From b441533a1cfd0269a9f80f544f41b48f82eaf8e1 Mon Sep 17 00:00:00 2001 From: Harsha S Date: Sat, 23 Mar 2024 14:08:32 +0000 Subject: [PATCH 01/27] DOC FIX - Formatted Docstrings for the retrieve_user_proxy_agent.py and Added first single line for the class RetrieveUserProxyAgent. --- .../contrib/retrieve_user_proxy_agent.py | 121 ++++++++++++------ 1 file changed, 82 insertions(+), 39 deletions(-) diff --git a/autogen/agentchat/contrib/retrieve_user_proxy_agent.py b/autogen/agentchat/contrib/retrieve_user_proxy_agent.py index f252f60e5ec1..fb217ad776a1 100644 --- a/autogen/agentchat/contrib/retrieve_user_proxy_agent.py +++ b/autogen/agentchat/contrib/retrieve_user_proxy_agent.py @@ -62,6 +62,10 @@ class RetrieveUserProxyAgent(UserProxyAgent): + """(In preview) The Retrieval-Augmented User Proxy retrieves document chunks based on the embedding + similarity, and sends them along with the question to the Retrieval-Augmented Assistant + """ + def __init__( self, name="RetrieveChatAgent", # default set to RetrieveChatAgent @@ -73,67 +77,106 @@ def __init__( r""" Args: name (str): name of the agent. + human_input_mode (str): whether to ask for human inputs every time a message is received. Possible values are "ALWAYS", "TERMINATE", "NEVER". 1. When "ALWAYS", the agent prompts for human input every time a message is received. Under this mode, the conversation stops when the human input is "exit", or when is_termination_msg is True and there is no human input. - 2. When "TERMINATE", the agent only prompts for human input only when a termination message is received or - the number of auto reply reaches the max_consecutive_auto_reply. - 3. When "NEVER", the agent will never prompt for human input. Under this mode, the conversation stops - when the number of auto reply reaches the max_consecutive_auto_reply or when is_termination_msg is True. + 2. When "TERMINATE", the agent only prompts for human input only when a termination + message is received or the number of auto reply reaches + the max_consecutive_auto_reply. + 3. When "NEVER", the agent will never prompt for human input. Under this mode, the + conversation stops when the number of auto reply reaches the + max_consecutive_auto_reply or when is_termination_msg is True. + is_termination_msg (function): a function that takes a message in the form of a dictionary and returns a boolean value indicating if this received message is a termination message. The dict can contain the following keys: "content", "role", "name", "function_call". + retrieve_config (dict or None): config for the retrieve agent. - To use default config, set to None. Otherwise, set to a dictionary with the following keys: - - task (Optional, str): the task of the retrieve chat. Possible values are "code", "qa" and "default". System - prompt will be different for different tasks. The default value is `default`, which supports both code and qa. - - client (Optional, chromadb.Client): the chromadb client. If key not provided, a default client `chromadb.Client()` - will be used. If you want to use other vector db, extend this class and override the `retrieve_docs` function. - - docs_path (Optional, Union[str, List[str]]): the path to the docs directory. It can also be the path to a single file, - the url to a single file or a list of directories, files and urls. Default is None, which works only if the collection is already created. - - extra_docs (Optional, bool): when true, allows adding documents with unique IDs without overwriting existing ones; when false, it replaces existing documents using default IDs, risking collection overwrite., - when set to true it enables the system to assign unique IDs starting from "length+i" for new document chunks, preventing the replacement of existing documents and facilitating the addition of more content to the collection.. - By default, "extra_docs" is set to false, starting document IDs from zero. This poses a risk as new documents might overwrite existing ones, potentially causing unintended loss or alteration of data in the collection. + + To use default config, set to None. Otherwise, set to a dictionary with the + following keys: + - task (Optional, str): the task of the retrieve chat. Possible values are + "code", "qa" and "default". System prompt will be different for different tasks. + The default value is `default`, which supports both code and qa. + - client (Optional, chromadb.Client): the chromadb client. If key not provided, a + default client `chromadb.Client()` will be used. If you want to use other + vector db, extend this class and override the `retrieve_docs` function. + - docs_path (Optional, Union[str, List[str]]): the path to the docs directory. It + can also be the path to a single file, the url to a single file or a list + of directories, files and urls. Default is None, which works only if the + collection is already created. + - extra_docs (Optional, bool): when true, allows adding documents with unique IDs + without overwriting existing ones; when false, it replaces existing documents + using default IDs, risking collection overwrite., when set to true it enables + the system to assign unique IDs starting from "length+i" for new document + chunks, preventing the replacement of existing documents and facilitating the + addition of more content to the collection.. + By default, "extra_docs" is set to false, starting document IDs from zero. + This poses a risk as new documents might overwrite existing ones, potentially + causing unintended loss or alteration of data in the collection. - collection_name (Optional, str): the name of the collection. If key not provided, a default name `autogen-docs` will be used. - model (Optional, str): the model to use for the retrieve chat. If key not provided, a default model `gpt-4` will be used. - chunk_token_size (Optional, int): the chunk token size for the retrieve chat. If key not provided, a default size `max_tokens * 0.4` will be used. - - context_max_tokens (Optional, int): the context max token size for the retrieve chat. + - context_max_tokens (Optional, int): the context max token size for the + retrieve chat. If key not provided, a default size `max_tokens * 0.8` will be used. - - chunk_mode (Optional, str): the chunk mode for the retrieve chat. Possible values are - "multi_lines" and "one_line". If key not provided, a default mode `multi_lines` will be used. - - must_break_at_empty_line (Optional, bool): chunk will only break at empty line if True. Default is True. + - chunk_mode (Optional, str): the chunk mode for the retrieve chat. Possible values + are "multi_lines" and "one_line". If key not provided, a default mode + `multi_lines` will be used. + - must_break_at_empty_line (Optional, bool): chunk will only break at empty line + if True. Default is True. If chunk_mode is "one_line", this parameter will be ignored. - embedding_model (Optional, str): the embedding model to use for the retrieve chat. - If key not provided, a default model `all-MiniLM-L6-v2` will be used. All available models - can be found at `https://www.sbert.net/docs/pretrained_models.html`. The default model is a - fast model. If you want to use a high performance model, `all-mpnet-base-v2` is recommended. - - embedding_function (Optional, Callable): the embedding function for creating the vector db. Default is None, - SentenceTransformer with the given `embedding_model` will be used. If you want to use OpenAI, Cohere, HuggingFace or - other embedding functions, you can pass it here, follow the examples in `https://docs.trychroma.com/embeddings`. - - customized_prompt (Optional, str): the customized prompt for the retrieve chat. Default is None. - - customized_answer_prefix (Optional, str): the customized answer prefix for the retrieve chat. Default is "". - If not "" and the customized_answer_prefix is not in the answer, `Update Context` will be triggered. - - update_context (Optional, bool): if False, will not apply `Update Context` for interactive retrieval. Default is True. - - get_or_create (Optional, bool): if True, will create/return a collection for the retrieve chat. This is the same as that used in chromadb. - Default is False. Will raise ValueError if the collection already exists and get_or_create is False. Will be set to True if docs_path is None. - - custom_token_count_function (Optional, Callable): a custom function to count the number of tokens in a string. - The function should take (text:str, model:str) as input and return the token_count(int). the retrieve_config["model"] will be passed in the function. - Default is autogen.token_count_utils.count_token that uses tiktoken, which may not be accurate for non-OpenAI models. - - custom_text_split_function (Optional, Callable): a custom function to split a string into a list of strings. - Default is None, will use the default function in `autogen.retrieve_utils.split_text_to_chunks`. - - custom_text_types (Optional, List[str]): a list of file types to be processed. Default is `autogen.retrieve_utils.TEXT_FORMATS`. - This only applies to files under the directories in `docs_path`. Explicitly included files and urls will be chunked regardless of their types. - - recursive (Optional, bool): whether to search documents recursively in the docs_path. Default is True. + If key not provided, a default model `all-MiniLM-L6-v2` will be used. All available + models can be found at `https://www.sbert.net/docs/pretrained_models.html`. + The default model is a fast model. If you want to use a high performance model, + `all-mpnet-base-v2` is recommended. + - embedding_function (Optional, Callable): the embedding function for creating the + vector db. Default is None, SentenceTransformer with the given `embedding_model` + will be used. If you want to use OpenAI, Cohere, HuggingFace or other embedding + functions, you can pass it here, + follow the examples in `https://docs.trychroma.com/embeddings`. + - customized_prompt (Optional, str): the customized prompt for the retrieve chat. + Default is None. + - customized_answer_prefix (Optional, str): the customized answer prefix for the + retrieve chat. Default is "". + If not "" and the customized_answer_prefix is not in the answer, + `Update Context` will be triggered. + - update_context (Optional, bool): if False, will not apply `Update Context` for + interactive retrieval. Default is True. + - get_or_create (Optional, bool): if True, will create/return a collection for the + retrieve chat. This is the same as that used in chromadb. + Default is False. Will raise ValueError if the collection already exists and + get_or_create is False. Will be set to True if docs_path is None. + - custom_token_count_function (Optional, Callable): a custom function to count the + number of tokens in a string. + The function should take (text:str, model:str) as input and return the + token_count(int). the retrieve_config["model"] will be passed in the function. + Default is autogen.token_count_utils.count_token that uses tiktoken, which may + not be accurate for non-OpenAI models. + - custom_text_split_function (Optional, Callable): a custom function to split a + string into a list of strings. + Default is None, will use the default function in + `autogen.retrieve_utils.split_text_to_chunks`. + - custom_text_types (Optional, List[str]): a list of file types to be processed. + Default is `autogen.retrieve_utils.TEXT_FORMATS`. + This only applies to files under the directories in `docs_path`. Explicitly + included files and urls will be chunked regardless of their types. + - recursive (Optional, bool): whether to search documents recursively in the + docs_path. Default is True. + `**kwargs` (dict): other kwargs in [UserProxyAgent](../user_proxy_agent#__init__). Example: - Example of overriding retrieve_docs - If you have set up a customized vector db, and it's not compatible with chromadb, you can easily plug in it with below code. + Example of overriding retrieve_docs - If you have set up a customized vector db, and it's + not compatible with