|
| 1 | +Checkpointing |
| 2 | +============= |
| 3 | + |
| 4 | + |
| 5 | +**Prerequisites** |
| 6 | + |
| 7 | +Make sure to read the following sections of the documentation before using this |
| 8 | +example: |
| 9 | + |
| 10 | +* :ref:`pytorch_setup` |
| 11 | +* :ref:`001 - Single GPU Job` |
| 12 | + |
| 13 | +The full source code for this example is available on `the mila-docs GitHub |
| 14 | +repository. |
| 15 | +<https://github.com/mila-iqia/mila-docs/tree/master/docs/examples/data/checkpointing>`_ |
| 16 | + |
| 17 | + |
| 18 | +**job.sh** |
| 19 | + |
| 20 | +.. code:: diff |
| 21 | +
|
| 22 | + # distributed/001_single_gpu/job.sh -> data/checkpointing/job.sh |
| 23 | + #!/bin/bash |
| 24 | + #SBATCH --gpus-per-task=rtx8000:1 |
| 25 | + #SBATCH --cpus-per-task=4 |
| 26 | + #SBATCH --ntasks-per-node=1 |
| 27 | + #SBATCH --mem=16G |
| 28 | + #SBATCH --time=00:15:00 |
| 29 | + +#SBATCH --signal=B:TERM@300 # tells the controller to send SIGTERM to the job 5 |
| 30 | + + # min before its time ends to give it a chance for |
| 31 | + + # better cleanup. If you cancel the job manually, |
| 32 | + + # make sure that you specify the signal as TERM like |
| 33 | + + # so scancel --signal=TERM <jobid>. |
| 34 | + + # https://dhruveshp.com/blog/2021/signal-propagation-on-slurm/ |
| 35 | + + |
| 36 | + +# trap the signal to the main BATCH script here. |
| 37 | + +sig_handler() |
| 38 | + +{ |
| 39 | + + echo "BATCH interrupted" |
| 40 | + + wait # wait for all children, this is important! |
| 41 | + +} |
| 42 | + + |
| 43 | + +trap 'sig_handler' SIGINT SIGTERM SIGCONT |
| 44 | +
|
| 45 | +
|
| 46 | + # Echo time and hostname into log |
| 47 | + echo "Date: $(date)" |
| 48 | + echo "Hostname: $(hostname)" |
| 49 | +
|
| 50 | +
|
| 51 | + # Ensure only anaconda/3 module loaded. |
| 52 | + module --quiet purge |
| 53 | + # This example uses Conda to manage package dependencies. |
| 54 | + # See https://docs.mila.quebec/Userguide.html#conda for more information. |
| 55 | + module load anaconda/3 |
| 56 | + module load cuda/11.7 |
| 57 | +
|
| 58 | + + |
| 59 | + # Creating the environment for the first time: |
| 60 | + # conda create -y -n pytorch python=3.9 pytorch torchvision torchaudio \ |
| 61 | + -# pytorch-cuda=11.7 -c pytorch -c nvidia |
| 62 | + +# pytorch-cuda=11.7 scipy -c pytorch -c nvidia |
| 63 | + # Other conda packages: |
| 64 | + # conda install -y -n pytorch -c conda-forge rich tqdm |
| 65 | +
|
| 66 | + # Activate pre-existing environment. |
| 67 | + conda activate pytorch |
| 68 | +
|
| 69 | +
|
| 70 | + # Stage dataset into $SLURM_TMPDIR |
| 71 | + mkdir -p $SLURM_TMPDIR/data |
| 72 | + cp /network/datasets/cifar10/cifar-10-python.tar.gz $SLURM_TMPDIR/data/ |
| 73 | + # General-purpose alternatives combining copy and unpack: |
| 74 | + # unzip /network/datasets/some/file.zip -d $SLURM_TMPDIR/data/ |
| 75 | + # tar -xf /network/datasets/some/file.tar -C $SLURM_TMPDIR/data/ |
| 76 | +
|
| 77 | +
|
| 78 | + # Fixes issues with MIG-ed GPUs with versions of PyTorch < 2.0 |
| 79 | + unset CUDA_VISIBLE_DEVICES |
| 80 | +
|
| 81 | + # Execute Python script |
| 82 | + python main.py |
| 83 | +
|
| 84 | +
|
| 85 | +**main.py** |
| 86 | + |
| 87 | +.. code:: diff |
| 88 | +
|
