-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcdf_plotting_bias_correction.R
92 lines (71 loc) · 3.18 KB
/
cdf_plotting_bias_correction.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# making the cdf plot for TRMM and the ground station data
rm(list = ls())
library(dplyr)
setwd("D:/Bias Correction Paper Writing")
df = read.csv("Book1.csv", header = TRUE)
df_trueData = as.data.frame(table(df$True.data))
df_modelData = as.data.frame(table(df$model.data))
df_trueData$PDF = df_trueData$Freq / length(df$True.data)
df_modelData$PDF = df_modelData$Freq / length(df$True.data)
df_trueData$CDF = cumsum(df_trueData$PDF)
df_modelData$CDF = cumsum(df_modelData$PDF)
df_trueData$Var1 = as.character(df_trueData$Var1) %>% as.numeric()
df_modelData$Var1 = as.character(df_modelData$Var1) %>% as.numeric()
min_lim_x = min(df_trueData$Var1, df_modelData$Var1)
max_lim_x = max(df_trueData$Var1, df_modelData$Var1)
png("CDF plotting.png", width = 3.25, height = 3.25, units = "in", res = 600, pointsize = 4)
par(lwd = 0.3)
plot(1, xlim = c(min_lim_x, max_lim_x), ylim = c(0,1), type = "n", xlab = "Rainfall", ylab = "CDF")
points(df_trueData$Var1,df_trueData$CDF, col = "blue", pch = "*")
points(df_modelData$Var1,df_modelData$CDF, col = "red", pch = "*")
dev.off()
######################################################
# plotting besdie bar plot for understanding the underestimation and overestimation of rainfall value.
# Here, some rainfall values were slices to get a better visual of the rainfall.
df_slicing = df[!(df$True.data <= 100 & df$model.data <= 100), ]
df_slicing$seq = seq(1, length(df_slicing$True.data))
df_t = t(as.matrix(df_slicing[-3]))
colnames(df_t) = df_slicing$seq
colours = c("blue", "red")
png("barplot_rainfall.png", width = 6.25, height = 3.25, units = "in", res = 600, pointsize = 4)
par(lwd = 0.3)
barplot(df_t, main = "Rainfall plot", xlab = "Time Steps", ylab = "Rainfall", beside = TRUE, col = colours,
ylim = c(0, max(df_t) * 1.3), lwd = 0.3)
box()
legend('topright', fill = colours, legend = c("True", "TRMM"))
dev.off()
##########################################################
# Bias correction algorithm for correcting the TRMM data
obs_vec = round(df_trueData$Var1, digits = 7)
obs_q_vec = round(df_trueData$CDF, digits = 7)
df$corrected = NA
for(i in seq(1,length(df$model.data)))
{
sim = round(df$model.data[i], digits = 7)
sim_q = round(approx(df_modelData$Var1, df_modelData$CDF, xout = sim)$y, digits = 7)
if(sim_q > min(obs_q_vec))
{
cor_sim = approx(obs_q_vec, obs_vec, xout = sim_q)$y
df$corrected[i] = cor_sim
}
else
{
cor_sim = min(obs_vec)
df$corrected[i] = cor_sim
}
}
#####################################################################
# checking the correction using cdf plotting
cor = df$corrected
df_cor = as.data.frame(table(cor))
df_cor$cor = round(as.numeric(as.character(df_cor$cor)), digits = 7)
df_cor$PDF = df_cor$Freq / length(df$corrected)
df_cor$CDF = cumsum(df_cor$PDF)
min_lim_x = min(df_trueData$Var1, df_modelData$Var1, df_cor$cor)
max_lim_x = max(df_trueData$Var1, df_modelData$Var1, df_cor$cor)
# par(lwd = 0.3)
plot(1, xlim = c(min_lim_x, max_lim_x), ylim = c(0,1), type = "n", xlab = "Rainfall", ylab = "CDF")
points(df_trueData$Var1,df_trueData$CDF, col = "yellow", pch = "*")
points(df_modelData$Var1,df_modelData$CDF, col = "red", pch = "*")
points(df_cor$cor,df_cor$CDF, col = "black", pch = ".")
dev.off()