chromadb, you can easily plug in it with below code. ```python class MyRetrieveUserProxyAgent(RetrieveUserProxyAgent): def query_vector_db( From 9a03544ce63e83250c95b3899a4b586253a11107 Mon Sep 17 00:00:00 2001 From: Harsha S Date: Sat, 23 Mar 2024 14:30:42 +0000 Subject: [PATCH 02/27] DOC FIX - Formatted Docstrings for theinitiate_chats functiion of ChatResult class in autogen/agentchat/chat.py --- autogen/agentchat/chat.py | 37 ++++++++++++++++++++++++------------- 1 file changed, 24 insertions(+), 13 deletions(-) diff --git a/autogen/agentchat/chat.py b/autogen/agentchat/chat.py index d5e127e971f3..1296607c281e 100644 --- a/autogen/agentchat/chat.py +++ b/autogen/agentchat/chat.py @@ -25,7 +25,9 @@ class ChatResult: summary: str = None """A summary obtained from the chat.""" cost: tuple = None # (dict, dict) - (total_cost, actual_cost_with_cache) - """The cost of the chat. a tuple of (total_cost, total_actual_cost), where total_cost is a dictionary of cost information, and total_actual_cost is a dictionary of information on the actual incurred cost with cache.""" + """The cost of the chat. a tuple of (total_cost, total_actual_cost), where total_cost is a + dictionary of cost information, and total_actual_cost is a dictionary of information on + the actual incurred cost with cache.""" human_input: List[str] = None """A list of human input solicited during the chat.""" @@ -135,24 +137,33 @@ def __post_carryover_processing(chat_info: Dict[str, Any]): def initiate_chats(chat_queue: List[Dict[str, Any]]) -> List[ChatResult]: """Initiate a list of chats. - Args: chat_queue (List[Dict]): a list of dictionaries containing the information about the chats. - Each dictionary should contain the input arguments for [`ConversableAgent.initiate_chat`](/docs/reference/agentchat/conversable_agent#initiate_chat). For example: + Each dictionary should contain the input arguments for [`ConversableAgent.initiate_chat`] + (/docs/reference/agentchat/conversable_agent#initiate_chat). + For example: - "sender": the sender agent. - "recipient": the recipient agent. - - "clear_history" (bool): whether to clear the chat history with the agent. Default is True. - - "silent" (bool or None): (Experimental) whether to print the messages in this conversation. Default is False. - - "cache" (Cache or None): the cache client to use for this conversation. Default is None. - - "max_turns" (int or None): maximum number of turns for the chat. If None, the chat will continue until a termination condition is met. Default is None. - - "summary_method" (str or callable): a string or callable specifying the method to get a summary from the chat. Default is DEFAULT_summary_method, i.e., "last_msg". - - "summary_args" (dict): a dictionary of arguments to be passed to the summary_method. Default is {}. - - "message" (str, callable or None): if None, input() will be called to get the initial message. + - "clear_history" (bool): whether to clear the chat history with the agent. + Default is True. + - "silent" (bool or None): (Experimental) whether to print the messages in this + conversation. Default is False. + - "cache" (Cache or None): the cache client to use for this conversation. + Default is None. + - "max_turns" (int or None): maximum number of turns for the chat. If None, the chat + will continue until a termination condition is met. Default is None. + - "summary_method" (str or callable): a string or callable specifying the method to get + a summary from the chat. Default is DEFAULT_summary_method, i.e., "last_msg". + - "summary_args" (dict): a dictionary of arguments to be passed to the summary_method. + Default is {}. + - "message" (str, callable or None): if None, input() will be called to get the + initial message. - **context: additional context information to be passed to the chat. - - "carryover": It can be used to specify the carryover information to be passed to this chat. - If provided, we will combine this carryover with the "message" content when generating the initial chat - message in `generate_init_message`. + - "carryover": It can be used to specify the carryover information to be passed + to this chat. + If provided, we will combine this carryover with the "message" content when + generating the initial chat message in `generate_init_message`. Returns: (list): a list of ChatResult objects corresponding to the finished chats in the chat_queue. From ec682070d9c5d7614d95e9b4eda46b76c707868a Mon Sep 17 00:00:00 2001 From: Beibin Li Date: Sun, 24 Mar 2024 12:46:55 -0700 Subject: [PATCH 03/27] Add vision capability (#2025) * Add vision capability * Configurate: description_prompt * Print warning instead of raising issues for type * Skip vision capability test if dependencies not installed * Append "vision" to agent's system message when enabled VisionCapability * GPT-4V notebook update with ConversableAgent * Clean GPT-4V notebook * Add vision capability test to workflow * Lint import * Update system message for vision capability * Add a `custom_caption_func` to VisionCapability * Add custom function example for vision capability * Skip test Vision capability custom func * GPT-4V notebook metadata to website * Remove redundant files * The custom caption function takes more inputs now * Add a more complex example of custom caption func * Remove trailing space --------- Co-authored-by: Chi Wang --- .github/workflows/contrib-tests.yml | 2 +- .../contrib/capabilities/vision_capability.py | 211 ++++++ autogen/agentchat/contrib/img_utils.py | 6 + autogen/agentchat/conversable_agent.py | 43 +- notebook/agentchat_lmm_gpt-4v.ipynb | 715 +++++++++++++----- .../capabilities/test_vision_capability.py | 116 +++ 6 files changed, 878 insertions(+), 215 deletions(-) create mode 100644 autogen/agentchat/contrib/capabilities/vision_capability.py create mode 100644 test/agentchat/contrib/capabilities/test_vision_capability.py diff --git a/.github/workflows/contrib-tests.yml b/.github/workflows/contrib-tests.yml index f46d6883fbca..ced35dc115bd 100644 --- a/.github/workflows/contrib-tests.yml +++ b/.github/workflows/contrib-tests.yml @@ -247,7 +247,7 @@ jobs: - name: Coverage run: | pip install coverage>=5.3 - coverage run -a -m pytest test/agentchat/contrib/test_img_utils.py test/agentchat/contrib/test_lmm.py test/agentchat/contrib/test_llava.py test/agentchat/contrib/capabilities/test_image_generation_capability.py --skip-openai + coverage run -a -m pytest test/agentchat/contrib/test_img_utils.py test/agentchat/contrib/test_lmm.py test/agentchat/contrib/test_llava.py test/agentchat/contrib/capabilities/test_image_generation_capability.py test/agentchat/contrib/capabilities/test_vision_capability.py --skip-openai coverage xml - name: Upload coverage to Codecov uses: codecov/codecov-action@v3 diff --git a/autogen/agentchat/contrib/capabilities/vision_capability.py b/autogen/agentchat/contrib/capabilities/vision_capability.py new file mode 100644 index 000000000000..acfb9c8f6d82 --- /dev/null +++ b/autogen/agentchat/contrib/capabilities/vision_capability.py @@ -0,0 +1,211 @@ +import copy +from typing import Callable, Dict, List, Optional, Union + +from autogen.agentchat.assistant_agent import ConversableAgent +from autogen.agentchat.contrib.capabilities.agent_capability import AgentCapability +from autogen.agentchat.contrib.img_utils import ( + convert_base64_to_data_uri, + get_image_data, + get_pil_image, + gpt4v_formatter, + message_formatter_pil_to_b64, +) +from autogen.agentchat.contrib.multimodal_conversable_agent import MultimodalConversableAgent +from autogen.agentchat.conversable_agent import colored +from autogen.code_utils import content_str +from autogen.oai.client import OpenAIWrapper + +DEFAULT_DESCRIPTION_PROMPT = ( + "Write a detailed caption for this image. " + "Pay special attention to any details that might be useful or relevant " + "to the ongoing conversation." +) + + +class VisionCapability(AgentCapability): + """We can add vision capability to regular ConversableAgent, even if the agent does not have the multimodal capability, + such as GPT-3.5-turbo agent, Llama, Orca, or Mistral agents. This vision capability will invoke a LMM client to describe + the image (captioning) before sending the information to the agent's actual client. + + The vision capability will hook to the ConversableAgent's `process_last_received_message`. + + Some technical details: + When the agent (who has the vision capability) received an message, it will: + 1. _process_received_message: + a. _append_oai_message + 2. generate_reply: if the agent is a MultimodalAgent, it will also use the image tag. + a. hook process_last_received_message (NOTE: this is where the vision capability will be hooked to.) + b. hook process_all_messages_before_reply + 3. send: + a. hook process_message_before_send + b. _append_oai_message + """ + + def __init__( + self, + lmm_config: Dict, + description_prompt: Optional[str] = DEFAULT_DESCRIPTION_PROMPT, + custom_caption_func: Callable = None, + ) -> None: + """ + Initializes a new instance, setting up the configuration for interacting with + a Language Multimodal (LMM) client and specifying optional parameters for image + description and captioning. + + Args: + lmm_config (Dict): Configuration for the LMM client, which is used to call + the LMM service for describing the image. This must be a dictionary containing + the necessary configuration parameters. If `lmm_config` is False or an empty dictionary, + it is considered invalid, and initialization will assert. + description_prompt (Optional[str], optional): The prompt to use for generating + descriptions of the image. This parameter allows customization of the + prompt passed to the LMM service. Defaults to `DEFAULT_DESCRIPTION_PROMPT` if not provided. + custom_caption_func (Callable, optional): A callable that, if provided, will be used + to generate captions for images. This allows for custom captioning logic outside + of the standard LMM service interaction. + The callable should take three parameters as input: + 1. an image URL (or local location) + 2. image_data (a PIL image) + 3. lmm_client (to call remote LMM) + and then return a description (as string). + If not provided, captioning will rely on the LMM client configured via `lmm_config`. + If provided, we will not run the default self._get_image_caption method. + + Raises: + AssertionError: If neither a valid `lmm_config` nor a `custom_caption_func` is provided, + an AssertionError is raised to indicate that the Vision Capability requires + one of these to be valid for operation. + """ + self._lmm_config = lmm_config + self._description_prompt = description_prompt + self._parent_agent = None + + if lmm_config: + self._lmm_client = OpenAIWrapper(**lmm_config) + else: + self._lmm_client = None + + self._custom_caption_func = custom_caption_func + assert ( + self._lmm_config or custom_caption_func + ), "Vision Capability requires a valid lmm_config or custom_caption_func." + + def add_to_agent(self, agent: ConversableAgent) -> None: + self._parent_agent = agent + + # Append extra info to the system message. + agent.update_system_message(agent.system_message + "\nYou've been given the ability to interpret images.") + + # Register a hook for processing the last message. + agent.register_hook(hookable_method="process_last_received_message", hook=self.process_last_received_message) + + def process_last_received_message(self, content: Union[str, List[dict]]) -> str: + """ + Processes the last received message content by normalizing and augmenting it + with descriptions of any included images. The function supports input content + as either a string or a list of dictionaries, where each dictionary represents + a content item (e.g., text, image). If the content contains image URLs, it + fetches the image data, generates a caption for each image, and inserts the + caption into the augmented content. + + The function aims to transform the content into a format compatible with GPT-4V + multimodal inputs, specifically by formatting strings into PIL-compatible + images if needed and appending text descriptions for images. This allows for + a more accessible presentation of the content, especially in contexts where + images cannot be displayed directly. + + Args: + content (Union[str, List[dict]]): The last received message content, which + can be a plain text string or a list of dictionaries representing + different types of content items (e.g., text, image_url). + + Returns: + str: The augmented message content + + Raises: + AssertionError: If an item in the content list is not a dictionary. + + Examples: + Assuming `self._get_image_caption(img_data)` returns + "A beautiful sunset over the mountains" for the image. + + - Input as String: + content = "Check out this cool photo!" + Output: "Check out this cool photo!" + (Content is a string without an image, remains unchanged.) + + - Input as String, with image location: + content = "What's weather in this cool photo: " + Output: "What's weather in this cool photo: in case you can not see, the caption of this image is: + A beautiful sunset over the mountains\n" + (Caption added after the image) + + - Input as List with Text Only: + content = [{"type": "text", "text": "Here's an interesting fact."