-
Notifications
You must be signed in to change notification settings - Fork 228
/
Copy pathgemv_cuda.cu
309 lines (281 loc) · 11.5 KB
/
gemv_cuda.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/*
* Modified from NVIDIA [TRT-LLM](https://github.com/NVIDIA/TensorRT-LLM/tree/d37b507f41a87457fe9f10f7459d08f5db235745/cpp/tensorrt_llm/kernels/weightOnlyBatchedGemv)
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
@article{lin2023awq,
title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
journal={arXiv},
year={2023}
}
*/
#include <cuda_fp16.h>
#include <stdio.h>
#include <torch/extension.h>
#include "gemv_cuda.h"
#include "../dequantize.cuh"
#define PACK_FACTOR 8
#define WARP_SIZE 32
#define MEM_ACCESS_SIZE 128
// Reduce sum within the warp using the tree reduction algorithm.
template <int Num, int WarpSize>
__device__ __forceinline__ static void warp_reduce(half* psum, float (*out_smem)[Num * 4])
{
// kInterleave = 4
float fpsum[Num];
#pragma unroll
for (int i = 0; i < Num; ++i)
{
fpsum[i] = static_cast<float>(psum[i]);
}
#pragma unroll
for (int i = 0; i < Num; ++i)
{
// T0 + T1 + T8 + T9 + T16 + T17 + T24 + T25 (kInterleave = 4)
fpsum[i] += __shfl_xor_sync(~0, fpsum[i], 16);
fpsum[i] += __shfl_xor_sync(~0, fpsum[i], 8);
fpsum[i] += __shfl_xor_sync(~0, fpsum[i], 1);
}
__syncthreads();
int warp = threadIdx.x / WarpSize, lane = threadIdx.x % WarpSize;
if (lane == 0 || lane == 2 || lane == 4 || lane == 6)
{
#pragma unroll
for (int i = 0; i < Num; ++i)
{
out_smem[warp][i * 4 + lane / 2] = fpsum[i];
}
}
__syncthreads();
};
__device__ __forceinline__ int make_divisible(int c, int divisor){
return (c + divisor - 1) / divisor;
}
template <int NPerBlock, int Batch, int BlockSize, int GroupSize>
__global__ void gemv_kernel(
const half* inputs, const uint32_t* weight, const half* scales, const half* zeros, half* outputs,
const int IC, const int OC)
{
const int kStride = 64;
const int kElemsPerThread = MEM_ACCESS_SIZE / 4;
const int kThreadsNumPerTile = kStride / kElemsPerThread;
// assert(MEM_ACCESS_SIZE == 128);
static constexpr int kShuffleSize = 32;
static constexpr int kShuffleBasicTile = 2;
static constexpr int kShuffleContinous = 4;
static constexpr int kShuffleStrided = 4;
constexpr int Num = NPerBlock * Batch;
constexpr int kInterleave = 4;
half local_inputs[kElemsPerThread];
uint32_t local_qweights[MEM_ACCESS_SIZE / 32];
half half_weight_buffer[kElemsPerThread];
half dequantized_weight[kElemsPerThread * NPerBlock];
half local_scale[NPerBlock];
half local_scaled_zeros[NPerBlock];
half psum[Num];
for (int i = 0; i < Num; ++i)
psum[i] = static_cast<half>(0.f);
// extern __shared__ uint8_t shmem[];
// float(*out_smem)[Num * kInterleave] = reinterpret_cast<float(*)[Num * kInterleave]>(shmem);
__shared__ float out_smem[BlockSize / WARP_SIZE * 2][Num * kInterleave];
const int blk_row_offset = blockIdx.x * NPerBlock * kInterleave;
const int thd_row_offset = (threadIdx.x / kThreadsNumPerTile) % kInterleave;
const int act_k_offset = threadIdx.x / (kThreadsNumPerTile * kInterleave) * kStride
+ (threadIdx.x % kThreadsNumPerTile) * kElemsPerThread;
const int group_offset = act_k_offset / GroupSize;
// TODO: use make_divisible