| 89 | + # distributed/001_single_gpu/main.py -> data/checkpointing/main.py |
| 90 | + """Single-GPU training example.""" |
| 91 | + import logging |
| 92 | + import os |
| 93 | + -from pathlib import Path |
| 94 | + +import shutil |
| 95 | +
|
| 96 | + import rich.logging |
| 97 | + import torch |
| 98 | + from torch import Tensor, nn |
| 99 | + from torch.nn import functional as F |
| 100 | + from torch.utils.data import DataLoader, random_split |
| 101 | + from torchvision import transforms |
| 102 | + from torchvision.datasets import CIFAR10 |
| 103 | + from torchvision.models import resnet18 |
| 104 | + from tqdm import tqdm |
| 105 | +
|
| 106 | +
|
| 107 | + +try: |
| 108 | + + _CHECKPTS_DIR = f"{os.environ['SCRATCH']}/checkpoints" |
| 109 | + +except KeyError: |
| 110 | + + _CHECKPTS_DIR = "../checkpoints" |
| 111 | + + |
| 112 | + + |
| 113 | + def main(): |
| 114 | + training_epochs = 10 |
| 115 | + learning_rate = 5e-4 |
| 116 | + weight_decay = 1e-4 |
| 117 | + batch_size = 128 |
| 118 | + + resume_file = f"{_CHECKPTS_DIR}/resnet18_cifar10/checkpoint.pth.tar" |
| 119 | + + start_epoch = 0 |
| 120 | + + best_acc = 0 |
| 121 | +
|
| 122 | + # Check that the GPU is available |
| 123 | + assert torch.cuda.is_available() and torch.cuda.device_count() > 0 |
| 124 | + device = torch.device("cuda", 0) |
| 125 | +
|
| 126 | + # Setup logging (optional, but much better than using print statements) |
| 127 | + logging.basicConfig( |
| 128 | + level=logging.INFO, |
| 129 | + handlers=[rich.logging.RichHandler(markup=True)], # Very pretty, uses the `rich` package. |
| 130 | + ) |
| 131 | +
|
| 132 | + logger = logging.getLogger(__name__) |
| 133 | +
|
| 134 | + - # Create a model and move it to the GPU. |
| 135 | + + # Create a model. |
| 136 | + model = resnet18(num_classes=10) |
| 137 | + + |
| 138 | + + # Resume from a checkpoint |
| 139 | + + if os.path.isfile(resume_file): |
| 140 | + + logger.debug(f"=> loading checkpoint '{resume_file}'") |
| 141 | + + # Map model to be loaded to gpu. |
| 142 | + + checkpoint = torch.load(resume_file, map_location="cuda:0") |
| 143 | + + start_epoch = checkpoint["epoch"] |
| 144 | + + best_acc = checkpoint["best_acc"] |
| 145 | + + # best_acc may be from a checkpoint from a different GPU |
| 146 | + + best_acc = best_acc.to(device) |
| 147 | + + model.load_state_dict(checkpoint["state_dict"]) |
| 148 | + + optimizer.load_state_dict(checkpoint["optimizer"]) |
| 149 | + + logger.debug(f"=> loaded checkpoint '{resume_file}' (epoch {checkpoint['epoch']})") |
| 150 | + + else: |
| 151 | + + logger.debug(f"=> no checkpoint found at '{resume_file}'") |
| 152 | + + |
| 153 | + + # Move the model to the GPU. |
| 154 | + model.to(device=device) |
| 155 | +
|
| 156 | + optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay) |
| 157 | +
|
| 158 | + # Setup CIFAR10 |
| 159 | + num_workers = get_num_workers() |
| 160 | + - dataset_path = Path(os.environ.get("SLURM_TMPDIR", ".")) / "data" |
| 161 | + - train_dataset, valid_dataset, test_dataset = make_datasets(str(dataset_path)) |
| 162 | + + try: |
| 163 | + + dataset_path = f"{os.environ['SLURM_TMPDIR']}/data" |
| 164 | + + except KeyError: |
| 165 | + + dataset_path = "../dataset" |
