAwCgsAAAAADqOwAAAAAOAwCgsAAAAADuOuUMi27n53Y2xsrMlJpMSEa5KyR5aHdiPpzp85MTsA3CPxeqKkHPp+DORAd/+tpeU7tfnmbWRbv/32m0qWLGl2DAAAgEfe2bNnVbhw4fu24YwFsq38+fNLks6cOSOr1WpymuwpNjZWRYoU0dmzZ+Xr62t2nGyJMXowxuj+GJ8HY4wejDF6MMbowcwYI8MwFBcXp6CgoAe2pbBAtuXkdOcSIKvVyhvMA/j6+jJGD8AYPRhjdH+Mz4MxRg/GGD0YY/RgWT1Gaf0FLxdvAwAAAHAYhQUAAAAAh1FYINtyc3PTuHHj5ObmZnaUbIsxejDG6MEYo/tjfB6MMXowxujBGKMHy+5jxF2hAAAAADiMMxYAAAAAHEZhAQAAAMBhFBYAAAAAHEZhgWxp5syZKlGihNzd3VWtWjVt3LjR7EimmTJlimrUqCEfHx8VLFhQrVu31pEjR+zadOvWTRaLxe5Ru3ZtkxJnvfHjxyfb/4CAANvrhmFo/PjxCgoKkoeHh0JDQ3Xw4EETE2e94sWLJxsji8Wi/v37S3o0j6GffvpJLVu2VFBQkCwWi5YtW2b3elqOm4SEBA0cOFAFChSQl5eXWrVqpXPnzmXhXmSu+43RrVu3NHLkSFWsWFFeXl4KCgpSly5ddP78ebtthIaGJju2OnTokMV7kjkedAyl5d/Vo3wMSUrxfclisehf//qXrU1uPoaktP0/n1PejygskO18+eWXGjJkiMaMGaM9e/aoXr16atq0qc6cOWN2NFNs2LBB/fv319atW7V27Vrdvn1bjRs3Vnx8vF27Jk2aKCoqyvZYtWqVSYnNUb58ebv9P3DggO21adOmacaMGXr//fe1Y8cOBQQEqFGjRoqLizMxcdbasWOH3fisXbtWkvT888/b2jxqx1B8fLwqVaqk999/P8XX03LcDBkyRF9//bUWLVqkTZs26erVq2rRooUSExOzajcy1f3G6Nq1a9q9e7def/117d69W0uXLtXRo0fVqlWrZG179+5td2x9+OGHWRE/0z3oGJIe/O/qUT6GJNmNTVRUlObMmSOLxaLnnnvOrl1uPYaktP0/n2Pejwwgm6lZs6bRt29fu2XBwcHGqFGjTEqUvcTExBiSjA0bNtiWde3a1Xj22WfNC2WycePGGZUqVUrxtaSkJCMgIMCYOnWqbdmNGzcMq9VqzJ49O4sSZj+DBw82SpYsaSQlJRmGwTEkyfj6669tz9Ny3Fy+fNlwdXU1Fi1aZGvz+++/G05OTsaaNWuyLHtWuXeMUrJ9+3ZDknH69GnbspCQEGPw4MGZGy4bSGl8HvTvimMouWeffdZo0KCB3bJH5Ri6697/53PS+xFnLJCt3Lx5U7t27VLjxo3tljdu3FibN282KVX2cuXKFUlS/vz57ZZHRkaqYMGCKlOmjHr37q2YmBgz4pnm2LFjCgoKUokSJdShQwf99ttvkqSTJ08qOjra7phyc3NTSEjII3tM3bx5U59//rl69Oghi8ViW/6oH0P/lJbjZteuXbp165Zdm6CgIFWoUOGRPbauXLkii8WivHnz2i1fsGCBChQooPLly2v48OGP1NnC+/274hiyd+HCBa1cuVI9e/ZM9tqjdAzd+/98Tno/csmynoA0+PPPP5WYmCh/f3+75f7+/oqOjjYpVfZhGIaGDh2qp59+WhUqVLAtb9q0qZ5//nkVK1ZMJ0+e1Ouvv64GDRpo165d2fZLdDJSrVq1NH/+fJUpU0YXLlzQxIkTVbduXR08eNB23KR0TJ0+fdqMuKZbtmyZLl++rG7dutmWPerH0L3SctxER0crT548ypcvX7I2j+L71Y0bNzRq1Ch17NhRvr6+tuWdOnVSiRIlFBAQoF9++UWjR4/Wvn37bNPxcrMH/bviGLI3b948+fj4qG3btnbLH6VjKKX/53PS+xGFBbKlf/4WVbrzD+3eZY+iAQMGaP/+/dq0aZPd8vbt29v+XqFCBVWvXl3FihXTypUrk71B50ZNmza1/b1ixYqqU6eOSpYsqXnz5tkulOSY+v8+/fRTNW3aVEFBQbZlj/oxlJr0HDeP4rF169YtdejQQUlJSZo5c6bda71797b9vUKFCipdurSqV6+u3bt3q2rVqlkdNUul99/Vo3gMSdKcOXPUqVMnubu72y1/lI6h1P6fl3LG+xFToZCtFChQQM7Ozsmq65iYmGSV+qNm4MCBWr58udavX6/ChQvft21gYKCKFSumY8eOZVG67MXLy0sVK1bUsWPHbHeH4pi64/Tp0/rhhx/Uq1ev+7Z71I+htBw3AQEBunnzpi5dupRqm0fBrVu31K5dO508eVJr1661O1uRkqpVq8rV1fWRPLbu/XfFMfT/bdy4UUeOHHnge5OUe4+h1P6fz0nvRxQWyFby5MmjatWqJTu9uXbtWtWtW9ekVOYyDEMDBgzQ0qVLtW7dOpUoUeKB61y8eFFnz55VYGBgFiTMfhISEnTo0CEFBgbaTp//85i6efOmNmzY8EgeU3PnzlXBggXVvHnz+7Z71I+htBw31apVk6urq12bqKgo/fLLL4/MsXW3qDh27Jh++OEH+fn5PXCdgwcP6tatW4/ksXXvvyuOof/v008/VbVq1VSpUqUHts1tx9CD/p/PUe9HWXaZOJBGixYtMlxdXY1PP/3U+PXXX40hQ4YYXl5exqlTp8yOZop+/foZVqvViIyMNKKiomyPa9euGYZhGHFxccawYcOMzZs3GydPnjTWr19v1KlTxyhUqJARGxtrcvqsMWzYMCMyMtL47bffjK1btxotWrQwfHx8bMfM1KlTDavVaixdutQ4cOCA8cILLxiBgYGPzPjclZiYaBQtWtQYOXKk3fJH9RiKi4sz9uzZY+zZs8eQZMyYMcPYs2eP7Y5GaTlu+vbtaxQuXNj44YcfjN27dxsNGjQwKlWqZNy+fdus3cpQ9xujW7duGa1atTIKFy5s7N271+79KSEhwTAMwzh+/LgxYcIEY8eOHcbJkyeNlStXGsHBwUaVKlVyxRjdb3zS+u/qUT6G7rpy5Yrh6elpzJo1K9n6uf0YMowH/z9vGDnn/YjCAtnSBx98YBQrVszIkyePUbVqVbtbqz5qJKX4mDt3rmEYhnHt2jWjcePGxmOPPWa4uroaRYsWNbp27WqcOXPG3OBZqH379kZgYKDh6upqBAUFGW3btjUOHjxoez0pKckYN26cERAQYLi5uRn169c3Dhw4YGJic3z33XeGJOPIkSN2yx/VY2j9+vUp/tvq2rWrYRhpO26uX79uDBgwwMifP7/h4eFhtGjRIleN2/3G6OTJk6m+P61fv94wDMM4c+aMUb9+fSN//vxGnjx5jJIlSxqDBg0yLl68aO6OZZD7jU9a/109ysfQXR9++KHh4eFhXL58Odn6uf0YMowH/z9vGDnn/cjy9w4BAAAAQLpxjQUAAAAAh1FYAAAAAHAYhQUAAAAAh1FYAAAAAHAYhQUAAAAAh1FYAAAAAHAYhQUAAAAAh1FYAAAAAHAYhQUAAAAAh1FYAACQipiYGPXp00dFixaVm5ubAgICFB4eri1btmRYH8WLF9d7772XYdsDALO4mB0AAIDs6rnnntOtW7c0b948Pf7447pw4YJ+/PFH/fXXX2ZHA4BshzMWAACk4PLly9q0aZPefvtthYWFqVixYqpZs6ZGjx6t5s2bS5KuXLmil156SQULFpSvr68aNGigffv22bZx4sQJPfvss/L395e3t7dq1KihH374wfZ6aGioTp8+rVdeeUUWi0UWi0WSdPr0abVs2VL58uWTl5eXypcvr1WrVmXtAADAQ6KwAAAgBd7e3vL29tayZcuUkJCQ7HXDMNS8eXNFR0dr1apV2rVrl6pWrapnnnnGdkbj6tWratasmX744Qft2bNH4eHhatmypc6cOSNJWrp0qQoXLqw333xTUVFRioqKkiT1799fCQkJ+umnn3TgwAG9/fbb8vb2zrqdB4B0sBiGYZgdAgCA7GjJkiXq3bu3rl+/rqpVqyokJEQdOnTQk08+qXXr1qlNmzaKiYmRm5ubbZ1SpUppxIgReumll1LcZvny5dWvXz8NGDBA0p1rLIYMGaIhQ4bY2jz55JN67rnnNG7cuEzdPwDISJyxAAAgFc8995zOnz+v5cuXKzw8XJGRkapataoiIiK0a9cuXb16VX5+frazG97e3jp58qROnDghSYqPj9eIESNUrlw55c2bV97e3jp8+LDtjEVqBg0apIkTJ+qpp57SuHHjtH///qzYXQBwCIUFAAD34e7urkaNGumNN97Q5s2b1a1bN40bN05JSUkKDAzU3r177R5HjhzRq6++Kkl69dVXtWTJEk2aNEkbN27U3r17VbFiRd28efO+ffbq1Uu//fabOnfurAMHDqh69er673//mxW7CwDpRmEBAMBDKFeunOLj41W1alVFR0fLxcVFpUqVsnsUKFBAkrRx40Z169ZNbdq0UcWKFRUQEKBTp07ZbS9PnjxKTExM1k+RIkXUt29fLV26VMOGDdPHH3+cFbsHAOlGYQEAQAouXryoBg0a6PPPP9f+/ft18uRJffXVV5o2bZqeffZZNWzYUHXq1FHr1q313Xff6dSpU9q8ebPGjh2rnTt3SrpzvcXSpUu1d+9e7du3Tx07dlRSUpJdP8WLF9dPP/2k33//XX/++ackaciQIfruu+908uRJ7d69W+vWrVPZsmWzfAwA4GHwPRYAAKTA29tbtWrV0rvvvqsTJ07o1q1bKlKkiHr37q3XXntNFotFq1at0pgxY9SjRw/98ccfCggIUP369eXv7y9Jevfdd9WjRw/VrVtXBQoU0MiRIxUbG2vXz5tvvqk+ffqoZMmSSkhIkGEYSkxMVP/+/XXu3Dn5+vqqSZMmevfdd80YBgBIM+4KBQAAAMBhTIUCAAAA4DAKCwAAAAAOo7AAAAAA4DAKCwAAAAAOo7AAAAAA4DAKCwAAAAAOo7AAAAAA4DAKCwAAAAAOo7AAAAAA4DAKCwAAAAAOo7AAAAAA4DAKCwAAAAAO+3++XJTC+RYqLwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "def airline_deterministic(demand):\n", - " m = pyo.ConcreteModel(\"Airline seating (deterministic)\")\n", - "\n", - " m.CLASSES = pyo.Set(initialize=demand.columns)\n", - "\n", - " # first stage variables and constraints\n", - " m.seats = pyo.Var(m.CLASSES, domain=pyo.NonNegativeIntegers)\n", - "\n", - " @m.Constraint(m.CLASSES)\n", - " def plane_seats(m, c):\n", - " return sum(m.seats[c] * seat_factor[c] for c in m.CLASSES) <= capacity\n", - "\n", - " # second stage variable and constraints\n", - " m.tickets = pyo.Var(m.CLASSES, domain=pyo.NonNegativeIntegers)\n", - "\n", - " @m.Constraint(m.CLASSES)\n", - " def demand_limits(m, c):\n", - " return m.tickets[c] <= demand[c].mean()\n", - "\n", - " @m.Constraint(m.CLASSES)\n", - " def seat_limits(m, c):\n", - " return m.tickets[c] <= m.seats[c]\n", - "\n", - " # objective\n", - " @m.Objective(sense=pyo.maximize)\n", - " def revenue(m):\n", - " return sum(m.tickets[c] * revenue_factor[c] for c in m.CLASSES)\n", - "\n", - " return m\n", - "\n", - "\n", - "def airline_solve(m):\n", - " pyo.SolverFactory(SOLVER).solve(m)\n", - " return pd.Series({c: m.seats[c]() for c in m.CLASSES})\n", - "\n", - "\n", - "# Solve deterministic model to obtain the expectation of the expected value problem (EEV)\n", - "model_eev = airline_deterministic(demand)\n", - "seats_eev = airline_solve(model_eev)\n", - "seat_report(seats_eev, demand)" - ] - }, - { - "cell_type": "markdown", - "id": "d1e11c9c-1ab7-4f33-938b-ca6b927640cb", - "metadata": { - "tags": [] - }, - "source": [ - "## Model 2. Two-stage stochastic optimization and its extensive form\n", - "\n", - "If we assume demand is not certain, we can formulate a two-stage stochastic optimization problem. The first-stage or here-and-now variables are the $s_c$'s, those related to the seat allocations. Due to their dependence on the realized demand $\\boldsymbol{z}$, the variables $t_c$'s describing the number of tickets sold, are second-stage or recourse decision variables. The full problem formulation is as follows: the first stage problem is\n", - "\n", - "$$\n", - "\\begin{align*}\n", - " \\max \\quad & \\mathbb E_{z} Q(\\boldsymbol{s},\\boldsymbol{z}) \\\\\n", - " \\text{s.t.} \\quad & \\sum_{c\\in C} f_c s_c \\leq 200,\\\\\n", - " & \\boldsymbol{s} \\in \\mathbb{Z}_+,\n", - "\\end{align*}\n", - "$$\n", - "\n", - "where $Q(\\boldsymbol{s},\\boldsymbol{z})$ is the value of the second-stage problem, defined as\n", - "\n", - "$$\n", - "\\begin{align*}\n", - " Q(\\boldsymbol{s},\\boldsymbol{z}) := \\max \\quad & \\sum_{c\\in C} r_c t_{c}\\\\\n", - " \\text{s.t.} \\quad \n", - " & t_c \\leq s_c & \\forall \\, c\\in C \\\\\n", - " & t_c \\leq z_c & \\forall \\, c\\in C \\\\\n", - " & \\boldsymbol{t} \\in \\mathbb{Z}_+.\n", - "\\end{align*}\n", - "$$\n", - "\n", - "In view of the assumption that there is only a finite number $N=|S|$ of scenarios for ticket demand, we can write the extensive form of the two-stage stochastic optimization problem above and solve it exactly. To do so, we modify the second-stage variables $t_{c,s}$ so that they are indexed by both class $c$ and scenario $s$. The expectation can thus be replaced with the average revenue over the $N$ scenarios, that is\n", - "\n", - "$$\n", - "\\max \\quad \\sum_{s \\in S} \\frac{1}{N} \\sum_{c\\in C} r_c t_{c, s},\n", - "$$\n", - "\n", - "where the fraction $\\frac{1}{N}$ appears since we assume that all $N$ scenarios are equally likely. The first stage constraint remains unchanged, while the second stage constraints are tuplicated for each scenario $s \\in S$, namely\n", - "\n", - "$$\n", - "\\begin{align*}\n", - "t_{c,s} & \\leq s_c & \\forall \\, c\\in C \\\\\n", - "t_{c,s} & \\leq z_{c, s} & \\forall \\, (c, s) \\in C \\times S\n", - "\\end{align*}\n", - "$$\n", - "\n", - "The following cell presents a Pyomo model implementing this model and solving it for the $N=3$ equiprobable scenarios introduced above." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "be868fbe-efcf-4970-beaa-fd85718c8914", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Seat Allocation\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBETOTAL
seat allocation10.020.0150.0180.0
economy equivalent seat allocation20.030.0150.0200.0
\n", - "
" - ], - "text/plain": [ - " F B E TOTAL\n", - "seat allocation 10.0 20.0 150.0 180.0\n", - "economy equivalent seat allocation 20.0 30.0 150.0 200.0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Tickets Sold\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBE
morning and evening10.020.0150.0
weekend10.020.0150.0
midday6.010.0150.0
\n", - "
" - ], - "text/plain": [ - " F B E\n", - "morning and evening 10.0 20.0 150.0\n", - "weekend 10.0 20.0 150.0\n", - "midday 6.0 10.0 150.0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Seats not Sold\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBE
morning and evening0.00.00.0
weekend0.00.00.0
midday4.010.00.0
\n", - "
" - ], - "text/plain": [ - " F B E\n", - "morning and evening 0.0 0.0 0.0\n", - "weekend 0.0 0.0 0.0\n", - "midday 4.0 10.0 0.0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Spillage (Unfulfilled Demand)\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBE
morning and evening10.030.050.0
weekend0.04.025.0
midday0.00.00.0
\n", - "
" - ], - "text/plain": [ - " F B E\n", - "morning and evening 10.0 30.0 50.0\n", - "weekend 0.0 4.0 25.0\n", - "midday 0.0 0.0 0.0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Expected Revenue (in units of economy ticket price): 209.33\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB25klEQVR4nO3deXxMZ///8fdkMdkHQRZC1NLY97UliSL2ondRat9rLWopLdpa6i7t3btFN0JLVW+qamu1RKl9V7XvKpFWkQiC5Pz+8DNfI5YwMhPJ6/l4zEPmzHXO53OuXJL55FznGpNhGIYAAAAAwA4uzk4AAAAAwJOPwgIAAACA3SgsAAAAANiNwgIAAACA3SgsAAAAANiNwgIAAACA3SgsAAAAANiNwgIAAACA3SgsAAAAANiNwgIAoOjoaJlMJuvDzc1NQUFBatOmjQ4dOuTs9DKtiIgIlS5dOsPjJCUl6d1331W5cuXk5+cnX19fFSlSRK1atdKaNWsyPL4jxMTEyGQyKSYmxtmpAHhEbs5OAACQecycOVNhYWG6evWqfvvtN40bN06rV6/W/v37lStXLmenly2lpKSofv362rNnj1577TVVrVpVknTo0CH98MMPWrt2rcLDw52cpf0qVqyoDRs2qGTJks5OBcAjorAAAFiVLl1alStXlnTzr/EpKSkaPXq0Fi1apM6dOzs5u+zp119/1fr16zVjxgyb70FUVJT69u2r1NRUJ2Znv+vXr8tkMsnPz0/Vq1d3djoA7MBUKADAPd0qMs6ePWuzfevWrWrWrJly584tDw8PVahQQfPnz7e+vmvXLplMJn3xxRdpjrl8+XKZTCYtXrzYuu3QoUNq27at8uXLJ7PZrBIlSujjjz+22e/WVJmvv/5aI0eOVHBwsPz8/FS3bl0dOHDApm1oaKg6deqUJnZERIQiIiJstiUkJGjIkCEqXLiwcuTIofz582vgwIFKSkpKVx9J0tq1a1W9enV5enoqf/78euONN5SSkiJJMgxDxYoVU1RUVJr9Ll26JIvFoj59+tzz2OfOnZMkBQUF3fV1FxfbX+V//vmnevTooZCQEOXIkUPBwcH617/+ZfM9TO85m0wm9e3bV19++aVKlCghLy8vlStXTkuWLLFpd/jwYXXu3FnFihWTl5eX8ufPr6ZNm2rPnj027W59D7/88ksNHjxY+fPnl9ls1uHDh+85FWrx4sWqUaOGvLy85Ovrq3r16mnDhg337C8AzkNhAQC4p2PHjkmSihcvbt22evVqPfPMM7pw4YKmT5+u77//XuXLl1fr1q0VHR0tSSpXrpwqVKigmTNnpjlmdHS08uXLp0aNGkmS/vjjD1WpUkW///67Jk+erCVLlqhx48bq37+/xo4dm2b/119/XSdOnNDnn3+uTz/9VIcOHVLTpk2tb+QfxuXLlxUeHq5Zs2apf//+Wr58uYYNG6bo6Gg1a9ZMhmE88BhxcXFq06aN2rVrp++//17/+te/9M4772jAgAGSbr4579evn1auXJnmfpXZs2crISHhvoVF5cqV5e7urgEDBmjOnDmKjY29Z9s///xTVapU0XfffadBgwZp+fLl+uCDD2SxWHT+/PlHOuelS5fqo48+0ltvvaUFCxYod+7catGihY4ePWptc+bMGfn7+2vixIlasWKFPv74Y7m5ualatWppij5JGjFihE6ePKnp06frhx9+UL58+e56PnPnztXzzz8vPz8/ff311/riiy90/vx5RUREaN26dffsBwBOYgAAsr2ZM2cakoyNGzca169fNxITE40VK1YYgYGBRu3atY3r169b24aFhRkVKlSw2WYYhtGkSRMjKCjISElJMQzDMD788ENDknHgwAFrm3/++ccwm83G4MGDrduioqKMAgUKGBcvXrQ5Xt++fQ0PDw/jn3/+MQzDMFavXm1IMho1amTTbv78+YYkY8OGDdZthQoVMjp27JjmPMPDw43w8HDr8wkTJhguLi7Gli1bbNr973//MyQZy5Ytu1+3GeHh4YYk4/vvv7fZ3r17d8PFxcU4ceKEYRiGkZCQYPj6+hoDBgywaVeyZEkjMjLyvjEMwzC++OILw8fHx5BkSDKCgoKMDh06GL/++qtNuy5duhju7u7GH3/8cc9jPcw5SzICAgKMhIQE67a4uDjDxcXFmDBhwj1j3Lhxw7h27ZpRrFgx49VXX7Vuv/U9rF27dpp9br22evVqwzAMIyUlxQgODjbKlCljHVOGYRiJiYlGvnz5jJo1a94zPgDn4IoFAMCqevXqcnd3l6+vrxo0aKBcuXLp+++/l5vbzVvyDh8+rP3796tdu3aSpBs3blgfjRo1UmxsrPUv1O3atZPZbLZexZCkr7/+WsnJydZ7Ba5evapffvlFLVq0kJeXV5rjXb16VRs3brTJsVmzZjbPy5YtK0k6ceLEQ5/vkiVLVLp0aZUvX94mdlRUVLpXKPL19U2TU9u2bZWamqpff/3V2qZz586Kjo62TjdatWqV/vjjD/Xt2/eBMbp06aLTp09r7ty56t+/v0JCQvTVV18pPDxc//73v63tli9frsjISJUoUeKxnXNkZKR8fX2tzwMCApQvXz6b/r5x44bGjx+vkiVLKkeOHHJzc1OOHDl06NAh7du3L00OL7zwwgPP+cCBAzpz5ozat29vM93Lx8dHL7zwgjZu3KjLly8/8DgAHIfCAgBgNXv2bG3ZskWrVq1Sz549tW/fPr300kvW12/N0x8yZIjc3d1tHq+88ook6e+//5Yk5c6dW82aNdPs2bOt05Sio6NVtWpVlSpVStLN+wdu3Lih//73v2mOd2uq1K3j3eLv72/z3Gw2S5KuXLny0Od79uxZ7d69O01sX19fGYaRJvbdBAQEpNkWGBhoPb9b+vXrp8TERM2ZM0eS9NFHH6lAgQJ6/vnn05WrxWLRSy+9pP/85z/atGmTdu/erYCAAI0cOVIXLlyQJP31118qUKDAYz3nO/tbutnnt/f3oEGD9MYbb6h58+b64YcftGnTJm3ZskXlypW76/flXveL3O5+95YEBwcrNTXVOr0LQObAqlAAAKsSJUpYb9iOjIxUSkqKPv/8c/3vf//Tv/71L+XJk0fSzTnyLVu2vOsxnn76aevXnTt31rfffquVK1eqYMGC2rJli6ZNm2Z9PVeuXHJ1dVX79u3veZ9B4cKFH/o8PDw8lJycnGb733//bT0HScqTJ488PT01Y8aMux7n9rb3cueN7dLN+y4k2zflRYsWVcOGDfXxxx+rYcOGWrx4scaOHStXV9cHxribUqVKqU2bNvrggw908OBBVa1aVXnz5tXp06fvu9/jOOc7ffXVV+rQoYPGjx9vs/3vv/9Wzpw507Q3mUwPPOatvrvbPSVnzpyRi4sLSyADmQyFBQDgniZNmqQFCxbozTffVMuWLfX000+rWLFi2rVrV5o3kXdTv3595c+fXzNnzlTBggXl4eFhcwXEy8tLkZGR2rFjh8qWLascOXI8lrxDQ0O1e/dum20HDx7UgQMHbN44N2nSROPHj5e/v/8jFTCSlJiYqMWLF9tMh5o7d65cXFxUu3Ztm7YDBgxQ/fr11bFjR7m6uqp79+4PPP65c+fk6+t7177Zv3+/pJt/wZekhg0b6ssvv9SBAwdsCrzbPY5zvpPJZLJeObpl6dKl+vPPP1W0aNFHOubTTz+t/Pnza+7cuRoyZIi1GElKStKCBQusK0UByDwoLAAA95QrVy6NGDFCQ4cO1dy5c/Xyyy/rk08+UcOGDRUVFaVOnTopf/78+ueff7Rv3z5t375d3377rXV/V1dXdejQQVOmTJGfn59atmwpi8ViE+M///mPnn32WdWqVUu9e/dWaGioEhMTdfjwYf3www9atWrVQ+fdvn17vfzyy3rllVf0wgsv6MSJE5o0aZLy5s1r027gwIFasGCBateurVdffVVly5ZVamqqTp48qZ9++kmDBw9WtWrV7hvL399fvXv31smTJ1W8eHEtW7ZMn332mXr37q2CBQvatK1Xr55Kliyp1atX6+WXX77naki3W716tQYMGKB27dqpZs2a8vf3V3x8vL7++mutWLFCHTp0sE5/euutt7R8+XLVrl1br7/+usqUKaMLFy5oxYoVGjRokMLCwh7LOd+pSZMmio6OVlhYmMqWLatt27bp3//+9wOnZd2Pi4uLJk2apHbt2qlJkybq2bOnkpOT9e9//1sXLlzQxIkTH/nYADKIs+8eBwA4361Voe5cKcgwDOPKlStGwYIFjWLFihk3btwwDMMwdu3aZbRq1crIly+f4e7ubgQGBhp16tQxpk+fnmb/gwcPWlczWrly5V3jHzt2zOjSpYuRP39+w93d3cibN69Rs2ZN45133rG2ubVq0LfffptmX0nGzJkzrdtSU1ONSZMmGU899ZTh4eFhVK5c2Vi1alWaVaEMwzAuXbpkjBo1ynj66aeNHDlyGBaLxShTpozx6quvGnFxcfftt/DwcKNUqVJGTEyMUblyZcNsNhtBQUHG66+/nmbVrFvGjBljXYErPU6dOmWMGjXKeOaZZ4zAwEDDzc3N8PX1NapVq2b897//tX5Pbm/fpUsXIzAw0HB3dzeCg4ONVq1aGWfPnn3oc5Zk9OnTJ01Od666df78eaNr165Gvnz5DC8vL+PZZ5811q5dm6a/7/U9vP21W6tC3bJo0SKjWrVqhoeHh+Ht7W0899xzxm+//ZauvgPgWCbDSMci3QAA4LGoXLmyTCaTtmzZ4uxUAOCxYioUAAAZLCEhQb///ruWLFmibdu26bvvvnN2SgDw2FFYAACQwbZv367IyEj5+/tr9OjRat68ubNTAoDHjqlQAAAAAOzGB+QBAAAAsBuFBQAAAAC7UVgAAAAAsBs3byPTSk1N1ZkzZ+Tr62v9xFUAAAA4jmEYSkxMVHBwsFxc7n9NgsICmdaZM2cUEhLi7DQAAACyvVOnTqlAgQL3bUNhgUzL19dX0s2B7Ofn5+RsAAAAbFV4a6Ukaceb9ZycScZJSEhQSEiI9X3Z/VBYINO6Nf3Jz8+PwgIAAGQ6rmYvScoW71PSMy2dm7cBAAAA2I3CAgAAAIDdKCwAAAAA2I3CAgAAAIDduHkbAAAAeAQBFrOzU8hUKCwAAACAR7B2aB1np5CpMBUKAAAAgN0oLAAAAADYjcICAAAAeATFRy5X8ZHLnZ1GpkFhAQAAAMBuFBYAAAAA7EZhAQAAAMBuFBYAAAAA7EZhAQAAAMBuFBYAAAAA7MYnbyPTKz36R7mYvZydBgAAeEjHJzZ2dgoZauErNZ2dQqZCYQEAAAA8gtL5Lc5OIVNhKhQAAAAAu1FYAAAAAI+g55db1fPLrc5OI9NgKhQAAADwCFbv/8vZKWQqXLEAAAAAYDcKCwAAAAB2o7AAAAAAYDcKCwAAAAB2o7AAAAAAYDdWhQIAAAAeQd86RZ2dQqZCYQEAAAA8gv7PFXN2CpkKU6GyuJiYGJlMJl24cOGebaKjo5UzZ877HmfMmDEqX778Y80NAAAAWQeFRRZXs2ZNxcbGymKxODsVAACALGX+llOav+WUs9PINJgKlcXlyJFDgYGBzk4DAAAgyxm16HdJUqsqIU7OJHPgisUTJiIiQv369dPAgQOVK1cuBQQE6NNPP1VSUpI6d+4sX19fFSlSRMuXL5d096lQ0dHRKliwoLy8vNSiRQudO3cuTZyJEycqICBAvr6+6tq1q65evWrz+pYtW1SvXj3lyZNHFotF4eHh2r59u/X1Ll26qEmTJjb73LhxQ4GBgZoxY8Zj7BEAAABkBhQWT6BZs2YpT5482rx5s/r166fevXvrxRdfVM2aNbV9+3ZFRUWpffv2unz5cpp9N23apC5duuiVV17Rzp07FRkZqXfeecemzfz58zV69GiNGzdOW7duVVBQkKZOnWrTJjExUR07dtTatWu1ceNGFStWTI0aNVJiYqIkqVu3blqxYoViY2Ot+yxbtkyXLl1Sq1atMqBXAAAA4EwmwzAMZyeB9IuIiFBKSorWrl0rSUpJSZHFYlHLli01e/ZsSVJcXJyCgoK0YcMGXb16VZGRkTp//rxy5syptm3b6vz589YrGpLUpk0brVixwnpVo2bNmipXrpymTZtmbVO9enVdvXpVO3fuvGteKSkpypUrl+bOnWu9UlGqVCl17NhRQ4cOlSS1aNFCOXPm1MyZM+96jOTkZCUnJ1ufJyQkKCQkRCED58vF7PVoHQYAAJzm+MTGzk4hQxUfefP91MFxDZ2cScZJSEiQxWLRxYsX5efnd9+2XLF4ApUtW9b6taurq/z9/VWmTBnrtoCAAElSfHx8mn337dunGjVq2Gy783l62sTHx6tXr14qXry4LBaLLBaLLl26pJMnT1rbdOvWzVpExMfHa+nSperSpcs9z2vChAnWY1ksFoWEMF8RAADgSUFh8QRyd3e3eW4ymWy2mUwmSVJqamqafR/XBapOnTpp27Zt+uCDD7R+/Xrt3LlT/v7+unbtmrVNhw4ddPToUW3YsEFfffWVQkNDVatWrXsec8SIEbp48aL1ceoUqywAAAA8KVgVKpspWbKkNm7caLPtzuclSpTQxo0b1aFDh3u2Wbt2raZOnapGjRpJkk6dOqW///7bpo2/v7+aN2+umTNnasOGDercufN9czObzTKbzQ99TgAAAM5QIvj+U4OyGwqLbKZ///6qWbOmJk2apObNm+unn37SihUrbNoMGDBAHTt2VOXKlfXss89qzpw52rt3r5566ilrm6JFi+rLL79U5cqVlZCQoNdee02enp5p4nXr1k1NmjRRSkqKOnbsmOHnBwAA4Cjf93nG2SlkKkyFymaqV6+uzz//XP/9739Vvnx5/fTTTxo1apRNm9atW+vNN9/UsGHDVKlSJZ04cUK9e/e2aTNjxgydP39eFSpUUPv27dW/f3/ly5cvTby6desqKChIUVFRCg4OztBzAwAAgPOwKhQy1OXLlxUcHKwZM2aoZcuWD7XvrVUIWBUKAIAnU1ZfFercpZurWfr7ZN2p3A+zKhRToZAhUlNTFRcXp8mTJ8tisahZs2bOTgkAAOCxqjFhlaSsvdzsw6CwQIY4efKkChcurAIFCig6Olpubgw1AACArIx3e8gQoaGhj21pWwAAAGR+3LwNAAAAwG4UFgAAAADsRmEBAAAAwG4UFgAAAADsxs3bAAAAwCNYMzTC2SlkKhQWAAAAwCMIsng6O4VMhalQAAAAAOxGYQEAAAA8glbTN6jV9A3OTiPTYCoUAAAA8Ah2nrrg7BQyFQoLZHq/j42Sn5+fs9MAAADAfTAVCgAAAIDdKCwAAAAA2I3CAgAAAIDdKCwAAAAA2I2btwEAAIBH8EbTks5OIVOhsAAAAAAeQfvqhZydQqbCVCgAAAAAdqOwAAAAAB7B9DVHNH3NEWenkWkwFQoAAAB4BFN+OihJ6hVexMmZZA5csQAAAABgNwoLAAAAAHajsAAAAABgNwoLAAAAAHajsAAAAABgN1aFAgAAAB7Bs8XyODuFTIXCAgAAAHgEMzpVcXYKmQpToQAAAADYjcICAAAAeASHzibq0NlEZ6eRaTAVCgAAAHgEjT9cJ0k6OK6hkzPJHLhiAQAAAMBuFBYAAAAA7EZhAQAAAMBuFBYAAAAA7EZhAQAAAMBuFBYAAAAA7MZyswAAAMAj2DO2vrNTyFQoLAAAAIBHYHZzdXYKmQpToQAAAADYjcICAAAAeAR1p6xR3SlrnJ1GpsFUKAAAAOARnDx32dkpZCpcsQAAAABgNwoLAAAAAHajsAAAAABgNwoLAAAAAHbj5m1keqVH/ygXs5ez0wAAALir0OFLHRbr+MTGDov1sLhiAQAAAMBuFBYAAAAA7EZhAQAAAMBuFBYAAAAA7EZhAQAAAMBuFBYAAAAA7EZhAQAAAMBuFBYAAAAA7EZhAQAAAMBuFBYAAAAA7EZhAQAAAMBuFBYAAAAA7EZhkQ1FR0crZ86cDo87ZswYlS9f3uFxAQAAkPEoLAAAAADYjcICAAAAgN0oLDKBH374QTlz5lRqaqokaefOnTKZTHrttdesbXr27KmXXnpJkrR+/XrVrl1bnp6eCgkJUf/+/ZWUlGRte+3aNQ0dOlT58+eXt7e3qlWrppiYmHvGP3funKpWrapmzZrp6tWrMgxDkyZN0lNPPSVPT0+VK1dO//vf/6ztY2JiZDKZ9Msvv6hy5cry8vJSzZo1deDAAZvjTpw4UQEBAfL19VXXrl119erVx9FdAAAAyIQoLDKB2rVrKzExUTt27JAkrVmzRnny5NGaNWusbWJiYhQeHq49e/YoKipKLVu21O7du/XNN99o3bp16tu3r7Vt586d9dtvv2nevHnavXu3XnzxRTVo0ECHDh1KE/v06dOqVauWwsLCtHDhQnl4eGjUqFGaOXOmpk2bpr179+rVV1/Vyy+/bJOPJI0cOVKTJ0/W1q1b5ebmpi5dulhfmz9/vkaPHq1x48Zp69atCgoK0tSpU+/bD8nJyUpISLB5AAAA4MlgMgzDcHYSkCpVqqS2bdtq8ODBatGihapUqaKxY8fq77//VlJSkoKCgrRv3z6NHz9enp6e+uSTT6z7rlu3TuHh4UpKStKff/6pYsWK6fTp0woODra2qVu3rqpWrarx48crOjpaAwcO1ObNm1WvXj09//zz+s9//iOTyaSkpCTlyZNHq1atUo0aNaz7d+vWTZcvX9bcuXMVExOjyMhI/fzzz3ruueckScuWLVPjxo115coVeXh4qGbNmipXrpymTZtmPUb16tV19epV7dy58659MGbMGI0dOzbN9pCB8+Vi9rK3iwEAAJ54xyc2dmi8hIQEWSwWXbx4UX5+fvdtyxWLTCIiIkIxMTEyDENr167V888/r9KlS2vdunVavXq1AgICFBYWpm3btik6Olo+Pj7WR1RUlFJTU3Xs2DFt375dhmGoePHiNm3WrFmjI0eOWONduXJFzz77rJo3b64PP/xQJpNJkvTHH3/o6tWrqlevns3+s2fPttlfksqWLWv9OigoSJIUHx8vSdq3b59NYSIpzfM7jRgxQhcvXrQ+Tp069egdCgAAAIdyc3YCuCkiIkJffPGFdu3aJRcXF5UsWVLh4eFas2aNzp8/r/DwcElSamqqevbsqf79+6c5RsGCBbV79265urpq27ZtcnV1tXndx8fH+rXZbFbdunW1dOlSvfbaaypQoID1+JK0dOlS5c+f32Z/s9ls89zd3d369a3C5Nb+j8JsNqeJAQAAgCcDhUUmces+iw8++EDh4eEymUwKDw/XhAkTdP78eQ0YMECSVLFiRe3du1dFixa963EqVKiglJQUxcfHq1atWveM5+Lioi+//FJt27ZVnTp1FBMTo+DgYJUsWVJms1knT560FjOPokSJEtq4caM6dOhg3bZx48ZHPh4AAAAyN6ZCZRIWi0Xly5fXV199pYiICEk3i43t27fr4MGD1m3Dhg3Thg0b1KdPH+3cuVOHDh3S4sWL1a9fP0lS8eLF1a5dO3Xo0EELFy7UsWPHtGXLFr377rtatmyZTUxXV1fNmTNH5cqVU506dRQXFydfX18NGTJEr776qmbNmqUjR45ox44d+vjjjzVr1qx0n8+AAQM0Y8YMzZgxQwcPHtTo0aO1d+/ex9JXAAAAyHwoLDKRyMhIpaSkWIuIXLlyqWTJksqbN69KlCgh6eZ9DWvWrNGhQ4dUq1YtVahQQW+88Yb1HgdJmjlzpjp06KDBgwfr6aefVrNmzbRp0yaFhISkienm5qavv/5apUqVUp06dRQfH6+3335bb775piZMmKASJUooKipKP/zwgwoXLpzuc2ndurXefPNNDRs2TJUqVdKJEyfUu3dv+zoIAAAAmRarQiHTurUKAatCAQAA3MSqUAAAAACyNAoLAAAAAHajsAAAAABgNwoLAAAAAHajsAAAAABgNwoLAAAAAHajsAAAAABgNwoLAAAAAHajsAAAAABgNwoLAAAAAHajsAAAAABgNzdnJwA8yO9jo+Tn5+fsNAAAAGwUH7lcknRwXEMnZ5I5cMUCAAAAgN0oLAAAAADYjcICAAAAgN0oLAAAAADYjcICAAAAgN1YFQoAAAB4BJ2eCXV2CpkKhQUAAADwCF5vVMLZKWQqTIUCAAAAYDcKCwAAAOARLN8Tq+V7Yp2dRqbBVCgAAADgEQyYt1OS1LBMkHMTySS4YgEAAADAbhQWAAAAAOxGYQEAAADAbhQWAAAAAOxGYQEAAADAbqwKBQAAADyCgv5ezk4hU6GwAAAAAB7Bz4PCnZ1CpsJUKAAAAAB2o7AAAAAAHkHyjRQl30hxdhqZBlOhAAAAgEdQZvRPkqSD4xo6OZPMgSsWAAAAAOxGYQEAAADAbhQWAAAAAOxGYQEAAADAbhQWAAAAAOxGYQEAAADAbiw3CwAAADyCpf2fdXYKmQqFBQAAAPAIigX4OjuFTIWpUAAAAADsRmEBAAAAPIIu0VvUJXqLs9PINJgKBQAAADyCdYf+dnYKmQpXLAAAAADYjcICAAAAgN0oLAAAAADYjcICAAAAgN24eRuZXunRP8rF7OXsNAAAAO4qdPhSh8U6PrGxw2I9LK5YAAAAALAbhQUAAAAAu1FYAAAAALAbhQUAAAAAu1FYAAAAALAbhQUAAAAAu1FYAAAAALAbhQUAAAAAu1FYAAAAALAbhQUAAAAAu1FYAAAAALDbE11YjBkzRuXLl3d2Go8sJiZGJpNJFy5ccHYqD2QymbRo0SJnpwEAAIBMys3ZCdhjyJAh6tevn7PTyBZiY2OVK1cuZ6cBAACATCpTFhbXrl1Tjhw5HtjOx8dHPj4+DsgIgYGBzk4BAAAAmdhDTYWKiIhQv379NHDgQOXKlUsBAQH69NNPlZSUpM6dO8vX11dFihTR8uXLbfZbs2aNqlatKrPZrKCgIA0fPlw3btywOW7fvn01aNAg5cmTR/Xq1bNOE/rll19UuXJleXl5qWbNmjpw4IB1vzunQnXq1EnNmzfXe++9p6CgIPn7+6tPnz66fv26tU1sbKwaN24sT09PFS5cWHPnzlVoaKg++OCDe573li1bVK9ePeXJk0cWi0Xh4eHavn27TRuTyaTPP/9cLVq0kJeXl4oVK6bFixfbtFm2bJmKFy8uT09PRUZG6vjx4w/s84sXL6pHjx7Kly+f/Pz8VKdOHe3atUuSdODAAZlMJu3fv99mnylTpig0NFSGYUiS/vjjDzVq1Eg+Pj4KCAhQ+/bt9ffff9v0f//+/TV06FDlzp1bgYGBGjNmTJrzuzUV6vjx4zKZTFq4cKEiIyPl5eWlcuXKacOGDTb7fPbZZwoJCZGXl5datGihKVOmKGfOnA88ZwAAADx5Hvoei1mzZilPnjzavHmz+vXrp969e+vFF19UzZo1tX37dkVFRal9+/a6fPmyJOnPP/9Uo0aNVKVKFe3atUvTpk3TF198oXfeeSfNcd3c3PTbb7/pk08+sW4fOXKkJk+erK1bt8rNzU1dunS5b36rV6/WkSNHtHr1as2aNUvR0dGKjo62vt6hQwedOXNGMTExWrBggT799FPFx8ff95iJiYnq2LGj1q5dq40bN6pYsWJq1KiREhMTbdqNHTtWrVq10u7du9WoUSO1a9dO//zzjyTp1KlTatmypRo1aqSdO3eqW7duGj58+H3jGoahxo0bKy4uTsuWLdO2bdtUsWJFPffcc/rnn3/09NNPq1KlSpozZ47NfnPnzlXbtm1lMpkUGxur8PBwlS9fXlu3btWKFSt09uxZtWrVymafWbNmydvbW5s2bdKkSZP01ltvaeXKlffNb+TIkRoyZIh27typ4sWL66WXXrIWjL/99pt69eqlAQMGaOfOnapXr57GjRt33+MBAADgyWUybv1ZOx0iIiKUkpKitWvXSpJSUlJksVjUsmVLzZ49W5IUFxenoKAgbdiwQdWrV9fIkSO1YMEC7du3TyaTSZI0depUDRs2TBcvXpSLi4siIiJ08eJF7dixwxorJiZGkZGR+vnnn/Xcc89JuvkX/8aNG+vKlSvy8PDQmDFjtGjRIu3cuVPSzSsWMTExOnLkiFxdXSVJrVq1kouLi+bNm6f9+/erRIkS2rJliypXrixJOnz4sIoVK6b3339fAwcOTFc/pKSkKFeuXJo7d66aNGlysyNNJo0aNUpvv/22JCkpKUm+vr5atmyZGjRooNdff12LFi3S3r17rf0wfPhwvfvuuzp//vxd/5K/atUqtWjRQvHx8TKbzdbtRYsW1dChQ9WjRw+9//77+uijj3TkyBFJ0sGDB/X0009r7969KlmypN58801t2rRJP/74o3X/06dPKyQkRAcOHFDx4sXTfF8lqWrVqqpTp44mTpxoPb/vvvtOzZs31/Hjx1W4cGF9/vnn6tq1q6SbV0VKlSqlffv2KSwsTG3atNGlS5e0ZMkS6zFffvllLVmy5J43qycnJys5Odn6PCEhQSEhIQoZOF8uZq90fW8AAACysuMTGzs0XkJCgiwWiy5evCg/P7/7tn3oKxZly5a1fu3q6ip/f3+VKVPGui0gIECSrFcB9u3bpxo1aljfTEvSM888o0uXLun06dPWbbfe6N8vXlBQkM2x76ZUqVLWouLWPrfaHzhwQG5ubqpYsaL19aJFiz7wpuT4+Hj16tVLxYsXl8VikcVi0aVLl3Ty5Ml75urt7S1fX1+bfqhevbpNP9SoUeO+cbdt26ZLly7J39/fej+Jj4+Pjh07Zi0k2rRpoxMnTmjjxo2SpDlz5qh8+fIqWbKk9RirV6+22T8sLEySrMe4M/c7++1e7ve9OXDggKpWrWrT/s7nd5owYYK1fy0Wi0JCQu7bHgAAAJnHQ9+87e7ubvPcZDLZbLv1xjk1NVXSzek8t7+ZvrXt9rbSzTfiD4p357HTm9/tudzNgy7adOrUSX/99Zc++OADFSpUSGazWTVq1NC1a9fsjn0/qampCgoKUkxMTJrXbl3hCAoKUmRkpObOnavq1avr66+/Vs+ePW2O0bRpU7377rtpjnGrGHhQ7vfyqN/3exkxYoQGDRpkfX7rigUAAAAyvwxfFapkyZJasGCBzRvN9evXy9fXV/nz58/o8DbCwsJ048YN7dixQ5UqVZJ0cyrUgz5HYu3atZo6daoaNWok6eb9Erff/JweJUuWTPM5ELeuMtxLxYoVFRcXJzc3N4WGht6zXbt27TRs2DC99NJLOnLkiNq0aWNzjAULFig0NFRubo5bBCwsLEybN2+22bZ169b77mM2m22mfAEAAODJkeEfkPfKK6/o1KlT6tevn/bv36/vv/9eo0eP1qBBg+Ti4tjP5wsLC1PdunXVo0cPbd68WTt27FCPHj3k6emZ5q/rtytatKi+/PJL7du3T5s2bVK7du3k6en5ULF79eqlI0eOaNCgQTpw4IDmzp1rc1P53dStW1c1atRQ8+bN9eOPP+r48eNav369Ro0aZfMmvWXLlkpISFDv3r0VGRlpU7D16dNH//zzj1566SVt3rxZR48e1U8//aQuXbooJSXloc7hYfTr10/Lli3TlClTdOjQIX3yySdavnz5ffsZAAAAT64Mf2efP39+LVu2TJs3b1a5cuXUq1cvde3aVaNGjcro0Hc1e/ZsBQQEqHbt2mrRooW6d+8uX19feXh43HOfGTNm6Pz586pQoYLat2+v/v37K1++fA8Vt2DBglqwYIF++OEHlStXTtOnT9f48ePvu4/JZNKyZctUu3ZtdenSRcWLF1ebNm10/Phx670skuTn56emTZtq165dateunc0xgoOD9dtvvyklJUVRUVEqXbq0BgwYIIvFkqGF3TPPPKPp06drypQpKleunFasWKFXX331vv0MAACAJ9dDrQqVFd1aIen21aeQMbp37679+/fbrD51P7dWIWBVKAAAgJsy86pQmfKTtzPSqlWrdOnSJZUpU0axsbEaOnSoQkNDVbt2bWenluW89957qlevnry9vbV8+XLNmjVLU6dOdXZaAAAAyADZrrC4fv26Xn/9dR09elS+vr6qWbOm5syZk2ZVJNhv8+bNmjRpkhITE/XUU0/pww8/VLdu3ZydFgAAADJAtissoqKiFBUV5ew0soX58+c7OwUAAAA4iGOXZQIAAACQJVFYAAAAALAbhQUAAAAAu1FYAAAAALAbhQUAAAAAu1FYAAAAALAbhQUAAAAAu1FYAAAAALBbtvuAPDx5fh8bJT8/P2enAQAAYOPDXw5Jkvo/V8zJmWQOXLEAAAAAHsFHqw7ro1WHnZ1GpkFhAQAAAMBuFBYAAAAA7EZhAQAAAMBuFBYAAAAA7EZhAQAAAMBuLDcLAAAAPILIsLzOTiFTobAAAAAAHsEn7Ss7O4VMhalQAAAAAOxGYQEAAAA8gt//vKjf/7zo7DQyDaZCAQAAAI+g5dT1kqSD4xo6OZPMgSsWAAAAAOxGYQEAAADAbhQWAAAAAOxGYQEAAADAbhQWAAAAAOzGqlDItAzDkCQlJCQ4ORMAAIC0UpIvS8ra71Vundut92X3Q2GBTOvcuXOSpJCQECdnAgAAcG+Wyc7OIOMlJibKYrHctw2FBTKt3LlzS5JOnjz5wIGMrC8hIUEhISE6deqU/Pz8nJ0OMgHGBG7HeMCdGBOPh2EYSkxMVHBw8APbUlgg03JxuXkLkMVi4QcCrPz8/BgPsMGYwO0YD7gTY8J+6f0DLzdvAwAAALAbhQUAAAAAu1FYINMym80aPXq0zGazs1NBJsB4wJ0YE7gd4wF3Ykw4nslIz9pRAAAAAHAfXLEAAAAAYDcKCwAAAAB2o7AAAAAAYDcKCwAAAAB2o7BApjR16lQVLlxYHh4eqlSpktauXevslOAgY8aMkclksnkEBgZaXzcMQ2PGjFFwcLA8PT0VERGhvXv3OjFjPE6//vqrmjZtquDgYJlMJi1atMjm9fR8/5OTk9WvXz/lyZNH3t7eatasmU6fPu3As8Dj9KAx0alTpzQ/M6pXr27ThjGRdUyYMEFVqlSRr6+v8uXLp+bNm+vAgQM2bfg54TwUFsh0vvnmGw0cOFAjR47Ujh07VKtWLTVs2FAnT550dmpwkFKlSik2Ntb62LNnj/W1SZMmacqUKfroo4+0ZcsWBQYGql69ekpMTHRixnhckpKSVK5cOX300Ud3fT093/+BAwfqu+++07x587Ru3TpdunRJTZo0UUpKiqNOA4/Rg8aEJDVo0MDmZ8ayZctsXmdMZB1r1qxRnz59tHHjRq1cuVI3btxQ/fr1lZSUZG3DzwknMoBMpmrVqkavXr1stoWFhRnDhw93UkZwpNGjRxvlypW762upqalGYGCgMXHiROu2q1evGhaLxZg+fbqDMoSjSDK+++476/P0fP8vXLhguLu7G/PmzbO2+fPPPw0XFxdjxYoVDssdGePOMWEYhtGxY0fj+eefv+c+jImsLT4+3pBkrFmzxjAMfk44G1cskKlcu3ZN27ZtU/369W22169fX+vXr3dSVnC0Q4cOKTg4WIULF1abNm109OhRSdKxY8cUFxdnMz7MZrPCw8MZH9lAer7/27Zt0/Xr123aBAcHq3Tp0oyRLCwmJkb58uVT8eLF1b17d8XHx1tfY0xkbRcvXpQk5c6dWxI/J5yNwgKZyt9//62UlBQFBATYbA8ICFBcXJyTsoIjVatWTbNnz9aPP/6ozz77THFxcapZs6bOnTtnHQOMj+wpPd//uLg45ciRQ7ly5bpnG2QtDRs21Jw5c7Rq1SpNnjxZW7ZsUZ06dZScnCyJMZGVGYahQYMG6dlnn1Xp0qUl8XPC2dycnQBwNyaTyea5YRhptiFratiwofXrMmXKqEaNGipSpIhmzZplvSGT8ZG9Pcr3nzGSdbVu3dr6denSpVW5cmUVKlRIS5cuVcuWLe+5H2Piyde3b1/t3r1b69atS/MaPyecgysWyFTy5MkjV1fXNH8xiI+PT/PXB2QP3t7eKlOmjA4dOmRdHYrxkT2l5/sfGBioa9eu6fz58/dsg6wtKChIhQoV0qFDhyQxJrKqfv36afHixVq9erUKFChg3c7PCeeisECmkiNHDlWqVEkrV6602b5y5UrVrFnTSVnBmZKTk7Vv3z4FBQWpcOHCCgwMtBkf165d05o1axgf2UB6vv+VKlWSu7u7TZvY2Fj9/vvvjJFs4ty5czp16pSCgoIkMSayGsMw1LdvXy1cuFCrVq1S4cKFbV7n54RzMRUKmc6gQYPUvn17Va5cWTVq1NCnn36qkydPqlevXs5ODQ4wZMgQNW3aVAULFlR8fLzeeecdJSQkqGPHjjKZTBo4cKDGjx+vYsWKqVixYho/fry8vLzUtm1bZ6eOx+DSpUs6fPiw9fmxY8e0c+dO5c6dWwULFnzg999isahr164aPHiw/P39lTt3bg0ZMkRlypRR3bp1nXVasMP9xkTu3Lk1ZswYvfDCCwoKCtLx48f1+uuvK0+ePGrRooUkxkRW06dPH82dO1fff/+9fH19rVcmLBaLPD090/V7gjGRgZy2HhVwHx9//LFRqFAhI0eOHEbFihWty8gh62vdurURFBRkuLu7G8HBwUbLli2NvXv3Wl9PTU01Ro8ebQQGBhpms9moXbu2sWfPHidmjMdp9erVhqQ0j44dOxqGkb7v/5UrV4y+ffsauXPnNjw9PY0mTZoYJ0+edMLZ4HG435i4fPmyUb9+fSNv3ryGu7u7UbBgQaNjx45pvt+MiazjbmNBkjFz5kxrG35OOI/JMAzD8eUMAAAAgKyEeywAAAAA2I3CAgAAAIDdKCwAAAAA2I3CAgAAAIDdKCwAAAAA2I3CAgAAAIDdKCwAAAAA2I3CAgAAAIDdKCwAAAAA2I3CAgCQbXTq1Ekmk0kmk0lubm4qWLCgevfurfPnzzs7NQB44lFYAACylQYNGig2NlbHjx/X559/rh9++EGvvPKKs9MCgCcehQUAIFsxm80KDAxUgQIFVL9+fbVu3Vo//fST9fWZM2eqRIkS8vDwUFhYmKZOnWp9rUaNGho+fLjN8f766y+5u7tr9erVkqRr165p6NChyp8/v7y9vVWtWjXFxMRY20dHRytnzpz68ccfVaJECfn4+FiLnVsiIiI0cOBAmzjNmzdXp06drM8fFAcAHI3CAgCQbR09elQrVqyQu7u7JOmzzz7TyJEjNW7cOO3bt0/jx4/XG2+8oVmzZkmS2rVrp6+//lqGYViP8c033yggIEDh4eGSpM6dO+u3337TvHnztHv3br344otq0KCBDh06ZN3n8uXLeu+99/Tll1/q119/1cmTJzVkyJCHyj09cQDAkSgsAADZypIlS+Tj4yNPT08VKVJEf/zxh4YNGyZJevvttzV58mS1bNlShQsXVsuWLfXqq6/qk08+kSS1bt1aZ86c0bp166zHmzt3rtq2bSsXFxcdOXJEX3/9tb799lvVqlVLRYoU0ZAhQ/Tss89q5syZ1n2uX7+u6dOnq3LlyqpYsaL69u2rX375Jd3nkN44AOBIbs5OAAAAR4qMjNS0adN0+fJlff755zp48KD69eunv/76S6dOnVLXrl3VvXt3a/sbN27IYrFIkvLmzat69eppzpw5qlWrlo4dO6YNGzZo2rRpkqTt27fLMAwVL17cJmZycrL8/f2tz728vFSkSBHr86CgIMXHx6f7HNIbBwAcicICAJCteHt7q2jRopKkDz/8UJGRkRo7dqz69u0r6eZ0qGrVqtns4+rqav26Xbt2GjBggP773/9q7ty5KlWqlMqVKydJSk1Nlaurq7Zt22azjyT5+PhYv7419eoWk8lkM73KxcXF5rl08yrHLemNAwCORGEBAMjWRo8erYYNG6p3797Knz+/jh49qnbt2t2zffPmzdWzZ0+tWLFCc+fOVfv27a2vVahQQSkpKYqPj1etWrUeOae8efPa3MydkpKi33//XZGRkY81DgA8ThQWAIBsLSIiQqVKldL48eM1ZswY9e/fX35+fmrYsKGSk5O1detWnT9/XoMGDZJ084rH888/rzfeeEP79u1T27ZtrccqXry42rVrpw4dOmjy5MmqUKGC/v77b61atUplypRRo0aN0pVTnTp1NGjQIC1dulRFihTR+++/rwsXLjz2OADwOHHzNgAg2xs0aJA+++wzRUVF6fPPP1d0dLTKlCmj8PBwRUdHq3Dhwjbt27Vrp127dqlWrVoqWLCgzWszZ85Uhw4dNHjwYD399NNq1qyZNm3apJCQkHTn06VLF3Xs2FEdOnRQeHi4ChcubL1a8TjjAMDjZDLunMQJAAAAAA+JKxYAAAAA7EZhAQAAAMBuFBYAAAAA7EZhAQAAAMBuFBYAAAAA7EZhAQAAAMBuFBYAAAAA7EZhAQAAAMBuFBYAAAAA7EZhAQAAAMBuFBYAAAAA7EZhAQAAAMBuFBYAAAAA7EZhAQAAAMBuFBYAAAAA7EZhAQAAAMBuFBYAgHSJjo6WyWSyPjw8PBQYGKjIyEhNmDBB8fHxzk7RIW71w/Hjxx/Y9scff1T9+vUVHBwss9ms4OBgRUREaOLEiRmfqIOEhoaqU6dOzk4DQCbg5uwEAABPlpkzZyosLEzXr19XfHy81q1bp3fffVfvvfeevvnmG9WtW9fZKWYK06dPV+/evfXCCy/oo48+Uu7cuXXq1CmtX79e//vf/zR8+HBnp/hYfPfdd/Lz83N2GgAyAZNhGIazkwAAZH7R0dHq3LmztmzZosqVK9u8dvLkST377LO6cOGCDh06pICAACdlmfFu9cOxY8cUGhp6z3aFChVSaGio1qxZk+a11NRUubg82ZMGrly5Ik9PT2enASATebJ/qgEAMoWCBQtq8uTJSkxM1CeffGLz2tatW9WsWTPlzp1bHh4eqlChgubPn2/T5tb0olWrVql79+7y9/eXn5+fOnTooKSkJMXFxalVq1bKmTOngoKCNGTIEF2/ft3mGGPHjlW1atWUO3du+fn5qWLFivriiy9059/PQkND1aRJE61YsUIVK1aUp6enwsLCNGPGjDTntXHjRj3zzDPy8PBQcHCwRowYkSbuvZw7d05BQUF3fe3OoiI1NVX//e9/Vb58eXl6eipnzpyqXr26Fi9ebNPum2++UY0aNeTt7S0fHx9FRUVpx44dNm06deokHx8fHT58WI0aNZKPj49CQkI0ePBgJScn29VnCxcuVIUKFeTh4aGxY8daX7tzKtTJkyf18ssvK1++fDKbzSpRooQmT56s1NRUm3bTpk1TuXLl5OPjI19fX4WFhen111+/f8cCyLSYCgUAeCwaNWokV1dX/frrr9Ztq1evVoMGDVStWjVNnz5dFotF8+bNU+vWrXX58uU0b0i7deumli1bat68edqxY4def/113bhxQwcOHFDLli3Vo0cP/fzzz3r33XcVHBysQYMGWfc9fvy4evbsqYIFC0q6WRT069dPf/75p958802bOLt27dLgwYM1fPhwBQQE6PPPP1fXrl1VtGhR1a5dW5L0xx9/6LnnnlNoaKiio6Pl5eWlqVOnau7cuenqjxo1amjBggUaM2aMWrRoodKlS8vV1fWubTt16qSvvvpKXbt21VtvvaUcOXJo+/btNvdxjB8/XqNGjVLnzp01atQoXbt2Tf/+979Vq1Ytbd68WSVLlrS2vX79upo1a6auXbtq8ODB+vXXX/X222/LYrHY9MXD9Nn27du1b98+jRo1SoULF5a3t/ddz+Wvv/5SzZo1de3aNb399tsKDQ3VkiVLNGTIEB05ckRTp06VJM2bN0+vvPKK+vXrp/fee08uLi46fPiw/vjjj3T1L4BMyAAAIB1mzpxpSDK2bNlyzzYBAQFGiRIlrM/DwsKMChUqGNevX7dp16RJEyMoKMhISUmxOXa/fv1s2jVv3tyQZEyZMsVme/ny5Y2KFSveM4+UlBTj+vXrxltvvWX4+/sbqamp1tcKFSpkeHh4GCdOnLBuu3LlipE7d26jZ8+e1m2tW7c2PD09jbi4OOu2GzduGGFhYYYk49ixY/eMbxiGcfjwYaN06dKGJEOS4enpaTz33HPGRx99ZFy7ds3a7tdffzUkGSNHjrznsU6ePGm4ubml6Z/ExEQjMDDQaNWqlXVbx44dDUnG/Pnzbdo2atTIePrpp+8Z40F95urqahw4cCDNfoUKFTI6duxofT58+HBDkrFp0yabdr179zZMJpP1GH379jVy5sx5z3wAPHmYCgUAeGyM26bQHD58WPv371e7du0kSTdu3LA+GjVqpNjYWB04cMBm/yZNmtg8L1GihCSpcePGabafOHHCZtuqVatUt25dWSwWubq6yt3dXW+++abOnTuXZsWq8uXLW/9KL0keHh4qXry4zTFXr16t5557zuZ+EVdXV7Vu3TpdfVGkSBHt2rVLa9as0dixY1W3bl1t2bJFffv2VY0aNXT16lVJ0vLlyyVJffr0ueexfvzxR924cUMdOnSw6UcPDw+Fh4crJibGpr3JZFLTpk1ttpUtW9auPitbtqyKFy/+wPNetWqVSpYsqapVq9ps79SpkwzD0KpVqyRJVatW1YULF/TSSy/p+++/199///3AYwPI3CgsAACPRVJSks6dO6fg4GBJ0tmzZyVJQ4YMkbu7u83jlVdekaQ0byZz585t8zxHjhz33H7rjbkkbd68WfXr15ckffbZZ/rtt9+0ZcsWjRw5UtLNG41v5+/vnyZ/s9ls0+7cuXMKDAxM0+5u2+7FxcVFtWvX1ptvvqnFixfrzJkzat26tbZt22a9p+Ovv/6Sq6vrfY97qy+rVKmSpi+/+eabNP3o5eUlDw+PNOdnT5/d636RO93r3pJb4+LcuXOSpPbt22vGjBk6ceKEXnjhBeXLl0/VqlXTypUr0xUHQObDPRYAgMdi6dKlSklJUUREhCQpT548kqQRI0aoZcuWd93n6aeffiyx582bJ3d3dy1ZssTmDfWiRYse+Zj+/v6Ki4tLs/1u29LL29tbI0aM0DfffKPff/9dkpQ3b16lpKQoLi7unm/eb/Xl//73PxUqVOiR49/uYfvMZDKl67j+/v6KjY1Ns/3MmTOS/u9cJKlz587q3LmzkpKS9Ouvv2r06NFq0qSJDh48+NjOE4DjUFgAAOx28uRJDRkyRBaLRT179pR0s2goVqyYdu3apfHjx2dofJPJJDc3N5ubo69cuaIvv/zykY8ZGRmpxYsX6+zZs9bpUCkpKfrmm2/StX9sbOxdC4V9+/ZJ+r+/4Dds2FATJkzQtGnT9NZbb931WFFRUXJzc9ORI0f0wgsvPMrppJERfSZJzz33nCZMmKDt27erYsWK1u2zZ8+WyWRSZGRkmn28vb3VsGFDXbt2Tc2bN9fevXspLIAnEIUFAOCh/P7779Y5/vHx8Vq7dq1mzpwpV1dXfffdd8qbN6+17SeffKKGDRsqKipKnTp1Uv78+fXPP/9o37592r59u7799tvHklPjxo01ZcoUtW3bVj169NC5c+f03nvvyWw2P/IxR40apcWLF6tOnTp688035eXlpY8//lhJSUnp2r9UqVJ67rnn1LBhQxUpUkRXr17Vpk2bNHnyZAUEBKhr166SpFq1aql9+/Z65513dPbsWTVp0kRms1k7duyQl5eX+vXrp9DQUL311lsaOXKkjh49qgYNGihXrlw6e/asNm/eLG9vb+vyr+mVEX0mSa+++qpmz56txo0b66233lKhQoW0dOlSTZ06Vb1797bep9G9e3d5enrqmWeeUVBQkOLi4jRhwgRZLBZVqVLFrhwAOAeFBQDgoXTu3FnSzfsccubMqRIlSmjYsGHq1q2bTVEh3fyr/+bNmzVu3DgNHDhQ58+fl7+/v0qWLKlWrVo9tpzq1KmjGTNm6N1331XTpk2VP39+de/eXfny5bO+gX9YpUuX1s8//6zBgwerY8eOypUrl9q3b68XXnhBPXr0eOD+EydO1I8//qhx48YpLi5ON27cUEhIiNq2bauRI0faXM2Ijo62foZEdHS0PD09VbJkSZvPdBgxYoRKliyp//znP/r666+VnJyswMBAValSRb169Xro88uIPpNuTu1av369RowYoREjRighIUFPPfWUJk2aZLM8cK1atRQdHa358+fr/PnzypMnj5599lnNnj07zTgC8GTgk7cBAAAA2I1VoQAAAADYjcICAAAAgN0oLAAAAADYjcICAAAAgN0oLAAAAADYjcICAAAAgN0oLAAAAADYjQ/IQ6aVmpqqM2fOyNfXVyaTydnpAAAAZDuGYSgxMVHBwcFycbn/NQkKC2RaZ86cUUhIiLPTAAAAyPZOnTqlAgUK3LcNhQUyLV9fX0k3B7Kfn59DYlZ4a6Ukaceb9RwST5L0buGb/w475riYAACHqjWvliRpbZu1Ts4EeDgJCQkKCQmxvi+7HwoLZFq3pj/5+fk5rLBwNXtZYzqMx/+/rOjImAAAh3L1dJXk4N8vwGOUnmnp3LwNAAAAwG4UFgAAAADsRmEBAAAAwG7cYwEAAADcQ0pKiq5fv+7sNDKMu7u7XF1dH8uxKCyA2wRYzI4P6hvk+JgAAIfK55XP2SngIRmGobi4OF24cMHZqWS4nDlzKjAw0O7PDTMZhmE8ppyAxyohIUEWi0UXL15kFQ0AAOBQsbGxunDhgvLlyycvL68s+WG9hmHo8uXLio+PV86cORUUlPaPnQ/zfowrFgAAAMBtUlJSrEWFv7+/s9PJUJ6enpKk+Ph45cuXz65pUdy8DQAAANzm1j0VXl5eTs7EMW6dp733klBYALcpPnK5io9c7tigb+e9+QAAZFkVv6yoil9WdHYaeEhZcfrT3Tyu86SwAAAAAGA3CgsAAAAgi+jUqZNMJlOax+HDhzM8NjdvAwAAAOkUOnypQ+Mdn9j4ofdp0KCBZs6cabMtb96Mn3ZNYQEAAABkIWazWYGBgQ6Py1QoAAAAAHajsAAAAACykCVLlsjHx8f6ePHFFx0Sl6lQyPSqz60uV89H/7CWh+FWMFiSVGbWUIfEk6SwgNySpP2zyjgsJgDA8eY3me/sFJBNREZGatq0adbn3t7eDolLYQHcxtXjjMNj7jfncHhMAIDjlfAv4ewUkE14e3uraNGiDo/LVCgAAAAAdqOwAG5z5fTLunL6ZYfGfP/sX3r/7F8OjQkAcLyBqwc6OwUgQzEVCrjNjUthDo9Z+/IVh8cEADjer6d/dXYKQIaisAAAAADS6VE+sM6RoqOjnRabqVAAAAAA7EZhAQAAAMBuFBYAAAAA7EZhAQAAAMBu3LwN3CaH/yqHx/w0p8XhMQEAjtejbA9npwBkKAoL4DbmvI4vLD7JRWEBANlBr3K9nJ0CkKEoLLK4mJgYRUZG6vz588qZM+dd20RHR2vgwIG6cOHCPY8zZswYLVq0SDt37syQPO9n44nT8jObHBdwzEXHxQIAAMgiuMcii6tZs6ZiY2NlsfBX8fSYfyNc87eccmzQ7V/efAAAsqzvDn2n7w595+w0gAzFFYssLkeOHAoMDHR2Gk+MUTe6SIt+V6sqIY4LunTQzX8rtndcTACAQ7298W1JUotiLZycCZBxuGLxhImIiFC/fv00cOBA5cqVSwEBAfr000+VlJSkzp07y9fXV0WKFNHy5csl3ZwKZTKZbKY5RUdHq2DBgvLy8lKLFi107ty5NHEmTpyogIAA+fr6qmvXrrp69arN61u2bFG9evWUJ08eWSwWhYeHa/v27dbXu3TpoiZNmtjsc+PGDQUGBmrGjBmPsUcAAACQGVBYPIFmzZqlPHnyaPPmzerXr5969+6tF198UTVr1tT27dsVFRWl9u3b6/Lly2n23bRpk7p06aJXXnlFO3fuVGRkpN555x2bNvPnz9fo0aM1btw4bd26VUFBQZo6dapNm8TERHXs2FFr167Vxo0bVaxYMTVq1EiJiYmSpG7dumnFihWKjY217rNs2TJdunRJrVq1uut5JScnKyEhweYBAACA9OvUqZNMJpP14e/vrwYNGmj37t0ZHttkGIaR4VHw2ERERCglJUVr166VJKWkpMhisahly5aaPXu2JCkuLk5BQUHasGGDrl69anPzdtu2bXX+/HnrFQ1JatOmjVasWGG9qlGzZk2VK1dO06ZNs7apXr26rl69es+bt1NSUpQrVy7NnTvXeqWiVKlS6tixo4YOHSpJatGihXLmzKmZM2fe9RhjxozR2LFj02y/ONzXYTdvF786S3I16+C4hg6JJ0l6O+/Nf9/4y3ExAQAOVfHLipKk7e23P6AlMoOrV6/q2LFjKly4sDw8PGxfHOPg+1YfclGZTp066ezZs9b3W3FxcRo1apR2796tkydP3nWf+51vQkKCLBaLLl68KD8/v/vG5orFE6hs2bLWr11dXeXv768yZcpYtwUEBEiS4uPj0+y7b98+1ahRw2bbnc/T0yY+Pl69evVS8eLFZbFYZLFYdOnSJZsB261bN+ugjo+P19KlS9WlS5d7nteIESN08eJF6+PUKQffRA0AAJAFmM1mBQYGKjAwUOXLl9ewYcN06tQp/fVXxv4Rk5u3n0Du7u42z00mk802k+nmX/dTU1PT7Pu4LlB16tRJf/31lz744AMVKlRIZrNZNWrU0LVr16xtOnTooOHDh2vDhg3asGGDQkNDVatWrXse02w2y2w2P5b8AAAAIF26dElz5sxR0aJF5e/vn6GxKCyymZIlS2rjxo022+58XqJECW3cuFEdOnS4Z5u1a9dq6tSpatSokSTp1KlT+vvvv23a+Pv7q3nz5po5c6Y2bNigzp07P85TyRAlTCek4MqODRpY5sFtAABPtLDcYc5OAdnIkiVL5OPjI0lKSkpSUFCQlixZIheXjJ2sRGGRzfTv3181a9bUpEmT1Lx5c/30009asWKFTZsBAwaoY8eOqly5sp599lnNmTNHe/fu1VNPPWVtU7RoUX355ZeqXLmyEhIS9Nprr8nT0zNNvG7duqlJkyZKSUlRx44dM/z87PW9+U2pj4M/IK+74z/tGwDgWHMbz3V2CshGIiMjrffK/vPPP5o6daoaNmyozZs3q1ChQhkWl3ssspnq1avr888/13//+1+VL19eP/30k0aNGmXTpnXr1nrzzTc1bNgwVapUSSdOnFDv3r1t2syYMUPnz59XhQoV1L59e/Xv31/58uVLE69u3boKCgpSVFSUgoODM/TcAAAAIHl7e6to0aIqWrSoqlatqi+++EJJSUn67LPPMjQuq0IhQ12+fFnBwcGaMWOGWrZs+VD73lqFIGTgfLmYvR45h+MTG6e77blLyZIkfx8H3uuR9P+nkHnncVxMAIBD/XP1H0lSbo/cTs4E6fGkrwp14cIFLVq0yLotNTVVOXPmVPfu3TV58uQ0+zyuVaGYCoUMkZqaqri4OE2ePFkWi0XNmjVzdkrpUmPCzWlJDl1udkqJm/+y3CwAZFl1v60rieVm4RjJycmKi4uTJJ0/f14fffSRLl26pKZNm2ZoXAoLZIiTJ0+qcOHCKlCggKKjo+XmxlADAABwhBUrVigoKEiS5Ovrq7CwMH377beKiIjI0Li820OGCA0NfWxL2wIAAGQaDzk1ydGio6MVHR3tlNjcvA0AAADAbhQWAAAAAOxGYQEAAADAbhQWAAAAAOzGzdvAbdYMjXB80P47HR8TAOBQy1ouc3YKQIajsABuE2TxdHxQS37HxwQAOFSgd6CzUwAyHFOhAAAAANiNwgK4TavpG9Rq+gbHBp3R8OYDAJBldVzeUR2Xd3R2GkCGYioUMr3fx0bJz8/PIbF2nrrgkDg2/tzq+JgAAIfa8/ceZ6cAZDiuWAAAAACwG4UFAAAAkEV06tRJJpMpzaNBgwYZHpupUAAAAEA6lZlVxqHx9nR8+Gl0DRo00MyZM222mc3mx5XSPVFYAAAAAFmI2WxWYKDjlzhmKhQAAAAAu3HFArjNG01LOj5ogwmOjwkAcKhhVYY5OwVkI0uWLJGPj4/NtmHDhumNN97I0LgUFsBt2lcv5PigVbo5PiYAwKFah7V2dgrIRiIjIzVt2jSbbblz587wuBQWAAAAQBbi7e2tokWLOjwu91gAt5m+5oimrzni2KDrPrj5AABkWTN+n6EZv89wdhpAhuKKBXCbKT8dlCT1Ci/iuKCrx93899mBjosJAHCoj3Z8JEnqUrqLkzNBdpCcnKy4uDibbW5ubsqTJ0+GxqWwAAAAALKQFStWKCgoyGbb008/rf3792doXAoLAAAAIJ0e5QPrHCk6OlrR0dFOic09FgAAAADsRmEBAAAAwG4UFgAAAADsxj0WwG2eLZaxqyXc1VORjo8JAHCoGsE1nJ0CkOEoLIDbzOhUxfFB2813fEwAgEN9/NzHzk4ByHBMhQIAAABgNwoL4DaHzibq0NlExwaN33/zAQDIso5cOKIjF444Ow0gQzEVCrhN4w/XSZIOjmvouKCf1Lr57xt/OS4mAMChXvzhRUnS9vbbnZwJkHG4YgEAAADAbhQWAAAAAOzGVCgAAAAgnfacvujQeGUKWB6qfadOnTRr1qw02w8dOqSiRYs+rrTuisICAAAAyEIaNGigmTNn2mzLmzdvhselsAAAAACyELPZrMDAQIfH5R4LAAAAAHbjigVwmz1j6zs+6IjTjo8JAHCojW03OjsFZCNLliyRj4+P9XnDhg317bffZnhcCgvgNmY3V8cHdTM7PiYAwKFyuOZwdgrIRiIjIzVt2jTrc29vb4fEpbAAAAAAshBvb+8MXwHqbrjHArhN3SlrVHfKGscG/ajqzQcAIMt6ftHzen7R885OA8hQXLEAbnPy3GXHBz1/zPExAQAOdSrxlLNTADIcVywAAAAA2I0rFgAAAEA6PewnYTtadHS002JzxQIAAACA3SgsAAAAANiNqVDI9KrPrS5XT8d8vsS11HckSWVmlXFIPEnalnJNklTJgTEBAI7n5uKmvef2OjuNTK2UfylnpwA7UFgAt/EInufwmMPy5XF4TACA4/Wr0M/ZKQAZisICuI273+8Oj/mzt5fDYwIAHK9aUDVnpwBkKO6xAAAAAGA3CgvgNlfPNtTVsw0dGnPQP+c16J/zDo0JAHC8r/74ytkpABmKwgK4zfXzz+j6+WccGrPdxUS1u5jo0JgAAMdbcXyFs1MAMhSFBQAAAAC7UVgAAAAAsBurQgEAAADpdWaHY+MFV3io5p06ddKsWbOsz3Pnzq0qVapo0qRJKlu27OPOzgZXLAAAAIAspEGDBoqNjVVsbKx++eUXubm5qUmTJhkel8ICAAAAyELMZrMCAwMVGBio8uXLa9iwYTp16pT++uuvDI3LVCjgNm5+uxwec7mPt8NjAgAcr2ZwTWengGzo0qVLmjNnjooWLSp/f/8MjUVhkQ1FR0dr4MCBunDhgkPjjhkzRosWLdLOnTsfar+NJ07Lz2zKmKTSmHzzn2MOCndLjxg9/zDtH3K+JQAAyD6WLFkiHx8fSVJSUpKCgoK0ZMkSubhk7GQlpkIBAAAAWUhkZKR27typnTt3atOmTapfv74aNmyoEydOZGhcCgvgNhtTw7QxNczxgc/sdHxMAIDDbInboi1xW5ydBrIJb29vFS1aVEWLFlXVqlX1xRdfKCkpSZ999lmGxqWwyAR++OEH5cyZU6mpqZKknTt3ymQy6bXXXrO26dmzp1566SVJ0vr161W7dm15enoqJCRE/fv3V1JSkrXttWvXNHToUOXPn1/e3t6qVq2aYmJi7hn/3Llzqlq1qpo1a6arV6/KMAxNmjRJTz31lDw9PVWuXDn973//s7aPiYmRyWTSL7/8osqVK8vLy0s1a9bUgQMHbI47ceJEBQQEyNfXV127dtXVq1cfR3dlqA7XRqjDtRGOD7zstQe3AQA8sXqu7KmeK3s6Ow1kUyaTSS4uLrpy5UqGxqGwyARq166txMRE7dhxc13kNWvWKE+ePFqzZo21TUxMjMLDw7Vnzx5FRUWpZcuW2r17t7755hutW7dOffv2tbbt3LmzfvvtN82bN0+7d+/Wiy++qAYNGujQoUNpYp8+fVq1atVSWFiYFi5cKA8PD40aNUozZ87UtGnTtHfvXr366qt6+eWXbfKRpJEjR2ry5MnaunWr3Nzc1KVLF+tr8+fP1+jRozVu3Dht3bpVQUFBmjp16uPuOgAAANwhOTlZcXFxiouL0759+9SvXz9dunRJTZs2zdC43LydCVgsFpUvX14xMTGqVKmSYmJi9Oqrr2rs2LFKTExUUlKSDh48qIiICI0fP15t27bVwIEDJUnFihXThx9+qPDwcE2bNk1//vmnvv76a50+fVrBwcGSpCFDhmjFihWaOXOmxo8fb4178OBB1atXT88//7z+85//yGQyKSkpSVOmTNGqVatUo0YNSdJTTz2ldevW6ZNPPlF4eLh1/3HjxlmfDx8+XI0bN9bVq1fl4eGhDz74QF26dFG3bt0kSe+8845+/vnn+161SE5OVnJysvV5QkLC4+lgAACAbGTFihUKCgqSJPn6+iosLEzffvutIiIiMjQuhUUmERERoZiYGA0aNEhr167VO++8owULFmjdunW6cOGCAgICFBYWpm3btunw4cOaM2eOdV/DMJSamqpjx47p999/l2EYKl68uM3xk5OTbZYYu3Llip599lm99NJL+s9//mPd/scff+jq1auqV6+ezf7Xrl1ThQq2KxHd/umNtwZvfHy8ChYsqH379qlXr1427WvUqKHVq1ffsw8mTJigsWPHPqirAAAAnCeTr8wYHR2t6Ohop8SmsMgkIiIi9MUXX2jXrl1ycXFRyZIlFR4erjVr1uj8+fPWKwOpqanq2bOn+vfvn+YYBQsW1O7du+Xq6qpt27bJ1dXV5vVby45JNz84pW7dulq6dKlee+01FShQwHp8SVq6dKny589vs7/ZbLZ57u7ubv3aZDLZ7P8oRowYoUGDBlmfJyQkKCQk5JGPBwAAAMehsMgkbt1n8cEHHyg8PFwmk0nh4eGaMGGCzp8/rwEDBkiSKlasqL1796po0aJ3PU6FChWUkpKi+Ph41apV657xXFxc9OWXX6pt27aqU6eOYmJiFBwcrJIlS8psNuvkyZM2054eVokSJbRx40Z16NDBum3jxo333cdsNqcpXgAAAPBk4ObtTOLWfRZfffWVdf5b7dq1tX37duv9FZI0bNgwbdiwQX369NHOnTt16NAhLV68WP369ZMkFS9eXO3atVOHDh20cOFCHTt2TFu2bNG7776rZcuW2cR0dXXVnDlzVK5cOdWpU0dxcXHy9fXVkCFD9Oqrr2rWrFk6cuSIduzYoY8//lizZs1K9/kMGDBAM2bM0IwZM3Tw4EGNHj1ae/fufSx9lZG8dVXecsLqVe6ejo8JAHAYb3dvebt7OzsNIENxxSITiYyM1Pbt261FRK5cuVSyZEmdOXNGJUqUkHTzvoY1a9Zo5MiRqlWrlgzDUJEiRdS6dWvrcWbOnKl33nlHgwcP1p9//il/f3/VqFFDjRo1ShPTzc1NX3/9tVq3bm29cvH2228rX758mjBhgo4ePaqcOXOqYsWKev3119N9Lq1bt9aRI0c0bNgwXb16VS+88IJ69+6tH3/80b5OymA7PJy0FGDHxc6JCwBwiLVt1jo7BSDDmQzDMJydBHA3CQkJslgsujjcV35mk7PTyVg9Yh6ufSa/cQwAgCfZ1atXdezYMRUuXFgeHh7OTifD3e98re/HLl6Un5/ffY/DFQtkeqWvfiEXw8th8Y5PbOywWAAAAFkF91gAd6jw1k+ODfhu4ZsPAECWVWteLdWad+9FVYCsgCsWwB2SklMcG/DaJcfGAwA4XNL1JGenAGQ4rlgAAAAAsBuFBQAAAAC7MRUKAAAASKe95xz7uVyl/Es9VPtOnTrd9bPHoqKitGLFiseV1l1RWAAAAABZSIMGDTRz5kybbWazOcPjUlgAAAAAWYjZbFZgYKDD41JYAHeY3bWqYwO2/86x8QAADvdJvU+cnQKQ4bh5G7hD9af8HRsw9NmbDwBAllUlsIqqBFZxdhrIJpYsWSIfHx+bx9tvv53hcbliAQAAAGQhkZGRmjZtms223LlzZ3hcCgvgDoPn79LkVuUcF/C73jf/bTHt/u0AAE+sketGSpLGPTvOyZkgO/D29lbRokUdHpfCApne72Oj5Ofn55BYxUcu1w+7zji2sPj9fzf/pbAAgCxr+bHlkigskLVRWAAAAABZSHJysuLi4my2ubm5KU+ePBkal8ICAAAAyEJWrFihoKAgm21PP/209u/fn6FxKSwAAACAdHrYT8J2tOjoaEVHRzslNsvNAgAAALAbhQUAAAAAuzEVCrhNp2dCHR+0Wk/HxwQAOFS7Eu2cnQKQ4SgsgNu83qiE44PWf8fxMQEADjW48mBnpwBkOKZCAQAAALAbhQVwm+V7YrV8T6xjg/7x/c0HACDLWnlipVaeWOnsNPCQDMNwdgoO8bjOk6lQwG0GzNspSWpYJuj+DR+nBd1u/lvyecfFBAA41LBfh0mS6rWv5+RMkB7u7u6SpMuXL8vT09PJ2WS8y5cvS/q/835UFBYAAADAbVxdXZUzZ07Fx8dLkry8vGQymZyc1eNnGIYuX76s+Ph45cyZU66urnYdj8ICAAAAuENgYKAkWYuLrCxnzpzW87UHhQUAAABwB5PJpKCgIOXLl0/Xr193djoZxt3d3e4rFbdQWAAAAAD34Orq+tjeeGd1rAoFAAAAwG5csQBuU9Dfy/FBcxV2fEwAgEOF+IY4OwUgw5mM7LJAL544CQkJslgsunjxovz8/JydDgAAQLbzMO/HmAoFAAAAwG4UFsBtkm+kKPlGimOD3ki++QAAZFnXUq7pWso1Z6cBZCjusQBuU2b0T5Kkg+MaOi7ohAI3/33jL8fFBAA4VPW51SVJ29tvd3ImQMbhigUAAAAAu1FYAAAAALAbhQUAAAAAu1FYAAAAALAbhQUAAAAAu1FYAAAAALAby80Ct1na/1nHB+251vExAQAO9W3Tb52dApDhKCyA2xQL8HV80Hxhjo8JAHCoIjmLODsFIMMxFQoAAACA3SgsgNt0id6iLtFbHBt0TqubDwBAltXnlz7q80sfZ6cBZCimQgG3WXfob8cHPbra8TEBAA614cwGZ6cAZDiuWAAAAACwG4UFAAAAALtRWAAAAACwG/dYINOrPre6XD1dHRLrWuo7kqQys8o4JJ4kbUu5Jkmq5MCYAADHc3Nx095ze52dBp5wpfxLOTuFe+KKBQAAAAC7ccUCuE2OvD85POZHuXI6PCYAwPFaFWdpcWRtFBbAbcz+vzo85sycfg6PCQBwvGZFmzk7BSBDMRUKAAAAgN0oLIDbXDtfTdfOV3NozFYJiWqVkOjQmAAAx/vpuOOn2wKORGEB3Cb5bFMln23q0JjDzp3XsHPnHRoTAOB4s/+Y7ewUgAxFYQEAAADAbhQWAAAAAOxGYQEAAADAbhQWAAAAAOxGYQEAAADAbnxAHjK9jSdOy89sckisVjokSZp/7KRD4lkFltWeeh86NmZ2ElzB2RkAyOY6Lu8oSSrlX8rJmQAZ54m+YjFmzBiVL1/e2Wk8spiYGJlMJl24cMHZqTyQyWTSokWLnJ1GhptvflvzzW87PnAzigoAyMpmNZylWQ1nOTsNIEM90VcshgwZon79+jk7jWwhNjZWuXLlcnYaAAAAyKQy5RWLa9eupaudj4+P/P39MzgbSFJgYKDMZrOz08hwsUZuxRq5HR/4UrzjYwIAHCYuKU5xSXHOTgPIUA9VWERERKhfv34aOHCgcuXKpYCAAH366adKSkpS586d5evrqyJFimj58uU2+61Zs0ZVq1aV2WxWUFCQhg8frhs3btgct2/fvho0aJDy5MmjevXqWacJ/fLLL6pcubK8vLxUs2ZNHThwwLrfnVOhOnXqpObNm+u9995TUFCQ/P391adPH12/ft3aJjY2Vo0bN5anp6cKFy6suXPnKjQ0VB988ME9z3vLli2qV6+e8uTJI4vFovDwcG3fvt2mjclk0ueff64WLVrIy8tLxYoV0+LFi23aLFu2TMWLF5enp6ciIyN1/PjxB/b5xYsX1aNHD+XLl09+fn6qU6eOdu3aJUk6cOCATCaT9u/fb7PPlClTFBoaKsMwJEl//PGHGjVqJB8fHwUEBKh9+/b6+++/bfq/f//+Gjp0qHLnzq3AwECNGTMmzfndmgp1/PhxmUwmLVy4UJGRkfLy8lK5cuW0YcMGm30+++wzhYSEyMvLSy1atNCUKVOUM2fOB56zM4Unv6/w5PcdH3heO8fHBAA4TKOFjdRoYSNnpwFkqIe+YjFr1izlyZNHmzdvVr9+/dS7d2+9+OKLqlmzprZv366oqCi1b99ely9fliT9+eefatSokapUqaJdu3Zp2rRp+uKLL/TOO++kOa6bm5t+++03ffLJJ9btI0eO1OTJk7V161a5ubmpS5cu981v9erVOnLkiFavXq1Zs2YpOjpa0dHR1tc7dOigM2fOKCYmRgsWLNCnn36q+Pj7/7U4MTFRHTt21Nq1a7Vx40YVK1ZMjRo1UmJiok27sWPHqlWrVtq9e7caNWqkdu3a6Z9//pEknTp1Si1btlSjRo20c+dOdevWTcOHD79vXMMw1LhxY8XFxWnZsmXatm2bKlasqOeee07//POPnn76aVWqVElz5syx2W/u3Llq27atTCaTYmNjFR4ervLly2vr1q1asWKFzp49q1atWtnsM2vWLHl7e2vTpk2aNGmS3nrrLa1cufK++Y0cOVJDhgzRzp07Vbx4cb300kvWgvG3335Tr169NGDAAO3cuVP16tXTuHHj7nu85ORkJSQk2DwAAADwZDAZt/6snQ4RERFKSUnR2rVrJUkpKSmyWCxq2bKlZs+eLUmKi4tTUFCQNmzYoOrVq2vkyJFasGCB9u3bJ5Pp5so+U6dO1bBhw3Tx4kW5uLgoIiJCFy9e1I4dO6yxYmJiFBkZqZ9//lnPPfecpJt/8W/cuLGuXLkiDw8PjRkzRosWLdLOnTsl3bxiERMToyNHjsjV1VWS1KpVK7m4uGjevHnav3+/SpQooS1btqhy5cqSpMOHD6tYsWJ6//33NXDgwHT1Q0pKinLlyqW5c+eqSZMmNzvSZNKoUaP09ts3b/xNSkqSr6+vli1bpgYNGuj111/XokWLtHfvXms/DB8+XO+++67Onz9/17/kr1q1Si1atFB8fLzNNKSiRYtq6NCh6tGjh95//3199NFHOnLkiCTp4MGDevrpp7V3716VLFlSb775pjZt2qQff/zRuv/p06cVEhKiAwcOqHjx4mm+r5JUtWpV1alTRxMnTrSe33fffafmzZvr+PHjKly4sD7//HN17dpV0s2rIqVKldK+ffsUFhamNm3a6NKlS1qyZIn1mC+//LKWLFlyz5vVx4wZo7Fjx6bZfnG4r8NWhSp+9eaNdQc9OjoknpWLu9Tt/oUc7MCqUACcrOKXFSVJ29tvf0BLIHNJSEiQxWLRxYsX5efnd9+2D33FomzZstavXV1d5e/vrzJlyli3BQQESJL1KsC+fftUo0YN65tpSXrmmWd06dIlnT592rrt1hv9+8ULCgqyOfbdlCpVylpU3NrnVvsDBw7Izc1NFStWtL5etGjRB96UHB8fr169eql48eKyWCyyWCy6dOmSTp60XZL09ly9vb3l6+tr0w/Vq1e36YcaNWrcN+62bdt06dIl+fv7y8fHx/o4duyYtZBo06aNTpw4oY0bN0qS5syZo/Lly6tkyZLWY6xevdpm/7CwMEmyHuPO3O/st3u53/fmwIEDqlq1qk37O5/facSIEbp48aL1cerUqfu2BwAAQObx0KtCubu72zw3mUw22269cU5NTZV0czrP7W+mb227va108434g+Ldeez05nd7LnfzoIs2nTp10l9//aUPPvhAhQoVktlsVo0aNdLcZP4ose8nNTVVQUFBiomJSfParSscQUFBioyM1Ny5c1W9enV9/fXX6tmzp80xmjZtqnfffTfNMW4VAw/K/V4e9ft+L2azOVvcIA4AAJAVZfhysyVLltSCBQts3miuX79evr6+yp8/f0aHtxEWFqYbN25ox44dqlSpkqSbU6Ee9DkSa9eu1dSpU9Wo0c2brk6dOmVz83N6lCxZMs3nQNy6ynAvFStWVFxcnNzc3BQaGnrPdu3atdOwYcP00ksv6ciRI2rTpo3NMRYsWKDQ0FC5uTludeGwsDBt3rzZZtvWrVsdFh8AAACOleHLzb7yyis6deqU+vXrp/379+v777/X6NGjNWjQILm4OHa127CwMNWtW1c9evTQ5s2btWPHDvXo0UOenp5p/rp+u6JFi+rLL7/Uvn37tGnTJrVr106enp4PFbtXr146cuSIBg0apAMHDmju3Lk2N5XfTd26dVWjRg01b95cP/74o44fP67169dr1KhRNm/SW7ZsqYSEBPXu3VuRkZE2BVufPn30zz//6KWXXtLmzZt19OhR/fTTT+rSpYtSUlIe6hweRr9+/bRs2TJNmTJFhw4d0ieffKLly5fft58BAADw5Mrwd/b58+fXsmXLtHnzZpUrV069evVS165dNWrUqIwOfVezZ89WQECAateurRYtWqh79+7y9fWVh4fHPfeZMWOGzp8/rwoVKqh9+/bq37+/8uXL91BxCxYsqAULFuiHH35QuXLlNH36dI0fP/6++5hMJi1btky1a9dWly5dVLx4cbVp00bHjx+33ssiSX5+fmratKl27dqldu1sly0NDg7Wb7/9ppSUFEVFRal06dIaMGCALBZLhhZ2zzzzjKZPn64pU6aoXLlyWrFihV599dX79nNmsMHcVxvMfR0fuN23jo8JAHCYn1/8WT+/+LOz0wAy1EOtCpUV3Voh6fbVp5Axunfvrv3799usPnU/t1YhCBk4Xy5mrwzO7v/80PdZh8W6pUwBi8NjAgAAPMjDrArluEn3mcSqVat06dIllSlTRrGxsRo6dKhCQ0NVu3ZtZ6eW5bz33nuqV6+evL29tXz5cs2aNUtTp051dloAAADIAI69ySETuH79ul5//XWVKlVKLVq0UN68eRUTE5NmVSTYb/PmzapXr57KlCmj6dOn68MPP1S3bt2cndYDDf52p0PjFfm+mfRZHYfGBAA4VtulbdV2aVtnpwFkqGx3xSIqKkpRUVHOTiNbmD9/vrNTeCRH/0pyaDyPc39I3NMOAFna/n/2OzsFIMNluysWAAAAAB4/CgsAAAAAdqOwAAAAAGA3CgsAAAAAdqOwAAAAAGC3bLcqFPAgr0QUcWi8M8+MU4Fcng6NCQBwrDeqv+HsFIAMR2EB3KFeyUCHxjv/dGsV4JO3ASBLa1GshbNTADIcU6EAAAAA2M1kGIbh7CSAu0lISJDFYtHFixfl5+fnkJgf/nJIktT/uWIOiSdJWjPp5r/hQx0XEwDgUNN3TZck9SrXy8mZAA/nYd6PccUCuM1Hqw7ro1WHHRv013/ffAAAsqxPd3+qT3d/6uw0gAxFYQEAAADAbhQWAAAAAOxGYQEAAADAbhQWAAAAAOxGYQEAAADAbnxAHnCbyLC8jg9arL7jYwIAHKp2gdrOTgHIcHyOBTItZ3yOBQAAAP4Pn2MBAAAAwKEoLIDb/P7nRf3+50XHBo3ddfMBAMiy9p3bp33n9jk7DSBDcY8FcJuWU9dLkg6Oa+i4oJ/XvfnvG385LiYAwKHaLWsnSdrefruTMwEyDlcsAAAAANiNwgIAAACA3SgsAAAAANiNwgIAAACA3SgsAAAAANiNVaGQad367MaEhASHxUxJvuzwmLqaqv8f1HExAQAOlXIlRZKDf78Aj8GtMZuez9Tmk7eRaR09elRFihRxdhoAAADZ3qlTp1SgQIH7tuGKBTKt3LlzS5JOnjwpi8Xi5Gwyp4SEBIWEhOjUqVPy8/NzdjqZEn30YPTR/dE/D0YfPRh99GD00YM5o48Mw1BiYqKCg4Mf2JbCApmWi8vNW4AsFgs/YB7Az8+PPnoA+ujB6KP7o38ejD56MProweijB3N0H6X3D7zcvA0AAADAbhQWAAAAAOxGYYFMy2w2a/To0TKbzc5OJdOijx6MPnow+uj+6J8Ho48ejD56MProwTJ7H7EqFAAAAAC7ccUCAAAAgN0oLAAAAADYjcICAAAAgN0oLJApTZ06VYULF5aHh4cqVaqktWvXOjslp5kwYYKqVKkiX19f5cuXT82bN9eBAwds2nTq1Ekmk8nmUb16dSdl7HhjxoxJc/6BgYHW1w3D0JgxYxQcHCxPT09FRERo7969TszY8UJDQ9P0kclkUp8+fSRlzzH066+/qmnTpgoODpbJZNKiRYtsXk/PuElOTla/fv2UJ08eeXt7q1mzZjp9+rQDzyJj3a+Prl+/rmHDhqlMmTLy9vZWcHCwOnTooDNnztgcIyIiIs3YatOmjYPPJGM8aAyl5/9Vdh5Dku76c8lkMunf//63tU1WHkNS+n7PPyk/jygskOl88803GjhwoEaOHKkdO3aoVq1aatiwoU6ePOns1JxizZo16tOnjzZu3KiVK1fqxo0bql+/vpKSkmzaNWjQQLGxsdbHsmXLnJSxc5QqVcrm/Pfs2WN9bdKkSZoyZYo++ugjbdmyRYGBgapXr54SExOdmLFjbdmyxaZ/Vq5cKUl68cUXrW2y2xhKSkpSuXLl9NFHH9319fSMm4EDB+q7777TvHnztG7dOl26dElNmjRRSkqKo04jQ92vjy5fvqzt27frjTfe0Pbt27Vw4UIdPHhQzZo1S9O2e/fuNmPrk08+cUT6Ge5BY0h68P+r7DyGJNn0TWxsrGbMmCGTyaQXXnjBpl1WHUNS+n7PPzE/jwwgk6latarRq1cvm21hYWHG8OHDnZRR5hIfH29IMtasWWPd1rFjR+P55593XlJONnr0aKNcuXJ3fS01NdUIDAw0Jk6caN129epVw2KxGNOnT3dQhpnPgAEDjCJFihipqamGYTCGJBnfffed9Xl6xs2FCxcMd3d3Y968edY2f/75p+Hi4mKsWLHCYbk7yp19dDebN282JBknTpywbgsPDzcGDBiQscllAnfrnwf9v2IMpfX8888bderUsdmWXcbQLXf+nn+Sfh5xxQKZyrVr17Rt2zbVr1/fZnv9+vW1fv16J2WVuVy8eFGSlDt3bpvtMTExypcvn4oXL67u3bsrPj7eGek5zaFDhxQcHKzChQurTZs2Onr0qCTp2LFjiouLsxlTZrNZ4eHh2XZMXbt2TV999ZW6dOkik8lk3Z7dx9Dt0jNutm3bpuvXr9u0CQ4OVunSpbPt2Lp48aJMJpNy5sxps33OnDnKkyePSpUqpSFDhmSrq4X3+3/FGLJ19uxZLV26VF27dk3zWnYaQ3f+nn+Sfh65OSwSkA5///23UlJSFBAQYLM9ICBAcXFxTsoq8zAMQ4MGDdKzzz6r0qVLW7c3bNhQL774ogoVKqRjx47pjTfeUJ06dbRt27ZM+yE6j1O1atU0e/ZsFS9eXGfPntU777yjmjVrau/evdZxc7cxdeLECWek63SLFi3ShQsX1KlTJ+u27D6G7pSecRMXF6ccOXIoV65cadpkx59XV69e1fDhw9W2bVv5+flZt7dr106FCxdWYGCgfv/9d40YMUK7du2yTsfLyh70/4oxZGvWrFny9fVVy5YtbbZnpzF0t9/zT9LPIwoLZEq3/xVVuvkf7c5t2VHfvn21e/durVu3zmZ769atrV+XLl1alStXVqFChbR06dI0P6CzooYNG1q/LlOmjGrUqKEiRYpo1qxZ1hslGVP/54svvlDDhg0VHBxs3Zbdx9C9PMq4yY5j6/r162rTpo1SU1M1depUm9e6d+9u/bp06dIqVqyYKleurO3bt6tixYqOTtWhHvX/VXYcQ5I0Y8YMtWvXTh4eHjbbs9MYutfveenJ+HnEVChkKnny5JGrq2ua6jo+Pj5NpZ7d9OvXT4sXL9bq1atVoECB+7YNCgpSoUKFdOjQIQdll7l4e3urTJkyOnTokHV1KMbUTSdOnNDPP/+sbt263bdddh9D6Rk3gYGBunbtms6fP3/PNtnB9evX1apVKx07dkwrV660uVpxNxUrVpS7u3u2HFt3/r9iDP2ftWvX6sCBAw/82SRl3TF0r9/zT9LPIwoLZCo5cuRQpUqV0lzeXLlypWrWrOmkrJzLMAz17dtXCxcu1KpVq1S4cOEH7nPu3DmdOnVKQUFBDsgw80lOTta+ffsUFBRkvXx++5i6du2a1qxZky3H1MyZM5UvXz41btz4vu2y+xhKz7ipVKmS3N3dbdrExsbq999/zzZj61ZRcejQIf3888/y9/d/4D579+7V9evXs+XYuvP/FWPo/3zxxReqVKmSypUr98C2WW0MPej3/BP188hht4kD6TRv3jzD3d3d+OKLL4w//vjDGDhwoOHt7W0cP37c2ak5Re/evQ2LxWLExMQYsbGx1sfly5cNwzCMxMREY/Dgwcb69euNY8eOGatXrzZq1Khh5M+f30hISHBy9o4xePBgIyYmxjh69KixceNGo0mTJoavr691zEycONGwWCzGwoULjT179hgvvfSSERQUlG3655aUlBSjYMGCxrBhw2y2Z9cxlJiYaOzYscPYsWOHIcmYMmWKsWPHDuuKRukZN7169TIKFChg/Pzzz8b27duNOnXqGOXKlTNu3LjhrNN6rO7XR9evXzeaNWtmFChQwNi5c6fNz6fk5GTDMAzj8OHDxtixY40tW7YYx44dM5YuXWqEhYUZFSpUyBJ9dL/+Se//q+w8hm65ePGi4eXlZUybNi3N/ll9DBnGg3/PG8aT8/OIwgKZ0scff2wUKlTIyJEjh1GxYkWbpVWzG0l3fcycOdMwDMO4fPmyUb9+fSNv3ryGu7u7UbBgQaNjx47GyZMnnZu4A7Vu3doICgoy3N3djeDgYKNly5bG3r17ra+npqYao0ePNgIDAw2z2WzUrl3b2LNnjxMzdo4ff/zRkGQcOHDAZnt2HUOrV6++6/+tjh07GoaRvnFz5coVo2/fvkbu3LkNT09Po0mTJlmq3+7XR8eOHbvnz6fVq1cbhmEYJ0+eNGrXrm3kzp3byJEjh1GkSBGjf//+xrlz55x7Yo/J/fonvf+vsvMYuuWTTz4xPD09jQsXLqTZP6uPIcN48O95w3hyfh6Z/v8JAQAAAMAj4x4LAAAAAHajsAAAAABgNwoLAAAAAHajsAAAAABgNwoLAAAAAHajsAAAAABgNwoLAAAAAHajsAAAAABgNwoLAAAAAHajsAAA4B7i4+PVs2dPFSxYUGazWYGBgYqKitKGDRseW4zQ0FB98MEHj+14AOAsbs5OAACAzOqFF17Q9evXNWvWLD311FM6e/asfvnlF/3zzz/OTg0AMh2uWAAAcBcXLlzQunXr9O677yoyMlKFChVS1apVNWLECDVu3FiSdPHiRfXo0UP58uWTn5+f6tSpo127dlmPceTIET3//PMKCAiQj4+PqlSpop9//tn6ekREhE6cOKFXX31VJpNJJpNJknTixAk1bdpUuXLlkre3t0qVKqVly5Y5tgMA4CFRWAAAcBc+Pj7y8fHRokWLlJycnOZ1wzDUuHFjxcXFadmyZdq2bZsqVqyo5557znpF49KlS2rUqJF+/vln7dixQ1FRUWratKlOnjwpSVq4cKEKFCigt956S7GxsYqNjZUk9enTR8nJyfr111+1Z88evfvuu/Lx8XHcyQPAIzAZhmE4OwkAADKjBQsWqHv37rpy5YoqVqyo8PBwtWnTRmXLltWqVavUokULxcfHy2w2W/cpWrSohg4dqh49etz1mKVKlVLv3r3Vt29fSTfvsRg4cKAGDhxobVO2bFm98MILGj16dIaeHwA8TlyxAADgHl544QWdOXNGixcvVlRUlGJiYlSxYkVFR0dr27ZtunTpkvz9/a1XN3x8fHTs2DEdOXJEkpSUlKShQ4eqZMmSypkzp3x8fLR//37rFYt76d+/v9555x0988wzGj16tHbv3u2I0wUAu1BYAABwHx4eHqpXr57efPNNrV+/Xp06ddLo0aOVmpqqoKAg7dy50+Zx4MABvfbaa5Kk1157TQsWLNC4ceO0du1a7dy5U2XKlNG1a9fuG7Nbt246evSo2rdvrz179qhy5cr673//64jTBYBHRmEBAMBDKFmypJKSklSxYkXFxcXJzc1NRYsWtXnkyZNHkrR27Vp16tRJLVq0UJkyZRQYGKjjx4/bHC9HjhxKSUlJEyckJES9evXSwoULNXjwYH322WeOOD0AeGQUFgAA3MW5c+dUp04dffXVV9q9e7eOHTumb7/9VpMmTdLzzz+vunXrqkaNGmrevLl+/PFHHT9+XOvXr9eoUaO0detWSTfvt1i4cKF27typXbt2qW3btkpNTbWJExoaql9//VV//vmn/v77b0nSwIED9eOPP+rYsWPavn27Vq1apRIlSji8DwDgYfA5FgAA3IWPj4+qVaum999/X0eOHNH169cVEhKi7t276/XXX5fJZNKyZcs0cuRIdenSRX/99ZcCAwNVu3ZtBQQESJLef/99denSRTVr1lSePHk0bNgwJSQk2MR566231LNnTxUpUkTJyckyDEMpKSnq06ePTp8+LT8/PzVo0EDvv/++M7oBANKNVaEAAAAA2I2pUAAAAADsRmEBAAAAwG4UFgAAAADsRmEBAAAAwG4UFgAAAADsRmEBAAAAwG4UFgAAAADsRmEBAAAAwG4UFgAAAADsRmEBAAAAwG4UFgAAAADsRmEBAAAAwG7/D2ADm52IwrPnAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "def airline_stochastic(demand):\n", - " m = pyo.ConcreteModel(\"Airline seating (stochastic)\")\n", - "\n", - " m.CLASSES = pyo.Set(initialize=demand.columns)\n", - " m.SCENARIOS = pyo.Set(initialize=demand.index)\n", - "\n", - " # first stage variables and constraints\n", - " m.seats = pyo.Var(m.CLASSES, domain=pyo.NonNegativeIntegers)\n", - "\n", - " @m.Constraint(m.CLASSES)\n", - " def plane_seats(m, c):\n", - " return sum(m.seats[c] * seat_factor[c] for c in m.CLASSES) <= capacity\n", - "\n", - " # second stage variable and constraints\n", - " m.tickets = pyo.Var(m.CLASSES, m.SCENARIOS, domain=pyo.NonNegativeIntegers)\n", - "\n", - " @m.Constraint(m.CLASSES, m.SCENARIOS)\n", - " def demand_limits(m, c, s):\n", - " return m.tickets[c, s] <= demand[c][s]\n", - "\n", - " @m.Constraint(m.CLASSES, m.SCENARIOS)\n", - " def seat_limits(m, c, s):\n", - " return m.tickets[c, s] <= m.seats[c]\n", - "\n", - " # objective\n", - " @m.Objective(sense=pyo.maximize)\n", - " def revenue(m):\n", - " return sum(\n", - " m.tickets[c, s] * revenue_factor[c]\n", - " for c in m.CLASSES\n", - " for s in m.SCENARIOS\n", - " )\n", - "\n", - " return m\n", - "\n", - "\n", - "# create and solve model for the three scenarios defined above\n", - "model_stochastic = airline_stochastic(demand)\n", - "seats_stochastic = airline_solve(model_stochastic)\n", - "seat_report(seats_stochastic, demand)" - ] - }, - { - "cell_type": "markdown", - "id": "875bd08b", - "metadata": {}, - "source": [ - "## Model 3. Adding chance constraints\n", - "\n", - "The airline wishes a special guarantee for its clients enrolled in its loyalty program. In particular, it wants $98\\%$ probability to cover the demand of first-class seats and $95\\%$ probability to cover the demand of business-class seats (by clients of the loyalty program). First-class passengers are covered if they can purchase a first-class seat. Business-class passengers are covered if they purchase a business-class seat or upgrade to a first-class seat. \n", - "\n", - "Assume the demand of loyalty-program passengers is normally distributed as $z_F \\sim \\mathcal N(\\mu_F, \\sigma_F^2)$ and $z_B \\sim \\mathcal N(\\mu_B, \\sigma_B^2)$ for first-class and business, respectively, where the parameters are given in the table below. For completeness, we also include the parameters for economy-class passengers.\n", - "\n", - "
\n", - "\n", - "| | $\\mu_{\\cdot}$ | $\\sigma_{\\cdot}$ |\n", - "| :--: | :--: | :--: |\n", - "| F | 12 | 4 |\n", - "| B | 28 | 8 |\n", - "| E | 175 | 20 |\n", - "\n", - "
\n", - "\n", - "We further assume that the demands for first-class and business-class seats are independent of each other and of the scenario (time of the week).\n", - "\n", - "Let $s_F$ be the number of first-class seats and $s_B$ the number of business seats. The probabilistic constraints are\n", - "\n", - "$$\n", - "\\mathbb P(s_F \\geq z_F ) \\geq 0.98, \\qquad \\text{ and } \\qquad \\mathbb P(s_F + s_B \\geq z_F + z_B ) \\geq 0.95.\n", - "$$\n", - "\n", - "These are can be written equivalently as linear constraints, specifically \n", - "\n", - "$$\n", - "\\frac{s_F - \\mu_F}{\\sigma_F} \\geq \\Phi^{-1}(0.98) \\approx 2.054 \\qquad \\text{ and } \\qquad \\frac{(s_F + s_B) - (\\mu_F + \\mu_B)}{\\sqrt{\\sigma_F^2 + \\sigma_B^2}} \\geq \\Phi^{-1}(0.95) \\approx 1.645.\n", - "$$\n", - "\n", - "For the second constraint, we use the fact that the sum of the two independent random variables $z_F$ and $z_B$ is normally distributed with mean $\\mu_F + \\mu_B$ and variance $\\sigma_F^2 + \\sigma_B^2$. \n", - "\n", - "We add these equivalent linear counterparts of the two chance constraints to the stochastic optimization model. Rather than writing a function to create a whole new model, we can use the prior function to create and add the two chance constraints using decorators." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "2a3aeb53-b57f-4e00-91ed-1fb1ac4b75b8", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
musigma
F12.04
B28.016
E175.020
\n", - "
" - ], - "text/plain": [ - " mu sigma\n", - "F 12.0 4\n", - "B 28.0 16\n", - "E 175.0 20" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Seat Allocation\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBETOTAL
seat allocation21.047.087.0155.0
economy equivalent seat allocation42.070.587.0199.5
\n", - "
" - ], - "text/plain": [ - " F B E TOTAL\n", - "seat allocation 21.0 47.0 87.0 155.0\n", - "economy equivalent seat allocation 42.0 70.5 87.0 199.5" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Tickets Sold\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBE
morning and evening20.047.087.0
weekend10.024.087.0
midday6.010.087.0
\n", - "
" - ], - "text/plain": [ - " F B E\n", - "morning and evening 20.0 47.0 87.0\n", - "weekend 10.0 24.0 87.0\n", - "midday 6.0 10.0 87.0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Seats not Sold\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBE
morning and evening1.00.00.0
weekend11.023.00.0
midday15.037.00.0
\n", - "
" - ], - "text/plain": [ - " F B E\n", - "morning and evening 1.0 0.0 0.0\n", - "weekend 11.0 23.0 0.0\n", - "midday 15.0 37.0 0.0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Spillage (Unfulfilled Demand)\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBE
morning and evening0.03.0113.0
weekend0.00.088.0
midday0.00.063.0
\n", - "
" - ], - "text/plain": [ - " F B E\n", - "morning and evening 0.0 3.0 113.0\n", - "weekend 0.0 0.0 88.0\n", - "midday 0.0 0.0 63.0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Expected Revenue (in units of economy ticket price): 177.00\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4LElEQVR4nO3deXxM97/H8fdkkT1BVBZ7LY2t9rVIooi96K21dopai1pKi7ZK/Up3dCO0VPVHtbW1WqLUvqvaaleJtIpEkJCc+4drbkdsMUnOjLyej8c8ZM58zznv8z1nYj4533PGYhiGIQAAAACwg4vZAQAAAAA4PwoLAAAAAHajsAAAAABgNwoLAAAAAHajsAAAAABgNwoLAAAAAHajsAAAAABgNwoLAAAAAHajsAAAAABgNwoLAMihoqOjZbFYrA83NzeFhISoffv2Onz4sNnxHFZERITKlSuX5etJSkrSm2++qQoVKsjf319+fn4qXry42rZtq7Vr12b5+rNDTEyMLBaLYmJizI4CIBO4mR0AAGCu2bNnKywsTFevXtWvv/6qiRMnas2aNTpw4IDy5MljdrwcKTU1VY0aNdLevXv14osvqnr16pKkw4cP6/vvv9e6desUHh5uckr7Va5cWRs3blSZMmXMjgIgE1BYAEAOV65cOVWtWlXSjb/Gp6amaty4cVqyZIm6d+9ucrqc6ZdfftGGDRs0a9Ysm30QFRWlAQMGKC0tzcR09rt27ZosFov8/f1Vs2ZNs+MAyCQMhQIA2LhZZJw9e9Zm+rZt29SyZUvlzZtXnp6eqlSpkhYuXGh9fffu3bJYLPrss8/SLXPFihWyWCz67rvvrNMOHz6sjh07Kn/+/PLw8FDp0qX14Ycf2sx3c6jMl19+qTFjxig0NFT+/v5q0KCBDh48aNO2aNGi6tatW7p1R0REKCIiwmZaQkKChg8frmLFiilXrlwqUKCAhgwZoqSkpPvqI0lat26datasKS8vLxUoUEAvv/yyUlNTJUmGYahkyZKKiopKN9+lS5cUEBCg/v3733HZ586dkySFhITc9nUXF9v/vv/8808999xzKlSokHLlyqXQ0FD9z//8j80+vN9ttlgsGjBggD7//HOVLl1a3t7eqlChgpYuXWrT7o8//lD37t1VsmRJeXt7q0CBAmrRooX27t1r0+7mPvz88881bNgwFShQQB4eHvrjjz/uOBTqu+++U61ateTt7S0/Pz81bNhQGzduvGN/AXAMFBYAABvHjh2TJJUqVco6bc2aNXriiSd04cIFzZw5U99++60qVqyodu3aKTo6WpJUoUIFVapUSbNnz063zOjoaOXPn19NmzaVJP3++++qVq2afvvtN02dOlVLly5Vs2bNNGjQIE2YMCHd/C+99JJOnDihTz/9VB9//LEOHz6sFi1aWD/IZ8Tly5cVHh6uOXPmaNCgQVqxYoVGjhyp6OhotWzZUoZh3HMZcXFxat++vTp16qRvv/1W//M//6PXX39dgwcPlnTjw/nAgQO1atWqdNerzJ07VwkJCXctLKpWrSp3d3cNHjxY8+bNU2xs7B3b/vnnn6pWrZq++eYbDR06VCtWrNA777yjgIAAnT9//oG2edmyZfrggw/06quvatGiRcqbN69at26to0ePWtucOXNGgYGBmjx5slauXKkPP/xQbm5uqlGjRrqiT5JGjx6tkydPaubMmfr++++VP3/+227P/Pnz9dRTT8nf319ffvmlPvvsM50/f14RERFav379HfsBgAMwAAA50uzZsw1JxqZNm4xr164ZiYmJxsqVK43g4GCjXr16xrVr16xtw8LCjEqVKtlMMwzDaN68uRESEmKkpqYahmEY7733niHJOHjwoLXNP//8Y3h4eBjDhg2zTouKijIKFixoXLx40WZ5AwYMMDw9PY1//vnHMAzDWLNmjSHJaNq0qU27hQsXGpKMjRs3WqcVKVLE6Nq1a7rtDA8PN8LDw63PJ02aZLi4uBhbt261afff//7XkGQsX778bt1mhIeHG5KMb7/91mZ67969DRcXF+PEiROGYRhGQkKC4efnZwwePNimXZkyZYzIyMi7rsMwDOOzzz4zfH19DUmGJCMkJMTo0qWL8csvv9i069Gjh+Hu7m78/vvvd1xWRrZZkhEUFGQkJCRYp8XFxRkuLi7GpEmT7riO69evGykpKUbJkiWNF154wTr95j6sV69eunluvrZmzRrDMAwjNTXVCA0NNcqXL289pgzDMBITE438+fMbtWvXvuP6AZiPMxYAkMPVrFlT7u7u8vPzU+PGjZUnTx59++23cnO7cRneH3/8oQMHDqhTp06SpOvXr1sfTZs2VWxsrPUv1J06dZKHh4f1LIYkffnll0pOTrZeK3D16lX9/PPPat26tby9vdMt7+rVq9q0aZNNxpYtW9o8f/zxxyVJJ06cyPD2Ll26VOXKlVPFihVt1h0VFXXfdyjy8/NLl6ljx45KS0vTL7/8Ym3TvXt3RUdHW4cbrV69Wr///rsGDBhwz3X06NFDp0+f1vz58zVo0CAVKlRIX3zxhcLDw/Wf//zH2m7FihWKjIxU6dKlM22bIyMj5efnZ30eFBSk/Pnz2/T39evX9cYbb6hMmTLKlSuX3NzclCtXLh0+fFj79+9Pl+Hpp5++5zYfPHhQZ86cUefOnW2Ge/n6+urpp5/Wpk2bdPny5XsuB4A5KCwAIIebO3eutm7dqtWrV6tPnz7av3+/OnToYH395jj94cOHy93d3ebx/PPPS5L+/vtvSVLevHnVsmVLzZ071zpMKTo6WtWrV1fZsmUl3bh+4Pr163r//ffTLe/mUKmby7spMDDQ5rmHh4ck6cqVKxne3rNnz2rPnj3p1u3n5yfDMNKt+3aCgoLSTQsODrZu300DBw5UYmKi5s2bJ0n64IMPVLBgQT311FP3lTUgIEAdOnTQu+++q82bN2vPnj0KCgrSmDFjdOHCBUnSX3/9pYIFC2bqNt/a39KNPv93fw8dOlQvv/yyWrVqpe+//16bN2/W1q1bVaFChdvulztdL/Jvd7u2JDQ0VGlpadbhXQAcD3eFAoAcrnTp0tYLtiMjI5WamqpPP/1U//3vf/U///M/ypcvn6QbY+TbtGlz22U89thj1p+7d++ur7/+WqtWrVLhwoW1detWzZgxw/p6njx55Orqqs6dO9/xOoNixYpleDs8PT2VnJycbvrff/9t3QZJypcvn7y8vDRr1qzbLuffbe/k1gvbpRvXXUi2H8pLlCihJk2a6MMPP1STJk303XffacKECXJ1db3nOm6nbNmyat++vd555x0dOnRI1atX1yOPPKLTp0/fdb7M2OZbffHFF+rSpYveeOMNm+l///23cufOna69xWK55zJv9t3trik5c+aMXFxcuAUy4MAoLAAANqZMmaJFixbplVdeUZs2bfTYY4+pZMmS2r17d7oPkbfTqFEjFShQQLNnz1bhwoXl6elpcwbE29tbkZGR2rlzpx5//HHlypUrU3IXLVpUe/bssZl26NAhHTx40OaDc/PmzfXGG28oMDDwgQoYSUpMTNR3331nMxxq/vz5cnFxUb169WzaDh48WI0aNVLXrl3l6uqq3r1733P5586dk5+f32375sCBA5Ju/AVfkpo0aaLPP/9cBw8etCnw/i0ztvlWFovFeubopmXLlunPP/9UiRIlHmiZjz32mAoUKKD58+dr+PDh1mIkKSlJixYtst4pCoBjorAAANjIkyePRo8erREjRmj+/Pl69tln9dFHH6lJkyaKiopSt27dVKBAAf3zzz/av3+/duzYoa+//to6v6urq7p06aJp06bJ399fbdq0UUBAgM063n33XdWpU0d169ZVv379VLRoUSUmJuqPP/7Q999/r9WrV2c4d+fOnfXss8/q+eef19NPP60TJ05oypQpeuSRR2zaDRkyRIsWLVK9evX0wgsv6PHHH1daWppOnjypH3/8UcOGDVONGjXuuq7AwED169dPJ0+eVKlSpbR8+XJ98skn6tevnwoXLmzTtmHDhipTpozWrFmjZ5999o53Q/q3NWvWaPDgwerUqZNq166twMBAxcfH68svv9TKlSvVpUsX6/CnV199VStWrFC9evX00ksvqXz58rpw4YJWrlypoUOHKiwsLFO2+VbNmzdXdHS0wsLC9Pjjj2v79u36z3/+c89hWXfj4uKiKVOmqFOnTmrevLn69Omj5ORk/ec//9GFCxc0efLkB142gGxg9tXjAABz3Lwr1K13CjIMw7hy5YpRuHBho2TJksb169cNwzCM3bt3G23btjXy589vuLu7G8HBwUb9+vWNmTNnppv/0KFD1rsZrVq16rbrP3bsmNGjRw+jQIEChru7u/HII48YtWvXNl5//XVrm5t3Dfr666/TzSvJmD17tnVaWlqaMWXKFOPRRx81PD09japVqxqrV69Od1cowzCMS5cuGWPHjjUee+wxI1euXEZAQIBRvnx544UXXjDi4uLu2m/h4eFG2bJljZiYGKNq1aqGh4eHERISYrz00kvp7pp10/jx46134Lofp06dMsaOHWs88cQTRnBwsOHm5mb4+fkZNWrUMN5//33rPvl3+x49ehjBwcGGu7u7ERoaarRt29Y4e/ZshrdZktG/f/90mW6969b58+eNnj17Gvnz5ze8vb2NOnXqGOvWrUvX33fah/9+7eZdoW5asmSJUaNGDcPT09Pw8fExnnzySePXX3+9r74DYB6LYdzHDbsBAMADq1q1qiwWi7Zu3Wp2FADIMgyFAgAgCyQkJOi3337T0qVLtX37dn3zzTdmRwKALEVhAQBAFtixY4ciIyMVGBiocePGqVWrVmZHAoAsxVAoAAAAAHbjC/IAAAAA2I3CAgAAAIDdKCwAAAAA2I2Lt+Gw0tLSdObMGfn5+Vm/fRUAAACZzzAMJSYmKjQ0VC4uD3bugcICDuvMmTMqVKiQ2TEAAAByjFOnTqlgwYIPNC+FBRyWn5+fpBsHuL+/v8lpAAC4odKrqyRJO19paHISIPMkJCSoUKFC1s9fD4LCAg7r5vAnf39/CgsAgMNw9fCWJP5vwkPJnuHnXLwNAAAAwG4UFgAAAADsRmEBAAAAwG4UFgAAAADsxsXbAAAAGRAU4GF2BMAhUVgAAABkwLoR9c2OADgkhkIBAAAAsBuFBQAAAAC7UVgAAABkQKkxK1RqzAqzYwAOh8ICAAAAgN0oLAAAAADYjcICAAAAgN0oLAAAAADYjcICAAAAgN0oLAAAAADYjW/ehsMrN+4HuXh4mx0DAO7o+ORmZkdANlr8fG2zIwAOicICAAAgA8oVCDA7AuCQGAoFAAAAwG4UFgAAABnQ5/Nt6vP5NrNjAA6HoVAAAAAZsObAX2ZHABwSZywAAAAA2I3CAgAAAIDdKCwAAAAA2I3CAgAAAIDdKCwAAAAA2I27QgEAAGTAgPolzI4AOCQKCwAAgAwY9GRJsyMADomhUA+5mJgYWSwWXbhw4Y5toqOjlTt37rsuZ/z48apYsWKmZgMAAMDDg8LiIVe7dm3FxsYqICDA7CgAADwUFm49pYVbT5kdA3A4DIV6yOXKlUvBwcFmxwAA4KExdslvkqS21QqZnARwLJyxcDIREREaOHCghgwZojx58igoKEgff/yxkpKS1L17d/n5+al48eJasWKFpNsPhYqOjlbhwoXl7e2t1q1b69y5c+nWM3nyZAUFBcnPz089e/bU1atXbV7funWrGjZsqHz58ikgIEDh4eHasWOH9fUePXqoefPmNvNcv35dwcHBmjVrVib2CAAAABwBhYUTmjNnjvLly6ctW7Zo4MCB6tevn5555hnVrl1bO3bsUFRUlDp37qzLly+nm3fz5s3q0aOHnn/+ee3atUuRkZF6/fXXbdosXLhQ48aN08SJE7Vt2zaFhIRo+vTpNm0SExPVtWtXrVu3Tps2bVLJkiXVtGlTJSYmSpJ69eqllStXKjY21jrP8uXLdenSJbVt2zYLegUAAABmshiGYZgdAvcvIiJCqampWrdunSQpNTVVAQEBatOmjebOnStJiouLU0hIiDZu3KirV68qMjJS58+fV+7cudWxY0edP3/eekZDktq3b6+VK1daz2rUrl1bFSpU0IwZM6xtatasqatXr2rXrl23zZWamqo8efJo/vz51jMVZcuWVdeuXTVixAhJUuvWrZU7d27Nnj37tstITk5WcnKy9XlCQoIKFSqkQkMWysXD+8E6DACywfHJzcyOgGxUasyN/0MPTWxichIg8yQkJCggIEAXL16Uv7//Ay2DMxZO6PHHH7f+7OrqqsDAQJUvX946LSgoSJIUHx+fbt79+/erVq1aNtNufX4/beLj49W3b1+VKlVKAQEBCggI0KVLl3Ty5Elrm169elmLiPj4eC1btkw9evS443ZNmjTJuqyAgAAVKsTYVQAAAGdBYeGE3N3dbZ5bLBabaRaLRZKUlpaWbt7MOkHVrVs3bd++Xe+88442bNigXbt2KTAwUCkpKdY2Xbp00dGjR7Vx40Z98cUXKlq0qOrWrXvHZY4ePVoXL160Pk6d4o4bAAAAzoK7QuUwZcqU0aZNm2ym3fq8dOnS2rRpk7p06XLHNuvWrdP06dPVtGlTSdKpU6f0999/27QJDAxUq1atNHv2bG3cuFHdu3e/azYPDw95eHhkeJsAAMhOpUMfbJgI8LCjsMhhBg0apNq1a2vKlClq1aqVfvzxR61cudKmzeDBg9W1a1dVrVpVderU0bx587Rv3z49+uij1jYlSpTQ559/rqpVqyohIUEvvviivLy80q2vV69eat68uVJTU9W1a9cs3z4AALLat/2fMDsC4JAYCpXD1KxZU59++qnef/99VaxYUT/++KPGjh1r06Zdu3Z65ZVXNHLkSFWpUkUnTpxQv379bNrMmjVL58+fV6VKldS5c2cNGjRI+fPnT7e+Bg0aKCQkRFFRUQoNDc3SbQMAAIB5uCsUstTly5cVGhqqWbNmqU2bNhma9+bdCbgrFABHx12hcpZzl27cwTDQl+G7eHhkxl2hGAqFLJGWlqa4uDhNnTpVAQEBatmypdmRAADIFLUmrZbE7WaBW1FYIEucPHlSxYoVU8GCBRUdHS03Nw41AACAhxmf9pAlihYtmmm3tgUAAIDj4+JtAAAAAHajsAAAAABgNwoLAAAAAHajsAAAAABgNy7eBgAAyIC1IyLMjgA4JAoLAACADAgJ8DI7AuCQGAoFAAAAwG4UFgAAABnQduZGtZ250ewYgMNhKBQAAEAG7Dp1wewIgEOisIDD+21ClPz9/c2OAQAAgLtgKBQAAAAAu1FYAAAAALAbhQUAAAAAu1FYAAAAALAbF28DAABkwMstypgdAXBIFBYAAAAZ0LlmEbMjAA6JoVAAAAAA7EZhAQAAkAEz1x7RzLVHzI4BOByGQgEAAGTAtB8PSZL6hhc3OQngWDhjAQAAAMBuFBYAAAAA7EZhAQAAAMBuFBYAAAAA7EZhAQAAAMBu3BUKAAAgA+qUzGd2BMAhUVgAAABkwKxu1cyOADgkhkIBAAAAsBuFBQAAQAYcPpuow2cTzY4BOByGQgEAAGRAs/fWS5IOTWxichLAsXDGAgAAAIDdKCwAAAAA2I3CAgAAAIDdKCwAAAAA2I3CAgAAAIDdKCwAAAAA2I3bzQIAAGTA3gmNzI4AOCQKCwAAgAzwcHM1OwLgkBgKBQAAAMBuFBYAAAAZ0GDaWjWYttbsGIDDYSgUAABABpw8d9nsCIBD4owFAAAAALtRWAAAAACwG4UFAAAAALtRWAAAAACwGxdvw+GVG/eDXDy8zY4BAHBQxyc3MzsCAFFYAAAAZMi77SuaHQFwSBQWAAAAGdCkfIjZEQCHxDUWAAAAAOxGYQEAAJABbyzfrzeW7zc7BuBwKCwAAAAyIPrX44r+9bjZMQCHQ2EBAAAAwG4UFgAAAADsRmEBAAAAwG4UFgAAAADsRmEBAAAAwG58QR4AAEAGtKgQanYEwCFRWAAAAGTA1LYVzI4AOCSGQuVA0dHRyp07d7avd/z48apYsWK2rxcAAABZj8ICAAAgAzYdPadNR8+ZHQNwOAyFAgAAyIAun22RJB2a2MTkJIBj4YyFA/j++++VO3dupaWlSZJ27doli8WiF1980dqmT58+6tChgyRpw4YNqlevnry8vFSoUCENGjRISUlJ1rYpKSkaMWKEChQoIB8fH9WoUUMxMTF3XP+5c+dUvXp1tWzZUlevXpVhGJoyZYoeffRReXl5qUKFCvrvf/9rbR8TEyOLxaKff/5ZVatWlbe3t2rXrq2DBw/aLHfy5MkKCgqSn5+fevbsqatXr2ZGdwEAAMABUVg4gHr16ikxMVE7d+6UJK1du1b58uXT2rVrrW1iYmIUHh6uvXv3KioqSm3atNGePXv01Vdfaf369RowYIC1bffu3fXrr79qwYIF2rNnj5555hk1btxYhw8fTrfu06dPq27dugoLC9PixYvl6empsWPHavbs2ZoxY4b27dunF154Qc8++6xNHkkaM2aMpk6dqm3btsnNzU09evSwvrZw4UKNGzdOEydO1LZt2xQSEqLp06fftR+Sk5OVkJBg8wAAAIBzsBiGYZgdAlKVKlXUsWNHDRs2TK1bt1a1atU0YcIE/f3330pKSlJISIj279+vN954Q15eXvroo4+s865fv17h4eFKSkrSn3/+qZIlS+r06dMKDf3/2+E1aNBA1atX1xtvvKHo6GgNGTJEW7ZsUcOGDfXUU0/p3XfflcViUVJSkvLly6fVq1erVq1a1vl79eqly5cva/78+YqJiVFkZKR++uknPfnkk5Kk5cuXq1mzZrpy5Yo8PT1Vu3ZtVahQQTNmzLAuo2bNmrp69ap27dp12z4YP368JkyYkG56oSEL5eLhbW8XAwAeUscnN8vW9ZUas0ISQ6HwcElISFBAQIAuXrwof3//B1oGZywcREREhGJiYmQYhtatW6ennnpK5cqV0/r167VmzRoFBQUpLCxM27dvV3R0tHx9fa2PqKgopaWl6dixY9qxY4cMw1CpUqVs2qxdu1ZHjhyxru/KlSuqU6eOWrVqpffee08Wi0WS9Pvvv+vq1atq2LChzfxz5861mV+SHn/8cevPISEhkqT4+HhJ0v79+20KE0npnt9q9OjRunjxovVx6tSpB+9QAAAAZCsu3nYQERER+uyzz7R79265uLioTJkyCg8P19q1a3X+/HmFh4dLktLS0tSnTx8NGjQo3TIKFy6sPXv2yNXVVdu3b5erq6vN676+vtafPTw81KBBAy1btkwvvviiChYsaF2+JC1btkwFChSwmd/Dw8Pmubu7u/Xnm4XJzfkfhIeHR7p1AAAAwDlQWDiIm9dZvPPOOwoPD5fFYlF4eLgmTZqk8+fPa/DgwZKkypUra9++fSpRosRtl1OpUiWlpqYqPj5edevWveP6XFxc9Pnnn6tjx46qX7++YmJiFBoaqjJlysjDw0MnT560FjMPonTp0tq0aZO6dOlinbZp06YHXh4AAI7Cx8P13o2AHIjCwkEEBASoYsWK+uKLL/Tuu+9KulFsPPPMM7p27ZoiIiIkSSNHjlTNmjXVv39/9e7dWz4+Ptq/f79WrVql999/X6VKlVKnTp3UpUsXTZ06VZUqVdLff/+t1atXq3z58mratKl1na6urpo3b546dOhgLS6Cg4M1fPhwvfDCC0pLS1OdOnWUkJCgDRs2yNfXV127dr2v7Rk8eLC6du2qqlWrqk6dOpo3b5727dunRx99NNP7DgCA7LTzlUZmRwAcEtdYOJDIyEilpqZai4g8efKoTJkyeuSRR1S6dGlJN65rWLt2rQ4fPqy6deuqUqVKevnll63XOEjS7Nmz1aVLFw0bNkyPPfaYWrZsqc2bN6tQoULp1unm5qYvv/xSZcuWVf369RUfH6/XXntNr7zyiiZNmqTSpUsrKipK33//vYoVK3bf29KuXTu98sorGjlypKpUqaITJ06oX79+9nUQAAAAHBZ3hYLDunl3Au4KBQC4m+y+KxTwMOKuUAAAANms0qs/qtKrP5odA3A4XGMBAACQAUnJqWZHABwSZywAAAAA2I3CAgAAAIDdKCwAAAAA2I3CAgAAAIDdKCwAAAAA2I27QgEAAGTA3J7VzY4AOCQKCwAAgAyo+Wig2REAh8RQKAAAAAB2o7AAAADIgGELd2vYwt1mxwAcDkOh4PB+mxAlf39/s2MAACBJ+n73GUnS1LYVTE4COBbOWAAAAACwG4UFAAAAALtRWAAAAACwG4UFAAAAALtRWAAAAACwG3eFAgAAyIBuTxQ1OwLgkCgsAAAAMuClpqXNjgA4JIZCAQAAALAbhQUAAEAGrNgbqxV7Y82OATgchkIBAABkwOAFuyRJTcqHmBsEcDCcsQAAAABgNwoLAAAAAHajsAAAAABgNwoLAAAAAHajsAAAAABgN+4KBQAAkAGFA73NjgA4JAoLAACADPhpaLjZEQCHxFAoAAAAAHajsAAAAMiA5OupSr6eanYMwOEwFAoAACADyo/7UZJ0aGITk5MAjoUzFgAAAADsRmEBAAAAwG4UFgAAAADsRmEBAAAAwG4UFgAAAADsRmEBAAAAwG7cbhYAACADlg2qY3YEwCFRWAAAAGRAySA/syMADomhUAAAAADsRmEBAACQAT2it6pH9FazYwAOh6FQAAAAGbD+8N9mRwAcEmcsAAAAANiNwgIAAACA3SgsAAAAANiNwgIAAACA3bh4Gw6v3Lgf5OLhbXYMAABsFB21zOwIeIgdn9zM7AgZxhkLAAAAAHajsAAAAABgNwoLAAAAAHajsAAAAABgNwoLAAAAAHajsAAAAABgNwoLAAAAAHajsAAAAABgNwoLAAAAAHajsAAAAABgNwoLAAAAAHZz6sJi/PjxqlixotkxHlhMTIwsFosuXLhgdpR7slgsWrJkidkxAAAA4KDczA5gj+HDh2vgwIFmx8gRYmNjlSdPHrNjAAAAwEE5ZGGRkpKiXLly3bOdr6+vfH19syERgoODzY4AAAAAB5ahoVAREREaOHCghgwZojx58igoKEgff/yxkpKS1L17d/n5+al48eJasWKFzXxr165V9erV5eHhoZCQEI0aNUrXr1+3We6AAQM0dOhQ5cuXTw0bNrQOE/r5559VtWpVeXt7q3bt2jp48KB1vluHQnXr1k2tWrXSW2+9pZCQEAUGBqp///66du2atU1sbKyaNWsmLy8vFStWTPPnz1fRokX1zjvv3HG7t27dqoYNGypfvnwKCAhQeHi4duzYYdPGYrHo008/VevWreXt7a2SJUvqu+++s2mzfPlylSpVSl5eXoqMjNTx48fv2ecXL17Uc889p/z588vf31/169fX7t27JUkHDx6UxWLRgQMHbOaZNm2aihYtKsMwJEm///67mjZtKl9fXwUFBalz5876+++/bfp/0KBBGjFihPLmzavg4GCNHz8+3fbdHAp1/PhxWSwWLV68WJGRkfL29laFChW0ceNGm3k++eQTFSpUSN7e3mrdurWmTZum3Llz33ObAQAA4HwyfI3FnDlzlC9fPm3ZskUDBw5Uv3799Mwzz6h27drasWOHoqKi1LlzZ12+fFmS9Oeff6pp06aqVq2adu/erRkzZuizzz7T66+/nm65bm5u+vXXX/XRRx9Zp48ZM0ZTp07Vtm3b5Obmph49etw135o1a3TkyBGtWbNGc+bMUXR0tKKjo62vd+nSRWfOnFFMTIwWLVqkjz/+WPHx8XddZmJiorp27ap169Zp06ZNKlmypJo2barExESbdhMmTFDbtm21Z88eNW3aVJ06ddI///wjSTp16pTatGmjpk2bateuXerVq5dGjRp11/UahqFmzZopLi5Oy5cv1/bt21W5cmU9+eST+ueff/TYY4+pSpUqmjdvns188+fPV8eOHWWxWBQbG6vw8HBVrFhR27Zt08qVK3X27Fm1bdvWZp45c+bIx8dHmzdv1pQpU/Tqq69q1apVd803ZswYDR8+XLt27VKpUqXUoUMHa8H466+/qm/fvho8eLB27dqlhg0bauLEiXddHgAAAJyXxbj5Z+37EBERodTUVK1bt06SlJqaqoCAALVp00Zz586VJMXFxSkkJEQbN25UzZo1NWbMGC1atEj79++XxWKRJE2fPl0jR47UxYsX5eLiooiICF28eFE7d+60rismJkaRkZH66aef9OSTT0q68Rf/Zs2a6cqVK/L09NT48eO1ZMkS7dq1S9KNMxYxMTE6cuSIXF1dJUlt27aVi4uLFixYoAMHDqh06dLaunWrqlatKkn6448/VLJkSb399tsaMmTIffVDamqq8uTJo/nz56t58+Y3OtJi0dixY/Xaa69JkpKSkuTn56fly5ercePGeumll7RkyRLt27fP2g+jRo3Sm2++qfPnz9/2L/mrV69W69atFR8fLw8PD+v0EiVKaMSIEXruuef09ttv64MPPtCRI0ckSYcOHdJjjz2mffv2qUyZMnrllVe0efNm/fDDD9b5T58+rUKFCungwYMqVapUuv0qSdWrV1f9+vU1efJk6/Z98803atWqlY4fP65ixYrp008/Vc+ePSXdOCtStmxZ7d+/X2FhYWrfvr0uXbqkpUuXWpf57LPPaunSpXe8WD05OVnJycnW5wkJCSpUqJAKDVkoFw/v+9o3AAAAD4Pjk5tl6/oSEhIUEBCgixcvyt/f/4GWkeEzFo8//rj1Z1dXVwUGBqp8+fLWaUFBQZJkPQuwf/9+1apVy/phWpKeeOIJXbp0SadPn7ZOu/lB/27rCwkJsVn27ZQtW9ZaVNyc52b7gwcPys3NTZUrV7a+XqJEiXtelBwfH6++ffuqVKlSCggIUEBAgC5duqSTJ0/eMauPj4/8/Pxs+qFmzZo2/VCrVq27rnf79u26dOmSAgMDrdeT+Pr66tixY9ZCon379jpx4oQ2bdokSZo3b54qVqyoMmXKWJexZs0am/nDwsIkybqMW7Pf2m93crd9c/DgQVWvXt2m/a3PbzVp0iRr/wYEBKhQoUJ3bQ8AAADHkeGLt93d3W2eWywWm2k3PzinpaVJujGc598fpm9O+3db6cYH8Xut79Zl32++f2e5nXudtOnWrZv++usvvfPOOypSpIg8PDxUq1YtpaSk2L3uu0lLS1NISIhiYmLSvXbzDEdISIgiIyM1f/581axZU19++aX69Oljs4wWLVrozTffTLeMm8XAvbLfyYPu9zsZPXq0hg4dan1+84wFAAAAHF+W3xWqTJkyWrRokc0HzQ0bNsjPz08FChTI6tXbCAsL0/Xr17Vz505VqVJF0o2hUPf6Hol169Zp+vTpatq0qaQb10v8++Ln+1GmTJl03wNx8yzDnVSuXFlxcXFyc3NT0aJF79iuU6dOGjlypDp06KAjR46offv2NstYtGiRihYtKje37LsJWFhYmLZs2WIzbdu2bXedx8PDw2bIFwAAAJxHln9B3vPPP69Tp05p4MCBOnDggL799luNGzdOQ4cOlYtL9n4/X1hYmBo0aKDnnntOW7Zs0c6dO/Xcc8/Jy8sr3V/X/61EiRL6/PPPtX//fm3evFmdOnWSl5dXhtbdt29fHTlyREOHDtXBgwc1f/58m4vKb6dBgwaqVauWWrVqpR9++EHHjx/Xhg0bNHbsWJsP6W3atFFCQoL69eunyMhIm4Ktf//++ueff9ShQwdt2bJFR48e1Y8//qgePXooNTU1Q9uQEQMHDtTy5cs1bdo0HT58WB999JFWrFhx134GAACA88ryT/YFChTQ8uXLtWXLFlWoUEF9+/ZVz549NXbs2Kxe9W3NnTtXQUFBqlevnlq3bq3evXvLz89Pnp6ed5xn1qxZOn/+vCpVqqTOnTtr0KBByp8/f4bWW7hwYS1atEjff/+9KlSooJkzZ+qNN9646zwWi0XLly9XvXr11KNHD5UqVUrt27fX8ePHrdeySJK/v79atGih3bt3q1OnTjbLCA0N1a+//qrU1FRFRUWpXLlyGjx4sAICArK0sHviiSc0c+ZMTZs2TRUqVNDKlSv1wgsv3LWfAQAA4LwydFeoh9HNOyT9++5TyBq9e/fWgQMHbO4+dTc3707AXaEAAEBO44x3hXLIb97OSqtXr9alS5dUvnx5xcbGasSIESpatKjq1atndrSHzltvvaWGDRvKx8dHK1as0Jw5czR9+nSzYwEAACAL5LjC4tq1a3rppZd09OhR+fn5qXbt2po3b166uyLBflu2bNGUKVOUmJioRx99VO+995569epldiwAAABkgRxXWERFRSkqKsrsGDnCwoULzY4AAACAbJK9t2UCAAAA8FCisAAAAABgNwoLAAAAAHajsAAAAABgNwoLAAAAAHajsAAAAABgNwoLAAAAAHajsAAAAABgtxz3BXlwPr9NiJK/v7/ZMQAAkCS99/NhSdKgJ0uanARwLJyxAAAAyIAPVv+hD1b/YXYMwOFQWAAAAACwG4UFAAAAALtRWAAAAACwG4UFAAAAALtRWAAAAACwG7ebBQAAyIDIsEfMjgA4JAoLAACADPioc1WzIwAOiaFQAAAAAOxGYQEAAJABv/15Ub/9edHsGIDDYSgUAABABrSZvkGSdGhiE5OTAI6FMxYAAAAA7EZhAQAAAMBuFBYAAAAA7EZhAQAAAMBuFBYAAAAA7MZdoeCwDMOQJCUkJJicBACA/5eafFkS/z/h4XLzeL75+etBUFjAYZ07d06SVKhQIZOTAACQXsBUsxMAmS8xMVEBAQEPNC+FBRxW3rx5JUknT5584AMcjishIUGFChXSqVOn5O/vb3YcZDL278OLfftwY/8+3O62fw3DUGJiokJDQx94+RQWcFguLjcuAQoICOCX20PM39+f/fsQY/8+vNi3Dzf278PtTvvX3j/kcvE2AAAAALtRWAAAAACwG4UFHJaHh4fGjRsnDw8Ps6MgC7B/H27s34cX+/bhxv59uGX1/rUY9txTCgAAAADEGQsAAAAAmYDCAgAAAIDdKCwAAAAA2I3CAgAAAIDdKCzgkKZPn65ixYrJ09NTVapU0bp168yOhAcwfvx4WSwWm0dwcLD1dcMwNH78eIWGhsrLy0sRERHat2+fiYlxN7/88otatGih0NBQWSwWLVmyxOb1+9mfycnJGjhwoPLlyycfHx+1bNlSp0+fzsatwJ3ca/9269Yt3fu5Zs2aNm3Yv45p0qRJqlatmvz8/JQ/f361atVKBw8etGnD+9d53c/+za73L4UFHM5XX32lIUOGaMyYMdq5c6fq1q2rJk2a6OTJk2ZHwwMoW7asYmNjrY+9e/daX5syZYqmTZumDz74QFu3blVwcLAaNmyoxMREExPjTpKSklShQgV98MEHt339fvbnkCFD9M0332jBggVav369Ll26pObNmys1NTW7NgN3cK/9K0mNGze2eT8vX77c5nX2r2Nau3at+vfvr02bNmnVqlW6fv26GjVqpKSkJGsb3r/O6372r5RN718DcDDVq1c3+vbtazMtLCzMGDVqlEmJ8KDGjRtnVKhQ4bavpaWlGcHBwcbkyZOt065evWoEBAQYM2fOzKaEeFCSjG+++cb6/H7254ULFwx3d3djwYIF1jZ//vmn4eLiYqxcuTLbsuPebt2/hmEYXbt2NZ566qk7zsP+dR7x8fGGJGPt2rWGYfD+fdjcun8NI/vev5yxgENJSUnR9u3b1ahRI5vpjRo10oYNG0xKBXscPnxYoaGhKlasmNq3b6+jR49Kko4dO6a4uDibfe3h4aHw8HD2tRO6n/25fft2Xbt2zaZNaGioypUrxz53EjExMcqfP79KlSql3r17Kz4+3voa+9d5XLx4UZKUN29eSbx/Hza37t+bsuP9S2EBh/L3338rNTVVQUFBNtODgoIUFxdnUio8qBo1amju3Ln64Ycf9MknnyguLk61a9fWuXPnrPuTff1wuJ/9GRcXp1y5cilPnjx3bAPH1aRJE82bN0+rV6/W1KlTtXXrVtWvX1/JycmS2L/OwjAMDR06VHXq1FG5cuUk8f59mNxu/0rZ9/51y5zNADKXxWKxeW4YRrppcHxNmjSx/ly+fHnVqlVLxYsX15w5c6wXjbGvHy4Psj/Z586hXbt21p/LlSunqlWrqkiRIlq2bJnatGlzx/nYv45lwIAB2rNnj9avX5/uNd6/zu9O+ze73r+csYBDyZcvn1xdXdNVx/Hx8en+kgLn4+Pjo/Lly+vw4cPWu0Oxrx8O97M/g4ODlZKSovPnz9+xDZxHSEiIihQposOHD0ti/zqDgQMH6rvvvtOaNWtUsGBB63Tevw+HO+3f28mq9y+FBRxKrly5VKVKFa1atcpm+qpVq1S7dm2TUiGzJCcna//+/QoJCVGxYsUUHBxss69TUlK0du1a9rUTup/9WaVKFbm7u9u0iY2N1W+//cY+d0Lnzp3TqVOnFBISIon968gMw9CAAQO0ePFirV69WsWKFbN5nfevc7vX/r2dLHv/3vdl3kA2WbBggeHu7m589tlnxu+//24MGTLE8PHxMY4fP252NGTQsGHDjJiYGOPo0aPGpk2bjObNmxt+fn7WfTl58mQjICDAWLx4sbF3716jQ4cORkhIiJGQkGByctxOYmKisXPnTmPnzp2GJGPatGnGzp07jRMnThiGcX/7s2/fvkbBggWNn376ydixY4dRv359o0KFCsb169fN2iz8n7vt38TERGPYsGHGhg0bjGPHjhlr1qwxatWqZRQoUID96wT69etnBAQEGDExMUZsbKz1cfnyZWsb3r/O6177NzvfvxQWcEgffvihUaRIESNXrlxG5cqVbW6ZBufRrl07IyQkxHB3dzdCQ0ONNm3aGPv27bO+npaWZowbN84IDg42PDw8jHr16hl79+41MTHuZs2aNYakdI+uXbsahnF/+/PKlSvGgAEDjLx58xpeXl5G8+bNjZMnT5qwNbjV3fbv5cuXjUaNGhmPPPKI4e7ubhQuXNjo2rVrun3H/nVMt9uvkozZs2db2/D+dV732r/Z+f61/F8gAAAAAHhgXGMBAAAAwG4UFgAAAADsRmEBAAAAwG4UFgAAAADsRmEBAAAAwG4UFgAAAADsRmEBAAAAwG4UFgAAAADsRmEBAAAAwG4UFgCAh1q3bt1ksVhksVjk5uamwoULq1+/fjp//rzZ0QDgoUJhAQB46DVu3FixsbE6fvy4Pv30U33//fd6/vnnzY4FAA8VCgsAwEPPw8NDwcHBKliwoBo1aqR27drpxx9/tL4+e/ZslS5dWp6engoLC9P06dOtr9WqVUujRo2yWd5ff/0ld3d3rVmzRpKUkpKiESNGqECBAvLx8VGNGjUUExNjbR8dHa3cuXPrhx9+UOnSpeXr62stdm6KiIjQkCFDbNbTqlUrdevWzfr8XusBADNRWAAAcpSjR49q5cqVcnd3lyR98sknGjNmjCZOnKj9+/frjTfe0Msvv6w5c+ZIkjp16qQvv/xShmFYl/HVV18pKChI4eHhkqTu3bvr119/1YIFC7Rnzx4988wzaty4sQ4fPmyd5/Lly3rrrbf0+eef65dfftHJkyc1fPjwDGW/n/UAgFkoLAAAD72lS5fK19dXXl5eKl68uH7//XeNHDlSkvTaa69p6tSpatOmjYoVK6Y2bdrohRde0EcffSRJateunc6cOaP169dblzd//nx17NhRLi4uOnLkiL788kt9/fXXqlu3rooXL67hw4erTp06mj17tnWea9euaebMmapataoqV66sAQMG6Oeff77vbbjf9QCAWdzMDgAAQFaLjIzUjBkzdPnyZX366ac6dOiQBg4cqL/++kunTp1Sz5491bt3b2v769evKyAgQJL0yCOPqGHDhpo3b57q1q2rY8eOaePGjZoxY4YkaceOHTIMQ6VKlbJZZ3JysgIDA63Pvb29Vbx4cevzkJAQxcfH3/c23O96AMAsFBYAgIeej4+PSpQoIUl67733FBkZqQkTJmjAgAGSbgyHqlGjhs08rq6u1p87deqkwYMH6/3339f8+fNVtmxZVahQQZKUlpYmV1dXbd++3WYeSfL19bX+fHPo1U0Wi8VmeJWLi4vNc+nGWY6b7nc9AGAWCgsAQI4zbtw4NWnSRP369VOBAgV09OhRderU6Y7tW7VqpT59+mjlypWaP3++OnfubH2tUqVKSk1NVXx8vOrWrfvAmR555BGbi7lTU1P122+/KTIyMlPXAwBZhcICAJDjREREqGzZsnrjjTc0fvx4DRo0SP7+/mrSpImSk5O1bds2nT9/XkOHDpV044zHU089pZdffln79+9Xx44drcsqVaqUOnXqpC5dumjq1KmqVKmS/v77b61evVrly5dX06ZN7ytT/fr1NXToUC1btkzFixfX22+/rQsXLmT6egAgq3DxNgAgRxo6dKg++eQTRUVF6dNPP1V0dLTKly+v8PBwRUdHq1ixYjbtO3XqpN27d6tu3boqXLiwzWuzZ89Wly5dNGzYMD322GNq2bKlNm/erEKFCt13nh49eqhr167q0qWLwsPDVaxYMevZisxcDwBkFYtx64BOAAAAAMggzlgAAAAAsBuFBQAAAAC7UVgAAAAAsBuFBQAAAAC7UVgAAAAAsBuFBQAAAAC7UVgAAAAAsBuFBQAAAAC7UVgAAAAAsBuFBQAAAAC7UVgAAAAAsBuFBQAAAAC7UVgAAAAAsBuFBQAAAAC7UVgAAAAAsBuFBQAAAAC7UVgAAO4qOjpaFovF+vD09FRwcLAiIyM1adIkxcfHmx0xW9zsh+PHj9+z7Q8//KBGjRopNDRUHh4eCg0NVUREhCZPnpz1QbNJ0aJF1a1bN7NjAHAgbmYHAAA4h9mzZyssLEzXrl1TfHy81q9frzfffFNvvfWWvvrqKzVo0MDsiA5h5syZ6tevn55++ml98MEHyps3r06dOqUNGzbov//9r0aNGmV2xEzxzTffyN/f3+wYAByIxTAMw+wQAADHFR0dre7du2vr1q2qWrWqzWsnT55UnTp1dOHCBR0+fFhBQUEmpcx6N/vh2LFjKlq06B3bFSlSREWLFtXatWvTvZaWliYXF+ceLHDlyhV5eXmZHQOAA3Lu324AAFMVLlxYU6dOVWJioj766COb17Zt26aWLVsqb9688vT0VKVKlbRw4UKbNjeHF61evVq9e/dWYGCg/P391aVLFyUlJSkuLk5t27ZV7ty5FRISouHDh+vatWs2y5gwYYJq1KihvHnzyt/fX5UrV9Znn32mW/9uVrRoUTVv3lwrV65U5cqV5eXlpbCwMM2aNSvddm3atElPPPGEPD09FRoaqtGjR6db752cO3dOISEht33t1qIiLS1N77//vipWrCgvLy/lzp1bNWvW1HfffWfT7quvvlKtWrXk4+MjX19fRUVFaefOnTZtunXrJl9fX/3xxx9q2rSpfH19VahQIQ0bNkzJycl29dnixYtVqVIleXp6asKECdbXbh0KdfLkST377LPKnz+/PDw8VLp0aU2dOlVpaWk27WbMmKEKFSrI19dXfn5+CgsL00svvXT3jgXg8BgKBQCwS9OmTeXq6qpffvnFOm3NmjVq3LixatSooZkzZyogIEALFixQu3btdPny5XQfSHv16qU2bdpowYIF2rlzp1566SVdv35dBw