-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_utils.py
130 lines (98 loc) · 4.97 KB
/
inference_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# -*- coding: utf-8 -*-
"""
Created on Sun Aug 29 09:22:11 2022
@author: MOBASSIR
"""
import numpy as np
import pandas as pd
from laserembeddings import Laser
from metrics import dot_product_similarity,pairwise_euclidean_dists
import site
import shutil
import os
import gdown
# assets folder
url = "https://drive.google.com/drive/folders/1Zw64MRFvQxxwDLYFTdNki7HwNQOM30gy?usp=sharing"
id = "1Zw64MRFvQxxwDLYFTdNki7HwNQOM30gy"
loc = site.getsitepackages()
root = site.getusersitepackages()
data_path = loc[0]+'/laserembeddings/data'
gdown_infer = True
if not os.path.exists(data_path):
data_path = root+'/laserembeddings/data'
if(not gdown_infer):
files = os.listdir(data_path)
if(len(files)<3):
print("online...")
os.system('python -m laserembeddings download-models')
else:
files = os.listdir('./assets/')
if(len(files)<7):
print("downloading necessary files....")
gdown.download_folder(id=id, quiet=True, use_cookies=False)
shutil.copy('./assets/93langs.fcodes', data_path)
shutil.copy('./assets/93langs.fvocab', data_path)
shutil.copy('./assets/bilstm.93langs.2018-12-26.pt', data_path)
print("copy done...")
laser = Laser()
corpus_emb_quran = np.load('./assets/Holy_Quran_mlt_emb.npy')
corpus_emb_hadith = np.load('./assets/en_emb_bukhari_muslim.npy')
en_bn_bukhari_muslim = pd.read_csv('./assets/en_bn_bukhari_muslim.csv')
en_bn_quran_tafsir = pd.read_csv('./assets/en_bn_quran_tafsir.csv')
def MLT_Sahih_Hadith_Search_Engine(query,size=1,language = 'en',metric = 'dot',query_embedding=None):
if(metric == 'dot'):
query_embedding = np.squeeze(np.asarray(query_embedding))
linear_similarities = dot_product_similarity(corpus_emb_hadith, query_embedding)
else:
linear_similarities = pairwise_euclidean_dists(corpus_emb_hadith, query_embedding)
linear_similarities = np.squeeze(np.asarray(linear_similarities))
linear_similarities = np.array(linear_similarities, dtype=np.float32)
if(metric == 'dot'):
Top_index_doc = linear_similarities.argsort()[:-(size+1):-1]
else:
Top_index_doc = linear_similarities.argsort()[:-(size+1):]
Top_index_doc = Top_index_doc[:size]
linear_similarities.sort()
find = pd.DataFrame()
for i,index in enumerate(Top_index_doc):
find.loc[i,'source'] = str(en_bn_bukhari_muslim['source'][index])
find.loc[i,'chapter_no'] = str(en_bn_bukhari_muslim['chapter_no'][index])
find.loc[i,'hadith_no'] = str(en_bn_bukhari_muslim['hadith_no'][index])
find.loc[i,'chapter'] = str(en_bn_bukhari_muslim['chapter'][index])
find.loc[i,'text_ar'] = str(en_bn_bukhari_muslim['text_ar'][index])
find.loc[i,'text_en'] = str(en_bn_bukhari_muslim['text_en'][index])
find.loc[i,'text_bn'] = str(en_bn_bukhari_muslim['text_bn'][index])
find.loc[i,'narrators'] = str(en_bn_bukhari_muslim['narrators'][index])
for j,simScore in enumerate(linear_similarities[:-(size+1):-1]):
find.loc[j,'Score'] = simScore
return find
def Multilingual_Quran_Hadith_Search_Engine(query,size=1,language = 'en',metric = 'dot',n_hadith = 1):
query_embedding = laser.embed_sentences(query, lang=language)
mlt_hadiths = MLT_Sahih_Hadith_Search_Engine(query,size=n_hadith,language = 'en',metric = metric,query_embedding=query_embedding)
if(metric == 'dot'):
query_embedding = np.squeeze(np.asarray(query_embedding))
linear_similarities = dot_product_similarity(corpus_emb_quran, query_embedding)
else:
linear_similarities = pairwise_euclidean_dists(corpus_emb_quran, query_embedding)
linear_similarities = np.squeeze(np.asarray(linear_similarities))
linear_similarities = np.array(linear_similarities, dtype=np.float32)
if(metric == 'dot'):
Top_index_doc = linear_similarities.argsort()[:-(size+1):-1]
else:
Top_index_doc = linear_similarities.argsort()[:-(size+1):]
Top_index_doc = Top_index_doc[:size]
linear_similarities.sort()
find = pd.DataFrame()
for i,index in enumerate(Top_index_doc):
find.loc[i,'Name'] = str(en_bn_quran_tafsir['Name'][index])
find.loc[i,'Surah'] = str(en_bn_quran_tafsir['Surah'][index])
find.loc[i,'Ayat'] = str(en_bn_quran_tafsir['Ayat'][index])
find.loc[i,'Verse'] = str(en_bn_quran_tafsir['Verse'][index])
find.loc[i,'Tafseer'] = str(en_bn_quran_tafsir['Tafseer'][index])
find.loc[i,'ar_text'] = str(en_bn_quran_tafsir['ar_text'][index])
#bangla....
find.loc[i,'আল_বায়ান'] = str(en_bn_quran_tafsir['আল_বায়ান'][index])
find.loc[i,'tafsir_bayan'] = str(en_bn_quran_tafsir['tafsir_bayan'][index])
for j,simScore in enumerate(linear_similarities[:-(size+1):-1]):
find.loc[j,'Score'] = simScore
return find,mlt_hadiths