-
Notifications
You must be signed in to change notification settings - Fork 191
/
a3c.py
161 lines (123 loc) · 4.35 KB
/
a3c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# -*- coding: utf-8 -*-
import tensorflow as tf
import threading
import numpy as np
import signal
import random
import math
import os
import time
from game_ac_network import GameACFFNetwork, GameACLSTMNetwork
from a3c_training_thread import A3CTrainingThread
from rmsprop_applier import RMSPropApplier
from constants import ACTION_SIZE
from constants import PARALLEL_SIZE
from constants import INITIAL_ALPHA_LOW
from constants import INITIAL_ALPHA_HIGH
from constants import INITIAL_ALPHA_LOG_RATE
from constants import MAX_TIME_STEP
from constants import CHECKPOINT_DIR
from constants import LOG_FILE
from constants import RMSP_EPSILON
from constants import RMSP_ALPHA
from constants import GRAD_NORM_CLIP
from constants import USE_GPU
from constants import USE_LSTM
def log_uniform(lo, hi, rate):
log_lo = math.log(lo)
log_hi = math.log(hi)
v = log_lo * (1-rate) + log_hi * rate
return math.exp(v)
device = "/cpu:0"
if USE_GPU:
device = "/gpu:0"
initial_learning_rate = log_uniform(INITIAL_ALPHA_LOW,
INITIAL_ALPHA_HIGH,
INITIAL_ALPHA_LOG_RATE)
global_t = 0
stop_requested = False
if USE_LSTM:
global_network = GameACLSTMNetwork(ACTION_SIZE, -1, device)
else:
global_network = GameACFFNetwork(ACTION_SIZE, -1, device)
training_threads = []
learning_rate_input = tf.placeholder("float")
grad_applier = RMSPropApplier(learning_rate = learning_rate_input,
decay = RMSP_ALPHA,
momentum = 0.0,
epsilon = RMSP_EPSILON,
clip_norm = GRAD_NORM_CLIP,
device = device)
for i in range(PARALLEL_SIZE):
training_thread = A3CTrainingThread(i, global_network, initial_learning_rate,
learning_rate_input,
grad_applier, MAX_TIME_STEP,
device = device)
training_threads.append(training_thread)
# prepare session
sess = tf.Session(config=tf.ConfigProto(log_device_placement=False,
allow_soft_placement=True))
init = tf.global_variables_initializer()
sess.run(init)
# summary for tensorboard
score_input = tf.placeholder(tf.int32)
tf.summary.scalar("score", score_input)
summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(LOG_FILE, sess.graph)
# init or load checkpoint with saver
saver = tf.train.Saver()
checkpoint = tf.train.get_checkpoint_state(CHECKPOINT_DIR)
if checkpoint and checkpoint.model_checkpoint_path:
saver.restore(sess, checkpoint.model_checkpoint_path)
print("checkpoint loaded:", checkpoint.model_checkpoint_path)
tokens = checkpoint.model_checkpoint_path.split("-")
# set global step
global_t = int(tokens[1])
print(">>> global step set: ", global_t)
# set wall time
wall_t_fname = CHECKPOINT_DIR + '/' + 'wall_t.' + str(global_t)
with open(wall_t_fname, 'r') as f:
wall_t = float(f.read())
else:
print("Could not find old checkpoint")
# set wall time
wall_t = 0.0
def train_function(parallel_index):
global global_t
training_thread = training_threads[parallel_index]
# set start_time
start_time = time.time() - wall_t
training_thread.set_start_time(start_time)
while True:
if stop_requested:
break
if global_t > MAX_TIME_STEP:
break
diff_global_t = training_thread.process(sess, global_t, summary_writer,
summary_op, score_input)
global_t += diff_global_t
def signal_handler(signal, frame):
global stop_requested
print('You pressed Ctrl+C!')
stop_requested = True
train_threads = []
for i in range(PARALLEL_SIZE):
train_threads.append(threading.Thread(target=train_function, args=(i,)))
signal.signal(signal.SIGINT, signal_handler)
# set start time
start_time = time.time() - wall_t
for t in train_threads:
t.start()
print('Press Ctrl+C to stop')
signal.pause()
print('Now saving data. Please wait')
for t in train_threads:
t.join()
if not os.path.exists(CHECKPOINT_DIR):
os.mkdir(CHECKPOINT_DIR)
# write wall time
wall_t = time.time() - start_time
wall_t_fname = CHECKPOINT_DIR + '/' + 'wall_t.' + str(global_t)
with open(wall_t_fname, 'w') as f:
f.write(str(wall_t))
saver.save(sess, CHECKPOINT_DIR + '/' + 'checkpoint', global_step = global_t)