-
Notifications
You must be signed in to change notification settings - Fork 552
/
Copy pathtrain.py
162 lines (138 loc) · 5.58 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]
import os
os.environ['PYOPENGL_PLATFORM'] = 'egl'
import torch
import pprint
import random
import numpy as np
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
from lib.core.loss import VIBELoss
from lib.core.trainer import Trainer
from lib.core.config import parse_args
from lib.utils.utils import prepare_output_dir
from lib.models import VIBE, MotionDiscriminator
from lib.dataset.loaders import get_data_loaders
from lib.utils.utils import create_logger, get_optimizer
def main(cfg):
if cfg.SEED_VALUE >= 0:
print(f'Seed value for the experiment {cfg.SEED_VALUE}')
os.environ['PYTHONHASHSEED'] = str(cfg.SEED_VALUE)
random.seed(cfg.SEED_VALUE)
torch.manual_seed(cfg.SEED_VALUE)
np.random.seed(cfg.SEED_VALUE)
logger = create_logger(cfg.LOGDIR, phase='train')
logger.info(f'GPU name -> {torch.cuda.get_device_name()}')
logger.info(f'GPU feat -> {torch.cuda.get_device_properties("cuda")}')
logger.info(pprint.pformat(cfg))
# cudnn related setting
cudnn.benchmark = cfg.CUDNN.BENCHMARK
torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC
torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED
writer = SummaryWriter(log_dir=cfg.LOGDIR)
writer.add_text('config', pprint.pformat(cfg), 0)
# ========= Dataloaders ========= #
data_loaders = get_data_loaders(cfg)
# ========= Compile Loss ========= #
loss = VIBELoss(
e_loss_weight=cfg.LOSS.KP_2D_W,
e_3d_loss_weight=cfg.LOSS.KP_3D_W,
e_pose_loss_weight=cfg.LOSS.POSE_W,
e_shape_loss_weight=cfg.LOSS.SHAPE_W,
d_motion_loss_weight=cfg.LOSS.D_MOTION_LOSS_W,
)
# ========= Initialize networks, optimizers and lr_schedulers ========= #
generator = VIBE(
n_layers=cfg.MODEL.TGRU.NUM_LAYERS,
batch_size=cfg.TRAIN.BATCH_SIZE,
seqlen=cfg.DATASET.SEQLEN,
hidden_size=cfg.MODEL.TGRU.HIDDEN_SIZE,
pretrained=cfg.TRAIN.PRETRAINED_REGRESSOR,
add_linear=cfg.MODEL.TGRU.ADD_LINEAR,
bidirectional=cfg.MODEL.TGRU.BIDIRECTIONAL,
use_residual=cfg.MODEL.TGRU.RESIDUAL,
).to(cfg.DEVICE)
if cfg.TRAIN.PRETRAINED != '' and os.path.isfile(cfg.TRAIN.PRETRAINED):
checkpoint = torch.load(cfg.TRAIN.PRETRAINED)
best_performance = checkpoint['performance']
generator.load_state_dict(checkpoint['gen_state_dict'])
print(f'==> Loaded pretrained model from {cfg.TRAIN.PRETRAINED}...')
print(f'Performance on 3DPW test set {best_performance}')
else:
print(f'{cfg.TRAIN.PRETRAINED} is not a pretrained model!!!!')
gen_optimizer = get_optimizer(
model=generator,
optim_type=cfg.TRAIN.GEN_OPTIM,
lr=cfg.TRAIN.GEN_LR,
weight_decay=cfg.TRAIN.GEN_WD,
momentum=cfg.TRAIN.GEN_MOMENTUM,
)
motion_discriminator = MotionDiscriminator(
rnn_size=cfg.TRAIN.MOT_DISCR.HIDDEN_SIZE,
input_size=69,
num_layers=cfg.TRAIN.MOT_DISCR.NUM_LAYERS,
output_size=1,
feature_pool=cfg.TRAIN.MOT_DISCR.FEATURE_POOL,
attention_size=None if cfg.TRAIN.MOT_DISCR.FEATURE_POOL !='attention' else cfg.TRAIN.MOT_DISCR.ATT.SIZE,
attention_layers=None if cfg.TRAIN.MOT_DISCR.FEATURE_POOL !='attention' else cfg.TRAIN.MOT_DISCR.ATT.LAYERS,
attention_dropout=None if cfg.TRAIN.MOT_DISCR.FEATURE_POOL !='attention' else cfg.TRAIN.MOT_DISCR.ATT.DROPOUT
).to(cfg.DEVICE)
dis_motion_optimizer = get_optimizer(
model=motion_discriminator,
optim_type=cfg.TRAIN.MOT_DISCR.OPTIM,
lr=cfg.TRAIN.MOT_DISCR.LR,
weight_decay=cfg.TRAIN.MOT_DISCR.WD,
momentum=cfg.TRAIN.MOT_DISCR.MOMENTUM
)
motion_lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
dis_motion_optimizer,
mode='min',
factor=0.1,
patience=cfg.TRAIN.LR_PATIENCE,
verbose=True,
)
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
gen_optimizer,
mode='min',
factor=0.1,
patience=cfg.TRAIN.LR_PATIENCE,
verbose=True,
)
# ========= Start Training ========= #
Trainer(
data_loaders=data_loaders,
generator=generator,
motion_discriminator=motion_discriminator,
criterion=loss,
dis_motion_optimizer=dis_motion_optimizer,
dis_motion_update_steps=cfg.TRAIN.MOT_DISCR.UPDATE_STEPS,
gen_optimizer=gen_optimizer,
start_epoch=cfg.TRAIN.START_EPOCH,
end_epoch=cfg.TRAIN.END_EPOCH,
device=cfg.DEVICE,
writer=writer,
debug=cfg.DEBUG,
logdir=cfg.LOGDIR,
lr_scheduler=lr_scheduler,
motion_lr_scheduler=motion_lr_scheduler,
resume=cfg.TRAIN.RESUME,
num_iters_per_epoch=cfg.TRAIN.NUM_ITERS_PER_EPOCH,
debug_freq=cfg.DEBUG_FREQ,
).fit()
if __name__ == '__main__':
cfg, cfg_file = parse_args()
cfg = prepare_output_dir(cfg, cfg_file)
main(cfg)