8eVJs2bfTcc8/pp59+0ptvvqnQ0FANHTrUOu/x48fVp08fFS5cWNKNomDgwIH6888/9corr9isZ/fu3Ro2bJhGjRqloKAgffrpp+rZs6dKlCihevXqSZJ+//13PfnkkypatKiio6Pl7e2t6dOna/78+ffVH7Vq1dKiRYs0fvx4tW7dWuXKlZOrq+tt23br1k1ffPGFevbsqVdffVW5cuXSjh07bK7jeOONNzR27Fh1795dY8eOVUpKiv7zn/+obt262rJli8qUKWNte+3aNbVs2VI9e/bUsGHD9Msvv+i1115TQECATV9kpM927Nih/fv3a+zYsSpWrJh8fHxuuy1//fWXateurZSUFL322msqWrSoli5dquHDh+vIkSOaPn26JGnBggV6/vnnNXDgQL311ltycXHRH3/8od9///2++heAAzMAALiL2bNnG5KMrVu33rFNUFCQUbp0aevzsLAwo1KlSsa1a9ds2jVv3twICQkxUlNTbZY9cOBAm3atWrUyJBnTpk2zmV6xYkWjcuXKd8yRmppqXLt2zXj11VeNwMBAIy0tzfpakSJFDE9PT+PEiRPWaVeuXDHy5s1r9OnTxzqtXbt2hpeXlxEXF2eddv36dSMsLMyQZBw7duyO6zcMw/jjjz+McuXKGZIMSYaXl5fx5JNPGh988IGRkpJibffLL78YkowxY8bccVknT5403Nzc0vVPYmKiERwcbLRt29Y6rWvXroYkY+HChTZtmzZtajz22GN3XMe9+szV1dU4ePBguvmKFClidO3a1fp81KhRhiRj8+bNNu369etnWCwW6zIGDBhg5M6d+455ADgvhkIBAOxm/GsIzR9//KEDBw6oU6dOkqTr169bH02bNlVsbKwOHjxoM3/z5s1tnpcuXVqS1KxZs3TTT5w4YTNt9erVatCggQICAuTq6ip3d3e98sorOnfuXLo7VlWsWNH6V3pJ8vT0VKlSpWyWuWbNGj355JM214u4urqqXbt299UXxYsX1+7du7V27VpNmDBBDRo00NatWzVgwADVqlVLV69elSStWLFCktS/f/87LuuHH37Q9evX1aVLF5t+9PT0VHh4uGJiYmzaWywWtWjRwmba448/blefPf744ypVqtQ9t3v16tUqU6aMqlevbjO9W7duMgxDq1evliRVr15dFy5cUIcOHfTtt9/q77//vueyATgHCgsAgF2SkpJ07tw5hYaGSpLOnj0rSRo+fLjc3d1tHs8//7wkpfswmTdvXpvnuXLluuP0mx/MJWnLli1q1KiRJOmTTz7Rr7/+qq1bt2rMmDGSblxo/G+BgYHp8nt4eNi0O3funIKDg9O1u920O3FxcVG9evX0yiuv6LvvvtOZM2fUrl07bd++3XpNx19//SVXV9e7LvdmX1arVi1dX3711Vfp+tHb21uenp7pts+ePrvT9SK3utO1JTePi3PnzkmSOnfurFmzZunEiRN6+umnlT9/ftWoUUOrVq26r/UAcFxcYwEAsMuyZcuUmpqqiIgISVK+fPkkSaNHj1abNm1uO89jjz2WKetesGCB3N3dtXTpUpsP1EuWLHngZQYGBiouLi7d9NtNu18+Pj4aPXq0vvrqK/3222+SpEceeUSpqamKi4u744f3m3353//+V0WKFHng9f9bRvvMYrHc13IDAwMVGxubbvqZM2ck/f+2SFL37t3VvXt3JSUl6ZdfftG4cePUvHlzHTp0KNO2E0D2o7AAADywkydPavjw4QoICFCfPn0k3SgaSpYsqd27d+uNN97I0vVbLBa5ubnZXBx95coVff755w+8zMjISH333Xc6e/asdThUamqqvvrqq/uaPzY29raFwv79+yX9/1/wmzRpokmTJmnGjBl69dVXb7usqKgoubm56ciRI3r66acfZHPSyYo+k6Qnn3xSkyZN0o4dO1S5cmXr9Llz58pisSgyMjLdPD4+PmrSpIlSUlLUqlUr7du3j8ICcGIUFgCA+/Lbb79Zx/jHx8dr3bp1mj17tlxdXfXNN9/okUcesbb96KOP1KRJE0VFRalbt24qUKCA/vnnH+3fv187duzQ119/nSmZmjVrpmnTpqljx4567rnndO7cOb311lvy8PB44GWOHTtW3333nerXr69XXnlF3t7e+vDDD5WUlHRf85ctW1ZPPvmkmjRpouLFi+vq1avavHmzpk6dqqCgIPXs2VOSVLduXXXu3Fmvv/66zp49q+bNm8vDw0M7d+6Ut7e3Bg4cqKJFi+rVV1/VmDFjdPToUTVu3Fh58uTR2bNntWXLFvn4+Fhv/3q/sqLPJOmFF17Q3Llz1axZM7366qsqUqSIli1bpunTp6tfv37W6zR69+4tLy8vPfHEEwoJCVFcXJwmTZqkgIAAVatWza4MAMxFYQEAuC/du3eXdOM6h9y5c6t06dIaOXKkevXqZVNUSDf+6r9lyxZNnDhRQ4YM0fnz5xUYGKgyZcqobdu2mZapfv36mjVrlt588021aNFCBQoUUO/evZU/f37rB/iMKleunH766ScNGzZMXbt2VZ48edS5c2c9/fTTeu655+45/+TJk/XDDz9o4sSJiouL0/Xr11WoUCF17NhRY8aMsTmbER0dbf0OiejoaHl5ealMmTI23+kwevRolSlTRu+++66+/PJLJScnKzg4WNWqVVPfvn0zvH1Z0WfSjaFdGzZs0OjRozV69GglJCTo0Ucf1ZQpU2xuD1y3bl1FR0dr4cKFOn/+vPLly6c6depo7ty56Y4jAM6Fb94GAAAAYDfuCgUAAADAbhQWAAAAAOxGYQEAAADAbhQWAAAAAOxGYQEAAADAbhQWAAAAAOxGYQEAAADAbnxBHhxWWlqazpw5Iz8/P1ksFrPjAAAAPLQMw1BiYqJCQ0Pl4vJg5x4oLOCwzpw5o0KFCpkdAwAAIMc4deqUChYs+EDzUljAYfn5+Um6cYD7+/ubnCZ7VHp1lSRp5ysNTU7iBN4sduPfkcfMzQG71V1QV5K0rv06k5MAQM6VkJCgQoUKWT9/PQgKCzism8Of/P39c0xh4erhLUk5Znvt4vl/p2npK6fn6uUqieMeAByBPcPPuXgbAAAAgN0oLAAAAADYjcICAAAAgN24xgIAAAA5XlpamlJSUsyOkWXc3d3l6uqapeugsAAcSFCAh9kRnIdfiNkJkEnye+c3OwKAHC4lJUXHjh1TWlqa2VGyVO7cuRUcHJxl3w9mMQzDyJIlA3ZKSEhQQECALl68yN1iAABAljAMQydPntS1a9fs+nI4R2YYhi5fvqz4+Hjlzp1bISHp/ziXGZ+7OGMBAACAHOv69eu6fPmyQkND5e3tbXacLOPl5SVJio+PV/78+bNkWNTDV5IBAAAA9yk1NVWSlCtXLpOTZL2bhdO1a9eyZPkUFoADKTVmhUqNWWF2DOfw2iM3HnB6lT+vrMqfVzY7BoAcLquuO3AkWb2NFBYAAAAA7EZhAQAAADiZbt26yWKxpHv88ccfpmXi4m0AAADgFkVHLcvW9R2f3CzD8zRu3FizZ8+2mfbII+YNE6awAAAAAJyQh4eHgoODzY5hxVAoAAAAAHajsAAAAACc0NKlS+Xr62t9PPPMM6bmYSgUHF7N+TXl6pX5X+LiiNwKh0qSys8ZYXISxxcWlFeSdGBOeZOTIDNMqjtJ+87tMzsGkKnKBpY1OwIecpGRkZoxY4b1uY+Pj4lpKCwAh+LqecbsCE7jgMfD/0VGOUmxgGJmRwAAp+Pj46MSJUqYHcOKoVAAAAAA7EZhATiQK6ef1ZXTz5odwym8ffYvvX32L7NjIJNM3TbV7AgAADsxFApwINcvhZkdwWnUu3zF7AjIRDvjd5odAQBgJwoLAAAA4BYP8oV12Sk6OtrsCOkwFAoAAACA3SgsAAAAANiNwgIAAACA3SgsAAAAANiNi7cBB5IrcLXZEZzGx7kDzI6ATNS6RGuzIwAA7ERhATgQj0coLO7XR3koLB4mT5d62uwIAAA7UVg85GJiYhQZGanz588rd+7ct20THR2tIUOG6MKFC3dczvjx47VkyRLt2rUrS3LezaYTp+XvYcm+FY6/mH3rAgAAeEhwjcVDrnbt2oqNjVVAAH/ddQYLt57Swq2nzI7hHHZ8fuMBp/fN4W/0zeFvzI4BALATZywecrly5VJwcLDZMXCfxi75TZLUtlohk5M4gWVDb/xbubO5OWC31za9JklqXZLrLADAmXHGwslERERo4MCBGjJkiPLkyaOgoCB9/PHHSkpKUvfu3eXn56fixYtrxYoVkm4MhbJYLDbDnKKjo1W4cGF5e3urdevWOnfuXLr1TJ48WUFBQfLz81PPnj119epVm9e3bt2qhg0bKl++fAoICFB4eLh27Nhhfb1Hjx5q3ry5zTzXr19XcHCwZs2alYk9AgAAAEdAYeGE5syZo3z58mnLli0aOHCg+vXrp2eeeUa1a9fWjh07FBUVpc6dO+vy5cvp5t28ebN69Oih559/Xrt27VJkZKRef/11mzYLFy7UuHHjNHHiRG3btk0hISGaPn26TZvExER17dpV69at06ZNm1SyZEk1bdpUiYmJkqRevXpp5cqVio2Ntc6zfPlyXbp0SW3btr3tdiUnJyshIcHmAQAAgPS6desmi8VifQQGBqpx48bas2ePaZkshmEYpq0dGRYREaHU1FStW7dOkpSamqqAgAC1adNGc+fOlSTFxcUpJCREGzdu1NWrV20u3u7YsaPOnz9vPaMhSe3bt9fKlSutZzVq166tChUqaMaMGdY2NWvW1NWrV+948XZqaqry5Mmj+fPnW89UlC1bVl27dtWIESMkSa1bt1bu3Lk1e/bs2y5j/PjxmjBhQrrpF0f55ZiLt0uNubFfDk1sYloGp/HaIzf+ffkvc3PAbpU/ryxJ2tF5xz1aAkDmu3r1qo4dO6ZixYrJ09Pz/18Yn83Xp2bw80e3bt109uxZ6+equLg4jR07Vnv27NHJkydvO88dt1VSQkKCAgICdPHiRfn7+z/QJnDGwgk9/vjj1p9dXV0VGBio8uXLW6cFBQVJkuLj49PNu3//ftWqVctm2q3P76dNfHy8+vbtq1KlSikgIEABAQG6dOmSzYHcq1cv68EeHx+vZcuWqUePHnfcrtGjR+vixYvWx6lTXMQMAABwJx4eHgoODlZwcLAqVqyokSNH6tSpU/rrL3P+6MbF207I3d3d5rnFYrGZZrHc+Ot+Wlpaunkz6wRVt27d9Ndff+mdd95RkSJF5OHhoVq1aiklJcXapkuXLho1apQ2btyojRs3qmjRoqpbt+4dl+nh4SEPD49MyQcAAJCTXLp0SfPmzVOJEiUUGBhoSgYKixymTJky2rRpk820W5+XLl1amzZtUpcuXe7YZt26dZo+fbqaNm0qSTp16pT+/vtvmzaBgYFq1aqVZs+erY0bN6p79+6ZuSkPpdKhD3bqMUcKLn/vNnAKYXnDzI4AAE5p6dKl8vX1lSQlJSUpJCRES5culYuLOYOSKCxymEGDBql27dqaMmWKWrVqpR9//FErV660aTN48GB17dpVVatWVZ06dTRv3jzt27dPjz76qLVNiRIl9Pnnn6tq1apKSEjQiy++KC8vr3Tr69Wrl5o3b67U1FR17do1y7fP2X3b/wmzIziP3nxL+cNifrP5ZkcAAKcUGRlpvSb2n3/+0fTp09WkSRNt2bJFRYoUyfY8XGORw9SsWVOffvqp3n//fVWsWFE//vijxo4da9OmXbt2euWVVzRy5EhVqVJFJ06cUL9+/WzazJo1S+fPn1elSpXUuXNnDRo0SPnz50+3vgYNGigkJERRUVEKDQ3N0m0DAADISXx8fFSiRAmVKFFC1atX12effaakpCR98sknpuThrlDIUpcvX1ZoaKhmzZqlNm3aZGjem3cnKDRkoVw8vB84w/HJzR543ux27lKyJCnQl2tN7inp/4be+eQzNwfs9s/VfyRJeT3zmpwEQE7kzHeFunDhgpYsWWKdlpaWpty5c6t3796aOnVqunmy+q5QDIVClkhLS1NcXJymTp2qgIAAtWzZ0uxITqHWpBvDe7jd7H2YVvrGv9xu1uk1+LqBJG43CwAZlZycrLi4OEnS+fPn9cEHH+jSpUtq0aKFKXkoLJAlTp48qWLFiqlgwYKKjo6WmxuHGgAAQGZauXKlQkJCJEl+fn4KCwvT119/rYiICFPy8GkPWaJo0aKZdmtbAACAbGfiF+bej+joaEVHR5sdwwYXbwMAAACwG4UFAAAAALtRWAAAAACwG4UFAAAAALtx8TbgQNaOiDA7gvMYtMvsBMgky9ssNzsCACATUFgADiQkwMvsCM4joIDZCZBJgn2CzY4AAMgEDIUCAAAAYDcKC8CBtJ25UW1nbjQ7hnOY1eTGA06v64qu6rqiq9kxAAB2YigUHN5vE6Lk7+9vdoxssevUBbMjOI8/t5mdAJlk7997zY4AAMgEnLEAAAAAYDcKCwAAAMDJdOvWTRaLJd2jcePGpmViKBQAAABwi/Jzymfr+vZ2zfiw0MaNG2v27Nk20zw8PDIrUoZRWAAAAABOyMPDQ8HBjnPLboZCAQAAALAbZywAB/JyizJmR3AejSeZnQCZZGS1kWZHAACntHTpUvn6+tpMGzlypF5++WVT8lBYAA6kc80iZkdwHtV6mZ0AmaRdWDuzIwCAU4qMjNSMGTNspuXNm9ekNBQWAAAAgFPy8fFRiRIlzI5hxTUWgAOZufaIZq49YnYM57D+nRsPOL1Zv83SrN9mmR0DAGAnzlgADmTaj4ckSX3Di5ucxAmsmXjj3zpDTI0B+32w8wNJUo9yPUxOAgDOJTk5WXFxcTbT3NzclC9fPlPyUFgAAAAATmjlypUKCQmxmfbYY4/pwIEDpuShsAAAAABu8SBfWJedoqOjFR0dbXYMG1xjAQAAAMBuFBYAAAAA7EZhAQAAAMBuXGMBOJA6Jc25i4NTejTS7ATIJLVCa5kdAQCQCSgsAAcyq1s1syM4j04LzU6ATPLhkx+aHQEAkAkYCgUAAADAbhQWgAM5fDZRh88mmh3DOcQfuPGA0zty4YiOXOAb5wHA2TEUCnAgzd5bL0k6NLGJyUmcwEd1b/z78l/m5oDdnvn+GUnSjs47TE4CALAHZywAAAAA2I3CAgAAAIDdGAoFAAAA3GLv6YvZur7yBQMy1L5bt26aM2dOuumHDx9WiRIlMitWhlBYAAAAAE6ocePGmj17ts20Rx55xKQ0FBYAAACAU/Lw8FBwcLDZMay4xgIAAACA3ThjATiQvRMamR3BeYw+bXYCZJJNHTeZHQEAnNLSpUvl6+trfd6kSRN9/fXXpuWhsAAciIebq9kRnIebh9kJkElyueYyOwIAOKXIyEjNmDHD+tzHx8fENBQWAAAAgFPy8fEx7Q5Qt8M1FoADaTBtrRpMW2t2DOfwQfUbDzi9p5Y8paeWPGV2DACAnThjATiQk+cumx3BeZw/ZnYCZJJTiafMjgAAyAScsQAAAABgN85YAAAAALfI6DdhZ7fo6GizI6TDGQsAAAAAdqOwAAAAAGA3hkLB4dWcX1OuXjnj+x1S0l6XJJWfU97kJI5ve2qKJKkKffVQcHNx075z+8yOASAblQ0sa3YEZDIKC8CBeIYuMDuC0xiZP5/ZEZCJBlYaaHYEAICdKCwAB+Lu/5vZEZzGTz7eZkdAJqoRUsPsCAAAO3GNBQAAAAC7UVgADuTq2Sa6eraJ2TGcwtB/zmvoP+fNjoFM8sXvX5gdAQBgJwoLwIFcO/+Erp1/wuwYTqHTxUR1uphodgxkkpXHV5odAQBgJwoLAAAAAHajsAAAAABgN+4KBQAAANzqzM7sXV9opQw179atm+bMmWN9njdvXlWrVk1TpkzR448/ntnp7gtnLAAAAAAn1LhxY8XGxio2NlY///yz3Nzc1Lx5c9PyUFgAAAAATsjDw0PBwcEKDg5WxYoVNXLkSJ06dUp//fWXKXkYCgU4EDf/3WZHcBorfH3MjoBMVDu0ttkRAMCpXbp0SfPmzVOJEiUUGBhoSgYKixwoOjpaQ4YM0YULF7J1vePHj9eSJUu0a9euDM236cRp+XtYsiaUw5l6459jd2ky/mK2JHEWT5kdAAAAkyxdulS+vr6SpKSkJIWEhGjp0qVycTFnUBJDoQAAAAAnFBkZqV27dmnXrl3avHmzGjVqpCZNmujEiROm5OGMBeBANqWFSZJquhwwOYkTOL7+xr9F65ibA3bbGrdVklQtuJrJSQDAufj4+KhEiRLW51WqVFFAQIA++eQTvf7669mehzMWDuD7779X7ty5lZaWJknatWuXLBaLXnzxRWubPn36qEOHDpKkDRs2qF69evLy8lKhQoU0aNAgJSUlWdumpKRoxIgRKlCggHx8fFSjRg3FxMTccf3nzp1T9erV1bJlS129elWGYWjKlCl69NFH5eXlpQoVKui///2vtX1MTIwsFot+/vlnVa1aVd7e3qpdu7YOHjxos9zJkycrKChIfn5+6tmzp65evZoZ3fVQ65IyWl1SRpsdwzl83vrGA06vz6o+6rOqj9kxAMDpWSwWubi46MqVK6asn8LCAdSrV0+JiYnaufPG/ZLXrl2rfPnyae3atdY2MTExCg8P1969exUVFaU2bdpoz549+uqrr7R+/XoNGDDA2rZ79+769ddftWDBAu3Zs0fPPPOMGjdurMOHD6db9+nTp1W3bl2FhYVp8eLF8vT01NixYzV79mzNmDFD+/bt0wsvvKBnn33WJo8kjRkzRlOnTtW2bdvk5uamHj16WF9buHChxo0bp4kTJ2rbtm0KCQnR9OnTM7vrAAAAcqzk5GTFxcUpLi5O+/fv18CBA3Xp0iW1aNHClDwMhXIAAQEBqlixomJiYlSlShXFxMTohRde0IQJE5SYmKikpCQdOnRIEREReuONN9SxY0cNGTJEklSyZEm99957Cg8P14wZM/Tnn3/qyy+/1OnTpxUaGipJGj58uFauXKnZs2frjTfesK730KFDatiwoZ566im9++67slgsSkpK0rRp07R69WrVqlVLkvToo49q/fr1+uijjxQeHm6df+LEidbno0aNUrNmzXT16lV5enrqnXfeUY8ePdSrVy9J0uuvv66ffvrprmctkpOTlZycbH2ekJCQOR0MAADwEFq5cqVCQkIkSX5+fgoLC9PXX3+tiIgIU/JQWDiIiIgIxcTEaOjQoVq3bp1ef/11LVq0SOvXr9eFCxcUFBSksLAwbd++XX/88YfmzZtnndcwDKWlpenYsWP67bffZBiGSpUqZbP85ORkm1uPXblyRXXq1FGHDh307rvvWqf//vvvunr1qho2bGgzf0pKiipVsv1GyH9/q+PNgzo+Pl6FCxfW/v371bdvX5v2tWrV0po1a+7YB5MmTdKECRPu1VUAAABZL4PfhJ3doqOjFR0dbXYMGxQWDiIiIkKfffaZdu/eLRcXF5UpU0bh4eFau3atzp8/bz0zkJaWpj59+mjQoEHpllG4cGHt2bNHrq6u2r59u1xdXW1ev3k7MunGF6o0aNBAy5Yt04svvqiCBQtaly9Jy5YtU4ECBWzm9/DwsHnu7u5u/dlisdjM/yBGjx6toUOHWp8nJCSoUKFCD7w8AAAAZB8KCwdx8zqLd955R+Hh4bJYLAoPD9ekSZN0/vx5DR48WJJUuXJl7du3z+YOAP9WqVIlpaamKj4+XnXr1r3j+lxcXPT555+rY8eOql+/vmJiYhQaGqoyZcrIw8NDJ0+etBn2lFGlS5fWpk2b1KVLF+u0TZs23XUeDw+PdMULAAAAnAMXbzuIm9dZfPHFF9ZxcfXq1dOOHTus11dI0siRI7Vx40b1799fu3bt0uHDh/Xdd99p4MCBkqRSpUqpU6dO6tKlixYvXqxjx45p69atevPNN7V8+XKbdbq6umrevHmqUKGC6tevr7i4OPn5+Wn48OF64YUXNGfOHB05ckQ7d+7Uhx9+qDlz5tz39gwePFizZs3SrFmzdOjQIY0bN0779u3LlL56mPnoqnzE3bPuSy7fGw84PR93H/m4803qAODsOGPhQCIjI7Vjxw5rEZEnTx6VKVNGZ86cUenSpSXduK5h7dq1GjNmjOrWrSvDMFS8eHG1a9fOupzZs2fr9ddf17Bhw/Tnn38qMDBQtWrVUtOmTdOt083NTV9++aXatWtnPXPx2muvKX/+/Jo0aZKOHj2q3Llzq3LlynrppZfue1vatWunI0eOaOTIkbp69aqefvpp9evXTz/88IN9nfSQ2+nJLTfv28i7fT05nMm69uvMjgAAyAQWwzAMs0MAt5OQkKCAgABdHOUnfw+L2XEcx/iLZicAAOChcfXqVR07dkzFihWTp6en2XGy1N221fq56+JF+fv7P9DyOWMBh1fu6mdyMbyzbX3HJzfLtnUBAAA8LLjGAnAglV79UZVe/dHsGM7hzWI3HnB6dRfUVd0Fd77ZBADAOXDGAnAgScmpZkdwHimXzE6ATJJ0LcnsCACATMAZCwAAAAB2o7AAAAAAYDeGQgEAAAC32Hcue79/q2xg2Qy179at222/YywqKkorV67MrFgZQmEBAAAAOKHGjRtr9uzZNtM8PDxMSkNhAQAAADglDw8PBQcHmx3DisICcCBze1Y3O4Lz6PyN2QmQST5q+JHZEQAAmYDCAnAgNR8NNDuC8yhax+wEyCTVgquZHQEAnNLSpUvl6+trM23kyJF6+eWXTclDYQEAAAA4ocjISM2YMcNmWt68eU1KQ2EBOJRhC3dLkqa2rWByEifwTb8b/7aecfd2cHhj1o+RJE2sM9HkJADgXHx8fFSiRAmzY1hRWMDh/TYhSv7+/mbHyBbf7z4jicLivvz23xv/Ulg4vRXHVkiisAAAZ0dhAQAAADih5ORkxcXF2Uxzc3NTvnz5TMlDYQEAAAA4oZUrVyokJMRm2mOPPaYDBw6YkofCAgAAALhFRr8JO7tFR0crOjra7Bg2XMwOAAAAAMD5UVgAAAAAsBtDoQAH0u2JomZHcB41+pidAJmkU+lOZkcAAGQCCgvAgbzUtLTZEZxHo9fNToBMMqzqMLMjAAAyAUOhAAAAANiNwgJwICv2xmrF3lizYziH37+98YDTW3VilVadWGV2DAA5nGEYZkfIclm9jQyFAhzI4AW7JElNyofcvSGkRb1u/FvmKXNzwG4jfxkpSWrYuaHJSQDkRK6urpKklJQUeXl5mZwma12+fFmS5O7uniXLp7AAAABAjuXm5iZvb2/99ddfcnd3l4vLwzegxzAMXb58WfHx8cqdO7e1mMpsFBYAAADIsSwWi0JCQnTs2DGdOHHC7DhZKnfu3AoODs6y5VNYAAAAIEfLlSuXSpYsqZSUFLOjZBl3d/csO1NxE4UFAAAAcjwXFxd5enqaHcOpPXyDyAAAAABkO85YAA6kcKC32RGcR55iZidAJinkV8jsCACATGAxcsJNe+GUEhISFBAQoIsXL8rf39/sOAAAAA+tzPjcxVAoAAAAAHajsAAcSPL1VCVfTzU7hnO4nnzjAaeXkpqilNSH904sAJBTcI0F4EDKj/tRknRoYhOTkziBSQVv/PvyX+bmgN1qzq8pSdrReYfJSQAA9uCMBQAAAAC7UVgAAAAAsBuFBQAAAAC7UVgAAAAAsBuFBQAAAAC7UVgAAAAAsBu3mwUcyLJBdcyO4Dz6rDM7ATLJ1y2+NjsCACATUFgADqRkkJ/ZEZxH/jCzEyCTFM9d3OwIAIBMwFAoAAAAAHajsAAcSI/oreoRvdXsGM5hXtsbDzi9/j/3V/+f+5sdAwBgJ4ZCAQ5k/eG/zY7gPI6uMTsBMsnGMxvNjgAAyAScsQAAAABgNwoLAAAAAHajsAAAAABgN66xgMOrOb+mXL1czY6RLVLSXpcklZ9T3uQkjm97aookqQp99VBwc3HTvnP7zI4BAA6jbGBZsyNkGGcsAAAAANiNMxaAA8n1yI9mR3AaH+TJbXYEZKK2pbh1MAA4OwoLwIF4BP5idgSnMTu3v9kRkIlalmhpdgQAgJ0YCgUAAADAbhQWgANJOV9DKedrmB3DKbRNSFTbhESzYyCT/HicYYAA4OwoLAAHkny2hZLPtjA7hlMYee68Rp47b3YMZJK5v881OwIAwE4UFgAAAADsRmEBAAAAwG4UFgAAAADsRmEBAAAAwG4UFgAAAADsxhfkweFtOnFa/h4Ws2Nki7Y6LElaeOykyUmcRPDj2tvwvTu/Hlop+7LggXVd0VWSVDawrMlJAAD2cOozFuPHj1fFihXNjvHAYmJiZLFYdOHCBbOj3JPFYtGSJUvMjvHQW+jxmhZ6vGZ2DOfR8i5FBZzGnCZzNKfJHLNjAADs5NRnLIYPH66BAweaHSNHiI2NVZ48ecyOAQAAAAflkGcsUlJS7qudr6+vAgMDszgNJCk4OFgeHh5mx3joxRp5FWvkNTuG87gUb3YCZIK4pDjFJcWZHQMAYKcMFRYREREaOHCghgwZojx58igoKEgff/yxkpKS1L17d/n5+al48eJasWKFzXxr165V9erV5eHhoZCQEI0aNUrXr1+3We6AAQM0dOhQ5cuXTw0bNrQOE/r5559VtWpVeXt7q3bt2jp48KB1vluHQnXr1k2tWrXSW2+9pZCQEAUGBqp///66du2atU1sbKyaNWsmLy8vFStWTPPnz1fRokX1zjvv3HG7t27dqoYNGypfvnwKCAhQeHi4duzYYdPGYrHo008/VevWreXt7a2SJUvqu+++s2mzfPlylSpVSl5eXoqMjNTx48fv2ecXL17Uc889p/z588vf31/169fX7t27JUkHDx6UxWLRgQMHbOaZNm2aihYtKsMwJEm///67mjZtKl9fXwUFBalz5876+++/bfp/0KBBGjFihPLmzavg4GCNHz8+3fbdHAp1/PhxWSwWLV68WJGRkfL29laFChW0ceNGm3k++eQTFSpUSN7e3mrdurWmTZum3Llz33Obc7Lw5LcVnvy22TGcx4JOZidAJmi6uKmaLm5qdgwAgJ0yfMZizpw5ypcvn7Zs2aKBAweqX79+euaZZ1S7dm3t2LFDUVFR6ty5sy5fvixJ+vPPP9W0aVNVq1ZNu3fv1owZM/TZZ5/p9ddfT7dcNzc3/frrr/roo4+s08eMGaOpU6dq27ZtcnNzU48ePe6ab82aNTpy5IjWrFmjOXPmKDo6WtHR0dbXu3TpojNnzigmJkaLFi3Sxx9/rPj4u//VMzExUV27dtW6deu0adMmlSxZUk2bNlViYqJNuwkTJqht27bas2ePmjZtqk6dOumff/6RJJ06dUpt2rRR06ZNtWvXLvXq1UujRo2663oNw1CzZs0UFxen5cuXa/v27apcubKefPJJ/fPPP3rsscdUpUoVzZs3z2a++fPnq2PHjrJYLIqNjVV4eLgqVqyobdu2aeXKlTp79qzatm1rM8+cOXPk4+OjzZs3a8qUKXr11Ve1atWqu+YbM2aMhg8frl27dqlUqVLq0KGDtWD89ddf1bdvXw0ePFi7du1Sw4YNNXHixLsuLzk5WQkJCTYPAAAAOAeLcfPP2vchIiJCqampWrdunSQpNTVVAQEBatOmjebOnStJiouLU0hIiDZu3KiaNWtqzJgxWrRokfbv3y+L5cadfaZPn66RI0fq4sWLcnFxUUREhC5evKidO3da1xUTE6PIyEj99NNPevLJJyXd+It/s2bNdOXKFXl6emr8+PFasmSJdu3aJenGGYuYmBgdOXJErq6ukqS2bdvKxcVFCxYs0IEDB1S6dGlt3bpVVatWlST98ccfKlmypN5++20NGTLkvvohNTVVefLk0fz589W8efMbHWmxaOzYsXrttRsX3iYlJcnPz0/Lly9X48aN9dJLL2nJkiXat2+ftR9GjRqlN998U+fPn7/tX/JXr16t1q1bKz4+3mYYUokSJTRixAg999xzevvtt/XBBx/oyJEjkqRDhw7pscce0759+1SmTBm98sor2rx5s3744Qfr/KdPn1ahQoV08OBBlSpVKt1+laTq1aurfv36mjx5snX7vvnmG7Vq1UrHjx9XsWLF9Omnn6pnz56SbpwVKVu2rPbv36+wsDC1b99ely5d0tKlS63LfPbZZ7V06dI7Xqw+fvx4TZgwId30i6P8csxdoUpdvXEB6yHPriYncRIu7lKvuxTA3BXKKVT+vLIkaUfnHfdoCQDIKgkJCQoICNDFixfl7+//QMvI8BmLxx9/3Pqzq6urAgMDVb58eeu0oKAgSbKeBdi/f79q1apl/TAtSU888YQuXbqk06dPW6fd/KB/t/WFhITYLPt2ypYtay0qbs5zs/3Bgwfl5uamypUrW18vUaLEPS9Kjo+PV9++fVWqVCkFBAQoICBAly5d0smTtrcE/XdWHx8f+fn52fRDzZo1bfqhVq1ad13v9u3bdenSJQUGBsrX19f6OHbsmLWQaN++vU6cOKFNmzZJkubNm6eKFSuqTJky1mWsWbPGZv6wsDBJsi7j1uy39tud3G3fHDx4UNWrV7dpf+vzW40ePVoXL160Pk6dOnXX9gAAAHAcGb4rlLu7u81zi8ViM+3mB+e0tDRJN4bz/PvD9M1p/24r3fggfq/13brs+8337yy3c6+TNt26ddNff/2ld955R0WKFJGHh4dq1aqV7iLzB1n33aSlpSkkJEQxMTHpXrt5hiMkJESRkZGaP3++atasqS+//FJ9+vSxWUaLFi305ptvplvGzWLgXtnv5EH3+514eHhwgTgAAICTyvLbzZYpU0aLFi2y+aC5YcMG+fn5qUCBAlm9ehthYWG6fv26du7cqSpVqki6MRTqXt8jsW7dOk2fPl1Nm964uPDUqVM2Fz/fjzJlyqT7HoibZxnupHLlyoqLi5Obm5uKFi16x3adOnXSyJEj1aFDBx05ckTt27e3WcaiRYtUtGhRubll392Fw8LCtGXLFptp27Zty7b1AwAAIHtl+e1mn3/+eZ06dUoDBw7UgQMH9O2332rcuHEaOnSoXFyy9263YWFhatCggZ577jlt2bJFO3fu1HPPPScvL690f13/txIlSujzzz/X/v37tXnzZnXq1EleXl4ZWnffvn115MgRDR06VAcPHtT8+fNtLiq/nQYNGqhWrVpq1aqVfvjhBx0/flwbNmzQ2LFjbT6kt2nTRgkJCerXr58iIyNtCrb+/fvrn3/+UYcOHbRlyxYdPXpUP/74o3r06KHU1NQMbUNGDBw4UMuXL9e0adN0+PBhffTRR1qxYsVd+xkAAADOK8s/2RcoUEDLly/Xli1bVKFCBfXt21c9e/bU2LFjs3rVtzV37lwFBQWpXr16at26tXr37i0/Pz95enrecZ5Zs2bp/PnzqlSpkjp37qxBgwYpf/78GVpv4cKFtWjRIn3//feqUKGCZs6cqTfeeOOu81gsFi1fvlz16tVTjx49VKpUKbVv317Hjx+3XssiSf7+/mrRooV2796tTp1sb78ZGhqqX3/9VampqYqKilK5cuU0ePBgBQQEZGlh98QTT2jmzJmaNm2aKlSooJUrV+qFF164az9D2ugxQBs9Bpgdw3l0+trsBMgEPz3zk3565iezYwAA7JShu0I9jG7eIenfd59C1ujdu7cOHDhgc/epu7l5d4JCQxbKxcM7i9OZ6/jkZmZHAAAAOVhm3BUq+wbdO4jVq1fr0qVLKl++vGJjYzVixAgVLVpU9erVMzvaQ+ett95Sw4YN5ePjoxUrVmjOnDmaPn262bEAAACQBXJcYXHt2jW99NJLOnr0qPz8/FS7dm3Nmzcv3V2RYL8tW7ZoypQpSkxM1KOPPqr33ntPvXr1MjuWQ3vqw18lSd/2f8LkJE7gk/o3/u292twcsFvHZR0lSfObzTc5CQDAHjmusIiKilJUVJTZMXKEhQsXmh3B6ew/w7eN37e4vWYnQCY58M8BsyMAADJB9t6WCQAAAMBDicICAAAAgN0oLAAAAADYjcICAAAAgN0oLAAAAADYLcfdFQpwZK+3Kmd2BOfRbJrZCZBJXq75stkRAACZgMICcCBtqxUyO4LzqNzZ7ATIJK1LtjY7AgAgEzAUCgAAAIDdOGMBh/fbhCj5+/ubHSNbvPfzYUnSoCdLmpzECaydcuPf8BHm5oDdZu6eKUnqW6GvyUkAAPbgjAXgQD5Y/Yc+WP2H2TGcwy//ufGA0/t4z8f6eM/HZscAANiJwgIAAACA3SgsAAAAANiNwgIAAACA3SgsAAAAANiNwgIAAACA3bjdLOBAIsMeMTuC8yjZyOwEyCT1CtYzOwIAIBNYDMMwzA4B3E5CQoICAgJ08eLFHPM9FgAAAGbIjM9dDIUCAAAAYDcKC8CB/PbnRf3250WzYziH2N03HnB6+8/t1/5z+82OAQCwE9dYAA6kzfQNkqRDE5uYnMQJfNrgxr8v/2VuDtit0/JOkqQdnXeYnAQAYA/OWAAAAACwG4UFAAAAALtRWAAAAACwG4UFAAAAALtRWAAAAACwG3eFgsO6+d2NCQkJJifJPqnJlyXlrG1+YFfTbvxLXzm91CupkjjuAcBMN38H2/Pd2XzzNhzW0aNHVbx4cbNjAAAA5BinTp1SwYIFH2hezljAYeXNm1eSdPLkSQUEBJicxvEkJCSoUKFCOnXqlPz9/c2O43Don7ujf+6NPro7+ufu6J+7o3/uzoz+MQxDiYmJCg0NfeBlUFjAYbm43LgEKCAggF86d+Hv70//3AX9c3f0z73RR3dH/9wd/XN39M/dZXf/2PuHXC7eBgAAAGA3CgsAAAAAdqOwgMPy8PDQuHHj5OHhYXYUh0T/3B39c3f0z73RR3dH/9wd/XN39M/dOWv/cFcoAAAAAHbjjAUAAAAAu1FYAAAAALAbhQUAAAAAu1FYwCFNnz5dxYoVk6enp6pUqaJ169aZHckUkyZNUrVq1eTn56f8+fOrVatWOnjwoE2bbt26yWKx2Dxq1qxpUuLsNX78+HTbHhwcbH3dMAyNHz9eoaGh8vLyUkREhPbt22di4uxXtGjRdH1ksVjUv39/STnv+Pnll1/UokULhYaGymKxaMmSJTav388xk5ycrIEDBypfvnzy8fFRy5Ytdfr06Wzciqxzt/65du2aRo4cqfLly8vHx0ehoaHq0qWLzpw5Y7OMiIiIdMdU+/bts3lLssa9jp/7eT/l1ONH0m1/F1ksFv3nP/+xtnmYj5/7+T/d2X8HUVjA4Xz11VcaMmSIxowZo507d6pu3bpq0qSJTp48aXa0bLd27Vr1799fmzZt0qpVq3T9+nU1atRISUlJNu0aN26s2NhY62P58uUmJc5+ZcuWtdn2vXv3Wl+bMmWKpk2bpg8++EBbt25VcHCwGjZsqMTERBMTZ6+tW7fa9M+qVaskSc8884y1TU46fpKSklShQgV98MEHt339fo6ZIUOG6JtvvtGCBQu0fv16Xbp0Sc2bN1dqamp2bUaWuVv/XL58WTt27NDLL7+sHTt2aPHixTp06JBatmyZrm3v3r1tjqmPPvooO+JnuXsdP9K930859fiRZNMvsbGxmjVrliwWi55++mmbdg/r8XM//6c7/e8gA3Aw1atXN/r27WszLSwszBg1apRJiRxHfHy8IclYu3atdVrXrl2Np556yrxQJho3bpxRoUKF276WlpZmBAcHG5MnT7ZOu3r1qhEQEGDMnDkzmxI6nsGDBxvFixc30tLSDMPI2cePJOObb76xPr+fY+bChQuGu7u7sWDBAmubP//803BxcTFWrlyZbdmzw639cztbtmwxJBknTpywTgsPDzcGDx6cteEcwO36517vJ44fW0899ZRRv359m2k55fgxjPT/pz8Mv4M4YwGHkpKSou3bt6tRo0Y20xs1aqQNGzaYlMpxXLx4UZKUN29em+kxMTHKnz+/SpUqpd69eys+Pt6MeKY4fPiwQkNDVaxYMbVv315Hjx6VJB07dkxxcXE2x5KHh4fCw8Nz7LGUkpKiL774Qj169JDFYrFOz8nHz7/dzzGzfft2Xbt2zaZNaGioypUrlyOPq4sXL8pisSh37tw20+fNm6d8+fKpbNmyGj58eI46S3i39xPHz/87e/asli1bpp49e6Z7LaccP7f+n/4w/A5yMzsA8G9///23UlNTFRQUZDM9KChIcXFxJqVyDIZhaOjQoapTp47KlStnnd6kSRM988wzKlKkiI4dO6aXX35Z9evX1/bt253ui3UyqkaNGpo7d65KlSqls2fP6vXXX1ft2rW1b98+6/Fyu2PpxIkTZsQ13ZIlS3ThwgV169bNOi0nHz+3up9jJi4uTrly5VKePHnStclpv6OuXr2qUaNGqWPHjvL397dO79Spk4oVK6bg4GD99ttvGj16tHbv3m0dhvcwu9f7iePn/82ZM0d+fn5q06aNzfSccvzc7v/0h+F3EIUFHNK//5oq3XgD3jotpxkwYID27Nmj9evX20xv166d9edy5cqpatWqKlKkiJYtW5buF/bDpkmTJtafy5cvr1q1aql48eKaM2eO9YJJjqX/99lnn6lJkyYKDQ21TsvJx8+dPMgxk9OOq2vXrql9+/ZKS0vT9OnTbV7r3bu39edy5cqpZMmSqlq1qnbs2KHKlStnd9Rs9aDvp5x2/EjSrFmz1KlTJ3l6etpMzynHz53+T5ec+3cQQ6HgUPLlyydXV9d0VXd8fHy6Cj4nGThwoL777jutWbNGBQsWvGvbkJAQFSlSRIcPH86mdI7Dx8dH5cuX1+HDh613h+JYuuHEiRP66aef1KtXr7u2y8nHz/0cM8HBwUpJSdH58+fv2OZhd+3aNbVt21bHjh3TqlWrbM5W3E7lypXl7u6eI4+pW99PHD83rFu3TgcPHrzn7yPp4Tx+7vR/+sPwO4jCAg4lV65cqlKlSrpTnqtWrVLt2rVNSmUewzA0YMAALV68WKtXr1axYsXuOc+5c+d06tQphYSEZENCx5KcnKz9+/crJCTEeir938dSSkqK1q5dmyOPpdmzZyt//vxq1qzZXdvl5OPnfo6ZKlWqyN3d3aZNbGysfvvttxxxXN0sKg4fPqyffvpJgYGB95xn3759unbtWo48pm59P+X04+emzz77TFWqVFGFChXu2fZhOn7u9X/6Q/E7yKSLxoE7WrBggeHu7m589tlnxu+//24MGTLE8PHxMY4fP252tGzXr18/IyAgwIiJiTFiY2Otj8uXLxuGYRiJiYnGsGHDjA0bNhjHjh0z1qxZY9SqVcsoUKCAkZCQYHL6rDds2DAjJibGOHr0qLFp0yajefPmhp+fn/VYmTx5shEQEGAsXrzY2Lt3r9GhQwcjJCQkR/TNv6WmphqFCxc2Ro4caTM9Jx4/iYmJxs6dO42dO3cakoxp06YZO3futN7V6H6Omb59+xoFCxY0fvrpJ2PHjh1G/fr1jQoVKhjXr183a7Myzd3659q1a0bLli2NggULGrt27bL5nZScnGwYhmH88ccfxoQJE4ytW7cax44dM5YtW2aEhYUZlSpVeuj7537fTzn1+Lnp4sWLhre3tzFjxox08z/sx8+9/k83DOf/HURhAYf04YcfGkWKFDFy5cplVK5c2eb2qjmJpNs+Zs+ebRiGYVy+fNlo1KiR8cgjjxju7u5G4cKFja5duxonT540N3g2adeunRESEmK4u7sboaGhRps2bYx9+/ZZX09LSzPGjRtnBAcHGx4eHka9evWMvXv3mpjYHD/88IMhyTh48KDN9Jx4/KxZs+a276muXbsahnF/x8yVK1eMAQMGGHnz5jW8vLyM5s2bPzR9drf+OXbs2B1/J61Zs8YwDMM4efKkUa9ePSNv3rxGrly5jOLFixuDBg0yzp07Z+6GZZK79c/9vp9y6vFz00cffWR4eXkZFy5cSDf/w3783Ov/dMNw/t9BFsMwjCw6GQIAAAAgh+AaCwAAAAB2o7AAAAAAYDcKCwAAAAB2o7AAAAAAYDcKCwAAAAB2o7AAAAAAYDcKCwAAAAB2o7AAAAAAYDcKCwAAAAB2o7AAAOBf4uPj1adPHxUuXFgeHh4KDg5WVFSUNm7cmGnrKFq0qN55551MWx4AOAI3swMAAOBInn76aV27dk1z5szRo48+qrNnz+rnn3/WP//8Y3Y0AHBonLEAAOD/XLhwQevXr9ebb76pyMhIFSlSRNWrV9fo0aPVrFkzSdLFixf13HPPKX/+/PL391f9+vW1e/du6zKOHDmip556SkFBQfL19VW1atX0008/WV+PiIjQiRMn9MILL8hischisUiSTpw4oRYtWihPnjzy8fFR2bJltXz58uztAACwA4UFAAD/x9fXV76+vlqyZImSk5PTvW4Yhpo1a6a4uDgtX75c27dvV+XKlfXkk09az2hcunRJTZs21U8//aSdO3cqKipKLVq00MmTJyVJixcvVsGCBfXqq68qNjZWsbGxkqT+/fsrOTlZv/zyi/bu3as333xTvr6+2bfxAGAni2EYhtkhAABwFIsWLVLv3r115coVVa5cWeHh4Wrfvr0ef/xxrV69Wq1bt1Z8fLw8PDys85QoUUIjRozQc889d9tlli1bVv369dOAAQMk3bjGYsiQIRoyZIi1zeOPP66nn35a48aNy9LtA4CswhkLAAD+5emnn9aZM2f03XffKSoqSjExMapcubKio6O1fft2Xbp0SYGBgdazG76+vjp27JiOHDkiSUpKStKIESNUpkwZ5c6dW76+vjpw4ID1jMWdDBo0SK+//rqeeOIJjRs3Tnv27MmOzQWATENhAQDALTw9PdWwYUO98sor2rBhg7p166Zx48YpLS1NISEh2rVrl83j4MGDevHFFyVJL774ohYtWqSJEydq3bp12rVrl8qXL6+UlJS7rrNXr146evSoOnfurL1796pq1ap6//33s2NzASBTUFgAAHAPZcqUUVJSkipXrqy4uDi5ubmpRIkSNo98+fJJktatW6du3bqpdevWKl++vIKDg3X8+HGb5eXKlUupqanp1lOoUCH17dtXixcv1rBhw/TJJ59kx+YBQKagsAAA4P+cO3dO9evX1xdffKE9e/bo2LFj+vrrrzVlyhQ99dRTatCggWrVqqVWrVrphx9+0PHjx7VhwwaNHTtW27Ztk3TjeovFixdr165d2r17tzp27Ki0tDSb9RQtWlS//PKL/vzzT/3999+SpCFDhuiHH37QsWPHtGPHDq1evVqlS5fO9j4AgAfF91gAAPB/fH19VaNGDb399ts6cuSIrl27pkKFCql379566aWXZLFYtHz5co0ZM0Y9evTQX3/9peDgYNWrV09BQUGSpLfffls9evRQ7dq1lS9fPo0cOVIJCQk263n11VfVp08fFS9eXMnJyTIMQ6mpqerfv79Onz4tf39/NW7cWG+//bYZ3QAAD4S7QgEAAACwG0OhAAAAANiNwgIAAACA3SgsAAAAANiNwgIAAACA3SgsAAAAANiNwgIAAACA3SgsAAAAANiNwgIAAACA3SgsAAAAANiNwgIAAACA3SgsAAAAANiNwgIAAACA3f4XXGh8NdltKI0AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# import the scipy.stats.norm object needed to use the quantile function of the standard normal distribution\n", - "from scipy.stats import norm\n", - "\n", - "# define the mean and standard deviation of the demand for each class\n", - "mu = demand.mean()\n", - "sigma = {\"F\": 4, \"B\": 16, \"E\": 20}\n", - "display(pd.DataFrame({\"mu\": mu, \"sigma\": sigma}))\n", - "\n", - "\n", - "# create a new model with chance constraints that takes as input also\n", - "# the target quality of service (QoS) levels for classes F and B\n", - "def airline_cc(demand, QoSF=0.98, QoSFB=0.95):\n", - " # create two-stage stochastic model as before\n", - " m = airline_stochastic(demand)\n", - "\n", - " # add equivalent counterparts of the two chance constraints to the first stage problem\n", - " # the two coefficients related the inverse CDF of the standard normal are computed using the norm.ppf function\n", - " @m.Constraint()\n", - " def first_class(m):\n", - " return (m.seats[\"F\"] - mu[\"F\"]) >= norm.ppf(QoSF) * sigma[\"F\"]\n", - "\n", - " @m.Constraint()\n", - " def business_class(m):\n", - " return m.seats[\"F\"] + m.seats[\"B\"] - (mu[\"F\"] + mu[\"B\"]) >= norm.ppf(\n", - " QoSFB\n", - " ) * np.sqrt(sigma[\"F\"] ** 2 + sigma[\"B\"] ** 2)\n", - "\n", - " return m\n", - "\n", - "\n", - "# create and solve model\n", - "model_cc = airline_cc(demand)\n", - "seats_cc = airline_solve(model_cc)\n", - "seat_report(seats_cc, demand)" - ] - }, - { - "cell_type": "markdown", - "id": "801f475e", - "metadata": { - "tags": [] - }, - "source": [ - "## Model 4. Solving the case of continuous demand distributions using the SAA method \n", - "\n", - "Let us now move past the simplifying assumption that there are only three equally likely scenarios and consider the case where the demand is described by a random vector $(z_F, z_B, z_E)$, where $z_c$ is the demand for seats of class $c\\in C$. The demand for class $c$ is assumed to be independent and normally distributed with mean $\\mu_c$ and variance $\\sigma_c^2$ as reported in the following table\n", - "\n", - "
\n", - "\n", - "| | $\\mu$ | $\\sigma$ |\n", - "| :--: | :--: | :--: |\n", - "| F | 12 | 4 |\n", - "| B | 28 | 8 |\n", - "| E | 175 | 20 |\n", - "\n", - "
\n", - "\n", - "Note that we model the demand for each class using a continuous random variable, which is a simplification of the real world, where the ticket demand is always a discrete nonnegative number. Therefore, we round down all the obtained random numbers.\n", - "\n", - "However, now that the number of scenarios is not finite anymore, we cannot solve the problem exactly. Instead, we can use the SAA method to approximate the expected value appearing in the objective function. The first step of the SAA is to generate a collection of $N$ scenarios $(z_{F,s}, z_{B,s}, z_{E,s})$ for $s=1,\\ldots,N$. We can do this by sampling from the normal distributions with the given means and variances. \n", - "\n", - "For sake of generality, we create a script to generate scenarios in which the three demands have a general correlation structure captured by a correlation matrix $\\bm{\\rho}$." - ] - }, - { - "cell_type": "markdown", - "id": "10a9b698-59b8-42a9-ae7e-9c37a32d8a0c", - "metadata": {}, - "source": [ - "### Scenario generation (uncorrelated case)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "d537f6ac-407c-4d73-8f52-5f4ac31b8ec8", - "metadata": { - "ExecuteTime": { - "end_time": "2022-09-30T21:49:08.708126Z", - "start_time": "2022-09-30T21:49:07.626836Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Model Covariance\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBE
F1600
B02560
E00400
\n", - "
" - ], - "text/plain": [ - " F B E\n", - "F 16 0 0\n", - "B 0 256 0\n", - "E 0 0 400" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
mu (mean)sample meansigma (std)sample std
F12.011.88944.088936
B28.028.6261615.051534
E175.0172.9662019.839669
\n", - "
" - ], - "text/plain": [ - " mu (mean) sample mean sigma (std) sample std\n", - "F 12.0 11.889 4 4.088936\n", - "B 28.0 28.626 16 15.051534\n", - "E 175.0 172.966 20 19.839669" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAEiCAYAAADklbFjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUdUlEQVR4nO3df1xUVf4/8NcAwwAGKJgMk/ij/eCPxJQk3bRPUgYuK2q5LZmW2lrrrmYRmkqu65AGiWX0gbS1dcUytN3HimtlyViK+SFXxGjD+mpuiD+CZbcQRHAY4Xz/4DMT4wwwA3Pnzo/X8/GYh94z5955n3PvHObcH+cohBACRERERERERORwPnIHQEREREREROSp2OkmIiIiIiIikgg73UREREREREQSYaebiIiIiIiISCLsdBMRERERERFJhJ1uIiIiIiIiIomw001EREREREQkEXa6iYiIiIiIiCTCTjcRERERERGRRNjptkN+fj4UCgVOnDhh9f3k5GQMGTLELG3IkCFYsGCBXZ9TUlICrVaLy5cv9yxQD7dgwQKLevZEPTl2nLEtRzl37hwUCoXVV1xcnNzhkR3YNroGto3ybstRrLWNISEhGDNmDHJyctDa2ip3iGQntpGugW2kvNtylK5+PyoUCmi1WrlDtMpP7gA8XWFhIUJCQuxap6SkBBkZGViwYAH69u0rTWBELmLp0qWYM2eOWdpNN90kUzTkLGwbibrWsW28fPky9u3bh2effRYXLlzAK6+8InN0JDW2kURds/b7EQAGDhwoQzTdY6dbYrGxsXKHYDeDwQCFQgE/Px4eJL1Bgwbhpz/9qdxhkJOxbSTq2o1t489+9jNUVFRg165d7HR7AbaRRF1zt9+PvL1cYjfeltHW1ob169dj+PDhCAwMRN++fXH77bfjtddeAwBotVo899xzAIChQ4eabpU4fPiwaf3s7GyMGDECKpUKAwYMwLx583Dx4kWzzxVCIDMzE4MHD0ZAQADi4uKg0+kQHx+P+Ph4U77Dhw9DoVDg7bffxrJly3DLLbdApVLh7Nmz+Pe//43Fixfjtttuw0033YQBAwbgvvvuw6effmr2WcbbPDZu3IgNGzZgyJAhCAwMRHx8PM6cOQODwYBVq1ZBo9EgNDQUDz74IGpra22qv/z8fAwfPhwqlQojR47EW2+9ZTVfS0sL1q9fb6qXm2++GY8//jj+/e9/W+yP5ORkvP/++4iNjUVgYCBGjhyJ999/3/R5I0eORJ8+fTB+/HiLW8FOnDiB2bNnm8o4ZMgQPPLII6iqqrKIW6FQ4NChQ/jtb3+L/v37Izw8HLNmzcJ3331nltdgMGDFihVQq9UICgrC3XffjePHj9tUPwCg1+vxwgsvYOTIkQgICEB4eDjuvfdelJSUdLrOtWvXsGzZMowdOxahoaEICwvDXXfdhb/97W8Wef/yl79gwoQJCA0NRVBQEG699Vb86le/Mr3f3TFNZA3bRraNbBvtFxoaCqVS2eP1yX2wjWQbyTbSs/BUVA+0trbi+vXrFulCiG7Xzc7Ohlarxe9+9zvcc889MBgM+H//7/+Znr954okn8MMPPyA3Nxd79uxBZGQkAOC2224DAPz2t7/F1q1b8dRTTyE5ORnnzp3DmjVrcPjwYZw8eRL9+/cHAKxevRpZWVn49a9/jVmzZuHChQt44oknYDAYMGzYMIu40tPTcdddd+GNN96Aj48PBgwYYGpw1q5dC7VajcbGRhQWFiI+Ph4ff/yxWeMLAK+//jpuv/12vP7667h8+TKWLVuG6dOnY8KECVAqlfjTn/6EqqoqLF++HE888QT27dvXZV3l5+fj8ccfx8yZM/HKK6+gvr4eWq0Wer0ePj4/ni9qa2vDzJkz8emnn2LFihWYOHEiqqqqsHbtWsTHx+PEiRMIDAw05f/iiy+Qnp6O1atXIzQ0FBkZGZg1axbS09Px8ccfIzMzEwqFAitXrkRycjIqKytN6587dw7Dhw/H7NmzERYWhurqamzZsgV33nknvvrqK1P9Gz3xxBOYNm0aCgoKcOHCBTz33HN49NFH8cknn5jyPPnkk3jrrbewfPlyJCQkoKKiArNmzcKVK1e6rB8AuH79OpKSkvDpp58iNTUV9913H65fv45jx47h/PnzmDhxotX19Ho9fvjhByxfvhy33HILWlpacPDgQcyaNQvbt2/HvHnzAACfffYZHn74YTz88MPQarUICAhAVVWVWfzdHdPdaWtrs/g++fr6QqFQ2LQ+uQ62jWwb2TZK0zbW19fjb3/7Gz766COsXLnSpvXJ9bCNZBvJNlLa348AXPdOC0E22759uwDQ5Wvw4MFm6wwePFjMnz/ftJycnCzGjh3b5eds3LhRABCVlZVm6V9//bUAIBYvXmyW/ve//10AEM8//7wQQogffvhBqFQq8fDDD5vl++yzzwQAMXnyZFPaoUOHBABxzz33dFv+69evC4PBIKZMmSIefPBBU3plZaUAIMaMGSNaW1tN6Tk5OQKAmDFjhtl2UlNTBQBRX1/f6We1trYKjUYj7rjjDtHW1mZKP3funFAqlWb1vGvXLgFA/PWvfzXbRmlpqQAgNm/ebEobPHiwCAwMFBcvXjSllZeXCwAiMjJSXL161ZS+d+9eAUDs27evyzppbGwUffr0Ea+99pop3Xis3LivsrOzBQBRXV0thPhxnz777LNm+d555x0BwOzYseatt94SAMSbb77ZZb4bj0Nr5TAYDGLhwoUiNjbWlP7yyy8LAOLy5cudrmvLMW2N8bix9tLpdHZvj+TDtpFto7U6Ydvo+LZxwYIF4vr163Zvk+TFNpJtpLU6YRvp+DYSgPj000/t3qYz8PbyHnjrrbdQWlpq8br77ru7XXf8+PH44osvsHjxYhw4cAANDQ02f+6hQ4cAwGIUwfHjx2PkyJH4+OOPAQDHjh2DXq9HSkqKWb6f/vSnnY7a+Itf/MJq+htvvIE77rgDAQEB8PPzg1KpxMcff4yvv/7aIu/Pf/5zszOII0eOBABMmzbNLJ8x/fz5852UFDh9+jS+++47zJkzx+yK5+DBgy3Ovr3//vvo27cvpk+fjuvXr5teY8eOhVqtNt1aZTR27FjccsstFvHEx8cjKCjIIr3jrT+NjY1YuXIl/uu//gt+fn7w8/PDTTfdhKtXr1qtkxkzZpgt33777WbbNO7TuXPnmuVLSUmx6Uzdhx9+iICAALPbdWz1l7/8BZMmTcJNN91k2rfbtm0zK8edd95piufPf/4zLl26ZLGd3hzTAPDMM89YfJcmTJhgd3lIfmwb2TaybfyRI9vGQ4cOITMzE3/+85/xyCOP2F0mcg1sI9lGso38kRS/H0tLSzF27Fi7y+QM7HT3wMiRIxEXF2fxCg0N7Xbd9PR0vPzyyzh27BiSkpIQHh6OKVOmdDqNREfff/89AJhuGepIo9GY3jf+GxERYZHPWlpn29y0aRN++9vfYsKECfjrX/+KY8eOobS0FD/72c/Q3NxskT8sLMxs2d/fv8v0a9euWY2lYxnUarXFezem/etf/8Lly5fh7+8PpVJp9qqpqcF//vMfh8U5Z84c5OXl4YknnsCBAwdw/PhxlJaW4uabb7ZaJ+Hh4WbLKpUKAEx5Oyunn5+fxbrW/Pvf/4ZGozH7Y2WLPXv2ICUlBbfccgt27tyJzz77DKWlpfjVr35lVt577rkHe/fuxfXr1zFv3jwMHDgQMTEx2LVrlylPb45poH2UyRu/S8HBwXaVh1wD20a2jWwbpWkb4+PjkZ6ejjVr1uAvf/kLDhw4YFe5yDWwjWQbyTZS2t+PcXFxLjsDjove9O65/Pz8kJaWhrS0NFy+fBkHDx7E888/j6lTp+LChQtmZ8puZPwSVVdXWwyH/91335meBzHm+9e//mWxjZqaGqtnK609P7tz507Ex8djy5YtZum2PCvSW8Yy1NTUWLx3Y5pxkImPPvrI6rYc1YGrr6/H+++/j7Vr12LVqlWmdOPzLT3RsZwdz55ev37d1KB25eabb8bRo0fR1tZmV8O5c+dODB06FO+++67Zvtfr9RZ5Z86ciZkzZ0Kv1+PYsWPIysrCnDlzMGTIENx11129OqaJjNg22oZto3e3jcarXV988QWmTp1q9/rkvthG2oZtpHe3ka6MV7pl1LdvXzz00ENYsmQJfvjhB5w7dw6A5dkso/vuuw9A+wHfUWlpKb7++mtMmTIFADBhwgSoVCq8++67ZvmOHTtmMUpiVxQKhSkWo3/84x/47LPPbN5GTw0fPhyRkZHYtWuX2QAjVVVVFqMqJicn4/vvv0dra6vVM17Dhw93SEwKhQJCCIs6+eMf/4jW1tYebdM4mMg777xjlv7nP//Z6uAQN0pKSsK1a9eQn59v1+cqFAr4+/ubNZg1NTVWR580UqlUmDx5MjZs2AAA+Pzzzy3ydHZME9mDbWPn2DZ6d9tYXl4OABgwYECP1ifPwDayc2wjvbuNdGW80u1k06dPR0xMDOLi4nDzzTejqqoKOTk5GDx4MKKjowEAo0ePBgC89tprmD9/PpRKJYYPH47hw4fj17/+NXJzc+Hj44OkpCTT6JNRUVF49tlnAbTf5pKWloasrCz069cPDz74IC5evIiMjAxERkbafEYrOTkZ69atw9q1azF58mScPn0aL7zwAoYOHWrTF7o3fHx8sG7dOjzxxBN48MEH8eSTT+Ly5cvQarUWt9LMnj0b77zzDn7+85/jmWeewfjx46FUKnHx4kUcOnQIM2fOxIMPPtjrmEJCQnDPPfdg48aN6N+/P4YMGYLi4mJs27YNffv27dE2R44ciUcffRQ5OTlQKpW4//77UVFRgZdffhkhISHdrv/II49g+/bt+M1vfoPTp0/j3nvvRVtbG/7+979j5MiRmD17ttX1kpOTsWfPHixevBgPPfQQLly4gHXr1iEyMhLffPONKd/vf/97XLx4EVOmTMHAgQNx+fJlvPbaa1AqlZg8eTIA245pou6wbbQN20bvaRvPnz+PY8eOAQCuXr2Kzz77DFlZWRg8eDBmzZplSzWSB2EbaRu2kd7ZRnZ088034yc/+Um36zudnKO4uRvjiIKlpaVW3582bVq3o0++8sorYuLEiaJ///7C399fDBo0SCxcuFCcO3fObL309HSh0WiEj4+PACAOHTokhGgflXHDhg1i2LBhQqlUiv79+4tHH31UXLhwwWz9trY2sX79ejFw4EDh7+8vbr/9dvH++++LMWPGmI0caRx98i9/+YtFefR6vVi+fLm45ZZbREBAgLjjjjvE3r17xfz5883KaRxFcOPGjWbrd7bt7uqxoz/+8Y8iOjpa+Pv7i2HDhok//elPFp8vhBAGg0G8/PLLYsyYMSIgIEDcdNNNYsSIEWLRokXim2++MeUbPHiwmDZtmsXnABBLliwxS7NWrosXL4pf/OIXol+/fiI4OFj87Gc/ExUVFRb7ubMyGuvEuD+FaK/nZcuWiQEDBoiAgADx05/+VHz22Wfdjhhp1NzcLH7/+9+b6ik8PFzcd999oqSkxKzcN27rpZdeEkOGDBEqlUqMHDlSvPnmm2Lt2rWiY7Pw/vvvi6SkJHHLLbcIf39/MWDAAPHzn//cbGRIW4/pG3V23JD7YdvItpFto+Pbxo6vgIAAMWzYMJGammoavZjcB9tItpFsI6VtIzu+5s6d223Z5aAQwobJAckjVFZWYsSIEVi7di2ef/55ucMhInIJbBuJiDrHNpKo99jp9lBffPEFdu3ahYkTJyIkJASnT59GdnY2GhoaUFFR0ekolEREnoxtIxFR59hGEkmDz3R7qD59+uDEiRPYtm0bLl++jNDQUMTHx+PFF19kg0lEXottIxFR59hGEkmDV7qJiIiIiIiIJMIpw4iIiIiIiIgkwk43ERERERERkUTY6SYiIiIiIiKSiN0DqR05cgQbN25EWVkZqqurUVhYiAceeMBq3kWLFmHr1q149dVXkZqaakrX6/VYvnw5du3ahebmZkyZMgWbN2/GwIEDbYqhra0N3333HYKDg6FQKOwtAhGRGSEErly5Ao1GAx8f9z8XyTaSiBzJk9pIto9E5Ei2to92d7qvXr2KMWPG4PHHH8cvfvGLTvPt3bsXf//736HRaCzeS01NxXvvvYfdu3cjPDwcy5YtQ3JyMsrKyuDr69ttDN999x2ioqLsDZ2IqEsXLlyw+eSfK2MbSURS8IQ2ku0jEUmhu/bR7k53UlISkpKSusxz6dIlPPXUUzhw4ACmTZtm9l59fT22bduGt99+G/fffz8AYOfOnYiKisLBgwcxderUbmMIDg4G0F64kJAQm+I2GAwoKipCYmIilEqlTeu4C08tm6eWC2DZXE1DQwOioqJMbYu7s7eNdMd9JhXWRTvWQzvWQztPaiO96Tck43Yud40bcN/YXSFuW9tHh8/T3dbWhsceewzPPfccRo0aZfF+WVkZDAYDEhMTTWkajQYxMTEoKSmx2unW6/XQ6/Wm5StXrgAAAgMDERgYaFNcfn5+CAoKQmBgoFsdTLbw1LJ5arkAls3VGAwGAPCYWw2N5QgJCbG50x0UFISQkBC32WdSYV20Yz20Yz2Y84Q20t72EXDf44BxO5e7xg24b+yuFHd37aPDO90bNmyAn58fnn76aavv19TUwN/fH/369TNLj4iIQE1NjdV1srKykJGRYZFeVFSEoKAgu+LT6XR25Xcnnlo2Ty0XwLK5iqamJrlDICIiIiIP5dBOd1lZGV577TWcPHnS7rOhQohO10lPT0daWppp2XgZPzEx0a6zlDqdDgkJCbKfCXE0Ty2bp5YLYNlcTUNDg9whEBEREZGHcmin+9NPP0VtbS0GDRpkSmttbcWyZcuQk5ODc+fOQa1Wo6WlBXV1dWZXu2trazFx4kSr21WpVFCpVBbpSqXS7h/1PVnHXXhq2Ty1XADL5ircJU4iIiIicj8Onffhsccewz/+8Q+Ul5ebXhqNBs899xwOHDgAABg3bhyUSqXZrafV1dWoqKjotNNNRERERERE5I7svtLd2NiIs2fPmpYrKytRXl6OsLAwDBo0COHh4Wb5lUol1Go1hg8fDgAIDQ3FwoULsWzZMoSHhyMsLAzLly/H6NGjTaOZExEREREREXkCuzvdJ06cwL333mtaNj5rPX/+fOTn59u0jVdffRV+fn5ISUlBc3MzpkyZgvz8fJvm6CYiIiIiIiJyF3Z3uuPj4yGEsDn/uXPnLNICAgKQm5uL3Nxcez+eiIiIiIiIyG049JluIiIiIiIiIvqRw+fpJiLbxWgPQN9q2/R6516aJnE0RORKhqz6wO512E6Qqzpy5Ag2btyIsrIyVFdXo7CwEA888IDVvIsWLcLWrVvx6quvIjU11ZSu1+uxfPly7Nq1y/R44ubNmzFw4EDnFIK8jj3tsMpXIHu8hMGQW+OVbiIiIiKS1NWrVzFmzBjk5eV1mW/v3r34+9//Do1GY/FeamoqCgsLsXv3bhw9ehSNjY1ITk5Ga2urVGETETkEr3QTERERkaSSkpKQlJTUZZ5Lly7hqaeewoEDBzBtmvldG/X19di2bRvefvtt02w3O3fuRFRUFA4ePIipU6dKFjsRUW/xSjcRERERyaqtrQ2PPfYYnnvuOYwaNcri/bKyMhgMBiQmJprSNBoNYmJiUFJS4sxQiYjsxivdRERERCSrDRs2wM/PD08//bTV92tqauDv749+/fqZpUdERKCmpqbT7er1euj1etNyQ0MDAMBgMMBgMNgUmzGfrfldBePuPZWv7TM2qXza87pC3PZypTq3hyvEbetns9NNRERERLIpKyvDa6+9hpMnT0KhsG1wUSMhRJfrZGVlISMjwyK9qKgIQUFBdn2WTqezK7+rYNw915OB0Vwh7p5y19jljLupqcmmfOx0ExEREZFsPv30U9TW1mLQoEGmtNbWVixbtgw5OTk4d+4c1Go1WlpaUFdXZ3a1u7a2FhMnTux02+np6UhLSzMtNzQ0ICoqComJiQgJCbEpPoPBAJ1Oh4SEBCiVyh6UUB6Mu/ditAdszqvyEVgX1+YScdvLlercHq4Qt/Hume6w001EREREsnnsscdMg6MZTZ06FY899hgef/xxAMC4ceOgVCqh0+mQkpICAKiurkZFRQWys7M73bZKpYJKpbJIVyqVdv9I78k6roBx95yt07p25Apx95S7xi5n3LZ+LjvdRETk1TrOw2qcZzVGe6DLH1ucD5vIPo2NjTh79qxpubKyEuXl5QgLC8OgQYMQHh5ull+pVEKtVmP48OEAgNDQUCxcuBDLli1DeHg4wsLCsHz5cowePdqiw05E5GrY6SYiIiIiSZ04cQL33nuvadl4y/f8+fORn59v0zZeffVV+Pn5ISUlBc3NzZgyZQry8/Ph6+srRchERA7DTjcRERERSSo+Ph5C2D4S9Llz5yzSAgICkJubi9zcXAdGRkQkPc7TTURERERERCQRdrqJiIiIiIiIJMJONxGRgxw5cgTTp0+HRqOBQqHA3r17zd4XQkCr1UKj0SAwMBDx8fE4deqUWR69Xo+lS5eif//+6NOnD2bMmIGLFy86sRRERERE5EjsdBMROcjVq1cxZswY5OXlWX0/OzsbmzZtQl5eHkpLS6FWq5GQkIArV66Y8qSmpqKwsBC7d+/G0aNH0djYiOTkZLS2tjqrGERERETkQBxIjYjIQZKSkpCUlGT1PSEEcnJysHr1asyaNQsAsGPHDkRERKCgoACLFi1CfX09tm3bhrfffts0Bc7OnTsRFRWFgwcPYurUqU4rCxERERE5Bq90ExE5QWVlJWpqapCYmGhKU6lUmDx5MkpKSgAAZWVlMBgMZnk0Gg1iYmJMeYiIiIjIvfBKNxGRE9TU1AAAIiIizNIjIiJQVVVlyuPv749+/fpZ5DGub41er4derzctNzQ0AAAMBgMMBkO3sRnz2JLXE6l8f5zGSOUjzP7tjDPqqmNctnJUXN5+TBixHtp5e/mJiHqLnW4iIidSKBRmy0IIi7QbdZcnKysLGRkZFulFRUUICgqyOTadTmdzXk+SPd4ybV1cW5fr7N+/X6JofmQtru44Oi5vPSZu5O310NTUJHcIRERujZ1usmrIqg/sXufcS9MkiITIM6jVagDtV7MjIyNN6bW1taar32q1Gi0tLairqzO72l1bW4uJEyd2uu309HSkpaWZlhsaGhAVFYXExESEhIR0G5vBYIBOp0NCQgKUSqXdZXN3MdoDpv+rfATWxbVhzQkf6Ns6P9FRoZX++fqOcdnKUXF5+zFhxHpoZ7x7hoiIesbuTveRI0ewceNGlJWVobq6GoWFhXjggQcAtP9x+t3vfof9+/fj22+/RWhoKO6//3689NJL0Gg0pm3o9XosX74cu3btQnNzM6ZMmYLNmzdj4MCBDisYEZErGTp0KNRqNXQ6HWJjYwEALS0tKC4uxoYNGwAA48aNg1KphE6nQ0pKCgCguroaFRUVyM7O7nTbKpUKKpXKIl2pVNrVUbA3v6fQt1p2rvVtCqvpRs6op64+vzOOjstbj4kbeXs9eHPZiYgcwe6B1LqaEqepqQknT57EmjVrcPLkSezZswdnzpzBjBkzzPJxShwi8kSNjY0oLy9HeXk5gPbB08rLy3H+/HkoFAqkpqYiMzMThYWFqKiowIIFCxAUFIQ5c+YAAEJDQ7Fw4UIsW7YMH3/8MT7//HM8+uijGD16tGk0cyIiIiJyL3Zf6e5qSpzQ0FCL555yc3Mxfvx4nD9/HoMGDeKUOETksU6cOIF7773XtGy85Xv+/PnIz8/HihUr0NzcjMWLF6Ourg4TJkxAUVERgoODTeu8+uqr8PPzQ0pKiulOoPz8fPj6+jq9PERERETUe5I/011fXw+FQoG+ffsC6H5KHGud7t6OzGvM2/FfTyJF2eQcNffG7XnyPutuhGRr67g6d9xvjoo1Pj4eQnS+TxUKBbRaLbRabad5AgICkJubi9zcXIfERERERETykrTTfe3aNaxatQpz5swxDebTkylxHDUyL+DZI5A6smyuMGqukSfvs+5GSO7IGaMlO5I77TeOzEtEREREUpGs020wGDB79my0tbVh8+bN3ebvakqc3o7Ma4zHU0cglaJsco6aa+QN+6y7EZI7csZoyY7gjvuNI/MSERERkVQk6XQbDAakpKSgsrISn3zyiVnHuCdT4jhqZN6eruMuHFk2Vxg1t+N2PXWfdTdCckfuVgfutN/cJU4iIiLqmZ5Mh9sTMdoDdv2O5pS73sHu0cu7Y+xwf/PNNzh48CDCw8PN3u84JY6RcUqcruahJSIiIiIiInI3dl/pbmxsxNmzZ03LxilxwsLCoNFo8NBDD+HkyZN4//330draanpOOywsDP7+/mZT4oSHhyMsLAzLly/nlDhERERERETkcezudHc1JY5Wq8W+ffsAAGPHjjVb79ChQ4iPjwfAKXGIiIiIiIjIO9h9e7lxSpwbX/n5+RgyZIjV94QQpg438OOUON9//z2amprw3nvvISoqypHlIiIiIiIXceTIEUyfPh0ajQYKhQJ79+41vWcwGLBy5UqMHj0affr0gUajwbx58/Ddd9+ZbUOv12Pp0qXo378/+vTpgxkzZuDixYtOLgkRkf0c/kw3EREREVFHV69exZgxY5CXl2fxXlNTE06ePIk1a9bg5MmT2LNnD86cOYMZM2aY5UtNTUVhYSF2796No0ePorGxEcnJyWhtbXVWMYiIekTSebqJiIg8kb2j4HJ0WvJ2SUlJSEpKsvpeaGio2QC7AJCbm4vx48fj/PnzGDRoEOrr67Ft2za8/fbbpjGAdu7ciaioKBw8eBBTp7rHtJpE5J3Y6SYiIiIil1JfXw+FQoG+ffsCAMrKymAwGJCYmGjKo9FoEBMTg5KSEna6yW3xJK53YKebiIiIiFzGtWvXsGrVKsyZMwchISEAgJqaGvj7+6Nfv35meSMiIkwz5Vij1+uh1+tNyw0NDQDanyM3GAw2xWPMZ2t+V8G4zal8hUO3Z7F9H2H2r1Sk2J88VnofQ3fY6SYiIiIil2AwGDB79my0tbVh8+bN3eYXQkChUHT6flZWFjIyMizSi4qKEBQUZFdsN94C7y4Yd7vs8Q7dXKfWxbVJuv39+/dLtm0eK/ZramqyKR873UREREQkO4PBgJSUFFRWVuKTTz4xXeUGALVajZaWFtTV1Zld7a6trcXEiRM73WZ6erppelug/Up3VFQUEhMTzbbfXVw6nQ4JCQlQKpU9KJk8GLe5GO0Bh23LGpWPwLq4Nqw54QN9W+cngnqrQuv4Ryl4rPSc8e6Z7rDTTURERESyMna4v/nmGxw6dAjh4eFm748bNw5KpRI6nQ4pKSkAgOrqalRUVCA7O7vT7apUKqhUKot0pVJp94/0nqzjChh3O32rdB1hs89pU0j6WVLuSx4rPftsW7DTTUREJDF7B8oh8jSNjY04e/asabmyshLl5eUICwuDRqPBQw89hJMnT+L9999Ha2ur6TntsLAw+Pv7IzQ0FAsXLsSyZcsQHh6OsLAwLF++HKNHjzaNZk5E5KrY6SYiIiIiSZ04cQL33nuvadl4y/f8+fOh1Wqxb98+AMDYsWPN1jt06BDi4+MBAK+++ir8/PyQkpKC5uZmTJkyBfn5+fD19XVKGYiIeoqdbiIiIiKSVHx8PITofFTnrt4zCggIQG5uLnJzcx0ZGhGR5HzkDoCIiIiIiIjIU7HTTURERERERCQRdrqJiIiIiIiIJMJONxEREREREZFE2OkmIiIiIiIikgg73UREREREREQSYaebiIiIiIiISCLsdBMRERERERFJhJ1uIiIiIiIiIomw001EREREREQkEbs73UeOHMH06dOh0WigUCiwd+9es/eFENBqtdBoNAgMDER8fDxOnTpllkev12Pp0qXo378/+vTpgxkzZuDixYu9KggRERERERGRq7G703316lWMGTMGeXl5Vt/Pzs7Gpk2bkJeXh9LSUqjVaiQkJODKlSumPKmpqSgsLMTu3btx9OhRNDY2Ijk5Ga2trT0vCREREREREZGLsbvTnZSUhPXr12PWrFkW7wkhkJOTg9WrV2PWrFmIiYnBjh070NTUhIKCAgBAfX09tm3bhldeeQX3338/YmNjsXPnTnz55Zc4ePBg70tEROSirl+/jt/97ncYOnQoAgMDceutt+KFF15AW1ubKY8tdwsRERERkftw6DPdlZWVqKmpQWJioilNpVJh8uTJKCkpAQCUlZXBYDCY5dFoNIiJiTHlISLyRBs2bMAbb7yBvLw8fP3118jOzsbGjRuRm5trymPL3UJERERE5D78HLmxmpoaAEBERIRZekREBKqqqkx5/P390a9fP4s8xvVvpNfrodfrTcsNDQ0AAIPBAIPBYFNsxny25ncnUpRN5St6HIejeMM+U/nYXs/uUg/uuN+cFetnn32GmTNnYtq0aQCAIUOGYNeuXThx4gQAy7uFAGDHjh2IiIhAQUEBFi1a5JQ4iYiIiMhxHNrpNlIoFGbLQgiLtBt1lScrKwsZGRkW6UVFRQgKCrIrNp1OZ1d+d+LIsmWPt3+d/fv3O+zzO/LkfbYurq37TP9HqvqVijvtt6amJqd8zt1334033ngDZ86cwbBhw/DFF1/g6NGjyMnJAdD93UKddbp7e2LSHU+UOFLHk4zGE2H2nBBzJY7ah95+TBixHtp5e/mJiHrLoZ1utVoNoP1qdmRkpCm9trbWdPVbrVajpaUFdXV1Zle7a2trMXHiRKvbTU9PR1pammm5oaEBUVFRSExMREhIiE2xGQwG6HQ6JCQkQKlU2l02VyZF2WK0B+xep0I71SGfbWStXM6IyxmfYSzbmhM+0Ld1fUKqp58hF3f8rhk7qVJbuXIl6uvrMWLECPj6+qK1tRUvvvgiHnnkEQC23S1kjaNOTLrTiRJHsnaS0Z4TYq7E0SfnvPWYuJG314OzTkwSEXkqh3a6hw4dCrVaDZ1Oh9jYWABAS0sLiouLsWHDBgDAuHHjoFQqodPpkJKSAgCorq5GRUUFsrOzrW5XpVJBpVJZpCuVSrt/1PdkHXfhyLLpW23rCN74+VLoWC5nxOXMsuvbFDZ/nrsdt+70XXNWnO+++y527tyJgoICjBo1CuXl5UhNTYVGo8H8+fNN+ey9W6i3Jybd8USJI3U80abyEVgX12bXCTFX4qiTc95+TBixHto568QkEZGnsrvT3djYiLNnz5qWKysrUV5ejrCwMAwaNAipqanIzMxEdHQ0oqOjkZmZiaCgIMyZMwcAEBoaioULF2LZsmUIDw9HWFgYli9fjtGjR+P+++93XMmIiFzMc889h1WrVmH27NkAgNGjR6OqqgpZWVmYP3++TXcLWeOoE5PudKLEkayd+LLnhJgrcfT+89Zj4kbeXg/eXHYiIkewe/TyEydOIDY21nQlOy0tDbGxsfj9738PAFixYgVSU1OxePFixMXF4dKlSygqKkJwcLBpG6+++ioeeOABpKSkYNKkSQgKCsJ7770HX19fBxWLiMj1NDU1wcfHvNn19fU1TRnW8W4hI+PdQp09fkNE5A6OHDmC6dOnQ6PRQKFQYO/evWbv2zJdol6vx9KlS9G/f3/06dMHM2bMwMWLF51YCiKinrG70x0fHw8hhMUrPz8fQPttkVqtFtXV1bh27RqKi4sRExNjto2AgADk5ubi+++/R1NTE9577z1ERUU5pEBERK5q+vTpePHFF/HBBx/g3LlzKCwsxKZNm/Dggw8CaG8/jXcLFRYWoqKiAgsWLDC7W4iIyB1dvXoVY8aMQV5entX3bZkuMTU1FYWFhdi9ezeOHj2KxsZGJCcno7W11VnFICLqEUlGLyciIku5ublYs2YNFi9ejNraWmg0GixatMh0pxDQfrdQc3MzFi9ejLq6OkyYMMHibiEiIneTlJSEpKQkq+/ZMl1ifX09tm3bhrffftv0OOLOnTsRFRWFgwcPYupU9xhslIi8k91XuomIqGeCg4ORk5ODqqoqNDc345///CfWr18Pf39/Ux5b7hYiIvIk3U2XCABlZWUwGAxmeTQaDWJiYkx5iIhcFa90ExEREZFsbJkusaamBv7+/mbTzRrzGNe3Rq/XQ6/Xm5aNI7EbDAab5x931/naGbc5la9w6PYstu8jzP6VihT7k8dK72PoDjvdRERERCQ7e6dLtCVPVlYWMjIyLNKLiooQFBRkV3zuOl87426XPd6hm+vUurg2Sbe/f/9+ybbNY8V+TU1NNuVjp5uIiIiIZGPLdIlqtRotLS2oq6szu9pdW1vb5ewO6enpSEtLMy03NDQgKioKiYmJCAkJsSk+d52vnXGbi9EecNi2rFH5CKyLa8OaEz7Qt0k35WSF1vHjF/BY6Tnj3TPdYaebiIiIiGTTcbpE45S0xukSN2zYAAAYN24clEoldDodUlJSAADV1dWoqKhAdnZ2p9tWqVRQqVQW6T2Ze91d52tn3O30rdJ1hM0+p00h6WdJuS95rPTss23BTjcRERERSaqxsRFnz541LVdWVqK8vBxhYWEYNGiQabrE6OhoREdHIzMz02y6xNDQUCxcuBDLli1DeHg4wsLCsHz5cowePdo0mjkRkatip5uIiIiIJHXixAnce++9pmXjLd/z589Hfn6+TdMlvvrqq/Dz80NKSgqam5sxZcoU5Ofnw9fX1+nlIXkNWfWB3CEQ2YWdbiIiIiKSVHx8PITofFRn43SJWq220zwBAQHIzc1Fbm6uBBESEUmHnW4iIiIv1dnVIpWvQPb49oGHbnw28dxL05wRGhERkcfwkTsAIiIiIiIiIk/FTjcRERERERGRRNjpJiIiIiIiIpIIO91EREREREREEmGnm4iIiIiIiEgi7HQTERERERERSYRThpHH62xKHCIiIiIiIqnxSjcRERERERGRRNjpJiIiIiIiIpIIO91EREREREREEmGnm4iIiIiIiEgiDh9I7fr169BqtXjnnXdQU1ODyMhILFiwAL/73e/g49PexxdCICMjA1u3bkVdXR0mTJiA119/HaNGjXJ0OOTiuhrkTOUrkD0eiNEegL5V4cSoiMidcfBEIiIiciUOv9K9YcMGvPHGG8jLy8PXX3+N7OxsbNy4Ebm5uaY82dnZ2LRpE/Ly8lBaWgq1Wo2EhARcuXLF0eEQERERERERycbhne7PPvsMM2fOxLRp0zBkyBA89NBDSExMxIkTJwC0X+XOycnB6tWrMWvWLMTExGDHjh1oampCQUGBo8MhIiIiIiIiko3DO9133303Pv74Y5w5cwYA8MUXX+Do0aP4+c9/DgCorKxETU0NEhMTTeuoVCpMnjwZJSUljg6HiIiIiIiISDYOf6Z75cqVqK+vx4gRI+Dr64vW1la8+OKLeOSRRwAANTU1AICIiAiz9SIiIlBVVWV1m3q9Hnq93rTc0NAAADAYDDAYDDbFZcxna353IkXZVL6ix3E46nNUPsLsX1dmb9mN+e0pm7scu+74XXOnWL0Nn88mIiIid+fwTve7776LnTt3oqCgAKNGjUJ5eTlSU1Oh0Wgwf/58Uz6FwnxgLCGERZpRVlYWMjIyLNKLiooQFBRkV3w6nc6u/O7EkWXLHm//Ovv375fkc9bFtdkfjJP1pOyAfWXr6WfIxZ2+a01NTXKHQEREREQeyuGd7ueeew6rVq3C7NmzAQCjR49GVVUVsrKyMH/+fKjVagAwjWxuVFtba3H12yg9PR1paWmm5YaGBkRFRSExMREhISE2xWUwGKDT6ZCQkAClUtnT4rkkKcoWoz1g9zoV2qkO/RyVj8C6uDasOeEDfZtrj15ub9mN+8yesvWkfuXgjt81490zRERERESO5vBOd1NTk2lqMCNfX1+0tbVf0Rs6dCjUajV0Oh1iY2MBAC0tLSguLsaGDRusblOlUkGlUlmkK5VKu3/U92Qdd+HIsvVkiq6efLYtn6NvU7j8lGE9rXd7yuZux607fdfcJU4iIk/GaWeJyFM5vNM9ffp0vPjiixg0aBBGjRqFzz//HJs2bcKvfvUrAO23laempiIzMxPR0dGIjo5GZmYmgoKCMGfOHEeHQ0RERERuwDjt7I4dOzBq1CicOHECjz/+OEJDQ/HMM88A+HHa2fz8fAwbNgzr169HQkICTp8+jeDgYJlLQERkncM73bm5uVizZg0WL16M2tpaaDQaLFq0CL///e9NeVasWIHm5mYsXrzYdJayqKiIjSURebxLly5h5cqV+PDDD9Hc3Ixhw4Zh27ZtGDduHABexSEi79Vx2lkAGDJkCHbt2tXptLMAsGPHDkRERKCgoACLFi2SLXYiZ+nJAKPnXpomQSRkD4dPGRYcHIycnBxUVVWhubkZ//znP7F+/Xr4+/ub8igUCmi1WlRXV+PatWsoLi5GTEyMo0MhInIpdXV1mDRpEpRKJT788EN89dVXeOWVV9C3b19THuNVnLy8PJSWlkKtViMhIQFXrlyRL3AiIifgtLNE5KkcfqWbiIis27BhA6KiorB9+3ZT2pAhQ0z/51UcIvJmnHbWsTw57p5MbSs1V57qtrtjwJOPFWfF0B12uomInGTfvn2YOnUqfvnLX6K4uBi33HILFi9ejCeffBJA91dx2Omm7nBec3JnnHZWGp4Yd0+mtnUWV5zq1tZpZz3xWJGardPOstNNROQk3377LbZs2YK0tDQ8//zzOH78OJ5++mmoVCrMmzevR1dxgN5fyXGFM8WdcfbVDFe+UuFMXdWDKx4nUnHl74YzOav8nHbWsdwp7o5TyLrTlLEduXLc3U07607HSkeuELet086y001E5CRtbW2Ii4tDZmYmACA2NhanTp3Cli1bMG/ePFM+e67iAI67kuOKZ7jluprhilcq5GCtHmy9YuJJXPG74Uy2XslxxOdw2lnHc4e4rU2f6g5TxlrjinHbuv/d4VixRs64bf1cdrqJiJwkMjISt912m1nayJEj8de//hUAenQVB+j9lRxXOFPcmY5XP5zBla9UOFNX9dDdFRNP4srfDWey9UpOb3HaWSLyVOx0k8PwWUKirk2aNAmnT582Sztz5gwGDx4MoGdXcQDHXclxxTPccl0tcMUrFXKwVg+udow4gyt+N5zJWWXntLNE5KnY6SYicpJnn30WEydORGZmJlJSUnD8+HFs3boVW7duBcCrOETk3YzTzubk5HSaxzjtrFardVpcRES9xU43EZGT3HnnnSgsLER6ejpeeOEFDB06FDk5OZg7d64pD6/iEBEREXkWdrqJHMDeW+tVvsKlp7sg6SQnJyM5ObnT93kVh4iIiMizsNNNRERENrP3JOO5l6ZJFAkREZF78Ok+CxERERERERH1BDvdRERERERERBJhp5uIiIiIiIhIIux0ExEREREREUmEnW4iIiIiIiIiiXD0ciIicgp7R70mz9CT/c4Rz4mIyJPwSjcRERERERGRRNjpJiIiIiIiIpIIO91EREREREREEmGnm4iIiIiIiEgi7HQTERERERERSUSSTvelS5fw6KOPIjw8HEFBQRg7dizKyspM7wshoNVqodFoEBgYiPj4eJw6dUqKUIiIiIiIiIhk4/BOd11dHSZNmgSlUokPP/wQX331FV555RX07dvXlCc7OxubNm1CXl4eSktLoVarkZCQgCtXrjg6HCIiIiIiIiLZOHye7g0bNiAqKgrbt283pQ0ZMsT0fyEEcnJysHr1asyaNQsAsGPHDkRERKCgoACLFi1ydEhEREREREREsnD4le59+/YhLi4Ov/zlLzFgwADExsbizTffNL1fWVmJmpoaJCYmmtJUKhUmT56MkpISR4dDREREREREJBuHX+n+9ttvsWXLFqSlpeH555/H8ePH8fTTT0OlUmHevHmoqakBAERERJitFxERgaqqKqvb1Ov10Ov1puWGhgYAgMFggMFgsCkuYz5b87sTKcqm8hUO21aPY/ARZv96kp6UzV2OXXf8rrlTrERERETkXhze6W5ra0NcXBwyMzMBALGxsTh16hS2bNmCefPmmfIpFAqz9YQQFmlGWVlZyMjIsEgvKipCUFCQXfHpdDq78rsTR5Yte7zDNtVr6+La5A5BMvaUbf/+/RJG4nju9F1ramqSOwQiIkL7YLwrV67Ehx9+iObmZgwbNgzbtm3DuHHjALT/XszIyMDWrVtRV1eHCRMm4PXXX8eoUaNkjpyIqHMO73RHRkbitttuM0sbOXIk/vrXvwIA1Go1AKCmpgaRkZGmPLW1tRZXv43S09ORlpZmWm5oaEBUVBQSExMREhJiU1wGgwE6nQ4JCQlQKpV2lcnVSVG2GO0Bh2ynN1Q+Auvi2rDmhA/0bdZPyLirnpStQjtV4qgcwx2/a8a7Z7xdjPYA9K22f9fOvTRNwmiIyNsYB+O999578eGHH2LAgAH45z//aXUw3vz8fAwbNgzr169HQkICTp8+jeDgYPmCJyLqgsM73ZMmTcLp06fN0s6cOYPBgwcDAIYOHQq1Wg2dTofY2FgAQEtLC4qLi7Fhwwar21SpVFCpVBbpSqXS7h/1PVnHXTiybPb88Jaavk3hUvE4kj1lc7fj1p2+a+4SJxGRJ+NgvETkqRw+kNqzzz6LY8eOITMzE2fPnkVBQQG2bt2KJUuWAGi/rTw1NRWZmZkoLCxERUUFFixYgKCgIMyZM8fR4RARERGRG+BgvETkqRx+pfvOO+9EYWEh0tPT8cILL2Do0KHIycnB3LlzTXlWrFiB5uZmLF682PQ8TlFREW8LIiIiIvJSHIzXsdwp7o4D+LrrQLquHHd3x4A7HSsduULctn62wzvdAJCcnIzk5ORO31coFNBqtdBqtVJ8PBERERG5GQ7GKw13iNvaAL7uOpCuK8Zt62C87nCsWCNn3LYOxitJp5uIiIiIyB4cjNex3CnujgP4uutAuq4cd3eD8brTsdKRK8Rt62C87HQTERERkew4GK803CFua4PKuutAuq4Yt6373x2OFWvkjNvWz2Wnm4iIiIhk9+yzz2LixInIzMxESkoKjh8/jq1bt2Lr1q0AzAfjjY6ORnR0NDIzMzkYLxG5PHa6idzEkFUf2L0O51EmIiJ3wcF4ichTsdNNRERERC6Bg/ESkSdy+DzdRERERERERNSOnW4iIplkZWWZnlE0EkJAq9VCo9EgMDAQ8fHxOHXqlHxBEhEREVGv8PZyIiIZlJaWYuvWrbj99tvN0rOzs7Fp0ybk5+dj2LBhWL9+PRISEnD69Gk+s0hERER2625cIJWvQPb49qnb9K0KjgkkAV7pJiJyssbGRsydOxdvvvkm+vXrZ0oXQiAnJwerV6/GrFmzEBMTgx07dqCpqQkFBQUyRkxEREREPcUr3URETrZkyRJMmzYN999/P9avX29Kr6ysRE1NDRITE01pKpUKkydPRklJCRYtWmR1e3q9Hnq93rTc0NAAADAYDDAYDN3GY8yj8hF2lcOWbXek8rVv+3Iw1oG9deFp5K4He48tqRjjcJV45OLt5Sci6i12uomInGj37t04efIkSktLLd6rqakBAERERJilR0REoKqqqtNtZmVlISMjwyK9qKgIQUFBNse2Lq7N5rwAsH//frvyZ4+3K7us7K0LTyVXPdh7bElNp9PJHYKsmpqa5A6BiMitsdNNROQkFy5cwDPPPIOioiIEBAR0mk+hUJgtCyEs0jpKT09HWlqaabmhoQFRUVFITExESEhIt3EZDAbodDqsOeEDfVvnn3OjCu1Um/MC7c+KuTqVj8C6uDa768LTyF0P9h5bUjF+NxISEqBUKuUORzbGu2eIiKhn2OkmInKSsrIy1NbWYty4caa01tZWHDlyBHl5eTh9+jSA9ivekZGRpjy1tbUWV787UqlUUKlUFulKpdKujoK+TQF9q+0dLHs7IfZsW2721oWnkqseXK2Da+93ydN4c9mJiByBA6kRETnJlClT8OWXX6K8vNz0iouLw9y5c1FeXo5bb70VarXa7FbWlpYWFBcXY+LEiTJGTkREREQ9xSvdREROEhwcjJiYGLO0Pn36IDw83JSempqKzMxMREdHIzo6GpmZmQgKCsKcOXPkCJmIiIiIeomdbiIiF7JixQo0Nzdj8eLFqKurw4QJE1BUVMQ5uomIiIjcFDvdREQyOnz4sNmyQqGAVquFVquVJR4iIiIiciw+001EREREREQkEV7pJiIiIpcyZNUHdq9z7qVpEkRCRETUe7zSTURERERERCQRdrqJiIiIiIiIJCJ5pzsrKwsKhQKpqammNCEEtFotNBoNAgMDER8fj1OnTkkdChEREREREZFTSdrpLi0txdatW3H77bebpWdnZ2PTpk3Iy8tDaWkp1Go1EhIScOXKFSnDISIiIiIiInIqyQZSa2xsxNy5c/Hmm29i/fr1pnQhBHJycrB69WrMmjULALBjxw5ERESgoKAAixYtkiokIiIiIiKSUE8GQiTydJJ1upcsWYJp06bh/vvvN+t0V1ZWoqamBomJiaY0lUqFyZMno6SkhJ1uIiI3wR9WRERERN2TpNO9e/dunDx5EqWlpRbv1dTUAAAiIiLM0iMiIlBVVWV1e3q9Hnq93rTc0NAAADAYDDAYDDbFZMxna353IkXZVL7CYdvqcQw+wuxfT+KssslxvLvjd82dYiUi8gZZWVl4/vnn8cwzzyAnJwdA+92SGRkZ2Lp1K+rq6jBhwgS8/vrrGDVqlLzBEhF1w+Gd7gsXLuCZZ55BUVERAgICOs2nUCjMloUQFmlGWVlZyMjIsEgvKipCUFCQXfHpdDq78rsTR5Yte7zDNtVr6+La5A5BMlKXbf/+/ZJuvyvu9F1ramqSOwQiIvo/3Y0JlJ+fj2HDhmH9+vVISEjA6dOnERwcLFO0RETdc3inu6ysDLW1tRg3bpwprbW1FUeOHEFeXh5Onz4NoP2Kd2RkpClPbW2txdVvo/T0dKSlpZmWGxoaEBUVhcTERISEhNgUl8FggE6nQ0JCApRKZU+K5rKkKFuM9oBDttMbKh+BdXFtWHPCB/o26ydk3JWzylahnSrZtjvjjt81490zREQkL44JRESeyOGd7ilTpuDLL780S3v88ccxYsQIrFy5ErfeeivUajV0Oh1iY2MBAC0tLSguLsaGDRusblOlUkGlUlmkK5VKu3/U92Qdd+HIsulbXaeTq29TuFQ8jiR12eQ81t3pu+YucRIReTpHjwnkzY8oyhV3bx9RdNfHC901bsAydnc51l3hu2nrZzu80x0cHIyYmBiztD59+iA8PNyUnpqaiszMTERHRyM6OhqZmZkICgrCnDlzHB0OEREREbkBR48JBPARRcD5cTvqEUV3fbzQXeMGfoxdzscTe0LO76atjyhKNnp5V1asWIHm5mYsXrzYNBBGUVERn8chIiIi8kJSjAkEePcjinLF3dtHFN318UJ3jRuwjF2OxxN7whW+m7Y+ouiUTvfhw4fNlhUKBbRaLbRarTM+noiIiIhcmBRjAgF8RBFwftyOemzOXR8vdNe4gR9jd7fjXM7vpq2fK8uVbiJyDnvnUT730jSJIiEiIuqcFGMCEVHP2Pv7EeBvyO6w001EREREsuKYQETkydjpJiIiIiKXxzGBiMhdsdNNRERERC6HYwIRkafwkTsAIiIiIiIiIk/FTjcRERERERGRRHh7uZfoySiERERERERE1Du80k1EREREREQkEXa6iYiIiIiIiCTCTjcRERERERGRRNjpJiIiIiIiIpIIO91EREREREREEmGnm4iIiIiIiEgi7HQTETlJVlYW7rzzTgQHB2PAgAF44IEHcPr0abM8QghotVpoNBoEBgYiPj4ep06dkiliIiIiIuotdrqJiJykuLgYS5YswbFjx6DT6XD9+nUkJibi6tWrpjzZ2dnYtGkT8vLyUFpaCrVajYSEBFy5ckXGyImIiIiop/zkDoCIyFt89NFHZsvbt2/HgAEDUFZWhnvuuQdCCOTk5GD16tWYNWsWAGDHjh2IiIhAQUEBFi1aJEfYRERERNQL7HQTEcmkvr4eABAWFgYAqKysRE1NDRITE015VCoVJk+ejJKSEna6ibowZNUHduU/99I0iSIhIiIyx043EZnY+6MV4A/XnhJCIC0tDXfffTdiYmIAADU1NQCAiIgIs7wRERGoqqrqdFt6vR56vd603NDQAAAwGAwwGAzdxmLMo/IR9hXCAxnrwNvrwhvqwZ7vhi15PZm3l9/b9eS3ARGZY6ebiEgGTz31FP7xj3/g6NGjFu8pFAqzZSGERVpHWVlZyMjIsEgvKipCUFCQzTGti2uzOa+nY1208+R62L9/v815dTqdhJG4vqamJrlDICJya+x0u6EbzziqfAWyxwMx2gPQt3b+w5yIXMPSpUuxb98+HDlyBAMHDjSlq9VqAO1XvCMjI03ptbW1Fle/O0pPT0daWpppuaGhAVFRUUhMTERISEi38RgMBuh0Oqw54QN9m3e3ISofgXVxbV5fF95QDxXaqd3mMX43EhISoFQqnRCVazLePUNERD3DTjcRkZMIIbB06VIUFhbi8OHDGDp0qNn7Q4cOhVqthk6nQ2xsLACgpaUFxcXF2LBhQ6fbValUUKlUFulKpdKujoK+TcETd/+HddHOk+vBnu+Gvd8lT+PNZScicgSHTxnGeWiJiKxbsmQJdu7ciYKCAgQHB6OmpgY1NTVobm4G0H5beWpqKjIzM1FYWIiKigosWLAAQUFBmDNnjszRExEREVFPOLzTzXloiYis27JlC+rr6xEfH4/IyEjT69133zXlWbFiBVJTU7F48WLExcXh0qVLKCoqQnBwsIyRExEREVFPObzT/dFHH2HBggUYNWoUxowZg+3bt+P8+fMoKysDAIt5aGNiYrBjxw40NTWhoKDA0eEQEbkMIYTV14IFC0x5FAoFtFotqqurce3aNRQXF5tGNyci8mS8W5KIPJXkz3Q7Yh7a3k6HY8zb8V93pvI1n8LFU6d28dRyAZ5Vthu/U+74XXOnWImIPJXxbsk777wT169fx+rVq5GYmIivvvoKffr0AfDj3ZL5+fkYNmwY1q9fj4SEBJw+fZp3BBGRy5K00+2oeWgdNR0O4BnTfmSPt57uqVO7eGq5AM8oW2fT7rjTd43T4RARye+jjz4yW96+fTsGDBiAsrIy3HPPPRZ3SwLAjh07EBERgYKCAqsXboiIXIGknW5HzUPb2+lwAM+a9iNGe8Bs2VOndvHUcgGeVbYbp91xx+8ap8Mh8j43Tr9pzY1Tcp57aZoTIiMj3i3ZO46K+8Y7LKXmrncDumvcgGNil+P74QrfTVs/W7JOtyPnoXXUdDg9XcfVdDZ9i6dO7eKp5QI8o2ydfZ/c6bvmLnESEXkL3i3pOL2Nu7M7LKXmrncDumvcQO9i7+zOR2eQ87tp692SDu90SzUPLRERERF5B94t2XuOivvGOyyl5q53A7pr3IBjYr/xzkdncIXvpq13Szq8071kyRIUFBTgb3/7m2keWgAIDQ1FYGCg2Ty00dHRiI6ORmZmplfPQ2vLLW5ERERE3oB3SzpWb+OW6448d70b0F3jBnoXu5zfDTm/m7Z+rsOnDOM8tERERERkLyEEnnrqKezZsweffPJJl3dLGhnvlpw4caKzwyUispkkt5d3xzgPrVardfTHExEREZEb4t2SROSpJJ+nm4iIiIioO1u2bAEAxMfHm6Vv374dCxYsANB+t2RzczMWL16Muro6TJgwgXdLEpHLY6ebiIiIiGTHuyWJyFM5/JluIiIiIiIiImrHK91E1Cs3jr6v8hXIHt8+xUhnI2Cee2maM0IjIiIiIidwxmxM7vz7kZ1uIiIiIiIvwGlqieTB28uJiIiIiIiIJMJONxEREREREZFE2OkmIiIiIiIikgg73UREREREREQS4UBqRERERDawdxAqdx5pl4iIHIdXuomIiIiIiIgkwk43ERERERERkUTY6SYiIiIiIiKSCJ/pJiIiIpKAvc+AA3wOnIjIE7HTTUQujz9ciYiIiMhd8fZyIiIiIiIiIol43ZXuGO0B6FsVNufn1TIiIiIicjXd3QWm8hXIHm//b18icjyv63Tbqye3tRJR1/i9IiIiIiJvwU43ERERERERubQbL9rYcjeHq9y1zGe6iYiIiIiIiCTCTjcRERERERGRRGS9vXzz5s3YuHEjqqurMWrUKOTk5OC///u/5QyJiMglsH0k8k7OGPPCVW637Cm2j0TkbmTrdL/77rtITU3F5s2bMWnSJPzhD39AUlISvvrqKwwaNEiusIiIZMf2kYjIOk9uHznIKJHj2fu9kuqkpGy3l2/atAkLFy7EE088gZEjRyInJwdRUVHYsmWLXCEREbkEto9ERNaxfSQidyTLle6WlhaUlZVh1apVZumJiYkoKSmxyK/X66HX603L9fX1AIAffvgBBoPBps80GAxoamqCn8EHrW2eNVehX5tAU1Obx5XNU8sFsGzO8P3339uc98qVKwAAIYRU4djM3vYR6H0b6cnto71c5fiVG+uhnafWgz3tI+A6baQc7SPwYxs5dvUe6CU8Dhz9o9xdj1/G7XzuGrsUcUvWPgoZXLp0SQAQ//u//2uW/uKLL4phw4ZZ5F+7dq0AwBdffPEl6evChQvOagY7ZW/7KATbSL744ss5L7nbSLaPfPHFl6u+umsfZR1ITaEwPyMhhLBIA4D09HSkpaWZltva2vDDDz8gPDzcan5rGhoaEBUVhQsXLiAkJKR3gbsYTy2bp5YLYNlcjRACV65cgUajkTsUE1vbR6D3baQ77jOpsC7asR7asR7auVob6cz2EXDf44BxO5e7xg24b+yuELet7aMsne7+/fvD19cXNTU1Zum1tbWIiIiwyK9SqaBSqczS+vbt26PPDgkJcauDyR6eWjZPLRfAsrmS0NBQuUMAYH/7CDiujXS3fSYl1kU71kM71oNrtJFyto+A+x4HjNu53DVuwH1jlztuW9pHWQZS8/f3x7hx46DT6czSdTodJk6cKEdIREQuge0jEZF1bB+JyF3Jdnt5WloaHnvsMcTFxeGuu+7C1q1bcf78efzmN7+RKyQiIpfA9pGIyDq2j0TkjmTrdD/88MP4/vvv8cILL6C6uhoxMTHYv38/Bg8eLMnnqVQqrF271uIWI0/gqWXz1HIBLBt1je2jfFgX7VgP7VgPrsfZ7SPgvscB43Yud40bcN/Y3SluhRAuMEcOERERERERkQeS5ZluIiIiIiIiIm/ATjcRERERERGRRNjpJiIiIiIiIpIIO91EREREREREEvGKTvfmzZsxdOhQBAQEYNy4cfj000/lDqnXtFotFAqF2UutVssdVo8cOXIE06dPh0ajgUKhwN69e83eF0JAq9VCo9EgMDAQ8fHxOHXqlDzB2qm7si1YsMBiP/70pz+VJ1g7ZGVl4c4770RwcDAGDBiABx54AKdPnzbL4877zdt4YhvZFR6/1mVlZUGhUCA1NdWU5i31cOnSJTz66KMIDw9HUFAQxo4di7KyMtP73lIP3sQRvz30ej2WLl2K/v37o0+fPpgxYwYuXrwoW9wGgwErV67E6NGj0adPH2g0GsybNw/fffed2Tbi4+MtfnvMnj1btrgB234PyVHftsR+Y9zG18aNG015nF3njvo7J0eddxe7Kx/nXfH4Tve7776L1NRUrF69Gp9//jn++7//G0lJSTh//rzcofXaqFGjUF1dbXp9+eWXcofUI1evXsWYMWOQl5dn9f3s7Gxs2rQJeXl5KC0thVqtRkJCAq5cueLkSO3XXdkA4Gc/+5nZfty/f78TI+yZ4uJiLFmyBMeOHYNOp8P169eRmJiIq1evmvK4837zJp7cRnaGx6+l0tJSbN26FbfffrtZujfUQ11dHSZNmgSlUokPP/wQX331FV555RX07dvXlMcb6sHbOOK3R2pqKgoLC7F7924cPXoUjY2NSE5ORmtrqyxxNzU14eTJk1izZg1OnjyJPXv24MyZM5gxY4ZF3ieffNLst8cf/vAHyWLuLm6j7n4PyVHftsTeMebq6mr86U9/gkKhwC9+8QuzfM6sc0f9nZOjzruL3ZWP8y4JDzd+/Hjxm9/8xixtxIgRYtWqVTJF5Bhr164VY8aMkTsMhwMgCgsLTcttbW1CrVaLl156yZR27do1ERoaKt544w0ZIuy5G8smhBDz588XM2fOlCUeR6qtrRUARHFxsRDCs/abp/PUNtIe3n78XrlyRURHRwudTicmT54snnnmGSGE99TDypUrxd13393p+95SD96sJ789Ll++LJRKpdi9e7cpz6VLl4SPj4/46KOPZInbmuPHjwsAoqqqypTW8Xsuh578HnKF+hbCtjqfOXOmuO+++8zS5K7znvydc5U6vzF2a1zxOL+RR1/pbmlpQVlZGRITE83SExMTUVJSIlNUjvPNN99Ao9Fg6NChmD17Nr799lu5Q3K4yspK1NTUmO1DlUqFyZMne8Q+BIDDhw9jwIABGDZsGJ588knU1tbKHZLd6uvrAQBhYWEAvGO/eQJPbyNt5e3H75IlSzBt2jTcf//9ZuneUg/79u1DXFwcfvnLX2LAgAGIjY3Fm2++aXrfW+qBfmTLPi8rK4PBYDDLo9FoEBMT41LHRX19PRQKhdmdGwDwzjvvoH///hg1ahSWL1/uEndtdPV7yF3q+1//+hc++OADLFy40OI9Oeu8J3/nXKXOb4y9szyufpz7yfbJTvCf//wHra2tiIiIMEuPiIhATU2NTFE5xoQJE/DWW29h2LBh+Ne//oX169dj4sSJOHXqFMLDw+UOz2GM+8naPqyqqpIjJIdKSkrCL3/5SwwePBiVlZVYs2YN7rvvPpSVlUGlUskdnk2EEEhLS8Pdd9+NmJgYAJ6/3zyFJ7eRtvL243f37t04efIkSktLLd7zlnr49ttvsWXLFqSlpeH555/H8ePH8fTTT0OlUmHevHleUw/0I1v2eU1NDfz9/dGvXz+LPK7Sfl67dg2rVq3CnDlzEBISYkqfO3cuhg4dCrVajYqKCqSnp+OLL76ATqeTLdbufg+5Q30DwI4dOxAcHIxZs2aZpctZ5z39O+cKdW4t9hu5y3Hu0Z1uI4VCYbYshLBIczdJSUmm/48ePRp33XUXfvKTn2DHjh1IS0uTMTJpeOI+BICHH37Y9P+YmBjExcVh8ODB+OCDDywabFf11FNP4R//+AeOHj1q8Z6n7jdP4837yZuP3wsXLuCZZ55BUVERAgICOs3n6fXQ1taGuLg4ZGZmAgBiY2Nx6tQpbNmyBfPmzTPl8/R6IEs92eeuclwYDAbMnj0bbW1t2Lx5s9l7Tz75pOn/MTExiI6ORlxcHE6ePIk77rjD2aEC6PnvIVepb6M//elPmDt3rkWbKmedO/rvnDPrvKvYAfc6zj369vL+/fvD19fX4mxMbW2txZkdd9enTx+MHj0a33zzjdyhOJRxRHZv2IcAEBkZicGDB7vNfly6dCn27duHQ4cOYeDAgaZ0b9tv7sqb2khrvP34LSsrQ21tLcaNGwc/Pz/4+fmhuLgY//M//wM/Pz9TWT29HiIjI3HbbbeZpY0cOdI0mKC3HA/0I1v2uVqtRktLC+rq6jrNIxeDwYCUlBRUVlZCp9OZXf2z5o477oBSqXSp3x43/h5y5fo2+vTTT3H69Gk88cQT3eZ1Vp335u+c3HXeWexG7nace3Sn29/fH+PGjbO4jUCn02HixIkyRSUNvV6Pr7/+GpGRkXKH4lDG20I67sOWlhYUFxd73D4EgO+//x4XLlxw+f0ohMBTTz2FPXv24JNPPsHQoUPN3ve2/eauvKmN7IjHb7spU6bgyy+/RHl5uekVFxeHuXPnory8HLfeeqtX1MOkSZMsptI5c+YMBg8eDMB7jgf6kS37fNy4cVAqlWZ5qqurUVFRIetxYeyIfPPNNzh48KBNjxyeOnUKBoPBpX573Ph7yFXru6Nt27Zh3LhxGDNmTLd5pa5zR/ydk6vOu4sdcNPj3Lnjtjnf7t27hVKpFNu2bRNfffWVSE1NFX369BHnzp2TO7ReWbZsmTh8+LD49ttvxbFjx0RycrIIDg52y3JduXJFfP755+Lzzz8XAMSmTZvE559/bhqB8KWXXhKhoaFiz5494ssvvxSPPPKIiIyMFA0NDTJH3r2uynblyhWxbNkyUVJSIiorK8WhQ4fEXXfdJW655RaXL9tvf/tbERoaKg4fPiyqq6tNr6amJlMed95v3sRT28iu8Pjt3I2jvXpDPRw/flz4+fmJF198UXzzzTfinXfeEUFBQWLnzp2mPN5QD97GEb89fvOb34iBAweKgwcPipMnT4r77rtPjBkzRly/fl2WuA0Gg5gxY4YYOHCgKC8vN2vf9Hq9EEKIs2fPioyMDFFaWioqKyvFBx98IEaMGCFiY2Nli9vW30Ny1Hd3sRvV19eLoKAgsWXLFov15ahzR/2dk6POu4vdlY/zrnh8p1sIIV5//XUxePBg4e/vL+64444uh5x3Fw8//LCIjIwUSqVSaDQaMWvWLHHq1Cm5w+qRQ4cOCQAWr/nz5wsh2qc1WLt2rVCr1UKlUol77rlHfPnll/IGbaOuytbU1CQSExPFzTffLJRKpRg0aJCYP3++OH/+vNxhd8tamQCI7du3m/K4837zNp7YRnaFx2/nbux0e0s9vPfeeyImJkaoVCoxYsQIsXXrVrP3vaUevIkjfns0NzeLp556SoSFhYnAwECRnJws+d/wruKurKzstH07dOiQEEKI8+fPi3vuuUeEhYUJf39/8ZOf/EQ8/fTT4vvvv5ctblt/D8lR393FbvSHP/xBBAYGisuXL1usL0edO+rvnBx13l3srnycd0UhhBA9v05ORERERERERJ3x6Ge6iYiIiIiIiOTETjcRERERERGRRNjpJiIiIiIiIpIIO91EREREREREEmGnm4iIiIiIiEgi7HQTERERERERSYSdbiIiIiIiIiKJsNNNREREREREJBF2uomIiIiIiIgkwk43ERERERERkUTY6SYiIiIiIiKSCDvdRERERERERBL5/7Y5gdCQWFUNAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# sample size\n", - "N = 1000\n", - "\n", - "# define the mean mu and standard deviation sigma of the demand for each class\n", - "mu = demand.mean()\n", - "sigma = {\"F\": 4, \"B\": 16, \"E\": 20}\n", - "classes = demand.columns\n", - "\n", - "# build covariance matrix from covariances and correlations\n", - "s = np.array(list(sigma.values()))\n", - "S = np.diag(s) @ np.diag(s)\n", - "print(\"\\nModel Covariance\")\n", - "df = pd.DataFrame(S, index=classes, columns=classes)\n", - "display(df)\n", - "\n", - "# generate N samples, round each demand entry to nearest integer, and correct non-negative values\n", - "seed = 0\n", - "rng = np.random.default_rng(seed)\n", - "samples = rng.multivariate_normal(list(mu), S, N).round()\n", - "demand_saa = pd.DataFrame(samples, columns=classes)\n", - "demand_saa[demand_saa < 0] = 0\n", - "\n", - "# report sample means and standard deviations for each class\n", - "demand_saa_stats = pd.DataFrame(\n", - " {\n", - " \"mu (mean)\": mu,\n", - " \"sample mean\": demand_saa.mean(),\n", - " \"sigma (std)\": sigma,\n", - " \"sample std\": demand_saa.std(),\n", - " }\n", - ")\n", - "display(demand_saa_stats)\n", - "\n", - "fig, ax = plt.subplots(1, 3, figsize=(10, 3))\n", - "for i, ci in enumerate(classes):\n", - " demand_saa[ci].hist(ax=ax[i], bins=20)\n", - " ax[i].set_title(f\"Histogram demand class {ci}\")\n", - "fig.tight_layout()" - ] - }, - { - "cell_type": "markdown", - "id": "5050323e", - "metadata": {}, - "source": [ - "We also introduce a new function to report the solution and its features in this more general continuous demand case." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "6e70be11", - "metadata": {}, - "outputs": [], - "source": [ - "# function to report analytics for SAA case\n", - "def seat_report_saa(seats, demand):\n", - " classes = seats.index\n", - "\n", - " # report seat allocation\n", - " equivalent_seats = pd.DataFrame(\n", - " {\n", - " \"seat allocation\": {c: seats[c] for c in classes},\n", - " \"economy equivalent seat allocation\": {\n", - " c: seats[c] * seat_factor[c] for c in classes\n", - " },\n", - " }\n", - " ).T\n", - " equivalent_seats[\"TOTAL\"] = equivalent_seats.sum(axis=1)\n", - " print(\"\\nSeat Allocation\")\n", - " display(equivalent_seats)\n", - "\n", - " # tickets sold\n", - " tickets = pd.DataFrame()\n", - " for c in classes:\n", - " tickets[c] = np.minimum(seats[c], demand[c])\n", - "\n", - " print(\"\\nMean Tickets Sold\")\n", - " display(tickets.mean())\n", - "\n", - " # seats unsold\n", - " unsold = pd.DataFrame()\n", - " for c in classes:\n", - " unsold[c] = seats[c] - tickets[c]\n", - " print(\"\\nMean Seats not Sold\")\n", - " display(unsold.mean())\n", - "\n", - " # spillage (unmet demand)\n", - " spillage = demand - tickets\n", - " print(\"\\nMean Spillage (Unfulfilled Demand)\")\n", - " display(spillage.mean())\n", - "\n", - " # compute revenue\n", - " revenue = tickets.dot(revenue_factor)\n", - " print(\n", - " f\"\\nExpected Revenue (in units of economy ticket price): {revenue.mean():.2f}\"\n", - " )\n", - "\n", - " # charts\n", - " fig, ax = plt.subplots(1, 1, figsize=(8, 4))\n", - " revenue.hist(ax=ax, bins=20)\n", - " ax.set_title(\"Revenue Histogram\")\n", - "\n", - " fig, ax = plt.subplots(1, 3, figsize=(12, 3))\n", - " for i, c in enumerate(classes):\n", - " tickets[c].hist(ax=ax[i], bins=20, alpha=0.4)\n", - " demand[c].hist(ax=ax[i], alpha=0.4)\n", - " ax[i].legend([\"Tickets Sold\", \"Demand\"])\n", - " ax[i].set_xlim(0, 300)\n", - "\n", - " fig.tight_layout()\n", - " return" - ] - }, - { - "cell_type": "markdown", - "id": "a4b47726", - "metadata": {}, - "source": [ - "We can now solve the stochastic optimization problem using the generated $N=1000$ scenarios. Note that we can use the previously defined function ``airline_stochastic`` to solve the model by simply calling it with a different dataframe as argument." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "7f100de8", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Seat Allocation\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBETOTAL
seat allocation11.020.0148.0179.0
economy equivalent seat allocation22.030.0148.0200.0
\n", - "
" - ], - "text/plain": [ - " F B E TOTAL\n", - "seat allocation 11.0 20.0 148.0 179.0\n", - "economy equivalent seat allocation 22.0 30.0 148.0 200.0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Mean Tickets Sold\n" - ] - }, - { - "data": { - "text/plain": [ - "F 9.764\n", - "B 17.416\n", - "E 147.056\n", - "dtype: float64" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Mean Seats not Sold\n" - ] - }, - { - "data": { - "text/plain": [ - "F 1.236\n", - "B 2.584\n", - "E 0.944\n", - "dtype: float64" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Mean Spillage (Unfulfilled Demand)\n" - ] - }, - { - "data": { - "text/plain": [ - "F 2.125\n", - "B 11.210\n", - "E 25.910\n", - "dtype: float64" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Expected Revenue (in units of economy ticket price): 211.18\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqQAAAF0CAYAAAD1kCsbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAuKUlEQVR4nO3dfVTUZd7H8c/IwwAKJJAMJD7svfaItqZlaZuaiFpqLXWsdEv32N2D6R2px1LbFXsAozuzdLXaTCuPUbtluaurYCll5h0+bWqtPZllQZQioOAwwHX/0TqnCRRGgWvQ9+scjjvXfOf6Xb/fN+uz129mcBhjjAAAAABL2theAAAAAM5sBFIAAABYRSAFAACAVQRSAAAAWEUgBQAAgFUEUgAAAFhFIAUAAIBVBFIAAABYRSAFAACAVQRSAE1i6dKlcjgc3p/g4GAlJCTo5ptv1meffWZ7eQFr3Lhxateu3XGfb9euncaNG+d9/NVXX8nhcGjp0qV+HWf58uWaN2/eyS0SAJpZsO0FADi9LFmyROeff76OHj2q999/X48++qjWr1+vf//732rfvr3t5bV6CQkJ+uCDD/Rf//Vffr1u+fLl2rVrl9LT05tnYQBwCgikAJpUcnKyevfuLUkaMGCAampqNGvWLL355pv6wx/+YHl1rZ/T6dTll19uexl+q6ioUEREhO1lAAhQ3LIH0KyOhdPvv//eZ3zLli0aOXKkYmJiFBYWpp49e+q1117zPv+vf/1LDodDixcvrjPnP//5TzkcDq1cudI79tlnn2n06NHq0KGDnE6nLrjgAv35z3/2ed2GDRvkcDj0yiuvaObMmUpMTFRUVJRSUlK0Z88en9ouXbr43Co/ZsCAARowYIDPWFlZmaZOnaquXbsqNDRU55xzjtLT03XkyJFGXSN/1HfL/ocfftAdd9yhpKQkOZ1OnX322erXr5/WrVvnXfOqVau0b98+n7dVHHPw4EFNmDBB55xzjkJDQ/WrX/1KM2fOlNvt9jn2oUOHNH78eMXExKhdu3a69tpr9eWXX8rhcCgjI8Nbl5GRIYfDoW3btunGG29U+/btvTu6W7Zs0c0336wuXbooPDxcXbp00S233KJ9+/b5HOvYW0Deeecd/fd//7diY2MVFRWl2267TUeOHFFRUZFGjRqls846SwkJCZo6dao8Hk8TX20ALYUdUgDNau/evZKkc8891zu2fv16DR06VH369NEzzzyj6Oho5eTk6KabblJFRYXGjRuniy++WD179tSSJUs0fvx4nzmXLl2qDh066JprrpEkffzxx+rbt686deqkJ554Qi6XS2vXrtX//M//6Mcff9SsWbN8Xj9jxgz169dPzz//vMrKynT//fdrxIgR+uSTTxQUFOTX+VVUVKh///7av3+/ZsyYoR49emj37t3605/+pJ07d2rdunU+4e94qqur/Truz916663atm2bHn30UZ177rk6dOiQtm3bpgMHDkiSFi5cqDvuuENffPGFVqxY4fPao0ePauDAgfriiy80e/Zs9ejRQ++9956ysrK0Y8cOrVq1SpJUW1urESNGaMuWLcrIyNAll1yiDz74QEOHDj3uutLS0nTzzTfrrrvu8obzr776Suedd55uvvlmxcTEqLCwUIsWLdKll16qjz/+WHFxcT5z3H777UpLS1NOTo62b9+uGTNmqLq6Wnv27FFaWpruuOMOrVu3To899pgSExM1efLkk76OACwyANAElixZYiSZzZs3G4/HY8rLy82aNWuMy+UyV111lfF4PN7a888/3/Ts2dNnzBhjhg8fbhISEkxNTY0xxpinn37aSDJ79uzx1hw8eNA4nU4zZcoU79iQIUNMx44dTWlpqc98EydONGFhYebgwYPGGGPWr19vJJlrrrnGp+61114zkswHH3zgHevcubMZO3ZsnfPs37+/6d+/v/dxVlaWadOmjSkoKPCp+9vf/mYkmdWrV5/ospmxY8caSSf8+fk69u7daySZJUuWeMfatWtn0tPTT3ica6+91nTu3LnO+DPPPGMkmddee81n/LHHHjOSTG5urjHGmFWrVhlJZtGiRT51WVlZRpKZNWuWd2zWrFlGkvnTn/50wjUZY0x1dbU5fPiwadu2rXnqqae848f+eZo0aZJP/fXXX28kmblz5/qM/+Y3vzGXXHJJg8cDEJi4ZQ+gSV1++eUKCQlRZGSkhg4dqvbt2+utt95ScPBPN2Q+//xz/fvf/9aYMWMk/bQzeOznmmuuUWFhoff2+ZgxY+R0On1uT7/yyityu93e96MePXpUb7/9tn73u98pIiKiznxHjx7V5s2bfdY4cuRIn8c9evSQpDq3jRvjH//4h5KTk/Wb3/zG59hDhgyRw+HQhg0bGpwjPDxcBQUF9f6Eh4c3+PrLLrtMS5cu1SOPPKLNmzf7dev6nXfeUdu2bXXjjTf6jB97u8Lbb78tScrPz5ckjRo1yqfulltuOe7cN9xwQ52xw4cP6/7779evf/1rBQcHKzg4WO3atdORI0f0ySef1KkfPny4z+MLLrhAknTttdfWGT+Z/gEIDARSAE3qpZdeUkFBgd555x3deeed+uSTT3xCy7H3kk6dOlUhISE+PxMmTJAk/fjjj5KkmJgYjRw5Ui+99JJqamok/XS7/rLLLtNFF10kSTpw4ICqq6s1f/78OvMdu6V/bL5jYmNjfR47nU5JUmVlpd/n+/333+ujjz6qc+zIyEgZY+ocuz5t2rRR79696/1p06bhf02/+uqrGjt2rJ5//nldccUViomJ0W233aaioqIGX3vgwAG5XK46byvo0KGDgoODvbf9Dxw4oODgYMXExPjUxcfHH3fuhISEOmOjR4/WggULdPvtt2vt2rX68MMPVVBQoLPPPrve6//L44WGhh53/OjRoyc4UwCBjPeQAmhSF1xwgfeDTAMHDlRNTY2ef/55/e1vf9ONN97ofY/g9OnTlZaWVu8c5513nvd//+EPf9Bf//pX5eXlqVOnTiooKNCiRYu8z7dv315BQUG69dZbdc8999Q7X9euXf0+j7CwsDof6pF+Crc/f59jXFycwsPD9cILL9Q7zy/fE9kc4uLiNG/ePM2bN09ff/21Vq5cqQceeEDFxcVas2bNCV8bGxur//u//5MxxieUFhcXq7q62rv+2NhYVVdX6+DBgz5h8ESh95cht7S0VP/4xz80a9YsPfDAA95xt9utgwcP+nXOAE4vBFIAzSo7O1uvv/66/vSnPyktLU3nnXeeunXrpn/961/KzMxs8PWpqak655xztGTJEnXq1ElhYWE+O64REREaOHCgtm/frh49enh30E5Vly5d9NFHH/mMffrpp9qzZ49PyBw+fLgyMzMVGxt7UsG3qXXq1EkTJ07U22+/rffff9877nQ6692BHDRokF577TW9+eab+t3vfucdf+mll7zPS1L//v2VnZ2tV199VXfffbe3Licnp9FrczgcMsZ4d6SPef7557074ADOTARSAM2qffv2mj59uqZNm6bly5fr97//vZ599lkNGzZMQ4YM0bhx43TOOefo4MGD+uSTT7Rt2zb99a9/9b4+KChIt912m+bOnauoqCilpaUpOjra5xhPPfWUrrzySv32t7/V3XffrS5duqi8vFyff/65/v73v+udd97xe9233nqrfv/732vChAm64YYbtG/fPmVnZ+vss8/2qUtPT9frr7+uq666Svfdd5969Oih2tpaff3118rNzdWUKVPUp0+fk7t4jVBaWqqBAwdq9OjROv/88xUZGamCggKtWbPGZwe6e/fueuONN7Ro0SL16tXL+zaB2267TX/+8581duxYffXVV+revbs2btyozMxMXXPNNUpJSZEkDR06VP369dOUKVNUVlamXr166YMPPvAG18a8tSAqKkpXXXWVHn/8ccXFxalLly7Kz8/X4sWLddZZZzXL9QHQOhBIATS7SZMmacGCBXrooYd0yy23aODAgfrwww/16KOPKj09XSUlJYqNjdWFF15Y50Mz0k+37bOysvTDDz/U++X6F154obZt26aHH35YDz74oIqLi3XWWWepW7du3veR+mv06NH67rvv9Mwzz2jJkiVKTk7WokWLNHv2bJ+6tm3b6r333tOcOXP03HPPae/evQoPD1enTp2UkpKiLl26nNTxGyssLEx9+vTRyy+/rK+++koej0edOnXS/fffr2nTpnnr7r33Xu3evVszZsxQaWmpjDEyxigsLEzr16/XzJkz9fjjj+uHH37QOeeco6lTp/p8XVabNm3097//XVOmTNGcOXNUVVWlfv36admyZbr88ssbHSiXL1+ue++9V9OmTVN1dbX69eunvLy8Oh9SAnBmcRhjjO1FAABap+XLl2vMmDF6//331bdvX9vLAdBKEUgBAI3yyiuv6Ntvv1X37t3Vpk0bbd68WY8//rh69uzp/VooADgZ3LIHADRKZGSkcnJy9Mgjj+jIkSNKSEjQuHHj9Mgjj9heGoBWjh1SAAAAWMUX4wMAAMAqAikAAACsIpACAADAqlb5oaba2lp99913ioyMrPOr6QAAAGCfMUbl5eVKTExs8JdntMpA+t133ykpKcn2MgAAANCAb775Rh07djxhTasMpJGRkZJ+OsGoqCjLqwkcHo9Hubm5Sk1NVUhIiO3l4D/oS2CiL4GL3gQm+hK4ArU3ZWVlSkpK8ua2E2mVgfTYbfqoqCgC6c94PB5FREQoKioqoP6BPNPRl8BEXwIXvQlM9CVwBXpvGvP2Sj7UBAAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAqwikAAAAsIpACgAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAqwikAAAAsCrY9gIAAADOVF0eWHXKcziDjLIvk5Iz1spd4zhh7Vdzrj3l4zUHdkgBAABgFYEUAAAAVhFIAQAAYBWBFAAAAFYRSAEAAGAVgRQAAABWEUgBAABgFYEUAAAAVhFIAQAAYBWBFAAAAFYRSAEAAGAVgRQAAABWEUgBAABgFYEUAAAAVhFIAQAAYNUpBdKsrCw5HA6lp6d7x4wxysjIUGJiosLDwzVgwADt3r3b53Vut1uTJk1SXFyc2rZtq5EjR2r//v2nshQAAAC0UicdSAsKCvTcc8+pR48ePuPZ2dmaO3euFixYoIKCArlcLg0ePFjl5eXemvT0dK1YsUI5OTnauHGjDh8+rOHDh6umpubkzwQAAACt0kkF0sOHD2vMmDH6y1/+ovbt23vHjTGaN2+eZs6cqbS0NCUnJ+vFF19URUWFli9fLkkqLS3V4sWL9cQTTyglJUU9e/bUsmXLtHPnTq1bt65pzgoAAACtRvDJvOiee+7Rtddeq5SUFD3yyCPe8b1796qoqEipqaneMafTqf79+2vTpk268847tXXrVnk8Hp+axMREJScna9OmTRoyZEid47ndbrndbu/jsrIySZLH45HH4zmZUzgtHbsWXJPAQl8CE30JXPQmMNGX5uEMMqc+Rxvj8+eJtGT//DmW34E0JydH27ZtU0FBQZ3nioqKJEnx8fE+4/Hx8dq3b5+3JjQ01Gdn9VjNsdf/UlZWlmbPnl1nPDc3VxEREf6ewmkvLy/P9hJQD/oSmOhL4KI3gYm+NK3sy5purod71zZYs3r16qY7YAMqKioaXetXIP3mm2907733Kjc3V2FhYcetczgcPo+NMXXGfulENdOnT9fkyZO9j8vKypSUlKTU1FRFRUX5cQanN4/Ho7y8PA0ePFghISG2l4P/oC+Bib4ELnoTmOhL80jOWHvKczjbGD3cu1Z/3NJG7toT561dGXXvRDeXY3e0G8OvQLp161YVFxerV69e3rGamhq9++67WrBggfbs2SPpp13QhIQEb01xcbF319TlcqmqqkolJSU+u6TFxcXq27dvvcd1Op1yOp11xkNCQvhLUQ+uS2CiL4GJvgQuehOY6EvTctecOED6NVeto8H5WrJ3/hzLrw81DRo0SDt37tSOHTu8P71799aYMWO0Y8cO/epXv5LL5fLZzq+qqlJ+fr43bPbq1UshISE+NYWFhdq1a9dxAykAAABOX37tkEZGRio5OdlnrG3btoqNjfWOp6enKzMzU926dVO3bt2UmZmpiIgIjR49WpIUHR2t8ePHa8qUKYqNjVVMTIymTp2q7t27KyUlpYlOCwAAAK3FSX3K/kSmTZumyspKTZgwQSUlJerTp49yc3MVGRnprXnyyScVHBysUaNGqbKyUoMGDdLSpUsVFBTU1MsBAABAgDvlQLphwwafxw6HQxkZGcrIyDjua8LCwjR//nzNnz//VA8PAACAVo7fZQ8AAACrCKQAAACwikAKAAAAqwikAAAAsIpACgAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAqwikAAAAsIpACgAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAqwikAAAAsIpACgAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAqwikAAAAsIpACgAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAqwikAAAAsIpACgAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAqwikAAAAsIpACgAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAqwikAAAAsIpACgAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAqwikAAAAsIpACgAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAqwikAAAAsIpACgAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAq/wKpIsWLVKPHj0UFRWlqKgoXXHFFfrnP//pfd4Yo4yMDCUmJio8PFwDBgzQ7t27feZwu92aNGmS4uLi1LZtW40cOVL79+9vmrMBAABAq+NXIO3YsaPmzJmjLVu2aMuWLbr66qt13XXXeUNndna25s6dqwULFqigoEAul0uDBw9WeXm5d4709HStWLFCOTk52rhxow4fPqzhw4erpqamac8MAAAArYJfgXTEiBG65pprdO655+rcc8/Vo48+qnbt2mnz5s0yxmjevHmaOXOm0tLSlJycrBdffFEVFRVavny5JKm0tFSLFy/WE088oZSUFPXs2VPLli3Tzp07tW7dumY5QQAAAAS2k34PaU1NjXJycnTkyBFdccUV2rt3r4qKipSamuqtcTqd6t+/vzZt2iRJ2rp1qzwej09NYmKikpOTvTUAAAA4swT7+4KdO3fqiiuu0NGjR9WuXTutWLFCF154oTdQxsfH+9THx8dr3759kqSioiKFhoaqffv2dWqKioqOe0y32y232+19XFZWJknyeDzyeDz+nsJp69i14JoEFvoSmOhL4KI3gYm+NA9nkDn1OdoYnz9PpCX758+x/A6k5513nnbs2KFDhw7p9ddf19ixY5Wfn+993uFw+NQbY+qM/VJDNVlZWZo9e3ad8dzcXEVERPh5Bqe/vLw820tAPehLYKIvgYveBCb60rSyL2u6uR7uXdtgzerVq5vugA2oqKhodK3fgTQ0NFS//vWvJUm9e/dWQUGBnnrqKd1///2SftoFTUhI8NYXFxd7d01dLpeqqqpUUlLis0taXFysvn37HveY06dP1+TJk72Py8rKlJSUpNTUVEVFRfl7Cqctj8ejvLw8DR48WCEhIbaXg/+gL4GJvgQuehOY6EvzSM5Ye8pzONsYPdy7Vn/c0kbu2hNvAu7KGHLKx2usY3e0G8PvQPpLxhi53W517dpVLpdLeXl56tmzpySpqqpK+fn5euyxxyRJvXr1UkhIiPLy8jRq1ChJUmFhoXbt2qXs7OzjHsPpdMrpdNYZDwkJ4S9FPbgugYm+BCb6ErjoTWCiL03LXXPiAOnXXLWOBudryd75cyy/AumMGTM0bNgwJSUlqby8XDk5OdqwYYPWrFkjh8Oh9PR0ZWZmqlu3burWrZsyMzMVERGh0aNHS5Kio6M1fvx4TZkyRbGxsYqJidHUqVPVvXt3paSk+HeWAAAAOC34FUi///573XrrrSosLFR0dLR69OihNWvWaPDgwZKkadOmqbKyUhMmTFBJSYn69Omj3NxcRUZGeud48sknFRwcrFGjRqmyslKDBg3S0qVLFRQU1LRnBgAAgFbBr0C6ePHiEz7vcDiUkZGhjIyM49aEhYVp/vz5mj9/vj+HBgAAwGmK32UPAAAAqwikAAAAsIpACgAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAqwikAAAAsIpACgAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAqwikAAAAsIpACgAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAqwikAAAAsIpACgAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAqwikAAAAsIpACgAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAqwikAAAAsIpACgAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAqwikAAAAsIpACgAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAqwikAAAAsIpACgAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAqwikAAAAsIpACgAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAqwikAAAAsIpACgAAAKv8CqRZWVm69NJLFRkZqQ4dOuj666/Xnj17fGqMMcrIyFBiYqLCw8M1YMAA7d6926fG7XZr0qRJiouLU9u2bTVy5Ejt37//1M8GAAAArY5fgTQ/P1/33HOPNm/erLy8PFVXVys1NVVHjhzx1mRnZ2vu3LlasGCBCgoK5HK5NHjwYJWXl3tr0tPTtWLFCuXk5Gjjxo06fPiwhg8frpqamqY7MwAAALQKwf4Ur1mzxufxkiVL1KFDB23dulVXXXWVjDGaN2+eZs6cqbS0NEnSiy++qPj4eC1fvlx33nmnSktLtXjxYr388stKSUmRJC1btkxJSUlat26dhgwZ0kSnBgAAgNbglN5DWlpaKkmKiYmRJO3du1dFRUVKTU311jidTvXv31+bNm2SJG3dulUej8enJjExUcnJyd4aAAAAnDn82iH9OWOMJk+erCuvvFLJycmSpKKiIklSfHy8T218fLz27dvnrQkNDVX79u3r1Bx7/S+53W653W7v47KyMkmSx+ORx+M52VM47Ry7FlyTwEJfAhN9CVz0JjDRl+bhDDKnPkcb4/PnibRk//w51kkH0okTJ+qjjz7Sxo0b6zzncDh8Hhtj6oz90olqsrKyNHv27Drjubm5ioiI8GPVZ4a8vDzbS0A96Etgoi+Bi94EJvrStLIva7q5Hu5d22DN6tWrm+6ADaioqGh07UkF0kmTJmnlypV699131bFjR++4y+WS9NMuaEJCgne8uLjYu2vqcrlUVVWlkpISn13S4uJi9e3bt97jTZ8+XZMnT/Y+LisrU1JSklJTUxUVFXUyp3Ba8ng8ysvL0+DBgxUSEmJ7OfgP+hKY6EvgojeBib40j+SMtac8h7ON0cO9a/XHLW3krj3xBuCujJb7rM6xO9qN4VcgNcZo0qRJWrFihTZs2KCuXbv6PN+1a1e5XC7l5eWpZ8+ekqSqqirl5+frsccekyT16tVLISEhysvL06hRoyRJhYWF2rVrl7Kzs+s9rtPplNPprDMeEhLCX4p6cF0CE30JTPQlcNGbwERfmpa75sQB0q+5ah0NzteSvfPnWH4F0nvuuUfLly/XW2+9pcjISO97PqOjoxUeHi6Hw6H09HRlZmaqW7du6tatmzIzMxUREaHRo0d7a8ePH68pU6YoNjZWMTExmjp1qrp37+791D0AAADOHH4F0kWLFkmSBgwY4DO+ZMkSjRs3TpI0bdo0VVZWasKECSopKVGfPn2Um5uryMhIb/2TTz6p4OBgjRo1SpWVlRo0aJCWLl2qoKCgUzsbAAAAtDp+37JviMPhUEZGhjIyMo5bExYWpvnz52v+/Pn+HB4AAACnIX6XPQAAAKwikAIAAMAqAikAAACsIpACAADAKgIpAAAArCKQAgAAwCoCKQAAAKwikAIAAMAqAikAAACsIpACAADAKgIpAAAArCKQAgAAwCoCKQAAAKwikAIAAMAqAikAAACsIpACAADAKgIpAAAArCKQAgAAwCoCKQAAAKwikAIAAMAqAikAAACsIpACAADAKgIpAAAArCKQAgAAwCoCKQAAAKwikAIAAMAqAikAAACsIpACAADAKgIpAAAArCKQAgAAwCoCKQAAAKwikAIAAMAqAikAAACsIpACAADAKgIpAAAArCKQAgAAwCoCKQAAAKwikAIAAMAqAikAAACsIpACAADAKgIpAAAArCKQAgAAwCoCKQAAAKwikAIAAMAqAikAAACsIpACAADAKgIpAAAArCKQAgAAwCoCKQAAAKwikAIAAMAqAikAAACsIpACAADAKgIpAAAArCKQAgAAwCoCKQAAAKwikAIAAMAqAikAAACsIpACAADAKr8D6bvvvqsRI0YoMTFRDodDb775ps/zxhhlZGQoMTFR4eHhGjBggHbv3u1T43a7NWnSJMXFxalt27YaOXKk9u/ff0onAgAAgNbJ70B65MgRXXzxxVqwYEG9z2dnZ2vu3LlasGCBCgoK5HK5NHjwYJWXl3tr0tPTtWLFCuXk5Gjjxo06fPiwhg8frpqampM/EwAAALRKwf6+YNiwYRo2bFi9zxljNG/ePM2cOVNpaWmSpBdffFHx8fFavny57rzzTpWWlmrx4sV6+eWXlZKSIklatmyZkpKStG7dOg0ZMuQUTgcAAACtjd+B9ET27t2roqIipaamesecTqf69++vTZs26c4779TWrVvl8Xh8ahITE5WcnKxNmzbVG0jdbrfcbrf3cVlZmSTJ4/HI4/E05Sm0aseuBdcksNCXwERfAhe9CUz0pXk4g8ypz9HG+Px5Ii3ZP3+O1aSBtKioSJIUHx/vMx4fH699+/Z5a0JDQ9W+ffs6Ncde/0tZWVmaPXt2nfHc3FxFREQ0xdJPK3l5ebaXgHrQl8BEXwIXvQlM9KVpZV/WdHM93Lu2wZrVq1c33QEbUFFR0ejaJg2kxzgcDp/Hxpg6Y790oprp06dr8uTJ3sdlZWVKSkpSamqqoqKiTn3BpwmPx6O8vDwNHjxYISEhtpeD/6AvgYm+BC56E5joS/NIzlh7ynM42xg93LtWf9zSRu7aE+etXRkt99bIY3e0G6NJA6nL5ZL00y5oQkKCd7y4uNi7a+pyuVRVVaWSkhKfXdLi4mL17du33nmdTqecTmed8ZCQEP5S1IPrEpjoS2CiL4GL3gQm+tK03DUnDpB+zVXraHC+luydP8dq0u8h7dq1q1wul892flVVlfLz871hs1evXgoJCfGpKSws1K5du44bSAEAAHD68nuH9PDhw/r888+9j/fu3asdO3YoJiZGnTp1Unp6ujIzM9WtWzd169ZNmZmZioiI0OjRoyVJ0dHRGj9+vKZMmaLY2FjFxMRo6tSp6t69u/dT9wAAADhz+B1It2zZooEDB3ofH3tv59ixY7V06VJNmzZNlZWVmjBhgkpKStSnTx/l5uYqMjLS+5onn3xSwcHBGjVqlCorKzVo0CAtXbpUQUFBTXBKAAAAaE38DqQDBgyQMcf/WgGHw6GMjAxlZGQctyYsLEzz58/X/Pnz/T08AAAATjP8LnsAAABY1Sxf+wQAANAUujywqkWP99Wca1v0ePgJO6QAAACwikAKAAAAqwikAAAAsIpACgAAAKsIpAAAALCKQAoAAACrCKQAAACwikAKAAAAq/hifAAAgP9o6S/ix0/YIQUAAIBVBFIAAABYRSAFAACAVQRSAAAAWEUgBQAAgFUEUgAAAFhFIAUAAIBVBFIAAABYxRfjAwCARkvOWCt3jcP2MnCaYYcUAAAAVhFIAQAAYBW37AEAaCIt/XvQv5pzbYseD2guBFIAAFqplgzAziCj7Mta7HA4w3DLHgAAAFYRSAEAAGAVgRQAAABWEUgBAABgFYEUAAAAVhFIAQAAYBWBFAAAAFYRSAEAAGAVgRQAAABW8ZuaAACnrZb+VZ4ATg47pAAAALCKQAoAAACrCKQAAACwikAKAAAAqwikAAAAsIpP2QMAWkxjPvXuDDLKvkxKzlgrd42jBVYFwDZ2SAEAAGAVO6QAWo2m/E7JxuzCfTXn2iY7HgDg+NghBQAAgFUEUgAAAFhFIAUAAIBVvIcUaCbH3u/Ykp8Y5j2PAIDWiB1SAAAAWMUOKQAcR1N+qr8x2OEGcKYikAJAgGjpACwRggEEBm7ZAwAAwCp2SIHTCLeYAQCtEYEUAM5gNt4mAAC/xC17AAAAWEUgBQAAgFUEUgAAAFjFe0jhxQdiAACADeyQAgAAwCqrO6QLFy7U448/rsLCQl100UWaN2+efvvb39pcEloQO7KtH5/QBgA0BWuB9NVXX1V6eroWLlyofv366dlnn9WwYcP08ccfq1OnTraWFVD8/Y+9M8go+zIpOWOt3DWOZloVAABA07IWSOfOnavx48fr9ttvlyTNmzdPa9eu1aJFi5SVlWVrWTiNsZsHAEBgshJIq6qqtHXrVj3wwAM+46mpqdq0aVOderfbLbfb7X1cWloqSTp48KA8Hk/zLtai4Ooj/tXXGlVU1CrY00Y1teyQBgr6EpjoS+CiN4GJvgQuf3pz4MCBFlqVVF5eLkkyxjRYayWQ/vjjj6qpqVF8fLzPeHx8vIqKiurUZ2Vlafbs2XXGu3bt2mxrbK1G214A6kVfAhN9CVz0JjDRl8DV2N7EPdGsy6hXeXm5oqOjT1hj9UNNDodvijfG1BmTpOnTp2vy5Mnex7W1tTp48KBiY2PrrT9TlZWVKSkpSd98842ioqJsLwf/QV8CE30JXPQmMNGXwBWovTHGqLy8XImJiQ3WWgmkcXFxCgoKqrMbWlxcXGfXVJKcTqecTqfP2FlnndWcS2zVoqKiAuofSPyEvgQm+hK46E1goi+BKxB709DO6DFWvoc0NDRUvXr1Ul5ens94Xl6e+vbta2NJAAAAsMTaLfvJkyfr1ltvVe/evXXFFVfoueee09dff6277rrL1pIAAABggbVAetNNN+nAgQN66KGHVFhYqOTkZK1evVqdO3e2taRWz+l0atasWXXe3gC76Etgoi+Bi94EJvoSuE6H3jhMYz6LDwAAADQTfpc9AAAArCKQAgAAwCoCKQAAAKwikAIAAMAqAmmAe/fddzVixAglJibK4XDozTff9Hne4XDU+/P44497a9xutyZNmqS4uDi1bdtWI0eO1P79+1v4TE4vDfXl8OHDmjhxojp27Kjw8HBdcMEFWrRokU8NfWkeDfXm+++/17hx45SYmKiIiAgNHTpUn332mU8NvWl6WVlZuvTSSxUZGakOHTro+uuv1549e3xqjDHKyMhQYmKiwsPDNWDAAO3evdunht40rcb05Y033tCQIUMUFxcnh8OhHTt21JmHvjS9hnrj8Xh0//33q3v37mrbtq0SExN122236bvvvvOZp7X0hkAa4I4cOaKLL75YCxYsqPf5wsJCn58XXnhBDodDN9xwg7cmPT1dK1asUE5OjjZu3KjDhw9r+PDhqqmpaanTOO001Jf77rtPa9as0bJly/TJJ5/ovvvu06RJk/TWW295a+hL8zhRb4wxuv766/Xll1/qrbfe0vbt29W5c2elpKToyJEj3jp60/Ty8/N1zz33aPPmzcrLy1N1dbVSU1N9rnt2drbmzp2rBQsWqKCgQC6XS4MHD1Z5ebm3ht40rcb05ciRI+rXr5/mzJlz3HnoS9NrqDcVFRXatm2b/vjHP2rbtm1644039Omnn2rkyJE+87Sa3hi0GpLMihUrTlhz3XXXmauvvtr7+NChQyYkJMTk5OR4x7799lvTpk0bs2bNmuZa6hmlvr5cdNFF5qGHHvIZu+SSS8yDDz5ojKEvLeWXvdmzZ4+RZHbt2uUdq66uNjExMeYvf/mLMYbetJTi4mIjyeTn5xtjjKmtrTUul8vMmTPHW3P06FETHR1tnnnmGWMMvWkJv+zLz+3du9dIMtu3b/cZpy8t40S9OebDDz80ksy+ffuMMa2rN+yQnka+//57rVq1SuPHj/eObd26VR6PR6mpqd6xxMREJScna9OmTTaWeUa48sortXLlSn377bcyxmj9+vX69NNPNWTIEEn0xRa32y1JCgsL844FBQUpNDRUGzdulERvWkppaakkKSYmRpK0d+9eFRUV+Vx3p9Op/v37e687vWl+v+xLY9CXltGY3pSWlsrhcOiss86S1Lp6QyA9jbz44ouKjIxUWlqad6yoqEihoaFq3769T218fLyKiopaeolnjKeffloXXnihOnbsqNDQUA0dOlQLFy7UlVdeKYm+2HL++eerc+fOmj59ukpKSlRVVaU5c+aoqKhIhYWFkuhNSzDGaPLkybryyiuVnJwsSd5rGx8f71P78+tOb5pXfX1pDPrS/BrTm6NHj+qBBx7Q6NGjFRUVJal19cbarw5F03vhhRc0ZswYn92f4zHGyOFwtMCqzkxPP/20Nm/erJUrV6pz58569913NWHCBCUkJCglJeW4r6MvzSskJESvv/66xo8fr5iYGAUFBSklJUXDhg1r8LX0pulMnDhRH330kXdX+ud+eY0bc93pTdM4UV9OBn1pOg31xuPx6Oabb1Ztba0WLlzY4HyB2Bt2SE8T7733nvbs2aPbb7/dZ9zlcqmqqkolJSU+48XFxXV2ItA0KisrNWPGDM2dO1cjRoxQjx49NHHiRN1000363//9X0n0xaZevXppx44dOnTokAoLC7VmzRodOHBAXbt2lURvmtukSZO0cuVKrV+/Xh07dvSOu1wuSaqza/Pz605vms/x+tIY9KV5NdQbj8ejUaNGae/evcrLy/PujkqtqzcE0tPE4sWL1atXL1188cU+47169VJISIjy8vK8Y4WFhdq1a5f69u3b0ss8I3g8Hnk8HrVp4/vXKygoSLW1tZLoSyCIjo7W2Wefrc8++0xbtmzRddddJ4neNBdjjCZOnKg33nhD77zzjvf/ABzTtWtXuVwun+teVVWl/Px873WnN02vob40Bn1pHo3pzbEw+tlnn2ndunWKjY31eb5V9cbGJ6nQeOXl5Wb79u1m+/btRpKZO3eu2b59u/cTdMYYU1paaiIiIsyiRYvqneOuu+4yHTt2NOvWrTPbtm0zV199tbn44otNdXV1S53GaaehvvTv399cdNFFZv369ebLL780S5YsMWFhYWbhwoXeOehL82ioN6+99ppZv369+eKLL8ybb75pOnfubNLS0nzmoDdN7+677zbR0dFmw4YNprCw0PtTUVHhrZkzZ46Jjo42b7zxhtm5c6e55ZZbTEJCgikrK/PW0Jum1Zi+HDhwwGzfvt2sWrXKSDI5OTlm+/btprCw0FtDX5peQ73xeDxm5MiRpmPHjmbHjh0+NW632ztPa+kNgTTArV+/3kiq8zN27FhvzbPPPmvCw8PNoUOH6p2jsrLSTJw40cTExJjw8HAzfPhw8/XXX7fQGZyeGupLYWGhGTdunElMTDRhYWHmvPPOM0888YSpra31zkFfmkdDvXnqqadMx44dTUhIiOnUqZN58MEHff7lbQy9aQ719USSWbJkibemtrbWzJo1y7hcLuN0Os1VV11ldu7c6TMPvWlajenLkiVL6q2ZNWuWt4a+NL2GenPsa7jq+1m/fr13ntbSG4cxxjT9visAAADQOLyHFAAAAFYRSAEAAGAVgRQAAABWEUgBAABgFYEUAAAAVhFIAQAAYBWBFAAAAFYRSAEAAGAVgRQAAABWEUgBAABgFYEUAAAAVhFIAQAAYNX/A+OT8rrtC5LHAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAEiCAYAAAAoMGGMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdSUlEQVR4nO3de3hU9b3v8c8kmUwuBCRBMolEiRi8EFQED4JVQEgQDUixYosXUHbFctEYEIu4a/BgIrRc2qB48CCksjF9rKa1PYiECqE0tYZUaqAe6qkUQROzxZgLCZMhWecPdtZ2SAIEJjNZi/frefLArPnNrN+HFeab9c26OAzDMAQAAAAAAAAEUEiwJwAAAAAAAIALD00pAAAAAAAABBxNKQAAAAAAAAQcTSkAAAAAAAAEHE0pAAAAAAAABBxNKQAAAAAAAAQcTSkAAAAAAAAEHE0pAAAAAAAABFxYsCdwLlpaWvTFF18oJiZGDocj2NMBgG7JMAzV1dUpMTFRISEX3u8gqBUAcGbUCmoFAJxJV9YKSzalvvjiCyUlJQV7GgBgCYcPH1a/fv2CPY2Ao1YAwNmjVgAAzqQraoUlm1IxMTGSpIMHDyo2NjbIs