-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathinfer_segmentation.py
396 lines (340 loc) · 17.7 KB
/
infer_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import os
import shutil
import random
import numpy as np
from tensorflow import random as tf_random
import yaml
from datetime import datetime
import pytz
from PIL import Image, ImageOps
from pathlib import Path
import git
from models import generate_compiled_segmentation_model
from image_utils import str2bool
from metrics_utils import global_threshold
from local_utils import local_folder_has_files, getSystemInfo, getLibVersions
# infer can be run multiple times (labels, overlay), create new metadata each time
infer_datetime = datetime.now(pytz.UTC).strftime('%Y%m%dT%H%M%SZ')
metadata_file_name = 'metadata_' + infer_datetime + '.yaml'
tmp_directory = Path('./tmp')
# rgb
class_colors = [
[0, 0, 255], # blue
[255, 255, 0], # yellow
[255, 0, 0], # red
[0, 255, 0], # green
[255, 0, 255] # magenta
]
def stitch_preds_together(tiles, target_size_1d, labels_output, pad_output, image):
n_tile_rows = len(tiles)
n_tile_cols = len(tiles[0])
if not pad_output:
stitched_array = np.zeros((image.size[1], image.size[0], 3))
else:
stitched_array = np.zeros((target_size_1d * n_tile_rows, target_size_1d * n_tile_cols, 3))
for i in range(n_tile_rows):
for j in range(n_tile_cols):
if not pad_output and i == n_tile_rows - 1 and j == n_tile_cols - 1:
stitched_array[image.size[1] - target_size_1d:image.size[1], image.size[0] - target_size_1d:image.size[0], :] = tiles[i][j]
elif not pad_output and i == n_tile_rows - 1:
stitched_array[image.size[1] - target_size_1d:image.size[1], j * target_size_1d:(j + 1) * target_size_1d, :] = tiles[i][j]
elif not pad_output and j == n_tile_cols - 1:
stitched_array[i * target_size_1d:(i + 1) * target_size_1d, image.size[0] - target_size_1d:image.size[0], :] = tiles[i][j]
else:
stitched_array[i * target_size_1d:(i + 1) * target_size_1d, j * target_size_1d:(j + 1) * target_size_1d, :] = tiles[i][j]
if labels_output:
stitched_image = Image.fromarray(np.mean(stitched_array, -1).astype('uint8'))
else:
stitched_image = Image.fromarray(stitched_array.astype('uint8'))
return stitched_image
def prepare_image(image, target_size_1d, pad_output):
# make the image an event multiple of 512x512
desired_size = target_size_1d * np.ceil(np.asarray(image.size) / target_size_1d).astype(int)
delta_w = desired_size[0] - image.size[0]
delta_h = desired_size[1] - image.size[1]
if pad_output:
padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2))
else:
padding = (0, 0, 0, 0)
padded_image = ImageOps.expand(image, padding, fill=int(np.asarray(image).mean()))
# break into 512x512 tiles
padded_image = np.asarray(padded_image)
tiles = []
for i in range(np.ceil(padded_image.shape[0] / target_size_1d).astype(int)):
tiles.append([])
for j in range(np.ceil(padded_image.shape[1] / target_size_1d).astype(int)):
if (not pad_output and i == np.ceil(padded_image.shape[0] / target_size_1d).astype(int) - 1
and j == np.ceil(padded_image.shape[1] / target_size_1d).astype(int) - 1):
tiles[i].append(padded_image[image.size[1] - target_size_1d:image.size[1],
image.size[0] - target_size_1d:image.size[0]].copy())
elif not pad_output and i == np.ceil(padded_image.shape[0] / target_size_1d).astype(int) - 1:
tiles[i].append(padded_image[image.size[1] - target_size_1d:image.size[1],
j * target_size_1d:(j + 1) * target_size_1d].copy())
elif not pad_output and j == np.ceil(padded_image.shape[1] / target_size_1d).astype(int) - 1:
tiles[i].append(padded_image[i * target_size_1d:(i + 1) * target_size_1d,
image.size[0] - target_size_1d:image.size[0]].copy())
else:
tiles[i].append(padded_image[i * target_size_1d:(i + 1) * target_size_1d,