}] + Output: "Here's an interesting fact." + (No images in the content, it remains unchanged.) + + - Input as List with Image URL: + content = [ + {"type": "text", "text": "What's weather in this cool photo:"}, + {"type": "image_url", "image_url": {"url": "http://example.com/photo.jpg"}} + ] + Output: "What's weather in this cool photo: in case you can not see, the caption of this image is: + A beautiful sunset over the mountains\n" + (Caption added after the image) + """ + copy.deepcopy(content) + # normalize the content into the gpt-4v format for multimodal + # we want to keep the URL format to keep it concise. + if isinstance(content, str): + content = gpt4v_formatter(content, img_format="url") + + aug_content: str = "" + for item in content: + assert isinstance(item, dict) + if item["type"] == "text": + aug_content += item["text"] + elif item["type"] == "image_url": + img_url = item["image_url"]["url"] + img_caption = "" + + if self._custom_caption_func: + img_caption = self._custom_caption_func(img_url, get_pil_image(img_url), self._lmm_client) + elif self._lmm_client: + img_data = get_image_data(img_url) + img_caption = self._get_image_caption(img_data) + else: + img_caption = "" + + aug_content += f" in case you can not see, the caption of this image is: {img_caption}\n" + else: + print(f"Warning: the input type should either be `test` or `image_url`. Skip {item['type']} here.") + + return aug_content + + def _get_image_caption(self, img_data: str) -> str: + """ + Args: + img_data (str): base64 encoded image data. + Returns: + str: caption for the given image. + """ + response = self._lmm_client.create( + context=None, + messages=[ + { + "role": "user", + "content": [ + {"type": "text", "text": self._description_prompt}, + { + "type": "image_url", + "image_url": { + "url": convert_base64_to_data_uri(img_data), + }, + }, + ], + } + ], + ) + description = response.choices[0].message.content + return content_str(description) diff --git a/autogen/agentchat/contrib/img_utils.py b/autogen/agentchat/contrib/img_utils.py index 6062f3b05530..2d2592418747 100644 --- a/autogen/agentchat/contrib/img_utils.py +++ b/autogen/agentchat/contrib/img_utils.py @@ -24,6 +24,12 @@ def get_pil_image(image_file: Union[str, Image.Image]) -> Image.Image: # Already a PIL Image object return image_file + # Remove quotes if existed + if image_file.startswith('"') and image_file.endswith('"'): + image_file = image_file[1:-1] + if image_file.startswith("'") and image_file.endswith("'"): + image_file = image_file[1:-1] + if image_file.startswith("http://") or image_file.startswith("https://"): # A URL file response = requests.get(image_file) diff --git a/autogen/agentchat/conversable_agent.py b/autogen/agentchat/conversable_agent.py index 2a2de8b551e0..ef350f7d9e26 100644 --- a/autogen/agentchat/conversable_agent.py +++ b/autogen/agentchat/conversable_agent.py @@ -5,37 +5,35 @@ import json import logging import re +import warnings from collections import defaultdict from functools import partial from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Type, TypeVar, Union -import warnings + from openai import BadRequestError from autogen.exception_utils import InvalidCarryOverType, SenderRequired -from ..coding.base import CodeExecutor -from ..coding.factory import CodeExecutorFactory -from ..formatting_utils import colored - -from ..oai.client import OpenAIWrapper, ModelClient -from ..runtime_logging import logging_enabled, log_new_agent +from .._pydantic import model_dump from ..cache.cache import Cache from ..code_utils import ( UNKNOWN, - content_str, check_can_use_docker_or_throw, + content_str, decide_use_docker, execute_code, extract_code, infer_lang, ) -from .utils import gather_usage_summary, consolidate_chat_info -from .chat import ChatResult, initiate_chats, a_initiate_chats - - +from ..coding.base import CodeExecutor +from ..coding.factory import CodeExecutorFactory +from ..formatting_utils import colored from ..function_utils import get_function_schema, load_basemodels_if_needed, serialize_to_str +from ..oai.client import ModelClient, OpenAIWrapper +from ..runtime_logging import log_new_agent, logging_enabled from .agent import Agent, LLMAgent -from .._pydantic import model_dump +from .chat import ChatResult, a_initiate_chats, initiate_chats +from .utils import consolidate_chat_info, gather_usage_summary __all__ = ("ConversableAgent",) @@ -2603,22 +2601,25 @@ def process_last_received_message(self, messages): return messages # Last message contains a context key. if "content" not in last_message: return messages # Last message has no content. - user_text = last_message["content"] - if not isinstance(user_text, str): - return messages # Last message content is not a string. TODO: Multimodal agents will use a dict here. - if user_text == "exit": + + user_content = last_message["content"] + if not isinstance(user_content, str) and not isinstance(user_content, list): + # if the user_content is a string, it is for regular LLM + # if the user_content is a list, it should follow the multimodal LMM format. + return messages + if user_content == "exit": return messages # Last message is an exit command. # Call each hook (in order of registration) to process the user's message. - processed_user_text = user_text + processed_user_content = user_content for hook in hook_list: - processed_user_text = hook(processed_user_text) - if processed_user_text == user_text: + processed_user_content = hook(processed_user_content) + if processed_user_content == user_content: return messages # No hooks actually modified the user's message. # Replace the last user message with the expanded one. messages = messages.copy() - messages[-1]["content"] = processed_user_text + messages[-1]["content"] = processed_user_content return messages def print_usage_summary(self, mode: Union[str, List[str]] = ["actual", "total"]) -> None: diff --git a/notebook/agentchat_lmm_gpt-4v.ipynb b/notebook/agentchat_lmm_gpt-4v.ipynb index b49f4472a504..3da51028b634 100644 --- a/notebook/agentchat_lmm_gpt-4v.ipynb +++ b/notebook/agentchat_lmm_gpt-4v.ipynb @@ -5,7 +5,13 @@ "id": "2c75da30", "metadata": {}, "source": [ - "# Agent Chat with Multimodal Models: GPT-4V" + "# Engaging with Multimodal Models: GPT-4V in AutoGen\n", + "\n", + "In AutoGen, leveraging multimodal models can be done through two different methodologies:\n", + "1. **MultimodalAgent**: Supported by GPT-4V and other LMMs, this agent is endowed with visual cognitive abilities, allowing it to engage in interactions comparable to those of other ConversableAgents.\n", + "2. **VisionCapability**: For LLM-based agents lacking inherent visual comprehension, we introduce vision capabilities by converting images into descriptive captions.\n", + "\n", + "This guide will delve into each approach, providing insights into their application and integration." ] }, { @@ -14,9 +20,13 @@ "metadata": {}, "source": [ "### Before everything starts, install AutoGen with the `lmm` option\n", + "\n", + "Install `pyautogen`:\n", "```bash\n", - "pip install \"pyautogen[lmm]>=0.2.3\"\n", - "```" + "pip install \"pyautogen[lmm]>=0.2.17\"\n", + "```\n", + "\n", + "For more information, please refer to the [installation guide](/docs/installation/).\n" ] }, { @@ -36,10 +46,14 @@ "import requests\n", "from PIL import Image\n", "from termcolor import colored\n", + "import numpy as np\n", "\n", "import autogen\n", + "from autogen.code_utils import content_str\n", "from autogen import Agent, AssistantAgent, ConversableAgent, UserProxyAgent\n", - "from autogen.agentchat.contrib.multimodal_conversable_agent import MultimodalConversableAgent" + "from autogen.agentchat.contrib.capabilities.vision_capability import VisionCapability\n", + "from autogen.agentchat.contrib.multimodal_conversable_agent import MultimodalConversableAgent\n", + "from autogen.agentchat.contrib.img_utils import get_pil_image, pil_to_data_uri" ] }, { @@ -91,37 +105,16 @@ ] }, { - "cell_type": "code", - "execution_count": 3, - "id": "6868785c", + "cell_type": "markdown", + "id": "e9c628db", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[1, 2, 4]\n" - ] - } - ], "source": [ - "x = [1, 2, gpt4_llm_config]\n", - "\n", - "\n", - "def replace(arr, x, y):\n", - " idx = arr.index(x)\n", - " if idx >= 0:\n", - " arr[idx] = y\n", - "\n", - "\n", - "replace(x, gpt4_llm_config, 4)\n", - "\n", - "print(x)" + "Learn more about configuring LLMs for agents [here](/docs/topics/llm_configuration)." ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "id": "67157629", "metadata": { "scrolled": false @@ -133,7 +126,7 @@ "text": [ "\u001b[33mUser_proxy\u001b[0m (to image-explainer):\n", "\n", - "What's the breed of this dog here? \n", + "What's the breed of this dog?\n", ".\n", "\n", "--------------------------------------------------------------------------------\n", @@ -141,10 +134,28 @@ ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", "\u001b[33mimage-explainer\u001b[0m (to User_proxy):\n", "\n", - "The dog in the image appears to be a Poodle or a Poodle mix, possibly a Labradoodle or Goldendoodle, given its curly coat and overall facial structure. These types of dogs are known for their curly, hypoallergenic fur and friendly disposition. The exact breed can be difficult to determine from a photo alone, especially with mixed breeds, as they can inherit various traits from each parent breed.\n", + "The dog in the image appears to be a Goldendoodle, which is a crossbreed between a Golden Retriever and a Poodle. They are known for their curly, hypoallergenic coats, which can vary in color, and their friendly and affectionate nature.\n", "\n", "--------------------------------------------------------------------------------\n" ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/beibinli/autogen/autogen/agentchat/conversable_agent.py:1121: UserWarning: Cannot extract summary using last_msg: 'list' object has no attribute 'replace'. Using an empty str as summary.\n", + " warnings.warn(f\"Cannot extract summary using last_msg: {e}. Using an empty str as summary.\", UserWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "ChatResult(chat_id=None, chat_history=[{'content': \"What's the breed of this dog?\\n.\", 'role': 'assistant'}, {'content': 'The dog in the image appears to be a Goldendoodle, which is a crossbreed between a Golden Retriever and a Poodle. They are known for their curly, hypoallergenic coats, which can vary in color, and their friendly and affectionate nature.', 'role': 'user'}], summary='', cost=({'total_cost': 0.013030000000000002, 'gpt-4-1106-vision-preview': {'cost': 0.013030000000000002, 'prompt_tokens': 1132, 'completion_tokens': 57, 'total_tokens': 1189}}, {'total_cost': 0}), human_input=[])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -184,7 +195,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "id": "73a2b234", "metadata": { "scrolled": false @@ -196,7 +207,7 @@ "text": [ "\u001b[33mUser_proxy\u001b[0m (to image-explainer):\n", "\n", - "How about this breed? \n", + "What is this breed?