-
Notifications
You must be signed in to change notification settings - Fork 46
/
model.py
123 lines (103 loc) · 4.79 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import tensorflow as tf
from tensorflow.contrib import rnn
from tensorflow.contrib import legacy_seq2seq
import numpy as np
class Model():
def __init__(self, args, training=True):
self.args = args
if not training:
args.batch_size = 1
args.seq_length = 1
if args.model == 'rnn':
cell_fn = rnn.BasicRNNCell
elif args.model == 'gru':
cell_fn = rnn.GRUCell
elif args.model == 'lstm':
cell_fn = rnn.BasicLSTMCell
elif args.model == 'nas':
cell_fn = rnn.NASCell
else:
raise Exception("model type not supported: {}".format(args.model))
cells = []
for _ in range(args.num_layers):
cell = cell_fn(args.rnn_size)
if training and (args.output_keep_prob < 1.0 or args.input_keep_prob < 1.0):
cell = rnn.DropoutWrapper(cell,
input_keep_prob=args.input_keep_prob,
output_keep_prob=args.output_keep_prob)
cells.append(cell)
self.cell = cell = rnn.MultiRNNCell(cells, state_is_tuple=True)
self.input_data = tf.placeholder(
tf.int32, [args.batch_size, args.seq_length])
self.targets = tf.placeholder(
tf.int32, [args.batch_size, args.seq_length])
self.initial_state = cell.zero_state(args.batch_size, tf.float32)
with tf.variable_scope('rnnlm'):
softmax_w = tf.get_variable("softmax_w",
[args.rnn_size, args.vocab_size])
softmax_b = tf.get_variable("softmax_b", [args.vocab_size])
embedding = tf.get_variable("embedding", [args.vocab_size, args.rnn_size])
inputs = tf.nn.embedding_lookup(embedding, self.input_data)
# dropout beta testing: double check which one should affect next line
if training and args.output_keep_prob:
inputs = tf.nn.dropout(inputs, args.output_keep_prob)
inputs = tf.split(inputs, args.seq_length, 1)
inputs = [tf.squeeze(input_, [1]) for input_ in inputs]
def loop(prev, _):
prev = tf.matmul(prev, softmax_w) + softmax_b
prev_symbol = tf.stop_gradient(tf.argmax(prev, 1))
return tf.nn.embedding_lookup(embedding, prev_symbol)
outputs, last_state = legacy_seq2seq.rnn_decoder(inputs, self.initial_state, cell, loop_function=loop if not training else None, scope='rnnlm')
output = tf.reshape(tf.concat(outputs, 1), [-1, args.rnn_size])
self.logits = tf.matmul(output, softmax_w) + softmax_b
self.probs = tf.nn.softmax(self.logits)
loss = legacy_seq2seq.sequence_loss_by_example(
[self.logits],
[tf.reshape(self.targets, [-1])],
[tf.ones([args.batch_size * args.seq_length])])
with tf.name_scope('cost'):
self.cost = tf.reduce_sum(loss) / args.batch_size / args.seq_length
self.final_state = last_state
self.lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars),
args.grad_clip)
with tf.name_scope('optimizer'):
optimizer = tf.train.AdamOptimizer(self.lr)
self.train_op = optimizer.apply_gradients(zip(grads, tvars))
# instrument tensorboard
tf.summary.histogram('logits', self.logits)
tf.summary.histogram('loss', loss)
tf.summary.scalar('train_loss', self.cost)
def sample(self, sess, chars, vocab, num=200, prime='The ', sampling_type=1):
state = sess.run(self.cell.zero_state(1, tf.float32))
for char in prime[:-1]:
x = np.zeros((1, 1))
x[0, 0] = vocab[char]
feed = {self.input_data: x, self.initial_state: state}
[state] = sess.run([self.final_state], feed)
def weighted_pick(weights):
t = np.cumsum(weights)
s = np.sum(weights)
return(int(np.searchsorted(t, np.random.rand(1)*s)))
ret = prime
char = prime[-1]
for n in range(num):
x = np.zeros((1, 1))
x[0, 0] = vocab[char]
feed = {self.input_data: x, self.initial_state: state}
[probs, state] = sess.run([self.probs, self.final_state], feed)
p = probs[0]
if sampling_type == 0:
sample = np.argmax(p)
elif sampling_type == 2:
if char == ' ':
sample = weighted_pick(p)
else:
sample = np.argmax(p)
else: # sampling_type == 1 default:
sample = weighted_pick(p)
pred = chars[sample]
ret += pred
char = pred
return ret