j * target_size_1d:(j + 1) * target_size_1d].copy())
# scale the images to be between 0 and 1 if GV
for i in range(len(tiles)):
for j in range(len(tiles[i])):
tiles[i][j] = tiles[i][j] * 1. / 255
return tiles
def overlay_predictions(prepared_tiles, preds, prediction_threshold, background_class_index, labels_output):
prediction_tiles = []
for i in range(len(prepared_tiles)):
prediction_tiles.append([])
for j in range(len(prepared_tiles[i])):
prediction_tiles[i].append(np.dstack((prepared_tiles[i][j], prepared_tiles[i][j], prepared_tiles[i][j])))
prediction_tiles[i][j] = (prediction_tiles[i][j] * 255).astype(int)
relative_above_threshold_mask = np.divide(preds[i][j], np.multiply(np.ones_like(preds[i][j]),
prediction_threshold)).max(axis=-1) > 1
best_class_by_pixel = np.divide(preds[i][j], np.multiply(np.ones_like(preds[i][j]),
prediction_threshold)).argmax(axis=-1)
color_counter = 0
for class_i in range(preds[i][j].shape[-1]):
rel_above_threshold_and_best_class = relative_above_threshold_mask & (best_class_by_pixel == class_i)
if (background_class_index is not None) and (class_i == background_class_index):
continue
if labels_output:
prediction_tiles[i][j][rel_above_threshold_and_best_class] = int((color_counter + 1) *
np.floor(255 / preds[i][j].shape[-1]))
else:
prediction_tiles[i][j][rel_above_threshold_and_best_class] = class_colors[color_counter]
color_counter = (color_counter + 1) % len(class_colors)
return prediction_tiles
def segment_image(model, image, prediction_threshold, target_size_1d, background_class_index,
labels_output, pad_output):
prepared_tiles = prepare_image(image, target_size_1d, pad_output)
preds = []
for i in range(len(prepared_tiles)):
preds.append([])
for j in range(len(prepared_tiles[i])):
preds[i].append(model.predict(prepared_tiles[i][j].reshape(1, target_size_1d,
target_size_1d, 1))[0, :, :, :])
# make background black if labels only
if labels_output:
for i in range(len(prepared_tiles)):
for j in range(len(prepared_tiles[i])):
prepared_tiles[i][j] = prepared_tiles[i][j] * 0
pred_tiles = overlay_predictions(prepared_tiles, preds, prediction_threshold, background_class_index, labels_output)
stitched_pred = stitch_preds_together(pred_tiles, target_size_1d, labels_output, pad_output, image)
return stitched_pred
def main(gcp_bucket, model_id, background_class_index, stack_id, image_ids, user_specified_prediction_thresholds,
labels_output, pad_output, trained_thresholds_id, random_module_global_seed, numpy_random_global_seed,
tf_random_global_seed, message):
# seed global random generators if specified; global random seeds here must be int or default None (no seed given)
if random_module_global_seed is not None:
random.seed(random_module_global_seed)
if numpy_random_global_seed is not None:
np.random.seed(numpy_random_global_seed)
if tf_random_global_seed is not None:
tf_random.set_seed(tf_random_global_seed)
start_dt = datetime.now()
assert "gs://" in gcp_bucket
if background_class_index is not None:
assert background_class_index >= 0
# clean up the tmp directory
try:
shutil.rmtree(tmp_directory.as_posix())
except FileNotFoundError:
pass
tmp_directory.mkdir()
run_name = '{}_{}'.format(stack_id, model_id)
local_model_dir = Path(tmp_directory, 'models', model_id)
local_model_dir.mkdir(parents=True)
local_processed_data_dir = Path(tmp_directory, 'processed-data', stack_id)
local_processed_data_dir.mkdir(parents=True)
local_inferences_dir = Path(tmp_directory, 'inferences', run_name)
local_inferences_dir.mkdir(parents=True)
output_dir = Path(local_inferences_dir, str('output_' + infer_datetime))
output_dir.mkdir(parents=True)
os.system("gsutil -m cp -r '{}' '{}'".format(os.path.join(gcp_bucket, 'models', model_id),
Path(tmp_directory, 'models').as_posix()))