/Evr9erbdu2KT09XU6nM9jT8Ss7Z5PsnY9s1vT1118rOTnZ/My80FArrMnO2SR75yObNVErqBVWZOdskr3zkc2aurJWWLIp1XpobUxMjHr27Bnk2fiX1+tVVFSUevbsabtvZDtnk+ydj2zW5PV6JemCPR2BWmFNds4m2Tsf2ayJWkGtsCI7Z5PsnY9s1tSVteLCO3EcAAAAAAAAQUdTCgAAAAAAAAFHUwoAAAAAAAABZ8lrSgGQmpubzXN7u5rX61VYWJiOHz+u5ubmgKwzUKyczel0KjQ0NNjTANCNUSv8w8rZqBUAzoRa4R9WzhbMWkFTCrAYwzBUWVmpb775JqDrdLvdOnz4sO0uhGr1bBdddJHcbrcl5w6g61Ar/Mvq2agVANpDrfAvq2cLVq2gKQVYTGvh6Nu3r6KiogLyodHS0qL6+nr16NFDISH2OuvXqtkMw1BDQ4OqqqokSQkJCUGeEYDuhFrhX1bNRq0AcDrUCv+yarZg1wqaUoCFNDc3m4UjLi4uYOttaWlRU1OTIiIiLPUBezasnC0yMlKSVFVVpb59+3J6BgBJ1IquYOVs1AoA7aFW+J+VswWzVljrXwq4wLWe6x0VFRXkmaC7aP1eCNR1AAB0f9QKnIpaAeBU1AqcKli1gqYUYEFWPEcZXYPvBQAd4fMBrfheANARPh/QKljfCzSlAADohM1/+SzYUwAAADay+S+f8fMFLlg0pQAEXXZ2tq6//vqzHu9wOPSb3/ymy+YTKDNmzNDkyZNPO2b06NHKzMwMyHwAoDujVnSMWgEAJ1ErOtZdawUXOgdsoKt/s2IYLWo8flyREd/I4QjRtOGXnvVrz3QY6PTp07VmzRrNmzfvfKd51vr376/MzMzz+lD+9NNPtXjxYhUXF+vrr79Wnz59NHToUP30pz/VwIED/TdZAPATakXnUCsAXIioFZ1DrTh/NKUAdKmKigrz77/61a/0k5/8RAcOHDCXRUZGqkePHurRo0cwpndOmpqalJaWpquuukpvvfWWEhISdOTIEW3ZskU1NTXBnh4AWA61AgBwJtQKe+L0PQBdyu12m1+9evWSw+Fos6y9w2xfffVVDRo0SC6XSwkJCZo7d26H63juuecUHx+vvXv3SpJKSkp06623KjIyUklJSXrsscd07NgxSScPWz106JCeeOIJORwO83anhw4d0sSJE9W7d29FR0dr0KBB2rJlS7vr+/vf/65PP/1UL730km666SZddtlluvnmm/X888/rxhtvNMeVl5frtttuU2RkpOLi4vTII4+ovr6+wxzHjh3Tgw8+qB49eighIUErVqw4m39iALA8agW1AgDOhFphz1pBUwpAt7N27VrNmTNHjzzyiMrLy/X222/riiuuaDPOMAw9/vjjWr9+vXbv3q3rr79e5eXlGj9+vKZMmaKPPvpIv/rVr7R7926z+Lz11lvq16+fnnvuOVVUVOjzzz+XJM2dO1cej0e7du1SeXm5li1b1uFvWS6++GKFhITo17/+tZqbm9sd09DQoNtvv129e/dWaWmp3njjDW3fvv20RfDJJ5/Ujh07VFhYqG3btmnnzp0qKyvr7D8fAFwQqBXUCgA4E2pF968VnL4HoNtZunSp5s+fr8cff9xc9u3fFEjSiRMn9OCDD2rPnj3605/+pH79+kmSfvrTn2ratGnmed0pKSn6xS9+oVGjRmnt2rWKjY1VaGioYmJi5Ha71dLSotraWh0+fFh33323Bg8eLEm6/PLLO5zfJZdcol/84hdauHChlixZomHDhmnMmDG67777zNf9x3/8hxobG/XLX/5S0dHRkqQ1a9Zo4sSJWrZsmeLj433es76+XuvXr9cvf/lLpaWlSZLy8/PNXFbSv39/HTp0qM3y2bNn68UXX5RhGFqyZInWrVun6upqDR8+XC+++KIGDRpkjvV4PFqwYIFef/11NTY2auzYsXrppZcs+e8BoGtQK6xdKwAgEKgV3b9WdPpIqc8//1z333+/4uLiFBUVpeuvv96n42YYhrKzs5WYmKjIyEiNHj1a+/fv93kPj8ejefPmqU+fPoqOjtakSZN05MiR808DwPKqqqr0xRdfaOzYsacd98QTT+jPf/6z/vjHP/p8wJaVlWnjxo3m+eQ9evTQ+PHj1dLSooMHD3b4fnPnztXSpUt1880369lnn9VHH3102vXPmTNHlZWV2rRpk0aMGKE33nhDgwYNUlFRkSTp448/1nXXXWcWDkm6+eab1dLS4nPue6t//vOfampq0ogRI8xlsbGxuvLKK087j+6otLRUFRUV5lfrv8k999wjSVq+fLlWrlypNWvWqLS0VG63W2lpaaqrqzPfIzMzU4WFhSooKNDu3btVX1+vjIyMDn+DBODCQq2wfq0AgK5GrbBGrehUU6q6ulo333yznE6n3nnnHf3973/XihUrdNFFF5lj2NkAcD4iIyPPalxaWpo+//xzvfvuuz7LW1paNGvWLO3du9f8+tvf/qZPPvlEAwYM6PD9/u3f/k2ffvqpHnjgAZWXl2vYsGHKy8s77RxiYmI0adIkPf/88/rb3/6mW265RUuXLpV0skHf0R1C2ltuGMaZIlvGxRdf7HN+/+9//3sNGDBAo0aNkmEYWr16tRYvXqwpU6YoNTVV+fn5amho0ObNmyVJNTU1Wr9+vVasWKFx48ZpyJAh2rRpk8rLy7V9+/YgpwPQHVArAABnQq2whk6dvrds2TIlJSVpw4YN5rL+/fubfz91Z0M6eZhYfHy8Nm/erFmzZpk7G6+99prGjRsnSdq0aZOSkpK0fft2jR8/3g+xAFhVTEyM+vfvrz/84Q8aM2ZMh+MmTZqkiRMnatq0aQoNDdX3v/99SdINN9yg/fv3t3uueKvw8PB2m+BJSUl69NFH9eijj2rRokV65ZVXzvqWsg6HQ1dddZVKSkokSddcc43y8/N17Ngx87caf/rTnxQSEtLurV2vuOIKOZ1Ovf/++7r00pO3xq2urtY//vEPjRo16qzm0B01NTVp06ZNysrKksPh0KeffqrKykqlp6ebY1wul0aNGqWSkhLNmjVLZWVl8nq9PmMSExOVmpqqkpKSDuuEx+ORx+MxH9fW1kqSvF6vvF6v/0K1NPv3/c5B6/qDPY+uYOdsUmDyeb1eGYahlpYWtbS0mMsNo+U0rzp/rT8Dn/zTd92d0fq6U1/f+kN2S0uLoqOj1b9/f23fvv20n5EZGRm68847df/998vhcJi1YsiQIdq/f3+Hp1S0tLQoPDxcJ06cUEtLi7luwzB0ySWX6JFHHtEjjzyip59+Wq+88ormzJlz1vmuvPJK/fnPf1ZLS4uuuuoq5efnq66uzqwVf/zjHxUSEqIrrrjCXHfr9rz88svldDpVUlJi/ja/tVbceuutHf6bt76P1+s1L8Tbyq7/1wCA/Qpr7Fd0qin19ttva/z48brnnntUXFysSy65RLNnz9YPf/hDSdLBgwe7ZGcjYDsa3YCdfxi3czaJHY2zcTY7GpL0k5/8RLNnz9bFF1+s22+/XXV1dSopKfG5mF9LS4smT56s/Px8TZ8+XSEhIfre976nJ598UiNHjtTs2bP1b//2b4qOjtbHH3+s7du36xe/+IUk6bLLLlNxcbGmTp2q8PBwuVwuPfHEE7r99ts1cOBAVVdX67333tNVV13Vbta9e/cqOztb999/v6655hqFh4eruLhYr776qhYuXKiWlhb94Ac/0LPPPqsHH3xQzz77rP7zP/9T8+bN0/3336+LL764zY5GVFSUHn74YT355JPq3bu34uPj9cwzzygkJMQc09G/aXfe0fjNb36jb775RjNmzJAkVVZWSlKbc9/j4+PN61BVVlYqPDxcvXv3bjOm9fXtyc3N1ZIlS9os37Fjh6Kios4nho9oSVu2nP4w7EBpPazbjuycTerafGFhYXK73aqvr1dTU5O5vPH48S5b57cd95xcT+vPa51+/fHjMgyjzes9Ho+am5vN5QsXLlRWVpZ69uypcePGqb6+Xn/5y1/0yCOPmK9pbGzUnXfeqZdfflkzZ86U1+vVXXfdpdmzZys9PV2PPPKIpk+frqioKB04cEA7d+7U8uXLJUn9+vXTe++9pzvuuEMul0txcXGaO3euxo0bpyuuuELffPONtm/friuuuKLdrOXl5crNzdW9996rK6+8UuHh4frTn/6kDRs26PHHH1dtba0mTpxo1pOnnnpKR48e1WOPPaZ7771XkZGRqq2tldfr1YkTJ8x13H///XryyScVGRmpiy++WEuXLlVISIiampo6/DdvampSY2Ojdu3apRMnTvg819DQcE7bCQCsIDs7W48++qj69u2rCRMmqK6uTn/605/aNIi++93v6rXXXtMDDzygsLAwfe9739NTTz2lm266SXPmzNEPf/hDc7+iqKjIPPKpf//+2rVrl77//e/L6XQqPDxcTzzxhO644w6f/Yqrr7663fnt3btXzz77rB544IE2+xVPPfWUJOm+++7Ts88+q+nTpys7O9vcr3jggQfa/EwtST169NDMmTP15JNPKi4uTvHx8Vq8eLFCQrrnfe461ZT69NNPtXbtWmVlZenpp5/WBx98oMcee0wul0sPPvhgl+1sBGpHozux8w/jds4msaNx2tef5Y7Gd7/7XX3zzTd68cUXzQ/TSZMm+byusbFRtbW1Sk9P10svvaTp06fL4/Fo4sSJ+v3vf6+lS5eap4v1799f3/3ud312ZJ544gmlpKTI4/GourpajY2NmjNnjr744gvFxMRo7NixysnJaTdrr169lJiYqOzsbB0+fFgOh0NJSUn68Y9/rNmzZ5uveeONN7Ro0SINHz5ckZGRmjRpkpYuXerTWP/2jsYzzzyj6upqTZ48WT169NCcOXP09ddfW3pHY/369ZowYYISExN9lp96qPHpDks+2zGLFi1SVlaW+bi2tlZJSUkaM2aM4uLizmH27XtjzxHdMyy4F4r0er0qKipSWlqanE5nUOfib3bOJgUm3/Hjx3X48GH16NFDERER5vLIiG+6ZH2tDONknYhwRcjhkHr27HlO7xMRESGHw9Hm9S6XS6GhoebyWbNmSZJ+/vOf69///d/Vp08f3X333T6vi4yMVM+ePfXAAw/I5XLpoYceUnR0tKZMmaIdO3bomWee0R133CHDMDRgwABNnTrVfP3SpUv1ox/9SDfccINZK0JDQ/XUU0/pyJEj6tmzp8aPH6+VK1e2m/XKK6/UFVdcoZ/97Gf617/+JYfDof79+ys7O1uZmZkKCQlRz549tXXrVj3xxBMaO3asoqKiNGXKFK1YscK8U5PT6VRYWJi5jtWrV2v27NmaNm2aYmJilJWVpYaGBoWHh3f4b378+HFFRkbq1ltv9fmekKSjR4+ey2YCAEuYPn26jh8/rlWrVmnBggXq06ePvve977U79nvf+55aWlr0wAMPKCQkRFOmTFFxcbEWL16sW265xawV9957r/ma5557TrNmzdKAAQPMWtHc3Kw5c+aYteL222/XqlWr2l1nv3791L9/fy1ZssSnVixZskRPPPGEJCkqKkrvvvuuHn/8cd14442KiorS3XffrZUrV3aY+6c//anq6+s1adIkxcTEaP78+aqpqTmPf8mu4zA6ccJheHi4hg0bZh5GJkmPPfaYSktL9ec//1klJSW6+eab9cUXXyghIcEc88Mf/lCHDx/W1q1btXnzZj300EM+Rz5JJ8/jHDBggF5++eU2623vSKmkpCRVVFT4dUejO7DzD+N2ziYFdkejf//+bX6o7EqGYaiurk4xMTFnbBxYjdWzHT9+XP/617+UlJTU7o5GQkKCampqznnn8HwcOnRIl19+ud566y3dddddkk7+cmPAgAH661//qiFDhphj77rrLl100UXKz8/Xe++9p7Fjx+rrr7/2+QXGddddp8mTJ7f7S4r21NbWqlevXvrqq6/8Wis2/+UzTRt+qd/e71x4vV5t2bJFd9xxh+0+T+2cTQpMvuPHj+vgwYNKTk4OaK1ovetQz549u+1vY8+V1bOd7nvi6NGj6tOnT9BqRbB1Va3oDuz8eWq3bJv/8pkkmT9fUCusyerZglUrOnWkVEJCgq655hqfZVdffbXefPNNSZLb7ZZ08miobzelqqqqzKOn3G63mpqaVF1d7bOzUVVVpZEjR7a7XpfLJZfL1Wa50+m0xYdQe8hmXV2Zr7m5WQ6HQyEhIQH9oGs9dax13XZi9WwhISFyOBztft8F+//Zhg0b1LdvX915553msuTkZLndbhUVFZlNqaamJhUXF2vZsmWSpKFDh8rpdKqoqEhTp06VJFVUVGjfvn3maTUAAAAArK9Te2A333xzm1sO/uMf/9Bll10myXdno1XrzkZrw+nbOxutWnc2OmpKAQCspaWlRRs2bND06dMVFvbfv/9wOBzKzMxUTk6OCgsLtW/fPs2YMUNRUVGaNm2apJOnR86cOVPz58/XH/7wB3344Ye6//77NXjwYPMGGQAAAACsr1NHSj3xxBMaOXKkcnJyNHXqVH3wwQdat26d1q1bJ8l3ZyMlJUUpKSnKycnpcGcjLi5OsbGxWrBgATsbAGAj27dv12effaaHH364zXMLFy5UY2OjZs+ererqag0fPlzbtm1TTEyMOWbVqlUKCwvT1KlT1djYqLFjx2rjxo1tLuYOAAAAwLo61ZS68cYbVVhYqEWLFum5555TcnKyVq9erfvuu88cw84GACA9PV0dXbLQ4XAoOztb2dnZHb4+IiJCeXl55p1NAAAAANhPp5pSkpSRkaGMjIwOn2dnAwAAAAAAAGdivav6AgAAAAAAwPJoSgEAAAAAACDgaEoBAAAAAAAg4GhKAcB5mDFjhiZPnhzsaQAAujFqBQDgTC7UWkFTCkBAzJgxQw6HQw6HQ06nU/Hx8UpLS9Orr76qlpaWYE8PANANUCsAAGdCrbCXTt99D0A3tGdD176/YSj8+HEpIkJyOKRhD53T29x+++3asGGDmpub9eWXX2rr1q16/PHH9etf/1pvv/22wsL4SAKALkOtAACcCbUCAcaRUgACxuVyye1265JLLtENN9ygp59+Wr/97W/1zjvvaOPGjZKkmpoaPfLII+rbt6969uyp2267TX/729/M98jOztb111+vV199VZdeeql69OihH/3oR2pubtby5cvldrvVt29fPf/88z7rXrlypQYPHqzo6GglJSVp9uzZqq+vN5/fuHGjLrroIr377ru6+uqr1aNHD91+++2qqKgwxzQ3NysrK0sXXXSR4uLitHDhQhmG0bX/aABwgaFWAADOhFphHzSlAATVbbfdpuuuu05vvfWWDMPQnXfeqcrKSm3ZskVlZWW64YYbNHbsWH399dfma/75z3/qnXfe0datW/X666/r1Vdf1Z133qkjR46ouLhYy5Yt0zPPPKP333/ffE1ISIh+8YtfaN++fcrPz9d7772nhQsX+syloaFBP/vZz/Taa69p165d+uyzz7RgwQLz+RUrVujVV1/V+vXrtXv3bn399dcqLCzs+n8kALjAUSsAAGdCrbAmjmkDEHRXXXWVPvroI+3YsUPl5eWqqqqSy+WSJP3sZz/Tb37zG/3617/WI488IklqaWnRq6++qpiYGF1zzTUaM2aMDhw4oC1btigkJERXXnmlli1bpp07d+qmm26SJGVmZprrS05O1v/8n/9TP/rRj7RmzRpzudfr1csvv6wBAwZIkubOnavnnnvOfH716tVatGiR7r77bknSyy+/rHfffbdL/20AACdRKwAAZ0KtsB6aUgCCzjAMORwOlZWVqb6+XnFxcT7PNzY26p///Kf5uH///oqJiTEfx8fHKzQ0VCEhIT7LqqqqzMc7duxQTk6O/v73v6u2tlYnTpzQ8ePHdezYMXNMVFSUWTgkKSEhwXyPmpoaVVRUaMSIEebzYWFhGjZs2AV7qC0ABBK1AgBwJtQK6+H0PQBB9/HHHys5OVktLS1KSEjQ3r17fb4OHDigJ5980hzvdDp9Xt96541Tl7XefePQoUO64447lJqaqjfffFNlZWV68cUXJZ38Lcbp3vdCLAwA0B1RK+zlxIkTeuaZZ5ScnKzIyEhdfvnleu6553zunGUYhrKzs5WYmKjIyEiNHj1a+/fv93kfj8ejefPmqU+fPoqOjtakSZN05MiRQMcB0E1QK6yHphSAoHrvvfdUXl6uu+++WzfccIMqKysVFhamK664wuerT58+57yOPXv26MSJE1qxYoVuuukmDRw4UF988UWn3qNXr15KSEjwOZ/8xIkTKisrO+d5AQDODrXCfpYtW6aXX35Za9as0ccff6zly5frpz/9qfLy8swxy5cv18qVK7VmzRqVlpbK7XYrLS1NdXV15pjMzEwVFhaqoKBAu3fvVn19vTIyMtTc3ByMWACCiFphTZy+ByBgPB6PKisrfW7dmpubq4yMDD344IMKCQnRiBEjNHnyZC1btkxXXnmlvvjiC23ZskWTJ0/WsGHDzmm9AwYM0IkTJ5SXl6eJEyfqT3/6k15++eVOv8/jjz+uF154QSkpKbr66qu1cuVKffPNN+c0JwBA+6gVF4Y///nPuuuuu3TnnXdKOnkKzeuvv649e/ZIOnmU1OrVq7V48WJNmTJFkpSfn6/4+Hht3rxZs2bNUk1NjdavX6/XXntN48aNkyRt2rRJSUlJ2r59u8aPHx+ccAC6HLXCPmhKAQiYrVu3KiEhQWFhYerdu7euu+46/eIXv9D06dPN87a3bNmixYsX6+GHH9Z//ud/yu1269Zbb1V8fPw5r/f666/XypUrtWzZMi1atEi33nqrcnNz9eCDD3bqfebPn6+KigrNmDFDISEhevjhh/Xd735XNTU15zw3AIAvasWF4Tvf+Y5efvll/eMf/9DAgQP1t7/9Tbt379bq1aslSQcPHlRlZaXS09PN17hcLo0aNUolJSWaNWuWysrK5PV6fcYkJiYqNTVVJSUl7TalPB6PPB6P+bi2tlbSydNuvn3qjR205rFbLsmG2VpOHtl3aq6uzOf1emUYhlpaWnxOm1WXn2JmmH+2GJK+ve6zfQfDaFMrrr32Wq1evVrTp083T5X7/e9/r2eeecanVtxyyy26+OKL1dLSYp5Od+ppw63/Lqeus6WlRddee61WrFhh1opbbrlFzz//vGbMmNHm9Lxvv0fr31v/fOKJJ/TFF1+YteKhhx7S5MmTVVNT02bdgdL6b+L1ehUaGurzXFd+LzoMC57YWFtbq169eumrr75qc+Eyq/N6vdqyZYvuuOOONuehWp2ds0mByXf8+HEdPHhQycnJioiI6JJ1tKelpUW1tbXq2bOnz0X/7MDq2U73PXH06FH16dNHNTU16tmzZ5BmGDxdVSs2/+UzTRt+qd/e71zY+fPUztkkaoVVWT1bd6wVhmHo6aef1rJlyxQaGqrm5mY9//zzWrRokSSppKREN998sz7//HMlJiaar3vkkUd06NAhvfvuu9q8ebMeeughnyaTJKWnpys5OVn/63/9rzbrzc7O1pIlS9os37x5s6KiovycEui+wsLC5Ha7lZSUpPDw8GBPB91AU1OTDh8+rMrKSp04ccLnuYaGBk2bNq1LagVHSgEAAAAIqF/96lfatGmTNm/erEGDBmnv3r3KzMxUYmKipk+fbo5zOBw+r2u9s9bpnG7MokWLlJWVZT6ura1VUlKSxowZY8tfdhcVFSktLc12TX67ZXtjz8mL898zrJ+kwOQ7fvy4Dh8+rB49egT0FxiGYaiurk4xMTFn/L9sNVbPdvz4cUVGRurWW29t9xcYXYWmFAAAAICAevLJJ/XjH/9Y3//+9yVJgwcP1qFDh5Sbm6vp06fL7XZLkiorK5WQkGC+rqqqyjxN0+12q6mpSdXV1erdu7fPmJEjR7a7XpfLJZfL1Wa50+m0RXOjPWSzgJCTp0qdmqUr8zU3N8vhcCgkJCSgR4C2nprWum47sXq2kJAQ8+6D7X0vdtl6u+ydAQAAAKAdDQ0NbXbaQkNDzZ265ORkud1uFRUVmc83NTWpuLjYbDgNHTpUTqfTZ0xFRYX27dvXYVMKANC9cKQUAAAAgICaOHGinn/+eV166aUaNGiQPvzwQ61cuVIPP/ywpJNHGmRmZionJ0cpKSlKSUlRTk6OoqKiNG3aNEknb6s+c+ZMzZ8/X3FxcYqNjdWCBQs0ePBg8258AIDujaYUAAAAgIDKy8vTv//7v2v27NmqqqpSYmKiZs2apZ/85CfmmIULF6qxsVGzZ89WdXW1hg8frm3btikmJsYcs2rVKoWFhWnq1KlqbGzU2LFjtXHjxjZ3jgIAdE+cvgdYkAVvmoku0l2/Fz7//HPdf//9iouLU1RUlK6//nqVlZWZzxuGoezsbCUmJioyMlKjR4/W/v37fd7D4/Fo3rx56tOnj6KjozVp0iQdOXIk0FEAy+qunw8IvO74vRATE6PVq1fr0KFDamxs1D//+U8tXbrU5y5gDodD2dnZqqio0PHjx1VcXKzU1FSf94mIiFBeXp6OHj2qhoYG/e53v1NSUlKg4wCW1R0/HxAcwfpeoCkFWEjrBeYaGhqCPBN0F63fC93pIp/V1dW6+eab5XQ69c477+jvf/+7VqxYoYsuusgcs3z5cq1cuVJr1qxRaWmp3G630tLSVFdXZ47JzMxUYWGhCgoKtHv3btXX1ysjI0PNzc1BSAVYB7UCp+qOtQJAcFErcKpg1QpO3wMsJDQ0VBdddJGqqqokSVFRUQG53WhLS4uampp0/PhxS95J4nSsms0wDDU0NKiqqkoXXXRRtzpNYdmyZUpKStKGDRvMZf379zf/bhiGVq9ercWLF2vKlCmSpPz8fMXHx2vz5s2aNWuWampqtH79er322mvmdUE2bdqkpKQkbd++XePHjw9oJsBKqBX+Z9Vs3blWAAguaoX/WTVbsGsFTSnAYlpvkdxaQALBMAw1NjYqMjIyIMUqkKye7aKLLjK/J7qLt99+W+PHj9c999yj4uJiXXLJJZo9e7Z++MMfSpIOHjyoyspKpaenm69xuVwaNWqUSkpKNGvWLJWVlcnr9fqMSUxMVGpqqkpKStptSnk8Hnk8HvNxbW2tJMnr9crr9fovYEuzf9/vHLSuP9jz6Ap2ziYFLl9cXJyam5v15Zdfdul6vs0wDB0/flwRERGW/Dw9Hatn69mzp+Li4tr9vrPr/zUAZ8Z+hX9ZPVuw9itoSgEW43A4lJCQoL59+wbsB0mv16tdu3bp1ltvtd2h/1bO5nQ6u+VvvT/99FOtXbtWWVlZevrpp/XBBx/osccek8vl0oMPPqjKykpJUnx8vM/r4uPjdejQIUlSZWWlwsPD1bt37zZjWl9/qtzcXC1ZsqTN8h07digqKsof0SRJ0ZK2bPnIb+93Pr59G3S7sXM2KXD5HA5Ht/ycQOA0Nzef9johnLoDXLjYr/AvK2cL5n4FTSnAokJDQwP2wREaGqoTJ04oIiLCch+wZ2LnbMHS0tKiYcOGKScnR5I0ZMgQ7d+/X2vXrtWDDz5ojjv1N0iGYZzxt0qnG7No0SJlZWWZj2tra5WUlKQxY8YoLi7uXOO08caeI7pnWD+/vd+58Hq9KioqUlpamu2+b+2cTbJ3PrJZ09GjR4M9BQBBxn6Ff9g5W1fqVFMqOzu7zW+hv/1ba8MwtGTJEq1bt868beuLL76oQYMGmeM9Ho8WLFig119/3bxt60svvaR+/YL7Az4AwD8SEhJ0zTXX+Cy7+uqr9eabb0r670PFKysrlZCQYI6pqqoyj55yu91qampSdXW1z9FSVVVVGjlyZLvrdblccrlcbZY7nU7//mAQEtptftDwe7ZuxM7ZJHvnI5u12C0PAMBaOn31rUGDBqmiosL8Ki8vN5/jbkoAgJtvvlkHDhzwWfaPf/xDl112mSQpOTlZbrfb5/SlpqYmFRcXmw2noUOHyul0+oypqKjQvn37OmxKAQAAALCWTp++FxYW1u7Fr7ibEgBAkp544gmNHDlSOTk5mjp1qj744AOtW7dO69atk3TytL3MzEzl5OQoJSVFKSkpysnJUVRUlKZNmyZJ6tWrl2bOnKn58+crLi5OsbGxWrBggQYPHmzWDwAAAADW1umm1CeffKLExES5XC4NHz5cOTk5uvzyy7vsbkpSAO+o1A3Y+a5Dds4m2Tsf2awpWJluvPFGFRYWatGiRXruueeUnJys1atX67777jPHLFy4UI2NjZo9e7Z5uve2bdsUExNjjlm1apXCwsI0depU83TvjRs3ctFmAAAAwCY61ZQaPny4fvnLX2rgwIH68ssvtXTpUo0cOVL79+/vsrspSYG7o1J3Yue7Dtk5m2TvfGSzlmDeUSkjI0MZGRkdPu9wOJSdna3s7OwOx0RERCgvL095eXldMEMAAAAAwdapptSECRPMvw8ePFgjRozQgAEDlJ+fr5tuukmS/++mJAXujkrdgZ3v7mLnbJK985HNmrijEgAAAIDurNOn731bdHS0Bg8erE8++USTJ0+W5P+7KUkBvKNSN0I267JzPrJZi93yAAAAALCXTt9979s8Ho8+/vhjJSQkcDclAAAAAAAAnLVOHSm1YMECTZw4UZdeeqmqqqq0dOlS1dbWavr06dxNCQAAAAAAAGetU02pI0eO6Ac/+IG++uorXXzxxbrpppv0/vvv67LLLpPE3ZQAAAAAAABwdjrVlCooKDjt89xNCQAAAAAAAGfjvK4pBQAAAAAAAJwLmlIAAAAAAAAIOJpSAAAAAAAACDiaUgAAAAAAAAg4mlIAAAAAAAAIOJpSAAAAAAAACDiaUgAAAAAAAAg4mlIAAAAAAAAIOJpSAAAAAAAACDiaUgAAAAAAAAg4mlIAAAAAAAAIOJpSAAAAAAAACDiaUgAAAAAAAAg4mlIAAAAAAAAIOJpSAAAAAAAACDiaUgAAv8rOzpbD4fD5crvd5vOGYSg7O1uJiYmKjIzU6NGjtX//fp/38Hg8mjdvnvr06aPo6GhNmjRJR44cCXQUAAAAAF2IphQAwO8GDRqkiooK86u8vNx8bvny5Vq5cqXWrFmj0tJSud1upaWlqa6uzhyTmZmpwsJCFRQUaPfu3aqvr1dGRoaam5uDEQcAAABAFwgL9gQAAPYTFhbmc3RUK8MwtHr1ai1evFhTpkyRJOXn5ys+Pl6bN2/WrFmzVFNTo/Xr1+u1117TuHHjJEmbNm1SUlKStm/frvHjxwc0CwAAAICuQVMKAOB3n3zyiRITE+VyuTR8+HDl5OTo8ssv18GDB1VZWan09HRzrMvl0qhRo1RSUqJZs2aprKxMXq/XZ0xiYqJSU1NVUlLSYVPK4/HI4/GYj2trayVJXq9XXq/Xf+Famv37fuegdf3BnkdXsHM2yd75yGZNdswEALAOmlIAAL8aPny4fvnLX2rgwIH68ssvtXTpUo0cOVL79+9XZWWlJCk+Pt7nNfHx8Tp06JAkqbKyUuHh4erdu3ebMa2vb09ubq6WLFnSZvmOHTsUFRV1vrFM0ZK2bPnIb+93PoqKioI9hS5j52ySvfORzVoaGhqCPQUAwAWMphQAwK8mTJhg/n3w4MEaMWKEBgwYoPz8fN10002SJIfD4fMawzDaLDvVmcYsWrRIWVlZ5uPa2lolJSVpzJgxiouLO5co7XpjzxHdM6yf397vXHi9XhUVFSktLU1OpzOoc/E3O2eT7J2PbNZ09OjRYE8BAHABoykFAOhS0dHRGjx4sD755BNNnjxZ0smjoRISEswxVVVV5tFTbrdbTU1Nqq6u9jlaqqqqSiNHjuxwPS6XSy6Xq81yp9Pp353IkNBus1Pq92zdiJ2zSfbORzZrsVseAIC1cPc9AECX8ng8+vjjj5WQkKDk5GS53W6fU2CamppUXFxsNpyGDh0qp9PpM6aiokL79u07bVMKAAAAgLXQlAIA+NWCBQtUXFysgwcP6i9/+Yu+973vqba2VtOnT5fD4VBmZqZycnJUWFioffv2acaMGYqKitK0adMkSb169dLMmTM1f/58/eEPf9CHH36o+++/X4MHDzbvxgcAsL7PP/9c999/v+Li4hQVFaXrr79eZWVl5vOGYSg7O1uJiYmKjIzU6NGjtX//fp/38Hg8mjdvnvr06aPo6GhNmjRJR44cCXQUAMA54vQ9AIBfHTlyRD/4wQ/01Vdf6eKLL9ZNN92k999/X5dddpkkaeHChWpsbNTs2bNVXV2t4cOHa9u2bYqJiTHfY9WqVQoLC9PUqVPV2NiosWPHauPGjQoNDQ1WLACAH1VXV+vmm2/WmDFj9M4776hv37765z//qYsuusgcs3z5cq1cuVIbN27UwIEDtXTpUqWlpenAgQNmzcjMzNTvfvc7FRQUKC4uTvPnz1dGRobKysqoGQBgATSlAAB+VVBQcNrnHQ6HsrOzlZ2d3eGYiIgI5eXlKS8vz8+zAwB0B8uWLVNSUpI2bNhgLuvfv7/5d8MwtHr1ai1evFhTpkyRJOXn5ys+Pl6bN2/WrFmzVFNTo/Xr1+u1114zj6TdtGmTkpKStH37do0fPz6gmQAAnXdep+/l5uaap2K04jBbAAAAAKfz9ttva9iwYbrnnnvUt29fDRkyRK+88or5/MGDB1VZWan09HRzmcvl0qhRo1RSUiJJKisrk9fr9RmTmJio1NRUcwwAoHs75yOlSktLtW7dOl177bU+yznMFgAAAMDpfPrpp1q7dq2ysrL09NNP64MPPtBjjz0ml8ulBx98UJWVlZJk3pm1VXx8vA4dOiTp5J1cw8PDfe7U2jqm9fWn8ng88ng85uPa2lpJktfrldfr9Vu+7qA1j91ySTbM1tIsqW0u2+T7FrJZU1dmOqemVH19ve677z698sorWrp0qbmcw2wBAAAAnElLS4uGDRumnJwcSdKQIUO0f/9+rV27Vg8++KA5zuFw+LzOMIw2y051ujG5ublasmRJm+U7duxQVFRUZ2NYwrfvZms3dskW/V9/btnykc9yu+RrD9mspaGhocve+5yaUnPmzNGdd96pcePG+TSlznSY7axZs854mC1NKQAAAMDeEhISdM011/gsu/rqq/Xmm29Kktxut6STR0MlJCSYY6qqqsyjp9xut5qamlRdXe1ztFRVVZVGjhzZ7noXLVqkrKws83Ftba2SkpI0ZswYxcXF+SdcN+H1elVUVKS0tDQ5nc5gT8ev7JbtjT0nL2Vzz7B+kuyX79vIZk1Hjx7tsvfudFOqoKBAf/3rX1VaWtrmOQ6zPX8XwiF/dswm2Tsf2azJjpkAAPZw880368CBAz7L/vGPf5h3ak1OTpbb7VZRUZGGDBkiSWpqalJxcbGWLVsmSRo6dKicTqeKioo0depUSVJFRYX27dun5cuXt7tel8sll8vVZrnT6bTdTmQrsllAyMlL2JyaxTb52kE2a+nKPJ1qSh0+fFiPP/64tm3bpoiIiA7HcZjt+bPjIX+t7JxNsnc+sllLVx5mCwDA+XjiiSc0cuRI5eTkaOrUqfrggw+0bt06rVu3TpLMmynl5OQoJSVFKSkpysnJUVRUlKZNmyZJ6tWrl2bOnKn58+crLi5OsbGxWrBggQYPHmxeJgQA0L11qilVVlamqqoqDR061FzW3NysXbt2ac2aNeZvOzjM9tzZ+ZA/O2eT7J2PbNbUlYfZAgBwPm688UYVFhZq0aJFeu6555ScnKzVq1frvvvuM8csXLhQjY2Nmj17tqqrqzV8+HBt27bNvHmSJK1atUphYWGaOnWqGhsbNXbsWG3cuJGbJwGARXSqKTV27FiVl5f7LHvooYd01VVX6amnntLll1/OYbZ+QjbrsnM+slmL3fIAAOwlIyNDGRkZHT7vcDiUnZ2t7OzsDsdEREQoLy9PeXl5XTBDAEBX61RTKiYmRqmpqT7LoqOjFRcXZy7nMFsAAAAAAACcyTndfe90OMwWAAAAAAAAZ3LeTamdO3f6POYwWwAAAAAAAJxJSLAnAAAAAAAAgAsPTSkAAAAAAAAEHE0pAAAAAAAABBxNKQAAAAAAAAQcTSkAAAAAAAAEHE0pAAAAAAAABBxNKQAAAAAAAAQcTSkAAAAAAAAEHE0pAAAAAAAABBxNKQAAAAAAAAQcTSkAQJfKzc2Vw+FQZmamucwwDGVnZysxMVGRkZEaPXq09u/f7/M6j8ejefPmqU+fPoqOjtakSZN05MiRAM8eAAAAQFehKQUA6DKlpaVat26drr32Wp/ly5cv18qVK7VmzRqVlpbK7XYrLS1NdXV15pjMzEwVFhaqoKBAu3fvVn19vTIyMtTc3BzoGAAAAAC6AE0pAECXqK+v13333adXXnlFvXv3NpcbhqHVq1dr8eLFmjJlilJTU5Wfn6+GhgZt3rxZklRTU6P169drxYoVGjdunIYMGaJNmzapvLxc27dvD1YkAAAAAH4UFuwJAADsac6cObrzzjs1btw4LV261Fx+8OBBVVZWKj093Vzmcrk0atQolZSUaNasWSorK5PX6/UZk5iYqNTUVJWUlGj8+PFt1ufxeOTxeMzHtbW1kiSv1yuv1+u/YC3N/n2/c9C6/mDPoyvYOZtk73xksyY7ZgIAWAdNKQCA3xUUFOivf/2rSktL2zxXWVkpSYqPj/dZHh8fr0OHDpljwsPDfY6wah3T+vpT5ebmasmSJW2W79ixQ1FRUeeUoz3RkrZs+chv73c+ioqKgj2FLmPnbJK985HNWhoaGoI9BQDABYymFADArw4fPqzHH39c27ZtU0RERIfjHA6Hz2PDMNosO9XpxixatEhZWVnm49raWiUlJWnMmDGKi4vrRILTe2PPEd0zrJ/f3u9ceL1eFRUVKS0tTU6nM6hz8Tc7Z5PsnY9s1nT06NFgTwEAcAGjKQUA8KuysjJVVVVp6NCh5rLm5mbt2rVLa9as0YEDBySdPBoqISHBHFNVVWUePeV2u9XU1KTq6mqfo6Wqqqo0cuTIdtfrcrnkcrnaLHc6nf7diQwJ7TY7pX7P1o3YOZtk73xksxa75QEAWAsXOgcA+NXYsWNVXl6uvXv3ml/Dhg3Tfffdp7179+ryyy+X2+32OQ2mqalJxcXFZsNp6NChcjqdPmMqKiq0b9++DptSAAAAAKyFI6UAAH4VExOj1NRUn2XR0dGKi4szl2dmZionJ0cpKSlKSUlRTk6OoqKiNG3aNElSr169NHPmTM2fP19xcXGKjY3VggULNHjwYI0bNy7gmQAAAAD4H00pAEDALVy4UI2NjZo9e7aqq6s1fPhwbdu2TTExMeaYVatWKSwsTFOnTlVjY6PGjh2rjRs3KjQ0NIgzBwAAAOAvNKUAAF1u586dPo8dDoeys7OVnZ3d4WsiIiKUl5envLy8rp0cAAAAgKDgmlIAAAAAAAAIOJpSAAAAAAAACDiaUgAAAAAAAAg4mlIAAAAAAAAIOJpSAAAAAAAACLhONaXWrl2ra6+9Vj179lTPnj01YsQIvfPOO+bzhmEoOztbiYmJioyM1OjRo7V//36f9/B4PJo3b5769Omj6OhoTZo0SUeOHPFPGgAAAAAAAFhCp5pS/fr10wsvvKA9e/Zoz549uu2223TXXXeZjafly5dr5cqVWrNmjUpLS+V2u5WWlqa6ujrzPTIzM1VYWKiCggLt3r1b9fX1ysjIUHNzs3+TAQAAAAAAoNvqVFNq4sSJuuOOOzRw4EANHDhQzz//vHr06KH3339fhmFo9erVWrx4saZMmaLU1FTl5+eroaFBmzdvliTV1NRo/fr1WrFihcaNG6chQ4Zo06ZNKi8v1/bt27skIAAAAAAAALqfc76mVHNzswoKCnTs2DGNGDFCBw8eVGVlpdLT080xLpdLo0aNUklJiSSprKxMXq/XZ0xiYqJSU1PNMQAAAAAAALC/sM6+oLy8XCNGjNDx48fVo0cPFRYW6pprrjGbSvHx8T7j4+PjdejQIUlSZWWlwsPD1bt37zZjKisrO1ynx+ORx+MxH9fW1kqSvF6vvF5vZyN0a6157JZLsnc2yd75yGZNdswEAAAAwD463ZS68sortXfvXn3zzTd68803NX36dBUXF5vPOxwOn/GGYbRZdqozjcnNzdWSJUvaLN+xY4eioqI6mcAaioqKgj2FLmPnbJK985HNWhoaGoI9BQAAAADoUKebUuHh4briiiskScOGDVNpaal+/vOf66mnnpJ08miohIQEc3xVVZV59JTb7VZTU5Oqq6t9jpaqqqrSyJEjO1znokWLlJWVZT6ura1VUlKSxowZo7i4uM5G6Na8Xq+KioqUlpYmp9MZ7On4lZ2zSfbORzZrOnr0aLCnAAAAAAAd6nRT6lSGYcjj8Sg5OVlut1tFRUUaMmSIJKmpqUnFxcVatmyZJGno0KFyOp0qKirS1KlTJUkVFRXat2+fli9f3uE6XC6XXC5Xm+VOp9N2O5GtyGZdds5HNmuxWx4AAAAA9tKpptTTTz+tCRMmKCkpSXV1dSooKNDOnTu1detWORwOZWZmKicnRykpKUpJSVFOTo6ioqI0bdo0SVKvXr00c+ZMzZ8/X3FxcYqNjdWCBQs0ePBgjRs3rksCAgAAAAAAoPvpVFPqyy+/1AMPPKCKigr16tVL1157rbZu3aq0tDRJ0sKFC9XY2KjZs2erurpaw4cP17Zt2xQTE2O+x6pVqxQWFqapU6eqsbFRY8eO1caNGxUaGurfZAAAAAAAAOi2OtWUWr9+/Wmfdzgcys7OVnZ2dodjIiIilJeXp7y8vM6sGgAAAAAAADYSEuwJAAAAALiw5ebmmpcDaWUYhrKzs5WYmKjIyEiNHj1a+/fv93mdx+PRvHnz1KdPH0VHR2vSpEk6cuRIgGcPADhXNKUAAAAABE1paanWrVuna6+91mf58uXLtXLlSq1Zs0alpaVyu91KS0tTXV2dOSYzM1OFhYUqKCjQ7t27VV9fr4yMDDU3Nwc6BgDgHNCUAgAAABAU9fX1uu+++/TKK6+od+/e5nLDMLR69WotXrxYU6ZMUWpqqvLz89XQ0KDNmzdLkmpqarR+/XqtWLFC48aN05AhQ7Rp0yaVl5dr+/btwYoEAOiETl1TCgAAAAD8Zc6cObrzzjs1btw4LV261Fx+8OBBVVZWKj093Vzmcrk0atQolZSUaNasWSorK5PX6/UZk5iYqNTUVJWUlGj8+PFt1ufxeOTxeMzHtbW1kiSv1yuv19sVEYOmNY/dckk2zNZy8si+U3PZJt+3kM2aujITTSkAAAAAAVdQUKC//vWvKi0tbfNcZWWlJCk+Pt5neXx8vA4dOmSOCQ8P9znCqnVM6+tPlZubqyVLlrRZvmPHDkVFRZ1Tju6uqKgo2FPoMnbJFv1ff27Z8pHPcrvkaw/ZrKWhoaHL3pumFADAr9auXau1a9fqX//6lyRp0KBB+slPfqIJEyZIOnlKxpIlS7Ru3TpVV1dr+PDhevHFFzVo0CDzPTwejxYsWKDXX39djY2NGjt2rF566SX169cvGJEAAH52+PBhPf7449q2bZsiIiI6HOdwOHweG4bRZtmpTjdm0aJFysrKMh/X1tYqKSlJY8aMUVxcXCcSdH9er1dFRUVKS0uT0+kM9nT8ym7Z3thz8uL89ww7+XOO3fJ9G9ms6ejRo1323jSlAAB+1a9fP73wwgu64oorJEn5+fm666679OGHH2rQoEHmhWs3btyogQMHaunSpUpLS9OBAwcUExMj6eSFa3/3u9+poKBAcXFxmj9/vjIyMlRWVqbQ0NBgxgMA+EFZWZmqqqo0dOhQc1lzc7N27dqlNWvW6MCBA5JOHg2VkJBgjqmqqjKPnnK73WpqalJ1dbXP0VJVVVUaOXJku+t1uVxyuVxtljudTtvtRLYimwWEnPzZ5tQstsnXDrJZS1fm4ULnAAC/mjhxou644w4NHDhQAwcO1PPPP68ePXro/fff58K1AABJ0tixY1VeXq69e/eaX8OGDdN9992nvXv36vLLL5fb7fY5DaapqUnFxcVmw2no0KFyOp0+YyoqKrRv374Om1IAgO6FI6UAAF2mublZb7zxho4dO6YRI0Z02YVrpQBevLalOegXsLwQLqRpx2ySvfORzZqClSkmJkapqak+y6KjoxUXF2cuz8zMVE5OjlJSUpSSkqKcnBxFRUVp2rRpkqRevXpp5syZmj9/vuLi4hQbG6sFCxZo8ODBGjduXMAzAQA6j6YUAMDvysvLNWLECB0/flw9evRQYWGhrrnmGpWUlEjy/4VrpcBdvDZabS9EGix2vJBmKztnk+ydj2zW0pUXrz1fCxcuVGNjo2bPnm1eg3Dbtm3mqd6StGrVKoWFhWnq1KnmNQg3btzIqd4AYBE0pQAAfnfllVdq7969+uabb/Tmm29q+vTpKi4uNp/394VrpcBdvPaNPUfMC5EGi50vpGnnbJK985HNmrry4rWdtXPnTp/HDodD2dnZys7O7vA1ERERysvLU15eXtdODgDQJWhKAQD8Ljw83LzQ+bBhw1RaWqqf//zneuqppyT5/8K1UgAvXhsS2m12Su14Ic1Wds4m2Tsf2azFbnkAANbChc4BAF3OMAx5PB4lJydz4VoAAAAAkjhSCgDgZ08//bQmTJigpKQk1dXVqaCgQDt37tTWrVvlcDi4cC0AAAAASTSlAAB+9uWXX+qBBx5QRUWFevXqpWuvvVZbt25VWlqaJC5cCwAAAOAkmlIAAL9av379aZ/nwrUAAAAAJK4pBQAAAAAAgCCgKQUAAAAAAICAoykFAAAAAACAgKMpBQAAAAAAgICjKQUAAAAAAICAoykFAAAAAACAgKMpBQAAAAAAgICjKQUAAAAAAICAoykFAAAAAACAgKMpBQAAAAAAgIDrVFMqNzdXN954o2JiYtS3b19NnjxZBw4c8BljGIays7OVmJioyMhIjR49Wvv37/cZ4/F4NG/ePPXp00fR0dGaNGmSjhw5cv5pAAAAAAAAYAmdakoVFxdrzpw5ev/991VUVKQTJ04oPT1dx44dM8csX75cK1eu1Jo1a1RaWiq32620tDTV1dWZYzIzM1VYWKiCggLt3r1b9fX1ysjIUHNzs/+SAQAAAAAAoNsK68zgrVu3+jzesGGD+vbtq7KyMt16660yDEOrV6/W4sWLNWXKFElSfn6+4uPjtXnzZs2aNUs1NTVav369XnvtNY0bN06StGnTJiUlJWn79u0aP368n6IBAAAAAACguzqva0rV1NRIkmJjYyVJBw8eVGVlpdLT080xLpdLo0aNUklJiSSprKxMXq/XZ0xiYqJSU1PNMQGxZ8PJLwAAAAAAAARcp46U+jbDMJSVlaXvfOc7Sk1NlSRVVlZKkuLj433GxsfH69ChQ+aY8PBw9e7du82Y1tefyuPxyOPxmI9ra2slSV6vV16v99wCtPzXn+f6+i7Smuecc3Vjds4m2Tsf2azJjpkAAAAA2Mc5N6Xmzp2rjz76SLt3727znMPh8HlsGEabZac63Zjc3FwtWbKkzfIdO3YoKiqqE7P+tpNHd6liyzm+vmsVFRUFewpdxs7ZJHvnI5u1NDQ0BHsKAAAAANChc2pKzZs3T2+//bZ27dqlfv36mcvdbrekk0dDJSQkmMurqqrMo6fcbreamppUXV3tc7RUVVWVRo4c2e76Fi1apKysLPNxbW2tkpKSNGbMGMXFxbU/yQ83nfxzyP3n9nyQeL1eFRUVKS0tTU6nM9jT8Ss7Z5PsnY9s1nT06NFgTwEAAAAAOtSpppRhGJo3b54KCwu1c+dOJScn+zyfnJwst9utoqIiDRkyRJLU1NSk4uJiLVu2TJI0dOhQOZ1OFRUVaerUqZKkiooK7du3T8uXL293vS6XSy6Xq81yp9PZ8U5kiDno3J4PstNmszg7Z5PsnY9s1mK3PAAAAADspVNNqTlz5mjz5s367W9/q5iYGPMaUL169VJkZKQcDocyMzOVk5OjlJQUpaSkKCcnR1FRUZo2bZo5dubMmZo/f77i4uIUGxurBQsWaPDgwebd+AAAAAAAAGBvnWpKrV27VpI0evRon+UbNmzQjBkzJEkLFy5UY2OjZs+ererqag0fPlzbtm1TTEyMOX7VqlUKCwvT1KlT1djYqLFjx2rjxo0KDQ09vzQAAAAAAACwhE6fvncmDodD2dnZys7O7nBMRESE8vLylJeX15nVAwAAAAAAwCbO+e57lrRnQ7BnAAC2l5ubq7feekv/9//+X0VGRmrkyJFatmyZrrzySnOMYRhasmSJ1q1bZx5V++KLL2rQoEHmGI/HowULFuj11183j6p96aWXfG6wAQAAgDM4n/3gYQ/5bx5AO0LOPMTi9mz47y8AQJcrLi7WnDlz9P7776uoqEgnTpxQenq6jh07Zo5Zvny5Vq5cqTVr1qi0tFRut1tpaWmqq6szx2RmZqqwsFAFBQXavXu36uvrlZGRoebm5mDEAgAAAOBnF9aRUgCALrd161afxxs2bFDfvn1VVlamW2+9VYZhaPXq1Vq8eLGmTJkiScrPz1d8fLw2b96sWbNmqaamRuvXr9drr71m3gRj06ZNSkpK0vbt2zV+/PiA5wIAAADgXzSlAABdqqamRpIUGxsrSTp48KAqKyuVnp5ujnG5XBo1apRKSko0a9YslZWVyev1+oxJTExUamqqSkpK2m1KeTweeTwe83Ftba0kyev1yuv1+i9QS7N/3+8ctK4/2PPoCnbOJtk7H9msyY6ZAADWQVMKANBlDMNQVlaWvvOd7yg1NVWSVFlZKUmKj4/3GRsfH69Dhw6ZY8LDw9W7d+82Y1pff6rc3FwtWbKkzfIdO3YoKirqvLO0ipa0ZctHfnu/81FUVBTsKXQZO2eT7J2PbNbS0NAQ7CkAAC5gNKUAAF1m7ty5+uijj7R79+42zzkcDp/HhmG0WXaq041ZtGiRsrKyzMe1tbVKSkrSmDFjFBcXdw6zb98be47onmHBvdi61+tVUVGR0tLS5HQ6gzoXf7NzNsne+chmTUePHg32FAAAFzCaUgCALjFv3jy9/fbb2rVrl88d89xut6STR0MlJCSYy6uqqsyjp9xut5qamlRdXe1ztFRVVZVGjhzZ7vpcLpdcLleb5U6n0787kSGh3Wan1O/ZuhE7Z5PsnY9s1mK3PAAAa7H/3fcAAAFlGIbmzp2rt956S++9956Sk5N9nk9OTpbb7fY5DaapqUnFxcVmw2no0KFyOp0+YyoqKrRv374Om1IAAAAArIUjpQAAfjVnzhxt3rxZv/3tbxUTE2NeA6pXr16KjIyUw+FQZmamcnJylJKSopSUFOXk5CgqKkrTpk0zx86cOVPz589XXFycYmNjtWDBAg0ePNi8Gx8AAAAAa6MpBQDwq7Vr10qSRo8e7bN8w4YNmjFjhiRp4cKFamxs1OzZs1VdXa3hw4dr27ZtiomJMcevWrVKYWFhmjp1qhobGzV27Fht3LhRoaGhgYoCAAAAoAvRlAIA+JVhGGcc43A4lJ2drezs7A7HREREKC8vT3l5eX6cXRfYs+HMY4Y91PXzAAAAACyGa0oBAAAAAAAg4DhSCgAAAACA7uxsjswGLIgjpQAAOJ09G3y+Bnz2hu8yAECn5ebm6sYbb1RMTIz69u2ryZMn68CBAz5jDMNQdna2EhMTFRkZqdGjR2v//v0+Yzwej+bNm6c+ffooOjpakyZN0pEjRwIZBQBwHmhKAQDQ1U5pbLX5AoALTHFxsebMmaP3339fRUVFOnHihNLT03Xs2DFzzPLly7Vy5UqtWbNGpaWlcrvdSktLU11dnTkmMzNThYWFKigo0O7du1VfX6+MjAw1NzcHIxYAoJM4fQ8AAABAQG3dutXn8YYNG9S3b1+VlZXp1ltvlWEYWr16tRYvXqwpU6ZIkvLz8xUfH6/Nmzdr1qxZqqmp0fr16/Xaa69p3LhxkqRNmzYpKSlJ27dv1/jx4wOeCwDQORwpBQAAACCoampqJEmxsbGSpIMHD6qyslLp6enmGJfLpVGjRqmkpESSVFZWJq/X6zMmMTFRqamp5hgAQPfGkVIAAAAAgsYwDGVlZek73/mOUlNTJUmVlZWSpPj4eJ+x8fHxOnTokDkmPDxcvXv3bjOm9fWn8ng88ng85uPa2lpJktfrldfr9U+gbqI1j91ySTbM1nLydNNTc/nkawn4rE764DwuMzDk/jaLbLftvuVCyNYVaEoBAAAACJq5c+fqo48+0u7du9s853A4fB4bhtFm2alONyY3N1dLlixps3zHjh2KiorqxKyto6ioKNhT6DJ2yRb9X39u2fKRz3LffLEBm4/fVGzp8Cm7bLv22DFbQ0NDl703TSkAAAAAQTFv3jy9/fbb2rVrl/r162cud7vdkk4eDZWQkGAur6qqMo+ecrvdampqUnV1tc/RUlVVVRo5cmS761u0aJGysrLMx7W1tUpKStKYMWMUFxfn12zB5vV6VVRUpLS0NDmdzmBPx6/slu2NPSfvGHnPsJP/B9rN9+GmYE3v3HVwpJSdtt232Tnb0aNHu+y9aUoBAAAACCjDMDRv3jwVFhZq586dSk5O9nk+OTlZbrdbRUVFGjJkiCSpqalJxcXFWrZsmSRp6NChcjqdKioq0tSpUyVJFRUV2rdvn5YvX97uel0ul1wuV5vlTqfTdjuRrchmASGhktQmi08+K14N+jTbxjbbrh12zNaVeWhKAQAAAAioOXPmaPPmzfrtb3+rmJgY8xpQvXr1UmRkpBwOhzIzM5WTk6OUlBSlpKQoJydHUVFRmjZtmjl25syZmj9/vuLi4hQbG6sFCxZo8ODB5t34AADdG00pAAAAAAG1du1aSdLo0aN9lm/YsEEzZsyQJC1cuFCNjY2aPXu2qqurNXz4cG3btk0xMTHm+FWrViksLExTp05VY2Ojxo4dq40bNyo0NDRQUQAA54GmFAAAAICAMgzjjGMcDoeys7OVnZ3d4ZiIiAjl5eUpLy/Pj7MDAASKFc9MBQAAAAAAgMXRlAIAAAAAAEDA0ZQCAAAAAABAwHW6KbVr1y5NnDhRiYmJcjgc+s1vfuPzvGEYys7OVmJioiIjIzV69Gjt37/fZ4zH49G8efPUp08fRUdHa9KkSTpy5Mh5BQEAwLL2bDjzFwAAAGAznW5KHTt2TNddd53WrFnT7vPLly/XypUrtWbNGpWWlsrtdistLU11dXXmmMzMTBUWFqqgoEC7d+9WfX29MjIy1NzcfO5JAAAAAAAAYBmdvvvehAkTNGHChHafMwxDq1ev1uLFizVlyhRJUn5+vuLj47V582bNmjVLNTU1Wr9+vV577TWNGzdOkrRp0yYlJSVp+/btGj9+/HnEAQAAAAAAgBV0uil1OgcPHlRlZaXS09PNZS6XS6NGjVJJSYlmzZqlsrIyeb1enzGJiYlKTU1VSUlJu00pj8cjj8djPq6trZUkeb1eeb3e9ifTcpaT7uj1QdKap8NcFmbnbJK985HNmuyYqUtwahwAAAAQFH5tSlVWVkqS4uPjfZbHx8fr0KFD5pjw8HD17t27zZjW158qNzdXS5YsabN8x44dioqK6mA2sWc36YotZzcuwIqKioI9hS5j52ySvfORzVoaGhqCPQUAAAAA6JBfm1KtHA6Hz2PDMNosO9XpxixatEhZWVnm49raWiUlJWnMmDGKi4tr/w0/3HR2kx1y/9mNCxCv16uioiKlpaXJ6XQGezp+Zedskr3zkc2ajh49GrR179q1Sz/96U9VVlamiooKFRYWavLkyebzhmFoyZIlWrdunaqrqzV8+HC9+OKLGjRokDnG4/FowYIFev3119XY2KixY8fqpZdeUr9+/YKQCAAAAIC/+bUp5Xa7JZ08GiohIcFcXlVVZR495Xa71dTUpOrqap+jpaqqqjRy5Mh239flcsnlcrVZ7nQ6O96JPNtLuHfTndDTZrM4O2eT7J2PbNYSzDytN8V46KGHdPfdd7d5vvWmGBs3btTAgQO1dOlSpaWl6cCBA4qJiZF08qYYv/vd71RQUKC4uDjNnz9fGRkZKisrU2hoaKAjAQAAAPCzTt9973SSk5Pldrt9ToNpampScXGx2XAaOnSonE6nz5iKigrt27evw6YUAMBaJkyYoKVLl5o3vfi2U2+KkZqaqvz8fDU0NGjz5s2SZN4UY8WKFRo3bpyGDBmiTZs2qby8XNu3bw90HAAAAABdoNNHStXX1+v//b//Zz4+ePCg9u7dq9jYWF166aXKzMxUTk6OUlJSlJKSopycHEVFRWnatGmSpF69emnmzJmaP3++4uLiFBsbqwULFmjw4MHm3fgC6tsXuB32UODXDwAXmG51Uwzp7G+MYQ53yNvJ1/jFtzJcCBfot2M2yd75yGZNdswEALCOTjel9uzZozFjxpiPW6/1NH36dG3cuFELFy5UY2OjZs+ebV4nZNu2bebpGJK0atUqhYWFaerUqeZ1QjZu3MjpGABwAeheN8WQzvrGGK3CY7WlonMv8Yt2bsxhxwv0t7JzNsne+chmLdwUAwAQTJ1uSo0ePVqGYXT4vMPhUHZ2trKzszscExERoby8POXl5XV29efkLwe/1vDkTu50AAC6VLe4KYZ09jfG+C97DlVr2GW9zzzQ3751Yw47X6Dfztkke+cjmzUF86YYwAXn22fpfMuAz74++ZfQ/9pnbZGk2JM/o/j1gjtA99Mld98DAKAj3eqmGFKnf9gLkSFnMH5AbCeDHS/Q38rO2SR75yObtdgtDwDAWui7AgACiptinKM9G/77q/Xorg83/fcyAAAAwGI4UgoA4He2uykGAAAAAL+zfVPqLwe/DvYUAOCCw00xAAAAAJyJ7ZtSAIDA61Y3xfjbr6Sekef3HgAAAAD8jmtKAQAAAAAAIOBoSgEAAAAAACDgOH0PAAAAAAD4V3t3B26RpNiTdxA+3SEywx7qokmhu+FIKQAAAAAAAAScvY6Uaq8TCwAAAAAAgG6HI6UAAAAAAAAQcDSlAAAAAAAAEHA0pQAAAAAAABBwNKUAAAAAAAAQcDSlAAAAAAAAEHA0pQAAAAAAABBwNKW+bc+Gk18AAAAAAADoUjSlAAAAAAAAEHBhwZ6Av/3l4Ncanhwb7GkAABBYZzrSd9hDgZkHAAAAcJY4UgoAAAAAAAABZ7sjpQAAAAAA6BJcgxjwK46UAgAAAAAAQMDZ40gputUAgAD4y8Gvgz0FAAAAwDbs0ZQCAKCL0ZACAAAIkPM58ISbu1gKp+8BANCBvxz8mmYUAAAA0EU4UgoAgP/y7QbU8OTYdpcDAAAA8I+gHin10ksvKTk5WRERERo6dKj++Mc/du4N/varrrme1J4N//0FAAiq864VZ+GCOCLq27Wtoy8AsKhA1AoAgP8FrSn1q1/9SpmZmVq8eLE+/PBD3XLLLZowYYI+++yzYE0JANDNdEWt+Hbz6XSNKNs3qQDAJtivQHfU+guvjn6eONPzwIUiaKfvrVy5UjNnztS//du/SZJWr16td999V2vXrlVubu5Zv0/rf+Jvn2YBALAHf9WKVq0142wbUwCA7s/ftQIXgAAfHczPGkDHgtKUampqUllZmX784x/7LE9PT1dJSUmb8R6PRx6Px3xcU1MjSfq6vlF1DSeXH61tlCTVNXjMv7c+/vbznXb06Lm97hx5vV41NDTo6NGjcjqdAV13V7NzNsne+chmTV9/ffIHIMMwgjyTc+OvWrHrH18qJtLl17mdc03xE6+hk9+3dY1yOvz4xu+9dPrnr7vXjytrn53/T0r2zkc2a6JW/Nd+xdf2axrY+fv2vLOdRx3/8PA35/zaM2n9+aLL6nw3EJBsZ/p55nTO42cdO/+f68paEZSm1FdffaXm5mbFx8f7LI+Pj1dlZWWb8bm5uVqyZEmb5QPvWtBlc/xvcwKwDgDoOkePHlWvXr2CPY1O81etmPKj57psjhceaiJgVxd6rRg4cGCXzRGAlfCzzul0Ra0I6t33HA7f1qhhGG2WSdKiRYuUlZVlPv7mm2902WWX6bPPPrNk8Tyd2tpaJSUl6fDhw+rZs2ewp+NXds4m2Tsf2ayppqZGl156qWJjrX16M7WiLTt/39o5m2TvfGSzJmoFtcKK7JxNsnc+sllTV9aKoDSl+vTpo9DQ0Da/vaiqqmrzWw5JcrlccrnannrRq1cv223sVj179iSbRdk5H9msKSQkqDdaPWfUijOz8/etnbNJ9s5HNmuiVlArrMjO2SR75yObNXVFrQhK9QkPD9fQoUNVVFTks7yoqEgjR44MxpQAAN0MtQIAcCbUCgCwtqCdvpeVlaUHHnhAw4YN04gRI7Ru3Tp99tlnevTRR4M1JQBAN0OtAACcCbUCAKwraE2pe++9V0ePHtVzzz2niooKpaamasuWLbrsssvO+FqXy6Vnn3223UNvrY5s1mXnfGSzJjtko1a0j2zWZed8ZLMmO2SjVrSPbNZl53xks6auzOYwrHr/VwAAAAAAAFiWNa9oCAAAAAAAAEujKQUAAAAAAICAoykFAAAAAACAgKMpBQAAAAAAgICzZFPqpZdeUnJysiIiIjR06FD98Y9/DPaUOi07O1sOh8Pny+12m88bhqHs7GwlJiYqMjJSo0eP1v79+4M4447t2rVLEydOVGJiohwOh37zm9/4PH82WTwej+bNm6c+ffooOjpakyZN0pEjRwKYon1nyjZjxow22/Gmm27yGdMds+Xm5urGG29UTEyM+vbtq8mTJ+vAgQM+Y6y63c4mm1W329q1a3XttdeqZ8+e6tmzp0aMGKF33nnHfN6q26yrUCu6F2qF9T5zqBXW3G7Uis6hVnQv1ArrfeZQK6y53bpTrbBcU+pXv/qVMjMztXjxYn344Ye65ZZbNGHCBH322WfBnlqnDRo0SBUVFeZXeXm5+dzy5cu1cuVKrVmzRqWlpXK73UpLS1NdXV0QZ9y+Y8eO6brrrtOaNWvaff5ssmRmZqqwsFAFBQXavXu36uvrlZGRoebm5kDFaNeZsknS7bff7rMdt2zZ4vN8d8xWXFysOXPm6P3331dRUZFOnDih9PR0HTt2zBxj1e12Ntkka263fv366YUXXtCePXu0Z88e3XbbbbrrrrvMAmHVbdYVqBXUikCiVlhvu1ErrLfNugK1gloRSNQK6203akWAtplhMf/jf/wP49FHH/VZdtVVVxk//vGPgzSjc/Pss88a1113XbvPtbS0GG6323jhhRfMZcePHzd69eplvPzyywGa4bmRZBQWFpqPzybLN998YzidTqOgoMAc8/nnnxshISHG1q1bAzb3Mzk1m2EYxvTp04277rqrw9dYJVtVVZUhySguLjYMw17b7dRshmGf7WYYhtG7d2/jf//v/22rbeYP1ApqRbBQK6y53agV1ttm/kCtoFYEC7XCmtuNWtE128xSR0o1NTWprKxM6enpPsvT09NVUlISpFmdu08++USJiYlKTk7W97//fX366aeSpIMHD6qystInp8vl0qhRoyyX82yylJWVyev1+oxJTExUamqqJfLu3LlTffv21cCBA/XDH/5QVVVV5nNWyVZTUyNJio2NlWSv7XZqtlZW327Nzc0qKCjQsWPHNGLECFtts/NFraBWdEdW/8yRqBVW3G7Uio5RK6gV3ZHVP3MkaoUVt1uwa4WlmlJfffWVmpubFR8f77M8Pj5elZWVQZrVuRk+fLh++ctf6t1339Urr7yiyspKjRw5UkePHjWz2CHn2WSprKxUeHi4evfu3eGY7mrChAn6j//4D7333ntasWKFSktLddttt8nj8UiyRjbDMJSVlaXvfOc7Sk1NlWSf7dZeNsna2628vFw9evSQy+XSo48+qsLCQl1zzTW22Wb+QK2wXk67f/9a+TOnFbXCWtuNWnFm1Arr5bT796+VP3NaUSustd26S60IO48MQeNwOHweG4bRZll3N2HCBPPvgwcP1ogRIzRgwADl5+ebF0azQ85W55LFCnnvvfde8++pqakaNmyYLrvsMv2f//N/NGXKlA5f152yzZ07Vx999JF2797d5jmrb7eOsll5u1155ZXau3evvvnmG7355puaPn26iouLzeetvs38yQ6fodQKe3z/WvkzpxW1wlrbjVpx9uzwGUqtsMf3r5U/c1pRK6y13bpLrbDUkVJ9+vRRaGhom85bVVVVmy6e1URHR2vw4MH65JNPzLtl2CHn2WRxu91qampSdXV1h2OsIiEhQZdddpk++eQTSd0/27x58/T2229rx44d6tevn7ncDtuto2ztsdJ2Cw8P1xVXXKFhw4YpNzdX1113nX7+85/bYpv5C7XCejkvtO9fK33mSNSKVlbabtSKM6NWWC/nhfb9a6XPHIla0cpK26271ApLNaXCw8M1dOhQFRUV+SwvKirSyJEjgzQr//B4PPr444+VkJCg5ORkud1un5xNTU0qLi62XM6zyTJ06FA5nU6fMRUVFdq3b5/l8h49elSHDx9WQkKCpO6bzTAMzZ07V2+99Zbee+89JScn+zxv5e12pmztscp2a49hGPJ4PJbeZv5GraBWdHdW+cyhVviyynZrD7WiLWoFtaK7s8pnDrXCl1W2W3uCVis6dVn0bqCgoMBwOp3G+vXrjb///e9GZmamER0dbfzrX/8K9tQ6Zf78+cbOnTuNTz/91Hj//feNjIwMIyYmxszxwgsvGL169TLeeusto7y83PjBD35gJCQkGLW1tUGeeVt1dXXGhx9+aHz44YeGJGPlypXGhx9+aBw6dMgwjLPL8uijjxr9+vUztm/fbvz1r381brvtNuO6664zTpw4EaxYhmGcPltdXZ0xf/58o6SkxDh48KCxY8cOY8SIEcYll1zS7bP96Ec/Mnr16mXs3LnTqKioML8aGhrMMVbdbmfKZuXttmjRImPXrl3GwYMHjY8++sh4+umnjZCQEGPbtm2GYVh3m3UFagW1IpCoFdbbbtQK622zrkCtoFYEErXCetuNWhGYbWa5ppRhGMaLL75oXHbZZUZ4eLhxww03+NyS0SruvfdeIyEhwXA6nUZiYqIxZcoUY//+/ebzLS0txrPPPmu43W7D5XIZt956q1FeXh7EGXdsx44dhqQ2X9OnTzcM4+yyNDY2GnPnzjViY2ONyMhIIyMjw/jss8+CkMbX6bI1NDQY6enpxsUXX2w4nU7j0ksvNaZPn95m3t0xW3uZJBkbNmwwx1h1u50pm5W328MPP2x+9l188cXG2LFjzcJhGNbdZl2FWtG9UCus95lDrbDmdqNWdA61onuhVljvM4daYc3t1p1qhcMwDKNzx1YBAAAAAAAA58dS15QCAAAAAACAPdCUAgAAAAAAQMDRlAIAAAAAAEDA0ZQCAAAAAABAwNGUAgAAAAAAQMDRlAIAAAAAAEDA0ZQCAAAAAABAwNGUAgAAAAAAQMDRlAIAAAAAAEDA0ZQCAAAAAABAwNGUAgAAAAAAQMDRlAIAAAAAAEDA/X816gz6AyBrRgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "model_ssa = airline_stochastic(demand_saa)\n", - "seats_saa = airline_solve(model_ssa)\n", - "seat_report_saa(seats_saa, demand_saa)" - ] - }, - { - "cell_type": "markdown", - "id": "e3e8e43c", - "metadata": {}, - "source": [ - "## Model 5. Adding correlations between different demand types\n", - "\n", - "Now assume the ticket demand for the three categories is captured by a $3$-dimensional multivariate normal distribution mean $\\mu=(\\mu_F, \\mu_B, \\mu_E)$, variances $(\\sigma_F^2, \\sigma_B^2, \\sigma_E^2)$ and a symmetric correlation matrix \n", - "\n", - "$$\n", - "P = \\left(\n", - "\\begin{array}{ccc}\n", - "1 & \\rho_{FB} & \\rho_{FE} \\\\\n", - "\\rho_{BF} & 1 & \\rho_{BE}\\\\\n", - "\\rho_{EF} & \\rho_{EB} & 1 \\\\\n", - "\\end{array}\n", - "\\right)\n", - "$$\n", - "\n", - "The covariance matrix is given by $\\Sigma = \\text{diag}(\\sigma)\\ P\\ \\text{diag}(\\sigma)$ or\n", - "\n", - "$$\n", - "\\Sigma= \\left(\n", - "\\begin{array}{ccc}\n", - " \\sigma_F^2 & \\rho_{FB}\\sigma_F\\sigma_B & \\rho_{FE}\\sigma_F\\sigma_E \\\\\n", - "\\rho_{BF}\\sigma_B\\sigma_F & \\sigma_B^2 & \\rho_{BE}\\sigma_B\\sigma_E\\\\\n", - "\\rho_{EF}\\sigma_E\\sigma_F & \\rho_{EB}\\sigma_E\\sigma_B & \\sigma_E^2 \\\\\n", - "\\end{array}\n", - "\\right)\n", - "$$\n", - "\n", - "We assume $\\rho_{FB} = 0.6$, $\\rho_{BE} = 0.4$ and $\\rho_{FE} = 0.2$.\n", - " \n", - "We now sample $N=1000$ scenarios from this multivariate correlated normal distribution and use the SAA method to approximate the solution of the two-stage stochastic optimization problem." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "79e75010", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
musigma
F12.04
B28.016
E175.020
\n", - "
" - ], - "text/plain": [ - " mu sigma\n", - "F 12.0 4\n", - "B 28.0 16\n", - "E 175.0 20" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
musample means
F12.012.012
B28.028.590
E175.0175.301
\n", - "
" - ], - "text/plain": [ - " mu sample means\n", - "F 12.0 12.012\n", - "B 28.0 28.590\n", - "E 175.0 175.301" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sigmasample std dev
F43.951388
B1615.139984
E2020.147365
\n", - "
" - ], - "text/plain": [ - " sigma sample std dev\n", - "F 4 3.951388\n", - "B 16 15.139984\n", - "E 20 20.147365" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Model Covariance\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBE
F16.038.416.0
B38.4256.0128.0
E16.0128.0400.0
\n", - "
" - ], - "text/plain": [ - " F B E\n", - "F 16.0 38.4 16.0\n", - "B 38.4 256.0 128.0\n", - "E 16.0 128.0 400.0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Sample Covariance\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBE
F15.61346936.04496512.434823
B36.044965229.219119107.216627
E12.434823107.216627405.916315
\n", - "
" - ], - "text/plain": [ - " F B E\n", - "F 15.613469 36.044965 12.434823\n", - "B 36.044965 229.219119 107.216627\n", - "E 12.434823 107.216627 405.916315" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPdCAYAAACXzguGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZxcVZ33/75L7VvvW7qzQRZIwi5LRIhAwoCBcZvMiEtAdJwBcTIsIvL4mzBiEHxEFBUekCdhzCDjPCMMqAMEQRACSMJOIBDT2bvTe+3bXX5/VFelq+t2962kK92dnPfr1a9O3zp1lnurTs453+/385VM0zQRCAQCgUAgEAgEAoFAMO7IE90BgUAgEAgEAoFAIBAIjlTEplsgEAgEAoFAIBAIBIIKITbdAoFAIBAIBAKBQCAQVAix6RYIBAKBQCAQCAQCgaBCiE23QCAQCAQCgUAgEAgEFUJsugUCgUAgEAgEAoFAIKgQYtMtEAgEAoFAIBAIBAJBhRCbboFAIBAIBAKBQCAQCCqE2HQLBAKBQCAQCAQCgUBQIcSmW2CLdevWIUkSmzZtsnx9+fLlzJw5s+jazJkzufzyy8tqZ+PGjaxevZqBgYGD6+gRwurVq5EkyfLnpz/96UR3TyCY9Lz11ltcccUVzJo1C7fbjd/v55RTTuGOO+6gr69vors3LuzYsQNJkli3bt1Ed6Ui/PGPfxxxHvzsZz87oX27/PLLi/qjKAqtra2sWLGCd955Z0L7JhCUi5gvpz5Tab4c/nO0oE50BwRHLo888gjBYLCs92zcuJFbbrmFyy+/nKqqqsp0bArxxBNPEAqFiq7NmjVrgnojEEwN7r//fq666irmzZvHDTfcwPHHH082m2XTpk3ce++9vPTSSzzyyCMT3c1Dprm5mZdeeoljjjlmortSUdasWcPHP/7xomu1tbUT1JsDeDwennnmGQA0TWPbtm3ceuutLF68mPfee49p06ZNcA8FgrER8+WRxVSYL49WxKZbUDFOPvnkie5C2WSzWSRJQlUnx1fj1FNPpa6ubqK7IRBMGV566SX+8R//kaVLl/Loo4/icrkKry1dupTrrruOJ554YgJ7eOjouo6mabhcLs4888yJ7k7FmTNnzqQcpyzLRf06++yzmT59Oueffz6/+93v+Pu///sJ7J1AMDZivjzymCrz5dGIcC8XVIzh7uWGYXDrrbcyb948PB4PVVVVnHDCCfz4xz8Gci7VN9xwA5Cz5ubdTv74xz8W3n/HHXcwf/58XC4XDQ0NfOlLX2LPnj1F7ZqmyZo1a5gxYwZut5vTTjuNDRs2sGTJEpYsWVIol3fF+eUvf8l1113HtGnTcLlcbNu2je7ubq666iqOP/54/H4/DQ0NnHfeefzpT38qaivvrvSDH/yA22+/nZkzZ+LxeFiyZAkffPAB2WyWb33rW7S0tBAKhfjUpz5FV1fX+N9sgUAA5E75JUnivvvuK1pA5nE6nVx66aWFv+3OK0uWLGHhwoW8+uqrfOxjH8Pr9TJ79my+//3vYxgGAN3d3TidTr7zne+UtPv+++8jSRI/+clPCmXLmWPuuOMObr31VmbNmoXL5eLZZ5+1dJfctm0bV1xxBXPmzMHr9TJt2jQuueQS3n777aJ68/Pfr371K26++WZaWloIBoNccMEFbN26taT/TzzxBOeffz6hUAiv18txxx3HbbfdVlRm06ZNXHrppdTU1OB2uzn55JP59a9/bfWYKspdd92FJEls27at5LUbb7wRp9NJT08PAK+//jrLly+noaEBl8tFS0sLn/jEJ0qev13ynkkOh+PgByAQHCbEfCnmy4mcL482xKZbUBb5E8PhP6ZpjvneO+64g9WrV/O5z32O3/3ud/zHf/wHV155ZSF++ytf+QrXXHMNAL/5zW946aWXeOmllzjllFMA+Md//EduvPFGli5dymOPPcZ3v/tdnnjiCRYvXlyYEABuvvlmbr75Zv7qr/6K//7v/+Yf/uEf+MpXvsIHH3xg2a+bbrqJXbt2ce+99/L444/T0NBQiGH6l3/5F373u9+xdu1aZs+ezZIlSwqHAEP52c9+xosvvsjPfvYzfvGLX/D+++9zySWXcOWVV9Ld3c3//b//lzvuuIOnn36ar3zlKwd9v3Vdt/1egeBoQ9d1nnnmGU499VTa2tpsvcfuvALQ2dnJ5z//eb7whS/w2GOPcdFFF3HTTTexfv16AOrr61m+fDkPPvhgYWGZZ+3atTidTj7/+c8DlD3H/OQnP+GZZ57hf//v/83//M//MH/+fMvx7Nu3j9raWr7//e/zxBNP8LOf/QxVVTnjjDMsF4ff/va32blzJ7/4xS+47777+PDDD7nkkkuK5poHHniAiy++GMMwCvPkN77xjaKF1rPPPstHP/pRBgYGuPfee/nv//5vTjrpJP72b/+2JIZy5syZJRogo2EYRsn/OaPxhS98AafTWdKuruusX7+eSy65hLq6OuLxOEuXLmX//v387Gc/Y8OGDdx1111Mnz6daDRqq2/5/qRSKd555x1uuOEGqqur+cQnPmF7fALBRCDmSzFfwsTMl0N/hj/7IxpTILDB2rVrTWDUnxkzZhS9Z8aMGebKlSsLfy9fvtw86aSTRm3nBz/4gQmY7e3tRdffe+89EzCvuuqqouuvvPKKCZjf/va3TdM0zb6+PtPlcpl/+7d/W1TupZdeMgHz3HPPLVx79tlnTcA855xzxhy/pmlmNps1zz//fPNTn/pU4Xp7e7sJmCeeeKKp63rh+l133WUC5qWXXlpUz6pVq0zADIfDo7b3L//yL5b3eNq0aWP2VSA4Wuns7DQB8+/+7u9slbc7r5imaZ577rkmYL7yyitFZY8//njzwgsvLPz92GOPmYD51FNPFa5pmma2tLSYn/nMZ0bsy1hzzDHHHGNmMpmi9+RfW7t27aj1ZjIZc86cOeY///M/F67n57+LL764qPyvf/1rEzBfeukl0zRNMxqNmsFg0Dz77LNNwzBGbGf+/PnmySefbGaz2aLry5cvN5ubm4vmx2OOOcY85phjRqxreB+tfj788MNR3/vpT3/abG1tLWr397//vQmYjz/+uGmaprlp0yYTMB999NEx+zKclStXWvarubnZfOGFF8quTyA43Ij50rpeMV/mOBzzJWCef/75Zdc3VRGWbkFZ/Nu//Ruvvvpqyc/ZZ5895ntPP/103nzzTa666iqefPJJIpGI7XafffZZgBI19NNPP53jjjuOP/zhDwC8/PLLpNNpVqxYUVTuzDPPHPGk8DOf+Yzl9XvvvZdTTjkFt9uNqqo4HA7+8Ic/8N5775WUvfjii5HlA1+n4447DqDE2pG/vmvXrhFGWszTTz9ddJ9///vf23qfQCAYG7vzSp6mpiZOP/30omsnnHACO3fuLPx90UUX0dTUxNq1awvXnnzySfbt28eXv/zloveWM8dceumltlyWNU1jzZo1HH/88TidTlRVxel08uGHH45Y7/DxAIUxbdy4kUgkwlVXXTWiyuy2bdt4//33C1apoVaMiy++mI6OjiKr0bZt2yxdGUfi9ttvL/k/ZyzL3BVXXMGePXt4+umnC9fWrl1LU1MTF110EQDHHnss1dXV3Hjjjdx7771s2bLFdp8gJwyU788rr7zCb37zG+bOncvFF1/MSy+9VFZdAsFkR8yXYr4cr/ly6M/Pf/7zsuqZykwOtSjBlOG4447jtNNOK7keCoXYvXv3qO+96aab8Pl8rF+/nnvvvRdFUTjnnHO4/fbbLescSm9vL5BTnxxOS0tLYcLLl2tsbCwpZ3VtpDrvvPNOrrvuOv7hH/6B7373u9TV1aEoCt/5zncsJ+Kampqiv51O56jXU6mUZV+Gc+KJJwohNYHAJnV1dXi9Xtrb222Vtzuv5LFSgHW5XCSTycLfqqryxS9+kbvvvpuBgQGqqqpYt24dzc3NXHjhhYVy5c4xVn204tprr+VnP/sZN954I+eeey7V1dXIssxXvvKVon6ONKZ8XGe+bHd3NwCtra0jtrl//34Arr/+eq6//nrLMsNdT8th9uzZY/4fMZyLLrqI5uZm1q5dy7Jly+jv7+exxx7jn/7pn1AUBcj9v/Xcc8/xve99j29/+9v09/fT3NzMV7/6Vf7X//pfYy7aZVku6deFF15IW1sb1157rdh4CyY1Yr4U82WeiZovjzbEpltw2FBVlWuvvZZrr72WgYEBnn76ab797W9z4YUXsnv3brxe74jvzU90HR0dJZPZvn37ChvTfLn8pDaUzs5OS2u31Wnk+vXrWbJkCffcc0/RdbtxKwKB4PCjKArnn38+//M//8OePXtGXfiA/XmlXK644gp+8IMf8PDDD/O3f/u3PPbYY6xataqweIHy5xi7uUzXr1/Pl770JdasWVN0vaen56DSMNbX1wOMKpSTv0833XQTn/70py3LzJs3r+y2DwVFUfjiF7/IT37yEwYGBnjooYdIp9NcccUVReUWLVrEww8/jGmavPXWW6xbt45//dd/xePx8K1vfavsdr1eL8cccwxvvvnmeA1FIKgIYr4U82WeiZovjzaEe7lgQqiqquKzn/0sV199NX19fezYsQMoPTXMc9555wEUBDjyvPrqq7z33nucf/75AJxxxhm4XC7+4z/+o6jcyy+/XHIKOxqSJJUoeb711lvCciEQTHJuuukmTNPkq1/9KplMpuT1bDbL448/DtifV8rluOOO44wzzmDt2rUjLl4qNcdY1fu73/2OvXv3HlR9ixcvJhQKce+9944omDlv3jzmzJnDm2++yWmnnWb5EwgEDqr9Q+GKK64glUrxq1/9inXr1nHWWWeNKKgkSRInnngiP/rRj6iqquK11147qDZjsRjbtm2joaHhULouEBwWxHwp5ss8EzFfHm0IS7fgsHHJJZewcOFCTjvtNOrr69m5cyd33XUXM2bMYM6cOUDuFA3gxz/+MStXrsThcDBv3jzmzZvH3//933P33XcjyzIXXXQRO3bs4Dvf+Q5tbW388z//M5Bz57722mu57bbbqK6u5lOf+hR79uzhlltuobm5uSjuejSWL1/Od7/7Xf7lX/6Fc889l61bt/Kv//qvzJo1a0wlSIFAMHGcddZZ3HPPPVx11VWceuqp/OM//iMLFiwgm83y+uuvc99997Fw4UIuueQS2/PKwfDlL3+Zr33ta+zbt4/FixeXWC4qNccsX76cdevWMX/+fE444QQ2b97MD37wgzGtWCPh9/v54Q9/yFe+8hUuuOACvvrVr9LY2Mi2bdt48803+elPfwrA//k//4eLLrqICy+8kMsvv5xp06bR19fHe++9x2uvvcZ//ud/Fuo89thjAcqKUzwY5s+fz1lnncVtt93G7t27ue+++4pe/+1vf8vPf/5zPvnJTzJ79mxM0+Q3v/kNAwMDLF26dMz6DcPg5ZdfLvx77969/OQnP6G/v5/Vq1dXYkgCwbgi5ksxX+Y5nPPlcE4++WTLlHVHHBOn4SaYSuTVy1999VXL1z/xiU+MqV7+wx/+0Fy8eLFZV1dnOp1Oc/r06eaVV15p7tixo+h9N910k9nS0mLKsmwC5rPPPmuapmnqum7efvvt5ty5c02Hw2HW1dWZX/jCF8zdu3cXvd8wDPPWW281W1tbTafTaZ5wwgnmb3/7W/PEE08sUrnMKz3+53/+Z8l40um0ef3115vTpk0z3W63ecopp5iPPvqouXLlyqJx5tUwf/CDHxS9f6S6x7qPefLq5d3d3aOWEwgE1rzxxhvmypUrzenTp5tOp9P0+XzmySefbP5//9//Z3Z1dRXK2Z1Xzj33XHPBggUl7QyfE/KEw2HT4/GYgHn//feXvH6oc8zQ14aq8fb395tXXnml2dDQYHq9XvPss882//SnP5nnnnuuZfaG4XPUSAq/v//9781zzz3X9Pl8ptfrNY8//njz9ttvLyrz5ptvmitWrDAbGhpMh8NhNjU1meedd5557733FpWbMWOG5T0bzmhztF3uu+8+EzA9Hk9J1oj333/f/NznPmcec8wxpsfjMUOhkHn66aeb69atG7NeKzXehoYG89xzzzUfeeSRg+6vQDARiPlSzJemeXjny6E/Y6mrHylIpmkjwbJAMMVpb29n/vz5/Mu//Avf/va3J7o7AoFAIBAIBAKB4ChBbLoFRxxvvvkmv/rVr1i8eDHBYJCtW7dyxx13EIlEeOedd0ZUMRcIBAKBQCAQCASC8UbEdAuOOHw+H5s2beKBBx5gYGCAUCjEkiVL+N73vic23AKBQCAQCAQCgeCwIizdAoFAIBAIBAKBQCAQVAiRMkwgEAgEAoFAIBAIBIIKITbdAoFAIBAIBAKBQCAQVIgjPqbbMAz27dtHIBBAkqSJ7o5AIJhATNMkGo3S0tJiO2f70YKYKwUCwVDEfDkyYr4UCAR57M6VR/yme9++fbS1tU10NwQCwSRi9+7dtLa2TnQ3JhVirhQIBFaI+bIUMV8KBILhjDVXHvGb7kAgAORuRDAYHLN8NpvlqaeeYtmyZTgcjkp3r6IcSWOBI2s8R9JYYOqMJxKJ0NbWVpgXBAcod64UCARHNmK+HBkxXwoEgjx258ojftOdd/sJBoO2N91er5dgMDipNw92OJLGAkfWeI6kscDUG49wByyl3LlSIBAcHYj5shQxXwoEguGMNVeKIB2BQCAQCAQCgUAgEAgqhNh0CwQCgUAgEAgEAoFAUCHEplsgEAgEAoFAIBAIBIIKITbdAoFAIBAIBAKBQCAQVAix6RYIBAKBQCAQCAQCgaBCiE23QCAQCAQCgUAgEAgEFUJsugUCgUAgEAgOgURGY38kRSKjTXRXBAKBYFwQ89r4IjbdAoFAIBAIBAfJtq4Y617cwdoX21n34g62dcUmuktHJLfddhsf+chHCAQCNDQ08MlPfpKtW7eOWP5rX/sakiRx1113FV1Pp9Ncc8011NXV4fP5uPTSS9mzZ0+Fey8QTC3EvDb+iE23QCAQTHJmzpyJJEklP1dffTUApmmyevVqWlpa8Hg8LFmyhHfffXeCey0QHPkkMhpPvdtJfyJLvd9NfyLLhi2dwjJUAZ577jmuvvpqXn75ZTZs2ICmaSxbtox4PF5S9tFHH+WVV16hpaWl5LVVq1bxyCOP8PDDD/PCCy8Qi8VYvnw5uq4fjmEIBJMeMa9VBnWiOyAQHM0sXP0kaV2yVXbH9z9R4d4IJiuvvvpq0YLwnXfeYenSpfzN3/wNAHfccQd33nkn69atY+7cudx6660sXbqUrVu3EggEJqrbAsERTzSlEUllaQq68TgVmoJuumMpoikNr1MsscaTJ554oujvtWvX0tDQwObNmznnnHMK1/fu3cvXv/51nnzyST7xieL/N8PhMA888AC//OUvueCCCwBYv349bW1tPP3001x44YWWbafTadLpdOHvSCQyXsMSCCYdYl6rDMLSLRAIBJOc+vp6mpqaCj+//e1vOeaYYzj33HMxTZO77rqLm2++mU9/+tMsXLiQBx98kEQiwUMPPTTRXRcIjmgCbpWg20FnJEUyo9MZSRHyOAi4xcK00oTDYQBqamoK1wzD4Itf/CI33HADCxYsKHnP5s2byWazLFu2rHCtpaWFhQsXsnHjxhHbuu222wiFQoWftra2cRyJQDC5EPNaZRCbboFAIJhCZDIZ1q9fz5e//GUkSaK9vZ3Ozs6iRaTL5eLcc88ddRGZTqeJRCJFPwKBoDy8TpVlC5qo8TnojqWo8TlYenyTsAZVGNM0ufbaazn77LNZuHBh4frtt9+Oqqp84xvfsHxfZ2cnTqeT6urqouuNjY10dnaO2N5NN91EOBwu/OzevXt8BiIQTELEvFYZxN0TCASCKcSjjz7KwMAAl19+OUBhodjY2FhUrrGxkZ07d45Yz2233cYtt9xSsX4KBEcLxzb4aamaSTSlEXCrh31hmshoE9b2RPH1r3+dt956ixdeeKFwbfPmzfz4xz/mtddeQ5LshW3lMU1z1Pe4XC5cLtdB91cgmGpM9Lx2JCIs3QKBQDCFeOCBB7joootKBIKGLxjHWkQKy41AMH54nSqNQfdhX5gejQrD11xzDY899hjPPvssra2thet/+tOf6OrqYvr06aiqiqqq7Ny5k+uuu46ZM2cC0NTURCaTob+/v6jOrq6ukoNLgeBoZ6LmtSMVsekWCASCKcLOnTt5+umn+cpXvlK41tTUBFDiGjnWItLlchEMBot+BALB1OFoUxg2TZOvf/3r/OY3v+GZZ55h1qxZRa9/8Ytf5K233uKNN94o/LS0tHDDDTfw5JNPAnDqqaficDjYsGFD4X0dHR288847LF68+LCORyAQHF2IowuBQCCYIuTVeocq8s6aNYumpiY2bNjAySefDOTivp977jluv/32ieqq4AjjaHRhnkjs3O+jTWH46quv5qGHHuK///u/CQQChYPGUCiEx+OhtraW2traovc4HA6ampqYN29eoeyVV17JddddR21tLTU1NVx//fUsWrSooGYuEAgEleDIm5UFAoHgCMQwDNauXcvKlStR1QNTtyRJrFq1ijVr1jBnzhzmzJnDmjVr8Hq9XHbZZRPYY8GRwrauGE+920kklSXodrBsQRPHNvgnultHLHbv91CF4aagm85ITvDoSFUYvueeewBYsmRJ0fW1a9cWNC7s8KMf/QhVVVmxYgXJZJLzzz+fdevWoSjKOPZWIBAIijkyZ2aBQCA4wnj66afZtWsXX/7yl0te++Y3v0kymeSqq66iv7+fM844g6eeekrk6BYcMkNdmPMbuw1bOmmpmnlEWlMnmnLud15heMOWzqNCYdg0zbLfs2PHjpJrbrebu+++m7vvvnsceiUQCAT2ODJnZoFAIDjCWLZs2YiLTkmSWL16NatXrz68nRIc8RyJLsyVcJUfrzrLvd9CYVggEAimBmJ2FggEAoFAYMmR5sJcCVf58azzYO631yk22wKBQDDZqZh6+fPPP88ll1xCS0sLkiTx6KOPjlj2a1/7GpIkcddddxVdT6fTXHPNNdTV1eHz+bj00kvZs2dPpbosEAgEAoFgCHkX5hqfY8q7MFdC7Xu86zyS7rdAIBAIDlCxWTwej3PiiSdyxRVX8JnPfGbEco8++iivvPJKSc5ZgFWrVvH444/z8MMPU1tby3XXXcfy5cvZvHmzELwQCAQCgeAwcKS4MFfCVb4SdR4p91sgEAgEB6jYTH7RRRdx0UUXjVpm7969fP3rX+fJJ58sSoEDEA6HeeCBB/jlL39ZSOOwfv162traePrpp7nwwgsr1XWBQCAQCARDGG8X5olIQVYJV/lKud8Ll3GBQCA4spiwGd0wDL74xS9yww03sGDBgpLXN2/eTDabZdmyZYVrLS0tLFy4kI0bN4646U6n06TT6cLfkUgEgGw2SzabHbNf+TJ2yk52jqSxwJE1nvwYXLJ9NdbJPO6p8mwme/8EgqOBiUpBVgm176NNQVwgEAgEB8eE/a9w++23o6oq3/jGNyxf7+zsxOl0Ul1dXXS9sbGRzs7OEeu97bbbuOWWW0quP/XUU3i9Xtv927Bhg+2yk50jaSxwZI3nu6cZtsv+/ve/r2BPxofJ/mwSicREd0EgOKqZ6BRklXDdFu7gAoFAIBiLCfmfYfPmzfz4xz/mtddeQ5Kkst5rmuao77npppu49tprC39HIhHa2tpYtmwZwWBwzPqz2SwbNmxg6dKlOByOsvo22TiSxgJH1njyY/nOJpm0Ye878M7qyRtSMVWeTd7zRSAQTAyTIQVZJVy3p4I7+ES49AsEAoEgx4TMun/605/o6upi+vTphWu6rnPddddx1113sWPHDpqamshkMvT39xdZu7u6uli8ePGIdbtcLlwuV8l1h8NR1mag3PKTmSNpLHBkjSdtSKR1e5vuqTDmyf5sJnPfBIKjgSMtBdlUYaJc+gUCwaEjDsyODCqWMmw0vvjFL/LWW2/xxhtvFH5aWlq44YYbePLJJwE49dRTcTgcRe6qHR0dvPPOO6NuugUCgUAgEExOREqsw08lUqUJBILDw7auGOte3MHaF9tZ9+IOtnXFJrpLgoOkYv/LxWIxtm3bVvi7vb2dN954g5qaGqZPn05tbW1ReYfDQVNTE/PmzQMgFApx5ZVXct1111FbW0tNTQ3XX389ixYtKqiZCwQCgUAgmFqUGwMtrDyHxmRw6RcIBOUz0RoYgvGlYk9s06ZNfPzjHy/8nY+zXrlyJevWrbNVx49+9CNUVWXFihUkk0nOP/981q1bJ3J0CwQCgUAwhbEbAy3cog8d4dIvEExNxIHZkUXFntiSJUswTfvpkHbs2FFyze12c/fdd3P33XePY88EAoFAIBBMdoSVZ3wQac0EgqlJuQdmwitociOeiEAgEAgEgkmHsPKMHyKtmUAw9SjnwEx4BU1+xKwrEAgEAoFg0iHcoseXqZDWTCAQFGPnwEx4BU0NJkS9XCAQCAQCgWA0hNK5QCAYSiKjsT+SmtTK+5Xoo9ep0hh0jzj35b2CavwOsoZBjd9BOJklmpq89+loRPzPJRAIBAKBYFJybIMfl9rM9u44s+t9tNX4JrpLAoFgApgK7tMT1ceAWyWrm/xhSxdORSKjm5zUViW8giYZ4mkIBAKBQCCYlDzzfhfrXmwvLGIv/+gszpvfMNHdEggEh5Gp4D5dbh/HXfTMNDFNyOgGpikB9sWsBYeHyfFJFQgEAoFAIBhCTyzFuhfb6U9kaQ656QineHBjOye0Bqnzuye6ewKB4DAxFUQVy+njeFvEoymNWEbD51JIawYuVSaa1ibV/RGImG6BQCAQCASTkM5wmkgqt+H2OlWaQ27CySyd4fREd00gEBxGhooqJjM6nZEUIc/kElW028ehFvF6v5v+RJYNWzoPKQZckaFjIEV/IkvI46A/kaUznEIRu7xJhXgcAoFAIBAIDit2xIaaQi6Cbgd7+5P0xdPs7U8S8jhoCrkOY0/tMRUEngSCqcpUEFW020cri/ihip7pBjSHPNQHnKSyOvUBJ01BD7pxqKMSjCeT59MqEAgEAoHgiMeua2Wd382FC5q4/4XtdHem8LpULjt++qRzLZ8KAk8CwVRnKuSat9PHSqRCDLhVZtR68bhkqjxOBpIZGgPuSeUJIBCWboFAIJgS7N27ly984QvU1tbi9Xo56aST2Lx5c+F10zRZvXo1LS0teDwelixZwrvvvjuBPRYISinHtTKR0Qgns3z02FouPWkaHz22lkgqO6msyZVwFRUIBNaMlTqrktj1Zhmrj3mLuN+lsKM3ht+lHLLVPl9ntcdJbyxNtcc5Lp4AwoNnfBGbboFAIJjk9Pf389GPfhSHw8H//M//sGXLFn74wx9SVVVVKHPHHXdw55138tOf/pRXX32VpqYmli5dSjQanbiOCyY1E7GgKse1Ml92dm2A2XV+ZtcGxiX37HiOu5Af1+skqxvUeJ0iP26FuO222/jIRz5CIBCgoaGBT37yk2zdurXwejab5cYbb2TRokX4fD5aWlr40pe+xL59+4rqSafTXHPNNdTV1eHz+bj00kvZs2fP4R6OYAqxrSvGuhd3sPbFdta9uINtXbHxqViSxqeeCtRZsTEfxYhNt0AgEExybr/9dtra2li7di2nn346M2fO5Pzzz+eYY44Bclbuu+66i5tvvplPf/rTLFy4kAcffJBEIsFDDz00wb0XTEYmakFVjiBSJcSTxnvcAbdKVjN4Zut+nv+gm2e27kfTDeHWWQGee+45rr76al5++WU2bNiApmksW7aMeDwOQCKR4LXXXuM73/kOr732Gr/5zW/44IMPuPTSS4vqWbVqFY888ggPP/wwL7zwArFYjOXLl6Pr+kQMSzDJGW9vlnx9sbTOzBofsbR+yN4x412n8OCpDGLTLRAIBJOcxx57jNNOO42/+Zu/oaGhgZNPPpn777+/8Hp7ezudnZ0sW7ascM3lcnHuueeyceNGyzrT6TSRSKToR3B0MJELqnIEkcZbPKli4y5YlvJ5cStgvRLwxBNPcPnll7NgwQJOPPFE1q5dy65duwphNqFQiA0bNrBixQrmzZvHmWeeyd13383mzZvZtWsXAOFwmAceeIAf/vCHXHDBBZx88smsX7+et99+m6effnoihyeYpIy38FklhNSmQh8FQkhNIBAIJj3bt2/nnnvu4dprr+Xb3/42f/7zn/nGN76By+XiS1/6Ep2dnQA0NjYWva+xsZGdO3da1nnbbbdxyy23VLzvRyuJjDZhgj9jtT3ROW/LEUQqp2xPLEVnOE1TyGUptlZwBfc7yBoGNX4H4UR2xHHbeYbRlIZDkfjYnDoymolTlUhk9EOqU2CPcDgMQE1NzahlJEkqhOJs3ryZbDZbdEDZ0tLCwoUL2bhxIxdeeKFlPel0mnT6QKo6cUh5ZGDn+1iu8NlYdVZKSG0866xEHwVi0y0QCASTHsMwOO2001izZg0AJ598Mu+++y733HMPX/rSlwrlpGGxXKZpllzLc9NNN3HttdcW/o5EIrS1tVWg90cfE6lmbaftybCg8jrtbzrtlH3m/S7WvdheGPflH53FefMbisoE3CpZ3eQPW7pwKhIZ3eSktirLcdt9hvk6n/+gZ9zqFIyNaZpce+21nH322SxcuNCyTCqV4lvf+haXXXYZwWAQgM7OTpxOJ9XV1UVlGxsbC4eXVohDyiMPu9/HvMfNhi2dY3rc2KmznPrskq/zd2/tY0dvjDq/65DqrEQfBWLTLRAIBJOe5uZmjj/++KJrxx13HP/1X/8FQFNTE5BbUDY3NxfKdHV1lVi/87hcLlyuyZfveKoz1IU5v6HdsKWTlqqZFV+w2G37SFtQ9cRSrHuxnf5EluaQm45wigc3tnNCa7DU4m2ag97gEpJkcsAl/ABlP8NK1CkYla9//eu89dZbvPDCC5avZ7NZ/u7v/g7DMPj5z38+Zn2jHVCCOKQ80ij3+2jH46acOiua/mychNSmQoq2qYa4gwKBQDDJ+ehHP1qk0gvwwQcfMGPGDABmzZpFU1MTGzZs4OSTTwYgk8nw3HPPcfvttx/2/h7NTKTrdjltT6UF1Vjump3hNJFUbsPtdao0h9x0RXOu5kM33dGUhkOVOWVGFf3xDNU+JxJSyf0p5z7m6zxvXiOSBKYJ4VRmxDr9boW+RBq/WynESI5HWp+p8BzHi2uuuYbHHnuM559/ntbW1pLXs9ksK1asoL29nWeeeaZg5YbcAWUmk6G/v7/I2t3V1cXixYtHbFMcUh5ZHMw8PZbHTbnhK+V4+4zFcCG18TrUG88+CsSmWyAQCCY9//zP/8zixYtZs2YNK1as4M9//jP33Xcf9913H5BzK1+1ahVr1qxhzpw5zJkzhzVr1uD1ernssssmuPdHFxPpul1u21NhQWXHXbMp5CLodtARThUs3TU+B02h4k1SwK3yl+4YL2/vwzRMJFnirNk1JfennPuYL9uXyIxaNuBW6Y6meXl7b84QLsFZs2sP+XNxNLmsm6bJNddcwyOPPMIf//hHZs2aVVImv+H+8MMPefbZZ6mtrS16/dRTT8XhcBQE1wA6Ojp45513uOOOOw7LOAQTT6Xiqu2Gr4w3E63TIbCHUC8XCASCSc5HPvIRHnnkEX71q1+xcOFCvvvd73LXXXfx+c9/vlDmm9/8JqtWreKqq67itNNOY+/evTz11FMEAoEJ7PnRx3grbk+VtiuBXbXxOr+byz86ixqfg65obtwrF88qcS3vjaV5d28EzTBRFRnNMHl3X4TeWLqoXCUU1hMZjR098aK2d/QmxiVN0NGS1ufqq69m/fr1PPTQQwQCATo7O+ns7CSZTAKgaRqf/exn2bRpE//+7/+OruuFMplMBsgpnF955ZVcd911/OEPf+D111/nC1/4AosWLeKCCy6YyOEJDiP5761LldjSMYBLlcZnriwKNQGrUJNKUIn0ioLxRzwNgUAgmAIsX76c5cuXj/i6JEmsXr2a1atXH75OCSyZSNftiXYbt+vqbFcZPJLKUuN1ktUNarxOwslS122A8+Y3cEJrcFT18u3dcTTDoDnoRlUkNN0kls6yvTtOW42vqOyxDX5cajPbu+PMrveVvD687Fj3vDOcRjdNFjSHcKoyGc2gL5EucYEvh6PNunXPPfcAsGTJkqLra9eu5fLLL2fPnj089thjAJx00klFZZ599tnC+370ox+hqiorVqwgmUxy/vnns27dOhRFqfQQBIfIWBkK8tiZX3b1JXh91wADySyd4TSnzKg5JC8Ru6Em5fTRLuMtpCaoDOJpCAQCgUAwzkyk6/ZEtW3X1bksZXDN4Jmt+3HIMlnD4MTW0IjWmzq/e9SF+Ox6H6oi0xFO4VIl0ppJjc/B7PrSDbUdNfShjHXP8y7w3bE0zSE33bG0pQt8OUwGFfrDiWmObjWcOXPmmGUA3G43d999N3ffffd4dU1wGLD7nbQzv+TFFyMpjWlVntHFF21iN9TEbh8PmnESUhOMPxVzL3/++ee55JJLaGlpQZIkHn300cJr2WyWG2+8kUWLFuHz+WhpaeFLX/oS+/btK6ojnU5zzTXXUFdXh8/n49JLL2XPnj2V6rJAIBAIBIKDwK6rc9ku0YUFZH4zdfALylq/iwXNgYKVW1UkFrQEqPUXb3yHqqE3BHJ9fHBjOz2x1EG3bdcFvhyOtHACgWAk7H4n7c4vefHFGq+TjJb3oslZvEcikdHYH0mNOFeVE2oy3mEhhTqTGWp9TvqTmXEJNRlrzILyqNjMHI/HOfHEE7niiiv4zGc+U/RaIpHgtdde4zvf+Q4nnngi/f39rFq1iksvvZRNmzYVyq1atYrHH3+chx9+mNraWq677jqWL1/O5s2bhRuQQCAQCASTBLuuzmUrgysS5x3XgISEiTmqGrCdPh7TEGBeY4hYOovf5UAzjZL67Kqhl4sdF/hymehwAoHgcFBOhgI780tTyEVWM9i8qw9ZkjBMkxm1vhE9T+xapu18HysRFhJNaezsTdAVTbHdiKPIEsl06dxWDkeTSOPhomKz80UXXcRFF11k+VooFGLDhg1F1+6++25OP/10du3axfTp0wmHwzzwwAP88pe/LIhbrF+/nra2Np5++mkuvPDCSnVdIBAIBAJBGeRdK3f3J6jyOBhIZmkMukZUBh+r3NCye/oTeBwqyaxGa5V3RPfpsWIk8/X1J7K0DabVsXL/zLuC7+1PUut30hvLUBdwjuoKbjc+cywX+INhKqjQC44+xjNmuZwMBeWEXJgmGJiYJkgjiJ7lrchd0TRVHgdd0fQhpeMqZw4c2ofR7qUiQ0c4SX8iW7g/hmmijODPPFZsfH7M+8JJPKrCvnByXFKQ2RnLkcykGW04HEaSJKqqqgDYvHkz2WyWZcuWFcq0tLSwcOFCNm7cOOKmO51Ok04fcA+JRCJAzqU9m82O2Y98GTtlJztH0ljgyBpPfgwu2b6y5WQe91R5NpO9fwLBVMXrVJnfHOTl9nYiySxBj4Nz5taXLKrslsuXDXkc/HpTL4lMzmLz1Y+FLMvascrk3T83bOkc1f2zzu/mwgVN3P/Cdro7U3hdKpcdP33EzbKwCAkExYz3dyIfnvHgxvZRwzPsfsdzwoZQH3ChGyaKLKEZWHqzRFMaO/vidEXSbDdyG9xkVrO0Itudh+zOgXbr1A1ornKjyhKprEG930l90IVulNZnJzY+mtJ4e2+YrZ1RMrqBU5GZ1xQ4ZJHGo32unBSb7lQqxbe+9S0uu+wygsEgAJ2dnTidTqqrq4vKNjY20tnZOWJdt912G7fcckvJ9aeeegqv12u7T8Mt8VOZI2kscGSN57unWcyII/D73/++gj0ZHyb7s0kkEhPdBYHgiCSR0Xi/I8Lseh9VHicDyQxbOyOcObumaJFmtxzkrDFPvtuJz6kyvcZLbyzDU1s6uXBhY9HCeGiMZN66NZJVxo77ZyKjEU5m+eixtQULeySVLWz8h5e127ZAcDRQqe+E3fAMO9/xkEclldWJpTVqfU564xkkKXd9OIoMHQOpMa3IdsddzhxYsLLHUlR5nHTFrOsMuFVm1PjwONRRredDY+PzY7ESkMtoOu91RIruz/udETKaPvIDGgMxV06CTXc2m+Xv/u7vMAyDn//852OWN00TaRRlvptuuolrr7228HckEqGtrY1ly5YVNvRj9WfDhg0sXboUh8NhbxCTlCNpLHBkjSc/lu9skkkb9oSB3lk9eUMqpsqzyXu+CASC8SUfp9hW5cPjVAi4HKPGdOcEjMyCgJGVBSUfxzmt2oPXqeJ2KKPGcfqdKn3xNH6nOmKd5Yxldm0Aj1MhmdFHjTs/mtJ2CQRjUcnvhN3wjLFCLpyqwnHNAbZ2RomndYJulXlNAZxqqV6UbkBzyIOqSKSyOvUBJ/V+d4kV2W6Kw3y5xqAbCYlGh3tErQq7sdpDU4b1xNIjpgyzGxsfTmq4HTKy7CCjGQQ9DpyKRDip0Tbm3bdGzJUTvOnOZrOsWLGC9vZ2nnnmmaJNcVNTE5lMhv7+/iJrd1dXF4sXLx6xTpfLhctVGnflcDjK2gyUW34ycySNBY6s8aQNibRub9M9FcY82Z/NZO6bQDCVsRtLGXCrdEfTvLK9D8M0kSWJM46psYxnLCeOszuS4uX2vpzIuQRnzbau0457YzlxoUdb2i6BYCymwnci4FZZNK2KGp8Lj0MhmdVprfaM+B2fUevF45ILlunGgNtybrOT4jDgVsnqJn/Y0oVTkcjoJie1VVm2XW6sNjBqyjC7c2pTyIXfpbKrN4HTIZNJG8yo84oUh4dIxVKGjUV+w/3hhx/y9NNPU1tbW/T6qaeeisPhKHJX7ejo4J133hl10y0QCAQCgeDwUk66nJ29cbK6gVOVyeoGu3rjlilp7KbZSmQ0dvQl0IxcGjDNMNnRmzzodGXlpOISabsEgmLK/U5UIi2V3fRerdU5C3ZrtWfM73hjwE0qq9MYcI88HrspDk1zsKg0+Nta3ycfq13vdxZitZtCpVb2/NzWHUvjVmS6Y2nLuc3unOp1qsyo9eFUFQwj5xkwvdZ3SPOamCsraOmOxWJs27at8Hd7eztvvPEGNTU1tLS08NnPfpbXXnuN3/72t+i6XojTrqmpwel0EgqFuPLKK7nuuuuora2lpqaG66+/nkWLFhXUzAWCcpj5rd+VVX7H9z9RoZ4IBAJB5aiEOqydOu3EUnaG02iGyYJpIRxKbtPdF0+PmI7rvPkNzGnwsb07zux6H201Pss6dcNkToMffVDoKJbWDjqdUH4sVd5WW+m9RNougaAYu9+JSghrjWd6r3LK2k1xGE1pOFSZ8+Y1Ikk5BfVwqtQNHezHapcjfGYnNj6a0qgPuFjxkVYymolTlUhk9EN2BT/a58qKjXbTpk18/OMfL/ydj7NeuXIlq1ev5rHHHgPgpJNOKnrfs88+y5IlSwD40Y9+hKqqrFixgmQyyfnnn8+6detEjm6BQCAQCCyYyEUsjB1LmXdv7I6maQ656Y6mLd0brdp+d1/Esu18zt039g8gy2AYMNPCFbIc98Zy76NI2yUQFDPWd6ISwlrl1lnO93assvn5ZX8kNaYbetDtoC+RGXMeKsRqv72PnliGOr/T0jpcrvDZWLHx+T7m06T1xcdOa2aXo3murJh7+ZIlSzBNs+Rn3bp1zJw50/I10zQLG24At9vN3XffTW9vL4lEgscff5y2toMN4RcIBAKB4MjFrvv0RNZp173xoNoedNdEAtPCrbMcF/jxvo8CgaAYK8+TvADi4aqzHNd2Oy7r85uDbO+K88etXWzvijOvKWiZNrFcN2vTAEwz99uCvPBZ0HNA+MylyoSTBzfuwlh6Yvzxgy6298QsxyIoD3H3BAKBQCCYIMbTFbwS6rB2FXnL4bz5DbRWudnSEeH45iBzm6wzi9gdT2c4jUOVOXV6TZG7ppXLuh238YIauluhL5HG71YOSQ19KD2xlC2XdYHgSKcSwlqV8maxU/ZAKjB/wRV8pFRgdt2s8weA8YzOzFr/iJb7coTPyhvL2GnNBPYRd04gEAgEgglgvF3BK7WItaPIWw7PvN/FuhfbC+O+/KOzOG9+w0GPJ++y3pfIjKrIC/bVy7ujaV7e3jtEDb32kF0r7Y5bIJjMjNdBYd7iu2FL57gJaw1NnbWjNzZi6qxy3NALubIHXa27omnLsoVUYAE3kgSNqjLqAaUdN+vCoaffQdYwqPE7LOPE88JnneE0hmGOKHxmd9yFsfg9ubH4PYd82Dq0DyKmWyAQCAQCwWGhEvGMlVjEAvYVeW3QE0ux7sX2ohQ4D25s54TWoKWCrp3x5F3WH9zYPqbKuZ17nsho7OiJoxkmblUhpens6E2QyBz8grOccQsEk5XxPiisqLDWKKmzyvEKiqY0dvbF6Yqk2T4o1JjMaiVlK3FAaTe9mF3hM7vjrsRYoDKaI1MJsekWCAQCgeAwY9eCUS7lqG7bsTjkFXk/NqduXFRsO8NpIqksIY+j8DuczI6oXm53UW5H5bwcd3XdNFnQHMKpymQ0g77EyArr5Yy7OeTG61RpDrnpiqYOqU6BYCzG06pYiYNCKE9Ya6zwjHwfY2mdmTW+EftYjleQIkPHQMpermxJIqsbpDUdWZIY7YDS9rMpSi9mYpVeLD+eoc/GajxleUON42ErVO7zM5U4OkYpEAgEAsEkwq4Fo1zsWhLslsv38/kPesaln00hF7FUli37IoVrM2o8I6qXg71FuR2V83Ld1btjgwrrsdEV1u2Qr7MjnBrTBV4gGA/G26pYCc2IcrATnmG3j+V4BekGNIdy+bxTWZ36gJN6f2mu7GhKY99AkoFElrSm41IV9g4kLe+P3WdjN72Y3fHYLWc3/Vk5TPTnZzJwdIxSIBAIBILJhg0LRjmU4z5dlsVhHPuZzOhEkhqmaSJLYJgQTmkkM9apbexgdzzj7a5eDpWoUyAYiUpYFSuhGZHv61gWX7vhGeX00a4XTcCtMqPWi6qCx6GSzGq0VnlL6syn7YqksgXxMau0XeU8m3LSi9n1crJTrpD+LJweNT94OVTq81MJKhV3PvlGKhAIBALBEY5dC0a5ddqxJJQbzzie/dzeHQcJ2mp8qIqEppvE0lm2d8ctXcLHc9xQnrv6Ca3BcVUar0SdAoEVlbAqlqsZYWfjYtfiazc842D62B1No8iMWCafPuvFv/QwkMhS5XVw/vzSOsNJDUkCwzDojqYK7ufhpMbQZMflhBbZFYYr517aKZcf88vt7USSWYIeB+fMrR8z7/pozzs/lkff2MOWzjDNIff4aI6MM5WMO59cIxUIBAKB4CigHAtGnrEWNXYtCeVYHMrt51gxl7Prc4q6A4kMfpdKLK0R8jqYXX9wG+6hffygK4wsyRimwcxa/yFbUJIZnd5YmpBn/JZKXqdKfWDkBb5AMB5Uyqpo99DKbloquxbfcsIz7PbRbjaBREbjxW09JDM6blUmmdHZuK2nJH1WyJObz2JpHUWS0E0Tp6qVzB8HHVo0ijDceHs5lZsyzO5GdVdfgtd3DjCQyNA5kOKU6TWTSkit0nHnYtYXCAQCgeAwU65Fxq51Yjzj+sota2cR21bj45w59fx60y4iqSyqLLH8hJaDtnLn+5jRDJ58Zz8Z3cCpyFy+2HtIi8N/f3kn9/9pe0Gx/Ksfm83nz5xx0H0sp22B4FCpWCYDxtZYKDctlR1rfLnhGWP1sZxsAl2RFO/sDaNIEkGPg0gyy9t7w3RFUsysO/D9jaV0DINBAbXcb8PMXS/BNDExyejmYLCOdciOXWG4/L10OSR298fxu1XCyVLrecHK7nWS1Q1qvE7LVGD5cm1VPjxOhYDLMeKzKaRUi6Wo8jjpiln3MX/PB5IZav0ueuPpw57BYayD60rHnYtNt0AgEExyVq9ezS233FJ0rbGxkc7OTgBM0+SWW27hvvvuo7+/nzPOOIOf/exnLFiwYCK6K7CJXYtMOafvdussJ1WPnbJ2F7E9sRQ7euNMr/HhdynE0jo7++L0xFIHvfDa3Rfn0Tf2IssyTT4XA8ks//3mXj5z6rSizbzd+7i7L879f9pOLK1R63PSG8/wixe2c87cuoM+HBDKvYLDTUXTcY1COWmpyrHGj2d4RnnZBCSSGY3+RJbeeIasblDtdTBczTueyeJUZRoCLtwOhVRWRzdz14ffn1hax+dUC4Jr0ZR1Rohy7uVfumO8vL0P0zCRZImzZtdYejnZSQVWzrOJpjR29iboiqbYbsRRZIlk2rDMCtEVTaPpBh3hFKZpsj9yaFkhysHOoWel486tBO8FAoFAMMlYsGABHR0dhZ+333678Nodd9zBnXfeyU9/+lNeffVVmpqaWLp0KdFodAJ7LLCD16nSGHSPuiC2WnjlrRgHW2c55eyQX8TWB5zIkkR9wFlIBWZdzoXLoVAfcFmWK4ft3XESGY0arxOPQ6HG6ySe1nLx40PI30e/W6EvkcbvVizvY76+aq8DVZap9jos6yuHcp+hQDAejOd33C5DNy7JjE5nJEXIU7pxyVvja3wO29b4Or+bhdNCY27SEhmN/ZEUiYz192uou3oio9ERzvXRyl3d71ZwKDJpzSCr6aQ1A6eq4HcrReVm1vloqXKTNUyyukHWMJlW5WFmXfFBnSJDRzhJbzyNS1XojafpjCQtU5Dl7+Xu/gRdkRS7+xOW97I3lubdvRE03UCWQNMN3t0XoTdmMa8Our6ndR3dNLFKBVbOs8mPpyeWwe1Q6IllLMcT8qiksjoDySyyBAPJnMr7eIbvjMTQQ896v5v+RJYNWzpLPh8H85ksB3G8KhAIBFMAVVVpamoquW6aJnfddRc333wzn/70pwF48MEHaWxs5KGHHuJrX/va4e6qYJyZaNVXOxaCppALRZZ4d28Et0MmlTVoq/GWLGIPJmXYWMyu96HKMnvDSVyKTFo3qLGIEw+4VbqjaV7e3pvz5pTgrNm1Jfdxdr0PVZHZO5DCrcqktJxlazzizqeCcq9AMBp2BbPsuLaXa423K872u7f20RPPUOdz8okTWkrmq7y7+v99YTt7BxJUe50juqvrBjQE3fTGM6Q1Ha8zd1g4PGVYnd/N1R+fw/3P/4W+eIaWKg9fPeeYkjp1A3xOlT39CbYn4jhVCa9DLakvfy9zIm7bCyJuVoJm27vjxAc3kFkj56oeGzwoHOqdE01pxFIafqdKWjNwqTLRlHZIopO6Ac1VblRZIpU1qPc7qQ+W3h+nqnBcc4D3O6JEUhoBl8r8pgBOVbGsdzyphNjmwSBme4FAIJgCfPjhh7S0tOByuTjjjDNYs2YNs2fPpr29nc7OTpYtW1Yo63K5OPfcc9m4ceOIm+50Ok06feAUPBKJWJYTTDyVjM8ci3LScc2s8dIZSaHpJqoqMbPWU9LHZEYnktIwMZGRMDAJp/RDShlW63exYFqQl7f3oekGqiyxoCVIrb94I5/IaOzoiaMZJm5VIaXp7OhNFOK2h9a3sCXIy+19ZDQdVZFZ0BIqqa8cJvIZCgTjhV1dgnI2LmPFX5fTdiKj8as/7+LN3QM4FYn3dJNoSuPaZXNL2phe4+WktqrCQdj0Gq9lu4oM8bSGz6UwvcZLbzxNIqNZWqan13g5ZXo1nZEkTUGPZZ2KDPGMhseh0lrtpDeWIZG1rs+uiFuV10E6q5M1zMJBoWmaVHkdJW13hJNFYUCShGXbYO/ZBNwqM2p8eBzqqOnFAm6VlpCHfQMpAgZIMkyr8hyWg8dyDz3tfibLRbiXCwQCwSTnjDPO4N/+7d948sknuf/+++ns7GTx4sX09vYW4robGxuL3jM05tuK2267jVAoVPhpa2sbsaxg4jm2wc/KxTO54qOzWLl45mET4Bou0ONySJZu0dGURn3QzadObGXp8Y186sRW6gJuS9dtgLZqHzNqfbRV+wBzVNft3X1xntvaxe4+6zLRlMYx9X5WLp7BZ09rZeXiGcyu95e03RlOo5smx9R5qQs4OabOi2YYJa7t0ZTG7Ho/K8+cwWdPa2PlmTOYXe8b1RV8LHdWyD3DvzmtleUntPA3p7UKEbUyue222/jIRz5CIBCgoaGBT37yk2zdurWojGmarF69mpaWFjweD0uWLOHdd98tKpNOp7nmmmuoq6vD5/Nx6aWXsmfPnsM5lCmJXRfdPOPp2m637bzomSSZeJwqkmQWRM+s6ktrJsc1hUhr5ohjyVtyq71OYmmNaq+TppC7xJKbrzOe1Wir8RHPapZ15uur87tIawZ1fpdlfUPH41RkmkIenIpsOR5Flqn1u1AliYxmoEoStX4Xily8zcu3XeNzEE5mBxXgrdu2S/5AsTHoIqXpNAZHTmuGJKHIEk4199vKtb0SVNpt3C7iiFUgEAgmORdddFHh34sWLeKss87imGOO4cEHH+TMM88EQBqWTsQ0zZJrQ7npppu49tprC39HIhGx8Z7kVOr0fTTKFejZvLd/VIGefMqwSCpLrc9JJJUl4FZHdN22oyKet2L0J7K0VftGtGLkXNs1tuxL5BKOSxIzanwlru1268sznvlxBSPz3HPPcfXVV/ORj3wETdO4+eabWbZsGVu2bMHny31+8voW69atY+7cudx6660sXbqUrVu3EggEAFi1ahWPP/44Dz/8MLW1tVx33XUsX76czZs3oyiVd3WdqlRa2Xl82pZIZHQGEhl6Y9lB0TMnwzd35Ywl4FbR9NzBoG6YKLJEY8hdMh/YFRQLuFX8TpVoOoaMRFTPMsflG2F+kYDcXFUIv7aIw24KuajyOuiPp1GQAZMqr9NybvO7HESSMRQJIprBnIbDk0ouJyCXxe9WSWcNvA6ZaNo6P3klmChhwaEIS7dAIBBMMXw+H4sWLeLDDz8sxHkPt2p3dXWVWL+H4nK5CAaDRT8CwXAKAj2GiarIaIY5qkBPjnz6m9JDn7YaH1/92GwCbpX+RIaAW+UrZ8+2VAUfqiKetzL94oXtJRZvu1aMZEYnnMpiALIsYQDhVKbEtb0cq4hdC1y5VkJBKU888QSXX345CxYs4MQTT2Tt2rXs2rWLzZs3A6X6FgsXLuTBBx8kkUjw0EMPARAOh3nggQf44Q9/yAUXXMDJJ5/M+vXrefvtt3n66adHbDudThOJRIp+jjbsCqSVix0vEbtt+90KLjVn7TVMk4xm4HJIJaJn+frae2O0d8do742NOJZERmNnb5ysZiBLElnNYFdvvKS/dgXFgJyYmWGS0XR0w1rMDKAh6GJhSwjdMBlIZNANk0XTQjQELUJdTJAkGUWWkCQZaYQ0ZJjm4FQtDf4eoVyZjOXZoMjQMZCiP54l5HHQH8/SGU6N6NpeCSZCWHAowtItEAgEU4x0Os17773Hxz72MWbNmkVTUxMbNmzg5JNPBiCTyfDcc89x++23T3BPBVOd7d1xNMOgOZgTytEMk1g6aynQ41AkzjuuAQkJE5NwwtqK8fkzZ9Ba7WbjX3pZfEwt586zPhzKq4iHPCqmmVO/jaZKxYEgZ8Vwqc1s744zu95nuYnf3h1HIifcpkgyummMWp8dq4hdi9lEWgnz2BGhmkqEw2EAampqAGzpW2zevJlsNltUpqWlhYULF7Jx40YuvPBCy7Zuu+22krSNRxuV0CWw6/1ht23dgGMa/PicKinNwK3KNFWVuk97nSohj4Nfb9pd5EVjNZbOcJreeAbNNMhkDGSZ3IZ6WKoru4Ji0ZTGvoEE4WS2IGa2dyBhORd4nSqfO2MGwbf20RNLU+d38YkTWkrK5UNncgJvOWu8ZpglfYymNGIZDb/LkROFU1WiaWshtfFGN6A55EFVJFJZnfqAk3r/obm2TzWm/qwrEAgERzjXX389l1xyCdOnT6erq4tbb72VSCTCypUrkSSJVatWsWbNGubMmcOcOXNYs2YNXq+Xyy67bKK7LpjizK734VBkOsKpgip5jd9aGTzodtAXy44pVHPXhg9Yt7GdjG7wH6/u5vLFs1i1dK5l2yawsy+JKoFmYqlKDvDM+12se7G9sHi//KOzOG9+Q0l9XqdKOJnLvx1OaKO6ttsVEbIj0DPR6uVHmmu7aZpce+21nH322SxcuBBgVH2LnTt3Fso4nU6qq6tLyoymgXG4wnEm+8HIsQ1+qryt45Iru9zc9Xbazot6qbKMx6GQzOq0VpeKdfXEUjz5bic+p5oTR4tleGpLJxcubCyp16lI9MczJLMGPpdCPK0DGZxKsXXabtsZTee9QQXvvPDY+51RMpq1mOSxDX6WzKvnjd0DnNRWZfm9zaXjMoilc3NbbzyDJKkl6bgK1uYiITXzsFibA26VGbVePC6ZKo+TgWSGxkCpm/6RzNEzUoFAIJii7Nmzh8997nP09PRQX1/PmWeeycsvv8yMGbnY1m9+85skk0muuuoq+vv7OeOMM3jqqacKMYwCwcFS63dxfEuQV7b3kdUMHIrE8RbK4HYtUR90Rli3sZ20ZuB3qcTSGg++1M7Fi5qY21Qc4uBxKoTcDsKJLIZhIksSIbcTj7PYVbQnlmLdi+1FC8kHN7ZzQmuwaAGdd23/xQvbx3Rtt4vdcU8FBfqpxNe//nXeeustXnjhhZLXytW3sFPG5XLhch28er0dpsLByHj2Me/9UeN3kDVyh3kjecfk23709T10RFI0B9188uRSMcJ8iq2X23uJJLMEPQ7OP67R0jIcSWVpDLlxKDKNIZm+eLrEMgyQ0c1By3CaeFpHlsDndJDRi92yD6T36imk97JqO5zUkKTcZ643nkYe/NyFkxpWxzhDDymdimx5SOlUFY5rCvLe/jCRpIbfrTC/MViSjitvbTZMk+5oipBHpSnoGdHaPJ6HQEPnwHAyS2PAfdRlcDh6RioQCARTlIcffnjU1yVJYvXq1axevfrwdEgwqRnPhVJeGXx6tYeuaJqGgAuHqoyY33QsS9SWjggZPbfhdg0uCOMZjS0dkZJNd2c4jd+tcnJbiGTWxOOQSOulLpP5BXR9wIUkSdQHXCMuoD9/5gwWTgsWrEYnthVbPIfSE0vZsujZdUW34wKfZ7yf4US7to8n11xzDY899hjPP/88ra2thetD9S2am5sL14fqWzQ1NZHJZOjv7y+ydnd1dbF48eLDNIJSpsLByHj3MeBWyeomf9jShVORyOgmJ7VVjRhXfc8ft/Hy9t5cCLIEneEU//rJhUVtJzIa73dEmF3vK1hTt3ZGSlJsNYVcqLLEu3vDeJwKyYzO9FpPifAY5KzIqiLhcSiFg0KHKpVYke2m9wp5VDKaQSqr41BkUppORldK6gP7h5QBt0pLlZt9kSSmOyevMa261IqcE4XT+Ut3vHDQ1GSR3gsqcwg0GcTMJpKja7QCgUAgEBzBjPdCKeBW6Y6mixa7Z82uPehF2vHNQZyKTCydEyGKpTXcDpnjm0uF/JpCLrKawbb9CWQZDANm1HlLFsblLKCHuqH/4b0uSzf04eVGclcfih1XdLt1VuIZTqRr+3hhmibXXHMNjzzyCH/84x+ZNWtW0et29C1OPfVUHA4HGzZsYMWKFQB0dHTwzjvvcMcddxzeAQ1hKhyMVKSPRaJeJiOJeu3sifPn7X1ohkHQ7SSSyvBKex87e+Ic1xIq6WNj0I2ERKPDbWk99zpVZtT62DuQzG2iFYnptT7LcThVheOaA2ztjJLRcrmv5zUFSqzI+fRemDkvnURGL6T3mll34PurG+B1KkSTOe0LhyzhcyiW1ub8IaXPpaAqMj5Xrl6rQ8p8Oi6pcBdLPTcSGY0dfQl0I2c1z+gGO3qThbj2oeWeereTrmiaKo+Drmh63A6B7GbhmOyhFgdDxbz4n3/+eS655BJaWlqQJIlHH3206HWRS1EgEAgEgvGjEgrZiYzGjp54kXr5jt7EQatzz20KcvniWbgdMvFMbsO98qxZpQvIPFLxP6wcgPMLaIcik9EMHIpsuYAe6obeEMj18cGN7fTEUgdVrhzs1lmJZzhZctQeKldffTXr16/noYceIhAI0NnZSWdnJ8lkEqBI3+KRRx7hnXfe4fLLLy/StwiFQlx55ZVcd911/OEPf+D111/nC1/4AosWLeKCCy6YsLFVShl8PBnvPkZTGg5V5rx5jZwzt57z5jWiKjLRVOlnPZ7RSWk6qaxBfyJDKpuzFMeHZR4Yaj1/fmsXf9jShaablum9EhkdhywjSxIOWSaR1i3bDrhVFk2r4qxj6virhU2cdUwdJ7RaWeQl+uNp/tId4+19Yf7SHaM/nqZ01jLxOFR8bgdBtwOf24HboWJ14HB8cxBFlhlIZBlIZBhIZFHk0kPKaEojltLwO1VUWc6lJEtpJePpDOdc5P0uBw5Fxu9yEEtrdIbTJfXt7IuzszfOa7sG2NkbZ0dv3PL+VIJtXTHWvbiDtS+2s+7FHWzrih2WditNxb7N8XicE088kSuuuILPfOYzJa+LXIoCgUAgEIwflbBE5VVxFzSHcKq5TW1fotR1u5y2Vy2dy8WLmtjSEeH45uCIG+7OcBqHInPqzJrCtXCyVDU4mtKoD7hY8ZFWMpqJU83l6h3edt4NvTmUSxnTHHLTFU2N6K4+Vrly76OdOitl8TwS3DrvueceAJYsWVJ0fe3atVx++eWAPX2LH/3oR6iqyooVK0gmk5x//vmsW7duQteVExnzb5fx7mNBfDGRGdMDozHowqnKxNI6smSS0Uz8bplGy9RZJpphkNFAlsFqM5sTM4sQy+hDxMwilmJm+XE/+sYeOsIpmkPWsciKDLG0TkY3cSqQ0XOHBcNFyvxuFYcqYZgmTkUmpRk4VRm/xbhba7ycMC3Ipp39aLqBIkucMC1Ea423pO2OcJLeWIZav5PeWAZJoqTtnOCazkA8l9YsldWp9jttCa4Z5uERXJsKoRYHS8V6f9FFF3HRRRdZvjY8lyLAgw8+SGNjIw899BBf+9rXCrkUf/nLXxZOH9evX09bWxtPP/30iGkd0uk06fSBE5t8LsVsNks2mx2z3/kydspOdo6kscChj8ellJeLsJL3LV+3S7bfp8n8HKfKZ22y908gOBTyi9jdA/FxU4dtCrkIuh10x9I0h9x0x9LU+BwlrtvlujC31ngJeZ2j9i3fdlc4RdCrEkloNIRcI7a9vTuWs8jLEsc0+Evqzte3qy9eWGg3Bt2W7upBt4O9AwlqfS5647lUPVbu6nbJ15lftHeEU+NyH8vBrlvnZMU0x/7/0o6+hdvt5u677+buu+8ex94dOlPhYGQ8+1jOJt6pKpzQGuL9jigpzaDK42B+c6mLdzSlsS+cZCCRIZ01cTkk9g4kSw6t8mJmmCZ9iUzB7XckMbNdfQle3znAQCJD50CKU6bXlIR8hJMaLoeM2yFjmCZuh4RTlUvq1A04tj6Az6UWUoY1jyBmFk1pLGqtYtG0EH2JDDVeJ0hSyXh0A3wuhT39Gtu7szhVCa+ztE6nqqDKEE5pDKQ0JKAu4BxRcG0i0ntNhVCLg2VCej8RuRSfeuopvF6vxTus2bBhQxkjmtwcSWOBgx/PHaeXV/73v//9QbVTDt89zf4Mdjj6c6hM9s9aIpGY6C4IBBWjoNz7Yi+R1ABBt4Nz5jQc0kKlzu/m8o/O4sGN7XRFcwvjlYtnlVh8y1lA241ZrvO7OWV6Nes2trOzPxeDeOHCJsu2O8MpfvvWvsKme8Vp00vaztf34MZ2dvUlcCkyf7WguaS+Or+bCxc0cf+fttMdjeB1qlx2emm75VCJ+yg48pgKByN2+2hHiNBuCrK8i3fQ7UCWclbimXW+kdNxJTT87txBnVU6rpBHxTRzgmO1gwdw+etW41j3YjsDyQy1/twhnFV2hHydYBJyO4imressJ3VW/hCuK5qmJeQdPCgsPaxUZIindVyKQn0gN+6EhZW9M5xkT38SCXAqkNVhT3+SznCSxqC7qN0ZtV5UFTwOlWRWo7XKO+rhn13hybE4mIPHqRL/PSE9m4hcisuWLSMYHCFmbAjZbJYNGzawdOlSHA6H7TFNRo6kscChj2fh6ifLKv/OauuDnfEgP5bvbJJJG6OnMjkc/TlUpspnLe/5IhAciRxQ7vUXLLlWyr3lct78Bk5oDdpaQI9lBSvHdbAnluK1Xf00hzyEPLn82q/v7qcnlirqwwedER57cy8AQbeDREbj8bf28oUzpxe5rufrawp6CpZzq/oSGY1wMstHj60r5NuNpLIlYkMTeR8FgvFmPDcuz7zfxQN/2s5AMkOVx8mVH5t9SKKB+QPF5z/opi+epsbn4sKFzZbpuDTdJJHNEstoyJKJV1NLrM35FFtbuyKksyYhr4N5DaUptiAXGtIVTaPpBh3hFKZpsj9SGmLjVBXaajyE92boS2RxKNBa7Smps+Cu/voe9vQnaAqOnDrrQAq09kIKtHPm1peUzVm6VfboSfYOpHAqMl6nWmKZbu+JYwweNuhG7rdh5q4PzeRgmf5s/siHf3afN4z9OSv34HEqpNrLM6Ez+eHMpehwOMraDJRbfjJzJI0FDn48ad3e5nZoO5UmbUi2+zUVnuFk/6xN5r4JBIdK3i2vrdqLx6kQcDtGdcubCOtAOa6D+TjoWr8T3YBav5NwMluy2C0o/LodOBUZSZZIWqQhy9fXVuvF61QJebRR46qrPU5i6dzvcHLk/MFg38pT53fbsgJNBYun4MhhPDcuPbEUP3/2Q3b3JfE4FXqiMe7544clluFyDuASGY3fvbWPnX0JDNMkmtb5/Vv7Sg4UnYpEOJUla4BDhqwB4VQWp1K8zgq4VRa1hqgJOMa05ObjoGNpjVqfk95EloBbtYyDlpBoDHqo8qgMJDVkSbKMg97Vl+D1XQMMJDN0DKQ4ZUapu3p+3HZSoOUs3Roep0yrz0NvPE0io5W0PavOhwEMTTEuDV4f3q6d9Gdg/3mD/c+Z3YPHqRb/PSE9msq5FAUCgUAgmIyU45ZXziJ7PFNdldPHppCLWEpjy74IeV/Q6bWlKcMOKPxmCmlwvE61ROG3nLjqv3RFebm9H9MwkWSJs2ZXj+jeWG56MYFgMjHe6aF29CTYO5DE6ZBxqQq6abKnP8mOnoTl4ZbfrdCXSON3KyMebuVThpmmSa3PRV88bZkyLJLSUGUJGdANExlQZYnIMNXtodbmjnCS5pBn1Hjy45oDbNkXpT+RxedUmW+RMiwfBw2Q1gwaAi6aLGK18+7qPbE0XqdCT8zaXX3oPRorBZpuQHOVe/BAQqPa66QpVBqD7VRkPKpMTD/gbu9RZZzDduf59GdORc651MfSlunP4MDzdjtk/C4Vc4TnXficxVJUeZx0xUbfINs5eMzfnxqvk6xuUON1Ek5mJm3892HQoStlaC7FPPlcivkN9dBcinnyuRTFplsgEAgEgmLspoYqJy3VeKe6Kid9VTKTc+s2TJBkCcOESCpLcliaoNYaL4umBVFlCU3PxXQvag2WKPzm46prfI5R46p7Y2ne7YgOpkmT0AyTd/dF6Y0Vp9Up5/4IBJOV8U4P5XMpmCb0xzL0xNL0xzKYZu76UAJule5oml+/uptHX9vLr1/dTU80bXm4Fc/oaGZO5VuWcgJlmmGUpAzzuRRMw0Q3KfyYplnSNhywNr/fGeP1XQPs6rPWfAm4VbwOhZSmYxomKU3H51RK+hlwq/jdKrG0hmYYxNI5K+3wcp3hNNu74+zqS7ClI8KuvgR/6YqXpO3K12knBVrAraLpJn/pjtHRn+Qv3TF0i3LxjI7frdIUdNFS5aYp6MLvVkvuI/ls31LuvDOX9azwj5J7rkgyGc3EMHPK8qosl9zzaEpjZ2+CnT0JXtvZz86eBDt6EoeUhizgVslqBs9s3c/zH3TzzNb9aLoxqVLtDaVivYrFYmzbtq3wd3t7O2+88QY1NTVMnz69kEtxzpw5zJkzhzVr1oyYS7G2tpaamhquv/76Cc+lKDh6mPmt35VVfsf3P1GhnggEAoE97LjlHYyLt91UV3YsDsc2+DGMhkLKsJEs7Nu74wA0h9zopokiSaQ1ne3dcdpqDrhDRlMaJ7RWMaPGw57+FK3VbkJel2XbduKqt3fH0XSDaVVuXIpCWteJJLMl7ZZzfwSCyUo+PVQ+3VRXJHNI6aHqAy5qfU5iKY3soEW11u+kPlDsUZLIaOzoiaMZJm41t6nd0Zuw1E6YWeelJeRhZ1+CdDaJbsLMWh8z64alzpIksoaZ3y9iAlk9N3cMpRxrcyKjsWNwQ+51KaQ0gx29SWuNB9NEkga3poWNajG6YdATS5E1TNxqLmVYTyyFbowgrDtYJ0hIkmlZZ+Fe6gYOWSGrW9/L/H3c3Z9ARSZrGkyvLr2PDUEXC1tCvL57gK5ICgOTU6ZX0WCRom1GrY8zZtfwyva+wTziEqfPrmFGbfFcmU9rNu5pyArPNn9fygslPZxUbNO9adMmPv7xjxf+zoubrVy5knXr1k3ZXIoCgUAgEExmxnLLK9fF265Ldt7i4JBlsobBia0hyzr//eWd3P+n7YUF4Vc/NpvPnzmjpNzseh+abtATzRSuVXtVZtcXL+YCbpW/dMd4ZXsfhmHy5h6JM46pGdHaMVZc9ex6H16nykAiS61PYmAwhnN4u+XcH4FgslIQ4epPsr0nPqIIV56x9At0Axa2hgh6HETTGgGXyvRab0l9neE0ummyoDmEU5XJaAZ9iVKBMsh9Zxe0hHhnXzjnzaJIHN9cukHuCKdwqQpOVS5suiUkOsKpEn2H7d1xuqNJDBNkKaf+bdV2ZziNbpjMrvOR0UycqkQyW1o2mtKIpXUcskwsreF3qURTesnh30Aii0tVkHQD3ci5fDsVmYFEaUrTaErDocqcObuGaEon4FbI6mZJnZ3hNH2JDKmMTtTQcMgSvfHSe1nnd/PpU1q557ltRFK5ee1TJ0+zzKLw0Tn1vL1vgJ5Ymjq/k8XHlgq45cv+45JjaQ7tKfyf8smTWy3F3pqr3KiyRCprUO93Uh90HVIasmhKw6FInHdcAxISJqal+32eiVY5r1iLS5YsGTWn4lTOpSgQCAQCwVSlHHVYu6muAFsWh919ce7/0/YDokTxDL94YTvnzK0rsSIPrUMadHM0LersjaXZsi9CVjdxO2RSWYMt+yL0xtJ4a8pf5rTV+Pjqx2bzixe205/IEHCrfOXs2Zb9K+v+CASTELsiXGBPvyDgVvG7HKSyBm4l930MuEoP9fIHVt2xNM0hN92x9IgHVrv74jz93n4kwOOU0XSTP7y/n6/2zSr6Xs6u9xH0qERS2YLwWMhTemCmGwb7I0myxgGL+P5o0tLanNOWyOa0JQaZUeMp6aciwzv7BtjZk0CWJQwjF189/D7Orvfhc6ukY+mCBoV/hEO9vAv+K9v7MEwTWbI+UHQqEvsGkqS13NybwiQzkCwRkEtkNF7b1Y+mmziUXDjOa7v7+dQp04rm/7xw3Z6+FLppkMoY/O7tUuG6PMc2+Lnq48eOuqENuFVm1PjwONRCdo3GoOuQXMHzB8h9sey46phUisnp9C4QCAQCwWFkvE/A7dZXiZN3O3XadfGGnEu2zynz5x19nD6zhjNm15WUyVscTp1eRV8iQ43XCZJUYnHY3h0nkdGo8jpQZZkqr2NE1+3t3XFURWJatRvdBEXKCRQNL7u9O05WN2gKukEywZSIZ6zrBHtK458/cwbHNvhGHfPQ+zOnwcf27jiz630jHB6Ux0RbZARHD0MtkJoBjQG3pQVyqH5B3qtjJJdsBjeISCYHbM7FlHNg9V5HlHAyi9uh4HU6SGSyDCSyvNcRLfq+DT0wi6WzhDwOywOzXb2DqbMG/5YAw8hdH5o6Cwa1JZIaJrmxGJiEU3qJtkR3JE1vNOeaj2limNAbTdMdKbY21/pdLGwJ8uKHPaSzOqois6AlRK2/9LAhkdHY2Zub3zxOhWRGZ1dvvMRt/MPOCBmt+B5nNJMPO4szOOzsjfPK9j5MoNrrIpLK8uftfezsjXNcc6i0nAm1Phf9cetyQxnLw2roYW94cMM9WiowO9g9QJ4sKudiJhcIBALBUc14n4Dbra8SJ+9267Tr4g1w14YPWLexnYxu8IDSzuWLZ7Fq6dyiMsNdvGXZ2iIzu96Hqsjs7U/hUiXSmkmNz2Fp5Zld7wMTOsMp5MF8stU+Z0nZ/N97+uPIkoRhmtRYlAP7SuND789/bd476v0Zes/f3Rc5bJ8fgWA8sGuBLEffIZbR8LkU0pqBS5WJprWD1lgAqPc7UWWJjG7iMg0yuolDlqj3O0vKfv7MGZwzt27UQzCvU0WWJXTdRJVBM0CWJcsN2PbuOEjQVu0bPJgwiaVLD/XiGZ1EViOtHTitSGS1EpGyaEqjN55BM3OCb5gmvfH0iJoammGyYFoIhyKT1Q36LNzG+5MHxMhkwLC4DjkX+rSmk9FNdCNDVjcxDJN4Wi8ppxcJ10lkdKOkXLnYTQU23nWWo2NSScSmW1AWQlxMIBAcSYz3Cbjd+ipx8m63znJcvD/ojLBuYztpzcDvyinzPvhSOxcvaiqyoNh18a71u1jQHODl9v5CbOaCloCllcfjVAh6VAaS2VxspgQht4rHqZSWc+disHPlJAIW5exa6sq5PxP1+REIxgu7Fki7+gV5Ybah3zNJYkTBLK9TpT7AqJ/vec1BTp9dw8vb+4inNBRZ4ozZNcwblhYwT63fhVMtVRjPM7cpQMCVmzMMI7dRDboczG0KlJQtaDzEMzl18pRGyOKg0KHkYpV1ExRAB1KagWOYi3dnOMm7e8NkNROHAlnN5N29YTrDSRqDxYcOhXvenyToVYkkNBpCrpJ7vqg1hKpIuU304DVVkVjUWmyVbgy6cKgysXQGiVwcvd/lpHGYQNrMOi/Tqjzs7ksiSRqprMH0Wk+J4NrBYCcV2HjXWY6OSSURM7hAIBAIjlrG+wTcbn2VOHm3W2fexdvvUsnquc10PK1ZumNv6YjkYg5dKq7BvLTxjMaWjmK3xbyLd2PQVbBKJzKldUZTGsc0BJhdF6A/kaba60KSGdHK43c7WDTNRSydxe9yoJtGiZUnX+70WZ6CynksrVmWy1mPVaKDv8PJbEm5/P2p9TnxOFRqfdCfyFjen/w9D7iVwfjvkXMNj+czFAjGEzvWQrvu4Pl81aoikcrq1Aec1PtLc0aDfa8Or1Plxr86jv/cvIvdfUnaajz8zanTLftpp06nqnDG7Bre3RshkdXxOhQWTAuW5N6GnMv6OXPq+fWmXUTSWVRZYvmxLSVzwUAii1OV0Y2cNVgBS4G09p442uDmOG841nST9p5S1/Y6v5tTplezbmM7O/sNnIrMhQubSu55U8jD3AY/WzujhVCcuQ1+mgbzhg8d9zH1ft5OD+S8BlSZ2fX+knHX+d1c9fE5/N9BXYvWag9fPnv2lNWqKEfHpJKIGVwgEAgERy3jfQJut75KnLzbrTOnCm6yqzdRECir8lq7eB/fHMSp5NR4AWJpDbdD5vhhFqa8K/je/kRh023l4p1XOX9rbxiHLNPemxhR5TwvYLSrL1m4ZiVglLcGDbWsWVng7Aoi5S1bvfEMtT7ojWdGVC+3K3Rkl8likREcfdixQNpxBw+4VWbUevG45IKYWWPAXfIZLter49gGP/90/txRDwbyde4NJ/A4VPaGE5Z1Btwqi6ZVUeNz4XEoJLM6rdUey+9ZTyzFjt4406q9BffynX1xemKpovE3h3Jx8Yos4VJk0nrOyt0cKr5H1V5Hzq18CLqZu27V9mu7+mkOeQh5VMJJjdd395e0rcg56/70Wq3ghl4XcJV4FyhyLn69MeDG51KIp3XkEbwQKqFVMZFUwrW9XA41O5pAIBAIBFOW/Al4jc8xLifgdusb73bLrzO36ssnGZEshI4A5jYFuXzxLNwOmXgmt+FeedasIis3HHAFlyQJE2nQxdtR4uKda8xeXtWCgJFp5pLBmCbhlFYiYJS3wNX4HKNa4JIZnUgqJ4iUk3ayFkTKizEF3OqY6uVDhY6cam6xmxc6Ohgq8bkQCOyQyGjsj6TG/OzW+d0snBYa0eqZ/ww3BtyksjqNAbflZ9jKqyPvJTISXqdKY9A94vchmtJ4e0+YP33Qw2Nv7ONPH/Tw1u5wSZ35PlZ7HQwkM1R7R/6edYbT7O5P0J/IsD+apj+RYVdfgs5wuqhcyOtkWrUHXTeJZnR03aSlykPIOzzuXMLlKJ7zcn+XzoN575z6oAu3U6U+6Cp45wxFN8DnVNEM6E9oaAZ4HaVp3/LlsqZBVzRD1jQsy0HOY+C/Nu/l6ff281+b97KtK1ZaaAgfdEZ49PU9fNAZGbWcXXpiKd7ZG6YnlhqX+mDsz08eu9+FchGzuEAgEAiOasb7BNxufRMlKpNTBZeZUeuzpfa9aulcLl7UVFA6H77hhmEu3oaJIlu7eJeTV7UgYFTjQx1Mb2MlYAT2LHDbu+PA2IJIYE+MKT9uO0JH5TAZLDKCo4vxFu+z8xmuhFdHRtPZvLOP/mQGGYl+TFJZg4xWKgC2qy/B67sGGEhm6BhIccqMGssxOxWJ/nimSNfCNM2SdFwZTWdPX5J8Szqwty9V0nZzyI1Dlsmgo8gUcnUPt4hDzjsnqxm8tqMfWc4prM+s81rG0e/qi9MbyyBJJvG0xK7+uKWlO57R8DgUWqtcufRw2dK0ZomMxq9e2VnwSHrfiBJLZ7l22TzLZzlUbNOpyJZim+VgV/CyElRSyFJYugUCgUBw1GP3BHy86yun3fE6fc+7T4dTWSQkwqksPpe1+3SeuU1BPnlyq+WGG4bk3I2kSGV1uiMpQp5SF+/8Qnt/OE0qo7M/nCbksV5o5/sZSWWRgMgY/eyLZdjWFaUvlhl13AOJDKmszkAiM2p9bTU+zp3XMKpbZWHc0TSmadIdTVuOO08lrDcCwUjYmTOGunnX+930J7Js2NI54nvszkNjzW0H49UxVts7exLEMjoSoCi5ZGWxtMbOnkRRubyo4kAiS63PxUAiy4Mb2y2/lxndpNrnxKXmYtRdqkSV10lmmI/427sHChb1/HY8ks7y9u6BonJOVaHW70Id3LSrikSNz2UZT57HJBeyY8Kgn04x3dE0vfEMmCaKJOcU0WMZuqOlFvHmkKcg2NYYdNMU9JRYursiad7ZFwZTynkrmRJv7w3TFSmuD4rFNn1OlbRm8OBL7Qdt8c4/m+5IGpcq0x1Jj/hsxptyvwvlIo5PBQKBQCCY5IxnGrK2Gh+fPGkaD77UTmckiUuV+esTpx1SzF6d383MWh9/bu9FM0xUWeKM2XUl1l6vU2V+c5CX29uJJLMEPQ7OmVtvudAemnN3LDdvO5aWIkGk1KAg0gmlgkjljtturmG71huRMkwwHtj9HJUj3jcRFvGy2pZyugpORcHrUkikyYWzSMUb5M5wmq5oCk2HjnAK04T9kdL0Z5A7WPM6FfaHTZAkdM3E61RLDtb6EpmCcrgs5eK0DTN3vRiToNtB2q/ndtESBN0OrHKZd4bT6KZJfcCFbhgosoxulIpJxtM6KU1HM0HP6piSRFrTS1J82Y23B5NkRqc/kaU3nvPgycWcl/bRrtimXfLu/OGERkc0hYxEStcPyXvILpUWshSWboFAIJhi3HbbbUiSxKpVqwrXTNNk9erVtLS04PF4WLJkCe++++7EdVIwbtg9fS+nnFOVWbagkb8+aRrLFjTicsiHdJq/uy/O8x9243WqtIQ8eJ0qf9rWze6+eEnb73dEmF3vY8m8BmbX+9jaGRmx7c+fOYN/+/Lp/OCzJ/JvXz7dMle2XUtLXhBpeo2PE6aFmF7jKwgiHQrnzW/ghytO5NZPLuKHK0603EgPTVfWEMg9GyvrTaUtLYKjg3I+R0PdvJMZnc5BL5WRhM+6omncqkJXND0uFvFyxtMVS+F2KHTFUpZtz28OMqPWgwkkMjomMKPWy/xhwo8hj0oqa9AbT5PO6rnfmkHIM8LGKheFg2Saud8Wm89FrVUF63XeCO5QJBa1VhWV87tVHGouXAZyyuVOVcZv4e2T72ckpeFQFCIpzbKfQbeKrptouoEpgaYb6IZJcFidhVh2j5PeWJpqj9PSuyDXR5m0ppPVcrm9napi2ce82GYkqRFLZ4kkNVxqqdhmnrE+F3l3/mRWwyFLJLMaA4lMiTt/JbD7XThYxKZbIBAIphCvvvoq9913HyeccELR9TvuuIM777yTn/70p7z66qs0NTWxdOlSotHoBPVUYAc7C1O7gkP5cjV+B1nDoMbvGLXczDo/M2p9zKzzjylgNFY/82m2vC4FzTDwupRCGjKrtt2KzL6BJG5FHrNtjzPnjmkpysYBS4vPqaDKMj6nQloz2NJRvOnOixK11nipD3porfFaihIdDLlcw64RrSH5tptDOXfb5pDbsu2DEZcSTG4qJco0GuV8juy6eUdTGjv74uzsjfPargF29sbZ0Ru3rHNbV4x1L+5g7YvtrHtxx4giXHbLRVMaO3sT7OxJ8NrOfnb2JNjRkyhpu87v5rLTZ1DtdaBIEtVeB5edPr3EQppz8XaSyGjsG0iSyGjU+JyWLt6d4TSJrI5TlpFkCacsE8/oJd/dppCHmcO8ZmbU+ErSdulG7p6nNZ2BRJa0puNxKpZiZk5Voa3Gi2EY7I+kMAyD1mpvST8zuonXpWKaubzfpgkep1riAp8nqxsksjpZq0YH+9gQyCm7Z3QTj0OhPuC07OPcpiDnzm1AMwzCSQ3NMDhnToOlldvO886783ucClnDxONULN35K0GlhSyFe7lAIBBMEWKxGJ///Oe5//77ufXWWwvXTdPkrrvu4uabb+bTn/40AA8++CCNjY089NBDfO1rX5uoLgtGwa6rZjlpyLK6yR+2dOFUJDK6yUltVQddrpx+zq73kUjrdEUPuFIGnIplyrC394R5dUdfTpVckvjIzJFTbNlxyT6+OYgiSQwksziU3ELS61RKLC1NIReqLPHu3jAep0IyozO9tjRlWLnYuT/52O+OcGrUtGYiZdiRxUSFCpT7ObLj5q3I0DGQKkrNZ5impQiXnVRg5aQMU2ToCCdttb29O0at30WN14UkQ3tPLHcgOKTOjKbT3h3PbVABQzPZ0R23FFxzKhI9sUzOQ0iRSeo6RgxLIbVkVsOtyoW0iUlNK6kzo+ls7YiQyOTSdWUzsLUzatm2IufG5FBkPI6c+GMyo5eM26lIpLM6DlXG45BJDorHDe/jcIG0Xb0JUlm9RCBNkaErmiaZydWZzOh0RzOWqcV6Yim2dUVxKLmcECDxl+5oSVozu8+7KeSirdqLW00X0qQ1BF2HPE/bpZJClsLSLRAIBFOEq6++mk984hNccMEFRdfb29vp7Oxk2bJlhWsul4tzzz2XjRs3WtaVTqeJRCJFP4LDRznun2WdvpvmYEYuafD3CNYBm+Xs9rMvnhMnG0oyq9MXL45n3NOX4K09AximiarIGKbJ23sH2NNXLHQE9l2yW2u8nNBahSJLaLqBIkssmlZFa423qJzXqTKj1odDkcloBg5FZnqt75AWVXbvj920ZiJl2JHDRIYKHMznaCzhs7wIV7U350FT7XVYinCV7ZnjdZLVDWq8zhGt8boBzVXuQpkar5OmkHtEATCnKlMXcOFUZUsBsA86o0RTGiY5ITMTiKQ0Pugs9QyLpDRUWUKVJUzTLPw7Mqyf+yPp3EZXlXGoMk5VJpPV2T+s7Z29CWJpDQmQ5UGxt1SWnb2lc2AspZHVcnO1ZuR+ZzSD2LC289Zhr1PBBLwjWIfz90eRc2JwimwtkJZr18CpKqiyhFNVyGh6SbsA7++LsKsviSrLBD0uVFlmZ2+S9/cVrynsfi7yc2VD0EVKM2gIukbUyagU4y2smkfM4gKBQDAFePjhh3nttdd49dVXS17r7OwEoLGxseh6Y2MjO3futKzvtttu45Zbbhn/jgpskV+A+N0KfYk0frdSWIBY/Udv5/Q9mtJwqDJnz6kjo+XyRiczekmdhXLH1JPRdZyKQlLTLNu22883dg+ABB5VRpEkdNMkqxu8sXuAE9uqC+W2dETQTROfUwJknIpJ1jAtRXfyLtkuVWJ3fwKfUym4ZA9PQ7aoNcT8Jj9d0QwNAScOVbEcd33AxYULGkYtVw7lCO/YSWsG5VtaEhlNpBebhFRalGksxttiF3Cr+N0qsS4NSYJs2iDgVi09aWx75mgGz2zdj0OWyRoGJ7aGLK3xAbeK36kSTceQkYjqWea4fCMIgBn0xzP0OjJkswbVPifDDxVz8d5mzvJo5n6bmCQypdZmn1PBpchkJAlFkdB1E5eSC2MpKudSMJBIprPIsoRhmDhVJz7XMJd1M2cNliSQJQlj8PAzd304Ej2xNL2xnEibDKiyzPCc3k0hFzU+J7FUFlXOhfjU+qysw4PKbTlNuMHbUvhHUbv5K8XdsoirHpzvNd3ATGfJ6rkD1cHT3ALleF/YnSunGmJ2FggEgknO7t27+ad/+ieeeuop3O6R//ORhv0nl3ffteKmm27i2muvLfwdiURoa2sbnw4LxiTgVumOpnl5e29hHXTW7NpR3Yi9ztEXznm38U0f9IztXq4ZbN7ZbWuxa6efJ7VVocoSGd3ArcpkdAOHLHFSW1VRueObg2iGSSJjAjkLh1PFUnSnKeRib3+S7iEpwOr9TkuX7Kxm8NbeCA5ZpjOSshxPwK2yvTvGy9v7MAwDWZY5c4x7PhbluvHW+d22FpBjPes8Qul88pL/bOzuT1DlcTCQzNIYdB3WUAG7nyPbmCaKLBXmDSsPmbyVfcOWzrGt7IMbNkPXB2saRSxLkgbblsga1mXzImUpTUczDDTDWqRsXlMAp5oLMZFMMACPqjCvKVBSZ33QRa3fSSSVRTdyI64NuKgPFs9DfpeKMnhHTDPnti5LuetDmVHnw+9S6I3r6EZuk1/tVZhRV5pFIZzM0BNPo5u5DbcO9MTThJMZ4EB5r1NlZo2XzkgKDHA6FGbWekrueUPQzcJpITbt7GNXXxxZlvjIjBoagsVzkt+t4FJzquUep0I6o+NyyPjdpTHvM2q9+JwKfQkddBPdhCqXwozaUk8j258L7M+VUwnhXi4QCASTnM2bN9PV1cWpp56Kqqqoqspzzz3HT37yE1RVLVi48xbvPF1dXSXW7zwul4tgMFj0Izh8JDIaO3riufRaioxmmOzoTRy666ld9/LCYUz+devFrt1+nthWzYrTpuOQJdJabsO94rTpRVbuQtPD/h5pIfKXrhi9w3Ju98Yy/MVKbMnGeHpjad7ZFxlciCtohsm7+8L0xg5eSG0i3cGPRqXz559/nksuuYSWlhYkSeLRRx8tej0Wi/H1r3+d1tZWPB4Pxx13HPfcc09RmXQ6zTXXXENdXR0+n49LL72UPXv2jHtf8+nxtvfE+OMHXWzviTGvKThlvRHyHjLnzWvknLn1nDevEVWRLd3Bj23ws3LxTK746CxWLp45YqqyWErD71RRZTlnyU5plvVFUxoOReK84xo4Z14D5x3XgKpIJWXzImVZ3SCS1gqbxuFu6CGvk1NnVBFyKzhUmZBbyf3tdZa0rRtQ43fiUGVMwKHK1PgcJXWGkxo+t4rfo+Jy5n77XLmY5KE4VYWgx4luUvgJuK1F3Np74uiDLuL55nTdpL2nVKCyPuhmxSnT+eTJ01hxynTqAu6S++N1qsyu89Efz7BvIEV/PMOsutIQG92AY+oDzG8O0Bh0Mb85wOy6wIhib/ObgvhdKqqi4HepzGsMWo7HzufiSGZqfvMFAoHgKOL888/n7bffLrp2xRVXMH/+fG688UZmz55NU1MTGzZs4OSTTwYgk8nw3HPPcfvtt09El496xnL5zedfXdAcysX+aQZ9ifSouUh7YqlR3e3yi+JT2qrpT6SpHhQSsnQvVyQ+NqeOjGbiVCUSFm7oQ/t5bL0fw8zlwI1nNMt+/usnF/KRmSGe3drDx+fVcclJpZ4TWzoiKLJE0J13kTTRRnAv//OOPkxAIRd3qekmxuD1M2bXlT2e7d1xNN2gIeBCJreIzQkvxS1zde/ui7O9O87set+oubwrKbwzGhPtvjwRxONxTjzxRK644go+85nPlLz+z//8zzz77LOsX7+emTNn8tRTT3HVVVfR0tLCX//1XwOwatUqHn/8cR5++GFqa2u57rrrWL58OZs3b0ZRrBXyD4ah6fHyOZG3dkY4c3bNlHw+ecv9/mhqXCz3VuJokoSlWFe+7b5YdlSPkoyms7svgYRElVslkdHZ058oESkLuFXOml1HjcdBUjPxqBLzW6y9fXJ1JpGRqPbk60yW1Bny5NTDMSHkUokNHn4NT+/VGU6ypz+OAjhUiaxmsqc/Tmc4SeMwi7PXITNctFs3c9et7s9QkTKr+9MTS/Hku514HAq1PieJjM5TWzq5cGFj0Xyez+cdT6XBhIBTZmad1/L+5D3Jm0PuwudClq2fI1TA+2IKcXSOWiAQCKYQgUCAhQsXFl3z+XzU1tYWrq9atYo1a9YwZ84c5syZw5o1a/B6vVx22WUT0eWjmnLUrLtjaZpDbrpjaUs16zx2VLwDbpW/dEV5ub0f0zCRZImzZlePqF7+/Bhu6Pl+ZjWDN7sGcvGHpsmMWp9lP+/a8AHrNraT0Q2eeb+Lv3QnWbV0blGZ45uDSEjEUnohktBjoTQOcPrMGhQJNBNk00QHVCl3/WDGM7veh2nCnoEkipRbvNZ4HSUK6wD//vJO7v/T9oLq8Vc/NtsyR3ieiVhIHo1K5xdddBEXXXTRiK+/9NJLrFy5kiVLlgDw93//9/yf//N/2LRpE3/9139NOBzmgQce4Je//GVBkHL9+vW0tbXx9NNPc+GFF45bX/OHIm1VPjxOhYDLMaUPRfKW+5fb24kkswQ9Ds6ZW285FjtzYF4czTCgO5om5HZYiqPl27bjmhxO5qzbyYxGPJNFRsLrUggnNdqG1RfyONi8a4BoWiPgUjl9dp3lWMJJDU03SWY14hkNWQKfppbU6VQV6vxOOgYSxFIaipw7kBtu8W3viYMETqeCDEhOME2D9p54iWdQImuURFxLg9et7s+jr+9hS8cAzSGP5f3pDKfZ3Z+gP55BN3Ib44xulByiep0qWzujPPFuF7oJigSKYj3H5QX2kCCtGTQE3ZYCewLhXi4QCARHBN/85jdZtWoVV111Faeddhp79+7lqaeeIhAojVETVI7xVrMG+yrevbE073ZEB13BpUH36ai1+7RdN/TiN5F7R2nZDzojrNvYTloz8DlV0prBgy+180FnsYJtjd9Jrc+BJIEp5SwkdT4HNf5St84zZtfxiRNaUCXQjNyG+xMntBRZucsZj8epEPI4cotYw0QCQm5HSf7v3X1x7v/TdmJpjWqvk1ha4xcvbGd3X7ykzolEKJ2XcvbZZ/PYY4+xd+9eTNPk2Wef5YMPPihspjdv3kw2my3K9NDS0sLChQtHzPQAB5ftYeihSDKj0xlJEfJM3UORoZb7JfMamF3vY2tnpGRuszsHBtwqmmbwl54oHQNJ/tITRdeNUdOajeWa7FQkIsksmpHzytEMk2gqW5I6qyeWYu2L7eyPpkikNfZHU6x7cUfJnJqvsz+RIa2ZaLpJWjPpT2QsU4Zt746RyYU2k9HJ/T3MIn58cxCHopDO6uiGkUv1pVgfPFZ7HSUzmTl4fTi7+hK8vmuA9ztjvL5rgF0WGSGcikRXJE0kqZFIa0SSGl2RdMlY3tzdz5PvdmACbkfOrf7Jdzt4c3d/SZ0Fgb2UhjaorG4lsCcQlm6BQCCYkvzxj38s+luSJFavXs3q1asnpD+Hk8ms1mydBidzSGrWeRXv5lAuhUlzyE1XNFVinci7TzcGXIU8sVbu03k39DNm1+RiKt0qmm6O6F7uUGXmN/qJZ3R8TgXNpKTtLR0RMrqB36XiGrTsxDNaidt4ZzhNjd9FlddBJKkR9KjIsjyiW/2PP3cyFxxXN6rLul3V9s5wGr9b5fRZNRiGiSxLxNOlrvLbu+MkMhq1Piceh0qtD/oTmRHd0CeSiXJtn6z85Cc/4atf/Sqtra2oau6z9Ytf/IKzzz4byOleOJ1OqquLLYqNjY0lmhhDOZhsD+UKR000Y82r+bmtMehGQqLR4SacKM1kYHcOTGQ0dvQlMMzcxi6lGezoTZbk1C6HSEpDkSVkmVw4jAyKVJre683BTalpgNMhk8ka7OyP8+auAc4/vqmobFckhW6ayFLu/1nTNNFNk65Iqmhu29oZKcRQ5+ffaEpja2ekaN5orfGyaFqQzTv70Q1wKBKLWoMlKQ4BIsmspaU7kswWlcsfzHZFU7hUma5oigc3tnNCa7BobuuK5sYiAdJgjI1umnRFi8fyxu4BNMPE5ZBxKHIhVdnwbBQFbAjsCcSmWzDJmPmt3434mksxueN0WLj6SdK6xI7vf+Iw9mxsRuv7cPJjEQgE5THZ1ZrLSYMD9hRa867oHeFUIfbRyhV9dr0PTNjbnygs+mp8zhL36XKU05tCLvriGfb2JzEH08xMq/aUtH18cxCnIhNL5xadsbSG2yGXWG/y9e3pTxbabrOoL89QN+/Xdg0QSRklbt52Vdvz93FoDOlI99HrVOmNZ6j1QW88Q8CtWrqhTwaO5hjJ4fzkJz/h5Zdf5rHHHmPGjBk8//zzXHXVVTQ3Nxfcya0YLdMDHHy2h6lyKGJnXs1/z/6wpctWdoSx5sDOcBrdMFnQEsSpKGR0nb54ZsQDODt99LkUFEUenKtyG2RFkUvSdiUyGvqgRkQqY+QUxzXTWoRQyuXlVhwyLlUhrem5z8qwz0syY6ANqpvn47B1I3d9KNGUxgmtVZzQGqIvnqXG5wAky0NPr1MtqJbnkSUsD0e3dkbpjacL83QkaaW9ISFL0mDMtYROziNguPDkSW1VyLJEImOgSAa6CU61NBtFfjx5gT1pMPNZOGV90Hy0M6Hu5Zqm8b/+1/9i1qxZeDweZs+ezb/+679iGAc+oKZpsnr1alpaWvB4PCxZsoR33313AnstEAgEgolgyqg121QGt4tdV3SPUyHoUXOLTSQkSSJg4T5djnJ6XyxDTyyDYR6w3vTEMvQNUxWf2xTk8sWzcDtk4pnchnvlWbNKxNH6Yhl6opnCwtA0oduiPijTzduGe7nd+9hW4+OrH5tNwK3Sn8htuL9y9uxJZ+UWFJNMJvn2t7/NnXfeySWXXMIJJ5zA17/+df72b/+W//2//zcATU1NZDIZ+vuL3WRHy/QAh5btwetUaQy6J2QDksho7I+kRp0jy5pXxzE7Qv4QLN+//YPu91YHcHb7mE/bZRigGSaGYZ22a3qtD0keTO81+CMruevDmd8cYEaNF5DI6gYgMaPWx/zm4tCtoEctuRvG4PWh5MMOoim98HuksIO6gGv43h5p8PpQ4uksvbE02uB4NSMXbhRPF1vEZ9R68bkUTDM3l5sm+C3Se81pDHB8UwBlcM5XJFjQHGBOY2m42lCBvVRWZ390aodRVJIJvSO333479957Lw8++CALFixg06ZNXHHFFYRCIf7pn/4JgDvuuIM777yTdevWMXfuXG699VaWLl3K1q1bRayiQCAQHEVMBbXmoaltJCRMTEsXzHKx44qec592cPosD7qRc/eLWbhPl6OcvqUjAphU+xyosoxmGKSyuqXa+Kqlc7l4URNbOiIc3xwseb1Qn2RS7XXkNvy6QUqzrs+um3c5lha7Lv2fP3MG58yts6VeLpgcZLNZstksslxsT1IUpWDMOfXUU3E4HGzYsIEVK1YA0NHRwTvvvMMdd9xx2PtcSex6BdmdV+1+z+xmE6jzu7lwQRP3/2k73dEIXqfKZac3jZiZwU4fw0ktt9km1z8J0HSzRPRMkWWagh72R5KFA8XGgAdFLrVF1vndXHbGDH767IfEUrmQmMtOn17Sz/5EtiDQWGhHyl0fSl7E7eFXdxVCdr52zjGW/z8MJLI5fQ7tQKWqIjEwrM6OcApZllBNExMJVc5ZsDvCxTHqTlVhRo2XgWiGrG6iAtNrvCVib9GUxrzmILKkEE6mCXlczGnyjWiNtyuwVykmc8jZUCa0Zy+99BJ//dd/zSc+kXMTnjlzJr/61a/YtGkTkLNy33XXXdx88818+tOfBuDBBx+ksbGRhx56iK997WsldabTadLpA6IxebGL/GQ8FvkydspOdioxFpdSXpxGuW2PVr9LNot+z7v5t2XWXVbxijJ8LHaYzJ/JqfK9mez9E4zOVFBrLpz6R1KFNEGNAfeIfSxnseB1qtQHSl0L8xQU0SNpgl6VgWiWhpCrxHI01MJU63fSG8tQF3BaWpjybuPRZBaXQyadNfC7VUvRH8hZ26u9zhLr+qj1eazry7t5d0XTBFw60bRGlYXaeP6eb+uK5ATXZDi2MXDIn4tavwunqtiqx+5znCqLw8lKLBZj27Zthb/b29t54403qKmpYfr06Zx77rnccMMNeDweZsyYwXPPPce//du/ceeddwIQCoW48sorue6666itraWmpobrr7+eRYsWjep+PtUYahnOz5UbtnTSUjWz5HNnd14tpO1KZMYsZyebQCKjEU5m+eixdXgcCsmsTiSVtYzpttvHeDpLfyJbsDib5Da9wy2+TSEXspxz/85v0BWZEa3sr+3sy8WeqwqGCa/v6uNTp0wr6mdzyI0xbElnmLnrQ+mJpfjNa3tIZXW8qkwqq/PI63tL0nZBLtY9OyxnWFY3cQ9LGXZ8cxCXQyGR1lBlE80Al0VWiJzYW5y8f4AGtHfHS8TeFBk6BlJkDYNjGgJ0hFN0hlOWacAmOjXeZA85G8qEzvhnn3029957Lx988AFz587lzTff5IUXXuCuu+4CcpNpZ2dnkcqky+Xi3HPPZePGjZab7pHELp566im83lKRgpHYsGFD+QOapIznWMqNQ/79738/7vV/97QjJw9BOWMp915OBJP9e5NIlKp5CqYOU0GYqHDq/2IvkdQAQbeDc+Y0HHRanXLK1vndnDK9mnUb29nZb+BUZC5cWGo5KliYXthOd2cKr0vlsuNLLTeQcxuf1xjglR39ZNO5+WpuQ8DSim0nzVZRfZnR62ur8XHOnHp+vWkX0VQWVZa45ISWEquz16nSGU7xu7c7ci7zssQKl8PynttJvWb3fpdbdiotDicrmzZt4uMf/3jh73yc9cqVK1m3bh0PP/wwN910E5///Ofp6+tjxowZfO973+Mf/uEfCu/50Y9+hKqqrFixgmQyyfnnn8+6devGNUd3pbErembHKyg/r/7urX3s6I1R53dZzqtlzb9Fbuh5B27rPrZWeQ9YzkcQnRyaEuu9zjBNQbdl26/t7LdU+35tZ39R1oNC2Aw5a7jBgTCX4fPgzp4Ef27vwzANfC4H8WyWV9r72NmT4LiWA/NWbzRt2XZvtDh7xI6eBPvCSWRp0K1dgr0DCXb0JEraDidyOa+NIXtiWc5dH0prjZcTpgV5dUcf2mAqsBOmhUrE2bZ2RIiktFy7g+MOpzS2dhSLveXTgOmGSXc0TdCtjpgGLP8cFeAvXTEaAk7CyUP37rJzQFnO4dJkYEJ7dOONNxIOh5k/fz6KoqDrOt/73vf43Oc+B1BQkhweZ9PY2MjOnTst6xxJ7GLZsmW2YnCy2SwbNmxg6dKlOBylkvxTiUqMZeHqJ8sq/87q8nJejla/Szb57mkG39kkkzYOLUZyojmYsZR7Lw8nU+V7YyfNi2ByM9mFiQ6c+vup8jgYSGYtT/3LWSzYLdsTS/Harn6aQx5Cnlwe2dd399MTSxUt5g5YmGrxOFSSWW1EC9MHnRG27o/iVCRcqkRaM/mgK8oHncXu4EPjr2t9TnrjGX7xwnbOmVtXtJg7UJ88an358ezojTOj1ofPqRDP6Ozsi5eM54POCI+9uRcTiaBHJZ7WefytvXzhzOlFdQ5NvZYXUrNS+K3Es5lqi8PJypIlSzDNkT3EmpqaWLt27ah1uN1u7r77bu6+++7x7t5hwa7o2UF5BY0iJgf25l+7bujlik7mU2INJDN0DKQ4ZUaNxaHVSJ+N4utbOiJkB627+VeyI4S5xDNZYhmdREYjltIxTBPNmbs+lL5EqS6F1XWfUyGW0guik5CLOfdZeAfVB1wokkR2SP8VSaJ+WEx3NKUR9DhoCLgLLutBj1pyz5NZA2PQHJ/fPxuGSXJY3u+AW0UzDLb3xHMq8JJEc8jaYyvgVnllex9v7RkouOqf0FrFN86fY3k/7DDeoRGThQnt0X/8x3+wfv16HnroIRYsWMAbb7zBqlWraGlpYeXKlYVywxUlR1OZdLlcuFyl7iEOh6OszUC55Scz4zmWtF7eZrfcdu3UnzaksvsxWSlnLFPh8zjZvzcT0bfe3l5qa2sB2L17N/fffz/JZJJLL72Uj33sY4e9P0cCk1mtOb8IaKv24nEqBNyOEeMjI6ksAbcyKNaljGgdsLuwyKcWqw+6kCUJpyNX5/BY7Xx9DT4PGV0n4PSM2HYhFZhbRZVlHKp1THc+/trtlImmsridMvF0abqyA/Upo9Y3dDxVXpVkxqTKq1qOJ1+n16kgSxJeZ05h2CpdWSSVJeRRiaazgwcTI98fRTbZuj9Cjc9xyM9mqi0OBZMTu4c35Vil83XG0joza3yHfCBUCLGJJccOsZEkdMPEMPTBbaX1eih/YDaQzFDrc9EbT1semJ0yo8by/cOvV3sdaIP7zHxKLs2wzn8ddDvQDBPNMHFIJpqZE2kLuovLNgSsMzAMv57RDZKaXnQMkNJ0MhZmZJ9LRRqWNExCwjdMGC6j6bzXESWR0Qm4VGJpjfc7oyVu4w1BF1Y5yBqCxX3Mi20apolbVUhpekFsc/hn4sP9Ud7dF84Jrg267G/pCPPh/qhlerGxLNj5z+PecAKPQ2VvOHHIoRGThQnt1Q033MC3vvUt/u7v/g6ARYsWsXPnTm677TZWrlxJU1MuV15nZyfNzc2F942lMikQCAQTzdtvv80ll1zC7t27mTNnDg8//DB/9Vd/RTweR5ZlfvSjH/H//t//45Of/OREd1UwjpQTH9kdTfPK9r6CJeGMY2pGtCTYqbMp5CKrGby2oz/nkmjAzDpvSZxiwK3SHUnxcnvfkJRh1m3nYgIl+uPZgnq51yJWcHa9j0Rapyt6wKrjdykl8dfHNweRkBiIH8g/67GoLz+e/ZEUHeED7pnNFjHqxzcHMY1iwSKPap2uLJbKsmXfAY+X6TWl6coCbpW39gyweWd/Tv1YhlNnVh/Ss5lqi8Px4uKLL+ZXv/oVoVAIgO9973tcffXVVFVVAblDyY997GNs2bJlAns5dSjn8MauV1A5ddqxQNoNsYmmNGIpDb9LJa0buBSZaEqzbLcznKYrmkbTDTrCKUzTZH+kVPzR53JQ5VYZGJKXu8qt4nMN30znPHdSmlnYf7rU0tRZABndJOR2kNV0DMAhQcjtIDMs1jqRNVAlCW2IJ4YqSSSGWZHbe+KoEjgccsETwDRN2nviJZvUjnAKSTqwT5bIOSN0hIvzaoeTGppukszqxDNa7vBRU0sE5FJZA6eSG3cepyKRGtbHcsQ239g9gGGaeB1yQRwzrVvn9Lbz+YmmNN7eE2br/khBiG9eo/Wh51QIORvKhPYqkUiMqjI5a9Ysmpqa2LBhAyeffDIAmUyG5557jttvv/2w91dQPuXkrhYIjiS++c1vsmjRItavX8/69etZvnw5F198Mb/4xS8AuOaaa/j+978vNt1HGHYXAYmMxs7eOFndwONUSGZ0dvXGLS0JZS8sBmMpkXJKtsNJZDR29CXQDBO3KpPSDHb0Ji3brvE7qfM52JPVC2m+6nwOavzOonJ98QypbLFVJZXN5d0daumu8Tup9TnYm9ULi0ir+gD29ifpiaULQzKBnliavf3JooWfx6ngVCWSQ7IHuVSpRMwtmdFz8YyDhxyGaRJNaSQzxf3e05fg7b0RNMPEqchkdIO390TY05coscbbfTZTbXE4Xjz55JNF4ra33347n/vc5wqbbk3T2Lp16wT1bupR7uGNHa8gu3XmLZBd0TRVHgdd0fSIoRTvd0RornIxTfJgmIZliI0iQ0c4WRTuIUlYinWFPCqpbO77mw/bCXlUQsPScTmV3A7VqYBDkcnqBpI8eH0IzSE3boeCYeqFMBePUykRPcu3rSoSTlUu1OlQpZK2j28O4ncrJDJaoZzPVXqgeHxzELdDIZk18KgyyaxheZAJOSG1jGYU5koTyGhGiZCaU5GIpbMYJoOidAbxTLZk3FWDlnyZA1bpodfzFMQ2o8mCZ0Gdv/TAE3I5vVVZIqUbuCVI6QYOuTSnd8GCPZDE41DYO5C0/PxkNJ33OiNFoUrv74+UWO3zTPaQs6FMaM8uueQSvve97zF9+nQWLFjA66+/zp133smXv/xlIOdWvmrVKtasWcOcOXOYM2cOa9aswev1ctlll01k1wUCgWBUXn31VZ555hlOOOEETjrpJO677z6uuuqqwkHjNddcw5lnnjnBvRRUgmMb/FR5W8dM76UZJsc2+AuW7nimNL3X0DoNo6GQjssqvq0znMahypzYWjVqnZ3hNPrwti1Si+XL1vhd+F0q/cks1R4HTodSUvaN3QO5xa5MIQG3YVJi7cjXF3A5GEhmqPI4cTjkES0opgluVUKWJYxBF8/hdW7vjuNyKExzqwX18qxulri2b+/O5fduq/GhyDm31lg6a+kCrxsGVV5nYdOdzGiWLvD5Z2Nn0TeVFofjxfD469HisQVjU4nDG7t1RlMaO/vidEXSbB8U60pmSy3TeUvle50R0pqOS1WIJEpThukGNFe5yeoG+waSBNwqTSG3pViXU1Voq/Hw1p4wnZEUDkWitdpTkuoqo5v4XQ5SWZ2snpvbfM5Sq3TI62RRaxVv7xkgo5t4nTILp1UR8pYe/jlVBVWGaErHREcCGgKUtD23KcilJ07jPzbtIpU1UBWJS06YVjJnFMq9uotISsMhW5eDnGVaViQYYpGXLSzTGd3E51JJZv9/9v48TK7qvvPHX3epW3tVd/XeUmtpkISR2AxGLGYxDiKMnTEm3yEzeBxwHP+cwU6+Guw4ZvjFIzL+QkyewcxjYvLFzhieTIiT55dgO7HHRhnHYlEwRjabZIShW0JLt3qv6lrv+vvjdpW6dG9135K61Qvn9dCP6Funzz3n3qpT95zP+7w/FQoVC1l27+up/VZkmbimUjGNmrw+rqmeVGlVs83Hnnmb4VyFhKZw++Xrfb+bLupr5bbL1vG3Lx2e6Tfcdtk6T5R7umzy2rEpfjmUo2I4hEMS7+lJ+aZ9i4RkVDmE7UBLNISqSJ6o/WyW85az2SxpC7/2ta/xx3/8x9x1112MjIzQ29vLpz/9ab70pS/VynzhC1+gVCpx1113MTk5yfbt23n66adFjm6BQLCsmZiYqG2RSSQSxONxMpmT+8paW1uZnp5equYJFpEgErqqFPyVE1NzSsGrBHEG7067pjtvjeZr+/D6Wr111s49MlWL+K5vi/ueuzsd5thkkdG8K90eylboSIQ8ZS/ua8FxwDUkdx/0FAlPtKM7HeZEtsRwTscBjmcrdKcaR1AkqSqFdOvUFG8Epb8jjgOcyOm16E0m7k0tVk1BlisbtMU1JssGyYjqK4HXFJlixUQOqxQr7kNgozRpEPyhb6U8HAqWL4uxeBOkzmoaqdmRadtxPJFp3bR49dgUEwWDSEhmqmhi2FOeSGUyojJR0HntWK62+JeMqL5Re0V2HccN0wYJDNNhomB4zp2OquimhWm7Gh/TAd2yPFHpZESlMxlGU2UkySGkSHSmwr7nHs6WeGeyVOf4/c5kieFsia5UvQFjoeKO+abpoKoSRd1rUFnUTYZyJVTZjV2rssTQtL/SKBKSsWcmzgpgAbZPyrB0VKWoW1RMt9+O7Sp7/JQAluMQkqkprGwcT0S8qJsMjBVIRzXSEVfiNDjmr8QCuP68Tl49OsVovkJHIsz1PhkhdNPilaNZpooGEVUmW7YxrKznfdGdDtOZjDCe1+dNabnS8BFxnD2SySQPP/wwhw8fplQq8fbbb/PlL38ZTTu50iRJErt27WJoaIhyucyePXvYtm3bErZaIBAIgnGq4WMjA0jB6mG20VFHIsJk0WD3gWGKuuktXNtC6Eoi/aTgUO8M3hrTyFdMvvncAEcmCnXlYprKhvY4qiJhWm6kZUNbbJ6H8qp9kX8E8u2RPOOFepfe8YLB2yP5umPRkMIpwRIU2T0+m2OTJcYK9Xl0xws6xyZLnnOvaY3SHg/VrooEtMU11rRG68+tKaQjqhtgt91URemI6pGX92XifOqafpIRdca8TuV339/vSUG2uTvFnVdtJBKSKejuhPuOKzf6RqIEcyNJkhgHF4GYptKViizoAs58dVbTSLXGXGPB1ljIN43UiVwF3bTRVAlFltBUCd2wOZGrT501nq+w/1gOy3G3cViOw/7jOcbz9eUARnMVxvM6siwRCSnIssT4dIXRU+rMV0ws253AK7LsLiraTp1TOJzc3uM47sTWcaht7zmVg8PT2JaDAqiKhII78T04XL9oXk0tJkmQjoeQJGqpxerry7leHkAsHMIGXnx7goPD3uwqZcMmormRdkmWUGWIaIon0j02XXGj4rjjpDzzt2OnpCvTLYfWuEY8EgIk4pEQLTHNExEfyZV5/ViWmKbQ1xYnpim8dizLSK7saWPV5M6wbc7pSGDYNk/sHWQsX1/2RK6CYdqEFFe5FFIkdNP7vmhPRLjz6o20xkOMF3Ra4yHuuGqjb5R9pSGWWwUCgWCRuPPOO2vZFMrlMr/3e79HPO4+4M/e5yhYPVRNiTIxDcOyycQ039yzw9kKIUXm0vWtSEg4OL5O2nDSGbwlpqHIMi0xjVxJ98iip8smHckwV21s5fBEmfWZCG3JsP+5VZmL+lqwbQdZbiwvf/HQBI7jRllkxc0Xazvu8dl5bw8M5QgpMhHFFWAqM0LMUyXZrmTcIaKCLLl7Kv0k49V2dqWjdKai5CsGibD7IOsnl09EQly8NkzZsIiEFAzb9u3Px65Yz7Wb2xkYLdDfEfdMuKvsvHEzHzivg5ePTHFxX4uvC69gfhzHEePgKiEZUUlEVPIjJpIERsX2jUzHNYWI6mYSSEVD5EoGmip7UmINjBYwbZs16ShhVaZi2uTK3nENoKBbSDK0xjTiYZVCxcS0bQqn+DEUKhZaSKZD02pqH9txj89mOFthvKC7pl+mq8oZy+u+Y0ZfJoosSxiWg2Q7rpmaLNGXqV/8q6UWq7imX7Y9k9f7lNRio9M6FdPCtBwMy8FxHGzHYXTam3KsvyNOeyJMtmgQ0xSKukWLj4pnNK8DDiEFZFnGtm0cnJnjJ+lOh8nENPJlA0VVsGybtrif0mhmB7kk4dQ2lFf/p57gJncKYdVdnE1FNHJlHU1RiIe9qdLWZWJctLaF4VyJ7lSUdafkG1+piEm3QCAQLAKz0x4C/Mf/+B89ZX77t3/7bDVHcJYImnu2alQzUTgp1czEvbJtcB+8QorMsckSkZBM2bDJJLwPXsmIyp6DI7wxnMcBfnYIzutOevKl1mToI3PL0AEu35BBwpU1WjPPrfLM8dmc35PCcWDacGaWECAakjyS7Ko0vGyChGumFlK8MvRqOw3T5vBEEVmSOJGr+Mrgu9NhDMvmrRP52t7vuaT6fZnGk+0qb43kef6tcXJlg0JlnHg45LuPXjA3YhxcWuZLz9R0WcdBkaXa2OaXF3t9e5zL+zO8MDhOsWKiqhLbN2ZY3+6/3WOiUCExk+YqHfOOa+BuvelNRzk6VULW3fRafa0xNrTHPOXWtEQ5MlHCUsC0YF1b1FNOUyQmCzoV066de6qoe2TWAJu6knSnwhybKmPh5qHuToXZ1FW/zbWWWswB1bYxHTB8Uot1pcI4DlgOyI47iVdnjp9KVZ3z2DNvk9ctUlF/dc6GthiqIlM0bBRsLAtiIZkNbfX9rqqhjmVLWJaDosi+aqjOVJhtvWlePZZlqqhj2Q4XrU17UotBcJO79W1xtvdn2Pv2GJNFnZAicXl/hvVt9X2pqsV0y+H8npYzTmG3nFjZrRcIBIJlyre+9a2lboJgqajJZ6sPpN4HuaqE7om9g4xMuxPuRhK6tkSY83tT/HRgoibPO783RVui/gHotaNTvHkiX+d0++aJaV47OlUXla4+eA1Pl+eVoZ/TmaAtodVFTNoSGuecMgGNagqa4jrx1lLwKLJH4r2mNUpHMsxwtlJrZ0ci7JGMe5lbBn/ysFP/62kQNBeyYH7EOLh0BPGWaKbsdNkkpMrcsKWrluoqW/aqeGKayn+6/lx6WtzFxJ50hFsuXuv57PRl4ly7qYO/e+kdcmUDVZb48IW9vgti7YkIn7lhE//z2QEmizp9rVF+55p+z3jZnohw1wc28T+fc8utbY3yO+/3lqvKrLMlA8NyncvTUa/hGriy+q1rWjCdSUoVm2hYZuuaFo+sXrccoiGZUgUMx12cjIZkXzOzRFhlsmhg446BfmZmVbb3t3F4vMDRySJrW2Ns72/zlEnHNLqSGm+XTSzLrbMrqXmM4abLJsWKhabIlG0bTZEpVLwmdzFN5T9sX0/q1eOM5V3n8g9d2Os7/lVN7l4/lmVkukJIwdfkLqapvHddKy8OTlA2TKIhhff2tfoa9gVNYbfSWNmtFwgEAoHgLDJfNGi6bBJSJN6/qX1mX6NMSfc+1ADccF4nmzrj80qdp8sm53QkWNcaZWS6QmcyTEhVPHW+eGgCe+Zhr2rO5icFr8rQb71kDdNli2REwbCchvlx17RGWZ+JUtBt4pqM6Xgl3q6DuMy6aLQ24y+blkcqOpyt0JWK0JEI1x7wZVlq6JweUmXO701S1m0imoxuOr7y8pAqc/G6FizbjcTlG8jlg3A6D31j+fKcbvVVmok8CgSnSzMLR0HLVlOLTRT1edOVnduZ4K7rz53zvT6WL3NovMD6TIzYjGHh4YkCY/my72fohvM6uXBtat7PWZBy3ekwfa0xwmqFlqjKVMmkq4GhoyJDoWKSDmv0tarkiiZF3fSYuGkze5RlCWIhZcZB3fZEzzXFNa9UZQiHZCqGKwX3i7JX7022rJOOaWTLuu+9yRZ1xvJ6XZ3jBZ1sUa8ze6um4yrq1rzpuM7tTPCxK9bNe70VGSQkupNRUjH3+rh76uvLjeXL/Gj/MKlIiI3tccbzOk8fGOambV11dTebFm8lsfJ7IBAIBALBWSBINKgqL993eHJOefmp9e0/nmsYiUpGVEanK7wwME41PHxlf5unzss3ZKj6fNt2/XFPGy2Hlw5Nug+KlsPFfS2+bazK4CeLBn2ZWEMZfFUqOju3qp8zeHc6TL5s8s5EERyH41KZ9ZnGzun5ssHhiRKS4+BIEhsyUV95uSJL/OpEvia/78s0lpfPR7MPfT9+Y4THnx+svS/uvHojN/i49zYTeRQIzoRmFo6Clm02Xdl8Tv3D2Qq5ssH69gQxTaWom4xMl+dcLItpKh1J5l2wmq9cVWn0jT1vM16o0BYPN1QaWba7H3mgbDA8XSYeUtjQEfONdMfDKhXDpmLZKLLsm7arWq5sWOimu0joVw7ce/Ovb4/z2rFJdMvNP37BmlZufW+9csDdSy2hKjKmBaoiY9sSQ9lynadGNR2XLKnopk0qoqKpsm86rqDjVdVgz3IcirpFJqn5GuxV7/ea1igxTSUSUnzv92KkxVsurPweCAQCgUCwyDQlOQ4gL282EnVorIBpO7U92IfGi570LZGQUpOV15oyc9yD48w0U0KSHBoJsoPK4Kt7D785I+ts5Axe0i2yZVdWqcoS5oxEtaR7Iy1uWdNN1SNL2A5ky6anbExT2ZCJMZwrY1puqp4NbdHTfkhr5qGv6tw7O43SE3sHuXBtqu4aCcm64GzSzMJRM2UXMl1ZdUGvKkGfy9cCgk8Cm1ncciRcs7A5DPUVGfYfy3I8V3Yl9ZKBcgzfdGUhRSYaUlzDubKJpsqevc3pqIph2XVpzQzL8ZQDN4L98pFJSoZFSJHJV2xeOTrpiWD3pCPYOOiWjSqBYbsT7550/TjdnQ6TCKu8ky+hqTK6abO+3ZuOq5nxKhlRMW2bwdEClmOjSDLd6UhDH5Mg93sx0uItB1ZHLwQCgUAgWESCRoOq8vIb3tN50pW8aPiWCxqJGs5WsByHrT3p2oPSRNHrDvvykSkU2XXirW66tBw8zuBB92ZWCSrrDOIMPjBaQALWZ6Iokozl2EyXTV/H4mrZdZkoqiRjOjZ5n7LTZZOOVITb3rsO3bLQFIWSaZ7RHsCgD33V6E1P2k211JOO+EZvVvM+RcHyo5mFo2rZ7796nEPjedoT4TOKYFeZb8tFdUHvfz43wLGpIq0xrWG0OegksFpuJF+mJaoxkvcvV10syxYNMrEQ2aLhu1gG8KvhaYZzFRzHNVGzHRjKVfjV8DTt554sq6kK7+lJ8drRKfIVg1hY5bzulGdvs5vWbCZj5MwAbDvetGaAu9hqOaiyjCJJOLKMYTocGivURbA1VSYTD1ExXHNKRYK2eAhNrV8ZiGkq69viDE2VMWx3Ir+uLX5G+6qr6ddMy0YLyeiGXUu/NrtsMz4mqxUx0gsEAoFAMA/VaNCRyWLNobUrFfas5lfLnci5D31TJZ2upHfVv1ruVydySLKEYzusb4/PKfE+Nlmo7X3sbvHKrC/ua0GVJQzbIaJIlE2HkCx5nMFrbZwuz9mX2ZR0i/F8xTca0wxVGXq25MrQs0XTV4Y+u+xEXiehqeR1k9a45uvanoqEODZVIhpSmCoZrG2NnpU9gEGjN6t5n6JgeXJa0cIFyqEedMvFukyMi/taap+LRqmhmln0PDxeZGS6zIBdQJElShXbN23ikcki2ZLBUM6dTJdNy1fafmSiiGU7ta07DmDZDkcmilw5q1wyopIrGYxMV7Bsh3zFIlcyPJ/xQsXCcuxavnpJkrBs25PWDKAjGSakyhiWm6+7UHGj5x1Jb4qvVESjEq86yru/n6qymi6bqLLMho44Jd0iqimokuy5Ps2MV8PZCvmKSSIawrEdtKjrN+J3LYMu4K7WrTj+VnkCgUAgEAhqxDSV83pSDIzl+cmbIwyM5dnSnfI8yNbKjRT4ycERBkYKDcvpps2P9g/z3ZeP8aP9w1QM2/fBuD0RYUNbnMMTRV47luXwRJH1mbjngeWivlZuu2wdIVmiYtqEZInbLlvnyTEdtC9V/vqFw3z8L1/kD/9/r/Dxv3yRv37h8GmXq8rQkxF1Thl6texFa1vIl02OZcvkyyYXrmnxlI1pKuloiOffGuN7rxzj+bfGSEVCZxRBfmskz+PPH+Jbzw/y+POHeGsk71uuGr3JxENzRm+q0cRMPLTq9ikKzj5F3eRErkxR90ZHZxPTVLpSkTnfZ9Xo8Gi+QkSRGc1X2H1geN66G1GNIo/ndVKREON5nSf2DjKWL/uedzjrbgsZzpYbnnf2JLCkWwznyqSj3kmgIsNQtsRwtkTFtBjOlhjOlXxNzyYLOsWKhSJBsWI1TBk2O9WZ4/gfBzg6UeTVo1M1M0fLdnjt2BRHJ4p15VIRFctysGy3Mst2/z/lM6Hd0pPiiv4MkuRKzSUJtm9sY8spqRgTEYWw6p7TncQ7hEMSiUh9lL16fXIlk/ZEmFzJ9L0+zYxXbsowu5aPPVcyqJh2wwXa9kSEbWvSDSfcs1UNHYkIk0XjjN6Pywkx2gsEAsEy59FHH+XRRx/l0KFDAGzdupUvfelL3HzzzQA4jsN9993HY489xuTkJNu3b+fP//zP2bp16xK2enVR1E3eGMrR3xGvRbAPDue4oj/jkTe65RK1KLJfuSMTBb7z8jFkWaInHmGqZPDdV47xm5eu8Uwqj0wUeOZXo8Q0tZZT9tm3Rjky4ZVk/8kt2/jNS9fw8pEpLu5r8Uy4m+lL9dzfeHagziDtm88NcO3m9rpzBy0HwWTo1TpfOTpFMqwSDauUKiavHpvy9LvqihsPK6zLxBgvVHxdcYPS7P7roNGb1bpPUTA3C+1Y/9ZInn965XjNAOzDF/WeURRwumzy2rEsB4en0S03jdSW7uRpb30YzlYYmS5jWlWDLziR899y8eM3TvDa0SyW46BIEhesTXtMwiC4XN6y3YnxcK7MkckyIcWd5DU2PXO31ShSYzOzeDhEW0JjIq9jAwqQSWjEw/X5tw8M5SgbFpYD1kw9Jd3iwFCuTgquWw6aKjNdsWrlQoo3tVi139GQa85mOWAbNtGQ4tvvqObuFS/orhN6JKR6+m3Z0NMSQZUlyoZNR0KjIxX2lAN3vGqJrZ13XKvK6g8OT1PQLVKREFu6kx5ZfVBW81acld16gUAgeBewdu1a/vRP/5Rzzz0XgCeeeIKPfOQj/OIXv2Dr1q08+OCDPPTQQzz++ONs3ryZL3/5y9x4440cPHiQZDK5xK1fHVQfBFojYXTTojUSJltqvFe7rzVGVFNIRkK+DwwDo+6et/ZEmGhIRVVkJot6w73NRd1N8xUNqUQ1pWFZgExcY0NbnExc87w2u43JsMpU0ZU/+vVl9rnjmkLJsIjPSBxPPXdduZl//cpViWoKbYmwJ4+337kT0RCW45CIhnzrrO6r7kpFCSkyXYrMRMG7573KfHtNq9cnEVGYKFZIRJSG16dKM67KK/3BURCchZbJFnWTv/npYV49liUky7xhT5OvGNy9Y8tpv6900+KXQ7m6BbM3hv3TSAWhGvms1TejaDk18jmcLfHy0SzmzGTTxOGVo1mGs6U6k7AqQRatdNPiyGQRSZLpTLqLnkenip6+VNvi4O6HNi0HJHyjs93pMOd1pzg+VaplR1jT6t3e0xoLYZwyeTVs9/hsLNtmsmDUHZssGFi2d+b7ypFJ/vf+IayZVJCWA/97/xC/c2RD3YKqblocmSiiyBI9cc3t96S338mIyvpMnGhInXdrUdD3bjKicsGaNG0JjaiqUDIt1rSc/vae1bwVZ+X3QCAQCFY5v/Ebv1H3+//z//w/PProo7zwwgucf/75PPzww9x7773ceuutgDsp7+rq4sknn+TTn/70UjR51ZGMqIzmyrwwODErbVem4V7t+R4YqvuVxws6bXEapthqtuxfv3CYbzw7UDOx+dQ1/XzsivWeNr49muenAxPYtoMsS2w/x9uX6rkrps3ItF471hL1nru/I07FOKVcJOTbxqD7Pfs74hQrVl2dSU3xTUOmyhL7j2WJagol3WJdm/ehOOi5g6Zoq7Ja9x8KzozFcKwfyVV4/XgWRZZoiWlMFCu8dizLSK7ChnZvnUGi7LU0UvJMGqmoiqb4p5EKQjXy+cZQrra452co9tqsCbciuRNKw3J47WjWV6ED8y9anUyJFcJxHFqiITRV8vTFst1I93TZRJJAliTimlqTfM+mll7sGTe9WEfSP73YscmSb5tOPf7C22OcOr22Z46f2u8XB8cxTAcZaiaahunw4uB4XdlqvxVJw3YcWqIaIZ9+10zzXjvOWF6nPaH5KgaCGtLNrvM7vzha+947k60zqzllmNjTLRAIBCsIy7L49re/TaFQ4Morr2RwcJDh4WF27NhRKxMOh7nuuuvYu3dvw3oqlQq5XK7uR9CYom5yaKKIaTuoioRpOxwaL3n2mQXdC9fs3uYgZWdLvFtjGvmKyTefG+DIRKGu3Hi+woHjOQzLmTHpcThwPMd4vuI5d0m3qMyEb6q7Hcum7UnbVdItKmb9o2TFtDzlZqfY6ky6+/X89nsCTBR0yqdEakqmxURBrztWdeQNKe5DaSNH3qDnnp2iTVXkmXtd9N1TuJr3HwrODD+ZbFUxcfrMrAI5M55nDu7vPin/gvoSdKfDxMMq+ZKJbtnkSyaJcOPUXfORjKj0tkRJx0J0JMOkYyHfyGcmFkKR3NbLM/8qknv8dKn2ZbpsYFo202WjQV8kWmMhNnUl2LYmzaauxExEurGRnHvlpQbJFaF8api7wfHRae842+j4uR1JJNxJuW7a2DMtPLejXsFWTQU2XTYxLKe20NLoHjo24Djuvz5UDekOjxX5+eFJDo8VOTRWbPjefWeiyC/emeKXQzl+8c4U75yyj71Zzu1McMdVG/jE1Ru546oNq2YRc+UvGwgEAsG7gNdee40rr7yScrlMIpHgqaee4vzzz69NrLu6uurKd3V1cfiwv+EVwAMPPMB99923qG1eTQxnXUfarb0pNEVBt9zJn5+EOeje3Y9dsZ73bWjlwFCO83tSdfv+/Mqe2xnnxUMTXL4hw/b+dk+Zqhy7La4RDam0xfGVoQ+MFjAsm85kGNuxSUVClAx/KfiBoRyyDOmwDJIMjo3h4NmnWC2XDMvYM6l1LJ9yQVNsgZvqDCCigiwp2I6FafunQOtIhvnoJb1MV0ySYRXDdnwdi3Nlg0xMQzdtMjGNbMl7D6sp2rZ0J5ElCdtxyJUM3zau5v2HgjNjMWSynSnXhOrVo1NMFtz36UVrW+g8RY7dTJR9dp57bAiF5DPKcw+A4xBSZEKyjGFXHbXrufycNta0RDkyWaK6Xre2Jcrl57Q1rHa+rSHVvgxNld1FRcW/L52pMNt60+x7Z5LpkoEsS1zS10JnyjtJrS7WTZcNulIRxgsV3/RiW9ekPMsf0szx2VyzuYNvPu/9br5mc4fn2AV9abpSYYZylVp0vDsd5oK+tKff69viHJkoUtANtAYLj9X3RUG32NCWaPi+qBqujU6XSUVD5EoGtuN4DNdmX59c2WRNS4yhbLlh+rVqG4J4HKzGrTirqzcCgUCwStmyZQsvv/wyU1NT/P3f/z133HEHe/bsqb0unZLqxXEcz7HZ3HPPPdx9992133O5HH19pyMmfHdQTQ01Oq3Tk44wOq37poaqEuSB4a2RPP/8yxFyZYPjU2VkWW64oj9bNv73+475ysaDytD7O+KYlsOR6WItT3drzF8Kfn5PChzI6TaK5Jr5xDTZPX5KOctyKM4yAworkqdc0BRb4KZAkyWJiumgyBaWDZrqnwLNsBxeOjSJpkjolsPFfS2eyU13Ooxh2ux7Z6I2mV7fFvecuzsdRpElDg5N1/Zw9mVivm1czfsPBWfGYshkY5rKf7h8HamoWpMHf+iC3jPKs7zQee6nyyYhVeaGLV218SVb1j31tScifPq6c/jzf/lVbbHs/3PdOQ0Nu4JsDZkum6iqzMb2RG2LjaJ4U2LFNJX+jgS7f3mCgu56VWxsT/j21zWGq2Ba9owxnMOJnNczIh4O0RoLMVE8uV+7NRbyGK6d15OmJx1mKHsyst2TDnNeT/1EGlzjs4v7WpGOTlLULWKawkVrWz3GZ9Nlk5FchbJpY1gOtmMzkq009ByZ730R1JCuen2CLqS+27fiCHm5QCAQrAA0TePcc8/lsssu44EHHuCiiy7if/yP/0F3dzcAw8PDdeVHRkY80e/ZhMNhUqlU3Y+gMUFTQwWlGVlyUNl4M5L1ajymmgLHaSCazCQ02pNhZIlaBLs9ESaT8DFpO3WNx2fNp5nruKkrydbetBs1t91zn9+TZlOXjzmg48ykGJZm/m0kAq39wUwT/R2DN2RiqKqEaTmoqtQw8idSgQnmYjFksud2JvjUNf189gPn8qlr+huaWwVJsTW7bF43ycTD5HWzYVlwI5uvH8v6bgmZXd/RbIGxQoWj2YJvfUXdJFsyuOE9Xfz7y9Zxw3u6yJUN3zGwGk0dma4QUWVGpiu+W0MUGYamyowXKoRVifFCheFs2ROhrWY8iKoK61qjRFWFpw8M+/bJNYazmCjqWLbDRFGnYloe07V0VCUVDZEIK6QiComwQjoW8pTTTYuwqpAIy6QiMomwTCSk+BrXKTIUdJPWuMaFa1tojWsUDdPTn2xR57VjU+imTVxT0E2b149PkS3Wb8UJ+r6oN6QLI0myryEdnFxIHRzL89ZIjsGxPOmodyFVbMURkW6BQCBYkTiOQ6VSYePGjXR3d7N7924uueQSAHRdZ8+ePXzlK19Z4lauLm44r5NNnfF5U10FoRpxyMQ0DOuk1HkuB/FEWMWwbRJhtaEzeFAZuqrI9LaEMW1QZTeNjV99w9kKmbhGKqwwVTJpiaqoquKJYhwYyrnmTlGlNkHXLdsjL2/mOk6XTbb3Zzi3M8bhiRLrM1HaEhHf6E1IldnenyFfNklEVEzLX14eUmUu7mvBst0H2nzF9E1l1JGK8NFL1sxZXxWRCkwwF4shk52vzmai7M2U/fEbIzy2520mihUysTD/n+vO8USbY5pKOhri714an2XomG4Yjd/YlqgZIDaKxg9nKxyZLDJZ0Dk26X523Tzc9Z9dy3aX04azJY5MuP4OHUlvSqxqfVNFAzvnmknqtu0bndVUhb7WGK8fn2JkukJIgbUtMY8xnKYqqLJMvnJyYtqdkj3lsiUTw7IxLae2kKmbtq9xnWVDTzrq+ohYDl2pCB0+EeehbBlZkohpCtLMv47jHp89/taM1F49zqHxPO2JsO+9rhqzqXIISZLIxEKoiteYDdyF1NaYxt63xrAcd1/++T3ePNy177xECMO2ySRCZIuNs0IsdKq95cDq6IVAIBCsYv7Lf/kv3HzzzfT19TE9Pc23v/1tfvKTn/DDH/4QSZLYuXMn999/P5s2bWLTpk3cf//9xGIxbr/99qVu+qpitjRu//HcGUnjkhEVw7T58cETtX2PF61NN3QQNy2bd8ZPmtO0xuZ3L59Lhm5aDmPT+rzy8u50mBPZMkM5Vwp5dAp6U2FPFOP8nhSaIlMx3UWBUsV9aDtVXg7Br+OpLutvDE37uqwHdRuvysZ/dSI/p2w8qFx9Nqtx/+Fy5JlnnuHP/uzP2LdvH0NDQzz11FPccsstdWV++ctf8kd/9Efs2bMH27bZunUrf/d3f8e6desA10Ty85//PH/zN39DqVTigx/8IF//+tdZu3btEvRo8WhmMShI2bF8mf/+9BscHisiyxLHJ8s89PQbnr271ShyXFNZl4kxntd5+sAwN23rqivXzNYMTZE4katQ0q3aop5hufmoZ6ObFm+P5qmYNprqjkcDo3lPhFZTJMamdYqGWRt/TdtbH7gTfEmC7mSUVEwlVzSRZTzR5uFsiUPj9WZ1h8bznhRomiKRKxkze86lGeMzw/fcyYjK+rYY0bBMS1RjqqTTlYz4ZsNIRUPkyu7i7FTJIN3gO6LGHNvPutNhOpMRxvM6bQmN8bxOe1Lz3WLz5nCOPW+OoCgyiZBMybB55lcjvDlcv+BaHVf/z4GRecfV1SpDF/JygUAgWOacOHGCj3/842zZsoUPfvCD/PSnP+WHP/whN954IwBf+MIX2LlzJ3fddReXXXYZx44d4+mnnxY5uheQRZHG1R56qhLnxg9B4Nr7ShIz5sXeskFl6LPPeVJe7s+xyRKjp7iFjxZ0Txqczd0p7rxqI5GQTEF3J9x3XLnRE+Vu5joGdVkP6jbejGy8ebm64GxQKBS46KKLeOSRR3xff/vtt3n/+9/Peeedx09+8hNeeeUV/viP/5hI5OSkZ+fOnTz11FN8+9vf5rnnniOfz/PhD38Yyzq9vNTLmZim0pWKBFoQmq/sG0PTHB4vggQRVQYJDo0XeWNouq5cdY/vmtYomXiYNa1RsjNGhKeeb8fWbhIRhUMTBRIRpWGEfWS6jO04NZdz16jRYWS6Xg5+IlfBmJlwy5JUS7N1Ild/7lzZQFUkFMlVjSkShGSJXLk+fzbMRJtbIvS0RAirKj0tEbrT3mjzvkOTnJLAAdN2j9ef20SRJRRZcs8tSyiSRM7HGbx6jVpjbv701ph/iq/a1qKwQrZskAwrvluLquPvaL5CRJEZzVd8x9/qNqD2pEaubNCe1BpuAzowlEO33MXWqKaSCKtUTFfl5CHAuHo637VF3eRErrzspepiWVYgEAiWOX/5l3855+uSJLFr1y527dp1dhr0LqRZl+r5pHHTZZOQInHNpnZ000FTJYq61VBerioSvS2RmQdPCd20fV3JazJ0s7EMvSov78vEcBwbSZIbupe/fGQKHIewAtWwuOU4HgdxgJ03buYD53Xw8pEpLu5r8c21W72OiuRw8ESOTCxUS6Pk12/DsulORZAkB8eRKOiGp51Vt/GtPenaQ/ZE0Wt0FNQwKqgRlODsc/PNN3PzzTc3fP3ee+/l3/ybf8ODDz5YO9bf31/7/2w2y1/+5V/yV3/1V/zar/0aAP/rf/0v+vr6+Od//mduuummxWv8iseVQ5uWVftXVRROnTg1Y5YI86evcgtJyJKEDCiKhGW54yBO/eJjPKygyBKWbiOpMpZlo4QU4uF6iXdcCyFLM44OjoMjgSxLxDVvurJkRGV9Jk40pNISDTFVMuhKhT0R2rDqv2h66vFqG50ZWY6DO/E+tY113Q9wjbb3t3F4vMDRySJrW2Ns7/e6wE+XTV47luXg8DS6ZaMpMlu6k75j2w3ndXLh2tScbvHgqpwUSWaqpNdUAzFN9aicgo6rzX7XrqSouIh0CwQCgUAwD80YEwXJj1uV2j3z5hg/PzzBM2+OYVpOQ3m5u0+xwnher0WMGrmSvzNR5PBEkXcmipiW41tOnYly5CsWo/kKIUX2lSJe3NeC40DFgorpULHch6VTHcSr/X7+rXGGsmWef2u8Yb9fO5rlfz5/iKd+fpT/+fwhXjuabdhvHDg6VeDYZImjUwVA8rSz5iyfr2A7DqP5iq+RT1DDqGq5iaJOSJGZKOpzGksJlge2bfP973+fzZs3c9NNN9HZ2cn27dv5zne+Uyuzb98+DMNgx44dtWO9vb1s27atln7Rj0qlQi6Xq/tZbcwXLVzfFiehKe6E23Qn3smwwvq2+s9jULPEakRzqmTQFg8zVWoc0VzfHiMRVnBmpOWONHPu9lhduY5kmLa4huVAxXCzLbQlNDqS9WNBIqIgy+5YJskSzsze6kTEO/E9GW0OMV6o0Brz3/N+blfS10vy3FOMHxNhFWVG5VQ1clRkiUTYf/H26f3DTJV12hJhpsq67zWqlnOQuHR9Gw6SbzndtPjlUI6pkptWbKpk8MZwztcgrdr3jmR4zsXGtZkYF6xNuYsdtruAcOGaFGsz9fcm6LjazHftSjNnW/JJ97Fjx/iP//E/0tbWRiwW4+KLL2bfvn211x3HYdeuXfT29hKNRrn++uvZv3//ErZYIBAIBO82grpUN/UQEFDCHNUU0hHVjQ7Y7t+kIypRzS8y4rj/Oe7/+rlztyXCbOtNoSoSummhKhJbe9O0JRpEopy5f2+m30cnirx6dArbcaXgtuPw2rEpjk4UPXVGNYVUVEWa6YWERDqiePod9CE/6D0UjuQrk5GREfL5PH/6p3/Kr//6r/P000/z0Y9+lFtvvbWWXnF4eBhN02htrVdhdHV1eTJAzOaBBx4gnU7XflZbesUgC4WaqrClJ0ki7JopJsIqm7uTHqMwcKOk//22i/jyLRfw32+7yGO2Bm5E8/BEgcPjBX7+zhSHxwscGi8w7SOz1lSFLd0poiEFSYJoSGFzd8pzbsuGSEjBdhx008Z2HCKq4pGCZ0uuIigWkpFliVhIJh5WyZYaT9YMy6ZoWBh+ebOAsmETOuVShBT3+KnnziQ0etOuMWRvOkprXPM993TZ5PB4kYGRAv86MM7ASIFDY0XPNfKLDlcVRKee2/0esRmdruDYdu34qbw1kuexPQM88uNf8dieAd/3RPXcF65t4RNXb+Cj7+3lE1dv4IK1LZ5zB91OUCsXVjg0nicRbrztIGi/qyy1DH1Jv0EmJye5+uqr+cAHPsD//t//m87OTt5++21aWlpqZR588EEeeughHn/8cTZv3syXv/xlbrzxRg4ePCj2KwoEAoHgrBHEbCioNK4ZCfNwtkIiEuLyDdGavLyge123q7LxdW0xZBls233IOFWOPV026e9IsKUrWcuPa9j+7twvH5lCliEkudsYHMfBcvDIy4P2+8BQDstxaImGCCkKhmVRNCxfl/Nqv9+3cVa/fdzGIbgUMqi5lHAkX3nYMxOIj3zkI/zn//yfAbj44ovZu3cvf/EXf8F1113X8G8dx0Gaw1jqnnvu4e677679nsvlVs3Ee/aCWdXQbPeBYXpbNtS97xXZXfjqSc0yFJMkj6FYlfZEZM6UitX0XpNFoyZDtx3Htz5Fhol8Bct2UCU3ojpZqPimznrzxDTmLJOyX41Mky3qdWZm6ahKoWxSNGxkwACiFdOT3qt6ff7mp4d59ViWkCzzzniRsmFx944tddcnEpI9k3t3EaC+kd3pMHFNZaKgE1YUSoZFRzLiK79XZHhrdJqjE6Wa+WNRtzz9DmpKl466W46myyayBCUHNFX29PvUPr9hT5OvGJ4+zz73ZNFgS1d6TkM8CLidoMocn8lm+g3LQ4a+pN8iX/nKV+jr6+Nb3/pW7diGDRtq/+84Dg8//DD33nsvt956KwBPPPEEXV1dPPnkk3z605/21FmpVKhUThomVCVAhmFgGF6DhFOplglSdrmzGH0JK0tnJhOWnbp/VzKn05fl/J5cKZ+b5d4+QTCWMpXIfC7V1YeAI5PFOff/VcudmC7PWQ5OyqdnP5z67ZHs74gT01SyRYOYplDULVriXlfy6rlfPTpFtqSTjmpc1MBF9uK+FlRZomI6hCQHw3H3KJ4qL6/W+auRHDISNg7r2+KeOqsu5wXdIhGWKOhWQ5fzoP1ulqBO4804kq/G9DYrjfb2dlRV5fzzz687/p73vIfnnnsOgO7ubnRdZ3Jysi7aPTIywlVXXdWw7nA4TDh8Zu+75UrQBbNq+iqAimnTkQrTnYp6JppBmZ0Oq2xYdCQ133RYAKM53TVQlECRZUzbZixfYTSn103sD40VZibcMqosAQ6G6XBorFC3qJevmFgzknJZksGxMR33+KmM5Cq8fjwLuOobo2zz2rEsI7kKG9pPXp9syXAl1pZrc+ngysazpfrnjpimsqE9zvB0Gdt2TSI3tMV8x4182cQwHTRVRlFkNMdNL5Yvm7Qn6usMkvYtX7bc/fCyxMzlwbIc8uV6eXm1z4os0RLTmChWfPvczLmrizsF3WJDW6Lh4k61XL5isSETb1judM4938LSYrOk3wzf+973uOmmm/h3/+7fsWfPHtasWcNdd93Fpz71KQAGBwcZHh6u23sTDoe57rrr2Lt3r++k+4EHHuC+++7zHH/66aeJxWKe443YvXv3afRoebKQfXnw8gWr6rT5b5ed5gi/DGmmLz/4wQ8WsSULw3L/3BSLXgmrYGWxHFar5yKmqZzXk+KFwUFyJYNUNMS1mzt8HxaClIOT8ukn9g7OKZ/uy8S5aG0L33/1OFMlA0WCazd3eMzRYprKnoMj/HSWq+5kQec/XX+u59wX9bWyrjXGm6MF9Jk1wnWtMY9JWkxT0U2bH74+XDPoufOqjZ7+VF3On/jXwTldzpvpN7j5gx9/frD2vrjz6o2+ktbFYLm/J98taJrG+973Pg4ePFh3/M0332T9ejdt3qWXXkooFGL37t3cdtttAAwNDfH666/Xma+9mwgaLUxGVBIRlfyIK1E2KjbJiHraXgdB02EBFHSDiuVgWja27WA7DhXToaDXT2g7kuGZTAc2EU2hUDHRVNmzp7tQsdBUic5klPBMajHLsSlU/PY2O5R0m8mCzrhawTAdWuMap24H6khEUGQJ2XKPS4AqS3T45KvuSIa57bI+9Bmn9VIDE02QiGoy4VCEZDjEdMVwJ8s+2SuCqHMKuoEWUujQZCIhlbJhYs8YVJ7a55k0GW6w2ame0z9QtNAqsGaM1Bby3IvNkk66BwYGePTRR7n77rv5L//lv/Diiy/yB3/wB4TDYX77t3+7tr+mq6ur7u+6uro4fPiwb52NJEA7duwglfJ+qZ+KYRjs3r2bG2+8kVDI62K4kliMvmzb9aMFqed0CMsO/+0ymz9+SaZizy05We6cTl9e37V8XVVXyudmNZrfvJtYLqvVc1HUTd4YytHfEa89SB4cznFFf8azmh+kXJUg8ukjEwVeOTpFMqIQ01SKusmrx6Y4MlEvL99z8AQvzky4q49RLx6aZM/BE1y3pf779pUjk7wzWXRdg2U3OvXOZJFXjkzWTbyPTBT4zsvHkGWZ7hlTpO++cozfvHSNZ9K/88bN/JsLujkwlOP8npTvhLuZfo/lyzz+/GBdRPyJvYOe/MGLwUp4T64m8vk8b731Vu33wcFBXn75ZTKZDOvWreMP//AP+a3f+i2uvfZaPvCBD/DDH/6Qf/zHf+QnP/kJAOl0mk9+8pN87nOfo62tjUwmw+c//3kuuOCCmpv5u42g0UIAZlJcVV2qzySV3uzzZksGXclIw/OmIiFM28G0ISS7/5q2QypS/7yxpSfFFf0Z/vXtcQoVA1WW2b6xjS2nKGk2tMdY0xLlnXE39aFu2qxvj7Kh3RucS0RUQopE2bSwbAnDdiPPiVMWB9qTGpGQQtmwa1uGIiGF9qRWV666yDGSL9MS1ZgsNl5s6EyF2dab5qXDk4zpFSQZ3rehlc6Uv+piPnXOhvY4vS0RjkwUkbEwLId1mRgb2uvH6M5UhG1r0rx6dIrJgpsd4qK1LXSmGo+nC60CCyIZb/bczdS5GCzpN4Jt21x22WXcf//9AFxyySXs37+fRx99lN/+7d+ulTt1n81ce28aSYBCoVBTk4Fmyy9nFrIvFWvpJ7sVW1oW7VgImunLSng/LvfPzXJum2B+Fjpt1+kQJBVYrmzQ1xInqikkw6E5V/NbYxq6adMa0xqmzqoy3x7JasqwlriG5EhoIdk3Zdjet8drj8puvlv30Xnv2+OeSffLR6YwbYeQ4n4Xy5KDaXtThlXPnY6EAId0JESh4k3vVWVtJkY6pi3IQ081L3AmHkI3bTLxUC0v8GJPuqv3MZMIYdg2mUSIbHHu+yg4fV566SU+8IEP1H6vBlnuuOMOHn/8cT760Y/yF3/xFzzwwAP8wR/8AVu2bOHv//7vef/731/7m69+9auoqsptt91GqVTigx/8II8//jiK0jhl02onaLRwoVPpBfVO0C2HVMRNhWjjoCkSqYiKbtVP+mOaynWbO9k/lCNfNklEVK7zURC1JyJ89JK1PPbM2+QrrqnaLRev9R0vLBtiYcU1UtPdveJRzbt/O1syiWsqhbKBjTu2xjTXnG327v+ayun5cXLlKVKRENdu6vTte0xT6e9IsPuXJyhULOJhhY3tidO+3u2JCLdW+61bJDSFj16yxtd08j9cvo5UVGUsr9Oe0PjQBb1nNKY1owILvAjUxLkXus7TYUm/EXp6enz33vz93/894O69Addtsqenp1ZmZGTEE/0WCAQCwepmqU1TgtTZjFRzdLrCCwPjNSXflf1tZzQJ7e+IY1gOh8ZLyIANtEa9e7qvOqeN//eZQcCdcM8+fioX97Vg2+DudHQLy3hThrnpymwOjxdqx1pi3nNDc/cmiGy8Ox3GsGz2HZpEliVs22F9e/yM934HoZr67f8cGEFTJHTL4eIG++MFZ87111+P42efP4vf+Z3f4Xd+53cavh6JRPja177G1772tYVu3qpmdsqnINHCsXx5XmNDcBcyR6ddU7RGk6B0VCWkyERDSs2vws8AbCxf5kf7h2mJaJzTnmA8r/P0gWFu2tZV14aibpItGVyzuYOoqlAyLXJlg6LuXUDQTYsjEyUkSaItHmK6YnJ0suRJs6UpEvmKgSS5bugVw3bl3Ep9YKWqcurLxIiGXCO1Riqnan+iqkJ7XKNQsXz7M7vuuRYwqv2+4pwMsiRjO3bDfp/bmeBj29cFuodBzx1U3bUYRpbLwRxzSb8Vrr766jn33mzcuJHu7m52797NJZdcAoCu6+zZs4evfOUrZ729AoFAIFg6ltI0JWidzbTx0FgB03ZT2pRNi0PjRd+Hn2aQAMmpzeORfPb+9XckiKgSZfPk5CWiSvR3+E98pVO28jU2lJWq/9XOfyrN3JumZOO1EzozbTiLhpt1qd9mcrUJBCuIIAthzUQLg3osBC2nqQp9mRjZUpZc2UBVZNa2xjwpw6qql650hJAi05WWmShUPKqXqkJlTWt0JiWh01ChUk2zZc2Yt6kzk+hTI9i65crO82WTQsVCAkKK7InGV1OlDU2VqZg2YdU1hmuUueLIZJFs0eBE3l3w1G3bV8UT5B5Wz31sskxRt4hpCiD5nruZxdG3RvJ8/9XjjBV02uMaH7qw1/fcQVRgVZoxsgzKYtTZDEs66f7P//k/c9VVV3H//fdz22238eKLL/LYY4/x2GOPAa6UbefOndx///1s2rSJTZs2cf/99xOLxbj99tuXsukCgUAgWAIWyzQlqGw8SJ3ndiZoia2dM0IwnHX3yW3tSaOpMrppM1H0PhzOZr7IkZsyTKInHXYfABV3/+GpEu+B0QKpaIiU41A2bSKqDJLkKwV/+cgUkgQh3Mi5DDiSN2VY9dy96TCmLaHKDrrlPXf1OkZUiSOTBZJhtaGsvvoA3ZOOENNUetIRRqbLnms0nK0QUmUuWtsyZ0q1ZgmyPaEquX3/OR3oloWmKJRMU8jLBSuGZhbCgoy/QRfLmllUc9OVQVcqQktUZarkprw6NXVWdzqMKkvsP5YlqimUdIt1bVGP6qUZhUo6qjKRr5CrOnwbIKF7ouyaIqGbNoos1aLxhmV7It2KDG+P5DkyUaq1sWSYvqnSNEVisqBTMW0SYZV8xcQpOr7R86Bp314/muXweLGWVnKyqHvO3cx7oqib/M2L7/DKkSk0ReKXlpt+8u4dm+vKLpd91UvJkvb0fe97H0899RT33HMPf/Inf8LGjRt5+OGH+djHPlYr84UvfIFSqcRdd93F5OQk27dv5+mnnxY5ugUCgeBdykKbpiykbDxofdV0WKP5Cj3pCKP5ypzpsIJEhPo74lQMi5FZ6V/SEcUj8Xal4A5TRQNJctPItDaQglfl5dXtixYgO43k5Q5j03rtmF+dyYjKwGieFwYmsG0bWZa5ooGsvnqNhrLlOVOGdafDKJLEW6P5mmqgrzV2RvLyoFGe5Mw+032HR2vmUhetTb+rHiQFK5uaL0FMw7BsMjGNbKnxXu35xt9mFsuClIOZ9GItESRcQ7OumbzWp+6rjmkq69viHJsska8YhGSZdW3xhqZwpm2jm24KrUYKlaMTRQp6vZS8YJgcnSjWLSjqlkNrTEOWDWwb4hGVdCTkiXTnyxYV0zWkM2Ym6RXDTdvVfsoQo1uuU3q2ZGBYDlFNIR311hn0Ho5OVxgvuGN0SFGo2BbjeZ3RaX8lQJD3xEiuzOvHsqiyRGs8zHi+ml6szIZZHVrMfdUrJWXjkrfswx/+MB/+8Icbvi5JErt27WLXrl1nr1ECgUAgWLE08+W+GLLxIPU1kw4raESopFvoZv3DmG46lHT/NDjgmiGd/M1L2bA4NbGhPXPcr0ZHoraf3K/O8XyF14/nZsnqbfYfzzKerxDLeM2Oglyj2XlvTctGVaSGeW+D0PT2hJrevtrj1WH0KXh3UF04+vHBEwuycNTMYlmQctU2JjSV6UoeGYlpy2BTOO5p43TZpFixCKkylgEhVaZY9qbjmi6bHJ8qM1U0qJgWYVXh2KS/cunIRBEcUCRqnhHY7vErT+lPXyZGeLo8y5074tMfh4ppka8YODPidrcf3hGzOx2mrzVGWK3UIvxdqbB/5D7APSxULCQJWhMasZBK0TAxLW+qtObeEzMLFpLkfp9IcPJ/6lmMfdUrKWXjkk+6BQKBQCBYaIJ+uTezon9uZ4Kw2sPAaIH+jrivK3cz9QVJhwUnI0IdSQ1ZkuhIakwUdE9E6MBQDkmGVERxZ78zTuMHhnJ1ablcKbjM+rZYzYW4oHtdzgFePDRRe3SqTqarx7f3t9fVGVIk2hMquuGghSQkvJL1gdECpmXTmQwjS2A77iS3kct5kGtUzXv70UvW1ByLzRmJ4+k81DXjSD5dNgkpEu/f1B4g525wVkrkRrBKkCQs28Gxq4tsp79wVF0s+5/PDXBsqkRrzH+xrFbu2QGOTRZpjWkNFx5nt9G0bSRZ8m2jblr8cjhHUbdoi2uMF3TeOJHzmJ5Vy+XKZm2C7FcO3DRksixhWA6S42A7oKmSJw1ZtT9/8ZO3GJmu0J4I+/ZHkSXyZRPDcgjJYNgO+YqJInv7M3vhMTuTYqvhNQqw+FdNlXZkooQiWeiGzbo2/1RpQRcTq2nNXj2WZaqoY9kOF61Nn3Zas2ZYaSkbl1+LBAKBQCBYAIJ8uTezoh9E4t1s1Gi+NGAwI5+WJfYfyxEJyZQNm76MVz59fk8Kx3bI6Sdj01FV5vxTHg77O1y55XTFrD2YJiOqr7z88g0ZwH3sqj6OSrOOz64zXzYpGjPnLkMsJPtK23Hg2GSxNunOxDXfc1eZ7xqdlHhnFyRS18x+z5PnnlwweflKitwIljdBfQnyFYNERKVi2MRCMtOVxmnvgtS5LhPj/J4URyeLrG2NsS7jM6mbKbe5O8Hh8SLr2xqXcyPTRSaLOmXDJhKSOTZV9LQxWzKJhGRUOYTtQEs0hKpIHtOzqjkaOEwUdGT55PHZ5QC601EuWJtm/7Espg1hFbauSdOdjnraOTRVYmiqTF43MUyHoamSp0z13I7jUDYdqnNtv3ODu/C4qTM+72JvSJG44T2dcxrDtSci3PWBTXzjmbcZL1ToScf51LXneMbXoPXBTHqx7etJvXqcsby72PChC88svVhQTse/ZSlZfi0SCAQCgeBsEmBFvykn7QWWG8c0lQ2ZGMO5MqbloKoSG9qinoeKqKagqa6RV3WHYliViWr1Dr99mTifuqafbz43wGTRnXD/7vv7fR/meluiREPyyck0EA3J9LbUP3AenypRMuqF6CXD5vhUqa7eqKaQiqpMlQzXcFyCZCTkaWPTLLTEuxlH8gU890qL3AiWL0EXbxQZhqbKdWObhNekLGidRd3kb356mFePuYtgo/kpbMfh7h1b6t7DRd3k0Z+8VUub+MbwNLmSyZ/css03bdcrR7JMlgzCisx0xeTVo1lPZLo7HaYzGWE8r9OW0BjP67QnNc8CZTqqzmytkcjE3Uh39fipJCMqHzyvi41tMUwLVAXO6Ux6FtaOTBT4xrMDlEyLzmSY8YLON58b4NrN7XVjoKZI5MpmzexStxxyZdNjjuZ3zfcfz83pOTKRN+b1HFmXiXHp+taaP4nfQkcz9YGrAvvUtf1nXZ2z0szZlmerBAKBQCA4C1RX9Lf3Z+aUJgc1/WkmQgDug9pcEYxqnR2pyLzy6YHRAuGQTG84jDWzB9H0cS8H+NgV69m2JsXLR6a4uK+lzol8NgOjBRIRlbhmU5yJgkmy7KnzxUMTQP2+R9vxytCHsxUSkRDvXR/BsGxCikzZsOZ0Gg/iLN/MNZ+PqiP5DVu6avL7bNl/i8BinHslRW4Ey5NmFm8sG3rSUVRFomxYdCQ1OhIRj0lZ0DpHchVeP55FkSVaYhoTxaqxVoUN7SfLHR4r8OLABIZlk46623B+OjjB4bEC7+lN1537RK7sjhcyyBKEZNBNmxO5ct04dKocuz3pL1nXVIX3dKc4OJJDN2xaYipbOlOeFGQw288DsiWDdNTfz2NgtEBRN0lFQjgOpCIh8hXDM1bmyiaqLKHKbrRblUGV3Yl4o/s4Ml2hJRpiZLqyIJ4jFdPhPd3pM/YwOfU6ne0xajHN2RaD5dkqgUAgEAjOAsmIymiuzAuDE7Vcz1f2Zzwr5UFNf5qJEPz1C4f5xrMDtdzcn7qmn49dsd63jYbl8NKhyTnlzlWJ9uh0BVmSsB2noXR7tlT+//xypGF+3FNl4wXdJqZ5ZeOXb8i4uWwdsGacdRXJK0OvSuUHRwtzSuWrNOMsHzQqMx+1+or6vPUt1rlXSuRGsDxpZvEmGVFZ3xYjGpZpiWpMlXS6khFfk7Jgdc4MpM6MCGQmonyqWqSgW5RNN+I7WdQxLBvHcTxO4QBxLeSOaTbYkoNtgyJJxLWQp2wQH4hkROWCtWkyyRDRkErJMFnbEpszkjufR0h/RxzHgXcmiygzY2HGJ4NDXFNQqHqNSTiOgzJz/FSqebVHchUGbFd9UDL8UxIudDrNxTA9WwxWSjvB9UURCAQCgeBdSVE3OTRRxLQdVEXCtB0OjZco6vVRh2oEJRMPzeukvWNrN5l4aM6V96oUMV8xaY1p5Csm33xugCMTBf+G1smdwU/uHNUUUhEVSZJmpNsSyYjqkW7Plsp3JiNMFg2e2DvIWL7sqdNXNq67svHZnNOZoC1W/wCciYU455QJclUqr6rSnFJ5qI+sdSTcdu4+MOy5N0GveVCaqW8pzy1YfRR1kxO5suc93iyzF29KusVwrkw66r94U33PdSUjlA03HZffey5onZ2pCNvWpCkZFkfGC5QMiwvWpOlM1Y+VXakwIUVBtxxMy3Hl1qpCl48BV0dKoz2pAa4PBEB7UqMjpfn2P6apdCTDDT831T6vbYmhyhJrW2KBIrldqUjDMtV0XhJg2w4SkPbZOpOIqG6KMmlmI4oEsiKT8Lk3Ven/ULaEbpoMZUsMZ8u+0v8gVO/hwPg0A2N5BsanG74vgvT5dFio9/hsFqOdi8Hybp1AIBAIBIvIcLaCZTts7U2hKQq6Zfk6g0Nwt/EgK+9VKWJbXCMaUmmLw2RR95WCB5U7V6Xbl2+MYjkOiiSRr5hnlB93tmxckV0paiPZ+JpMjHVtEoWKSTysYjmOr/y+IxXhtveuQ7csNMXdg95Iur1UUZlm6lvKcwtWDwtpoNes7DbIey5onTFNpb89zu4DwxR0i7imsLHdmytbUxUu6mvhjaEcZdOiVQ1xXo+/xNuyYduaNK1RrVbnmkzUI4GH4NdxoT9nw9kKqiLRk464C4qKhKJInjEwWzLJJDTi4RCmbaPKMuGQ1+yt2m8HOJGrcGyyhKrIdCS90v+g/Y5pKuloiL97aXyWwip91saYd7tJpBjJBQKBQLAqCeKyW5WNn8iVaYuHGS+47quN5M4TeZ23RqbRFGlOR+2ibjI6XUGRaShFjGkqo9NlkmHXSTwd85eCV6MTbwxPUjIhqsJ5PV55ea0v2TLxsEKhYtHd4s0TWy13bLI0p9kQuPJwRQLTAcdyU4apDWTjqUiI0ekKLbEQ2ZJJZ4N8sqlIiGNTJaIhhamSwdrW6JzS7aBS64XeUzjfPVzMcy/F/kjB0rEYBnrNTiqDvOfO7UzQEls758LjWL7Mj/YPE9dUetMRsiWTpw8Mc9O2rrryyYjKBWvSxEMyhgMhCc7p8hqUVcuuz8SJhtRZObDDnrLV63gsWyQaUjmWLZ41I8J0VKVs2HXpyhRZ8piz1Zu9Reccf3XT4shEEQlqiqijk0WPgVzQvd+z7826TIzxvO57b2bXu1CLEsIkUky6BQKBQLAKCbqi3p6IcNPWbr7x7ACj0zlimsrtl3f7PoA8vPtNHt87iG7ZaIrMnVdtZOeNmz3lgqQW68vEuXZTB3/30js1Y50PX9jha6YW01QODk/z/VdP1AzSQPE8qLQnImxoi/Pi4Lgrl5cltve3+ebHvWlrN998doDR4TJxTWXH+et8+7y9v53+9jhvjhZqObr72+N1Ue5qne9d18oTewc5PGETVmRu2uq9jicjLUfq9rKfSWRtMQhyDwWChWKxDPQWevEmyLg6nK0wMl3BtGzGCwaO43AiV/FEfKtjwUvvTNXGgkvWZ+YdC6r5qv3GgumyyWtHs/xyOEfFtAirCu/p9jc2fGskzz+9cpzxQoW2eJgPX9R7RlHXqjnbgeEsk0WdeFjhvC5v5H52fvLxfGXO/OQnU5tBrmLW9gSfGhWv7v0eypapGDbhkOy797uqclrT6m7piYSUhiqnZq9PEMPLZt7jCznhXy6sjl4IBALBKuaBBx7gH/7hH3jjjTeIRqNcddVVfOUrX2HLli21Mo7jcN999/HYY48xOTnJ9u3b+fM//3O2bt26hC1fGppZUS/qJtmSwdXnthMNKZQMi1zZqD0EVnlzOMfjewepmDaJsEq+YvLEvw7yby7oZnP3yTzYQVOLjeXLHBovsL4tTkxTKOoWhycKjOXLnoefV45M8qP9QzhAJCSjmzY/2j/EK0c21LmOH5ko8MyvRomFVBIRlXzZ5Nm3RjkyUS9Zr/V5UztRVaFk+ve52u+RfAUVUENgGjBaqPDmcM7T75+/M0l3KkoqppIrmvziyKSnP7VIS1hxIy2FypyRlqWQWjeVHk4gWABWgoFe0HHVjfha5Cvu9pnxokEyonoivs1GXYOMBbpp8eqxKSYKBpGQzFTRxLCnfCPDs9OavWFPk68YnrRmzeC2SaZi2DgOVAybeFhumLbr4nUtDOXK9DRI2wUnU5tJErRFG6c2U2R3knx0olQzqCxWLM/e76CGoM1en2YML4O8x1erDF0YqQkEAsEyZ8+ePXzmM5/hhRdeYPfu3ZimyY4dOygUTppuPfjggzz00EM88sgj/OxnP6O7u5sbb7yR6enpJWz50lBdUY+EJI5MFomEJLIlN9rRqOzalhjtiTBrW2K+ZQ8M5dAtd8IdVhUSYZWKaXNgKFdXrhpJ6EiEkSWJjkSYbMlgOFvxLbe+Lc76tgTr2+K+5QBePjKFaTtoqowqy2iqjGk7vHxkqq5cdZ94JhkmEQmRSYYpVEwGRuvN2ap9bomFMGx7Rg7uf31q/Y4qRNUQiagyZ7/bkhqyJNGW1Obs95qWGJl4mDUz19uv31WqMu+FNN6ZC7897/O1USA4E1aCgZ5fpNJv3NBUhff0JElFVAoVi1RE5bzupCfiOzvqmomHWdMaPePP2YlcBd200VQJRZbQVAndsDmRq6+zmtYMR3KNzhypltbsdKmacjpATFNwwNeUs7p4kddN+lpj5HXT1yASTkbP07EQFdMhHQv5Rs/zZRPDtNFUGWXmO0I3LfLl0zMEPTXtmyI3vj4LbXgZtL6VyPL5NAsEAoHAlx/+8Id1v3/rW9+is7OTffv2ce211+I4Dg8//DD33nsvt956KwBPPPEEXV1dPPnkk3z6059eimYvGcmIytujeX46MIFtO8iyxPZzvGnAqmUN0+bHB08QkmUM2+aitWlP2fN7UmiKTL7ifvHnKyaRkMz5Pam6ct3pMIoksX8oS0RVKJsWfa3elFhBIw4AF/e1gCTNuIi7Iu+QIrnHZ9HfESekyBybPBntyCS8KWuq1+eFgQkc20GSJd80adV+W7bDlG4DbrQorEq+/c6XDQ4cPzkZX+eTCqyZfsPSyLybbaNAsBAsdwO9oJFKd692C5l4uKYe8vNtaPZzFiT6GdcUIqqCLEmkoiFyJQNNlX3ScTmUdIvJosF4QcawbFpjIfyyQgQlqCnndNnk8HiRkekyA3YBRZYoVeyG6dyCpTZzFw/CqkoqqpIrmcjyTOq2UwhmCBos7Vu1PwtpeLlYWy2WAyLSLRAIBCuMbDYLQCbjmlkNDg4yPDzMjh07amXC4TDXXXcde/fu9a2jUqmQy+XqflYL4/kKB47nMCyHkCpjWA4HjucYzzeIYlQ3zdUeKLwPKpu7U9x51UYiIZmC7k6477hyY53EGmZSYrXH3fRjlo2qSGxoi/nuvw4ScQBY0xqlI16fGqcjrrGmNVp3rC0R5vzeFCFFwjBtQorE+b0p2hL1D7Hj+Qr7j+Vm0qS5UfP9c12fU/BeHSjpFrmSiYODhIODw3TZoHRKzt1m+t1MarOFpJk2CgQLyXJOfRQ0UllLx9UaRVUk1rZGfcs18zkLGv1c3x7n8v4MqipRrJioqsT2jRnWt9cvPCYiKiFVRrdsLNt2fTpUxTdt1+w2zJXq6qSZpI7tOIxO66Sj3kUERYahbKkWNR7JVRjOlXzTgFWvZWciQsWw6Ez4p3PrTIXZ1psGyV1MQHJm0rT5L2C0J9y0bo3GtGraN8txmCxUsBzHN+0bNJeertqnud7jzda3klj5PRAIBIJ3EY7jcPfdd/P+97+fbdu2ATA8PAxAV1dXXdmuri4OHz7sW88DDzzAfffdt7iNXSIGRgsYls2a1iia4j5Y5UpzpONSJG54TyfSzHQxW/Q33tl542bO70nwzK/GuHZTOzu29XrOPV026UiGue2yvhmZo0xJt3zru+G8Tta2RDgwlOP8npRnAl9lOFuhKx2htyVSS5djOfhGUM7pSNCTCjOUrdCTDhMLhzznHhgtYNo2LRGFiunQElEwLNv3+hwYyqHIEqmI7Ob/dhxM2+HAUP2e7oHRAkjQk45S3YRYNizfOoOmXqvKTzNxjYppk4lrZEv+6dwguPFOkHI3nNfJps44A6MF+jvivgZ3AsG7jaDR+KDlgo4FQaOfMU3lP11/Lj0tkVoE/ZaL13rOb9luGxNh13E8EpLpTvun4oJgUfbqIsITewfnXESwbIiHFY5OmgyMGmiqREzzT39Wh+S33Hmy3/9h+3pSrx5nLO9m4PjQhb2nvXgT01T+w+XrSEVVxvI67QmND13gX99CG14upYHmYrPyeyAQCATvIj772c/y6quv8txzz3lek075UnYcx3Osyj333MPdd99d+z2Xy9HXd2qW0JVJNR3XVFGnLa4xVdRJRtQ503FN5I15zV1mu5f/06tDHBjKe9zLq/XNNhtqVF9Q6XRVsn50qkREVZgsGr6S9WREZWBGNm7bNrIsc0V/m+fc/R1xcmWDsnFSKhgJSb7X5/yeFIosU9RNQoorw4xqqkde3t8Rx3HgeLaMIoHlQCbmlbZXaU9E5o0cd6fDGJbNvkMTyLKEbTtsaPf2G4Ib75xOuf3Hc6vGyEcgOFOCOqIHLRdkLGjGhOvczgR3XX/unBP+agoyVZHmkW03Z8wZZCFVkaFQsYiGVNa2uikbi7rX9Kzu3CX3u2yypDc897mdCW5975oFWyg8tzPBp67pD7SQudBbI5b7VovTRcjLBQKBYIXw+7//+3zve9/jX/7lX1i7dm3teHd3N3Ay4l1lZGTEE/2uEg6HSaVSdT+rhb5MnE9d008yojI5M+H+3ff3N0zHFUQyOdu9PK65JmpP/Osgbw7nTqu+ZqTTQSXr4/kKrx/PzZiuKTOy8axHNj4wmq+bcAOUDYeB0bzn3GszMS5ck0KR3XMrssSFa9KsPcVtN6oppKMhd9ef7SAB6UjINSk6E5z6//HbcRlUerrQ5QSC1cR88umlpDquJsIKh8bzJMLKnNHP+STMMU3lvJ4UR8ZLvHRogiPjJbZ0p+bcY5yJaRiWTSamNTSe/PEbI3zpu/v5+k/e5kvf3c+P3xjxlLFsVxHUNbN42JUO053yj3RX938fHivy88OTHB4rcmis2PDc9z71Ol/95ze596nXfc/dLM1sd1jorRHLeavF6bJ6eiIQCASrFMdx+P3f/32eeuopfvKTn7Bx48a61zdu3Eh3dze7d+/mkksuAUDXdfbs2cNXvvKVpWjykvOxK9Zz7eb2QKv+53YmaImtnVPiWHXxjmsKquwa8xQNyyOzrtZn2521aIdfhNTP5Xyi6M1lCycl679+fhcj0xU6k2FCquIvG7ds2hMaOA6JiOor8d779njt/2db4+x9e5zrttQv0kyXTS5Y28I5HfE5JevD2QqJiMqFa1JzSuCrBJF4D2crhFSZi9e1YDkOiiSRr5i+snrvQ7HuaWNQiepqNvIRCPxYUSma5pBZB6Wom7wxlKO/I0HLTCqug8M5ruj35gkParY5li/z359+g8NjRWRZ4vhkif/+9EFPqsFkRGV9W4xoWKYlqjFV0ulKRnyj7NX937PTF9qO44mKizSHKwPx7SEQCATLnM985jM8+eSTfPe73yWZTNYi2ul0mmg0iiRJ7Ny5k/vvv59NmzaxadMm7r//fmKxGLfffvsSt37p6MsEk9gFeeA8vyeFIklMlQxCioVh2cQ0xSOzBvjrFw7zjWcHanmvP3VNPx+7Yn1dmaAu5xDcjb2/I45pORydLiFJ7tbqVh+J91XntPH/PjMI1EeOrzqnzffco9MV99yOwy+H/M9ddS9/Z6JUO+bnXg7BH/C702FUWeJXJ/JENYWSbrGuLeorqw/yUNyM+/Jyz5ksECwUzcinF+v88y3A1dJsVSw2ZOJn3MbqwlpXMoIkQZeq+C7U1ZAkDMumbFookoSfneQbQzkOj7tjb1xTyVcMDo8XeWMox/s3nZz4zt6znC25bWgUtbds6GmJIOGmvczENLrTYU9UvJlFXMHSIb5BBIIVwoYvfj9w2UN/+qFFbIngbPPoo48CcP3119cd/9a3vsWdd94JwBe+8AVKpRJ33XUXk5OTbN++naeffppkMnmWW7uyCPrAuTYT48K1Lbx0eKIms75gTYtHZn1kosA3nh0gXzFpi2uMF3S++dwA125ur1sAqErGh6fLc0rGod6NvZoKrOrGHsucWn5Ghu3M/q2e/o4EkZDks6fbO/Et6iaHxwsze7ndie8744XagkKV2e7lMm5iMz/38mYe8GOayvq2OMNZN/duSJFZ1xZv+FBc32PvQ3FQg57VbOQjEJzKUio7gi7ALXQbgy7UVc99fKrEVNGgYtqEVZljUyXvuR3XinMm0xZIIDkOON6xKOie5WREJaGpTFfyyEhMWwabwnHfRc+gi7iCpUN8gwgEAsEyx3Hmzx0qSRK7du1i165di9+gVUQz0uQL1qa5YE2KiaJBJhYCSfKVeBd1k0RYxbBsEmGVQsX0SLyrkvEPbumYU7ZdrdOwbDqSrmw82UA2PjBaQFVkelsibjowWUL3cSUfGC2QioTIxCQ3rZoiYdqOr9P4cLaCaTv0d8RdN/a0TMmwPBGUmnt5KoLlgCJB2fSeu3q9wyGJI5MFEhG1tj/y1H5Xr9GHL+xmoqiTiWm+17zqQH/NpnZ000FTJYoNHOMX2n1ZIFjpLJWyo5kFuEVpoyRhOQ62Zc0s1fnL1nXT4pdDubqF1DeGc+hm/YLieb1J1mViHBovUqgY2A5sbI9xXu8ZLnxLEoosEZIlDNu/nc0s4gqWDnE3BAKBQPCupVlp8mTRYEtXyn3oi3kf+lyJt80748XasdaY1zk9GVF57WiWnx2aqLnMv2+DV7ZdrdOwHEbzpVoUuTXqlY1Xzz02rdeOtfjIy6vu7rMfIhu5u1dl4weOnzSM85ONn5S2nzSCa4l7z12Vyr8wMOEarskSV/b797sqbX9hYNwNHUlwpY8bezKiYlgOz7w5hqZI6JbDxX0tc+aJXUj3ZcHZ45lnnuHP/uzP2LdvH0NDQzz11FPccsstvmU//elP89hjj/HVr36VnTt31o5XKhU+//nP8zd/8zeUSiU++MEP8vWvf73OnPLdxGIpO+aTjTcTvW62jWP58pweHdNlk3zZJDFjihlWZabLpu+5syWTSEgmJGvYDrRGNRTFPT4730d7IsLt29fzF3veJl8xSIRD/IfL1/ue/62RPP/0ynHGCxXa4mE+fFFvwwh/SJF4/6b2OVNQNpOqUrB0LBv38gceeKC2L7GK4zjs2rWL3t5eotEo119/Pfv371+6RgoEAoFg9dGENHk+V/La30sz1Urg+NR3dKLIq0ensB0HVZGxHYfXjk1xdKLorW6mRZIzkwLbaRST8Z7br1wz7u6zZeNuFnPHVzZexcE9dyNtxni+wv5jrsO6qsgzDus5j8M6uA/th8YKdWUPjRf93ZUdZ+Y2SjP/zq8OEaw8CoUCF110EY888sic5b7zne/w05/+lN7eXs9rO3fu5KmnnuLb3/42zz33HPl8ng9/+MNYlv97+t3AuZ0J7rhqA5+4eiN3XLXhjE3U3hrJ8/jzh/jW84M8/vwh3hrxZkaYHb0u6RbDuTLpaOPoddA2/viNEe7+21f4/37nNe7+21d8XbxnG5Slo+5i6nCu5Ju2qzsdpjMZQVNletLuv12piGfhsaibZEsG127u4Dff28e1mzvIlQ3f7Ah/89PDPP/2GG+PFHj+7TG+/eJh33Gtuij83K/G+MXhKZ771RimZTdcFM6XLTKxMPmyNee1FCwNy+Ju/OxnP+Oxxx7jwgsvrDv+4IMP8tBDD/H444+zefNmvvzlL3PjjTdy8OBBsU9RIBAIBGdMNZJww3s6kWamldmiv9w5iOTYlXhLrMvEalHpou6Vlx8YymE5Di3RECFFwbCshm7otTrbYsgS2I5/nUHPDcHd3auy8b7WOKrsytDzFaPhude3x9zFAQmKPrL6gdECpm2zJh0lrMpUTJtcWW8obbcch609aTRVRjdtX3Og6bJJSJW5YUtXzUAuW57DFEmwYrn55pu5+eab5yxz7NgxPvvZz/KjH/2ID32o3t8km83yl3/5l/zVX/0Vv/ZrvwbA//pf/4u+vj7++Z//mZtuusm3zkqlQqVycmEol8v5llvJLJSyoyobH8mXaYlqjOT9ZeOnE2Gfr41VF+/xvE5bws2B7efiXTUoU2WJsmHTkdDoSHkNysCNYN959Uae2DtItmTQntS446qNvlkmcmWD/vZEzf/CL3I/kqvw+vEsOBJRTcEoObx2LMtIrsKGdn+/Cst2sO3GMvjqtfz+q8c5NJ6nPREWPhTLkCW/G/l8no997GN84xvf4Mtf/nLtuOM4PPzww9x7773ceuutADzxxBN0dXXx5JNP8ulPf9q3vkYDo2EYGIYxb3uqZYKUXe4sRl/CytJFD8KyU/fvSmax+3K2378r5XOz3NsnOPtUIwTHJktEVYWSabGmJXra0uSqdHu6bNASDTFdMkj5SMHP70mhKTLTZYuo5lDSbWJh2dcNvVrnZFEnGpIpGTaZuHZGsvGgnDx3hWQ4xHTFoCXW+NzZokEyrDJdMeeUtk8U9VqqnnS0sbQ9FQlxIleuPUC3JzVf9/JUJMSJ6XKtzq5UWER53oXYts3HP/5x/vAP/5CtW7d6Xt+3bx+GYbBjx47asd7eXrZt28bevXsbTrofeOAB7rvvvkVr92qimlt6ZLrMgF1AkSVKFfuMPBaCMpytMDJdxrQchrJlHMfhRK7sWahLRlTWZ+JEQ2qgMeOG8zq5cG1qTsl68H3nDiXdYrJoMF6QMSyb1lgIP3VOTQYfVqlYNmGlsQy+xgKkVBMsDkv+jfSZz3yGD33oQ/zar/1a3aR7cHCQ4eHhuoExHA5z3XXXsXfv3oaT7kYD49NPP00sFvP5C392797dRC+WNwvZlwcvX7CqTpv/dpnPUuQKZbH68oMf/GBR6p2P5f65KRb9pbuCdy8xTSUdDfF3Lx2pS/F1ug9/fZk4t1y8hsf/dZChXBlNlfnIRWs8UdzN3Smu29zJ9189TrZko0hw7aZuT5S7Wmd/e5x/OVgkW3LjHJeua/XUWZWNf/O5gXll40HSmlXrvHZTB3/30jtMl01UWeI3LuzwPffJcsZMuV7fcrdcvIYn9g4ynCsRVvyvD7gRppu2dvPNZwcYHS4T11R2nL/O88Ab01TO60nxwuAguZlFjms3d4goz7uQr3zlK6iqyh/8wR/4vj48PIymabS2ttYd7+rqqqVi9OOee+7h7rvvrv2ey+Xo6+trWH4lEiR1VxCC5pauspDeCemoStmwTy48Fg2SEZV0tPEe8ezMhHu+yHB7IjJn+q2gkftERCWkyuiWjSyBbtloqkIiYJ5uScJzLWeb0rXFNCaLxllN+yYIxpLeiW9/+9v8/Oc/52c/+5nnterg19XVVXe8q6uLw4cPN6yz0cC4Y8cOUinvw8ypGIbB7t27ufHGGwmFQkG7sixZjL5s2/WjBanndAjLDv/tMps/fkmmYq/slbzF7svru/xX6xeLlfK5WY2SQMGZMZYv86P9w8Q1lXWZGON5nacPDHPTtq7Tym9a1E00VebXz+9GkiUc2yEckj0ptsbyZSaLOhvb44RDMhXDZqqkM5Yve8775nCOn78zSUiRainDfnFkkjeHvVL0ILLxoGnNqu08NF5gfVucmKZQ1C0OTxQ87Qxarnp9btrWjYyEjf/1qZbNlgyu3tReUyFU90jOLlvUTd4YytHfEaclqjFV0jk4nOOK/ox44HwXsW/fPv7H//gf/PznP0dqMtpXNTNsRDgcJhxevemXgqbuCkIz0u2FRlMV3tOd4uBIjkLFIhVV2dKZQlMVT9nFyFAQpE7Ldsslwu4CQSQk052O+F6foNdyumxyeKLASK7CgO1OykvGPBFxwVlnye7EkSNH+L//7/+bp59+mkik8YPNqYPg6Q6MoVCoqclAs+WXMwvZl4q19JPdii0ti3YsBIvVl01//HRT5Rcqr/dy/9ws57YJlobhbIVc2WBNa5SYphIJKYxMe+WIVYK44ubKBj3pGLploSmKb0qs6nl7W6Mn95KXDN/zHhjKoVs2ybCCIiuEZIuSafvu/wZoS4TRVKWhVLKW1iyiops2iYh/WrPZ7WyLh6hYDm3xkG87a9exJTbv/utc2WB9e3zePfTVshvb5t4jWS3XlYogIdEVijSsU7B6efbZZxkZGWHdunW1Y5Zl8bnPfY6HH36YQ4cO0d3dja7rTE5O1kW7R0ZGuOqqq5ai2UtOM6m7glCVbquyTDSkUDIs1rY23rLTDPONv8mIygVr08TCEqYtocoO53amzupWk/ki981I24OWVWQYmioHVhcIloYl+zbat28fIyMjXHrppbVjlmXxzDPP8Mgjj3Dw4EHAjXj39PTUyoyMjHii3wKBQCAQnA7VfcND2XLtYSUTD3n2DYPrivv484O1aNCdV2/khvM668okIyqjuTIvDE7MSnPlTYnVnQ5jWDb7Dk0iyxK27bC+Pe573vN7UuDARNFEkUwsB2Ka//7vIBGranqvw2PFmjFbq096r2o7Jwo6r02WXOd0Cda2Rj3t7E6HUSSJ/UNZIqpC2bToa/WmFqum9/o/B0bmTe8VdI9kM3UKVi8f//jHa+ZoVW666SY+/vGP84lPfAKASy+9lFAoxO7du7ntttsAGBoa4vXXX+fBBx88621eDjSTuisIJ7d7jNe2e3zwPV1nvAAWZPytbhf62aEpCrpFXFN477o233M3G91fKPl9M9L2oGUtG3rSUZAgWzZojYfoTkXPirpAEJwl+0b64Ac/yGuvvVZ37BOf+ATnnXcef/RHf0R/fz/d3d3s3r2bSy65BABd19mzZw9f+cpXlqLJAoFAIFhlzHamHZl2J3V+zrRVV9zZkQQ/V9yibnJooohpO0RUmbJpc2i85Cufrk7KwZlJ7+VvrJhJaLQnwxybLGE7IEvQngiTSWh15ZqNWEnMpCCb4/pM5HXG8jq2A4oElgOjeZ2JvF7X75imsqE9zvB0GdOyURWJDW0x/4fTuvReDo3SezXlbhywTsHKJp/P89Zbb9V+Hxwc5OWXXyaTybBu3Tra2trqyodCIbq7u9myZQsA6XSaT37yk3zuc5+jra2NTCbD5z//eS644ALPhP3dQnADsGAsxnaPoOPvWL7MP/ziKGXDIqrKlA2Lp35xzLNdqNmxciHl99CctD1I2WREJRFRyY+YSIBh2iQ7VbHwuMxYsruRTCbZtm1b3bF4PE5bW1vt+M6dO7n//vvZtGkTmzZt4v777ycWi3H77bcvRZMFAoFAsIIIGpm44bxONnXG59wHXZVPdyTCyJJERyLsK58ezlawbIfzupNzysaHsxVCqswFvWnXSEeRKZmWr7x8OFshE9doi2tMV0ySYRVn5rifdHu+iFU1vVdfJlqb95cMy1defmAoBzhk4iqKrGDZFiXDK22fLpt0JMPceskapssWyYiCYTm+UvCQKvP+czpq8vuS2Xjv4bmdCcJqz5z3ptk6BSuXl156iQ984AO136sePnfccQePP/54oDq++tWvoqoqt912G6VSiQ9+8IM8/vjjKIp33++7gdNJ3TUXte0eiSiSBF2JKNnSmaXwq46/PekIMU2lJx3x3QZ0aKzA8akyEVUhHdPIFnWOTZU4NFbwHSszMQ3DssnEtIZtXGj5fZVmDOQClXUcFFkiJMsYto1YeFx+LOtvoy984QuUSiXuuusuJicn2b59O08//bTI0S0QCASCOWkmMjG77P7jOd+yQeXT3ekwqizxxtB0bR/yujZ/ObZh2rx1Io8sg23DhnZvfdWy+bLJOxNFqhrv9RmvFD1oxKq/w91vOZLXCSsyFcsm45PeC06mNivqNomw+28k5JW2VyXeLx2anFPinYyoGKbNvsOjtYfDi9amG0Zkgkr6m6lTsHK5/vrrcZzgk4lDhw55jkUiEb72ta/xta99bQFbtrJZSFOx6ufxxwdPLNjnMeg2oLgWQpVAt21My0G3bUKyRFyr93Nppo0LLb9fDKoLjzds6UKS3K+JbPnMFjoEC8+yuhM/+clP6n6XJIldu3axa9euJWnPu4ENX/z+UjdBIBAIFpRmIhNBywaVT8c0lfVtcYazFXTTJqTIrGuL+z/4SDM/SCA5OA2E3iXdIls2sAFVljBnHqhKuuU5d5CIVVsizNY1KV4YmHD7Ikts7U3RlvBO+Dd3p7jzqo088a+DFHSTSEjmjis3+hq4BZZ418xQq6/79zuopLSZOgUCgT8LmboLScKyHRzbwt1WfGafx6DbgNa3x7h8Y4YXDk2QK+kossT2jRnWt/ukDA44Ziy0/H4xqLZxoqgv2zYKltmkWyAQCASCM6WZyERNZpgIYdg2mUTI1/m6Kp++7bI+dNNGU2VKutWw3Ecv6a1JwQ3bK7MezlYIKTLb1qQxLHdyXjb85eUDowUkoCOhYZg2IVXGsh1fOfi5nQlaYmvndVg/pyPBOR1xJgoGmXgIkBpGRXbeuJnzexI886sxrt3Uzo5tvb51hlSZ7f0Z8mXXGd1sJC9XJG54T+e87uVBJf3N1AkLZ4gkELwbme/zM102yVcMEhGVimETC8lMV87883jDeZ1cuDY159gW01T+0wc20f7SOxyZKNKXifHvLlvnO+4HHTOqi5nfefkoB4az9KQjc8rvg/ZnIcehhd4iIFgcxN0QCAQCwaqimchEUOfrap2zI+JzOWnPJ7OuyctH8siShO04rG/zdy/v74hTrJjk9ZNWtAlN8ZWDB5HVV9v4ypEpNEViYHRut++Hd7/J43sH0S2bf3p1iANDeXbeuNlT5+h0hRcGxme5trc1vI4T+bmvY/UaBXVED1rnQhsiCQTvJoJ8fvzSV0kzx0+nvtm0JyK+k+1TiWkqbclIw0lnM2MGwDsTRX5xeIqpos7wVJn3rsv4tjNofxZjHFqMvOOChUVkcBMIBALBqqK66p+Jh4Kt+tfJosFPFt1UnQHqO+UPcEv7l5so6JSN+twvZcNioqDXHZstle9IRJgsGuw+MExRN0+7jW8O53h87yAV0yauqVRMmyf+dZA3h3Oecx8aK2DaDqoiY9oOh8aLnnM3cx2rkn5VkeaV9Aeps6nrIxAI6gj6+ammr+pIapQNi46k5pu+6nQ+j0Xd5ESu3LDM7DrbYlrDOpsZh6rbXKaKBm2JMFNFgyf2DjKWL59Wf6rlRqYrRFSFkenKgo1DMU2lK9V4sUGwtIi7IhAIBIKmWe4S3aCr/s0Y0Cykk3bVvfy961trke6cj8s5wMtHpkCCiCLVcnqbtsPLR6a4qK+17txBZPXNuH0fGMqhWzaRkITtQCQkUTG97uXD2QqW47ClK3myP2X//jRzbzqSYT58YQ+TBZ3WuIbUQAYfVFa/3A2RBILlStDPTzKisr4tRjQs11KGdSUjnihys5/HINHh6bLJ4YkCI7kKA7YbXS8Z/mNb0HFoOFthZLqMaTkMZcs4jsOJnNc5vZnxN2gbBasLcXcFAoFA0BQrRaIbxBioGQOahXTSrrrxThaMOd14AS7ua0GWoGI6KLKDZUNIcY/79WU+WX0zbt/n96SwHZgsWkhYOODrXl6Vgh88MT2nFLxK0HszmivzwuDELMl65rRl4yvBEEkgWK4E/fzM3l+cLRl0Jf33QDfzeQxqeOknbbcdx1faXm3rfONQOqpSNmzyFZO2uMZ40SAZUUlHT68/zbZRsHoQt1ggEAgEgVltEt2gMsPZTtqdSbfffhJDIJArbtWNNxMPzenGC7CpK8nWXnfibdkgS7C1t4VNXfXpM5uSwAd07o1qCuGZp8FqyYgqE9XqcxoHlYI3Q1E3OTRRnJGsSzOS9VJDueZ878mmtx0IBIIazXx+zu1McMdVG/jE1Ru546oNvouyzdTnF0XOllzjs9kElbY3g6YqvKc7RSqqUqhYpKIq53Wl0FTvGBikP4vRRsHKQHzTCAQCgSAwq1GiG0RmWHXS7km7++V60hFGpv0lhkFdcYO48Vbr3N6f4b3r0oxM63QmNUKqctqSyWbaODBaIBySWR+N4riZzSiZlsc5Pai7ezMMZytYtsPW3hSaoqBb7j7205V1Br0+AoHAn2Y+P0GiyEHra0bFE0Ta3gzJiMoFa9NkkiGiIZWSYbK2JeZbZ5D+LEYbBSsDEekWCAQCQWBmP/yUdIvhXJl0dPVLdKty8ENjed4Zz3NoLE866pWDV6/P4bEC74wVODxWmPP6xDSVjmR4zofTap2FikUi4kZbzuSaz3buDckyE3mjYX39HW6O8bxuEpIl8rpJPKx6nNNr7u4Ft87JQuM6YX5DJDh5zU9kK275bGXOax70PSnMhgSC0yfo5yfIZzxofUGjyNVyXckIZcNqKG1vpo3VOte2xFBlibUtsTNSyDTbRsHqQdxhgUAgEARmNeYDDbIfuD0RYUNbnBcHx125syxxRX+7Jzod01R00+aHrw+jWzaaInPnVRtP2xhodp0/2j9MxbIJKzJ3nEGdzdzDvkycWy5ew+P/OshQroymynzkojUeE7mYpnJeT4oXBgfJlQxS0RDXbu44o363JyLctLWbbz47wOhwmbimsuP8db7XfLW9JwWClcxSpsQKWq6ZNi50nUJx8+5E3GWBQCBY5jzzzDP82Z/9Gfv27WNoaIinnnqKW265pfa64zjcd999PPbYY0xOTrJ9+3b+/M//nK1bty5Ke1bTA0NQg54jEwWe+dUosZBKIqKSL5s8+9YoRybqZdZHJgp85+VjyLJMdzzMVMngu68c4zcvrZ+oBj1vfZ0SPfHIgtQZ9B4WdRNNlfn187uRZAnHdgiHZIp6vXS7qJu8MZSjvyNek0weHM5xRX/GUy5oG4u6SbZkcPWmdqKqQsm0yJUNz7mb6Y9AsBpYztkjmvmMN0sQyXqQcqfTxoWuM2hfmmE5vy8EQl4uEAgEy55CocBFF13EI4884vv6gw8+yEMPPcQjjzzCz372M7q7u7nxxhuZnp5etDYtpUQ3qGwxCEENegZGCxR1k45UmEw8TEcqTKFiMjBa8C2XiWtEQgqZuOZbLuh5Z9cZ11QM2yGuqXPWGVZkjkwUCCtywzqbvT69rVHa4mF6W6O+dVbLdSWiRFSFrsTc5TIxDcOyycS0hm2slt3YlmBjR4KNbYk5+yNk44J3A2+N5Hn8+UN86/lBHn/+EG+N5Je6SXU0M7YtFYvRxqXu93J/XwhEpFsgEAiWPTfffDM333yz72uO4/Dwww9z7733cuuttwLwxBNP0NXVxZNPPsmnP/3ps9nURWehZYtBDXqqe5vHCzptcRgv6CQj3r3N/R1xQorMsckSkZBM2bDJJEIN90AHSZfT3xGnYtiMTOu1Yy0+505GVN4emeaFwUkc20GSJa7sbz3tFFvVOkenK/x0YALbcZAlie3neNN2VdOQ/fjgiTnTkAUt1+w1EgjeDSxmFHmhWAmf28Vo41L2u/q+GJmu0BINMTJdWXbvC4GIdAsEAsGKZnBwkOHhYXbs2FE7Fg6Hue6669i7d2/Dv6tUKuRyubqf5c5ipCsLtkdFIgABAABJREFUatDTl4nzqWv6SUZUJovuhPt339/v2dvclghzfm+KkCJhmDYhReL83hRtiXrzr2bS5ZR0i8pMPplqYq+KZVPSrbpy4/kK+4em61Js7T8+zXi+UleumetY1E0OjxcwLNeR3LBs3hkv+F/zgGnIgpYTKb4EgnqWOpoahJXwuV2MNi5lv6fLJocnChweL/Dzd6Y4PF7g0HhhWb0vBCLSLRAIBCua4eFhALq6uuqOd3V1cfjw4YZ/98ADD3DfffctatsWmsVKV3ZuZ4KW2Np5U3d97Ir1XLu5nYHRAv0dcc+Eu9rGczoSrGuNLkh6L4ADQzlkCdIRBXeC6mDYDgeGcmzuTtXKDYwWMC2brmQYWQLbcSfNfum9cmWDTCKEYbuR+EYpw4azFUzb4bye5Mn0YiXjtFOlNZOurJlrJBC8G1gJUWRYGZ/bxWjjUvVbkWFoqsxk0U1rOZQtYzsOigitLiuW36dAIBAIBE0jSfXRQsdxPMdmc88993D33XfXfs/lcvT19S1a+xaCxXrgbEay3pfxn2zPbmMQOXaVIGY65/ekwJHIla3aZDqqKe7xWfR3xHGAo5MlFBksGzJxf2m7YTn8nwMjaIqEbjlc3Nfi28budBhFlnhjaLoml+/LxBqm7ZrIG/Pm0Q1SrtlrJBC8G1hJTv0r4XO7GG1cin5bNvSko6iKRNmw6EhqdCQizAikBMuE5f1pEAgEAsGcdHd3A27Eu6enp3Z8ZGTEE/2eTTgcJhwON3x9ObIYD5wLvUdythw7qimUdKsmxz7ddmYSGu1JjaOTJRzHVWd3JDQyCa2uXFRTSEdUpoqGu6dbkkhHVKKa4q3UcWZU3hKS5HBS6l1PTFPZkIkxnCtjWg6qKrGhLdowP+5892YlTRoEguXISogiC84uyYjK+rYY0bBcyx7RlYwsOwXEux1xNwQCgWAFs3HjRrq7u9m9ezeXXHIJALqus2fPHr7yla8scesWnoV+4KxKrROaykShQkJTa3sk/eoey5fnlKFX5dhb16QJKe4e6IlCxSPHbobhbIVMXKM7FaZk2ERDMrrleOoczlZIREJcviFai7IXdNNfCq7KvP+cDnTLQlMUSqbp2+fpsklHKsJt7103b9mFzqMrEAj8WQlRZMHZY/ZiZrZk0JWMiMXMZYi4GwKBQLDMyefzvPXWW7XfBwcHefnll8lkMqxbt46dO3dy//33s2nTJjZt2sT9999PLBbj9ttvX8JWLx4L+cCZjKiM5sq8MDjhBnsluLLfXw7+4zdGePz5wZoM/c6rN3LDeZ11ZbrTYVKREKPTFXrSEUanK2TiIY8cuxm602FUWeLweImopjCSs1jXFvXUWT337H19fueuOojvOzwa2EF8thJgLjn4QuXRFQgEAkFwxGLm8kdssRcIBIJlzksvvcQll1xSi2TffffdXHLJJXzpS18C4Atf+AI7d+7krrvu4rLLLuPYsWM8/fTTJJPJpWz2iqComxyaKNY5fh8aL3ncucfyZR5/fpDJokFn0nX8fmLvIGP5cl259kSEO6/eSCYeYmTanaDecdXG045ygztBXd/mpiLTTZuQIrOuLe55qGrq3MJBXCAQLAOKusmJXPmMslAIXGKaSlcqIsbnZYq4K6uMDV/8fu3/w4rDg5fDtl0/omI1NlQSCATLm+uvvx7H8d9zC66J2q5du9i1a9fZa9QqYThbwbIdzutOIkkSjuPvzj2crZArG3QkwsiSREcizETRXzZ+w3mdXLg2Na8bOsCRicKcbugwI/FOhvnwhd1MFA0ysRBIkq/E+4bzOtnUGZ/XYT2kSFy6voWJgkEmHgL86wMRQREIBItDMyaWzVDUTTFeCZYd4p0oEAgEgnctQd25u9NhFEli/1CWiKpQNi36Wr3lqrQnIvNGt//6hcN849mBmsnap67p52NXrPeUa8YRffZD7P7jOd+H2GRE5e3RPC8MTLiGa7LUUFJfRcjBBQLBQrLQJpZVFmsiLxCcKUsqL3/ggQd43/veRzKZpLOzk1tuuYWDBw/WlXEch127dtHb20s0GuX6669n//79S9RigUAgEKwmqu7cqirN6869oT3uStAtG1WR2NAWO+2HwyMTBb7x7AD5iklrTCNfMfnmcwMcmSh4ys52RNdU15yt6oh+arnqQ2xHwpXA7z4w7Ck3nq+w/1huRlIvY9oO+4/nGM9XTqsvAoFA0CxVE8vuVISoptCditRMLE+XoGOgQLAULOmke8+ePXzmM5/hhRdeYPfu3ZimyY4dOygUTj50PPjggzz00EM88sgj/OxnP6O7u5sbb7yR6enpJWy5QCAQCFYDs925b7lkDbe9dx3tyYjnwa8q8b7tsj5uee8abrusj/Zk+LQfEAdG3UlzW1wjGlJpi2sUKiYDo95J92xH9C3dKbauSWPMuJef2sYgD7EDowVM22ZNOsqalihr0lEMy/Y9t0CwnHjmmWf4jd/4DXp7e5Ekie985zu11wzD4I/+6I+44IILiMfj9Pb28tu//dscP368ro5KpcLv//7v097eTjwe59/+23/L0aNHz3JPBFWTxuFcmZJuMZwrk442NmkMwmJM5AWChWJJtWI//OEP637/1re+RWdnJ/v27ePaa6/FcRwefvhh7r33Xm699VYAnnjiCbq6unjyySf59Kc/7amzUqlQqZx8EMnlcoA7GBuGMW+bqmWClF2OhJWT+z7DslP370pnNfVnufVly73/1FT513fdVPf7SvncLPf2vdtZin14Qd25m3Xxnq8v/R2uEdp4QactDuMFnWREpb/Duwc7qCN6tY1vnsghSxK247ChPe5pY/XcUyWdtrib07XRuQWC5UShUOCiiy7iE5/4BL/5m79Z91qxWOTnP/85f/zHf8xFF13E5OQkO3fu5N/+23/LSy+9VCu3c+dO/vEf/5Fvf/vbtLW18bnPfY4Pf/jD7Nu3D0XxyWkvWBRmp7laKJPG2RP5IOO0QHA2kZy53HnOMm+99RabNm3itddeY9u2bQwMDHDOOefw85//vObaC/CRj3yElpYWnnjiCU8du3bt4r777vMcf/LJJ4nFYovafoFAsLwpFovcfvvtZLNZUqnUUjdnWZHL5Uin00t2bZZyH95bI/laftN01H3w8zt3M+WC9OWvXzjMN58boFAxiYdVfvf9/nu6wU1X9sTewdq577jKm64M4OHdb/L43kF0y0ZTZO68aiM7b9x8RucWvDtZ6jFhPiRJ4qmnnuKWW25pWOZnP/sZl19+OYcPH2bdunVks1k6Ojr4q7/6K37rt34LgOPHj9PX18cPfvADbrrppoZ1zWa5X5uVxEIvtgYdpwWChSLoeLBsln4cx+Huu+/m/e9/P9u2bQNgeHgYgK6urrqyXV1dHD582Leee+65h7vvvrv2ey6Xo6+vjx07dgQaGA3DYPfu3dx4442EQqHT7c6SsW3Xj2r/H5Yd/ttlNn/8kkzFXvnu5aupPyu9L36R7pXwuakqXwTLi8Uy1AlKUHfuIOWa6cvHrljPtZvb53Uvh2CO6EcmCnzn5WPIskR3PMpUSee7rxzjNy9d46m7mXMLBCuVbDaLJEm0tLQAsG/fPgzDYMeOHbUyvb29bNu2jb179zacdDdSUQrOnIU2aRTZFgTLlWXzTvzsZz/Lq6++ynPPPed5TZLqJyWO43iOVQmHw4TDXjfZUCjU1GSg2fLLBb/UYBVbWlUpw1ZTf1ZqXxp9Npb752Y5t+3djN8+vNF8uWEKq6CM5cuB0nbBwj34NduXqKbQlggT1c5c1lrdJ56Ja4QVBVnWyJUMBkYLvpPqtkQYTVUWVHoZJAWaQHA2KJfLfPGLX+T222+vBV2Gh4fRNI3W1ta6sl1dXbVAjx8PPPCAr4pSsDwR2RYEy5Fl8Y78/d//fb73ve/xzDPPsHbt2trx7u5uwB0ke3p6asdHRkY80W+BQCAQrEwWYx/ej98Y4fHnB2sS7zuv9pdjN0MQ2XgzfWmmjUHK9nfEURWZY5NlwqpExXTIxEO+e7UXQ84fNAWaQLDYGIbBv//3/x7btvn6178+b/m5gjnQWEUpEAgEQVlS93LHcfjsZz/LP/zDP/DjH/+YjRs31r2+ceNGuru72b17d+2Yruvs2bOHq6666mw3VyAQCASLQNVQJxMPLYihzli+zOPPDzJZNOhMumljntg7yFi+fNptDJqKJmhfmmlj0LJtiTBbe5Izac0cVEVia2+StkS9+msx0uo0kwJNIFhMDMPgtttuY3BwkN27d9dtLezu7kbXdSYnJ+v+Zr5gTjgcJpVK1f0I5qaom5zIlUW6rrOIuObLmyWNdH/mM5/hySef5Lvf/S7JZLIm7Umn00SjUSRJYufOndx///1s2rSJTZs2cf/99xOLxbj99tuXsulnjQ1f/P5SN0EgEAg8LLT5zULuwxvOVsiVDXrSEWKaSk86wsi0KzWfT2beiGZk4+d2JmiJrZ1T2t5MG4OWnS6bnNOZZEtXmnzFIBEOYTq2p43VvmQSIQzbJpMIkS0aZyTnr0rbW6IaqizTEtXIlfWG0naBYDGoTrh/9atf8S//8i+0tbXVvX7ppZcSCoXYvXs3t912GwBDQ0O8/vrrPPjgg0vR5FXJUhpjvlsR13z5s6ST7kcffRSA66+/vu74t771Le68804AvvCFL1AqlbjrrruYnJxk+/btPP300ySTybPcWoFAIBDA4n25L9Q+vGqKraFsmZ50hKFs2TfFVjM0IxsPcn2aaWPQsrPTmvVl4nOmPzMsh/9zYARNkdAth4v7Ws5Izt/fEUeVZY5lS4QVmYplk4n5S9sFgtMln8/z1ltv1X4fHBzk5ZdfJpPJ0Nvby//1f/1f/PznP+ef/umfsCyrFszJZDJomkY6neaTn/wkn/vc52hrayOTyfD5z3+eCy64gF/7tV9bqm6tKpbaGPPdiLjmK4Mll5f7/VQn3OCaqO3atYuhoSHK5TJ79uypuZsLBAKB4OyyGNLkhaY9EeHOqzeSiYcYmXYnnndctfG0o9wQXDYe9Po008agZZuS6TsO7hZWaebfM8se2pYIs3VNClWWMC0bVZbY2pvySNsFgjPhpZde4pJLLqmlkb377ru55JJL+NKXvsTRo0f53ve+x9GjR7n44ovp6emp/ezdu7dWx1e/+lVuueUWbrvtNq6++mpisRj/+I//KHJ0LxB+qqBsyVXSCBYHcc1XBmL5QyAQCASBWSyncVhYyfoN53WyqTO+oE7aQWTj1euT0FQmChUSmlp7+Dm1T820MUjKsGbaGFJlbtjShSSB40C2rM95D+e7N9Nlk3M6EmzpTpIvmyQiKqblLMj7QiCocv311+M4jReI5nqtSiQS4Wtf+xpf+9rXFrJpghkWwxhTMDfimq8MxN0QCAQCQWAW68t9oSXrs+vbfzy3IBL4oO7lo7kyLwxOuMFjCa7sz8wrQw/SxvZEZN5ofTMO6xNFPdA9bKbOyaJBX2tjabtAIFjdVBU3uw8ML4gxpmB+xDVfGYi7IRAIBILALMaX+0LvR1uM/W1B6yzqJocmipi2Q0SVKZs2h8ZLtTRay6GNzdzDxahTIBCsbhbSGFMQDHHNlz/ijggEgqY51VU/rDg8eDls2/UjKpY31+mhP/3Q2Wqa4Cyw0F/uCy1ZP536gsinc2WDcEjiyGSBRMRfNj6crWDZDud1J5EkCcdxyJYMX6fxZh3Ex/LlQNL2oA7rQe7hYtQpEAhWPwtljCkIjrjmyxtxZwQCgUDQNAv55b7QkvVm6wsqn357NM8LAxM4toMkS76y8e50GEWWeGNomkhIpmzY9GVivk7jzTiI//iNER5/frDWxjuv3sgN53WeUb+D3MPFqFMgEAgEgncbS+peLhAIBAJBU67bC1xfULfx8XyF/cdymLaDqsiYtsP+4znG8xXPuTdkYqiqhGk5qKrEhrboGTmIj+XLPP78IJNFg86k28Yn9g4yli+fdr+Dshh1CgQCgUDwbkN8awoEAoFgyVloafJCy6cHRguYts2adJSwKlMxbXJlnYHRQp3r+HTZpCMV4bb3rkO3LDRFoWSanvqacRAfzlbIlQ160hFimkpPOsLIdNkjWV+M67hYdQoEAoFA8G5CRLoFAoFAsCyIaSpdqchZndTNlk+XdIvhXJl01Cuf7u+IE9NUpko6pm0zVdKJh1X6O+K+9eV1k0w8TF43feub7SAeUmQmirpvOXAl66lIiGNTRSYKFY5NFUlHQx7JepXFuI5LcW8EAoFAIFgtiEm3QCAQCFYdb43kefz5Q3zr+UEef/4Qb43kfcsFlU/3ZeJ86pp+khGVyaJOMqLyu+/v9+TWDlpfM7Lt9kSEm7Z2U6hYvDGco1Cx2HF+97zpwwQCgUAgECwPxJK1QCAQrCK+/vWv82d/9mcMDQ2xdetWHn74Ya655pqlbtZZpdl0XEHl0x+7Yj3Xbm5nYLRAf0fcM+Futr6g5Yq6SbZkcPW57URDCiXDIlc2PGnIBAKBQCAQLE9EpFsgEAhWCX/7t3/Lzp07uffee/nFL37BNddcw80338w777yz4Ocq6iYncmWP4dipjOXLvH4s6zH9OpOyRyYK7Dk4wpGJgu/r1X3a+XKFnxw8Qb5cqaX3asTRiSL/+vYYRyeK87YzCOP5Cm8MeY3WTqdctT+K7HB4vIAiO3P2J+h1bObeBL3fC11OIBAIFgsxDgnOJmKJXCAQCFYJDz30EJ/85Cf53d/9XQAefvhhfvSjH/Hoo4/ywAMPLNh5gqTYgmBprpot+9cvHOYbzw7Uoryfuqafj12xvq5MMqLy9P5hBsZOTqD722P8wQc3+Z774d1v8vjeQXTLRlNk7rxqIztv3Hxa516McsmIyk8OjnBwOI8DSMCWnoRvf4Jex2buTdD7vdDlBAKBYLEQ45DgbCMi3QKBQLAK0HWdffv2sWPHjrrjO3bsYO/evZ7ylUqFXC5X9xOEoCm2gqa5aqbskYkC33h2gHzFpDWmka+YfPO5AU/E+2eD4wyO1UesB8eK/Gxw3HPuN4dzPL53kIppE9dUKqbNE/86yJvD9dcj6LkXuhzAa0en+NWJkxNuB/jVcJ7Xjk6d1nVs5t4Evd8LXU4gEAgWCzEOCZYCMekWCASCVcDY2BiWZdHV1VV3vKuri+HhYU/5Bx54gHQ6Xfvp6+sLdB6/FFt+Ume/NFfZksFw1iujDlp2YLRAUTdpi2tEQyptcY1CxWRgtH6iuvftcRzcLzhVlpBxJ6p73/ZOug8M5dAtm0RYJawqJMLuxPvAUP2kO+i5F7ocwIuHJrAdCMkQCcmEZLAd9/jpXMdm7k3Q+73Q5QQCgWCxEOOQYCkQ8vIlYMMXv7/UTRAIBKsUSZLqfnccx3MM4J577uHuu++u/Z7L5QJNvGen2KqalGXi3lRX1TRXQ9kyPekIQ1m3nF+aq6Blq2m7xgs6bXEYL7gu4qem7brqnDYee2YQG8B2sHEjxFed0+Y59/k9KTRFJl9xH7byFZNISOb8ntRpnXuhywFcviGDIoHhdgjDBlVyj5/OdWzm3gS93wtdTiAQCBYLMQ4JlgIR6RYIBIJVQHt7O4qieKLaIyMjnug3QDgcJpVK1f0EIWiqq/ZEhDuv3kgmHmJk2i13x1UbfdNcBS0bNG3XdVu6+MCWDiSoTbg/sKWD67Z4r8Pm7hR3XrWRSEimoLsT7juu3Mjm7vrrEfTcC10OYHt/Ox+6sBdVAnNmwv2hC3vZ3t9+WtexmXuz0CnQmkmVJhAIBIuBGIcES4HkOI6z1I1YTHK5HOl0mmw2G+ih0jAMfvCDH/CFFxUqljc65MehP/1QU206W5HusOLw4OVWU31Zzqym/qymvsDS9yfoZ7DZ8WClsX37di699FK+/vWv146df/75fOQjH5nXSK3Za1PUzXlTXYG7f3g4W6E7HZ43r3TQskcmCvOm7QLYc/AEe98e56pz2nwn3LN5czjHgaEc5/ekPBPu0zn3QpcD+OnAGC8emuDyDRnPhHs2Qa9jM/cm6P1e6HKCpWO1j5dngrg2qwMxDgkWgqDjgXiHCQQCwSrh7rvv5uMf/ziXXXYZV155JY899hjvvPMOv/d7v7fg54ppwR5S2hOReSd0zZbty8w/QQU34j3fZLvK5u65J9vNnnuhy4Eb8Z5rsl0l6HVs5t4Evd8LXU4gEAgWCzEOCc4m4p22AIg92gKBYDnwW7/1W4yPj/Mnf/InDA0NsW3bNn7wgx+wfr03DZVAIBAIBAKB4OwgJt0CgUCwirjrrru46667lroZAoFAIBAIBIIZhJGaQCAQCAQCgUAgEAgEi8SKmHR//etfZ+PGjUQiES699FKeffbZpW6SQCAQCAQCgUAgEAgE87LsJ91/+7d/y86dO7n33nv5xS9+wTXXXMPNN9/MO++8s9RNEwgEAoFAIBAIBAKBYE6W/Z7uhx56iE9+8pP87u/+LgAPP/wwP/rRj3j00Ud9U+BUKhUqlUrt92w2C8DExASGYcx7PsMwKBaLqIaMZa/sVE6q7VAs2quiL7C6+rOa+gJL35/x8fFA5aanpwFY5ZkST4vqNcnlckvcEoFAsByojgVivPQixkuBQFAl6Fi5rCfduq6zb98+vvjFL9Yd37FjB3v37vX9mwceeID77rvPc3zjxo2L0sblzu1L3YAFZjX1ZzX1BZa2P+3/vbny09PTpNPpxWnMCqW6INHX17fELREIBMsJMV56EeOlQCA4lfnGymU96R4bG8OyLLq66vOsdnV1MTw87Ps399xzD3fffXftd9u2mZiYoK2tDUmaPwKXy+Xo6+vjyJEjcyY4Xwmspr7A6urPauoLrJz+OI7D9PQ0vb29S92UZUdvby9HjhwhmUy+68ZKWF39WU19gdXVn5XUFzFeNqaZ8XIl3fMgrKb+rKa+wOrqz0rqS9CxcllPuqucOqA5jtNwkAuHw4TD4bpjLS0tTZ8zlUot+5sclNXUF1hd/VlNfYGV0R8RsfFHlmXWrl3b9N+thHveDKupP6upL7C6+rNS+iLGS39OZ7xcKfc8KKupP6upL7C6+rNS+hJkrFzWRmrt7e0oiuKJao+MjHii3wKBQCAQCAQCgUAgECw3lvWkW9M0Lr30Unbv3l13fPfu3Vx11VVL1CqBQCAQCAQCgUAgEAiCsezl5XfffTcf//jHueyyy7jyyit57LHHeOedd/i93/u9RTlfOBzmv/7X/+qRqK9EVlNfYHX1ZzX1BVZffwTzs9ru+Wrqz2rqC6yu/qymvgiCsdru+Wrqz2rqC6yu/qymvlSRnBWQC+LrX/86Dz74IENDQ2zbto2vfvWrXHvttUvdLIFAIBAIBAKBQCAQCOZkRUy6BQKBQCAQCAQCgUAgWIks6z3dAoFAIBAIBAKBQCAQrGTEpFsgEAgEAoFAIBAIBIJFQky6BQKBQCAQCAQCgUAgWCTEpFsgEAgEAoFAIBAIBIJFQky6Z/H1r3+djRs3EolEuPTSS3n22WeXukmnxa5du5Akqe6nu7t7qZsViGeeeYbf+I3foLe3F0mS+M53vlP3uuM47Nq1i97eXqLRKNdffz379+9fmsYGYL7+3HnnnZ57dcUVVyxNY+fhgQce4H3vex/JZJLOzk5uueUWDh48WFdmpd0fwemzGsbLlTxWwuoaL8VYuXzvjeDMWA1jJazs8XI1jZWwesbLd9tYKSbdM/zt3/4tO3fu5N577+UXv/gF11xzDTfffDPvvPPOUjfttNi6dStDQ0O1n9dee22pmxSIQqHARRddxCOPPOL7+oMPPshDDz3EI488ws9+9jO6u7u58cYbmZ6ePsstDcZ8/QH49V//9bp79YMf/OAstjA4e/bs4TOf+QwvvPACu3fvxjRNduzYQaFQqJVZafdHcHqspvFypY6VsLrGSzFWLt97Izh9VtNYCSt3vFxNYyWsnvHyXTdWOgLHcRzn8ssvd37v936v7th5553nfPGLX1yiFp0+//W//lfnoosuWupmnDGA89RTT9V+t23b6e7udv70T/+0dqxcLjvpdNr5i7/4iyVoYXOc2h/HcZw77rjD+chHPrIk7TlTRkZGHMDZs2eP4zgr//4IgrNaxsvVMlY6zuoaL8VYKVgt/P/Ze/P4OKor0f9bXdV7q1tq7bLkFZvFBrMYTMzmsJgQyEYmZJ3BJGF4gTCPgUwmhMmLeWHY8pJhHpOBXxJiO8NAknkTCAkJYMISwJjYZjGrsWN5t6y9W713Lb8/2t10t7qllixZsnS+n4/s7qpbt84999btuss5Z6r0lZY1dfrLqdRXWtbU6i+nel8pK91AKpVi8+bNrFixouD4ihUrWL9+/QRJdXhs27aNlpYW5syZw+c+9zl27Ngx0SIdNu3t7XR0dBTUk9Pp5Lzzzjtq6wngueeeo6GhgQULFnD11VfT2dk50SJVRCgUAiAYDAJTt36EQqZafzkV+0qYms+j9JXC0cRU6ythavaXU/V5PBr7y6neV8qgG+ju7sYwDBobGwuONzY20tHRMUFSjZ6lS5fy85//nCeffJKf/OQndHR0sGzZMnp6eiZatMMiWxdTpZ4ALrnkEv7zP/+TZ555hh/84Ads3LiR888/n2QyOdGiDYllWdx4442cffbZLFq0CJia9SMMZir1l1O1r4Sp9zxKXykcbUylvhKmbn85FZ/Ho7G/nA59pTbRAkwmFEUp+G5Z1qBjRwOXXHJJ7vOJJ57Ihz70IebNm8fatWu58cYbJ1CysWGq1BPAZz/72dznRYsWsWTJEmbNmsXjjz/O5ZdfPoGSDc3Xv/51tmzZwosvvjjo3FSqH6E8U6Gep3pfCVOjnkD6SuHoZarU81TvL6dKPcHR2V9Oh75SVrqBuro6VFUdNGvS2dk5aHblaMTr9XLiiSeybdu2iRblsMh6yZyq9QTQ3NzMrFmzJnVdXX/99Tz22GM8++yztLa25o5Ph/oRpnZ/OVX6Spj6z6P0lcJkZyr3lTB1+svp8DxO9v5yuvSVMugGHA4Hp512GuvWrSs4vm7dOpYtWzZBUo0dyWSSd999l+bm5okW5bCYM2cOTU1NBfWUSqV4/vnnp0Q9AfT09LBnz55JWVeWZfH1r3+dX//61zzzzDPMmTOn4Px0qB9haveXU6WvhKn/PEpfKUx2pnJfCVOnv5wOz+Nk7S+nXV85Ac7bJiW/+MUvLLvdbj3wwAPWO++8Y91www2W1+u1du7cOdGijZibbrrJeu6556wdO3ZYGzZssC677DKrqqrqqCjLwMCA9dprr1mvvfaaBVg//OEPrddee83atWuXZVmWdeedd1qBQMD69a9/bb355pvW5z//eau5udkKh8MTLHlphirPwMCAddNNN1nr16+32tvbrWeffdb60Ic+ZM2YMWNSludrX/uaFQgErOeee846cOBA7i8Wi+XSHG31I4yOqdJfHs19pWVNrf5S+srJWzfC6JkqfaVlHd395VTqKy1r6vSX062vlEF3Hj/60Y+sWbNmWQ6Hwzr11FNzLuuPNj772c9azc3Nlt1ut1paWqzLL7/cevvttydarIp49tlnLWDQ35VXXmlZViZ8wHe/+12rqanJcjqd1rnnnmu9+eabEyv0EAxVnlgsZq1YscKqr6+37Ha7NXPmTOvKK6+0du/ePdFil6RUOQBr9erVuTRHW/0Io2cq9JdHc19pWVOrv5S+cvLWjXB4TIW+0rKO7v5yKvWVljV1+svp1lcqlmVZY7lyLgiCIAiCIAiCIAhCBrHpFgRBEARBEARBEIRxQgbdgiAIgiAIgiAIgjBOyKBbEARBEARBEARBEMYJGXQLgiAIgiAIgiAIwjghg25BEARBEARBEARBGCdk0C0IgiAIgiAIgiAI44QMugVBEARBEARBEARhnJBBtyAIgiAIgiAIgiCMEzLoFgRBEASBlStXoijKoL/t27dPtGiCIAiTBukrhdGgTbQAgiAIgiBMDj7ykY+wevXqgmP19fUTJI0gCMLkRPpKYaTIoFsQBEEQBACcTidNTU0TLYYgCMKkRvpKYaTI9nJBEARBEARBEARBGCdk0C0IgiAIAgC/+93v8Pl8ub/PfOYzEy2SIAjCpEP6SmGkyPZyQRAEQRAA+PCHP8x9992X++71eidQGkEQhMmJ9JXCSJFBtyAIgiAIQObF8ZhjjploMQRBECY10lcKI0W2lwuCIAiCIAiCIAjCOCGDbkEQBEEQBEEQBEEYJ2TQLQiCIAiCIAiCIAjjhGJZljXRQgiCIAiCIAiCIAjCVERWugVBEARBEARBEARhnJBBtyAIgiAIgiAIgiCMEzLoFgRBEARBEARBEIRxQgbdgiAIgiAIgiAIgjBOyKBbEARBEARBEARBEMYJGXQLgiAIgiAIgiAIwjghg25BEARBEARBEARBGCdk0C0IgiAIgiAIgiAI44QMugVBEARBEARBEARhnJBBtyAIgiAIgiAIgiCMEzLoFgRBEARBEARBEIRxQgbdgiAIgiAIgiAIgjBOyKBbEARBEARBEARBEMYJGXQLgiAIgiAIgiAIwjghg25BEARBEARBEARBGCdk0C0IgiAIgiAIgiAI44QMugVBEARBEARBEARhnJBB91HGli1buOqqq5gzZw4ulwufz8epp57K3XffTW9v70SLNybs3LkTRVFYs2bNRIsyLjz33HMoilLwV1NTw9KlS1m7du1EiwfA8uXLB8mY/XvrrbcmWjxBmJSsWbMGRVHYtGlTyfOXXXYZs2fPLjg2e/ZsVq5cOaL7rF+/nlWrVtHf3z86QacIq1atKuibbDYbzc3NfPSjH+Wll16aaPEE4ahA3iuPfo7298ri38WpijbRAgiV85Of/IRrr72WY489ln/4h3/ghBNOIJ1Os2nTJu6//35efvllHnnkkYkW87Bpbm7m5ZdfZt68eRMtyrhy++238+EPfxiA7u5ufv7zn7Ny5UrC4TDXX3/9BEsHc+fO5T//8z8HHZ/q9SIIR5JHHnkEv98/omvWr1/PrbfeysqVK6murh4fwY4innjiCQKBAKZpsnv3bu6++26WL1/OK6+8wqmnnjrR4gnCpEXeK6cWR+t7pdPpnABpjjwy6D5KePnll/na177GRRddxKOPPlrQQC+66CJuuukmnnjiiQmU8PAxDANd13E6nZx55pkTLc64M3/+/IJyfvSjH2Xjxo08/PDDk6JzdLvd06IeBGEiOeWUUyZahBGTTqdRFAVNmxyvEKeddhp1dXUALFu2jDPOOIN58+bx//7f/5NBtyCUQd4rpx7yXjm5ke3lRwm33347iqLw4x//uOSMkMPh4OMf/3juu2ma3H333Rx33HE4nU4aGhr4m7/5G/bu3Vtw3fLly1m0aBEbN27knHPOwePxMHfuXO68805M0wSgq6sLh8PBd77znUH3fe+991AUhf/7f/9vLu21117LCSecgM/no6GhgfPPP58XXnih4LrsVp+7776b2267jTlz5uB0Onn22WdLbgPavn07V111FfPnz8fj8TBjxgw+9rGP8eabbxbkm91i8/DDD3PLLbfQ0tKC3+/nwgsvZOvWrYPkf+KJJ7jgggsIBAJ4PB6OP/547rjjjoI0mzZt4uMf/zjBYBCXy8Upp5zCr371q1LVdFjYbDZ8Ph92u33IdDfccANer5dwODzo3Gc/+1kaGxtJp9MAPPPMMyxfvpza2lrcbjczZ87k05/+NLFYbMzlFwRh5BRvLzdNk9tuu41jjz0Wt9tNdXU1J510Ev/6r/8KZLZU/8M//AMAc+bMyW3Pe+6553LXV9L3W5bF7bffzqxZs3C5XCxZsoR169axfPlyli9fnkuX7VP/4z/+g5tuuokZM2bgdDrZvn37iPv773//+9x1113Mnj0bt9vN8uXLef/990mn03zrW9+ipaWFQCDApz71KTo7O0et00AgADBsXyoI0xl5r5T3yizyXnlkkEH3UYBhGDzzzDOcdtpptLW1VXTN1772Nf7xH/+Riy66iMcee4zvfe97PPHEEyxbtozu7u6CtB0dHXzxi1/kS1/6Eo899hiXXHIJN998Mw8++CAA9fX1XHbZZaxduzbXYWZZvXo1DoeDL37xiwA5+5/vfve7PP7446xevZq5c+eyfPny3EthPv/3//5fnnnmGf7P//k//OEPf+C4444rWZ79+/dTW1vLnXfeyRNPPMGPfvQjNE1j6dKlJTu9b3/72+zatYuf/vSn/PjHP2bbtm187GMfwzCMXJoHHniAj370o5imyf33389vf/tb/u7v/q7gB+TZZ5/lrLPOor+/n/vvv5/f/OY3nHzyyXz2s58dZBs0e/bsEdmlmKaJruvous7Bgwe58847eeutt/jSl7405HVf/vKXicVigzro/v5+fvOb3/ClL30Ju93Ozp07ufTSS3E4HPzsZz/jiSee4M4778Tr9ZJKpSqSMStf9q+4/gVBGEx2daX4z7KsYa+9++67WbVqFZ///Od5/PHH+eUvf8lXvvKVnP32V7/61dyKxa9//WtefvllXn755dyKbqV9/y233MItt9zCRz7yEX7zm9/wP/7H/+CrX/0q77//fkm5br75Znbv3p3rKxsaGkbc3//oRz/ipZde4kc/+hE//elPee+99/jYxz7GV77yFbq6uvjZz37G3XffzdNPP81Xv/rVEes7lUqxfft2rrvuOpxOJ3/1V39VcR6CMJ2Q90p5r8xnIt8rp9W7pSVMejo6OizA+tznPldR+nfffdcCrGuvvbbg+CuvvGIB1re//e3csfPOO88CrFdeeaUg7QknnGBdfPHFue+PPfaYBVhPPfVU7piu61ZLS4v16U9/uqwsuq5b6XTauuCCC6xPfepTuePt7e0WYM2bN89KpVIF12TPrV69esh8U6mUNX/+fOvv//7vc8efffZZC7A++tGPFqT/1a9+ZQHWyy+/bFmWZQ0MDFh+v986++yzLdM0y97nuOOOs0455RQrnU4XHL/sssus5uZmyzCM3LF58+ZZ8+bNK5tXsYzFfzabzbrllluGvd6yLOvUU0+1li1bVnDs3//93y3AevPNNy3Lsqz/9//+nwVYr7/+ekV55pNtF8V/X/ziF0eclyBMF1avXl3yucn/mzVrVsE1s2bNsq688src98suu8w6+eSTh7zP97//fQuw2tvbC45X2vf39vZaTqfT+uxnP1uQ7uWXX7YA67zzzssdy/ZX55577rDlH66/X7x4cUGfec8991iA9fGPf7wgnxtuuMECrFAoNOT9vvvd75bUsd/vt379618PK68gTFfkvbJ0vvJeeeTfKwHrK1/5yojzOxqRle4pyLPPPgswyCPuGWecwfHHH88f//jHguNNTU2cccYZBcdOOukkdu3alft+ySWX0NTUxOrVq3PHnnzySfbv38+Xv/zlgmvvv/9+Tj31VFwuF5qmYbfb+eMf/8i77747SNaPf/zjFW0B1HWd22+/nRNOOAGHw4GmaTgcDrZt21Y23+LyALkyrV+/nnA4zLXXXouiKCXvuX37dt57773cbGv+rNxHP/pRDhw4UDAbun37drZv3z5sWbLcddddbNy4kY0bN7Ju3Tq++c1vcuedd+a2jg7FVVddxfr16wvuv3r1ak4//XQWLVoEwMknn4zD4eBv//ZvWbt2LTt27KhYNsg4TMvKl/373ve+N6I8BGE68vOf/3zQs7Nx40bOPvvsYa8944wzeOONN7j22mt58sknS273K0elff+GDRtIJpNcccUVBenOPPPMsqsqn/70p0seH0l//9GPfhSb7YPXjuOPPx6ASy+9tCBd9vju3bvLlLSQp59+mo0bN/LnP/+Z3/3ud1x44YV87nOfmxIOoARhMiDvlfJeCePzXrlx48aSZgZTERl0HwXU1dXh8Xhob2+vKH1PTw+Q8dZYTEtLS+58ltra2kHpnE4n8Xg8913TNP76r/+aRx55JLfNcc2aNTQ3N3PxxRfn0v3whz/ka1/7GkuXLuW///u/2bBhAxs3buQjH/lIQX5ZSslYihtvvJHvfOc7fPKTn+S3v/0tr7zyChs3bmTx4sUl8y0uU9ZeKZu2q6sLgNbW1rL3PHjwIADf+MY3sNvtBX/XXnstwKAtVSNh7ty5LFmyhCVLlnDhhRdyxx138NWvfpUf/OAHvPfee0Ne+8UvfhGn05nbivTOO++wceNGrrrqqlyaefPm8fTTT9PQ0MB1113HvHnzmDdvXs42dDiydp75f3PmzBl1eQVhunD88ccPenaWLFmSszUeiptvvpn/83/+Dxs2bOCSSy6htraWCy64oGwYsnwq7fuz/zc2Ng5KV+pYuTxH2t8Hg8GC7w6HY8jjiUSipCzFLF68mCVLlnD66adz6aWX8l//9V8cc8wxXHfddRVdLwjTDXmvlPfKYibqvXLJkiXMmjVr1GU+mpgcrkeFIVFVlQsuuIA//OEP7N27d8gHGj7oGA4cODAo7f79+3NeXkfKVVddxfe//31+8Ytf8NnPfpbHHnuMG264AVVVc2kefPBBli9fzn333Vdw7cDAQMk8y80GFvPggw/yN3/zN9x+++0Fx7u7u0cVMqe+vh5gkAOQfLJ6uvnmm7n88stLpjn22GNHfO+hOOmkk7Asiy1btpS1QwKoqanhE5/4BD//+c+57bbbWL16NS6Xi89//vMF6c455xzOOeccDMNg06ZN3Hvvvdxwww00Njbyuc99bkxlFwTh8NE0jRtvvJEbb7yR/v5+nn76ab797W9z8cUXs2fPHjweT9lrK+37s+myL4D5dHR0lFztLtVXj7S/P1LYbDYWLlzIf/3Xf9HZ2UlDQ8OEyiMIkw15r5T3ymLkvXL8kZXuo4Sbb74Zy7K4+uqrSzorSKfT/Pa3vwXg/PPPB8g5rMiyceNG3n33XS644IJRyXD88cezdOlSVq9ezUMPPUQymSyYAYNMZ1fsBXPLli28/PLLo7rnUPk+/vjj7Nu3b1T5LVu2jEAgwP3331/WudGxxx7L/PnzeeONN0rOzC1ZsoSqqqpR3b8cr7/+OkBFL4lXXXUV+/fv5/e//z0PPvggn/rUp8r+UKiqytKlS/nRj34EwKuvvjpWIguCME5UV1fzV3/1V1x33XX09vayc+dOYPAKS5ZK+/6lS5fidDr55S9/WZBuw4YNBds/h2O8+vvDxTAM3nzzTZxO54hjoAvCdEHeK+W9shh5rxxfZKX7KOFDH/oQ9913H9deey2nnXYaX/va11i4cCHpdJrXXnuNH//4xyxatIiPfexjHHvssfzt3/4t9957LzabjUsuuYSdO3fyne98h7a2Nv7+7/9+1HJ8+ctf5pprrmH//v0sW7Zs0IzcZZddxve+9z2++93vct5557F161b+9//+38yZMwdd10d938suu4w1a9Zw3HHHcdJJJ7F582a+//3vDzs7Ww6fz8cPfvADvvrVr3LhhRdy9dVX09jYyPbt23njjTf4t3/7NwD+v//v/+OSSy7h4osvZuXKlcyYMYPe3l7effddXn31Vf7rv/4rl+cxxxwDULH9zbZt29iwYQMAoVCIp59+mgceeIAlS5ZwzjnnDHv9ihUraG1t5dprr6Wjo2PQD9X999/PM888w6WXXsrMmTNJJBL87Gc/A+DCCy+sSEZBEI4sH/vYx1i0aBFLliyhvr6eXbt2cc899zBr1izmz58PwIknngjAv/7rv3LllVdit9s59thjK+77g8EgN954I3fccQc1NTV86lOfYu/evdx66600NzcX2F0PxXj19yNl8+bNua37Bw8e5Gc/+xnvvfcef//3f4/L5TpicgjC0YS8V8p7ZTHj/V4Zj8dz8hUzLeJ3T6QXN2HkvP7669aVV15pzZw503I4HJbX67VOOeUU63/9r/9ldXZ25tIZhmHddddd1oIFCyy73W7V1dVZX/rSl6w9e/YU5HfeeedZCxcuHHSfK6+8cpCXXcuyrFAoZLndbguwfvKTnww6n0wmrW984xvWjBkzLJfLZZ166qnWo48+Oii/rCfJ73//+4PyKOVlsq+vz/rKV75iNTQ0WB6Pxzr77LOtF154wTrvvPNKetr9r//6r2HztCzL+v3vf2+dd955ltfrtTwej3XCCSdYd911V0GaN954w7riiiushoYGy263W01NTdb5559v3X///QXpZs2aVVJnxZTyMun1eq0TTjjB+u53vzusx958vv3tb1uA1dbWVuDx0rIynog/9alPWbNmzbKcTqdVW1trnXfeedZjjz02bL7l2oUgCOXJei/fuHFjyfOXXnrpsN7Lf/CDH1jLli2z6urqLIfDYc2cOdP6yle+Yu3cubPguptvvtlqaWmxbDabBVjPPvusZVmV9/2maVq33Xab1draajkcDuukk06yfve731mLFy8u8Ahcrk+1rMPv78vlPZwes5TyXh4MBq2lS5daP/vZzwb1iYIgDEbeK+W9Mp/xfK8sljH/r9ib+1REsawKAocKgiAIgjClaW9v57jjjuO73/0u3/72tydaHEEQBEGYMsigWxAEQRCmGW+88QYPP/wwy5Ytw+/3s3XrVu6++27C4TBvvfVWWS/mgiAIgiCMHLHpFgRBEIRphtfrZdOmTTzwwAP09/cTCARYvnw5//zP/ywDbkEQBEEYY2SlWxAEQRAEQRAEQRDGCQkZJgiCIAiCIAiCIAjjhAy6BUEQBEEQBEEQBGGckEG3IAiCIAiCIAiCIIwTU96Rmmma7N+/n6qqKhRFmWhxBEGYQCzLYmBggJaWFmw2mXPMR/pKQRDykf6yPNJfCoKQpdK+csoPuvfv309bW9tEiyEIwiRiz549tLa2TrQYkwrpKwVBKIX0l4OR/lIQhGKG6yun/KC7qqoKyCjC7/dPsDSCIEwk4XCYtra2XL8gfMBI+8p0Os1TTz3FihUrsNvt4y3epEZ08QGiiwxTQQ/SX5ZH3i0FQchSaV855Qfd2W0/fr9fOkZBEABkO2AJRtpXptNpPB4Pfr//qB1UjBWiiw8QXWSYSnqQ/nIw8m4pCEIxw/WVYqQjCIIgCIIgCIIgCOOEDLoFQRAEQRAEQRAEYZyQQbcgCIIgCIIgCIIgjBMy6BYEQRAEQRAEQRCEcUIG3YIgCIIgCIIgCIIwTsigWxAmEbGUzsFwglhKn2hRxo3pUMaR8qc//YmPfexjtLS0oCgKjz76aMF5y7JYtWoVLS0tuN1uli9fzttvv12QJplMcv3111NXV4fX6+XjH/84e/fuPYKlEARBEARBGIy8+8mgWxAmDds7I6x5aSerX2pnzUs72d4ZmWiRxpzpUMbREI1GWbx4Mf/2b/9W8vzdd9/ND3/4Q/7t3/6NjRs30tTUxEUXXcTAwEAuzQ033MAjjzzCL37xC1588UUikQiXXXYZhmEcqWIIgiCMG3fccQenn346VVVVNDQ08MlPfpKtW7eWTX/NNdegKAr33HNPwXGZoBSEI4u8+2WQQbcgTAJiKZ2n3u6gL5am3ueiL5Zm3TsdU2pGcDqUcbRccskl3HbbbVx++eWDzlmWxT333MMtt9zC5ZdfzqJFi1i7di2xWIyHHnoIgFAoxAMPPMAPfvADLrzwQk455RQefPBB3nzzTZ5++ukjXRxBEIQx5/nnn+e6665jw4YNrFu3Dl3XWbFiBdFodFDaRx99lFdeeYWWlpZB52SCUhCOHPLu9wHaRAsgCAIMJHTCiTRNfhduh0qT30VXJMFAQsfjmBqP6XQo43jQ3t5OR0cHK1asyB1zOp2cd955rF+/nmuuuYbNmzeTTqcL0rS0tLBo0SLWr1/PxRdfPCjfZDJJMpnMfQ+HwwCk02nS6fSwcmXTVJJ2qiO6+ADRRYapoIfJJvsTTzxR8H316tU0NDSwefNmzj333Nzxffv28fWvf50nn3ySSy+9tOCa7ATlf/zHf3DhhRcC8OCDD9LW1sbTTz9dsq8UBGH0yLvfB0yv0grCJKXKpeF32ekIJ2jyu+gIJwh67VS5ps4jOh3KOB50dHQA0NjYWHC8sbGRXbt25dI4HA5qamoGpcleX8wdd9zBrbfeOuj4U089hcfjqVi+devWVZx2qiO6+ADRRYajWQ+xWGyiRRiSUCgEQDAYzB0zTZO//uu/5h/+4R9YuHDhoGtGM0EJ5ScpBUEYGnn3+4DpV2JBmIR4HBorFjax7p0OuiKZDumiE5qm1CzgdCjjeKIoSsF3y7IGHStmqDQ333wzN954Y+57OBymra2NFStW4Pf7h5UnnU6zbt06LrroIux2ewUlmLocDbpYtOrJEaV/a9XoVvyOBl0cCaaCHibzwNKyLG688UbOPvtsFi1alDt+1113oWkaf/d3f1fyutFMUEL5SUpBEIZG3v0+YPqVWBAmKcc0+Gipns1AQqfKpU3JDmk6lHGsaWpqAjIvi83NzbnjnZ2dudXvpqYmUqkUfX19BS+TnZ2dLFu2rGS+TqcTp9M56Ljdbh/RIGGk6acyk1kXSWPoCZpiDrcck1kXR5KjWQ+TWe6vf/3rbNmyhRdffDF3bPPmzfzrv/4rr7766rATksUMN4lZbpJSEIThkXe/DOJITRAmER6HRqPfNaU7pOlQxrFkzpw5NDU1FWxTTaVSPP/887kB9WmnnYbdbi9Ic+DAAd56662yg25BEISjkeuvv57HHnuMZ599ltbW1tzxF154gc7OTmbOnImmaWiaxq5du7jpppuYPXs2UDhBmU/+JGYpnE4nfr+/4E8QhMqRdz9Z6RYEQZhwIpEI27dvz31vb2/n9ddfJxgMMnPmTG644QZuv/125s+fz/z587n99tvxeDx84QtfACAQCPCVr3yFm266idraWoLBIN/4xjc48cQTc86CBEEQjmYsy+L666/nkUce4bnnnmPOnDkF5//6r/96UH938cUX89d//ddcddVVQOEE5RVXXAF8MEF59913H5mCCIIwLZFBtyAIwgSzadMmPvzhD+e+Z7cxXnnllaxZs4ZvfvObxONxrr32Wvr6+li6dClPPfUUVVVVuWv+5V/+BU3TuOKKK4jH41xwwQWsWbMGVVWPeHkEQRDGmuuuu46HHnqI3/zmN1RVVeVssAOBAG63m9raWmprawuusdvtNDU1ceyxx+bSygSlIAgTgQy6BaEEsZQ+bW1PJmPZJ6NMY8ny5cuxLKvseUVRWLVqFatWrSqbxuVyce+993LvvfeOg4SCIAgTy3333Qdk+st8Vq9ezcqVKyvORyYoBUGYCKbe26sgHCbbOyM89XYH4UQav8vOioVNHNPgm2ixjgiTseyTUSZh+jH7W4+XPedULe4+I+MhPOuwbOedl5ZNLwjCyBlqYrIcO3fuHHRMJigFQZgIxJGaIOQRS+k89XYHfbE09T4XfbE0697pIJbSJ1q0cWcyln0yyiQIgiAIgiAII0EG3YKQx0BCJ5xI0+R34XaoNPldhOJpBhJTf5A3Gcs+GWUSBEEQBEEQhJEgg25ByKPKpeF32ekIJ4inDDrCCQJuO1WuqW+JMRnLPhllEgRBEARBEISRIINuQcjD49BYsbCJoNdOVyRB0GvnohOapqTzrmImY9kno0yCIAiCIAiCMBLkzVUQijimwUdL9ewp7S27HJOx7JNRJkEQBEEQBEGoFHl7FYQSeBzTd3A3Gcs+GWUSBEEQBEEQhEqQ7eWCIAiCIAiCIAiCME7IoFsQBEEQBEEQBEEQxgkZdAuHTSylczCcmDaxk8uVd7R6mG76qxTRiyAIgiAIgjAVECNJ4bDY3hnhqbc7CCfS+F12Vixs4pgG30SLNW6UK+9o9TDd9FcpohdBEARBEMaaWEoXx6zChCAr3cKoiaV0nnq7g75Ymnqfi75YmnXvdEzZlcly5e2OJEalh+mmv0oRvQiCIAiCMNZs74yw5qWdrH6pnTUv7WR7Z2SiRRKmETLFI4yagYROOJGmye/C7VBp8rvoiiQYSOhTcvawXHk7QslR6WG66a9SRC/CdGT2tx4fUfqdd146TpIIgiBMPfIn9Jv8LjrCCda900FL9Wx5txCOCLLSLYyaKpeG32WnI5wgnjLoCCcIuO1UuaZm51WuvE0B56j0MN30VymiF0EQBEEQxpJSE/qheJqBhOyiGw/EL89gZNAtjBqPQ2PFwiaCXjtdkQRBr52LTmiasjOG5cpb53ONSg/TTX+VInoRBEEQBGEskQn9I4ds4y+NtDThsDimwUdL9exp45SiXHlHq4fppr9KEb0IgiAIgjBWZCf0173TIRP644hs4y/P9C69MCZ4HNNrUFSuvKPVw3TTX6WIXgRBEARBGCtkQn/8Eb885ZnepRcEQRAEQRAEYcpSHCZsOg3+iss+3iHT8rfxZ1e6g17Zxg8TbNN9xx13cPrpp1NVVUVDQwOf/OQn2bp1a0Eay7JYtWoVLS0tuN1uli9fzttvvz1BEguCIAiCIAiCcDQwVvbF5RyDTWaHYcVlf+a9znG3tRa/POWZUA08//zzXHfddZx++unous4tt9zCihUreOedd/B6vQDcfffd/PCHP2TNmjUsWLCA2267jYsuuoitW7dSVVU1keILE8xoZuvGYoav+1CYsKaAkzqfa1R5VJLfULIOde5w5Su+frxnRQVBEARBEMaasbIv3t4Z4am3Owgn0vhddlYsbOKYBl/Z45OB4rLv6Y+y4aUe5tb7aKvxjKuttWzjL82EauGJJ54o+L569WoaGhrYvHkz5557LpZlcc8993DLLbdw+eWXA7B27VoaGxt56KGHuOaaayZCbGESMJqObiw6x8wsYXsuj5VnzeH84xpGXY5y+Q0l61DnDle+4usvXthEKJ6elD8ogiAIgiAI5RgL++JyA/dqT+ukdhhWXPZqt4Nwop9qt/2I2FpPt238lTCptBEKhQAIBoMAtLe309HRwYoVK3JpnE4n5513HuvXry856E4mkySTydz3cDg8zlILR5rRzFyOxWxndyTBmpfa6YulaQ64OBBKsHZ9Oye1+ke9olwqv/kN3rKyAmXPxVL6YclXLM++vjg/eXEHZx1Ty9zaqkn3gyIIwvgx+1uPV5x2552XjqMkgiAIo2Ms7IvLDdw7QslJ7TCsuOz98RR+l53+eJqqQ8fF1vrIMmnidFuWxY033sjZZ5/NokWLAOjo6ACgsbGxIG1jY2PuXDF33HEHgUAg99fW1ja+ggtHnFIdYCieZiBR3p5mNNcUk+1gmwMuPA6N5kAmj45QcviLR5Dfjq5oWVmHKsfhyld8fa3PQSyp47Zro9aZIAiCIAjCRDAW9sXl4ns3BZyTOu53cdkbq1ysPGsOjX6n2FpPEJNG01//+tfZsmULL7744qBziqIUfLcsa9CxLDfffDM33nhj7ns4HJaB9xRjNDOXYzHbme1gD4QSuZXkoDfT8Y6GcvnNrffy9v5wWVnLlUO1cVjyFcvTE0nhcWrE03ruB0VmRQVBEARBOFo4XPvi7OD18S372dkToc7n5Oz59RgmnLOgnhe3dY3pIHYs/Ohk82ipdnHlssKynzk3KLbWE8Sk0Pb111/PY489xp/+9CdaW1tzx5uamoDMindzc3PueGdn56DV7yxOpxOnc3SDIOHoINsBrnuno+KObjTXFFPny8wSrl3fTudAJo8rl80ZtTO1cvm1Bb1DylrunMehHZZ8xfLUVTn4wgkzCSfSMisqCIIgCMJRyZjZFysKvdEUj762D7uq4HfZOXdBHfVVrjEZxI6F76Hh8hBb64ljQrVuWRbXX389jzzyCM899xxz5swpOD9nzhyamppYt24dp5xyCgCpVIrnn3+eu+66ayJEFiYJo5m5HAtviucf18BJrf4x815eLr+hZB3q3OHKV+p68V4uCIIgTDR33HEHv/71r3nvvfdwu90sW7aMu+66i2OPPRaAdDrNP/3TP/H73/+eHTt2EAgEuPDCC7nzzjtpaWnJ5ZNMJvnGN77Bww8/TDwe54ILLuDf//3fCxZ9BCFL1idQJGnQ4nfzzNaDAJx/fAO9kTQvbOvmymWH7+tmLHwPjZW3dmF8mFCb7uuuu44HH3yQhx56iKqqKjo6Oujo6CAejwOZbeU33HADt99+O4888ghvvfUWK1euxOPx8IUvfGEiRRcmAR6HRqPfNaKOZDTXFFPnc7FoRmBMwoUNld9Qsg517nDlK75+LHQmCIIgCIdDNszshg0bWLduHbqus2LFCqLRKACxWIxXX32V73znO7z66qv8+te/5v333+fjH/94QT433HADjzzyCL/4xS948cUXiUQiXHbZZRiGMRHFEiY5+b50FAXsNht2m4KCMqa+bsbC99BY5CGMHxP6Fn3fffcBsHz58oLjq1evZuXKlQB885vfJB6Pc+2119LX18fSpUt56qmnJEa3IAiCIAjCNGG4MLOBQIB169YVpLn33ns544wz2L17NzNnziQUCvHAAw/wH//xH1x44YUAPPjgg7S1tfH0009z8cUXl7y3RMaZHpTa2ZfvEyjocZA2TQAsrDH1dTMWvocqyUN2L04cE769fDgURWHVqlWsWrVq/AUSRkX+AwyU/OxxaKN60Ie6pvtQyIaRbKMeTxk8Dm3CZR0JleZfaf0eKXnG6jpBEATh6KU4zGy5NIqiUF1dDcDmzZtJp9MFoWhbWlpYtGgR69evLzvovuOOO7j11lvHTnhh0lHOFjrfJ1AonmJxawBQCMXSY+rrZix8Dw2Xx1jYjAujR95QhcMi/wFOGxZYFnbNVvDZ77JzXLOf9w6ER/SgD9U5PPNeJ2teas+dW3nWHM4/rmHU+R2uDJpNYVatl/oq54TJOhIqzb+gfnUTFAW7qgyq38OVb7TllR8QQRCE6UepMLPFJBIJvvWtb/GFL3wBv98PZBzzOhwOampqCtIOFYoWJDLOVGc4W+hiXzowtosOWYbzPVTJIkO5PMTee+KZNHG6haOP/Ac44LHzxp5+tuwL4Xaouc8Bl4POgSRr1rfTGUlQ73PRF0uz7p0OYqnyNib5eRdf0x1JsOaldvpiaRqqMufWrm+nO5IYVX6HK0PQ62RPb5xXdvTicagTIutIqDT/gvp1OdiyL8SWvf14iur3cOUbbXnHW0+CIAjC5CQbZvbhhx8ueT6dTvO5z30O0zT593//92HzGyoULWQi4/j9/oI/YeTEUjoHw4lJ9ztdiS10vn+b8fR1Uy7v7Z0R1ry0k9UvtbPmpZ1s74yMKA+x9554ZNAtjJoC5xIoOFQFu81GSjdznxUFqt12wvE01W5HxQ/6UJ1DRyhJOJGmOZDpUJoDmXMdoeSo8jtcGeyqDbdDxbQsUro1IbKOhErzL+c8JKVbBfV7uPKNtrzyAyIIgjD9yIaZffbZZ0t6HE+n01xxxRW0t7ezbt26ggFyU1MTqVSKvr6+gmuGCkUrjA0jGTQeafJtoeMpg45wgoB7bGy1x4KxWGSY7GWcDsigWxg1+Q+whUXKsEibJg7NlvtsWdAfT+N32+mPpyp+0IfqHJoCmS3cB0KZ2dIDocy5pkD5+Oyj6WwqlSFtmMRTBjZFwaEpEyLrSKg0/4L6tSBtmqRNC4emFNTv4co32vLKD4ggCML0wbIsvv71r/PrX/+aZ555ZlCYWfhgwL1t2zaefvppamtrC86fdtpp2O32AodrBw4c4K233mLZsmXjXobpSqlB4+Nv7mdnd3RSrHpnbaGDXnvOFvrs+fUMJPRJId9YLDKUKuNY2aMLlSGaFkZNgXOJWJqT26oBi3jKyH0OJVI0+p2cu6CerR3hih/0oZxBeBwaK8+aw9r17XQOZM5duWzOkA7KRuOgolIZeqNJZta6mVnrJZYyJkTWkVBp/uWch8SK6vdw5RttecdbT4IgCMLk4brrruOhhx7iN7/5TS7MLEAgEMDtdqPrOn/1V3/Fq6++yu9+9zsMw8ilCQaDOBwOAoEAX/nKV7jpppuora0lGAzyjW98gxNPPDHnzVwYe4oHjaoN1m/voXsgSXPAPSn8seTbQncNJPjT+12Txl/MWHg2h+FtxoXxRbQtHBZDOZfI/+xxaJw5NziiB32ozuH84xo4qdU/Io/go+lsRiJDOe/lR0rWkVBp/iOp3yMhz1hdJwiCIBxdDBdmdu/evTz22GMAnHzyyQVpnn322dx1//Iv/4KmaVxxxRXE43EuuOAC1qxZg6qq412EETGVInMUhN3y2dm0sw9FgZaAh95YakIdepXS839v7p40Dsey8p27oI4XtnUf9iJDdkFoNDJMprY4GWUajqNDSmFSU/wAD/V5pA/GUNfU+VwVh986UjJMtKzjkX+l9Xuk5Bmr6wRBEISjh+HCzM6ePbuiULQul4t7772Xe++9d6xEG3MmMjLHeAxm8nem7e9PoNrg1JlBAh47Ds1GVyTBQEI/4r/lpfRc5dIIJ9IEfXbSpknQZycUS5eVb6z1lZ/f/v5EgXznLKinoco5ZmFvK2EyRomZjDJVgrypCoIgCIIgCMIkYCJDO43nYCa7M60znODR1/YTTRk5fyyj2Sp9uJTT82eWtJI2LP74TicONePD5uS26pLyjbW+8vNz21XC8TQ2my0n34vburhyWeXt4HDlm4xhxiajTJUijtQEQRAmObqu80//9E/MmTMHt9vN3Llz+d//+39jmmYujWVZrFq1ipaWFtxuN8uXL+ftt9+eQKkFQRCEkTJRkTmORBhOj0Njdp2Pyxa3HFGHXvmhyrKfO8PJknqOJAywLDIR5JRD/w/eQTFSfRWHS+uOJHhrX4juSILuSIJNO3t59LW9ufwODiR5a3+IoKd05J/hwq+NRX2WaovdkSQ7uoZ3gDde4eFG+nxMpjB1k3tKQDiiDLUFpTuSKGuTnH8djNzOt/i++d9jKX1Ym+nhZH+/I8w7B8Kc0OynNegpm25Pb5QdXVHm1ntpC3orkr3S6/PP1fqcBTIMpdtyZew51OmVuld+fpXqLF/PQ9XvZJ9FnKrcdddd3H///axdu5aFCxeyadMmrrrqKgKBAP/zf/5PAO6++25++MMfsmbNGhYsWMBtt93GRRddxNatW6mqqprgEgiCIAiVMFZOs0ZKqcHMeG37PpL+WPJXe9O6CYqCXVVw21XSujlIz2Bh12ycf2wjigKWBaFEapAeRqKv4hXngNvOk1mZDDM3pg/HdZbNr2VOnZe2oJu/dEbY0xfDofkK2kElK9hjUZ/FbfG9jjAHBxI8+to+gl5H2ZXz8dwxMZLnY7JtQ5c3aAEYumE+814na15qz51bedYczj+uYdB1+Z1ZpY27+L7HNft570CYcCJNVzjBzt4YhmmhKgqz67zUVzkH5T2U7Pese58169tJGSaqzcaJM/yc1Fo9KN1/btjFT17YQSyV6YyuPmcuXzxzVsX6G+r6/HOaamNhcxXzGqoGdbzFui2npx1dEd7aH0Y3zEH3yq+rSnXWNZBkZ3cUw7KGrN/J0GFNV15++WU+8YlPcOmllwIZ28WHH36YTZs2AZlV7nvuuYdbbrmFyy+/HIC1a9fS2NjIQw89xDXXXDMoz2QySTL5Qbz4cDgMZELupNPpYWXKpqkk7VTAqZa3FXXarIL/YeR6GSr/Uox3/iMhX5bp1i7KMRX0cDTLfjQzUZE5jvRg/0j4Y8lf7Q16HDyz9SAA5x/fQG8kjaIo+JxqgZ4b/C78Lju9sdSQeqhUX8XboXd0R/jVpj14nSp1Piebd/aBAotbq+mOpnhxezct1W4iCYMTZwSocmkF8gEVba8ei/ossMUPxTg4kKChykVzwJ27b7WnFcOkYOFsPLd/V/p8TMZt6DLoFoZsmLGUzpqX2umLpWkOuDgQSrB2fTsntfrxOLQhO7PhGnfxfff0xdjQ3s7cei81Licb2nvRTYtjm6rY2jFAx0CCK5a05bbItFTPBsp3Pnt7Y6xZ305SN/E4NfpjKTbv6uOk1kBBHj2RJD95YQeRpE6t10FPNMVPX9zBuQvqKlrx3tMbLXs9kDtX7bGzry/BhvY+jm0MsK8/nut4Z1R7CnSbv9qcryeXprBhR0YvM6oz24Wy93I71Fxd1fucvH0gNKzOfC6VDTt60E2Lhc0BuiLJkvU7WTqs6crZZ5/N/fffz/vvv8+CBQt44403ePHFF7nnnnsAaG9vp6OjgxUrVuSucTqdnHfeeaxfv77koPuOO+7g1ltvHXT8qaeewuPxVCxbfrzbqczdZwyf5ntLPtju//vf/37M889nvPMfCaVkmS7tYjiOZj3EYrGJFmHaMhGROaZiGM781d60YWK32QALBSW38vuJk1twO7QCPY80rOpQ6YpXnN12lVhKZ2bQg4KCzaYAFnbVxjF1Pnb0RNjdG+OYeh8XndBES7WroB0cDCcqWsEeq/rMtsUdXVEefW0fzQF37r7vHxzggRd2YmENckQ3njsmKnk+juTOjUo5ep8kYcwYqmF2DWRsXpoDLjwOjeaAi86BzPbl+iqG7cyGatzF96122wnH01S7HaR0AyxwaTZsioJLU9ENk5RuFuQNlJX9nQNhUoaJz6mhqTYcqg3dsOiNpjm20Z9Ll7VNqfU6cNs1ar3QF0uxoyta0aB7qOuB3DnNZsOpKeiGRSSZLuh4i3WbP+jO19OeviimaeLSVByqSq1Xyd2r1ufM1VWlOuuNJQ/pWcWh2crW72TpsKYr//iP/0goFOK4445DVVUMw+Cf//mf+fznPw+Qi0Xb2NhYcF1jYyO7du0qmefNN9/MjTfemPseDodpa2tjxYoV+P3+YWVKp9OsW7eOiy66CLvdPtqiHTUsWvVk2XNOm8X3lph8Z5ONpKkA8Naqi8cs/1KMd/4jIV+W6dYuyjEV9JDd/SJMDBMRmWMsBvuTySStIFSZx0H6kB8UCyu38tvgdw2Sczg9ZMvYUu3iM0tahzQRLF5xjqcNPA6NnmiSOp8T07RAAdOyCCd15tX5+OpZc5hV583dd7Qr2KXKMZr68Tg05tZ7CXodufvu6Y9yIBTH7VBpq/EUOKI7Ejsmhns+JspMYyjkzVkYsmGqNvC77BwIJXIr3UGvPWcvPFxnNlTjLr5vfzyN322nP56ixuUEBRK6iWlZJHQDTVVwaLZBeZeT/YRmPw7VRiSp43FqpAwTzaYQ9NoL0s2t9x7qAFPUeqEnmsodr4Thrs+eq/bYSeoWmqrgc9rpi6dyHa/LrhbotpyeqpwaNpuNhG6SMgz6YuncvdwONVdX9T5nRTrzudRDejZI6SZdkWTJ+p0sHdZ05Ze//CUPPvggDz30EAsXLuT111/nhhtuoKWlhSuvvDKXTsl4fMlhWdagY1mcTidOp3PQcbvdPqJBwkjTH60kjdJ6LEhjKrl0I9VJJfnnM975j4RSskyXdjEcR7Mejla5hYlje2eEx7fspzuaos7r4NKTWibUJC1/tTcUT7G4NQAohGLpYVd+yw3qCswqDQvdMDGhbHmzMjz+5n529kZp8Du5+py5PPVOB6F4mll1XhSsTJgyr50rl83h+JZARWWqZAU7vxyHYzJYfF+vQ6O52kVbjadgYcYwK9spMN5Mxp0b8vYsDNkwPQ6NlWfNYe36djoHErkOITubN9rOrNR9G/1Ozl1Qz9aOMKF4mg/NDbKzJ044nqatxsPsWg/xlDEo73KyL2jys3LZHNa+3E78kK31ia1+QCksYzBjF/3TF3fQF8sMmL969tyKnam1Bb1DXp89F45n9LKwpQrdMmmtcec63lK6LaWnUDzNmXNreXt/iFA8Pehe2brqjSUr0llGz7Xs7InRG0uWrd/J0mFNV/7hH/6Bb33rW3zuc58D4MQTT2TXrl3ccccdXHnllTQ1Zey8Ojo6aG5uzl3X2dk5aPVbEARBEEpxOIOyWErn4T/v5o09/ThUhXcNi4GEzo0rFkzoe0Pxai+M3OFvlgIbcZ+dx7ccoC+aorXazbsWQ5bXMgHLwjJh6dxaLl7UmFshBypyqFuuTJWUYyxsnPPvq9rgVxv3llyYafS7jrh5xHDyToadF/L2LABDN8zzj2vgpFZ/yQ7hcDuzUvc9c25wRN7Lh5L9hosW8NETm4b1Xv7FM2dx7oK6UXsvH+r64nPF3svzO95ynW1xGct5Ly+uq0p1Vs57+WTrsKYrsVgMm60wwqOqqrmQYXPmzKGpqYl169ZxyimnAJBKpXj++ee56667jri8giAIwtHF4Q7KOsOZEFiaTaHG66QnkuTNfSE6wwlm102sA9biVevRvsvkm/vFUmnCsTSmBT6XnWhSL1nerF6jKYPZtb6cXq9cNptFM1y5NPVVpeUqtx18pOYHpUxJD4TiuXfJkWw1r8T2fSLMI0oxWeQAGXQLeQzVMOt8rrIDwsPtzEpdn//Q5t93pNuAABY0+VnQ5C9IW4q24OhChVVyffG5fBmG0m0+BXoJamXvVZxfJTor1nO5dMLE8LGPfYx//ud/ZubMmSxcuJDXXnuNH/7wh3z5y18GMtvKb7jhBm6//Xbmz5/P/Pnzuf322/F4PHzhC1+YYOkFQRCEyc7hO57KOARDUbCs7Nfsh6lBvrmfQ1VIGSZ21YZqU8qWdzi9DrW7YCwjyBSbdL7bEaYznOCR1/ZS63WOKm9ZmBkZtuGTCIIgCBPJvffey1/91V9x7bXXcvzxx/ONb3yDa665hu9973u5NN/85je54YYbuPbaa1myZAn79u3jqaeekhjdgiAIwrBkB2V7+mJ0hhPs6YsRcFfux6XB72RRSwDDtOiPpTBMixNnBGjwD/YdcrSSNfcLeu0kdZPWGg9VTo3eSIqUbpYsb/5gN54y6AgncnrN311Q73PlIs3EUvqQ5w5X9gOhOJ3hRGYbeMBTMu9YSudgODHq+wmDkSkJQRCESU5VVRX33HNPLkRYKRRFYdWqVaxateqIySUIgiBMDTwOjeOa/Wxobyd8yLHtuQvqy65eFm979jg0Pr90Fv4t++mOZDxzX3pSS8XXT3byPZZfuSyzurt5Vx//uWEX/bEU1R4Hy44ZrK+h/CaVCv+V3fLtc2ZCb/kcGr3RJD6HRiiePqwIMvnhvx55bS8tAc+IV9/zGYuV+KOtHRwOU7t0U5yxbqgT1fCL79sdSYzauUQp9vRGczYrbodaNr/8+8ZTRlkb7HLphsq73H3qfK5B30vJ3Rb0FqQrZ6tdSp/DHS8+V2wvnn8ORu+AZDimU8crCIIgCJOJWErnvQNh5tZ7qXY76I+n2NoR5sy5wUG/yeUGW8c0+Lj63LnD/paP5bbpI0EpeVuqXezsjjK/yTesvsptwx5qy7ffZecvnQO8c2AADu1a/9Dc4GFHkMmG/6r1Oks6QavUtn8sHLMdbe3gcJE326OUsW6oE9Xwi+8bcNt5MhuKQc84ibJrNvwuOyvPmsP5xzWMKP//3LCLn7ywI7c9xu/S8Lnsg/J75r1O1rzUTjiRJpLQCcXTKApoqo1FLX7m1vsGyRdJpAknPth2Uy7vfPLv43fZOXVmDa/u7st9z16XL7fHoXHu/Hp29kQJJ9KoisLsOi/1Vc6K7X8qtRn6S+cAbx8YQDdMPA6NT548A4dm+6A+FAW7qox5G5luHa8gCIIgTCaytsdt1ZlFhCqnvaSjreEGW8P5gRmLwVp+XpUsJmTLd7gey/PlvWRR0yB9dUUSdIYTuB1aRY7P8lfBi7d87+iO8M6BAVK6iVOzkTJMdvbEc++Fh8NIV99L2fYfrg+AsWwHRwtTs1RTnLFuqBPV8Ivvu6M7wq827cHrVKn1OXl1Zx8ocNrMIL2xFGvXt3NSq7/iFe89vVF+8sIOIkk9Y6fUG6U/luaMOW76YulcfgBrXmqnL5bG79Z4e38YC2itdtM5kGRDey/HNlaxPxTPyOfQqPbYeWd/GAuLloCb/f1x+mNpTp9dmHe+rN2RRO4+zQEXe3pirHm5nSa/i5lBLwdCCdaub6fWa8/JXet10DWQ4FebdjOr1suMag9vHwjRMZDgiiVtOTuclurZACXrsdrTWrZ+869xqjY2tPehmxYzql30RtOsfbmdFQsbmR2s4pmtBwE4//gGeiPpMWsj07HjFQRBEITJRKWOtg53sHX4DtsyVLqYcLgLBuXkBaVAXx3hBJZl8ehr+0noRsX3Krfl221XiadMfE4V1abg0FQiyUykmdHu/Cx13+FW3/NXwfOpNF05xqodHE2II7WjkFINNWvnMRnyG+193XaVWEqn1uvEpijYbGBTFBQFmgMZmTpCyYrz39EVPZSfA9WmYFMyHiUNyyrIryOUJJzIDIRN00KxLFQl83C4NBumYTKQ1HFrh+TzOTAtCwAbChbk8jaL8s4n/z4eh4bfo5HSTarddjwOLXfd63v6c3K77RpVTg3dtPA4VByaDZemggkp3Syoq3L1mL1vqfrNvyaSTGOZFk5VwamqVLszjkJsig1FAbvNht2moKCMaRuZqPYnCIIgCEKGSh1tDeUYDIZ3wJW9fkfPADu6I+zoGRjksG24PCp1QBZwOdiyL8SWvf0EPPZROSMrV94GvzOnr65IAp9LxbIsoiljxI7Pird8x1MGA8kUpmUSSRm5HYdJ3SDgHvlKfb4uh9NtfjsoFQpspOnKMVw7mopM3ZJNYQ53dmm88xvtfeNpA49DoyeapNbnxDQBxcKy4EAoI1PWzrsSstuheqIp/C47pmWhKAqqogzKz++ycyCUwO/WsBQF0wITSOgmmmqjyqnRF09n8oukqPbYATCxUCCXt61E3lmaAs7cfZoDLsIxHYdmoz+exu/Wc9ed3Fadk7vWCwNJHc2mEEsZpHSThG6gqQoOzTaorkrVY/a+5eo3e87ntKPYFJKGRdIw6I+ncWo2TMvEsiB9KCa0hTWmbWSi2p8gCIIgCB9QiaOtRr+r7NbkSkzFPA6NgNvOrzb15LZKX31OIDdYqySPoVZJgdy5tGFit9kAK7dgMNLV1KG2YuevFsdTBr/YuJt63+hWbovvU+dzcWJrgH19caJJA79L49imKhyaWpHcpXR5XLOf9w6Eh90BUGkosMMJGTaUXqcqU7dkU5ixbqgT1fCL79ta4+bqc+by1DsdhOJpZtd5sFAIJVIEvXauXDZnRFtq2oJerj5nLj99cQeRZJqg10GVSyOS1Aflt/KsOaxd3565b9BDKJEmltKp8dhZ2BIgbVrMqC6Ub1bQTShhEE8b1HidBFwq0dTgvLPU+Vy5+3QOJGgIOLl4UROv7emjcyCRu25xW01O7r5YioDHwWUn1bOrN0pvLElbjYfZtR7iKWNQXZWqxzpf+R/I/GtC8TQfmlvD2/sHCMfTBNwan1g8A6fdRiieYnFrAFAIxdJj2kamY8crCIIgCOPpQHS0eQ/naAtKD7YqNRXrjiR48u0OvA6NmUEPPZEUT73TwbkL6jBMeHzLfiJJY8g8hpusz54LehyjXjDI198xDT6qPa0lnd5mbbVjKf2wFxDy9ara4Fcb97KrJ4pNUTAti9l13rL5Fdd3cX3s6Y+y4aUe2oIeqt12/rynH9WmlDUZzLdBL+fwtzjdSCnXjqaqU92pVZppxFgHpJ+oAPel7nvxosYx817+xTNnce6CumE9jJ9/XAMntfor8l6eL99IvZcX36ec9/JiuSv1Xl6uHoeq3+JzE+G9fKLanyAIgiBMBGPlQLTUIOVw865kMrx4sFWpjW7W5G1GjRuPQ8NlV9ndG+Mnf2rHwuL9gxFOmVk9ZB7DyffBYsLwCwaV6C9/hdjvsnPOgnoaqpwF14zVAkK+Xo9r9vPS9u5cSLKLFzWXzG97Z4THt+ynO5qizuvg0pNaqHJpBfVR7XbQOdBDyjBJpk26IknqfPbcDoBSTvNgsAPg0Tg1rrS8xXo/d0Ed9VWuSTUpdTjIm+1RzOHMLh2J/EZ73zqfq2DQergOI9qCmcHjcPkV3zf/mqHkqyTvoe5T/H0ouYtnV0tRrh6Hqt/8c56gNqjsxT9248FEtT9BEARBOJKMlQPRcqGsxiLvkU6GV2oqVmxqt68/RiJtYFgWrdUe3usYYPOuPgIeO72RdNnV4pEsJkDpBYNK9JddIZ5b76OtxsN7HWE2tPewoKGKoNcxqm3ZlRBL6by0vZt42sDlUImnDdZv7x4UkiyW0nn4z7t5Y08/DlXhXcNiIKHzP5bPLaiP7ORFTySFy26jP5rZYp7SDbb3Rko6zSt2AJx1+DsSp8YjKW++3t/tCLNhRw/zG30FMo0FExUxRxypCYIgCIIgCMIRYiwciJZzJtYZLu88tdJ8h3K0VY5KHWtlTe2CXjudAwmqXHaOb66itdqDosDiGdXYFNjfP/xqsceh0eh3DTu4LZWuUv1Vux2EE2mq3XZUm0J3JEl/LI3PpY3IWdpQei11rjOc4K19IRyqjSa/G4dq4819ITrDiYJrs+k0m0KN14lmU3hzX4hIQi+oD49dw3toZ4FdVfG5NBRgT2+srNO8YgfAo3FqXCn5z4SqQk8kSX88TZVzdA7wyjGUE77xRpaVBEEQBEEQBOEIMRYORMuHsrJGnXdBqC3DAsvCrtlGHP5quJXefFO7gFtjzUs7eWbrQew2G2nT5ITmKq46azYNFQyohyvHSJ2xFeuvP55xxtsfTwPQE01R53NQ7bHnYnNnt7+Xu2+l4c0KzymABYqCZWW/Zj/kUz7dMQ3eXH30RlIZL+6mA79bIxzXsTC56IQmXmnvKek0r3hXwmicGldK/jPhdaoZPXsdVHscVLmsMQsnNpGhymSl+yij0pmycp9Hkm40MuV/7o5kZt+6I5lZueLvWYqPV5pfuXPF6fb0Rnl+ayd7eqO83xHm0df28n5HeNR6yc9jqHLk3zc/j+LrhypjOT2Xy7uYofRSaX0PJZMgCIIgCCPjcMMtwVChrFyjyrsg1JbHzht7+tmyL0TA5RiX1UCPQ6O+yonboYKSHUhmwrHaVTU34B7pu2mlK5ml9Od2qIDCuQvqcvprrMqszNd47XQMJKhyaQS9TgyDgjBX5e7bHUlUFN6s+FyD38milgCGadEfS2GYFifOCNDgd+bKeTCcCVU2VLrsKv+sOg+LWgKgWMRTBigWJ7dVc+qs6oJQZfllKt6VMBqnxpWS/0xEEjrVbju1PieGaY1pOLFKQpWNdjw0HLLSfRRR6UxZ/uxkcUiAcuECRjOjOdR9uwaS7OyOYliZGcNTZ9bw6u6+QY4Yih00XLywiVA8PUi+roEku3qi6KY1KF1XOMHO3hiGaR26Buxqphyza738aVsXsZROMm2Q0i0UG6g2Gye2VHFSW82I9NIRSvDYG/tIGSYO1cbKZXO44aIFg8qRf1+7auOEFj/z6n1s2dvPm/vCGGbm+o8vnkFTwJUpR1EZ851V5Ov5L10R3t4XRjdNNJuNhTMyeRfXW75MaT3jvTNbjnz9DVXf4+1AQxAEQRAq4Y477uDXv/417733Hm63m2XLlnHXXXdx7LHH5tJYlsWtt97Kj3/8Y/r6+li6dCk/+tGPWLhwYS5NMpnkG9/4Bg8//DDxeJwLLriAf//3f6e1tfWIludw7X8rDWVVad75K4Bp08ShKoCColDxamCltrL56RQUIgmd849vQEHBwiIUy2yH39+fGLHtbaUrmcX6syyLcCzNLzbuHuQsbX9/gi17+rHbFObV+XBotkE6PxhOlLxvdov2cOHNSoVm+/zSWfi37Kc7kqTO5+TSk1pKrqifNb8ev9s+KF1xeymV33ARbko5AB4v8ttt50CSF7d1jXlUm+Ec3o2nvbcMuo8ShnK6AeTOBX12/vhOJ4oCZ8+rZ/OuLgDOP76Bg+FEzhlEY5WLZ7YeBOCc+XX86f1uFAXOP7aR3liqIqcb+TLl33fp3CAbdvSgmxYLmwPsD8VZu76dpoCLtqA354ihtdpV4KBhX1+cn7y4g7OOqaU14M3Jd+acIK/s6CVtmCycEeBgOM5PXtjBWcfU0eBzsaG9F920mN/g4/WD/QCcNjtIRyjOn9t7cDtU/C4HnQMpAKrdGgNJnU27+zlxRg2dA0k2tLczt95Lo89dVi9/6Rrgd1v2A1DlshNJ6qx9uZ0PzQsWlGNXd5Q/t/fgsWsEq5zs64vzyo5e6rx2Nu/qQzctqj0Oook0v9q0m8tOamFmraegjF0DyZyzCo9Dy+nZaVfYsCNT3ma/iwPhBBt29HJsU1VuhrSlejaxlJ6TKehxsHl3LwCnzqqhJ5LM6W9unW/IsB5HyoGGIAiCIAzF888/z3XXXcfpp5+OruvccsstrFixgnfeeQevN+P88+677+aHP/wha9asYcGCBdx2221cdNFFbN26laqqKgBuuOEGfvvb3/KLX/yC2tpabrrpJi677DI2b96MqlYeA3m0FHtNPpyBxFCD65Hmnb8CGPTZSRkWimJhWVS0Rb0S53CxlE5nOFkQFmxPX4wD4Thup422am/uXqqNUTmEG8nW/az+OsMJHn1tP9GUQb0vc82L27q4ctlsICNHNGUwuzbzzuRzqnzi5JaC7e+l7utzqaiKgtuuDpJHtUEkoePSVPb0R6l2O+iPp2g85K07K98Xz5xZMOAtpeetHWG+eOZMDJNB7aA49Flxfvl6KDdJU87hb6k2cLhO5LLtttHvYl6994hGzBkrB4flkEH3UcJQM3dAydnJlGFgt9kACwXlkDOIfqrddhSF3LmUbo1qRrPcrGgkoYMFLk3Fodmodmvs7jXxu+05RwydAwneObSynHXQUOtz0NWRwG3XCuQbSOqYloXboWJXbdR6nXQNhHHbVVKGceheNgzTwmaDrL2Lx6GimxZVTjumZebktilgtykYJvTFkrRUewjH01S7HUPqRTet3Cq0U8v8MEdTOn/e2VtQDq8zc1+fS8Oh2nDZMzsO9vYlME1wqDYcqg3LkQnnoJuZe+WXMaujjlCS+qoP6ndPXxTLtHCqNjSbglO1oRsmkYROW403V29dAx84v0jpJjYlY/NjU5QC/VUS1iPfgUZWJhl0C4IgCEeSJ554ouD76tWraWhoYPPmzZx77rlYlsU999zDLbfcwuWXXw7A2rVraWxs5KGHHuKaa64hFArxwAMP8B//8R9ceOGFADz44IO0tbXx9NNPc/HFF49rGcZjFW2sIn/krwCGYmlObqsGLEKJFEGvnSWzg+zoipZd7RxuhTlb9gOheEFYsLYaD/G0jtehFaw8Gmb5VeChyjvS0F0eh4bboZHQDYI+O2nTJOiz51bbYbAc+0MxIkmDhiHum105/80b+0jrJoZpsbM3Sp3PwbFNfn61cW/JXY7nzm8oWHX93Rv76YkmqfU6uWzx4FBgWb0YJjT6C+tlJKHPKqXcwHoyt+1K8x5ve28ZdB8lDDdzV2p20qGqpM3MYNPCKnAG0ah9cM6hKSOe0SyWKf++PpcGCiR0g5Ru0h/Xcao2wvE0Abeec8RwQrO/wEFDTySFx6kRT+tYljMnX5VTw6YoxFMGacOkJ5rE49CIpw2qnPZD9zJRbQqZSzI2QbGUgWZTGEim8bscOblNC9KmhWpTqPE46Y+n8bvtmRlGn7usXjSbgmZTiKV0VJtCJKnjsts4Y3aQje19uXJEk5n7RhI6DrtKIm1iVxVaa1zYbJAyTFKGSSyl5/J0aEpBGbsGkjlnFR7HB3r2uTQUm0LSMNFNi6RhotkUfC6toN5UGzndBj0OTMs6VHarQH9Ze5ZKwnqMpwMNQRAEQRgJoVAIgGAwCEB7ezsdHR2sWLEil8bpdHLeeeexfv16rrnmGjZv3kw6nS5I09LSwqJFi1i/fn3ZQXcymSSZ/MBjczgcLpluKMZ7FW0sKBdq69Vdvdz7x21DmpoN9Z6aX/aWwOCwYLNrvXxmSWvBSm0spY/aIdxowp2lDYs/vtOJQ828+53cVj3oHbvJ7+K9jjAHBxI8+tq+siHDilfO3+0Ic6A/TlvQTSpt8tL2bmyKQtBnZ9POPixL4ax5tURTBls7wpw5N9OmH35lF1v2hbDbbLxnDhBJpvkfy+dVpJfi9jZU6DPLsgpMUSsxC8hPdzS07UoYCweHQyGO1I4ShnK6kX8uOzu5uDVAXNdZ3BpgcWs1oVg65wyi0e8klEjlzsVSRu6a7IxmJbYT5e6rGxYfmltLW42H3liSRr+TK5fNocHvKnDEsKDJX+Cgoa7KwdVnz6W12lMgX9q0WDovyMxaN73RjB3K1efMpbXGTVzX+dDcIG01HiJJnVl1HmbXeQjFUzQFXFyxZCbVHgfxtE61S8Wt2UgZJh6HxumzqlFs0Oh3snLZHBqrXEPqZV6DjyuWzMTtUImmMgPuKz80h6Vz6wrK0VSduW/AayccTxH02Vk6L0jA4+S02TWZAW9Kx+1QuWLJTOY1+IiljIIy5juryNdzRrdBgh47kWSaoMfOh+YG0Q2roN7ynV+EEilm1XqZXZtZ0c/X30jCeoynAw1BEARBqBTLsrjxxhs5++yzWbRoEQAdHR0ANDY2FqRtbGzMnevo6MDhcFBTU1M2TSnuuOMOAoFA7q+tra1iWbNOmUqF8uqOJNnRFT0i4YoqJT+8lseRmcR/+M976IulaajKOPtau759kHPVod5T81cQAx47S2YFhwwLll1NzXdoNty76WE7v7IsLCxShomFRXYBJ79c+0MxDg4kaKhy0Rxwl3TSVrxyHkul6QwnCMXT+Jx2uiJJ3toXosqlEk0YqDZwajaqXHbaajy58G6d4SRv7Q+h2hSqPQ7UXCgwoyJHecWrtuVCnzntNrbsC2U8m3tKh+eKpXR2dkd5fMv+kk7fxiIE3mRgLBwcDsXRM/0gDDlzV252svizx6Fx5txgRelGI1N+HtkYf9mtSN2HHErkb00q5aAhf+vKUPnlp8s/BxSk29MbZUdXlLn1XuIpg3cOhDmh2U9r0DMqvXzpzJm5PBY0+cuWI/++tT5nLo+9vbGC68uVI39wW6znnkM/1MV559dbsUzFeqnE9uZIOtAQBEEQhEr4+te/zpYtW3jxxRcHnVOUwpBKlmUNOlbMcGluvvlmbrzxxtz3cDhc0cA7f2XQbVdJ62ZFK6aTiZGYmpV7Ty1eQdRNi2Xz6nJ20fv7E6x5aWfJUGX5W6DLvasMt416ON0OJHQiSQOvQyOpGzg1lYGEkdtWnC3Xjq4oj762j+aAe8jtx/kr5xYWu7qjuO0a73aEURWFvmiKP77bidtuY19fghqPfdBO03hKB5RsNLBDcwCZD5Ws5BfrvFzoM6fdVmCKWqlZQH668V4hPpIcroPDoTj6tDHNGcq+ofjcUJ8rSTdambKfsyuuWco5Yig+Xml++elK3StLW9BLW9Cb+54dKOfnPdR9iz8vaPIX5FGuHMX3zeZRfP1Q5cinIF1QK5n3cDINpedyVOpAQxAEQRDGm+uvv57HHnuMP/3pTwUex5uamoDManZzc3PueGdnZ271u6mpiVQqRV9fX8Fqd2dnJ8uWLSt7T6fTidM5MtOqUltuFUXB51QHrZhO5u24IzU1K/VuUcrO+uz59bgdhVvPs055TcvizDm1dA4keebdg3zi5JbcAK54AWfQNuq+WM45btYxW75uSy04qDY4EIoXOI5VlMzxfHxOjapD5nzDDi4t69BgWSFpWFgYOFWVg+EE0ZSOx6liU2xUe+y4HDa6ownqfM7cymqD38WiGQG27O2nL5rEsCwWt1bT4C/9PlbKQV++zhurXJw7v4GtHWG6I0mqPXaCXid2pdAUdSRmAVmHcAMJnXMW1I+Lt/GJYLxsyY9ObQiCIAjCJGb2tx6faBEEYUphWRbXX389jzzyCM899xxz5swpOD9nzhyamppYt24dp5xyCgCpVIrnn3+eu+66C4DTTjsNu93OunXruOKKKwA4cOAAb731FnffffeYylvOKdMnTm4hkjQqWjGdDGRNzdaubx+VqVl2MNhS7eLKZbMPOXtN8Kf3u3Ihw3qjKRY0VpE2TXTDpDeaYvPuPizLIprU2dMXo63GQ53PyZN5K9qfP6ONtqCXnmiSloDn0DZqe845brFuy4UgM0xornahKBCKpw9NKrgwDvngLQiPW+QUrdzWbrtmY+ncIJ3hBLGkTiSpE03pVHs0DMvirGPqqHJmV7jjnDu/noUzPogO43FofP6MmWg22NsXp7XGzWeWzCxYfR7OQVq+zot3dXYNJHhhWzeheMasEhRCsfSQYdCWzAry6u5e9vcnaAm4ChzC+V12zl1QR/0h7+vFOhkLz+ZHOxNa6j/96U98//vfZ/PmzRw4cIBHHnmET37yk7nzK1euZO3atQXXLF26lA0bNhxhSQVBEARBEISJ4rrrruOhhx7iN7/5DVVVVTkb7EAggNvtRlEUbrjhBm6//Xbmz5/P/Pnzuf322/F4PHzhC1/Ipf3KV77CTTfdRG1tLcFgkG984xuceOKJOW/mY0W5LbcNfhcNQNDrOGq2447W1KyU462Wahf/vbm7YGU6GzKsxuOgK5JENy1cmspb+0OkTROPQ2XbwUhmhdbtYEaNm/buKHc9sZVl82rZ2xcnHNc5rslf4By3ymmvKARZlUvD57QTjkdQFQjrJvMbBq/2NvkLnaLlBcYpoMql0TWQZMOOHkzTIpIyaKxysGRWDf2JFKoaJ5rSCXqcvNsRpjOc4E/bunh7f7hgK/zu3hhv7QvTH0vRH0uzdG6MlmpXxQ7SSpkt5IfkmlvvG9LEdCizAJ9L41cb9xbo84Vt3Vy5bPBujfGMfX00MaFPdzQaZfHixVx11VV8+tOfLpnmIx/5CKtXr859dzgcJdNNZcrZ/GadU2QfkFI208XXF6fLz6MSG+xS+ZWj3PXF5+IpI2ef3Bb0FuS/7eAAr+/p5+S2aoJeR0G6fJtpt0Mta7v8xp6+XB4zatxl75vPKzu6+fPOXs6YHWReg69sOcrJUGzTDZRNl6+LfNmHkq9Shqqrcu0AKrPtH6pdjaa9CIIgCEI57rvvPgCWL19ecHz16tWsXLkSgG9+85vE43GuvfZa+vr6WLp0KU899VQuRjfAv/zLv6BpGldccQXxeJwLLriANWvWjHmM7uz23sff3F9yVXQkYa0mAyM1NSvn0fqSRc0Fq6f5IcO6BzKhsZyaQl88RdowcWo2/G4HB8MJ+mNpZtd5cWi23Cp4dit250ACv1uj0e/k3AX1vLmvv0Dv2RBkPodGbzSJz6HlnH1VuTSwsmFnM6Fls47U8ncsqCr0RJKE4mmOd2YG+I9v2V8QszuW0tnVnXn/SxsmdtWG3aYQT5tEkjqt1R4uOK6JrR1hDoTidIYTNPpdtAQ8BRMBsZTOmpfa6Y+lqfU56YmkWLu+nWa/s4SDtP5BDtJ8Li3n7Kyc2cJQZpXZ76Xa6ew636BV8HK7NaaKZ/OxYEJLe8kll3DJJZcMmcbpdObsdKYj+bND+bH8VJvC7KCHer8Lv8tOwG0v2HKTDedQPLuUn05VFGbXeamvcg6KE3jqzBpe3d03bH7lZqueea+TNS+1lwwvkX8ukkgTjuugZB7uT548A4dmI5xI88qOXt7eH8qFu3JpKh6nisehsbi1mjf29hNL6VhAwKXhc9lJ65lpx6wDDs2msP4v3ehmxramzuek0e8icqgThcx9rz5nLl88cxYA//Ph13h8y34MK+OyotaXmVUtLsd/btjFT17YkfHwaIHfnZHB77Izu9bLn7Z1EUvp6EbGC6Z2yDjI77LjOzR7mK/ntGGClZE9ktAJJdIoJeQbTdsprqv8OshvB8UOTCoNG1Fp+5uus5uCMNbI9nVhumEdehcYCkVRWLVqFatWrSqbxuVyce+993LvvfeOoXTlsUwynrGLVkXH02HTZKDc9nqwBu0AyIYMiyQMfvZSO2/tC2GYJuah911NVXCoKppNoWsgiaoomRVtl5azi6922/nkKTOYW+9lf3+CLXv6C/Re5dLoCifY0N6bGU8r8KG5Qapc2pCO1PJXe71OlX39cXTD5N2OMLphEU/pdEdTNPtduW3ef+mOsLcviktT0VQbTo+KZsvsGDh9TjC3zXtHV5RHXtub2xqfP3DtGkjSOZBANywOhDJxvzP24EZFDtKqPXaqnPbDNluo1Dleud0a4x37+mhi0ocMe+6552hoaGDBggVcffXVdHZ2Dpk+mUwSDocL/o5W8meHPA6VV3b0sqc3TsBtZ29vnA07e3FrGvtCMX7ywg56IqmCcA57eqO56+t9LvaH4rl0QY+Tvf1xNrT3gGXl8g56MwPwtevb6Qonh8yvVFgByKygrnmpvWR4ifxzXqfG7t44ffFUZltPQmft+nZ290ZJ6wZb9vaTNiw0G+gmRFKZjjAUTfH4lv30x1KZmbxoml29cRyawq6eGLt6YwRcDvb1RXl2axdpw8KuKqQNOBBKYlkWu3tj9EbT+Fx2Ikmdn764gz29UV7Z0c3jW/ajW5mHwwS6Iik0m1JQjj29UX7ywg4iSR2f005fLMXu3jg+p52DoQS/2rSbcDyNx6HRH0vTH9Nxaiq90TS7e2P4nFqBngNuB7u6Y+zqieFUFXb3xuiLpalyaQXyjabtFNdVfh3ktwO7qvDGnn627AsRcDnK1m9x3pW2v3L5CYIgCMJUI/tbGU0ZzK71EU0ZJcNLZcNzHQl5siG1Dju8VgVkB2V7+qN0DiTY0x8l4M5sr1+xsAmfU2VnTwSfU+WiE5qo87lo8Dux2xRUm4LPacfjUrEs6I+lUVVYOreGhipnZiXXqTG/sQrVptARTlDrc+R2Fj71dgfd0SQuTaU7muTxN/eztSPMX7ozi0uaqqCbFjt74sRSes6RWk80iVNT6Ykm2dcfozeaic2+YmETPpfKvr4YybSBZrPhVFV29kTpGEgQiafZ0TXAmpfa6RxI0hxwkdAtumNpVFtmISltWsyt9xY4zp1b76XW66QjnCCeMugIJwi4MwPXgFsjkTbpjaUxTIveWJqkbtLod+bk2dkbpcbjyIUDHkimcw7SDIOC/A6HUu200vBa+YPz4jJONyZ1iS+55BI+85nPMGvWLNrb2/nOd77D+eefz+bNm8t6kbzjjju49dZbj7Ck40P+7FBfLIVpWbgdKgoKLrsN3bBIGQZue2Y7y8ygpyCcw46uaMHskltTc+kcmg2XpmYcVuTlbVdtBNwau3pN/B5tyPzKzVYNFV4CyJ0bSGZm5WwoaDaFaredjnAcGwqdAylMK+M50qaogAGAYVm4nRr9CR2fQ0NTbKg2sEyLRMo8tDVIQVFAU21YgF1V0FQbStrAAkJxHazM7KmqKNR6HfTFUuzoirJlXz+GBXYb2BQFw8jMrEdTBm01nlw5eiJJYimdWq8Di8xWJAvQTROPU0U3LXxODZuSCfVgWRnZs7IaJgV6BrDZMqEg4unMarNmU1AVW4F8lW4zH2pmsWvgg/qxKUquHQwkDByqktNfufotzrvS9jedZzcFQRCE6cVkWuErdgSGomBXlXHdgeZxaBzX7GfDSz2EE/0ZR1vzGwrLXhSmLeuA7PxjG1EUODES4PU9fbQG3cys8XDpSS1UezQ6QkniaYNNO3sHDfgOhhO8uS/E1o4BUoaJcui98f2OAQ6GE8yu9VDjcZIyDHqjKTpCSeqrnHgdGnv7YuyIRQGLtG7x0J/35FawLRNMy8p5MI+mdJK6SSyp89Q7B9FsCj6Xxqkza3DZVWZUZ7ygR1OZnX7HNlXh0NRBOipnZjCg6bQFPby1L0TnQBK7qtBa48GhqSR1vWAHxcygZ5CDtCNhtlDJbo2hyjjdmNQl/uxnP5v7vGjRIpYsWcKsWbN4/PHHufzyy0teM9pYipOR/NmhKpeKTVGIpwwsLBJpE03LbLfpT6TwODR6IilcdjUXzmFuvZe394dzWz/iupFLp/ltJHQDTVUIehy5vNOGSSiu41RthGM6AbdeNr9yW0mGCy+RPed3Z64zsdBNi/54Gqdqw8SiocqBTQHDBNNm5PJWFYVIIo2qQCSl43DYMMzMljKXw4ZpAoqFZYFumChA2rBQFJPsxrSAW2N/v4JhZgbC2RXlufVeXHYbqgJpE1Q+2MrmdagF5Qi4M51LTzSzrcc8FEdRs9noS2ZWxiNJHb8745kyK7thZgbzqg16Ih/o2RXQMM1MQrc9M1LXLTAsk1BMz8k3mrZTXFeq7YM6qPc5c+2gyqWSMiyUQ/orV7/FecfTekXtb7I7ihEEQRCEsSL7W7mjO4LbrhJPG7TWuI/4b2BBSC6Pg2e2HgTg/OMb6I0MbfM7XL6lBlvZ46oN3jsQZm69j2p3Zvvz1o4wJ7X6c/LUehwFdsdZnfXGUjT5XSiKwjnz6wtspuGD8KcLW/yDZEjpBu8eCBNJ6lR7HOzri2NP6JxzTC2qYmNndwzvDDtdA6mCd9NoSsdt12gO2Nl2MAIY1PscdEYSOUdlx9T72d0bJ2VYLGj08NruPgzLwqvZiCUNknqSPX0RjqkPUOWy47KrnNxWjW5azKgurPt8r+6fWdI6yCeOasuYODb4HHicGrGkjk3JlC9/B0XWRvozSzLh8+bW+wocpI3EN89o6r2S8FpT3ZSiUo6qUjc3NzNr1iy2bdtWNs1oYilOVvJnh0LxNEvnBdndEyUUT9MW9DC71k1czzhluPqcAE+901EQzqEt6C2YXZpR7ebqc+by1Dsd9MaStNV4mF3rAUXJ5d0bTdLgd3LxwiZe29M3ZH7lZquGCy+RPReKp5kVdBNKGESSaQJujU8snoHTbiMUT3NSazXvHAhltgLZwK2pJHWDap+Dc49tYMu+fiIJnaDXTsClkdItZtd5sFAIJVK0Br3MqvWx/i/dh7aYZ2y6FUVhZq0nZ1Ne5dL46tlzc3G1Lz2pJWfTbSNj062b1qByXH3OXH764g4iyTQ1XgcBl0Ykmaap2sXSubW8sL2LaFKn2mNHwSKpGwR9GZvvSFIv0HMonjokOyQNi1lBL6FEKtdBZeUbTdspriuPQ8vVQX47SBsWJ7dVAxahRKps/RbnXWn7m86zm4IgCML0wuPQCLjt/GrTHmIpPeefZbSDm+GOlyN/xT1tmNhtNsBCQRl29b3cvcr5a8k/blMUeqJJFjT4cTtUqlx2DoTivL0vzI6uCPv64wwkdaqcGvG0h4GETuOhreePb9nPzp4IdT4n5x/fiLtM+UsRiuu47DbsNge6YeLSFGwKDCQNlsyqZvPufg6G49T5nLl3uoPhBM3VLjSbQjRl4HLYCHrtOLQPHJXZbTYiyTQnNAV4+0CIvb1xFAXsikIindlpqdpsWBbsD8U4obkKUDAsqK9ycs78OgYSme38+aHLyvnSMUzwOlXSpkXXQAqHpuBxqITig3dQvN8Z5mcv7sS0rIp3L4zG587h+OkpNzifTs52j6rS9fT0sGfPHpqbmydalCNG8ezQUN7LL17UOGimrNTsUn66kXovr3S2aqjwEsXnynkv/7sL5k+I9/J//fwpfGFp27Dey7945izOXVA3ab2XD1VXxXUwUu/lw7WrkbYXQRAEQZhKdEcSPPl2B16nysygh55okqfe6eDiRY3DegGvZFBb6aAnf3da0OMgbWY8i1lYQ+5AK3evct6oqz2tg0JZHehP4LZrtNV4cqGxoqk0z7x3kHBCzziWUhS6B1KoxV6mlEz87kdf25fbCp8fj7rcYLUp4KShypXxM+Nx0htNEUsb/On9LlSbwilt1aw8aw6z6zy5eqhyacwKenHbNbwOlZd3mKg2BQuL/kNe1H/35j5sKKRNi1qvnTqfBwDTAp/TRjRpYFfA67Qf2jZvHdrpaNEzkOSR1/ZjVzMmfQNJHZuiEPTZ+eM7nSgKnH9sI72xVG7VX7VBNJkxIW2tcdATSRFLGQTchbsN9/TFOBBKZDzBV3sr8g4+Go/i4+GFfLo5253QN+BIJML27dtz39vb23n99dcJBoMEg0FWrVrFpz/9aZqbm9m5cyff/va3qaur41Of+tQESn3kyZ8d8ji0gs46v6GXC+dQPLtUnK5c3pXmV46hwksUn8sfVObnv7ithsVtNSXTZVem8/Ms9bk4j3L3zWfp3DqWzq0reU0+Q8lQfG4oWcvJPtpQYVmGqqty7aD4c6V5H257EQRBEISpQta/zYzqjL8Tl13N+YUZatBd6aC20kFP4a7JFItbA4BCKJYuuwNtqAFWKVv13b1RXtzWzcFwgplBb24AGE+a2FWF7V0DHOiP01LtxqlqhBMGhgmaZkM3TQ6E42zrGCBSbfD4lv1EkgYtfnfBVviDoSQb2tuZGfQQcGn8eXcfqk0ZNFjN323ZPZDEBNx2DadmI6GbdISTBQPu7ELPuQvqeGFbN6F4mlNnVpM2LPb3J/DaM3bYppXxERSKZyLLnH2Mj1pfmN5IipRu4rYrVLudpHSTOp+Tl3f0oNoUzp5Xz4t/6cKwLD40p5b9oRi7euIsP64eBQWHmlkNjyQz2/+7IxmfOD6nRnPAnXH6Zlg0BpzU+1w4NLVgF6HHodLsd9NW7a3Yd8Bo/A2MtY+C6RhKbEJLtWnTJj784Q/nvmdtsa+88kruu+8+3nzzTX7+85/T399Pc3MzH/7wh/nlL39ZEG9REARBEARBECYTw/m3KUe5wU12ED+aQU/xrrPsfcrtQBtqgFXs1+XPO3vY2jHApp29RFMGxzYlOGN27SF/RBoO1UbKMEnqBnU+J+F4CsiY7ymAalNIGya/3LiHKred9w9GOGVmdWbrdt5W+Gq3nc5wEkO30LHoHkgS9DlLOn7N7uZ7cVs3P32hnQa/E4eqFjhPq/O5Bq20nrOgnoYqJ10DCZ5+p5OeaCYmt2Fm7MdNC+iMYJgZ/zfHNlZxwBnnuCY/JiY7u+McCCXY2RM7JJ+DlJHxl9QbSbFpVx9OzUYsZbCnN05b0E04odMXT4GVsSt32W0oKFS5NHxOFbfTQ7XbQX88RWOViypXxpN4tj5VG/xq494R+c+pNNzX4V4zFJPJ0eCRYkJDhi1fvhzLsgb9rVmzBrfbzZNPPklnZyepVIpdu3axZs2ao9YpmiAIgiAIgjA9yK64Br32kv5tylEuxFJ2ED/a0Ev5YZ+GC1U2VJin7Mq5z6XyXkeI9w6Esas2ZtR4sKs23j84wO7eKD6XimVZpAzr0JZhhU27enFqKopiYQKWYqEbmXd/1abQEvBgWhZ/bu+lJ5okoRukTQsLi65ogkTaoD+exutQSeomXZEEybRJRziBZlPY0xulO5LIqwPHoRCtmSg9XQOpnC6zK62ZuNsW+/rjPPPuQXqjSZ5+pzPnqMxmU0ikDfb1xYkm0sTTBtjA67BT53NSV+XE7VBprnZjVzN27JqqkNANuiJJDMukayBJ0jDxOjT6YmlcdgW/U2N3TwyHplDjdgAWfbEU8ZSBU7PRF0+hKAo+Z8Zpb43HMaSfnWwIMZ9LzdmPlwoJl7+ynx/ua6hr8u8zXIiwcnRHEry1L5Srn+kYSmzqlmyUTAaD/mIZKpWp2LlEuRnNfFvjWp+zorzz7Y6Lbcnzz+XbIQ+V9/sdYd45EOaEZj+tQU/ZdKXsyrOUs+ne1xfP2XAvbqspyKM3ksrdF8h9XtDkrzjdaPScv018qPrM18uCJn9F5S22/S6ns+Lj5cpxuE5eRsJkeN6E6cnsbz0+0SIIgjDFGcq/TTnKOUKt87mOmHPSSsI8WSbEUgYJ3aC1JrOFfk6dlwOhOOcf18CsWi+/2LibgMeOgsLJbdW8vqePjnCcFr+Lvlga3QKfE3wuO21BLwGPnXn1Pl7a1sX6v/TgttuYFfQQiqWpdjs4vrmKgbhBXzRNS7WbtG6yuy+CYZjs6U/w4vZu/C47p86s4dXdfbkQaYpCbuLjc6e3YZjQGU7y5r5+3j0QJpm2UGwWPoedPX0x9vTGOLGlmrRh0lrtodbrYNvBAXaZJppiY169l+5oZmv33HofFmCaGb31xVKEYjEcmg2PXaM7kqLW68Dt0NBNi3qfA6eWCS2b0g1sio0z51bjtNuIv99NXzTJ+h3dVDnteJ0aM6rdudBgWYpX6LMhzbAseiIpHnl13yBb91LXZVf2OweS/On9rmFtq0frp+eZ9zpZ81J7Lv+VZ83h/OMapp2z3albslEwGQz6Sz1IWacRQ8lUEIMxz7lEcTzGlG7y6Ov7iKV0NJuNhTP8zKv3DZl3/sOi2hRmBz3U+134XXYCbjtPHrpvJJEmHNfhUIzsRS1+5pbI+55177NmfTspw0RVFE5qrebE1sCgdOUeUoD/3LCLn7ywg1hKxwICLjs+VyY+Y9dAJh64ZlNYNq8O3bQIJ9L0RpL0RNNYWBhmZmZVU204VBvnLWigL5Yqne5QXg7VxscXz6Ap4Bqs5yKHHvl6znos/eKZs4ZsY/l6cag2Vi6bww0XLRhUXgC/S8Pnsmd0fsgbpsehce78enb2RAfprFiXFy9sIhRPD+mMZCTtdDTPymR43gRBEARhPBnKv005yg1ujqRz0nL3yq4QZ7aSV/HGnhDbOyM47SpdA0mCXgcLZ/jxODTShsUf3+nEoSqEkzoO1YbHqdEa9HLCDJVqj5O0btA5kMqEjdVU/tIVod7v4kNzg0TTBjUeB59YPAOfS+WOx9/l9T0hLNPCsCzqq5yYpsKre0I4NZU5dV729MRYs76d5oCbtqCHA6EEPqfKdR8+BqddZWN7L2/sDWFZFpt29RFNGjhVhYGUQVjVOf+4et47MMAf3jlAa8BDwjDY3x/Hoal4NY1E2mB3b4zmgIvOgRTN1W6Ob/LT3hNhT18Mt6bSWuOkJ5Kixmvni2fM5Pn3u+mPp6l22+mKJtjTE0c3rVwIsjf29nPm3CAd4QSxlI6iKJlQZ6qNoM/O3Nqq8g7r+mJsaG9nbr2Xlhp3WcdswCAb6he3dfGZJa288H5XxbbVI/XT0x1JsOaldvpi6ZyZxdr17ZzU6p92znYndHv5ZCLfoL/e58rFDSy3zeJIyNB5qKF2DiSHlCn/uoDHzht7+tmyL4Rb09iyL8SWvf0EPHZ290ZZs76dcELH73LQF0+zYUcvmqqUzTv/YQl6HeztjbNhZy9uTWNff5yfvLCDnmgSn8PO7t44ffFMzPD+WJoN7b3YbYV5v98RZs36dpK6iedQ3MpNu3rhULzsbLr8+zZUZcq+dn073ZEEe3qj/OSFHUSSmYe0L5Zmd28M07Q4EEqim+BQFdKGxbNbu9jXF8Vt19jXn9nCYrcpJHWLlAFOW2am9vEt+zkQiuOyq7l0WjadbuFQIZE2+NWm3ezoihTq2aHmPgdcDnb1ZPWcpsbjIJLU+emLO3i/I1y2jeXrxevQSOoma19u5/2OcEF5fU47fdEUu3vjqCgZncdS+Jx2wvE0v9q0m4OhRIHO3u8IF+iyJ5Lipy/sYH8oXlCOgMtRUbsfi2dlMjxvgiAIgjBZKbcFfLit4eMlQyylczCcoDOcIJxIE/RlQmqdObcWTVXY2xcl4Nb43OkzMczM7zyWhaKAYUFfNEUibdDgc9FQ5SSWyrzvzGuoYuVZc6jx2NneFcayLM6YE2RGjTfjjC1l4HZknJnt7I1hWhZ2TSGeNuiJpPA4bcRTBljgUG34PRopwyTgzgzimgMu4mkDl93Gxvbe3HvH/v5ExuO4qoCSCStmkdkO73Wq6IZFLK0TTxoZL+JOlRqPE9OC/lhmwSKUSNMbTaIeCknrsmcGyaDQ6Hcyo8ZNS42Hyxa30Oh3ktANqt0OmqtdNFa5UBRYPKMamwJ7euPYFAufU0NTbWg2GyndoNrlyNk8h+LpQbb91e7M+1+125FzzGa32XK27qF4moGEXtKGOj+/oMdB2jAJehyE4mk6w0kOHpoEOByy+TcHXLn6yN63uI0Vk21zU+XdcGpPKYyAyWDQXyxDNjZgtds+pEwFMRhNE4eqAAopwyhwQmFDIWWYNHmdODUbTtWGbphEEjptNd6Seec/LDZFwWW3oRsWKcPAbVeJpXRmBj2kjcy+FxtgU8ClZTqLgWRh3u8cCJMyzEynYrNhVw10w6Q3lubYRn8uXdfA4Ic06/WzJ5IkltKp9TqwLNAUMA+tZkPWMYeKXTVI6JnV7KRuYB06ZylKntZVPA6LUFzHqamkDTOXLvtv5pOKxwHhRBrdtHIdGyik9A90rihgU7J6duO2a9R6oS+W2a5ero3l68WpZX5coqnM8RqPo6C8NkXBOnQ+o3MFzZax+wkn0nicaoHOsvfN6rLW56CrI4FbUwvKUcoZSSXtdDTPymR43oSph2wZFwRBGHvyd6a5tMyK9qadfThUhVBCp67KyZxaL16nyqadvbyxtx+bohBJ6Zx/bCORVJpYUicUT7N5dx8eh0qdz8EnT5nB3Hov+/sTvLm3H7um4tRUuiMp6n2Fzrp2dEUxTCvj0MyEHd0RdMPCqWZigPfHM7sVw7HMinooruN36zkHdl6HveC9I/tea1cVAm5H7j02qRv0x9K47RlZMu9IkEwbuLSMLbllWeztixNL6uzTTfpjafrjKRqqXLQFPdT7nPTH0zT6nSUdn9337F94ZutB7DYbadPkhOYqLjqhkb19cRTA784ssHQNJOmOJAl6nTld5Nv2N/ld9MfT+N2Z8jfaXaSMjJM3y2KQs7NSjtCaAk7Sulkgz6ygm9+8vo942jjsnYijdSg4FXdDykr3ISaDQX+xDP3xFH6Xnf54ekiZ8q/LztJlBt8qadPMOaEwsXCoNvrjaZK6SdIwUWwKPpdWNu/8hyVlGCTSJtjAoWZWqT0OjZ5oElXJNCWTTFiFhG5iU21UOQvzPqHZj0O1EUnqpA95dLTZFIIee0G6/PvGUplOM+v8Ym6999B9UxiWiW4BSmb7PIAFGKZB2rBQAN0wM447Dp1TMoETD2EQSxmoSqajtau2XLrsv5lPxqEt+ZkBboGeNVvus2WBaWX1nCKe1umJpvA6M2Uv18by9ZLUDSJJHadm44Rmf0F5ddPCPCS/99Dg1MRCNy0iyYx8saRRoLPsfbO67Imk8Do04rpRUI5sBz1cux+LZ2UyPG+CIAiCMB0ZagWx+FzxzrT+eJpdvdFDJnjQH0thmhZz671s7Yjkds7F0joH+hMcHEjg0Gz0xlI5Z2LdkRTdkVRu4PXU2x1Ekgbz66toqXbTNZDgQCheYOebfS88GE6QNkwSaQMF0FSFuXUefK6MPXVDwMnKZXNo8DsL7LjdDhsuTWVPX+xQvHCDWbVu7DYbkYSO264yqzYTezupm5mt3V4HibSFz6miKgoDiYxDNrddJehzotoyntn7ohnP4ivPmkNrjZuEbtDodxbYKBes6OYWf7LvmQq1XicntPhBgXhKR1UVls4NUu93srMngs+pFtj2Zx2aNfoz5W2schGKpTP+jFoDhBKpAv0N6QgtTx7DtNjZE6Mvniq5E3Gkq8+jcSg4VXdDyhvuISpxGnGkZWiscnHu/Aa2doSHlKkgBuOhBw4s4rpeEI9xVq2Xlcvm8Js39hFOpAh67Cxs8aMbVtm88+Md9kZTtAU9zK51E9d1WmvcXH3OXJ56p4NQPM3MoIeBRJpYSqfGY2dhS4C0WZj3giY/K5fNYe3L7cTSBh6HyokzqkHJDLzzO4fsfUs9pFefM5efvriDgYRO0GMn4HJgsym0BJx0RZKkDAu7mrHpNiyLUDxNa7WL7miatGnh0jID56QJXqfKufMb6I+nCtLph9KZQMoAt0PlYyfNoLnaVajnlJH7HEqkmF33gZ77YimqXBpfPXsuC5r82Gy2km0sXy/ZkBFXfmhOzplatryRZJoar5OAS8XAYlbQTShhEElmTAsuO6mFXb3RAp0taPIX6LKuysGKE2YSTqQLylHcQVfaTkfzrEyG500QBEEQphtDrSCWOlfl0gZtZ9YNi7OOqcuMGXeBqnDIFO+DnXPZON0eh0r3QJJarxOPIxOXu77KQb3PhWEO3vl2XJMfv1vLrYJn3wvqfC4uXtjET17YQdfAAABuh40/7+zF77LzPy9YwDENvpzDuqzz2HjayNlxdw0k2dUTRTct/G47Fx3fxIb2HvqiKWq8Dq780Gzagh4S6YyztkTapNHvZGatmya/i86BJO3dEapcdnTDpC3opsbt4DNL2nKynjk3OGw4NruqcP7xDSgodEcSvLk3xEMb9+CwKSxs9mOQ8bx+4oxq3tzbnzcozlDKFjr/vtn7FMtQ6rqD4USBPOFEmvXbu6l2OwbtRNzfnxjV6vNIHQpO1d2QR6/k48BkMOgf7kEqJ9NQMRjzP3scGp8+bcaIvJcXPyzF3ssvXtQ4Iu/lN1y0gI+e2DSs9/KhHtIvnjmLcxfUTWrv5fl6znovH6qNFesl33v5UOWtxHt5KV0ejvfysXhWJsPzdjSxb98+/vEf/5E//OEPxONxFixYwAMPPMBpp50GgGVZ3Hrrrfz4xz+mr6+PpUuX8qMf/YiFCxdOsOSCIAjTl8kSpSOW0ukMJ3l8y34iSWOQ0ywY7Ghr3TsdfGZJK36XnR3dEdx2lYFEZjtzNKXT6HNjWhamBQ5NGbS1eXadh8tOauZgOEnAbSeS0nMxp2s8DuIpA59LHbTtuc7nLBhwZ+UPxdOcdUwdmqrw2q5+NFXhzDm1xNIGB0JxVixsLBikexwaa17amfFL5HGweVcfJnDWvDr6Eyle3dPHMQ0+6nxO+uMpdvZEOX1ODfPqq+h0Jal223PbxC84roGdPTE27+olaZgFsbOLZR2K7E6/3khGpjf2hABoqXbRG0njdigsP7aeRr+L375xgEjSYHbQO8jBWU8kmXv38wS1QQ7OysmTny6W0omndFyaSm8kU++xpJHbrl7lzNSLU1PYdnCADTt6SOpWRQ7Xitt9vkPBctF9PpApY8JaaUzwyfKMDcfklWyCGKlXviMhQ6UyDfXA5X9uCxY28kryLva+mX9N8blK8l7QVDioLJduKK+fxeXIpqvzuVjcVlMyjzqfq+C++Z8rTTdaPZe7Pp9ivVRS3uy5UuXIp1QdVtJBl2MsnpXJ8LwdDfT19XHWWWfx4Q9/mD/84Q80NDTwl7/8herq6lyau+++mx/+8IesWbOGBQsWcNttt3HRRRexdetWqqqqJk54QRCEacpksUvd3hnhd2/sZ09flF09MRa3Vec5zUoxcCgKSrFDrewkvtuu8tL27lxElk+ePAOn3UYonsrtqIwV7foLeu0c2+Tnt28cyIXu0hQbibSBptgIx9L8YuPuXKSe4XZ1Zlc/W6s9RFJp3HZbzmFbjceZcxhW1ueRYWK32bBjUeW2Y1dtvL0vTJ3PSUOViyqnnQOhOB2hJOcsqOfFbV2EDg24/S47tz3+biaKj6Iwp86LS1NprHKxZHaQHV1RmgJO+mN6QX2fu6CO+irXoMWN7E6//f0xbIrCKTOrCbgchGM6G3f2EkroVDkz5psLGvyDVnsfeXVfLqJNfoSckbaJ/KhHumGwsydCnS+zXT1bH72xJLu6ozz7XifhuM6y+bXMqfOWXH3ODn47B5K8UCYEWX40nmLZC2TSTRRFGXY35GR5xipB3nYFQRAmOXfddRdtbW2sXr06d2z27Nm5z5Zlcc8993DLLbdw+eWXA7B27VoaGxt56KGHuOaaa460yIIgCNOafLvUSlYGx1OOh1/ZxZZ9IWwo7O6Nsac3zuw6L6Zlsbg1kBsU5jvUCifSuOwZz+Dr/9KDZlM4rslPTzTJa3v6uO2Ti3Boatldf6oNfrVxb0H5fU6VFQsbefKtg0RTRs5Z2taOMJ9Z0ophUna1ssql5eSzKQrbOiMkdZN9oTg2BT40Nzikz6Ogx0HazDhLs7AKHJBVOe282xGmM5zgkdf2Uut15gbMKd3glkfeKgh51RFK8JWz57CzJ8q9f9xGOJHG69Bo8jsJ+lw0+V282xFmw44e5jf6DjkU+iB874qFTVy5bDad4SS/eX0fkaRBKJbORPMhs+p9MJzgQH8Ct12jrcaTW+0NxVK5iDa1Xgc90RQ/fXEH5y6oK7nQU65N5LfN9zrC7A/FmRnM2LTPDHo4c26QXT1RbvvduyR1i0a/m+5oiBe3d9NS7SaSMApWn7OD395oivcPDtDod3Fck7+g3fdEkmVlr/U5Bz0vPqfKJ05uoWEI7+aT4RmrlMknkSAIglDAY489xsUXX8xnPvMZnn/+eWbMmMG1117L1VdfDUB7ezsdHR2sWLEid43T6eS8885j/fr1JQfdyWSSZDKZ+x4OhwFIp9Ok0+lhZcqmqSTtkcKpWsMnGo/72qyC/6cb+W1gMraLiWAq6OFoln0yUIld6pHYFtsZTvLW/hCqLTPgs/UqRJI6Kd1AUzMRaTrDSXwuNWc7bJgmfbFUxn7bNIgmdQJuO363HZddpXMgQSius2iGN1eOLNkdbAcPhRbLL//+UIzOcJKBZJqWgKdAL5HEB6HBypKVzzBJ6SamZaFgkTYsdvbEc6un+bKsWNjE41v2sz8U44TmKnTT4i+dEZr8rtyK7oFQnM5wIuNlPJAZ4L6wrZsrl81mR9fgaDodoTjbOyP8YuMeeqMpAm6NznCS3b1RPnpSM53hOAf644TiaXTD4s19mS3kH5obpDOSGRheuWw2s+u8XHpSS8Gq96IZfhRLodHnztnE56/27uuL5SLa5EfI2dEVrXjQnd82VZtCdyTJQEKn0e8ikjRy8hlmJlJOtuzH1PnY0RNhd2+MY+p9XHRCEwA7u6M5swWfS6M/nkZBoa1GL9hNsaMrSiylU+1xoNpsVHschOMZ2R2aWvJ5cQ+xI/Jos/2efBJNMKPpAIuvGcpWYTT5lbO9jaX0imx0i9PlyweUtBMuTpd/DihI98qObv68s5czZgdpqXaXzLst6C3Ibyhb8vc7wiXtqd0Otaxe8/OOp4wCu+g39vTlbLyDXkfZPPLvm7/FO//6xW01ZfVSbFtdqc10uTY3VDsortPRcDg23cKRZceOHdx3333ceOONfPvb3+bPf/4zf/d3f4fT6eRv/uZv6OjoAKCxsbHgusbGRnbt2lUyzzvuuINbb7110PGnnnoKj8dTsWzr1q0bQUnGl7vPmNj7f2+JObECTBC///3vBx2bTO1iIjma9RCLxSZahKOa/FXWUnapR25b7KFAqBYYpoWiKNS4HZwxJ4hhwpv7Qjzw4g6qXHYiyTTnH99AJKET39ZFfzTNts4YumnRE0kRjqcz9tF5IZ/KlaO4/O91hDk4kEA3LNq7o4Tjem4l1LLMYUNU5TsgOxhKsKs3Rko3UFUbLnsm+ktHKFn+nUhR6I+l2N0bJ2UYHOhPcOqs4KGBdZRHXts7aCJgIKEPCnm1sztKyjR54q0O3jkQxjBNDoQzkW/ShsmvN+/DZlMYiGf08faBMAf64wBs2t2Px64ST5q5gWHWv01nOMnql9rZsjeE3TZA2jRZ3Brgy2fPLtgB4NSUXESbWi/0RDMOe7Pv3ZWQXzdeh0pPNEWdz0G1x06V01627OGkzrw6H189aw6z6jKh3ta8tJMDoTjvH4xwysxqqj123JqNrQfDRJM6io3cboq59V7sqo19fXFcdhuJtEnQZ2duvXfY52W4clR6zUQyOaWaIEbTARZfk9JNHn1936jtLIrzO67Zz3uH4iynDQssC7tmo2sgyc7uKIZl4XfZuXhhE6F4OmcHkd3GUpxudq2XP23rIpbS0Y3MqoymZjpjv1vD57IPSpd/Lm2YYIFds+F32UmmDTbv6uNQVrjtNnwuLReuS1MzncPi1mre2NtPLKVjV22c0OJnXr1vkJ7vWfc+a9a3kzJMDNMCC1RVwTTJxBa32wbpNd8+JJk2SRkmigIO1cbMGg/vdw6gH8rLZVdzcazz88i/r0O1sXLZHG64aAH/69G3+NWm3eimhWZTWNxazcGB5CC9RBJpwnEdFHL2Tg7NNqjeKvEUekyDb8h20BVOsLM3hmFm6nTlWXM4/7iGkTT1QbY85eQTJgemabJkyRJuv/12AE455RTefvtt7rvvPv7mb/4ml04p8nBqWdagY1luvvlmbrzxxtz3cDhMW1sbK1aswO8v7Vcgn3Q6zbp167jooouw2+2jKdaYs2jVkxNyX6fN4ntLTL6zyUbSLK3vqcxbqy7Ofa6kXYy0nvLzP1qYjM/HSMnufhFGR/4qa9ZWNmuXeiS3xTb4XSyaEWDL3n4iiTQ2Baq9drxOjT+9342iQEvAw8FIPLeducbtoCeSCVNa47HT57ITSqTojaao9Tly0WSy5egcyDgd6xxIFpQjZ7scinFwIEFDlYuZQS/RlEHnQAK/OzNoCiesks7d8nWRHWAdDCUzYbXSJoYFTlWlP57C61BJ60bu/TvfcVxfPIVbs/HHnX2kDZPZtR56oynWrm/npNZMaNbaQ7Gwiwdv2Wg6P3txB7v7YiR1g2Ob/bTWuom+p2OYFtVulUhSz4SoVcGp2dFNi1BCZ7ai5GzmXZqN7kgm7FhKNzgYTuTu0eAHTc1Gcv4glFix75u2oJerz5nLj//0F7ojKXxOla+ePbfsIl+5BZxzF9TxwrZuuiNJqj12gl4nhkHJsudHEvrs6TMJ+pwFbbgl4OG9jgE27+rjnPl1RNMGqqqg2jKhhCHzu1jry4RFe2VHL2ndxK4qnNDip9bnHFVUm6MtEs7klGoCGE0HWHzN+50hnnzrIDabjXrfyO0sivPb0x9lw0s9zK330Rhw8sd3OlEUWDo3yIYdPeimxcLmAAfDCX7y4g7OOqaW1oCXZ7YeBODMonT7+mP8ub0Ht0Mj4LGzqzuGArTWZGxU+uNpzpjt4WA4kUtX43GwpzdKfzzNyW1Oth+MAHDa7Bp290Ro70kAoNlANyGWNvG6TPrjOooFM2s9hGIpHt+ynyqXndqqjHfxV3b0clxTVS72Xkv1bPb2xlizvp2kbuLUbPQf2q5UpSnEdJOEbjLL4yaS1HN6BXL2IR67SudACoAaj0YkobNlfxgb4LTbiKdNIimDap+9II94ysjd1+fUiCR11r7czrx6N7/atPtQiDEb8ZTJKzv7CDhVaqtcOb2cOMPB7t44FhZtNV7642nWrm/n4kVNzKrz5urt/GMb6Y2lhvUUWu1pLdsOatwONrT3Zuq0xU/XwAc/GpWueOe3s6DPXla+ydppTUeam5s54YQTCo4df/zx/Pd//zcATU2ZLV4dHR00Nzfn0nR2dg5a/c7idDpxOp2Djtvt9hENEk7552dIGpUNNHfeeWnF+Y6GSuUYt/ubyoTLMBGUai9DtaOR6uhoHbTCyJ+nycTRKvekpGjy80hui/U4ND5/xkzcDhsHQgnmNfpQgK0dA5iWxdLZtQQ8dhya7YMQX9EEtV4nbocN3eDQSqSfy09tY+GMD943BhJ6JkxpOMkOE1QbxNN6wSputaeVt/eF0Q2LmcHMDsHjm/xUu+188pQZ+Jwqv9i4h3rf0LrwODSOa/azob2dnkgKl6qgqSqJdMbTtV1VePDPu2mr9nBSWybU1u6+GFsPhHFpKgndpDeaxLTgvYMDaDYbCd2gI5Rk0QzXkIO3mUEPi1urae+OcCCUYG6dF9Wm4HNoRJNpUrqBU1WwgDkNfnwODcOyiCTS9MWSeF0qNkUhkTap9zlwaioPvbIHC6sgNFt+6C4Li1Cs0DlcdsC8uC3ARxY1sacvTluNm6VzawvqPOsAL5HWeWl7D93RFHVeBye2VucWcPwuO6fPCeK2qyTSOht39pUs+/nHNTC/wcuOriiqDbbsDbNlbz8KCv8/e38eJdd1nnejvzOfmqurq0egG40mAVKcQIqUSFEkRYkSZVn6FjV8lhPRN9RgxYm8Pke2bCWK171LcmQplhNbsRJfx5JsMnEsXX2fTdkyHZu0Bg6CSJEQQRAcwKEbQKMHdHfNw5nPuX+cqkJVoavRAAGCw3nWwkJVnXP2fvdQ1Xvv932fp9iw2T2WIqZKXLMjx8+OFjlabJJQJa6bDTXFu9sBcMFIkovHU9RMj5Qu4XjBSV7/l1tN5+XCK9eylxln8gPY/4woiNiez3hCO6M8i/7ysjGVqlkmG1MQEDr6h3Uz9LLqsoQqiwwnVdZWwtNJQQBFFIGAmun13BdXJVw/IKXJCAGIAgQBeO3XgBf4PffJotC5ZtgeoigAofdMbP0RkQSQRCH0JgO2ExBaEJYbU2XKhktclVBbYUCO61MzPaaG4p1+fnq5iu2FG1/PPxGm6XelSQZBwHBC7fQr0MltMRwPCM/TREFElQUcO0CWQvs65Xm9ZZSadqdeTQ7ziRq2yw8Prbe0ukUUScKVfCwPVFnq6ZdG63BABGRRIBtTWKkaiAg94yYI9MwrYMM5t1KxBs4D22uPqYgqSUxkdFZr5uYhVZvMM8f3B9r3Sv7her3hrW99K4cOHer57LnnnmPHjjBSY+fOnYyPj3Pfffdx1VVXAWDbNvfffz+/93u/97LbGyFChAivd7QPuDeSfDofYbGKGEYKVlsh1qbj0rA9XlwPvfBtia9fuGY7ddPjb/YvUmo6PbJZb9qZ61kbSCIsl80ekjE/CGg7bNtRdYWGxfx6g4bt8YZWSPlwUu2ERG+lL5q2y7PLVWZHElw+meYnc0W8llPpZ0eK1GyXY0WD+bUG9z2zgiZLiALMrzfxA8jGZEw3XFAKeDQDD9dva4sP3ry1x9H2Ai7fNsRa/Tj7jpS4bjaHLAlIkkhCk7FdHx1otCNfHR8QUWUJUfAYiilcPTNExbBZKBgYjtchSOuWZmtLdw1KRyg0LJ4/Xmc0rXP1dO4kJ+EPnl3lzh/PU2qGkQlxVWYkqfKU6/Pg8+tcti3D1FCcZ1eqPDxfYPdoilxC7WFa7x7jjep9w3iahVKT5apBTBOZyiZw/YDrL8j3EOUponhSO9K6Qqnp9JDDdY/1majavFqUcMRT3/L6QPcPoGF7rFRNMrGt5xIYtocfhKHJZcPBcFwKDZuEtvU8i/7yyoZNWg9/7AICbC/A8X2SugwCmK6H7foU6jZxTcZwXIIAHN/H8QNSutRzX9P2kEWBmuUSCCc2s1LPa7HnPtcPOtdiqoTvB/h+uPn1g/CC18oTakNVBNpbZj8Aw3aRBGjaHrbnYzo+oiiQ0qWefr5kIo0qhXk53Rvtrv0ygiD09GtbG7HQsDvROAHgBz5268fV9XrtE6XeMrrrtVyPuuWiySJvvyiPLAqYro/jebT29Niu19MvidYX3QdcP2TE1CQRn6Bn3Nq6le32Dppz7RyajeaBKrXH1A9zkionntkquuvdzL4Irxz8+q//Og8//DBf+tKXeOGFF/jLv/xL/vRP/5Rf/dVfBcLvxac//Wm+9KUvcffdd3Pw4EE++tGPEo/H+chHPnKerY8QIUKE1x82cuZ0y1rdeuk4uYQyMCy2abscr5o9JGVngu7N/0hSZd+RMktlg4lsHF2WeGapwuNHi2iKwLsuCb2TbYKvobhCoWExFN84bNfzYSITYySlYjoeIymV8XSsI+XVDj1PaQq5hMpazWS5YvS0t90XmiLw9EqlY8cgybCpbIJtQwnevDOHrkg0bIeG7TGc1BhOaHhBwJFCmLetSCJBEOD5Pl4Q0F5OBoAiCsgiVM3N+7ddby6phPnJUxlEAdbqNqNJjZSmIAphGPjl27Nk4yrL5SaqIjGe0UlpMvmkiqZIFOsWCVVmIqszNRTvmReeD7deOk5SkzhcqJPUpJPSEVZrVsfDXGxYSBI982q9bnLnj8NIAE2WKDZsjldN4lrYl4vlJnFF6pCnlZsOSV2m1HR48Pn1kw4bDq+HUnOlpkNKC9eh7XqnhuJMZHQSqtyZw7e8YZRcQuOWS8ZI6hKHiw2SunTSWG8271/LeH20cgs4G7kEM8NJPnp9nL95YpFSMyQ22CzP4lTljaV0bto1yqGVKpWm09E/dL2At8wOc7jQpNi0yKdUPnLJNFXT6dFMdPruG8/oXLtzmAdfWKNhuQwlwtAx0/XJJdSQRMN2eu6rW07nmu35zOTjBEDFcJgeTjKaioU53X7oYY4pIgIiQzEFgfBLm02o3LR7lAOLZaqGTS6pcMlkGscLevp593iaj16/k7t+0g4xbxF/BBCTRTRZwnC8k/r1kzfO8o2H5mhYLlldxvL8MFRcl5nKhjndjucji2FOt+34J5XRrrdhu+iKyB1v2cn/ceUUjx6u8J3HjmK5Pqoc5nSv1q2efvGCgOlcnJrpULccMjGZ2/a0NCy7xq2tW9k9rzaac/mkPngeGA5vmc1xuGBQbITltXOrzmSun8q+CK8MvOlNb+Luu+/mc5/7HL/zO7/Dzp07+epXv8rtt9/eueezn/0shmHwqU99ilKpxLXXXsu9994baXRHiBDhNYMHHniA3//932ffvn0sLy9z99138/73v79zvV6v8+/+3b/ju9/9LoVCgZmZGX7t136Nf/2v/3XnHsuy+M3f/E2+9a1vYRgGt9xyC3/8x3/M9u3bz6qtp/JmbxYWezZJ1ro3/6VmmE8cUyUUKYyAXKoYPL1cpdR0eON07uR6BvCCtNu4YzhOTBPJxlTKhs1Yy1u6Ueh5Pqny/qu2dRwmbRwtNnn8SJly02albG5oR39/ej5cf+EwV08PsVg2kEWxZWroFCrUHMpNBzcIOXnG0zqlhk0QwEhKw3EDNEUioUmb9nmqxVP0/adXUSUB2wvT+/6PPRMkVZl0TMZ2A1RZYLFkElND3qXliskbp4fIpzTW6yb7j5ZbnnWRpCpvOC/aUZAbpSO0+9L2fJq2y7GST7np0LBOSHfNrTVYrZm4HtRtlyAIcDwfw/GQRAFZFFmvW6iyOJA8La7Knb5Yrpo8t1LljdM5snGV4YTKet3u1DsznOhIva3WLB5oaXM7XhDySxEQ9PGLvprCwc82Xj8t3QLOVi7Bh67edsbs5RuVd91s7nXDXv7pd+3m5y8fPy328tuv28FNu/Mvib28v942e/nvvP8yPnT1tnPGXj5ozp1qHrxU9vL+8gfZF+GVg/e97328733vG3hdEAQ+//nP8/nPf/7lMypChAgRXkY0Gg327NnDxz72MT70oQ+ddP3Xf/3X+eEPf8hf/MVfMDMzw7333sunPvUpJicnue222wD49Kc/zfe+9z2+/e1vMzw8zGc+8xne9773sW/fPiTpFJJVp4GtOHM2Cos9XY6hU6nudG9WU63cYsP2aFgOL6zWQYDtQ3FKTafDERNX5YGh8YMkudbr1klkcctlk7WaSTqmUDUcHM9H6ttQtr2zVdNl21Cc5YrJnz04x0RaY0f+xOZ8UH9OZnX2TA3x+EKJlapBEAgkNQnbdRF8ASEIEEQRP4CUrmA4Hqbto8gib57NsWM4sWmfAxAErX2wgCAEKJLATD5BLqH28O8sVwxmR5JcNplltXacJ46VuWFXnicWKgiCwAWjSYp1B0EQ0GShh2APGNjn7TD+kLBOJnSs+ZQaNuMZvfO804pqbdoe2bgKCPhBQNNykSWRa3fm2DYUo2o6A8nTegjSsjrPLFV57EiRd1w0Rj6p4QcBddNlOKl2xnq1avGDZ45Tt7zT5gp6OWTzXil4bbfuDHA2cgmmcmcmFTaovI3et//v3nBt9b5++7pfb3Zf97Xu19fO5rl2Nr9hef2vu98P6ufd472SXd2vB/Vrf9ndz+yZGmLP1NApy+ivd7PnN+uzNgaNRz8GzbnN5kH/mJ4JtmpfhAgRIkSI8ErAe97zHt7znvcMvP6Tn/yEO+64g5tvvhmAf/kv/yX//b//dx577DFuu+02KpUK3/zmN/mf//N/8s53vhOAv/iLv2Bqaop/+qd/4t3vPrtM+WfizDkdjqGteMR7otsMh2svyHG00AhDlQW4YDRJLqF19LdXKhYjqY05Zzble+nbTLfEblipWiyUTKQW4/hf/vQIE5lYx9Y2j01bCzqtyby4XucbP57ngnyyp02D+vOtF+Z5drlKuWkTU2XSusyxkoHb8rIqQijnlY0riKaA7wcoksgbp4aIqxtrinfz7yiyyDsuGkNocSFVTLsTDt4+BOgPG+8mFhMFgaums2R0FVWUeG61iiAoPX222bhD2JfHqyaLJR9ZErlkIs0vXDPF7EivdJcuSwQ+nXB/TZGYHUkwnQtTBiazOjXTZa0WapH3Hwj198U1M0M8frTMUqXJ7EiCf3H9DKMpjZQubygZthmXUbcXvV9t6fWgnhOtsiNEiBAhQoQIESK86nHDDTfwt3/7t3z84x9ncnKSH/3oRzz33HP8l//yXwDYt28fjuNw6623dp6ZnJzksssuY+/evQM33ZZlYVlW5/3pyKmdrjNnqyRrnTzfukk2prJaH+wR79+sFuoW+4+W+B8PH8F0gtArXTE7+ttx9fRsKBl2SFBrnPBq2q7HQjHUes/GZNbrFoWGTSYeEmndc2CJ266cJNOSDVuumIwkNV5YryNLAtO5eI/CTbfToTvveLVq8eSxMrvGUmRjCvPrVQ4ulvEDSKgSNcvFdj0uHImz72gFUYCLJtOUmzb3Pr3CTbvzeD7EFKmnvUlNwrBdkq3xKDbtzjVNFlgoNpjJJ7jj+rBfJRG+8+ixThmuH3DldJbLJjIcXKrg+SEh8UKpyXLFJKZKPR7tNpHaRn1eqFssFJsIAoykdMqGzVLFIBML+6FbuisTrxHXJK6cyuD6YSj9bXu2MZrWevpwLK0zO5LsiaA8uFjpjEd/GH9/GRtJhv10vsg1O4YwHB9ZEjpcQf1e9NWaRUKV+OlCGUkMGduLdaej4NOtS/5awmurNREiRIgQIUKECBFel/ijP/ojPvnJT7J9+3ZkWUYURb7xjW9www03AKGsoqqqDA0N9Tw3NjbGysrKwHK//OUv84UvfOGc2t7GVjmGaqbLkUKTY6UmTcclrsgYlt/xKPaH7bb/dXsap3OhFNRiuclQPNTfjqtyj45z24Ybd+U7Xtd2+XNrDV5cr1Os28z5DSQxVNiZW2tgOh6CEPL9tJ+TBaibLrIo8uDzaxwtNZnKxnn3peP87yeXOVZuIosCN1yYZySpk1S9U3r5u72so2md47WQQV1AwHRCxRfPh4OLVRqWR1KTUESRsVSMpYrB//dHLyJJIiKgSCJrdZMg8KmaAd9+dIG0rnDxRJonj5U5XKhTM10WSk0eemGdtK7w0bfu5B0XjwK9nu9Si7H9kbkisiiwfSiO6XrosshEOsZYMobj+eTiKhXjZM9597jPGQ10RUQRNRBgOK4hSVAxXFRZ6vVMtzzsXiCwLRuGns/kN47wbM+JHzy7yjcfnKNs2GRjKj9/+QSCQI8d/WX0e+YvGEny4PNr3P/cGglNZkcu1sMVBGHK6dxanULDpml7rNctcolQoSmUXq7yZw8dxg+C16TnO9p092GruQVnOwehu7zNcrULdWtg7nI3nlupdq7lkuqWcrXbP7TtNnWXASdyq0tNu5PDfe1svqe8pbLRuaYrUk8udHduNbDh6z1TQx19wfGMRrFunzKnG+h55sXVeo99g8rrbtPu8XTPfcDAfhmE7v7qH4/usvvDwruvddfVPdb9OeL9DKfdn28ll/zVgNdTnk+ECBEiRHjp+KM/+iMefvhh/vZv/5YdO3bwwAMP8KlPfYqJiYlOOPlGCIJQCnUQPve5z/Ebv/EbnffVapWpqamzans3thKWLolwcLHMkUITUQTfh4phI4mDw877c5cLdRtNEdkxHGf7UAyAO398uPPcjbtHGE1pPSRZ7U3os8tVjldN9h0uoUoiM/kE8+sN5tcbxFWJmCJhOWH48FBcYblq0HA89i+UWSqbQIAkihwtNNmRi3HptjTDVYvjFbPjFT6lh73Ly7rvSIlMXMF2ww2+6wfIUktNJwDD8TAcF8NxkVfrWJ4HCBxcrIY54C2CtA+9cYp7nz7eYnsPPc57X1hHV0QMx+NnR0tossTOfILlitnJg88n9c64HVlv8MV7nsH2AiYyOvPrDVZrJd68c4i0FsP1fX5w6DiKKOL4Pnu2Z0jpofd5o3Efz2iMpsLxGk6qFOo2+ZS6YVRCW7rrtisnGU3rp1w/rddN/viHz7NQNIipEuu1Ot/df4w/+PCVqLK0Ja6AXFzl4GKFIIC4GvIiJDWFf/amaUbTWicMfaVq8NiREookMpWLYzk+67VQ53ylYXYiAKayg3kEXs14bbTiLGGrbJFnk1Wyv7y1qsnhYhPPD0953n3pOBXDoWo6zK3VObhUxfV8LMfH8nxEAVRJ5KPX7+TT79oNwFfve447985jez4gkE+q5BIqaV1hZjjBA8+vhRIUAaRjMkldQRYFdgwnGEm15KoqJn/7xCK253fktiRRwHZ8vC6psUsm0lQtl6btUjddDCdMoAkI9ehEMdSunh6Kc7TUDKW2Wjk27T8SghD+k0WB6y/I4/oBVdOh2LBZr1kghPdpiogmhzqTn7xxltuvCzWK25qEVdNhsWRQqNsELfuu3jGEpoSngMW6xXrDAYKeNqmSyNt2j1Jq2idyTAhzeCQhJMto98ugse7u8/7x6Lav/1S0+1p3XS+u1Xl6qYrj+cRVmfdfuQ1VFk+ac/1zsf2HsM0eSRCgyOKr7sTwbH/HIkSIECHCaxuGYfDv//2/5+677+a9730vAFdccQX79+/nP/2n/8Q73/lOxsfHsW2bUqnU4+1eXV3l+uuvH1i2pmlo2talOc8G+sOo+zdia1WbQj1cIymihBWEnsOFQpOfzBVbpFsKqzWrE7a7UrEoNCwmM/GObFTT9pjJJygbNnf+eJ7ZkWRHQ/kHzx7n1jeM8f2nj1M2Qs3uxbLBw/MFZkcSDCVUVFnE9XxqpoPn+yiSgCpLHRUfzQ3Xq7ockri5XkjsldRlMjGFUsPhkfkib7kgzxXbsjwrVVmtmWRjSg9ZVzfaXtakLlG3HS6ZTPHUYo0XV+ukdJWRlM563cZvLTilFgmaIok4no/leYgIuJ6PJosMJTQKdYtnV2o0bBfD8Toe3FxS4UfPrnHBSJJsTMWwPVRZRJVFJjJ6Jw++26GyWrOomQ4TmRiqHMqWGbZHNqbRsD2OFBr4gNLWumXwgU/TdvF8+Gdvnub/9+hRKoZDPqX2KNf0e8hv2DVCbIsb1cPrTRbLBqosoMkinu9zrGRwpNBk11hq4Pzrjsg4UqhTbtk1mY1TqFs8s1KjreXbPiDJxTU0WcTxAmzXYyYfx7B91uo2KU1mIh1jKpvYOo/AqwyvjVacBWyVLfJ0WSVPp96kKvPwfBHXD0/bjlcsvvHgHG/dlWcopvDwXHhtOK6wWrMBGIpLmI7PXT+Z5+cvD8M37twbSm7FVZFiw2WxZLA9q3O8avLT+QIxVWIorrFQbFA2HK7eoTO31mClYvHhN21nbrXG3z25DAjoiki5pREZlwPcrg23G8CBpSppPTwJa7Y23O2fDp+QvMJ2A55bawCgS2C2rgs+nRNIXQLHC/jhoTVmR+KMpTQOFA0CIK2JVFwf0/XZkYtRt1y+8dAcN+3OE1Ml7vzxPKWmgyaFuokQhjC5ATxyuMRsPsZoKsaxskkQQEqXaNqhrdlYqEt+z4Eldo4kmMjG+NnhEgiwZ3uWF9bqrNRMPnzN1Ia5RRB6uNt9ntRk6pbbGY9cUu3YN5HRe05Fgc61kaTGU8sVVmomP3fJGI/MFXG8gG1DMYoNm7t+Ms+tl46xezTTmXPZ+PaeubhQavLw/DyzIwnG0vppsUe+knC2v2MRIkSIEOG1D8dxcBwHURR7PpckqbP5uvrqq1EUhfvuu48Pf/jDACwvL3Pw4EG+8pWvvOw2bwWDDqEbtoMgimRjIkldoW46eEG4DuqX6jpeNaiZLrbr8/zxOlXDZVs21iMbBVA1y2RjCjFVQhJh7wsFjhabPL9SI6bKaLKE5/sUGhZvnB4iG1fYlo2xVrOYySdYr1t4fsAzS9XQqSFLXDqZQZdF9h8rk09pXDiSpNK0cQPw/FBD2/Uhn9KIqRIXj6dJx+QNpcXaSOkyazWLh+cKEIDjBwwnVGQxlJodTmiMpFQ8P1yjuT5UW+RnGV3m1kvGUCSRf3hqBS8ICALCxWsQkFCVHs/xQtEAAqaGwoOKlC5TbjpUDSfcSLby4LvHKiQjczGdBuMZnbLhkNZlRlNh9KrrB7z1gjypmEJAQKUZ6mwvlc2BjpS0rvB/veNCdEU+KWqyOzJirWb2RCWcymmR0CR8H0qmS9MOJXd1WeCfnjnOQy+sb+rAadf79FKVF1bryJLY05cg9IShS6LAZDbGWt3iDeNpnMBnKKZy25WTJHW5Jyd+UJTDqxniqW95fWAj1sC22PyZ3Hcm9dpemHuiyyKqJDGcVGnYLjE5JILwfR9dFvFazwqAKEgkNRnL9Xl6OQxvtr1w8yeJElKLadHyAuKqhOsHpLTQsy22dse26xNTJfwgwHYDnCAMy0lo4alkG16X3ZIodCaPIol4XTp83ZNKEESk1geqEL4/ca33PkUSCAg93lbLnR4SIIqdjXwADCdUGpbbOShos1427BNGSJLQOtkEoSWtQECrzScqFgh1Kr0AtNYprCiCKIQyC7osgR/20aCx7u5zTe4dj35WzolMWMZKxeq5pspip67VmoXvB+iKiCqJZGMKlusjCmLPnGs/356L2ZYkRzamdtgjlZZu5Uudpy8nzvZ3LEKECBEivDZQr9fZv38/+/fvB2B+fp79+/dz9OhR0uk0b3vb2/it3/otfvSjHzE/P8+dd97J//gf/4MPfOADAGQyGT7xiU/wmc98hu9///s8/vjj/NIv/RKXX375puHn5wvdZGm6IrFaN7nnwBKH1+utUGQdxw8wbBfHD9iWjTEzHGe5bLJet9EVkdVq6HWsmDYTmRijaZ0jhQZPLpXRZaEjG1U2bNK6QtlwqJg2jx0u4QdheHShYXO40EAWBcpNB9P1WakYlJsO2Xi4aTftcFMvCgKSKFCo2+iKwGRWJ6ZJ5FNhiPRIWiOTUBFFqJsOCLAtG6Ni2KzWTBbKDfJJrbPhXq+bHFyssF43e/rl8HojXNsBDcul2LCZSMdBEFBlAVEM15U+YWK5KksggOmGzOVhf8UBKDdtPD/g8m0ZduTj3HrpOEld4nCxQS6ucNlkhmLTRhIFdo2lSKgSazWLjC7zgavCCIKFYqPjMJjOJdg9nsJyPY5XTRKqxK6xFJIohBvwmELDcVFEkWLdIRNTkMQTHuGRpM5qzeLOvfMsVYzO2D96uMTsSGKgeo1he3z/mdWe+XLf0ythdOsAjKQ08kkVggDH8yAIEEUBxwvIxBWeWChzYLFCRlc7zqfu8uKqzCWTafZsz+L5QU9fjqa1njB0zw/IJzWGEyoBMJbSee8Vk8zkk+STOrdeOk4uoWzKZfBS0LRdjlfNTfvjXOK1c3zwErFVtsit3ncm9SZVufWD4GN7HoW6TUKVMVyPoZiCKIqYrk+ilS8RAH7g0bTDDVo7T1mVROqWS1wV8VobTU0SKJgusihQsxxkKdQsFARQZRHD9lAkEVUWUFqh3g3LQ1dObJK71Ss9P6C9xXU8v+e+rv03QeB3NuR2AHrgd13rvc/xwu2w6wdorR2zFwCB3xOAU2iEIUvtnPQ262VCPWGD5wWdMPiA8AcWAcKo8hMVB/g0bR9JAMv18INW+LsQIAoCpushSwKqLA4c60sm0p0+B6hbbmc8ckm1Y1/b0919KtrN2NmuazSlIYoCpuNjez5lw0GTRfzA78lxGs9oPXOx/UNeNmzGFB3bCxCE4CT2yFc6zvZ3LEKECBEivDbw2GOP8fa3v73zvp1nfccdd3DnnXfy7W9/m8997nPcfvvtFItFduzYwe/+7u/yr/7Vv+o884d/+IfIssyHP/xhDMPglltu4c477zyrGt1nC22ytNWayZwfkpMZjs96w2YirfPBq7bzvw8uU2o6TMUVPn7DLJm4ykQmhiyFRGLZuILXCBhJhAfZTcvlmZUasgi6IpGNa6zVTcZSOjftGuXQSpWlsokkwhuncyRVhZFUyInTsF3GMhqOpzK/3uDZlRqyKLItG0OUwvBt0/GYW2ugygLTwyn+z6uniKlSR6Kq0nS4bucwju/jB5BPquQTGv/41ApPLVZJ6wo37RrtEHxtlJ63UrFo2B5JTcHxfSQxXNnZnsfUUBzDccnoKovlJkcLTXRFRpEEmo5HzXT58YsFxtM6H7hqG+t1q6Mx/t4rJjubvMAHggBZFHnrrhyHVqqs1U2mhmLkEiq252PZHv/z4cN4foAmS+TiKtfM5EJisXyStarJZDZGOqaEG/W6yVha46bdI53y2ptLz+ckR8pq1cTzAo4Wmkii0EOU141uUrknFsrEVAlNljZ9pg3Ph8u2ZckmwtB5WYCq5TKS1E4p/9VGXJX559fuIN2l197dl93h7/2yY93lnInE3lbxSkhbjFaxLWyVLXKr951JvRXD4S2zOQ4XDIqNkCTh1kumqZoOFcPhutlhnlqqYHk+2ZiM6fpYbrjhvuMtOzvkXR+9fid3/WQewwk92CNJlabjM57RuXbnMA++sEbdcsglVFK6guF4TA/HmB5O0LQ9LhhL8WFN4XsHFjthJgGAKCALYU63H4Qh3JdMpKnZLg3LJa6InZxuCD3eXkD4w9uV0y0Sbp4FEcRWTrfrgyKFOd1eEFAxHKZyMdbrFk4AuiKiyyGJRUqX+eUbZjtkah99607u2jtPxXAYaRFMeC37rt4xhK5KYXlZnfWGE27q5XBTb3uhR/+mXaOUDZuK4TCTjxMg0LBdpobizAzHMWxv4FjvHk93+rxhuyePR8u+1Vo4X7rzcNrXik2rU5ciS1x7QY6nl6pUDZtMTOa2PdvQFLFnzrVPBdtzsfuHvNJ0WiR1QQ975KshPPtsf8ciRIgQIcJrAzfffDNB94l9H8bHx/nzP//zTcvQdZ2vfe1rfO1rXzvb5m2IzYhUTwVJhOWKwVrVIqHLHFlvoCnhuq7UdBAE+PIHL6diuD3kuzuG48Q0kWxMZb1udTysXuDz0AvruF7AWDpGuWnzzEqFX7xmO3ums+STOtfN5litmnz38SUatkcQhBGN+bTGNTuGqJgORwtNZvJxYrLE4wsVlioG183meMQJOYd25BM0TJem7ZHUJfJJnbG0znhGP4k4ti21NTuSJBsLPe2HVqrsGk1w54/nQ49yLAwnv2vvfCtd0qBuOZhOqL3teOB6NkcLTdbrYaj7LReHBwir1TBvPRtTeH6tRjam8LaLRnDckD/o9uumOxJVAIfXG9xzIGz7zHCSlarJoZUqt1w8yuFCk31HiogiaILIj19Yx/cDdo2lKNRtjtdM0nGJfELnkfkCsiRy2fYMxbqDpgjcvHuUmXycfFLniu3pnr5YrVo9smVrdQvT8SkbNtuycZYrISt7O3q0nWfd9pCv1ix0WWatFeK/ayxFoWr3PNP9XLu9hu0ykdFRZCGMrDUdlioma3WLTFwZKP/VjwtHk9x+3fSGc/3C0WSHU+BU34PTldjbCl4paYvRKrYLWz1hOdsnMf3lvVT28k+/azc/f/n4S2Yv/6Xrpl8V7OXvuHi058frfLCX9/d593j029f9Y9N/7XTZyzeai9fN5l717OXn8rQzQoQIESJEeDmwGZEqnFqlI8yMC1ipGdilANf3mYzJqLLEeDoMw1Vlicu2nVgT9TtztmVjvOPiMQ6tVDm4WMHzA8bSGklVxvV81moWf/34IoeO1zvev5l8kvftmWyVYbNnewYQ8IKATEwhocqsVm2ajkepYZNNKNRMj5gqUrMcFstNYqpEXJE70Y6DPI1h/rPD1FCcmCqR0sN2za01WCg1qRgOy9UwarPYsPmt/+cApuPRtFxUWcS0fTRZoG7Bfc8cR1dCctyfvFg4QY4rCJQNG02WePPOIYbjGkEQsr2vVW28IOBoscmj88UeCbJ2ittjRwrc9/RxyoZNqWGHrOieQMW00WSRpZKBJAq4rs+zyzUMu0zD9njL7DBCIBD4AXtfKDK/1mBnPsEbd+R6SG8d16OdCq3KoUc8E1N4w3gay/UwHZ+RpMpIWsPze/tSQODweoOG7VEzHWw3wGpFG8QUEVUODzriqtyTM97uF0USWKtZHCk0cFskzm+cHuJnCyWeWnKQRYFtGY2lSpN8UhvoBNnMk3w+vcxtabtiI0yvOJ8kbadV09zcHDt37txUVuHVjq2esJztk5ju8uKq3LMx67mWk3s2nP3SVN2fd1/rLm8q17tp7a9rUBndr6+dzW9Y3lQu0XNtz9RQz+v+9xu9zif1jk35pN5Tb79U2KBnum3YrLz+Purui0H9Mgj9/TXIvlNdGzTWg+Zc/+cbvX814lycdkaIECFChJcPP//zP8+3vvUtMpkMAL/7u7/Lr/7qr5LNZgEoFArceOONPP300+fRynOD9bo5kEg1n9S3tBGxXY+FooEgiIykZI5XLQp1m4blYDrBpl7HjQ7kD61UeXKxQt1yUSSB1ZqFLAnM5hMnkcX2lwG0yNg8fvvug2HucUql4XiU1h2EAI5XW+WNJCk3bZpO6IndzNM4KKUsG1coNewOSW3VCCMVXd8nocrYbujBvXZHmu8/t44iCYyldSpNh398apkduQQ7WrJeSU3iE2/dyQ8PrfLcap3lsoXj+wzFZb54z9MdLpmLxlNcuX2oR4LsWNFg35ESDctDIKBu+whAUhVwffBbfELFpoPj+WRiCnFNptR0ePD5dQ4Xmsyvh6kBy2WDx4+W+eGhVd40M8xYRuPvnlim3LTZPhTHDwIumUjzS9fNdIjF2iz0ZcNhLK315H6Pp3Xm1uscWCzjeD6aFKr1yILAjlyM9brNC8fr/N+PLZBLqFSNkGgwF1f5waHjANy4K8+RQpMgEHjrBcOUTZufHS0xNRxjJDnE4UKDtZpFTFMGzvXNxhc4b17m9nes0LB4/njIsP6G8fR5S1s8LSK1Xbt2sba21nn/i7/4ixw/fvysGxUhQoQIESJEiBDh1Y1//Md/xLKszvvf+73fo1gsdt67rsuhQ4fOh2nnHJsRqXZvUkaS+oYEVQAVw0VXJHIJBUUSGUmqoWe1ciL1CuiQQ3WTjsXVUPe526Fz1XSOX7npAlK6TLFho0gCb9k5TEJXyCWVk0hLu8tov1ZliYmszkhSDZVyFBFVDJVqFEno8A6NpXXG0zE8/wRBai6u4ng+ubjaqavtme8m0LpxVz4kaYspxBQJ2/VR5HDLIksicU0mqcuYjs9K3SYIYDSlkY2ppHQZ1w+Ia1Kn3w3HI5tQ0TubvADb9XlqqcZ63UIWw3zq51ZqNG2XPduyiAIslU0cz6Pe2nDLrTjtAHCDALmVL1m3XBKqiCwKyJIQEtoKIcFbqRHKhwVBQDqu4vo+RwsGghBQqjtUmjZ+QIsAWeDZlSqh3G+YQjiWDjl/xtLahrnfGV3Bdn0kQcQnHANZErDcAJ8AVRYZSqgcr1kcXKqQi4e2KaKIIgrYboDaegYgG1Opmg4ZTUVEoFgPx2ksrVO3vA3n6WYEuOeLHLdfy30srbNWM1muGOctbfG0auvPo/n7v/97vvzlL59Vg843ziT3pj88aFC4UHcYdn+4MLClkOBBz/TX2x2aDGwYlt1v09xanb0vFrj+gmHedtFYz7XhpDYw/H1Qef313n/oeKf8N+0cHhhGPaiMbhv629vdF/32dY9pd/j2ZmH8m43HmfTzqULIXgrOZdnns64IESJEiPDqRv+6cbN87Nca2mSnGxGpbrQR2SjcdTyjMZrSKDQshhPh/9O5OL/81p3syCdYKpvc+ePDVE2HtZrF4fUGXhBsGMrexu3X7eCm3XmeWary/WeO8+J6kwcOrWJ7AVdOZU/p/UvpMjtyCWKKjCwJrFZMZFEkrkmkXAVFErikJQc1ltI75Tmuzw8OHUcRRRzfZ8/2TOdat1d9tWbxwHNrHK+aOH5AEATEVRnDdhCAuunieD626xNXJX7xmu0sV16gYXvoikvdCkmDm5ZH03Y7/Z5QJRRJ4B1vGEVAYKXc5O79SzRaJLim7dGwXO4/tIamilwykeJjb53hheN1/u7AMrYX4PpdOj6BgEDIEXTDhXk8P+CR+SLrdZtSw6FueYgELcGcAFEI2d40RaJuufzkhQIxTaZsOCQ1GVlsscGFelsn9Uv3GrQ7MmC9biEJIdGZCMiiiCKJXDiW4JllPzyMiCtoisiLq3UWSk2mhuI4LRk9VRaomi4lw27Jr/k4XsDD8wVEBI6Vm8wMx8nGFVKasuE8PRUB7vkgx+3/jm1Fiu5cI1o1d+FUuTcboT88qF9Trx0u9L8ePsLXH5yjaYcT9f1XbkOVxU4+R1sDrzvHYrOciH7dvO56X1yr89RiFdf3cVsU3rIkEFdlPnnjLLdftwOgx6aqGYYqAfzpA/PsGklg+wFN20UWRS7dluaCkeRJeR/dfdRdnuv5gNCpVxUFnl9rEAD//YF5ZluSDHNrdQ4uVXE9n7gqs2d7lieOlU8qQ5FELpkMbehvb39eSvcfnTdOD/GzoyWqpoMkCszk4oyk9ZPue/el41QM56Tytt7Pve3t7udzmcvycubJvBKYHyNEiBAhQoRXA/JJfSCRav/GadBGpLuMiuGQT2rccf1O3jCZ6fHkJXWJh+cKuH7ApRMZ1upWTyg79B6aT+VCR8Yj88WWfKuAIAR0q7vAyc4iOJEzfs+TSxwrNrE8H12WOo4Ry/UoGzbbc/GOJ361auH47bLD/w3H4+mlaodYDELJqx88c5y65TGeDT3sVcPFCzx0VSZACEPMvQBazOdvmMzwsetn+B8PH6HUtMnEFd53xWSoVd7V7zvyCdK6wvFKK1y7aWM5HgECSU3G8cPNt+t5yEHI2A0wPRwnocqUmnbnMwgPkCQxfFaWBEbTGvmUynrNRpAFXM9HEgWyMYUlUcT2fJqW2wmXl6VwzR9TJIIAyk0LH9izPctoeuMU057+P7DE4UKdoYTCcKteVZVQJRFNEVFEkVxC7UjCFesOl28LDzoq5ok8/WormmIIFUkEp0vlRxJDieCG7WE4HsW6s+E8PRUB7vkgx93oIKBbiu584LRqFQThpHzu10p+96lybzZCfw7DQqnJw/Pz4Y9TNtHJW/D9Ub7+4Bx1y2U4obJWt7nrJ/PceukYM/kk3396FUGAGy4YYd+RMHz/HW8YpVh3NsyJyCWVzjPvuGiM4zWzU29Sk3l4rojrB4wmVRZqBgGwIx+nbrp846E5btod5ju3bVIlobPhhvCr9txag7QuMpqKs1gxeHiuyPRQjEfmijiez6XbMh0mySu2pzFsr1NeSpM5UmiCANO5OIW6Rc0KTwfb53dz602WSs2OrduyOus1m3sOLJHSZbJxNSwDmMrFWa1ZPDJX5OLxFKt1k4d/XGB2JMlYSu/kpVw3m+v5o7NUaXLX3nnG0zEmhnSeWqyyUjV53xUTPfcdr5p8/aE53nrhMNsziZ48lweeWz91Pyc0FmqhrdPDcerWiX4eTmrnLJfl5WRjfKUwP0aIECFChFcPXsvrxq1gEJHq6ah0DCqj25NXbFoQgC5LqLLIREZntRZG+Q3KH0/pMoos8o6LxhCEUMa1YtodL2a/s6jbmQCh57pheyQ0maQqUTEdMjGZuhWGVduOz9FisyNl9dzxOpdOpkhqKgulJvcfWmf/QpnhhNZxfLTvu2xbmroZqsEk9VAaNqFKlAyHfELF9UEgwHA8/usPXmBnPsHv3HYZvh90Dgg2ily9eCLNw/PzYW6zIJCJKThegOuFDN2CAKIkIgKPHi6wXrcYSWnsGI5jux6WFyB6QXhQIQooooguSzRtj4QWMJ2Lk09oVE0Xw3KxPJ+likVaV3C9kGhuPBuSuK3XbSzXQ5VEYprM9uE407k47718cuvrKkHAD+jUa7o+O3Ii+ZTKR67dAQQ8+Px6zxybzOo9kZxzaw0CAvKpUCKsZjj8+MV1rrtgmLSusF43efJYhaWyyWRGHzhPNyPAPR328rOFV6ISzmmHl3/0ox9F00J2Z9M0+Vf/6l+RSPSG0v71X//12bPwZcJGuTfdP1gboT90IRtTqBoO2ZjaEy709HKVph1uuGOKTDYWsFI1EAWxRwPP9jwUUQQCBISecCM4kcPh+H6Pbl53veWmTeAHaJLYOa8UBRACGE6olJo2c2sNgI5NxYbdaZMk0NG3lgQRTRbRJBHX81mtWfhBQEyVUKTeH/VC3eqU57SoKgXCUJduqQJJDOXBAF5cb+D74QmpKknEVYmy4RBTZYTWM4IAfhDqgDuuT830yMZVqmaZbEzp5KVAQM30ev7oZGMKR4tN0nEZVZLQFRHXCyg17J77hpMqaysmMUXuKa+d53LKfhaCjq2i0NvPqixtKYTsTLDV8LSzgZezrggRIkSI8NrAqdaN3fner1UMIlI9HZWOjcro9uQldQkEMF0P2/VZq1udUPZBh+a/cM120rpCsWmf5G1fKDZ6nEWFht3jTPjWT4/yxEIZSYBC3WY9CJjI6iyXTURBIK07rFQLPDJf4LLtGSYzcR4/Wuafnl5jNKXywloDRRLZnU5xvGLyjQfneOuuPNta9/3DwZWQJGytge8HKJJEqWkjSyKzI0nySY1/eGqZtZpNuenyxEKF5arJf7jtsk4/9vdZ03Z5drnK7EiCbExlpRLK82YkkaQm8+xKFVEUyMYVDi5WMGyPQsNGQMAPAsYzMWKqyFNLVYJAIJ/UWKtZrNYslssGy5Ww7ReNp4i3pL8kSWA2H6fcdEnHZH717ReS0mX+zbf39/St7Hr80rXTXDSePuWaqj2edctjJpdgodygYXlM5eKMJLUO4Vrbozs7kjxpjnXXMTuSYDihUayH86PhhFEYTctjOK4hIHL9BXluu3KS0S6OgI0wiAD3fEVKvtKUcE6r9jvuuKPn/S/90i+dVWPOJzbLvRmE/tCFsuGQjimUDZuUpnR+wC6ZCL9EhYbNcALKhoMmi/iBT0CA7QUIQoAqSZ0ci4BgYE5ELql0ngkCeupN6jKCKGB5ficIxg8gEKDQsEnpcif/uG2TKp04dfa6Iou8wMdyfSzPRxYFRlMaoiBg2B5OS2ai3UeZmNwpL6XJrTaADx25CPpeX5BPsFA0MF0f2/No2h6SEGoGarIalhGAKIiYjoMiCaR0ibJhk9ZbTI7yiT5L9f3RKRsOmiRSbboktJBwQ5YFhhJqz32Fuk1ckzEclyDQevJcttTPgdCx1Q96+/lUeS4vBeey7PNZV4QIESJEeG1gK+vGf/Ev/sXLZc55wWZcQS9FpaNfGuwts8McLjQpNq2eUPa2JFf/obnnbxz2C7TYuh2GExoxRWY4QceZ4PkBBxcryKJAJq4gFprUHQ/XCz3PSV0mm1BYq1kslg2u3TlMTBOJqxLrLe1p1w8YisnEFanj+JAFAcf30RUJzw+wWjJakiQgCgKaLBFTJGKqxOFCg9WajSqJJHWZqmnz07kiRwoN3jARMuX3c9C0nQdT2VAuN6UpVJphLnPNCDeDwymNStPBcDwEQSCuyNQsl6blMZ2TMV0fRZIQAasVISqIYR51IARYjo8iCRSbFsNxhaQuI4kiYxmNoYRKNq5iOh66IiIKIQFaWldQZQFFkjacC4Pa0R7PqWwCwwpZ07sJ17Y6r/o9wmMpnZt2hRrn3fNiJn9mm+TzHSn5SlLCOS0r/vzP//xc2XHesVnuzSCcNFHTGjftHjlpol44muSTN87yjYfmwnyTmMxte7ahKSKVptPSqg4wXLeTY1FpOgNzIrqfqZh2T73hD2+Op5aqLbbGkOK/aYVf2F++YbaTl9O2qWG56MqJEHMB2DWSwAkCqqZNLq5w6WQaRZa49oIcRwsNig3rpD7qLi8bVxAIv2z5lMZE+kRON8BsPs7kUJzrZod5aqlCxXDIJhRu2j3CgcVyqwwZAQHDccklFS6ZTON4Qc8PQrd+pOMFPX90xtI6P3fpBI8vlCg2bKZycWaGYwgIPfflUyofuWSaqun0lNe0va31s+syFA9zjZr2yf18rsJbXs7QmVdimE6ECBEiRHhl47W8btwKzoQr6HTQ78nbiOh2s0PzsbTe83ybmG2x3MTxAo7XLMZSvc6E0HkSgCDgegGCGEYCXr4tQ9V08DxwvQBJEJAFkfW6hSKLmK7PRWMp3jCRpvnUCg0r3DwW6jaKJLL/WBlZFDhWMtg+FOPy7VnKTRfX99k+pGM5oSOIAByvxVkUeJSaNo7n4/vQaKUybuRZnczqJ/XDFVMZ3nfFBMerFn/9s2M8u1KjYbp4XoAoCh0OJT/wqRoOMUXC931sP8DzPWwXZBGO10z8AGJKyNyuyhKZeKirPTOc4EihwVrV4u7HjxFTJCRBoG6F7XY8n+lEYkMn31bbMZOP8wvXbMfz6fHobtXDPEhi7mx4iKNIyRN4fbX2FBiUN7MZtjpR22yRL4W9fJBm4kb1boVVu9+ml8pe3l9ef71nm728u73dfXGu2ctPt5/PZXjLyxk680oL04kQIUKECBFeqTgTrqAzQbcnL67KG3rTNzs0bz/f7ZGczae4dFuTp5cqFBsWKV3pOBOatstlkxkOtPS+RUEgG1eZzMTJxlTW6xbHqwaSKHLtbI7JoRg1wyUbUxhN64ykdC4aT/Hc8Rqlps1QQmHbUCibJgqh17hpeciCSFqXqbbYyr2W/BWCwO7RNA+9UMBwfaQW6W1CFZAEgfW6uaFn9Y7rZ3oIyPLJ0CPcJpX73wdDya6ELoWpjb6PF4SbYlEU0BUJRZYQCFnLJVFCwMNvRTlajo8fBLh+wIUjKRwvYK1mktEVCnU7PODIxFkoN0AIPfgEoMgiM8PxDdWK7n1qhdW6STamslrvbUf/ePaP+1Y8zP3r3kHz6qUgipQ8gddfi0+BQbk3m2EjZsGNJupUrnczttFzG70+VV0bXYvn5J66+iWsNrJpKpfgbReNbWpv+/9BfdT/TPfrt1001lP+ZrYOKmOzfh5kX/+YDrpvq+NxJv18LsNbXs7QmVdSmE6ECBEiRIjwSsWZcAWdK2zl0LzfI/mOi8aYGY7zppkcV+8Y6mEv/+fX7iB9YIn1usXF4ykUScBwXSazGoWGzXLVIqFKXDU9xAfeuK0jBfbQ82us1U2unMryyRt3oisykgh/s3+JTFxBQODF41Ueniux98U14prE7vEUqZhCTJaomHYod+X5TA/FWSo3USWJhAoJVeGvHz9GSlcoNCx2j6ZP8qx20EfmVzPdjpxYwwx1uVcqBqokkVRDwrkbd4/QMF0WS00kUWAsrXOs1KRhe2RiCslsyEuUT2rEVIk3jKfJxkLN8QeeX2MyE2/xP6koksj7Lp9ElUVUWcSwvZM8vzXT5UihyWrNZM5vIIkChuVTM90zGs9+D3OPItImykkvFVGk5Am8/locIUKECBEiRIgQIcI5xFa4ggZF2G3k9XypUWanOjTfyCO5fSiUd+1/7sLRJJ+8abbH9iPrTb54z9NkYwqZmEzFcLn36RUu25am3HSYHUlwx/UnbxTb8mnFukMurnK4aDCS0XjLzmEajktSlbn5olHG0hrfe2KZufU6siCgKSI7R5JcNpnmycUqmiIymYlzvG6wXA7JcaeG4h3PqiTSQ0DW7fltt71YDxWC0rqCJou8YTyFHwSs1m3Khk1clkEQsFyfIAjwA0hqMnu2Z3D9ALVq9vA6DSdVLt2W5qmlahf/U8hL5HgB42ltoOdXEmG5YvRESvhB0CEnPpPxbNfT7QXPxdWOak+/ctLZ2hhHkZIhXp+tjhAhQoQIESKcFcz8u3s6rzUp4Ctvhss+/49Y3utHGipChH60uYL+7KE5FstNhuJqDw/OVj2NL6zWuefAEusNm3xC5b1XTPZ4Ic9k477RfafySPZv/Ps3fV4QUGjYmI5H3XKRRIFnV2r86/+5DzcI6Jcd6y6vXe9SuYkoCFy9Y4htQ3GOFhs8erhExXCYyMSwXZ8fv7BO03ZRJJFLJ9OIkkhMFbl8WxZBgLFkDMPyiatSTzs8P1QByiUVHN8nl1SoNB1qpstYWu/hTZoZjvP8Wp39xyrkEirX7RzmZwslqoaDIgpUDI9nj9cgEBhOKOxfKJONq/z85ROsNywOFxvkk2on7HsjorInj5U7Ye437BrpeOLbfer5MJHVkUUB0/EZSaoMJRRWKtaWog43G89ucj3H8wcqJ53NzXEUKXmeN90PPPAAv//7v8++fftYXl7m7rvv5v3vf3/nehAEfOELX+BP//RPKZVKXHvttfy3//bfuPTSS8+ZTZuxTHZjs1PH7mvdOb/9OcmD6jVsb2Dud/dzW7Wh/9qgnOnu1/31drcjpko9fdRdnmF7PL1c5ZKJMKxnK7na/fUOsrX/2hMLJfYvlLlyKovpePz0cJE3z+S4fHu2p+3dfQts+Lq/Hd1jBb1/nM5kPDYbm5d6gn2m8+BslB8hQoQIESJE2BjTuThXTmU73sbpXBxgy55GoCPPpUoCz3gBNdPlN27dfVohwlu9b5BHciuEXJmYTLFuUTJsRATclic4q8mMZvQe2THLDU4q747rZ1itWvzN/kXqlkfFtHnscAlBgMlMnGPlJj9+YZ2YIjGdi1NoWDRtjw9eOcndj8MTx8oooojj++zZnuHjN8z0EIs1bRfHC/j+06uoUqhOc+VUtrPOa7d9tWrxh/cdYq1q4bUI1Gqmw5XTWRJKir87sExCkdiei3O4UKdsOOSSKobj8bOFEuMpHYKAoEutp79fl8omTx4rgyBQbNh89/HFk8YjpcvsyCVaUsNKSMZWD+/NJdQthYAPGs9uL3gurm6qnBTh7OG89mij0WDPnj187GMf40Mf+tBJ17/yla/wB3/wB9x5553s3r2bL37xi7zrXe/i0KFDpFKps27PVlkmN/vx6b724mqNp5ZruJ6PLIlcOpHigtHUSc9011s3HSqmi0B4KvT+K7ehyuJJdW3Vhv5r/+vhI3z9wTmathsyPxIgt3S4QUCWhJPqfXGtztNL1Y7+dlqXSeph+M3McIIHnl+jabtYjo/tegiiQOCHkluaEkog7Nme5Ylj5c6PngDIknBSvd2noN229l/7/3z3IN957CiuH+CFZJahLrgAu8eSvO2iUdK6Qiam8I/df2gISSvCPzqgSOJJ7egeq/4/ThdPpHl2uXpa47HZ3BlU3lZxpvPgbJQfIUKECBEiRNgY7Y31es1CkUTWa1ZnM92db9v2NHqBT8P0ejywhu1ycLGCAMRUGcdw2L9Q4umlKjP5+JY37v33eX7AW2ZzHXKufnKttZrVCWNerVrcc2CJuuX1EHJl4yfYsgGOFJq4fugtRQDBD6VUUzGlIztWbNj85MUCS2WTsuGQjSmstvrljutnmMkneO8Vky2vt4kkwuWToQdbFkOFmOlcnFxCQ1ckVmsmXouMLERbIyeUt60YLpLYxcsTBB2p3qB1f79jwXAa7DtSJghgOKGxXrc4WjC4/oI8qhyykyd0maQmtaRiA1K6guV6PPJikTftHGJHLkHZ6A3T7iesq1sek+lYOB5BwFt2Dp80Hm1P9XrdotC0GU3pTGRiL1l2q7vsbtWejZSTzhSRw+ZknNdeeM973sN73vOeDa8FQcBXv/pVfvu3f5sPfvCDANx1112MjY3xl3/5l/zKr/zKhs9ZloVlWZ331Wp1S7ZslWVyMzZAOPHDpkkiD8+XcP2AiXRY3sPzJS4ay1BqnvgiNm23U29al3lqqUoATOdilJsOd+2d59ZLx9k9lu75oduKDf3XCnWLrz84R91ySWoyRwtNACazOus1G4TwVLZmOtz5k3l+7pJxRtIaj8wVW7knOsdKDcpNhzfvjHG8YvLT+QJxRSYZk1mt2QCkdZGq7WG4sCOuUmk63HNgiZQukU2oHC4YCAFs66u3brmdU1CgY+twQu05IS02bL7z2FEcP0AWoE2NIRDqjD+7UudNM0PULIfvPFYgocrkkxr7jhYBuGJbmgPH6wBcPZNjpdwM26HK5JIqi6VwrGbzKQ4sVoDwj9jxisXD8/Oh1z2b2NJ49HvCu+9bKDU3LG+rP6JbnYtnqot4vrUVI0SIECFChFcraqbLT+YKHFysdJwvl23L8ME3bj/J01g1HcpNB4ECrk/HA2vYHk3bpdx0KDRsmrYLAfw/+xYYimsUGza7x1KbhggDPRt8xwso1i0eO1omrkgdcq64Kvc4gSRRYCYXJ67JPHe8zlXT2Q4h13OrVf7socP4QYDjBRAEoQa366OIoEgSjuDiu1AxHWKqxPGqhUDAT15c54W1BjFF6hCpGY7bseGEx9nkzx6a54nF0IPdcEKnSKFhoStSJ0c+oUkdErSQVzzgwNEKv/l/H8ByvY4T7dLJNHXLI6HKWK6HJksslk2++eBhAoKOY6FheXiBjyqLHX3wpu2xXDHYPZZCFMINveOFm3dFEtGV8B7L9VgqGxTqzknt6p4XvePhU6zbPHakRFztHY92X8ytNfju44tMZGKnJbu1mePkVIpILwWRw2ZjiKe+5fxgfn6elZUVbr311s5nmqbxtre9jb179w587stf/jKZTKbzb2pqakv1bcQyWTEcVipWz30bsQFWjPBEsvta3XII/ABNCr24miwQ+AF1y+l5prtePwgQggBJAFkQycZULM9HFISeutrPnMqG/mtzaw2adriJFTlB3uj6J/S5RSHUW7RdH0EUqJkevh+gKyIIAWLrIS8ISGgSrh+Q1GUIQu81AMGJPL6AgLgq4QXhyZoQCJ1J53TXCwwnVBpWaGe3reEJ6Ylr+xfKuH6A3pKOaEMUw7ICYLkSkmg0bZfhpIoggCgIiAJYXoAogiiGz8Y1OWyHJqNJUmesSk0LRRRRxFAgIhtTqBoO2Zi65fHYbO4MKq//uUHY6lw8k7JPVX6ECBEiRIgQYTAqTZsnj5Vp2h6KLNK0PQ4ulqk07Y6nMZdQWG+Y6KpINq4gCmJrWRN6YA3bQxZFbNfH9X3qposvBEyk4xiOx3LVYKHcIAjA8X0cP+iECMdUCcP2kEQ6G3zL8VmrmVieT0KVWK/brFQNJPGE86lQt0moEguFJg8fLpLRVfwg4KeHiyyWmswVaixXTJqOSyau8MRCmQOLFcbTMQTA9gIQwBckUppESpcpNmwEAi7ZlmHnSJJSw+FIoYksCaENFbPjWe9BZ40XoEoil01mGIqrrNbCDfc/e9MUMUUmpkgcr5qYjseR9QbPrFSpmy6jqVCK7K6981SadoeYLBNTKdRtnlmpslpr4noBi2WDe55cQhJgPB3DdHzqlovt+uwYTjCTT9C0Pa69IMe2IZ2KYZOJy+STKuWmjev5KLJI3fTQFZH1us1i0aBYt8LDkha6D1wsz2OtZrXGQ+4ZjzbiaqiPnkuorFRNDNvrGd/ustto2i6H1+v83RNLlJoOI0m94/Db6P52PWNp/ax4uNsOm63U+3rCK9ZdtbKyAsDY2FjP52NjYxw5cmTgc5/73Of4jd/4jc77arW6pY33Vlgm4dR6c+1rSU1BEAUsL8D1Aiw3QJYEki1Gw/Yz7R/D5YpJWpcJBAE/ADfwKRuhx9wPgs6XrG3TVmzovzY7kiCuyhQaNklNJmhF4citzWdAqDVYMx1UWSTwA1K6hNgicSAQwoMBIdRCbFgesihQN12SMbkT1IPQeYVAGA4kCeEXUVVEwoByULrrBQoNu2Mn0LF1ONF7LRtXQmIJ10fu4unxu8LMJzI6hhOeABbqNvmkht9qsCYJhOkr4fum5YbtsEL72mM1FNeYb0UDBASUDYd0TOlhptzKeAyaO4PK22oezVbn4pnqIkbaihEiRIgQIcKZYbliEgShM6NpeYhCuE5ZrpjsHk/3eDEFBIYTGoIQhmQfLjT45oOHqVsOnu+zLatjewGeFzCS1tEUkSk9juG4JFSZitkbIhwEAdWmw7cfPdpJZTu0UmWpbDCc0NBkkYblkUsoZOMKTy1WkUSB1ZqJ68FS2cT2TuT5zo4k2PtCgR8dWiWpy+QSGlPZBI7vo0oC7TTBqaE4yxUDTZYYSkhcPJ7iX944y5Fik5/OF7lgJIXj++RTKsWGTcNyGEmpjCR1WtV1vKTLVZPnVqpcMpkmqckdaa13XzpG1XARRYF9h0vsfbFAtWlzpGRg2B6qFB5cjKV1REFgJKlRbFrh+r6LmCwbVygXbH46HzpyBAGSqsx6zeqsQ23PY/tQjI/fMMt1szlqpstazeQfDq6wUjUxbY+jpSZV0yGpKVyQT6LIAqbjkVBFqqbLX/70KBOZWMfb2x3avVQxGU6oqLJEw3bJxRXGMyf6oo32M/c8ucThYgMRqDb9zvhulFrY7r83TudOKRl2Nr3Rp5Iqez3jFd96oU9LL2ht+gZB0zQ0TRt4fRDaLJN37Z3vnKB1s0y2cSp2xxM5Eg5vmR3iqaUadSvMkbh0MoUb+D3PxFW5U2/FcJjJxaiYLnXTJRNTuG3PNjRF7KmrnwlxkA391+K5MC/6Gw/N0bBchuIKAWB74Y+PQEu6oaveiuFw7QU5nl6q0rAdcgmVlC5Tt1zGszrXzg7z4AtrNCyXrC5juT6uHxCTRVRZwHA8sgmFm3aPcGCxHNYbC7UYLc9nKC4TtDbmKV3ml2+Y7RCmtW0tNe2ea1O5BB++ZrqT0932bgeAJMDusRRxLczn/uSNGe5t5azsGE4gENB0fHbk4whAxbAZz8a4djbPgy+sUTVOjJUg0vNHbCytcdPuEQ6tVE9rPAbNnUHlbfVHaatz8Ux1ESNtxQgRIkSIEOHMEEYwguX6KGJI3CVLIhOZE+vKbi9msWmHqWflBssVg5gqMZmJ8/jRMitVi5GUSgB4nk8QwErVZGY4wS9c05tbvVo1+e7jSzRsj5FkeGB+aKXKL1yznbrp8Wc/nufJYxWkIGChZvLCqs/8WhNNESk27JD8LK5guQFe4OMGPi+uNhhJaVy3c5iK6bBQarJQbjCWDg8DBCFAlSRSMRlNSXDldBbXC9g+FOOiiTQXTaRZKpvh4X1SQRZFRlIa18zkaNguYyn9JCmryazO40dK/NMzx9meieMTsCMX44Hn1qmZLo8fLWG5Pgkt3EAadpg6iQCuF3DQKhNTZEzXY2oozuxIooeYbKHY4EAr9D88hHCpyhIZXUVXfCayOjfvHmUmH+/ZC/zVvnUsN+CC0SR/98QypabNWDqMVjUcl+l8iqyu8pO5QkfGrNi0e9LzekLoAzi4VAE/oGb57NLkgc6NwAfX9TlabDKZjXHx+InU0/7UwsmszjNLVR47Ugzl0Jr2hpJhZzt9MHLYDMYrtgfGx8eB0OM9MTHR+Xx1dfUk7/fZwjsuHuWK7elTspdvpjfXf20r7OX99W6Fvfx0bOi+dvt1O7hpd/5VwV7eb2v3td95/2V86OptW2Ivf/dlY2eVvbx92rnV8TjV3NmovK3iTOfB2Sg/QoQIESJEiLAxVFlkOKlilV0CAmSRllezN466/4A7ocpMZHWmhuJIohBKX9UCgkBgKKGgqyLrDZN8Uusc/LfRtF3qlkfNcpjMxHs8jZ4Po2kNRQy90oEPa3UbTRbJp1SWyiEpWVyWaFguwwmFhBaGPEsiXLltiHRMIaUruL6PKokslQwunUyjSAKG64Z61V6AF4R1beiUajpcOZUFAjw/YCylbyhlJUmQ0CRWaz6G7SKIAocLTZIxhYQis1g2UCSRlC5TMx0CAlIxhbrlYjouSUlu5dILzAzHGU5qobf4wBLrdQtJEpBFAVEIc7cFIUydXCw3mRlOYrguU7neDXe3F7dhu9QMhyCAXFylYbs0LY+4IlO1XBRJ6MiY5eIqFcPu8fbGVZnRtI4ii0iigCIKrbTLXsfiet3k8HqTHx1axXIDxjI6Ty1XWa2aTOXiPWVDSxYtriIEsGcqw8HFKkuVcJO+UT+frjf6VARpkcNmMF6xPbBz507Gx8e57777uOqqqwCwbZv777+f3/u93ztn9eaT+qZSYW1spjfXfS2ek3s2i4Oe6a+3/5lBE3srNvSj7S3eqK5B9fa3o9/W7mu7x9MDy95KvZvZ2o09U0PsmRrqvL92Nt9je7et3fYOet1fV3cZ/a9Pdzw2u++lahee6Tw4G+VHiBAhQoQIETaCQFqXMZNaJ/ctrcv0b6qg94BbEuE7jx5jpWqSUCUqRkhEpikiMUVhNK3xgau2d1IG22iHCxcbNs8fr1M13I4ntO1prJkuiizyjovGOF41WKwYqJKAKklMZmMU6hYxTUJTFCRB4MrtWX7xTVN866cLPZJcO3IxVEnEEHxyCZVb3jDKSEpntWbx/aePU2hYPZJZ/W0cRNzV7SVNaBKlpkNClVEVCVkSKDdtsjEVSQBVEnH8ANv1CYIAURQQBQFFFBEEgbdfNEI+pXfC0nv4aAQBRRJRpZAMKKnKNGwP2/V56IV1fnq4yFtmc5umCSqygO35KJKILIoQQEyV+OAbtxFTJP7socMnyZj1l1cz3ZNI4NrM9d3EdoWGRaXpcsOuPNuGdHRZ5NDxGg3bRRCEnrId1+cHh4536r1kMs3Hrt/JaFrbsJ9Pxxu91ZD0yGGzMc4rkVq9Xmf//v3s378fCMnT9u/fz9GjRxEEgU9/+tN86Utf4u677+bgwYN89KMfJR6P85GPfOR8mh0hQoQIESJEiBAhwkAkdQlFEvH9AEUU8P0AVZZI6tKmz3WTrBWbVhieLokMxVVKTYe1Whih1y3x1U2aNZGJMZrWWa4YPL9WI6lLvOuSMHrUsF10WaLYtBmKa4gCmK6P7XkcrxooskhclUipCookdnH1gOcH2G64MT1caFI2HIYTKiXD5vvPrFJshBvu8HOtI5nVTaDVTdbVlibrv95ue6lhd0h9ZRFKDRvT9Vmrm8iySLqVFmm5HqosIQoiVsu+bFxBkSVycY266ZGJKUhiK/TasBlOqCBAPqUitTh9/CBkIo8pIUnw4YJxEvlXt32WE+Z7Z+MKNdPGCwIu35Zhx3Ci48G2XZ+a6WC7IWv8anVjUrVi3UERRYp1h0ws3Px2qyqNpWM4ns9Dz69TqIf65LIYesg7A9QZKwEvCLA8Dy8IUESxZ8Pd3462N/qGXSPUTHcg4dnpEqSdLWK21xLOa0889thjvP3tb++8bxOg3XHHHdx555189rOfxTAMPvWpT1Eqlbj22mu59957z4lGd4QIESJEiBAhQoQIZwNhOLdOoWFjuR5xVWYkpZ1EkgUbexDvuD4kWWtaHsWGjen4jCRVRtLaQNKxNmlWPqlyeL2O43oEPhwtNjvlO16AQIDhurxlNsfhgkGxYZPSFaZzca7YNoQgwHrd4snFMt/48TzPr9TRZAFRFJFlOF41mV9tcLTQxHQ8DMdnodTkuZUaMVVGk6WBkllAjzRZW9LrHRePAvQQzL2wWufp5SprVRNZErlgJEFGD6VoLxpPMb/awPJ8pnMxBCHkgZrOqbznsgmqptMT3uz5oZb4as1kzm8giQLTQwnevFPjyHqDg0tVZvMJsnEN2wv7fKVinRT92u3FXauZfP/ZVdbrNvmkynsvn+yEby+VDCqGg+X6iAL85MUCfhAMJFXrD8WeW2v0qCpdOJpkbr3O3FqDhCbzltkcwym9xzsOhOTGasixpMliR9Gmfwz62/HAc2uberAjgrSXjvPaSzfffDNBEAy8LggCn//85/n85z//stn0yNz6wNzg9bp5ynxvYOB9/Z9350U0bbdzrVi3O3nRu8fTA3ONnz9e6+Q075ka6rmvO+96s/KAgTnn3fYuloxOXbvGUj33DWrHVvuoP4e9277ucO/+z7vLiKvyhvnn/aHpm+WibHV8T5XP8nLglWBDhAgRIkSIEGFjSCI0rJBdfDoXp1APdbb7pbEGkVrdcf0MsyMJZkeSJHWLbEyhbISkrt1kWKs1i5QuY7sBPz1cwPM9HjtSRhIFLhxJc7xmcufe+XBNlE2ECju6zG17tjGa1jrrtkxM5ntPLIeEW3GVJ46VgZAQ7uEXCziez66xFOs1i3LDRhVF8imNw+sNVFkin1D5ScPGrVlcOpFhrW7hB8FJ7e2WJhtOhtJdd+2dZ9doAlWWOuuaTCzM2xYEgZFUqPhSaNi8/8pJVFnku48vocsSMUXCcDyG4go3X3SC+Kx/TbdeNzuSYd0qRf/8TbtYrVn81x++QMPySMcC1mr2hgpGbbTT7sbSOrMjyZPWY7brhbJllks2prJYMaiaocRa20OcjYcEeJNZnTuu7w27P141ycTkHlWlqulywUiSX75xJw88t07d8lBEsSc0vGm7J7VREOgZg43Wj3+1b/2UpGpnkyDt9bqGff20dAv4N996nHsOLOG1JB52jSW5+aJR0nrIhP2PXaeQ3ady3Rh0etf/+bsvHadiOOFJXM3iSKGB6wcUGzbrNRuEUJPwjdNDzK2HmtWyJHLZZJrZkSSPzBV5aqmMH4SSX3u2ZzneCtMJgIyukGxpI67XLGjlv3SX53oBAaBIYW7LJZNpLhhJntTe4xWTtYYNQajTfclkmutmhzsyFM8uV8N2VE0OF5t4frDlPqqbDhXTRSD8EduzPcsTx8o07fDk7JM3znL7dTv4Xw8f4esPznU+v2nXCIcL4SmgJAjM5BOMpDReXKvz9FIVx/N7nofNc1E2O3XtxrmSWDgdvBJsiBAhQoQIEV5uPPDAA/z+7/8++/btY3l5mbvvvpv3v//9Pfc888wz/Nt/+2+5//778X2fSy+9lO985ztMT08DYFkWv/mbv8m3vvUtDMPglltu4Y//+I/Zvn37WbXV82EiqyMgYLoe+aTGeOZkT/dmHsSxtN6jijPWRU52vGpypNhgtWrh+WH491I5fM6wXd564QiZuILlelQNh2xM7Sk/pkqdDc9IKtxUtWWpXlivEQQB18zkSKohedpyucncWgNFElBlkabj8vxq6MlNx2SKTYehuErVcGjYbkcKrG66eL7Z2WCtVKyWNFnQklULOFps8o0H54mpUmddYzqh3rUihqHgw3EVSQp1wDNxmeWqwWLJoGl7xFUJy9HRFWmgHFZKl1vjARXDIRdXiKsS392/hB8EbMvoHCkaHQWjX3zTNJ5PZ93Zjf4Nff/1iuGiKyKyqOD5PpokoEoiQQDjaZ3njtf45oOHCQjXyzftzjOS0plbq/NPT69SaFgMJzTefek4//vgMovlJkNxlY/fMMtV0zlSurqhd7xmuj2yaIMiI/r7ZSse7LNFkPZ6XsNGm+4WHplb554DS7gBKCI4PhxaqfPmnUPUTJfvPLZAQpPYlo2zXDG5a+88V2xPn+TJbudftE+Y7to7z/as3vP5YsngGw/O8dZdeUZTGo/MFXE8nx3DMY6VDIIAhuIKdcvhh4fWyMTCkKTFssnD80WyMYUDx8INd0wRsJyARw6XyGgS+bTGkaJBpelw6WSaY0WDAMjFZWqWxw8PrZGOyQzFVY4WmgQCTA3FWKvZPDJX5OLxFIuVJt95rEBClYlrEstVC4CYImI4Pk8eq/DGHVlWaz4Pz4enp0O6xsPzRVw/4NLJNGs1+5R9lNZlnlqqEgDTuRilms09B5ZI6uHpYaFh842H5rhwNMHXH5yjbrkMJ1TWahbfeewoO3Jxtg0leGq5wkrN5OcuGWv1ZcC2oRjlZvj8TbvzDCe1gfIITdvdcNz6bT+XEgtbxSvBhggRIkSIEOF8oNFosGfPHj72sY/xoQ996KTrL774IjfccAOf+MQn+MIXvkAmk+GZZ55B10/8Lf/0pz/N9773Pb797W8zPDzMZz7zGd73vvexb98+JGnzfOvTQUqXSaoyNauOiEDNc9ilJTYl59rIgziIlEoSYblshjm2KZXjVRNJFLj+wmGeOFrhxbU6O3IJyoZDOtj21JYAAQAASURBVKZQNmxSmtJTfv8G6OKJNIEPiiigyRLrdZuYHLKDa4rEbD7Oes2m1HRwfdAlkYrrc7RoUDWPYzgBYymNa3YM0XBcZCH0SJuu19lgZWIypuOfWNM1HALfx3I9pnOJzrrmfVdMMJrSezzi+ZTa8T4fPFbhSKGJKILjBWHfaGEed81yEQWhZ530C9dsb42HiyhA2fRoOC5jGZ2pbKJ1SBLj5otGAPjpfIkDx8pn5KQZz2gd27MxhYYdEtipstgjCTc1FOeZlSoPzxWYycd5eqmK6fikdYVn/Ro7cnEunUxTaIRyctO5+KZzIqXLPbJoG0VG9K8ff+Ga7Vv2YL9UgrTX+xr2vBKpvZLw08NFvNaGW5bEjvbzctkipkg0bZfhRBjGPJHRqRgOKxWrp4yVitWTf9G+7+mWJ7j9+XAylBaIyRK2G+AHATFVwnB8aHnZZUlEVyQCQFdEVElCl0V8z+dIsYkfhD+4siQht/5GqLKEJIjIAhAE1Kwwv0MSQBIldCUkxYgpIm3uBZHwXl0JyT5qpkdMCb+cw0kV0/Y67ZMEAUkAP4C1ahjq1D49tT0PAtDl0Nat9JEfBAhBgCSALIjENBkvCFkkY4rMcEKlYbn89HCx1f8qMUUmqcm4fkBck1FlEV2WwIfVmoXvB63+EjvPz601NjxJrhhhDsygceu3fbMyXi68EmyIECFChAgRzgfe85738MUvfpEPfvCDG17/7d/+bX7+53+er3zlK1x11VXMzs7y3ve+l9HRcFNUqVT45je/yX/+z/+Zd77znVx11VX8xV/8BU8++ST/9E//NLBey7KoVqs9/7YEQcD1fRqOi+v7bMRcvhGpVb8HcSNSKs+HiUyMoYRCuemgSiKjaZ3xVIxrZ3OIgsBSpclYWuOj1+9kLKX3lA/0EGOttpwiZcNh12iayWyMlYrB3HqdbFxhaiiG4fgkdRlZBFkCPwjwfR/fB1mUUCUBw/GoWy5DcZUgCDp64aWmwz0HljheNdk1miQdk2lYHilNIptQGU6oOL5PLqlQMRxUWeKjb91JPqVSNR3yKZU7rt9JPqmzVrMoNGwgrNfzfOqWhy5LrNYsDi5WyCWVnnVS3XRBaPV/AJ4XYDsBY8lY5z7XD8gndX46X9qQMKw7ND6tK53Q+PW62TOm+aTesb3huEznErxpR471uo0qSick4SQo1C3KhoOAwLGSQcV0SMXCcX5kvkip4fCG8QyWG3DPk0scbkWrbjQn2nNpLK1hul5PZMSg9aPnc8r51z9fz5Qg7fW+hn3tHytsEW+eySEJoYcb/La6AxNZDcMJCTAKDQtdkTp5IP25HuMZrSf/on3fJRPpns8LdZuEKmO4HqmYjCgIGLbHaCoMofEDcD0f0/EQANMJmSVN10eWRHbk4jx2uITng+t5uK19se16eIGPG4AoCKS0cHi9ADzfw3R8BMBwfHQlfMYHEMIwFEUSSOkhq2VclSnUbeLaiVNfLwi1FyUBRtJaz+npkK5BFwvmoHyY7j5K6zKBIITtDXwMy0USoG67JByXQsMmpcu8eSbHX+1bpNCwGU5A3XKRRYGm5WK7PqbrIUsCoykNsRVSY3s+5Wb4/OxIYtOTZElkw3Hrt/1s5rOcKV4JNkSIECFChAivNPi+zz333MNnP/tZ3v3ud/P444+zc+dOPve5z3VC0Pft24fjONx6662d5yYnJ7nsssvYu3cv7373uzcs+8tf/jJf+MIXTsuemuny3PEaRwtNHC9AkQQyMfWUpFZb9SCmdJmkLlNfdfEDHy8IcD2fIAg35NdfONzJ246rMtfN5nrK79dqzsZUqmaZbExpkbFpzK3XEYQA3w9YKDYRBBE/8HG9cP3p+QGeD7oqcMFoEkUUWaubvOPiUXYMJ/j2o0cZSYbly6LA3hfXWamaWK7PJRNpxjMxaqbNi6sNfjJXRJdFbC/gyqksKV3mHRePcsX29El8Ow3LQxBgKKmG0lieBwgIgsDUUJwX12osFA3UvNRZJ4FA3XJI6jKW45NVJaqGy0KpiSonu+4LBoZbr9VODo0/XjU3JFzrtt1wPH78/DqFhoUqCyRVuSOLVmjY5BMqaV1BlUUcNwi1zv0A1/fJJzViakhMt/eFAus1q4eMrR+becEHrR/H0vrLIvH1el/DRp7uFq6dzfPeKyaRBXD9cGN50USSuKqwfSjGJ2+cJZ/UOrke7dO2brRPtnIJpee+3ePpns/zKZVfvnGWbdkYTdvj2gtyTA/HsL2AqaHwxM10PRKazNsvGmEooVIxHIbiCtftHCaX1LhiexallduiyALXzgyRS4VEaLm4wo5cggCYysWIqyKG65PQJN5+0Qi5hErTdhmKKwzFFEzHI5dUuPaCHI4XsD0bD9ubUnE8n8m0hiIJOJ6PKgtcsT2DKkk9p6dtFsypoTjFhr2lPmrYLjO5GLm4Qt10ySZV3nvFJEMJlVJrw/zLN8xy7WyeT944S0qXKTVtMnGFD18zzXg2RrFpMTUU5y07h1FkiWsvyJFLKlSNE89P5RKbniQPGrd+27dyGn2u8UqwIcL5x5e//OWOrGIbQRDw+c9/nsnJSWKxGDfffDNPPfXU+TMyQoQIEV5GrK6uUq/X+Y//8T/ycz/3c9x777184AMf4IMf/CD3338/ACsrK6iqytDQUM+zY2NjrKysDCz7c5/7HJVKpfNvYWHhlPZUmjZPHitjuX6Yc+z6HFwsU2naG95/Rh7EIEASBeKKEkYDqiKFhkUuoXDLxaPE1BOOk/7y2xughXKD1ZrJet0irSus1S2OFZs8Ml9AbG1iiw2Hpu2jKRJBIGA6IS+QKosEAtiuj+W4HK8Z5BIql25LM5oOnSxz63UOrVTZO7eOH8D0cJzRtE7NdAmCgMlsnB25OH4QULe8VkTACZLlfFLnsm2ZnjXZTD7OtmwM2/Fx/YAggLgqkdBCx9Hl2zKMpbWedVJSl8Jw/EYoy1UxXFRZ7FlPvWlmiPW6jSwKrFRNDNtjpWp2ZLzaofGlpo3vh/9brk8mdmLMmrbL8arZ8UYnNZm9L6x3pNTqlocgCCQ1KVz7xhSGk+HBSFpXkESBhuWAANuycZqOR8W0eexwCT8ImMzETynXNWh+bbZ+fDkkvl7va9jXRyu3iP/yz6/iI9dODWQvf/dlY6dktx50KrfR5y+FvfzXbtl1ztnLu9u7GXt59+npVtjL+/tiK+zlt1+3g5t2518Se/lmJ8mDxq0fLzWf5WzglWBDhPOHRx99lD/90z/liiuu6Pn8K1/5Cn/wB3/AnXfeye7du/niF7/Iu971Lg4dOhTJLEaIEOE1D98P2aJuu+02fv3Xfx2AK6+8kr179/Inf/InvO1tbxv4bBAECMLJod9taJqGpm3MZD0IyxUTURCIqxK+H24KgyD8fPd4+rTK2gg1M8wTvuGCEWzPQ5UkqpbN+6/aRgCnlICKqzIXT6R5+McFqmaYu/zG6SF+tlBif82iarhcv2uYAAFJFMglVXbmEzQsh4OLDrmEgipLyAKULY/nVxtkYgofefN4Zw2ViSl857EFai2psrfMDiMgcMFogoQqcdOuEUZTGn/0gxcoN52OzNVieXMpqnxS51Nv38WfPTRHqWmTTybZOZKkaXudjdxkVj/Jsz+RiSFLAqbjdYje/s+rtxNTZfYdKfFH33+BqukgiwI78gkkkV6iMtllaijOk0tlVqoWiiywPRtHbeV5dufIO14AQYDt+TyxUCGmimhyGF05mtb4peumiakyqzWLh55fo2LYXDcbOr98IJ9UuXxblkMrVZbKJpIIb5zOkYmHHvFBcl2bEZWdzvrxXDGMv57XsK+flm4R187muXY233nfPRnySX1TKalT3df/eVtyoP26fS2f1Ht+kKdyvZvH9jN7pobYMzU08L6tlrdR2f325pN6T139OSQbtWMz9PdFvz39Ul+D2tffnwDxnLzh8/22nsqmQdisjJcLrwQbIrz8qNfr3H777Xz961/ni1/8YufzIAj46le/ym//9m93ch3vuusuxsbG+Mu//Et+5Vd+5aSyLMvCsk7wFrRzFB3HwXGcU9rSvkcTB8s+DnrmXEGTtm7LWa231Qen0xevVZyLvjjX8+ZcoG3zq9H2Nl5ttufzeWRZ5pJLLun5/A1veAMPPfQQAOPj49i2TalU6vF2r66ucv31159Ve2ZHEuiqRKlho8kiluOTS6gdh8dLRUqXcVyffUfWwhBr32fP9gzjGY3vPHrslGRVTdvl2eUqsyNJsrHQw/2zhRLTuTiXT2b4yVyBubVGmLonCFiOH3phTQ9dkUjqCvmkxvO2y3BS5Jbd4wgiVE2Hpu3StF3+8amVFglxjGeWK/xkrkCxYbXSHCVkSUAWBQ60IgKGEyqFhs2zK1Vs19uk9Sc7S7qdL91r0u7+2jEcJ6aJZGMqZcNmLKUzmg6dYN/+6dEeQt3jFZNfvmEnO4YTPeR1TcdFEUViuoDrBxiOF37eRRKWSyp8/+lVBAGunRmm0LBwayeIhv0gIKmH6+WxtM4FI4keybB+x9Zq1eS7jy/RsL2O932jsOytEJVtZf14rhnGX69r2NdfiyNEiBDhVYpf/dVf5b3vfS/vfOc7ezbd8/PzrKys9OQpaprG2972Nvbu3bvhpntQjuK9995LPB7fsk3/4Rr/1De18Pd///dbvvdM8JU3n9PiT4nT6YvXOs5mX5zreXMucd99951vE84YzWbzfJtwWlBVlTe96U0cOnSo5/PnnnuOHTtC6dCrr74aRVG47777+PCHPwzA8vIyBw8e5Ctf+cpZtWc4qXHZZDpUdvF8FFnk0skMw8nT85hvio53vn3IJVA3vS1JQLVJraaG4p0w9KeWKmR0mVRM4erpLI8vlFkqG1w9k2WpbFBsWIxmNN592TiPL5RYr4cHCtfuHGZ6OE4QQMWwO/nPVdMhn9DxAx9dlSk3HQzHp2TYDKGST2k8t1LHdj3SMRU/gKGYiiAEzK01On01yCsaV2VGUic2cZtt5LolryqGw1hK73iw59YaJxHqLpaaHFqpMZIKN/RN2+XwehOrdWCgSCKO52O7XksWjU6/O76PKgmAQEDASEqnWLdCUrmWh71bOq7f9v7XM/kk79szyT0HljhcqJNPahuGZW8mP7fVTW5H/71uko2prNZfXwzj5xJR70WIECHCqwDf/va3+dnPfsajjz560rV2LuLY2FjP52NjYxw5cmTD8j73uc/xG7/xG5331WqVqakpbr31VtLpU4c+Oo7Dfffdx//7MRHLHxyW2Y2Dn9+YpOhs4bLP/+M5LX8QNDHgP1zjn1ZfvFZxLvriXM+bc4H29+Nd73oXiqKcb3POCFtm6H4ZUa/XeeGFFzrv5+fn2b9/P7lcjunpaX7rt36LX/zFX+Smm27i7W9/O//wD//A9773PX70ox8BkMlk+MQnPsFnPvMZhoeHyeVy/OZv/iaXX34573znO8+qrTXTZXYkyUVjKWqWS0qTcfzgtDZApypfkQTe8YZRhNbmrtJ0oKX9fCqyqn5Sq7IRhlW3Cc2qrfB1RZaYTuv8v67bga7InRS89brJ4fUGf71vkefX6iyVzY63vU1S67g++44WgZBoNxdTeNPOIZ5erCGJICCwMx/n0XkZWRAYz+gslQ0cP+AHz67ywPPrEAQosniSx/VMvLGDQpv7iZAPrdSoGDbfeHCev/7ZIu++dJyK4XC02KDSdMgkFMZSOlXDRRRD6uXu/swlFWwvQBACVElCkQTyKY1rprM0HI+xlH7m5GGbpEGcDaKymulypNBktWYy5zeQRAHD8s/avH09I+q9PmyUT9xGd34DDD5568417g5X3qzszTAor6K/nu73wIav80md51aqnRzv7bn4lvKxu8vuz8EehH77BvVff18Oam9//51Jv2wUfnQq27f6zLnKfzkV+us9X3ZEOHdYWFjg3/ybf8O9997bozfbj/6cxM3yFAflKCqKclqbBMsXsLytba7O9eZjq3acs/pPoy9e6zibffFq3bTC6X+fXkl4Jdr92GOP8fa3v73zvn1weMcdd3DnnXfygQ98gD/5kz/hy1/+Mr/2a7/GRRddxF/91V9xww03dJ75wz/8Q2RZ5sMf/jCGYXDLLbdw5513nlWNbjixAVqtWa1w5hOayRth0NrxVOUX607PBms0rXc8ut1kVU07lFBtl9/2/N7z5BKHiw0yusyOXJyjJQMvIPRGx1R2DMcp1h1+/GKB2/Zs66wr2mX874PHWxad8Lb3Q2x96gWQ0GR8Ahw3oGbYNJyQUPh4xaTctHGDgN1jKcazOt9/ehU/CLhu5zCrNavjcQVOCqP+7v5j3Lx7lJl8fEv91402oe5de+dZLDWptMh4cwmVtZrJ1x+c460X5tmRS3IwXqXUDFWIEAIu35bpMMR3POlNhyunsjiex3rD5JKJ8CC7aroDvdSboe19rlseM11a5v3e524b2mN/w66RjiTXVuqURFiuGD2h9n4QIEXU2y8Z0Yq8C//r4SN8/cG5DuPgJ2+c5fbrwpCkHnIE1wdBQJGEk07XfvDsKnf+eL5z8vbRt+7kHRePblr2Zhh0ktdfzxunh/jZ0VKLvCHU+1ZksWUrKFJ4SjgUV7n/uVVsz0cSBK7YnuXy7RnWahaH1xt4QdBjd3+b6qZLxXQQYNN29NvXPiXsJpc4Yd+Jvrx4Is2zLV3z7vb299/7r9yGKoun1S+yKLBjOMFIStv0VLS7DEkQmMmf+plznf8yCP31Duq/CK9u7Nu3j9XVVa6++urOZ57n8cADD/Bf/+t/7YRTrqysMDEx0blndXX1JO93hAivdcz8u3tO6/7D//G958iSCGcbN998M0GwOV/Axz/+cT7+8Y8PvK7rOl/72tf42te+drbN60GHqGx+nmpLYvWm3SMbbnwGrR1PVf5Gm+u4Kp/k0X14rsjvfG/j8gMfCAIs10eWRd5x0Rh1y4GAjjd6kFzVIG97O7xckUXeuGMIURBomA7HygbLFZMduRiHCwY/frHQseeK7WmeWqzyg2dXmc4lcHwf1/MpNmz2HS0RVyUMx+1sILvDqKumzd4nC/zwmVWGk9rA/ttsrdbOEX/o+XX+2w9eIEBguWLieD5VwyGmSGTiCjfuGuHRwwW252JMD8V57xWTnTHt7ve1msn3n1llvaUnHsCmXurNcDph4/02nIpQrx+eDxNZHbklwTuSVBlJaz3h8BHODNG5RQsLxQZff3COuuUyFFepWy7feGiOhWKjh5ggo6scWKxw4FiZTFzpoe1fr5vc+eN5Sk2H0ZROqelw1955nlgoDSx7M3TXO5LUO3UtFBs99azWTO7aO89a1SITUziy3uRIsUlMljhSaHKk0CQTU1guG9xzYAnD9okrEobj8diRIk3L4eG5AsfKBrm41rF7vW72tCmpyRwtNik1HVK6PLAd/f1QqNt8/aE5FitNMnGFJxbKHFisEJPlnr5cbT23WrN62vvcSrWn/2qmw50/medoobFpv6zVTO7cG5aXS2gsFA0emSsSV6WBcgvdtufiGsfKBg/PF4ht8sygcTodKYczQX+9qzUrbG/dfFntiHDuccstt/Dkk0+yf//+zr9rrrmG22+/nf379zM7O8v4+HhP/qht29x///1nnRwoQoQIESKcGm2isqlcjGtmckzlYhxaqW667uheO67XzVPWceFokjuun+Fjb93JHdfP9Gyo2hJQTdvdsPyFYoN7n1qhYXvMDCdxfJ/lssnxmklSU0JvtB9gux6PHS5huR6SKLBYaXLf0yus10NJrZgiUaw7KKJIse505LXaIdulhoMqiZhuwAX5JL/05mmmcgku25bh5t2jzI4kObQSpjLsGI4zFFdZKDUpNCyO1ywszyehyqzXbVYqIYt3dxj1Wt3koefXsX2fsXRsw/4L87Eb3HNgadO1WlyV2ZFLYHk+ZcNGFMLNfRAE1EwHw/Zw/YAbd43wf739Qj550+yGrPApXeaB59apWx6T6RhPL1c5uFhpSd+eXG+3zNhG6G5vv4zZRui24XTXpik97IPp4QRvnM4yPZxgZjjxutHSPpeIerCFubVwcz2cUIkpMsMJKDVt5tYaqLJ0ghzB81FEEQgQEHpOm9qkEd1EDKs1k/0L5YFlbxaePehkq5/wIRtTOFpsko7LCAiIogCEMgWiCOE5pYCmiHgBJFURRZJQJA/X81muWBCALkuostixe6USMhu366qZDgQBsiggCSLDLT3t/nasVHr7YTipsrZiElNC+9rkErbn9fRlNqZSNctkY0pPe59ervb0Xzbms1w1EURh035JxxSOFJtkYzKKJBJTJWzXx3aDgaeE3baLgoAuS7iej+36pyQjeSnEFWeC/nqzMYWq4ZCNqS+rHRHOPVKpFJdddlnPZ4lEguHh4c7nn/70p/nSl77Erl272LVrF1/60peIx+N85CMfOR8mR4gQIcLrGjXT5UixwWrVwvNDr7HrnZzT3b9m6l6DvRRFlXaq2ULxZJKw1dqJNVN7DTGVTWBYPooksFRpcslECkWSWKvbVI2Qkfyfnl5FlQW2DRlUDZeAAMf1EQThJG97XJX56Ft38mcPzrFYajIUV/nIdTtQZIma6ZJLKNhuQC6hcLjQ4M8eOowfBKzVLI4UGxi2RxAEjCRVGnYoUTaejuH5vV7+F9bq+EHAhfkk6ZiCLAk9/ffCap2/e2KJhVKDI4Um18zkNlwjtb3gyxUDXZbw/YCq6ZDRFbbn4gwntZ6Q7dgm66ru9Znj+ThuQLFhse9wr8e+u95TybsNimroH+92auGZrk1PIpxLn344/CsV5zv98tXfg2cJsyOhJEChYTOcgEIjzOeYHUn0kiPEVZyWFmRA0ENSIIn0EDEsV8JrV05lB5a9GQYRIsyOJHrqKRsOmiRSbbromfCHAgFUScT3ASEgIAjlHgQwbB9Z9HC8UP5hIqPx9DKYroft+qzVrfDHrZUP3q4rE5NBEHAD8AKfStPdsB39hBSFuk1ckzEclwC1h1yiuy/Lhk1aVygbDql2fycULplI9/Rf2XBQZZHAD3qkE/r7pWqEp6tlwyWuKRi2hyKJqLIwkFyi2/aRpIbpesiSgCqLWyYjORPiijPBRiQo6ZhC2bBJacrLZkeEVwY++9nPYhgGn/rUpyiVSlx77bXce++9kUZ3hAgRIpwHSCIsl81T5sb2r5naa8f2GuxM0L2Rk4RQZ7u//NmRBE8tVXvWLildQpPFkPQsoXLLG0ZxPJ/7D61itiS91uoWpUaZyYzO7rE0K1WTpCZx25WTjKb1ns3MdC7OldNZlqsmmiSw73CRfUeKPPxigfW6hRR6hhhKKLxpZ46xtM5jh0sEwFsvzPPQ8+sUmg6KJOF4LrtGpc6aph1GfWS9wUrZpGq6JGy3p/+atsu3HjnCgcUKYitc/McvrJO5IsyFb6+RuiMHJzNxVLlM1QzIJzVkSeCisRQfv2EGz2dLIdvd67OkKrNWN3H9gIQmdSTD+mXGNpN3627vRpvGjTbuk1n9jNemr0Ut7fOVBtqNKLy8halcgk/eONsK/Qg3xb98wyxTuUTn1CeXUKiYNnu2Z9izPUul6fScNrWJGHIJhdVaOLnvuH4ne6aGBpa9Gbrr7T7ZmsoleuoZS+vccf1ORjMaFcNhRz7BzHAcw/WYycfZMZygYjhMDsXC3BNNpOl4xFWJa3bkiGsKb5kdZmooTrFpdexu61a366pbLjtyCXJxpfNF3Kgd/f2QT6l88oZZtmfjHXKJPdszGK7b05djqfC5sbTW097d4+me/kvHFD76lp3syCc27ZfRtM5Hrw/LKzYspodjXHtBjqbtbXhK2G97sWkxNRTnLTuHMTZ5ZtA4nesfqf56x9Ja2N6U/rLaEeH84Ec/+hFf/epXO+8FQeDzn/88y8vLmKbJ/ffff5J3PEKECBEivDzwfJjIxBhJqZhOKBU1no5RN72eUOJBa8fTJQNroz/1zPYCdg7HycTknvKncomeNURSkwgQsNyAmVyCuuXx4PPrLc+yRFpXsF2fpCojCAIp/URUYtV0qFvehnbUbZfxlM6zK3UOLFaIqxLrdZuG5SFLIrbrU6jb5OJqJxrS92GtaqFIIp7rYbgunh+yhHeHYsdVmTdMZvjEjbMb9t9q1eLgUgVJFBhOauSTGuWmzdFCs2eN1O8Vjrck1HRFRJHCiEwAw/b4/jOrpwzZ7l6frTdMhhMqO4fjuF7QmQeev3GkZMVwOnnr/WinDPR7uDdKcQRe0tp0o7perThfaaD9ePX35FnE7dft4Kbd+Q2ZuftPfWBj9vI2EUM/A+VmZW+GQadNG9VzrtjL++vaCnv5RvZtlb38utncSe3dqP82ChM5Vb9shYm8v4ytPHO+TgU3qnej/osQIUKECBEivHxI6TI7huPENLHFXm4jCwJ/s38Rw/F6vG2D1o5ngo02cpIIn7jhArwg6Cm/ew1h2C7ffnSBkWRvOHJClUioMsVGE00KveAxNeQFMmyPZ1eqHK+ZfPfxRXIJtYdkrS091bQ91msWuaRKzQxzw3NJlZ35cA353PEq8+tNdo8nWSwZLNdMDq1UsT0fVRIRRQdd8Tl0vMY3HzxM0JJFO3X/hRt1gpDDLKZIjKVjfOiN27hkMtNZI3V7phOqhOn6XDSe4uqZIRRB4nChwTcfPEzdcnjueJ2rprNbJjRbrVr8zf5FSobdmQfdkmFnQ+JrUBj5a9FjfSY4X2mg/Xh99v4mmMoN3khuJl7fjbaH+HTK3gyD8nX669no/Uavd4+n2T1+Qoe3XXbbW78R+sveSjv6n9ms//pfb9Te/v47037ZyhfsTJ4ZZM+5xkb9+nr9YY0QIUKECBFeCWh7O7+7/xgLpSb5pIrrQd3yThlK/FLQ3kAulJpkY0pHqmxHPr5hPe01Q9N2N9wAjqQ1ZvIJVmomvg+qInLJZJrRlMZSpcnxmsloSmciE+tpU7f01EhSw/L8Vn576BE3nZBXqGzYbB+KsS2rs1BoUjRChRyBANcHz/cZTYfcSgeP9Ya1d/ffRmvv0bTOZdsyHDhWptSw8IKAK6eyPRvu7rEKCeIssnGFkZROQlFYKDdYrhjEVInJTJxnV2rsO1IiE+8NUR80B2byMu+9YvJEjnRK7/E4nypXe6vjPWjjHq0Jz18aaD9e36MQIUKECBEiRHhF43QlwCJEeKXgaLHJ40fKlJs2MVViJKlvSOT18FzxtCXDBuF0pMr6n9toA+j5MJLS+PA1U9iujyqLGLbHbVdOUrc8vvv4IhOZ2EltghPSU64fMJbSWa0Z/OxohYQqUTZ9nl+tEVdlPvLmHXzgjdu496kV/u7AMqIATpdEle35pPWQLLY7rP1U3sq4KvPP3zxNOhayn+eTKu+9fHLD+/ulth58fr3l6ZeZyOpMDcWJtdIyf3a0yFLZZDKjb2mTvJnH+aV6o7dCsvZ6xyulj6IRiRAhQoQIESJEiBDhLKItBVY2bIaTGqs1k/VGlVxKYXY41fG22a7XkfRqE53dtXeeK7anzyjMvC1VNjuS6IQzH1qpct1s7rQ3hwCrVYuYIlFqhuHRpWYYHj2a1hkFcgl1oAdxRy5BTJGJKxIPzxeYzMa5ZscQjx4ukdBl9mzP4rZYwgF25hPYrofjB2iSgO2FAeJDcQXXC0jHFGqmw2rV7HjwT+WtvHA0ySdvnB24qe1PVWznMs+OhCHykgjfefRYp42uH3D9BfkNieM2w2Ye582ubYVxOwojPzVeCX0UjUofFoqNgfnK3RO/O/95s5zfrdLTb5Z33G3TcFIbmAu9Vfu6ywNOu739fwQG5Wpv1heb3TcI/X251RzxrdrwUqUEzrcUwbnCa7VdESJEiBAhwrnCSsVitWZhOi5Vw0ESQ/lWRRR7vG0Vw31JkmH9aOevTmUTxFSJlKacVv5qewPYzfa8VjU5UjRw/dDjfNOu0YHh0TfuynfWDO1rS2UDRRK5ajpLNq4SU0RAYCITQ5HEjn2SKDKc1Cg2bLwgQBbB9+FY0SATV7h59yjPrlR49EiRfELlpt27trxZbd/X/flS2eSeA0usN2zyCZX3XjHZYbTufmYjL+lM/vSYr89kLXU6jNtRGPmpcb77KBqdLvyvh4/w9QfnOoyIn7xxltuv2wFw0o/P4WITzw+QRIGZXJyRtH7SF2KrX5YfPLvaCSuSRYEdwwlGUlqHKfK7+xdp2i6KFObRXDCSxPECCAIUWSStK1w8kebZ5WpoX83iSKGBu4F93eW5XgAEyJK4eXtrFofXG3hBcFLYU/d9/TYN6ovN7huE/r7sbm93eVu2wfVBEFAk4aTyzkRK4JUgRXAu8FptV4QIESJEiHAukYnJFBoWpaaDLIAbQC6u8JE3T5OJq53N13rdPKuSYWcjf7Wb7TkXV9l3pIQfBFx/YZ6m5fV4zrs9iKs16yQ5rTuuP0EmVrc8AoKOdGwQcJL07gUjSZKqia6IHCk2cf2AbdkYoiTwo+dWKdZtfALWqhbf/unRDT34g9Yu3Z/HFImjxSZHCk1USeCZlob6b9y6eyAp2pk6IM5kLXU6cmIRXh2IJMNaWCg2+PqDc9Qtl6G4St1y+cZDcywUGz0TPybLPDxf5FjJIBNTOFY0ePhwkZgs91DQb5Wevh1+VGo65BIaC0WDR+aKxFWJo8UGd+6dp2q6pGMqxYbDI3NFCAKeWChzYLFCRldZrVncuXee1bpJXJV4ZK7IQvFk+44WGty1d56a6RBXZcpNh3IzPGAY2F5V4uG5AsfKBrm4RqnpcNfeedbrZs99mbjSY9OgvtjsvkHo78vu9naXF1OlrdmgqxxYrHDgWJlMXGG1NQarNeuMpAReKVIEZxuv1XZFiBAhQoQI5xp108P3QSTAD4LW/6GUWLcU01Ykw7plsk6FbrmqM81f7WZ7FgRQRBG95cyYGopvKGtl2C7ff/r4htJVM/kE771iMpTebUnHXjKZZqlqkNSlk6R3R9IaTcfDC2BbNsZMPkkQBCyWDDzfJ6Up+EHAI/MFDi1Xe/povW5uuHbp/3ypbPDT+SICMJTQkEWBJxcrrFbNgf16JhJap7uWardjtWpSNR1ySQXH98kllU3lxE7Hnq3OpXOFV4IN5wPRUUkLc2vhZnM4oRJTZIYTUGrazK01UGWp8+NTbFgQgC6LCIKAroi4XoDteScRSGyFnn6lYnXCigRBIKZK2K6P7QaICNiez3hCQ5VEdEXEcX2KTRtVCrkdBQGysZBcIhtTsd3wxz2mSgj02ieIApbnM5HQCVryCUEAogDDCXXj9jbb7ZVQZbEn7GkkdaKNju/32DSoLza7b9APWT/Vf3d725qOIIQEH1uxwfNRxFB3UUAgG1OpmmWysa2Tc2xm3/mSIjjbeK22K0KECBEiRDjXaNgOogC6IiEKAn4QILQ+78dmkmFn4iV9qZ7Zbm95Lq7i+CGrWUBwkue8bd9y1eS5lSpvnD6ZKG4jj/j3nz5OoWER+L11T+fi7Nme5fnVGnXLQ1NEBAFs18cPQJEkJEFAlSRsz2et9v9n79/j46rqxf//teey55qZNPekTZv0DhQKtFJogRaQYuUi4hGPeGkROCqKcgoqleOXotgKfo6iKHBATosioud3ABE8QLlYLgWk5VKgtLQ0vSdNc5vJ3G/798d0pjPJTDKTZJJJ8n4+Hn1AZu+99nuvmazsNeu91wqm1ZFOUWj3BplZ5UiLI3G/nbinqbCbiMRiRLX4iDsKHPufoZPPvVTqdZgNeo50B9m8pxNVrxCKxmdeH8yM28WQvVgMMYwUGek+amqlDatqoN0bwh+O0O4NYTMZmFppS2t8VL0eFAhEYmiaRiAcAx2oej0t7gBOS7whSj3GH4qmbUtV4zQl04rC0Rj+UBSdoqAaFGJoqHodXf4woWiMQDiGTqdQZlUJRTXCsRiaBl1HZ6fs8odQDQo6RcEfiqfwpManxTRMR8uLcbRtAWIa2a/XoDt6vVFCkRjNrvh11DhNafsl0oUSMWWri772y6ZnXaZeb2p5qkGXWwwahGMxwjENDY0ufwiHOb6sRl/vVa7x5Xt8sRqr1yWEEEIUWrXDjPHofUlMi9+rqAYd1Y7sS7POmejsNcI90IyzwYzMdgcinDWzMj4yHQgxd5KTuZNKcfnCaSPnqfHVlZqJxmDz3g5cvnDynkGvIzmqaVXj92Mvf3QEbyhKQ7kdbyiaHIne0+bhyXcPEYpqnFJfRrlNpcMTpt0TwKLqsRj1hKJRfKEIgUiUUquRhgpbWh35whGauwLs7/Ql710saryjbjHqk/c03nCEiaVWALp8IaIxjRMnOqly5JfW39+oba73Uj3f6y5/mL0dXiKxGKFoDI34I6EDjakYsheLIYaRJHfPR9WX2bjmrKn87pXddPpClJgNXH3m1OTkYolJFFz+MGdMLWNPux+XP0x9mZWGcgv+SKRXCk8u09MnUmke3NREhzfI5HILk8tt+EJRppTbWLGwkb++exC3P0SZ3cjxdQ5QFE6uLwU0XIEQ1Q4TZ8+sZEeLG5c/zIJpZexr9/aKb0qFjeVHy/MGI5RajSho+EKRfq63nD3tPjp8wV5pT8n9jqYLJWLKVhf97ZdJz6n+0643pTx/KJpbDP74HxBQcPniayaePaOKHS3uAaViFctSBENtrF6XEEIIUWiqQc+0CjveYBfhqIbJoGNqhR3VoM+5jOHOOOs5Cnn2zAoqS8xZJ6lNxFdmN6IQvzd976CLQy4fdaUWZtU4+MubB9JGNUvMhl7X9FGrm//aGL//bmrzclpDOU6rkbNmVPLmng4mlVmpL7Ny8qQQT7x7kEA4itmo5/Pz6nFa1bTy6ktt+IMxrKqeI54Amqbh9oX567sHCUdiKIoSv5csMXP2OVW8d6CLNk+QCruJC0/KvJxYrvWVadQ213upTFmdnkCUUrMRTdEwGfR0B6L9vvfZYiqG7MViiGEkjf0rzMOXTp/C2TMrMs7m3TNVJ5fZy3NN7+mZVtSzvM/Nm5jT7OWnTy3LKb7U8iDz7OV9XW/qt7CZlpfIpS6y7ZdNprpMvd7U8gYaQ2p5+f7yF8NSBIUwVq9LCCGEKCS9Lj6yp+p1WI06IrEY/nAUfR45pkMxKVquMk3c9fLONpYvPDZxV897gBKzgXBU4/ltrckU6Dl1DlYsasRu1vOXNw/0mgjs8/MnpV3T/k4fH7d6iGmg6hUOu4K8svMInz6xjkhM46wZ8eW57GYDf3nzAJ86oQZFp8SzN4069Dp61VFDhZXPz5+EJxDh8bcP4Q1FqbTHt9lN+rTlvgZ675fPRGe53Ev1fK+PeAMEwlG6FYWJEyw0uwIoCn1+fvqKaTg/S9kUQwwjaXxcZR7qy3ovnZWQOtV8YsKH1G39HdOXCrs5a3k9Y0rd1vP/c4mvZ3kDud5s+/U810D2yybT8X3VRb4xDHYpgZFeiqBQxup1ieHXcNNTee2/52cXFigSIYQoLE8gQjiqYTbqMeoVwtH43DOeQIRcV5sqVMZZpuWrBjwKqWkoCsTn09Ew6BWqHKas5UVj6ZmgRr1CKKJhVfWU2+MTqHV6w+zt8DCl3JZcnuvw0YnFZlTHn9X2h6IZy0vUUYXdTDQWIBCJpsVwyOXDE4xSNagazL+++ruX6vlel1pUjqstIRiOP15aaVepdJiIxrIW0WdM1Q7ziGcvjvcMyvFxlUIIIYQQQgwbBYuqw2SML9kan+Qr/no+hjrjLFv68UBGIbsDEYwGHefOqk5OzusKhJKxZiuv2mFOXlOHJ8jWA11w9HirakDV6/mXefUcX+dIXm+u5aXWUc9jtre4Odwd4PG3D1JmUwe1XGwhRm1T32u9Dv7y5gFau4OUWuLzDlU7TDnPgZQppmLIXiyGGEaKTKQmhBBCCCHEEKpymJhT5wTAH4oCDGiiLhj4pGg99TWRVWIU0m7Ws6fDm7aUVzaJTt7h7ngq9OHuY5OEZSrvrBkVdAciyfNVO8xMqbAxp85JNKYlJzQ7ud6Z1uFO1EG+8aUun3bI5eNwd4CqEjO1Tsugl4sdiqXZspVb7Yhnvy49oYZqh4lAJEq1w5TX9WaLaag+S4NRDDGMhPF1tTnY3+HN+Ixzz22pz1b3/NBkStvJ9Hrb0SUMej4n3VdMFlWf9ZjU8rM9g91T6jEHOnxsa3ZzfK2DmTWOtP0+anFn3ZbtOrLVQ18x9Nwvteyez6bnWr4QQgghxHCyqga+uGAKjq2HBjxR11DLJSVaO7q8Tc+lvDKxqgZm1zp4vakJ99GVZc6eWZl2jYny2j0hHnvrIMaj630nRpXzradM8fU1oVliZHX3ES+Pv32QWqfl6ERlg1suNrXsQt2LDqT88TySXOzknUjxx9f3cv/Lu5PfwF1z1lS+dPqUXtsMOh0nTHQwrdLe65c72y9+z9edFiPPpPy8YlEj587u/YRJ6nnRwGExYDcbex2TWv6R7iB72rxENa3PslOPee+Ai60Huohq8WXKVixs5PrzZwJw54aPWL+piVA01mvbC9tbWf9qU6/ryHUdvr72Sy1br1NoKLNS6YinaQ0mJUgIIYQQotCmV9m55uypRdMBypR+bDfp8YcitHkCPPtBS3Ipr74mBoP4gEmrO8DW/V1MrbRRalHp8ofY0eLm9KllAMny6iZYeH5bKxoap08tp9WTXnZf9ZQYYNHryBhfqXVSvxOaWdX4krhlNjV57anLxZYk1iQvwkm9BjKvjszFU5wkvfyo/R1e7n95N55ghAlWFU8wwu9e2c3+Dm/aNodZpdMf5vXdHRj0Slo6Sra0nURDlnj9oMvH/S/vpt0Toqokvt+Dm5po8wSyxmQ3Gen0h9jX4cdmMqQdk3pei6rn9d3tHOjyU2Y1ZS079Rg0jTf3dOAPR7Ea9QQjMR58rYmPWtx81OJm/aYmgpEYNtWQtq3taGpOpy+cdh37O7w5rcPXV5pTatllNpUDHX5e39OBxWAYdEqQEEIIIcRw8IUiHOkODvs9Sqa1mnumH2taDHcgwiNv7ue/X9nD3g5v2ii4yx+mO9A77l2tHta/uocHXt3Da7vbMOgUzEY91SnHpI6qKyhEYjEOu4Js2tXO7lYve9p8aWWnphwnYn//YBfrX93DulebssbX4gr2Gr3PFHfPa68uiS/ZW+0wDTg9PFEP615tYv2re9jV6hnAOyXGC/ka5KjdR7z4QhHKbSoWo4FyG3T6Quw+4gVIbjPodJj0OiLR+AyU9RNsyXQUIGPaTs8GwWKMNyiTy6xYVQO1TjOt3fH9UtOzU2PSNNChoAExTUs7prLk2Hk7fEHQwGzQoxp0WctObQx3HHajaRpGvQ6jXo/dpOANRdjW7AYgFI1hNxkwHV1bMrFtelUJ7kCYWqc57Tp2H/HmNKNjX2lOR7qDybJ1ioLZqCMS1QhFo0OSEiSEEEIIUUjZsgELLZd061Z3kL++cxBPML6c1v4uL81dASxGA/UTrFlHflMHTOpKzby9r5P/e6+FSaUWohqcXF+aPCYxql5i1nOoy48vFEVR4JAr/v+Zlr9KxN7uDbLzsIcqh5njahxZ46txmnKe0Ky/5WcLtWSYECCd7qSplTasqoF2b4hyG7R7Q5SYDcm1rBPbSi0qwWgMg07Bbjb0+uXO9Ivfs0Hwh+Odw3ZPCLNRT7Pr2H7ZYnKYjcTQUFDQKUraMVb1WLqQ3awHBQKRKKFIjCOeYMayU1OMyqxGFEUhHI0RjkbxhqKYjTqOr40/u63qdXiC8S8VPMFIcluZXcVhNtLsClDrNCdjmlpp44ND7n4bwL5mWUysu9jsClBZohIIxzAYFFS9nk5/cFSkBAkhBiffJcaEEKJYpGbsJe6RHtzUxEmTHH3OtTNYuXQGraoBixrBHz62nFZ9qQ1/MIZV1fc58ps6YKLXg82opy2mEY2BogPQkudILA+1r8OHDgWrSY9OUTDoFUKRKJ5ANG35tNTYS0zx+zyDXkGvJ2t8iQnHcl2Gqr/lZ/uq19TO+YCXWMtSnhj7JL38qPoyG9ecNZUSs4FOX7zDffWZU5NrWie2uQMhyqxGzphaRiSqpf1yZ5s1MNEgJF6fVGrlmrOmUlGi0tod32/5wsZejXDqeT3BMBOsJqaUWfAGI2nHpJ7XH4pyxtRy6idY6fAFs5adegyKwicayrCqenzheId7+RmNzKyJT5q2YmEjZqMObyiStq3CHk/NKbMZ066jvsyW04yOfc2ymFp2hzdEfZmVMxrL8EciQ5ISJIQQQojR5aWXXuLiiy+mrq4ORVF4/PHHs+779a9/HUVRuPPOO9NeDwaDXHfddVRUVGCz2bjkkks4cODAkMeayHJMzQZMpEMXUqbOYKZ069SBD38oSos7QEOFla+d2cCVixpZvrAh41w5qcd1+cL4IzFmVTs4e2Yl586qxqDXJc81vcrO8oUNfO7UiVTYTRgVHZoWgxjEl07TssZealUpt6m0eUJ0+cJ9xpc4T19xD0amNPJM9ZeYuX0g5YmxT3opKb50+hTOnlmRcfbyntuyzV6ebdbATK9fMKe63xnGe5432+zlPcvPZfbynsdkm738+vNn8ukTazJuO3d2FSdNcvQ6V66zJ/a1X8+ye85ePtCUICGEEEKMPl6vl7lz53LllVfyuc99Lut+jz/+OG+88QZ1dXW9tl1//fX87W9/45FHHqG8vJwbbriBiy66iC1btqDX64cs1kSWY89swJ6Zh0MtWxahXgeH3YFkp7A7EOHsmRW8vLOt10BRX1JHsNs9IUotRibY49mYhz1+qkvMaR1Pq2qgocKGyagjomkYFD0RLYpq0GHvJwOywm4ipml4AhHK7Wqf8Q10xDqX/TNlDixf2JDXCHt/5Ula+tAo5gyC4oqmCCRGtnPZlmvqSrbXK+zmnFKMep43lwYnMVrcn9RjEiPbmfS1Ldt15NoA9rVfz7IHkhIkhBBCiNFv2bJlLFu2rM99Dh48yLe//W2eeeYZLrzwwrRtLpeLBx54gD/84Q988pOfBOChhx6ivr6e5557jgsuuGDIYk1k7D24qSlrVmMhOgipneJEZ3BWjYOHXttHuzeIAigKxFCosKmce1w1VSWmvGJIHTB5a28nf/rnPva0eXGYjZw9o6pXOdEYTK+2YzcZCUSimA16akpNRHssS9Yz9qmVNr66sCFrfPnWX64r66TqK418IMtzDSYtvZg7lMVgIO/vcJJ3TAghhBBCjHqxWIyvfOUrfO973+OEE07otX3Lli2Ew2GWLl2afK2uro45c+awadOmrJ3uYDBIMHgsLdztducUT7ZsQChsByG1M6jXwT0vfszWgy50ikJTmxcFaKiw8mEs3glcuXTmgJalAmhq8zK10k6pJf4MdmLJsNTySswGppTZsBgNyf2qHaacJzvLJN/6G+gIc1/zDyXqIZ+666+8bIq9QznSRkMGQVE/07169WoURUn7V1NTM9JhCSGEEEKIInP77bdjMBj4zne+k3F7S0sLqqoyYcKEtNerq6tpaWnJWu7atWtxOp3Jf/X19TnHZFUNVJaYeq09ncvSqoORWILLE4jy/iEXep2CWdXhD0XwhqJYjAYMOoX3DrpodQf6LzCDxKht/QQrVQ4z9ROsfS7XVe0wEYhEqXaY+p3sLLF8WCYDqb9cn3XPFEsu8xTlqr/yMi31Nhyfl9FuoO/vcCqOrn8fTjjhBJ577rnkz0P5vE0mH7W4Mz67DINP6+h5fNvR5cQyPa+cy3l7vp5tv9TzVNjNafsBOZ03db+ez4vnWt5YJ2k/QgghxMjYsmULv/rVr3jrrbdQFCWvYzVN6/OYVatWsXLlyuTPbrc7p453ttHJwc58nR8NUEADhfg1xqcw047+z9HtA5DPqO1AUrGzGUj9DXSEeahj76u84vi8jE6DeX+HS/FEkoXBYBi20e07N3zE+k1NhKIxVL2OFQsbuf78mcDg0zp6Hu+0GHnm6M96nUJDmZVKh7lX2dnO2/P12bUOtje7e+3Xc43IC06oweUP4w6ECUc10DSMBl2f503d74g7wJ4OH9GYlld5Y52k/QghhBAj5+WXX6a1tZXJkycnX4tGo9xwww3ceeed7Nmzh5qaGkKhEJ2dnWmj3a2trSxcuDBr2SaTCZMpvwnQEqOTrd1BSi1GWruDyXTXQnUQMn35X+UwM2eik60HugiEIlhVPaAQCMWIoTF3kpMqx8Amd0uM2j7+9gG2NXdR67Rw5ozK5OhiplVrhmKys4HUX6Zn3fMZsR7qeYR6ltdXevRo6FCOtMG+v8OheCLJYufOndTV1WEymViwYAFr1qxh6tSpWfcf6HM3H7W4Wb+piWAkht1kwBOM8OBrTXz6xBomlVkH9ZxAz1+k3W0e/rJ5PzaTnmqHmQ8Oxte0vvzUycmUkbrSBoCM5y21Tkp7fX+nj9ebmuIzrpfakvuZDLVpa0Qe7PTzu5d3s2hGBRMnWHh+WyuKAufOqqbDF8p43jK7MbnfgoZyXm/qIBLTOKHOwWF3gPtf3s2i6RVMKsteXjF94AthNDxHIoQQQoxlX/nKV5KToyVccMEFfOUrX+HKK68EYN68eRiNRjZs2MDll18OQHNzM++//z533HHHkMbTHYiwt8NLqzvI7hjodeAPxzuT1Y781pbORbYv/62qgS+eNhmHxUCbJ8Sso1mcMU2jwm7iwpPqBnXefR0+3t7XRZc/TFObj2ZXgMoS04AHIHIZxBhoB2uoR6yHUl+j2YX4vIxFxfz+QpF3uhcsWMDvf/97Zs6cyeHDh7nttttYuHAhH3zwAeXl5RmPWbt2Lbfeemve59rW7CYUjXe4TYZ4Crs3FGFbsxunVR1UWkfPXySLUY8vFGFymRVVr8ds1BGJaoSi0bSygYznTaz9mHi91GLE7Q9TalHT9tt9xJu2RmS5XeVISwCLQY+CgqpXAAVFIet5w7FYcj9PMAwamA06VL2ecpuJI91uLMa+yyu2D/1Qk7QfIYQQovA8Hg+7du1K/tzU1MQ777xDWVkZkydP7nVvaDQaqampYdasWQA4nU6uuuoqbrjhBsrLyykrK+PGG2/kxBNP7NVhHyy9Dpq7ArR7QpTbVVrdIWKahv7obEpD2UHo78v/6VV2rjlrat6PFvYXU5sncDSbMkJ1iZkPml0c7g5w+fz6tEGkXK8tn0GMgdZfXyPWI/mYYH+j2cXeoSwWxbyyUXFGdVTqshAnnngiZ5xxBtOmTePBBx9Me7Ym1UCfuzm+1oGq1+EJxjudnmAEs1HH8bWOQad19DzeH45iVQ20e4MY9AqBcAyDQUHV63uVnem8ibUfE693+cM4LEa6/CFKTMbkflMrbWlrRLZ7QthUA/5IFA2NUFRDUTQ0jaznLbMbk/vZTUZQIBCJEYpGafcGsaoG/OH+yxvLJO1HCCGEKLzNmzdzzjnnJH9O3O8tX76c9evX51TGL3/5SwwGA5dffjl+v5/zzjuP9evXD/mcQdEY2FQDByI+dh8JoxoVrEZr2jJZQ9VByPfL/2znzfdRucQgUK3TjE5RMBv0RKIxQpHYgAYgEtdRZlUJR2OUWVVc/lDe1zEQI/2YYC6j98XcoRT9G1XvnM1m48QTT2Tnzp1Z9xnIczcQX4d6xcJGHnytCW8o3uFefkZjcjK1wT4Hknr8pAkWrjlrKs9ua6HDG6K+zEpDuQV/JNKr7EznrbCnp5lUO0ycPbOSHS3utP3qy2xpa0RWlKgsPX4y7kAYly/MyfWlgIYrEMp63tT9IlqMM6aWsafdT4c3RIXdxBWn1eRU3lg2Gp4jEUIIIUa7JUuWoGlazvvv2bOn12tms5m77rqLu+66awgj602vi2dMWox6JpWaaPcG8YUjyZHuodTfl/+5dCgH8qhcYhCo2RWg0h6fmdygV1ANugENQJSYDYQjMV7YcRijTkc4FmPuJGfBBzGK5TFBGc0e20bVuxkMBvnwww8566yzClL+9efP5NMn1mScvXywvwiZjr9gTnW/s5dnO2+m10+fWtZrv0xrROYy23jP8lP3k9nLe5OGUgghxoeGm57qdx+TXuOO04YhGFG0ojGodVow6BUiUY1qh5lKuzltpHuo9PXlf6YO5VNbD/GZk+uoSlmWayCPylXYzcnBnQ5fkPoJVhrKrfhD0YEPQCRnkU98uTKwmdXzUUyPCcpo9thV1O/qjTfeyMUXX8zkyZNpbW3ltttuw+12s3z58oKdc2ZN76XCEgb7i9Dz+Aq7mQq7OW17Puft+Xq2/TKdp+dxuZw38f9W1TCg8sY6aSiFEEIIAfFR2ynlViwmHaUWlS5/iOoSc8FGbbN9+d+zQ2nQKWz6uI02b4jaoxN0Ta+yD/hRuZ6DO30tgduf7kAEo17h3OOqUFDQ0HD5wgXv/MpjgmI4FCDJZegcOHCAL37xi8yaNYvLLrsMVVV5/fXXmTJlykiHJoQQQgghREaJ0ecJVpV2b4gJVrXXyK8vFOGwO4AvFOmzrDZPgPcPumjzBPo9Z3XK6DWkdyhdvjCb93YQ06Cu1EynL8xT7x1iT5sXiD9aWGYz5v2oXIU9vixZ6oBMfzJdeyLWDk8Yo05HhyeM01L4zm/ivRrItQuRq6L+ND3yyCMjHYIQQgghhBADEgrH8AXDhEzpt9y7Wj08tfUQbd4QFTaVC0+qyzhx1wvbW4/OEB5/HnvFokbOnV2V8/lTU88PdfnQKQqnTC7FaVZx+cJs2tVOW3eQWqeFpSfUsHzhwB+Vy3Uysr6WN1t6Qk38i4AOLxV2lbNmVGRd93soyWOCotDkE9XDxh2H2fRxOwunlfOJxvIBLanQdnRZr8Qzz8NlqJc62N/hZfcRL1MrbZTbTXmXPZJLLwghhBBCjBRfKMKf3tjL1oMujDod+zr8BCNRVi6NL1/2p3/u4939Xah6hQ+jGt2BCCuXzky7X0osydXpi88Q3uwK8OCmJk6a5Mjr/jLRoWx1B/nrOwfxBKO4AiE27+lEUaDOaaXDF2LDthaWL2yg2pH/vWuuk5Hlsp8WAzSNdk+Ix946iNGgG5YZxeUxQVFI8slK8bV1/+TFHUfQgPteaqKxwsrSE2p6/aL39U3eYL+RHKihXurgj6/v5f6Xd+MLRTDqdRxf52BapT3nskd66QUhhBBCiJHS6g7y/iEXep1CqVWlwxfkvYMuWt1BQOP9gy4MOoUJNhPtnsS2AA0Vx+6VUpfksqoGap1mWrvjAzv5DupYVQMNFQYuPKnu6Kh3AL0OTp1chtNqRDXoBjV5WK6TkfW1H8CzH7TgDUWpm2Dh+W2tKAqcO6s6+aXAcM8oLsRQKepnuofTxh2Hkx1uHfE5E3e3+XD5gnT6wmzY1oIvFEn7hq7Sbk7blvqNZFVJfNuDm5r6fQZnsPqKaSD2d3i5/+XdeIIRHBaVDm+YN3Z3YNQrOZU91PEIMd6tXbuWT3ziE5SUlFBVVcWll17Kjh070vbRNI3Vq1dTV1eHxWJhyZIlfPDBByMUsRBCjHcaoIB2dEJujfjPidfR4psTPyZfPyZ1SS5fKEKzK4DTYqTGmf/SuAnTq+wsX9jAVYsaOGNqBZGYhj8UpcUdGNTz06nPjvdVXl/7pXbIFRRUvYJRp0NRoMZhxuUPJzvnQow20uk+atPH7ckOt053rNE70BlI+0XP9A1dYlumbyRd/jAtrmBBY+8rpoHYfcSLLxSh3Kai6nWYjTpiMY3uQDSnsoc6HiHGu40bN/Ktb32L119/nQ0bNhCJRFi6dClerze5zx133MEvfvELfvOb3/Dmm29SU1PD+eefT3d39whGLoQQ41OVIz65WFTT6PQGiWoaJ050UuUwU+UwMafOSTSm0eULEY0ltqV3phNLcpXZjLR2xyf4Wr6wcdCPLsZHve1cNLduyCYPy3Uysr72S+2Qa2iEohrhWAxNY9BfCggx0uSTe9TCaeXc91ITMYCYlnx90oTeSwdkW1ZAryP5jWTi2Zsy2+C+kczFUC91MLXShlU10O4NUWpVCYRjGPUKJWZ9TmXL0gtCDK2nn3467ed169ZRVVXFli1bOPvss9E0jTvvvJObb76Zyy67DIAHH3yQ6upqHn74Yb7+9a+PRNhCCDFuWVUDXzxtMg6LgTZPiAq7yoUn1iU7oV9cMAXH1kO0eYJU2E1ceFJdxg5vzyW5hnKuoKGePCzX8rLtlzrpm8sX5uT6UkDDFQjJjOJi1JNP7lGLZ1VzzqxKXtxxhBjxBJ/GCitOqwmnJf0XPdEg9PyGzqoaWLGokQc3NQ3pN5L9SW2khuLbyvoyG9ecNZXfvbIbtz9Emd3I8XUOwlEtp7KHOh4hRDqXywVAWVkZAE1NTbS0tLB06dLkPiaTicWLF7Np06aMne5gMEgweCwLx+12AxAOhwmHw/3GkNjHpNP62XPsS9SB1MXorItcPu+pTPr+ry1x/fmWXUxGc+zFYnqVnWvOmpqxEzq9ys41Z2fe1lOF3Zy8lxzqSWoHOnlYtjh6lpfrfgk9O+SATMorxgRF07TR85dxANxuN06nE5fLhcPh6Hd/mb38GJm9XIw1+bYHxUjTND7zmc/Q2dnJyy+/DMCmTZtYtGgRBw8epK6uLrnvv/3bv7F3716eeeaZXuWsXr2aW2+9tdfrDz/8MFartXAXIIQYFXw+H1dcccWobi8LpRB/S3K5ZyqWSWp7xnHWzEqqSky9Yi+WeIUopFzbA+kJ9bB4VjWLZ1Unf87W8PX1zWDqN5LDaaiXOqgvs1FfZksrfyTjEULAt7/9bbZu3corr7zSa5uipE/Co2lar9cSVq1axcqVK5M/u91u6uvrWbp0aU43keFwmA0bNvCjzTqCscznGC9MOo2fzI9JXTA66+L91Rfktf+c1b2/xOopUQ/nn38+RqNxoKGNqET2iyi8XDqnuS7JVWg949je4ub1pnZmVpVQZlOTsRdLvEIUC/nUCyHEKHHdddfxxBNP8NJLLzFp0qTk6zU1NQC0tLRQW1ubfL21tZXq6upe5UA8/dxk6j3fhNFozKuTEIwpBKOjo3NVaFIXx4ymusi3U5zPdeX7+1RMRmvco02undNcl+QqtNQ49DqFNk+QLl8Yu9mQXK0mkR6eT7ySHSnGOpm9vIf9HV427mhlf4e3/50LxBeKcNgdGHNLbBXbdRVbPEJko2ka3/72t3n00Ud54YUXaGxsTNve2NhITU0NGzZsSL4WCoXYuHEjCxcuHO5whRBC5CjXFV9yXZKr0FLj6PKFaPfGJ4krtRrTYs8n3l2tHta/uod1rzax/tU97Gr1DOs1CTEc5KukFH98fS/3v7wbXyj+Ldw1Z03lS6dPGdYYxurzL8V2XcUWjxB9+da3vsXDDz/MX//6V0pKSmhpaQHA6XRisVhQFIXrr7+eNWvWMGPGDGbMmMGaNWuwWq1cccUVIxy9EEKIbHJd8aVYJqlNjaPNE6TUaqTMZiIaJS32XOOVNHQxXsin+aj9HV7uf3k3nmB8fep2b4jfvbKbs2dWpD3XXEhjteEptusqtniE6M8999wDwJIlS9JeX7duHStWrADg+9//Pn6/n2uvvZbOzk4WLFjAs88+S0lJyTBHK8To0nDTUyMdghjH8ulMD/USXwOVGseR7gAv72zLGHsu8RZL2rwQhSaf5qN2H/HiC8U73BajgXIbdPpC7D7iHbZO91hteIrtuootHiH6k8siE4qisHr1alavXl34gIQQQgyZfDrTxTJJbSKOaoeZqZX2rLH3F2+uI/1CjHbyTPdRUyttWFUD7d4Q/nCEdm8Im8nA1Mrh6XBD8TyvM9SK7bqKLR4hhBBCjG+JDmwxdKjzNZjYEyP9ZTbjiKbNC1Fo8ok+qr7MxjVnTeV3r+ym0xeixGzg6jOnDtsoNxTP8zpDrdiuq9jiEUIIIYQYr4olbV6IQpJPdYovnT6Fs2dWsPuIl6mVtmHtcCeM1Yan2K6r2OIRQgghhOjPWF1aq1jS5oUoFPl091BfNjKd7VRjteEptusqtniEEEIIIbKRlVeEGL3kmW4hhBBCCCGKWOrKK5V2M52+MBu2teALRfo/+Ojxh92BnPcXQgwtGeYTQgghhBCiiA1m5RUZIRdi5MlIdw9tngDvH3TR5gn0uV+u3xjKN4tCCCGEEGIwBrryymBHyIUQQ0M63Sle2N7Kyj+/y388/h4r//wuL2xvzbjfrlYP61/dw7pXm1j/6h52tXoGtZ8QQgghhOjbSy+9xMUXX0xdXR2KovD4448nt4XDYX7wgx9w4oknYrPZqKur46tf/SqHDh1KKyMYDHLddddRUVGBzWbjkksu4cCBA8N8Jfkb6NJamUbIXf4w3QHpdAsxnKTTfVSbJ8D6V5vo9IWpKol/E/jgpqZeI965fmMo3ywKIYQQQgwdr9fL3Llz+c1vftNrm8/n46233uJHP/oRb731Fo8++igfffQRl1xySdp+119/PY899hiPPPIIr7zyCh6Ph4suuohoNDpclzFg06vsLF/YwJWLGlm+sCGnFPGBjpALIYaW/MYd1eIK4g6EqXWasaoGap1mWrsDtLiCVNjNyf1yfaZmMM/eCCGEEEKIdMuWLWPZsmUZtzmdTjZs2JD22l133cVpp53Gvn37mDx5Mi6XiwceeIA//OEPfPKTnwTgoYceor6+nueee44LLrggY9nBYJBgMJj82e12D9EV5S/flVcSI+QbtrXkNUIuhBha8ht3VI3ThMNspNkVoNZpptkVb5hqnKa0/VK/MaxxmGlxx/fr+Y1hrvsJIYQQQoih53K5UBSF0tJSALZs2UI4HGbp0qXJferq6pgzZw6bNm3K2uleu3Ytt95663CEXBDTq+zUlTaMyfW9hRgtJL38qAq7mRWLGimzGWntjneQly9sTBvlhtyfqRnoszdCCCGEEGJwAoEAN910E1dccQUOhwOAlpYWVFVlwoQJaftWV1fT0tKStaxVq1bhcrmS//bv31/Q2AvBqhqodpjlPlSIESK/eSnOnV3FSZMctLiC1DhNvTrcCbl+YyjfLAohhBBCDK9wOMy//uu/EovFuPvuu/vdX9M0FEXJut1kMmEymbJu74svFJH7QDEuyGe9b1IjPVTYzVk726lyfaYm32dvhBBCCCHEwITDYS6//HKampp44YUXkqPcADU1NYRCITo7O9NGu1tbW1m4cOGQxyLrY4vxQj7r/ZP0ciGEEEIIMeolOtw7d+7kueeeo7y8PG37vHnzMBqNaROuNTc38/777w95p1tWsRHjhXzWcyNDsEIIIYQQouh5PB527dqV/LmpqYl33nmHsrIy6urq+Jd/+RfeeustnnzySaLRaPI57bKyMlRVxel0ctVVV3HDDTdQXl5OWVkZN954IyeeeGJyNvOhIqvYiPFCPuu5kZrooc0T6PeZbiGEEEIIMbw2b97MOeeck/x55cqVACxfvpzVq1fzxBNPAHDyySenHffiiy+yZMkSAH75y19iMBi4/PLL8fv9nHfeeaxfvx69Xj+kscoqNmK8kM96bqQ2UrywvZX1rzYln0dYsaiRc2dXjXRYQgghhBDj3pIlS9A0Lev2vrYlmM1m7rrrLu66666hDK0XWR9bjBfyWc+N1MZRbZ4A619totMXTq7T/eCmJk6a5JARbyGEEEIIkRdZxUaMF/JZ75/UyFEtriDuQLzDbVUN1DrNtHbHU82l0y2EEEIIIfIlq9iI8UI+632T2cuPqnGacJiNNLsC+EIRml0BnBYjNc6BrcsohBBCCCGEEEJIp/uoCruZFYsaKbMZae2OP4+wfGGjjHILIYQQQgghhBgwyQFIce7sKk6a5JDZy4UQQgghhBBCDAnpdPdQYTdLZ1sIIYQQQgghxJCQ9HIhhBBCCCGEEKJApNMthBBCCCGEEEIUyKjodN999900NjZiNpuZN28eL7/8csHO5QtFOOyOz2BeyGMGajjPJYQQQgghxEDJfasQcUX/TPef//xnrr/+eu6++24WLVrEf/3Xf7Fs2TK2bdvG5MmTh/Rcu1o9PPtBC+5AGIfZyNITapheZR/yY4YzPiGEEEIIIYab3LcKcUzRd7p/8YtfcNVVV3H11VcDcOedd/LMM89wzz33sHbt2l77B4NBgsFg8me3253TeXyhCM9+0EKnL0yNw0yLO8CGbS3UlTZkXeh9IMcM1HCeSwghhBCDN2f1MwSjSsHK3/OzCwtWthCDIfetQqQr6vTyUCjEli1bWLp0adrrS5cuZdOmTRmPWbt2LU6nM/mvvr4+p3N1ByK4A/GGwaLqqXGYcfnDdAeyp8MM5JiBGs5zCSGEEEIIMVBy3ypEuqLudLe1tRGNRqmurk57vbq6mpaWlozHrFq1CpfLlfy3f//+nM5VYjbgMBtpcQfwh6K0uAM4LUZKzNm/jRvIMQM1nOcSQgghhBBioOS+VYh0o+KTryjpqVmapvV6LcFkMmEymfI+h1U1sPSEGjZsa+GIJ0CZzcj5x9f0mQIzkGMGajjPJYQQQoji13DTU3ntL+noYrjIfasQ6Yr6k19RUYFer+81qt3a2tpr9HsoTK+yU1faQHcgQonZkFPDMJBjhjM+IYQQQgghhpvctwpxTFGnl6uqyrx589iwYUPa6xs2bGDhwoUFOadVNVDtMOfVMAzkmIEaznMJIYQQQggxUHLfKkRc0f8GrFy5kq985SvMnz+fM844g/vuu499+/bxjW98Y6RDE0IIIYQQQggh+lT0ne4vfOELtLe38+Mf/5jm5mbmzJnD3//+d6ZMmTLSoQkhhBBCCCGEEH0q+k43wLXXXsu111470mEIIYQQQgghhBB5KepnuoUQQuTn7rvvprGxEbPZzLx583j55ZdHOiQhhBBCiHFNOt1CCDFG/PnPf+b666/n5ptv5u233+ass85i2bJl7Nu3b6RDE0IIIYQYt0ZFevlgaJoGgNvtHuFIhBAjLdEOJNqFseYXv/gFV111FVdffTUAd955J8888wz33HMPa9euTds3GAwSDAaTP7tcLgA6OjoIh8P9niscDuPz+TCEdURjyhBexehjiGn4fDGpC6QuEoq1Htrb23Pet7u7Gxi77eVgyL2lECIh13vLMd/pTvzRqK+vH+FIhBDForu7G6fTOdJhDKlQKMSWLVu46aab0l5funQpmzZt6rX/2rVrufXWW3u93tjYWLAYx7IrRjqAIiJ1EVeM9VDxn/kfMxbby8GSe0shRE/9tZVjvtNdV1fH/v37KSkpQVH6/7bZ7XZTX1/P/v37cTgcwxBh8ZK6iJN6OGa014WmaXR3d1NXVzfSoQy5trY2otEo1dXVaa9XV1fT0tLSa/9Vq1axcuXK5M+xWIyOjg7Ky8ulrcyT1MUxUhdxY6EexnJ7OVj53FuOhc/CUJG6OEbqIm4s1EOubeWY73TrdDomTZqU93EOh2PUvvlDTeoiTurhmNFcF2N9xKbnDaCmaRlvCk0mEyaTKe210tLSvM83mj8LQ03q4hipi7jRXg9jvb0cqIHcW472z8JQkro4RuoibrTXQy5tpUykJoQQY0BFRQV6vb7XqHZra2uv0W8hhBBCCDF8pNMthBBjgKqqzJs3jw0bNqS9vmHDBhYuXDhCUQkhhBBCiDGfXp4vk8nELbfc0ivtcjySuoiTejhG6qK4rVy5kq985SvMnz+fM844g/vuu499+/bxjW98Y8jPJZ+FY6QujpG6iJN6EAnyWThG6uIYqYu48VQPiiZrQQghxJhx9913c8cdd9Dc3MycOXP45S9/ydlnnz3SYQkhhBBCjFvS6RZCCCGEEEIIIQpEnukWQgghhBBCCCEKRDrdQgghhBBCCCFEgUinWwghhBBCCCGEKBDpdAshhBBCCCGEEAUine4Ud999N42NjZjNZubNm8fLL7880iEV3Nq1a/nEJz5BSUkJVVVVXHrppezYsSNtH03TWL16NXV1dVgsFpYsWcIHH3wwQhEPj7Vr16IoCtdff33ytfFUDwcPHuTLX/4y5eXlWK1WTj75ZLZs2ZLcPp7qQmQ23tpLaSszk7ZS2krRN2krpa1MkPZynLeXmtA0TdMeeeQRzWg0avfff7+2bds27bvf/a5ms9m0vXv3jnRoBXXBBRdo69at095//33tnXfe0S688EJt8uTJmsfjSe7zs5/9TCspKdH+93//V3vvvfe0L3zhC1ptba3mdrtHMPLC+ec//6k1NDRoJ510kvbd7343+fp4qYeOjg5typQp2ooVK7Q33nhDa2pq0p577jlt165dyX3GS12IzMZjeyltZW/SVkpbKfombaW0lQnSXkp7KZ3uo0477TTtG9/4Rtprs2fP1m666aYRimhktLa2aoC2ceNGTdM0LRaLaTU1NdrPfvaz5D6BQEBzOp3avffeO1JhFkx3d7c2Y8YMbcOGDdrixYuTDeN4qocf/OAH2plnnpl1+3iqC5GZtJfSVkpbKW2l6J+0ldJWapq0l5om7aWmaZqklwOhUIgtW7awdOnStNeXLl3Kpk2bRiiqkeFyuQAoKysDoKmpiZaWlrS6MZlMLF68eEzWzbe+9S0uvPBCPvnJT6a9Pp7q4YknnmD+/Pl8/vOfp6qqilNOOYX7778/uX081YXoTdrLOGkrpa2UtlL0RdrKuPHeVoK0lyDtJcgz3QC0tbURjUaprq5Oe726upqWlpYRimr4aZrGypUrOfPMM5kzZw5A8vrHQ9088sgjvPXWW6xdu7bXtvFUD7t37+aee+5hxowZPPPMM3zjG9/gO9/5Dr///e+B8VUXojdpL6WtlLYyTtpK0RdpK6WtBGkvE6S9BMNIB1BMFEVJ+1nTtF6vjWXf/va32bp1K6+88kqvbWO9bvbv3893v/tdnn32Wcxmc9b9xno9AMRiMebPn8+aNWsAOOWUU/jggw+45557+OpXv5rcbzzUhchuPL//0lZKWwnSVorcjOf3fzy3lSDtZSppL2WkG4CKigr0en2vb1JaW1t7feMyVl133XU88cQTvPjii0yaNCn5ek1NDcCYr5stW7bQ2trKvHnzMBgMGAwGNm7cyK9//WsMBkPyWsd6PQDU1tZy/PHHp7123HHHsW/fPmD8fCZEZuO9vZS2UtrKBGkrRV+krRzfbSVIe5lK2kvpdAOgqirz5s1jw4YNaa9v2LCBhQsXjlBUw0PTNL797W/z6KOP8sILL9DY2Ji2vbGxkZqamrS6CYVCbNy4cUzVzXnnncd7773HO++8k/w3f/58vvSlL/HOO+8wderUcVEPAIsWLeq1vMdHH33ElClTgPHzmRCZjdf2UtrKOGkrj5G2UvRF2srx3VaCtJeppL1ElgxLSCzr8MADD2jbtm3Trr/+es1ms2l79uwZ6dAK6pvf/KbmdDq1f/zjH1pzc3Pyn8/nS+7zs5/9THM6ndqjjz6qvffee9oXv/jFMTWFfzapM0xq2viph3/+85+awWDQfvrTn2o7d+7U/vjHP2pWq1V76KGHkvuMl7oQmY3H9lLayuykrZS2UmQmbaW0lT1Jezl+20vpdKf47W9/q02ZMkVTVVU79dRTk8sbjGVAxn/r1q1L7hOLxbRbbrlFq6mp0Uwmk3b22Wdr77333sgFPUx6NozjqR7+9re/aXPmzNFMJpM2e/Zs7b777kvbPp7qQmQ23tpLaSuzk7ZS2kqRnbSV0lamkvZy/LaXiqZp2nCPrgshhBBCCCGEEOOBPNMthBBCCCGEEEIUiHS6hRBCCCGEEEKIApFOtxBCCCGEEEIIUSDS6RZCCCGEEEIIIQpEOt1CCCGEEEIIIUSBSKdbCCGEEEIIIYQoEOl0CyGEEEIIIYQQBSKdbiGEEEIIIYQQokCk0y2EEEIIIYQQQhSIdLrFmLZixQoURUn+Ky8v51Of+hRbt24d6dCEEEIIIcQoIveVYqCk0y3GvE996lM0NzfT3NzM888/j8Fg4KKLLhrpsIQQQgghxCgj95ViIKTTLcY8k8lETU0NNTU1nHzyyfzgBz9g//79HDlyZKRDE0IIIYQQo4jcV4qBkE63GFc8Hg9//OMfmT59OuXl5SMdjhBCCCGEGKXkvlLkyjDSAQhRaE8++SR2ux0Ar9dLbW0tTz75JDqdfOckhBBCCCFyJ/eVYiDk0yHGvHPOOYd33nmHd955hzfeeIOlS5eybNky9u7dO9KhCSGEEEKIUUTuK8VAyEi3GPNsNhvTp09P/jxv3jycTif3338/t9122whGJoQQQgghRhO5rxQDISPdYtxRFAWdToff7x/pUIQQQgghxCgm95UiFzLSLca8YDBIS0sLAJ2dnfzmN7/B4/Fw8cUXj3BkQgghhBBiNJH7SjEQ0ukWY97TTz9NbW0tACUlJcyePZv/+Z//YcmSJSMbmBBCCCGEGFXkvlIMhKJpmjbSQQghhBBCCCGEEGORPNMthBBCCCGEEEIUiHS6hRBCCCGEEEKIApFOtxBCCCGEEEIIUSDS6RZCCCGEEEIIIQpEOt1CCCGEEEIIIUSBSKdbCCGEEEIIIYQoEOl0CyGEEEIIIYQQBSKdbiGEEEIIIYQQokCk0y2EEEIIIYQQQhSIdLqFEEIIIYQQQogCkU63EEIIIYQQQghRINLpFkIIIYQQQgghCkQ63UIIIYQQQgghRIFIp1sIIYQQQgghhCgQ6XQLIYQQQgghhBAFIp1uIYQQQgghhBCiQKTTLYQQQgghhBBCFIh0ukeZrVu3cuWVV9LY2IjZbMZut3Pqqadyxx130NHRMdLhDYk9e/agKArr168f6VAK4h//+AeKomT9N9LXvWLFiqyxPfnkkyMamxC5kHZy9Btt7aRer2fSpElcfvnlvP/++yMamxCjwfr161EUhc2bN2fcftFFF9HQ0JD2WkNDAytWrMjrPJs2bWL16tV0dXUNLNAxYvXq1X22qXv27BnpEMc8w0gHIHJ3//33c+211zJr1iy+973vcfzxxxMOh9m8eTP33nsvr732Go899thIhzlotbW1vPbaa0ybNm2kQymoNWvWcM455/R6vRiu22Kx8MILL/R6ffbs2SMQjRC5k3ZybBkt7WQkEmHXrl3cdtttLFy4kA8//JCJEyeOcIRCjC2PPfYYDocjr2M2bdrErbfeyooVKygtLS1MYKPI008/jdPp7PV6bW3tCEQzvkine5R47bXX+OY3v8n555/P448/jslkSm47//zzueGGG3j66adHMMLBi0ajRCIRTCYTp59++kiHU3AzZswo2uvU6XRFG5sQ2Ug7OfaMpnbyzDPPZPLkyZx33nk89dRT/Nu//dsIRifE2HPKKaeMdAh5C4fDKIqCwVAcXa558+ZRUVEx0mGMS5JePkqsWbMGRVG477770m4kE1RV5ZJLLkn+HIvFuOOOO5g9ezYmk4mqqiq++tWvcuDAgbTjlixZwpw5c3jzzTc566yzsFqtTJ06lZ/97GfEYjEAjhw5gqqq/OhHP+p13u3bt6MoCr/+9a+T+1577bUcf/zx2O12qqqqOPfcc3n55ZfTjkukRt5xxx3cdtttNDY2YjKZePHFFzOmTe7atYsrr7ySGTNmYLVamThxIhdffDHvvfdeWrmJlMQ//elP3HzzzdTV1eFwOPjkJz/Jjh07esX/9NNPc9555+F0OrFarRx33HGsXbs2bZ/NmzdzySWXUFZWhtls5pRTTuEvf/lLprep4O68804URWHXrl29tv3gBz9AVVXa2toAePvtt7nooouoqqrCZDJRV1fHhRde2OszIMRYIe2ktJMwsu1kYgTJaDQO/AKEEBn1TC+PxWLcdtttzJo1C4vFQmlpKSeddBK/+tWvgHhK9fe+9z0AGhsbk6nU//jHP5LH5/I3QNM01qxZw5QpUzCbzcyfP58NGzawZMkSlixZktwv0bb+4Q9/4IYbbmDixImYTCZ27dqVd7v/85//nNtvv52GhgYsFgtLlizho48+IhwOc9NNN1FXV4fT6eSzn/0sra2tQ1/ZYshJp3sUiEajvPDCC8ybN4/6+vqcjvnmN7/JD37wA84//3yeeOIJfvKTn/D000+zcOHC5M1GQktLC1/60pf48pe/zBNPPMGyZctYtWoVDz30EACVlZVcdNFFPPjgg8kbzIR169ahqipf+tKXAJLPS95yyy089dRTrFu3jqlTp7JkyZJkI5fq17/+NS+88AL/7//9P/7v//4va/ryoUOHKC8v52c/+xlPP/00v/3tbzEYDCxYsCDjTeIPf/hD9u7dy+9+9zvuu+8+du7cycUXX0w0Gk3u88ADD/DpT3+aWCzGvffey9/+9je+853vpDW2L774IosWLaKrq4t7772Xv/71r5x88sl84Qtf6PVMYUNDQ6/nj/oSi8WIRCK9/vXly1/+Mqqq9jp3NBrloYce4uKLL6aiogKv18v555/P4cOH+e1vf8uGDRu48847mTx5Mt3d3TnF1zOu1LoTothIOyntZMJItJOBQID333+f733ve0yYMIELL7ww52sUYjxLZO/0/KdpWr/H3nHHHaxevZovfvGLPPXUU/z5z3/mqquuSj6/ffXVV3PdddcB8Oijj/Laa6/x2muvceqppwK5/w24+eabufnmm/nUpz7FX//6V77xjW9w9dVX89FHH2WMa9WqVezbty/ZZlZVVeXd7v/2t7/l1Vdf5be//S2/+93v2L59OxdffDFXXXUVR44c4b//+7+54447eO6557j66qsHVd9yfzdMNFH0WlpaNED713/915z2//DDDzVAu/baa9Nef+ONNzRA++EPf5h8bfHixRqgvfHGG2n7Hn/88doFF1yQ/PmJJ57QAO3ZZ59NvhaJRLS6ujrtc5/7XNZYIpGIFg6HtfPOO0/77Gc/m3y9qalJA7Rp06ZpoVAo7ZjEtnXr1vVZbigU0mbMmKH9+7//e/L1F198UQO0T3/602n7/+Uvf9EA7bXXXtM0TdO6u7s1h8OhnXnmmVosFst6ntmzZ2unnHKKFg6H016/6KKLtNraWi0ajSZfmzZtmjZt2rSsZfWMMdu//fv393n8ZZddpk2aNCnt3H//+981QPvb3/6maZqmbd68WQO0xx9/vN94elq+fHnGuBYtWpR3WUIMF2knM5cr7eTwtpO1tbXaK6+8knd5Qow369at6/N3HNCmTJmSdsyUKVO05cuXJ3++6KKLtJNPPrnP8/z85z/XAK2pqSnt9Vz/BnR0dGgmk0n7whe+kLbfa6+9pgHa4sWLk68l2q2zzz673+vvr92fO3duWvt15513aoB2ySWXpJVz/fXXa4Dmcrn6PN8tt9yStZ5zaZPF4MlI9xj04osvAvSa4fG0007juOOO4/nnn097vaamhtNOOy3ttZNOOom9e/cmf162bBk1NTWsW7cu+dozzzzDoUOH+NrXvpZ27L333supp56K2WzGYDBgNBp5/vnn+fDDD3vFeskll+SUhheJRFizZg3HH388qqpiMBhQVZWdO3dmLbfn9QDJa9q0aRNut5trr70WRVEynnPXrl1s3749OTqV+q3gpz/9aZqbm9NGj3bt2pUxnTGb22+/nTfffLPXv+rq6j6Pu/LKKzlw4ADPPfdc8rV169ZRU1PDsmXLAJg+fToTJkzgBz/4Affeey/btm3LOS6ITxDUM64HHnggrzKEKGbSTko7OZTt5BtvvMGjjz7KzJkz+fSnP81rr72WV1lCjFe///3vM/6On3nmmf0ee9ppp/Huu+9y7bXX8swzz+B2u3M+b65/A15//XWCwSCXX3552n6nn3561qydz33ucxlfz6fd//SnP41Od6ybdtxxxwH0yqJJvL5v374sV5ruueee61XXjz/+eE7HisEpjqf6RZ8qKiqwWq00NTXltH97ezuQeSbCurq6tJtEgPLy8l77mUwm/H5/8meDwcBXvvIV7rrrLrq6uigtLWX9+vXU1tZywQUXJPf7xS9+wQ033MA3vvENfvKTn1BRUYFer+dHP/pRxkYl19kSV65cyW9/+1t+8IMfsHjxYiZMmIBOp+Pqq69OizPbNSWe70zse+TIEQAmTZqU9ZyHDx8G4MYbb+TGG2/MuE/PFNR8TJ06lfnz5+d93LJly6itrWXdunUsXbqUzs5OnnjiCb773e+i1+uB+HOFGzdu5Kc//Sk//OEP6ezspLa2lmuuuYb/+I//6PcGXqfTDSg2IUaKtJPSTqYaqXbyggsuoL6+npUrV0rHW4gcHHfccRl/x51OJ/v37+/z2FWrVmGz2XjooYe499570ev1nH322dx+++39thu5/g1I7Jfpi75sX/5lKjPfdr+srCztZ1VV+3w9EAhkjKWnuXPnykRqI0Q63aOAXq/nvPPO4//+7/84cOBAnzdAcOxGqrm5ude+hw4dGvAv25VXXsnPf/5zHnnkEb7whS/wxBNPcP311ydvYAAeeughlixZwj333JN2bLbn47KNnvT00EMP8dWvfpU1a9akvd7W1jagJSAqKysB+pwsJ1FPq1at4rLLLsu4z6xZs/I+92Dp9Xq+8pWv8Otf/5quri4efvhhgsEgV155Zdp+J554Io888giaprF161bWr1/Pj3/8YywWCzfddNOwxy1EIUk7Ke1kqpFqJ61WK9OmTePdd98dqksRQmRhMBhYuXIlK1eupKuri+eee44f/vCHXHDBBezfvx+r1Zr12Fz/BiT2S3zBmKqlpSXjaHemNjvfdl+MPZJePkqsWrUKTdO45pprCIVCvbaHw2H+9re/AXDuuecCJCf4SXjzzTf58MMPOe+88wYUw3HHHceCBQtYt25d1hsYRVF6zRq8devWQX/jn6ncp556ioMHDw6ovIULF+J0Orn33nuzTtYxa9YsZsyYwbvvvsv8+fMz/ispKRnQ+QfryiuvJBAI8Kc//Yn169dzxhlnZJ1cSVEU5s6dyy9/+UtKS0t56623hjlaIYaHtJPSTqYaiXbS4/Gwa9cuqqqqBhO6ECJPpaWl/Mu//Avf+ta36OjoYM+ePUDvDJ6EXP8GLFiwAJPJxJ///Oe0/V5//fVeGVF9KVS7L0YPGekeJc444wzuuecerr32WubNm8c3v/lNTjjhBMLhMG+//Tb33Xcfc+bM4eKLL2bWrFn827/9G3fddRc6nY5ly5axZ88efvSjH1FfX8+///u/DziOr33ta3z961/n0KFDLFy4sNcIxkUXXcRPfvITbrnlFhYvXsyOHTv48Y9/TGNjY78zzvbloosuYv369cyePZuTTjqJLVu28POf/7zf0axs7HY7//mf/8nVV1/NJz/5Sa655hqqq6vZtWsX7777Lr/5zW8A+K//+i+WLVvGBRdcwIoVK5g4cSIdHR18+OGHvPXWW/zP//xPsszp06cD5Py84s6dO3n99dd7vT5p0qR+r2v27NmcccYZrF27lv3793PfffelbX/yySe5++67ufTSS5k6dSqapvHoo4/S1dXF+eefn1N8Qow20k5KO5mq0O1kLBZLxhaLxTh48CC//vWv6ezsZPXq1TldnxBi4C6++GLmzJnD/PnzqaysZO/evdx5551MmTKFGTNmAPFsFoBf/epXLF++HKPRyKxZs3L+G1BWVsbKlStZu3YtEyZM4LOf/SwHDhzg1ltvpba2Nu25674Uqt3P15YtW5JLG6Y6/vjjcTgcwxbHuDRyc7iJgXjnnXe05cuXa5MnT9ZUVdVsNpt2yimnaP/f//f/aa2trcn9otGodvvtt2szZ87UjEajVlFRoX35y1/uNePr4sWLtRNOOKHXeZYvX95r1khN0zSXy6VZLBYN0O6///5e24PBoHbjjTdqEydO1Mxms3bqqadqjz/+eK/yErMz/vznP+9VRqZZeTs7O7WrrrpKq6qq0qxWq3bmmWdqL7/8srZ48eKMM0f+z//8T79lalp8NtvFixdrNptNs1qt2vHHH6/dfvvtafu8++672uWXX65VVVVpRqNRq6mp0c4991zt3nvvTdtvypQpGeusp/5m5b355pv7LUPTNO2+++7TAM1isfSatXL79u3aF7/4RW3atGmaxWLRnE6ndtppp2nr16/vt9zly5drNpstpxiEKEbSTko7mVDIdrJnTFVVVdrixYu1xx57LKfYhBjPErOXv/nmmxm3X3jhhf3OXv6f//mf2sKFC7WKigpNVVVt8uTJ2lVXXaXt2bMn7bhVq1ZpdXV1mk6n0wDtxRdf1DQt978BsVhMu+2227RJkyZpqqpqJ510kvbkk09qc+fOTZt5PFvbqmmDb/ezld1fPSb0NXs5oG3YsKHP48XgKZqWw0J4QgghhBBCCCFoampi9uzZ3HLLLfzwhz8c6XDEKCCdbiGEEEIIIYTI4N133+VPf/oTCxcuxOFwsGPHDu644w7cbjfvv/9+v0sYCgHyTLcQQgghhBBCZGSz2di8eTMPPPAAXV1dOJ1OlixZwk9/+lPpcIucyUi3EEIIIYQQQghRILJkmBBCCCGEEEIIUSDS6RZCCCGEEEIIIQpkzD/THYvFOHToECUlJSiKMtLhCCFGkKZpdHd3U1dXl/PamuOFtJVCiFTSXmYn7aUQIiHXtnLMd7oPHTpEfX39SIchhCgi+/fvZ9KkSSMdRlGRtlIIkYm0l71JeymE6Km/tnLMd7pLSkqAeEU4HI4RjkYIMZLcbjf19fXJdkEcI22lECKVtJfZFXt7GQ6HefbZZ1m6dClGo3Gkw8mJxDw8RlvMoyHeXNvKMd/pTqT9OByOomwYhRDDT9IBe5O2UgiRibSXvRV7exkOh7FarTgcjqLtqPQkMQ+P0RbzaIq3v7ZSHtIRQgghhBBCCCEKRDrdQgghhBBCCCFEgUinWwghhBBCCCGEKBDpdAshhBBCCCGEEAUinW4hhBBCCCGEEKJApNMtxAD4QhEOuwP4QhGJQwghioC0h0IIIYrVmF8yTIihtqvVw7MftOAOhHGYjSw9oYbpVfZxG4cQQow0aQ+FEEIUMxnpFiIPvlCEZz9oodMXptJuptMXZsO2lmEfWSmWOIQQYqRJeyiEEKLYSadbiDx0ByK4A2FqHGYsqp4ahxmXP0x3YHhv7oolDjE8GhoaUBSl179vfetbAGiaxurVq6mrq8NisbBkyRI++OCDEY5aiOEh7aEQQohiJ+nlQuShxGzAYTbS4g5Q4zDT4g5QZjNSYh7eX6ViiUMMjzfffJNoNJr8+f333+f888/n85//PAB33HEHv/jFL1i/fj0zZ87ktttu4/zzz2fHjh2UlJSMVNhCDAtpD4UQI2nO6mcIRpWc9t3zswsLHI0oVjLSLUQerKqBpSfUUGYzcsQTv7E7//garOrw3twVSxxieFRWVlJTU5P89+STTzJt2jQWL16Mpmnceeed3HzzzVx22WXMmTOHBx98EJ/Px8MPPzzSoQtRcNIeCiGEKHbyF0mIPE2vslNX2kB3IEKJ2TBiN3bFEocYXqFQiIceeoiVK1eiKAq7d++mpaWFpUuXJvcxmUwsXryYTZs28fWvfz1jOcFgkGAwmPzZ7XYXPHYhCkXaQyGEEMVMRrqFGACraqDaYR7xG7tiiUMMn8cff5yuri5WrFgBQEtLCwDV1dVp+1VXVye3ZbJ27VqcTmfyX319fcFiFmI49GwPZQmxseell17i4osvpq6uDkVRePzxx9O2r1ixotfcF6effnraPsFgkOuuu46KigpsNhuXXHIJBw4cGMarEEKMR9LpFkKIUeSBBx5g2bJl1NXVpb2uKOnPk2ma1uu1VKtWrcLlciX/7d+/vyDxCjESdrV6WP/qHta92sT6V/ewq9Uz0iGJIeD1epk7dy6/+c1vsu7zqU99iubm5uS/v//972nbr7/+eh577DEeeeQRXnnlFTweDxdddFHavBlCCDHUZHhMCCFGib179/Lcc8/x6KOPJl+rqakB4iPetbW1yddbW1t7jX6nMplMmEymwgUrxAhJXUIsMbHahm0t1JU2SFbQKLds2TKWLVvW5z4mkynZLvbkcrl44IEH+MMf/sAnP/lJAB566CHq6+t57rnnuOCCCzIel+1xnHA4TDgcHsilFFQipmKMLZvRHLNJp+V9zEgZbfU8GuLNNTb56yOGlS8UGfPP3BXyGsdD/Yns1q1bR1VVFRdeeGz208bGRmpqatiwYQOnnHIKEH/ue+PGjdx+++0jFarow2j4PR4NMWaTaQmxI54A3YHIqLsWkb9//OMfVFVVUVpayuLFi/npT39KVVUVAFu2bCEcDqfNgVFXV8ecOXPYtGlT1k732rVrufXWW3u9/uyzz2K1WgtzIUNgw4YNIx1C3kZjzD+ZH8t5356ZFyNltNVzMcfr8/ly2k/++ohhs6vVw7MftOAOhHGYjSw9oYbpVfaRDmtIFfIax0P9iexisRjr1q1j+fLlGAzHmm5FUbj++utZs2YNM2bMYMaMGaxZswar1coVV1wxghGLTEbD7/FoiLEvsoTY+LVs2TI+//nPM2XKFJqamvjRj37Eueeey5YtWzCZTLS0tKCqKhMmTEg7rr85MFatWsXKlSuTP7vdburr61m6dCkOh6Ng1zNQ4XCYDRs2cP7552M0Gkc6nJyM5ph/tFlHMJbbkmHvr878xc5wGW31PBrizXUiWvkLJIbFeEj3K+Q1jof6E3177rnn2LdvH1/72td6bfv+97+P3+/n2muvpbOzkwULFvDss8/KGt1FZjT8Ho+GGPuTWEJsw7YWWUJsnPnCF76Q/P85c+Ywf/58pkyZwlNPPcVll12W9bj+5sDI9jiO0Wgs2o4AFH98mYzGmIMxJed1uovl2kZbPRdzvLnGJX+BxLAYD+l+hbzG8VB/om9Lly5F0zI/N6YoCqtXr2b16tXDG5TIS7H/HvtCEXYf8dLhDVHrtBRljLkayiXERnOq/XhXW1vLlClT2LlzJxCfAyMUCtHZ2Zk22t3a2srChQtHKkwhxDggs5eLYZGa7ucPRWlxB3Baxla6XyGvcTzUnxBjXTH/Hidm+37s7QN8dLibD1vcRRdjvoZiSUWZBX10a29vZ//+/clJJufNm4fRaEx7PrS5uZn3339fOt1CiIKSTrcYFol0vzKbccym+xXyGsdD/Qkx1hXr73FqSnmd00q1w8yR7gDNLn/RxDgSUuul0m6m0xdmw7YWWfd7BHk8Ht555x3eeecdAJqamnjnnXfYt28fHo+HG2+8kddee409e/bwj3/8g4svvpiKigo++9nPAuB0Ornqqqu44YYbeP7553n77bf58pe/zIknnpiczVwIIQph/P0VFSNmKNP9ilUhr3E81J8QxaJQKcXF+HvcM+19do0Dh8XApadMZGqlrShiHAnF/jjAeLR582bOOeec5M+Jyc2WL1/OPffcw3vvvcfvf/97urq6qK2t5ZxzzuHPf/5z2vwWv/zlLzEYDFx++eX4/X7OO+881q9fj16vH/brEUKMH/JXQwwrq1ocN5mFVMhrHA/1J8RIK/Ts3cX2e5xptu8Ku2lcd7hBZkEvRkuWLMk6twXAM888028ZZrOZu+66i7vuumsoQxNCiD5JerkQQghx1HhMKS7WtPeRJvUihBBiqMhfDiGEEOKo8ZpSXIxp78VA6kUIIcRQkL8eYsjk+wzkSCzDMtLnBOTmTYgiNp5TiguR9j4WltsqtscBhBBCjD7yV0QMiXyfgSz0M5PFeM5wVANNw2jQDdv5hRD5SaQUb9jWIinFgzQSba4QQghRjOSZbjFo+T4DORLPTI70OZ1WI+/u72LrQRdOszounhMVYrSaXmVn+cIGrlzUyPKFDdJRHIDx+Gy8EEIIkY10usWgZXoG0uUP0x3IfHOV7/4jEeNQn1NBQdUrGHU6FIVhOb8QYuCsqoFqh1lGuAdoJNrc4eALRTjsDsiXB0IIIfIidxNi0PJ9BnIknpkc6XOW2Y2EohqKoqFpjKvnRIUQ489YfDZe0uWFEEIMlIx0i0HLd1mVkViGZaTP6fKFObm+lLmTnLgCIXlOVAgxpo215bYkXV4IIcRgjM6/fqLo5Lusykgsw1IM5wSZvVwIMT6MpeW2xutSckIIIYaG/KUQQybfZVVGYhmWYjin3KAJIcaLsbLc1lhMlxdCCDF8JL1cCCGEEKIPYy1dXgghxPAa0U732rVr+cQnPkFJSQlVVVVceuml7NixI20fTdNYvXo1dXV1WCwWlixZwgcffDBCEQshhBBioIZz9u+hPpcsJSeEEGKgRvQr2o0bN/Ktb32LT3ziE0QiEW6++WaWLl3Ktm3bsNlsANxxxx384he/YP369cycOZPbbruN888/nx07dlBSUjKS4Y8LvlBkSJ/Hy1RePufoa99M29o8AVpcQZwWA6pBP+jrSJSn6hVCUY0ap4kKu3nA5Q11/QohRLEaztm/C3WusZIuL4QQYniN6F+Op59+Ou3ndevWUVVVxZYtWzj77LPRNI0777yTm2++mcsuuwyABx98kOrqah5++GG+/vWvj0TY48ZQ37RkKg/I+Rx9xZNp274OH+tfbaK1O0AgHOO4GgcnTnIO+Dpe2N7K+leb2N/po9MbYoJNpX6ClRWLGjl3dtWQ1IeMnAghxqLU2b8Tz0Rv2NZCXWnDkHdih/NcQgghRC6K6plul8sFQFlZGQBNTU20tLSwdOnS5D4mk4nFixezadOmjGUEg0HcbnfaP5G/oV4eJVN5T713iCffPZTTOfqKJ9O2x98+wAMv76bdEyIS1fAEI+xodXPQ5RvQdbR5Aqx/tYkj3UFc/jDBSAy3L8IRd5AHNzXR5gkMuj5k+RkhRLHLN2U7sX+rO9Br9m+XP0x3YOjbvJ4zjZdZVQ51+Wl1B4f8XEIIIUQuiuYrX03TWLlyJWeeeSZz5swBoKWlBYDq6uq0faurq9m7d2/GctauXcutt95a2GDHgaFeHiVTeXs6vKBpNJTb+z1HX/EAvbZta+6iyx+m3K7S7ApQblPxBqNYjIbkjV4+19HiCuIOhHFaDDS7wW4yEI5pOKzx8lpcwbzSzGX5GSHEaJNvdk7q/maDnnBUG5bZv1NnGjfoFDbv7UCnKPz1nYNceFKdZBQJIYQYdkUz0v3tb3+brVu38qc//anXNkVR0n7WNK3XawmrVq3C5XIl/+3fv78g8Y51qTct/lCUFncAp2XgN0iZyquwq5TbTDmdo694Mm2rdVootRhp94TQNI12bwjVqOAPRwZ0HTVOEw6zEZc/gk4BTzCCHgW3L15ejdM06PoYTP0KIUQh5Zud03N/byiKgobdrC/47N+JmcbtJj1v7esA4JTJpXiCUckoEkIIMSKKotN93XXX8cQTT/Diiy8yadKk5Os1NfFnfhMj3gmtra29Rr8TTCYTDocj7Z/I31Avj5KpvAtPrOOiuXU5naOveDJtu/SUSVx11lQqSlQMeoUSs4FZVQ4mlVoHdB0VdjMrFjVS5TDhtBgxG3U4rAaqnCaWL2zMezI1WX5G5OvgwYN8+ctfpry8HKvVysknn8yWLVuS22WlB1FImbJz+koPz7S/Qa/jM3MnDsvs39Or7Hzm5Dpm1jg497gqJpfZCprSLoQQQvRlRO/wNU3juuuu47HHHuMf//gHjY2NadsbGxupqalhw4YNnHLKKQCEQiE2btzI7bffPhIhjyvTq+zUlTYM2eza2crL9Rx9xZNp2/QqOydNcgzZ7OXnzq5KljcUs5cPdf2Ksauzs5NFixZxzjnn8H//939UVVXx8ccfU1pamtxHVnoQhZSanVNmN7K/w0+1w5Q1Oyd1/9R08iqHKWtbN9SrOVQ5zNQ6zHR4wqg6fVpKu6wcIYQQYjiN6F+ab33rWzz88MP89a9/paSkJDmi7XQ6sVgsKIrC9ddfz5o1a5gxYwYzZsxgzZo1WK1WrrjiipEMfdwY6uVRMpWXzzn62jfTtgq7eVBLevU01OXJ8jMiF7fffjv19fWsW7cu+VpDQ0Py/2WlB1FoieycR/65j39sPwJoWAw6DnUFMo5YJ/bfsK0lp2yeQqzmkC2GQ10BWTlCCCHEsBrRu/177rkHgCVLlqS9vm7dOlasWAHA97//ffx+P9deey2dnZ0sWLCAZ599VkZuhBDjxhNPPMEFF1zA5z//eTZu3MjEiRO59tprueaaa4D+V3rI1OkOBoMEg8dmc5aVHkR/6krN2E0GplXaqZ9gpcMX6nMprlyzeQq5xFfPGADWv7pHlhMTQggxrEb0mW5N0zL+S3S4IT6J2urVq2lubiYQCLBx48bk7OZCCDEe7N69m3vuuYcZM2bwzDPP8I1vfIPvfOc7/P73vwf6Xumh55wYCWvXrsXpdCb/1dfXF/Yixol8l9QqlrJz0R2I4AlGmGA1EInFKLMbMz4jnRpnuyfI9mY37Z7sy3Xl+7x4vqyqgWqHGatqKPi5hBBCiEzka12Rl3yfg+u5f6bjc9mnL22eAC2uYPL56sTxoUiUw+4ANtXIlArroEYxBvP8X+JYvQ6iMfKuu9TjgOS1ufyRXs+U5xqnPM84usRiMebPn8+aNWsAOOWUU/jggw+45557+OpXv5rcL9+VHlauXJn82e12S8d7kAqRIj0cZeeqtTvI2/s7OdjpR9XrcFiMnD61PO257tQ4Pz7iYdshN+FoDKtq4JqzpvKl06f0Kjfb89+FXk6s0OcSQgghEuSvjMjZYNZodZiNzK51sL3ZnXY80O8+fZ3jhe2trH+1Kbn/BSfU4PKHee+gi3cPdBGOxDAbdJzWWMY3z5kxoJvUwdzsJo7d2+GluSu+lNmUcmvOdbe33Uezy09tqRm7yQiaxiGXnw+buzEb9VSVmFixqJFzZ1flHGcx3LyL/NTW1nL88cenvXbcccfxv//7v0D6Sg+1tbXJffpb6cFkym+pO5FdIVOkC1l2PjG88OFhAuEYRr2OcEyj0x8iHI1ljNNsVHhjdwfhqMbECRa6fCF+98puzp5ZQX2ZLa3sfJ//HozhPJcQQgiRIH9lRE7yvenruf/+Li+vv9rO1KPPAra4Azy19RAAnmA0vk+nj9ebmphaaaO+1NbvOdo8Ada/2kSnL0yt08zBTj+/e3k386ZM4MNmN53eMKpeQdHB63s6qH37ANeeMz2vm6vB3Owmjm3tDtLqDtLpC2PQK1hMupzqrtUToLU7QKcvjKKA2+8hpmm4/GE8wQgGvUK7N8iDm5qYUWXLKc5iuHkX+Vu0aBE7duxIe+2jjz5iypT4qKGs9DDyMqUtH/EE6A5EBv27NdRl95fpkml7qzvA/k4fJSY9kyZYCEc0vMEIMU1LxpEa5/5OH7GYhtmoQ9XrKLepdPpC7D7iTXa6U7OU+nv+eyizc8bryhGS4SSEECNHWl2Rk3xv+nruX2pRcQe6KLUYk8fvafeAotBQZju6jxG3P0ypRc3pHC2uIO5AvMNtVQ2U21WOtASIxDSCkRgmg4JRr8NhUvGHIjS7/HnfpA7mZjdxbKnFyO4Y1DrNBMJRSi1q8hnCvuqu1KKyO+al1hl/5lCvQDQKwUiMcptKTINymwmXP8zuI96c4ixkx0AUzr//+7+zcOFC1qxZw+WXX84///lP7rvvPu677z4AWemhCBQybXkoy+4v0yXTdoAn3z1EU5uXw64gvnAUq2oghkaF/diyYalxlpj16HQKgXCMUDRGly9EidnA1Mp4h7tnllIiYydTO1Somc3HU5snGU5CCDGyxs9fHDEo+d709dy/yx/CYTbS5Q9TcvT1Cns8tfXYPmEcFiNd/hAlJmO/56hxmnCYjTS7AtQ6zbR7QthUAwadgsmgo8unoWkx3MEQRr2OWqcl75vUwdzsJo5t7Q6i10GzK0BliUqXP0R1ibnfumv1BNDrFJpd8XO6IzEUHZgMOtq9IUqtRtq9QSrsJqZW2vjgkLvfOOV5xtHpE5/4BI899hirVq3ixz/+MY2Njdx555186UtfSu4jKz2MrEKmLQ9V2f1lumTa/tR7h9Bi4A1FOa2hnFd2HjmaRaTn5HonF55Ul4wjNU6XP8yCaWVsO+TG7Y93uK8+cyr1ZbZeWUrNrgAPbmripEmOXksySnbO4EkdivGs4aan8tp/z88uLFAkYryT1lbkJN+bvp77V5eYOXtGFTta3GnHA8f2cZg4e2Zlr32ynaPCbmbFokYe3NREa3eAihKVpcdPxh0I4w1FCUe7CEVimPQ6FjSWcekpk/K+wRjMzW7qsf5wPA2z0m6musScc935gzFimkaN08yMKiOgcbDLz/aWbgw6HRV2E8sXNlJfZsspTnmecfS66KKLuOiii7JuT6z0sHr16uELSqQpZNpyPstvZdunv0yXTNv3dHhB02got2NR9Xz6xDr2dnj4l3n1NFRYicbi50yca3qVnVLrpGTaeIcnxLZmN8fXOphZ4wB6ZynVOs20dsdTzXt2uoshO2c40rILeY5iqMOh8tJLL/Hzn/+cLVu20NzczGOPPcall14KQDgc5j/+4z/4+9//zu7du3E6nXzyk5/kZz/7GXV1dckylixZwsaNG9PK/cIXvsAjjzwynJcihBhnRldrK0ZUvjeUmfY/fWpZr+Nz2Sebc2dXcdIkR0FnLx/MjXTqsfnMXp7tOMg+e3mucY7X5xmFGA6FTFvur+z+Uoj7y3TJtL3CrqLFjmUkdfhCTCm3YTbq+MubB3qdKzWGcFQDTcNo0HGoK4BOp2N6lb1XllIim6fG2Xtiv5HOzhmOtOxCn2Ok63Aoeb1e5s6dy5VXXsnnPve5tG0+n4+33nqLH/3oR8ydO5fOzk6uv/56LrnkEjZv3py27zXXXMOPf/zj5M8Wi2VY4hdCjF+jr8UVIyrfG8qe+2c6Ppd9+lJhN6eNjqQe33OW3IEazI30QI/Ndlzy2gZxrvH2PKMQY10uKcT9Zbpk2w6kvXbmjEpe+uhIr3OVWiclYyizG3l+WyuKAufOqqbDF0rG0zNLqcxmZPnCxl6j3LnEPNJ1OhrOMZYynJYtW8ayZcsybnM6nWzYsCHttbvuuovTTjuNffv2MXny5OTrVqs1ueqDEEIMh9HX4gohhBjVZBbloZdrCnF/mS4908MTHeHEa06LAZc/Ep9PwmYmHI1RZlVx+UPJtPEahxlvKAKahk7RoSj0iidTllI2wzmz+UDqtNjPAeM3w8nlcqEoCqWlpWmv//GPf+Shhx6iurqaZcuWccstt/Q5/0UwGCQYDCZ/drvdQDylPRwOFyT2wUjEVIyxZVOomE16bUBx5LOvSZf7OUb6PRltn43REG+usY2PVlcIIURRkFmUCyOfFOK+Ml2yzV7+7Act7O3w0twVoMphoumIl2AkhsNsJByLMXeSM5k2vr3FzeHuAAe6/Oh1Cm3dQRSd0iuenllKfckWcyE/T8ORlj2cqd/jLcMpEAhw0003ccUVV+BwOJKvf+lLX0ous/j++++zatUq3n333V6j5KnWrl3Lrbfe2uv1Z599FqvVWpD4h0Jf11SshjrmO07Lb/+///3veZ/jJ/NjBS2/EEbbZ6OY4/X5fDntN35aXzEgAxlB8IUitLqDgEaVw5zzhD8ftbiTE+6U2dWMIyCpz2snnmlOTACUePY50/PO7+7v5J39XZxcX8rc+glp5wbS4khsSy1vb7sPNI3ZdfHZdVNjTUwOlEu97G334g1Gaaiw5nyzmanO8nk+XIhiIbMoF85QpBBnnL186yEAOn1hWt1BOn3xb/T94SiuQBibqj96tIJVNXDWzEpeb2qnyxemodyKNxTlvUNdLJxWMeQpzYX+PA1HWvZYSv0uJuFwmH/9138lFotx9913p2275pprkv8/Z84cZsyYwfz583nrrbc49dRTM5a3atUqVq5cmfzZ7XZTX1/P0qVL0zr0xSIcDrNhwwbOP/98jEbjSIeTk0LFPGf1M3nt//7qC3LeNxHzjzbrCMaUIS+/EEbbZ2M0xJvIfOmPtOoiq4GMIOxq9fCnN/by/iEXoDBnopMvnja513E9y25xBXji3YOEojEUFMptKmV2NW391sQx7x108WGzG7NRh91kYEq5DYNOR7PLj4bG/g4/ZqOeqhITKxY18o/trfxl8z4iMQ2DTuGCE2qZVVPSa6Ifh9nI7FoH25vd7G33xcvTYHuLG28oil5RmFxmYXpVCRs/aiUUjaHqdaxY2Mj158/st17u+ccu3tjdQVSLMbHUwrXnzODc2VV5vx+J0aZap4Up5VYZKRSjxliaRbkYDTaFOOPs5e0eUBTKrSq7Y1DrNOPyh7GoekrMRuY3TMBuNuDyhekORKgqMTGzqgS72UCp1Yg/HOVQV4DPnFxHQ8XQtlPD8XkajrTs8Zr6XSjhcJjLL7+cpqYmXnjhhX47xaeeeipGo5GdO3dm7XSbTCZMpt4T/RmNxqLtCEDxx5fJUMccjObWGU49f97niCk5n6dY3o/R9tko5nhzjUtX4DjEKJU6glBpN9PpC7NhWwu+UKTPY5589xBbD8afoVKArQe6eOq9Q2nH9Sz74yNu/rJ5H/5wDLNRjy8U5WCXH4tRT6cvzIObmtjf4eXZD1o45PKzo6UbTzBCKKqxr93H6x+3c6DLxxF3kPcPunAHIkRiMdq9Qe56fid/fnMv4ZiGyaAjHNV4aushPmpx47QaeXd/F1sPunCaVVq7g6zf1MQhl5/W7gCt3QG2HuyiwxciEo2haRofH/Hw5NZD+EMxbKqBYCTGg6818VFL9m+5fKEIj799IN7hjmmoeh37O/z89yu7afME8no/WruDydGmI54ArZ5Av++LEMUiNZXWH4rS4g7gtIzOWZSLlVU1UN1HhlFfMr0/FXYTFTaVLn8YvQ6aXQEMeoVQJEYkFsOuGunwhJPvY+Jfa3cQfzhKhydMndNMlSP/zJ5MfKEIh90BfKHIkHyeUsvLtg0YcJ3majDvmzgm0eHeuXMnzz33HOXl5f0e88EHHxAOh6mtrR2GCIUQ45W07iKjgYwgdAfik+sYdTpKrSqKAp3eIG2eUNpxPcuOxBQiMQ2HxYBBp0OngKZBKKIl12/dfcSLOxDGYtATisYot6mEIjFUo45wNIYvFMVhNbC/C6pKjEdHy018fMRDJAZmow6jXk9Mg0A4hj8SH1FX9QqgoChQajHi9sfPEY1plFqM7Ovwo1fAqFewmgy4/UFiGlhUHSZDPK3SG4qwrdmdNc28OxChxR0gpmlMsBnRKQqKEqHTF8q4Lm1f70epxZgcbQqEo5RaVFz+sIwUilFBUmmLW3+zl/vD8cdbuv1h4i0n7Gn30lBhTb6Pu1o9uP1hPm7t5uNWDydOdA7Ze5wp+2own6e+srlk7oHi5PF42LVrV/LnpqYm3nnnHcrKyqirq+Nf/uVfeOutt3jyySeJRqO0tLQAUFZWhqqqfPzxx/zxj3/k05/+NBUVFWzbto0bbriBU045hUWLFo3UZQkhxgG50xEZDWRylxKzgXKbie2xbjp8QdAgqmlU2NW043qWbdDF0769wSg2E8Q00CmgGpTk+q1TK218cMjNIZcfVa+j3RvCYTESCsYw6nVYVT0d3SGMeujyhymzGWn3BqkqMdPWHSAQiU9yEYrE0CtgMejQ0AhFNRRFQ9PixzksRvyRKHqdQpc/jFGvEIwAUQ1fMAIo6BQNfyiGUR/FE4xgNuo4vjZ7+lqJ2UCNw4xOUej0hlENCoFwjEkTLBnXpe3r/WjtDiZHmypLVLr8IapLzDJSKEYNSaUtbtnen7rSBlrdAf5n8wE6fWHqJ1g53B3Aqur5/PxJVNjNyYwcnU7HkpnV7O/0UWI2UFc6+FHubM9vL1/YwPKF+X+e+noeHJC5B4rU5s2bOeecc5I/J56zXr58OatXr+aJJ54A4OSTT0477sUXX2TJkiWoqsrzzz/Pr371KzweD/X19Vx44YXccsst6PV6hBCiUOSvh8hoICNSVtXARXPr8ATDvHcw/kz33EmlXHhiXa91uFPLnl7l4PL5Kn/bepBAOIrVpKfcpuIPR5Prt9aX2ZLHzKopYXuLG1WvMKXCyuRyGwZFh0GnUOFQOdDpx6DTUWE3sXzhsWe6g5EYRv3RZ7prS3D5wpxcXwpouAIhqh0mzp5ZyY4WN+GIRkzTqLSb2XHYjScYRVEUplfZmVZZwks7W/GG4h3u5Wc09jmZmlU1cOkpk2h2B/jn7g5C0RiTyy187cypec3cm7h+fziSjK26xCwjhWLUGW+zKBdKoZbKyvT+WFUDFtVAVNOYVmnHoupRDTqOeAJEj07c2+oO0OwOUFdqxmk2ohrsyQwpIOdYM11XtuyrVncAi2rIuw76yuYC0raVWVUOdflodQdpqJDP7UhasmQJmpZ9eaa+tgHU19ezcePGoQ5LCCH6JX89RFYDGZGaXmVn5dJZ/c5enqnsL58+uc/Zy1OPyWf28nNnV/G5eRNznr389KllQz57+fQqOz/5zJxBzV6eev0ye7kQ49tIpD/3lQG1q9XDk+/G58v48JCb+Q0TiMagzBbP0PnfLQdyijXbdWU6t6ZpPP72IQKRaN510F82V2KbQaeweW8HOkXhr+8c5MKT6iTNXAghRN7kbl30aSAjUlbVkNNoQM+yZ9akd2AzdUpTj6nv8XqqetLNrZ/A3PoJWc/d8/97lVdmS/u5Z6y5sKoGjqt15nVMpjKkky3E+DZSS6/19cz3sx+04A1FOXVyGZv3dvD2vi4WTi/nrBkVvPTRkZxi7e+6Us9tN+tx+8J4Q9EB1UF/2VxLT6jhqa2H2PRxGwCnTC7FE4xKmrkQQogBkb8aQgghxChSqKWyMqV193wtU5bSnjZPSlp5fKnHQy4fn5k7EX8owsdtHiaXWfuNtb/rSj13hyfIw2/up85h7LfcNk+gV+YU9J3NNb3KzmdOrqPNG0pelz8UpdnlZ/cRL1MrbdLxFkIIkTP5iyGEEEKMIgOZ6LI/mdK6gYyp3qkZN9nSyutKLWxrdvPH1/eyu83D64rCmTMqcJjVrLHmcl1W1cChrgDPfHA4Yyp7z3Jf2N7K+lebktewYlEj586uSisvW+e5ymGm1mGmwxNG1en5sMVNqzvAY28foNxmkhnNhRBC5Ew63aJPiVGOXJ4h7us56XzKa/ME2NPmw6bqqXSYsu6XbRKhTOfwhSJpIx2Z9tl5uDvjc996HXgCUUDDbjYQjZE8LtN1JEZVnBYDqkGf3OYLRXo9655P/fZX56nlZXoPUrcl6qNnjAM550grtniEKLShXnotU1r3U+8dQovRZ/p24rhMaeWfaJjAr5/fhTsQYWq5nV1tHjbtauczp9RljTWX6+rrnD33bfMEWP9qE52+MLVOM82uAA9uauKkSY6c5tRIjafZ5afVHaDaYabOaZUZzYUQQuRF/lKIrBIjH3vbfTS7/NSWmplydBbxnt/up46ShKMaaBpGgy5tdCSX8l7Y3spvX9jJIZcfLQblJSpz6kqZUm7NaQ3V5Dk6vDR3Bah1WohEo+zp8BGNaTjMRi44oQaXP5wWx45mN9tauonF4suXXXBCLbNqStjb7uPjI90EIzEUwGjQUVViOrq8mQFvMJJ2Hfs6fKx/tYnW7gCBcIzjah2cONHJ7FoHr+48wvuH4rO6z5noZNH0CrY3u3Oq377en0QdzK51sL3ZnfE9SN12pDvI3nYvnmAkLcZczltsa9cWWzxCDFS+X8AN5dJrqbOOW1Q9ZXYjH7d6MOgUppTZCUdjlFlVXP5QWvp2qztIs8tPndOK02pMSyv3BOOp4rXO+BeMJqOew24/pzeWJ7/4y3WSzVQ9U9BTz9lQkT73RosrmBZDrdNMa3f8S9FEp7u/L+0S8ew+4uWxtw9Q5+w/TV4IIYToSf5SiIwSowmtngCt3QE6fWEMOgWL0ZB1tKPTF6bMbuT5ba0oCpw7q5oOX4gN21ootU7qtzxfKMIDL+/mQFd8Le5OfwhPKEKpVcVi0vW7hmryHN1BWt1BOn1hYprGx0e8xDSNE+ocHHYFuf+V3ZzeWEZrd3wfbyDKewfdRDWwqjqC4RhPbT1ENFqFOxhjf4cfo14HaISiMTo8IUxGHaFODYtRn7yOx985wNt7u+jyhYlEwROMsKOlG6fZwKu72vCHo6gGHWjw9r5OdjS7mVJp7bd++3p/EnWwv8vL66+2M7XSTrXTlPYeHPb4k9vKbEbe2N1BKBLFbjEmYyy3q/2ed6Qmb8qm2OIRYqAyfVnY84vGTIZiYsWe6eGJLy8BItEY7x904zAbCcdizJ3kTGbR7Gr18NTWQ3x02MP2lm7mTykjEtOoK7VQ5TBhD8U7xM2uALVOM0c8QawmPa/vbueVXW19fknW13X1TEHv8IWS5+ypxmlKi6HZFR89r3GakteQy5d2VtXA1Eob5TbTkKb0CyGEGD90Ix2AKE6J0YRSi0o0plHrNBOJQanFiMsfTq5lmrpvjcOMgoKqVzDqdCgK1DjMuPzh5IhDX+W1uIJ0+UKYDXqsqgHVqEOnKPhCUUotanK/TJPtpJ/DSDQGtU4z3mAETdMwG3Soej3ldhVfMIIOJRlHlz9ITAO9Aka9DtWgI6pBdzBGMBLFourRKaDXKRj1OgKRGKUWI6FojHK7mryOZleALl+IcruKokC5TSUUjaHoFLp8IXQolFlNlNtNKECnP4zFaOi3fvt6fxJ1UGpRk9fe8z1I3RY6uv64atShxbRkjBaDvt/zZqv3/mItlGKLR4iBSH7BmfJl4RFPgFZP/EskX6hwn+eeqdoaGq/sbEPT4OTJTiKaRqc/RDR2dCFulLTjPMEop0wuBeCtfR3YTfpkineF3cyKRY1HlwwL4LQYmFxmIxjRqLSb6fSFB3R9iZTvMpux39T6njGU2YwsX9iYfMQo8aVdLvHkc14hhBCiJ/lrITJKjCa0egLodQrNrgCVdpUuf5hqhynt2/3UkYcyu5FQVENRNDSN5GhAYsShr/L0Oii1qrR5PcQ0jVA4BgpYVT1d/hDVJeZea6imjjgkz9EdRK+DZlf8Rk9RFAKRGKFolHZPCKvJQAwtGUepxYRO8RHVIByNEYrE0CtQYtKhAf5QND7SrWmEozFsqoEufxhVr6PdE6LaYaLLH09hbOkK0O4JoWnQ7gvhMBvRYhqlVhV/OEqHLwgaaMAEixF/ONJv/fb1/iTqoMsfP1eXP0y1qkt7D1K3ldmM6BSFUDiKatHT7o1v80eiTLRb+jxvISZvGoxii0eIgTj2BaeR3Ue/LAyE079ozHU+i75kOiZx7jJr/IvCeVMm8OquNuZNKcVo0GEz6jE7LBxX58BuNuDyhdnR7MYdiHDYHWBymQ2LqsdpNXKoK8BnTq6jocKePN8JdQ5uu3QOLn88bf6v7xzCaY2PmpfZjbR3hwY0E3hqCnoiHT9TunrPGFJnLx/IDPBDmdIvhBBifJG/GCKj1Alk/MEYMU2j0mGi2mHq9e1+6r4uX5iT60sBDVcglBwNqLCb+y3Pqhq46qyp3P3iLg52+bCbDJSXmJhUaqW6xNxrDdWek+2knSMcIaZp1Dgs1DhM7Gn30+ENUVGicsXxk3EHwmiaEt/HaSZGlA+auwlFYhj18We6Z9eWsKfNhz8cIRiOj/SoBj2VJSq+UDQ5OVnqdZw6uYwHNzVx2B2gxGxgVk0JUypsLJ1Ty6ZdR3jvYPyZ7lMnT2Dh9Ap2tLiJROizfvt7f454AlSXmDl7RhU7Wty93oO0bf4wC6aVsa/dm7xxnFVTwsRSS7/nHerJmwar2OIRYiCSX3CmfFlYWaL2+qIxYSDzGGQ7psRsIByJ8cKOwxh1OgKRKACb93Zi1OtoavcCCqFIjHZvEKNex8aPjmAy6AhHNWbVBDitoZwOT5g6p5kqhznr+epKzYSjGs9va0XVK7iDEcwGPRragGYCT8xinq0uMsWQOnnaQL+0G4qUfiGEEOOP/OUQWWUaTehvspm+Zi/PpbxzZ1dx0iRHv7OXZxtxyHaO4Zq9fHqVnZMmOTLODH761LJes5efPrVswLOXZ6qDRHmZ3oPUbQOdvbzYRnqKLR4h8pX2BefRLwsr7eZeXzTCwOYx6OsYABTl6J5a+oGahkL8i8kOb5BQJEZ3IIJRr2DSm9Dr4KPD3dQ4zNQ4j8Wa7Xyfnz8pXqYCUQ06vSEmWFUqbObk3B/5zMfQ33X1V0/ypZ0QQojhJH9dRJ/y+Va/577ZloTpr7wKuznn5VxyPUfiGcO+9plbP4G59RMy7lORx4TY2eK3qgYaKnrHNZibvEx1nu09SN3Wsz4Gc86RVmzxFMLq1au59dZb016rrq6mpaUFAE3TuPXWW7nvvvvo7OxkwYIF/Pa3v+WEE04YiXBFnnL9grO/lOg+U8jtx9K6Xb5jcx8Y9QrnHleFgkK3P8SrH7czr2EC4UiMqAbRWAxFUdAr8GGLh1KLERSY6LTQ6Qtx7uwqTpjoSKZ494yxzB5PPd/T5sNo0HHurGo8oTBoGvqUuT/6u46e+ruunvV0yOXrlcqeqPdWdwBQMk7GJoQQQgyFsX2nKoQQY8QJJ5zAc889l/xZr9cn//+OO+7gF7/4BevXr2fmzJncdtttnH/++ezYsYOSkpKRCFfkKZcvj/pKie4zhTwlrTsU1Ti5vjRtfowOT7yD6g1HMegUtuyJp5c3u/w4LUYq7CaOdAcx6pX43BBWE+2e+OM6NpOev7x5IHnes2dWJGPU62Dznk70OvjH0VT2Dl+IMruRqAaxWCxt7o++riNTXfR3XYl62t7i5nB3gMffPkiZTU0rs68UdSGEEGKoSKdb5KXNE0imaVtVQ8bRiDZPfFTDZtJTWZKeHp443mkx4AlE8IaiVDtMvVKcs410ZEoLz5Yq3eYJsL25G9AoMRvp8oUxG3UEwjFKrUb0Ol08jmAEbzCKw2wgFNWSN3CpqeipIyHZ4vEEIoCCXgcufyRjPIm0+VA0RlObl8YKGzVOC6FINDnRT6Jee454xeNIT0/PVE+5jBKlvo8DHfEWw8tgMFBTU9PrdU3TuPPOO7n55pu57LLLAHjwwQeprq7m4Ycf5utf/3rG8oLBIMFgMPmz2+0uTOBiyGRLiYbs6dRAMq0bFBRFI5FK3rO8CRaVKeU29nX40CtQZlMxGfRU2k0oClSUmDjQ6UOvh4oSlX/9xGT+2dSZdt6Xd7Zx1sxKXth+mE272lEUOHVyGcGIhqIo2E36rHN/9HUdGduyHK7rkMvH4e4AVSVmap2WvNPQhRBCiKEgf1VEzl7Y3sr6V5twB8LoFYWGChuVJaa00YEXtrdy94s7OdjlR9Piy2bNmeRkSpkNp8XIM0eXxmn3BonFQKdoGPV65taXcuJEJ0tPOHbj1XPkIdNatpFYjL3tXjzBCIFwjONqHJw4yYnTYuThf+5lb7uPUDQ+mqJXIBLVMBgU0MBhMYIWf74wpsWIxMBq1BOMRJlgU6mfYOWCE2rY3ebl/YMuQGNOnZMvLpiSHk+7j11HuglHNALhKJ5QBJNBh6bBcbUOTpwYj+fRtw5wyOXHE4jgj8TQAToFJk2wEImB2ajHZtLTUGbFoNfT7PJTW2pmSpmN2bUOXt15hPcPxSdimzPRyaLpFWxvdqfVU7a6y/Y+OsxGVixq5NzZVcP7YRJ527lzJ3V1dZhMJhYsWMCaNWuYOnUqTU1NtLS0sHTp0uS+JpOJxYsXs2nTpqyd7rVr1/ZKWRfFL9M8Bofdgaxp50AyrVtRQNPAFQglU7lTy/OHIjzy5n6mV9tRUNDQaO8OcekpE6lxxr9ATf2CMBqDdw909TpvVYmJz8ydSFt3kDqnFafViD8U5YgnPsO5RTVknHeir+vIlGqfy3XtPuLl8bcPUuu0ZKybfGcwF0IIIQZC/qqInLR5Aqx/tenomqYmPmh20dId4PL59cn1TU2GWh54eTf7O/yoRh2dnhCeQIQJNhXQeGN3Z3KkudMbRkHDohrwhMJsb3ZTbld56r1DaDHwhqJpIw+l1km91rKNahpNR7xEohp2sx5PMMKOVjc2k47Xmzro9IbRtBjhiIYGhI9eSySsoQAdnhAa8ZVn9XqFcFTDH4yg1+vQ+cOo+gD3vfQxpVYVi1EPisLWgy4cWw/xpdMnx+PxBGh2+TnQ4UevU/AEw4SjWnL/HS3d2Iw6/rm3k0A4il5R8ASjaBz9EkCDj4/4cJoNlNlNdHiDNLsCNJbbcAciGHQKBp2OVz9uwx+Kohp0oMHb+zrZ0exmenUJ9ROstLgDPLX1EACeYDTrqE3q+1jrNNPsCvDgpiZOmuSQEe8itmDBAn7/+98zc+ZMDh8+zG233cbChQv54IMPks91V1dXpx1TXV3N3r17s5a5atUqVq5cmfzZ7XZTX19fmAsYRwaynNdAyq525D4Tt8NspMMXyjpLdyK13ReK4DAbOewOUGo5NoN6zyW96lPiST3v/i4vNjW+/GOVw0St00KHL4Rq0CXPm8jSSRyfKp8ZxRP7JtLV93f6My63aDcZMBt1fHTYTYXdhDcc6Xf5Sb2O5AoU+byH+bz3hfycCCGEKD7S0ouctLiCuAPxjppOUTAb9ESOrmmdGB3YfcRLlz+ERdVjMujxGaOEo1F8oSg6RYcvFKHGYeNg0I9eB2jxkV6TPr5UjcWgp80TAk2jodyeNvKQOH/qWrZtniBRLYZq0CdH1b3BKJEoeAMRFEXBqNPjDx+7sdMBMcCoi3d4E6PNAIajnWC7UUcsFl8fvM0TwmHRKLeb4mte+0K0eYIp8agEo92YjToiMY0Y8euJxjTK7SqhaIywBt5gFKtRTyxlhmAFMOghGI2PcmuahqqPl+MLRY6u1xvDYtTT5QthMeops8bTPFtcfjr98fpI1NOedg8oCg1H187NNGqT+j5aVQO1TjOt3fH6lU538Vq2bFny/0888UTOOOMMpk2bxoMPPsjpp58OgJKchTpO07Rer6UymUyYTDJx1FAayHJeQ1F2fzNx5zpLt1U1MLvWweuvtuMOdMWf0Z5RlbVTmHrejw53J7Nz/vLmAZaeUNPnebNdTz6xLj2hhkf+uY9/bD8CaFgMOg51BXplRr1/wEW7J4Sig4mlVs4+pypr3cyqcaQ9o57re5jPe1/Iz4kQQojiJJ1ukZMaZzyNvNkVoNJuIhCJYtAraSMYUyttlFpU2ro9RDWNYDi+5qtV1RPTYlhVA13+MHqdjmgs3umMaRCOxZhgMOKPRKksMaHF6DXykDh/6lq2DosBvaIjFIl3vNu9IRwWAwY92MwGOr1hQrFY2nUkfgrH4iPN2tEY9BzrhPvDMWwmPb5QFLtJj05RaPcEQYFoTKPCbjoWjycQ/9IgHEOvU9ABwejRjvLRTrFRAZtJnxzpTtCAcDReD4FwFKvJQCgaw6DXYVUNR+taxR+OUmpV8YeidPiCoMWPnWAx0uUPU3J0pKbCHu9A9TVKlPo+Jka6E/UrRg+bzcaJJ57Izp07ufTSSwFoaWmhtrY2uU9ra2uv0W9ROANZzmsoy+5r+bxcl9bzhSJsb3YztdJO6dH2ZUeLm9OnlmU9ZnqVnVLrJB54eQ8WVZ/MvNmwrYXlCxtYvrD3efu6nnyWAawrNWM3GZhWaad+gjW59FhqZlRzV5A2bwiDXqHCbiKmabx3oCt5TT1njv/Lmwfyfg/zee8L+TkRQhS/hpueynnfPT+7sICRiOGmG+kAxOhQYTezYlEjZTYjHb4g9ROsnNFYjj8UTY5G1JfZuOqsqUwutxCJxrCbDUypsDJxgoWGcjvXnDWVaocZs1FPmc2I06JiMiiUWY3MrnUwsdTChSfWcdHcOspsxrSRjgq7maUn1FDtMFHlMFFmMzKp1MoZ08uZUmFBNegoMRuYVeVgWlUJ31w8ncYKKzqdDqNBwahXMBsUDAqYjUr8vHaVcruJUpuKVdVjMxkot5uwqjqcFiM1TjP/dvY0PtFQhkZ85HDuJCcXnlR3LJ6jk/PUl1mPdsYtlNlUnFYjTouBWTUlTKsu4etnT2NymQ0UsJv0GPQKep2CalCYVmllgl1FNeiYXGZj4dQyJk2wUmYzUukwMWmChavOnMqpk0vRtHiq/KmTJ/C1s6ZS7TAl6+nCk+q48KTedZd6I5f6PrZ2x/dZvrBRRrlHmWAwyIcffkhtbS2NjY3U1NSwYcOG5PZQKMTGjRtZuHDhCEY5vmRazsvlP7aEVV98oQiH3YFe6db5lm09+qx0dyDSqyyreiwlPdu5Wt1Bml1+qkvMVDnM1E+w5nQNnkAUTzDMBItKOBqjzKomj0ucN7Ud6u96Mh2TrV4CkSj1E6woCsnzpmZGBSNRzAY9ql6H3WzAqNfR5gmmXVPifNFY72e8E3H19R7l894nlzqz9q4rIYQQY5d8rSpydu7sKk6a5Ohz9vLEPtlmL79gTnVOs5dnGunItpZtttnLL5hTXdDZy3vG09/s5RfMqR7U7OWnTy3rNXv56VPLetVTf6NEPd9H6XAXvxtvvJGLL76YyZMn09raym233Ybb7Wb58uUoisL111/PmjVrmDFjBjNmzGDNmjVYrVauuOKKkQ593MjneeRUuaQa51p2f2X1tX1Xq4enth7io8Metrd0M39KGZGY1u81JI57d7+Ldm8rlSVmjHqFuZOcWY8baF1lKiccifHCjsMYdTrCsRhzJznTMqNMhvh8H+FoFH84il6vMLvG3udz4j3jOtId4H+3tGWt13yfRc8Uc77XLoQQYnSRVl7kpcJuTuukZerU9dwn122psq1Zm+l1q2rIWGaF3cyZMwbfobSqBhoqMj9vlxpP6i6ZpqPqee1z6yekbU89Jtu1N1T0vvZM9dHfCFGu74MoDgcOHOCLX/wibW1tVFZWcvrpp/P6668zZcoUAL7//e/j9/u59tpr6ezsZMGCBTz77LOyRvcw6u+56kxyTTXOpez+yuprO8RXPfAEo5wyuZQtezt5a18HC6dV9HkNqWVaVB2Rbo0OT5CKEhPxB2eGrq6ySj6yk5gvQ0krvzsQwmzUoVNA1etwWIwYU9a47y+uM2dU8tJHR/p8j/K+ngwxCyGEGNuk0y2EEEXukUce6XO7oiisXr2a1atXD09AohdfKJ5d8vn5k9IyVPqSKS05dTmr1IyVTJk+bZ5A8lzdgQjt3iAlJiN6ndJrIsX+zpW6zarq2X3Ew7zJEyi1GrLO5J1IRzfo4qs/zKiyE45pzJ9cSlSjz6W3Es+C55pxk2m27+5ABKNe4dzjqpJLnLl88VTt1CXD7CYjNrMBs0GP0aAk98kUW89nyvuqt/6em883ZnmmWwghxi5p4YUQQohByJS2nbqkVzbZ0pJbu4P875beM2hbVQOHugLJWbmbuwLUOi1MKbfSWGFl52EPXf4w5TaVCruJqZW2ZNpyLsuKtbgD6HXwyq42XL4wuw57MBn1TK8qYUq5NWM6+htNHTR3BYjGNHQKNFbZ8Iajacty5Vpn+c72nVw2zBPOeE1W1cDUShvVDjOdvjDlVkNOqew9s4VyTR1PPW6gMQshhBibRrSVf+mll/j5z3/Oli1baG5u5rHHHkvOxAuwYsUKHnzwwbRjFixYwOuvvz7MkfZvqNbcTJTT83negcbRV3k99207ujRX6qhDz+P7iiu1PKDf+shWZ/s7vHzY3E2lXWVWrSMttsRz0vFnqKOARigSS87G7bSquHyh5M/RmIY3dOx57Z7PWX/U4uafTe2UWVVOm1aeNtqSGl/iufHE896J/6bHE3+m2+UP0dTmpdZpxmYypj0j3vN57Uz1mqi71Oe8K+xm2jwB3tnXiT8U4+TJpdSX2TLWYbb3tee19/d5y/b+9HXOTNch69CKsWwws1FnSks+a0ZF1nRmIDkrd6s7SKcvjEGvYDQovL67nTKbikGv0OYJEdM0vrow9xTopSfU8NR7h3j5oyN0ekNMODrBV8gbwmYyYDHpesVxxBPEH4wQiWkY9AqxaIwj7iB21ZBzWvpgZ/vuL617sKnshXhsYMhS64UQQowaI9rKe71e5s6dy5VXXsnnPve5jPt86lOfYt26dcmfVVUdrvByNlRrbibXFW33Jdc7nVJmG/A6obNrHWxvdmcsD0jb12kx8kzKzysWNTK5zJo2omIzGfAGIxnjSj13OKqBpmE06LLWR7Y6++Pre/nti7tw+cMYdAqnTS1jycwqnvmghdbuAIFwjPoyK/5QhGBEwx0I0eENo0NBUTQq7CptnhCaBpGYhlGnoOggEgWnxYhBr3BcbQknTiylxRXg//fWAfzhKDpgYqmF1Z+Zw7mzq9LiO+IOsKfDR4c3RKc3hMmoJxiOYjPFZ8KtL7PiC0UIRzTaPEHavEE0DbSYhv1o53OCTaXMqtJQYcOgV9Lq02bS4w1GqXVa4vtrGoe6AnzY4sZs1FFVYubUyRN4cutB9nX4ASi1GLliwRRUgy6tDrO9r4m6O67WwYkTnWn79hwxy1RO4v3J9L4ly0n5nNlVAyjxWeNlHVoxluWafpwq9YurfNKZgeSs3LtjUOs0EwhHsRj0uANhTp08gVJbfNJITyBCVUn6UoDZluNKpMafPb2CHS3dRKMaJlWHyx/GpNcRjMQotRybZdsfitDsDmDQgaYoTJxgIRqNUe000x0Is2RWVZ+/75ln8A4l6yy1fnrWR5ndyKGuAK3uAA0V9j6XGEuUU2o1sGxOLamTUOYjn2XMUq8v22ci3/KEEEKMfiPa0i9btoxly5b1uY/JZKKmpibnMoPBIMFgMPmz2+0ecHy5GKo1NxPltHoCtHYH4iMYOgWL0TCgdUL3d/p4vamJyWXWXuU99d4htBh4Q1FqHGZ2t3fzl83t2FQDEydYaHYF+O9XdjN3UineUJRWd5B2T4gDnX4sqq5XXEDy3GV2I89va0VR4NxZ1cl1U1Pjz1ZnsVgV//XSx3T6w5iOjg6/9nE72w65cJhUIjHoDoR570AXRr0Og16h3RMiqmmoeh2RaAyXP/68nE6BYCQ+SY1RrxDVNMLRKFbVwI6WbvRobPiwlVA0vm6eBhzs8nP3CzuZUWVLxmdXDbze1EEoEiUSi6/hnRjRDYY1zEYdXb54PDoFjnSHSF0ZvMsfwajEn7n1BMIccvuZWmGnyxevT5Nex4FoFIsxXjee1ggxTaPLF8ITjGLQGTnsDvDAq7vxh6IoSnzKnQ5fiHWvNvGpE6uZWeWkxR3gqa2H4mUE4+9rU7uHv2zej8WgJxIDTzDCjpZuyu1q8jPQ5Q+njZhZTLpen4/E+5NY+zb1fUuWEwglP2cK0B2MoNfFn1vs8IRlHVoxZuU7E3e2LxxzTWdOzMqt10GzK0BliYo/EsVhjq+rXWI24g1GKber/aZAp8azt8PLgQ4/h90Bml0BNE2Lj2DrFKodJrr8IapLzLR2B3l+22E+anETDMfgaHs1waLS7Y9QUWKiocLab51lm8G7Z/2cNbMyLfV9855O9Dp4/O1DXDS3Lll3PduW1Ovq+aXiQL4AzGWCytTr6+8zkU95/3/2/jxKsqu+80U/Zz4xR0bOVZk1qapUmgeEAGFJICypMXQz+GG3Md3CdnPph5eXWbgf3eDlXuJdDDZ9n01ft9urwYPkprFMP7fhYXyNBFxASAgkoaE0VCEpa8jKyjEyYzzzOfv9cSKiIjIjJ6lKVYXOd61aUsTZZ+/f2XvniXP2/n6/vwQJEiRIcPHjgs/T/d3vfpeRkREOHjzIhz70IRYWFjYs/9nPfpZCodD5NznZz0f67OGV5GbtV08xpRNGgvGCSRDFO5pbqW91HMWURs32SanKmvqWGh7lptspm9LinYXBrE5aVxkvxPq3uZpNMaURRjCY1fHCiMGMsSau7rYlJHRFQpNlJIm+/bFenz03W6PphhiKTFqPH1DCSNBwQvJpFUmK2/XCmMooRPxSrUogBBiajAAMRUYg9fjBapJEJCBrqHiBoOZFBBHIEmiq1KoPFhoOU4vNTnxeGIIAVZaJhCClxX8ypiYTEZHWFfwwfjCNRPzyLhO/GLf9cQ1dJooEmqwgQrC8kMGMgRdG5NNxPINZHTeIkCSIRPxCP5jRkSSJtK7ED7dASlUwNRVZAicIkSW504fxLrt3ZlxVBcsLOn03mInHMKUqnTnQHt/xgkkQCoopfc38aI9PO/dt9/dn6jkzb50givtVlpCQXvbfRIIEFwPadOFSRtuULty94Dicje+zDzw315P7eaP62sdG8wYjeYNSRmM4a7KzmOKDb97LaN7YFmW5s9jboqtXLB/bD4mEIIgiFFlCliRsL2QgrXPzgSEe/OkiTS/k+l0lNFUmY6hkdAVFgaGczl037d1aZoQ+Dt79+ucHLyxyy8EhsqbCEycrSBJcv6tE0wvX9N1617Vi+Sw2HBYazrrnnE1sZ04kSJAgQYLXBi7oX4C3v/3tvO9972P37t0cO3aM3/u93+O2227j8ccfxzCMvud84hOf4GMf+1jnc61WO6cv3mcz32je1FhoOCiyFO9gZHUqts9o3ti0vtVxVGyffErDDsI19Q1ldUREp6ztx5S3csPD1BRmqw4DaY2xfIqK7aPIsFDz0BWZctNlNGeuiavddikbvxRLkkAI+vbHen12+XiejKGw2PDA8/FCgSJLZE2FmhUgRLwzqysSQevFGyAQoMvg+hES4IbxS5/o6h9fxFTzhhtQTGvkdRlVBi8EPxAI4mfAkazJvuEMz56uMVdzWjRpCMIIWZKwvBAAx49QJAXLC9EUiaBlIiRBZ6c7bP3X9SKyKQU/ClFVmbSuUG666IpMzQrQ1XjHfjCr47tx7IYmUW56FFMalhdiaDK2F2IHYdyGgIymEIkI2wuZqzkMZeO/ic64BvHOfrvvypZH3oznxHDO6Ox0d++YVWxvzfxoj08792339+2yFdvrzLNSWqPuRviRQCASo6AEP/PYKl34lThh9zu22vfh6on8lt3A4Yz7eM44s7i6bHkMpDSQJSaKJpGQ2D2Y4l3X7CSlKz3x502N01WL9143gabKHd8IyztzPdPLTaYWm+wbzjBZynT6QVMkbj4whBcIdDW+t65e2GtTybOGyruu2clS3WUoY8YLrIIeSjqcoZPbXtiXht9NkX8lXilbQUIhT5AgQYIE3bigfwV++Zd/ufP/V155JTfccAO7d+/mG9/4Bu9973v7nmMYxrov5OcCZ8sUpbse242IhGA4bzCaN7ZU3+o4RvMGtxwc5uhcDT8Qa+oDOmUnimk+dHOB+5+Ltb+ljMZdN8Wa7geem8P2Y8pzW2vXL65221XL59rJIiCoOt62jG32j2T58C2X8F+/+yIVy0eTJd6wr8StB0e4/7k55msO+ZTGxEAaxw9wfYGhypRbmm5TkxnM6JSbHlEEityl6Y6gYGpoqsSlYzmumChSyqb4u5+cwmppuieKaT5y2wEmW3r1B56bo2r7vGlfieNlm3LTBQS6quG1Xmh1VWZiII3thXhBhCLLazTdkgTFtMZgxmDPYBpFkVBlqdOfaT1+eR/Lp1ovpoKZFYcj8zVURWI0b/L2K8f5h6dPc3LZAmAwo/ErN+7G0OSePuwe153FFB+6eV+n73KmyqVjOXYWUz1l2+M7nDUZzZlr6mnXPZQ1+45bp57WvB0rmBwwVCBOzZPs8iR4LWArdOHtLNJuVF+3i/lqD4+teou03cd/Ot/ADyM0RabhBMhSLIuRJTiNRDGtsauUYSQf/652x79seewoprh0PMfpisPXn5rtaf9HU2W++OBU5yX8Qzfv41ffuDuml4eC7/90qWM0ee1ksWdhbzWV/G2Xj6IrMj94aXENJb19Pe3+SGkKfhDFi6OrFhU3c1Xv108v17MloZCffWxmwCuE4FOf+hRf+MIXWFlZ4Q1veAN/+qd/yhVXXNEp47ou/+7f/Tv+5m/+Btu2edvb3sZ//a//lYmJifNwRQkSJHit4KL6NRgfH2f37t288MIL5zuUHpytFe1+eVhf6cr6G/eV1q1vddk7rxxds0uyOp714lrdNmzsXL1en/3qG3dzy8GhNe7l7djOtnv5B964q697+er4LgT38g+8adeW3MvXG9d+7uUbzbd+47PeuPWrZ7M5kCDBaw1na5F2jYdHpckjD5XZN5xlciC9qbdI+/yGG3LdriKPn1jB9gLyKRU/DAnCmLkTRBEpXeZtl42sWWBdvfC22u/hfz5+kv/r8FxLThMvhv75D6a45eAQg1kDhGgxzGMTTBCd/vnG4dM8/GK5h0r+nefnCaI2j+gMJb1ff8zVHCRJYiClYvvGmkXFrfb32fJsSXD2sJkB7+c+9zn+6I/+iHvuuYeDBw/y6U9/mttvv52jR4+Sy+UA+OhHP8rXv/517rvvPgYHB/md3/kd3vnOd/L444+jKMqaOhMkSJDgbOCi+tUol8tMT08zPj5+vkNZg7O1ov1K61l9/ma7Jd3HhrLmGkriduLp1/Z2yrcxWTpDQ9wotqGuzYaDY/nO/4/mzZ7PG+HgWH7dst3xpXV1U7rmmXgyXDM5sG65rfRnu0y3MGIoa/Lzl4+vKbe6vq2M60bnb3ZsK22uvo4ECRLEOBuLtGs9PHRqToViStuSg/rq8wvpmMZ95+WjfPPZOYYyJpIMrh/iBCHDuTP3j37xz9ecNbT5x08u03RDhrI6KU1lMAMrlsfUYhNdVdBUmdsuHUVqeXJUnZgqvn8k26GS7yikKaQ1bC/keLkBUmzOKCEhEFStM14R/Wj777p2ByldfdkpOF+OM32Cc4uNDHiFEHz+85/nd3/3dztsyHvvvZfR0VG+/OUv8+EPf5hqtcpf/MVf8N//+3/n53/+5wH40pe+xOTkJN/61re48847+9a9nkmv7/v4vn82L/GsoB3ThRjbejhXMRuK2LxQnzi2U9aQt9fGuYhlu3VeLHPjYoh3q7Gd11+NRqPBiy++2Pl87NgxnnzySUqlEqVSibvvvptf/MVfZHx8nOPHj/PJT36SoaEh3vOe95zHqBMkSJAgwc8qXo5+d7vot0i1Xrv9vl9NU19quBiqwmLDJdf6Pmso2F7Qo69uY/X5yw2fHQWTQ+M5nj5V7ezs1p2AoexaTxHLC1isu3hBSF2NWTmyJDFdaTJZzDBXc5gspXhmRqHc9BjMQLnpkTNV9g1nOu0vW15fmv1I3mC8kGLZ8tBVucezYrnh9z2nH23/5aQH26ifNpIDvBrzJsHGOHbsGHNzc9xxxx2d7wzD4NZbb+Xhhx/mwx/+MI8//ji+7/eU2bFjB1deeSUPP/zwui/dn/3sZ/nUpz615vv777+fdHpjt/7ziQceeOB8h7BtnO2YP3fj9sr/4z/+47bb+N9viDYv9DLwcmLZKi62uXEhx2tZ1pbKnddfhscee4y3vvWtnc9tA7S77rqLP/uzP+Pw4cP89V//NZVKhfHxcd761rfyt3/7tx2KUIIECRIkSHC28Er0u+ei3Y3Si7Vp3j+drzNbtSmldaZXLIIoImeo1BzBfY9O972O9Wju6/k2dL9EfufIAvc8dIyFuoPjR0yW0khAxlBouiG2G7FnKM3tl4+xayDDn/9gihUrfuH+Nz+3r8Ni2qid9eKDtV4TG9HeX+nL71blAOdr3iToxdzcHACjo6M934+OjnLixIlOGV3XGRgYWFOmfX4/rGfSe8cdd5DPb41Z92rC930eeOABbr/9djRNO9/hbAnnKuYr7/7mtso/c3f/hZd+aMf8e4/JuJG0+QnbxHZi2SoutrlxMcS71fTU5/Wl+y1veUsn7VM/fPOb2/tDSbA+LC9goRYbgbVX/1evzPcr031+W2c8X3PJGArDOWNdyt5Sw+nRQLd1ye16ujXZ/dpaqDlA7FweRnB8qcGRuTrXTha5ZnIAyws4Oltjse6yZyhDIa2viWN6ucmPppaBiMlSBseP1ui+TU1moeaS0mWGcyYVywcEK5ZPWpOx/Ii9QxkKKR2IjdHCiDV66/b1jhVaDuJd2vjufgbW9Hn786lli+dma1w+3kt57+6zzfTSG7W10Vx4NZDsBCW4kHG+9LvrtVtMT2wYz/6RLMX0BH/x4HFSusLkQJrpShNdkdEVGTeIdczrXcd6NPeN6O9LDYd7HjpGueERhDGl+5mZKqN5kx2yyWQpTSGl8b4bJhjKmuwfyXLLwaE17uWbtbPR8a24up/Ne8xm9Sa67wsPktT78iOEWPPdamxWZj2TXk3TLtgXAbjw4+uHsx2zG27vZfjA792/5bKGIvjcjeBG0rbb2QrO5dhdbHPjQo53q3ElvwivAby40OBvfnSCZ05XAYkrdxZ48/6hHqfbQ+N5HnphsafMr9y4q2e35fCpKk/NVPCDOH3WUFbnyokCu1tu3+2V/fZOyPSKxUrTYyCjMzmQ5s4rxqjaPieWm7y00MANBGldWdPW3/z4JM/MVONUWapExfI4vmQhAE2RuPOKcWw/4JGpZfwgQlUkrp0c4E2XDHbi+B+PnOD/c/8RKnacLgsgpcnoqtx5SfZa7ra0Un1JUpy322/l+hKAIoGiSAxlDIayBpoau45PL1uYmsxIzuT6XQP85OQKNcfHD+L6NEUmb2qdaz5zTEJTpDVuw4dPVXh6pkYYReiKzAdv2stHbz/Y6fsTy01mKw7jhRRZUwUh0FR53V2x1W11l1k9F9p9f67nYLITlOBCxivV7/ZbHOu3uLnVdtekz0rrnK5YLNRc9gzF9SzWXRYbDrtK6fjFu5jheLmBLUXsKWV66luoOX31zRt5MdSdmJ7eLt+OaTCrM1t1KKZ0FusOxZRKEMFw1sAJQsIupmXbo8Pygk4Whc36s7svbS/E9gIUWeosdI7mzZ6y7UXakfzaY+stWHYvnLYNLteLrbufVo9novu+cDA2FrMh5ubmerx/FhYWOrvfY2NjeJ7HyspKz273wsICN91006sbcIIECV5TSH4RfsZheQH/8NRpnp6porSSVz8xvcKR2RoHRnOd3ZGHHlzC9kN0VQYBT5+qkE+p/OobdnH/s3PMVC2en6vGqbwUiTCMaHoBA5nYJKe9sm95QYt66FK1fdwgomr76LLDFx+c4g17S8xWHaaXbXRNxtSMnra+8fRpnpquIEmCiuXRdH2WrdgoR5PBCwT/8PRpdC2OUwC2H3J4ZoUdAwYPPDdHFI200o4FxJ64rb7wI7wgomo3UGXwVxvh9iFdhALCQDBfcwiiCCHADyNkWUaTdearDvf88BhjeZPRvMnjx1cAeN2eEkt1lz9/cIo3HxhiZyHNd47OA3DbZSPM15yO27CpSjx2YoUwEhTTGk035N4fHuOth4Z56MUyC3WXhZrLihUbNTQW4gfQ2y4dZdny1uyKldJ6T1vLDb9TZvVcaPf9h27ed84eEJOdoAQXA7aj312NfotjuwfTW0rjtV673emzVFnisRPLyJLE156c4R1X7+DkssVfPDjF1FKDRySZnzswRM7UOtrn7vqEEHz1idPM1uye+NZb/Frvem7cO0De1Cg3PISAiu2hKjIVO2BHQaVi+4zm12rA+y26ARtS6k+ULV5cqOOH8eJow43d1UdyJh98815uOzTSs0gLgit3FPiVN+zurafPguXpqs3zs3VMTSFjKOwppRnOm5suCPa7jh1F82XPmwRnF3v37mVsbIwHHniA6667DgDP8/je977HH/7hHwLwute9Dk3TeOCBB/ilX/olAGZnZ3nmmWf43Oc+d95iT5Agwc8+5PMdQIJzi7oTUG66aLJMKW0wmDWQgIrldZxui6k4f6ks0SmjyRJLDa+zs5HSVFxfYKoysiShKTKyBE0vpJjSqNqxi2y7fDGlEkWQNVQiEev9LC9AliTcICKlK2iyTN7Ue9paanroihR/r8i0U8KoEsiyjK5KhAKCICJjqKhyHIsXgizJVG2f52ZrNNz4RV1Veuk+miIh+ny/EWQgInbYVWUJPxQUUxpIkDYUvCCimNKQJAlZBlmO6x7M6jS9gJSqIEmgyXKcNxyp5TbsU0zFZkJRJNAUGU1RyBoqbhDx5HSlUyaMYLxg4gZRpy5JgrG8SdX2e3bFVrfVXWb1XGj3fdsB+Fyg305Qe74kSHChoK3fLWW0bemC24tK3Ytjiw2HmarFPQ8fY6HhMJw1WbHixS/L653367Xb1ldnDYWfnFwG4LpdRRpuyFefOMVfPDhFzQnYN5TFDyMeenEJQ5V4x9U7eMfVOzr1ZU0FIQQV2++Jb6Hh9I1nvetZaDg8enyFf3njLoZyOqoChZTGlTsLjOYNhvMGo3ljTZ91L7q1++Ebh0/zD0+d7vnugefmWGrEuccXGg6zVZtTFZvFpsts1WHF9vECQbnhce/Dx5hebp5ZpCWmFD89U+UbT58+U0/XNczWbJ44ucLjJ1d4vvUb4QUR08sWjxxfJqWq647RetfxwHOxBvjlzJsELw+NRoMnn3ySJ598EjhjwHvy5EkkSeKjH/0on/nMZ/j7v/97nnnmGT74wQ+STqd5//vfD0ChUOA3fuM3+J3f+R2+/e1v88QTT/CBD3yAq666quNmniBBggTnAsmvws84cqbKYMbgSFRn2XI7u8PFtE7F9smZGhXbo5jSsf2wUyYUgqGs3tltmalaGJpE1Yk6O91IEhld6dndUOTYRXah7iLL0HADUnpssJPWVSIhMFQZ2wvRNZma4wFSp62hjM7zocB3PPwwor39HAiQoijOaS2Bqso03Zg6HkQRWUMhEhGFlMbl43myhkrdDgjC3u1rPxRIsOb7jRABCjH9PIgEmiJRsX0G0zqWG7MDKrbPqKYQp5GN6y43PDK6ih2E8Q55K8esQFCxPfKmRsWOd6ZlWcIPI/wwpOmGmJrMtZNFmm68063IMFt1GEhr+G6E39p177crVkrrPW11l1k9F9rjfC53ZV7JDmKCBK8WLC+mDL/vholtpZdqLyoVUxpTLYp10w3QJJma7VNM6ZvSjjfSV7/r2h0sNT2GsjoSEq4fcmrFomJ77CymSesqhqYwX7N5y6UjnV3adn22F3LfoyfJqQpTrcU7xw8ppvTO4ld3PGuuJ6fT9EIymkLV9nnd7gFu3DvQ49lRSKnoqtKXUr9Qc5mt2uwopDv9cHy5SRBElDIalheQNRVOV2yOL1mttnXcoI6pKq3c3AJDkRFCMJiN455abHYWaQcyRrzzbnksNdyuxV+tc81Vx0cCoghcX8RthCGqLEMEXhhuOEb9rqNddr3xS3wszj42MuC95557+PjHP45t23zkIx9hZWWFN7zhDdx///09Brx//Md/jKqq/NIv/RK2bfO2t72Ne+65J8nRnSBBgnOK5FfgZxxpXeWd1+yg4focnol1vNdPDnDT/iGOztVYbDiM5kxuOTDCwy8udspcM1HkHVft6HGzvWysgB9W8IIIRVMYyursHEj17G6kdZUPvnkv9z58DDcIEUJQSGmMFU3uuHyMmuODBLYf4PoCWZK5ameh09Y7rt5B3Qk4PFNlIB2/iJeasaY7EqCrbU13yI+OlfH8iLSucNXOAfYMZrn98pga+JG37OeP7j/Cih10aOMpTcbQZAYzJuWmg+tvX9OtqzIpXeHUioWixDnB337VOE9Mr1C1fXYPxU6+VdtjKKdzx+W7qDk+VdvjmokCIFG1/E6fH52rUbV9bthd4umWjt3UZO56016umRwgY2g88Nwcth8QCcFYPtV6WRVUHa+v6/DqtrrLrJ4L7XE+lw+EW3UATpDgfKEfbbhbG7wR2otKC3UXNwg5Wm5iKDKOH7YW6DxyhrbpYtN6+uqRvIkuSzzw7Dw1x8cLIkbzJrqiMFt1GC+YLNZdhrIGe4bSa+qzvKATX3vxbjgXs5tGc+aaeHqvJ+DonIWhyvwwiLh+10DnBbJiBX37rMdbIhQEYcRP52MjzBt2lwgigQw8P1djruogEct4xvImhZSGH0Q4QYihyjhBiCwDSLhhhCRJlBvxvXXfcIah6XiRttxwQYIwEgxljc4iZM+CZSauW5bj+/xM1UaXIWgxsnRFWXeMXlxo8I2nT6+5ju6yq8cv8bE4N9jMgFeSJO6++27uvvvudcuYpsmf/Mmf8Cd/8ifnIMIECRIk6I/kqfc1gP0jWT52x6VrHKvfuK/Uswr/xn2lvq7W3av4W3Evv+3QCFdP5F+We3kc68FX7F7+q2/czS0Hhy549/LuMejnXt7d95u5l6/ebVmvTL+5cK5xrpyFEyR4pXilngPtRaVvPH0a2wtQFYlSNpbH7C6lGEjrr3ixyY8EFcsnjGIDxTAS7BlJU254LNTjuu+6aS9D2bULBd2LXu3Fu+GsyWjO7BtP53oOn8b2IlRVopQ1Yh+I1grmVhzXS1mNbz+3gCTB1RMFnj5V5Scnl3n93hJeELOO2uZoIDBUiYYXoEoyA6bGeCHC8kK8ICSnxx4iuioxlNO566a9TJYyPYu0CME1EwXecXXvYnHPguWIih9G/PClJWpugKHJmEgM53RqrsdQdn16fMMNuW5XkcdPrPCTk8vcdMnQuuOZ+FgkSJAgQYLVSO7+rxGkdbXjeNv9XfcDQL8y/cp2p31ZD0NZc90HwHY9Q+ss+sdx9B4czZu8Yd9QT5nrdpc2jKHtmtsPo3mzJy3Xy8Fk1/+vvt7u/+/Xz/2OHRzL941pM4fhjcquV2a9cT6XWO86EiQ4nzgb7tOraeCGoiAEVB2Pd12zk5Su9F1s2gr9uO7EhpDjBQNDUzA1BcsNyZsa//bWSwgjOvTuthZ59SLdeot368VTTKu8+ZIh5ioOY/kUhiZ3rqftxbCZ47ofReiKBEgMZ01uPqBxctnijXtKfPP5BQqmylBW59iShYgEgRBkNJVQCO64YrRzXWFLsuMFEbNVpyf1WHuR9kS5SdMN2TOU7ix0dksFuq95oeYQEdctItAVhWXL5ZYDw1yxM7/md6vuxK7rmipTyhjcdtkIpysO77p2x5rfqbM5pxIkSJAgwc8Wkrt/ggQJEiR4zeJseQ6M5E3G87HBVjZ/hk4+kjf6vmhtlX6cM1UkYLbqEkYCVZEopGKX8t2DGU5XHL7+1GyHzo0QNLygr0v5Ri983a7hs1Wb4ZzOYt3DjwSXjeXX9MtmjuulrIYXCiRJsNhweGq6iiLDD6eWkRF4ocAP453shhPvdv9wqsze4QzffGYeJwh7nM6/9fwCNcfn2dO1nr46XXH4v48s9qS/3MgxvnucxvImR+ZqzNcdHnxhaU3dAI+fWOF7P12k6cYv8vtHc1w3WWRkA/lB4mORIEGCBAlWI/kFSJAgQYIEr1mcLc+B7dSzXfqxJksMpDWqLU13Spd522UjAGvo3KKVLWLF8lEViZQhb0pt7jiWNxwW6k58riwxmGnn4dYYzOo919PvWnu8JSyfayeL+FHEMzM1JAmu31XCC+NMDVfsyPPs6RoIQcZQGcwZSBKcWGqSMzQmB9LM1Ry+cfg0IoozZazuq+7rH8ubTK9YPHLsWLwbXsz07dfucTpdtZivO4zkTMYLqTXllxoO9/34JLoio6Zi48sX5uv8bzfv3XB+JD4WCRIkOBvY8x++sa3yx//gHecokgRnA8kvwEWIbl30Vl12LS/o6HjbuuSN6IXtuvu10dYvtymNbX1zt5NtGAm6Ndn9XG0tL1i3npoTkDEUFmoOT89U2VNKkU8ZFNMaiiz3lMkaak/7YRRRsfyOfrtbL713KMNYIdWjyU7rag/F86dztTVlTyw1QZLYPZhGV5U1/VO1PB49vozjB9ywZ5CxQqpT3/Ryk6nFZif2ttZ7dX/Huz0SigxVO+jrCLzeGG6FprqRtnw7Lrv9yiYuva8uPvvZz/LJT36S3/7t3+bzn/88AEIIPvWpT/GFL3yh49r7p3/6p1xxxRXnN9iLABt5Dmxnbm/Vu2A79OO6E6CpMr9w1Q4sLz5PIBjOmT31tOncXhjhBlHHRT2jqT0u5f3uwX4YMlu1yac0wkjE53oBh8bylLI6775uJ2OF2MOjTWHv5/TezwF+oebyFz+YYkchTSGtUXU8Tlcc3v/6ScpNl//v4zNMllJkdI266/PQi0tkdAU/jCildU7XbBCCPYPZnr5aqLk03Dgl5lDGxA8jMrqyJcf49jhNLTb56hMzjBdSfct36PIFEyFgOBs7uZva5ve4xMciQYIECRJ0I/kVuMiwmgI4XjTZXcps6Iz64kKDv/nRCZ45XcX24pRf+0eza85bXXfGiFN9dVMUTy5b3PPQMRbqDo4fMZjVKTfi9F5NNyBjqAgBWVPFUBUMVeKSkbitbtrfYt3l+FKTphesqadm+yiKhOtH2H7UuQ5VivNrZww1dlBXJBRJRpFBU+IUYrIkYXkBqiKjyhJXTRSJooinZ2r4QWxLPjGQIojA1GQyhsqeUprhvBnTAasO/7+nZnCCEARMDGSo2R4NNzZ9yxoql47nkYCMrtL0AppewDOnqritNGSqDNdMFnnboVG8IOKrT86w0vRwg5ChrMm+4QwffPNedpXSnf5+cbGOHwhsP8Dy4jRkQsBl4zmu2lnk0Hieh15YPDOGqsT+4Ry7B9Ob0im7x7bm+PhBnO5NU6Qt0THXq6eb+pm49L56ePTRR/nCF77A1Vdf3fP95z73Of7oj/6Ie+65h4MHD/LpT3+a22+/naNHj/aky0nQH/08B16OA/VWvAu2Qz9ul51aarDUcCk3PYppjcW6w77h7Bo6txASYSR4draKocj8MDzjOt59Pd334DhrQryAGQQR8w0XQ5F5JIy4flcREHzl0VM9FHZNldd1Le/+fiQP44UUy5ZH1fF47PgKigx/8+g0CBHn416xuWHPAE4QosoSP5wqY6oKfhRx+Y48A2mjp6+EiPjakzPUnYCnpis4fkTe1OLzt+gYn9ZV9g1nKGX0dcdhrGDgBxE/ObGCLMfpxvYMpTuGmZsh8bFIkCBBggRtJL8GFxHWowCmNHVd+qDlBfzDU6d5eqYKwErTw4sisobWcx7QU3e54XFqJSClqR2K4lefPMUTJypULJ8gFNQsn7mqg6lKuKEgjAROECEBDdcna8S7JhldRZVlHjlWZt9whoG0ziNTZfwwjqNmt+uJU8QEoUCSoOt9G4hzdQeBwAn8OJWXLCFEbDKkyvGDZtA6J4hCFFnmqZMr2EEYpxtTJLxA8NKiRcFUKGVNyg2LuZrDL12/i6nFOv/w9CyRAFWRcf2QFxcbrbZACFi2PA5PVxgtxDsriixxotzEC7vijOCZmSrDOZ0fvbQMCPwodiAuN2Pn97/8wRTXThZj7WXV5tSyjSJLNBwfPxKYmoIkSRydq5NPqTz04hK2H6LIUmcMM4aKqtLp1/XolN1U1lJa5ztH5wG47bIR5msOjzxUZt9wtkPn3GgurabEbkT9TB42zz4ajQa/+qu/yhe/+EU+/elPd74XQvD5z3+e3/3d3+W9730vAPfeey+jo6N8+ctf5sMf/vCaulzXxXXdzudarXbuL+Aiwrl0oN4O/Titq9x8cJhHjpWpWD5DWZ1SxuDBF5bYN5xdS+cOI544udJxUW+7jndfT9ZUeu7BlhendzQ1hYW6i6xAKROf64eCbz+/QMMNexzJb7t0lGXLW+Na3q+v2m7oD79YRpLgqokCT56sIklwzc4iT81UeOJkhdfvHWD3YIaTyxZtp3RNlnnb5aP84IVFFhsOWUOh5ggabshgxsDxY2ZTxlBQZIldg2kGUltzjN/SOEitf0ggCUT8IUGCBAkSJNgWkqfiiwhtKmExpTMVNRkvmDh+RDGl9dAHV59Tbrpocpxfuqy6yJGCE4Q95wE9dQ9mdaYWfSYGdIJQUEzpTK9YVCyPwazBbNUha6rUvQBD07ADj7SuYPkhpiIjkJCAlK7gBBEp7QztzwsiELQcfuPd44YbkNIULD9OueOF/fNwykAErQfJOCcnQhAJMDSZwI3QlTjva0qTcbyAKAJNkZAlGU2JcAKBoanxQ6YqE0XghSFBCEEUxxNEoKkSYdDavVYUIiGIoggvinODL9ZDimmFoOuFu51UJwgFVdvHDSMGUhquFWCqMkEkSOsKK5bHXM1hYiCNG9YxtfiYkOJd+0gIBtNxX8mSTMX2SGkKOUOjrHnIIbhBREpTN6VT9lBQwwhNlqE1QsWUTs2pUExpW6K5rqbEHl9u9qV+Ji695wa/+Zu/yTve8Q5+/ud/vuel+9ixY8zNzXHHHXd0vjMMg1tvvZWHH36470v3Zz/7WT71qU+9KnFfjDjXDtTboR+P5AwOjuTImirFtEYY0olldT1td+7VLurdzuLLlgsivtcIIRjMxLTpQ6M5wjDipv1DDGYNBILTKzZLTY89pUyPI7kk0de1vF9f7R/J8q5rdrJUd9lRSCPJoCs1QGIoZ3DbpaOcrlq85eAI33p+nv2jWSQkBIKq5TOSM7jrpvgabS/gvkenGc7G97O8qZE1FG7YM0jGVKhaPu+6dgcpXX3FkoC5qoumyLxu98CZeGyfuarbNztHggQJEiRIsB7k8x1Agq2jTTOs2B6KLDFbdVBlqNg+hdT61MTBjIEfRS1qscAJQkxV6Tlvdd3lhoeuxv9t0/XGCybFdEwDF0LQcAIUScL127TuEFmS8CPRejwB2wsxVRnbD8mn4vp1VQYJ3DBEkiQaLVq47cfnB6FAWWczob35HWvG4x0+AcgSuK2t8faus+1H6KqCLMe7zJGI8MN4n8L1AyRJwgkikOO0MaoS75hbXkgkBH5w5sU/CEPCMIp3zGW5RQGXcIMIVTkTX/uMtsOwocixBlICJ4g6/TSQ1hnLm1RsD0ORcfwIIUAS4IdxuYrto6sSkYgopnQiAXXXx/cjnCDCUGVsP+j0q+2FzNWcNXOhm8oqBPhRhB8JBIKK7bXG3V/3/H71tMsOZXUGM0bPd+udn+CV4b777uMnP/kJn/3sZ9ccm5ubA2B0dLTn+9HR0c6x1fjEJz5BtVrt/Juenj77QV/E6DfftzO3LS9ONdXWQG+3bPu7pYaD7QVkDZWmGxKGML1iIUux/wPEO7ajeZO0rnbcuRtOiKbILFsehdQZZ/HpFQsviIgQ+GGEJEmUmx66IuOFIYamsNJ0cbyQ+arLUNZgKKMzXWlSt32cIMKP4vvVdKWJIksUUr19Nb1iEUaC5abbuaaRvNGhmYu2e3mrnvm6Q87UyJsqsiTFKbpkmeXGmd+o9jWOtKRA05UmddfH8gOcIEJXpU757DbvP+26gZ5xaPfZUsMlEoKlhtvpywQJEiRIkGA7SJ6MLyJ0U+FsNyISguG8wWje2JCa+M5rdtBwfQ7PVBnI6OiqzFhx7Xmr607rKSwvZDhrMpozuf3yMa7fVeLeh48xX3MoZDT2ZjIsNz28IMLyzuwAZY2WpluTGCuaTAykeNtloxydq1G1fd60b5DjZYuG61NIa+wdPlNP3fFRZAlnA013m9qtyDJyS59seQESZzTdmiJx5c4iUSR4eqaKH4RoisTEQIpQgK5K7B7MsGcwhR0EXDKS45du0Pj60zPYfoimSuwdyFB3POpOS9Ntalw6lkOWIK2pWK2X3tWa7it3FrhmYoBDowW+9tQMyw2PSJYYzBiMFUzuuinWdLf72/JCvCAiayg0/RC99TR96ViOPYNZ7rxiBw+/uNgzhuP5FBPFNG87NMbRudq69MjueVO1Pa6ZKAASVctnNGdyy4GRDc/vV093WSBx6T3HmJ6e5rd/+7e5//77Mc31d9gkqXe1Sgix5rs2DMPAMJKXh/XwShyot6IF38ifA1hzLGtoSAh+ulBjtuownk/xlUdPral7vbiHsiaHxvM8cuwYNdtnMK0jJIkwisiZKqWMxpPTVfwwYmqxwUBGZ7KU5oM37QXgnoeOUXN8VFlmdynN8XKzE9vXn5rl0Hieo3M1frpQ46XFBq4vePpUlSt3FviVG3exf2QtFR4Ex5cbzFYdMprKp7/xfMcrw3Yj9gyl+97PDo3neeShMgv1eIc9a6g89GKZq3YWuHQs39Gfb8djYr0xu/OKMb744BSL9RppXeX9N44lu9wJEiRIkGDbSJ6MLzJ0U+G26l6+fyTLx+64dFP38n51r25j/0iWqyfyL9u9/I37She8e/kH3rjrrLqX/+Lrdq7rXt7d35u5l79xX2ndMezu135zYTWFEnrdyzc7f7162mUTl95zi8cff5yFhQVe97rXdb4Lw5Dvf//7/Jf/8l84evQoEO94j4+Pd8osLCys2f1OsHW8HAfqrWjBN/LnaPskVByv99igStaMvR5SurKuh8N6cVtewJHZGvuGMxRTOhXbI6urvOXSETRF4jP/+DwpVUGVZWw/IowEO/Imh2cqiAj2DWcpttJmZQ0llrfoZ7wgjs7VeOfV4/z1D08QRXHaMgQ8fapCPqXyoZv3rYnL8gL+8gfHURWJ0ytOJ83Z5GCKgqnzvhsm1rzgtq9jcjBFEEUoksRQVme0YGJqModPVWi42/OYWG/MiukJqrbPm/cPkdIUbD+k5vg9C8wJEiRIkCDBVpD8alyEeDmOqGldZc/Q5udspe6hrLnmQWhyG3F050vdrJ7LxgvceunmLw2btX9wLM/Bsfy653Rfc9+ypcyG9Y/mzTXndJ+73vnd/THUtRnT73o2GsOtjNvqMqv/f6tzql/ZxKX33OJtb3sbhw8f7vnu137t1zh06BD//t//e/bt28fY2BgPPPAA1113HQCe5/G9732PP/zDPzwfIf/MYLtzeyta8NX+HMM5naYbkjYUlhoeCEHeVLH8kOGcThBCMaVRbrrQeslctlwMTeJ0xWah5rJnaG3qv+64221OFjOk9Ngf4nTVwtQUKpZHwwkopDXmaw6ljI7tBUiyxFzVQZWljm+DhMTR+SoZQ+PQWJ6UrlDKapyuOMzXXBw/prWbqgxIOH7AUsPrXH93XHUniBlbGZPpstNJc1Y0dUIhOinK6k7QWShVpJb/iKkTRk1G8yZuGHZo4JqqsKeU2ZYOf70xa2vV9w3F1257YeJZkSBBggQJXhaSX40ECRIkuMCRy+W48sore77LZDIMDg52vv/oRz/KZz7zGQ4cOMCBAwf4zGc+Qzqd5v3vf//5CPk1i62kA2uXWWg4uEHI0TkLQ5X54YsRV08UEJLED6eWWaq7uEFMs67YPkNZg2NLDb7z/Dx+EGEHEeN5k6GswVUTxQ1T/62O68hcjfm6w189fIyZFZv5qsPxchNZkvHDWCP99HSFgbTOvuF4V73u+Dz4wiJBJDBUmZrjs3co00kD9l0zNnY8ttTEbumi07rKpWP5DX0iFupu3A/lZk+as8W6w989vsThmSrPz9YwNZnBjEHaUCg3PJbqLk0vJK3HBmqFtMb+VqybpWLbypi1Nd3brS9BggQJEiRYjcRILUGCBAl+BvDxj3+cj370o3zkIx/hhhtuYGZmhvvvvz/J0f0qo62pLmW0TX0WBtI6theiqhKljIGqSJ0UCIosUcoaqKqE7UUMZDRu2j/E9LKNH0Z4YUQQCWw/Tjt4z0PHWKi7DGdNViyfB56b6zFm647rdNVivu4wmNFZbnjU7dgHAyTCKDaSlGWZoazJeDEVG1JKgodaL9yXDGUwVIUjszV+fGwZSYLrd5VoeAHTKzZCRK3UWhun1zrTDxq2F/SkOfPDkG8/v8Dpqs3RuToNNyAMYbnh8dxsjUgIimkNL4ywvYBSRme8kEJTZLKmsi0d/npjNpQ1Nx3LBAkSJEiQYCtIfjkucKymC2712HbqXGrR6Nqa6G7NcftY+zvLCzix1KTphewZSjOUNZlebjK12IxzRbdo1Kvr7NZ766pC1fJ4+lQFgMlSGsePAMGKFe+c6KocO/VGEbNVh4G0RvtpdMXyuXw8z0Qp3UM7XK+tbk13WpOx/IjxgknG0Gi6Ps/MVDA1lSt3FlBkeY3GvJCKU5o13ZDRvIGuKsxVbY4tNTv1FFIqSw2XxbrHaN7oqadbFw/0aOa72wgjAMFIy4W4PU79tPvt/u0Xa/ua2211azrX03RvNEc2K3s25mSC7eO73/1uz2dJkrj77ru5++67z0s8Cc5gK1rw7jRaQxkTQ5MRAk7XbEDwc5cM44UhEhJVx+Nd1+yMXzyF4MBwjtNVG0WWcfwQGalFV9dQZImMrjBXdTr35Xb7+0eyFNMTPDtTIwgFAxmdcmOFYlpl2fI4NJal4YXIQkJTJa6ezJM2VE5XHG6cKPKDF8uM5g3ypk7W1Dix1GAgrXH1ZJHhrMlC3cENIkbzJrqqYKoyXihouH6HAt8Ny4v755YDQ0yvWAxldRRJRlcUlpoOS00PVZaw/YBiSgcJ8mmVsuVy7WSRjK6iq8sIBK/fM0Baj1+O77hsjFD0/pZ1t9lvXNYbs5ej60+QIEGCBAlWI/n1uICxkQPuVtxxt1JnIaXxzWfnmF6xWGl6sWPtQJoPvrnXsTZvatx5xRg/ObnCj6eWCUTEjkKKK3YU+P4Lix1jmQ/dvI/xYop7HjrG9LLFihWnCIudubWW+7jC1EIDJ4jTfUnEebT9UKDI8cuDqcpEApxW/q8IUKQ4/7Yqg6kpXD1RJJ/SeH62hh9GNN1gTVuXjeeoWh6HT9ex3ZBACGTiFGO6GhvjtNN8KcBgTm9pzXWWGh6SBE0nIARkBLqqkNJUTq00CSOBEFBIaXF6ND8iEhECGEhppHSVyYE0kgTjhRRZQwFJouHEO1MCwfSyjdRKd5Y1FAYyBlfuLPDm/UMcma1xYrnJbMVhvJBi92CaO64Y4+Sy1dnVcvyQwWycxq2VspzLxvPsKKZACDRVJm9qHBrPd6infih6jq2eO91zxA8iaLnDbzbPXu6cTJDgZxFb0YK302itWD5Z0+yk4SvXXX7w0iKaLONHEddMFBjJG2Q9hbypUW7EqR0rtkc+pRIhyJsaJ8pNnjpV4XTFxg0iGq7PJcO5zt9i+290uelxbKlJ1fFxg5Bji00sP+SI7WNq8T3U0BR++FIZx4/IGAppLdZpL9Y9VFnm+FITJ4xYsXwe/OkSN+wZwAlCoiji1IpNJAQSEoYaE+q+9uQM77h6x5rfsBPLTU4t2yzU4/RiwzkDTZG5fDyPAJ6crmC5IRU7YCSjU7Mk0oaKH8X3eUkCCQlVlVtpESPuf24uTlO5zd/N9cYs8axIkCBBggSvFMmvyAWKjRxwgU3dcbdS59RSg688No2hylRtHzeIqNo+purwxe+/hACabsh4wWSmYvHfvvcSbhghAboqc2LZ4pnT1Tg3bM6g3PT4b997idG8Sd31qTpx7ueGE6DIcU5rXZaYXg4Jz6TARgBe64ugtdvrh+Ga+Ntps4MILC/k0ePLjGQNLC/E9uNd8YYLiiTjBi4pTeHwqSrzdYcohHaNERAJCPzeNkKg3PBwzYi5mo2pKkjEu7wSkDJU6o6HEzgdXUYElC2/Q6SUWgsD5YZH1oio2h5jeRNJiutBgqyuslB3ma/ZrVokHD+k6cpkDY0nTq5wdLbG7qEMCzW34+ibMmS++sQpnjhZoWJ7BGFEzfaZq9qkNBlJjqM6MltjtmqjKTK3XTrKfN3hkWPH2DecYTRv8u3nFpAkuO3SUZYtr2fudM+RUlrnO0fnAbjtshGWG/6682wrjs0JEiToRb/0XjcfGOLvnzjdKtG+UcY07aGsyQffvLeTtjFnqlw6kmf3YIZbDo5w36MnWWl6+KFAV2RWmj4Lpttx4m7/jY4XUlRa946mE1PLU0Jg+RFeEKEpEroqM71so6oSb9w7TiQk9g5lmKs6zFVtvCji0FieS4ayPHZimSdOVrhusogsS+iqQhBFNL14UfOKHXkabrjmN2yh7rJQc6lYPo4X4IcRyw2PobwR85qEQFNkxosmMxUHyw+YLKV5+1Xj1Bx/TQrErKFQc0Rf9/J2m8k9KkGCBAkSnA8kvzQXKDZywAU2dcfdSp0pTcHyAgbSKaIozq3tR4J8yyVXIs5jndZVBjMGpysOqiQxnDeRJQnHtwlCQc5QSWkqgxlYqLuoTZeRnMFc1SWtK9ScAEOT45duVSVy45fdlnTxZUGRJcJIYPkBWVOj6QeYmkLTCzH0+AU/a6jU3YAoArlF0d4MkQBdkbC9+OW46gbIUrz7LknxDjnEu+2BiHfHuxcQkOLvIuLd+IYXkk9pMQVUiq/XDSKKKZVTK1BKa1QdH72l5Uzr8e77iu1zSIvTrY0XTBw/pJjSmV5uUrF9BjMGs1Wnc41pXaXpR5TSOrYfkBMqmiwjSbHrcc2OnZIlpLgt4utZPXe654gfRmiyDMQ7VhvNs604NidIcLHjXMh9VtOX606ApkjcdtkIEhICQdXyO39Ltx0aWZO2UZFhruoyUUwxUUgxVW7G9wQ3lt2crtgcX7KoOT6lrIblBYzmdMIwIm+q3LDH5Pm5OhJwomyxezBNzfZxgoBCymCotfusyPAbP7eXhbrLd44ssKvlEm6qCidXGlyxI8cjx8pcNp5jpeFxumqjqRJZU6WUNtb8hmV0BcsLKaY1qrbPgdEcQSi4ZqLAsuXheiETAykyRpZbDZWlhse/efNeLttR6CuBsb2A+x6dZji79d/NhZpLSg/6yn+6x/JsSWcSCU6CBAkSvDaR3PEvUGzmgPtyHFVX12n7YWt3M0SWoeEGpHSFWuulTgCzVYfxgkm56ZIzVNwwYrnporfo36oiUW+dV2565Iz4Bb1i+8gyNJ0QiZg+LcsSXhC/fIbi5b9wA4SRQJEl0ppKwwmQW7vFMVVbIMsSDTcgoys0XJ9o7cZ5X8hSvOsuy9DwAlQJbAGSiKnkUdduO5zZPe9AtCjwEq3UOVCzfUbyZmen21BlFuoumgJ1148XMIIIXZGwvBCkmJ5u+yGKHI/BcC7OqzteSDFXdSk3XYQQNNw4hY7lBciyTMX2KJgasiThRxFCQMX2yac0KrbHqGbihQJJiq9n9dzpniOltI4fRa3LEhvOs604NidIcDHjXMh92lhNX86bGssNf92/pe60je22p5YaPHZ8BU2RsL0Q2wvRNZmTyxbDWZ1CSmOx7vKDF5ao2XGuaU2VKaV15mouqizRcEMUBZ6frbWo4jCveuwbTlPKmJQyGruHMuweyvDs6RpztTid2GMnlpEliWdO12g4Pkdma/ih6NwLZ1ZsvED0XIcfRPx4usJSw8XxInRNomLFvyGPnVhhqeHGMpwIFEViLGdy+xWj7B7K9O2zNlNnO7+bQkR87ckZbD/syG4aXrBG0gOcFelMIsFJkCBBgtcukifiCxT9aIfdrqkbHdtqnRMDKT508z7uf24OL4wQQlBIaYzkTe66KdZ03/vwMRbqDkNZg/ffuJsnTq7wo2PL+GHEnsEMl4/nefDFRVYsj5yp8m9+LtZ03/vwMVw/6tAD/TAio2toqsSErjC10MQJor6ablmSMFSFSIh1Nd0pXeGqnbGm+8hcjVQQ79qvbuvQWI7ddoqnZ/pruh0/pL0BrgCDWZ2MoTKY0Sk3PQC01gKDhCCX0kmpZzTdckvTDWAFEVEUoRC/NKcNlYliGlmGsXyKAyMKIMV0dQmGczqnVmKKuRcoZHQFTZW5ameBm/YPcXSuRhBFcR7brMlozuT2y8e4fnepRS91KaQ19g5nWG7FCnBoLM/OYgoQVJ3Y2O2Wg8McnatRtXyunSx2jq2eO91zZDV1c6N5ttl8TZDgYsa5kPush+38LbXjWmg4lBte5/5n+yFeGHXc0NO6QsX2mVpsUrZcogj8UCAQpHWFUMSLhPmUih0EOEGILEnomkQQwSNTy7zn+p1rfoO+8fRpHn5pCYDrdhVpuAEVy8draYEkQEjw42PLvLfrfMsLQJJih/aMxlLkk9YU8oZG0wuBiJWmRxT7axJEgrm6Q932X1HfdR/rpqKXshrffm4BISBjKD2Snm88HVP9+1HWt2tgmtDbEyRIkOC1i+ROfwFjI9fUl+uo2u+8O68cXde9vE1jbH/3nut3bsm9vH1e4l7+8t3L37iv1JfquH8ku4ZeuhX38nZ9mzmSr54jG5Xd6nxNkOBixtmW+2xGU8+ZKu+8erznb3p6uUnVDnruz+24iimdqajJ5ECa5aZLxlBQJAlFkcnosexGCIEXhAymDGRZYsX2IBI4QcS1kwVsP+KtB4f5X0/MULMDTFVGV2X8ICJlqLzl4Aj7R7I9GS3ede0OlpoeO4omBVPn2GKDUAhMXUZXZDRFxvVDTF3mLZcOs38ki+UFTC02CcKIG/cMYGoqAsFiw+MtB4f4x2fmEGHIS4sWmiIjyxKaEi8SLDU9FmoOe4ay6/Zl932ofe9sG312H+umovtR1PrdiHCDiOGcQdP1yejxfR1JYk+LSr8d6Ux3bIkEJ0GCBAle29jWnX5qaoq9e/ciSRvn3kxw9rCRa+rLdVRdfV43VXE1Vh9L6yqX7Sj0lJksnXnZ3kqdAKN5k4Nj+W3Hvhrt65jcpNzBsfy67b1h39C6561X72je5JrJgd6yq/pgPawes/Xa2Gh8+/Vvv3pW0y9Xf94oxq2W3WrMr1WUy2UGBwcBmJ6e5otf/CK2bfMv/sW/4Oabbz7P0SXYCs6m3GcrNPV21oKMEeuyhYDpFQtTkxnJxWZqtx0a6cS10HBw/ZCjy3V0RSaIIgZSOmEU8sJcHVmG2YqNpkisWD5RJFrsJihbHseXmgxmDE4t28xULJabHkLQMc28PG+yZyjNd44s9GS0+Jc37mI8b7Lc8NFlBTsI0RWFhhPghwKJAEVWGM2Z7BnKdK7vpYUGj59cwVBldhRTDGYNiimNn5yocGrZoumGyLKEE8QOmG5rg/vUss1XnzjNO6/Z0ePGvrov03qc5my9Y6up6KWshhcKhJAIwohnZ6oYmswPXypz1c48pYy+benM6thuOTiUSHASJEiQ4DUMefMiZ3DgwAEWFxc7n3/5l3+Z+fn5sx5UggQJElzsOHz4MHv27GFkZIRDhw7x5JNP8vrXv54//uM/5gtf+AJvfetb+epXv3q+w0ywBbRpy6WMtoa2vNGx1eimGA9nTVasOCOA5QVnqOItR+9yw+PoXJ35msMzpyvUHZ8gFJQbHvc+fIylhtNpeyCtY/sxnXwwozOUNdA1mcW6CxLkDI0wEpSbProio8oSYRR7VMjEFPJlK/aKqNp+x3BDAIEQ7Cia2F7IPQ8dY8XyGcnFsf/toye5ce9A59qHcwZXTxbIpbQWL0kibyr86zftJq2rHSr8snWGCr/YcGM39CDCCwXX7yqR0hUGUipK1wJ/WlcoZnQqdtxnSw1n077sd6zfmLZlN1fuzOOFEZoiU8roKLKEpii87bKRLY3vRuP84AtL3HxweFv1JEiQIEGCnx1s624vRK/11T/+4z/y2c9+9qwGlCBBggQ/C/j4xz/OVVddxZe+9CW+9KUv8c53vpNf+IVf4M///M8B+K3f+i3+4A/+gHe/+93nN9AEW8LZkPtshaZeTGlMRbG/xNRSk2JKxw9hNKchSRKDWZ2q7TNXdRnKmuwfyfKua3ayVHcZyhkYqoJAcHS2juUGXFYoYOoK5YbDc7M1LhnOIMkSz83UECLOVqGrMksND0OVCSPImgoSset4EMY5u6cWm9Qcn/FCLH8ZL5gs1B1MTeWum9qU7djA7cqdBSqWh9taCLh+d2kNFX7vUIamG3LZeI6GFyAQnX7JmxovLtbw/PiZY3rFopQxCCJBMaV1rv+VUv5Xj9tCzSEChrM6eqsfq5bPcM7sXONWpDPrjfNIzthWPQkSJEiQ4GcHyR3/IkRbJ9bW8XZr/LaTjqStzdtIB/xy4pqr2hydrTFZSjNRSvfoEtsau41SsigyLNY8mp7PnqFMD426HXPT9Tmx1GSylObAWK6nzvZ/56o2R+fqTJZSTAyke3Tf3ddsecGG+vM4HpemF5I31R7dezuebj287YU9GvduDWQ7LddGY7dao94uY3kBCzUXEGRNtW8/xmUcQGIkb2yqKe03Dlsd5+ShcWM8+uijfOc73+Hqq6/m2muv5Qtf+AIf+chHkFv51H/rt36LN77xjec5ygSbYfV8fyVyn7ZR5HSlyWQx00MxtrwAWZJYbDooMizUPHRFpunFWRAqts9AWqfc8BjK6YwVjE69I3mD8UKKFcsnm48pzBMDKRbrLksNl8GsTt0O0BWZmhMwkNYQxDvZsgwVy0ORBHXHR5IEjhehaTKuH2C0XrDHCyamqjBTsdhZTDNbdSh07UaP5uP7oSxJrFhe5/oMTWJ62WI0b3So8IosMbNikzYUTlWa7C5lSGkqU0sNUlqcNnFXKRPvhNdd8imNxYbLcFZnseFSSMU+Gqvp2llTwfZCsqbSc2y60iSjqyhd3L7ucR3Nm61+NBnPmy2zM61nfLYjnWnT/qcr8aJJxfYYzZkJlTxBggQJXsPY1i9AnKtYWvNdglcPbZ3Y4VNVnp+r9Wj8dpXSW05H0tbmLdQdHD/isvE8O4opEAJNlbedzqQd17ePzHP4VJUotvsmoyuUsgZCwGQphYTU0SmOF012lzI9KVlOLDd5ZqbKUt1DliV2FE1+860HuO3QSCfmI3M1yo3YrVuRJcbyBlfsLNB0w07d5abLCwsNolAgSfEDcc7UaLg+GUNFU2QuG8+R1hSOL8caxpWmh6EquEFI1tBQFYnJUorlhke54eGGEUEkGMrqTA6kuX7XAD85ucL0isVK02Mgo6NIUGvttKR1lVsODHO8HO8QKbLEnlIayw95fraOqSmM5IyesTs8U+H52TpBKGi4PgOZuK07rxhjarHBM6er2F6EpsQv1U037KS2OTSe56EXl3hmpgoIrtxR4FfesHvNGHZ0o2WL2ardMw6bjXeS8mbrWF5eZmwsntvZbJZMJkOpVOocHxgYoF6vn6/wEmwBZ3O+t+sqN11mKw62G7FnKM3tl4919MftYxldZSindxbSRnImpyoWqiIxlNO566a9a7w2+rl2jxdS/PmDUyzOxXXeenCEp05VmFpqYqgyEoK6HeAGIaamMF9ziQA/At+LCELBpWN5rt9V4lvPLzCQiV9ETy5bZA2V0ZzB156aIW9qHBrPc2S21nN9YRRxbKnJD15YIm9q3HnFGJIE8xWXxYZDoxynkJwu2bxud4mHXlzqmJ69+9qd2F7I8XIT2wsxVAVDk5lesQjCFF9/apZD43mOztVYbDgIIahZPvc9erITz9G5Gj+dr3fuc1959NSGKcDOVhaGtK5yaDzPIw+VqTmVWNN9YGRdnXmCBAm2jj3/4RvnO4QECV4Wtk0v/+AHP4hhxCvsjuPwb//tvyWT6TWQ+l//63+dvQgTdNDWic1ULY7O12i4AaqsUW54/OWDU1y7q4gbiE3TkSw1HO556BjlhkcQxvm5j8zWYqMdVea2S0dZtrwtpzNpxzW1WOfZmSp+KOJc3BFUnRCBiyLLVGc8hrMmQSRI6bGuMKWpfOPwaUQU7+ScWrY5sWTFuarTGqdWbP7yB1NMFE3ueegYpys2yw2PsKV0iELBqYpDKCBvaJwKbSRJcGLJIhCxaUEkoOoEOH4Akozre6R0medO13CD+MEwiMDywlbeaxk3cDFVhYrl4QURErG2MYgEFUtClWzuPVVhKKtTtQLcIGK54dL0IyQhmCxlqDQ9vvLYSXa1dvyfnakxs2Kjq3F6M1WRKDfdztitWD5H5+rUbB/bD2O9peWjyw5f+P5LDGR0NEVmpenhhiHlpkdGV1EVCU2VePjFJZpeiKHKIEk8PVMl//RpPnTLvh42QVtXuVB34tQ4rXHYbLyTlDfbR7JIefHibM737roOjuRJaSppXeF9N0yQ1lXueej4mmO/cuNkDzuoHzumG/2yDlRtnzcfGCKlKtQdn9NVhzfsLWFqCk+eqhBFcUrHmu2z2HAxVBk3iBf1TE1mKKMTCXj8+DJeKLhh9yCljIEQgqyhIpAYzppMr1g8cuwY+4YznWsAwZG5Jl4oGC+YzFYd7n9ujt/9hcuYr8U74llDwVAVFuouX3vyFGOFFLtKeRbrLl99coY37x/iLQdHmV6xyJkKkQA/ijq76EfnarzvhgkaTsBXnzhN0wsZzpqdY++8epwv/2ialK4wOZBmruZ0fm+aXv8UYGcjC4Plxb+p+4azFFMaFdvn8EyFp6cr67abIEGCBAl+trEtI7W77rqLkZERCoUChUKBD3zgA+zYsaPzuf0vwblBWyeW0lS8QDCY0TsavxXLY7ZFpWtryKq239G3daOthRvM6kgSDGZ0nCAiRKDJMpLEhuevF1cQQtCiPMvymZeLIBTkDBU/hKyh4IURgxmDIIJiSmOp4VFuuhRTGpYXu9bqqkzG0DBVmRXL57nZGjXHx9RkImJXXVmK/wkRvzDn02qcm1aWCEWc11uR47IQ5/hOaTIRcTy2HxFG8TVHUZyvVggwNIlIxMY9XiiQJAlFkWInX0UmEgJDU3BbWseI+AE0iAAhkFv5Z7OmShDFx3RFwdRkwlDg+GE8dkgMZozO2KU0BS+Iy0etfLERkDYUGm5AFMUuyZoqYSgKbhAxmNUJQkFKVVixfRQJBrMGpbSBJsssNdyeMezWVYZR/DDcHofNxrufTnGrc+S1ig9+8IO8973v5b3vfW9nkbL9+dd//dfPd3gJNsDZnO+r6xrNmdQdn4YTUndiZg4C5ms2AymdSAh0VWE0H2cpGM2bDGYNhnPrS0Yg3mEdbaUcPLHU5KWlBsW0xmDWYDBnxPf9XJwyLIxEx6dlIK0RRYKMEdPOc6aKLEkU07Fx2VzN7sQ+UUzjhlHP9RRTGjU7vq+0X3DrTtxX3Rrwqu1zvNyMDd4QFFI6OVNDkSUcPyJvqpQy8XVaXoAqS0gSTA6ksbwQJ4hfuLvHI4wgpas4QbhmrKp2rBUfzZn4YUQprXd+bzYa1+5+bMPyAuZrTseMbfXnfuM9OZBmJG8yOZDeUrsJXjn27NnTYWV2//vN3/xNIL4nrz6WyHwSJEjwamBby6t/9Vd/da7iSLAFtHViM1ULXZUoNz2KqXineyCtM95aPd8sHclYIdbWlRteJ2VMzlBRkPCjOI3MdtKZtONaUhxUGdwAZOmM6Z6qSNTdAE2BhhuiKzLlpstozqRi+wxl9c5Od1pX4nQ2QtB0fbxQMJnWuHw8T97UOF2xkYEAOiltYvq4Qs0KWulyBIoEgYjLtCNRJLD9CJk4npyp4QYRfhQhyxJNN0CSwPUFshy/yOuKhBdEhGFcjx9GmJqC64cYrRy0MhINN9Zgu5JEJARhJGg48UNjww0ohiGOH6EoErqqxGOX1ig33c7YrVg+uipRsXxkiZgurytYbkjWUJHl2BzIDwRuGJLWVcoNj9GCgR2EDKQ0ml5IuRE7FoeRYChr9Ixhd4ohRZaYrToMZ+MH69G8seF4b5Y2KUEv7rrrrp7PH/jAB9aU+df/+l+/WuEk2CbO5nzvrkuVJR47sYwsSXztyRkOjmZ55KUyJ5YtJCRSuswtB4Z62tkuzf07Rxb4iwen+Ol8DScQ7CzGL5B+KPjmM3Ms1BxsPwSgmNY791HbDeL7oxOgyBLHly1yhoquyD2xCyEwVIUwgkNjeSq2Tz6lUbE9ckZ8neOFFHNVl9mq09npNlSZx46vcGypyXIzfilWZQk/jBAIjpfj3NxVx0dVZJ48VeGF+QZ+FHH5+Mapu/qN1VjBwA8ivnN0Hk2W43p25BlIG9sa19X936bSrzce/eZO+3cuuX+eWzz66KOEYdj5/Mwzz3D77bfzvve9r/PdP/tn/6zneVbX9Vc1xgQJErw2kdztLyJ0680uHfU5Ml/r0fjtKqW3pEUbysYa8HsfPsZ8zSFnqhway7OzmAIEVcfblpbtTFxwxU6LZ2aqhKFAVSCjqZSy8Q/axEAKWZI6OsXhvMFo3uD2y2ON3QPPzWH7AVXbY6nuEUTxDsccBy+5AACfQElEQVSv/9w+Do7lOzHXHL9H0z2eN7h8ZwHLCzt1m5rS0XQrXZrupueT1lV0VebQWI6MrnC8bMc7TQh0RcELQzJ6vKM8MZBiuelTrrsdTXcxrbFjIMU7rt7BE9MrBMJCWBHFtM6wFO9yNFyfQkbjnft3cGK5yXLTY7KUZs9giqYXcmSujirLDGWNnrG7dCzHkbk66UCl6fkU0hpjRZM7Lh/j2FKDwzNVBjI6uioznNOxWnTKncUUtx0a5eEXlzg8UwUhuGaiwDuu3rEm33Z7DtluRCREzzhstot2NvSOrxUki5QXN87mfG/X9Y2nT/PwS0sAXNeSlNz7wxMsNNxWSYHlhby0aHW0zdulubflQxUrZkU1PI/ZqsPuwTRhGLFQcwijWAIUReB4IbmUSsaIaeOpSLDccNEUmWJK48BojoyhYagSjx5fBuCGPSWWGh4LdYd8SmU0b3DLweGOvrrdV9fvLnHvw7F3SCEVa8C9MGbzpPXYMM0OBLoic/1kgRPLFsfKFnsG0+wsxsZw7WVTTZG57bJRfvDCYt/xWHesOpKOVj2yzNsuX7+e1Vjd/91U+jbNffV4rDd3gOT+eY4xPDzc8/kP/uAPuOSSS7j11ls73xmG0fHbSHD+0dZoG4rgczfClXd/EzdMpFgJfvaQ3O0vMnTrzfpp/LaqRbvt0AhXT+TPmnt5O673Xj/xst3L27Gv517eHfPPonv56nF9Oe7lb9xX2tS9vHsObde9/GzoHRMkuFCwmRP/2Zzv+0eyvOvaHSw1PXYUTQqmzqmKxULdQQJ2DqSQhITlB3hhyJHZGsW0iyKvn/6qfe/qvkc8O1OjYnkMZnW8MGJnIUXT8zk0muepUxV0VSatKzTdkDCKUBWZm/aVQJb5f1y/Ey8QfO2JUxi6ys5iipSmsthweMulw1SdoBP7cNYkoyvccmCYK3bmGcqavHFfqUdTnjNVPv3uK6naAYok8bWnZjBVBVNTuX53ifmKjROE5FOx0ZjrR5xcafCeayf4wUtLnTiFELgtb4333TDRc+9bajiEEewomrzvhome/pivOWiKxG2XjSAhdVKAbSd112ppwGoq/epUZe0615s7yf3z1YPneXzpS1/iYx/7WI+fxne/+11GRkYoFovceuut/P7v/z4jIyMb1uW6Lq7rdj7XajUAfN/H9/1zcwGvAO2YLsTYVsNQ4gUxQ+7978WACy3mrYz3xTQ34OKId6uxSWJ18u2fMdRqNQqFAtVqlXw+f77DSZAgwXlEcj9YH6+1vjkfTvyWF3RM0xQZfjS1zFzNoeH4GJpCRldw/IhSRqOQ0nGCkIyuMlYwKWWMHlry7sEM9/34ZCf+O68Yo2r7zNccvvfTRVRZAiQqtkfe1LhxzwBH5uq8tNggjGJTyEgITFUmm9IYyZrcdmiES8dy/M2PT1KxfQYzOoNZg0uGM7zvhgm+8uipzo7v83M1FmoOB0azDGaMnv7r17c7iib3PHSchbrLiXKTUys2fhhheyGqIvH2K8aRZIlSRuN9N0zwZ9+d4kdTZWq2j+WH6KrMm/YOcslItkPvPrHcZLYSU9mzhgKShKZIa9rsZgmUMhp33bR187LuMWvvdE8tNXp2uksZjZ87MMyDP138mXImv9jvCV/5yld4//vfz8mTJ9mxYwcAf/u3f0s2m2X37t0cO3aM3/u93yMIAh5//PGOSXA/3H333XzqU59a8/2Xv/xl0un0ObuGBAkSXPiwLIv3v//9m94rk5fuBAkSvGaQ3A/Wx2upb1a/SL2cl7GXixcXGnzj8GkefrFMJASXDGd5/MQKC3WHlKowVjBjnwlJ7mihTU3iDXsHCSJBIaXx+j0D/J/ffpEVy2e8YDJTsWi6IW/eP8S+oSw/Ol7mhfk6mizhR4JDY3kOjec4WbZ4+lSV+ZqN5YVIEhRMPU5nOJTmwGhcppTRqdk+S02PgbTG/+vOS7lyZ5EXFxo88Nwc5YbHT+frjOZNDo3le/oPWLdvT1diKvaLC3V+ciLedR9Ix14UaV3hpkuGeMfVO9hRNPmDfzzCt4/OE4ai82J+xc4Ck6UU08s2k6UUp1cclhqxHKqtQ7/tshGWG/6aNqu2TyEVU7q3+zLcvu52HZeOxenI2p9vPjDE93+6dF7m07nExX5PuPPOO9F1na9//evrlpmdnWX37t3cd999vPe97123XL+d7snJSZaWli7IvvF9nwceeIDbb78dTdPOdzgb4sq7vwnEu8X/+w0Rv/eYjBtdHPTyCy3mZ+6+c9MyF9PcgIsj3lqtxtDQ0Kb3yvP6a/D973+f//Sf/hOPP/44s7Oz/P3f/z3vfve7O8eFEHzqU5/iC1/4AisrK7zhDW/gT//0T7niiivOX9AJEiRIkOCiRj9n8jZFeDsvSRvR09vHVks49o9kedc1O1mqu+wopCmkNXaXMry0VOOOy8ZIGyr/x/1HGcmdcf1eqDu85dIRhrI6ILHUcKg5fscZvJjSmavW8YOI+ZrDnlKaoYzOnVeMsW84g64q2F7IfY+e5L2v28lizeHHx1ZACDRVIWMoNL0Q2/WYq9kcGstx7eQAFcuj7voM52Lqes5UeefV40wtNvHDiF2lTF+Kdb++Xai55Ey1QwE3tRMAGKqCrkgsNT3uuGKU/SNZ5msOAsFEIY2qSMxUbUQUU8xTmkrN9klpsawodkX3kCXQZAkJqW+b25HRrEY/Sc7VE/lOnWdrPiU4ezhx4gTf+ta3Nk1hOz4+zu7du3nhhRc2LGcYRt+dcE3TLtgXAbjw4wPW6LfdSLroNN0XSszbGeuLYW5040KOd6txnddfg2azyTXXXMOv/dqv8Yu/+Itrjn/uc5/jj/7oj7jnnns4ePAgn/70p7n99ts5evQouVzunMS0mcbv1cZW41ld7uU8DHafA/SU2Uj72z6vrUXeSCPe1jcXUioNN6DphozmDXRV6atlbmugV+eqXa13Bvrqq9vnV63YTAgEK5bP5eN5Do7lWWo4PHWyguUF7BrMoMhyjz6yfe7RuTppXeHgWK4n1u72V/dDGEVULJ9iWuupd7M+66fTXD2W3Trx1Tl7tzJnVre/WqPeL9YL5W8iQYJXirPhTL4RPb19rJv+vHsw3SkzkjcYL6RYtjx0VWbZ8rhkOMfPHRzG8gLyptbj+l3KaIDgHw/H7SmttISzVYecofDiYgPbDfj606eRpTjN1u7BNO9/wy4mSxmATr3LDZ/hvImpKURC4AYhL5ysEwrBszNVFAm+/vQstx4cJmdqDGUNFuouf/f4qc71DGcNFhuxz8VlXTvd6zmJCxHxtSdnsP2QvKmxdyjDkycrnChbCAQgsXMgxTefmUdTFHYUTQYzBhF1vFAQBgIvijBUGdsPyKc0bD/+XWj3T90J8COBQPRt844rxhjNr81vvlWkdZXTFWfNmLfrTDI7XFj4q7/6K0ZGRnjHO96xYblyucz09DTj4+OvUmQJEiR4reK8/iK8/e1v5+1vf3vfY0IIPv/5z/O7v/u7HcrPvffey+joKF/+8pf58Ic/fNbjOR8av7MRz3bSmaz3MNh9jh9EIEk0XJ/ZikPGUGm6AeNFk92lTN/6Dp+q8vxcDamVN/uysTw7imaPxq6Q0vjms3Ms1B2WGx6hiPNsa2pMoyw3PIJQ0HB9BjI6pbTOnqEMqiIxW3EQwPSyhR9GNN2AgYzO5ECaD755LwD3PHSM6RWLlabHQEZnMKOzezDDQt3l8KkKjh/iBgJVhoyhcuvBEZ49XeXkshW7+cowmkuxbzjT0Uf+cGqJx09U8IIQCYmcqbJ3OEO54WFqMiO52Al+Vykd98NMhedn6zh+SMXykFspxIayJvuGM71lV/fZeJ60rnCi3CSIRI9Os3ssTy5b3PPQsc53H3zzXm47NLLlOdMZs1aspqYwkjO4ftcAPzm50lNvO9YL5W8iQYKzgVfqTL6RozjA/c/OsVB3Wai5rFg+qiKRMuQel+v12k/raidTw0I9PvbLr9/Fj4+t9LS3dzDNTMXhWNlCkWRMXaHu+EgS6IrCUt3jn56ZY99wtlNvu82q5XPtZBHLD/jOcwtEItZ3h61UYEEY8dCLi7zr2p0t6vTimuspZXUW6w7FlMZgVl/XSTxrKNQcQcON82hPV5o8+EJcHxL4Ydx2w/VZbLg88Nwcd920h3des4OG6/dkbBjPp5gopnnboTGOztUIWueO5VMcGFEAiarlr2lzM8f3VzrmSWaHCwtRFPFXf/VX3HXXXajqmTFoNBrcfffd/OIv/iLj4+McP36cT37ykwwNDfGe97znPEacIEGC1wIu2F+EY8eOMTc3xx133NH5zjAMbr31Vh5++OF1X7rXc5jcDNtNy3KusdV41qQzqTR55KEy+4azTA6kt/QwqKkSj0zF54zmTL5zdJ4wih2yy02XUys2KU1BlSVSmrqmvpmqxdH5GjUngNauxZH5GqerNroqc9tlI8ys2HzlsWlSqoIbRKzYHghI6Sp1x2e54cb5r4OISIBk+TQcn9mqw97hDMsNj7maA5HACeLdjKrtY6ouX/z+SwgR5/mu2j5uEFGxPBpOwPSKheNF2H6IF8b2BUEEDSfgH54+HWeTERAJCENYbNikdIUvPjjFNTvzPD1dwfZCZCBEULF8npmpktZVNNmg3PD4yx9Mce1knP7n6FydquVTd3wiAUISSALKTZeMofCXP5jimokiFcfj6HyNuuMjBCBJPHe6ihvEedKv2Flgvurw5w9O8eYDQ+wdzDJXc/jqE6d44mSFmhN0dsHuffgYV0/kSevqpnOmPV9mKrGze8MNUBWJ+Vpcz1g+xeRgmtmq04nVC8UF8TfxWsaf/dmf8Wd/9mccP34cgCuuuIL/+B//Y2fRMpHibB+bOZNvxPBo04lLaR0/jCildaq210OvzuhKnNIvZxCEEcWUTtX2O5TjfpTldpqw1dklqnbAI1NLlNIGiixRymo4QcgH3jDMN56ZJ2soPPhCrBGXJIm8oeKGEVOLDRZqLnuG1A49vJtq/ZPjKzx2fIXRvMnxchNFkQgjweRACjuIuHqiSNbQ1lyP5QaM5k1SRZN3X7eTsYJBGMH0crPDRHr9nhIZQyGlKdz36DSFtIYfRWQ0heWmhwQMtrTjACKSSGlKp4/2j2T52B2XcnS2zmLDYc9ghkJaX0Pv7mZhtcfG9gLue3Sa4ezZoXtbXsDUYpNyM5YE9KvzbDrdJ+yiV4ZvfetbnDx5kl//9V/v+V5RFA4fPsxf//VfU6lUGB8f561vfSt/+7d/e87YkwkSJEjQxgV7N5+bmwNgdHS05/vR0VFOnDix7nmf/exn+zpMboYLTZO11XjWpjPRqTkViiltXa1dMaUx1dLCOX5ISlU630tSnMdURCGuHzGYMZiym0wMpAgiKKa0zkNRu76UpuIFgmJKY7kZm9rYfkDOUDsau5SqYHkBo3mDRiVARgKJ1q6MjOVHmFqctzVjqIShQFEVokhguSGFlMqplYicqWEFLllDJRRQSKmUmx4IQSmjM1eFrKHiBhGmJuH4EX4kMNSYci7RalOTsDyBIsDQFBw/BOK8tYYqU7U97EDgtfJ8SxLIkkQQCsJQkDNUkGAwq1NuuszVHIopHS8QpPW4PzUFvBB0Nd7tTusKK5bPXM1mIGN0+qxs+ZRSGg03IBJxDltNkRnM6izOxeZK7bF8fq5KxfbYWUz36D3nqi7DufVTC7XnTHu+pDQFLxAMZnQiARldwQ0j8mm1U+9MxWauZnP5ePGC+Jt4LWNiYoI/+IM/YP/+/UDM+nnXu97FE088wRVXXHFepDg/C2jvAK/GZoyRnKniBxHfOTqPJsv4UcQ1E4XOi58fRPx4usJSw8X1I/YMpanYHqM5s4dyvB5lef9IlqGsScUK+PpTs0wtNXjs+ErHeKzhhigSvDBXp+mFSMSsISeIEFGE44WECI4vWnztyRmumiiuYT/VnYBHjpWx3ZCVpksoBA07QJMlji9ZpAyFH7y4yPOzNRZr8Y76UsOlZsf3qRcXG2QNlYMjOWw/4vBMledna2uYSL9y4y78UPDt5xbQFQmnlfrL9kMaXkAYgQQU0hK2HzKRTXX66JGp5R5WTz/mz2rmTVsqdbbo3u25sNz0eGG+Qc0OeszjVo/nK703XmiMu4sRd9xxB/08glOpFN/85jfPQ0QJEiRIAPL5DmAzdOdWhHhHZ/V33fjEJz5BtVrt/Juent5SO90aP9sLmas5FFLnT5O11XhWl2unh6nY/prz2mUrtt/RwqmKhB2Ene+FAD+KiABDkyk3XXRFptzwUOV4N3l1fbYfoKsSFdtHbpUxNQVJkjoaOzsISesqNStAlSUiYlqgEOCFEaoMjh8iSxJNN0SWJcIoQpYl0oZC1Q5QFRnbDZCR4zISVO2AwYxOKWNQsQNkGRpuvHMUhAJdldBkCTeIf4AFMZXb81sv03KsExetY7IMbhCR1lVSqoSuSIQifhkPWi/tiiJRdwMQUG54DKR1xvImth+iq1LsCgz4ISCBFwhkKf5+IK0xlk/19hlxn6U0GVWWsL0QP4woNzwyuoodhJ2xHMubFFM6s1UHywuYrcbjO1YwtjRnzoxZHGu56SEQNL0QQ5GpWUGn3nasF8rfxGsZ//yf/3N+4Rd+gYMHD3Lw4EF+//d/n2w2yyOPPLJGinPllVdy7733YlkWX/7yl9et03VdarVaz78Eveyh4azJiuXzwHNzWF7QW7DzO9R+uJd6jimt9FeaImN7EQMpfQ3leKO22scWGg7lhoemyHhhxLGlJivN+HPs+i2jqRIpTY4XOSWZCEFaU8inVRYaDvc8fIyFhtNp4xuHT/MPT53GDQQ3HRhEUxSCSKBIEqauEIj4/PF8mhXL58SyBcT3D9sP8MOIvKmhyjL3/vAEU4t1js7Vqdkeyw0f24+o2j6LdZf/8aMTOF7Q6q5Yb64oEiN5E02RkYkXJg+M5pgYSHX6aKnhcM9Dx1ixfEZyJuWmyxcfnGKmYm88LpyRD5Qy2iuie3ePz3ghxUg+XuQ8XbXOCYV8y3MvQYIECRJcdLhgn57HxsaAeMe72+BiYWFhze53N9ZzmNwMF5oma6vxrC43mjO55cAIR+dqfc9rl7X9eLdiOGuys5jitkOjrRQoHtdMFACJuusjcWbnYDhvMJo3+tZ36ajPkfkzD+2HRvPsHDBpa+x2FlN86OZ93P/cHPM1h4G0EVMhiR/kxgomy00PPxA0vdh8bDBjsGcwjaJIqLLEUM7g1IqFF0RYXkAhpTGSN7jrpljTfe/Dx3CDECEExbTOUFZn12CGhZrLMzMVZO+MpjtrqtxyYITnTtc4sdJEhLGmezibYkfR5I7Lx6g5Psu239F0q0jkTZU9wxmWmx6KAkM5nbtuirXPDzw3x6VjOY7M1TE0uUfTPZgxGCuYvWVX99lYnrShcLLcZLnpMpTTuePyXdQcv2csr99d6tF73nXT3o7p2WZzpnu+tGNVZZnRvMHbrxzniemVnnrbsV4IfxMJYoRhyP/8n/+TZrPJm970ppctxXm5rKCfdWyFZVR3AjQlTk8lIcVyF+sMA6j7mBeELDY83nXtDvYMZbfcFrSZSTpTUZO9QxlWmh6OrqIqMqoiM5jVcPyQGyYKzNUcwiBEUxReXGwykNYJojNu38WU3mnj+HIThGDPYJa9QxkKpsp3f7rEjXsGUBWFZ2Yq6IqCJMXspiASvPmSQZpevBioyRL7RjJ4fsSRuRpBGC+e5gyVpueSMVSiFhNpxfIYK5jcdukokgR11+ehF5d4y8ERZBnqdoAfRfzKjbvZN5zp9PFc1e1xaB/MGCzWa6Q0ZUvMm7NB9149PpeN5SmmNN593c6eWM8WLjTGXYIECRIkOHu4YO/ie/fuZWxsjAceeIDrrrsOAM/z+N73vscf/uEfnpM2z6Ym69WMp1+5N+4r9T2vn46w3zmwNffy7vq24l5+55Wj58y9vK2BPJvu5e+9fmLL7uWr+2Ej9/KN+mwz9/L9I9nOta52L9/KnOk3Zhu5l19IfxOvZRw+fJg3velNOI5DNpvl7//+77n88st5+OGHge1LcT7xiU/wsY99rPO5nXf2tY6tOJu3yyw3zvgnZM04LVfWVHqOlR2PHQWTkS7n7O7sAbIkMV1pMlnM9HUBX2g4HafyUiZ+AZYlCUOVma06DOd0ml7ArlIaEcWsmWJaY7HhMpzTO27fFdsjZ8TXNZTVERGda/Si2LdBVRRGCwbPzEj4UewvMVuzkCWJ+apDKasjSWAHEQ3bp2L7rXtChAxUbQ8JiYYTxHKaps9w3mAsbzLfsDu69rwZ5+aeHEjj+ILRTGw02dZOjxUMxgoGGV3l5LLFjmKKctMlravY/hnmz2aU8X507+3opdvjPF1pUkzpHYnA2Xjh7hfH2XDVT5AgwWsXe/7DNzYtYyiCz90Y50c/+vvvfBWiStDGeb2TNxoNXnzxxc7nY8eO8eSTT1Iqldi1axcf/ehH+cxnPsOBAwc4cOAAn/nMZ0in07z//e8/ZzGdDU3W2cRW41ldbqPz1jvWr47txtjvkb27nqGsuSbFVTc2O3+9MhvVndZVRvMmB8fWJqwfypq87fKxvvW1r2u9c1fHsVk/bLVsWld7rqPfeG3Uj1uZM+u136/eC+1v4rWKSy+9lCeffJJKpcLf/d3fcdddd/G9732vc3y7UpyXywr6WcdWWEarywghqFk+9z16spNBYj22USeDRNlitmrHObLdENuNtd99mUluFLt0F0wOjMTpw+puTNkezpqM5kxub93HVjOZut2+u+Npl13NkGo7m4Pg6VMVnp+rEbRM2TKGiuNHOH7I4ZkaxbTG2w6Ncny5SSTAacl4okgQRPHu99uvHGe8mGppsysdbfZqBk8//fZYweTkssXzs1UmBlK8/8bda87bzr1pu3rptK5yaDzPIw+VO7HfcmDknOm2LzTGXYIECRIkOHs4r3fyxx57jLe+9a2dz+1dl7vuuot77rmHj3/849i2zUc+8pGOI+/999+fGAMlSJDgNQdd1ztGajfccAOPPvoo//k//2f+/b//98D2pTgJ1sd2GCMLNYevPnGaphcynI13J4/O1XpcwldnD1hoOCzUnTiDhCwxWUpTSGm874aJdZkr/Vy6+zGQtsJkWl22X5lyw+Xf/c+nMTWFQJaw3JC67bfM3HSKaRVZknlpqcFkMUUYClKajOWHmKpMKaNzyXCWpabLYt1l33CWYir2Dqk5fk//WF7A//vrx1raaZOZisUXH5zizfuHeN8NExxbsthZNHnP9Ts7175d5s3LyVBieQFHZms9sR+dq/HGfaWX/SK8WRwXGuMuQYIECRKcHZxXI7W3vOUtCCHW/LvnnnuAeOfm7rvvZnZ2Fsdx+N73vseVV155PkNOkCBBggsCQghc1+2R4rTRluLcdNNN5zHCixttlstGLz1pXSWlqzhB2KPDrdo+DSdcU76t2S2mdMJIMF4wCSIYzsYeF2G0fhxD2dj5vK33bn832qKtz9ecjgHbYt3tlGnH366nu+zqa2x/tryAx0+s0HR8RnJGnIYsreFFsfeFQCAjE0UhS3UXRZYIhGAwG2dDGCukSOkqY8UUSw2PctNlciDNSN5kciBN1fY7sqWpxSZHZutr9NuWF4AQNN2Q4ayO7YcdbfPq61gNywvWHOukecvGqctK2d5MHP3QPmd17Budsxn66bZX17mVuZcgQYIECS4uJHf0VxFnK/dmu55+uxzdWsFura7lBZxYatL0QvYMpTekePdrq5/2ePU1tPXAW9EnVy2P42WL4azO5GC6R69dSKmEUZzveyRvdJxsu+teT2O+Oo6GE9L0YgqfFwqabpz7O63FacrGCyaKLJMxFLKG2qMX726r4QR941ldtl8808tNphabjBdMwtZDZN5U15wHvTs4q8d5o2tePV795sR2z0tw4eCTn/wkb3/725mcnKRer3Pffffx3e9+l3/6p39CkqTzIsVJEKOfDleIiK89OYPthz304XbZbp32cFanYvuM5o0NtbvrUZK7v1+suxxfahIKQd7U+OCb93LboZFN6+jGd44scM9Dx1huepyq2NRaL4OLDY8oEiw1fCIRG50BZA2Fb9s+QRRhexGSBC8s1Nk3lKFie2v0422d8k9OLPM3P56m5sTZLvwwYrbqMF6IncoB7n92DicQCGD3YIr3XLeT0by54XWsdyxnqj2py7xQcO1kccM+Pxca60S3nSBBggSvTSR3+VcJZyv35mo94HjRZHcpwx1XxBq9+5+d4/BMhedn65iawkjO4M4rxvjJyRV+PLVMICJ2FFL85m0Heh7GNmrr8Kkqz8/VkKQ43dZlY3mumij0XEP7QW2h7uD4EZe1nLhPlJsEkejJsfrDqTJPnqwQRBGKJDFWMBkvpphetpCkOGVXVlcZyGhcuaPAvuEs33x2rlP35EAaSYLxQordg+l14yg3PaIIIiEIWvm241zYEBHntZWI83SntPjlWlNkmm5AppUre7KUxvIC/ECQ0uWeeKZXLFaaHlkjdhPu1y//45ETfPHBKWp2gBuEcUofWSKIBAVTQ1UkLhvPsaOQAklCU6SOJvTIbI0Ty01mKw4ZXaXpBX2veaM51p4TG827JC/shY/5+Xn+1b/6V8zOzlIoFLj66qv5p3/6J26//XaARIpzHrFah5s1FGqOoOGGfenDq3Xa/bJCrMZ6lORieqLzfdZUeGSqTBAJrhgvsNhwuffhY1w9ke8seG5Gr+5O07WjmKLu+FRtD1mWUZX4/lhr7eDHy6Jxvm1dkfHCWM+dUmNndcuLGEjrvOOqHQA9OuUb9pT4k2+/0KGTxyaX8Qv8Qt2J0xp6IQs1F1mWEJFgqeHyT8/MMVYw170OYMNjCNGVuqydKHLrY3s2NNaJbjtBggQJXptI7vKvAl6OlmyjelbrAVOayjcOn0ZEsNhwOTpXp+EGqIrEYt3lv33vJdwwREJCV2VOVWz+8sGpzsPYRm3NVC2Oztdaux3xY9bRhRqlnNa5BssLuOehY5QbHkEoaLgBz81WcYPY/faKnQXmqw5//uAU10wWOHyqguUHqBL4Ak4sN1moO6iSjJAEthfR0HyypsrjJyo88Pw8aV0hCAU1J+CZ05WW065EypD7xuH4ESuWj4RABoIIwlXPV1Hrs+2FuF6IJIMqSzFt148wNYWKVUFTZExNwdBMHjuxwgPPz5NSFapWnI/WDVxSqrqmX8qNOK9szfERrXZsCRQpfun3g4C0pvH8bI3TVQddkbntshHmaw6PPFRmspRmoeZSbnicCixSmrLmmldrRbvnWHtONL3+D/9nc24mOLf4i7/4iw2Pt6U4d99996sT0Gsc/TIKtHW4yw2XL//4JDsK6b5pn/rptNssn6WG0/eeXHcClpseWVNFUejU2U6rlTMVTq1YBGGErijIUkxZn6/ZHF+yGMqaLNRcZqv2unHBmTRdBVOj7vhMDmTQVZnRvMneoTSPHl/BXmggyxLt34MwEgxldVasgIkBEyHBtRNFgkjwrmt2smcoA/Tqx6cWmzHVO6PhhRGlTEz1/s23XkIxbVCxPD77fz1PKWuQ0hSQoG77zNXOXHMPTbwrXdtGKdg0Ve6kLhMCqo63aTquc6GxTnTbCRIkSPDaQ3KnfxVwtnJvdusBp6KYruz4EcWUxlLDAyFIaQpeIBjM6J08qXM1B1WSGM4byJJE3fFZsTzmqu66L93ttlKaihcIiimN5aYXPyT5ce7Xtg5tsR4/BA1mdWarDoMZnRXLJxIRWUNDU2QGszqLc/FOtR8KNFlGliRkBH4Y4QeCYi6uU1clZCRSmkLd8Wl6ITsKJuWmTzGlsVB3yac0glB0UtCsjqO25KFKELW2tGVJrHnpbkMAyPGuTSggo6nYQUhaV6g4PilNQlNlcobGkufSdEOGMjrzDTrOw1lTxfNFT79MLTaxvCBONWN5tB9TATRZIhJxvnDXF4gINE1CQqKY0qk5FVKaQhjBYFZnatFnomisuebuvMGr51h3Lt6N8g0neWETJNg6NnKePl1xuP+5eX463+DIXJ0bdpcIIrGGPtydEaDNzmnXt5oSDrBQd/npfJ2K7TOY0RnMGlwynGGsYLBYd/nR1DKO57NiByiKDHNg+fE97LtHF6g5AYdPVTaNa6xg0HB8njtdA+KFyZypkDVVnj1dx1BlBOAFonU/E6gyLDU8vDDi6HyDvKnyFFWu3zXASP6MO373NY8VDPwg4vHjK8hyfJ/ePZTm0Hi+k7qwmNJZqjeQEHiBQJElxvJmfO4GNPGNqNt5U2PZ8rZN6z4XGRySrBAJEiRI8NrCeTVSe62gW8PVzi9aSG1fw9Wup2J7HT2gKsd5WYeyOoMZI6b6qRLlpodAULUDcoaKrMBy06XmeDhByEBaZ6ywfrqgdlu2H6CrEhXbR261pWsSth90rmGsYJA3NcoNDyEE5aZHSpNRZRnbC/HDiHLDI6OrmJqMpsQ5YMMoPiZJoKlxbldZjh/oIgS2HyJLMhldoWL7CCGo2D6aAjXbR1UkKrbXNw5FlgkECAkQorOr3Q8SQBS/ECsS2H6AjITlxXTwIBL4QUTd9ZHkMy/aMsT/lQQNJ1jTL+1crhXbYzWR0Y9E5zxDk5Dk+DuBoGJ7rb4PUWQoNzx0TaLcdNdc80ZzrD0nNpp3Z2tuJkjwWkA3M2Q4a7Ji+Tzw3FzHwOz+Z+douCHX7SoC8JOTy2QNZV36cDedeyQX13fvw8dYajg9bT7408XYOC2jU256LNYdbj4wBMCJchMvCAkEKLIEIqLcdPHDiDfsLdFoMYBWLH/TuGwvpGYHCAQSgigSOF7EZaN5FFkijCBvqqgyyDKoMpiagq7KGJocU7c7Weo2pm6fKSf1fiROXfgbN+9j12AKL4xQFYk3XFLi3ddNxPH20MTPtNWmbpcy2hrq9kbHEiRIkCBBgnON5NfmVcDZ0nBtpgeEWDd36ViOI3N1VFlmJG9wx+W7eeLkCj86towfxproX79534Zmat1tXTrqc2S+1jl26UieiWK652Hmg2/ey70PH2O+5pAzVQ6N5kmbCifLTZabLkM5nTsu30XN8Sk3fZ6crhCEEZokMV4wGSumOLVitdqOyBoqmiJx1a4Ce4ey3P/cHPM1h0JKZaKYRpZ789OujiOsRZTSWqzfjgR+JFDYQNOtK6gSLS1ivMurqzITA2lsL8QLImQJXr9noBOPF0UIBBldRVPltf1SUvnQzfv48x9MUbUCUrqCpkhI0hlNt6ZKHBrLsbOYAiSqlt+TMzeI4nFOa2ksP1hzzZvNsfac2Gq+4eRBNMFrHRuZCm7EDIFeanMhrXG64vCua3ewZ6i/R0KbKj1eMFupuDRWmr0spI6DdilFzlQZL5hELWr38SWLIBLsG84yU7EopnUajk8hpVHK6OwfzeH4ITWnQjGlMdKK7adzNfYNpTFUqXPPTusx7RsJJgcy8QJqwyEQMTvqDXsGma1ZHBiJKeeSAEWTefJEhWsni7y41MRQZVw/4uqJAiuWxw9eWOT63QM9Jpo5U2Wu6iJLEldOFFBlGUWWqNpebALXMou87dAIV0/kOb5kkTEUhnMGYQQLNXdDmvhG1O39I1mK6Ykec88ECRIkSJDg1UDyZP0q4WxpuNbL27o67+pq9/L3XL9z2+7l3W1t5l7efkDainv5e6+f2LZ7+Z1Xjm7JvXx1HOfKvbwdz2bu5b/6xt3ccnDoZbmXt3PmbtW9fL05ttV8w4m+MMFrHZuZCm7mPN19bLnhs6NgMpJf/17bZuccX2oStZg8WVPF8c+kj8qZKot1lx+8sITlhYRCkDUU/EAwVjDxw4jTKw52EGJ7IYYay2HSQdTDnKnYPm4Q8a3n5lhoUdJ1TeGaiSJX7YwNINvsnOWmhyxDw41f7x9+aYmfTFc4NJrFCQR1N2Awo1NIaQzmDCRZIq0pLDU80rrMt5+fp9zw+MELS+wcSPHe6yaotvJz502tZdIWMFd1KKR0JAkKKY3/+8gioVjo6fuhbOxW/pVHT7UkTwp+EG1IE1+Pup2YRiZIkCBBgvOF5On6VcTZ0nBtVE/3sclV31+2o/CK2prcpOxQ1lzzMp/W1Z7v2vWN5k0OjuXX1LFeG/3q3k4cW8X67b/8NiZLGSZLmS2VXb0L/XLYEKvP2Uo9ib4wwWsdWzEV3IwZsl3WyFDW5F/euIvPffMITScgn1LZP5Lj0eMrXL6j0EkdOLXYoOkGSBIEQUgdwVzNwdAUABQFIi9m46R1lYGUjqEqlOtehzlz+FSF7x5dYK4eLxb6oaDp+xyZrTGY1XnguTnuumkPd71pN//nt1/AcmPpjyzHXhdeEHFkvsF1u4oYqsxS0yMSgl95/STHyxZ+EPtzLNc9FhsepiqjKzLTyxZf+P5L/NyBYfYNZZlesXjkWJn9wxmmliyqtkdaV9hZyOKFYkuO5JIkkTWUbbFzEtPIBAkSJEhwPpH80iRIkCBBgtc8tmoquB5F2fJipsj7bpggjKBqecysWERRRCGt92WzALxu9wC3HhhGU2VGcgaKJPe0O1d1Y4fvrIEqS1QsnyAKsbyQlKagKTK3HBji2dN1cqZKJOB1uwZww5B3X7eTQipm8NxyYIij83Vmqw4pTaHmBEhShBNEqDKcrjqcKDd5/d5Bfm5/mYWGz9Rig0Jajx3KMzonli3GCikmimkqlkfd9bl+d4lbLx2h7gScXrH5k+/8lOWW70RbStNwQ1RJwg8j0ppCzfa5cU+JXaUMbhhiuRGyLMjqKn4YUUrrVG2vL20/q6ucXGnwjqvG2DGQ3jI7JzGNTJAgQYIE5xPJL81FiI00h20stdLJbEW31q++jdpoH1ud7qYfVXp1mW46dhgBiJae78yx9n83in2j+NrX3k1TV2R66PZbqaf72Orr2ajv2+dVLY/ZqsO+4Xine6nhxPpEXWH3UKazi9Wm78/X3J5jW4lx9TW/XJ3iKz1/O7EmSHAhYjPqeBv9KMpAz3deEPHVJ2eo2T6REFw1UeTgaA6EQFPlHmpzzoyZPyuWjyLJa9odKxgdJ2+hyXhBnCc7rSvYfoiqSBydb1BzfBbrLnsG01h+yGjeYHq5yed+PE3N8cnoKqos0fRCarZPKASyJJE14MmTVSIhmFpoICTBczOxh4fjhzi+YLRgUHcD0oaK7QeEkaDphQxljc7f+umKw/dfWGTFClovuHFayFDEsT55qsILCw2cIKTh+PzD07MABFHEUNZARuKRqWWGcyaaInHNRGENbb/u+Dz4wiKRiPXwv3HzvjVO7690fBMkSJAgQYJzgeTX5iLDVjRpW0lBs1F9wLpttMufWG4yW3EQAqZXrI6hzWXjOXYU0yAEDS+IywDTyxZ+GNF0AzKGigCyugoIGl7sBN5wA3RVxgsiBjI6kwPpvrFv1Afta1+oO9ScgKwe0y8bbkg+pTGSMzp1blRP9zE/FD3XM15IsXsw3bfv2+f98KUyh2cqyJJEPqVxy4Fhnj1d5XTVRpVkbtxX4h1X7+DIbI3DMxWePlXFCyJMVeHGfSX+n2/Zz/6R7Fkf7354pedvZVwSJLjQsRVTwX4U5W88fRqI7zFjeZMX5mt889m5FjVbxnZDDp+qULU9DFXhtktHWba8HmrzRu22nbz/7LsvcGrFJmuqDGZ1dg6kGMkZOH6Gk8sWpYzOUt3D9kMG0ho37CnxJ99+gRUrNmqbqVhULJ+hjMZy0ycKI1RZJqWrKLKMLsNyw2OubseZHGQJTZHxwxAEjOZN7rh8LH65XxVnt3P763YPcLLcpO4GKKpCxogXGZRWbu8wEtRaO9implCzQxaFy86BFEEkWG64DOUM2n7m7f756hOn+KcXFgkiwSVDGWpOwL0PH+PqifyWFgoT08gECRIkSHA+kfzaXETYiiatOwXNeMFktuqs+2DS9wHy8GlEBE0vXFdbt1B3Wai5LNZc5uo2Ei0bcCSOzNWZWXFQFYmsEefUnq85IMAJQsJI4HghkgR1xQckgihCtNJ6NdwARZaQbR9DddfEvlEfWK3UOOWGhxcIVpo+NTtuIxQCU1MoN+M6D4xk1q2nfZ0rlk8pq/Ht5xaIhCBraKxYcaqylCGv6ft2bCeWGzxzuoIbRKR1hWrT4yuPnSRraqR1BS+I+OFUmZkVm92DaZ6frbPcbOUnl+GRY2XGiyYfvGnPWR3vfnil529nbiZIcKFjM1PBfhTl4+UGSBJ7ShlSuoIkS7hhxHBGx/YFWUPF8kOCUJDV47Raq6nNm7W7npO37QXc9+g0+0ezSEh4Qchiw+Nd1+6g4YYdZ/S0rjKYiXN6//yhcfIpjZrtU7VdFFVhLGdyeKaGJMF0BUZyBrIEQ1mdmhPwv92yj587MLTGhbwdZ3e/+FHEgdEslhdy1USB/397fx4myVXe+aOfyMiI3JfK2qurV6mllrqlFlKDhDZAttroJ7Aw/DAGX480gxl7DMzoavyM4cfDtbA1yODf8PCHDQMzNpJ/11j4uWYbizG0LdDWyAhtra1bLXX1WkvWlntGxnr/iMpUZVXW2rW23o+eeloZGeec97wReSJOxHu+bywU5BcDE1x3UTvJsMZQvsrQi1V2dyXQ1ACeV8SyPRQU9vYlKZsOB7alcTya/PPuSzv56bFRupMhkmGduGmTLRpNSu/ne3wFQRAEYbWQPN2biFY3fPmq1Vj3Bs0paKK6n14mX7UYztcWVd9YyWS8XGvZRn3/dETz87VGg1gOxEP+OsJ0RMOwXPA8AijUbId0JIjt+JNP1/P8f/H8m62p/4IBBdeDsBbA8yCiqbgupCPBWbbP54N639vjOp7nEQoqeB6AR0gN4Hke7bEQ+arFidHynPVMb0NBQVeVRn96U2FsxyMd0Wf5vl4uoAQaflEDASKhIJbjoSqQDOtkYiEc12Oi7KfNqdnuVP7yAMmwDi4M5Y1Gf1bqeLfifMsv5dwUhLWmYtqMFAwq5uLPw7rQY6sJmRoABYUzk5VGXvuOeIiOmN7Ide+5/nhTMPy114WpZSmKAhXLZihf5bWRAgHFX/ZStzM7VX4uOuJhDuzIcFmvL4g5Wqxh2i4KCmcnKxiWw0TFpCOuAwqpiB9OfS5XYaJcY7RYI6oHsT2PqB7Ecj26UxEyUZ2xUg3bdciVLTQVJssmlZrNUN4gFdEaE+65/DM9dNvDw3b9VIz96Rim45IMa1RqDloggO347eeqvkK6aXsEAgpRPchIvkZQUcgbNqlIc+h3dzJMIhRkMFdlolzj3GSVVESjJxVa0vGe7/gKgiAIwmohV51NxGLWpNVT0Azljcaby0ys+cZkvvo64jqey7wpcbLFGmoAChUbTfXfTgcUyFUtUpEgKAouHtFgkGzRmMp97RBQFP9ffEGdoBqg/qY7oIBh+Wq5VcshFgqSq9p0J0NNts/nAzXg2zdeMlEUhZrtTd3U+m+eFEVhvFyjIx5iV2eMlwcLC6b+ycT9VGP1/gzlDToTOrmqrwo83fd12yYrtYZforqKZXloqoLjQcEwMW0XNaCQiYVwPY9QMECu4r/pLhgmQTXg5y6fOpYrdbxbcb7lF3NcBGE9WOnlDvX6JsomQ4UqVctmR3uMWy/3l+TUw5a3d8R4//4t/PDIOco1G9eFSCREzXIYLdY4PV5prPP++6fPsqc3yZOvj/HSuTzgsa8vxUev3T6nrdOX0BiWS0dcZ6xkEtYCxEMa2zMRHnr6NMmwxtXb2vj+8+cYLRaI6kE+cNUWSjWLn702QtV0/NRiWrCxRAgP2mM6Jyeq5KoegallQ0fOFrhlz9xvk6eHbucrFldtTQMeeeNN9fRjwwVGSwb9bRE+cdMufvKK78utmSg72iOUTYdzeRun7Ot83LKnuzExrvteCyqM5A2yBZNkNMjHLt/WeBggy1sEQRCEjYzcEW8iFrMmrSMe5q4bdvLgYf+mLBPTuPP6nS3D7+aqD1gwJU7VsnE9j45EiLO5SqPOPT0JtqSjgJ/LVVE8OhMhzk5WMG2VivmmUmwsFATPF+RRgLJpT60hdElFNLqToVm2z+eDqB5s9H1katIXm1rTXTYd9GCAjrhf59ZMbFGpf6bfQDb6Ew/TnQjP8v102/b11XhpMIfnQTqu8/6LO3llqMC5XAVNDXDtzgz/x5V9HBsu+OvGXRfTctFVlWt3ZvjAVf10xMMrerxbcb7lF3NcBGGtWenlDtPru6Q7QSQUIKb7SuX130o9bFkNwN8/fZZf3dPN8WyRiumQjuicnizjeX4ETMm0OZercHoizOHXxyibDqGg/zr8yLk8ySODfOLmXS1FIutLaGwHCoZNvmrRlQiRjupUag6nJ6tc3JVkpFTlRLbMtTszJMIaVctf1hPWVHa0xxjKG4yXTCbLFSJagEw8RGdc518HJtAAXQugABNlk//x2BsLLjmZGboNzUrt1+3KNH3+tX3dDfFGgL9+4iSZuE5nLEyuanFsuMB1uzLAm8uagoEAPckIsXCQi7tiFAyr8VZblrcIgiAIGxm5Gm0yFrMmrb7+bzFq1HPVN1cb0/dfL/Xy+Xwwve8LqZfPV89cN5ALqZfXy33w6v5FqZfXb0TnUi9f6ePdivMtP7Pvsl5SWG/qyx0yUX1WCqrpWQPmSuM1k2zBYKhg0Jf2l09sTccYLRlTY5hP/cHfybESQwWD7mSIbLFGd1JlKF/Fsj2CKtSmwq1Ny8P1XEZLNaK6SiqiY7supZrNWKnWMpXV9CU0Q3mDdERjtGjQFtXwPFAV8FywHJd0RKdg5Lh6WxtdyTD5isXrowW0oEpHPMTJ8QrpqEZ+3KI3FcJ2XDQ1gGG5qMEA8VAQRYFyzWaibDatnZ4rS0HdB9M/z/VdR9wP8S4aNlXTwfU8+tuiKCh06wHyFWvqO5uhgkEi7F8zetMRyqZNMqwxmDfIFgwienDBdGCSWUEQBEFYT+TKswmZefPSio54eNGTp1b1zddGq++2zrHfQvss5rvF2lBnrr7PZeNi+7nYG7V6ue5kmEt6kvPaNb2NrZnYouxoxVKO92qUr7MYWwVhtUmEg1i2yyPHRtACASzXbaSgapWZYGYar+m8ni3xjy8M8tpwgVcHCxzY0YbjMmc6sfq+luMvKzk1XiZXtShUbfxHgP5fMqrx6mCJUs1molxjKG+gKL6Y4p6eeMulGfXlIOMlE8/zl/QE1QD5qk0sHGS46GeU+OWpSTJxjWRYI1e1qNkuvzw1MSVY6WFYLiXDxrAdFBSOjxQJ6ypV0yEUVDBtf7KtAK4HmZjeeCO9UmHc0+uJaCqjxRq/PDnZeOh61dY02WKNf3llhNeGC5i2h+26ZIs1AiicmajQEdf5flTnVy7vnnd5i4SeC4IgCOuNCKkJgiAIFx6KMvU/Xn1DU5h4KqrxwpkcR87lSYV1JisWh14ZbhLhqu9fNh2u3pZBUeC50zniYXXOdGL1fdWAQtGwyFUtPM9rmONN/ZUMCxR450UZAkqAUs0mGIC2iI6mqi27VF8O0pHQCaqQigTZtyVFe0zHtPy82Tvao+SqJpNlk4++YxttUY1nT08AcNXWNkzbI2/4/Q8GAthT+hqZmE5IU7myv43t7ZEpOxW2d0T5xM0XNZTL6/7rjIdb+mwxzKqnanJqaq07KCgKWK7Lv7wy0uT70UKNgOJ70XE9IppKrmrxxPFRbr6kg0xMmzOd2fnaLAiCIAjng7ySEgRBEDYd84ULFw0bTVW45bIuFBQ8PPIVqykjgOW66Kr/3rlVGq96PdPDlv2Q5gp37N/Cjo5Yky2vDBY4PVFmeyZOKuq/ZX7x3CSOC5qqcDxbQlXA8SAd1sgbFhd1xulORtjaFsHx4O0722iL6eQrFqfGyjges5bt7O1Lct8H9jUt6Zko1fj202f88HdNJVexKBk2V29v47LeBGNlk760n40hFlLR1DBv35HBchwOvzHO9Re1052KNPz0/751N+cmq1RNm6u2tbE1E6Ni2pwYLTNRNulNRYjoKvGwyuujJU6NlbmsL7WoY9OqnpimUrUcrr+onfZYCM+DwUKV8XKNHe1xPxUb8KiV5aptaV7PlggHgxi2Q1RTyVctOhNh7ry+eelT3Y6Jskk8HERVWx9nQRAEQVht5IqzDqzU2rLzrWcp5cdKRmPNb30dXqu13NPzR8+3RrieIgcUupKhWW+M6nZVTD8VWLlmMZQ32NkRoycVmbetMxNlToyW2dUZoz0earkWu1Ub9fL176aXgfnXfc7ny1a+m7nfUteYLuUYylpG4UJjoXDhupr+RMlqCjeenhGgnplAUTw8j5aK+zNV+ScqJn3pCF3JUJMtf/evp3jhbI7hfI2XogVu2t2J7Xrs6oyTr9qMFafSAzouITWA6bhoQX/COpT314u3RXXaIiEmSiaT5Rr3Pfwq4+UahuVyWW+SvlQYFAVNVRp9ri9JSYSD9CbDU/1VKdcc2uM6iXCw6Ts8l3OTBrbr8uzpCSqmQ8W0ef5Mnms1tRE277ger42UKBgWZyYN9vQmOTpUYLxc4/hIiVzVQg3AE8fHcD2P4ZzBx2/axS17uuY9NvXvptfTEdf5xcAEharJL09Ocu2uDI7LrEwaFcuhPRFCURTw4OhIgZAa4CnH5ept6cb4Npgzmtrf2RHjtZEiuapFe0ynPR7ios6YZFYQBEEQ1hS56qwxq7Eebjn1LKV8PUVNwbBQFYUdHTEqpsOrQwWUqZQyl/UkuaI/xcG9PZyeqDT2T4Y17rphJ7fs6Wpq++9+cbplipzpdo0Wa5waL3Nmosp4qYaigBpQ2LclxS17ulu2taM9xmPHR6mYNsFAgL1bkmRiOkM5g95UhO3t0cYNZMGwGC0YnJyo4LgeybDGr+3tIV+1ODVRbpSJh4Pzrvucz5etfNeZCDXt17TG1HZn3VjPdVwWcwxlLaNwobEYZfK51PSnZwSYmdqqleL+Qqr8FdPmH18Y5Mi5vB+iHfcn+k+fnOCm3R3cfmUfV2/P8ODhAUqmzXip5o8jEY3+tgim46Eq/prpUFBlrGwQ0VUGxsoYlovt+KkHXx0qMJSvoqkBbrmsi4mS1dTnhew8uLeHh18c5PDrOdJRjbAe4OxEFVVVeOfOdk5NVHjudI7rL27nxt2dPPbaaMO/ZyYrPDUw4AtCpmMUqjZnJyucnqhgux4Xd8QpGDYPHh5gd1dszmMDbyqM96WiFKp+zvKTYyXUgMINF3fyxmipYcftV/QBb2bS6E6GuPmSTl48l+PImTxBVSET01ED9VXys8+NM7kyT50YJxPTCQYUxsomrudx1/Xb5QGkIAiCsKbIVWcNWak0Nudbz1LK11PU+OvhQrw8lGdw6uavVHNgaq3isWyBTELj+8+f5blTOQqG3cj7/ODhgUa6mYpp8/CRQV44kyMYUJpS5Pz2ddsadiXCKv96YoKqZZOvWNgeKB64nsfLg3l2tMf4/nNnee70m22dGivxi4FxonqQTCzEuXyVp96YYO+WJOWaQ1BV0IIKT50YZ1dnnLaIzlMDE9iux96+JCMFg//x+Amu3ZkhW6wxWbEAKGVtP2/spd1MVMwmX83ny4ppz/LdcNHgNw9sbawrTEf7G+UzUZ1Hjo0AtLyxXuoxXOm0SYKwEZgZ8j1XuHCrTAsV014wtdVM5lPlLxo24+UaWiBAOqrTHgsRUqt0JUMc3NvNxV1xLu6Ks7srxonRMmHNVwd3XZeHXxqmNxkmFtYwbYehvMFt+3oxLIefHs2SjupkizXaYzoFw8/3HQhC2XAIa8qssO66nfUIonhYZWRK9fvirjh37N/CWLFGXyqK7br87FgWgHhY47pdGXIVizv2byGiq03+TUc0ClWLmB7Eclz6MxEKhklEU9mWiZGMaMRMm2zR4MRoedaxGcpXOTFaJh5qrndPTxJVVbBsh21tcUJagKimcnK8xJV9vuidGoDb9vUwPSKqNxni9ESFd6U6iIW0Rkj8dKXzusr8dAX3YCDAuVwFFI/ORHhNI8UEQRAEQa4Ua8hibxZXu56llK+vgexNhQkoCuGgn2vbcR3SEY2Jikl7RKNmeUS0IEN5g1zFZEtb1L9BSoXJFo1GupmiYTNWNtFVhbaptXu5islYqda03nKyYk6J6oALBBX/X01VcFywXY/hgkGuarIl7bcVDQWxXY94KEgoGGiEcZYMm750BMNyiAT9G790RMN0HPAgHAygqyrtsRCjxQIBxW+jNxUmX7VQFNACgZbrPufz5Whxtu9sx8W03cZ+TWtMHRctEMCXL1LmPS6LOYYrdb4JwkZiZsh3q7DwOq3CjevRHkvJTDCXKn8iHKQ9FuKoW2SiUqNi2kyULDwUfvzSSEMQbXr7qYjGj14c4sRYCVUJcGV/imyxhhqAHz4/iOO55Cs2o4UaYV2lYjrEQ0FMx2Fi0mSiMsRIvkYoGGgK6wYafT01XmEoX6U3HWZ7JsbBvT30pcP0piJMVEwycY2CYTNSMDiXqxIMBLj2okwjbH66f32FdIWfvzGO63mMFmt+yjPH5exkhR2qn/M7E9PY1Rnj5cFCo+yrwwWyBYPvPXeWREjDcrym49abCjNeNHnijVHGSjXO5aoowDOnc+yeOkbT+wDw45dHODtR4dRYpUlJfrrSeV1l3rAdkmGNl87lODFWpmjYxEJBLukapGq5axIpJqwt9957L1/4wheatnV3dzM8PAyA53l84Qtf4Jvf/CaTk5Nce+21/OVf/iV79+5dD3MFQXgLIerla8j0m8Wq6TBcMEhFWt8srmY9SylfXwM5lDcwbRfD9t8Yh6dUYwP4aWt0TaFq+W+c01E/h2zFtBnK+3XX080kwkE6Yjqm4zFeqjFRqWG5Lh3xUNN6Sz2oEJiS+w0Atp/ZB8vxUAMQDPiT0nTkzbYqNZtgQKFUs6nZLjXHRVUU4mH/YUBQVahO3YTlqha6qoIChu1iOg7j5RpRPYjr+W0M5Q1CwYDfrus21n1O99V8vmzlOwKgBwON/ab3ud6O5Xp4ePMel8Ucw5U63wRhI1EPpW6lVD2T1VaujupB3re/j/39KWzHY6Jk0RbVePuODGXT4eEjgzx8ZLDR/rlclf/x+AlyVZNdHXFM2+XJ18ewXZcrtqR5dbjAayMlrtvVjh5UqZo2MV1ld3eceDhIIqySLdSwHK8hmPbg4QHGSkajr9mSQbZoMFmxGC3UyBZrHHrFn3DU/Tac8/fXAv5Ybjkup8fLVEx7ln/bohrbMzFQYKJkYrseyYjG7q44lusynK+SiWncef1Otk5NjjMxjaF8lWzBoDsZpi8VpWw6KHjEw2rjuN2ypxstGKBqOgzmqtiOhwIYlstLg3lGCkajDw+/OMg/vjDYUkn+pt0dPP7a6Kzv2qI6v3H1Fl4fLVMw7CnFdoUHnzrFuXxlWeeEqKFvfPbu3cvQ0FDj78UXX2x89+Uvf5mvfOUr/MVf/AVPP/00PT093HrrrRSLxXW0WBCEtwJy972GLLTubq3qWUr5eoqaBw8PMFGpsbUtyo52/wbq6HChsd+lXUn601FuvbyHq7f5axizRaNxM1YXU4vqQW6/so+iYfPiuTx4Hvv7U9x+ZV/zesuqxbUXZTg9Xub0ePOa7r19KS7qivttbX+zrZ50hGt3dfD466MUDJNMVGNvX5K2mM5w3qAzHmZLOsIte7o5NlwgX7V4564MJ8erTJRNOuIhPvaOHgpTqXxcz6MnGZmapLZe9zmfL6N6sKXvqqbTeo1p1WR/fwpQyFeseY/LYo7hSp1vwvpz//33893vfpejR48SiUS4/vrr+dKXvsSll17a2Oet9AZnvpDv6axEtIcv+lgDPOLhII5Lk8jixV1x7jl4Ka8MFvj/PXOmoV5eNR1OjpdAUehLRrAcl2DAT1u2JR0hHvbfDB/PFrmqP01HPIQWCOB6Lj2pML/xtj6GCgYfunoLpu3xyNEsigI/fnmYzoSGArTHdfJVX5W9MwEFww8Dr5g2nYkQtuORjmjkq374dd1vTxwf4xcD41zclSCsqRiWw1jJ4ORYhY54mL50mNv29VJPt/bQ02doj+k8fXKSZFjD9lx2dsbpTob5tb097N2SbIzxF3fFSUf7eflcAdNx2J6JN/n+4GU9OJ5HKhIkX/VzgV/eG2dgrExEUzAsl5CmYJgeUV3FdiEd0RgrmeB5DTXz6Ury4DXCylNhvem7Us0mGdbYlomSnAqVPzpcIKIFVyRSLBPVGcxVyBZq7OiQsXUjEAwG6enpmbXd8zy++tWv8rnPfY4PfvCDADz44IN0d3fz7W9/m9/7vd9ba1MFQXgLIVeINWaxN4urXc9Syt+yp4sr+5OLVi+/uCvetP9M9XL/JvWSlurlM+1aSL28VVuLUS+/bldmxdTL5/PlXL6bvt9S15gu5Riu1PkmrC+PPvoon/zkJ3n729+Obdt87nOf4+DBg7zyyivEYr6Cdf0NzgMPPMAll1zCfffdx6233sqxY8dIJBLr3IOVZ66Q7+ksJRS9FXVl8pcG81RNBy0YoCsRolxzGsKM9dDiy/uSbBuIMVExG9EsHfEQE2WTR46NoAUClC0bDzieLfqaEDWbsKZie76CesGwyFUsPMZxXNjRHuUXA5MUDZuBsTLJSHDqDbdJOqIxXjLpSOiNscWyXX5xJsdYqUbNqkzl7LboToYafR7MGRw5m6NoOEyUC/SlIwzmqujBAD87lqVg2A2hyWRY46ZLOrFsl+fO5Bgv1zg9USGiBaYeDOpk4s1jfD30eqJscnKsQtV02dOTnIrmcfnJK8MM5gyG8lU6EzqjRZNYKEAwoFAwbAKA5fgPWCumQ1uUhsr5dDXzupJ8sWbPCit3XBoq83FTJR3VmKxYhDWV8ZJJNBSkatmNCKClnBPTz6lgQOGXpyYIKAo/eP4ct1/ZJ2HmG4Djx4/T19dHKBTi2muv5Ytf/CK7du1iYGCA4eFhDh482Ng3FArxrne9i8OHD8876a7VatRqtcbnQsF/6WBZFpZlrV5nlkndpo1o20xCqv9wLxRo/nczsNlt3gznx2Y4lxdrm+J53uY5U5ZBoVAglUqRz+dJJpPrbY4gCOvIhTIejI6O0tXVxaOPPsrNN9+M53n09fVx991380d/9EeAf5PY3d3Nl770pZY3k61uIrdu3brpfTOT17OlRvRMKuJHeyxmYlQxbb756AmefGMMPIXhQpWa7RCbmux3p0Jsa4/SPZUfOqoHZ7V14+5Ovv/cOY6czaEFFAzbpVD1Bb88IKAoXLYlwb6+FMWqzfNnJqlZLomwhmE7BBTY159iazrGq8MFRosGuhrg9dESoWCA7mSYO6/3s0NUTJv/9pPXOHI2h+W4jBX9yJxfuay7MRn0xR1PMlmxKBoWj702SsGwSE1NrsN6gBPZMrs642xtizJcMIiHVCbKNV4ZKlKzHU6OVdCDAfb2JulKhtnVGWv0f3r99TXdo0WDi7viJMP+OnLHczk1VmGsZNIZ10lFNEZLNU6Plxku1gig4OLRGdfZ2RFnS1uEHe0xbr3cf3M53b837e7gsdfGmKxYTRPguvr59CwSDx4eaJQ7eLkf0bTUc2L6OfXwkUEOvzGG68E1299cW173xYXAZhwv//f//t9UKhUuueQSRkZGuO+++zh69Cgvv/wyx44d44YbbuDcuXP09fU1yvz7f//vOXXqFD/+8Y/nrLfVWnGAb3/720Sj0VXpiyAIm4NKpcLHPvaxBcfKC+PKIAiC8BYin88DkMlkAJb1Buf+++9veRN5obHcaI/pyuQRXWW8HMD1PAzbZWtGnwrd1huh2/XIm+ltFQ0bTVW45bIuFBQKhsXh18e4ZU8nelBFD/pvc+th0B4eHbEwigKFqsXhE2OkIzoRXeWyniTpiMYH3ralEZo9PZJoZlum7TBaMrnjqj52dMQb+9RDo3d2xEiGgzz62ijvuqSTHR1xskWDgpEjHdEaodf1EPlbLuuibDjo6hgA1+zIENOD8wpLTrc5HlJ56OkzJDSdE26Z3lQYw3LZ3h4jpKt0J0N0xMLUbIdQUKVi2XzsHdvJTOUbrx+3mf6d3t70sPIdHbHGsZwZcTQ9omm5kWJ3XNXHWNlshLRXTUeEKjcAt912W+P/r7jiCt75zndy0UUX8eCDD3LdddcB+Lnep+F53qxtM/nsZz/LPffc0/hcf0h58ODBDflAwrIsDh06xK233oqmaettzrzsu9d/2BEKePzpAZfP/zJAzZ3/eGwUNrvNz/x/3rve5izIZjiX65EvCyFXBkEQhE2E53ncc8893Hjjjezbtw+goczb3d3dtG93dzenTp1qWc9cN5GLZaOlTJrPnsWEos9kujK5VfWwHBfLcf2JZqFGJu4LjfWno41lKvX2u5Nvhlsnw37u7p5kmHzVJKzVU2cFmSj7od9dyRBqCWzH42y+zK72BBOVGgFFYThXJRHSOJMrE9ODjUnjzCNVD3uutzVumPSlwpi2y6PHso3lNtPD7cumQ1tUp2I5VE2HXNVsCE0mpvbriPsimBMli0xcw/WgZjsMF6o4rkt7LIxpO4wUDNQAs8L5E5Eg8VCQeNifFGdLBmpA4dxklXTUf8vdEdcxTF/8cmsmxnDBoC8doTOp47izj+9M/84MOa+rsE+nIx5uCoNfzjkxna5kmN5kmImShR5QlxymLqwNsViMK664guPHj/OBD3wA8MfL3t7exj7ZbHbW2DmTUChEKDT7vNI0bcNOBGDj2wdQc5onqzVXmbVto7NZbd7o58Z0NvK5vFi75OqwQqzWDehi6vWFfprXR88sN10MqCsZXrKN9frq67inr0+euV4a/Pzec63pnovpZWaufW7V/lz1Tt93pFAjpqts74jN6ZfFrKVe7HFo5Y/p20eLNco1hx0d0UX7Zb62JMfsW49PfepTHDlyhCeeeGLWd0t5gzPXTeRi2Ggpk1bDnroyealm8eK5PG1RDT0YJqIHODtRZbwMqlrlV/b0zJuWrC5m+NpIkaF8FU1VeOrEBGFNpSsZ4uZLOnnqxAQPPOkLQhqWy9GhIuMlE0WBpwYmOJc3UIDedJi/f/psy/61Ek6sWS7//v95pqFK/ombdr1pT7bAUN6gLapzeryCZXvs6Ihy8+4ujg0XmsQXwQ/rPjlaoVi1GMwbnMiWCaoKl/QkeOlcvpHaa09vslHe8zwKFYuHnj5NMqyxpzeJMgwj+Rply8Ypu9Qch+2ZGMFAgKFClapls6M9xqU9Sf7+6bMUDAvLdkFR0FRlTv+utVikCFVuDmq1Gq+++io33XQTO3fupKenh0OHDvG2t70NANM0efTRR/nSl760zpYKgnChI1eHFWC1bkAXU+/r2RJ/94vTvHQuD3js60txw+7OJiGcPb1Jnjw+ykuDeUBh35YUH33HtkXbWLfjxXM5Xh0qEtZUYiGVHZkoQVWdlQ/29ESFB54caLR/1w07G3lk5+KRo9lGGVVR2NERozMRath/dKjAi+fyvDpUIKwF6EqEW9bbsPVsnhem1jaGgyrv2JXh9iv7Zvml/tly/JxkWjAwy9eLPQ6t8uPW2zg1Ueals3nGy/6N9JZ0hD94z+4F/TLf8ZAcs289Pv3pT/PDH/6Qxx57jP7+/sb2ulLvct7gLJXpKZPqbzMPvTJMX3p91rKupj11ZfL6A0s1oPB3vzjD9vYYHfEQuarJi2dzvHg2R6nmtGy/rub9V4+fJKgqDOaqxPQg6aivqP3s6QmeO5WjYNhsy8Q4NV7m+EiJ3mSY7R0xzkyUGRgrccNFHVzSlZy3f9PD2/MVk3///zxDqWbTHtMZL5v8zydOcPMlHXz4QD9//cRJIrrK1nSMM5MVorrKhw/00xEPNwlN1ttIR/v5i0dep2w6xEIqhuVi2S5vZEv0psIEAwoRLYiiFPjwgX5Khs33n/NTfHXGfb8cGy7wvit7KVRtMnGNdETn52+Mc3qiwi2XdREJBYjpQd53ZS//64UhJisWmajOI8dGALjlsi4mStYs/66XWKQIVW48/vAP/5D3v//9bNu2jWw2y3333UehUODOO+9EURTuvvtuvvjFL7J79252797NF7/4RaLRKB/72MfW23RBWHN2fObhJe1/8s9uXyVL3hpInu7zZLVydi6m3opp8/CRQV44k0PBf8v1/Nkcf/X4CbLFGp3xMNmSwV89foLnzuRQFAUFOHI2x8MvDi7Kxrod53JVjg0XKdVsTNvlzESFnw9McHay0pQP9vvPneWvHj/BZMWiK+HbXc8jOxdjJYMHnhyYusEKcTZX5amBcSK6SrZY44HDA5weLzfadxwYL5mz6m3Ymq/w6nCByaqF6biYjsvP3xjnm4+9Qbbkpw6r15stGaSiGi+cyXHkXJ5UWG/y9WKPQ6v8uOdyVR44PMC5fIVzk1VOjVcoGTZBNcCZiSp//cSJef2y3PNiNcsL64PneXzqU5/iu9/9Lo888gg7d+5s+n76G5w69Tc4119//Yra0ioNV31d83qwGHsqps1IwWh5ns/3HfhvNHd0xNjREUcPqriex872OF2JMFvTMcZKNcbK5qz2swWjUa/jgodHZzyE48KWtghqQKEjHmIob5CrmPSm/AiktqiG7bqkYxpRPUhnwg8RT4TfXGc9VqpxYrTMWMmY0/YjZ3LkqybxUJBgIEA8FCRXsXj+dI6SYVOs2WSiOpbr0p0K4XpeI5QboDoVHVVvY7RYY7RYw/M8UhEdPRhA1wKYjp+3u57aK1+1cFyI6EEM25nll5FCjVLNoj8VIxHSCAdVtICCgsLWdAzH9Rgp1BjKV8lEdRQFtECgsU+r4xvV3ww5X+5xnr7PfH5tdX50LyN6TFgdzp49y0c/+lEuvfRSPvjBD6LrOk899RTbt28H4L/8l//C3XffzR/8wR9w4MABzp07x09+8pMLMsODIAgbC7lKnCcrkQd2ufUWDZuxsomuKrTFQngeZItVclWzIYSTjujkqiYRTSUTDaEoMFmuMVYyF2Vj3Y6IpmLaHu0xHdNx0dUAtutRMe2GIE46onFmskyuarElHSGqB+lNhckW/bDxucKph/M1CoZFbypMQFEIB1Vsx8W0/ToLU/WZjkt7TMf1mvPTThcS8m0NUrNdQmqAoKqQjGgUqxYTZbMhSlSvNx3RUVDQVQVQUBSafA0s6jgUDL+u6QJBEU2lULWIaAkqpkMgAJqqEtWCqIrDZMWc1y/LPS9Ws7ywPnzyk5/k29/+Nj/4wQ9IJBKNNdypVIpIJLKmb3DONw3XSrOQPfNFdiw16qNVW/U1z9O3eZ7H958bxLAdkmGNmy/p8NczF2uoARjKG3Qm/LG5NxVmOGcwlDfoTYXJVS1CaoBCxSYV8cXconqQ6tS666PDBUaKBt86PMBoodYUZQQ0opKOnMlTrNrkK77AmuX6b+q/+fgb7OpIcGKszGTZpCOhEQyoXLU1TSIcbIqeqpgOoaBCZyJEoWozWalRNh1Mx8V2PUzbIxRUKFQtelPBWenJZvrK81x+dizLayMljg4X2b8ljeX6M30Pb9H7tDrfzvc4N6KVJsoM5YxZKeGEzcFDDz007/eKonDvvfdy7733ro1BgiAIU8ib7vNk+k1YPednKnL+N6CLqTcRDtIR0zEdj/FSjYlKDQ+mJtpWQxgnHfEnqhOVGuOlGpbr0TGlCLtYO6qWgx5U/PBoFEzHJRBQiOpBhvIGwYCfS7U3FSEd0RjK+28JhvK+3T2pudeO9qT8MPKhvIFpuxi2AwHQgwFyVYtkRMNzPXQ1wHjZBM9/0z2z3jdttQkFA9SmhI8KVYtAQCET829yfb/49eaqJh4epuNhuS6eR5OvF3scfPEhEzWgNPxRtRySEd+eqK7iulCzHCpT+WHbovq8flnuebGa5YX14etf/zr5fJ53v/vd9Pb2Nv6+853vNPZZqzc49bWsmZi2IdayzmfPfJEdy4n6aNXW7Vf2cfuVfY1t8bCK53mNsOrJisXjx8e46ZLOhmhaJqbRGQ/TnQjzgav6+fhNu8jENLJFo5EGrCsVIlv0J/WfuGkX/W0RBvMVRooG7TGdiZLZFGX08JFBHj4y2IhKqtoOejCAC9QcPw94KhxkpFDj6VMTqApYjstE2cJPHOo1RU+5nkuuYnJ6vMqrQwVyFV9crTMRwnY9NDVAJqZxRX+armSYzmSI7mSo4fuZvoqHVDwUarbH27alAXhxMMflvQn296fJV6xF7dPqfDvf49yIVirWyBZqvl9LBtmSIZFAgiAIwoogd9rnyWqJqSym3qge5PYr+ygaNi+ey4Pn8bataa6/uLMhZNOdCHPz7i4Ovz7q74PC/v40t1/Rtygbp9txaU+Co8NF9GCAbbEYO9ojqAGV4UK16Ybr6u0ZHjzsiwL5eUt3zvs2tyPur89+8PAAE5UaW9ui7GiPUjUduqeEho4NF8gbNkeHC6gqdCT0WfVOt/WyHgvLyWHaLnowwLU7M/wfV/a96Zfp9VYsrtqaBjzyhjnL14s5DvV9qjUX1/PoTIbob4vwK5d1c2y4gO14TFZMxksmtuOyrT3Cv7tx15LF1M73fBPxn82J58+K5mUt3+BspLWsFdO34cMH+mcJOs4X2QF+FEs8rDJRqREPq03pv+YSWayv0Z6Zfuq2fb2AR9V0+fYvTtEXb26zKxHiwwf8cqlIED2oNmy9uCvO7q4YJ0bL7OqMsTXjr+We+fmZU5MYlkM6ojOYM+iM+xPgdERjrFQDRSGoKlQtl2Q4iOv5/hgrmXQnQoQ0FWtqyY3teuzpTWBYLvv7U1Qth6NDRc5MVlADENE1FGpoQYWa5bEtowPwK5d1cXqszI27O3nHzgypqN4Qj6z/O1YycFzoS/s5zIuGn5v8oafPkAr7IeM37u5grGTyb2/YgRpQODFaJhkO8uNXRuic8l0qqjGYM/i3N+ygKxme83xbzHFeXLSSxgmXqWglZ1ZKOEEQBEFYLnIVWQFW6wZ0MfX6Qj+XzFIvnymEc92uzLLVy6fbsRj18ou74rNyoi7EzDyqM9XL6/1ZSL18pq0z1ctb+WUh9fLFHof6PjP9UW9jpdTLz/d820gTJmHzcr4pl1aCVmHD09NJLRR6Plqs8dSJcfAABd65q70RYl2vd6Zy9nQBxlmCjLaL7bqN0OgD2zPYrue/7S0aPPbaWEtbp7f38mChqc6XBwukIho/fnm48eAuqquYtp9ia0d7jFzVoiMeYqJc47lTeSo1m1zFXwZkuh6aqmBYLmE9SMVysGyPibK/Rrs7GeKXpyaxHZfj2RJFw2KsWAMFKjUH14NUJMh4ySQeVnni+BjFqr+0aWC80hDlnEtMsh6eXTFtLNvlkWMjaIEAlutP9l8dKvJ3vzhNwbCmUqKFcVx/mc9EyaIvFW5cs+Y63xY6zgsth6iXbxX+350ISySQIAiCcN7IlWSFWK0b0MXU6wv9zE4fM/Nt7I6O5ds3vb6tM7a3YmZO1MXQKo/qQu0vaGsmNud3c31eqM7FtDvX9vNJE7ZUe1azvCCsN4tRLZ8vsmOsZHByrIzteoSDKobtcHK8wnip1qh3pnL2SL7GUwMD/tvndIwzuTJPPTnOrs443YlwY9/9/WleOJvj2dMTXH9RBzfu7uSx10Zb2go09WN6nVvbopwYK/H3vzxDLKTSnYgwmKtSrNlsz0SZrJpUTZu2qMYtl3Xz/WfPEtIC9KYinMtXUQMKiXCQXYk4E2UTTVWIaCrtUZVYWGOkWCVbqNGT9t8Cl2sOES2I59WomH5OcoB4WCMZCVKo2uSrFu3xEMFAgCNncyQjQX772m2zxCTraubT+0kjfZ0fuVG1HP6/T52iYPjaIEN5A9PxdTGWEomzUATPkqKVLNuPVpoK/5dIIEEQBGElkCuJIAiCsOmYGVKcifuhyNmC0fQQcq7IjuF8Dcfz2NubQg8GMG2XiYqvCl6v13JctEAA8FBQiOkq46UaV2xJNYQqC0aOdERrqGyDR0cixC2XdTGYM7jjqj4ierBliHO2YFCqOUyUTXpTkVl1RnQVz4V81aIr4SuNh4IqasDh8r4kmajGWNnk4N5uMrEQWjDAjRd1YjoOtuMxVjb4f127g762CKbtcGK0zL8cHaE9GsZ0HPIVi1+cmmBvX5IzE1VSU+HUPckItutwZX+azmSIXNXmXbvb+e5zg0QKAboSkSZRzroY5kwxybqaeT3MW1MVbtrdgWl76EE/pHy0ZNDfFmsS3rxuVzvpKc2LxT6onC+Cp9V305cPzEw9NjNaSRAEQRDOF7maCIIgCJuO6SHFagB+eXISNQDff26Q9+3va1KcbhXZURdwHC3Vpt6s1sjENHZ1xnh5sOCHIU+l1AJ/nfKzp3LkqzY/f2Oca3dC1banRBQtuoNqk8r29NBoaKXk7SucF2sWx0dK5KoWl/UkyVXNRp3DBYOfHhuhWLN59nTOfzhgeQQC8OypCQzLIxPT+fFLI/zq5V1Ytsszp0abwrcv7U00+t4eD/HYa6M88cYolu0xUqziufDyYIGQGmCyYhEKBhgqVKhaLoWaQzqisacnzvNn8mQLNYbyBpbjEdFUHM8X5az7MlsyGmKSnXF9lpq55Xg89toYuqpQMGyCqkLJcHj5XJ6Lu+IUDJuwpvDUiXFs11uUovx05ovgmf7dXGrmEgEkCCvDUvM/C8JbgQ2tXn7vvff6uaWn/fX09Ky3WRuGxeQdXc22ltL+zH0rps3JsRInx8qcmSjz0rk8rw0XeOlcfsm5qxfTxlw2Ti/TqvzM7xaTv3WsZCyrH3P583z8LAgXKvWQ4HhY5bnTORQFrt6WoWw6i1Kcrgs41lXD66KPW6fWIWdiGnnDZH9/ist7k7x4No8aULjx4g7UgMKzpydoi+jcdcNOupOhxr6tVLZnKXlPUzjvS0XpToYZLRoM5at0J3y74iGVJ4+P4nmQDqk4Hhimi6J4KIpCtmhi2g4RPUDOMPmXo1ksty64V/9Xmd1xRcFx/TXdrgfdyRBqwBdfi4dUqpZNQPHzejuOx0TZ5MRYhZJpc2BHG21RnYlyDdt1G6KcHfGwv0Y9EaYrEfbV2WeomftmeSgKOB5MVk1sx+P6izrQ1AAnxkrEQyrbMjFqtrdoRfmlshzVekEQBEE4Xzb8I929e/fyz//8z43PqqquozUbh6Xml13ptoBFtz+z/J7eJE++PsZL5/JMlmuUag4BRaFUs2iL6Wxti3LXDTu5ZU/Xsm2c3gZ47OtL8dFrtzfZuFixpPp3JcNuKRA0nUeOZnngyYGGHYvtx1zHcynHeS3PCUHYCFzcFeeO/VsYK9boS0VJRTWqprPo3PMzBRzrocwzw5GzBYO/evIkfekwqbDO9o5oI3R8R0d8XkHGehhzXzrcUC9XFYUfvHCOSDDIRLlGdyKMGoD37uvh8r4kUT1IMqzy02OjxPQAZ3MGcRdsxyWhBwkEwPZge3sMUIhpvkK5bbu8Y0eGsBbAA0ZLZlO4fdHwc3Zfd1E7z5ycJBZSsR2PK/pTFKoWv7a3m+89P8jZUJV0VPND1IsGpZqNHlBIR3UO7u1mMG/wf169hcv7Ug0fzxWeXTFtXjqXR1UUP/x9dweTZRPH9dBVhYu742xrj3B6osIHrurjidfHG+rlrZTGZzJWMpYk2jmf0rm85RYEQRBWiw1/hQkGg0t6u12r1ajVao3PhUJhNcxaVxYjILSabT384iCeC2XTWbD9meXPTFZ48o0TVE0HPBgp1DAdF8/z8FBQKzajao0HDw9wZX9yUTdR87WhqwFQFI6cy5M8Msgnbt41K3/vLLGkgjFLHMnxPOJ6sKVAUL3PYyWDB54cYLJiNUSBFtOPuY5nOtq/6OO8lueEIGwkupIhelMRJiomejDQUp16PuYSfZweatyVDNM7paatB9RZoeNzCTLO9WAvoqm8kS3yylARy/ao2g69U/1IR3Uu7oqzoyMGnsfLg0Us28GaSslVNG1s1yOoBnhlKE8yrGE5LtsyUUaLNV4eKhAJBihbDjFdbQq3n67SHdVVRosmnQmdsmnTl46wpzfJ1pM5To9XyFctqjWHbMnEdT3+15FhuhMhgmqAq7ammybcrXwGzQ8hY3qQaEhlsmyhKjCUr5KJ6Xh4FA2Hizrj7OlNcuRsYV6l8eks5yHnQkrngiAIgrAabOjwcoDjx4/T19fHzp07+a3f+i1OnDgx7/73338/qVSq8bd160Ja15uPVk/qp4vVrHZbYyWT8XJtUe3PLJ+OaOQqFgoQ1VVQQAsouEAspOLgkYwGyVcthvO1WfUtxsbpbbTHQ2SiIbRAgLFSrWHj9DJ1ASQtoKCgTAkZWU3iSApQs116U2Fsl1kCQUBDTKg3FW6IAi2mH3Mdz3p9y/Hzap4TgrCRmBm6vRq555fTxvQHYamwzpFzeY6czZGK+mufXxkqYtquL3rmelQth2zJaA51VvwAcU31xyA8CCgKwYCC4nmNHVzP4+xkhc5EiLaIzqmJCpMVkyv6U03h9vV+dCdDdCVDfhj4NJXujniY9+3vY39/CttxmSibZKIaXckQrueHmruex5vh63Mz/SFkVyJMrmryymABy3FRAwHaojqhoMp40Wz4sx6mvhg/z6x/smLx4OGBBZf1rMX5IgiCIAgz2dBXmWuvvZa/+Zu/4ZJLLmFkZIT77ruP66+/npdffpn29vaWZT772c9yzz33ND4XCoULbuK9lk/qW7XVEdfxXBbV/szyuapFeioEtDL1tttyPQJAueYQ14MUKjZdqRA9qdCybJzexnjJzzfruB4d8TcFfaaXmS6W5OE1CRnVxZE88AWG5hAIgjeFmYbyRuNNdyamLdiPuY5nvb7l+Fne3ghvJdYi9/xS25j+IGymCnpEC2I5Ljvao4yVTFRVwTBdIlqw8bBstFhDUwNcsyNDzXY4M1HFsHxl8UQ4yKmJKtszETwULutN8PyZHDvaY+zqUCjX/BDvjngYLRBoCp9eSKX74q449xy8lFcGC/zDs2fJRHVePJenMx6mbNpcs60NF2/BcOyZDyHbYyFGizWu6k/Tm47geTBWNvjA27awqzPWMkx9Pj+3esiZLfqh5gtFSK3F+SIIgiAI09nQb7pvu+02PvShD3HFFVfwq7/6qzz8sK+G+OCDD85ZJhQKkUwmm/4uNNbySX2rtm6/oo/37e9bVPszy3cnQ3z8xl1cva0NLRigOxkiE9PpiIeJ6gGS0SBdqRB3Xr9z0ali5mvDAzzPY39/ituv7JuVv3e6WFJdAKkuZDRdHOnqrW30piJzCwQxtzDTQv2Y63gu5a2PvL0R3upE9SDdyfCqnvNLaaP+IOxMrkyxZmHYDpbr4eFRtfwJa7HmoAYUchULLagwUTKIaCqJcLDx0G2s6K8Bt2yXUDBIW0wnX/XXZueqFjHdfzBYf1DoeWC5bqOt4YJBKtL8AK7ej6rpcHSo4D+cnNHPy/uSbG2LkjcsHMdjpGAQ01UqltOobz7xR8t20VSFc5NVKqbNeLlGVA9iex6aGmCiYtIRDzVNuOv1AQv6efpDzoppM5T3+9mTCs0rKLmUNgRBEARhpdhUV5tYLMYVV1zB8ePH19uUdWctn9TP1dZi229V/rpdGbIFA1BQA5Cv2uiqgul4S8rNutg2upKhWTbOLAPMKj/zu4Xyt84lzLQc++fbvpQ6BEFYe6J6kD29SZ56cpyC4WtBbGuPkq9Y9KejfOKmFD95ZZiRgkFICxAMBDiXq9EWCzOYM7i4K86v7e3hfz5+gtGSgRYMsLcvhaoonJ2sogYUDMvP292fjvIre3o4/Pooh0/4iucBReHkaIUdHdGWD+D+9qlT/I/HTzTCzj9x0y5++7rts+0/Mc54xcSwHUJapPHAcTBnzCn++Hf/eoqXBvPkKxZl08HxXLqTYT72jh4KhtXyweBShSDrDzkfPDzQ9JAzV7H5+6fPtqxHxCYFQRCE9WJT3ZXXajVeffVVbrrppvU2ZUOwljlFW7W1lPZbCQ3VFXUBVmIBwEJtLLbMYr6bj7mEmRZiLn+ej58FQVgfKqbN0aECuzrjvs5E1aItqnHHVX10Tb1h/bV93Zwcq3DolWGKNYetmQgTJashpJivWtywu4NIUKVqO6SjGobpkonrdMZDjJZqpCIaHz7QT1QP8uLZHBd1JdiaiTCS98XSPnygf9Z4dGaizP94/ASlmk17TGe8bPI/nzjBzZd0sDUTm2X/1dvaGC0bpCN6o60HnjzZUvzxH18Y5Mg5P71aJhYiojvs60vy++++iK2ZWEPNffqDweUKQc58yDmXXX3pHQAiNikIgiCsGxv6SvOHf/iHvP/972fbtm1ks1nuu+8+CoUCd95553qbJgiCIGxyWk0Al1tu5rb6mu6tbVEiukoi7C/9iEztP1IwSISDbM1EURSFrZkICgqZuEa+YnFyrMJQvsqWqVRoecPkjWwJLRDg4q4EEV0lpAcYzBmUDBvHxVcJ14JMlkzaIjpV298+0/ZnTk1Srlm0x0JEtCDtMZismJwYLTcm3TPtDwVVBvMVSobTaGtm2q3hfI3xcg0tECARCWI7vuhaQA3guF6jz93J5ocA55PGa/pDzpGCQcHwM1JYjksmqpOvmg1ByVZtZAs1InrraKeVOFcEQRAEATb4pPvs2bN89KMfZWxsjM7OTq677jqeeuoptm/fvnBhQRAEQZiD5YYatyoHzNrWlw63FDccLRr8wzNjjX1vvqQDy/H4l1eyjSU2O9qj/OxYltdGShwdLrKrM8Yb2TLgCzparkdHXOeXJydRA/D95wa5tCfOU2+Mc2qi4ou16QFu3t3RtJa7bvu5XAXL8Rgp1uhOwHjZJBEOsqsz1th3ujhjMKDwy1MTBBSFHzx/jlsu655T/LE9FuI5I8eZyQq246EGFHpSEb7/3CCG7bT09UoJQSbCQSzb5ZFjI2iBAJbrsr8/1ahnZhue5/KD589RtRwsxwPPQwsGJCxdEARBWHE2tJDaQw89xODgIKZpcu7cOf7hH/6Byy+/fL3N2lTMJyizlH0W08ZYyWjUs1CdS/1+rGTw0rk8ZybKs8qdTx+X2/eltFn3y3T/CIKwfkwPZ+6M++mmmlJ1LaHcw0cGefjI4Ky6gFnihjfu7uSx18aa9v2Xo1ks20FRABRcz+PkeJmSafO2bWkcz+Pw6+O4nsfbd2ToS0cYzlX55ckJFAWu3pYhV7V48OenyDYE0TwqpsMbo5VGn6bbvqsjwd4tKRQ8Jso1EuEgv3vjrsZbbnhTnDEeUnn29AQAb9uWplRzeOL4KDdf0tFS/PFXL+8irAV8xfagQjIa5OxkhVx1bl+vqBCk70jeTGumtGwjHlLxUCjVHFJRjRfO5DhyLk8qrDfZuNxzRRAEQRCms6HfdAvnx2Kezp/vE/x6+VPjfihkbzpMPKTN+cZgMW3O/D4V0fjxy8NkiwaG5XJZb5IrtqTmfMO02D6u5Juuudo8NVFmKGcQCwUp12x602G2Z2LypkQQ1pC5Qr+XGs6cLdQYylfpS0Ub5U6Ol0BR2JGJzaprprhhq3ZPTpSxHJd37MgQ0lQM0+HwiTFiWpBEROPAtjaefH2Ma7ZlSEU0kmENNeCnWry4I0EqqjEwWmYwVwXPY0tbBMVTqFg2puM0UmjNbPuWS7vZ0R7l7TsyXN6bJBXVG6JqdX/1pcPccVUfY2WTjrhOSFXxPMhXTToTYd53ZS8nRsvs6ow1JuydiTCX9yXZ15ciEdFwPY8nXx8jHdHm9fVKCEEWDV/V/ZbLulBQ8PDIV6yW6dKqps1DT5+hMx7Gcl10VQEUFIUmG6F1WPpiQt8FQRAEoY5cMS5QFiNMs1zxmpltZEsG2aLBZMVCUaBQLRFUFW65tJuJitlU50Jtzvz+xFiJv//lGSJaANuBUs3m2HCR9rjOwy8O4rlQNp0l9zEd7V9W35fi12yxRrbgr3E8O1kloqkEA36OXhHwEYS1odVDsrlCv+cLZ349W+LhI4ONkO8D2zPYrkdHPAQwZ10zxQ1ntqsCJyaqvDJUpD2mk45oBAMKPz8xTjgYwLBdUOCZ0xOEg356sMt7E/TGQkxUTE5NlHn0tSzFqo3puFgOpCJBapbLtoxOT8q3r1UId39blIu6Evzzq9mGf/b0Jjk6VGgKf9cDCk8cH2sK2X7m1CQP/eJ0Y7+7btjJLXu6GC0anBzz32y3x3RSUa2Rziwx1f5cvj5fIch6HydK1pzHtd5GxbQb/sjENUzHQ1E8PI9Z5VYi9F0QBEF4a7Ohw8uF5dPqjUq+ajWe3C92n8W0kY7oOK5HbyqMYbmoCmiBQOONwfQ6F2pz5vcRTfVvjiIaigLtMR3TcYkEVcZKJuPl2rL6OJyvLavvS/FrOqLhuNAeC2E6Lu1xHduFdERbkp8FQVgec4UGw+zQ7/nCmev1lGoOb9uWBuDZ0xPEQyq3X9nH7Vf2LaquWSHOYRU1oNCbjtAR91XER0s1trRFUQNTb15RptXgh0xrqsqvXNZFKKjw5PFRXM9/UxzVVaqWTdV02NYe4d/duKshMtYqhPum3R08/tpowz/ZYo0HDg+QLRlvhr+/msVyvab2q5bD3z51ismKRVfC3+/BwwOcmSjz2GtjdCXDjf5Mlk0++o5tdCdD5x86vgBLCVOfvm++YnHV1jT7+1PkDbOp3IqGvguCIAhvWeSqcYGyGGGa8xWvqZfPlgzUgMJQ3i9fsF0s1235xmChNmd+X7UconqQQtXC82C8YpIMa1Rth85ECM+d+w3TfO31pELL6vtS/Jot1lADkC3W0NUA4yWT7mSIXNWiOxmSNyWCsMrMfEiWieoM5ipkC7U5w5nrodVqAByXlmHhqajGYM7g4N5uEuEgiXCQO69fXGh0c4izw0NPn+ayniSqCrmKxUjeIBgMsKc7iaJA0bB48o0x3rkrQyKiN0KmOxNh3n1pJz89NkpHXCeiBafsqvKbB7byrks6m0LGZ7bdql/piEah6j9INSybUs1irGQQD2uNkG3Tdjg2XGSiXGNrJkZUD9IW1RjKGzx/OkfBsLisJ4njuWSLNSzb5ertbbx9Z1sjtddiUyouRzF8KWHqM/etnzMzy61E6LsgCMJmZ8dnHl7S/if/7PZVsmRzIleOC5T60/lDrwzP+XR+Mfssto1qzcX1PHpSYXZ3aYA3643BYtqc+X1/W4RP3LSLn7wy3Eg3c2lPgi3pCLde7q/pXk4fO+LhZfV9qX6tWjau5zXCGTuTIbqTIXlTIghrwHwK3Ldf2Tf1dni2unddi6E3FWF7e5SbLulsetg2UbIIqQF+/NLInIrc89EqxLknGaZcc+hJ+RPSiYrpbzMdkhGNsuWQiQWaHvTt6IgR1gIcHSoS1gKUag5hLcBLg3kePz7WsH+6bfOFu+eqFsmIxr+eGOfocBHDcgipCtdszxAOqqgB+OXJSVzPo2w6nBwrEw2pvD7ir2v/m6dOsS0TZbxkMlaqMV42SUc1nj01wcBYZUn6GeejN7KUMPWZ+85V7nxD3wVBEIS3NnIFuYBZzNP5832CP7389DdDMHe+04XabPX9r+3rZjhfIxUJogfVpnLL7eNy+75Uv9b9Mt0/cvMmCKtP/QHYw0cGOfzGGPCmAvdCWgyTFYugqhAJBRpq3Y8fH2uEhRcq1rx6Ekuxb+ZDPHjzYWJ3MsTNl3RybLjQ8kHfjkyU4YKB6XiYjks6EmSyYjXZP5dtM9vvToa4vDfO/T86imG7xEJBbNfj6EiRHR0xjpwtoChw7Y523hgrcXSwwGC+Cgpc3BnDsFxOjJYJaQEqpkNHXCcV0fm7X5xhV2ecrW3RRfnqfPVGBEEQBGGjIVevC5zFPJ0/3yf4c5Wfr86F2pz5fUc8PGdI4vn0cbl9Xwu/CkKdxx57jD//8z/nmWeeYWhoiO9973t84AMfaHzveR5f+MIX+OY3v8nk5CTXXnstf/mXf8nevXvXz+jzYDlhxXNxcVe8ocDdlw6TCuvkDZPBnEG2YLCjw397Wg+1jukqFdMhE9Up1xxiWpB81Q/nroeQ18PCO+Pnr2h9cVecUHC2CvjMB3vX7co0hUGPFAyqpkNnMsxvXr2NyUqNl84VAI+a5dKZ0CmbDjFNbWhIzLStYvr1ffhAf+OB4NMDEwRVhb5YmKjuL+WZrJjsbI9iOi59qSipqEZHPISmKBwdLtCbjhALaViOy0ihyvb2KFvSYcJakKJh8dpIkX396qJ9VT8WmbiG5bpk4lqTCrkgCIIgbDbk6iUIgrDBKZfL7N+/n3/7b/8tH/rQh2Z9/+Uvf5mvfOUrPPDAA1xyySXcd9993HrrrRw7doxEIrEOFi+f801j2IquZJjeqbDwfMXilycnUQPw/ecGed9+P8w8EQ5i2S6/OJNjKG9QNCwSoSCW43L1trbG5LdVWPj5KFo/cjTLA08OzFIBbxX2HNWDTf6JaCqW7eK4Nt3JCC8PFXBcUFyXl8+VCQUD/Nx+0/6F/NydDLOrM0YspJE3bBwPRgo1dFXhxHgZXQ0wUTHRg36Y+87OGIN5g+MjJSK6StV02NIWIRZS+deBSWzXJVuo4bgeP399nGt3eTguC/oqEQ5iOR7/8koWXVUwHY+rtqZFB0MQBEHYtIh6uSAIwgbntttu47777uODH/zgrO88z+OrX/0qn/vc5/jgBz/Ivn37ePDBB6lUKnz729+es85arUahUGj6W2/mUhuvmOen9F8Po46HVZ47nUNR4OptGcqm01y/MqUU7k2pdTeEw72W9Z2vovVYyeCBJwdmqYCPlYyW+8/0T6nmoCgK8ZBK3jDZ35/iii0parZHMKiQiYemVNC9eeuZ7uetmRifuGkXMV1ltFhDUxVuuLgDNaA22qr3+df29bKrM4amBjBtF00NsDUTRVX8HNkTZRPH9ehOhAgoCs+dzhEPq4vzledNHQ5l6l9v/v0FQRAEYQMjj42FZbOSIaDnU/dy7Fiu7avZ5/Nho9olrD4DAwMMDw9z8ODBxrZQKMS73vUuDh8+zO/93u+1LHf//ffzhS98Ya3MXBStUvItN2x7Jhd3xblj/xbGirVGiHTVdBr1A2iqwjt3Zfjl6RyhYICa5XLNtjZcvFk2rISidT11YW8qTFQP0psKky0aDOdrLZfTzOWfO67qI6L7KurZQg3XO0FHLExIC+B5kDfMJvsX8vNvX7edy/sS/M/HB9jVGaM3FW34anpbRcOmMxHiN9/ej2l76EGF0ZKJ53lct6udX56cIBbSsB2PK7YkKRgWd+zfwo6O2Lx+KRo2WjDALZd2oyi07IMgCIIgbCbk6iUsi9UIAV1O3cuxY7m2r2afz4eNapewNgwP+3mnu7u7m7Z3d3dz6tSpOct99rOf5Z577ml8LhQKbN26dXWMXCTnm8ZwIbqSIXpTkaYQ6en111MgRjWVsZJJZ1ynYjm0RTWqpt2UfgsWr9sw86FY/XMq4vd3KG/Qmwo30i72pEItH6TV/XMmVyYd0clVTboTYbqS4Ua94NEeC1EybeLh5aeLvLQnyd6+lJ/6UDEYLRukIzrxcLDpgUAyrDUJnnXEdTwXcoZJVA8yWqzRGffXl/elI3QlQwv6q25fXcH9fM8DeSgpCIIgrDcSXi4smdUKAV1q3cuxY7m2r2afz4eNapew9iiK0vTZ87xZ26YTCoVIJpNNf+vNSoVtL6f++nfdiTBdiTCZmEZnMkQwAAXD5qGnz/DAkyd5PVtaUpuvZ0s88ORJvvXkAA88eXJqDbf/+X+9MMSvTdmTLfr23Hn9TnIVu6lMvc2oHmRPb5IT2TI/O5blRLbMpT3JxlrvB548yUNPn6FYs/E8d8G0hvP5udHWWIl/enmYJ4+Pc2K0xN8/fbbJnpn13H5FH+/b3zfLj0tJlbiS58FM/y/1+Ambi/vvv5+3v/3tJBIJurq6+MAHPsCxY8ea9rnrrrtQFKXp77rrrlsniwVBeKsgj3yFJbOaIaBLqXs5dizX9tXs8/mwUe0S1o6eHj/F1PDwML29vY3t2Wx21tvvzcBKhG0vt/6Zqf5KhsMPnj9HqebQGV966qqZqa/O5Mo89eR4U/osRYH7PrCPfNWmJxUiqgd54MmTLdNlARwdKrCrM046opGrWhwbLnBlf3JWiq14OMgd+7fQlQwtK11kxbQ5OlRgWyaKY3vkqhY1yyVbrDX5YK56WqWSXMqxXInzQFKPvfV49NFH+eQnP8nb3/52bNvmc5/7HAcPHuSVV14hFntzWcN73/tevvWtbzU+67q+HuYKgvAWQq46wpJZzRDQpdS9HDuWa/tqh70ul41ql7B27Ny5k56eHg4dOsTb3vY2AEzT5NFHH+VLX/rSOlu3PFY73d70+meGHk//znENqpaz7IdaMx+KpSM6BSNHOqI11acHVfZt8ScEIwVjzgdpVdNhKF9trEkPBVUGcxVOjlVmlRnMVyjVbLqYO5y73texksGJ0TI9qVAjdLxue0c8xOnxClvaIhiWSzqizUpB1up4rcQxPN865KHkW49/+qd/avr8rW99i66uLp555hluvvnmxvZQKNR4YLkYarUatVqt8bkuPGlZFpZlnafVK0/dpvWyLaQuXfgwFPCa/t0MiM3zsxLn33qfy4thsbbJVUdYMvXQv0OvDK94COhS6l6OHcu1fTX7fD5sVLuElaVUKvH66683Pg8MDPD888+TyWTYtm0bd999N1/84hfZvXs3u3fv5otf/CLRaJSPfexj62j1xmchPYTzfag1s3yuapIM+2+oE1PbF7veerRo8C+vZnltpMTR4SIXdcZ5Y7REQFH42bEslu02yhwdLjBSNPj+c+fIxPR5dR7mSllWtyNbMlADCkN5g864Tq5q0Z0MbYoHe/JQUsjn8wBkMpmm7T/72c/o6uoinU7zrne9i//6X/8rXV1dc9Yzl/DkT37yE6LR6MoavYIcOnRoXdr98juWX/ZPD7grZ8gaITa35kc/+tGK1bVe5/JiqFQqi9pP8Txv8zyeWQaFQoFUKkU+n98QaxYvJES9fOPcuG1UuzYam3U8+NnPfsZ73vOeWdvvvPNOHnjgATzP4wtf+ALf+MY3mJyc5Nprr+Uv//Iv2bdv36Lb2Ky+WS4V054Vxu2vqW4OPX49W+LQK8PkqxapiP9QaylChTPLX9qT5NhwYd76Zpa5cXcnj782ymTFQg3ALwYmGC0YdCbDvGNnBsf11/AnwkEKhsXxbImuRJjLepJz9gv8lGX3fOcFJitWk5Dbf/vN/XTEww07To5VGC5U6UmF2dEeW7IP1pPzPX5vZTb7mOB5HnfccQeTk5M8/vjjje3f+c53iMfjbN++nYGBAT7/+c9j2zbPPPMMoVDryJBWb7q3bt3K2NjYhvSNZVkcOnSIW2+9FU3T1rz9fff+eMllQgGPPz3g8vlfBqi5c+uRbCTE5vl56d5fO+861vtcXgyFQoGOjo4Fx0q5OxeWzWqGgC6l7uXYsVzbVzvsdblsVLuEleHd73438z0fVRSFe++9l3vvvXftjNrkLDb0+HzXFrcqf92uzLxrqRPhIB8+0I/jghrwU4tNlE3aYyEUBa7cmuLw6zYHtqfZlok1pfMq1Ry+/9w52hM6luuSiWvkK1bLkOp6yrLOuJ9HuzMeYqJSa6Qsm257vmI2VNaDAYWTY6WGavpGZaYv5aHkW4tPfepTHDlyhCeeeKJp+0c+8pHG/+/bt48DBw6wfft2Hn74YT74wQ+2rCsUCrWckGuatmEnArBy9u34zMNLLLH8yVzNVag5m2MCW0dsbs1K/jY28m9tsXbJ1UcQBEF4y7GU0OPzfag1s/xc9c0Md9/Tm+ToUIHxco0XzuQwLJegGmCkYOB6Hr88lUMNqNiuRyam0ZUM0wV4wL+8kkVXFUzH46qt6Zb96kmFUBWFl4fyhIMqhu2wtS1KT+rNyUVUD/LUiQkeeHKAbNGfpMf1IG0xnX1bUnz0Hds25JvjVksHupOzc58LFyaf/vSn+eEPf8hjjz1Gf3//vPv29vayfft2jh8/vkbWCYLwVkRShgmCIAhvOVY7PdlSmZn+L1syGhPdjlgYw3KZLJuMF/0Jd3fCn0A+e3qCeEhttt3z8LPFKVP/to6SiOpBdnTECKoKtuMSVBV2tEebfDA2Zcd4uYZpO+QqFiNFA8txOXI2x8MvDm64FIWSSvGti+d5fOpTn+K73/0ujzzyCDt37lywzPj4OGfOnGnK/iAIgrDSyJvuDYqs0fWp+2G5aWdm1vNW96cgbCZWW9thtdOTLYX5lM4VBZJhjaAKASVAOqphO7CvP0nRsLnjqj52dPhvm7MFA9P1uHF3ByFVxfMgb5hzpl3sTIT4zQNbMW0XPRigajoUDbvx/ZkJXxm9PRbiTK1COBjAdj2iuorreoyVWte9HFZqnBbV8rcun/zkJ/n2t7/ND37wAxKJBMPDwwCkUikikQilUol7772XD33oQ/T29nLy5En+r//r/6Kjo4Pf+I3fWGfrBUG4kJGrzwZkIUXdtwp1P5warzCUr9KbDrM9E1uyP8SfgrD5WMrv9nx+4xtFD2E+pfPuoIrlugSUAPFQkNGiSWdcp1Jz6EuF6ZoKm349W+IfXxjkteECr7pwYEcbjsuCaRdnisllizX+4ZmzFAyLYEAhGFAYL9dQFDBsF01VqJgOakChI66viBr4So7Tolr+1uXrX/864OtgTOdb3/oWd911F6qq8uKLL/I3f/M35HI5ent7ec973sN3vvMdEonEOlgsCMJbBbkCbTCmh8XVbxYOvTJMX3q28uyFTN0P2ZJBtmgwWfFv/iJacEn+EH8KwuZjKb/bC+U3PjP9X3cizM27u6aUzk3296cAhaJhoyjQmQzRnQw1wsrrfiibDldvy/DLUxM8dzrH9Re3Lynt4k27O3hsSim97s/tHTFG8gaOa9IW1YiFgmhqgCu2pLj9ir7z9vNKH0NJpfjWZaGEPJFIhB//eOnK2oIgCOeLXIE2GBIW51P3Qzqic8It05vy1zSmIxr5amsl3vnqeav7UxA2E0v53S5m37GSwXC+Rk8qREd8dcW0zidEeiGlc6BpuU3933r/xsv++m9FgWt3tDNUqHDzxZ0kwv6kvJU9M9ssGjYjBQMFj3zVJBFWMewg//nWS9CCKqlIEMcF8FZMvXw1xumNtHRAEARBEOQqtMGQsDifuh+yJQM1oDCUN+iM636oZTK0aH+IPwVh87GU3+1C+z5yNMsDTw40wpbvumEnt+zpWhW7VyJEeiGl8/r/N5bfTJQZyhl0JUOcHCs3FM5HiwYxPcj/nT9Gf1uU7e3ROe2Z3sbPjo1y6NURchWLgAIhNcCWtijtUZ337e9jaya2HNfMy2qN0xtl6YAgCIIgiHr5BmOjKequF3U/dCfCdCXCZGLarHDKpdTzVvenIGwmlvK7nW/fuvL2ZMWiK+GrWD94eICxkrHiNq+lYnZj+U2xRrZQY7JiMVqsUTEdJssmY1Pq4lXTJlexGC0ZZEvGgvaMlQz+9qlT/sQ9ADXbpVizCaqQM8xV64+M04IgCMKFjlzRNiASFucz3Q/no14u/hSEzcdSfrdz7Tuc9/NK96b8MOjeVJhs0Q/FXukw87VcyvLm8huNEy70psLkqyZRXSUUDKAoChEtwKnxKu1xHdvxSEf0BZfmDOdr5KoWiZBKKKiTLRo4Hngeiyp/Psg4LQiCIFzIyFVtgyJhcT4r5QfxpyBsPpbyu221b08qRDKsMZQ36E2FGcr7b1F7UqEVt3Utl7I0lt8Ua6gBGv3KVy1czyMRCpIrW+hBhfGSSXcqRK5q0p0Iz2tPTypEOqIxVqzhumC7HngQCwVbln8rpmJ8K/ZZuPDY8ZmH19sEQXjLIVcMQRAE4YKkIx7mrht28uDhAbJFf2J65/U7V0VMbS0Vs6e3VbVsXM8jqgcp12xM26NYtYjoKtvaI1RMh854mO5EeEF7OuJhPn7TLr7209c5l6sS14N0JHS2pKOzyq90KsbNkNpxM9goCIIgbExk0i0IgiBcsNyyp4sr+5Nrol6+liHS09sybYdv/+sZupP+5PrMZIVMTOP/vKafeDi4pKU5dX+dHCsT0zU6k/qs8iud4mszpH3bDDYKgiAIGxe5UghLQkLrVg/xrSAsncX8bjri4VVPFVanVZj7QinLlprSbHqfu5NhRgoGHh5b26KoAYWuRIhizSIyZUvRWJr42UL+Wun165shteNmsFEQBEHYuMiVQlg0Elq3eohvBWHpbIbfzUIpy5aa0qxVn/vSYZJhjaPDBcZKNcbLJumoxrOnJhgYq6y4f1Z6/fpmSO24GWwUBEHYSCxVO+Dkn92+SpZsDCRlmLAo1jIdzlsN8a0gLJ3N8LtZKGXZUlOazdVngJsu6WSkaDBeNumI62SiOn/39BmyJWPF/bPSKb42Q8qwzWCjIAiCsHGRq4WwKCS0bvUQ3wrC0lnM76Yehr2UlIMrucxjoZRlS01pNl+fuxIhLulKEA8HSUc1cmWLk+NlYpqK5bpk4hr5yvwpv5bS9/nWry/Hh0tdD7+UNlbqmEpaM0EQBGG5yBVDWBQSWrd6iG8FYeks9Luph2GfmigzlDPoTUXY3h6dN8R6pcPVF0pZttSUZgv1ORPTmaxYJEIauapFMKDw8xMThIMBTMfjqq3pOceV5fS91fr18/HhYlPELaWNlT6mkn5SEARBWA4SXi4sCgmtWz3Et4KwdOb73dTDsLPFGtlCjcmKxWjJIFsy5gyxXo1w9XrKskxMa5mybKHvl9Lnmd+1xTS2Z3xhNVBQFACvZb0r1fe1CPlfShubYQmCIAiC8NZA7uqFRSOhdauH+FYQls5cv5t6GHY6onHChd5UGMNySEd08tXWIdartcxjesqyVCSIHlSpmG/WudSUZvONFdO/q5oODz19mou7kigKeB7kDXNV+74WS2VatTGUr3JitMyuzlhTO7J0RxAEQdgoyFVHWBISWrd6iG8FYem0+t3Uw7CzxRpqAIbyBp0JnVzVpDsRbhlivZrLPDriYXIVm//1wlDLMOelpjSbb6yof1cxbZJhjYmKuWB/Vqrva7FUZmYbrw4XyBYMvvfcWdpjoSa/ytIdQRAEYaMg4eWCIAjCBUU91Lo7GaIrGSIT0+iMh+lOhOdcurGayzzWI8x5Kf1Zqb6vxVKZ6W0M5atkCwbdyTB9qegsv8rSHUEQBGGjsCmuPF/72tf48z//c4aGhti7dy9f/epXuemmm9bbLGENWEkl4eW2uR42CMJy2Qzj5Vr8pi7uipOO9jOcr6GrCqbjzQrfrpg22YIBKMTDKolwkA8f6J+ldD5WMuYN//brqQEe8XAQxwXTdshXbVKRIKfGKxwbKbKrM9YU5pwtGET0YJO6OtDkmzMTZU6MlulNhUlF9aZ96uWm/3tmosJo0WRHe5RUVJ/Vn7n6Mj00vW77WMlY0hv4imnP8iHASMFY0rGebmNUD846V+rH9uVzBUzHYXsmPmf4uCzdEQRBEDYCG/7q853vfIe7776br33ta9xwww184xvf4LbbbuOVV15h27Zt622esIqstOrsctrc05vk6FBhTW0QhOWyGcbLtfpdN9TLxysM5av0psNsz8Qa7b2eLfF3vzjNS+fyVEyHUFDhoq54Y5/upD/ZfORolgeeHGjYe9cNO7llT1dTO3/3r6d4aTBP1XTRVMWfLE9WUIByzcZ2PSzH4+dvqLxnTyfJsI7neXz/uUGG8kbDvnhIA89DCwZIhjVM2+X7z5+jULVwPY8r+tNc0p0Az6Nk2gzlDGKhIOWaTSykcnykyHC+huN5BNUAV21N885d7Y3+LNSXqB7kqRMT8+6zlONaNOwlH+vpNqoBhR2ZKJ3JcFP5elsTZZOTYxWqpsuenuSc4eOydEcQBEFYbzZ8ePlXvvIVPv7xj/O7v/u7XHbZZXz1q19l69atfP3rX2+5f61Wo1AoNP0Jm4/1CMec2Wa2ZPDAkwNkizVRvhU2BUsZL9djrFyr33VDvbxkkC0avnp5oUa2WOPQK8OMlQwePjLIC2dyuJ5LrmJyZqLKcM5o7FMx/Te9Dzw5wGTFoivh2/vg4QHGSkajnX98YZAj5/K4HkyWTU5PVHjpXI581WSyYjJRMSnVbCJagIpp88TxMQKKh+d55AyzYd9w3uDZU5McOZcnFdY5PV7mwcMDFKomgYBCzXZ58WyOp0+O89yZHEO5GuMlk2PDRbJFg5fOFTg1XsGwHVzPo2LavHg2x+nxModeGebMRHnevgAL9ncpx/XhFwf5xxcGl3Ssp7efiemcnajy1MkJIsFgo/xYyWi01ZuK0JX0c5sP5isSPi4IgiBsWDb0pNs0TZ555hkOHjzYtP3gwYMcPny4ZZn777+fVCrV+Nu6detamCqsMK1UZ+uqw2vVZjqiNxSQ18oGQVguSx0v12OsXKvf9Zvq5TqO69GbCmO7kI5o5KsWw/kaY2UTXVVIhnU0NUBEVzFst7FP0bAZztcoGBa9qTBRPUhvKtwoX29nvFxDC/hvprWgQjDg58ROhDQc1yOgQEBRSEQ0MlGdWCjINdszaMFAk32G5aIqoAUCKAooAYWa45IIBQmgEA8FsRz/jXkAhZrt0B7XMR3f5qrlABAMKKiBALoawHI9lIBCvmpxYrQ8b1+ABfu7lOM6VjIZL9eWdKynt6+rKmEtAC6YjtMoX9+nXu9lPUl2dyX4jbf1c+f1OyQSSRAEQdiQbOhJ99jYGI7j0N3d3bS9u7ub4eHhlmU++9nPks/nG39nzpxZC1OFFWa66mzVdBguGKQiq6s6O7PNXNUkGdbIVa01s0EQlstSx8v1GCvX6nddbydXNVEDCkN5g2AAclWLVETz1zPHdEzHo2CYWI5L1XQIBwONfRLhID2pEMmwxlDeoGLaDOWNRvl6O+2xEJbrUjAsLNvDdl10VaFY88OjXQ9cz6Nq2tQcl65EiMt6E7PsC2sBHA8s18XzwHM9QmqAYs3GxaNUs9FUBU1VcPEIBVXGSya66tsc0VQAbNfDcV1Mx0ULKHiuRyqisaszNm9fgAX7u5Tj2hHXaY+FlnSsp7dvOg6G5UIAdFVtlK/vM73e9rg+K12YIAiCIGwkNsUVSlGUps+e583aVicUChEKzX+DIGx86qqzh14ZXjPV2ZltdifC3Ly7i2PDBVG+FTYNix0v12OsXKvf9fR2qjUX1/PoTIboToa49fIeOuJhbr+yj6Jh8+K5PG1RnZCm0JMON/aprwO+64adPHh4gGzRt/fO63c2xMWiepD37e+jVLP8emI6ejBARFM5m6uAB6FgAMf18FDY2hbh3924i61T68an29eTCrO7SwM88obJ9o4Yd16/kx+8cI58xSKsBdi3Jc2l3QnAo1izURSvIfYY1VXCQYWhQg3H9YjqKlf0p9neEePWy3vYmonN2xfwU5cttM9SjiuwpGM9vf2JssnWTJQd7RGqtt0o3xEPr/m1QRAEQVh9dnzm4VnbQqrHl98B++79MTXnzXuZk392+1qatiJs6KtUR0cHqqrOekuTzWZnvc0RLjzWQ3W2VZvX7cqI8q2w4dks4+Va/a6ntzNdHXy6qvU9By9pUi+fuQ/ALXu6uLI/Oad6uV/PpfOql5cMh7JpsaMj1ig/l33QrF7+oWu2nJd6+fT+LNSXxe6zkL+nt7nUYz2z/bnUy0WRXBAEQdhMbOgrla7rXHPNNRw6dIjf+I3faGw/dOgQd9xxxzpaJqwV66E6O7NNUb4VNgObabxcq9/UQu1E9SA7OhZeA9wRD887+fTrmd3OQqvk57Jv+ratmRhbM7F595lp63ws1JfF7tOKVv1ZzrGe2f5cPpJxWRAEQdgsbPgr1j333MPv/M7vcODAAd75znfyzW9+k9OnT/P7v//7622aIAjChkLGS0EQBEEQhI3Hhp90f+QjH2F8fJw/+ZM/YWhoiH379vGjH/2I7du3r7dpgiAIGwoZLwVBEN56zFwLO9c6WEEQ1o8NP+kG+IM/+AP+4A/+YL3NEARB2PDIeCkIgrC5aSUoJQjC5mZDpwwTBEEQBEEQhJXma1/7Gjt37iQcDnPNNdfw+OOPr7dJgiBcwMikWxAEQRAEQXjL8J3vfIe7776bz33uczz33HPcdNNN3HbbbZw+fXq9TRME4QJlU4SXC4IgCIIgCMJK8JWvfIWPf/zj/O7v/i4AX/3qV/nxj3/M17/+de6///4Vb0/CxQVhZVnt39Rq5AG/4CfdnucBUCgU1tkSQRDWm/o4UB8XhDeRsVIQhOlcqOOlaZo888wzfOYzn2nafvDgQQ4fPtyyTK1Wo1arNT7n83kAJiYmsCxrwTaDdvk8LF46QdejUnEJWgEcd3MIqYnNa8Nms3m97B0fH1/0vsViEVh4rLzgJ911R2zdulDGVEEQ3ioUi0VSqdR6m7GhkLFSEIRWXGjj5djYGI7j0N3d3bS9u7ub4eHhlmXuv/9+vvCFL8zavnPnzlWxcSX42HobsAzE5rVhs9m8HvZ2/Lell1lorLzgJ919fX2cOXOGRCKBomzMJzqFQoGtW7dy5swZksnkepuzIJvNXhCb14qNbrPneRSLRfr6+tbblA2HjJWrg9i8+mw2e2Fz2Hyhj5czxznP8+Yc+z772c9yzz33ND67rsvExATt7e0bcrzcDOfXTMTmtWGz2bwZ7F3sWHnBT7oDgQD9/f3rbcaiSCaTG/aEasVmsxfE5rViI9t8Ib2xWUlkrFxdxObVZ7PZCxvf5gtxvOzo6EBV1VlvtbPZ7Ky333VCoRChUKhpWzqdXi0TV4yNfn61QmxeGzabzRvd3sWMlaJeLgiCIAiCILwl0HWda665hkOHDjVtP3ToENdff/06WSUIwoXOBf+mWxAEQRAEQRDq3HPPPfzO7/wOBw4c4J3vfCff/OY3OX36NL//+7+/3qYJgnCBIpPuDUAoFOKP//iPZ4UubVQ2m70gNq8Vm9FmYfOwGc8vsXn12Wz2wua0+ULiIx/5COPj4/zJn/wJQ0ND7Nu3jx/96Eds3759vU1bETbj+SU2rw2bzebNZu98KN6FlgtCEARBEARBEARBEDYIsqZbEARBEARBEARBEFYJmXQLgiAIgiAIgiAIwiohk25BEARBEARBEARBWCVk0i0IgiAIgiAIgiAIq4RMuleJxx57jPe///309fWhKArf//73G99ZlsUf/dEfccUVVxCLxejr6+Pf/Jt/w+DgYFMd7373u1EUpenvt37rt9bFZoC77rprlj3XXXdd0z61Wo1Pf/rTdHR0EIvF+PVf/3XOnj27LvbOtLX+9+d//ueNfdbax/fffz9vf/vbSSQSdHV18YEPfIBjx4417eN5Hvfeey99fX1EIhHe/e538/LLLzfts5Z+XsjmjXo+C5sDGStX/ze8GJs32ngpY6WMlUIzMlbKWNkKGSs3z1gpk+5Volwus3//fv7iL/5i1neVSoVnn32Wz3/+8zz77LN897vf5bXXXuPXf/3XZ+37iU98gqGhocbfN77xjXWxuc573/veJnt+9KMfNX1/9913873vfY+HHnqIJ554glKpxPve9z4cx1lze6fbOTQ0xF//9V+jKAof+tCHmvZbSx8/+uijfPKTn+Spp57i0KFD2LbNwYMHKZfLjX2+/OUv85WvfIW/+Iu/4Omnn6anp4dbb72VYrHY2Gct/byQzRv1fBY2BzJWrv5veDE2b7TxUsZKGSuFZmSslLGyFTJWbqKx0hNWHcD73ve+N+8+v/jFLzzAO3XqVGPbu971Lu8//af/tLrGzUErm++8807vjjvumLNMLpfzNE3zHnrooca2c+fOeYFAwPunf/qnVbLUZzE+vuOOO7xbbrmladt6+tjzPC+bzXqA9+ijj3qe53mu63o9PT3en/3ZnzX2MQzDS6VS3n//7//d87z19XMrm1ux0c5nYXMgY+Xa/IY343gpY6UgvImMlTJWzoWMlRsXedO9Qcjn8yiKQjqdbtr+t3/7t3R0dLB3717+8A//sOmp1Hrws5/9jK6uLi655BI+8YlPkM1mG98988wzWJbFwYMHG9v6+vrYt28fhw8fXg9zG4yMjPDwww/z8Y9/fNZ36+njfD4PQCaTAWBgYIDh4eEmH4ZCId71rnc1fLjefp5p81z7bIbzWdh8bJZza7OOlbAxx0sZK2WsFJbGZjm3ZKxcWWSs3LhjZXC9DRDAMAw+85nP8LGPfYxkMtnY/tu//dvs3LmTnp4eXnrpJT772c/ywgsvcOjQoXWx87bbbuPDH/4w27dvZ2BggM9//vPccsstPPPMM4RCIYaHh9F1nba2tqZy3d3dDA8Pr4vNdR588EESiQQf/OAHm7avp489z+Oee+7hxhtvZN++fQANP3V3dzft293dzalTpxr7rJefW9k8k81yPgubj81ybm3msRI23ngpY6WMlcLS2CznloyVK4uMlRt7rJRJ9zpjWRa/9Vu/heu6fO1rX2v67hOf+ETj//ft28fu3bs5cOAAzz77LFdfffVam8pHPvKRJnsOHDjA9u3befjhh2cNONPxPA9FUdbCxDn567/+a377t3+bcDjctH09ffypT32KI0eO8MQTT8z6bqa/FuPDtfDzfDbD5jqfhc3FZjq3NvNYCRtvvJSxUsZKYfFspnNLxsqVRcbKjT1WSnj5OmJZFr/5m7/JwMAAhw4danp604qrr74aTdM4fvz4Glk4P729vWzfvr1hT09PD6ZpMjk52bRfNpud9YRtLXn88cc5duwYv/u7v7vgvmvl409/+tP88Ic/5Kc//Sn9/f2N7T09PQCznixO9+F6+Xkum+ts9vNZ2Lhs9nNrs4yVsPHGSxkrN975LGxcNvu5JWPl8pGxcuOdzzORSfc6UT+Rjh8/zj//8z/T3t6+YJmXX34Zy7Lo7e1dAwsXZnx8nDNnzjTsueaaa9A0rSmsY2hoiJdeeonrr79+vczkr/7qr7jmmmvYv3//gvuuto89z+NTn/oU3/3ud3nkkUfYuXNn0/f1MJnpPjRNk0cffbThw7X280I2w4VxPgsbkwvh3NosYyVsnPFSxso32Wjns7AxuRDOLRkrl46MlW+y0c7nWaypbNtbiGKx6D333HPec8895wHeV77yFe+5557zTp065VmW5f36r/+619/f7z3//PPe0NBQ469Wq3me53mvv/6694UvfMF7+umnvYGBAe/hhx/29uzZ473tbW/zbNtec5uLxaL3n//zf/YOHz7sDQwMeD/96U+9d77znd6WLVu8QqHQqOP3f//3vf7+fu+f//mfvWeffda75ZZbvP3796+KzfPZWyefz3vRaNT7+te/Pqv8evj4P/yH/+ClUinvZz/7WdNxr1QqjX3+7M/+zEulUt53v/td78UXX/Q++tGPer29vevm54Vs3qjns7A5kLFy9X/DC9lcZyONlzJWylgpNCNjpYyVrZCxcvOMlTLpXiV++tOfesCsvzvvvNMbGBho+R3g/fSnP/U8z/NOnz7t3XzzzV4mk/F0Xfcuuugi7z/+x//ojY+Pr4vNlUrFO3jwoNfZ2elpmuZt27bNu/POO73Tp0831VGtVr1PfepTXiaT8SKRiPe+971v1j5rYW+db3zjG14kEvFyudys8uvh47mO+7e+9a3GPq7ren/8x3/s9fT0eKFQyLv55pu9F198sametfTzQjZv1PNZ2BzIWLn6v+GFbK6zkcZLGStlrBSakbFSxspWyFi5ecZKxfM8D0EQBEEQBEEQBEEQVhxZ0y0IgiAIgiAIgiAIq4RMugVBEARBEARBEARhlZBJtyAIgiAIgiAIgiCsEjLpFgRBEARBEARBEIRVQibdgiAIgiAIgiAIgrBKyKRbEARBEARBEARBEFYJmXQLgiAIgiAIgiAIwiohk25BEARBEARBEARBWCVk0i0IgiAIgiAIgiAIq4RMuoULmrvuugtFUWb9vfe9711v0wRBEDYUMl4KgiAIwuoQXG8DBGG1ee9738u3vvWtpm2hUGidrBEEQdi4yHgpCIIgCCuPTLqFC55QKERPT896myEIgrDhkfFSEARBEFYeCS8XBEEQBEEQBEEQhFVCJt3CBc8//uM/Eo/Hm/7+9E//dL3NEgRB2HDIeCkIgiAIK4+ElwsXPO95z3v4+te/3rQtk8mskzWCIAgbFxkvBUEQBGHlkUm3cMETi8W4+OKL19sMQRCEDY+Ml4IgCIKw8kh4uSAIgiAIgiAIgiCsEvKmW7jgqdVqDA8PN20LBoN0dHSsk0WCIAgbExkvBUEQBGHlkUm3cMHzT//0T/T29jZtu/TSSzl69Og6WSQIgrAxkfFSEARBEFYexfM8b72NEARBEARBEARBEIQLEVnTLQiCIAiCIAiCIAirhEy6BUEQBEEQBEEQBGGVkEm3IAiCIAiCIAiCIKwSMukWBEEQBEEQBEEQhFVCJt2CIAiCIAiCIAiCsErIpFsQBEEQBEEQBEEQVgmZdAuCIAiCIAiCIAjCKiGTbkEQBEEQBEEQBEFYJWTSLQiCIAiCIAiCIAirhEy6BUEQBEEQBEEQBGGVkEm3IAiCIAiCIAiCIKwS/3/cTPLk3uvr1QAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# sample size\n", - "N = 1000\n", - "\n", - "# define the mean mu and standard deviation sigma of the demand for each class\n", - "mu = demand.mean()\n", - "sigma = {\"F\": 4, \"B\": 16, \"E\": 20}\n", - "display(pd.DataFrame({\"mu\": mu, \"sigma\": sigma}))\n", - "\n", - "# correlation matrix\n", - "P = np.array([[1, 0.6, 0.2], [0.6, 1, 0.4], [0.2, 0.4, 1]])\n", - "\n", - "# build covariance matrix from covariances and correlations\n", - "s = np.array(list(sigma.values()))\n", - "S = np.diag(s) @ P @ np.diag(s)\n", - "\n", - "# create samples\n", - "np.random.seed(1)\n", - "samples = np.random.multivariate_normal(list(mu), S, N).round()\n", - "\n", - "# truncate to integers and non-negative values\n", - "classes = demand.columns\n", - "demand_saa = pd.DataFrame(samples, columns=classes)\n", - "demand_saa[demand_saa < 0] = 0\n", - "\n", - "df = pd.DataFrame(mu, columns=[\"mu\"])\n", - "df[\"sample means\"] = demand_saa.mean()\n", - "display(df)\n", - "\n", - "df = pd.DataFrame(pd.Series(sigma), columns=[\"sigma\"])\n", - "df[\"sample std dev\"] = demand_saa.std()\n", - "display(df)\n", - "\n", - "print(\"\\nModel Covariance\")\n", - "df = pd.DataFrame(S, index=classes, columns=classes)\n", - "display(df)\n", - "\n", - "print(\"\\nSample Covariance\")\n", - "display(pd.DataFrame(demand_saa.cov()))\n", - "\n", - "fig, ax = plt.subplots(3, 3, figsize=(10, 10))\n", - "for i, ci in enumerate(classes):\n", - " for j, cj in enumerate(classes):\n", - " if i == j:\n", - " demand_saa[ci].hist(ax=ax[i, i], bins=20)\n", - " ax[i, i].set_title(f\"Histogram {ci}\")\n", - " else:\n", - " ax[i, j].plot(demand_saa[ci], demand_saa[cj], \".\", alpha=0.4)\n", - " ax[i, j].set_xlabel(ci)\n", - " ax[i, j].set_ylabel(cj)\n", - " ax[i, j].set_title(f\"Convariance: {ci} vs {cj}\")\n", - "fig.tight_layout()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "2c9fdfc2-7f45-4a08-ab45-6d8715443743", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Seat Allocation\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBETOTAL
seat allocation11.020.0148.0179.0
economy equivalent seat allocation22.030.0148.0200.0
\n", - "
" - ], - "text/plain": [ - " F B E TOTAL\n", - "seat allocation 11.0 20.0 148.0 179.0\n", - "economy equivalent seat allocation 22.0 30.0 148.0 200.0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Mean Tickets Sold\n" - ] - }, - { - "data": { - "text/plain": [ - "F 9.863\n", - "B 17.303\n", - "E 147.184\n", - "dtype: float64" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Mean Seats not Sold\n" - ] - }, - { - "data": { - "text/plain": [ - "F 1.137\n", - "B 2.697\n", - "E 0.816\n", - "dtype: float64" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Mean Spillage (Unfulfilled Demand)\n" - ] - }, - { - "data": { - "text/plain": [ - "F 2.149\n", - "B 11.287\n", - "E 28.117\n", - "dtype: float64" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Expected Revenue (in units of economy ticket price): 211.38\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqQAAAF0CAYAAAD1kCsbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0xklEQVR4nO3dfVzV9f3/8efh6gAKJJgcSFS2YVdgc1qWttCvgl2ga6wvlc2L3dxvbqYbKWnqmscuIOmb0nDZWn7V8kasrSy3TMFlNEcu1LXUnNVGNgtiKXEheDjC5/dHP86PI14dBd8cfdxvN272eZ/35/15v+Glt2fvz+ccbJZlWQIAAAAMCTA9AQAAAFzcCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKMIpAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikALrEmjVrZLPZPF9BQUGKi4vTXXfdpQ8//ND09HqsadOmqXfv3id9vXfv3po2bZrn+OOPP5bNZtOaNWt8uk5RUZEKCgrObpIA0M2CTE8AwIVl9erVuuKKK3T06FH95S9/0aOPPqqtW7fqH//4h/r06WN6en4vLi5Ob7/9tr7+9a/7dF5RUZH27Nmj7Ozs7pkYAJwDAimALpWcnKzhw4dLkkaPHq3W1lYtXrxYr7zyin7wgx8Ynp3/s9vtuv76601Pw2dNTU0KDw83PQ0APRS37AF0q/Zw+vnnn3u179ixQxMnTlR0dLRCQ0M1dOhQvfjii57X//73v8tms2nVqlWdxnz99ddls9m0YcMGT9uHH36oSZMmqV+/frLb7bryyiv1q1/9yuu8N998UzabTS+88IIWLVqk+Ph4RUZGaty4cdq/f79X30GDBnndKm83evRojR492qutvr5eOTk5SkxMVEhIiC677DJlZ2fryJEjZ/Q98sWJbtn/5z//0Y9+9CMlJCTIbrfr0ksv1ahRo7RlyxbPnF977TUdOHDA67GKdocPH9bMmTN12WWXKSQkRF/72te0aNEiuVwur2t/+eWXmj59uqKjo9W7d2/ddttt+te//iWbzSan0+np53Q6ZbPZtGvXLt1xxx3q06ePZ0d3x44duuuuuzRo0CCFhYVp0KBBuvvuu3XgwAGva7U/AvLGG2/o//yf/6OYmBhFRkZqypQpOnLkiKqrq5WVlaVLLrlEcXFxysnJkdvt7uLvNoDzhR1SAN2qsrJSkjR48GBP29atW3XzzTdrxIgRevrppxUVFaXi4mLdeeedampq0rRp03TNNddo6NChWr16taZPn+415po1a9SvXz/deuutkqT3339fI0eO1IABA/TEE0/I4XBo8+bN+ulPf6ovvvhCixcv9jp/4cKFGjVqlJ599lnV19dr/vz5mjBhgvbt26fAwECf1tfU1KTU1FQdPHhQCxcu1JAhQ7R371794he/0O7du7Vlyxav8Hcyx44d8+m6HU2ePFm7du3So48+qsGDB+vLL7/Url27dOjQIUnSU089pR/96Ef65z//qfXr13ude/ToUY0ZM0b//Oc/tWTJEg0ZMkR//vOflZeXp3fffVevvfaaJKmtrU0TJkzQjh075HQ69a1vfUtvv/22br755pPOKzMzU3fddZd+/OMfe8L5xx9/rMsvv1x33XWXoqOjVVVVpZUrV+raa6/V+++/r759+3qN8cMf/lCZmZkqLi7W3/72Ny1cuFDHjh3T/v37lZmZqR/96EfasmWLli5dqvj4eM2ZM+esv48ADLIAoAusXr3akmRt377dcrvdVkNDg7Vp0ybL4XBYN910k+V2uz19r7jiCmvo0KFebZZlWRkZGVZcXJzV2tpqWZZl/fKXv7QkWfv37/f0OXz4sGW32625c+d62saPH2/179/fqqur8xpv1qxZVmhoqHX48GHLsixr69atliTr1ltv9er34osvWpKst99+29M2cOBAa+rUqZ3WmZqaaqWmpnqO8/LyrICAAKuiosKr3+9//3tLkrVx48ZTfdusqVOnWpJO+dVxHpWVlZYka/Xq1Z623r17W9nZ2ae8zm233WYNHDiwU/vTTz9tSbJefPFFr/alS5dakqySkhLLsizrtddesyRZK1eu9OqXl5dnSbIWL17saVu8eLElyfrFL35xyjlZlmUdO3bMamxstHr16mU9+eSTnvb2epo9e7ZX/9tvv92SZC1btsyr/Zvf/Kb1rW9967TXA9AzccseQJe6/vrrFRwcrIiICN18883q06ePXn31VQUFfXVD5qOPPtI//vEP3XPPPZK+2hls/7r11ltVVVXluX1+zz33yG63e92efuGFF+RyuTzPox49elR/+tOf9N3vflfh4eGdxjt69Ki2b9/uNceJEyd6HQ8ZMkSSOt02PhN//OMflZycrG9+85te1x4/frxsNpvefPPN044RFhamioqKE36FhYWd9vzrrrtOa9as0SOPPKLt27f7dOv6jTfeUK9evXTHHXd4tbc/rvCnP/1JklRWViZJysrK8up39913n3Ts733ve53aGhsbNX/+fH3jG99QUFCQgoKC1Lt3bx05ckT79u3r1D8jI8Pr+Morr5Qk3XbbbZ3az+bnB6BnIJAC6FLPPfecKioq9MYbb2jGjBnat2+fV2hpf5Y0JydHwcHBXl8zZ86UJH3xxReSpOjoaE2cOFHPPfecWltbJX11u/66667T1VdfLUk6dOiQjh07psLCwk7jtd/Sbx+vXUxMjNex3W6XJDU3N/u83s8//1zvvfdep2tHRETIsqxO1z6RgIAADR8+/IRfAQGn/2f6t7/9raZOnapnn31WN9xwg6KjozVlyhRVV1ef9txDhw7J4XB0eqygX79+CgoK8tz2P3TokIKCghQdHe3VLzY29qRjx8XFdWqbNGmSVqxYoR/+8IfavHmz3nnnHVVUVOjSSy894ff/+OuFhISctP3o0aOnWCmAnoxnSAF0qSuvvNLzRqYxY8aotbVVzz77rH7/+9/rjjvu8DwjuGDBAmVmZp5wjMsvv9zz3z/4wQ/0u9/9TqWlpRowYIAqKiq0cuVKz+t9+vRRYGCgJk+erHvvvfeE4yUmJvq8jtDQ0E5v6pG+Crcdn3Ps27evwsLC9L//+78nHOf4ZyK7Q9++fVVQUKCCggJ98skn2rBhgx544AHV1NRo06ZNpzw3JiZGf/3rX2VZllcoramp0bFjxzzzj4mJ0bFjx3T48GGvMHiq0Ht8yK2rq9Mf//hHLV68WA888ICn3eVy6fDhwz6tGcCFhUAKoFvl5+frpZde0i9+8QtlZmbq8ssvV1JSkv7+978rNzf3tOenp6frsssu0+rVqzVgwACFhoZ67biGh4drzJgx+tvf/qYhQ4Z4dtDO1aBBg/Tee+95tX3wwQfav3+/V8jMyMhQbm6uYmJizir4drUBAwZo1qxZ+tOf/qS//OUvnna73X7CHcixY8fqxRdf1CuvvKLvfve7nvbnnnvO87okpaamKj8/X7/97W/1k5/8xNOvuLj4jOdms9lkWZZnR7rds88+69kBB3BxIpAC6FZ9+vTRggULNG/ePBUVFen73/++fv3rX+uWW27R+PHjNW3aNF122WU6fPiw9u3bp127dul3v/ud5/zAwEBNmTJFy5YtU2RkpDIzMxUVFeV1jSeffFI33nijvv3tb+snP/mJBg0apIaGBn300Uf6wx/+oDfeeMPneU+ePFnf//73NXPmTH3ve9/TgQMHlJ+fr0svvdSrX3Z2tl566SXddNNNuu+++zRkyBC1tbXpk08+UUlJiebOnasRI0ac3TfvDNTV1WnMmDGaNGmSrrjiCkVERKiiokKbNm3y2oFOSUnRyy+/rJUrV2rYsGGexwSmTJmiX/3qV5o6dao+/vhjpaSkaNu2bcrNzdWtt96qcePGSZJuvvlmjRo1SnPnzlV9fb2GDRumt99+2xNcz+TRgsjISN100016/PHH1bdvXw0aNEhlZWVatWqVLrnkkm75/gDwDwRSAN1u9uzZWrFihR566CHdfffdGjNmjN555x09+uijys7OVm1trWJiYnTVVVd1etOM9NVt+7y8PP3nP/854YfrX3XVVdq1a5cefvhh/fznP1dNTY0uueQSJSUleZ4j9dWkSZP02Wef6emnn9bq1auVnJyslStXasmSJV79evXqpT//+c967LHH9Mwzz6iyslJhYWEaMGCAxo0bp0GDBp3V9c9UaGioRowYoeeff14ff/yx3G63BgwYoPnz52vevHmefj/72c+0d+9eLVy4UHV1dbIsS5ZlKTQ0VFu3btWiRYv0+OOP6z//+Y8uu+wy5eTkeH1cVkBAgP7whz9o7ty5euyxx9TS0qJRo0Zp3bp1uv766884UBYVFelnP/uZ5s2bp2PHjmnUqFEqLS3t9CYlABcXm2VZlulJAAD8U1FRke655x795S9/0ciRI01PB4CfIpACAM7ICy+8oE8//VQpKSkKCAjQ9u3b9fjjj2vo0KGej4UCgLPBLXsAwBmJiIhQcXGxHnnkER05ckRxcXGaNm2aHnnkEdNTA+Dn2CEFAACAUXwwPgAAAIwikAIAAMAoAikAAACM8ss3NbW1temzzz5TREREp19NBwAAAPMsy1JDQ4Pi4+NP+8sz/DKQfvbZZ0pISDA9DQAAAJzGv//9b/Xv3/+UffwykEZEREj6aoGRkZGGZ3N+uN1ulZSUKD09XcHBwaanA4OoBbSjFtAR9YB2PaUW6uvrlZCQ4Mltp+KXgbT9Nn1kZORFFUjDw8MVGRnJPzQXOWoB7agFdEQ9oF1Pq4UzebySNzUBAADAKAIpAAAAjCKQAgAAwCgCKQAAAIwikAIAAMAoAikAAACMIpACAADAKAIpAAAAjCKQAgAAwCgCKQAAAIwikAIAAMAoAikAAACMCvL1hE8//VTz58/X66+/rubmZg0ePFirVq3SsGHDJEmWZWnJkiV65plnVFtbqxEjRuhXv/qVrr76as8YLpdLOTk5euGFF9Tc3KyxY8fqqaeeUv/+/btuZQAAAD3coAde6/Ix7YGW8q+Tkp2b5Wq1eb328WO3dfn1uoJPO6S1tbUaNWqUgoOD9frrr+v999/XE088oUsuucTTJz8/X8uWLdOKFStUUVEhh8OhtLQ0NTQ0ePpkZ2dr/fr1Ki4u1rZt29TY2KiMjAy1trZ22cIAAADgH3zaIV26dKkSEhK0evVqT9ugQYM8/21ZlgoKCrRo0SJlZmZKktauXavY2FgVFRVpxowZqqur06pVq/T8889r3LhxkqR169YpISFBW7Zs0fjx47tgWQAAAPAXPu2QbtiwQcOHD9d///d/q1+/fho6dKh+85vfeF6vrKxUdXW10tPTPW12u12pqakqLy+XJO3cuVNut9urT3x8vJKTkz19AAAAcPHwaYf0X//6l1auXKk5c+Zo4cKFeuedd/TTn/5UdrtdU6ZMUXV1tSQpNjbW67zY2FgdOHBAklRdXa2QkBD16dOnU5/284/ncrnkcrk8x/X19ZIkt9stt9vtyxL8Vvs6L5b14uSoBbSjFtAR9eCf7IFW148ZYHn92dH5rA9fruVTIG1ra9Pw4cOVm5srSRo6dKj27t2rlStXasqUKZ5+Npv3A7SWZXVqO96p+uTl5WnJkiWd2ktKShQeHu7LEvxeaWmp6Smgh6AW0I5aQEfUg3/Jv677xn54eFunto0bN3bfBY/T1NR0xn19CqRxcXG66qqrvNquvPJKvfTSS5Ikh8Mh6atd0Li4OE+fmpoaz66pw+FQS0uLamtrvXZJa2pqNHLkyBNed8GCBZozZ47nuL6+XgkJCUpPT1dkZKQvS/BbbrdbpaWlSktLU3BwsOnpwCBqAe2oBXREPfinZOfmLh/THmDp4eFtenBHgFxt3pt9e5zn77067Xe0z4RPgXTUqFHav3+/V9sHH3yggQMHSpISExPlcDhUWlqqoUOHSpJaWlpUVlampUuXSpKGDRum4OBglZaWKisrS5JUVVWlPXv2KD8//4TXtdvtstvtndqDg4Mvur90F+OacWLUAtpRC+iIevAvx38sU5eO3WbrNP75rA1fruVTIL3vvvs0cuRI5ebmKisrS++8846eeeYZPfPMM5K+ulWfnZ2t3NxcJSUlKSkpSbm5uQoPD9ekSZMkSVFRUZo+fbrmzp2rmJgYRUdHKycnRykpKZ533QMAAODi4VMgvfbaa7V+/XotWLBADz30kBITE1VQUKB77rnH02fevHlqbm7WzJkzPR+MX1JSooiICE+f5cuXKygoSFlZWZ4Pxl+zZo0CAwO7bmUAAADwCz7/pqaMjAxlZGSc9HWbzSan0ymn03nSPqGhoSosLFRhYaGvlwcAAMAFht9lDwAAAKMIpAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKMIpAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKMIpAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKMIpAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKMIpAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKMIpAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKN8CqROp1M2m83ry+FweF63LEtOp1Px8fEKCwvT6NGjtXfvXq8xXC6XZs+erb59+6pXr16aOHGiDh482DWrAQAAgN/xeYf06quvVlVVledr9+7dntfy8/O1bNkyrVixQhUVFXI4HEpLS1NDQ4OnT3Z2ttavX6/i4mJt27ZNjY2NysjIUGtra9esCAAAAH4lyOcTgoK8dkXbWZalgoICLVq0SJmZmZKktWvXKjY2VkVFRZoxY4bq6uq0atUqPf/88xo3bpwkad26dUpISNCWLVs0fvz4c1wOAAAA/I3PO6Qffvih4uPjlZiYqLvuukv/+te/JEmVlZWqrq5Wenq6p6/dbldqaqrKy8slSTt37pTb7fbqEx8fr+TkZE8fAAAAXFx82iEdMWKEnnvuOQ0ePFiff/65HnnkEY0cOVJ79+5VdXW1JCk2NtbrnNjYWB04cECSVF1drZCQEPXp06dTn/bzT8TlcsnlcnmO6+vrJUlut1tut9uXJfit9nVeLOvFyVELaEctoCPqwT/ZA62uHzPA8vqzo/NZH75cy6dAesstt3j+OyUlRTfccIO+/vWva+3atbr++uslSTabzescy7I6tR3vdH3y8vK0ZMmSTu0lJSUKDw/3ZQl+r7S01PQU0ENQC2hHLaAj6sG/5F/XfWM/PLytU9vGjRu774LHaWpqOuO+Pj9D2lGvXr2UkpKiDz/8ULfffrukr3ZB4+LiPH1qamo8u6YOh0MtLS2qra312iWtqanRyJEjT3qdBQsWaM6cOZ7j+vp6JSQkKD09XZGRkeeyBL/hdrtVWlqqtLQ0BQcHm54ODKIW0I5aQEfUg39Kdm7u8jHtAZYeHt6mB3cEyNXmveG3x3n+3q/Tfkf7TJxTIHW5XNq3b5++/e1vKzExUQ6HQ6WlpRo6dKgkqaWlRWVlZVq6dKkkadiwYQoODlZpaamysrIkSVVVVdqzZ4/y8/NPeh273S673d6pPTg4+KL7S3cxrhknRi2gHbWAjqgH/+JqPfVd5HMau83WafzzWRu+XMunQJqTk6MJEyZowIABqqmp0SOPPKL6+npNnTpVNptN2dnZys3NVVJSkpKSkpSbm6vw8HBNmjRJkhQVFaXp06dr7ty5iomJUXR0tHJycpSSkuJ51z0AAAAuLj4F0oMHD+ruu+/WF198oUsvvVTXX3+9tm/froEDB0qS5s2bp+bmZs2cOVO1tbUaMWKESkpKFBER4Rlj+fLlCgoKUlZWlpqbmzV27FitWbNGgYGBXbsyAAAA+AWfAmlxcfEpX7fZbHI6nXI6nSftExoaqsLCQhUWFvpyaQAAAFyg+F32AAAAMIpACgAAAKMIpAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKMIpAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKMIpAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKMIpAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKMIpAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKMIpAAAADCKQAoAAACjCKQAAAAwikAKAAAAowikAAAAMOqcAmleXp5sNpuys7M9bZZlyel0Kj4+XmFhYRo9erT27t3rdZ7L5dLs2bPVt29f9erVSxMnTtTBgwfPZSoAAADwU2cdSCsqKvTMM89oyJAhXu35+flatmyZVqxYoYqKCjkcDqWlpamhocHTJzs7W+vXr1dxcbG2bdumxsZGZWRkqLW19exXAgAAAL90VoG0sbFR99xzj37zm9+oT58+nnbLslRQUKBFixYpMzNTycnJWrt2rZqamlRUVCRJqqur06pVq/TEE09o3LhxGjp0qNatW6fdu3dry5YtXbMqAAAA+I2zCqT33nuvbrvtNo0bN86rvbKyUtXV1UpPT/e02e12paamqry8XJK0c+dOud1urz7x8fFKTk729AEAAMDFI8jXE4qLi7Vr1y5VVFR0eq26ulqSFBsb69UeGxurAwcOePqEhIR47ay292k//3gul0sul8tzXF9fL0lyu91yu92+LsEvta/zYlkvTo5aQDtqAR1RD/7JHmh1/ZgBltefHZ3P+vDlWj4F0n//+9/62c9+ppKSEoWGhp60n81m8zq2LKtT2/FO1ScvL09Llizp1F5SUqLw8PAzmPmFo7S01PQU0ENQC2hHLaAj6sG/5F/XfWM/PLytU9vGjRu774LHaWpqOuO+PgXSnTt3qqamRsOGDfO0tba26q233tKKFSu0f/9+SV/tgsbFxXn61NTUeHZNHQ6HWlpaVFtb67VLWlNTo5EjR57wugsWLNCcOXM8x/X19UpISFB6eroiIyN9WYLfcrvdKi0tVVpamoKDg01PBwZRC2hHLaAj6sE/JTs3d/mY9gBLDw9v04M7AuRq897s2+Mc3+XXO5n2O9pnwqdAOnbsWO3evdur7Qc/+IGuuOIKzZ8/X1/72tfkcDhUWlqqoUOHSpJaWlpUVlampUuXSpKGDRum4OBglZaWKisrS5JUVVWlPXv2KD8//4TXtdvtstvtndqDg4Mvur90F+OacWLUAtpRC+iIevAvrtZT30E+p7HbbJ3GP5+14cu1fAqkERERSk5O9mrr1auXYmJiPO3Z2dnKzc1VUlKSkpKSlJubq/DwcE2aNEmSFBUVpenTp2vu3LmKiYlRdHS0cnJylJKS0ulNUgAAALjw+fymptOZN2+empubNXPmTNXW1mrEiBEqKSlRRESEp8/y5csVFBSkrKwsNTc3a+zYsVqzZo0CAwO7ejoAAADo4c45kL755ptexzabTU6nU06n86TnhIaGqrCwUIWFhed6eQAAAPg5fpc9AAAAjCKQAgAAwCgCKQAAAIwikAIAAMAoAikAAACMIpACAADAKAIpAAAAjCKQAgAAwCgCKQAAAIwikAIAAMAoAikAAACMIpACAADAKAIpAAAAjCKQAgAAwCgCKQAAAIwikAIAAMAoAikAAACMIpACAADAKAIpAAAAjCKQAgAAwCgCKQAAAIwikAIAAMAoAikAAACMIpACAADAKAIpAAAAjCKQAgAAwCgCKQAAAIwikAIAAMAoAikAAACMIpACAADAKAIpAAAAjCKQAgAAwCgCKQAAAIwikAIAAMAoAikAAACMIpACAADAKAIpAAAAjCKQAgAAwCifAunKlSs1ZMgQRUZGKjIyUjfccINef/11z+uWZcnpdCo+Pl5hYWEaPXq09u7d6zWGy+XS7Nmz1bdvX/Xq1UsTJ07UwYMHu2Y1AAAA8Ds+BdL+/fvrscce044dO7Rjxw7913/9l77zne94Qmd+fr6WLVumFStWqKKiQg6HQ2lpaWpoaPCMkZ2drfXr16u4uFjbtm1TY2OjMjIy1Nra2rUrAwAAgF/wKZBOmDBBt956qwYPHqzBgwfr0UcfVe/evbV9+3ZZlqWCggItWrRImZmZSk5O1tq1a9XU1KSioiJJUl1dnVatWqUnnnhC48aN09ChQ7Vu3Trt3r1bW7Zs6ZYFAgAAoGcLOtsTW1tb9bvf/U5HjhzRDTfcoMrKSlVXVys9Pd3Tx263KzU1VeXl5ZoxY4Z27twpt9vt1Sc+Pl7JyckqLy/X+PHjT3gtl8sll8vlOa6vr5ckud1uud3us12CX2lf58WyXpwctYB21AI6oh78kz3Q6voxAyyvPzs6n/Xhy7V8DqS7d+/WDTfcoKNHj6p3795av369rrrqKpWXl0uSYmNjvfrHxsbqwIEDkqTq6mqFhISoT58+nfpUV1ef9Jp5eXlasmRJp/aSkhKFh4f7ugS/VlpaanoK6CGoBbSjFtAR9eBf8q/rvrEfHt7WqW3jxo3dd8HjNDU1nXFfnwPp5ZdfrnfffVdffvmlXnrpJU2dOlVlZWWe1202m1d/y7I6tR3vdH0WLFigOXPmeI7r6+uVkJCg9PR0RUZG+roEv+R2u1VaWqq0tDQFBwebng4MohbQjlpAR9SDf0p2bu7yMe0Blh4e3qYHdwTI1eadr/Y4T3w3uju039E+Ez4H0pCQEH3jG9+QJA0fPlwVFRV68sknNX/+fElf7YLGxcV5+tfU1Hh2TR0Oh1paWlRbW+u1S1pTU6ORI0ee9Jp2u112u71Te3Bw8EX3l+5iXDNOjFpAO2oBHVEP/sXVeupNu3Mau83WafzzWRu+XOucP4fUsiy5XC4lJibK4XB43SpoaWlRWVmZJ2wOGzZMwcHBXn2qqqq0Z8+eUwZSAAAAXLh82iFduHChbrnlFiUkJKihoUHFxcV68803tWnTJtlsNmVnZys3N1dJSUlKSkpSbm6uwsPDNWnSJElSVFSUpk+frrlz5yomJkbR0dHKyclRSkqKxo0b1y0LBAAAQM/mUyD9/PPPNXnyZFVVVSkqKkpDhgzRpk2blJaWJkmaN2+empubNXPmTNXW1mrEiBEqKSlRRESEZ4zly5crKChIWVlZam5u1tixY7VmzRoFBgZ27coAAADgF3wKpKtWrTrl6zabTU6nU06n86R9QkNDVVhYqMLCQl8uDQAAgAsUv8seAAAARhFIAQAAYBSBFAAAAEYRSAEAAGAUgRQAAABGEUgBAABgFIEUAAAARhFIAQAAYBSBFAAAAEYRSAEAAGAUgRQAAABGEUgBAABgFIEUAAAARhFIAQAAYBSBFAAAAEYRSAEAAGAUgRQAAABGEUgBAABgFIEUAAAARhFIAQAAYBSBFAAAAEYRSAEAAGAUgRQAAABGEUgBAABgFIEUAAAARhFIAQAAYBSBFAAAAEYRSAEAAGAUgRQAAABGEUgBAABgFIEUAAAARhFIAQAAYBSBFAAAAEYRSAEAAGAUgRQAAABGEUgBAABgFIEUAAAARvkUSPPy8nTttdcqIiJC/fr10+233679+/d79bEsS06nU/Hx8QoLC9Po0aO1d+9erz4ul0uzZ89W37591atXL02cOFEHDx4899UAAADA7/gUSMvKynTvvfdq+/btKi0t1bFjx5Senq4jR454+uTn52vZsmVasWKFKioq5HA4lJaWpoaGBk+f7OxsrV+/XsXFxdq2bZsaGxuVkZGh1tbWrlsZAAAA/EKQL503bdrkdbx69Wr169dPO3fu1E033STLslRQUKBFixYpMzNTkrR27VrFxsaqqKhIM2bMUF1dnVatWqXnn39e48aNkyStW7dOCQkJ2rJli8aPH99FSwMAAIA/8CmQHq+urk6SFB0dLUmqrKxUdXW10tPTPX3sdrtSU1NVXl6uGTNmaOfOnXK73V594uPjlZycrPLy8hMGUpfLJZfL5Tmur6+XJLndbrnd7nNZgt9oX+fFsl6cHLWAdtQCOqIe/JM90Or6MQMsrz87Op/14cu1zjqQWpalOXPm6MYbb1RycrIkqbq6WpIUGxvr1Tc2NlYHDhzw9AkJCVGfPn069Wk//3h5eXlasmRJp/aSkhKFh4ef7RL8UmlpqekpoIegFtCOWkBH1IN/yb+u+8Z+eHhbp7aNGzd23wWP09TUdMZ9zzqQzpo1S++99562bdvW6TWbzeZ1bFlWp7bjnarPggULNGfOHM9xfX29EhISlJ6ersjIyLOYvf9xu90qLS1VWlqagoODTU8HBlELaEctoCPqwT8lOzd3+Zj2AEsPD2/TgzsC5GrzzlZ7nOfv0cj2O9pn4qwC6ezZs7Vhwwa99dZb6t+/v6fd4XBI+moXNC4uztNeU1Pj2TV1OBxqaWlRbW2t1y5pTU2NRo4cecLr2e122e32Tu3BwcEX3V+6i3HNODFqAe2oBXREPfgXV+upN+zOaew2W6fxz2dt+HItn95lb1mWZs2apZdffllvvPGGEhMTvV5PTEyUw+Hwul3Q0tKisrIyT9gcNmyYgoODvfpUVVVpz549Jw2kAAAAuHD5tEN67733qqioSK+++qoiIiI8z3xGRUUpLCxMNptN2dnZys3NVVJSkpKSkpSbm6vw8HBNmjTJ03f69OmaO3euYmJiFB0drZycHKWkpHjedQ8AAICLh0+BdOXKlZKk0aNHe7WvXr1a06ZNkyTNmzdPzc3NmjlzpmprazVixAiVlJQoIiLC03/58uUKCgpSVlaWmpubNXbsWK1Zs0aBgYHnthoAAAD4HZ8CqWWd/qMJbDabnE6nnE7nSfuEhoaqsLBQhYWFvlweAAAAFyB+lz0AAACMIpACAADAKAIpAAAAjCKQAgAAwCgCKQAAAIwikAIAAMAoAikAAACMIpACAADAKAIpAAAAjCKQAgAAwCgCKQAAAIwikAIAAMAoAikAAACMIpACAADAKAIpAAAAjCKQAgAAwCgCKQAAAIwikAIAAMAoAikAAACMIpACAADAKAIpAAAAjCKQAgAAwCgCKQAAAIwikAIAAMAoAikAAACMIpACAADAKAIpAAAAjCKQAgAAwCgCKQAAAIwikAIAAMAoAikAAACMIpACAADAKAIpAAAAjCKQAgAAwCgCKQAAAIwikAIAAMAoAikAAACM8jmQvvXWW5owYYLi4+Nls9n0yiuveL1uWZacTqfi4+MVFham0aNHa+/evV59XC6XZs+erb59+6pXr16aOHGiDh48eE4LAQAAgH/yOZAeOXJE11xzjVasWHHC1/Pz87Vs2TKtWLFCFRUVcjgcSktLU0NDg6dPdna21q9fr+LiYm3btk2NjY3KyMhQa2vr2a8EAAAAfinI1xNuueUW3XLLLSd8zbIsFRQUaNGiRcrMzJQkrV27VrGxsSoqKtKMGTNUV1enVatW6fnnn9e4ceMkSevWrVNCQoK2bNmi8ePHn8NyAAAA4G98DqSnUllZqerqaqWnp3va7Ha7UlNTVV5erhkzZmjnzp1yu91efeLj45WcnKzy8vITBlKXyyWXy+U5rq+vlyS53W653e6uXEKP1b7Oi2W9ODlqAe2oBXREPfgne6DV9WMGWF5/dnQ+68OXa3VpIK2urpYkxcbGerXHxsbqwIEDnj4hISHq06dPpz7t5x8vLy9PS5Ys6dReUlKi8PDwrpi63ygtLTU9BfQQ1ALaUQvoiHrwL/nXdd/YDw9v69S2cePG7rvgcZqams64b5cG0nY2m83r2LKsTm3HO1WfBQsWaM6cOZ7j+vp6JSQkKD09XZGRkec+YT/gdrtVWlqqtLQ0BQcHm54ODKIW0I5aQEfUg39Kdm7u8jHtAZYeHt6mB3cEyNXmna32OM/fo5Htd7TPRJcGUofDIemrXdC4uDhPe01NjWfX1OFwqKWlRbW1tV67pDU1NRo5cuQJx7Xb7bLb7Z3ag4ODL7q/dBfjmnFi1ALaUQvoiHrwL67WU2/YndPYbbZO45/P2vDlWl36OaSJiYlyOBxetwtaWlpUVlbmCZvDhg1TcHCwV5+qqirt2bPnpIEUAAAAFy6fd0gbGxv10UcfeY4rKyv17rvvKjo6WgMGDFB2drZyc3OVlJSkpKQk5ebmKjw8XJMmTZIkRUVFafr06Zo7d65iYmIUHR2tnJwcpaSkeN51DwAAgIuHz4F0x44dGjNmjOe4/dnOqVOnas2aNZo3b56am5s1c+ZM1dbWasSIESopKVFERITnnOXLlysoKEhZWVlqbm7W2LFjtWbNGgUGBnbBkgAAAOBPfA6ko0ePlmWd/CMKbDabnE6nnE7nSfuEhoaqsLBQhYWFvl4eAAAAFxh+lz0AAACMIpACAADAKAIpAAAAjCKQAgAAwCgCKQAAAIzqll8dCgAA0BUGPfDaeb3ex4/ddl6vh6+wQwoAAACjCKQAAAAwikAKAAAAowikAAAAMIpACgAAAKN4lz0AAMD/c77f1Y+vsEMKAAAAowikAAAAMIpACgAAAKMIpAAAADCKQAoAAACjCKQAAAAwio99AgAAZ4SPREJ3YYcUAAAARhFIAQAAYBSBFAAAAEbxDCkAAH6q4zOd9kBL+ddJyc7NcrXaDM4K8B07pAAAADCKQAoAAACjCKQAAAAwikAKAAAAo3hTEwDggnW+P8j948duO6/XAy4U7JACAADAKAIpAAAAjCKQAgAAwCieIQUAnDfn+5nO8+1CXx/QXdghBQAAgFHskALASfAObQA4PwikANBD+BqAu+J3lxOCAfQE3LIHAACAUeyQAt2ku273nmpX7ELf7eINIwBwYTIaSJ966ik9/vjjqqqq0tVXX62CggJ9+9vfNjklAD4gIPo/foYAegJjgfS3v/2tsrOz9dRTT2nUqFH69a9/rVtuuUXvv/++BgwYYGpagF8jXAAA/JGxQLps2TJNnz5dP/zhDyVJBQUF2rx5s1auXKm8vDxT08J5RHgCAACSoUDa0tKinTt36oEHHvBqT09PV3l5eaf+LpdLLpfLc1xXVydJOnz4sNxud/dOtodwu91qamrSoUOHFBwcbHo6XSLo2BHTU/BLQW2WmpraFOQOUGvb2b2zGhcGagEdUQ9od6paOHTo0HmbR0NDgyTJsqzT9jUSSL/44gu1trYqNjbWqz02NlbV1dWd+ufl5WnJkiWd2hMTE7ttjkBPNsn0BNBjUAvoiHpAu5PVQt8nzus0JH0VTKOiok7Zx+ibmmw279RuWVanNklasGCB5syZ4zlua2vT4cOHFRMTc8L+F6L6+nolJCTo3//+tyIjI01PBwZRC2hHLaAj6gHtekotWJalhoYGxcfHn7avkUDat29fBQYGdtoNramp6bRrKkl2u112u92r7ZJLLunOKfZYkZGR/EMDSdQC/j9qAR1RD2jXE2rhdDuj7Yx8MH5ISIiGDRum0tJSr/bS0lKNHDnSxJQAAABgiLFb9nPmzNHkyZM1fPhw3XDDDXrmmWf0ySef6Mc//rGpKQEAAMAAY4H0zjvv1KFDh/TQQw+pqqpKycnJ2rhxowYOHGhqSj2a3W7X4sWLOz26gIsPtYB21AI6oh7Qzh9rwWadyXvxAQAAgG5i5BlSAAAAoB2BFAAAAEYRSAEAAGAUgRQAAABGEUgNe+uttzRhwgTFx8fLZrPplVdeOWnfGTNmyGazqaCgwKvd5XJp9uzZ6tu3r3r16qWJEyfq4MGD3TtxdLkzqYV9+/Zp4sSJioqKUkREhK6//np98sknntephQvD6WqhsbFRs2bNUv/+/RUWFqYrr7xSK1eu9OpDLfi/vLw8XXvttYqIiFC/fv10++23a//+/V59LMuS0+lUfHy8wsLCNHr0aO3du9erD7Xg/05XC263W/Pnz1dKSop69eql+Ph4TZkyRZ999pnXOD25Fgikhh05ckTXXHONVqxYccp+r7zyiv7617+e8NdvZWdna/369SouLta2bdvU2NiojIwMtba2dte00Q1OVwv//Oc/deONN+qKK67Qm2++qb///e968MEHFRoa6ulDLVwYTlcL9913nzZt2qR169Zp3759uu+++zR79my9+uqrnj7Ugv8rKyvTvffeq+3bt6u0tFTHjh1Tenq6jhw54umTn5+vZcuWacWKFaqoqJDD4VBaWpoaGho8fagF/3e6WmhqatKuXbv04IMPateuXXr55Zf1wQcfaOLEiV7j9OhasNBjSLLWr1/fqf3gwYPWZZddZu3Zs8caOHCgtXz5cs9rX375pRUcHGwVFxd72j799FMrICDA2rRp03mYNbrDiWrhzjvvtL7//e+f9Bxq4cJ0olq4+uqrrYceesir7Vvf+pb185//3LIsauFCVVNTY0myysrKLMuyrLa2NsvhcFiPPfaYp8/Ro0etqKgo6+mnn7Ysi1q4UB1fCyfyzjvvWJKsAwcOWJbV82uBHdIerq2tTZMnT9b999+vq6++utPrO3fulNvtVnp6uqctPj5eycnJKi8vP59TRTdqa2vTa6+9psGDB2v8+PHq16+fRowY4XUrl1q4eNx4443asGGDPv30U1mWpa1bt+qDDz7Q+PHjJVELF6q6ujpJUnR0tCSpsrJS1dXVXj9nu92u1NRUz8+ZWrgwHV8LJ+tjs9l0ySWXSOr5tUAg7eGWLl2qoKAg/fSnPz3h69XV1QoJCVGfPn282mNjY1VdXX0+pojzoKamRo2NjXrsscd08803q6SkRN/97neVmZmpsrIySdTCxeSXv/ylrrrqKvXv318hISG6+eab9dRTT+nGG2+URC1ciCzL0pw5c3TjjTcqOTlZkjw/y9jYWK++HX/O1MKF50S1cLyjR4/qgQce0KRJkxQZGSmp59eCsV8ditPbuXOnnnzySe3atUs2m82ncy3L8vkc9FxtbW2SpO985zu67777JEnf/OY3VV5erqefflqpqaknPZdauPD88pe/1Pbt27VhwwYNHDhQb731lmbOnKm4uDiNGzfupOdRC/5r1qxZeu+997Rt27ZOrx3/Mz2TnzO14L9OVQvSV29wuuuuu9TW1qannnrqtOP1lFpgh7QH+/Of/6yamhoNGDBAQUFBCgoK0oEDBzR37lwNGjRIkuRwONTS0qLa2lqvc2tqajr9XzP8V9++fRUUFKSrrrrKq/3KK6/0vMueWrg4NDc3a+HChVq2bJkmTJigIUOGaNasWbrzzjv1P//zP5KohQvN7NmztWHDBm3dulX9+/f3tDscDknqtLvV8edMLVxYTlYL7dxut7KyslRZWanS0lLP7qjU82uBQNqDTZ48We+9957effddz1d8fLzuv/9+bd68WZI0bNgwBQcHq7S01HNeVVWV9uzZo5EjR5qaOrpYSEiIrr322k4f+fLBBx9o4MCBkqiFi4Xb7Zbb7VZAgPc/34GBgZ6ddGrhwmBZlmbNmqWXX35Zb7zxhhITE71eT0xMlMPh8Po5t7S0qKyszPNzphYuDKerBen/h9EPP/xQW7ZsUUxMjNfrPb0WuGVvWGNjoz766CPPcWVlpd59911FR0drwIABnQoqODhYDodDl19+uSQpKipK06dP19y5cxUTE6Po6Gjl5OQoJSXllLfu0POcrhbuv/9+3Xnnnbrppps0ZswYbdq0SX/4wx/05ptvSqIWLiSnq4XU1FTdf//9CgsL08CBA1VWVqbnnntOy5Ytk0QtXCjuvfdeFRUV6dVXX1VERIRnJzQqKkphYWGy2WzKzs5Wbm6ukpKSlJSUpNzcXIWHh2vSpEmevtSC/ztdLRw7dkx33HGHdu3apT/+8Y9qbW319ImOjlZISEjPrwVD7+7H/7N161ZLUqevqVOnnrD/8R/7ZFmW1dzcbM2aNcuKjo62wsLCrIyMDOuTTz7p/smjS51JLaxatcr6xje+YYWGhlrXXHON9corr3iNQS1cGE5XC1VVVda0adOs+Ph4KzQ01Lr88sutJ554wmpra/OMQS34vxPVgCRr9erVnj5tbW3W4sWLLYfDYdntduumm26ydu/e7TUOteD/TlcLlZWVJ+2zdetWzzg9uRZslmVZ3Z56AQAAgJPgGVIAAAAYRSAFAACAUQRSAAAAGEUgBQAAgFEEUgAAABhFIAUAAIBRBFIAAAAYRSAFAACAUQRSAAAAGEUgBQAAgFEEUgAAABhFIAUAAIBR/xeaE8lm/N0ctwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAEiCAYAAAAoMGGMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhU0lEQVR4nO3de3RU5b3/8c8kmUwuhAhBMkmJmtpglaBS4g+BKiAkaI2UYk0tXlCpxYLUCJQepOs4KCYlrUAbWqz+ECiUxtVqrJwfKkOLoTSHI6RYArqorRQBM6bFmAsJkyHZvz842XVIuAQmM9mb92utLJhnP3v282EP8808sy8OwzAMAQAAAAAAAGEUFekBAAAAAAAA4OLDpBQAAAAAAADCjkkpAAAAAAAAhB2TUgAAAAAAAAg7JqUAAAAAAAAQdkxKAQAAAAAAIOyYlAIAAAAAAEDYMSkFAAAAAACAsIuJ9ADOR3t7uz766CMlJSXJ4XBEejgA0CsZhqHGxkalp6crKuri+w6CWgEAZ0etoFYAwNn0ZK2w5KTURx99pIyMjEgPAwAs4dChQxo0aFCkhxF21AoAOHfUCgDA2fRErbDkpFRSUpIk6cCBA+rfv3+ERxNagUBAmzdvVl5enpxOZ6SHE1J2zibZOx/ZrOmTTz5RZmam+Z55saFWWJOds0n2zkc2a6JWUCusyM7ZJHvnI5s19WStsOSkVMehtUlJSerbt2+ERxNagUBACQkJ6tu3r+1eyHbOJtk7H9msKRAISNJFezoCtcKa7JxNsnc+slkTtYJaYUV2zibZOx/ZrKkna8XFd+I4AAAAAAAAIo5JKQAAAAAAAIQdk1IAAAAAAAAIO0teUwqA1NbWZp7b29MCgYBiYmJ0/PhxtbW1hWWb4WLlbE6nU9HR0ZEeBoBejFoRGlbORq0AcDbUitCwcrZI1gompQCLMQxDPp9Pn376aVi36Xa7dejQIdtdCNXq2S655BK53W5Ljh1Az6FWhJbVs1ErAHSFWhFaVs8WqVrBpBRgMR2FY+DAgUpISAjLm0Z7e7uamprUp08fRUXZ66xfq2YzDEPNzc2qra2VJKWlpUV4RAB6E2pFaFk1G7UCwJlQK0LLqtkiXSuYlAIspK2tzSwcKSkpYdtue3u7WltbFRcXZ6k32HNh5Wzx8fGSpNraWg0cOJDTMwBIolb0BCtno1YA6Aq1IvSsnC2StcJa/1LARa7jXO+EhIQIjwS9RcdrIVzXAQDQ+1ErcCpqBYBTUStwqkjVCialAAuy4jnK6Bm8FgCcDu8P6MBrAcDp8P6ADpF6LTApBQBAN2z4nw8jPQQAAGAjG/7nQ36/wEWLSSkAEefxeHT99defc3+Hw6FXX321x8YTLg888IAmT558xj5jx45VYWFhWMYDAL0ZteL0qBUAcBK14vR6a63gQueADfT0NyuG0a6W48cVH/epHI4oTR1x2Tmve7bDQKdNm6YVK1Zo9uzZFzrMc3bFFVeosLDwgt6UP/jgAy1cuFAVFRX65JNPNGDAAA0fPlw/+tGPNHjw4NANFgBChFrRPdQKABcjakX3UCsuHJNSAHpUTU2N+feXXnpJ//mf/6n9+/ebbfHx8erTp4/69OkTieGdl9bWVuXm5uqLX/yiXnnlFaWlpenw4cPatGmT6uvrIz08ALAcagUA4GyoFfbE6XsAepTb7TZ/kpOT5XA4OrV1dZjtiy++qCFDhsjlciktLU2PPvroabfx1FNPKTU1Ve+8844kqbKyUjfffLPi4+OVkZGh7373uzp27Jikk4etHjx4UI8//rgcDod5u9ODBw/qjjvuUL9+/ZSYmKghQ4Zo06ZNXW7v3Xff1QcffKCf//znuvHGG3X55Zdr9OjReuaZZ3TDDTeY/aqrq3XLLbcoPj5eKSkp+va3v62mpqbT5jh27Jjuv/9+9enTR2lpaXr22WfP5Z8YACyPWkGtAICzoVbYs1YwKQWg11m5cqVmzZqlb3/726qurtZrr72mL3zhC536GYahxx57TKtWrdL27dt1/fXXq7q6WhMnTtSUKVO0Z88evfTSS9q+fbtZfF555RUNGjRITz31lGpqanTkyBFJ0qOPPiq/369t27apurpaS5YsOe23LJdeeqmioqL029/+Vm1tbV32aW5u1q233qp+/fpp586d+s1vfqMtW7acsQh+73vf09atW1VeXq7NmzfrrbfeUlVVVXf/+SLuiiuukMPh6PQza9YsSSf3m8fjUXp6uuLj4zV27Fjt27cv6Dn8fr9mz56tAQMGKDExUZMmTdLhw4cjEQdAL0WtsHatAIBwoFb0/lrB6XsAep3Fixdr7ty5euyxx8y2z35TIEknTpzQ/fffr127dulPf/qTBg0aJEn60Y9+pKlTp5rndWdlZemnP/2pxowZo5UrV6p///6Kjo5WUlKS3G632tvb1dDQoEOHDunOO+/U0KFDJUmf//znTzu+z33uc/rpT3+q+fPna9GiRcrJydG4ceN0zz33mOv96le/UktLi375y18qMTFRkrRixQrdcccdWrJkiVJTU4Oes6mpSatWrdIvf/lL5ebmSpLWrl1r5rKSnTt3BhXVvXv3Kjc3V3fddZckqaSkREuXLtWaNWs0ePBgLV68WLm5udq/f7+SkpIkSYWFhdq4caPKysqUkpKiuXPnKj8/X1VVVea3UAAubtQKa9cKAAgHakXvrxUcKQWgV6mtrdVHH32k8ePHn7Hf448/rv/+7//WH//4x6A32KqqKq1Zs8Y8n7xPnz6aOHGi2tvbdeDAgdM+36OPPqrFixdr9OjRevLJJ7Vnz54zbn/WrFny+Xxav369Ro4cqd/85jcaMmSIvF6vJOm9997TddddZxYOSRo9erTa29uDzn3v8Pe//12tra0aOXKk2da/f39dddVVZxxHb3TppZcGHUr9X//1X7ryyis1ZswYGYah5cuXa+HChZoyZYqys7O1du1aNTc3a8OGDZKk+vp6rVq1Ss8++6wmTJigYcOGaf369aqurtaWLVsinA5Ab0CtsH6tAICeRq2wRq1gUgpArxIfH39O/XJzc3XkyBG9+eabQe3t7e2aMWOG3nnnHfPnL3/5i95//31deeWVp32+b33rW/rggw903333qbq6Wjk5OSotLT3jGJKSkjRp0iQ988wz+stf/qKbbrpJixcvlnTyEODT3SGkq3bDMM4W2ZJaW1u1fv16PfTQQ3I4HDpw4IB8Pp/y8vLMPi6XS2PGjFFlZaWkk78ABAKBoD7p6enKzs42+3TF7/eroaEh6EeSAoFASH/U3hby5zyvcfRAtt7yY+ds4cpnGIba29uDfgyjp39O/l80jJN3Vzp1+935kdTF+A2z3eVyddnn1OeYMGGCjhw5otdff73T8m9/+9v685//bP7s3r1b+/fvV2Zmprl+x79jx7anT5+uv/3tb7rnnnu0Z88e5eTk6Kc//ekZx5GYmKj8/Hw9/fTT2r17t7785S9r8eLF5nKHw9Hl2D+77Y6/dxyFeqb+p/sxDOOMr0kAsBs+V1gDp+8B6FWSkpJ0xRVX6Pe//73GjRt32n6TJk3SHXfcoalTpyo6Olp33323JOlLX/qS9u3b1+W54h1iY2O7PGc7IyNDjzzyiB555BEtWLBAL7zwwjnfUtbhcOiLX/yiOWlyzTXXaO3atTp27Jj5rcaf/vQnRUVFdXlr1y984QtyOp3asWOHLrvs5K1x6+rq9Ne//lVjxow5pzH0Rq+++qo+/fRTPfDAA5Ikn88nSZ0OM05NTdXBgwfNPrGxserXr1+nPh3rd6W4uFiLFi3q1L5161YlJCRcSIwgiZI2bTrzN17h0vENmh3ZOZvUs/liYmLkdrvV1NSk1tZWs73l+PEe2+ZnHfef3E7HxHC31z9+XIZhdFrf7/erra3NbL/sssv0+uuva/jw4ad9rgkTJmj8+PF6+OGH1draqjvvvFOSlJ2drT179mjgwIFdbv/48eOKiYnRsWPHgsbR2Nio5ORkTZ06VVOnTtWiRYv0i1/8Qvfff/855/v85z+vt99+Ww0NDcrMzNTatWtVU1Nj1gqv16uoqCilpaWpoaFBgUBAJ06cUENDgwYOHCin06mtW7fqa1/7miTp008/1V//+lfdeOONp/03b21tVUtLi7Zt26YTJ04ELWtubj7nsQOAlfC5whqfK5iUAtDreDwePfLIIxo4cKBuu+02NTY26k9/+lOnN/Kvfe1rWrdune677z7FxMTo61//ur7//e/rxhtv1KxZs/Twww8rMTFR7733nrxer/kNxRVXXKFt27bp7rvvltPpVGxsrB5//HF95Stf0eDBg1VXV6c//OEPuvrqq7sc3zvvvKMnn3xS9913n6655hrFxsaqoqJCL774or7//e9Lku655x49+eSTmjZtmjwej/75z39q9uzZuu+++zpNyEhSnz59NH36dH3ve99TSkqKUlNTtXDhQkVFWfuA1lWrVum2225Tenp6UPup3+qc6Rugc+2zYMECzZkzx3zc0NCgjIwMjRs3TikpKecx+q79Ztdh3ZUT2XPyA4GAvF6vcnNz5XQ6IzqWULNzNik8+Y4fP65Dhw6pT58+iouLM9vj4z7tke11MIyTE1Jxrjg5HFLfvn3P63ni4uLkcDg6re9yuRQdHW22ezwezZw5UxkZGbr11lvV2NioysrKoAu/xsfHa/LkyYqNjdW0adOUlJSkr3/961q4cKFGjRqlJ554Qt/61rfMWrFlyxb99Kc/lSRlZmbq7bffVmNjo2JjY+VyufTkk0/q1ltvNWtFZWWlhgwZ0mXWd955Rx6PR/fee29QrfjVr36l+fPnq2/fvpo+fbqWLFmi7373u3ryySf1z3/+UwsWLNC9995rfghyOp2KiYlR37591bdvXz300EPyeDwaNGiQUlNT9YMf/EBRUVGKjY097b/58ePHFR8fr5tvvjnoNSFJR48ePa/9BABWwOeK3v+5gkkpAL3OtGnTdPz4cS1btkzz5s3TgAED9PWvf73Lvl//+tfV3t6u++67T1FRUZoyZYoqKiq0cOFC3XTTTTIMQ1deeaW+8Y1vmOs89dRTmjFjhq688kr5/X7V1dWpra1Ns2bN0uHDh9W3b1/deuutWrZsWZfbHDRokK644gotWrRI//jHP+RwOMzHjz/+uCQpISFBb775ph577DHdcMMNSkhI0J133qmlS5eeNvePfvQjNTU1adKkSUpKStLcuXNVX19/Af+SkXXw4EFt2bJFr7zyitnmdrslnTwaKi0tzWyvra01i6rb7VZra6vq6uqCjpaqra3VqFGjTrs9l8tlntLzWU6nM7Qf/qOie81kSciz9SJ2zib1bL62tjY5HA5FRUUF/QLqcPT0L6Pt/7udk9s6319+O9Y7df2OSemO9gcffFCtra1atmyZvve975m14rPrdfwbFBQUSDpZX2JiYoJqRcf17jpqRcf6Tz/9tGbMmKGsrKygWjF79uxOtaKrrJdddpkyMzP19NNPd1kroqKi1KdPH7NWjBgxIqhWdDxnxx1MOx7/+Mc/1rFjxzR58mSzVjQ0NAT16erf1OFwdPm6s/P/MwDgc4UFPlcYFlRfX29IMv71r39Feigh19raarz66qtGa2trpIcScnbOZhjhydfS0mK8++67RktLS49toyttbW1GXV2d0dbWFtbthoPVs53pNfGvf/3LkGTU19dHYGSG8eSTTxput9sIBAJmW3t7u+F2u40lS5aYbX6/30hOTjaee+45wzAM49NPPzWcTqfx0ksvmX0++ugjIyoqynjjjTfOefs9VSt+teNgSJ/vfNj5/dTO2QyDWmFVVs/Wm2tFpPG5wprslu1XOw4G/X5BrbAmq2eLVK3gSCkAQMi1t7dr9erV5lEJHRwOhwoLC1VUVKSsrCxlZWWpqKhICQkJmjp1qiQpOTlZ06dP19y5c5WSkqL+/ftr3rx5Gjp0qCZMmBCpSAAAAABCjEkpAEDIbdmyRR9++KEeeuihTsvmz5+vlpYWzZw5U3V1dRoxYoQ2b96spKQks8+yZcsUExOjgoICtbS0aPz48VqzZo2io6PDGQMAAABAD+r2yf5HjhzRvffeq5SUFCUkJOj6669XVVWVudwwDHk8HqWnpys+Pl5jx47Vvn37gp7D7/dr9uzZGjBggBITEzVp0iQdPnz4wtMAAHqFvLw8GYbR5R1BHA6HPB6PampqdPz4cVVUVCg7OzuoT1xcnEpLS3X06FE1Nzdr48aNysjICNfwAQAAAIRBtyal6urqNHr0aDmdTr3++ut699139eyzz+qSSy4x+5SUlGjp0qVasWKFdu7cKbfbrdzcXDU2Npp9CgsLVV5errKyMm3fvl1NTU3Kz8/v8laKAAAAAAAAsJ9unb63ZMkSZWRkaPXq1WbbFVdcYf7dMAwtX75cCxcu1JQpUyRJa9euVWpqqjZs2KAZM2aovr5eq1at0rp168xrg6xfv14ZGRnasmWLJk6cGIJYAAAAAAAA6M26NSn12muvaeLEibrrrrtUUVGhz33uc5o5c6YefvhhSdKBAwfk8/mUl5dnruNyuTRmzBhVVlZqxowZqqqqUiAQCOqTnp6u7OxsVVZWdjkp5ff75ff7zccNDQ2SpEAgoEAg0L3EvVxHHrvlkuydTQpPvkAgIMMw1N7ervb29h7bzqkMwzD/DOd2w8Hq2drb22UYhgKBQKfrLdn1/xoAAAAAe+jWpNQHH3yglStXas6cOXriiSf09ttv67vf/a5cLpfuv/9++Xw+SVJqamrQeqmpqTp48KAkyefzKTY2Vv369evUp2P9UxUXF2vRokWd2rdu3aqEhITuRLAMr9cb6SH0GDtnk3o2X0xMjNxut5qamtTa2tpj2zmdz56GazdWzdba2qqWlhZt27ZNJ06cCFrW3NwcoVEBAAAAwNl1a1Kqvb1dOTk5KioqkiQNGzZM+/bt08qVK3X//feb/RwOR9B6hmF0ajvVmfosWLBAc+bMMR83NDQoIyND48aNU0pKSnci9HqBQEBer1e5ublyOp2RHk5I2TmbFJ58x48f16FDh9SnTx/FxcX1yDa6YhiGGhsblZSUdNb/y1Zj9WzHjx9XfHy8br755k6viaNHj0ZoVAAAAABwdt2alEpLS9M111wT1Hb11Vfr5ZdfliS53W5JJ4+GSktLM/vU1taaR0+53W61traqrq4u6Gip2tpajRo1qsvtulwuuVyuTu1Op9OWkxsS2aysJ/O1tbXJ4XAoKipKUVHdvnnmees4ra1j23ZyodkeeOABffrpp3r11VdDPLJzExUVJYfD0eXrzs7/zwDASiJdKwAAvd/FWiu69Qls9OjR2r9/f1DbX//6V11++eWSpMzMTLnd7qDTl1pbW1VRUWFOOA0fPlxOpzOoT01Njfbu3XvaSSkA1vfAAw/I4XCYEyipqanKzc3Viy++aMlrOQEAQo9aAQA4G2qFvXTrSKnHH39co0aNUlFRkQoKCvT222/r+eef1/PPPy/p5JEGhYWFKioqUlZWlrKyslRUVKSEhARNnTpVkpScnKzp06dr7ty5SklJUf/+/TVv3jwNHTrUvBsfgG7atfrsfS6EYSj2+HEpLk5yOKScB8/raW699VatXr1abW1t+vjjj/XGG2/oscce029/+1u99tprionp1lsSAKA7qBUAgLOhViDMunWk1A033KDy8nL9+te/VnZ2tp5++mktX75c99xzj9ln/vz5Kiws1MyZM5WTk6MjR45o8+bNSkpKMvssW7ZMkydPVkFBgUaPHq2EhARt3Lix052jANiLy+WS2+3W5z73OX3pS1/SE088od/97nd6/fXXtWbNGklSfX29vv3tb2vgwIHq27evbrnlFv3lL38xn8Pj8ej666/Xiy++qMsuu0x9+vTRd77zHbW1tamkpERut1sDBw7UM888E7TtpUuXaujQoUpMTFRGRoZmzpyppqYmc/maNWt0ySWX6M0339TVV1+tPn366NZbb1VNTY3Zp62tTXPmzNEll1yilJQUzZ8/37x7HwAgNKgVAICzoVbYR7cvoJKfn6/q6modP35c7733nh5++OGg5Q6HQx6PRzU1NTp+/LgqKiqUnZ0d1CcuLk6lpaU6evSompubtXHjRmVkZFxYEgCWdMstt+i6667TK6+8IsMwdPvtt8vn82nTpk2qqqrSl770JY0fP16ffPKJuc7f//53vf7663rjjTf061//Wi+++KJuv/12HT58WBUVFVqyZIl+8IMfaMeOHeY6UVFR+ulPf6q9e/dq7dq1+sMf/qD58+cHjaW5uVk//vGPtW7dOm3btk0ffvih5s2bZy5/9tln9eKLL2rVqlXavn27PvnkE5WXl/f8PxIAXOSoFQCAs6FWWBPHtAGIuC9+8Yvas2ePtm7dqurqatXW1po3N/jxj3+sV199Vb/97W/17W9/W9LJi5O/+OKLSkpK0jXXXKNx48Zp//792rRpk6KionTVVVdpyZIleuutt3TjjTdKkgoLC83tZWZm6umnn9Z3vvMdrVixwmwPBAJ67rnndOWVV0qSHn30UT311FPm8uXLl2vBggW68847JUnPPfec3nzzzR79twEAnEStAACcDbXCepiUAhBxhmHI4XCoqqpKTU1NSklJCVre0tKiv//97+bjK664IuiU4NTUVEVHRwfdPS81NVW1tbXm461bt6qoqEjvvvuuGhoadOLECR0/flzHjh0z+yQkJJiFQzp5x9GO56ivr1dNTY1GjhxpLo+JiVFOTs5Fe6gtAIQTtQIAcDbUCuux173dAVjSe++9p8zMTLW3tystLU3vvPNO0M/+/fv1ve99z+zvdDqD1u+488apbR133zh48KC+8pWvKDs7Wy+//LKqqqr0s5/9TNLJbzHO9LwXY2EAgN6IWmEvJ06c0A9+8ANlZmYqPj5en//85/XUU08F3TnLMAx5PB6lp6crPj5eY8eO1b59+4Kex+/3a/bs2RowYIASExM1adIkHT58ONxxAPQS1ArrYVIKQET94Q9/UHV1te6880596Utfks/nU0xMjL7whS8E/QwYMOC8t7Fr1y6dOHFCzz77rG688UYNHjxYH330UbeeIzk5WWlpaUHnk584cUJVVVXnPS4AwLmhVtjPkiVL9Nxzz2nFihV67733VFJSoh/96EcqLS01+5SUlGjp0qVasWKFdu7cKbfbrdzcXDU2Npp9CgsLVV5errKyMm3fvl1NTU3Kz89XW1tbJGIBiCBqhTVx+h6AsPH7/fL5fEG3bi0uLlZ+fr7uv/9+RUVFaeTIkZo8ebKWLFmiq666Sh999JE2bdqkyZMnKycn57y2e+WVV+rEiRMqLS3VHXfcoT/96U967rnnuv08jz32mH74wx8qKytLV199tZYuXapPP/30vMYEAOgateLi8N///d/66le/qttvv13SyVNofv3rX2vXrl2STh4ltXz5ci1cuFBTpkyRJK1du1apqanasGGDZsyYofr6eq1atUrr1q3ThAkTJEnr169XRkaGtmzZookTJ0YmHIAeR62wDyalAITNG2+8obS0NMXExKhfv3667rrr9NOf/lTTpk0zz9vetGmTFi5cqIceekj//Oc/5Xa7dfPNNys1NfW8t3v99ddr6dKlWrJkiRYsWKCbb75ZxcXFuv/++7v1PHPnzlVNTY0eeOABRUVF6aGHHtLXvvY11dfXn/fYAADBqBUXhy9/+ct67rnn9Ne//lWDBw/WX/7yF23fvl3Lly+XJB04cEA+n095eXnmOi6XS2PGjFFlZaVmzJihqqoqBQKBoD7p6enKzs5WZWVll5NSfr9ffr/ffNzQ0CDp5Gk3nz31xg468tgtl2TDbO0nj+w7NVdP5gsEAjIMQ+3t7UGnzarHTzEzzD/bDUmf3fa5PoNhdKoV1157rZYvX65p06aZp8r913/9l37wgx8E1YqbbrpJl156qdrb283T6U49bbjj3+XUbba3t+vaa6/Vs88+a9aKm266Sc8884weeOCBTqfnffY5Ov7e8efjjz+ujz76yKwVDz74oCZPnqz6+vpO2w6Xjn+TQCCg6OjooGU9+Vp0GBY8sbGhoUHJycn617/+1enCZVYXCAS0adMmfeUrX+l0HqrV2TmbFJ58x48f14EDB5SZmam4uLge2UZX2tvb1dDQoL59+wZd9M8OrJ7tTK+Jo0ePasCAAaqvr1ffvn0jNMLI6alaseF/PtTUEZeF7PnOh53fT+2cTaJWWJXVs/XGWmEYhp544gktWbJE0dHRamtr0zPPPKMFCxZIkiorKzV69GgdOXJE6enp5nrf/va3dfDgQb355pvasGGDHnzwwaBJJknKy8tTZmamfvGLX3Tarsfj0aJFizq1b9iwQQkJCSFOCfReMTExcrvdysjIUGxsbKSHg16gtbVVhw4dks/n04kTJ4KWNTc3a+rUqT1SKzhSCgAAAEBYvfTSS1q/fr02bNigIUOG6J133lFhYaHS09M1bdo0s5/D4Qhar+POWmdypj4LFizQnDlzzMcNDQ3KyMjQuHHjbPllt9frVW5uru0m+e2W7Te7Tl6c/66cQZLCk+/48eM6dOiQ+vTpE9YvMAzDUGNjo5KSks76f9lqrJ7t+PHjio+P180339zlFxg9hUkpAAAAAGH1ve99T//xH/+hu+++W5I0dOhQHTx4UMXFxZo2bZrcbrckyefzKS0tzVyvtrbWPE3T7XartbVVdXV16tevX1CfUaNGdbldl8sll8vVqd3pdNpicqMrZLOAqJOnSp2apSfztbW1yeFwKCoqKqxHgHacmtaxbTuxeraoqCjz7oNdvRZ7bLs99swAAAAA0IXm5uZOH9qio6PND3WZmZlyu93yer3m8tbWVlVUVJgTTsOHD5fT6QzqU1NTo7179552UgoA0LtwpBQAAACAsLrjjjv0zDPP6LLLLtOQIUO0e/duLV26VA899JCkk0caFBYWqqioSFlZWcrKylJRUZESEhI0depUSSdvqz59+nTNnTtXKSkp6t+/v+bNm6ehQ4ead+MDAPRuHCkFAAi5I0eO6N5771VKSooSEhJ0/fXXq6qqylxuGIY8Ho/S09MVHx+vsWPHat++fUHP4ff7NXv2bA0YMECJiYmaNGmSDh8+HO4oAIAeUFpaqq9//euaOXOmrr76as2bN08zZszQ008/bfaZP3++CgsLNXPmTOXk5OjIkSPavHmzkpKSzD7Lli3T5MmTVVBQoNGjRyshIUEbN27sdOcoAEDvxKQUYEEWvGkmekhvfC3U1dVp9OjRcjqdev311/Xuu+/q2Wef1SWXXGL2KSkp0dKlS7VixQrt3LlTbrdbubm5amxsNPsUFhaqvLxcZWVl2r59u5qampSfn6+2trYIpAKspze+PyAyeuNrISkpScuXL9fBgwfV0tKiv//971q8eHHQXcAcDoc8Ho9qamp0/PhxVVRUKDs7O+h54uLiVFpaqqNHj6q5uVkbN25URkZGuOMAltUb3x8QGZF6LXD6HmAhHReYa25uVnx8fIRHg96gublZUs9efLC7lixZooyMDK1evdpsu+KKK8y/G4ah5cuXa+HChZoyZYokae3atUpNTdWGDRs0Y8YM1dfXa9WqVVq3bp15Csb69euVkZGhLVu2aOLEiWHNBFgJtQKn6o21AkBkUStwqkjVCialAAuJjo7WJZdcotraWklSQkJCWG432t7ertbWVh0/ftySd5I4E6tmMwxDzc3Nqq2t1SWXXNKrTlN47bXXNHHiRN11112qqKjQ5z73Oc2cOVMPP/ywJOnAgQPy+XzKy8sz13G5XBozZowqKys1Y8YMVVVVKRAIBPVJT09Xdna2Kisru5yU8vv98vv95uOGhgZJJ2+rHAgEQhewvS20z3ceOrYf6XH0BDtnk8KXLykpSR9//LHa29vDVisMw1Bra6taWloseSvsM7Fqto5a8c9//lN9+/ZVe3u7eSHxDnb9vwbgzPhcEXpWzRbpzxVMSgEW03GL5I4CEg6GYailpUXx8fGW+mX8XFg92yWXXGK+JnqLDz74QCtXrtScOXP0xBNP6O2339Z3v/tduVwu3X///fL5fJJk3tK7Q2pqqg4ePCjp5C3AY2Njg27x3dGnY/1TFRcXa9GiRZ3at27dqoSEhFBEkyQlStq0aU/Inu9CfPaOU3Zj52xSePIlJSXp2LFjlvrFGKHX3t6uxsZGvf/++10u7/hmHMDFh88VoWX1bJH6XMGkFGAxDodDaWlpGjhwYNi+3QwEAtq2bZtuvvlm2x36b+VsTqezVx0h1aG9vV05OTkqKiqSJA0bNkz79u3TypUrdf/995v9Ti3WhmGctYCfqc+CBQs0Z84c83FDQ4MyMjI0btw4paSknG+cTn6z67DuyhkUsuc7H4FAQF6vV7m5uZZ73Z6NnbNJ4c/X1tamEydOhOU6ESdOnFBlZaVGjRqlmBh7/Ypp1WwOh0MxMTFnrBVHjx4N44gA9CZ8rggtK2eL5OcK61RVAEGio6PD9sYRHR2tEydOKC4uznJvsGdj52yRkpaWpmuuuSao7eqrr9bLL78s6d/fyvl8PqWlpZl9amtrzaOn3G63WltbVVdXF3S0VG1trUaNGtXldl0ul1wuV6d2p9MZ2n0bFd1rXishz9aL2DmbFL584fw3DAQCOnHihPr06WO7fWfnbHbLA6D7+FwRGnbO1pM4nhsAEFKjR4/W/v37g9r++te/6vLLL5ckZWZmyu12B52+1NraqoqKCnPCafjw4XI6nUF9ampqtHfv3tNOSgEAAACwFo6UAgCE1OOPP65Ro0apqKhIBQUFevvtt/X888/r+eefl3TyUPHCwkIVFRUpKytLWVlZKioqUkJCgqZOnSpJSk5O1vTp0zV37lylpKSof//+mjdvnoYOHWrejQ8AAACAtTEpBQAIqRtuuEHl5eVasGCBnnrqKWVmZmr58uW65557zD7z589XS0uLZs6cqbq6Oo0YMUKbN29WUlKS2WfZsmWKiYlRQUGBWlpaNH78eK1Zs6ZXXkcLAAAAQPcxKQUACLn8/Hzl5+efdrnD4ZDH45HH4zltn7i4OJWWlqq0tLQHRggAAAAg0rimFAAAAAAAAMKOSSkAAAAAAACEXbcmpTwejxwOR9BPx629JckwDHk8HqWnpys+Pl5jx47Vvn37gp7D7/dr9uzZGjBggBITEzVp0iQdPnw4NGkAAAAAAABgCd0+UmrIkCGqqakxf6qrq81lJSUlWrp0qVasWKGdO3fK7XYrNzdXjY2NZp/CwkKVl5errKxM27dvV1NTk/Lz89XW1haaRAAAAAAAAOj1un2h85iYmKCjozoYhqHly5dr4cKFmjJliiRp7dq1Sk1N1YYNGzRjxgzV19dr1apVWrdunXlL7/Xr1ysjI0NbtmzRxIkTLzAOAAAAAAAArKDbR0q9//77Sk9PV2Zmpu6++2598MEHkqQDBw7I5/MpLy/P7OtyuTRmzBhVVlZKkqqqqhQIBIL6pKenKzs72+wDAAAAAAAA++vWkVIjRozQL3/5Sw0ePFgff/yxFi9erFGjRmnfvn3y+XySpNTU1KB1UlNTdfDgQUmSz+dTbGys+vXr16lPx/pd8fv98vv95uOGhgZJUiAQUCAQ6E6EXq8jj91ySfbOJtk7H9msyY6ZAAAAANhHtyalbrvtNvPvQ4cO1ciRI3XllVdq7dq1uvHGGyVJDocjaB3DMDq1nepsfYqLi7Vo0aJO7Vu3blVCQkJ3IliG1+uN9BB6jJ2zSfbORzZraW5ujvQQAAAAAOC0un1Nqc9KTEzU0KFD9f7772vy5MmSTh4NlZaWZvapra01j55yu91qbW1VXV1d0NFStbW1GjVq1Gm3s2DBAs2ZM8d83NDQoIyMDI0bN04pKSkXEqHXCQQC8nq9ys3NldPpjPRwQsrO2SR75yObNR09ejTSQwAAAACA07qgSSm/36/33ntPN910kzIzM+V2u+X1ejVs2DBJUmtrqyoqKrRkyRJJ0vDhw+V0OuX1elVQUCBJqqmp0d69e1VSUnLa7bhcLrlcrk7tTqfTdh8iO5DNuuycj2zWYrc8AAAAAOylW5NS8+bN0x133KHLLrtMtbW1Wrx4sRoaGjRt2jQ5HA4VFhaqqKhIWVlZysrKUlFRkRISEjR16lRJUnJysqZPn665c+cqJSVF/fv317x58zR06FDzbnwAAAAAAACwv25NSh0+fFjf/OY39a9//UuXXnqpbrzxRu3YsUOXX365JGn+/PlqaWnRzJkzVVdXpxEjRmjz5s1KSkoyn2PZsmWKiYlRQUGBWlpaNH78eK1Zs0bR0dGhTQYAAAAAAIBeq1uTUmVlZWdc7nA45PF45PF4TtsnLi5OpaWlKi0t7c6mAQAAAAAAYCNRkR4AAAAAAAAALj5MSgEAAAAAACDsmJQCAAAAAABA2DEpBQAAAAAAgLBjUgoAAAAAAABhx6QUAAAAAAAAwo5JKQAAAAAAAIQdk1IAAAAAAAAIOyalAAAh5fF45HA4gn7cbre53DAMeTwepaenKz4+XmPHjtW+ffuCnsPv92v27NkaMGCAEhMTNWnSJB0+fDjcUQAAAAD0ICalAAAhN2TIENXU1Jg/1dXV5rKSkhItXbpUK1as0M6dO+V2u5Wbm6vGxkazT2FhocrLy1VWVqbt27erqalJ+fn5amtri0QcAAAAAD0gJtIDAADYT0xMTNDRUR0Mw9Dy5cu1cOFCTZkyRZK0du1apaamasOGDZoxY4bq6+u1atUqrVu3ThMmTJAkrV+/XhkZGdqyZYsmTpwY1iwAAAAAegZHSgEAQu79999Xenq6MjMzdffdd+uDDz6QJB04cEA+n095eXlmX5fLpTFjxqiyslKSVFVVpUAgENQnPT1d2dnZZh8AAAAA1seRUgCAkBoxYoR++ctfavDgwfr444+1ePFijRo1Svv27ZPP55MkpaamBq2TmpqqgwcPSpJ8Pp9iY2PVr1+/Tn061u+K3++X3+83Hzc0NEiSAoGAAoFASLJJktrbQvt856Fj+5EeR0+wczbJ3vnIZk12zAQAsA4mpQAAIXXbbbeZfx86dKhGjhypK6+8UmvXrtWNN94oSXI4HEHrGIbRqe1UZ+tTXFysRYsWdWrfunWrEhISuhPhjBIlbdq0J2TPdyG8Xm+kh9Bj7JxNsnc+sllLc3NzpIcAALiIMSkFAOhRiYmJGjp0qN5//31NnjxZ0smjodLS0sw+tbW15tFTbrdbra2tqqurCzpaqra2VqNGjTrtdhYsWKA5c+aYjxsaGpSRkaFx48YpJSUlZHl+s+uw7soZFLLnOx+BQEBer1e5ublyOp0RHUuo2TmbZO98ZLOmo0ePRnoIAICLGJNSAIAe5ff79d577+mmm25SZmam3G63vF6vhg0bJklqbW1VRUWFlixZIkkaPny4nE6nvF6vCgoKJEk1NTXau3evSkpKTrsdl8sll8vVqd3pdIb2Q2RUdK/5UBrybL2InbNJ9s5HNmuxWx4AgLUwKQUACKl58+bpjjvu0GWXXaba2lotXrxYDQ0NmjZtmhwOhwoLC1VUVKSsrCxlZWWpqKhICQkJmjp1qiQpOTlZ06dP19y5c5WSkqL+/ftr3rx5Gjp0qHk3PgAAAADWx933AAAhdfjwYX3zm9/UVVddpSlTpig2NlY7duzQ5ZdfLkmaP3++CgsLNXPmTOXk5OjIkSPavHmzkpKSzOdYtmyZJk+erIKCAo0ePVoJCQnauHGjoqOjIxULABBiR44c0b333quUlBQlJCTo+uuvV1VVlbncMAx5PB6lp6crPj5eY8eO1b59+4Kew+/3a/bs2RowYIASExM1adIkHT58ONxRAADniSOlAAAhVVZWdsblDodDHo9HHo/ntH3i4uJUWlqq0tLSEI8OANAb1NXVafTo0Ro3bpxef/11DRw4UH//+991ySWXmH1KSkq0dOlSrVmzRoMHD9bixYuVm5ur/fv3m19kFBYWauPGjSorK1NKSormzp2r/Px8VVVV8UUGAFgAk1IAAAAAwmrJkiXKyMjQ6tWrzbYrrrjC/LthGFq+fLkWLlyoKVOmSJLWrl2r1NRUbdiwQTNmzFB9fb1WrVqldevWmad3r1+/XhkZGdqyZYsmTpwY1kwAgO7j9D0AAAAAYfXaa68pJydHd911lwYOHKhhw4bphRdeMJcfOHBAPp9PeXl5ZpvL5dKYMWNUWVkpSaqqqlIgEAjqk56eruzsbLMPAKB340gpAAAAAGH1wQcfaOXKlZozZ46eeOIJvf322/rud78rl8ul+++/Xz6fT5KUmpoatF5qaqoOHjwoSfL5fIqNjVW/fv069elY/1R+v19+v9983NDQIEkKBAIKBAIhy9cbdOSxWy7Jhtna2yR1zmWbfJ9BNmvqyUxMSgEAAAAIq/b2duXk5KioqEiSNGzYMO3bt08rV67U/fffb/ZzOBxB6xmG0antVGfqU1xcrEWLFnVq37p1qxISErobwxK8Xm+kh9Bj7JIt8X//3LRpT1C7XfJ1hWzW0tzc3GPPzaQUAAAAgLBKS0vTNddcE9R29dVX6+WXX5Ykud1uSSePhkpLSzP71NbWmkdPud1utba2qq6uLuhoqdraWo0aNarL7S5YsEBz5swxHzc0NCgjI0Pjxo1TSkpKaML1EoFAQF6vV7m5uXI6nZEeTkjZLdtvdp28Y+RdOYMk2S/fZ5HNmo4ePdpjz82kFAAAAICwGj16tPbv3x/U9te//lWXX365JCkzM1Nut1ter1fDhg2TJLW2tqqiokJLliyRJA0fPlxOp1Ner1cFBQWSpJqaGu3du1clJSVdbtflcsnlcnVqdzqdtvsQ2YFsFhB18k6Rp2axTb4ukM1aejLPBV3ovLi4WA6HQ4WFhWabYRjyeDxKT09XfHy8xo4dq3379gWt5/f7NXv2bA0YMECJiYmaNGmSDh8+fCFDAQAAAGARjz/+uHbs2KGioiL97W9/04YNG/T8889r1qxZkmR+xigqKlJ5ebn27t2rBx54QAkJCZo6daokKTk5WdOnT9fcuXP1+9//Xrt379a9996roUOHmnfjAwD0buc9KbVz5049//zzuvbaa4PaS0pKtHTpUq1YsUI7d+6U2+1Wbm6uGhsbzT6FhYUqLy9XWVmZtm/frqamJuXn56utre38kwAAAACwhBtuuEHl5eX69a9/rezsbD399NNavny57rnnHrPP/PnzVVhYqJkzZyonJ0dHjhzR5s2blZSUZPZZtmyZJk+erIKCAo0ePVoJCQnauHGjoqOjIxELANBN5zUp1dTUpHvuuUcvvPBC0PnbhmFo+fLlWrhwoaZMmaLs7GytXbtWzc3N2rBhgySpvr5eq1at0rPPPqsJEyZo2LBhWr9+vaqrq7Vly5bQpAIAAADQq+Xn56u6ulrHjx/Xe++9p4cffjhoucPhkMfjUU1NjY4fP66KigplZ2cH9YmLi1NpaamOHj2q5uZmbdy4URkZGeGMAQC4AOc1KTVr1izdfvvtnQ6LPXDggHw+n/Ly8sw2l8ulMWPGqLKyUpJUVVWlQCAQ1Cc9PV3Z2dlmHwAAAAAAANhbty90XlZWpj//+c/auXNnp2U+n0+SzDtidEhNTdXBgwfNPrGxsUFHWHX06Vj/VH6/X36/33zc0NAg6eTV7QOBQHcj9GodeeyWS7J3Nsne+chmTXbMBAAAAMA+ujUpdejQIT322GPavHmz4uLiTtvP4XAEPTYMo1Pbqc7Up7i4WIsWLerUvnXrViUkJJzDyK3H6/VGegg9xs7ZJHvnI5u1NDc3R3oIAAAAAHBa3ZqUqqqqUm1trYYPH262tbW1adu2bVqxYoV5W1efz6e0tDSzT21trXn0lNvtVmtrq+rq6oKOlqqtrdWoUaO63O6CBQs0Z84c83FDQ4MyMjI0btw4paSkdCdCrxcIBOT1epWbm2u720jaOZtk73xks6ajR49GeggAAAAAcFrdmpQaP368qqurg9oefPBBffGLX9T3v/99ff7zn5fb7ZbX69WwYcMkSa2traqoqNCSJUskScOHD5fT6ZTX61VBQYEkqaamRnv37lVJSUmX23W5XHK5XJ3anU6n7T5EdiCbddk5H9msxW55AAAAANhLtyalkpKSOt3xIjExUSkpKWZ7YWGhioqKlJWVpaysLBUVFSkhIUFTp06VJCUnJ2v69OmaO3euUlJS1L9/f82bN09Dhw7tdOF0AAAAAAAA2FO3L3R+NvPnz1dLS4tmzpypuro6jRgxQps3b1ZSUpLZZ9myZYqJiVFBQYFaWlo0fvx4rVmzRtHR0aEeDgAAAAAAAHqhC56Ueuutt4IeOxwOeTweeTye064TFxen0tJSlZaWXujmAQAAAAAAYEFRkR4AAAAAAAAALj5MSgEAAAAAACDsmJQCAAAAAABA2DEpBQAAAAAAgLBjUgoA0KOKi4vlcDhUWFhothmGIY/Ho/T0dMXHx2vs2LHat29f0Hp+v1+zZ8/WgAEDlJiYqEmTJunw4cNhHj0AAACAnsKkFACgx+zcuVPPP/+8rr322qD2kpISLV26VCtWrNDOnTvldruVm5urxsZGs09hYaHKy8tVVlam7du3q6mpSfn5+Wprawt3DAAAAAA9gEkpAECPaGpq0j333KMXXnhB/fr1M9sNw9Dy5cu1cOFCTZkyRdnZ2Vq7dq2am5u1YcMGSVJ9fb1WrVqlZ599VhMmTNCwYcO0fv16VVdXa8uWLZGKBAAAACCEmJQCAPSIWbNm6fbbb9eECROC2g8cOCCfz6e8vDyzzeVyacyYMaqsrJQkVVVVKRAIBPVJT09Xdna22QcAAACAtcVEegAAAPspKyvTn//8Z+3cubPTMp/PJ0lKTU0Nak9NTdXBgwfNPrGxsUFHWHX06Vj/VH6/X36/33zc0NAgSQoEAgoEAucf5lTtbaF9vvPQsf1Ij6Mn2DmbZO98ZLMmO2YCAFgHk1IAgJA6dOiQHnvsMW3evFlxcXGn7edwOIIeG4bRqe1UZ+pTXFysRYsWdWrfunWrEhISzmHk5yZR0qZNe0L2fBfC6/VGegg9xs7ZJHvnI5u1NDc3R3oIAICLGJNSAICQqqqqUm1trYYPH262tbW1adu2bVqxYoX2798v6eTRUGlpaWaf2tpa8+gpt9ut1tZW1dXVBR0tVVtbq1GjRnW53QULFmjOnDnm44aGBmVkZGjcuHFKSUkJWb7f7Dqsu3IGhez5zkcgEJDX61Vubq6cTmdExxJqds4m2Tsf2azp6NGjkR4CAOAixqQUACCkxo8fr+rq6qC2Bx98UF/84hf1/e9/X5///Ofldrvl9Xo1bNgwSVJra6sqKiq0ZMkSSdLw4cPldDrl9XpVUFAgSaqpqdHevXtVUlLS5XZdLpdcLlendqfTGdoPkVHRveZDaciz9SJ2zibZOx/ZrMVueQAA1sKkFAAgpJKSkpSdnR3UlpiYqJSUFLO9sLBQRUVFysrKUlZWloqKipSQkKCpU6dKkpKTkzV9+nTNnTtXKSkp6t+/v+bNm6ehQ4d2unA6AAAAAGtiUgoAEHbz589XS0uLZs6cqbq6Oo0YMUKbN29WUlKS2WfZsmWKiYlRQUGBWlpaNH78eK1Zs0bR0dERHDkAAACAUGFSCgDQ4956662gxw6HQx6PRx6P57TrxMXFqbS0VKWlpT07OAAAAAARERXpAQAAAAAAAODiw6QUAAAAAAAAwo5JKQAAAAAAAIQdk1IAAAAAAAAIOyalAAAAAAAAEHZMSgEAAAAAACDsmJQCAAAAAABA2DEpBQAAAAAAgLBjUgoAAAAAAABhx6QUAAAAAAAAwq5bk1IrV67Utddeq759+6pv374aOXKkXn/9dXO5YRjyeDxKT09XfHy8xo4dq3379gU9h9/v1+zZszVgwAAlJiZq0qRJOnz4cGjSAAAAAAAAwBK6NSk1aNAg/fCHP9SuXbu0a9cu3XLLLfrqV79qTjyVlJRo6dKlWrFihXbu3Cm3263c3Fw1Njaaz1FYWKjy8nKVlZVp+/btampqUn5+vtra2kKbDAAAAAAAAL1Wtyal7rjjDn3lK1/R4MGDNXjwYD3zzDPq06ePduzYIcMwtHz5ci1cuFBTpkxRdna21q5dq+bmZm3YsEGSVF9fr1WrVunZZ5/VhAkTNGzYMK1fv17V1dXasmVLjwQEAAAAAABA73Pe15Rqa2tTWVmZjh07ppEjR+rAgQPy+XzKy8sz+7hcLo0ZM0aVlZWSpKqqKgUCgaA+6enpys7ONvsAAAAAAADA/mK6u0J1dbVGjhyp48ePq0+fPiovL9c111xjTiqlpqYG9U9NTdXBgwclST6fT7GxserXr1+nPj6f77Tb9Pv98vv95uOGhgZJUiAQUCAQ6G6EXq0jj91ySfbOJtk7H9msyY6ZAAAAANhHtyelrrrqKr3zzjv69NNP9fLLL2vatGmqqKgwlzscjqD+hmF0ajvV2foUFxdr0aJFndq3bt2qhISEbiawBq/XG+kh9Bg7Z5PsnY9s1tLc3BzpIQAAAADAaXV7Uio2NlZf+MIXJEk5OTnauXOnfvKTn+j73/++pJNHQ6WlpZn9a2trzaOn3G63WltbVVdXF3S0VG1trUaNGnXabS5YsEBz5swxHzc0NCgjI0Pjxo1TSkpKdyP0aoFAQF6vV7m5uXI6nZEeTkjZOZtk73xks6ajR49GeggAAAAAcFrdnpQ6lWEY8vv9yszMlNvtltfr1bBhwyRJra2tqqio0JIlSyRJw4cPl9PplNfrVUFBgSSppqZGe/fuVUlJyWm34XK55HK5OrU7nU7bfYjsQDbrsnM+slmL3fIAAOyruLhYTzzxhB577DEtX75c0snPGYsWLdLzzz+vuro6jRgxQj/72c80ZMgQcz2/36958+bp17/+tVpaWjR+/Hj9/Oc/16BBgyKUBADQHd260PkTTzyhP/7xj/rHP/6h6upqLVy4UG+99ZbuueceORwOFRYWqqioSOXl5dq7d68eeOABJSQkaOrUqZKk5ORkTZ8+XXPnztXvf/977d69W/fee6+GDh2qCRMm9EhAAAAAAL3Xzp079fzzz+vaa68Nai8pKdHSpUu1YsUK7dy5U263W7m5uWpsbDT7FBYWqry8XGVlZdq+fbuampqUn5+vtra2cMcAAJyHbh0p9fHHH+u+++5TTU2NkpOTde211+qNN95Qbm6uJGn+/PlqaWnRzJkzzW8zNm/erKSkJPM5li1bppiYGBUUFJjfZqxZs0bR0dGhTQYAAACgV2tqatI999yjF154QYsXLzbbDcPQ8uXLtXDhQk2ZMkWStHbtWqWmpmrDhg2aMWOG6uvrtWrVKq1bt878gnv9+vXKyMjQli1bNHHixIhkAgCcu25NSq1ateqMyx0Ohzwejzwez2n7xMXFqbS0VKWlpd3ZNAAAAACbmTVrlm6//XZNmDAhaFLqwIED8vl8ysvLM9tcLpfGjBmjyspKzZgxQ1VVVQoEAkF90tPTlZ2drcrKyi4npbirtz3YLlv7ySP7Ts1lm3yfQTZr6slMF3xNKQAAPmvlypVauXKl/vGPf0iShgwZov/8z//UbbfdJolrhAAATiorK9Of//xn7dy5s9Myn88nSeYNkzqkpqbq4MGDZp/Y2NigGyh19OlY/1Tc1dte7JIt8X//3LRpT1C7XfJ1hWzW0pN39WZSCgAQUoMGDdIPf/hD806ta9eu1Ve/+lXt3r1bQ4YMMa8RsmbNGg0ePFiLFy9Wbm6u9u/fb57uXVhYqI0bN6qsrEwpKSmaO3eu8vPzVVVVxeneAGADhw4d0mOPPabNmzcrLi7utP0cDkfQY8MwOrWd6kx9uKu3Pdgt2292HZYk3ZVz8ss3u+X7LLJZU0/e1ZtJKQBASN1xxx1Bj5955hmtXLlSO3bs0DXXXMM1QgAAqqqqUm1trYYPH262tbW1adu2bVqxYoX2798v6eTRUGlpaWaf2tpa8+gpt9ut1tZW1dXVBR0tVVtbq1GjRnW5Xe7qbS+2yRZ18gu3U7PYJl8XyGYtPZmnW3ffAwCgO9ra2lRWVqZjx45p5MiRZ71GiKSzXiMEAGB948ePV3V1td555x3zJycnR/fcc4/eeecdff7zn5fb7Q46Daa1tVUVFRXmhNPw4cPldDqD+tTU1Gjv3r2nnZQCAPQuHCkFAAi56upqjRw5UsePH1efPn1UXl6ua665xpxUCvU1QqQwXry2vS3iF7C8GC6kacdskr3zkc2aIpUpKSlJ2dnZQW2JiYlKSUkx2wsLC1VUVKSsrCxlZWWpqKhICQkJmjp1qiQpOTlZ06dP19y5c5WSkqL+/ftr3rx5Gjp0qHmkLQCgd2NSCgAQcldddZXeeecdffrpp3r55Zc1bdo0VVRUmMtDfY0QKXwXr01U5wuRRoodL6TZwc7ZJHvnI5u19OTFay/U/Pnz1dLSopkzZ5o3xti8ebN5/UFJWrZsmWJiYlRQUGDeGGPNmjVcfxAALIJJKQBAyMXGxpoXOs/JydHOnTv1k5/8RN///vclhf4aIVL4Ll77m12HzQuRRoqdL6Rp52ySvfORzZp68uK13fXWW28FPXY4HPJ4PPJ4PKddJy4uTqWlpSotLe3ZwQEAegSTUgCAHmcYhvx+vzIzM81rhAwbNkzSv68RsmTJEknB1wgpKCiQ9O9rhJSUlJx2G2G7eG1UdK/5UGrHC2l2sHM2yd75yGYtdssDALAWJqUAACH1xBNP6LbbblNGRoYaGxtVVlamt956S2+88YYcDgfXCAEAAAAgiUkpAECIffzxx7rvvvtUU1Oj5ORkXXvttXrjjTeUm5sriWuEAAAAADiJSSkAQEitWrXqjMu5RggAAAAASYqK9AAAAAAAAABw8WFSCgAAAAAAAGHHpBQAAAAAAADCjkkpAAAAAAAAhB2TUgAAAAAAAAg7JqUAAAAAAAAQdkxKAQAAAAAAIOwu3kmpXatP/gAAAAAAACDsLt5JKQAAAAAAAEQMk1IAAAAAAAAIOyalAAAAAAAAEHZMSgEAAAAAACDsmJQCAAAAAABA2DEpBQAAAAAAgLDr1qRUcXGxbrjhBiUlJWngwIGaPHmy9u/fH9THMAx5PB6lp6crPj5eY8eO1b59+4L6+P1+zZ49WwMGDFBiYqImTZqkw4cPX3ias9m1+t8/AAAAAAAAiJhuTUpVVFRo1qxZ2rFjh7xer06cOKG8vDwdO3bM7FNSUqKlS5dqxYoV2rlzp9xut3Jzc9XY2Gj2KSwsVHl5ucrKyrR9+3Y1NTUpPz9fbW1toUsGAAAAAACAXiumO53feOONoMerV6/WwIEDVVVVpZtvvlmGYWj58uVauHChpkyZIklau3atUlNTtWHDBs2YMUP19fVatWqV1q1bpwkTJkiS1q9fr4yMDG3ZskUTJ04MUTQAAAAAAAD0Vhd0Tan6+npJUv/+/SVJBw4ckM/nU15entnH5XJpzJgxqqyslCRVVVUpEAgE9UlPT1d2drbZBwAAAAAAAPbWrSOlPsswDM2ZM0df/vKXlZ2dLUny+XySpNTU1KC+qampOnjwoNknNjZW/fr169SnY/1T+f1++f1+83FDQ4MkKRAIKBAInPug27to6876YdCRp1u5LMLO2SR75yObNdkxEwAAAAD7OO9JqUcffVR79uzR9u3bOy1zOBxBjw3D6NR2qjP1KS4u1qJFizq1b926VQkJCd0Ydf/OTTWburF++Hi93kgPocfYOZtk73xks5bm5uZIDwEAAAAATuu8JqVmz56t1157Tdu2bdOgQYPMdrfbLenk0VBpaWlme21trXn0lNvtVmtrq+rq6oKOlqqtrdWoUaO63N6CBQs0Z84c83FDQ4MyMjI0btw4paSknPvAd6/v3Dbs3nNfPwwCgYC8Xq9yc3PldDojPZyQsnM2yd75yGZNR48ejfQQAAAAAOC0ujUpZRiGZs+erfLycr311lvKzMwMWp6ZmSm32y2v16thw4ZJklpbW1VRUaElS5ZIkoYPHy6n0ymv16uCggJJUk1Njfbu3auSkpIut+tyueRyuTq1O53O7n2I7OoKWr30Q2i3s1mInbNJ9s5HNmuxWx4AAAAA9tKtC53PmjVL69ev14YNG5SUlCSfzyefz6eWlhZJJ0/bKywsVFFRkcrLy7V371498MADSkhI0NSpUyVJycnJmj59uubOnavf//732r17t+69914NHTrUvBsfAMC6iouLdcMNNygpKUkDBw7U5MmTtX///qA+hmHI4/EoPT1d8fHxGjt2rPbt2xfUx+/3a/bs2RowYIASExM1adIkHT58OJxRAAAAAPSgbk1KrVy5UvX19Ro7dqzS0tLMn5deesnsM3/+fBUWFmrmzJnKycnRkSNHtHnzZiUlJZl9li1bpsmTJ6ugoECjR49WQkKCNm7cqOjo6NAlAwBEREVFhWbNmqUdO3bI6/XqxIkTysvL07Fjx8w+JSUlWrp0qVasWKGdO3fK7XYrNzdXjY2NZp/CwkKVl5errKxM27dvV1NTk/Lz89XW1haJWAAAAABCrNun752Nw+GQx+ORx+M5bZ+4uDiVlpaqtLS0O5sHAFjAG2+8EfR49erVGjhwoKqqqnTzzTfLMAwtX75cCxcu1JQpUyRJa9euVWpqqjZs2KAZM2aovr5eq1at0rp168yjaNevX6+MjAxt2bJFEydODHsuAAAAW9q1+vzXzXkwdOPARem8774HAMC5qK+vlyT173/yDqgHDhyQz+dTXl6e2cflcmnMmDGqrKzUjBkzVFVVpUAgENQnPT1d2dnZqqys7HJSyu/3y+/3m48bGhoknbyYfSAQCF2g9rbQPt956Nh+pMfRE+ycTbJ3PrJZkx0zAQCsg0kpAECPMQxDc+bM0Ze//GVlZ2dLOnmHVknmXVk7pKam6uDBg2af2NjYoLu0dvTpWP9UxcXFWrRoUaf2rVu3KiEh4YKzdEiUtGnTnpA934Xwer2RHkKPsXM2yd75yGYtzc3NkR4CAOAixqQUAKDHPProo9qzZ4+2b9/eaZnD4Qh6bBhGp7ZTnanPggULNGfOHPNxQ0ODMjIyNG7cOKWkpJzH6Lv2m12HdVfOoJA93/kIBALyer3Kzc213V0W7ZxNsnc+slnT0aNHIz0EAMBFjEkpAECPmD17tl577TVt27ZNgwb9exLH7XZLOnk0VFpamtleW1trHj3ldrvV2tqqurq6oKOlamtrNWrUqC6353K55HK5OrU7nc7QfoiMiu41H0pDnq0XsXM2yd75yGYtdssDALCWbt19z1J2rb6wC7YBAM6LYRh69NFH9corr+gPf/iDMjMzg5ZnZmbK7XYHnQbT2tqqiooKc8Jp+PDhcjqdQX1qamq0d+/e005KAQAAALAWjpQCAITUrFmztGHDBv3ud79TUlKSeQ2o5ORkxcfHy+FwqLCwUEVFRcrKylJWVpaKioqUkJCgqVOnmn2nT5+uuXPnKiUlRf3799e8efM0dOhQ8258AAAAAKzN/pNSHC0FAGG1cuVKSdLYsWOD2levXq0HHnhAkjR//ny1tLRo5syZqqur04gRI7R582YlJSWZ/ZctW6aYmBgVFBSopaVF48eP15o1axQdHR2uKAAAAAB6kP0npQAAYWUYxln7OBwOeTweeTye0/aJi4tTaWmpSktLQzg6AAAAAL0Fk1IAAAAAAFgdZwnBgux7oXMAAAAAAAD0WkxKAQAAAAir4uJi3XDDDUpKStLAgQM1efJk7d+/P6iPYRjyeDxKT09XfHy8xo4dq3379gX18fv9mj17tgYMGKDExERNmjRJhw8fDmcUAMAFYFIKAICesmv16X8A4CJWUVGhWbNmaceOHfJ6vTpx4oTy8vJ07Ngxs09JSYmWLl2qFStWaOfOnXK73crNzVVjY6PZp7CwUOXl5SorK9P27dvV1NSk/Px8tbW1RSIWAKCbuKYUAAAAgLB64403gh6vXr1aAwcOVFVVlW6++WYZhqHly5dr4cKFmjJliiRp7dq1Sk1N1YYNGzRjxgzV19dr1apVWrdunSZMmCBJWr9+vTIyMrRlyxZNnDgx7LkAAN3DkVIAAAAAIqq+vl6S1L9/f0nSgQMH5PP5lJeXZ/ZxuVwaM2aMKisrJUlVVVUKBAJBfdLT05WdnW32AQD0bhwpBQDA6XRxmt2VH34iRfePwGAAwJ4Mw9CcOXP05S9/WdnZ2ZIkn88nSUpNTQ3qm5qaqoMHD5p9YmNj1a9fv059OtY/ld/vl9/vNx83NDRIkgKBgAKBQGgC9RIdeeyWS7JhtvaTp5uemqvb+dpDOqpz080x2m7ffcbFkK0nMCkFAAAAIGIeffRR7dmzR9u3b++0zOFwBD02DKNT26nO1Ke4uFiLFi3q1L5161YlJCR0Y9TW4fV6Iz2EHmOXbIn/++emTXuC2rufLwJfmtVsOq/V7LLvumLHbM3NzT323ExKAQAAAIiI2bNn67XXXtO2bds0aNAgs93tdks6eTRUWlqa2V5bW2sePeV2u9Xa2qq6urqgo6Vqa2s1atSoLre3YMECzZkzx3zc0NCgjIwMjRs3TikpKSHNFmmBQEBer1e5ublyOp2RHk5I2S3bb3advGPkXTkn/w+cd77d63tieGc27N5udbfbvvssO2c7evRojz03k1IAAAAAwsowDM2ePVvl5eV66623lJmZGbQ8MzNTbrdbXq9Xw4YNkyS1traqoqJCS5YskSQNHz5cTqdTXq9XBQUFkqSamhrt3btXJSUlXW7X5XLJ5XJ1anc6nbb7ENmBbBYQFS1JnbJ0O18krhh9nv/+ttl3XbBjtp7Mw6QUAAAAgLCaNWuWNmzYoN/97ndKSkoyrwGVnJys+Ph4ORwOFRYWqqioSFlZWcrKylJRUZESEhI0depUs+/06dM1d+5cpaSkqH///po3b56GDh1q3o0PANC7MSkFAAAAIKxWrlwpSRo7dmxQ++rVq/XAAw9IkubPn6+WlhbNnDlTdXV1GjFihDZv3qykpCSz/7JlyxQTE6OCggK1tLRo/PjxWrNmjaKjo8MVBQBwAZiUAgAAABBWhmGctY/D4ZDH45HH4zltn7i4OJWWlqq0tDSEowMAhEskzjoFAAAAAADARY4jpQAAiIRdq8+8POfB8IwDAAAAiBCOlAIAAAAAAEDYcaQUAAAAAADovrMd+X2qdknq3xMjgUV1+0ipbdu26Y477lB6erocDodeffXVoOWGYcjj8Sg9PV3x8fEaO3as9u3bF9TH7/dr9uzZGjBggBITEzVp0iQdPnz4goIAAAAAAADAOrp9pNSxY8d03XXX6cEHH9Sdd97ZaXlJSYmWLl2qNWvWaPDgwVq8eLFyc3O1f/9+8/athYWF2rhxo8rKypSSkqK5c+cqPz9fVVVV3L4VAAAAAHBx2rX630cT7V7PBXdge92elLrtttt02223dbnMMAwtX75cCxcu1JQpUyRJa9euVWpqqjZs2KAZM2aovr5eq1at0rp16zRhwgRJ0vr165WRkaEtW7Zo4sSJFxAHAAAAAAAAVhDSa0odOHBAPp9PeXl5ZpvL5dKYMWNUWVmpGTNmqKqqSoFAIKhPenq6srOzVVlZ2eWklN/vl9/vNx83NDRIkgKBgAKBQNeDaT/HQZ9u/QjpyHPaXBZm52ySvfORzZrsmAkAAACAfYR0Usrn80mSUlNTg9pTU1N18OBBs09sbKz69evXqU/H+qcqLi7WokWLOrVv3bpVCQkJpxnNOV48rWbTufULM6/XG+kh9Bg7Z5PsnY9s1tLc3ByxbW/btk0/+tGPVFVVpZqaGpWXl2vy5MnmcsMwtGjRIj3//POqq6vTiBEj9LOf/UxDhgwx+/j9fs2bN0+//vWv1dLSovHjx+vnP/+5Bg0aFIFEAAAAAEKtR+6+53A4gh4bhtGp7VRn6rNgwQLNmTPHfNzQ0KCMjAyNGzdOKSkpXT/h7vXnNthh955bvzAJBALyer3Kzc2V0+mM9HBCys7ZJHvnI5s1HT16NGLb5vqDAAAAAM4mpJNSbrdb0smjodLS0sz22tpa8+gpt9ut1tZW1dXVBR0tVVtbq1GjRnX5vC6XSy6Xq1O70+k8/YfIc70gXC/9EHrGbBZn52ySvfORzVoimYfrDwIAAAA4m5BOSmVmZsrtdsvr9WrYsGGSpNbWVlVUVGjJkiWSpOHDh8vpdMrr9aqgoECSVFNTo71796qkpCSUwwEA9EK96vqDZ9PF9Qnb5VDgXK9beCHOMOaL4Vpodswm2Tsf2azJjpkAANbR7UmppqYm/e1vfzMfHzhwQO+884769++vyy67TIWFhSoqKlJWVpaysrJUVFSkhIQETZ06VZKUnJys6dOna+7cuUpJSVH//v01b948DR061Pw2HABgX73r+oNn08X1CWP7a1PNeT5dd5zDNQ/teC20DnbOJtk7H9msJZLXHwQAoNuTUrt27dK4cePMxx3Xepo2bZrWrFmj+fPnq6WlRTNnzjQvXrt582bzGiGStGzZMsXExKigoMC8eO2aNWu4RggAXER6xfUHz6aL6xPuOlinnMv7ddE5fALtkvfj/ra8Fpqdr/Mm2Tsf2awpktcfBACg25NSY8eOlWEYp13ucDjk8Xjk8XhO2ycuLk6lpaUqLS3t7uYBABbXq64/eDZdXJ8wSoac53rdwh5mx2uhdbBzNsne+chmLXbLAwCwlh65+15v8z8HPtGIzC5OwZCkXav//fecB8MzIAC4iIX9+oN/eUnqGx/SDAAAAAAunO0npf7nwCeRHgIAXHS4/iAAAACAs7H9pBQAIPy4/iAAAACAs2FSCgAQclx/EAAAAMDZ9JJLtQIAAAAAAOBiwqQUAAAAAAAAwo5JKQAAAAAAAIQdk1IAAAAAAAAIO3td6HzX6kiPAAAAAAAAAOfAXpNSAAAAAACgd9u9/vzP28p5MKRDQWRx+h4AAAAAAADCjiOlAACwqjN9y8i3iAAAAOjlOFIKAAAAAAAAYceRUgAAAAAAhEo3b8B15YefnPxLdP8eGAzQu3GkFAAAAAAAAMKOSSkAAAAAAACEne0mpf7nwCeRHgIAAAAAAADOwnaTUhdk1+pun/8LAAAAAACA7mNSCgAAAAAAAGHHpBQAAAAAAADCLibSAwAAAD3gbKej5zwYnnEAAAAAp2GPSSmuAwUA6GH/c+ATjcjsH+lhAAAAALbB6XsAAJwj7vAKAAAAhA6TUgAAdKFjAup/DnzCZBQAAADQA+xx+h4AACHQMfnUcZoek1EAAFzEuExM73S++4XrafZKET1S6uc//7kyMzMVFxen4cOH649//GMkhwMA6IV6olZ0Ndn02TYmowDAWvhcAQDWFLEjpV566SUVFhbq5z//uUaPHq1f/OIXuu222/Tuu+/qsssuO7cn+ctLUt/40A/uszOvzKYCQMSEpFacQcfFyy/KSSjuzgfAJnq6VgChduqR2cDFLGJHSi1dulTTp0/Xt771LV199dVavny5MjIytHLlym4/10X5YQIALgKhrhVnO0IKAGA9oawVwPk69feMjsdd/QD4t4gcKdXa2qqqqir9x3/8R1B7Xl6eKisrO/X3+/3y+/3m4/r6eknSJ00t2n3oU0nS0YYWSVJjs9/8e8fjzy7vtqNHz2+98xQIBNTc3KyjR4/K6XSGdds9zc7ZJHvnI5s1ffLJyV96DMOI8EjOTyhrhfTverBlX03Qn+fjvGtKiAQMnXzdNrbI6eihjYS5/nWw8/9Jyd75yGZN1Ir/rRWf2G+iwM6v225l+8tLPTqWjs+jHbrz+8WpfTt+vwhLnY+QiGbr4d9t7Px/ridrRUQmpf71r3+pra1NqampQe2pqany+Xyd+hcXF2vRokWd2gd/dV6PjfHfZoVhGwDQc44ePark5ORID6PbrFUr7Ij6B1xMLvpaMXhwj40RQG/B7zYXqidqRUTvvudwBE+NGobRqU2SFixYoDlz5piPP/30U11++eX68MMPLVk8z6ShoUEZGRk6dOiQ+vbtG+nhhJSds0n2zkc2a6qvr9dll12m/v2tfb0CakVndn7d2jmbZO98ZLMmagW1worsnE2ydz6yWVNP1oqITEoNGDBA0dHRnb69qK2t7fQthyS5XC65XK5O7cnJybbb2R369u1LNouycz6yWVNUVERvtHreqBVnZ+fXrZ2zSfbORzZrolZQK6zIztkke+cjmzX1RK2ISPWJjY3V8OHD5fV6g9q9Xq9GjRoViSEBAHoZagUA4GyoFQBgbRE7fW/OnDm67777lJOTo5EjR+r555/Xhx9+qEceeSRSQwIA9DLUCgDA2VArAMC6IjYp9Y1vfENHjx7VU089pZqaGmVnZ2vTpk26/PLLz7quy+XSk08+2eWht1ZHNuuycz6yWZMdslErukY267JzPrJZkx2yUSu6RjbrsnM+sllTT2ZzGFa9/ysAAAAAAAAsy5pXNAQAAAAAAIClMSkFAAAAAACAsGNSCgAAAAAAAGHHpBQAAAAAAADCzpKTUj//+c+VmZmpuLg4DR8+XH/84x8jPaRu83g8cjgcQT9ut9tcbhiGPB6P0tPTFR8fr7Fjx2rfvn0RHPHpbdu2TXfccYfS09PlcDj06quvBi0/lyx+v1+zZ8/WgAEDlJiYqEmTJunw4cNhTNG1s2V74IEHOu3HG2+8MahPb8xWXFysG264QUlJSRo4cKAmT56s/fv3B/Wx6n47l2xW3W8rV67Utddeq759+6pv374aOXKkXn/9dXO5VfdZT6FW9C7UCuu951ArrLnfqBXdQ63oXagV1nvPoVZYc7/1plphuUmpl156SYWFhVq4cKF2796tm266Sbfddps+/PDDSA+t24YMGaKamhrzp7q62lxWUlKipUuXasWKFdq5c6fcbrdyc3PV2NgYwRF37dixY7ruuuu0YsWKLpefS5bCwkKVl5errKxM27dvV1NTk/Lz89XW1hauGF06WzZJuvXWW4P246ZNm4KW98ZsFRUVmjVrlnbs2CGv16sTJ04oLy9Px44dM/tYdb+dSzbJmvtt0KBB+uEPf6hdu3Zp165duuWWW/TVr37VLBBW3Wc9gVpBrQgnaoX19hu1wnr7rCdQK6gV4UStsN5+o1aEaZ8ZFvN//s//MR555JGgti9+8YvGf/zHf0RoROfnySefNK677roul7W3txtut9v44Q9/aLYdP37cSE5ONp577rkwjfD8SDLKy8vNx+eS5dNPPzWcTqdRVlZm9jly5IgRFRVlvPHGG2Eb+9mcms0wDGPatGnGV7/61dOuY5VstbW1hiSjoqLCMAx77bdTsxmGffabYRhGv379jP/7f/+vrfZZKFArqBWRQq2w5n6jVlhvn4UCtYJaESnUCmvuN2pFz+wzSx0p1draqqqqKuXl5QW15+XlqbKyMkKjOn/vv/++0tPTlZmZqbvvvlsffPCBJOnAgQPy+XxBOV0ul8aMGWO5nOeSpaqqSoFAIKhPenq6srOzLZH3rbfe0sCBAzV48GA9/PDDqq2tNZdZJVt9fb0kqX///pLstd9OzdbB6vutra1NZWVlOnbsmEaOHGmrfXahqBXUit7I6u85ErXCivuNWnF61ApqRW9k9fcciVphxf0W6VphqUmpf/3rX2pra1NqampQe2pqqnw+X4RGdX5GjBihX/7yl3rzzTf1wgsvyOfzadSoUTp69KiZxQ45zyWLz+dTbGys+vXrd9o+vdVtt92mX/3qV/rDH/6gZ599Vjt37tQtt9wiv98vyRrZDMPQnDlz9OUvf1nZ2dmS7LPfusomWXu/VVdXq0+fPnK5XHrkkUdUXl6ua665xjb7LBSoFdbLaffXr5XfczpQK6y136gVZ0etsF5Ou79+rfye04FaYa391ltqRcwFZIgYh8MR9NgwjE5tvd1tt91m/n3o0KEaOXKkrrzySq1du9a8MJodcnY4nyxWyPuNb3zD/Ht2drZycnJ0+eWX6//9v/+nKVOmnHa93pTt0Ucf1Z49e7R9+/ZOy6y+306Xzcr77aqrrtI777yjTz/9VC+//LKmTZumiooKc7nV91ko2eE9lFphj9evld9zOlArrLXfqBXnzg7vodQKe7x+rfye04FaYa391ltqhaWOlBowYICio6M7zbzV1tZ2msWzmsTERA0dOlTvv/++ebcMO+Q8lyxut1utra2qq6s7bR+rSEtL0+WXX673339fUu/PNnv2bL322mvaunWrBg0aZLbbYb+dLltXrLTfYmNj9YUvfEE5OTkqLi7Wddddp5/85Ce22GehQq2wXs6L7fVrpfcciVrRwUr7jVpxdtQK6+W82F6/VnrPkagVHay033pLrbDUpFRsbKyGDx8ur9cb1O71ejVq1KgIjSo0/H6/3nvvPaWlpSkzM1NutzsoZ2trqyoqKiyX81yyDB8+XE6nM6hPTU2N9u7da7m8R48e1aFDh5SWliap92YzDEOPPvqoXnnlFf3hD39QZmZm0HIr77ezZeuKVfZbVwzDkN/vt/Q+CzVqBbWit7PKew61IphV9ltXqBWdUSuoFb2dVd5zqBXBrLLfuhKxWtGty6L3AmVlZYbT6TRWrVplvPvuu0ZhYaGRmJho/OMf/4j00Lpl7ty5xltvvWV88MEHxo4dO4z8/HwjKSnJzPHDH/7QSE5ONl555RWjurra+OY3v2mkpaUZDQ0NER55Z42Njcbu3buN3bt3G5KMpUuXGrt37zYOHjxoGMa5ZXnkkUeMQYMGGVu2bDH+/Oc/G7fccotx3XXXGSdOnIhULMMwzpytsbHRmDt3rlFZWWkcOHDA2Lp1qzFy5Ejjc5/7XK/P9p3vfMdITk423nrrLaOmpsb8aW5uNvtYdb+dLZuV99uCBQuMbdu2GQcOHDD27NljPPHEE0ZUVJSxefNmwzCsu896ArWCWhFO1Arr7TdqhfX2WU+gVlArwolaYb39Rq0Izz6z3KSUYRjGz372M+Pyyy83YmNjjS996UtBt2S0im984xtGWlqa4XQ6jfT0dGPKlCnGvn37zOXt7e3Gk08+abjdbsPlchk333yzUV1dHcERn97WrVsNSZ1+pk2bZhjGuWVpaWkxHn30UaN///5GfHy8kZ+fb3z44YcRSBPsTNmam5uNvLw849JLLzWcTqdx2WWXGdOmTes07t6YratMkozVq1ebfay6386Wzcr77aGHHjLf+y699FJj/PjxZuEwDOvus55CrehdqBXWe8+hVlhzv1Eruoda0btQK6z3nkOtsOZ+6021wmEYhtG9Y6sAAAAAAACAC2Opa0oBAAAAAADAHpiUAgAAAAAAQNgxKQUAAAAAAICwY1IKAAAAAAAAYcekFAAAAAAAAMKOSSkAAAAAAACEHZNSAAAAAAAACDsmpQAAAAAAABB2TEoBAAAAAAAg7JiUAgAAAAAAQNgxKQUAAAAAAICwY1IKAAAAAAAAYff/AYTuXPsi3QxCAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "model_ssa = airline_stochastic(demand_saa)\n", - "seats_saa = airline_solve(model_ssa)\n", - "seat_report_saa(seats_saa, demand_saa)" - ] - }, - { - "cell_type": "markdown", - "id": "d20a5abd-2b54-436d-a171-b8f1fa3048dd", - "metadata": {}, - "source": [ - "## Model 6. Tackling chance constraints using SAA in the case of correlated demand\n", - "\n", - "The linear counterparts of the chance constraints used above in Model 3 were derived under the assumption of independent normal distributions of demand for first-class and business travel. That assumption no longer holds for the case where demand scenarios are sampled from correlated distributions.\n", - "\n", - "This final model replaces the chance constraints by approximating them using two linear constraints that explicitly track unsatisfied demand. In doing so, we introduce two new sets of integer variables $y_s$ and $w_s$ and a big-M constant and approximate the true multivariate distribution with the empirical one obtained from the sample. \n", - "\n", - "The first stage remains unchanged and so does the objective value of the second stage. The adjusted second-stage constraints are:\n", - "\n", - "$$\n", - "\\begin{align*}\n", - " t_c & \\leq s_c & \\forall c\\in C \\\\\n", - " t_c & \\leq z_{c, s} & \\forall (c, s) \\in C \\times S \\\\\n", - " s_F + M y_s & \\geq z_{F, s} & \\forall s \\in S\\\\\n", - " s_F + s_B + M w_s & \\geq z_{F, s} + z_{B,s} & \\forall s \\in S \\\\\n", - " \\frac{1}{N} \\sum_{s\\in S} y_s & \\leq 1 - 0.98 \\\\\n", - " \\frac{1}{N} \\sum_{s\\in S} z_s & \\leq 1 - 0.95\n", - "\\end{align*}\n", - "$$\n", - "\n", - "where $y_s$ and $w_s$ are binary variables indicating those scenarios which do not satisfy the requirements of the airline's loyalty programs for first-class and business-class passengers. \n", - "\n", - "The following cell implements this new model. Note that the running time for the cell can be up to a few minutes for a large number of scenarios." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "f10836c0-a503-4b06-b450-a9731e1fd55d", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Seat Allocation\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FBETOTAL
seat allocation20.050.085.0155.0
economy equivalent seat allocation40.075.085.0200.0
\n", - "
" - ], - "text/plain": [ - " F B E TOTAL\n", - "seat allocation 20.0 50.0 85.0 155.0\n", - "economy equivalent seat allocation 40.0 75.0 85.0 200.0" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Mean Tickets Sold\n" - ] - }, - { - "data": { - "text/plain": [ - "F 11.995\n", - "B 28.031\n", - "E 85.000\n", - "dtype: float64" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Mean Seats not Sold\n" - ] - }, - { - "data": { - "text/plain": [ - "F 8.005\n", - "B 21.969\n", - "E 0.000\n", - "dtype: float64" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Mean Spillage (Unfulfilled Demand)\n" - ] - }, - { - "data": { - "text/plain": [ - "F 0.017\n", - "B 0.559\n", - "E 90.301\n", - "dtype: float64" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Expected Revenue (in units of economy ticket price): 177.05\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApsAAAF0CAYAAABsaPKuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtd0lEQVR4nO3deXRUVaL24bcyUEkwYZQMTIktChJRFMUGWuC2BBoQNe1ViDLYzgwaUBlVCpQA4XZuVFq4tF7E64pot4i02EAURBBoo8GJRrA1DAJpFDABAqFC9veHK/VZpoqkIJsM9XvWqqW1a9c5u17Cycs5qZTDGGMEAAAAWBBS2wsAAABAw0XZBAAAgDWUTQAAAFhD2QQAAIA1lE0AAABYQ9kEAACANZRNAAAAWEPZBAAAgDWUTQAAAFhD2QRQpZdeekkOh8NzCwsLU3x8vIYOHaqvv/66tpdXZ40aNUoXXHCB38cvuOACjRo1ynN/165dcjgceumllwLaT05OjrKzs89ukQBgWVhtLwBA/bF48WJ17NhRJ0+e1IcffqhZs2Zp3bp1+uqrr9SsWbPaXl69Fx8fr82bN+tXv/pVQM/LycnRl19+qfT0dDsLA4BzQNkEUG3Jycnq1q2bJKlPnz46ffq0pk+fruXLl+uuu+6q5dXVf06nU9ddd11tLyNgJSUlioqKqu1lAKijuIwO4KxVFM9///vfXuMff/yxhgwZoubNmysiIkJdu3bV66+/7nn8s88+k8Ph0Isvvlhpm3//+9/lcDi0YsUKz9jXX3+ttLQ0tWrVSk6nU506ddKf/vQnr+e9//77cjgcevXVVzVt2jQlJCQoJiZGN9xwg3bs2OE1NzEx0evydYU+ffqoT58+XmPFxcV69NFHlZSUpEaNGql169ZKT0/X8ePHq5VRIHxdRv/+++913333qW3btnI6nbrwwgvVs2dPvfvuu541r1y5Urt37/b6UYcKhw8f1ujRo9W6dWs1atRIF110kaZNm6bS0lKvff/444+6++671bx5c11wwQUaNGiQvv32WzkcDrlcLs88l8slh8Oh/Px83XrrrWrWrJnnTOzHH3+soUOHKjExUZGRkUpMTNSwYcO0e/dur31V/FjG2rVrde+996pFixaKiYnRiBEjdPz4cRUWFuq2225T06ZNFR8fr0cffVRut7uG0wZwvnBmE8BZKygokCRdcsklnrF169ZpwIAB6t69uxYuXKgmTZpo6dKluv3221VSUqJRo0bpiiuuUNeuXbV48WLdfffdXtt86aWX1KpVKw0cOFCS9M9//lM9evRQu3bt9Mc//lFxcXFavXq1HnroIf3www+aPn261/OnTp2qnj176oUXXlBxcbEmTZqkG2+8Udu3b1doaGhAr6+kpES9e/fWd999p6lTp6pLly7atm2bnnzySX3xxRd69913vYqdP2VlZQHt9+eGDx+u/Px8zZo1S5dccol+/PFH5efn69ChQ5Kk559/Xvfdd5+++eYbvfnmm17PPXnypPr27atvvvlGM2bMUJcuXbRhwwbNnj1bn376qVauXClJKi8v14033qiPP/5YLpdLV111lTZv3qwBAwb4XVdqaqqGDh2qBx54wFO8d+3apUsvvVRDhw5V8+bNdeDAAS1YsEDXXHON/vnPf6ply5Ze27jnnnuUmpqqpUuXauvWrZo6darKysq0Y8cOpaam6r777tO7776ruXPnKiEhQRMmTDjrHAHUIgMAVVi8eLGRZLZs2WLcbrc5evSoWbVqlYmLizPXX3+9cbvdnrkdO3Y0Xbt29RozxpjBgweb+Ph4c/r0aWOMMc8++6yRZHbs2OGZc/jwYeN0Os0jjzziGevfv79p06aNKSoq8tre2LFjTUREhDl8+LAxxph169YZSWbgwIFe815//XUjyWzevNkz1r59ezNy5MhKr7N3796md+/envuzZ882ISEhJi8vz2veX//6VyPJvPPOO2eKzYwcOdJIOuPt5+soKCgwkszixYs9YxdccIFJT08/434GDRpk2rdvX2l84cKFRpJ5/fXXvcbnzp1rJJk1a9YYY4xZuXKlkWQWLFjgNW/27NlGkpk+fbpnbPr06UaSefLJJ8+4JmOMKSsrM8eOHTONGzc2zzzzjGe84utp3LhxXvNvvvlmI8lkZWV5jV955ZXmqquuqnJ/AOomLqMDqLbrrrtO4eHhio6O1oABA9SsWTO99dZbCgv76SLJv/71L3311Ve64447JP10Rq/iNnDgQB04cMBzSfuOO+6Q0+n0umT86quvqrS01PPznydPntR7772nW265RVFRUZW2d/LkSW3ZssVrjUOGDPG636VLF0mqdCm3Ot5++20lJyfryiuv9Np3//795XA49P7771e5jcjISOXl5fm8RUZGVvn8a6+9Vi+99JKefvppbdmyJaDLyWvXrlXjxo116623eo1X/AjBe++9J0lav369JOm2227zmjds2DC/2/79739faezYsWOaNGmSLr74YoWFhSksLEwXXHCBjh8/ru3bt1eaP3jwYK/7nTp1kiQNGjSo0vjZ/PkBqBsomwCq7eWXX1ZeXp7Wrl2r+++/X9u3b/cqJBU/u/noo48qPDzc6zZ69GhJ0g8//CBJat68uYYMGaKXX35Zp0+flvTTJfRrr71WnTt3liQdOnRIZWVleu655yptr+Iye8X2KrRo0cLrvtPplCSdOHEi4Nf773//W59//nmlfUdHR8sYU2nfvoSEhKhbt24+byEhVR+CX3vtNY0cOVIvvPCCfv3rX6t58+YaMWKECgsLq3zuoUOHFBcXV+lSf6tWrRQWFua5FH/o0CGFhYWpefPmXvNiY2P9bjs+Pr7SWFpamubPn6977rlHq1ev1kcffaS8vDxdeOGFPvP/5f4aNWrkd/zkyZNneKUA6jJ+ZhNAtXXq1MnzpqC+ffvq9OnTeuGFF/TXv/5Vt956q+dn8qZMmaLU1FSf27j00ks9/3/XXXfpL3/5i3Jzc9WuXTvl5eVpwYIFnsebNWum0NBQDR8+XGPGjPG5vaSkpIBfR0RERKU3yEg/Fdef/1xhy5YtFRkZqf/93//1uZ1f/gyiDS1btlR2drays7O1Z88erVixQpMnT9bBgwe1atWqMz63RYsW+sc//iFjjFfhPHjwoMrKyjzrb9GihcrKynT48GGvonemQvvLAltUVKS3335b06dP1+TJkz3jpaWlOnz4cECvGUDDQtkEcNYyMzP1xhtv6Mknn1RqaqouvfRSdejQQZ999pkyMjKqfH5KSopat26txYsXq127doqIiPA6UxoVFaW+fftq69at6tKli+fM17lKTEzU559/7jW2c+dO7dixw6tADh48WBkZGWrRosVZldqa1q5dO40dO1bvvfeePvzwQ8+40+n0eebwt7/9rV5//XUtX75ct9xyi2f85Zdf9jwuSb1791ZmZqZee+01Pfjgg555S5curfbaHA6HjDGeM8kVXnjhBc+ZawDBibIJ4Kw1a9ZMU6ZM0cSJE5WTk6M777xT//M//6Pf/e536t+/v0aNGqXWrVvr8OHD2r59u/Lz8/WXv/zF8/zQ0FCNGDFCWVlZiomJUWpqqpo0aeK1j2eeeUa9evXSb37zGz344INKTEzU0aNH9a9//Ut/+9vftHbt2oDXPXz4cN15550aPXq0fv/732v37t3KzMzUhRde6DUvPT1db7zxhq6//nqNHz9eXbp0UXl5ufbs2aM1a9bokUceUffu3c8uvGooKipS3759lZaWpo4dOyo6Olp5eXlatWqV15njyy+/XMuWLdOCBQt09dVXey7djxgxQn/60580cuRI7dq1S5dffrk2btyojIwMDRw4UDfccIMkacCAAerZs6ceeeQRFRcX6+qrr9bmzZs9pbQ6l/tjYmJ0/fXXa968eWrZsqUSExO1fv16vfjii2ratKmVfADUD5RNAOdk3Lhxmj9/vmbOnKlhw4apb9+++uijjzRr1iylp6fryJEjatGihS677LJKb0CRfrqUPnv2bH3//fc+fzH8ZZddpvz8fD311FN6/PHHdfDgQTVt2lQdOnTw/NxmoNLS0rR//34tXLhQixcvVnJyshYsWKAZM2Z4zWvcuLE2bNigOXPmaNGiRSooKFBkZKTatWunG264QYmJiWe1/+qKiIhQ9+7d9X//93/atWuX3G632rVrp0mTJmnixImeeQ8//LC2bdumqVOnqqioSMYYGWMUERGhdevWadq0aZo3b56+//57tW7dWo8++qjXr4wKCQnR3/72Nz3yyCOaM2eOTp06pZ49e+qVV17RddddV+2ymJOTo4cfflgTJ05UWVmZevbsqdzc3Epv+AEQXBzGGFPbiwAA1D05OTm644479OGHH6pHjx61vRwA9RRlEwCgV199Vfv27dPll1+ukJAQbdmyRfPmzVPXrl09vxoJAM4Gl9EBAIqOjtbSpUv19NNP6/jx44qPj9eoUaP09NNP1/bSANRznNkEAACANfxSdwAAAFhD2QQAAIA1lE0AAABYU+feIFReXq79+/crOjq60sehAQAAoPYZY3T06FElJCRU+cEPda5s7t+/X23btq3tZQAAAKAKe/fuVZs2bc44p86VzejoaEk/LT4mJuaMc91ut9asWaOUlBSFh4efj+XVC+TiH9n4Ri7+kY1v5OIf2fhGLv7Vx2yKi4vVtm1bT287kzpXNisuncfExFSrbEZFRSkmJqbe/OGcD+TiH9n4Ri7+kY1v5OIf2fhGLv7V52yq8yOPvEEIAAAA1lA2AQAAYA1lEwAAANZQNgEAAGANZRMAAADWUDYBAABgDWUTAAAA1lA2AQAAYA1lEwAAANZQNgEAAGANZRMAAADWUDYBAABgTVhtLwAAgkHi5JXnfZ+75gw67/sEgF/izCYAAACsoWwCAADAGsomAAAArKFsAgAAwBrKJgAAAKyhbAIAAMAayiYAAACsoWwCAADAGsomAAAArKFsAgAAwBrKJgAAAKyhbAIAAMCasNpeAAAAZyNx8srzur9dcwad1/0BDQVnNgEAAGANZRMAAADWUDYBAABgDWUTAAAA1lA2AQAAYA1lEwAAANZQNgEAAGANZRMAAADWUDYBAABgDWUTAAAA1lA2AQAAYA1lEwAAANZQNgEAAGANZRMAAADWBFQ2y8rK9PjjjyspKUmRkZG66KKLNHPmTJWXl3vmGGPkcrmUkJCgyMhI9enTR9u2bavxhQMAAKDuC6hszp07VwsXLtT8+fO1fft2ZWZmat68eXruuec8czIzM5WVlaX58+crLy9PcXFx6tevn44ePVrjiwcAAEDdFlDZ3Lx5s2666SYNGjRIiYmJuvXWW5WSkqKPP/5Y0k9nNbOzszVt2jSlpqYqOTlZS5YsUUlJiXJycqy8AAAAANRdAZXNXr166b333tPOnTslSZ999pk2btyogQMHSpIKCgpUWFiolJQUz3OcTqd69+6tTZs21eCyAQAAUB+EBTJ50qRJKioqUseOHRUaGqrTp09r1qxZGjZsmCSpsLBQkhQbG+v1vNjYWO3evdvnNktLS1VaWuq5X1xcLElyu91yu91nXE/F41XNCzbk4h/Z+EYu/tVUNs5QUxPLCYjNP8+68DVzvjOt7mutC9nUReTiX33MJpC1Oowx1f7bunTpUj322GOaN2+eOnfurE8//VTp6enKysrSyJEjtWnTJvXs2VP79+9XfHy853n33nuv9u7dq1WrVlXapsvl0owZMyqN5+TkKCoqqtovBAAAAOdHSUmJ0tLSVFRUpJiYmDPODahstm3bVpMnT9aYMWM8Y08//bReeeUVffXVV/r222/1q1/9Svn5+eratatnzk033aSmTZtqyZIllbbp68xm27Zt9cMPP1S5eLfbrdzcXPXr10/h4eHVfRkNHrn4Rza+kYt/NZVNsmt1Da6qer509be27brwNXO+M61unnUhm7qIXPyrj9kUFxerZcuW1SqbAV1GLykpUUiI9495hoaGen71UVJSkuLi4pSbm+spm6dOndL69es1d+5cn9t0Op1yOp2VxsPDw6sdeCBzgwm5+Ec2vpGLf+eaTelpRw2upnrOx59lbX7NnO9MA32d/H3yjVz8q0/ZBLLOgMrmjTfeqFmzZqldu3bq3Lmztm7dqqysLP3hD3+QJDkcDqWnpysjI0MdOnRQhw4dlJGRoaioKKWlpQX2KgAAAFDvBVQ2n3vuOT3xxBMaPXq0Dh48qISEBN1///168sknPXMmTpyoEydOaPTo0Tpy5Ii6d++uNWvWKDo6usYXDwAAgLotoLIZHR2t7OxsZWdn+53jcDjkcrnkcrnOcWkAAACo7/hsdAAAAFhD2QQAAIA1lE0AAABYQ9kEAACANZRNAAAAWEPZBAAAgDWUTQAAAFhD2QQAAIA1lE0AAABYQ9kEAACANZRNAAAAWEPZBAAAgDWUTQAAAFhD2QQAAIA1lE0AAABYQ9kEAACANZRNAAAAWEPZBAAAgDWUTQAAAFhD2QQAAIA1lE0AAABYQ9kEAACANZRNAAAAWBNW2wsAANiROHmltW07Q40yr5WSXatVetohSdo1Z5C1/QGovzizCQAAAGsomwAAALCGsgkAAABrKJsAAACwhrIJAAAAayibAAAAsIayCQAAAGsomwAAALCGsgkAAABr+AQhAECNsPmJRQDqL85sAgAAwBrKJgAAAKzhMjqAoFTdS77OUKPMa6Vk12qVnnZYXhUANDyc2QQAAIA1lE0AAABYQ9kEAACANZRNAAAAWEPZBAAAgDWUTQAAAFhD2QQAAIA1lE0AAABYQ9kEAACANXyCEACfqvsJOzVl15xB53V/AGofx5ngwJlNAAAAWEPZBAAAgDVcRgdQJ5zvy2lAXVcbfye4zAwbOLMJAAAAayibAAAAsIayCQAAAGsomwAAALAm4LK5b98+3XnnnWrRooWioqJ05ZVX6pNPPvE8boyRy+VSQkKCIiMj1adPH23btq1GFw0AAID6IaB3ox85ckQ9e/ZU37599fe//12tWrXSN998o6ZNm3rmZGZmKisrSy+99JIuueQSPf300+rXr5927Nih6Ojoml4/AADnRXXfHe4MNcq8Vkp2rVbpaYflVQF1X0Blc+7cuWrbtq0WL17sGUtMTPT8vzFG2dnZmjZtmlJTUyVJS5YsUWxsrHJycnT//ffXzKoBAABQLwR0GX3FihXq1q2b/vM//1OtWrVS165d9ec//9nzeEFBgQoLC5WSkuIZczqd6t27tzZt2lRzqwYAAEC9ENCZzW+//VYLFizQhAkTNHXqVH300Ud66KGH5HQ6NWLECBUWFkqSYmNjvZ4XGxur3bt3+9xmaWmpSktLPfeLi4slSW63W263+4zrqXi8qnnBhlz8IxvffOXiDDW1tZw6xRlivP6Ln5CLf/U5G5vHxrpwnKmrx/76+L0pkLU6jDHV/pNu1KiRunXr5nWW8qGHHlJeXp42b96sTZs2qWfPntq/f7/i4+M9c+69917t3btXq1atqrRNl8ulGTNmVBrPyclRVFRUtV8IAAAAzo+SkhKlpaWpqKhIMTExZ5wb0JnN+Ph4XXbZZV5jnTp10htvvCFJiouLkyQVFhZ6lc2DBw9WOttZYcqUKZowYYLnfnFxsdq2bauUlJQqF+92u5Wbm6t+/fopPDw8kJfSoJGLf2Tjm69ckl2ra3lVdYMzxOipbuV64uMQlZbzZo8K5OJffc7mS1d/a9uuC8cZm6/vXNTH700VV6KrI6Cy2bNnT+3YscNrbOfOnWrfvr0kKSkpSXFxccrNzVXXrl0lSadOndL69es1d+5cn9t0Op1yOp2VxsPDw6sdeCBzgwm5+Ec2vv08F95F66203EEmPpCLf/Uxm/NxXKzN40xdP+7Xp+9NgawzoLI5fvx49ejRQxkZGbrtttv00UcfadGiRVq0aJEkyeFwKD09XRkZGerQoYM6dOigjIwMRUVFKS0tLbBXAQAAgHovoLJ5zTXX6M0339SUKVM0c+ZMJSUlKTs7W3fccYdnzsSJE3XixAmNHj1aR44cUffu3bVmzRp+xyYAAEAQCqhsStLgwYM1ePBgv487HA65XC65XK5zWRcAAAAaAD4bHQAAANZQNgEAAGANZRMAAADWUDYBAABgDWUTAAAA1lA2AQAAYA1lEwAAANZQNgEAAGANZRMAAADWUDYBAABgDWUTAAAA1lA2AQAAYA1lEwAAANZQNgEAAGANZRMAAADWUDYBAABgDWUTAAAA1lA2AQAAYA1lEwAAANZQNgEAAGANZRMAAADWUDYBAABgDWUTAAAA1lA2AQAAYA1lEwAAANZQNgEAAGBNWG0vAAAA1A2Jk1da27Yz1CjzWinZtVqlpx3W9oO6hzObAAAAsIayCQAAAGsomwAAALCGn9kEAABBwebPpPqya86g87q/uoozmwAAALCGsgkAAABruIwO1BP8ShIAQH3EmU0AAABYQ9kEAACANZRNAAAAWEPZBAAAgDWUTQAAAFhD2QQAAIA1lE0AAABYQ9kEAACANZRNAAAAWEPZBAAAgDWUTQAAAFhD2QQAAIA1lE0AAABYQ9kEAACANZRNAAAAWEPZBAAAgDWUTQAAAFhD2QQAAIA1lE0AAABYQ9kEAACANedUNmfPni2Hw6H09HTPmDFGLpdLCQkJioyMVJ8+fbRt27ZzXScAAADqobMum3l5eVq0aJG6dOniNZ6ZmamsrCzNnz9feXl5iouLU79+/XT06NFzXiwAAADql7Mqm8eOHdMdd9yhP//5z2rWrJln3Bij7OxsTZs2TampqUpOTtaSJUtUUlKinJycGls0AAAA6oezKptjxozRoEGDdMMNN3iNFxQUqLCwUCkpKZ4xp9Op3r17a9OmTee2UgAAANQ7YYE+YenSpcrPz1deXl6lxwoLCyVJsbGxXuOxsbHavXu3z+2VlpaqtLTUc7+4uFiS5Ha75Xa7z7iWisermhdsyMW/+pyNM9TY23aI8fov/j+y8Y1c/CMb34Ixl+p+r6mP35sCWWtAZXPv3r16+OGHtWbNGkVERPid53A4vO4bYyqNVZg9e7ZmzJhRaXzNmjWKioqq1rpyc3OrNS/YkIt/9TGbzGvt7+OpbuX2d1JPkY1v5OIf2fgWTLm88847Ac2vT9+bSkpKqj3XYYyp9j8xli9frltuuUWhoaGesdOnT8vhcCgkJEQ7duzQxRdfrPz8fHXt2tUz56abblLTpk21ZMmSStv0dWazbdu2+uGHHxQTE3PG9bjdbuXm5qpfv34KDw+v7sto8MjFv5rMJtm1uoZWVfucIUZPdSvXEx+HqLTc9z8MgxXZ+EYu/pGNb8GYy5eu/tWaVx+/bxcXF6tly5YqKiqqsq8FdGbzt7/9rb744guvsbvuuksdO3bUpEmTdNFFFykuLk65ubmesnnq1CmtX79ec+fO9blNp9Mpp9NZaTw8PLzagQcyN5iQi381kU3p6YZ3sCwtdzTI11UTyMY3cvGPbHwLplwC/T5Tn75vB7LOgMpmdHS0kpOTvcYaN26sFi1aeMbT09OVkZGhDh06qEOHDsrIyFBUVJTS0tIC2RUAAAAagIDfIFSViRMn6sSJExo9erSOHDmi7t27a82aNYqOjq7pXQEAAKCOO+ey+f7773vddzgccrlccrlc57ppAAAA1HN8NjoAAACsoWwCAADAGsomAAAArKFsAgAAwBrKJgAAAKyhbAIAAMAayiYAAACsoWwCAADAGsomAAAArKFsAgAAwBrKJgAAAKyhbAIAAMAayiYAAACsoWwCAADAGsomAAAArKFsAgAAwBrKJgAAAKwJq+0FAAAANESJk1dWa54z1CjzWinZtVqlpx1nvb9dcwad9XNt4swmAAAArKFsAgAAwBrKJgAAAKyhbAIAAMAayiYAAACsoWwCAADAGsomAAAArKFsAgAAwBrKJgAAAKyhbAIAAMAayiYAAACsoWwCAADAGsomAAAArKFsAgAAwBrKJgAAAKyhbAIAAMAayiYAAACsoWwCAADAmrDaXgAapsTJK8/r/nbNGXRe9wcAAKqHM5sAAACwhrIJAAAAayibAAAAsIayCQAAAGsomwAAALCGsgkAAABrKJsAAACwhrIJAAAAayibAAAAsIayCQAAAGsomwAAALCGsgkAAABrKJsAAACwhrIJAAAAayibAAAAsIayCQAAAGsomwAAALCGsgkAAABrAiqbs2fP1jXXXKPo6Gi1atVKN998s3bs2OE1xxgjl8ulhIQERUZGqk+fPtq2bVuNLhoAAAD1Q0Blc/369RozZoy2bNmi3NxclZWVKSUlRcePH/fMyczMVFZWlubPn6+8vDzFxcWpX79+Onr0aI0vHgAAAHVbWCCTV61a5XV/8eLFatWqlT755BNdf/31MsYoOztb06ZNU2pqqiRpyZIlio2NVU5Oju6///6aWzkAAADqvIDK5i8VFRVJkpo3by5JKigoUGFhoVJSUjxznE6nevfurU2bNvksm6WlpSotLfXcLy4uliS53W653e4z7r/i8armBZu6kIsz1JzX/VX3tdZkNuf7NdrkDDFe/8X/Rza+kYt/ZOMbufhXU9mcz+/7gezLYYw5q1dmjNFNN92kI0eOaMOGDZKkTZs2qWfPntq3b58SEhI8c++77z7t3r1bq1evrrQdl8ulGTNmVBrPyclRVFTU2SwNAAAAFpWUlCgtLU1FRUWKiYk549yzPrM5duxYff7559q4cWOlxxwOh9d9Y0ylsQpTpkzRhAkTPPeLi4vVtm1bpaSkVLl4t9ut3Nxc9evXT+Hh4WfxKhqmupBLsqvyPyzqAmeI0VPdyvXExyEqLff9NRmMyMU/svGNXPwjG9/Ixb+ayuZLV/8aXNWZVVyJro6zKpvjxo3TihUr9MEHH6hNmzae8bi4OElSYWGh4uPjPeMHDx5UbGysz205nU45nc5K4+Hh4dUuSoHMDSa1mUvp6bp9ICktd9T5NdYGcvGPbHwjF//Ixjdy8e9cszmf3/MD2VdA70Y3xmjs2LFatmyZ1q5dq6SkJK/Hk5KSFBcXp9zcXM/YqVOntH79evXo0SOQXQEAAKABCOjM5pgxY5STk6O33npL0dHRKiwslCQ1adJEkZGRcjgcSk9PV0ZGhjp06KAOHTooIyNDUVFRSktLs/ICAAAAUHcFVDYXLFggSerTp4/X+OLFizVq1ChJ0sSJE3XixAmNHj1aR44cUffu3bVmzRpFR0fXyIIBAABQfwRUNqvzxnWHwyGXyyWXy3W2awIAAEADwWejAwAAwBrKJgAAAKyhbAIAAMCac/q4Spy9xMkrrW3bGWqUee1Pv1i94vd17ZozyNr+AAAA/OHMJgAAAKyhbAIAAMAayiYAAACsoWwCAADAGsomAAAArKFsAgAAwBrKJgAAAKyhbAIAAMAayiYAAACs4ROEgoTNTywCAADwhzObAAAAsIayCQAAAGsomwAAALCGsgkAAABrKJsAAACwhrIJAAAAayibAAAAsIayCQAAAGsomwAAALCGsgkAAABrKJsAAACwhrIJAAAAayibAAAAsIayCQAAAGsomwAAALCGsgkAAABrKJsAAACwhrIJAAAAayibAAAAsIayCQAAAGsomwAAALCGsgkAAABrKJsAAACwhrIJAAAAayibAAAAsIayCQAAAGsomwAAALCGsgkAAABrwmp7AXVF4uSVtb0EAACABoczmwAAALCGsgkAAABrKJsAAACwhrIJAAAAayibAAAAsIayCQAAAGsomwAAALCGsgkAAABrKJsAAACwhrIJAAAAayibAAAAsMZa2Xz++eeVlJSkiIgIXX311dqwYYOtXQEAAKCOslI2X3vtNaWnp2vatGnaunWrfvOb3+h3v/ud9uzZY2N3AAAAqKOslM2srCzdfffduueee9SpUydlZ2erbdu2WrBggY3dAQAAoI4Kq+kNnjp1Sp988okmT57sNZ6SkqJNmzZVml9aWqrS0lLP/aKiIknS4cOH5Xa7z7gvt9utkpISHTp0SOHh4ee07rCy4+f0/LokrNyopKRcYe4QnS531PZy6hSy8Y1c/CMb38jFP7LxjVz8q6lsDh06VIOrOrOjR49KkowxVU82NWzfvn1Gkvnwww+9xmfNmmUuueSSSvOnT59uJHHjxo0bN27cuHGrZ7e9e/dW2Q1r/MxmBYfDu5kbYyqNSdKUKVM0YcIEz/3y8nIdPnxYLVq08Dn/54qLi9W2bVvt3btXMTExNbPwBoBc/CMb38jFP7LxjVz8IxvfyMW/+piNMUZHjx5VQkJClXNrvGy2bNlSoaGhKiws9Bo/ePCgYmNjK813Op1yOp1eY02bNg1onzExMfXmD+d8Ihf/yMY3cvGPbHwjF//Ixjdy8a++ZdOkSZNqzavxNwg1atRIV199tXJzc73Gc3Nz1aNHj5reHQAAAOowK5fRJ0yYoOHDh6tbt2769a9/rUWLFmnPnj164IEHbOwOAAAAdZSVsnn77bfr0KFDmjlzpg4cOKDk5GS98847at++fY3ux+l0avr06ZUuwwc7cvGPbHwjF//Ixjdy8Y9sfCMX/xp6Ng5jqvOedQAAACBwfDY6AAAArKFsAgAAwBrKJgAAAKyhbAIAAMCaOl82y8rK9PjjjyspKUmRkZG66KKLNHPmTJWXl3vmGGPkcrmUkJCgyMhI9enTR9u2bavFVdvxwQcf6MYbb1RCQoIcDoeWL1/u9Xh1cigtLdW4cePUsmVLNW7cWEOGDNF33313Hl9FzTtTLm63W5MmTdLll1+uxo0bKyEhQSNGjND+/fu9ttEQc5Gq/pr5ufvvv18Oh0PZ2dle4w0xm+rksn37dg0ZMkRNmjRRdHS0rrvuOu3Zs8fzeEPMRao6m2PHjmns2LFq06aNIiMj1alTJy1YsMBrTkPLZvbs2brmmmsUHR2tVq1a6eabb9aOHTu85gTr8beqbIL1GFydr5mfa+jH3zpfNufOnauFCxdq/vz52r59uzIzMzVv3jw999xznjmZmZnKysrS/PnzlZeXp7i4OPXr18/zIfENxfHjx3XFFVdo/vz5Ph+vTg7p6el68803tXTpUm3cuFHHjh3T4MGDdfr06fP1MmrcmXIpKSlRfn6+nnjiCeXn52vZsmXauXOnhgwZ4jWvIeYiVf01U2H58uX6xz/+4fNjxxpiNlXl8s0336hXr17q2LGj3n//fX322Wd64oknFBER4ZnTEHORqs5m/PjxWrVqlV555RVt375d48eP17hx4/TWW2955jS0bNavX68xY8Zoy5Ytys3NVVlZmVJSUnT8+HHPnGA9/laVTbAeg6vzNVMhKI6/VX56ei0bNGiQ+cMf/uA1lpqaau68805jjDHl5eUmLi7OzJkzx/P4yZMnTZMmTczChQvP61rPJ0nmzTff9NyvTg4//vijCQ8PN0uXLvXM2bdvnwkJCTGrVq06b2u36Ze5+PLRRx8ZSWb37t3GmODIxRj/2Xz33XemdevW5ssvvzTt27c3//3f/+15LBiy8ZXL7bff7jnG+BIMuRjjO5vOnTubmTNneo1dddVV5vHHHzfGBEc2Bw8eNJLM+vXrjTEcf3/ul9n4EozHYH+5BMvxt86f2ezVq5fee+897dy5U5L02WefaePGjRo4cKAkqaCgQIWFhUpJSfE8x+l0qnfv3tq0aVOtrLk2VCeHTz75RG6322tOQkKCkpOTgyqroqIiORwONW3aVFJw51JeXq7hw4frscceU+fOnSs9HozZlJeXa+XKlbrkkkvUv39/tWrVSt27d/e6nByMuVTo1auXVqxYoX379skYo3Xr1mnnzp3q37+/pODIpqioSJLUvHlzSRx/f+6X2fibE2zHYF+5BNPxt86XzUmTJmnYsGHq2LGjwsPD1bVrV6Wnp2vYsGGSpMLCQklSbGys1/NiY2M9jwWD6uRQWFioRo0aqVmzZn7nNHQnT57U5MmTlZaWppiYGEnBncvcuXMVFhamhx56yOfjwZjNwYMHdezYMc2ZM0cDBgzQmjVrdMsttyg1NVXr16+XFJy5VHj22Wd12WWXqU2bNmrUqJEGDBig559/Xr169ZLU8LMxxmjChAnq1auXkpOTJXH8reArm18KxmOwv1yC6fhr5eMqa9Jrr72mV155RTk5OercubM+/fRTpaenKyEhQSNHjvTMczgcXs8zxlQaCwZnk0OwZOV2uzV06FCVl5fr+eefr3J+Q8/lk08+0TPPPKP8/PyAX2dDzqbizYc33XSTxo8fL0m68sortWnTJi1cuFC9e/f2+9yGnEuFZ599Vlu2bNGKFSvUvn17ffDBBxo9erTi4+N1ww03+H1eQ8lm7Nix+vzzz7Vx48ZKjwX78fdM2UjBewz2lUuwHX/r/JnNxx57TJMnT9bQoUN1+eWXa/jw4Ro/frxmz54tSYqLi5OkSi3/4MGDlf6V2ZBVJ4e4uDidOnVKR44c8TunoXK73brttttUUFCg3Nxcz7+opeDNZcOGDTp48KDatWunsLAwhYWFaffu3XrkkUeUmJgoKTizadmypcLCwnTZZZd5jXfq1MnzbvRgzEWSTpw4oalTpyorK0s33nijunTporFjx+r222/Xf/3Xf0lq2NmMGzdOK1as0Lp169SmTRvPOMdf/9lUCNZjsL9cgu34W+fLZklJiUJCvJcZGhrqOfuQlJSkuLg45ebmeh4/deqU1q9frx49epzXtdam6uRw9dVXKzw83GvOgQMH9OWXXzborCoOcl9//bXeffddtWjRwuvxYM1l+PDh+vzzz/Xpp596bgkJCXrssce0evVqScGZTaNGjXTNNddU+jUlO3fuVPv27SUFZy7ST3+X3G73GY/JDTEbY4zGjh2rZcuWae3atUpKSvJ6PJiPv1VlIwXnMbiqXILu+Hu+35EUqJEjR5rWrVubt99+2xQUFJhly5aZli1bmokTJ3rmzJkzxzRp0sQsW7bMfPHFF2bYsGEmPj7eFBcX1+LKa97Ro0fN1q1bzdatW40kk5WVZbZu3ep5R191cnjggQdMmzZtzLvvvmvy8/PNf/zHf5grrrjClJWV1dbLOmdnysXtdpshQ4aYNm3amE8//dQcOHDAcystLfVsoyHmYkzVXzO/9Mt3QxrTMLOpKpdly5aZ8PBws2jRIvP111+b5557zoSGhpoNGzZ4ttEQczGm6mx69+5tOnfubNatW2e+/fZbs3jxYhMREWGef/55zzYaWjYPPvigadKkiXn//fe9jiElJSWeOcF6/K0qm2A9Blfna+aXGvLxt86XzeLiYvPwww+bdu3amYiICHPRRReZadOmeX2RlpeXm+nTp5u4uDjjdDrN9ddfb7744otaXLUd69atM5Iq3UaOHGmMqV4OJ06cMGPHjjXNmzc3kZGRZvDgwWbPnj218GpqzplyKSgo8PmYJLNu3TrPNhpiLsZU/TXzS74Odg0xm+rk8uKLL5qLL77YREREmCuuuMIsX77caxsNMRdjqs7mwIEDZtSoUSYhIcFERESYSy+91Pzxj3805eXlnm00tGz8HUMWL17smROsx9+qsgnWY3B1vmZ+qSEffx3GGFMz50gBAAAAb3X+ZzYBAABQf1E2AQAAYA1lEwAAANZQNgEAAGANZRMAAADWUDYBAABgDWUTAAAA1lA2AQAAYA1lEwAAANZQNgEAAGANZRMAAADWUDYBAABgzf8DRIrv0NXkLJUAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKYAAAEhCAYAAABFk6ghAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYIklEQVR4nO3de3wU5fn38e8m2SwEQiBBskmJGCloSygisRxUIGLAVFDEesIDID+Lj4BGQFqk1uAPiWA5tODhZx8EFBGetkD1kSpBOZQiViIooA+iRg6amBpCQiBsFjLPHzQjSxJIQjazM3zer9e+3Jm5Z/a+Mute7LUz9+0yDMMQAAAAAAAA0MTCrO4AAAAAAAAALkwUpgAAAAAAAGAJClMAAAAAAACwBIUpAAAAAAAAWILCFAAAAAAAACxBYQoAAAAAAACWoDAFAAAAAAAAS1CYAgAAAAAAgCUoTAEAAAAAAMASFKYAAAAAAABgCQpTAICg2rRpk4YMGaLExES5XC6tXr06YLvL5arx8eyzz5pt+vfvX237nXfe2cSRAAAAAGhsEVZ3oCEqKyv17bffKjo6Wi6Xy+ruAIClDMPQkSNHlJiYqLCw0Pu94ejRo+rWrZtGjRqlW2+9tdr2/Pz8gOW///3vGj16dLW2DzzwgJ566ilzuXnz5nXuA3kDAH4Q6nkjFJA3AOAHwc4btixMffvtt0pKSrK6GwAQUg4cOKD27dtb3Y1qMjIylJGRUet2r9cbsPy3v/1NaWlpuvTSSwPWR0VFVWtbV+QNAKguVPNGKCBvAEB1wcobtixMRUdHS5Ly8vIUGxtrcW8aj9/v19q1azVw4EC53W6ru9NonBqX5NzYiMteDh06pOTkZPOz0c6+++47vfXWW1qyZEm1ba+99pqWLl2q+Ph4ZWRk6Mknn6w1Zp/PJ5/PZy4bhiFJ+vzzzx2XN9avX6+0tDRHvaedGpfk3NiIy14OHTqkzp07OyJvBAvfN+yFuOzHqbE5Na5gf9+wZWGq6nLa6OhotWrVyuLeNB6/36+oqCi1atXKUW9ip8YlOTc24rIXv98vSY641WDJkiWKjo7WsGHDAtbffffdSk5Oltfr1a5duzRlyhR9/PHHysnJqfE42dnZmjZtWrX127ZtU1RUVFD6bpWoqCh98MEHVnej0Tk1Lsm5sRGXfRw7dkySM/JGsPB9w16Iy36cGpuT45KClzdsWZgCADjTyy+/rLvvvlvNmjULWP/AAw+Yz1NSUtSpUyelpqbqo48+0pVXXlntOFOmTNGECRPM5dLSUiUlJSktLU1xcXHBC6CJ+f1+5eTkKD093XH/+HFiXJJzYyMueykqKrK6CwAAmChMAQBCwj/+8Q/t2bNHK1asOGfbK6+8Um63W3v37q2xMOXxeOTxeKqtd7vdjvpyWYW47MepsRGXPTgpFgCA/TENBwAgJCxcuFA9evRQt27dztl29+7d8vv9SkhIaIKeAQAAAAgWrpgCQphhGDpx4oROnjzZpK/r9/sVERGh48ePN/lrB5Nd4woPD1dERIRtxwIpKyvTF198YS7n5eVpx44dio2N1cUXXyzp1K12f/7znzV79uxq+3/55Zd67bXX9Itf/EJt27bVp59+qokTJ6p79+66+uqrmywOwA7IG43LrnHZPW8AaDrkjcZl17iszhsUpoAQVVFRofz8fHOA0qZkGIa8Xq8OHDjgqH/U2jmuqKgoJSQkKDIy0uqu1Nu2bduUlpZmLleN/TRixAgtXrxYkrR8+XIZhqG77rqr2v6RkZF699139Yc//EFlZWVKSkrSjTfeqCeffFLh4eFNEgNgB+SNxmfnuOycNwA0DfJG47NzXFbmDQpTQAiqrKxUXl6ewsPDlZiYqMjIyCb9YKusrFRZWZlatmypsDDn3PFrx7gMw1BFRYX+/e9/Ky8vT506dbJN36v0799fhmGctc2vfvUr/epXv6pxW1JSkjZu3BiMrgGOQd4IDjvGFep5Y9OmTXr22WeVm5ur/Px8rVq1SkOHDjW3G4ahadOm6aWXXlJxcbF69uyp5557Tl26dDHb+Hw+TZo0Sa+//rrKy8s1YMAAPf/882rfvr3Zpri4WA8//LDeeOMNSdJNN92k+fPnq3Xr1k0VKhDSyBvBYce4QiFvUJgCQlBFRYUqKyuVlJRkydT2lZWVqqioULNmzWzzgVoXdo2refPmcrvd2rdvn9l/ADgdeSM47BpXKOeNo0ePqlu3bho1apRuvfXWattnzZqlOXPmaPHixercubOmT5+u9PR07dmzR9HR0ZKkzMxMvfnmm1q+fLni4uI0ceJEDR48WLm5ueaVtMOHD9fBgwf19ttvSzr1A8i9996rN998s+mCBUIYeSM47BqX1XmDwhQQwuz0YYbg4r0AoC74rECVUH0vZGRkKCMjo8ZthmFo3rx5mjp1qoYNGyZJWrJkieLj47Vs2TKNGTNGJSUlWrhwoV599VVdf/31kqSlS5cqKSlJ69at06BBg/TZZ5/p7bff1tatW9WzZ09J0p/+9Cf17t1be/bs0WWXXVbttX0+n3w+n7lcWloq6dR4MX6/v1H/BlaqisVJMUnE1dBjV13RXllZ2ejHP5eq1zYMw5LXDxa7x2UYhvx+f7XhMoL9/9aFWZjatuiH56mjrOsHAODCcHreqQm5CACUl5engoICDRw40Fzn8XjUr18/bdmyRWPGjFFubq78fn9Am8TERKWkpGjLli0aNGiQ3n//fcXExJhFKUnq1auXYmJitGXLlhoLU9nZ2Zo2bVq19evXr7fkapJgy8nJsboLQUFcdRcRESGv16uysjJVVFQ0+vHr6siRI5a9djDZMa6KigqVl5dr06ZNOnHiRMC2YI9DdmEWpgAAAACElIKCAklSfHx8wPr4+Hjt27fPbBMZGak2bdpUa1O1f0FBgdq1a1ft+O3atTPbnGnKlCnm5BzSqSumkpKSlJaWpri4uIYHFWL8fr9ycnKUnp4ut9ttdXcaDXHV3/Hjx3XgwAG1bNnSktt9DcPQkSNHFB0dbbtBws/GznEdP35czZs3V9++fau9J4qKioL62hSmAJtZ9sH+oL+GYVSq/Phx3d+3VaMeNysrS6tXr9aOHTvq1N7lclUbFNWORo4cqcOHD2v16tW1tunfv7+uuOIKzZs3r8n6BcD5miJnSOSNxnah540zv8wZhnHOL3hntqmp/dmO4/F45PF4qq13u92OKnRUIS57CUZcJ0+elMvlUlhYWMCtv1bkjca89djqvFF1+17V37apNEbeCAsLk8vlqvH9Fuz/r0Lz5nMAtuNyuc76GDlypCZNmqR33323yfp0ySWXnPc/2L/66ivdddddSkxMVLNmzdS+fXvdfPPN+vzzzxunkwBwgSJv4Exer1eSql3VVFhYaF5F5fV6VVFRoeLi4rO2+e6776od/9///ne1q7EA2Ad5w7m4YgpAo8jPzzefr1ixQr/73e+0Z88ec13z5s3VsmVLtWzZ0oruNUhFRYXS09N1+eWXa+XKlUpISNDBgwe1Zs0alZSUWN09ALA18gbOlJycLK/Xq5ycHHXv3l3Sqb/pxo0bNXPmTElSjx495Ha7lZOTo9tvv13SqffSrl27NGvWLElS7969VVJSon/961/6+c9/Lkn64IMPVFJSoj59+lgQGYDGQN5wLq6YAtAovF6v+YiJiZHL5aq2LisrS1dccUXAfi+//LK6dOkij8ejhIQEjRs3rtbXeOqppxQfH29emrtlyxb17dtXzZs3V1JSkh5++GEdPXpU0qlLVfft26dHH33U/BVFkvbv36+bbrpJbdq0UYsWLdSlSxetWbOmxtf79NNP9dVXX+n5559Xr1691KFDB1199dV6+umnddVVV5ntdu7cqeuuu07NmzdXXFycfvWrX6msrKzWOI4ePar77rtPLVu2VEJCgmbPnl2XPzEAOAp548LMG2VlZdqxY4d5TvLy8rRjxw7t379fLpdLmZmZmjFjhlatWqVdu3Zp5MiRioqK0vDhwyVJMTExGj16tCZOnKh3331X27dv1z333KOuXbuas/T95Cc/0Q033KAHHnhAW7du1datW/XAAw9o8ODBNQ58DsAeyBvOzRsUpgBY5oUXXtDYsWP1q1/9Sjt37tQbb7yhH//4x9XaGYahRx55RAsXLtTmzZt1xRVXaOfOnRo0aJCGDRumTz75RCtWrNDmzZvNRLNy5Uq1b99eTz31lPLz881fWB577DH5fD5t2rRJO3fu1MyZM2v9VeWiiy5SWFiY/vKXv+jkyZM1tjl27JhuuOEGtWnTRh9++KH+/Oc/a926dWdNeI899pjWr1+vVatWae3atdqwYYNyc3Pr++cDgAsOecP+eWPbtm3q3r27eUXUhAkT1L17d/3ud7+TJE2ePFmZmZl66KGHlJqaqm+++UZr165VdHS0eYy5c+dq6NChuv3223X11VcrKipKb775ZsD05q+99pq6du2qgQMHauDAgfrZz36mV199tWmDBWA58oY98ga38gGwzPTp0zVx4kQ98sgj5rrTfxmQpBMnTui+++7Ttm3b9M9//lPt27eXJD377LMaPny4MjMzJUmdOnXSH//4R/Xr108vvPCCYmNjFR4erujoaHPMisrKSh08eFC33XabunbtKkm69NJLa+3fj370I/3xj3/U5MmTNW3aNKWmpiotLU133323ud9rr72m8vJyvfLKK2rRooUkacGCBRoyZIhmzpxZbSyLsrIyLVy4UK+88orS09MlSUuWLDHjAgDUjrxh/7zRv39/GYZR63aXy6WsrCxlZWXV2qZZs2aaP3++5s+fX2ub2NhYLV269Hy6CsAByBv2yBtcMQXAEoWFhfr22281YMCAs7Z79NFH9f777+sf//hHwIdpbm6uFi9ebN5H3rJlSw0aNEiVlZXKy8ur9XhjxozR008/rauvvlpPPvmkPvnkk7O+/tixY1VQUKClS5eqd+/e+vOf/6wuXbooJydHkvTZZ5+pW7duZpKQpKuvvlqVlZUB97xX+fLLL1VRUaHevXub62JjY7m1AADOgbxB3gCA+iBv2CdvUJgCYInmzZvXqV16erq++eYbvfPOOwHrKysrNWbMGHOcih07dujjjz/W3r171bFjx1qPd9999+mLL77Qvffeq507dyo1NfWsv7hKUnR0tG666SY9/fTT+vjjj3Xttddq+vTpks4+9XRtU1UDAOqPvAEAqA/yhn1wKx8AS0RHR+uSSy7Ru+++q7S0tFrb3XTTTRoyZIiGDx+u8PBw3XnnnZKkK6+8Urt3767xHvEqkZGRNd6rnZSUpAcffFAPPvigpkyZoj/96U8aP358nfrtcrl0+eWXa8uWLZKkn/70p1qyZImOHj1q/orxz3/+U2FhYercuXO1/X/84x/L7XZr69atuvjiiyVJxcXF+vzzz9WvX7869QEW2bbI6h4AFzTyBnkDAOqDvGGfvMEVUwAsk5WVpdmzZ+uPf/yj9u7dq48++qjGXxNuueUWvfrqqxo1apT+8pe/SJJ+/etf6/3339fYsWO1Y8cO7d27V2+88UbAB/4ll1yiTZs26ZtvvtH3338vSZoyZYreeecd5eXl6aOPPtJ7772nn/zkJzX2b8eOHbr55pv1l7/8RZ9++qm++OILLVy4UC+//LJuvvlmSdLdd9+tZs2aacSIEdq1a5fWr1+v8ePH69577612v7cktWzZUqNHj9Zjjz2md99915xxKCyMj2MAOBfyBnkDAOqDvGGPvMEVU4DNDO95cdBfo7KyUqWlpUF/nREjRuj48eOaO3euJk2apLZt2+qXv/xljW1/+ctfqrKyUvfee6/CwsI0bNgwbdy4UVOnTtW1114rwzDUsWNH3XHHHeY+Tz31lMaMGaOOHTvK5/Pp5MmTOnnypMaPH6+DBw+qVatWuuGGGzR37twaX7N9+/a65JJLNG3aNH399ddyuVzm8qOPPipJioqK0jvvvKNHHnlEV111laKionTrrbdqzpw5tcb97LPPqqysTDfddJOio6M1ceJElZSUnMdfEgBq1hQ5QyJvVCFvALA78gZ5wwouw4Y3IJaWliomJkbff/+94uLi6n+A02/HSB3VeB07T36/X2vWrNEvfvELud1uq7vTaJwalxS82I4fP668vDwlJyerWbNmjXbcuqpKFK1atQrpynp92Tmus70nioqK1LZtW5WUlKhVq1YW9TC0nXfekIJ7K18Dc5FTP1+dGpdE3rAbO8dF3jg/jZI3QpBTP1+Jq/7IG8Fh57iszBv2+ksBAAAAAADAMShMAQAAAAAAwBIUpgAAAAAAAGAJClMAAAAAAACwxIU1K18wB64FAAAAAABAvXDFFAAAAAAAACxBYQoAAAAAAACWoDAFAAiqTZs2aciQIUpMTJTL5dLq1asDto8cOVIulyvg0atXr4A2Pp9P48ePV9u2bdWiRQvddNNNOnjwYBNGAQAAACAYKEwBAILq6NGj6tatmxYsWFBrmxtuuEH5+fnmY82aNQHbMzMztWrVKi1fvlybN29WWVmZBg8erJMnTwa7+wAAAACC6MIa/BxwgqYYxN8wFHn8uHT1g8F/LZsYOXKkDh8+XO1qH5xbRkaGMjIyztrG4/HI6/XWuK2kpEQLFy7Uq6++quuvv16StHTpUiUlJWndunUaNGhQo/cZcIymmviFvFENeQOALZE3LHMh5w0KUwAa1ciRI7VkyRJJUkREhGJjY/Wzn/1Md911l0aOHKmwMC7URHUbNmxQu3bt1Lp1a/Xr109PP/202rVrJ0nKzc2V3+/XwIEDzfaJiYlKSUnRli1baixM+Xw++Xw+c7m0tFSS5Pf75ff7G9bJyobtVicN7FNVLA2OKUQ5NS4peLH5/X4ZhqHKykpVVp72ZjWMRn2d2hn/eTkj8PXrYNSoUXrllVck/ZA3unbtqjvvvNPyvGEYDY/LMIwG7ddYKisrZRiG/H6/wsPDA7Y58f8tABcOvm84D4UpAI3uhhtu0KJFi3Ty5El99913evvtt/XII4/oL3/5i9544w1FRPDRgx9kZGTotttuU4cOHZSXl6cnnnhC1113nXJzc+XxeFRQUKDIyEi1adMmYL/4+HgVFBTUeMzs7GxNmzat2vr169crKiqqgT2NbeB+dZC/5txtziInJ6eROhJanBqX1PixRUREyOv1qqysTBUVFeb6yOPHG/V1zuXIkSP13sfv92vAgAF67rnndPLkSf373//WunXr9Oijj2rFihV6/fXXLc8bDY3rxIkTZmG8qVVUVKi8vFybNm3SiRMnArYdO3bMkj4BQGPh+4azcLYANLrTb8v60Y9+pCuvvFK9evXSgAEDtHjxYv3Xf/2XSkpK9Nhjj2n16tU6fvy4UlNTNXfuXHXr1k2SlJWVpdWrV+vhhx9WVlaWDh06pHvvvVcLFizQ7NmzNWfOHFVWVuqRRx7R1KlTzdeeM2eOFi1apK+++kqxsbEaMmSIZs2apZYtW0qSli1bpscff1wrVqxQZmamDhw4oGuuuUaLFi1SQkKCJOnkyZN67LHH9PLLLys8PFyjR482fzVH47vjjjvM5ykpKUpNTVWHDh301ltvadiwYbXuZxiGXC5XjdumTJmiCRMmmMulpaVKSkpSWlqa4uLiGtbR7Usbtl9ddL+nQbv5/X7l5OQoPT1dbre7kTtlHafGJQUvtuPHj+vAgQNq2bKlmjVr9sOG058HlaHjx32Kjo6u9f/L2rjdbrVo0UKdOnWSJF1++eW69tpr1a9fP6Wnp2vlypVm3pg8ebL+9re/mXlj9uzZZt6YNm2a/va3v2ncuHF66qmndOjQId1zzz2aP3++5syZo7lz56qyslIPP/ywHn/8cfP1586dq8WLF5t5Y/DgwZo5c6ZatmwpwzD0P//zP3r88cf1+uuva8KECTpw4ICuvvpqvfzyywF5Y/LkyVq0aJHCw8N1//33KyIiQhEREWrVqlUj/Y3r5/jx42revLn69u0b+J6QVFRUZEmfAKCx8H3DWbjGDUCTuO6669StWzetXLlShmHoxhtvVEFBgdasWaPc3FxdeeWVGjBggA4dOmTu8+WXX+rvf/+73n77bb3++ut6+eWXdeONN+rgwYPauHGjZs6cqd/+9rfaunWruU9YWJj++Mc/ateuXVqyZInee+89TZ48OaAvx44d0+9//3u9+uqr2rRpk/bv369JkyaZ22fPnq2XX35ZCxcu1ObNm3Xo0CGtWrUq+H8kSJISEhLUoUMH7d27V5Lk9XpVUVGh4uLigHaFhYWKj4+v8Rgej0etWrUKeEinvgA3+BGm4D3Oo1/nHVeIPpwaVzBjc7lcCgsLC3y4XE3ykE4Vo2rswzkeVbNxnrn++uuvV7du3bR69Wq5XC4NGTJE3333XUDeSE9P1+HDh83jfPnll3rnnXfMvLFo0SINGTJE33zzjZk3nnjiCf3rX/8yXyc8PDwgb6xfv16/+c1vzGNKp/LGnDlzzLxx4MABTZ482TzG3LlztWjRIjNvFBcXm/2u79+jMR8ul+us70MAcBK+b9hXvQpT2dnZuuqqqxQdHa127dpp6NCh2rNnT0AbwzCUlZWlxMRENW/eXP3799fu3bsD2jDtN3Bhuvzyy/X1119r/fr12rlzp/785z8rNTVVnTp10u9//3u1bt1af/nLX8z2lZWVevnll/XTn/5UQ4YMUVpamvbs2aN58+bpsssu06hRo3TZZZdpw4YN5j6ZmZlKS0tTcnKyrrvuOv33f/+3/s//+T8B/fD7/XrxxReVmpqqK6+8UuPGjdO7775rbp83b56mTJmiW2+9VT/5yU/04osvKiYmJuh/H5xSVFSkAwcOmL8o9ejRQ263O+DWp/z8fO3atUt9+vSxqpsAmgB5AwBQH+QNe6rXrXwbN27U2LFjddVVV+nEiROaOnWqBg4cqE8//VQtWrSQJM2aNUtz5szR4sWL1blzZ02fPl3p6enas2ePoqOjJZ06kW+++aaWL1+uuLg4TZw4UYMHD1Zubm61wRkBOEfVrVe5ubkqKyurdktVeXm5vvzyS3P5kksuMT83pFNjCoWHhwcMaBgfH6/CwkJzef369ZoxY4Y+/fRTlZaW6sSJEzp+/LiOHj2q5s2bS5KioqLUsWNHc5+EhATzGCUlJcrPz1fv3r3N7REREUpNTb2gL689H2VlZfriiy/M5by8PO3YsUOxsbGKjY1VVlaWbr31ViUkJOjrr7/W448/rrZt2+qWW26RJMXExGj06NGaOHGi4uLiFBsbq0mTJqlr167mLH0AnIm8AQCoD/KGPdWrMPX2228HLC9atEjt2rVTbm6u+vbtK8MwNG/ePE2dOtUcF2TJkiWKj4/XsmXLNGbMGKb9Bi5gn332mZKTk1VZWamEhISAXx6qtG7d2nx+5q0GVbcknLmuasajffv26Re/+IUefPBB/fd//7diY2O1efNmjR49Wn6/30wUNR3jQk0CTWHbtm1KS0szl6vGfhoxYoReeOEF7dy5U6+88ooOHz6shIQEpaWlacWKFQH/SJg7d64iIiJ0++23q7y83Bw/gB8zAGcjbwAA6oO8YU/nNfh5SUmJJCk29tRMRXl5eSooKAiY0tvj8ahfv37asmWLxowZY+203zXN1htC0+U6dXpsp8YlWTDtt9REU383/vTY7733nnbu3KlHHnlE7du3V0FBgcLCwnTJJZdUO0bVFNdVz8917Kp1//rXv3TixAk9++yz5q8cK1asqHbMM49b9byyslLR0dFKSEjQ+++/r2uuuUaSdOLECeXm5qp79+5M+90A/fv3P2sifuedd855jGbNmmn+/PmaP39+Y3YNQAiryhuPPvqomTciIiJqzBsNtW3bNp04cUKzZ88288aZt2OcS0xMjBISErR161b17dtX0g9548orr2y0vgIAzo68YV8NLkwZhqEJEybommuuUUpKiiSZ03afORhtfHy89u3bZ7axbtrvGqb6Ps8puoPBqdNjOzUuqemm/Zaadurvhk6PffToUe3duzdg2u958+Zp0KBBGjp0qMLCwnTVVVfp5ptvVlZWljp16qT8/Hzl5OToxhtvVPfu3eXz+XTy5MmAabZrmnr7xIkTqqioUGlpqbxer06cOKHf//73uuGGG7R161a9+OKLZixVycMwjIBjlJeXS/qh6P2rX/1KzzzzjH70ox+pc+fOev7553X48GGm/QaAIPH5fCooKAiY9js7O1uDBw/Wfffdp7CwMPXu3VtDhw7VzJkzddlll+nbb7/VmjVrNHToUKWmpjbodTt27KgTJ05o/vz5GjJkiP75z3+aeaM+HnnkET3zzDPq1KmTfvKTn2jOnDk6fPhwg/oEADg38oazNLgwNW7cOH3yySfavHlztW1nThN8tim969Km0ab9rmmq7wZO0R0MTp0e26lxSRZM+y1JVz/YaK9TG8MwdOTIkQZP+/3uu+/q8ssvV0REhNq0aaOf/exnmjdvnkaMGGEWh95++2399re/1cMPP6x///vf8nq9uvbaa3XppZeqVatW8ng8Cg8PD5hm2+12V5t6OyIiQpGRkWrVqpWuvvpqzZ49W7///e/11FNP6dprr9WMGTM0cuRIRUdHm7eGuVyugGNUXXJbte7xxx9XcXGxxo4dq7CwMI0aNUpDhw5VSUkJ034DsJfUUU3zOpWVqigtVbNzt6zR22+/rYSEBDNvdOvWTX/84x8D8saaNWs0depU3X///Wbe6Nu3b62zc9bFFVdcoTlz5mjmzJmaMmWK+vbtq+zsbN133331Os7EiROVn5+vkSNHKiwsTPfff79uueUW8+4CALAN8sZZkTeCw2U04EbH8ePHa/Xq1dq0aZOSk5PN9V999ZU6duyojz76SN27dzfX33zzzWrdurU5lWLVFI2nXzXVrVs3DR06tMYro85UWlqqmJgYff/99/UrTG1bVH1dU/2PVwd+v19r1qzRL37xC0cVcJwalxS82I4fP668vDwlJydXL0w1gcrKSpWWlqpVq1YBA//ZnZ3jOtt7oqioSG3btrW0cBbqGpw3TldTDmksDcxFTv18dWpcEnnDbuwcF3nj/DRK3ghBTv18Ja76I28Eh53jsjJv1OsvZRiGxo0bp5UrV+q9994LKEpJUnJysrxeb8BtTRUVFdq4caM5pTfTfgMAAAAAAECq5618Y8eO1bJly/S3v/1N0dHR5phQMTExat68uVwulzIzMzVjxgx16tRJnTp10owZMxQVFaXhw4ebbZn2GwAAAAAAAPUqTL3wwguSTs2wdLpFixZp5MiRkqTJkyervLxcDz30kIqLi9WzZ0+tXbuWab8BAAAAAAAQoF6FqboMR+VyuZSVlaWsrKxa2zDtNwAAAAAAAOw1GhdwgWnA3ARwKN4LAOqCzwpU4b0AoC74rEAVK98LFKaAEFQ168axY8cs7glCRdV7wUkzzQBoPOQNnIm8AeBsyBs4k5V5o1638gFoGuHh4WrdurUKCwslSVFRUXK5XE32+pWVlaqoqNDx48dtN83p2dgxLsMwdOzYMRUWFqp169aMxQegRuSN4LBjXOQNAHVB3ggOO8YVCnmDwhQQorxerySZyaIpGYah8vJyc7ZNp7BzXK1btzbfEwBQE/JG47NzXOQNAOdC3mh8do7LyrxBYQoIUS6XSwkJCWrXrp38fn+Tvrbf79emTZvUt29fR90CYNe43G43v3gDOCfyRuOza1x2zhsnTpxQVlaWXnvtNRUUFCghIUEjR47Ub3/7W/PqA8MwNG3aNL300kvmLODPPfecunTpYh7H5/Np0qRJev31181ZwJ9//nm1b9/eqtCAkEPeaHx2jcvqvEFhCghx4eHhTf4hER4erhMnTqhZs2a2+kA9F6fGBQfYtqj2bamjmq4fcATyRuNxalyhbObMmXrxxRe1ZMkSdenSRdu2bdOoUaMUExOjRx55RJI0a9YszZkzR4sXL1bnzp01ffp0paena8+ePYqOjpYkZWZm6s0339Ty5csVFxeniRMnavDgwcrNzbVt0Q4IFvJG43FqXMFGYQoAAABASHj//fd1880368Ybb5QkXXLJJXr99de1bds2Saeulpo3b56mTp2qYcOGSZKWLFmi+Ph4LVu2TGPGjFFJSYkWLlyoV199Vddff70kaenSpUpKStK6des0aNCgaq/r8/nk8/nM5dLSUkmnrn5o6itJgqkqFifFJBGXHTk1NqfHFSwUpgAAAACEhGuuuUYvvviiPv/8c3Xu3Fkff/yxNm/erHnz5kmS8vLyVFBQoIEDB5r7eDwe9evXT1u2bNGYMWOUm5srv98f0CYxMVEpKSnasmVLjYWp7OxsTZs2rdr69evXKyoqqvEDtVhOTo7VXQgK4rIfp8bmtLiCPXsjhSkAAAAAIeHXv/61SkpKdPnllys8PFwnT57U008/rbvuukuSVFBQIEmKj48P2C8+Pl779u0z20RGRqpNmzbV2lTtf6YpU6ZowoQJ5nJpaamSkpKUlpamuLi4RovPan6/Xzk5OUpPT3fUbUbEZT9Ojc2pcRUVFQX1+BSmAAAAAISEFStWaOnSpVq2bJm6dOmiHTt2KDMzU4mJiRoxYoTZ7szZrgzDOOcMWGdr4/F45PF4qq13u92O+nJZhbjsxalxSc6NzWlxBTsWClMAAAAAQsJjjz2m3/zmN7rzzjslSV27dtW+ffuUnZ2tESNGmFOZV83YV6WwsNC8isrr9aqiokLFxcUBV00VFhaqT58+TRgNAKAuwqzuAAAAAABIp8YxCQsL/IoSHh6uyspKSVJycrK8Xm/A+C0VFRXauHGjWXTq0aOH3G53QJv8/Hzt2rWLwhQAhCCumAIAAAAQEoYMGaKnn35aF198sbp06aLt27drzpw5uv/++yWduoUvMzNTM2bMUKdOndSpUyfNmDFDUVFRGj58uCQpJiZGo0eP1sSJExUXF6fY2FhNmjRJXbt2NWfpAwCEDgpTAAAAAELC/Pnz9cQTT+ihhx5SYWGhEhMTNWbMGP3ud78z20yePFnl5eV66KGHVFxcrJ49e2rt2rWKjo4228ydO1cRERG6/fbbVV5ergEDBmjx4sUKDw+3IiwAwFlQmAIAAAAQEqKjozVv3jzNmzev1jYul0tZWVnKysqqtU2zZs00f/58zZ8/v/E7CQBoVIwxBQAAAAAAAEtQmAIAAAAAAIAlKEwBAIJq06ZNGjJkiBITE+VyubR69Wpzm9/v169//Wt17dpVLVq0UGJiou677z59++23Acfo37+/XC5XwKNqKnEAAAAA9kVhCgAQVEePHlW3bt20YMGCatuOHTumjz76SE888YQ++ugjrVy5Up9//rluuummam0feOAB5efnm4//+Z//aYruAwAAAAgiBj8HAARVRkaGMjIyatwWExOjnJycgHXz58/Xz3/+c+3fv18XX3yxuT4qKkper7dOr+nz+eTz+czl0tJSSaeu0PL7/fUN4ZTKhu123s7S36pYGhxTiHJqXJJzYyMue3FaPAAAe6MwBQAIKSUlJXK5XGrdunXA+tdee01Lly5VfHy8MjIy9OSTTwZMDX667OxsTZs2rdr69evXKyoqqoE9i23gfucpf805m5xZ3HMKp8YlOTc24rKHY8eOWd0FAABMzi1MbVt06r+po6ztBwCgzo4fP67f/OY3Gj58uFq1amWuv/vuu5WcnCyv16tdu3ZpypQp+vjjj2v9sjhlyhRNmDDBXC4tLVVSUpLS0tIUFxfXsM5tX9qw/c5X93tq3eT3+5WTk6P09HS53e4m7FRwOTUuybmxEZe9FBUVWd0FAABMzi1MAQBsxe/3684771RlZaWef/75gG0PPPCA+TwlJUWdOnVSamqqPvroI1155ZXVjuXxeOTxeKqtd7vdDf9yadWojHXo73nFFcKcGpfk3NiIyx6cFAsAwP4Y/BwAYDm/36/bb79deXl5ysnJCbhaqiZXXnml3G639u7d20Q9BAAAABAMXDEFALBUVVFq7969Wr9+fZ1utdu9e7f8fr8SEhKaoIcAAAAAgoXCFAAgqMrKyvTFF1+Yy3l5edqxY4diY2OVmJioX/7yl/roo4/0f//v/9XJkydVUFAgSYqNjVVkZKS+/PJLvfbaa/rFL36htm3b6tNPP9XEiRPVvXt3XX311VaFBQAAAKARUJgCAATVtm3blJaWZi5XDUo+YsQIZWVl6Y033pAkXXHFFQH7rV+/Xv3791dkZKTeffdd/eEPf1BZWZmSkpJ044036sknn1R4eHiTxQEAAACg8VGYAgAEVf/+/WUYRq3bz7ZNkpKSkrRx48bG7hYAAACAEMDg5wAAAAAAALCE86+Y2rbI6h4AAAAAAACgBlwxBQAAAAAAAEs4/4opAAAcaNkH+6XKk2phdUcAAACA88AVUwAAAAAAALAEhSkAAAAAAABYgsIUAAAAAAAALEFhCgAAAAAAAJagMAUAAAAAAABLUJgCAAAAAACAJShMAQAAAAAAwBL1Lkxt2rRJQ4YMUWJiolwul1avXh2wfeTIkXK5XAGPXr16BbTx+XwaP3682rZtqxYtWuimm27SwYMHzysQAAAAAAAA2Eu9C1NHjx5Vt27dtGDBglrb3HDDDcrPzzcfa9asCdiemZmpVatWafny5dq8ebPKyso0ePBgnTx5sv4RAAAAAAAAwJYi6rtDRkaGMjIyztrG4/HI6/XWuK2kpEQLFy7Uq6++quuvv16StHTpUiUlJWndunUaNGhQfbsEAAAAAAAAG6p3YaouNmzYoHbt2ql169bq16+fnn76abVr106SlJubK7/fr4EDB5rtExMTlZKSoi1bttRYmPL5fPL5fOZyaWmpJMnv98vv99fcico6dra2/S1QFUutMdmUU+OSnBsbcdmL0+IBAAAAcOFo9MJURkaGbrvtNnXo0EF5eXl64okndN111yk3N1cej0cFBQWKjIxUmzZtAvaLj49XQUFBjcfMzs7WtGnTqq1fv369oqKiaulJbN06nL/m3G2aWE5OjtVdCAqnxiU5Nzbisodjx45Z3QUAAAAAaJBGL0zdcccd5vOUlBSlpqaqQ4cOeuuttzRs2LBa9zMMQy6Xq8ZtU6ZM0YQJE8zl0tJSJSUlKS0tTXFxcTUfcPvSunW4+z11a9cE/H6/cnJylJ6eLrfbbXV3Go1T45KcGxtx2UtRUZHVXQAAAACABgnKrXynS0hIUIcOHbR3715JktfrVUVFhYqLiwOumiosLFSfPn1qPIbH45HH46m23u121/7lsq7Duofgl9OzxmVjTo1Lcm5sxGUPTooFAAAAwIWl3rPy1VdRUZEOHDighIQESVKPHj3kdrsDbqXJz8/Xrl27ai1MAQAAAAAAwHnqfcVUWVmZvvjiC3M5Ly9PO3bsUGxsrGJjY5WVlaVbb71VCQkJ+vrrr/X444+rbdu2uuWWWyRJMTExGj16tCZOnKi4uDjFxsZq0qRJ6tq1qzlLHwAAAAAAAJyv3oWpbdu2KS0tzVyuGvtpxIgReuGFF7Rz50698sorOnz4sBISEpSWlqYVK1YoOjra3Gfu3LmKiIjQ7bffrvLycg0YMECLFy9WeHh4I4QEAAAAAAAAO6h3Yap///4yDKPW7e+88845j9GsWTPNnz9f8+fPr+/LAwAAAAAAwCGCPsYUAAAAANTVN998o3vuuUdxcXGKiorSFVdcodzcXHO7YRjKyspSYmKimjdvrv79+2v37t0Bx/D5fBo/frzatm2rFi1a6KabbtLBgwebOhQAQB1QmAIABNWmTZs0ZMgQJSYmyuVyafXq1QHb+YIBAKhSXFysq6++Wm63W3//+9/16aefavbs2WrdurXZZtasWZozZ44WLFigDz/8UF6vV+np6Tpy5IjZJjMzU6tWrdLy5cu1efNmlZWVafDgwTp58qQFUQEAzobCFAAgqI4ePapu3bppwYIFNW7nCwYAoMrMmTOVlJSkRYsW6ec//7kuueQSDRgwQB07dpR06seMefPmaerUqRo2bJhSUlK0ZMkSHTt2TMuWLZMklZSUaOHChZo9e7auv/56de/eXUuXLtXOnTu1bt06K8MDANSg3mNMAQBQHxkZGcrIyKhx25lfMCRpyZIlio+P17JlyzRmzBjzC8arr75qzt66dOlSJSUlad26dRo0aFCTxQIACK433nhDgwYN0m233aaNGzfqRz/6kR566CE98MADkk7NCF5QUKCBAwea+3g8HvXr109btmzRmDFjlJubK7/fH9AmMTFRKSkp2rJlS415w+fzyefzmculpaWSJL/fL7/fH6xwm1xVLE6KSSIuO3JqbE6PK1goTAEALGOrLxiVDdvtvNXW38qTpx5y7j9+nBaX5NzYiMteQjmer776Si+88IImTJigxx9/XP/617/08MMPy+Px6L777lNBQYEkKT4+PmC/+Ph47du3T5JUUFCgyMhItWnTplqbqv3PlJ2drWnTplVbv379ekVFRTVGaCElJyfH6i4EBXHZj1Njc1pcx44dC+rxKUwBACxjry8YsQ3c7zzlr6lxdYvTnjvtHz9VnBqX5NzYiMsegv0F43xUVlYqNTVVM2bMkCR1795du3fv1gsvvKD77rvPbOdyuQL2Mwyj2rozna3NlClTNGHCBHO5tLRUSUlJSktLU1xcXEPDCTl+v185OTlKT0+X2+22ujuNhrjsx6mxOTWuoqKioB6fwhQAwHK2+IKxfWnD9jtf3e+pcfWftx2UKk+qxfe7HfePH6f+o05ybmzEZS/B/oJxPhISEvTTn/40YN1PfvIT/fWvf5Ukeb1eSad+tEhISDDbFBYWmj9yeL1eVVRUqLi4OOBHjcLCQvXp06fG1/V4PPJ4PNXWu91uR537KsRlL06NS3JubE6LK9ixUJgCAFjGVl8wrJoupLb+hoWf1sRZ//ip4tS4JOfGRlz2EMqxXH311dqzZ0/Aus8//1wdOnSQJCUnJ8vr9SonJ0fdu3eXJFVUVGjjxo2aOXOmJKlHjx5yu93KycnR7bffLknKz8/Xrl27NGvWrCaMBgBQF8zKBwCwzOlfMKpUfcGoKjqd/gWjStUXjNoKUwAAe3r00Ue1detWzZgxQ1988YWWLVuml156SWPHjpV06grbzMxMzZgxQ6tWrdKuXbs0cuRIRUVFafjw4ZKkmJgYjR49WhMnTtS7776r7du365577lHXrl3NSTQAAKGDK6YAAEFVVlamL774wlzOy8vTjh07FBsbq4svvtj8gtGpUyd16tRJM2bMqPULRlxcnGJjYzVp0iS+YACAA1111VVatWqVpkyZoqeeekrJycmaN2+e7r77brPN5MmTVV5eroceekjFxcXq2bOn1q5dq+joaLPN3LlzFRERodtvv13l5eUaMGCAFi9erPDw8JpeFgBgIQpTAICg2rZtm9LS0szlqrGfRowYocWLF/MF41y2Lapxdcf9h1QplwojOzZxhwAguAYPHqzBgwfXut3lcikrK0tZWVm1tmnWrJnmz5+v+fPnB6GHAIDGRGEKABBU/fv3l2EYtW7nCwYAAABw4WKMKQAAAAAAAFiCwhQAAAAAAAAsQWEKAAAAAAAAlqAwBQAAAAAAAEsw+DkAAFKts98BAAAACB4KUwCAC8fHK6RWza3uBQAAAID/4FY+AAAAAAAAWILCFAAAAAAAACxBYQoAAAAAAACWoDAFAAAAAAAAS1CYAgAAAAAAgCUoTAEAAAAAAMASFKYAAAAAAABgCQpTAAAAAAAAsMQFVZj6IO+Q1V0AAAAAAADAf1xQhSkAAAAAAACEDgpTAAAAAAAAsASFKQAAAAAAAFiCwhQAAAAAAAAsQWEKAAAAAAAAlqAwBQAAAAAAAEtQmAIAAAAAAIAlKEwBAAAAAADAEhSmAAAAAAAAYAkKUwAAS11yySVyuVzVHmPHjpUkjRw5stq2Xr16WdxrAAAAAI0hwuoOAAAubB9++KFOnjxpLu/atUvp6em67bbbzHU33HCDFi1aZC5HRkY2aR8BAAAABAeFKQCApS666KKA5WeeeUYdO3ZUv379zHUej0der7fOx/T5fPL5fOZyaWmpJMlvSP7K8+xwI9u2r9h8ntqhTZ33q5RLlXJJkvx+f6P3y0pV8TgtLsm5sRGXvTgtHgCAvdW7MLVp0yY9++yzys3NVX5+vlatWqWhQ4ea2w3D0LRp0/TSSy+puLhYPXv21HPPPacuXbqYbXw+nyZNmqTXX39d5eXlGjBggJ5//nm1b9++UYICANhTRUWFli5dqgkTJsjlcpnrN2zYoHbt2ql169bq16+fnn76abVr167W42RnZ2vatGnV1q8vbKOosqig9L3BImPNp2vyG7ZfTk5OI3YodDg1Lsm5sRGXPRw7dszqLgAAYKp3Yero0aPq1q2bRo0apVtvvbXa9lmzZmnOnDlavHixOnfurOnTpys9PV179uxRdHS0JCkzM1Nvvvmmli9frri4OE2cOFGDBw9Wbm6uwsPDzz8qAIAtrV69WocPH9bIkSPNdRkZGbrtttvUoUMH5eXl6YknntB1112n3NxceTyeGo8zZcoUTZgwwVwuLS1VUlKS0toVKy76eLDDqJeGXjG1bV+xKuXS95GXKj09XW63Oxjds4Tf71dOTo7j4pKcGxtx2UtRUZHVXQAAwFTvwlRGRoYyMjJq3GYYhubNm6epU6dq2LBhkqQlS5YoPj5ey5Yt05gxY1RSUqKFCxfq1Vdf1fXXXy9JWrp0qZKSkrRu3ToNGjToPMIBANjZwoULlZGRocTERHPdHXfcYT5PSUlRamqqOnTooLfeesvMNWfyeDw1Fq3cLskdYtN+hMkwn9enbwH7ud2O+tJcxalxSc6NjbjswUmxAADsr1HHmMrLy1NBQYEGDhxorvN4POrXr5+2bNmiMWPGKDc3V36/P6BNYmKiUlJStGXLlhoLU7WOFeL3136PfA1jiFTKVX1skRC6x97p4xg4LS7JubERl704JZ59+/Zp3bp1Wrly5VnbJSQkqEOHDtq7d28T9QwAAABAsDRqYaqgoECSFB8fH7A+Pj5e+/btM9tERkaqTZs21dpU7X+mWscKWb9eUVG1jRUSW31VZGz18Tvy19Syv3WcNo5BFafGJTk3NuKyB6eMFbJo0SK1a9dON95441nbFRUV6cCBA0pISGiingEAAAAIlqDMynf6gLXSqVv8zlx3prO1qXWskLQ0xcXF1XzA7Uurrdq2r7j6+B3d7zlrv5qSU8cxcGpcknNjIy57ccJYIZWVlVq0aJFGjBihiIgfUlNZWZmysrJ06623KiEhQV9//bUef/xxtW3bVrfccouFPQYAAADQGBq1MFU1lXdBQUHAL9mFhYXmVVRer1cVFRUqLi4OuGqqsLBQffr0qfG4tY4Vcrb7/WsYpyNMRvXxO0Lwy6nTxjGo4tS4JOfGRlz24IRY1q1bp/379+v+++8PWB8eHq6dO3fqlVde0eHDh5WQkKC0tDStWLHCnFDDTj7IOyRJ6plcw1W9AAAAwAWoUYeATU5OltfrDbhNpqKiQhs3bjSLTj169JDb7Q5ok5+fr127dtVamGpMVV8KAAChY+DAgTIMQ507dw5Y37x5c73zzjsqLCxURUWF9u3bp8WLFyspKcmingIAmlJ2drZcLpcyMzPNdYZhKCsrS4mJiWrevLn69++v3bt3B+zn8/k0fvx4tW3bVi1atNBNN92kgwcPNnHvAQB1Ue/CVFlZmXbs2KEdO3ZIOjXg+Y4dO7R//34zacyYMUOrVq3Srl27NHLkSEVFRWn48OGSpJiYGI0ePVoTJ07Uu+++q+3bt+uee+5R165dzVn6AACwiw/yDpkPAEDj+fDDD/XSSy/pZz/7WcD6WbNmac6cOVqwYIE+/PBDeb1epaen68iRI2abzMxMrVq1SsuXL9fmzZtVVlamwYMH6+TJk00dBgDgHOp9K9+2bduUlpZmLleN/TRixAgtXrxYkydPVnl5uR566CEVFxerZ8+eWrt2bcAtF3PnzlVERIRuv/12lZeXa8CAAVq8eLHCw8MbISQAAAAAdlZWVqa7775bf/rTnzR9+nRzvWEYmjdvnqZOnaphw4ZJkpYsWaL4+HgtW7ZMY8aMUUlJiRYuXKhXX33V/OF76dKlSkpK0rp162qcBRwAYJ16F6b69+8vwzBq3e5yuZSVlaWsrKxa2zRr1kzz58/X/Pnz6/vyAACEvNOvnmI8KQCov7Fjx+rGG2/U9ddfH1CYysvLU0FBgQYOHGiu83g86tevn7Zs2aIxY8YoNzdXfr8/oE1iYqJSUlK0ZcuWGgtTPp9PPp/PXC4tLZV0auIUv98fjBAtURWLk2KSiMuOnBqb0+MKlqDMygcAAAAADbF8+XJ99NFH+vDDD6ttKygokCRzYqUq8fHx2rdvn9kmMjIyYKKlqjZV+58pOztb06ZNq7Z+/fr1ioqKalAcoez08X6dhLjsx6mxOS2uY8eOBfX4FKYAAAAAhIQDBw7okUce0dq1a9WsWbNa27lcroBlwzCqrTvT2dpMmTLFHKJEOnXFVFJSktLS0hQXF1ePCEKb3+9XTk6O0tPTHTGrbxXish+nxubUuIqKioJ6fApTAAAAAEJCbm6uCgsL1aNHD3PdyZMntWnTJi1YsEB79uyRdOqqqISEBLNNYWGheRWV1+tVRUWFiouLA66aKiwsrHUWcI/HI4/HU2292+121JfLKsRlL06NS3JubE6LK9ix1HtWPgAAAAAIhgEDBmjnzp3mLOA7duxQamqq7r77bu3YsUOXXnqpvF5vwG0yFRUV2rhxo1l06tGjh9xud0Cb/Px87dq1q9bCFADAOlwxBQBAHVUNas6A5gAQHNHR0UpJSQlY16JFC8XFxZnrMzMzNWPGDHXq1EmdOnXSjBkzFBUVpeHDh0uSYmJiNHr0aE2cOFFxcXGKjY3VpEmT1LVrV3OWPgBA6KAwBQAAAMA2Jk+erPLycj300EMqLi5Wz549tXbtWkVHR5tt5s6dq4iICN1+++0qLy/XgAEDtHjxYoWHh1vYcwBATShMAQAAAAhZGzZsCFh2uVzKyspSVlZWrfs0a9ZM8+fP1/z584PbOQDAeWOMKQAAAAAAAFjigi5MVY0VAgAAAAAAgKZ3QRemAAAAAAAAYJ0LojB15pVRH+Qd+mHdtkWnHgAAAAAAAGhSF0RhCgAAAAAAAKHngilMMZ4UAAAAAABAaLlgClMAAAAAAAAILRFWdwAAAJyn7Utr/6kpdVSTdgUAAACoD8dfMcUtfAAAAAAAAKHJ8YUpAAAAAAAAhCYKUwAAAAAAALAEhSkAAAAAAABYgsIUAAAAAAAALEFhCgBgqaysLLlcroCH1+s1txuGoaysLCUmJqp58+bq37+/du/ebWGPAQAAADQWClMAAMt16dJF+fn55mPnzp3mtlmzZmnOnDlasGCBPvzwQ3m9XqWnp+vIkSMW9hgAAABAY6AwBQCwXEREhLxer/m46KKLJJ26WmrevHmaOnWqhg0bppSUFC1ZskTHjh3TsmXL6v062w8c1gd5hxq7+wAAAAAaKMLqDgAAsHfvXiUmJsrj8ahnz56aMWOGLr30UuXl5amgoEADBw4023o8HvXr109btmzRmDFjajyez+eTz+czl0tLSyVJlXKpUi75KxvWz0q5JClg/6p1p6+vaV199q9rX2o6XjV+f90PGiL8/+mz34Z9PxenxkZc9uK0eAAA9kZhCgBgqZ49e+qVV15R586d9d1332n69Onq06ePdu/erYKCAklSfHx8wD7x8fHat29frcfMzs7WtGnTqq0virxE5ZFRWpPfwM5GxkpS4P7/WRewvqZ19dm/Hn2RpJzvYmtvl7+mHgcNLTk5OVZ3IWicGhtx2cOxY8es7gIAACYKUwAAS2VkZJjPu3btqt69e6tjx45asmSJevXqJUlyuVwB+xiGUW3d6aZMmaIJEyaYy6WlpUpKSlJcxdeKjvAotUObBvV1275iSQrYv2pdbRrati59qZRL30deqvT4Q3LXdnN+93vqfMxQ4ff7lZOTo/T0dLndbqu706icGhtx2UtRUZHVXQAAwERhCgAQUlq0aKGuXbtq7969Gjp0qCSpoKBACQkJZpvCwsJqV1GdzuPxyOPxVFsfJkNhMmov4pxDmAxJ0kf7Dp227uxOf62q/evStmosrJ7JNV8Ndfqx3GGqPSYbf5l2u92OKgaczqmxEZc9OCkWAID9Mfg5ACCk+Hw+ffbZZ0pISFBycrK8Xm/AbTQVFRXauHGj+vTpY2EvAQAAADQGrpgCAFhq0qRJGjJkiC6++GIVFhZq+vTpKi0t1YgRI+RyuZSZmakZM2aoU6dO6tSpk2bMmKGoqCgNHz7c6q4DAAAAOE8XfGHqg7xDtd4mAQAIvoMHD+quu+7S999/r4suuki9evXS1q1b1aFDB0nS5MmTVV5eroceekjFxcXq2bOn1q5dq+joaIt7DgAAAOB8XfCFKQCAtZYvX37W7S6XS1lZWcrKymqaDgEAAABoMowxBQAAAAAAAEtwxRQAAAAAAJC2LWrYfqmjGrcfuKBQmAIA4Awf5B0ynzMOIQAAABA8zipMNbS6CwAAAAAAgCbnrMIUAAAh5vSrrxqzLQAAAOAEDH4OAAAAAAAAS1CYAgAAAAAAgCUoTAEAAAAAAMASjV6YysrKksvlCnh4vV5zu2EYysrKUmJiopo3b67+/ftr9+7djd0NAAAAAAAAhLigDH7epUsXrVu3zlwODw83n8+aNUtz5szR4sWL1blzZ02fPl3p6enas2ePoqOjG7UfDCILAHAS8hoAADgnZquHzQSlMBURERFwlVQVwzA0b948TZ06VcOGDZMkLVmyRPHx8Vq2bJnGjBlT4/F8Pp98Pp+5XFpaKkny+/3y+/0/NKwM3K9Srjr1118p6fTjWKQqFn8I9KUxOTUuybmxEZe9OC0eAAAAABeOoBSm9u7dq8TERHk8HvXs2VMzZszQpZdeqry8PBUUFGjgwIFmW4/Ho379+mnLli21Fqays7M1bdq0auvXr1+vqKio09bEBjaIPGO5FmvyJeWvqVPbppCTk2N1F4LCqXFJzo2NuOzh2LFjVncBAIBGkZ2drZUrV+r//b//p+bNm6tPnz6aOXOmLrvsMrONYRiaNm2aXnrpJRUXF6tnz5567rnn1KVLF7ONz+fTpEmT9Prrr6u8vFwDBgzQ888/r/bt21sRFgDgLBq9MNWzZ0+98sor6ty5s7777jtNnz5dffr00e7du1VQUCBJio+PD9gnPj5e+/btq/WYU6ZM0YQJE8zl0tJSJSUlKS0tTXFxcT803L40YL9t+4rr1OfUDm2k7vfUqW0w+f1+5eTkKD09XW632+ruNBqnxiU5NzbispeioiKru4Ag4vY9ABeSjRs3auzYsbrqqqt04sQJTZ06VQMHDtSnn36qFi1aSKrb0CCZmZl68803tXz5csXFxWnixIkaPHiwcnNzA4YZAQBYr9ELUxkZGebzrl27qnfv3urYsaOWLFmiXr16SZJcrsBb7AzDqLbudB6PRx6Pp9p6t9sd+OXyjKHcw2TUqc/uMEkh9CW1WlwO4dS4JOfGRlz24KRYAAAXtrfffjtgedGiRWrXrp1yc3PVt2/fOg0NUlJSooULF+rVV1/V9ddfL0launSpkpKStG7dOg0aNKjJ4wIA1C4ot/KdrkWLFuratav27t2roUOHSpIKCgqUkJBgtiksLKx2FRUAAACAC1tJSYkkKTb21BAddRkaJDc3V36/P6BNYmKiUlJStGXLlhoLU3Ue09bmnD7eJnH9R+W5mzS6evaRc2YvwY4n6IUpn8+nzz77TNdee62Sk5Pl9XqVk5Oj7t27S5IqKiq0ceNGzZw5M9hdAQCg3riVDgCsYRiGJkyYoGuuuUYpKSmSVKehQQoKChQZGak2bdpUa1O1/5nqPqatMzhtvM0qxFWlbmMtN6oGjtnMObOHYI9p2+iFqUmTJmnIkCG6+OKLVVhYqOnTp6u0tFQjRoyQy+VSZmamZsyYoU6dOqlTp06aMWOGoqKiNHz48MbuCgAAAACbGjdunD755BNt3ry52rb6Dg1yrjZ1HtPW5pw63iZxneGMsZebRD3HbOac2Uuwx7Rt9MLUwYMHddddd+n777/XRRddpF69emnr1q3q0KGDJGny5MkqLy/XQw89ZM6isXbtWnOgQit8kHdIPVOlZR/s1/CeF1vWDwAAAADS+PHj9cYbb2jTpk0BM+l5vV5JZx8axOv1qqKiQsXFxQFXTRUWFqpPnz41vl6dx7R1COKyl3rHFXbuJo2ugX93zpk9BDuWRn/LLl++XN9++60qKir0zTff6K9//at++tOfmttdLpeysrKUn5+v48ePa+PGjealuQAAAAAuXIZhaNy4cVq5cqXee+89JScnB2w/fWiQKlVDg1QVnXr06CG32x3QJj8/X7t27aq1MAUAsE7Qx5iyCmOCAAAAAPYyduxYLVu2TH/7298UHR1tjgkVExOj5s2b12lokJiYGI0ePVoTJ05UXFycYmNjNWnSJHXt2tWcpQ8AEDocW5gCAAAAYC8vvPCCJKl///4B6xctWqSRI0dKqtvQIHPnzlVERIRuv/12lZeXa8CAAVq8eLHCw8ObKhQAQB1RmAIAwMm2Lap9W+qopusHANSBYRjnbFM1NEhWVlatbZo1a6b58+dr/vz5jdg7AEAwWDEsWkha9sF+q7sAAAAAAABwQaEwBQCwVHZ2tq666ipFR0erXbt2Gjp0qPbs2RPQZuTIkXK5XAGPXr16Ncrrf5B3iHEJAQAAAItwKx8AwFIbN27U2LFjddVVV+nEiROaOnWqBg4cqE8//VQtWrQw291www1atOiH29IiIyOt6C4AAADOdLahA2pSKUmxwegJbMiRhSl++QYA+3j77bcDlhctWqR27dopNzdXffv2Ndd7PB55vd6m7h4AAIA1ti+VFHvqv9zrBAdzZGEKAGBfJSUlkqTY2MBf0TZs2KB27dqpdevW6tevn55++mm1a9euxmP4fD75fD5zubS0VJJUKZcq5ZK/8oe2lXJJUo3rQl1Nfa8Xv7/xOtOI/P/plz9E+3c+nBobcdmL0+IBANgbhan/6Lj/z6eehMcySxEAWMQwDE2YMEHXXHONUlJSzPUZGRm67bbb1KFDB+Xl5emJJ57Qddddp9zcXHk8nmrHyc7O1rRp06qtL4q8ROWRUVqTf9rKyFMFsJrW2UXOdw3sb/6axu1II8vJybG6C0Hj1NiIyx6OHTtmdRcAADBRmAIAhIxx48bpk08+0ebNmwPW33HHHebzlJQUpaamqkOHDnrrrbc0bNiwaseZMmWKJkyYYC6XlpYqKSlJcRVfKzrCo9QObcxt2/YVS1KN60JdpVz6PvJSpccfkrshl/h3v6fR+9QY/H6/cnJylJ6eLrfbbXV3GpVTYyMueykqKrK6CwAAmChMAQBCwvjx4/XGG29o06ZNat++/VnbJiQkqEOHDtq7d2+N2z0eT41XUoXJUJiMgCJOmAxJqnGdXbjD1LDCVIh/0Xa73Y4qBpzOqbERlz04KRYAgP1RmAIAWMowDI0fP16rVq3Shg0blJycfM59ioqKdODAASUkJDRBDwEAAAAEC2P7AwAsNXbsWC1dulTLli1TdHS0CgoKVFBQoPLycklSWVmZJk2apPfff19ff/21NmzYoCFDhqht27a65ZZbLO49AAAAgPPBFVMAAEu98MILkqT+/fsHrF+0aJFGjhyp8PBw7dy5U6+88ooOHz6shIQEpaWlacWKFYqOjragxwAAAAAaC4UpAIClDOPs4zk1b95c77zzThP1BgAAAEBT4lY+AAAAAAAAWILCFAAAAAAAACxBYQoAAAAAAACWoDAFAAAAAAAASzhj8PNti8ynH+QdsrAjAAAAAAAAqCuumAIAAAAAAIAlKEwBAAAAAADAEs64lQ8AgPPEreAAAABA0+OKKQAAAAAAAFiCK6YAAAAAAEDT2760YZfLpI5q9K7AOo66YorbMAAAAAAAAOyDK6YAABccfsgAAAAAQgOFKQAAAAAAgmXbIqt7AIQ0R93KBwAAAAAAAPugMAUAAAAAAABLcCsfAAAXqnPdWsCMNwAAAAgyrpgCAAAAAACAJShM1WTbIgaoAwAAAAAACDJ738r38QqpVXOrewEAAAAAAIAG4IopAAAAAAAAWILCFAAAAAAAACzhmMLUB3mHrO4CAAAAAAAA6sHeY0wBAAAAABBsTI4VWs7nfKSOarx+oFE44ooprpYCAAAAAACwH0sLU88//7ySk5PVrFkz9ejRQ//4xz+s7A4AIMSRNwAA9UHeAIDQZ1lhasWKFcrMzNTUqVO1fft2XXvttcrIyND+/fvrfIztBw5ztRQAXCAaI28AAC4c5A0AsAfLxpiaM2eORo8erf/6r/+SJM2bN0/vvPOOXnjhBWVnZwe09fl88vl85nJJSYkk6Ui5T42tqLT8tIWiRj/+2fj9fh07dkxFRUVyu91N+trB5NS4JOfGRlz2cujQqQK9YRgW9yS4QjVvWKlSLh07cUxFR8rldgXhBZo4D1Zx6v+rknNjIy57IW/UPW9U/a2cwqnv6XrF9fGKpulUI/AbOhVXsPK8hSyNLYj/vnHq/2NBzxuGBXw+nxEeHm6sXLkyYP3DDz9s9O3bt1r7J5980pDEgwcPHjzO8vjyyy+b6mO8yZE3ePDgwaPxH+SNH5A3ePDgwePcj2DlDUuumPr+++918uRJxcfHB6yPj49XQUFBtfZTpkzRhAkTzOXDhw+rQ4cO2r9/v2JiYoLe36ZSWlqqpKQkHThwQK1atbK6O43GqXFJzo2NuOylpKREF198sWJjY63uStCQN2rm1Pe0U+OSnBsbcdkLeYO84bT3NHHZj1Njc2pcwc4blt3KJ0kuV+A1e4ZhVFsnSR6PRx6Pp9r6mJgYR53sKq1atSIum3FqbMRlL2Fhjpho9azIGzVz6nvaqXFJzo2NuOyFvPED8oYzEJf9ODU2p8YVrLxhSTZq27atwsPDq/1aUVhYWO1XDQAAyBsAgPogbwCAfVhSmIqMjFSPHj2Uk5MTsD4nJ0d9+vSxoksAgBBG3gAA1Ad5AwDsw7Jb+SZMmKB7771Xqamp6t27t1566SXt379fDz744Dn39Xg8evLJJ2u83NbOiMt+nBobcdmLU+M6E3mjOuKyH6fGRlz24tS4zkTeqI647MWpcUnOjY24GsZlGNbNE/v8889r1qxZys/PV0pKiubOnau+ffta1R0AQIgjbwAA6oO8AQChz9LCFAAAAAAAAC5czp+KAwAAAAAAACGJwhQAAAAAAAAsQWEKAAAAAAAAlqAwBQAAAAAAAEvYsjD1/PPPKzk5Wc2aNVOPHj30j3/8w+ou1UtWVpZcLlfAw+v1mtsNw1BWVpYSExPVvHlz9e/fX7t377awxzXbtGmThgwZosTERLlcLq1evTpge13i8Pl8Gj9+vNq2basWLVropptu0sGDB5swiurOFdfIkSOrnb9evXoFtAm1uLKzs3XVVVcpOjpa7dq109ChQ7Vnz56ANnY8X3WJy47nS5JeeOEF/exnP1OrVq3UqlUr9e7dW3//+9/N7XY8X1Yib4QG8oZ9PofIG/Y6X+SMxkfeCA3kDft8DpE37HW+Qi1v2K4wtWLFCmVmZmrq1Knavn27rr32WmVkZGj//v1Wd61eunTpovz8fPOxc+dOc9usWbM0Z84cLViwQB9++KG8Xq/S09N15MgRC3tc3dGjR9WtWzctWLCgxu11iSMzM1OrVq3S8uXLtXnzZpWVlWnw4ME6efJkU4VRzbnikqQbbrgh4PytWbMmYHuoxbVx40aNHTtWW7duVU5Ojk6cOKGBAwfq6NGjZhs7nq+6xCXZ73xJUvv27fXMM89o27Zt2rZtm6677jrdfPPNZkKw4/myCnkjdJA37PM5RN6w1/kiZzQu8kboIG/Y53OIvGGv8xVyecOwmZ///OfGgw8+GLDu8ssvN37zm99Y1KP6e/LJJ41u3brVuK2ystLwer3GM888Y647fvy4ERMTY7z44otN1MP6k2SsWrXKXK5LHIcPHzbcbrexfPlys80333xjhIWFGW+//XaT9f1szozLMAxjxIgRxs0331zrPnaIq7Cw0JBkbNy40TAM55yvM+MyDGecrypt2rQx/vf//t+OOV9NhbwRmsgbP7BDXOSNH9ghLsMgZ5wP8kZoIm/8wA5xkTd+YIe4DMPavGGrK6YqKiqUm5urgQMHBqwfOHCgtmzZYlGvGmbv3r1KTExUcnKy7rzzTn311VeSpLy8PBUUFATE6PF41K9fP1vFWJc4cnNz5ff7A9okJiYqJSUl5GPdsGGD2rVrp86dO+uBBx5QYWGhuc0OcZWUlEiSYmNjJTnnfJ0ZVxW7n6+TJ09q+fLlOnr0qHr37u2Y89UUyBv2idHp72u7fw6RN+xzvsgZ54e8YZ8Ynf7etvPnkETesNP5CoW8YavC1Pfff6+TJ08qPj4+YH18fLwKCgos6lX99ezZU6+88oreeecd/elPf1JBQYH69OmjoqIiMw67x1iXOAoKChQZGak2bdrU2iYUZWRk6LXXXtN7772n2bNn68MPP9R1110nn88nKfTjMgxDEyZM0DXXXKOUlBRJzjhfNcUl2ft87dy5Uy1btpTH49GDDz6oVatW6ac//akjzldTIW/YJ0Ynv6/t/DkkkTfscr7IGY2DvGGfGJ383rbr51AV8oY9zlco5Y2IBsZgKZfLFbBsGEa1daEsIyPDfN61a1f17t1bHTt21JIlS8xB0uweY5WGxBHqsd5xxx3m85SUFKWmpqpDhw566623NGzYsFr3C5W4xo0bp08++USbN2+uts3O56u2uOx8vi677DLt2LFDhw8f1l//+leNGDFCGzduNLfb+Xw1Nbt/ppI37P2+tvPnkETesMv5Imc0Lrt/ppI37P3etuvnUBXyhj3OVyjlDVtdMdW2bVuFh4dXq8AVFhZWq+bZSYsWLdS1a1ft3bvXnC3D7jHWJQ6v16uKigoVFxfX2sYOEhIS1KFDB+3du1dSaMc1fvx4vfHGG1q/fr3at29vrrf7+aotrprY6XxFRkbqxz/+sVJTU5Wdna1u3brpD3/4g+3PV1Mib9gnxgvpfW2nzyHyhn3OFzmjcZA37BPjhfTetsvnkETekOxzvkIpb9iqMBUZGakePXooJycnYH1OTo769OljUa/On8/n02effaaEhAQlJyfL6/UGxFhRUaGNGzfaKsa6xNGjRw+53e6ANvn5+dq1a5etYi0qKtKBAweUkJAgKTTjMgxD48aN08qVK/Xee+8pOTk5YLtdz9e54qqJHc5XbQzDkM/ns+35sgJ5wz4xXkjvazt8DpE3fmCH81UTckbDkDfsE+OF9N62w+cQeeMHdjhfNbE0b9R7uHSLLV++3HC73cbChQuNTz/91MjMzDRatGhhfP3111Z3rc4mTpxobNiwwfjqq6+MrVu3GoMHDzaio6PNGJ555hkjJibGWLlypbFz507jrrvuMhISEozS0lKLex7oyJEjxvbt243t27cbkow5c+YY27dvN/bt22cYRt3iePDBB4327dsb69atMz766CPjuuuuM7p162acOHHCqrDOGteRI0eMiRMnGlu2bDHy8vKM9evXG7179zZ+9KMfhXRc/+t//S8jJibG2LBhg5Gfn28+jh07Zrax4/k6V1x2PV+GYRhTpkwxNm3aZOTl5RmffPKJ8fjjjxthYWHG2rVrDcOw5/myCnkjdJA37PM5RN6w1/kiZzQu8kboIG/Y53OIvGGv8xVqecN2hSnDMIznnnvO6NChgxEZGWlceeWVAVM12sEdd9xhJCQkGG6320hMTDSGDRtm7N6929xeWVlpPPnkk4bX6zU8Ho/Rt29fY+fOnRb2uGbr1683JFV7jBgxwjCMusVRXl5ujBs3zoiNjTWaN29uDB482Ni/f78F0fzgbHEdO3bMGDhwoHHRRRcZbrfbuPjii40RI0ZU63OoxVVTPJKMRYsWmW3seL7OFZddz5dhGMb9999vfs5ddNFFxoABA8xEYRj2PF9WIm+EBvKGfT6HyBv2Ol/kjMZH3ggN5A37fA6RN+x1vkItb7gMwzDqf50VAAAAAAAAcH5sNcYUAAAAAAAAnIPCFAAAAAAAACxBYQoAAAAAAACWoDAFAAAAAAAAS1CYAgAAAAAAgCUoTAEAAAAAAMASFKYAAAAAAABgCQpTAAAAAAAAsASFKQAAAAAAAFiCwhQAAAAAAAAsQWEKAAAAAAAAlvj/UhmubGD//t8AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# define big M constant for chance constraints counterparts\n", - "bigM = 100\n", - "\n", - "\n", - "def airline_final(demand):\n", - " m = pyo.ConcreteModel()\n", - "\n", - " m.CLASSES = pyo.Set(initialize=demand.columns)\n", - " m.SCENARIOS = pyo.Set(initialize=demand.index)\n", - "\n", - " # first stage variables and constraints\n", - " m.seats = pyo.Var(m.CLASSES, domain=pyo.NonNegativeIntegers)\n", - "\n", - " @m.Constraint(m.CLASSES)\n", - " def plane_seats(m, c):\n", - " return sum(m.seats[c] * seat_factor[c] for c in m.CLASSES) <= capacity\n", - "\n", - " # second stage variable and constraints\n", - " m.tickets = pyo.Var(m.CLASSES, m.SCENARIOS, domain=pyo.NonNegativeIntegers)\n", - " m.first_class = pyo.Var(m.SCENARIOS, domain=pyo.Binary)\n", - " m.business_class = pyo.Var(m.SCENARIOS, domain=pyo.Binary)\n", - "\n", - " @m.Constraint(m.CLASSES, m.SCENARIOS)\n", - " def demand_limits(m, c, s):\n", - " return m.tickets[c, s] <= demand[c][s]\n", - "\n", - " @m.Constraint(m.CLASSES, m.SCENARIOS)\n", - " def seat_limits(m, c, s):\n", - " return m.tickets[c, s] <= m.seats[c]\n", - "\n", - " @m.Constraint(m.SCENARIOS)\n", - " def first_class_loyality(m, s):\n", - " return m.seats[\"F\"] + bigM * m.first_class[s] >= demand[\"F\"][s]\n", - "\n", - " @m.Constraint()\n", - " def first_class_loyality_rate(m):\n", - " return sum(m.first_class[s] for s in m.SCENARIOS) <= 0.02 * len(\n", - " m.SCENARIOS\n", - " )\n", - "\n", - " @m.Constraint(m.SCENARIOS)\n", - " def business_class_loyality(m, s):\n", - " return (\n", - " m.seats[\"F\"] + m.seats[\"B\"] + bigM * m.business_class[s]\n", - " >= demand[\"B\"][s] + demand[\"F\"][s]\n", - " )\n", - "\n", - " @m.Constraint()\n", - " def business_class_loyality_rate(m):\n", - " return sum(m.business_class[s] for s in m.SCENARIOS) <= 0.05 * len(\n", - " m.SCENARIOS\n", - " )\n", - "\n", - " # objective\n", - " @m.Objective(sense=pyo.maximize)\n", - " def revenue(m):\n", - " return sum(\n", - " m.tickets[c, s] * revenue_factor[c]\n", - " for c in m.CLASSES\n", - " for s in m.SCENARIOS\n", - " )\n", - "\n", - " return m\n", - "\n", - "\n", - "# create model\n", - "model = airline_final(demand_saa)\n", - "seats = airline_solve(model)\n", - "seat_report_saa(seats, demand_saa)" - ] - }, - { - "cell_type": "markdown", - "id": "d1f7f29d-0373-4b4e-a1c1-27594905464a", - "metadata": {}, - "source": [ - "**Exercise**\n", - "\n", - "Compared the results of using positive correlation in demand for first and business-class tickets results in lower expected revenue. What happens if there is no correlation, or there is negative correlation? Verify your predictions by simulation." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.16" - }, - "varInspector": { - "cols": { - "lenName": 16, - "lenType": 16, - "lenVar": 40 - }, - "kernels_config": { - "python": { - "delete_cmd_postfix": "", - "delete_cmd_prefix": "del ", - "library": "var_list.py", - "varRefreshCmd": "print(var_dic_list())" - }, - "r": { - "delete_cmd_postfix": ") ", - "delete_cmd_prefix": "rm(", - "library": "var_list.r", - "varRefreshCmd": "cat(var_dic_list()) " - } - }, - "types_to_exclude": [ - "module", - "function", - "builtin_function_or_method", - "instance", - "_Feature" - ], - "window_display": false - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/genindex.html b/genindex.html index 731b4d60..2d0981fb 100644 --- a/genindex.html +++ b/genindex.html @@ -185,9 +185,9 @@
  • 2.4 Dual of the BIM production problem
  • 2.5 BIM production for worst case
  • 2.6 BIM production variants
  • -
  • 2.7 BIM production using demand forecasts
  • +
  • 2.7 BIM production using demand forecasts
  • Extra material: Wine quality prediction with \(L_1\) regression
  • -
  • Extra material: Multi-product facility production
  • +
  • Extra material: Multi-product facility production
  • 3. Mixed Integer Linear Optimization
  • 4. Network Optimization
  • 5. Convex Optimization
  • 6. Conic Optimization
  • 7. Accounting for Uncertainty: Optimization Meets Reality
  • 8. Robust Optimization - Single Stage Problems
  • 9. Stochastic Optimization - Single Stage Problems
  • 10. Two-Stage Problems
  • @@ -443,49 +446,47 @@

    A

    application @@ -494,7 +495,7 @@

    A

    B