| 166 | + + train_dataset, valid_dataset, test_dataset = make_datasets(dataset_path) |
| 167 | + train_dataloader = DataLoader( |
| 168 | + train_dataset, |
| 169 | + batch_size=batch_size, |
| 170 | + num_workers=num_workers, |
| 171 | + shuffle=True, |
| 172 | + ) |
| 173 | + valid_dataloader = DataLoader( |
| 174 | + valid_dataset, |
| 175 | + batch_size=batch_size, |
| 176 | + num_workers=num_workers, |
| 177 | + shuffle=False, |
| 178 | + ) |
| 179 | + test_dataloader = DataLoader( # NOTE: Not used in this example. |
| 180 | + test_dataset, |
| 181 | + batch_size=batch_size, |
| 182 | + num_workers=num_workers, |
| 183 | + shuffle=False, |
| 184 | + ) |
| 185 | +
|
| 186 | + # Checkout the "checkpointing and preemption" example for more info! |
| 187 | + logger.debug("Starting training from scratch.") |
| 188 | +
|
| 189 | + - for epoch in range(training_epochs): |
| 190 | + + for epoch in range(start_epoch, training_epochs): |
| 191 | + logger.debug(f"Starting epoch {epoch}/{training_epochs}") |
| 192 | +
|
| 193 | + - # Set the model in training mode (important for e.g. BatchNorm and Dropout layers) |
| 194 | + + # Set the model in training mode (this is important for e.g. BatchNorm and Dropout layers) |
| 195 | + model.train() |
| 196 | +
|
| 197 | + # NOTE: using a progress bar from tqdm because it's nicer than using `print`. |
| 198 | + progress_bar = tqdm( |
| 199 | + total=len(train_dataloader), |
| 200 | + desc=f"Train epoch {epoch}", |
| 201 | + ) |
| 202 | +
|
| 203 | + # Training loop |
| 204 | + for batch in train_dataloader: |
| 205 | + # Move the batch to the GPU before we pass it to the model |
| 206 | + batch = tuple(item.to(device) for item in batch) |
| 207 | + x, y = batch |
| 208 | +
|
| 209 | + # Forward pass |
| 210 | + logits: Tensor = model(x) |
| 211 | +
|
| 212 | + loss = F.cross_entropy(logits, y) |
| 213 | +
|
| 214 | + optimizer.zero_grad() |
| 215 | + loss.backward() |
| 216 | + optimizer.step() |
| 217 | +
|
| 218 | + # Calculate some metrics: |
| 219 | + n_correct_predictions = logits.detach().argmax(-1).eq(y).sum() |
| 220 | + n_samples = y.shape[0] |
| 221 | + accuracy = n_correct_predictions / n_samples |
| 222 | +
|
| 223 | + logger.debug(f"Accuracy: {accuracy.item():.2%}") |
| 224 | + logger.debug(f"Average Loss: {loss.item()}") |
| 225 | +
|
| 226 | + # Advance the progress bar one step, and update the "postfix" () the progress bar. (nicer than just) |
| 227 | + progress_bar.update(1) |
| 228 | + progress_bar.set_postfix(loss=loss.item(), accuracy=accuracy.item()) |
| 229 | + progress_bar.close() |
| 230 | +
|
| 231 | + val_loss, val_accuracy = validation_loop(model, valid_dataloader, device) |
| 232 | + logger.info(f"Epoch {epoch}: Val loss: {val_loss:.3f} accuracy: {val_accuracy:.2%}") |
| 233 | +
|
| 234 | + + # remember best acc and save checkpoint |
| 235 | + + is_best = val_accuracy > best_acc |
| 236 | + + best_acc = max(val_accuracy, best_acc) |
| 237 | + + |
| 238 | + + save_checkpoint({ |
| 239 | + + "epoch": epoch + 1, |
| 240 | + + "arch": "resnet18", |
| 241 | + + "state_dict": model.state_dict(), |
| 242 | + + "best_acc": best_acc, |
| 243 | + + "optimizer": optimizer.state_dict(), |
| 244 | + + }, is_best) |
| 245 | + + |
| 246 | + print("Done!") |
| 247 | +