local_folder_has_files(local_model_dir, model_id)
os.system("gsutil -m cp -r '{}' '{}'".format(os.path.join(gcp_bucket, 'processed-data', stack_id),
Path(tmp_directory, 'processed-data').as_posix()))
local_folder_has_files(local_processed_data_dir, stack_id)
with Path(local_model_dir, 'config.yaml').open('r') as f:
train_config = yaml.safe_load(f)['train_config']
with Path(local_model_dir, 'metadata.yaml').open('r') as f:
model_metadata = yaml.safe_load(f)
if trained_thresholds_id is not None:
with Path(local_model_dir, trained_thresholds_id).open('r') as f:
threshold_output_data = yaml.safe_load(f)
image_folder = Path(local_processed_data_dir, 'images')
assert model_metadata['target_size'][0] == model_metadata['target_size'][1]
target_size_1d = model_metadata['target_size'][0]
num_classes = model_metadata['num_classes']
optimized_class_thresholds = {}
if trained_thresholds_id is not None and 'thresholds_training_output' in threshold_output_data['metadata']:
for i in range(num_classes):
if ('x' in threshold_output_data['metadata']['thresholds_training_output'][str('class' + str(i))] and
threshold_output_data['metadata']['thresholds_training_output'][str('class' + str(i))]['success']):
optimized_class_thresholds.update(
{str('class' + str(i)): threshold_output_data['metadata']['thresholds_training_output'][str('class' + str(i))]['x']}
)
else:
AssertionError('Unsuccessfully trained threshold attempted to be loaded.')
else:
optimized_class_thresholds = None
# set threshold(s) used for inference
if user_specified_prediction_thresholds:
if len(user_specified_prediction_thresholds) == 1:
prediction_threshold = np.ones(num_classes) * user_specified_prediction_thresholds
else:
assert len(user_specified_prediction_thresholds) == num_classes
prediction_threshold = np.asarray(user_specified_prediction_thresholds)
elif trained_thresholds_id is not None and 'thresholds_training_output' in threshold_output_data['metadata']:
prediction_threshold = np.empty(num_classes)
for i in range(num_classes):
if ('x' in threshold_output_data['metadata']['thresholds_training_output'][str('class' + str(i))] and
threshold_output_data['metadata']['thresholds_training_output'][str('class' + str(i))]['success']):
prediction_threshold[i] = threshold_output_data['metadata']['thresholds_training_output'][str('class' + str(i))]['x']
else:
AssertionError('Unsuccessfully trained threshold attempted to be loaded.')
else:
prediction_threshold = np.ones(num_classes) * global_threshold
compiled_model = generate_compiled_segmentation_model(
train_config['segmentation_model']['model_name'],
train_config['segmentation_model']['model_parameters'],
num_classes,
train_config['loss'],
train_config['optimizer'],
Path(local_model_dir, "model.hdf5").as_posix(),
optimized_class_thresholds=optimized_class_thresholds)
if image_ids is None:
images_list = []
for i in Path(image_folder).iterdir():
images_list.append(i.parts[-1])
else:
images_list = image_ids.split(',')
labels_output = str2bool(labels_output)
pad_output = str2bool(pad_output)
n_images = len(list(Path(image_folder).iterdir()))
for i, image_file in enumerate(sorted(Path(image_folder).iterdir())):
if image_file.parts[-1] in images_list:
print('Segmenting image {} --- stack has {} images...'.format(image_file.parts[-1], n_images))
image = Image.open(image_file)
segmented_image = segment_image(compiled_model, image, prediction_threshold,
target_size_1d, background_class_index, labels_output, pad_output)
# enable saving of various versions of same inference
image_file_ext = image_file.parts[-1].split('.')[-1]
if labels_output and pad_output:
segmented_image.save(Path(output_dir, str(
image_file.parts[-1].split('.')[0] + '_pad_labels' + '.'
