forked from alantian/ganshowcase
-
Notifications
You must be signed in to change notification settings - Fork 10
/
dcgan_chainer_to_keras.py
executable file
·309 lines (249 loc) · 11.2 KB
/
dcgan_chainer_to_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#!/usr/bin/env python3
from functools import partial
import os
import sys
from absl import app
from absl import flags
from absl import logging
import keras
from keras import backend as K
from keras.layers.core import Activation
from keras.models import Sequential, Model
from keras.layers import Input, Dense, Reshape, UpSampling2D, Add
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.layers.normalization import BatchNormalization
import numpy as np
from PIL import Image
import tensorflowjs as tfjs
import tensorflow as tf
def _make_dense(input_dim, units, weight=None, kernel_arr_name=None, bias_arr_name=None):
return Dense(
input_dim=input_dim,
units=units,
kernel_initializer=(lambda x: np.transpose(weight[kernel_arr_name], (1, 0))),
bias_initializer=(lambda x: weight[bias_arr_name]),
) if weight else Dense(
input_dim=input_dim,
units=units,
)
def _make_batch_normalizzation(axis,
weight=None,
beta_arr_name=None,
gamma_arr_name=None,
moving_mean_arr_name=None,
moving_variance_arr_name=None):
return BatchNormalization(
axis=1,
beta_initializer=(lambda x: weight[beta_arr_name]),
gamma_initializer=(lambda x: weight[gamma_arr_name]),
moving_mean_initializer=(lambda x: weight[moving_mean_arr_name]),
moving_variance_initializer=(lambda x: weight[moving_variance_arr_name]),
) if weight else BatchNormalization(axis=axis)
def _make_conv_2d_transpose(filters, kernel_size, strides, weight=None, kernel_arr_name=None, bias_arr_name=None):
return Conv2DTranspose(
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding='same',
data_format='channels_first',
kernel_initializer=(lambda x: np.transpose(weight[kernel_arr_name], (2, 3, 1, 0))),
bias_initializer=(lambda x: weight[bias_arr_name]),
) if weight else Conv2DTranspose(
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding='same',
data_format='channels_first',
)
def _make_conv_2d(filters, kernel_size, strides, weight=None, kernel_arr_name=None, bias_arr_name=None):
return Conv2D(
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding='same',
data_format='channels_first',
kernel_initializer=(lambda x: np.transpose(weight[kernel_arr_name], (2, 3, 1, 0))),
bias_initializer=(lambda x: weight[bias_arr_name]),
) if weight else Conv2D(
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding='same',
data_format='channels_first',
)
def get_dcgan64_keras_generator(input_dim, ch, weight=None):
if weight:
print('=' * 80)
print('weight')
print('-' * 80)
keys = list(sorted(weight.keys()))
for key in keys:
print(key, weight[key].shape)
print('=' * 80)
model = Sequential()
model.add(_make_dense(input_dim, 4 * 4 * ch, weight, 'l0/W', 'l0/b'))
model.add(_make_batch_normalizzation(1, weight, 'bn0/beta', 'bn0/gamma', 'bn0/avg_mean', 'bn0/avg_var'))
model.add(Activation('relu'))
model.add(Reshape((ch, 4, 4)))
model.add(_make_conv_2d_transpose(ch // 2, 4, 2, weight, 'dc1/W', 'dc1/b'))
model.add(_make_batch_normalizzation(1, weight, 'bn1/beta', 'bn1/gamma', 'bn1/avg_mean', 'bn1/avg_var'))
model.add(Activation('relu'))
model.add(_make_conv_2d_transpose(ch // 4, 4, 2, weight, 'dc2/W', 'dc2/b'))
model.add(_make_batch_normalizzation(1, weight, 'bn2/beta', 'bn2/gamma', 'bn2/avg_mean', 'bn2/avg_var'))
model.add(Activation('relu'))
model.add(_make_conv_2d_transpose(ch // 8, 4, 2, weight, 'dc3/W', 'dc3/b'))
model.add(_make_batch_normalizzation(1, weight, 'bn3/beta', 'bn3/gamma', 'bn3/avg_mean', 'bn3/avg_var'))
model.add(Activation('relu'))
model.add(_make_conv_2d_transpose(3, 4, 2, weight, 'dc4/W', 'dc4/b'))
model.add(Activation('tanh'))
return model
def _make_upsampling_2d(ch, weight=None):
'''
tensorflow.js and Keras doesn't support Unpooling,
use Conv2DTranspose with hanf-crafted weight as a replacement.
