This repository has been archived by the owner on Jun 22, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathmain.py
111 lines (87 loc) · 5.52 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import click
from src.pipeline_manager import PipelineManager
pipeline_manager = PipelineManager()
@click.group()
def main():
pass
@main.command()
def prepare_metadata():
pipeline_manager.prepare_metadata()
@main.command()
@click.option('-p', '--pipeline_name', help='pipeline to be trained', required=True)
@click.option('-d', '--dev_mode', help='if true only a small sample of data will be used', is_flag=True, required=False)
def train(pipeline_name, dev_mode):
pipeline_manager.train(pipeline_name, dev_mode)
@main.command()
@click.option('-p', '--pipeline_name', help='pipeline to be trained', required=True)
@click.option('-d', '--image_dir', help='path to image folder with test files', required=False)
@click.option('-s', '--single_image', help='predict single image and visualize', required=False)
@click.option('-n', '--n_files', help='number of files to visualize', type=int, default=16)
@click.option('-sp', '--show_popups', help="if showing images in a popup window")
@click.option('-cl', '--classes_to_visualize',
help="Reduce the vis to subset of classes (string with comma separated classes)")
@click.option('-clsthr', '--classification_threshold', type=float)
@click.option('-nmsthr', '--nms_threshold', type=float)
def visualize(pipeline_name, image_dir=None, single_image=None, n_files=16, show_popups=False,
classes_to_visualize=None, nms_threshold=None, classification_threshold=None):
"""
Makes predictions on test_images (or images in image_dir) draw bounding boxes on them and sends to neptune.
If show pop_ups it will display the predictions locally in a window popup
Example:
neptune run --config "./configs/neptune_config_local.yaml" main.py -- \
visualize --pipeline_name retinanet --classes_to_visualize='Picture frame,Cat'
"""
if classes_to_visualize:
classes_to_visualize = classes_to_visualize.split(',')
classes_to_visualize = list(filter(None, classes_to_visualize)) # filter out empty strings
pipeline_manager.visualize(pipeline_name, image_dir, single_image,
n_files, show_popups, classes_to_visualize,
nms_threshold, classification_threshold)
@main.command()
@click.option('-p', '--pipeline_name', help='pipeline to be trained', required=True)
@click.option('-d', '--dev_mode', help='if true only a small sample of data will be used', is_flag=True, required=False)
@click.option('-c', '--chunk_size', help='size of the chunks to run evaluation on', type=int, default=None,
required=False)
def evaluate(pipeline_name, dev_mode, chunk_size):
pipeline_manager.evaluate(pipeline_name, dev_mode, chunk_size)
@main.command()
@click.option('-p', '--pipeline_name', help='pipeline to be trained', required=True)
@click.option('-d', '--dev_mode', help='if true only a small sample of data will be used', is_flag=True, required=False)
@click.option('-s', '--submit_predictions', help='submit predictions if true', is_flag=True, required=False)
@click.option('-c', '--chunk_size', help='size of the chunks to run prediction on', type=int, default=None,
required=False)
def predict(pipeline_name, dev_mode, submit_predictions, chunk_size):
pipeline_manager.predict(pipeline_name, dev_mode, submit_predictions, chunk_size)
@main.command()
@click.option('-p', '--pipeline_name', help='pipeline to be trained', required=True)
@click.option('-s', '--submit_predictions', help='submit predictions if true', is_flag=True, required=False)
@click.option('-d', '--dev_mode', help='if true only a small sample of data will be used', is_flag=True, required=False)
@click.option('-c', '--chunk_size', help='size of the chunks to run evaluation and prediction on', type=int,
default=None, required=False)
def train_evaluate_predict(pipeline_name, submit_predictions, dev_mode, chunk_size):
pipeline_manager.train(pipeline_name, dev_mode)
pipeline_manager.evaluate(pipeline_name, dev_mode, chunk_size)
pipeline_manager.predict(pipeline_name, dev_mode, submit_predictions, chunk_size)
@main.command()
@click.option('-p', '--pipeline_name', help='pipeline to be trained', required=True)
@click.option('-d', '--dev_mode', help='if true only a small sample of data will be used', is_flag=True, required=False)
@click.option('-c', '--chunk_size', help='size of the chunks to run evaluation and prediction on', type=int,
default=None, required=False)
def train_evaluate(pipeline_name, dev_mode, chunk_size):
pipeline_manager.train(pipeline_name, dev_mode)
pipeline_manager.evaluate(pipeline_name, dev_mode, chunk_size)
@main.command()
@click.option('-p', '--pipeline_name', help='pipeline to be trained', required=True)
@click.option('-s', '--submit_predictions', help='submit predictions if true', is_flag=True, required=False)
@click.option('-d', '--dev_mode', help='if true only a small sample of data will be used', is_flag=True, required=False)
@click.option('-c', '--chunk_size', help='size of the chunks to run prediction on', type=int, default=None,
required=False)
def evaluate_predict(pipeline_name, submit_predictions, dev_mode, chunk_size):
pipeline_manager.evaluate(pipeline_name, dev_mode, chunk_size)
pipeline_manager.predict(pipeline_name, dev_mode, submit_predictions, chunk_size)
@main.command()
@click.option('-f', '--submission_filepath', help='filepath to json submission file', required=True)
def submit_predictions(submission_filepath):
pipeline_manager.make_submission(submission_filepath)
if __name__ == "__main__":
main()