+ image_file_ext)).as_posix())
elif labels_output:
segmented_image.save(Path(output_dir, str(
image_file.parts[-1].split('.')[0] + '_labels' + '.'
+ image_file_ext)).as_posix())
elif pad_output:
segmented_image.save(Path(output_dir, str(
image_file.parts[-1].split('.')[0] + '_pad' + '.'
+ image_file_ext)).as_posix())
else:
segmented_image.save(Path(output_dir, str(
image_file.parts[-1].split('.')[0] + '.'
+ image_file_ext)).as_posix())
metadata_sys = {
'System_info': getSystemInfo(),
'Lib_versions_info': getLibVersions()
}
metadata = {
'message': message,
'gcp_bucket': gcp_bucket,
'model_id': model_id,
'user_specified_prediction_thresholds': user_specified_prediction_thresholds,
'trained_thresholds_id': trained_thresholds_id,
'trained_class_thresholds_loaded': optimized_class_thresholds,
'default_global_threshold_for_reference': global_threshold,
'prediction_thresholds_used': prediction_threshold.tolist(),
'background_class_index': background_class_index,
'stack_id': stack_id,
'image_ids': image_ids,
'labels_output': labels_output,
'pad_output': pad_output,
'created_datetime': datetime.now(pytz.UTC).strftime('%Y%m%dT%H%M%SZ'),
'git_hash': git.Repo(search_parent_directories=True).head.object.hexsha,
'elapsed_minutes': round((datetime.now() - start_dt).total_seconds() / 60, 1),
'random-module-global-seed': random_module_global_seed,
'numpy_random_global_seed': numpy_random_global_seed,
'tf_random_global_seed': tf_random_global_seed,
'metadata_system': metadata_sys
}
with Path(local_inferences_dir, metadata_file_name).open('w') as f:
yaml.safe_dump(metadata, f)
os.system("gsutil -m cp -n -r '{}' '{}'".format(Path(tmp_directory, 'inferences').as_posix(), gcp_bucket))
print('\n Infer Metadata:')
print(metadata)
print('\n')
shutil.rmtree(tmp_directory.as_posix())
if __name__ == "__main__":
import argparse
import sys
argparser = argparse.ArgumentParser(sys.argv[0])
argparser.add_argument(
'--gcp-bucket',
type=str,
help='The GCP bucket where the raw data is located and to use to store the processed stacks.')
argparser.add_argument(
'--model-id',
type=str,
help='The model ID.')
argparser.add_argument(
'--background-class-index',
type=int,
default=None,
help='For this model, indicate background class index if used during model training, to exclude background overlay.')
argparser.add_argument(
'--stack-id',
type=str,
help='The stack ID (must already be processed).')
argparser.add_argument(
'--image-ids',
type=str,
default=None,
help='For these images, the corresponding stack ID (must already be processed).')
argparser.add_argument(
'--user-specified-prediction-thresholds',
type=float,
nargs='+',
default=None,
help='Threshold(s) to apply to the prediction to classify a pixel as part of a class. E.g., 0.5 or 0.5 0.3 0.6')
argparser.add_argument(
'--labels-output',
type=str,
default='False',
help='If false, will output overlaid image (RGB); if true, will output labels only image (GV).')
argparser.add_argument(
'--pad-output',
type=str,
default='False',
help='If false, will output inference identical to input image size.')
argparser.add_argument(
'--trained-thresholds-id',
type=str,
default=None,
help='The specified trained thresholds file id.')
argparser.add_argument(
'--random-module-global-seed',
type=int,
default=None,
help='The setting of random.seed(global seed), where global seed is int or default None (no seed given).')
argparser.add_argument(
'--numpy-random-global-seed',
type=int,
default=None,
help='The setting of np.random.seed(global seed), where global seed is int or default None (no seed given).')
argparser.add_argument(
'--tf-random-global-seed',
type=int,
default=None,
help='The setting of tf.random.set_seed(global seed), where global seed is int or default None (no seed given).')
argparser.add_argument(
'--message',
type=str,
default=None,
help='A str message the used wants to leave, the default is None.')
main(**argparser.parse_args().__dict__)