\n", "\n", "\n", "Among the breeds, which one barks less?\n", @@ -206,9 +217,9 @@ ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", "\u001b[33mimage-explainer\u001b[0m (to User_proxy):\n", "\n", - "The dog in the image is a Siberian Husky, identifiable by its thick fur, erect triangular ears, and distinctive facial markings.\n", + "The dog in the image is a Siberian Husky. They are known for their striking appearance, with thick fur, erect triangular ears, and distinctive markings.\n", "\n", - "Between Siberian Huskies and Poodles (or their mixes like Labradoodles and Goldendoodles), Siberian Huskies are generally known to be less prone to barking. They are more likely to howl or talk in other vocal ways. Poodles and their mixes can vary in their tendency to bark, but they are often more vocal than Huskies in terms of barking. However, individual temperaments can vary greatly within any breed, and training also plays a significant role in a dog's vocal behavior.\n", + "When comparing the barking tendencies of Siberian Huskies and Goldendoodles, Huskies are generally known to bark less. Siberian Huskies are more prone to howling and vocalizing in other ways rather than barking. Goldendoodles can vary in their tendency to bark based on the traits they inherit from their Golden Retriever and Poodle parents. However, every dog is an individual, and their environment, training, and socialization can greatly influence their tendency to bark.\n", "\n", "--------------------------------------------------------------------------------\n" ] @@ -240,6 +251,16 @@ "- Critics: LMM-based agent that provides comments and feedback on the generated image." ] }, + { + "cell_type": "code", + "execution_count": 5, + "id": "1e057758", + "metadata": {}, + "outputs": [], + "source": [ + "working_dir = \"tmp/\"" + ] + }, { "cell_type": "code", "execution_count": 6, @@ -247,7 +268,7 @@ "metadata": {}, "outputs": [], "source": [ - "class FigureCreator(AssistantAgent):\n", + "class FigureCreator(ConversableAgent):\n", " def __init__(self, n_iters=2, **kwargs):\n", " \"\"\"\n", " Initializes a FigureCreator instance.\n", @@ -267,7 +288,6 @@ " error_msg = f\"Either {messages=} or {sender=} must be provided.\"\n", " logger.error(error_msg) # noqa: F821\n", " raise AssertionError(error_msg)\n", - "\n", " if messages is None:\n", " messages = self._oai_messages[sender]\n", "\n", @@ -280,7 +300,7 @@ " max_consecutive_auto_reply=10,\n", " system_message=\"Help me run the code, and tell other agents it is in the file location.\",\n", " is_termination_msg=lambda x: x.get(\"content\", \"\").rstrip().endswith(\"TERMINATE\"),\n", - " code_execution_config={\"last_n_messages\": 3, \"work_dir\": \".\", \"use_docker\": False},\n", + " code_execution_config={\"last_n_messages\": 3, \"work_dir\": working_dir, \"use_docker\": False},\n", " llm_config=self.llm_config,\n", " )\n", "\n", @@ -307,13 +327,17 @@ "\n", " # Data flow begins\n", " commander.initiate_chat(coder, message=user_question)\n", - " img = Image.open(\"result.jpg\")\n", + " img = Image.open(os.path.join(working_dir, \"result.jpg\"))\n", " plt.imshow(img)\n", " plt.axis(\"off\") # Hide the axes\n", " plt.show()\n", "\n", " for i in range(self._n_iters):\n", - " commander.send(message=\"Improve \", recipient=critics, request_reply=True)\n", + " commander.send(\n", + " message=f\"Improve \",\n", + " recipient=critics,\n", + " request_reply=True,\n", + " )\n", "\n", " feedback = commander._oai_messages[critics][-1][\"content\"]\n", " if feedback.find(\"NO_ISSUES\") >= 0:\n", @@ -324,12 +348,12 @@ " recipient=coder,\n", " request_reply=True,\n", " )\n", - " img = Image.open(\"result.jpg\")\n", + " img = Image.open(os.path.join(working_dir, \"result.jpg\"))\n", " plt.imshow(img)\n", " plt.axis(\"off\") # Hide the axes\n", " plt.show()\n", "\n", - " return True, \"result.jpg\"" + " return True, os.path.join(working_dir, \"result.jpg\")" ] }, { @@ -347,7 +371,7 @@ "\u001b[33mUser\u001b[0m (to Figure Creator~):\n", "\n", "\n", - "Plot a figure by using the data from here:\n", + "Plot a figure by using the data from:\n", "https://raw.githubusercontent.com/vega/vega/main/docs/data/seattle-weather.csv\n", "\n", "I want to show both temperature high and low.\n", @@ -357,7 +381,7 @@ "\u001b[33mCommander\u001b[0m (to Coder):\n", "\n", "\n", - "Plot a figure by using the data from here:\n", + "Plot a figure by using the data from:\n", "https://raw.githubusercontent.com/vega/vega/main/docs/data/seattle-weather.csv\n", "\n", "I want to show both temperature high and low.\n", @@ -366,63 +390,88 @@ "--------------------------------------------------------------------------------\n", "\u001b[33mCoder\u001b[0m (to Commander):\n", "\n", - "To achieve this, I will provide you with a Python script that uses the `pandas` library to read data from the CSV file located at the provided URL, and `matplotlib` to plot both the high and low temperatures. If you don't already have `pandas` and `matplotlib` installed, you will need to install them first by running `pip install pandas matplotlib`.\n", + "Sure, let's first download the CSV data from the provided URL using Python and then we'll plot the figure with both temperature high and low.\n", "\n", - "Please execute the following Python code:\n", + "To start with, I'll provide you with a Python script that will download the CSV file and then plot the temperatures highs and lows.\n", + "\n", + "Please run this Python code:\n", "\n", "```python\n", "# filename: plot_temperatures.py\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "\n", - "# URL of the CSV file\n", + "# URL to download the CSV data\n", "url = \"https://raw.githubusercontent.com/vega/vega/main/docs/data/seattle-weather.csv\"\n", "\n", - "# Read the data from the URL\n", + "# Download the data\n", "data = pd.read_csv(url)\n", "\n", - "# Extract the Date, Temperature High, and Temperature Low columns\n", - "dates = pd.to_datetime(data['date'])\n", - "temp_high = data['temp_max']\n", - "temp_low = data['temp_min']\n", - "\n", - "# Plot the high and low temperatures\n", + "# Now, let us plot the high and low temperatures\n", "plt.figure(figsize=(10, 5))\n", - "plt.plot(dates, temp_high, label='High Temperature', color='r')\n", - "plt.plot(dates, temp_low, label='Low Temperature', color='b')\n", + "plt.plot(data['date'], data['temp_max'], label='High Temp')\n", + "plt.plot(data['date'], data['temp_min'], label='Low Temp')\n", + "\n", + "# Providing labels and title\n", "plt.xlabel('Date')\n", "plt.ylabel('Temperature (°C)')\n", "plt.title('High and Low Temperatures in Seattle')\n", "plt.legend()\n", - "plt.grid(True)\n", + "\n", + "# Rotate the dates on x-axis for better readability\n", + "plt.xticks(rotation=45)\n", + "plt.tight_layout()\n", "\n", "# Save the figure\n", "plt.savefig('result.jpg')\n", "\n", - "# Show the plot\n", - "plt.show()\n", + "print(\"The plot has been saved as 'result.jpg'.\")\n", + "```\n", + "\n", + "Make sure you have the required packages (`pandas` and `matplotlib`) installed. If they are not installed, you can install them using `pip`:\n", + "\n", + "```sh\n", + "pip install pandas matplotlib\n", "```\n", "\n", - "After running this script, it will output a plot of the high and low temperatures and save the figure as `result.jpg` in the current directory. Open the `result.jpg` file to view the figure.\n", + "After running the script, you should see a message indicating that the plot has been saved as 'result.jpg'.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[31m\n", ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> EXECUTING CODE BLOCK 1 (inferred language is sh)...\u001b[0m\n", "\u001b[33mCommander\u001b[0m (to Coder):\n", "\n", "exitcode: 0 (execution succeeded)\n", "Code output: \n", - "Figure(1000x500)\n", + "The plot has been saved as 'result.jpg'.\n", + "\n", + "Requirement already satisfied: pandas in /home/beibinli/anaconda3/lib/python3.9/site-packages (1.5.3)\n", + "Requirement already satisfied: matplotlib in /home/beibinli/anaconda3/lib/python3.9/site-packages (3.7.1)\n", + "Requirement already satisfied: python-dateutil>=2.8.1 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from pandas) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from pandas) (2022.7.1)\n", + "Requirement already satisfied: numpy>=1.20.3 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from pandas) (1.23.5)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from matplotlib) (1.0.5)\n", + "Requirement already satisfied: cycler>=0.10 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from matplotlib) (0.11.0)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from matplotlib) (4.25.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from matplotlib) (1.4.4)\n", + "Requirement already satisfied: packaging>=20.0 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from matplotlib) (23.2)\n", + "Requirement already satisfied: pillow>=6.2.0 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from matplotlib) (10.1.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from matplotlib) (3.0.9)\n", + "Requirement already satisfied: importlib-resources>=3.2.0 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from matplotlib) (5.13.0)\n", + "Requirement already satisfied: zipp>=3.1.0 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from importlib-resources>=3.2.0->matplotlib) (3.11.0)\n", + "Requirement already satisfied: six>=1.5 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from python-dateutil>=2.8.1->pandas) (1.16.0)\n", "\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mCoder\u001b[0m (to Commander):\n", "\n", - "The script executed successfully, and it created a figure of the high and low temperatures from the Seattle weather dataset. You should find the figure saved as `result.jpg` in the current directory.\n", + "The Python script executed successfully, and the plot has been saved as 'result.jpg'. You should now be able to find the figure file at the mentioned location. \n", "\n", - "You can view this figure by opening the `result.jpg` file on your computer.\n", + "The necessary packages were already installed in your environment, as indicated by your output, so no further action was required there.\n", "\n", - "If there's anything more you'd like to do with this plot or if you have any other requests, please let me know.\n", + "The figure shows the high and low temperatures for Seattle as indicated by the data in the CSV file you provided. If you have any other requests or need further assistance, feel free to ask. If not, and if you are satisfied with the result, we can conclude this task.