const uint32_t* blk_weight_ptr = weight + blk_row_offset * IC / PACK_FACTOR;
const half* scale_ptr = scales + blk_row_offset + thd_row_offset + group_offset * OC;
const half* zeros_ptr = zeros + blk_row_offset + thd_row_offset + group_offset * OC;
const half* inputs_ptr = inputs + act_k_offset;
const int act_forward_step = BlockSize * kElemsPerThread / kInterleave;
const int scale_forward_step = act_forward_step / GroupSize * OC;
// Main loop iteration, each block completes the outputs for several OCs
for (int kk = threadIdx.x * kElemsPerThread; kk < IC * kInterleave; kk += BlockSize * kElemsPerThread)
{
// Load qweight, scales and scaled_zeros
#pragma unroll
for (int idx = 0; idx < NPerBlock; ++idx)
{
// use float4 to load weights, each thread load 32 int4 numbers (1 x float4, 128 bit)
*((float4*)(local_qweights)) =
*((float4*)(blk_weight_ptr + (idx * kInterleave * IC + kk)/ PACK_FACTOR));
local_scale[idx] = *(scale_ptr + idx * kInterleave);
local_scaled_zeros[idx] = *(zeros_ptr + idx * kInterleave);
// Map int4 qweight to fp format
#pragma unroll
for (int i = 0; i < MEM_ACCESS_SIZE / 32; ++i)
{
// Converts 32 bits (8 x int4) to 8 fp16
dequantize_s4_to_fp16x2(*reinterpret_cast<half2 *>(local_qweights + i), reinterpret_cast<uint4 *>(half_weight_buffer + i * PACK_FACTOR));
}
// Dequantize (apply s/z) and shuffle elements to match the weight packing format
#pragma unroll
for (int i = 0; i < kShuffleContinous; ++i)
{
#pragma unroll
for (int j = 0; j < kShuffleStrided; ++j)
{
half2 w =
*reinterpret_cast<half2*>(
half_weight_buffer + (i + j * kShuffleContinous)* kShuffleBasicTile
);
w = __hfma2(w, __half2half2(local_scale[idx]), __half2half2(local_scaled_zeros[idx]));
dequantized_weight[((i * kShuffleStrided + j) * kShuffleBasicTile + 0)
* NPerBlock + idx]
= w.x;
dequantized_weight[((i * kShuffleStrided + j) * kShuffleBasicTile + 1)
* NPerBlock + idx]
= w.y;
}
}
}
#pragma unroll
for (int batch_idx = 0; batch_idx < Batch; ++batch_idx)
{
const half* local_inputs_ptr = inputs_ptr + batch_idx * IC;
#pragma unroll
for (int idx = 0; idx < kElemsPerThread / 8; ++idx)
{
// load activation, 8 halves (128 bits) / step.
*((float4*)(local_inputs + idx * 8)) = *((float4*)(local_inputs_ptr + idx * 8));
}
// Perform the MACs
#pragma unroll
for (int x = 0; x < NPerBlock / 2; ++x)
{
#pragma unroll
for (int y = 0; y < kElemsPerThread; ++y)
{
*reinterpret_cast<half2*>(psum + batch_idx * NPerBlock + x * 2)
= __hfma2(*reinterpret_cast<half2*>(dequantized_weight + y * NPerBlock + x * 2),
__half2half2(local_inputs[y]),
*reinterpret_cast<half2*>(psum + batch_idx * NPerBlock + x * 2));
}
}
}
inputs_ptr += act_forward_step;
scale_ptr += scale_forward_step;
zeros_ptr += scale_forward_step;
}
warp_reduce<Num, WARP_SIZE>(psum, out_smem);
// Num * Interleave = batch * NPerBlock * Interleave -> 1 thread_block write back num
for (int i = threadIdx.x; i < Num * kInterleave; i += BlockSize)
{
int batch_idx = i / (NPerBlock * kInterleave);
int oc_idx = i % (NPerBlock * kInterleave);
float acc = 0.f;
for (int j = 0; j < BlockSize / WARP_SIZE; ++j)
{
acc += out_smem[j][i];
}
outputs[batch_idx * OC + blk_row_offset + oc_idx] = static_cast<half>(acc);
}
}
/*
Computes GEMV (PyTorch interface).
