-
Notifications
You must be signed in to change notification settings - Fork 3k
/
backend.ts
195 lines (170 loc) · 5.74 KB
/
backend.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import {
type Backend,
InferenceSession,
type InferenceSessionHandler,
type SessionHandler,
Tensor,
} from 'onnxruntime-common';
import { Platform } from 'react-native';
import { binding, type Binding, type JSIBlob, jsiHelper } from './binding';
type SupportedTypedArray = Exclude<Tensor.DataType, string[]>;
const tensorTypeToTypedArray = (
type: Tensor.Type,
):
| Float32ArrayConstructor
| Int8ArrayConstructor
| Int16ArrayConstructor
| Int32ArrayConstructor
| BigInt64ArrayConstructor
| Float64ArrayConstructor
| Uint8ArrayConstructor => {
switch (type) {
case 'float32':
return Float32Array;
case 'int8':
return Int8Array;
case 'uint8':
return Uint8Array;
case 'int16':
return Int16Array;
case 'int32':
return Int32Array;
case 'bool':
return Int8Array;
case 'float64':
return Float64Array;
case 'int64':
/* global BigInt64Array */
/* eslint no-undef: ["error", { "typeof": true }] */
return BigInt64Array;
default:
throw new Error(`unsupported type: ${type}`);
}
};
const normalizePath = (path: string): string => {
// remove 'file://' prefix in iOS
if (Platform.OS === 'ios' && path.toLowerCase().startsWith('file://')) {
return path.substring(7);
}
return path;
};
class OnnxruntimeSessionHandler implements InferenceSessionHandler {
#inferenceSession: Binding.InferenceSession;
#key: string;
#pathOrBuffer: string | Uint8Array;
inputNames: string[];
outputNames: string[];
constructor(pathOrBuffer: string | Uint8Array) {
this.#inferenceSession = binding;
this.#pathOrBuffer = pathOrBuffer;
this.#key = '';
this.inputNames = [];
this.outputNames = [];
}
async loadModel(options: InferenceSession.SessionOptions): Promise<void> {
try {
let results: Binding.ModelLoadInfoType;
// load a model
if (typeof this.#pathOrBuffer === 'string') {
// load model from model path
results = await this.#inferenceSession.loadModel(normalizePath(this.#pathOrBuffer), options);
} else {
// load model from buffer
if (!this.#inferenceSession.loadModelFromBlob) {
throw new Error('Native module method "loadModelFromBlob" is not defined');
}
const modelBlob = jsiHelper.storeArrayBuffer(this.#pathOrBuffer.buffer);
results = await this.#inferenceSession.loadModelFromBlob(modelBlob, options);
}
// resolve promise if onnxruntime session is successfully created
this.#key = results.key;
this.inputNames = results.inputNames;
this.outputNames = results.outputNames;
} catch (e) {
throw new Error(`Can't load a model: ${(e as Error).message}`);
}
}
async dispose(): Promise<void> {
return this.#inferenceSession.dispose(this.#key);
}
startProfiling(): void {
// TODO: implement profiling
}
endProfiling(): void {
// TODO: implement profiling
}
async run(
feeds: SessionHandler.FeedsType,
fetches: SessionHandler.FetchesType,
options: InferenceSession.RunOptions,
): Promise<SessionHandler.ReturnType> {
const outputNames: Binding.FetchesType = [];
for (const name in fetches) {
if (Object.prototype.hasOwnProperty.call(fetches, name)) {
if (fetches[name]) {
throw new Error(
'Preallocated output is not supported and only names as string array is allowed as parameter',
);
}
outputNames.push(name);
}
}
const input = this.encodeFeedsType(feeds);
const results: Binding.ReturnType = await this.#inferenceSession.run(this.#key, input, outputNames, options);
const output = this.decodeReturnType(results);
return output;
}
encodeFeedsType(feeds: SessionHandler.FeedsType): Binding.FeedsType {
const returnValue: { [name: string]: Binding.EncodedTensorType } = {};
for (const key in feeds) {
if (Object.hasOwnProperty.call(feeds, key)) {
let data: JSIBlob | string[];
if (Array.isArray(feeds[key].data)) {
data = feeds[key].data as string[];
} else {
const buffer = (feeds[key].data as SupportedTypedArray).buffer;
data = jsiHelper.storeArrayBuffer(buffer);
}
returnValue[key] = {
dims: feeds[key].dims,
type: feeds[key].type,
data,
};
}
}
return returnValue;
}
decodeReturnType(results: Binding.ReturnType): SessionHandler.ReturnType {
const returnValue: SessionHandler.ReturnType = {};
for (const key in results) {
if (Object.hasOwnProperty.call(results, key)) {
let tensorData: Tensor.DataType;
if (Array.isArray(results[key].data)) {
tensorData = results[key].data as string[];
} else {
const buffer = jsiHelper.resolveArrayBuffer(results[key].data as JSIBlob) as SupportedTypedArray;
const typedArray = tensorTypeToTypedArray(results[key].type as Tensor.Type);
tensorData = new typedArray(buffer, buffer.byteOffset, buffer.byteLength / typedArray.BYTES_PER_ELEMENT);
}
returnValue[key] = new Tensor(results[key].type as Tensor.Type, tensorData, results[key].dims);
}
}
return returnValue;
}
}
class OnnxruntimeBackend implements Backend {
async init(): Promise<void> {
return Promise.resolve();
}
async createInferenceSessionHandler(
pathOrBuffer: string | Uint8Array,
options?: InferenceSession.SessionOptions,
): Promise<InferenceSessionHandler> {
const handler = new OnnxruntimeSessionHandler(pathOrBuffer);
await handler.loadModel(options || {});
return handler;
}
}
export const onnxruntimeBackend = new OnnxruntimeBackend();