\n", "\n", "TERMINATE\n", "\n", @@ -431,7 +480,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAEMCAYAAABZZbUfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9e7xlV1XnDX/HnHPty7nVNZVU7gm5EEC5B8UGufdDEJVutX3VtvXj5dOt9tOvr/28vk8/bfdj24qPNvRFWxtREVEREQwCQQTBCwgiN0NCKrdKKlVJXU7VqXPde6815xzj/WOuvXMSkkBCQs6p2r98dursc/ZlrbnmmmPMMX7jN8TMjCmmmGKKKaaY4qyFe7IPYIoppphiiimmeHIxdQammGKKKaaY4izH1BmYYooppphiirMcU2dgiimmmGKKKc5yTJ2BKaaYYooppjjLMXUGpphiiimmmOIsx9QZmGKKKaaYYoqzHFNnYIoppphiiinOckydgSmmmGKKKaY4yzF1BqaYYoopppjiLMfUGZhiiimmmGKKsxxTZ2CKKaaYYoopznJMnYEppphiiimmOMsxdQammGKKKaaY4izH1BmYYooppphiirMcU2dgiimmmGKKKc5yTJ2BKaaYYooppjjLMXUGpphiiimmmOIsx9QZmGKKKaaYYoqzHFNnYIoppphiiinOckydgSmmmGKKKaY4yzF1BqaYYoopppjiLMfUGZhiiimmmGKKsxxTZ2CKKaaYYoopznJMnYEppphiiimmOMsxdQammGKKKaaY4izH1BmYYooppphiirMc4ck+gCmmeCJhZgAsLS0xOztLt9vFzFhcXGTv3r0MBgNEhNnZ2S95r6qyuLjIvn37EJHH5XhUldOnT7Nr1y6cK754zpnTp0+zZ8+eh/0eEZmcy8PBzLjvvvuIMU5eLyKce+659Hq9x+X4v1KMv3s0GuG9p6qqJ+R7Tp06xY4dOwghTL7zoZBzZmlpicFgQL/fZ8+ePXjvH/HYx1BVRqMRMzMzmBnD4ZBer4dzjuXlZXq9Hr1e7yGv0eM1b6aY4onGNDIwxRkNMyPGyOtf/3q+8IUvTBb2n/qpn+L48ePcfvvt3HXXXajq5BFjJKXE8vIy/+bf/BvW19cnv1NVUkrknIkxknOe/E5VyTkzGo0e8Pfx31SV1dVVfuZnfoZTp05NDMfJkyf56Z/+aTY2NiavH/+7+TPM7AEPKEYu5wxASon3ve99/P7v/z7f+73fy5ve9Cbe/e53s7i4iKpiZl9y3DFGmqahruvJcTZN84DzNbPJv+OfY4wPGLPN559Somkacs684x3v4O/+7u8eMAbjY37wY/M5Pvi7x8/H3zs+j09+8pOsra1R1/Xkdw/+jqZpuP766/m5n/s53vrWt/KGN7yBI0eOPOB1m6/r5t8BHD58mP/xP/4HMUaWl5f5pV/6JdbW1kgp8Wu/9mt84hOfmHzWg8driim2C6aRgSnOeIwX5pQSwMTQAayurtLv98k58773vY8DBw5w2WWX0e12+cZv/EYGgwHXX3899957L69+9at5+tOfjnMOVaWua2644QbuuOMOnvKUp/DqV7+apml429vexp49ezhx4gSvec1ruOyyyzhw4AA33HAD+/btY21tbfIZ3nvMjKZpJjtSVeXUqVP80R/9EadPn+bFL34xL3jBC3j729/O6173Om666SZuueUWfuiHfoh3vOMdvOxlL+Occ87BOccP//AP0zQNN910Ez/yIz/Czp07ueGGGzhy5AhPe9rTeNWrXsXf//3fc+uttzIYDFhYWODpT386H/3oR7nkkkt43etex6c//WluueUWVlZW6Ha7fPd3fzdzc3N86lOf4mMf+xgLCwt8x3d8B845fu/3fo9du3bR6/W45ppr+PCHPwzAy1/+ci688EL+9E//lF6vx80338y1117LiRMneNnLXsZdd93FgQMH+IZv+Abe8Y53sLCwQKfT4XnPex4f+MAH2NjY4NWvfjXPeMYz+PjHP84nPvEJqqriO7/zO7nwwguBsus+fvw4TdPwhS98gdtvv521tTVmZ2f5ru/6Lubm5ibX+33vex//+l//a572tKcB4L1nOBzygQ98gFtuuYUrr7yS6667jpQS119/PSdOnOBpT3saL3/5y/mLv/gL3vOe96CqXHbZZbz3ve+lrmte/epXT5zNGCN//ud/zo033sj+/fv5p//0n7KwsPC1nupTTPGYMY0MTHHGY7xTe8tb3sLP/dzP8YY3vIHDhw/jnOPAgQPceeedfPKTn+SGG27gNa95DTfffDN//dd/DcDp06eZm5vjBS94Ab/+678+2b2OQ/x79uzh2muv5ZOf/CQf+tCHWF1d5V3vehcXXXQRV1xxBW9+85tZXl7mF3/xF3nhC1/Inj17uPfeeye7+YfaPZoZ//2//3eqquK1r30tv/7rv87Bgwe56aabuPvuu/ngBz/IBz/4QQ4fPsyHP/xhQgiTz3POTY7NzPjN3/xNVlZW+JZv+Rb+7M/+jM997nPcfPPN/M3f/A0vf/nL+ehHP8r111/Pq171Kt7//vdz1113cfvtt3PDDTfwkpe8hNFoxNve9jZuuukm3vrWt3LdddexsLDAr/7qr7K6usof/dEfsX//fl74whfS7/d55jOfyYUXXsgb3vAGvPdcddVVvOpVr+K1r30tx44d48Ybb0REOHr0KJ/73OfY2Njgne98J+eddx7Pec5z+KVf+iUuv/xyXvziF/PGN76Ru+++mze96U0873nP4+UvfzkzMzOo6iT8/rd/+7esrq5yxx138MEPfpBXvOIVHDhwgE984hOT69TpdHjpS1/KL/zCL/Af/+N/5EMf+hAxRm644QY+//nP8+3f/u3cfPPNfOADH8A5x4UXXshznvMc3ve+9/G5z32Opz/96Vx22WV8z/d8D9/wDd/ApZdeyvd93/fx9V//9eSc8d7zV3/1V3z4wx/mda97HcvLy/zBH/zBNEUwxbbCNDIwxRmPcW74277t23jWs57FYDDgxhtvnOzEzYwDBw7wnOc8h2c84xmsrq7ynve8h6Zp2LVrF694xSuo65o3v/nN5Jzp9XqoKvfeey9vf/vbufzyy1lfX+fgwYM885nP5LzzzuMf/aN/xH333cf111/P4uIi3W6XF73oRSwtLfHud78bKBGLseHeDFXl7rvv5kd/9Ee54IILeNrTnsbBgwe59tpr+ehHP8r6+jrXXHMNH/nIRzj33HPZuXMnzjlyzhMDJCLEGPn4xz/OZZddxqlTp1heXub2229HRPimb/omrrnmGq655hquuOIKnvGMZ3DhhRdy9OhRRIRv/MZv5FnPehbz8/P84i/+IrOzsxw9epQ//dM/ZWNjg0OHDpFznpxrCIE3velNHDp0iHPOOWfyfQsLC+zZs4f9+/fzxS9+cTLm4wfAJZdcwjd90zdx5MgRbrnlFs4991y89ywuLlLXNd/4jd/I9ddfzwUXXMD3f//3T85vbOzHn/PiF7+Ya665hmc/+9kcOXJkMrbee/7ZP/tnvPSlL+Uzn/kMv/M7v8P6+jqf+cxnOHnyJO9+97s5duwYvV6PCy+8kHe+851ceumlLC0tcccdd3DttdcyOzvL+eefz9raGjMzM5x//vkTnomq8rd/+7ecOnWKd77znZw+fXqS7pg6BFNsF0ydgSnOaIzD7s459u3bx/79+xkOh3Q6nQeQ7Pbu3cunP/1pVldXOXDgACklQgh0Oh2g7Li99xOjO44qXHXVVfzIj/wIv/qrvzrZJXa73cl3O+eYnZ1lOBxy7NgxFhcXWVpawns/+f7xY319HeccKSV6vR4HDx5kYWGBu+++m+uuu45Op8Nv/MZv8KpXvYpnPvOZvPGNb+QHfuAHJqmGEMrtPD5f7z2XXXYZL3jBC3j2s59NSol9+/bx7ne/mxDC5DWbHYhxXv/gwYOcOnWKm2++mf3793PRRRdx5ZVX8k/+yT+ZjEmn06Hb7VJV1SRU/5M/+ZMA/PVf//XkmNbX19nY2GBmZobFxUXW1ta4+eabJ86Lc45er8fOnTu55JJLuO6669i7dy/f+Z3fyUUXXTRJSbz5zW/mT/7kT/ixH/uxBzg+4/MYn9N4DMbjkHPm1KlTzM/P883f/M18/vOf5+jRo1x88cWcf/75XHfddagq8/PzvO997+P5z38+3/7t387P/MzPAFBVFXVdU9f1ZIxWV1cnaQgR4dJLL504HTnnhySkTjHFVsbUGZjijMfY2FdVNTG85513Hs45du7cSb/f50UvehGf/vSn+dmf/VmapmH37t1UVcV555032cWOqwrG+f7nPve5fOQjH+Hnf/7nCSFw5ZVXAnDeeecBxUjt2bOH888/n9e85jX87M/+LPv27eOiiy56QCjfOUfTNPzMz/wM/X6fyy+/nH/1r/4Vv/Vbv8W73vUunv/853P11VfjnGPv3r284AUv4IorrqDX63Httdc+gFC42fHpdrv8xE/8BL/927/NZz/7WWZmZvi+7/s+du3ahYiQUmLHjh3Mzc1hZuzdu5d+v4/3ntOnT/OGN7yBlZUVfvInf5ILL7yQgwcP8tu//duEEHjhC1/Is5/9bPbv34+Z4b3nZS97Gb/6q786iQQ453jhC1/IW97yFo4dO8Z3f/d3E0Lg9a9/PSEEzj333Mm4qirnnHMO//yf/3Pe+c53UlUVF154Ia973ev43d/9XZaXl8k58y3f8i2Tsc05s3fvXgDm5+cJIUzOaeywjLkif/qnf8qdd945cdh+4Ad+gF6vx2/+5m/yG7/xG8zOzvKa17yGF7/4xfzKr/wKBw8epNvtMj8/z+7du9mxYwevf/3r+f7v/36e+9zn8sY3vpHXvva17N69m36/z7d+67fy5je/mf/1v/4X/X6fV77ylRNuwxRTbAeITSmvU5zBGBuDlBJVVU12k+Odf0ppYtw//OEP0zQNf/EXf8ErX/lKrrvuuonxEJEH7GTHnzNmno8/Y5y/f/Au3cyo63oSXXhwWVuM8QFpixACMUZCCBNnZEyEHH92SmkS4Rjn0cf8iPExbT7uh/rc8fGNIxI5Z/7oj/6IlZUVfviHf5icM91ud3IMTdM8IKLQNM2kXHPM+B+Pzfg4x+/pdDoPIEqOv3c8bpsrCTbv+sdVEM65ye5//Hzza8ffOWb1j79/fJ02RwvGjuHmSoaZmZnJeI05GCKC954YI1BSDt77h/zecbXDeHzG13qKKbYDps7Aw2A8LJtznI/2vY+ErZJL/Eov/1Y53gfjoY7/wTXi49dsTgtsfu3YAH3yk5/k3nvv5cILL+Taa6+dhN/H/45fv9nAbg71b/7u8Y5/8zx68N8ffLybjTncz3V4qPdunpObnYjNzzeHyTc7MONx2Zy7Hz9XVe666y5ijFx99dUAX+IEbXY8Nn/m5jz55r8/ePzHYzo+vgefN/CAcP+Dx/TBv3/wODx4bjzU2GxOiYy/b3xdN2sWjP8+HoPN6Z3N5zN2ajZ//4PH/MH4cnP3ycSZvi480e/fjpg6Aw+B8a4AmJR/fTUT4eEW862KzcS2rX6sYzyUcdiKeCgDtZWPF+6vxvhyxm0rYDvO3Ydy1rYituPYfjXrwjhyBJwVUZ4pZ+AhMN5N1XXNgQMHJiHFr+bzNhPFNu8YtyK89+Sct8UNP96xbg6Fb2Vsp7nw4B3+5p37VsSDd/ybIzpbEZsN61Y+zjHOpnVhnFKr65qv+7qve4KOcmth6gw8DJxzLC0t8eu//ut88zd/86OaTA9+7cmTJ9m9ezfdbncidrOVsPl4c86srKywZ8+eSehzK2Ms5bt79+4t6bk/1FzYs2cPVVU9IAK1FWFmLC0tsbCwMOFbbDWjtfl4VlZW6PV6zM7ObvmxBVhfX0fkoaWwtwI2j23TNAyHQ3bt2vUlf9uKiDGytrY2Ics+Wowdn4985CP8t//2384KAampM/AwGOc1n/a0p/E93/M9X5WhOXDgAFdcccXkM7ai0RqjaRruueceLr/88i+p496KUFVuu+02rrrqqsk128q45ZZbuOqqqx5AkNvKuP3227nkkksmYdKtPBfuuecedu3axezsbNm9eo8zwMAcGOAwlPHPIDx557O4uDip4oCtPRfW19dZWlriwgsv3BbrQoyRu+++myuuuGISJXo0GEdrDh48uOXXlMcLU2fgYbD5xny0E3+z1/xg5vRWzBM/3PFufr5VsTkfOD7mrXS8Dze224EzsPn4Ni+IW+V4H47kNb7PEoAKPkLqGkmULkaDYQhdpPz3JJzPZrLldlsXtuKxPhLGc/excAY2k2zPdEydgYfAQzGlzxZs9fDfFE8utt09IYYFQQQqBFGhciAGzmTLCLJvJ4OzFdNFjze2y7V4PDF1BqaYYoozEgFDHFi7sHsVRMGJIFYcgimmmKJgi/jFU0wxxRSPL8QAE7KAIoBgAmCo2IRHMMUUU0ydgSmmmOJMhQkYYzeAKBkTg5RpTBlK5knkD04xxZbC1BmYYoopzkwIIIJvf8xiWGyQxVV8HGG0pQZTTDHF1BmYYoopzkxEKQ+yIaoYmXx6lU/95/8KB++hQ3yyD3GKKbYMps7AFF8WpqBmGBlDyWbluRmmNt1cPRzGNe6Mh0hxpoCW57rpdQ/z/vHYK4qaTsa8/C63u9uzEOPTzoBCAqI4rE0NjF/SjjRC0RiwpmHlc5+Bk0v4s3TovjKU0RuPn1MBkzKXDUQz5GGZj9kgK6ZGNiObYqrlhVNsG0ydgSkeGVbu6Yii1oBmFMgGEVDl7DVIXwFEBTVQUcQSngRkEoZYYbc/InIxdIqS0eJAZMgoidhK6JylMIozEDM1MHQey1IMk0FHoaIIDuEET4VIIrhTmKRWaWCKh4ZhWLnHDSQ5zBxjXce8tMSpD7yHPKixaGhqwMpcTaSyMEyxrTB1BqZ4RJhAcoYDHB7M4bXsuDIN6usn+xC3LAwwZ4iAmKASiBIwPB7BXGG0PyKclfpfA8OhDvDgcHjCk6qg92TCABVBnYIzvCXm4ogqNagpyQkmimBtBQGAlFCLZEq1oTBlED40DMFweIpGQw5GbmsyAOp7T3L7f/qf6OISo26k7jQkB50MHQTzMt0ibDNMnYEpHhGCEcgEFZTAyBXnQIBqZRl3+j6wra8D/6RAjCyKoAiC4snSQSkyucmVML89TMG7UZwFUUNwOBEaIAk4A6eeTZbu7IIYmUx0hnrwccDcqRP4wQYqJYGSHyrsYmXuIlNj9cgosza0QzgKirM8Sa2IZfY2NVWq6S2vEI4fp8QFwEyocWft1NyumDoDU3wZKJJrSFAbjEi4nHBN5vbffReHfv0tELde86WtgiQtr0INn6GXpNXLt9ZgPYJJEsjkkhqwEgPIJCRHiIaonLWRASiOqriSbvHDIZ/5tV9j4+//Hi8Oh+K+xNwbaJsFPwsV5h4NzGzCazEzsEg3JdAMGJobUtWA1az94Qc48P/7ZXwcgTeySJu8mo7xdsLUGZjiEWFYCcVSSEPz68v4g/fhR4l81330bzoAW7AT49ZBW+VuCVtdo3PiFC5HUC1ply+zYBoG0mrom1HZCDl2AoZ1S+o8e+HFisQwDmKkc8ftpDsPIiZ0TXAP4lOYATlNRnxqqh4Z0joCYpHZPKJ3YgniCLGMizWjkMEl3JGjzH7xLmSwAZoRMzpMFR63G6bOwBSPiIywLpCD0M3G6C/+hoM//Z+wwYBKle7GxpQ1/LAQnLlCFCRy31/8BQff+cdQbwAZ3/7tkcySxzBf6hHElLC+zI3/+ZcZ3XMQ9WdvIYdwv7ExESRn9gwHzDYRFUGyfIkxEuH+0g6zqTfwCBAEZ4IFEGvgyFEO/NpbsNEGkHArG8xGAZQ1P0J1CKMBkhQHk/TCFNsHU2dgikeEAzpUZY9lSj50EL3ti1hoyC4j26Bv/JMGg6CtUZJEfdvNVHfcieUhRsZnwz+S7o2V8W/al4gZrh7i/+EWbLRGknQ21xIAxVmtHZhTujYiSKKWhxvSlkDYpgumTuzDQ1pfKUqCXOMXl5k5cDe2ehqxiIwi3eQgwYY15DyC4QZqmbp1uqa+1vbC1BmY4hHhTOjlgFfAKVKB8zVIxAXF6lhy2u2jpMet1BmrMWkefxZisnuVEs6fj4k5HSFm4L58sHr8l8Kcb4exUeaaDcQaTPPZm/o2KMoBjkQpHxSTllApmBMMT9F2KKWwUHLekl1xbIE81soo9ZttKW2plz+Lpy73i2QIg5tuonn/Dew8doTBbbdjJshwhKiDZLhRQ2gSuY6oGBFBheJsaalNtpYj0z7dLL4xxRbB1BmY4pEhDpxHQo0YjGQOs4iMFBeHjIo2Cdbe5IaRULDULgRP9gk8yfCAM5zNMCNdmqoB6SFSoWFiux4Bjq6M104PtgPxI8RBTzqFjHi2Qh3BaLUbPKo9iJ5uLtLDCU+2BI2hCSSvI82QKldAqYdPFIfV2tJ4VVpyJ5zVMS8x8EYYGUf+4I+o3/QmZk/dTvribagGSA1ZM7iMHw4gRbRWvKuYAXBjo986A1irsMFYz2iKLYZpC+MpvkKMa4wdE1m9nImaS+66dStLKWICd7/y+1lbzS0PfCLI2GO6/0+PNDCy+c/jnxzWKhG23MKzFG0dhRrOl+eNd9SV4bySRXFUeDyo0YnK6mc+ibvrMEEzEo2uSRlAD9kXgR0BAkIFrTWTs3LyjtNSHmBY06mb4rgunirRrpwQFDRhTUPIiiUFPEXdASoHJTXTjquV9eH+BeEsHNgtjKkzMMWXxQPqhY2y408Zcls/LyWMDUaVcyl9q6SEBVvG99kI2/yDgYibOAMTL+kxoEhBT7dWQOFlACA0QYiVMUOiYxmoijyxgK5scPDX38wCguQG1CO5GK3Gldx4xxKZQCTgM4i0pI2zdP6OIVBEsgx0ZRUxsJQQl0ETWteElNGUQYo+gUpx1pyBbzkEDislChPNUn9Wl8ZuNUzTBFM8aogZxIykTBBXFgsznCky2MDuXYQcEctnPUdrUq9NyWl75QFSrY95eKZyryWU7cAhiBVVAWcZvzHCDt+H1A2NCckbpBG77jvGjvU11CJmQm4dWIBuHhGO3kdndf3+zz6LY9kTE23t+La/8zEVAoYWR980Qd1gmtAUMVPEdLIe6Kb+BqJFQAsUHTMUp9gymDoDU3xFGBstM52EuyUlXOvs+2z4PGLjH27icz//RthYh5TO+glWBG7aJ6p4VYj5fvGbRwsB5xwun72GCtrgSuk+VIiD6vDmqDKsf/LzfOanfobRfcfIAhoAl5H1NUJucK4QOKMvsto+G+7kKW7/mV/g1Hv/AqdF3dC+bOOIMxet+X6AwTYzyAoIolaUnZOVqIAqmhpEIyFHqjrjm5pAJrUOQVsg+4AGUlNsHZzta/UUXwYPjmjbmAqcczFIaiVSkBMiihw7RrrlICZlRzH5kLMU90cFuD+9ovrYk/3ast85yzdWAipWjEpbbuHE0YyG5LuPoH9/I1oPCCjSFhnERiEJnQhYJo/3rWrYaEjnxptoDt0LJuVzz1qyS4FJ6euggJoSQiDFtu1ztiKHnR2SQTWTpJRkuJTJSyvY2gbSNAhGmkQCSgWInc0Du0UxdQam+PKw+//V0qYQUkZy21LXjdVcIlVqmB01QMKcEKddDe93CNSwlItD8Jg/rOULnO35l9acFBIhgFBrxnUd1gyY1wZvDZUqLoNJYGiepI6ZRpAUCRTei3kBn6gY4l1GxRAE03yWO7LSprmK8+pnZkg5F5lsM3z2kD2okM1IGhFLSEp87Ld+h6Mf/wSSI2q5lBtOrI1vH1NsJZwVBEJ7hIXTzJCzl5L9ZTFWcVMJIIokK8twTrjcYFbIQs4LWICs9F1CpIOJ4La1u1miIOPwprRlaGKO6Eor5w7+4QnnBl5LrbaZYsRJn3cVwaUhQgDLGA6tumAZp4qKJ3lHhYP2u0UmtW+teM72xldiZx+x2GJMzMSBc7hQoTlh1lDliKQap2V+moPGBcgOZ9Y6soIT0NgAjuiNEIQkRqWGSPX4nOgWhEFJ9amhTshiBBOwhKQRGvqllFUbqnqIipDnZnFqoEokkTFIgmTDW8TFDDiINat33E46fxel+sUQsUk04CwPuGxZbOul+tHAWuGL8UNbApaqEsehr/b5FA+EKCQqsgQkKqYO4ghHjSbBaynPIvdLKNyvYywgFopG+XZ2tkwnAjVqCXLCaiPqkEh8RIqZ0C625lBJ5LxatBw1Y2psfOAGBh/5K+5761s48nu/h6zVrB46zN3XvwcbNZQsjJBpGdnj9AxW+kFs42EdQx/h8Ui4n9ImZA8ETzd7utEQa5jZWGXwoY+go4RohLSCkeknJVWGiZKpWL/x06z92Q3YRoeGLs4ET0RFwc7c3atRav5NS0a/MUUV0uK9HH3372D1EDK4NGB+5RSNCaP5OXydIDU0UhOlwZqEpIZO3MAPIuo7GMbe0Todp1jVoXIdAgmxDLncF55pP5OthrPGGRjDzEgpISLknAsZyzlUS8jbbe+t7BODtkxIzBBNhJxgMKLaWKfKqaUEjfkBY3rQGWCpJiy1duFs88jmoVc3zDR1K2v78G+PQVkNEB2EumFmFCFm3EA5/Lvv4fAb/hf1b7+DlTf/PnLvCQaf+CyHfv+d+PV1+qPS6bA0KWpH2NqowBmSJpBHeDwibHPUqh2WGPGVJwajipFD73wPaXUVSQkZ1cyOalzOhKjQlrwuvf/jHP6fb0XXB+3nZoI2qDVt74czYB4/DAzAF25PF3AZ4qFj3PTm34eVIeop3IBhBHHozBy15EmEsIKSMqBUF1gysrhSgdDEwiVifD3H7CPa353JI7s9cVZYvgenCUQEVZ0Y/rFDMMXDwVohvYxopJMjw1tuw267gyo3k1cV5sCZYaQmaB2CZC0DWjLZG4NPfY7RZz6P6NgZeghIMeTeIIwa6kP30Y8R8ggkMbs+YG5jmV0bp9kTV8FO0z92iIU8wMKI7JrxoD7geGys7HgGDPVjdgZajAluooYTiBKxyqhM2aGGSzXNHQepf+vt7F5ZIwWlkRKx8dmYGTbMr662ERdBYs3oY5+i+cItX5UWxFbH+LRim+Ly2bCsVGsjLjg5RI4eL4TgBLLRgHhsbgcjEpCQBkQzSiL7kjqzph2wlHCjWEoJW6ftwVIlZ8DUPeNwVnAGRISmaXj/+9/P5z73OXbs2MH3fu/38oUvfIG//Mu/5IILLuD7v//7mZ2dnXAIxumEMR6Jd/CVYHNqYvz5WxHjkP74/KUNT5f8bEa1QXLDvR/9a2buO4ZcuW+yS7VWbcxJabc72b0+ga12N1+nzdfu8cL9nfEohhglWeKe936Q+X7gwuc9H6N62J26TzCvhp1cY3jkCFgDVcSqGu2Un4PPZEbQi7gTx6liIjslVx7/YD6CamlrYHa/3OsTiM1j+2TgEb9V2kKC0hADULJlZFScLUjgE0sf/Su6//1N9HSDpnsZdShEThGD0EA1AouoOHS4wdLv/yn+miuZf8bzQNwTbrierLH1QI0QEEQEcSBNzdxwiKwtEeIAokFUcIL2ZzCNkEaQwawVbXbgvMOSEpJBHQkxIqolYpMNCZsqktr/2f3PnlB8tevCVl2rH2+cFc4AgPeel770pbziFa/g137t1/jsZz/L+9//fv7tv/23vPvd7+ZTn/oUL3nJSyYpgzGXYGzEH23eezwBx+mHlBLe+8nvtloeffPx5pzJbTfCcpyKmC+5blE8Rm/QMJsNp6lltyvSEuVQxWJEel203bE9UdjM/RineR7XsTVtN4iufapUGHMbNfOulFRaeLjFYpyZlaJ6Wzmi1ujGKmnxOJJHBASLSkdD0dA/dIqdG4IbCb7vi8Z7KCtnGduMpYzFhOVMG+d9QjBeBMfpNOAJj6DlnHGT6yfII0ye0lCoFcFKCbNMGDRoWsZno5MLUbCjI7ppHeczPia6WSDXJJQkkexGhfsqgZAyMyePIc2F7bx+4ibveB14wubuI8FaESxvqCkORcWR4wamQ2z1FBy5B2HHREJYQoDVE7C6Arm0KiZlfHBIJyCDEfnEErK4SK8Z4FKrqdGpyDkhUiFt/zKktOR+okIvOefJ2v1Yxna8Zp9NBPOzwhkYL2rOOX7lV36FO++8kxe96EXs2bOHiy66iGc84xkcOnQI5wrz9a677uLtb387KysrNE3Dbbfd9qi9w83G9eTJk5t22rIlIwPjY2uahvX1dXIuQiI+BBTDqWO23qA+uchsE3EbI6psDOohS7fdxmi+R68R3OEjjAYDjhw8yKhTkarq4cPojxNOnDgxOQd4fAmLYgkTIdFDZEgXRQdQLS0zsB6nbvkidW/hId9rGE1QXOM49/Qp6jjANw0n/vxv+PxNt/Ps46dIUhGbEglYvuMOVg7fS1hb4+SBO1jaNcA5IQXwqjiLzNx9lNhEjh45QjpwGzn4J1QcZ3FxkRgj3vsHOAWPC+xLTYGZQXt/OPdlZo53pGQEg3NPL4FG4qduZOnoKS5QI68NOXXLQVYW7+PcrtCtjc7JIZ21mpX77uHwzTeycPo0ebTO4NDdxFHGjh7j9OIh3MqFLN5+K8gT5/ysr68jIiwvL0/G+GsGkyLW5BoaFxDJzIw8vYN3keuGo+++nmO/s86lP/TjDDfWqSSBRtZvOsDJ69/LxokVcoyM7j7MaOk0oQI9fDeffOOvcF5zmmr5BMMjh7n7ttsY+T70GixD1fQZdTK4EV4rnihnQFVZWlqarGPjdfcrHp52vV5fX99ya/UThbPGGVBVZmZm+Nf/+l9z/fXX8/nPf57hcDgxfuMUAcAll1zCT//0T3P06FH+5E/+hCuuuOIx36hmxu23386ll15Kp9N5AFdhK6Kua+655x6uuOIKoJUUECFk8HHEPXv24H1FqLpggpvtc/FVV2LzPXzjGJ5/PsdnZrjwsstwOxaIGOEJXORSSoQQuOSSS/DeP+5ja6WvHU4rkotFgnnguG92gZlzdrD/mqdj3dmHff+GNPRiRTh2H/fOdpDTRpA5Zu5ZYiYEtDdLHK6DKDsvOp/lymDWcc5TLmDuwqfQM4/IuIwugetzqNvhvPPPp3P1VRCe2MhAVVWcf/759Ho94PGvDJFN6+y49bVMnAHHI4WVMmXR76igJ45xb8czsxZJJzdwTsm9LrufchXurpsQMbwY4