'''
kernel_matrix = np.zeros((2, 2, ch, ch), dtype='f')
for i in range(ch):
kernel_matrix[:, :, i, i] = 1.
return Conv2DTranspose(
filters=ch,
kernel_size=2,
strides=2,
padding='same',
data_format='channels_first',
# This is a trick.
# When weight is None, we can leave any standard initilizer
# since weight would be later loaded, but we cannot leave any lambda
# that tfjs would complain when it loads its weight.
kernel_initializer=(lambda x: kernel_matrix) if weight else keras.initializers.Zeros(),
bias_initializer=keras.initializers.Zeros())
def _make_res_net_res_block_up(in_ch, out_ch, weight=None, prefix=''):
def f(x):
p = prefix
bn0 = _make_batch_normalizzation(1, weight, p + 'bn0/beta', p + 'bn0/gamma', p + 'bn0/avg_mean',
p + 'bn0/avg_var')
bn1 = _make_batch_normalizzation(1, weight, p + 'bn1/beta', p + 'bn1/gamma', p + 'bn1/avg_mean',
p + 'bn1/avg_var')
c0 = _make_conv_2d(out_ch, 3, 1, weight, p + 'c0/W', p + 'c0/b')
c1 = _make_conv_2d(out_ch, 3, 1, weight, p + 'c1/W', p + 'c1/b')
cs = _make_conv_2d(out_ch, 3, 1, weight, p + 'cs/W', p + 'cs/b')
u0 = _make_upsampling_2d(in_ch, weight)
u1 = _make_upsampling_2d(in_ch, weight)
h = c0(u0(Activation('relu')(bn0(x))))
h = c1(Activation('relu')(bn1(h)))
hs = cs(u1(x))
return Add()([h, hs])
return f
def _make_rese_net_finals(ch, weight=None, prefix=''):
def f(x):
p = prefix
bn = _make_batch_normalizzation(1, weight, p + '0/beta', p + '0/gamma', p + '0/avg_mean', p + '0/avg_var')
c = _make_conv_2d(ch, 3, 1, weight, p + '2/W', p + '2/b')
h = Activation('relu')(bn(x))
h = Activation('tanh')(c(h))
return h
return f
def get_resnet128_keras_generator(input_dim, ch, weight=None):
if weight:
print('=' * 80)
print('weight')
print('-' * 80)
keys = list(sorted(weight.keys()))
for key in keys:
print(key, weight[key].shape)
print('=' * 80)
input = Input(shape=(input_dim, ))
x = input
x = _make_dense(input_dim, 4 * 4 * ch, weight, 'dense/l/W', 'dense/l/b')(x)
x = Reshape((ch, 4, 4))(x)
x = _make_res_net_res_block_up(ch, ch, weight, 'resblockups/0/')(x)
x = _make_res_net_res_block_up(ch, ch // 2, weight, 'resblockups/1/')(x)
x = _make_res_net_res_block_up(ch // 2, ch // 4, weight, 'resblockups/2/')(x)
x = _make_res_net_res_block_up(ch // 4, ch // 8, weight, 'resblockups/3/')(x)
x = _make_res_net_res_block_up(ch // 8, ch // 16, weight, 'resblockups/4/')(x)
x = _make_rese_net_finals(3, weight, 'finals/')(x)
model = Model(inputs=input, outputs=x)
return model
def get_resnet256_keras_generator(input_dim, ch, weight=None):
if weight:
print('=' * 80)
print('weight')
print('-' * 80)
keys = list(sorted(weight.keys()))
for key in keys:
print(key, weight[key].shape)
print('=' * 80)
input = Input(shape=(input_dim, ))
x = input
x = _make_dense(input_dim, 4 * 4 * ch, weight, 'dense/l/W', 'dense/l/b')(x)
x = Reshape((ch, 4, 4))(x)
x = _make_res_net_res_block_up(ch, ch, weight, 'resblockups/0/')(x)
x = _make_res_net_res_block_up(ch, ch // 2, weight, 'resblockups/1/')(x)
x = _make_res_net_res_block_up(ch // 2, ch // 4, weight, 'resblockups/2/')(x)
x = _make_res_net_res_block_up(ch // 4, ch // 8, weight, 'resblockups/3/')(x)
x = _make_res_net_res_block_up(ch // 8, ch // 16, weight, 'resblockups/4/')(x)
x = _make_res_net_res_block_up(ch // 16, ch // 32, weight, 'resblockups/5/')(x)
x = _make_rese_net_finals(3, weight, 'finals/')(x)
model = Model(inputs=input, outputs=x)
return model
def generate_images(generator, output_dir, index, latent_dim=128, nb_row=5, nb_col=5):
"""Feeds random seeds into the generator and tiles and saves the output to a PNG file."""
