forked from Kyubyong/tacotron
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hyperparams.py
51 lines (41 loc) · 1.33 KB
/
hyperparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# -*- coding: utf-8 -*-
#/usr/bin/python2
'''
By kyubyong park. [email protected].
https://www.github.com/kyubyong/tacotron
'''
class Hyperparams:
'''Hyper parameters'''
# pipeline
prepro = False # if True, run `python prepro.py` first before running `python train.py`.
vocab = "PE abcdefghijklmnopqrstuvwxyz'.?" # P: Padding E: End of Sentence
# data
data = "/data/private/voice/LJSpeech-1.0"
# data = "/data/private/voice/nick"
test_data = 'harvard_sentences.txt'
max_duration = 10.0
# signal processing
sr = 22050 # Sample rate.
n_fft = 2048 # fft points (samples)
frame_shift = 0.0125 # seconds
frame_length = 0.05 # seconds
hop_length = int(sr*frame_shift) # samples.
win_length = int(sr*frame_length) # samples.
n_mels = 80 # Number of Mel banks to generate
power = 1.2 # Exponent for amplifying the predicted magnitude
n_iter = 50 # Number of inversion iterations
preemphasis = .97 # or None
max_db = 100
ref_db = 20
# model
embed_size = 256 # alias = E
encoder_num_banks = 16
decoder_num_banks = 8
num_highwaynet_blocks = 4
r = 5 # Reduction factor. Paper => 2, 3, 5
dropout_rate = .5
# training scheme
lr = 0.001 # Initial learning rate.
logdir = "logdir/01"
sampledir = 'samples'
batch_size = 32