-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
79 lines (66 loc) · 3.53 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Simple env test.
import json
import select
import time
import logging
import os
import aicrowd_helper
import gym
import minerl
from utility.parser import Parser
import coloredlogs
coloredlogs.install(logging.DEBUG)
# All the evaluations will be evaluated on MineRLObtainDiamond-v0 environment
MINERL_GYM_ENV = os.getenv('MINERL_GYM_ENV', 'MineRLObtainDiamond-v0')
# You need to ensure that your submission is trained in under MINERL_TRAINING_MAX_STEPS steps
MINERL_TRAINING_MAX_STEPS = int(os.getenv('MINERL_TRAINING_MAX_STEPS', 8000000))
# You need to ensure that your submission is trained by launching less than MINERL_TRAINING_MAX_INSTANCES instances
MINERL_TRAINING_MAX_INSTANCES = int(os.getenv('MINERL_TRAINING_MAX_INSTANCES', 5))
# You need to ensure that your submission is trained within allowed training time.
# Round 1: Training timeout is 15 minutes
# Round 2: Training timeout is 4 days
MINERL_TRAINING_TIMEOUT = int(os.getenv('MINERL_TRAINING_TIMEOUT_MINUTES', 4*24*60))
# The dataset is available in data/ directory from repository root.
MINERL_DATA_ROOT = os.getenv('MINERL_DATA_ROOT', 'data/')
# Optional: You can view best effort status of your instances with the help of parser.py
# This will give you current state like number of steps completed, instances launched and so on. Make your you keep a tap on the numbers to avoid breaching any limits.
parser = Parser('performance/',
allowed_environment=MINERL_GYM_ENV,
maximum_instances=MINERL_TRAINING_MAX_INSTANCES,
maximum_steps=MINERL_TRAINING_MAX_STEPS,
raise_on_error=False,
no_entry_poll_timeout=600,
submission_timeout=MINERL_TRAINING_TIMEOUT*60,
initial_poll_timeout=600)
def main():
"""
This function will be called for training phase.
"""
# How to sample minerl data is document here:
# http://minerl.io/docs/tutorials/data_sampling.html
data = minerl.data.make(MINERL_GYM_ENV, data_dir=MINERL_DATA_ROOT)
# Sample code for illustration, add your training code below
env = gym.make(MINERL_GYM_ENV)
# actions = [env.action_space.sample() for _ in range(10)] # Just doing 10 samples in this example
# xposes = []
# for _ in range(1):
# obs = env.reset()
# done = False
# netr = 0
# # Limiting our code to 1024 steps in this example, you can do "while not done" to run till end
# while not done:
# To get better view in your training phase, it is suggested
# to register progress continuously, example when 54% completed
# aicrowd_helper.register_progress(0.54)
# To fetch latest information from instance manager, you can run below when you want to know the state
#>> parser.update_information()
#>> print(parser.payload)
# .payload: provide AIcrowd generated json
# Example: {'state': 'RUNNING', 'score': {'score': 0.0, 'score_secondary': 0.0}, 'instances': {'1': {'totalNumberSteps': 2001, 'totalNumberEpisodes': 0, 'currentEnvironment': 'MineRLObtainDiamond-v0', 'state': 'IN_PROGRESS', 'episodes': [{'numTicks': 2001, 'environment': 'MineRLObtainDiamond-v0', 'rewards': 0.0, 'state': 'IN_PROGRESS'}], 'score': {'score': 0.0, 'score_secondary': 0.0}}}}
# .current_state: provide indepth state information avaiable as dictionary (key: instance id)
# Save trained model to train/ directory
# Training 100% Completed
aicrowd_helper.register_progress(1)
#env.close()
if __name__ == "__main__":
main()