test_image_stack = generator.predict(np.random.randn(nb_row * nb_col, latent_dim))
test_image_stack = (test_image_stack * 127.5) + 127.5
test_image_stack = np.round(test_image_stack).astype(np.uint8)
arr = test_image_stack
_, C, H, W = arr.shape
arr = np.reshape(arr, (nb_row, nb_col, C, H, W)) # rc * C * H * W -> r * c * C * H * W
arr = arr.transpose(0, 3, 1, 4, 2)
arr = np.reshape(arr, (nb_row * H, nb_col * W, C))
tiled_output = Image.fromarray(arr, mode='RGB')
outfile = os.path.join(output_dir, '%08d.png' % index)
tiled_output.save(outfile)
FLAGS = flags.FLAGS
flags.DEFINE_string('arch', '', 'Architecture of netowrk. can be `dcgan64` or `resnet128`.')
flags.DEFINE_string('chainer_model_path', '', '')
flags.DEFINE_string('keras_model_path', '', '')
flags.DEFINE_string('tfjs_model_path', '', '')
def main(argv):
del argv # Unused.
tf.disable_eager_execution()
weight = np.load(FLAGS.chainer_model_path)
if FLAGS.keras_model_path == "":
FLAGS.keras_model_path = FLAGS.chainer_model_path.replace(".npz","_Keras.h5")
if FLAGS.tfjs_model_path == "":
FLAGS.tfjs_model_path = FLAGS.chainer_model_path.replace(".npz","_tfjs")
print('Tensorflow.js model path: ', FLAGS.tfjs_model_path)
if FLAGS.arch == 'resnet128':
get_generator = partial(get_resnet128_keras_generator, input_dim=128, ch=1024)
elif FLAGS.arch == 'resnet256':
get_generator = partial(get_resnet256_keras_generator, input_dim=128, ch=1024)
elif FLAGS.arch == 'dcgan64':
get_generator = partial(get_dcgan64_keras_generator, input_dim=128, ch=512)
else:
raise ValueError('Unknow --arch %s' % FLAGS.arch)
generator = get_generator(weight=weight)
print('Keras summary')
generator.summary()
logging.info('Saving keras model (weights) to %s', FLAGS.keras_model_path)
generator.save_weights(FLAGS.keras_model_path)
del generator
# this avoids lambda initilizers in generator, which whould cause error in tfjs.
generator = get_generator()
generator.load_weights(FLAGS.keras_model_path)
generator.save_weights(FLAGS.keras_model_path)
logging.info('Saving tensorflow.js model to %s', FLAGS.tfjs_model_path)
os.system('mkdir -p "%s"' % FLAGS.tfjs_model_path)
tfjs.converters.save_keras_model(generator, FLAGS.tfjs_model_path)
sample_output_dir = FLAGS.keras_model_path + '.sample'
logging.info('Sampling images, saving to %s', sample_output_dir)
os.system('mkdir -p "%s"' % sample_output_dir)
for index in range(10):
generate_images(generator, sample_output_dir, index)
import pdb, traceback, sys, code # noqa
if __name__ == '__main__':
try:
app.run(main)
except Exception: # noqa
type, value, tb = sys.exc_info()
traceback.print_exc()
pdb.post_mortem(tb)