|
| 248 | +
|
| 249 | + @torch.no_grad() |
| 250 | + def validation_loop(model: nn.Module, dataloader: DataLoader, device: torch.device): |
| 251 | + model.eval() |
| 252 | +
|
| 253 | + total_loss = 0.0 |
| 254 | + n_samples = 0 |
| 255 | + correct_predictions = 0 |
| 256 | +
|
| 257 | + for batch in dataloader: |
| 258 | + batch = tuple(item.to(device) for item in batch) |
| 259 | + x, y = batch |
| 260 | +
|
| 261 | + logits: Tensor = model(x) |
| 262 | + loss = F.cross_entropy(logits, y) |
| 263 | +
|
| 264 | + batch_n_samples = x.shape[0] |
| 265 | + batch_correct_predictions = logits.argmax(-1).eq(y).sum() |
| 266 | +
|
| 267 | + total_loss += loss.item() |
| 268 | + n_samples += batch_n_samples |
| 269 | + correct_predictions += batch_correct_predictions |
| 270 | +
|
| 271 | + accuracy = correct_predictions / n_samples |
| 272 | + return total_loss, accuracy |
| 273 | +
|
| 274 | +
|
| 275 | + def make_datasets( |
| 276 | + dataset_path: str, |
| 277 | + val_split: float = 0.1, |
| 278 | + val_split_seed: int = 42, |
| 279 | + ): |
| 280 | + """Returns the training, validation, and test splits for CIFAR10. |
| 281 | +
|
| 282 | + NOTE: We don't use image transforms here for simplicity. |
| 283 | + Having different transformations for train and validation would complicate things a bit. |
| 284 | + Later examples will show how to do the train/val/test split properly when using transforms. |
| 285 | + """ |
| 286 | + train_dataset = CIFAR10( |
| 287 | + root=dataset_path, transform=transforms.ToTensor(), download=True, train=True |
| 288 | + ) |
| 289 | + test_dataset = CIFAR10( |
| 290 | + root=dataset_path, transform=transforms.ToTensor(), download=True, train=False |
| 291 | + ) |
| 292 | + # Split the training dataset into a training and validation set. |
| 293 | + - n_samples = len(train_dataset) |
| 294 | + - n_valid = int(val_split * n_samples) |
| 295 | + - n_train = n_samples - n_valid |
| 296 | + train_dataset, valid_dataset = random_split( |
| 297 | + - train_dataset, (n_train, n_valid), torch.Generator().manual_seed(val_split_seed) |
| 298 | + + train_dataset, ((1 - val_split), val_split), torch.Generator().manual_seed(val_split_seed) |
| 299 | + ) |
| 300 | + return train_dataset, valid_dataset, test_dataset |
| 301 | +
|
| 302 | +
|
| 303 | + def get_num_workers() -> int: |
| 304 | + """Gets the optimal number of DatLoader workers to use in the current job.""" |
| 305 | + if "SLURM_CPUS_PER_TASK" in os.environ: |
| 306 | + return int(os.environ["SLURM_CPUS_PER_TASK"]) |
| 307 | + if hasattr(os, "sched_getaffinity"): |
| 308 | + return len(os.sched_getaffinity(0)) |
| 309 | + return torch.multiprocessing.cpu_count() |
| 310 | +
|
| 311 | +
|
| 312 | + +def save_checkpoint(state, is_best, filename=f"{_CHECKPTS_DIR}/checkpoint.pth.tar"): |
| 313 | + + torch.save(state, filename) |
| 314 | + + if is_best: |
| 315 | + + _dir = os.path.dirname(filename) |
| 316 | + + shutil.copyfile(filename, f"{_dir}/model_best.pth.tar") |
| 317 | + + |
| 318 | + + |
| 319 | + if __name__ == "__main__": |
| 320 | + main() |
| 321 | +
|
| 322 | +
|
| 323 | +**Running this example** |
| 324 | + |
| 325 | +.. code-block:: bash |
| 326 | +
|
| 327 | + $ sbatch job.sh |
0 commit comments