Args:
_in_feats: tensor of shape [B, IC];
_kernel: int tensor of shape [OC, IC // 8];
_zeros: int tensor of shape [OC, IC // G // 8];
_scaling_factors: tensor of shape [OC, IC // G];
blockDim_x: size of thread block, dimension x, where blockDim_x * workload_per_thread = IC;
blockDim_y: size of thread block, dimension y, where blockDim_y * gridDim_y = OC;
Returns:
out_feats: tensor of shape [B, OC];
*/
torch::Tensor gemv_forward_cuda_new(
torch::Tensor _in_feats,
torch::Tensor _kernel,
torch::Tensor _scaling_factors,
torch::Tensor _zeros,
int m,
int n,
int k,
int group_size)
{
std::vector<int64_t> output_shape = _in_feats.sizes().vec();
output_shape.back() = n;
auto in_feats = reinterpret_cast<half*>(_in_feats.data_ptr<at::Half>());
auto kernel = reinterpret_cast<uint32_t*>(_kernel.data_ptr());
auto zeros = reinterpret_cast<half*>(_zeros.data_ptr<at::Half>());
auto scaling_factors = reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
auto options = torch::TensorOptions().dtype(_in_feats.dtype()).device(_in_feats.device());
at::Tensor _out_feats = torch::empty(output_shape, options);
half * out_feats = reinterpret_cast<half *>(_out_feats.data_ptr());
static constexpr int N_PER_BLOCK = 2;
static constexpr int K_INTERLEAVE = 4;
static constexpr int BLOCK_SIZE = 256;
dim3 num_blocks(n / N_PER_BLOCK / K_INTERLEAVE);
dim3 num_threads(BLOCK_SIZE);
// if (group_size == 64)
// {
// gemv_kernel_g64<<<num_blocks, num_threads>>>(
// // pointers
// in_feats, kernel, zeros, scaling_factors, out_feats,
// // constants
// num_in_channels, num_out_channels
// );
// }
if (group_size == 128)
{
switch (m)
{
case 1:
gemv_kernel<N_PER_BLOCK, 1, BLOCK_SIZE, 128><<<num_blocks, num_threads>>>(
in_feats, kernel, scaling_factors, zeros, out_feats, k, n
);
break;
case 2:
gemv_kernel<N_PER_BLOCK, 2, BLOCK_SIZE, 128><<<num_blocks, num_threads>>>(
in_feats, kernel, scaling_factors, zeros, out_feats, k, n
);
break;
case 3:
gemv_kernel<N_PER_BLOCK, 3, BLOCK_SIZE, 128><<<num_blocks, num_threads>>>(
in_feats, kernel, scaling_factors, zeros, out_feats, k, n
);
break;
case 4:
gemv_kernel<N_PER_BLOCK, 4, BLOCK_SIZE, 128><<<num_blocks, num_threads>>>(
in_feats, kernel, scaling_factors, zeros, out_feats, k, n
);
break;
case 5:
gemv_kernel<N_PER_BLOCK, 5, BLOCK_SIZE, 128><<<num_blocks, num_threads>>>(
in_feats, kernel, scaling_factors, zeros, out_feats, k, n
);
break;
case 6:
gemv_kernel<N_PER_BLOCK, 6, BLOCK_SIZE, 128><<<num_blocks, num_threads>>>(
in_feats, kernel, scaling_factors, zeros, out_feats, k, n
);
break;
case 7:
gemv_kernel<N_PER_BLOCK, 7, BLOCK_SIZE, 128><<<num_blocks, num_threads>>>(
in_feats, kernel, scaling_factors, zeros, out_feats, k, n
);
break;
default:
throw std::runtime_error("Unsupported batch size for gemv kernel.\n");
}
}
else
{
throw std::runtime_error("Unsupported group size for gemv kernel.\n");
}
return _out_feats;
}