iuCD+w8bx97rnwa9+3chfS7zJ5/KbN+jv6uvcz3ArZznvOe+tTST+IJwokTJxAR9uzZ86iN1VcLQ1AgaGTki8M/s6YMP/0JBpaYP3aa0fET7LrwfPJMhQVwe3eyczRAcLg9u8jdwOw5+5mbW8DPdZAds9jBu5jNp2mCMb9vHzuuuhqrumQ3wrsKSRW5MpAGZ50n7Pzquqbf73PRRRc9Jk6YmZFzZm5ubhoZOJMw3qG/973vRUS48cYb+ZZv+RYWFxf5nd/5He644w5+/Md/fPJ67z2qreJWG95/NJPpoTzJcYpg7FRsmQlmZQdrFGlRQVFfatudCEYm4DAPljyow6GYjjBtqzCkSMHiHTFHkiZwoA6ChGLMnqDz9d4TY6SqqgdEXh4PlHHxiG3q2FgK08lxQHI7EVeu60MpChpG1zyhze2LOaoEYTBkLpWOj522A2FqFDbamu4USz5cIlE8HggKYrlV3euCVogXcI8cSv+qzr9dEEMoy8TjHca2NlxcKIAOp7B+y80sHryTS7/l24tTII4yC0vEPhhILgI2KkpwrsSdK09UjzSZXj2gRhhUHgtC0EyIGVMh1QPwSnPzLSyvvQMZDqm19DboqRDrEX59gOTCexH3xBjpzWvE1yoFsxmKTaIwkySYGLFuSI0S1lbojtaLIJMlzHVgZhYz6NQ1Q0rKTBFEFUKfrDULg3U6QdlQRVPkzvfewL7nPY+5y/cVxyqUtUAIZWyfoMiAc26yUXgs68LmSO7ZgrPCGQAIIfB1X/d1nDp1ih/90R/l4osv5pnPfCa33XYbr371q7nkkkuA+43W2AF4vBbA8Y2+JSeYlV1WiIpKJlbShmpByHgTGm84wI8UyQ2pXsTcTOEMiIB6EMVyxKFkjOyEXqYYrScIIvKELaZS9kAlX+oML47oDG8D3Og0woV8uVtIcWRveK9IClSxQtKQ7GpwXcwXuXeVHmxEGI0I0kEaoTeqMWeY60ISkJookUgXa0IhyQlf9hi+Gozn/xNiqIRSJkkk0y2Es7/8C+q/+Uv0um/FOY8C3iCL0QAzJvgEWkEWijPlBIJDpQu6TuXWqbNHGsG0iA+ZBKIJ3djQjTX5/Tdweu0P2f/Mb2QQu4hEKqmBmibWzGSKwM4TGLkfG6gnYz2Y1PqLI9DqNnQjmUzKfRicJkhGKJ1IRzaDdRaovdDUDVUzKsqCAj5HtLMXq9cIo9OEXo/GAra6zPEPv425uT4Ll+7GpEvytN/neSJLNTaP62OZu0/WdXkycVY4A+Md+ZVXXskVV1yBmeG9p6oqnv/8509etyUN9dcAJpBRQgdy9viWNFU7qDQ8oNGoasZJJouy4aV0JyODbzCFqmnwmvGaC7GrtDjfxpAH/CQtu9+lcR31I82XB+98pJArU4NKRlsmdqVGUrA4wrSGJjE6dC+jD38MkUTn2c+n89RnQtcj1HR0HadDSu3WE3PWXwvcP3r316P74YiuaYl2SKuvkISOCFKsCBbAxuu7tCUFZlRZkRPHkGFND0+FITjiMLPeqTAfOBeoxVhoMn4wROqalBLqjIxCjOQmtiy3MxuCIMnhW9VFJ4bUmV4EGdSY90CRv1ZnuLmKngpuLbZ8jhKhyR5CrwODAaEeICheEzQjQj1Ecp7cOA8Y1TO4dHM74qxwBoBJrv7BSoRj8aFxJGCr5/SfCIiV+vkmOLIGulFwMWIdYTxFXPs6xSAbeVjTefbXoaNTJXztEqYeXyuigqkU8pWcWfd8KZ80JOa2HeuXg2wiUBpqGWlqDMUsY1Vp/+wVsibQhll1LN94Iyf+y/9itj7FzP/xb+k/9eswXwEZkXXQmiwOwW1rX2ucKZC2dFNHo9b5NExKXtu1mYTgS4CkCAMavpWuERQzpbIEy8t4Lc2JaEZYzITk8S99EYQu8TP/QO0MTKhU2jbbGUNpcmK2juS6dQaewEqCJxvWxgYsl5LCPKaeNImQDN0Ywvw8ZoXLkSuQ3TNFYrxWNEgr8lBaGVfdgC2v01vfwDeJTtPg6iGuqUFzW6K5iRA6SVFMsVVw1li9saEf7/zH0YKp6iBloSWTzQgqVMNEOnyE3sYKPrWVGABi2Li0LSnx6qeQpAL1JAJKRU4BI2AGaSwVewZJjAhAViTnEkb+MkzjVqahLeUynCoSa5xl0Iz4UjJYJUOaTCcldGOZMDjFruFpzh2uMSuRXEEtFSoeNQMV1DroGeJmjfsMpDqWMR1rOqBYZeALgyNJEcpxFDfVaDedqjjLqCm0Y2raFEMUhebqK+GZ15ByJFvGTKgUiA2lN4SRNCNNwpp0pgg8PiyMcn8WZ71tRmSJlBowQ5tmck3MhI2eJ+2eJVIiM0pqP8RwanSdJ9xznN6JJdyJRfobQ1w9omoaJOeyAkwiA7bpMcVWwVlhBcf5n80kvnEu1Hv/Jc/PqlTBuN7YlAqlk8CWl/nkT/4UR//8Q6XLnpQcowiYJZwqPho200XNg4VCajNPjcOpx9eZKjZki1/+GLYoHrxUCaUBKwZOH8iEf1hImypQw3LG5yKKE1KkirH0gk8Jnw0ZGc4FmpXTDE8ew9IyaMI6ghOjExWLhlkFKbRJiO09V8cCNEIZz9xEcm675GmmkwdkGmIwEvdHmMRKlmTym5zxpq1jADhfRHE0kTLIjh3kbhcfMz0tIlrdLISsWFNjOaGacHWr4aBnjuTzwyED6gwTo6sJ34xIeUSyunWSDJIwokKf8VTc3AISAjGt09EGyYZEcNkIVYBPfobqvmP4Q4foLi/jN4aEwQjXtI7D5sjAV3TzTPG1xFnhDEzx8LA22odkQsskrG3I7gO34D77eSCW/Ky1Km9WdgI+KnQ7jOlAoaUENVrj0hAOHkG+eAC/fJztvAN4yP2LFcNu2b7sqd3/fiPg8AZ+VNMdNfRTpHNihWpUl+Y82cg7dzK7cxczx05SaSYrOOexxUXswB249RGmHsPjrXVOtjvaFAEGsWnwzpX6lrUh7vBRJA+INDiBjrUVBeP3MX5vW5KIoR7WgEYMs5qcElL1wQV8TMzUDRIbZgy6S8v4nAuXwxTqiMuT+ponZzy+BhAr6SkLYDlii8vo6VVSM8C7jAw3cK6tptmxh8v/5Y/iqp1IVsJwlXDkMCFb20VTcTMdWF+lS8blml6q6R47QX8wwiUbN/do0f5w5g7vtsTUGdj2KKvoePnabLw2Py/qwMWYT15b9GzJHiLt35wRu5GF4WniDR9gNFonQus1lPc4NUKtuE63VBJgBM04TaS0Sm/1JEf+w89y6w/9S0792Q2I5q/9sDxueKDBF2h3+eN2wu2rxuPaygTbeDwnIjolQhUUZFTjFk9ix06Sb74DPb1MHQpJa9CrCOap/uxj7IyCsw7VKLL0R2/ntv/vv8UfOYKpYqKINW21+PbHeKPYjOoSmVPj5Ke/wK3/6b/iT50i0OAs47LhrW1ONMnBlH80G4Yjeo+/6BKGAqYRjQ0hdEDBNTUzowZSQ1pbpb7li4SsiBZ5YmvJg2o2MVbj+6e9pA94vmWxmRvF5jWgTddTiKtKURL84rvez53vej9aDxEtcsJmCXDU0kP3novFGbpZkI/+Ff6jf9l25FSyB52tCvfAImaKpMzok38PJ07hUymrhYcgEE6xZTB1BrY7Jnd56xJMFq1y1ytGY1YMutJKrBqloAuwDKYoXVQC6g2RhsoSnaUlSA3OoHGJJBmfBcsBFxuC9+Q236jk0lY3buAGI2Zvv4WdB75Ide+Jbc3MfuDiJYiCibEBWB5Aswq5aLDHQq9sa7jLuAYzxKxwrURKnnuwzsygphqOCG1lgXUF1cjQCdXcAv2VDboxI+qwRugcuofZO25FNtZxSUBrIG7zUPZ4993ymFXRWGPmcQZueYnqtjtgmPHmcdb29pi8PxfyIAIqZM0kUWpX0XvttxL37KIoOCeCOMDIKeGz4mIk5IgMR9TZUBM01aCJkMd19/olLnYGakqRzDjFsWVhWmak3e+sokrCGAFGxolCTtRHj5Duuw8ZJNBMM9nM12QzcrdLQvCporr3BL21dZxZkeMmYTN9sgnBF96wNwjDIYEIEsEckiPduEK2VNKLU2wpTJ2BMwLakq02RePa1cqstBgdWmkxatZgLVlwBFiu8bkmWJdMIPuES4bLDpeNKoOPxogBtY/47Ig6g8QB3eBIppgJI1dUhnQYCdnTlQGeGjeq2M6s7MmiT+FWOBM0Z0YukP/h71j+o9/BNkaYKo1FUi67ymwjTCM+aanCCI6Rd6gY5CHVKCJ1CU3HILgckdEGIhVWzRUnDcUk0fguvfUBPWuoJSHSxw1HNDjSNq4lcCgiho672FgkaE1jHUSEarhEP66CdDGZKYJPPmNSjI23GqMhS2EVBp/BG0k62M4FBr0O5ABZqYLDCYxyLCJZwxEdbXAYte8Vhaw0AKvpqiegRcdhczhAy/01Kj9ubUcAA8ulvXBr2NUUmkQ0pQHwhpAxPN18mk69jK99OU8PLnuwDVyucd6jc4lhbxedVL5BDCyPcClivVm8dgm59CIJJgRNmBuCq8FVxMN3svi2X4fBahGJmOYJthSmzsAZAWnJbV9areM1098Y0IsJC4K5UuATtC3/d4WaPX5/MKNSj6NbQnspIWIsDGtmRwlJdYkCWEaqokaYXasQF4QctdUzaxnKOX1th+JxR9m9GoK1GgOSYGGg6Kdu4ou/+YfoWo1ko6tKwPCjjK9HRJeoK0cKjuw8sdshB4/WDWVfppiA854gguWMimCdqv0iwCsa19C0UkhdsSZJwtRQEXQ7r6dtVGszr0JzbksJFRkM0Nig6f6aiXH3yPLEky1QuxKtCdmQFBhJRZ6ZLdcsJ2KOuODBOYI4nCqubtrP1BJxyBmXtJAHx/wYPGKufZTrH4A5a5kyW3jsjVadEkANAZIouEQ/NiysjfC14NTjVOiMlGpQk0zx3Q5ewatABGdFj6C3dy8Lr30ZtfeYo6hhunJ/S+iBtF1OvZClzM+OgqRSTbB66F6++BtvpTl0ovAIpthSmDoD2xwTAiBltySb6dmWYXWNE29/J/70KbIzGtoOg9ouaGP997Zcy6ngalArJWzS1ORYc/pPPsT6Z24m2hCVuljErsdJMfoBRZ2QmraTHoKhSGqepJF5fDDuxT4eZwPISncYmR9ldkcFyaRqPH6ZeMvtHH7bu/HDERklCZAF5zoE1yGs1MwlqDSX9ziPx5GbWIx7tyr/SnEZ+h/7JIO/+yz9JmF//SncySXAUanit3WaYNPusM3/5xTxaOnIuL5OahpSLGx0+ZJzDWQCA4ozIAlEKlZ6PXTHAkiA1FCnCN2qcDYQQsrIaIgYOLEikFXnUkYbM4qWagJ9QBauOG4GYRwwYAsHvQSStHJhbRgjYxAUPXWMxT94F7qeQH2RGG6MznpNQ0JnungtZEzJELLDaaCamSU+6wqyC20IUkFHGIKEWVQyqeOwEIgCjRc6WfAxY86omoZzjq+QF08V2c0pthSmzsAZgLJEFkvlKPe+UurY89FjHPzN3yGeOkFCESmqYigtEcuR8a3RK/ltGSlZQmkaM9iAtSXufvPbOPbxT0EelVyqGNLxYEaVRnRjA5SyLDGZkBQlJ+7fym0zGEUAp80VZAFzViSbrQFRgjO0a6xJazS0ofn4p7j3rX+MO7XKTMr0GsUPlU52mDjcRoPPSuMMLd5AkdlRLcS4bkVuv7/KGf/Rv6V/5z30hwn3px9iZ0pkMULOJZy9zbF5dlhOhXCaM9QjNGUsb1JT2ETyH0drHCB5BJZoXOCyb/9Wus/9enAlshVzhCq0zoAjtLluAZwVQiIxl/LOFMv8jjU0Gc2GuuJlF2kiw9TIpuQtXB5nCAlptQLKBC5JgYzec5C7f/t3iM2IxpU0osuZMKpJZHKvKp06XQafi8MpZazTXI8sHq+OoIarR5iCVF1MMnXl0dBtOTIluiC5cDkqyczEBpeHWJW366pwxmLqDJwB0HaHJW0M1aAsmJqhbti7sYHXCAjeQolvurGSa1EiKzXbhXXgm0zOmb426K234TbWOWdY0xs1oImqbczjOl18Ulg8AQfvwTdDOimVMq2Wae9i2ra+QKl9F6SNxRfRG8N8pvFKlEzlS/Sgi8epxyxiJ4+zMBogOYLWmMvgMnWlxK7DVlbAlBTKiDt//w5OBbRXkVFUocrg4gY9jfg6UnllxIjoBPNjgtsZAgHNsTiQpliMk3kkm/4/+dEMYmRmdRU9dBdd6rIbfc4zkfPOodfpIesDNCfodh5QUSOUXhsmIOKKoqSUzpyVJDqjIfHgYTQrNUrOqXA/Sk1eMapf+xF6dLA2TeAKyTLgEalw9ZBd9TrZp1YlOON0hDSjUlVRdYBCBrQ0JDUjtHLk4JEIEqrC02gS7tC9eBw2M4O5TBJP9N02StbKu6uiIiVS6cB6QuzIlDKwxTB1Bs4ATHKu7Q9Kq3uPQdPg0wg0IQg+FV0AC8WMFEFbN45/AwnqEcEbfnWVA//Pf2Hl81+gqjw4Q5qIU3ASEN/FKRx/93v43H/4OWywhtQj0Fxkd6V1BrYpxmFga4WDvIFvmWTZIuYN3wk4FfoJJDsIwvLJoyg10KC+ZuTWSNWQ1X4kzwXy4il6BlUUvAKtM6AtZ4BOhbr7a+nVtRl1Fepz+tRdw6KCRdj6JunLYLOBNzQXUSs0o01TcvdqD+1QOqWfE0t//lfc9tP/jmrxRIms9LpIVRFMIEY0JSyEworX+ymhIpDEkcRjSVtlx4yLEb3xJj79n38J1pdRalyK+FGDWkSd4lzY0ro5MuY1UJwXBSoVnHmMDDbC65BqY0gYNGgaIXFISBnf6SIIIUVOfuLvSaMBRiJJohNLVDGfs4vUDay97Y/R5Q1srle4SHjMdRArjqxR5IwdAtFQHOZ9W9A4xVbCWdOb4EzGpBfQuKxQSnMRMNJohGohRXkTJIJ6R3Ql/znhGSiF8OcUiSPIDVWOzB06TLp3kbojpDxkTikGzHmc72Ap4T79DywcOgIb63TqulDj1JXGJzFNyGHjf0r8YrzXswcpyGwhyHjn3vIBrKjb5cYITaIyqPse67iSO3aulA/mRFcV1iL6hbvpzvTQ46fYMYzlhlNFzGOhLUUMHieOFNOEM2AtjyO3XAWnkFo7NhONXi3ooRO4S/pYt7sVR+/Rw7Q4A9aBnEl1MymFLZQCmwgLldmU0MXjzN5+D+HA7czGhrVOD/EBJNDNAqsbWMpFjtyUzeIBpUGXkMRBymQHxBGhLav1q3dhTY3g0FNDnHQI5+0AivARTh6QtthqCO0tp2JkhE4SxLkypyzi6wZOHkeHNWE0wDU1oVFCp4eKpxuNlS8eQlyZeOqNjnesW6Z64bORk2vMffI2VnbNorMVTozKHFmKo+RpnWlTfIY4NJxVSKqodJzfeRIHaIoHYOoMbHeYEEyKYIorXew8JTcNiVgP0Byhbkruz7es+AftatRTBGzMo3WN04ZgMJcildWkUPKvDEaoGeY8UvVwJ48Tjt7HjgsvKn3NmxpM6MSIZWk19AWxiFKV8KwK5sbipO2qvCUXBRvTKyb7GDODrPiUEYXoPRaE6IttgAqXanr1iMEd93LXL7yBmRhxc3PM5aboNIoBmeQEUyOGHuIdapnkDLo9RITB3CyuP48/ebxkfSRTbQzYoUK4524+/9Mf4Mpf+gXmrrx6crgPGMYtOaabsSn4LxTWe7S2I6FizQAktqH9+4NX2SsRodson/3lX+LCD32cvaOIh8Ld8IXA2h01rP7t36JNg3V6OPWMuj1kfo7q5MniDIvQyRnysDQui5GA4TaG7NgRcTlTJeP23/t95ub3cv4P/TOs6k18260+xCpCxlMpmG8wPJYCiCeurPAP/++fIaiyZ15xdcLnIdbtYE7wp1fo/u3H0bkZmOngtIO4ilEX/FWXk4e34SQTFDSUaEK5BWz8E1kML+Wel6gTJq7TokcwxdbB9HJscwjgcjFS6nMhtZnDEwClGW1gOSLrG6W8qKMIRsdaYRUrJnnoS5IA7cMoUhGxXHLgpFVcEvxGTVBAjOQc0p9lPg3ZuXIaRxEWIdU4dcyMakJDu/gYNGtkNcTypF77/tTE1oQAAcWjKJBF2o55qSivKfRyB5faYkqfECrMhnR1QFpeprrjRs676VPsOHgr4oW626GRhFhDNwqVwaC/QAoVLpfgaT7nPAZirDz1GYTXfAcjX7XOU43UG0jowMph5m/9Am4w3MasgWI+XEt3I5aeF8k7kAyDNUwSaqXFrjoPSZFmlZQiOjCqz/w983fdXASE1KFOoCpszl4zpHP6FJYT5mdQrdCrryK/6AXUCIonmDBbj5DRaYJ6pBFIgmVj6IfgIFiX2XuPMHP08KRj4gOrILYmTNpmRHhCbaCLGAk/Cqh5JDXsv/XzXHrrpwnDTBgkhAF5vo+a4jfW6d17B3uf9XyaXTNIM0OWCuZ6uKc9h9iZIfmm9DaRHqYOgpHdBuZLszJthaHEAbEuXBhpOQRbeOzORkydgW0Og5ITFGlZ/A4yuOhAPDZIuNiqA7Y6pLL5vW11V9esZWcLud5ATEtznFFN/su/Y2Z1RCdnpGlwCriAzcwWIpEUQZPxzkotl92zAKmGQ3dz+i3vwKVU2Nre2onX6rlt4eSrPOjnUmpm5JzvJ7HZmGxYXmDadiQ0xYsRUFwrySzOI278SSVMjRNcrOHPP87CmjG84DxOzHYYzPXZOG8XTadwOipx5CYRexUaIIhM0hfQ1r1vfmwTTA5V9QH8gBwFF/uAQ6UVztGGe3/3D6luvAk/inQSBC3G2cYhr3GUIZU20UkVfJeNmT7LT7mAPDuDN4eJEJ0hlYcYi2PdRJwZbtSUVshadrkuplKGuwlbd9a2U0BLL4fKDK1H3PW2d2PHTiExETSDGpUpPkYkZtKx43DoMGF+HhEHCqOUWL9gDzhH7Ak5tFUC/RkIDrOEeYNeRe0DG70OWTyotXPTkNxe140BTloCp5xR1NczAlNnYLtDILuiQSjWGhctzHRzQt4YIjFDHJdS3Z8znXyEGqGuWyKhkZdPk1OJIMzEBH/1CdzKCpKHQKmNV1ehs3MMXQmRK6UcTOq6aOeb4kSQZkg6fDv3/f47SgoBJY3VWkQLmWkbQDb/q4aplrRAW/s+vpGkTSOojhc9acsGy/UplQMFxRkTQgjMBIf83WdYaBw7X/hczn/1K9kIAbniYmrvS2jVdcl1Jva7Ja2j7YNiA79EN3/CLN0mUGuNL2CQGi35q9RQpVTOsYnc9wd/wtp7PwDW4NXTukQlJO5KpQtamg+pGiknTAL7X/ESLvjJH0X37sVRCIVu1050pltKGVWRJoIpUo+oUoYUi5MS4/jiF8bCNnC2ZMwtlUyOQw7/1h+j9xzD0ghvGUmFQExWJCXiyir50FF8vw+uzNPerj3sfNkLIVTUlSGVgHNU3RnEVYXs6RXrOgZVRfcfv6otLSwZaGeCxARqpJWVUjaqui3G72zD1Bk4QyBt7l2B7AzzikpGm0HJ5Y+FW3iI+3BY09x6K67JhASyfJqoihoEjB0pY3lIDrGkDTCoulD1UfFkaReVJuJjwkmR5BUMNEGzTh/DxUwsgYuyy8PDpJJh6+LBm22zopTHpFSt5UIZSLa2V0FRYxPnWmNdrLVz0pLgKOWZKphzRDI9hOwgXLSPzpVXEKRHtXMH3dn5Ut5YdUtviKpCkXKtYtnhjZtOjYdyiw/pQ6Pt4+AUyGWMjSG2dAS98y58UlwWdtQJO7EIXsuYtyGucfTAQuEMjNNSLpfmx71LLqL73K8ndmeLQ+odcsF+0kwPmogzwZpYCHdNTchaImo541IsGhxs4rpscZT0vGGSMImcu97gYiQTS2vxBFB0NFzKOM3MRUUW5lHncM7D/A78VZfh1RcSsi+REi9d8J1CQBYFJ9S+i156KcEqpI3WiAmkck8MlpbQ2EBK27ulxhmKqTOw3dFWBHgAadsIe2h8aUNqgzW8ZaxuJt3KHvz+9dvu4NP/178jnziN1AlbWqIRQZ1DDbJGahdRSYRxs5h+B+eEKrsSATCgLgRDj2v3+4bTUi4XRXB1Li13tXRJTCZgFdtim7CJMGaAZm07OrcRgNY+iJaujlBInS74SadHUS27Vim7KxNBcaRuF/OGs8ygF2C2D9UMkouWQzRIVaeQ4EwQXxVlOASGDeQihFMOczuHX6017gZq5Fgjss7a332EO9/4P3BNQhIYiWawXsiwbXMoAC8exENvBpyjQZGkuHqE9DrQ6TCqZrFqFnEeVwVSVdF4V3bHQI4N0qtI5NKIJyUkZyRGxDKtMPV28AXAQQMkSgTOSxERaiROUinjvKGLpU9DyIbM9EniiriS60J3Fm89esmorE2bhC656rUlgtZyjypy1cOr4ExRBB9CSZFJZrS8jFNFVLfF8J1tmDoD2xzjkKohJCllfyZGJuLuvI/+sUWqNmf34NS8QSFaDTdYuO9uGA5b5yKx1gkMXFvsborfGFANItXiCoKQ+0WfPKjitfxrw0ho8mQHBaAxY6NM1oitraA330onDoqGv0rhNXwNx+urwf257VK6KVBaGbe706JUaGAlhSBmOOdwSFkAc8Z5j1mpaVczmtBnqRfQfiCSiZWDXGHmyUFwoUPVm2OxI2zs6JEExAcka3EAYhGTmrAQNg/mNhhYY5NSgrb8h7G2gIIlpVpfYXbxFJaK8qXzNb2Tx+HICbLLmBTNTcta5tPec9BQEcXRO71KdzBAnGLS9tygW7QbKoeEAFUoAjoi5QB2zZM7DkuxPY42TWCKmD7o6LcuDGhaLkVoKS54JZPHMqUU91GRHMmimAftB7ITNHhOe1DfR/BFAAsF77Buj9POk3yRLcd5sqvI3QqxQhKsg2eE4i0BSh4M8FYiWW5rD91ZiakzcIYgI9SANaU5EfUGR//zf8d+7510Uyph7YeAieFcotesYOvL4CBKove0q0l7dqMILind0+tUx1aRu46WTcWMh9CKGzlh9cQixz5/Iy5mfNVBHEUFNWbcRmI2NQxu/DS3/Lv/G1u8G68jfN5mO4QJQVBbgpQUEZsHNbsvKQTFOSGEqnAGsqI5I95PuOgZGOyYY+55Tyd3HeYEZw6GATPHqF94H1HBP+up5Iv20ARBQkA1k2VspNrDGzf92QaBlofE2IlsVQdz9Pjcx9eKz0quBPOZzmgVPvYxjv7ab6EutT0jyvUQAnR60J/hwq//OvLnP0+1dArrluhV1wLOAuoMqzyEUByCpqQDTBWb6RJpDX/OZVxjLKHvcfprC5NexxjzSRwOaUoKyjzktuU2amQrLAhyLvLK3mG9iuiEDTJzz7garSqicyV9I0YOjtyt2HXNlcRet+g0+ED2Hu14VJQkmaZbUe3dTTYFMZrhoI0M3k9oMXvgY0J6meYRvuaYOgPbHOPFXyzRySNkfRmflRA93H4Hc8ePURkkc5iDhkQEzJTQ1MhwDVKkcg5sDQ3CiAWqF74Uvv4ZROcQVfox0ju1gsaaGBwVHTCHAT4ZrqkZnjiMS5E8M4NCSQ2kGos1rh4Sjt/H3KE70eGgVBrI1hd1HYfdVe7fB0oquWp1hqYGLBV1IK1AU4mGmMeJIhVkUbxGfMyoVFiYRTqzIEK87GKu+MF/wdAFnBN8iqAe9R2aSvHBo67D7n/5E8hFF5ZwbOiT1TASpOF4b0cjNYK1hPz7eQRbGfdzMUq42sZheHJbldHBoqCWkGaILJ9gR9Mwv7HB7NGjiBbdjCyUlEEnIN5Dp0f3GdfgYw1xBL7o8aGCiLY734D5bunSubFMNzaIqwhhFrNAwCHJtZGBYXECc1Xy8ORJamhrwrBcGlllXDHUIkg2/MBKmawpjRTOgORE1aaa8As4MjI/x57X/m/gfZsKy2Q/g4nHB7j0f3slnV3n4r3HnCP5PmZFMCsFR7X/Arrf8KJC6rQNNK0h2sWSYFLSbMnA4hCalXKnTQQit/TgnpGYOgNnALKBz4m1L9zIkT/4bfz6CO/6JBng2/ygJl9Y7kTUHFGV9U98gnve+jZ0vcFiF6fLmEuMbDe5v5vRvnPIlMUzWMSvr7DuM4NOhzmZR1IoOysCPTPC4CQWh9T9PlkdJgHLI7I2VMeXSH/4LirdQHMF1sEqjyNsecqAYTS0UVWlEC3bPhApNyAZU8jeoWwU0SfroJJotCnOQD3EjWqyq0hhltjpIQgbfQ8Lu8lhBosjnCvdIKn6pVEURvaBtO8SemEGpw7rzkI0qhyRuFqY2grCRinjGh/r/Svrlsbmy29mOBnHsEdojpg6lBHNrbew+FM/Rf/wCRxaBG9SaeoUHSBK03OYczgfyL0e3jLOGVb1MC8lIuBrsnNIt4O5Lr0RpD//ADMbA1QCQWfxKZRQdnZYTpAGmCZIXZIZcYtXwZToU6arpbyyDgmvhiQjrGeySElTeaHKgZAzMwqYw7lz6GimEaHeu4cKT0dLmyPz81Q50BFw8/O4/l6yBPLCHMP9F9DvLSBOEN8h+w71rvOIBuQVqrRGrHuoCpYGJCtRrZW/+RhH//gP7o8QsN25L9sTU2fgDIDPIDGydOch7nz3+8inVnEJKi2LahTFNRlXQy8L3Sh0Mpz81OdZetPbiRsDUgaGNTJYxcuQPF+x8MxnkDvdslp7gbV1uvv2UT39GnIngBNUlWwZj9FdH+LESD2PN+hkiBZxgxq/ssbw0/9Ap0lIo6VHvLpNfRG2INposFNppTrbfu05U03y267oFQcYBiPnDUIcoJoheSQLFWA5MdKIdoTcc2jXkSQX6VwCTnypMvCALxxDT5HeTZKh66DjSF0hzwT8KOOyTco1K5Tu+ghJSlArhFK3zRbUcXi4fWjOBFP8qCEkZenAXax+7O+p1jaKJHbKQIkM0JarinPgy7JmSCHNOkGc534mS4k/JHUwN0s126M5eA/dNiLhnNAzRdtOiOSMNrG8XwQRV9QjZetOXTA0lIhdb21Ef22A14i54hx4zYjltp5HILV9McRBqArB1Vf40AMcmrV07PSOHAStio7JKHikP0P/yot59hv+L+af9VTAU4UuWoHb2Ye1GtuAfl3el9wAHwf4VONHxsn3/CWL7/1rRI3ooXYl0jPF1xZTZ2CbYxJmVSWMGhZWNnBNg2i54U2g9kqSBusq6soiScyEOGTv6hIWh1TiOfW3n2bxgx+gWy+hXajOP4/c6ZWSLYXR6SX8eedQ75gjz/ZADFeI8biYmPn7L2CmWKeaHFfMCddEqpjpRcNnoNFJFHDrLqYtNq/4QiGraVtm1u4cUYHW+co338LotjvoN4YMoJIuzgQnDq3AJNNUGRfaigPXOgMUsqYFJnelN9ey6xU8aEcQL1g/oCnj1LDRoJTYNQ1H3vIOmqVTxUi2HRC3etTlAWh1BqwVHkoa8ZbxdY1PiX6EudoKy98M71xxmrwrHBUM513plMd4h9k6CEUrGpPiICDgg8e6AX/OXnw21DLmDZFMpQnTpnSdjEXOGzVw1jYAarUzt+j4mkByhlli8fo/49THPkWwBK402Qo54WIkWJlulhKNKxwVWo7Axtwc9GZQBQuC+nL+FnyRfBbPqNvBzyygs/NU3/AMdGGmVCB0ZrDK4Rb62OoQGoevPfQDaek+7n7Tb5CP31e0S+6+l90bimWjEdsm8awzD1NnYJvDoGxfvdDNynyTEG1KZxsxctuqWF1C3QCzpjgEAZgxJAyp6gF+VLPymZtZfue76K0v0el2SK6DmC+brrbjm/b7NL0OjW+9AFVES4jRffF2Ot2q9Q5KFxLLRlMPCV6oUNBU5GHbRbQtdd6yGJuUlq+OiWKWChlLBC2azkg2qqYmf+xzzN27SC8bqkrMuQgQQTEkMUKKhGx4A/UBfAUUI2al92spE1UH6nDtv9rr4H0A72mIJWzbNGAZG4049MfvJS2fLNoOpttvUR3X8bcksmwZI+JjxFvC15FujDgEbYsKi5CTa1cyaR2BcZWNlbI5147tmJPQzjcVQed6xNkeAcgY0RlaD8rumQy5gSbhY6KEisDViW6TWjnvrTrCRW7ZRgMW//h6TvzNxwm5ASlOT9BU5qFq0cJQQ2f7Rc652yH1Ks777n/K7NOeilSeJIpJxhttK+QAlSd1O/TCHE67bFRdsu8Sqw717t1kC0h/hjwYQVSC79AEGB24hXt/+VdZ++IBYMBGXgWXEIzKoGulXHqKry2mzsAZAHWCVQ4TQ1LGXEKDlR29gGsU2RhhR09gn/si5EjqerJTQjPCH7idHdmYOT1kx/GTdAYbdAjgu4gmnJaGLoLHQkX0ntzrICIECks7KHTVE0KnlHf5wCgEXGqJXVp2sslKiV2S0hu+SBhtTW+gdCIU1BddBDNFLGLaEC1h3tP4hIUG80V4pV9DyMooJKxqyBWU0r9ylr4pKZs0qMm+YiNUEALZ2irO1oCZayvafZcN34EcSHPzaKeHuIpMKgt704pAxYadg1EhzJEL4dE8skXHdjMm1Q+bOWNt2Zu3hDt6DGvba7uxuqOAtXX/+DDpIOiCp8woaYWfhFBVrQQ0RQnSudJW13tyJ+B8KPr6oSJ7z7rV1JUvXf+aSF7boFlZxXIDFslHjqOHjuBy2sKjKyX8L8qOlWXmRwOcJjAh51bzIidcyogrGo6ye0eRF+/1qLsV9qynYfNzxUH1FK0CkxLpCgG6HutWVP05fAp0qHAWqKtAfcF+1rvzyNwuBmtrYIW75HpdumsjrlgZMnPrHbCxTFPVNJ2MOKVj4FPbIfTJHsKzDFNn4AxBKaxyaM5k37KFKbvLrgZ6TWbxz/6KG3/8/yQtnmyrADxyap3l33oLYbBK1wS/eAo/bPB0y+5eigysaxcBqi6pCuhsYcNjpawxVxX1jnlSr4/6ivVeh/Scp5GSoRonteBqpR688O+2/u1edteOCiOkjKSMqyOVCEmNnhhSD8kdYxjAfBGxySFhaR1N9aYsQ0knxH37yPsvZnDOeez5xudB5VBXRF5c+62GYd7j959H/9teSdh9Dtn1Gfqy4HZjUcfLTbk+xEiwtvdDMJJre8htgzGebAInJWUGWQlm9EYN+g83kXJTqjOcENtol8RWorhTYa5Utoj3JVLQpkjMFB/CJGJQ5qxBGykgBKRtquPMY50enW96AWszPXxjMGhovnCAemkJSzWkmpt/+638w3/9VWw0ejKG6ytCaSFcNghVGlKluqSbkkOjgILkwvVBU1HN7JaoE52K6DxNpwv40nGwJdAUVgVQefBG7HjSjrIWdMzj1dEET7rqMnjZS6A/T2yG0AxxpuReBx+V2RS593/8Khs334mrh0SfECnpoW0wZc9ITJ2BLY/769cL03Zck8ukdMwZiLU16q0ynlKMQcgeT0V0GV0/ycKRw/h6o4Spc4WpY35lGZ9qDGUwHJJTxklpY2qS22irIOogdMg+YLOz4IQs0DjQmR6D8/aQZmdpQmCwbyfzP/AdpaQxp1JfDLik0OSipNd2TpQnK5g95i1MypvLk802qZRiZKpcDMPqwXuR9Zpehspg16l17NYjWJ2ACgs9RB0z6yM6d9zDwiiNPwhDUAmsnruX0xecz8bXXc1lP/D/Inc9BI9ZqyQJIIJ6hz9vH5f8+39F5/KLEQKjuR7BV9jhRaSOxJjK6hwj2SsWE+qMGpC8BXZXkzHd/Lh/Lj+AOGKAtU1tUiaoMatCNRhQOcMLVK2hd4A0CWeGVV3MB1TKbl9aJ7X06oCq2uwMbLqsziHet86AgO+QQg97wfNZ6XToNko6dB9ufUTHSpQCbZg5tkj3jruKxPeThYdYDzaPNVgrQFYURM3aY00OjS0vIxdRcNWEaUK7xakiBFQcRkCyg1gaDpkzLAipCjBb2jjHytHs61N3S9oFHNEZvasu57Kf/Jewdy9ZEww3qHIm9TqYQfRC7/gJ3Kdu44KTNb1UJLzVQfJscXLmmYlt6QxsXlhU9UuEKx78UN3ateyPCGv/1yqyNaY0Vsg2RderBhImpQVupfVEbETbskABhkSaTqYJDaY1PmcMT/bdoqhHRrXBNw2iCarWUI93WJTOiDl0CBqQahZme4xe8c1sLMxg3RnSjgWyd+ASOttrF4KIrxt8yz2wFLCkbRjQWpb+k4gyrKRxQZO1BCYDyUUiGFMyxugf/oG/+Y//iby8hObSg6F3/Bhf/Plfwq0M6WVXBFe6FW49E3/3HfTWBoWURSZkJT71avqvfCV135P6XWxuFkWwWnHOwLVt4aysiOoCg4U9pI6hnTlifx6ZqVi/6y5klMjRMDHIcSLWg3g8k8DNkwijMBlLH4eIMdKMqdGQMdZbgyZYanP91pYVmmJWKk28hUIu0absztVhVGibeqLqkKqKtYUFqm9+BW5hJ6ZSSJ4C5mfBVTizVk7bYXjUV1i3j4UKFcN6wqg/i+29GHyFjdb4wu/9Hi7VVKrUqqANC5Lo2BbwtAzUMnmyPhgUugg1ZX0Q9WgelimlPbCEpaYtmTQa7zBrEI2Ym0EtYFWrnqmtVZ50GKyAhFVdtOdQ71BfoTMLIDUJpfA2PPQ66I4FrNshat32I3CIVJhA45Q5VdIv/zI7v3CQTuqSJZMojmzcnqZpW2PbjnjTNIxbyaaUGI1GDIdDmqYht6phqrq9HYEWZsZ4jWwocqKSIKcMo2Wol0jZlZa5OsS34WZtd/aOTEiGWKAJvs1JF8Pnk8es7EpdGjHfZHxTI10rTGMrTG3MCkO56iIWyDO7qPbt4byf/VnS7l2ozKDVDlIdqRjhcFh/Dz43+NUNJJXjw2ZKAxpRcKV87kldVa3Y0Ib7IwMJK910sTZXbTROCPfdw/477oS1paIxJA5JNbZ8HGmGOAWrGtZmAtabx6+vlnOuKqIXUlb8N7+Uy3/sJ+hUjlBHsA6CR1xViJ3dHphHpUuWCqeOLrM4GjT0yH4WeuAYErKgowyhhHpDyiBlwe2rlOv25A5t4YtYatNJRjbDajBNyMZJLEdSBstS1DCt1LOT24oC2siTejSOMIs4KrJVqCQ8ivV7bFQdRpdezO4f+pfozl0t3T/izbAwD66L04ikhhgq1qpZbMdecmcG8R2cd9TNgNVeH+nsZUaFDpne6hIyWCPkjFiAUcTlAdrxpaT0SRzb4sjm1ggXDsVYHjuRSjolBTRuUBppz4Kr0byBx0PMxFYe21kCmyVpBT0DS4Wo6ShpJwxrKnKMJD9D6nhS8OTuHNbZSycPgIx6V9gxzhXhLe8RL+QUGblA3/Xxqsyo0mlqZpaPFgJzDshgjWplSCdmtpk26RmBJ31j9lgwjgbknLn11lv5sz/7M+677z5ijCwsLPDUpz6Vf/yP/zF79+59sg/18YGABnAZ+hQlMDTQVePo710P+3Zx3iv/CcQaKmnzpw5RX3KqZCxnqljRa7ognaIipkpH21CrGS5pcSTqhBNXGsa0QXyh7bDX7bDe6cOeBTRU2MwO1s69gLUVkIsvJB0b0d9YL5VcoYLFRVY//nH2WAJRcm5KxzSUsSvQfsGTAwUvRqCQzbIAVtqvNL4kW6o2LK3r63TqBlk8RdcV0lk/Q68xEMVCuTYdHFW3jw4MHwKalNNzPe47Zzdpfp7e7HypzPBSxsB5Tix06XYDWUuev945w/rCLIRWLlYMqoB1Alo5zBdJ2ZQiAJJSkcttpV7Ldb+frfBkwJDSrMaXHHVHyy7WGcjB+zh0/Vs5//t/hLB7H1aF4nBikzbQHkOrTFJBoiEbuTBjxGGWCUSSNqSZGUb1CILDuhWGkDwQWnJrqIoMtDjUddBzzmHpKZdQXXoR1puhv9bgcibtXOD0rvnCQVArUXRycfSy0lk8zelf+138F29ndu9e5GEkvr9m4yu0EsxCcpBpcFIR1DGTKcQ/A8tFozKRMKtRIlky0mQ6ySFaeD9eHM4b1pGSilFrOx+WKKOTimG3y8ldO7iSHvgOS3sXWDh3L/sk0GkrYpIHq6ryec7hc8IGoxKyqDzaNEhWOmqoy6hs4G/9B47/379IrM5h3w9/L73LLwDXefKjL2cRtqUzICI458g5c+TIEb7t276NPXv2UFUVg8GAO+64g6WlJXbv3o1z2zb48QDUFN2ZoGCqaFBkMODEO97HxuX7Of+lr0XiiOwNdYLgCofAXAklaiZkTyd1yC0fwEnGWywdxkxwMeMMfB1LJ8I2qJIp+uaGYXN9nv7P/zmy9zys6lDtPYdL3vh6rBbc+efijh/i2H/4RXyjiK9wy8v4xUWqYGhSKO14oC3TkhK1ffIgrcBP6/goQogNUo+QuR5GSW94FerBkE7OyIlTdLp9ZF2KYWulCbOUHbpVHuvN4k4DCrnfY/4VL+IZP/YT3D13PlEE7z0DrZEM6gJP+z/+FcsHv4Bpybue99JvYs8znoIFd39uvQpYpwLvW5lZSCmVpkWxDZm3rZUneBIdLaONnrS97ZwCLpGlYnjPYY7+9tvZ8+JXMdedJ8902m6FMBa28JSWuS4b2hjULROm20VSLJK5zpCdc+zctYvF1Y2WmJqJTorioFEIhG0paCOefdf9Y8556uWw0MWkx4nffSdNcIRvfjEv+N9/ApmdZ70b2BuEXtPA2jrBC9xzL6c/8in2bizSefk/KsbtSYRJK59gJc1VNUNEEuSA+OLGq4Hmot/gSUg9oKproleMhqBC4RVKeY/P0HF487hWq8IBJh7Jnp3XPp/n7tuLc/OICNf+2A8Rdu3DpINTAd/2QOh024pnoY/A2qCUwnakdJKkzIfkIXmlf+hO9E2/xbHubna85iV0L9qH63ae1PE927BtnQERodPp8A3f8A0cOHCAyy67DBHh1KlT7N+/n0svvXTy2nEkIcZISokQAlVVTX6nqnQ6ncnnjpFzxjk3KVH6ao7Xvpp6ZLu/TNC3xnNdlNkqcm5WTo4aGNWoJhpVjGKknLXcdC9Ey3RMGBebmeVCDnRtNboKIZZdm6szIRT1PC2bOoSiW0C3S/epl5N7u4g4ep0u3ec8jyQVIy/M7fA03R6uGqJdT3awEDM1StdTGMPoJCJgkw6Hj218x9fmsV6jkpbW0nTZKsCwO+/mrj//IBf9i++F+Z2l5t8MayI+Z2R5jdDrk5zDcivukwsPos6ZwY4+w/5Oekc8HXOY61Jd/TR6z3o2dt+wlLF5h9YJKK2MwzOvJu/dgyTBnMeft5dqz07wno5pSUE4R+pUiAt01CYtdmnV+AKC6KZCzcfJEXisc7cw2ksayKTlsTioe+B0yEWDIet/8C46r46ElzwPSXlTfbkirhURMhhIRqtI7ho7+h1GjSJi+JyhO0N3935s/S5wHpeLMqFaSZX5yoMrP2cEt3sXnd3PQn2C5GCmKt339p3Lzmdew+joEnUo986OE0vkL96OGvRuuYX9gwZvDRsdV0J1jwMe69wt93FLFI6Z49d/kDw3z/kvuY6mI4TivqO5KI72UsPaX34M+avP0s8ZXNM2xypVR3VXaKrS+VGsCIfZOC5oIBJwu3fS2fN0JFYgRu/qp1C7XqlIUAPLE/XC0sxQqGLi5Mf/Dhuu42YXkI0B4FARnCpBSpSgE4esVg1iioTwVU1fM/uq1u7Nc/6rWru3EbalMwBMIgM33XQTR48e5XnPe94kdfDBD36QH/uxH3vA60ejEb/5m7/JiRMnCCHwEz/xE6ytrfE//+f/xMx41atexUte8hJCKEOiqjjnSCl9VSREMyOlNHn/eIJ+pRNMysEg3qFWQvbqHCMRKg9uJuByKkYhJ9QMybltEVrYuVqFErJ1kWRD/GCDEBuyJWpR5hGcGS4mLCtOjVAV0pZK4Ss4L8WzD57c6dJUVSsOk4E+eI8TAzqIVuDGufDS5MQu2EU6ukTKmRxjER4KFU4Ntbbc6zFg7OhB2SV77x/VzVsY/oongYaSHvjsjdz1trdz4ev+KWEWcGUXYymSYw2rG8jOeUaLDueF5LR0Z7Syyw9f/wz6L34Ng//zdkwjueohvTm008V0iENJORKsaNmJQRM6qO+gowiWqSVQdfpte2gD9cSZPoN+DwsdSEbHC9YkaHvPa0xFfdDunzuFoP/Yd7DjubrZMf7KUeaVUWxu5SAhDMSoOka3GbH8x+9hzs/TefEzWxKckMfdAbOAdnFWKglSHjEMxuzcLLERXG2IQt2ZJS/sZdQ5AeJLSN95RiaoF3yvg3gjo3gcdCoaPA1GX43QZFwjsPcC6Mwh+TT9Wukko7+yTnPr7QTzVBsriEDynqbjwJc21I917o7Hcry+PLq5WwycSls1MGg49Xvvwa5+Cud/06tYmwnMWZFWRh0uZqo4ZO2Tn2L2c7ciOzqQNsihxP3EhGHP2PCK+R5ZKzT4ifaFN2NAJjqoxTMrgnPG0Hki0KMQEckNZNCqU+6bCoIWZ2B3biBAGNSIGlk8lYbSnIuid5CdYc6RcZP05WPBmC8mIpMN4KNdwzdfn7MB29YZyDnjvWdtbY1erzfZHfb7fU6fPv2A14oIIQS+67u+i9nZWX7lV36FgwcPcuONN/KSl7yEZz3rWbz+9a/nBS94ATMzM5gZo9GI1dVVVLWEYh+ld/ngHWvTNHQ6nYnx+oo/zwyfExpKsNVZ6WMfCmkf7XdQKe1xta7RbFg0dNS0lQSGCz3cIKGdAcEN4LY7MeeLZDGu5R0DdcKcoK0gUNZMpJARS7a35KVzLP3KHUpDg4rHcjFaNlL6KeCkix86FjSQfBe76DzC0dN4c1jMaMpEiVTZMHWPeQswJovGGCfj/qjej8OkQbSGXBXS1eJxzh2tw/oqTdyH823+NEZEM2wM0JkutYe5DEEVq2usSWxsjJi57GLS1Zdy18IC56aarnmC79BVxeVITCNEFCygOUHMeAE1oSuCxiGmHWozOloY9k6N0WyX5X5pDuU7PTQ2RcVwVKN1g6WMZiWnVNJDrk0vPEaMHYGUyvx4cOTsK0Fp+6sMKkdHSySj8hWWlZAi59qQcPQIqkOwTDbDq2FNg8sB9XOMWKe/NqL+/O30GyVUHVJU5kfG0AfWQwe3azdr5+wpe2Gh3AOprbUPnqxNccBScf5qr3j15JioYoPzjvVOn4XskY2aWW2FIGkIwxGqAXXj8/HguuSY0fTYywtzzhNj9Vg2HIpDSMVpiiP2Dkesb6yhdV32BlY2CaqlNNATmdlYo6cNmj1y5z1UGku1ixNSyzfKUnFipssOb/RyxpvhmoZaMjmmoi9gis91WQfUFy0Rl5Dc4JMBnqQJ0USVMzuGRkcyG2Tk0H3lnvGJKB0q64CMyAGCF9zaBlFzO/6PfWzNjKZpgEe/LogIMcbiCPknjyj6tcS2dQbGXICnPvWp/Jf/8l/odrvMzc3x/ve/n+c973kP+fo9e/Zw9913s7KywsUXX8yHPvQhrr32WhYWFgghUNc1MzMzHDlyhD/+4z/m9OnTNE3D3Xff/agm02YnwMw4derUhOcwDl99pTe+YHQ0shb6GBWV1XTVaDQwX6+QoxJ1g6W7DhKXl5GsnLr7MF49cbSOOcOrR+5dRBvB1yvc/p9+HnvxS5j364hSiFVWDJpUHhVYXlwkrDQTfXv1AIm0ssyxO++hDjtRF8nVOkkCLvfpJVhYvoc1HTKzb57VE/di4jBXcrY9PDlDffwER+68k7VuRQ+P6lcXyz5x4sRkfMe7ga8USoXIkK4OSbqbQYBzjt1DHJ5m7eR93BcqXE70FTqnTiKm5PU19Jy91M7YmxydtRHrh+5h0TlkaRXrGUgivO5VxHvvJfz9bayvbbBy6CBrKw2HDq/SqQfUgw7HDh9ivdpBnxVGgyFeHEv33M2p5QWidgkeJEcqn2m6jj1ffw1x6RSo0RNhcGqJ4wfvQg4fwXLmxL1HiAfvAu2SXC6x+scIEeH48eOTKNmjhYng1QhZOdXv08mJuVFNlA4z9y0ylyPODVg5fZTVowfpHy5GwGJk49A9rKvSf8U3kk4dY/DZ2wnHl5iPMOgJ6fKrGR1ZYl2VmYvOp7nsEnww7j55HGtWITr6y6vMZFgfDVg9coiVlR4zwxmSV5pKcbkL1jC3cRq/e4aNfTu4/chhzj12hJqEBSMqVMMhQR0bldE3kOxplmsW7z7MyszqYx7ftbV1nBNWVlYeU9QlSaCyEZ3YwTfLRF2nScssHbyNpaV51q0hLK0jKujaGhpHMHREa7ChEn//T6gGg7JOZYXhkG4WlpdP03vtS1jveY7edRfdnMijISdUkGYZyKSwg05eJYng4k6cGzLqjlg4eAQbRobHFjl4153sPnEUGY3obigWSpqtPnSYeSc0XhmFCE2XgCegzAxHpAO3cviyc/HSf8xjq6qcOnVqMncf7bowTi9vbGxMIwNbHd57cs5cfPHF/MiP/Ajvec97GA6HPPe5z+W66677kteLCIcOHeK3fuu3+Bf/4l+wa9cuduzYwfHjx9m/fz+qOkkRXHTRRfzUT/0Ux44d4w//8A+54oorHvViuNkZMDOe8pSnTD5/fDxf+YdlsrjC+AW8ZogemgGnd86zVq+x9+orOPWx3QwR9l5+MdXFF3Oi2y3EwF6H2coz3DGLayK7Fk9y2jv8rj2tMmDGSaDjKsK5e1hPI8659Ono6jKrzuE8DAWydOjvvZQ9V15TmL4Yo+4GUNG1bimjW+lxYu8MC89/JnPPuIKTXUc/eujtx/lb8S7T3buLC6+4itztYmYECRNuAnwpn/CRRj63jO4rrrhisnN9NGNrVnZ/WEbp00hmbWGGqtdl4bJLmbvoMkBwyVid31He4JR83j5ifweWTjMHzO/bx/xTLuH4jnn83CznPO+F7H/m12N3387hH/xxdu27mB1XXEHtbuHSp1zGXb1zSCTOv/oq6MxAHHJodo4ogb1XXsbuhd2YOVRK3CagVBdfCt90Laff8ttEKdyAam6W/VdfTTy1xpCK/edfQPWUqzDxhUA3Kdco4zgWf5rUpj1C/eF4Dl988cVUVfWoxzYB0ZRuypwfKrJAJxUi6/rxwwy6XbwafmaGSy+7huAWOVIJVdcxd8l5DBcW6P3vP8KsKEd+8P/DzD1HEGB0zjznfMe3s/Z772G0oVz0ipfR/0cvpn/vEeb2n093xwzBKk7sKQ7bzDk72XnZlZyz0KFKs4ChVSldrDEG5+2nvvgiLr/uFeR9+7F6RN2fZSCerjcsriMkTBzZFEfDzoU9nHP50zhvx9zDnr9iYCXSVpPoWiC0aSlFOHXiJE5gz5495fo8ijXGgAhUFhGt0HqVIztmGS7MsveaK9k1u4CThN13D/c4hd0LWAh0UhEWTRj9U6fJ8z3yxioheNzsLkJvg/3PfQ4XfMPXw8wCTZghSGS4WuNXRlxx0S6EhtrN4S3i1ZHxeEkl3RZnGfnEzAX7ufiKqxAySzPzhOP3YQs76S2cx4zppNLFW0YkFp5AVnwwZirhmvPPwao56v4OumYICaSwIJzRztuHR13XVFXF5ZdfDjy2qFbOmdnZ2akzsNUxDrfXdc1wOOQHf/AH2b9/P/ClN5WIUNc1//7f/3v27dvHxz72MUIIvOQlL+E3fuM3+Ou//muuvfZaZmdnJyGh8U5z879fKR6cBpCWPb45YvCVfl4J9Hq8KSZSRIBcRkJRCLM8pBuHYAmfoKOCBS2d7CjCQVYpw4//Jb3FC6iyEXPCrEFzaG8yxUUhnTxNvnBv0W13C4xsFXXGsN8n1yNicNCZRUOpYZcEQhejrTxwBuIxUfLcTnx2VFVgrROZm7uYGiP6RNfVIK6EaT0tQ3FsuMpmtq2Kan/x8OHCzdGWSZOaR7MDaMmTRgUOuhZZy/9/9v473rerrvPHn++11t77U069veSmJyQEEpqIhaI49saMOsogDg6Io2N3nK8w6gzYBhllsM3YQdBRfghioXcCCaSRRpKbntvvPfXT9t6rvH9/rH3ODdgGx8AEWY9H7s0553PPZ+/1WXutd3mViA0FEoRSA404vAixjfR8C2FGmO+xumMXB31NsXKGB1/zWs77xZ8mpRqni6B9/FIf2TkmlIpIBakgmIRNJXLwcggjwCG2QdViUwfgshAl2yYbyYeKRdGqh7BECNmi2KSUBWQM0ObfoTEiYlGr8PA1+En3TBYq6sB9/9B8GWO2n6lPa26124SNUASlKZRoAwNjsi6+LZEUkGQo4gBSx3c3iWQaoinQuV3Q64OU9LXBGIfYAttfBBFmxqHVkNQvGM3Ps+AMrqOH2j27mSzPsVBaoKBzlaaMhkjCSE1PSyahR+gtIs5SxkBbDaj3HiBsjOivr0Azw5rIoC2zUZWJJE35s8uT8jfuXcl4AlUBjYhMQeZyi4FEwmYAHfqPmlug02TI92TU0FOHjxacIbgOGBhHpDDDp4aYDINJZg/gBdWGaAa4LiY0WtCWJbFXYQa7wFgKE7v1UtDTJosGkR/1SIFRmDhhHoONBlIBeJLNzpm4HpvBMrdximLPTpxZwMSGZMBFqBKgvlMcNARNxJWTPPR7v8fwnAvp/at/g7YJU8bOqFu7gFb+j/aFh++1n3aL6x+RXDyax6M2GNj6oG+44QZuuukm3vve9/JjP/Zjf+vBvdWbe8UrXrHdB9q5cydzc3O85CUvYTabsXfv3m2Qyf+bdMRPtvPZPihVsyyqagcey4Y6Z4dgXUVx9DQy28DGBGIoQ7YTlqQYk1HJoZ3hrVCIggMjJX5xP/WXPZ3iTX+K7Byw6+ufjboapAWjlGkuMxK2+ntJmMbE4nABwTCzsPBvv53++U9i9PY/xEuR1d86hLfthMgNWd43XzEdT/7s148UPU63frfKFu4djSlX1ztkvuummaCEkGgU5IJzueobv5H2p/4z9rb7OPnxWzi3rXFNwC5m+p9TQdMyBfOIC6jrkXQ3QQZc/IMvyuCzskBliopDZMsRxp299ySUZpbZHDpEUoEpsj1sitKxPBJBI1EjaNgGtBkUEwVRc3ZSTQahbum/P5LbnNVsOrM1gcO2RrUlOoc1FldnB00kA9g0GiRm2WtJuX9tOkqlsYapg/5wHmN70BkSESxqBkCV30gLIFPSdn35lzH6+m+iLucIVYXYhNMI0Wa9IJO6A1XyaSgWX5S4Azt5wi/9V2a/+Cp469szMBeDM5aGSGsgbqmA/X1DMw/HNZ5ivAFLfWJhsSQsNlMp/9Fw+a3NWwhApYKj2Bb8cXQdoklLAWhIuKTYps0KH9oFa9bmdWcsSQyurHIKIbZj/0bQEpggdgN0N6IVrms/qdFOQluINmOrohbZa0MEoUTKPoRELMCUgppc7So+BdIiCoMIdmXK/e//ELsvO8llX/fcvJ8nJdluF5SzlMfPj3+68aidz60+0MGDB4kxcuGFF/6NDPHhrxUR9uzZw7nnnsuhQ4cYDAaklNi5cyfnnHPONtXw/81A4O8eSVNHL1OIMWMAPqmqJaRqgGsSZZMwUdH1NWxdY2ctBkOK0EhCHdTDKlcA5i12boEzi3uRp30hJ/cc4PShQ5hd52CkJEqklcm2idE2ct056sVlfNVDXUFbGPxll2GWd2LdgEoGGG+JZKnZrJmar/ThBWul26wewQrd3/arRcnzqGRpQj17bYRIoYIPCjt3Ul55Bc3CIlYNw1kDvsHUDaYo0cJkRLzxSCFQeGo3Q6XOB9GhPchFuwhua0dMWdFOS7IqoQARiYrg88wogCUO5tmQ3K5IoYUUiclnwFiHRZFO3F22fv1WBKAdCES3fBQfyXBAUZMIIogPrL35rZz4gzdghdyekoR2DotZRL9DvicQrxnYpgpOSJVhdVAw3buLWA2z+FJqkBDBVYh01bOtT0sUWe4zuvByJjv2EgpBRDFkq1zRLbvkTK0VhCSWEcK0P6C46nJWz9nHqDckisEf3MfI5nsiZeW/fygYyL4BifDQUR589e9SP3SUAFnx71OC+093bAfMYvLvRMC4rDpqZPvZmdz/EMxmSBsogmKaNge4qdvnrMsWxtaSjKGoSra8QgQyMwhB7RSVkMuBmlkcJiliWkoyeDcgoKFzc8zVNAYDZoMhNmb3TykFI5kibR4+fSbvZYUqdtqwa+pZHM8woVu8xnRaoJJf/M+jcv8ZHY/qyoBzjv379/PCF76Qsiy3D/KtPvLDS/7Oub/x/a1e0MPBOzHGT+rt/z87up0kxQQxZbGZpJlGth0NZH636fewzqGxe7BCQ9G2mKbO1EMRvM1cdjfYQxrVaCmUT3osl7/6FyjOOcD8Ey6HpRKzaymH5eJIYokKRqRz2FHScI6n/egPY5d3wvqEYE02khnMY+d24nbuQdp8yGZwYspZAh2IyZhsoyrghG3ho0dqdNLrebaUPHedAU4+WLutURWbIoWPaDRQDGC4RBwsIFGpYgv1jDSbkXqOmVVKVYybQhGRItCoYpLDtEpblEQbsWowOJJGjCGXkbVDL0tApUTV0Ugfp4qzwq4vfwb9Z3wpk3e/J6tRxkCMgRTD2apQd0/Jdqp+Wyui67VuHSbbXzwSQ5TY0QldCBz/s7dgNqfs++4XkKzBSLYj1q1IsqvEpBBh0uZ7EwFraAvD4PJLcY9/Es16wvQKTJjgtEFLC0REpyQWiQqWBIVn33d8G9qEXKbHoeKgaDE2p5epa71ZBBOFUhxBLKE/zznf90JoIs0f/wnhK5/N7O3vZnjkOEYNI43/oM5AxsIkRkcf5MHffR1zz3wm/QvP78rsypa25z9mbFW0FOhMCElFbn+opmxdHiPjoycxrc+CYilB3W4bmyURMBYlV2GwFnGuu6aUAzZ1GfeUJaDyA2lCbq0JKAFLCzqkoMDEKTBGfJmDlWHFOd/89ci73kML2e0wCS6Zs5gqgWgSiNBKxFrFaaC0EbWR5ITQtRFdlkPkUZazPSrGo+DU+9vHFrXwT/7kT6iqiiuuuILhcMiJEye45ZZbeOpTn8pVV121jQp1zv29Wf9WNWHrNY8W0EiMMcuihizks13i7lrGCUHn+rRAr4PtJCLSzJDW4SVlKmGnF9Auncfq6hrLgyHNwoDyCx6PxIq0/xDRKJaERDA4jjwEKU248KIhxuQNzpuC6pKLwRS04/uzImJVoKXDzw3YPLiAKxVJLbVxGJcDMZcMRnPWFMTkeEMha788ctnr1qa6fTAmRZq2q7SkLqnO5EpJHus9ZhZAephiDrewA4iUYYrefBty6iSx52gkWwY4HSJmSErw8ZsSD97guHyvwSzCfXdFnPWcf2GJSEBNQlP85PsVmDV9PnzrhC+4fMD8QDAH92Euvoz0gQ9QquZgoGkoRPK/l7OVmiAhA9mSYsVudblz5eCRnVqEXI5WyTzYMm3Qb9vu8DfZQjd1Jfqt7C+2lMmiN92KHY/AFuAcTeno79/LxqH9bExX2OMc5sxJSmuRYQkSKE0WKooBxASM9XBoD1ENlTakkKtexs4wUTFqSEZIaAawJehrxmtYUyKXXkR9ybls9vqwZyd+zzJy5BhWbBbZkb87GJBuYo0oQs2OekrZ+hwz/1M4SEm2bzAxUzWDRIIJmBiRkPAxUUnCTFo0RVwIeZ/wfht7pwgURVdRsKgzYF0ODFRBIkmUydTy8esN+y9UQiowUoMpUUwH5kuo5mBKtWVzYFg0PQQhzg/gkguYFlmh0LqKJH3GJlKaSJGy4ZPXvFi8U/q0pCLRuoiWineGILmlaFW3q1z/TFr5n7HxqIyvtmh5bdvy9V//9ezZs4d3vetd/PEf/zG33norz3jGM7j88su3I8/PZZ5o9hSIWZgodhngtlhGVxUe9ME6bIwZUS6KndWYyQxD3rB7Kvh9e+l//dcQv/bZyNw8DouaOdSUbFrL1FiQFlVDjPD7//PD/MqrbyOEs3tbwpDKfhbGSQab8iaPM/i+ZWOnxTcT3Kimii2RFotifMz68zEr2p+1t31kg7KtCvp2ppz0rM5/zP4JkAF3mjxGA7atc6WlKIi9HmISbv0Mx3/+v9Nc+zHE5kBARCEOSKFA+vP8xqse4DdfNeLMSUUi/NzPfJxf+vnrSNHik2BcQrekmgHIlM87bl3he190NffdMyKJJzohMYdIhbQBfCLNmqy81xnVaNcKsCFQhpZKU2ahZDf6fD//BGfSPzS5JkoWxSkSbTUlmSbPd7SYoNg2bWsDkDyFCciD93H6V36V4doaxhXgSpKtSMU87mlPZf7ZT0dMSVwf41LCliXgkAg+KDEKmhyqBa1xRGOgHRBbS6tCTZ9Ifws/SRTFVkVWNNTszScIoahIc3NsLM0zuPgyEAcCjUiuxMW/p2zVZd+igloPpkFixGnWtgD5v2yB5cqVzDzDVjEmYSRSrk+QSYszQiLBaIJaRWK2M1RVtky1jbGIK4go4jKg0fV6dGEcUJCM56EjDT/+gzeyMZqj9p1jJAavJstp6xyNFBAV2b+fHd/xbxicdxCDEjGU5x3CPeEKkuuRXJ/xjl3oN3wVzfIC0TqSZpSHdJodNC0S49nOEbkVWZITDiTl9ft/M32fH39jPCorA1uHvDGGpaUlnvGMZ/D0pz/9k36+leE/GjAAD1/U8vCvP6X3f/ZPts9J7Q4vjYrEdDYY0HzMqYDt93HG4cIUJR9UdlpjjcMktq2Kw8XnM/flT2fpS87DzS8iHtRlG+RFNrFhkVBXHL6n5sJLBkzrBVZWF/Pv0HzAGQcRm7PiAEOf8oaflFQKbljiHjpF/PDtmHPmGT7uPEQcfnPG+NQqy+cfoOhMawywrWP7CA39lC+25pMu4yZtUUQhpRY1iWQCOMXbBIVBUqA/3qC8+z6a6QxB6CUwEhGdkYoWL5bpaMhGFGpRgigrG3NsjjYJHopCclRmwtneiFqESL3u2Di+jzhxCE1X2p6nlB6sbJDWN/J1+vDJB0xSTJvYfOhB+gvzlDt3ghjU0KHZdbtS8EiMJGTmyXYVIgc6GRxqiChl1G04gxAorFJOxwyDp9m1IwcDhcNKAVqx90u+GE0F8uFbcAL93hzW9jKzJhRsrgfq6RqXXLRErQOEgiooRx70pCoyf8hw710bXHbuAsWgO/RTxBaAiahoR+FNWC0Q02O8vMjgvEtpZvna1ysImiB0boFbq2i77SLbX4tCLCKty208ieCd/RtunVuyv39jN/gbm8PZlo9JkdEn7mHu/Esph4rVSHXsNHpsBbtziaQJOxpTDPvE1D2DKEFy8yt2QkeuqwYkEaQqzyYTCImCew/XnDx+kI9+qM8F54Gzhs0N5djxlidcKqxtFtx9uuUpFzrSjj2c98IfxhS9jM2IBvbvxT3jSUyuvZ5hMUTPv5DFn/gejv3AnZi1CT0VbGc57axBHzzOwqjFBnAxs1FEBBPzdScTCFJQPKJ4l39+4//9k/JvGSJCURQURbFNe9oKDrYofP9YqtlnenTQsQxF2jrEVR+2weRHMnal32wD3AF8kuK8YH0NmvtuKikrkilkJnKJ6c+j1qCatjFktpmh7QzvJIOQFMq5Ptp3zMrlDGaTlDEFNlFFsF64+66G7/8P76WeRtooYHpE6eg+aim1Cy4S0JVeBTB792K//hsZ2jnMn7+NIy9+EXf9wq9gUoEkWH33O7n+v/98xn6RMQTbh8gjOPlWt4xYOrtWDdB6XFCIGdwmpGwP3GYfi5Bydi0iiDVghEETKEdjTCox1lGIz0FE4YmxRgvJB6BRzIB88GBIAUrN72tFczYnEyQmOv9YjC1w0WZTHrUY6WG/8LG0z3gqpw/fzfSGm4htg2pEQxe4CPnQn3k+8jM/w21/+kYSAZVIwhDIXgqPdGkgEZkYJcWKKswhxm8ffNqtc7UWlSxJq21mIJjYIsbkNoE6rGaqWpQ5fK8HkhUDyy/4IszCPEhCbMXb33Y/P/VTNzAZKSIFJkJs4Jd//Rb+4HW3MV5r+b4XvZFbbmtQAkah+sInUDznK2Fu0LVYMjhQkkF9n8L20BSy3LMKNkZSavJcqiepx2tAO0Bh0lx/SZLbXhIyOFmtQYxkDwnJdNwgiUQ+pFWVoIlWR/gY8wGuEYJSo7Rbe4NGVD26doobX/bz1KfvJUpLESLNdR/j/r94CxI9zjcQFOnvQFLMGIXtaDFmJkoVEVGayZhgDW05yOZHnSR0ioZ3vfMoK2vzvOoVR7n3nhqL5S1/cj8/9iPvIwbHLdeN+U8/9kFaE2nU4Adz2VBLEkY8xpbMlpYzjbhINMMe7F5ms5qnPbA/Bx0KVCXRR8K111I+eAS1FvDYmB1YE4omBeEzsHb/+Y1HbTCwFQRsBQKnTp3i1ltvZTQaMe1UtR4tHFHd+mMLwIZ+8kJXT0t+Pkm5JdAKJPW4Fgad/GwA1ORgQDSXDVULKOa23dyg4423U8RPUYWaAisOkwLOthgGBAOUeaOKAGmBWMDaxHF6bT/aSrZ4FUMrCQgZlaxkhLiBaCNTIwQH1eUXsO8//BCFnWd45jSHTh9m8eQxgpQkDPNnjnPo5L0dUDgrJAjyiK5QIW8qW8zlIFl2WdqGIim0LdFmQydpEzIL2aMgCVYLnBpCknyYNSlTPOkjlSWZBqQA24eiIEgGesbgaD04bXOJNaWsJ0AklQNqNwANpFbZ2IiEKLROMaZkszFsjvv4WNL/mqdTPO9bM4nuoSPEEMEmUuxAtJJd+xDYf9cnmHvoKEmEtC0ypBgSj+SOajRhNFIDUStsnAfjs55+VIqQcET8ZAb1FGY1Ntosa40iFAgdoFJb1IDRCoNFnTIZLrH0r74duzwAaQjaMJ3u4OjRg/iQbamdyb4Ix1cXGY/n0VZYP3MBDzzoULI52e6v+mp2Pv/fQX++M1cirz81aFky05bgGtaaiEqPxRAxbUSCRVqg1cyAOBvVZ/HuDrxj2gKbLMmaTMfl7JncSupi+0zPDb7Gjk/gfMyQhFz+Y7YlGQ4ZLKAeOXOG8x96CLP+UC77RxjOJqTNE8hsDKNNvA/YcgkbfaaakiuDRiJRE9G2WUgpBqJ1tL1hBld21yhRmEwMPg4ZT/cwneXeY2x2sHLmACGWHDtasHnyIJtjpScJIw2SLNFags0gxML3sDESmaCFgJujtXOYyy7NdtPGoHv3EAvDoK3pNdMsWTzdAFWimjyfkpUGrMrn6wL/xONRGQx86njwwQd59atfze///u9z4sQJ/viP//izfUmf1rDa6fWkTK2SZLYBSJlhJiSgFXJanyxTCUTb0rRTijZ7khfBZMpQynRDTSnLCFcFjogJHpegKCqMesrZjEErhOEcU2tJ/X6uHrAVoOjDxH8MYmBWQwwFdQ2+dUiylJqR2WogGs0mxZIrCqGzoRNrkX5FqhzRZppX7v1tUZgU87Cqx9nxCLcJJAcf2u3OpvWYpu5cDMM2BS2X4TPFT1URk6svxaFzmRQ9ooPgAlEaKHMAZVTQwjHat5tYzWM0Sz2TsoWrOkPtuiBOevjzr2K0/zKS28G112zwbd/+bu59aMrHbpqyMnL84i9t8kM/fA/3PDRFdQ5TLtJLgZXrb8BOxxj1JO1EpLoir9pIFROlN5hUYVKBCeBQgsTt+35ERlfNmlMoQgdy1a2+b0RTwgZlrvZc/3uvZ+32uzEdENap4oxmpso2imTrWhWS0vpEmlumIwlhLVlrwVb4lHER+USDrOFoMU6op33++DV3M9nsjKKkxMgiGreK953WgwSMHaNliwyGjC65gvXFHR3+pkRTn9iZchl1OdCSfH8FqevBduvqkyjP+ZqilW29BxtBomLOrHPHL/4m/t4T2JCrB9E09EkUQQlKbqRPGx78jd/BnTqGrG5gU0GMFmsEDWMeeN+7+cQfvBY3GeOsor7JM6hbXSiDqkOTIarpAq4CeoN8HwbQHD74NmNnfIw0EmkE+st92uCYjmFlbZ0H7rP8yWtWURViMqhAi6WmBylRhCZXR+pJBgVLD0RIgx7ewKSAZnmA14hqpKcJd/X1nH7dmyBGbFIKyZeZtsqHnx//pONzIhg4fPgwz3zmM1lYWGAwGHD69OnP9iV9WmOrZ5pMdzjpFlB5W7QzHyyAYiEqAw240TplCpmrbzJ1yCUDbZ1LiVHxNhLmS5JLaIzURpjN9Yl4TDvBW0N81pdin/oUamszqljObrxGc5aUHz5hPMkmKHUDdW1pZ5oR4QixA2Nl1ACIRkyKSOp4wZpQCzHlcjuati1rVbsS4MODgUf6ge/uSbrQy5CQusWOxpQakPE4WxZDBmu1bbehdjgCgV3/8utxl16OUcGLQhmxCEVnHpgW5rn8JS9h6covwc8cTehTN4Bm4FajmpE71nLg+S/ii370x8CV3HmH59prh5w44bnmmoBnF+98p+VP3xA4eiZmvwcsThv6x45j1jcg+dzmEO3mH5BEkXSrC56R/dC5RT6yvM3UlcN7sykyneZaT5d5q4SOMaIU4xHrH7wWf+9DJA14lwkGxpKDLunWB9uYP0BJHTjVWMmqiynXE3xbUDfdIbdlvZ3RjDQholJx/XWbzMY529aoZ0WztrQDRAk2UoSWhUaodhziCa/8Rcyznk4IEZc80owyJoRAbGYENK9/VUzsStnd9f5t+ifedpRGyNm+KM2pk0ze8i786dM5UPABO8uZshCJCiRDe3qV2XveTzVZJ41mSLAkn0WarJ+QPnYd6cPXUozWKHqGMrQEVZKzGGM7B1SDBLL4FbkfT69ANKCdEIDm7hgYxUfDeCZsTpTNNjCeCqfPBKZNy3g04APvCjStofEVSQIF0FOAGdPejKlLtLOGlCykPsEmosuU4toqaW54lu0SE8U99zK79kYwHkymYm53QB/hJOGf4/icCAYuv/xyPvKRj3Dbbbfxm7/5mzzpSU/6bF/SpzEyaqDVwEyUxihquqM45QdUraUU6NHhH1xJuO9BHvrl38Q++FAXRDQgmWt+5qYbMnUw5c0wVS7zzQ3MrKXpzZEkIb7GG8f0wD6apXlSWW7z0LfGwyFNCZjOsqypb6FtC+q6K3Maumw4UaSE84rzhl6w2CioV1QNhXGkOmMcXFJMSl05MmXqU0qf8Wc8gx8VGzxn3v4eRjfdiow2WHnfh5A2CxBpSgQfEDp2uM2AK849SPOYy1AtsrxqhCI6wBEEWmOxF1/BmUnFvffOOHXScvttEzQVudxJ2eErgEP7KA4uk0RBK7zfxx03eq6/ukFjibBMCgt4nz8jayOlTbjD92DvvZdCYqa8PUxrwCTFIsRCiTbRSMI7ICVcB+Z7JIeGwO1v+FNWP/wBSBFRkzedFFGTD0/TzlhYW6doW1oHjeu0EExXgaGTleVsMJBCxFoQ6xGTEByaSlQrjh51/MLL7mBjrenuTxBjUTWIMQRtibFP64WoiSQzsC3gc/deFSVjG+LOg6wu74FykeKiC2iXFjEOBsce4MzP/DTHX/ZywtUf4bZf/V+40Ubuw4shGUP8FDzgpwYDolmFb7teYBPOKottg7gGX4BK5P7feC1r7/0QSZq8+lTxK2ssjkfYUGfRMXVIyOyd8qabWXzL29h1ZgPnW6QymDaQRGjnByTr0LJACLkUL4Eseh1IhSIaEGnA1oQIPpQkqRmNDX/wm6t8/4uOcPOtSl3DxtoE31bAkBR38frX3Mlv/8ZhIjOsNjg/Q8Rn0RDjqHftZG33HqAkVFnXoIfDBMFqSRWyaFKyUGpkEGY01ATT4UuQDL78PGbgn3w8KtkEnzqapuFrvuZreNaznsXOnTu58sorP9uX9H88RIFmSmGUUFQ0FIhAKflnqkIj+cEwqmCyVG1z/xEmf/gGdp06xeySc1A/IfkRqGftxps48DXPRpJQJChTn5QgqtArl4i6QPQtUjd5E52fp1mtiGIxYjHqzz5n3Wa69f9NEwjJUNc5A2vaDii1Ve7MhQHEC9oq0ZQ51zIZ0daXApnUnWkOGQhhFG19VpMLZ7PVrWt4RIMDBULOUEmB+ta7WVgfU8SG1bvuQRuP9AekpMQYukw1AwdVhFDNsfjcb2ftnX/FzpmiMoehx8QWlJozP+/6nNxc4cixCYF9HD/eaQFEQ+kzd1pF0R5ZJ8BbJlOHYcAdN3tOHu3BNlHL42tyg7gMBJPor2ziHziS+9Yhb+yZj5XLTSEE1LXYNMWkkloqCk2YZB5hTIYgs5ZT730Py+eel4WA1G6D4OgEHjXWVN5hQ01TWKJzJMm2wtLhHrYQ5XTPRfIRNKKmzagWLRAqQoicOVnwljef4j/+1DnsWSy6heTwDbRtV28Tx/pI2I3FmoLECNECTUPUKD4ZSgrcs57FVY+7iHbnIj0RRB02WfonjzN5/WvR3XsIS8uM3/x25Du+CRaGqFiargpiyOvlb3MpLZPmx6K7vyiCFAaxSqTGG2VOAqM3v43mgYuZ/7KnYYsKSNjRlCJkdkaKmdsrMeJCZOHjd2BbQ3nF44ihhbk+1BFVS1icx83WoCqx0ZNQpibSd6CFxVcFJINGixpLE6Fpy+zHEOf4qzcVOON54hcEQnA0taeuLUkjg3l49ztOcPrMkBf/QAlGMA5sM2S4sUirQ/a98N8SWkUrQ+MMakuiCuIqtBpgsMQUSRasgRCabWG0rdbLIw4s/mc6PicqA2tra9x111088YlP5Pzzz2c2m322L+n/fKgSHjhKe+snGISGkvhwxVg6wS1ymSCwpbnhQsuO2YRe8pTBox++DjNap4yJfQ+eQDfWQTrsgZb5l/SEdv9BmnIBe2aMX9lkPBgQ5+eg6iNFH4J2oLqHh91dYVYgxkRKQtOC94667jDU3TVvUYCSQBgMONGvaAeOVOaDxyJIyNUENdqp0kBofRYUSZ8i5PJI4gXYQt1vlRwjvbqmFzxOE66poaNrquZ7p3CoCEjn/2cK5IJzmO5cIgzmOTIY0u7YwxSLJnAx4SKkJASjmBiJJjMXipSoQp6zKJIV2pJhsiHceHtDCMq11wyJMpcZDSSsOj7+scS4TqRBxVrpMFJgvOas228V03PPXNWBCDY1yAMP0V57HWXshH+keEQnWJLCiTPsu+8++n7aOVNucewFk/KBmWIDYQrRY22JpegwKJI1Kjpq5xa21mwp1233DfJaVRXakIimJOgyqdOIQCFFw713VDx0GJQ+PsKohtEocf3H1olxmJkxKkQMd93hOXI0EHcvEq54PLOeA5nhi4raLRJCpG8DTsdIs05FIkkikKV6C85urn+bOZkomNhl+YDaPCcSwYrBTGeUJBINy3HKztsOwx33ICmAS8TpjOS3goGO/aABY6A3C5iYgcQBReeGSJ1L/nFxkVSUhH5JxKLiSMs7aI1jUvSpF3aRpMfKuuGaa8aMauXE8QGQzaKEBaJf4r7Dc4TW0DaRts0BvU8wGi2j8QB33Npw/GRiZAbccuuEzfX9jIsF2H8+8aKLSVUkBCX1hoRyyNHK0S4uohR53+o+a9dEipC2d6MtCeOHJyCfH/8043MiGCjLkne/+938l//yX3j5y1/Om9/85s/2Jf2DI6/13H9+6PV/xnWv+HVkNKVMbQewYrv0nul6mmmDmpHLyQWSy9a75bGTnPqvr0DvuY8+ifSxG1m/9iNoTARRws4BTWGYWUt65lW4r/pSTBMJsynuG5/Jvi99GiKW0EUhW5irDCKUT7roGBNJhbaFECxtV0bfUrBRhegcUwd+/07Of/6/ZsdlF9A6SDZnSVv3H03qSuIQ2zYLFG2hwR4GFnsYbGybcKFdwPL3SY88/PX52nQbRKXdN71ANNk8BYlIzBS9nIJ0/WYlS7ymBGW5naEiZP31oiRKwezQAfo/8DzcxRfSR3AaMNLgQsxAxL5nUEAySjBQSIvrpGNbJMsvBcvNN57kjW86hnFDPn5XzpLUWiKREOf57684zl0P1cyffxG7vuSp1ElQnzd77UB6oAQ0l6uNhabh6Jvexo0v/XlYW0OsIW4xC7bn52HV1y0sx6fM79k51C7DP/s5bM3t9gcUE+vv+wD9226nX09IVghbJspJzgJlg0dji8RAQUGpXTZv7PYB+rddR+qol+j2sYsPDerqbBPc+TfkSxHe/+6WP33tJsHPEVPJxkS46aaaH/3+v2S0BpoKEGHmlf/56sO85y8fwEvORhd8ACYsffOzSd//YtaXd5LUEEKBzlI2TEpCQrLaY8oCvgCE8EnOj2y1mjQDbnMtR7ARqDOC34w8/ZmCNHgzhY9ex+Hf+mM0RaJEkq+zah+SWSwpAIG2c6tsrSVowquS5ua2fR/SwgJaOMKgh3c9mN8BT3oqYzfP3id8Ibsf80SSq3jHex7kP/7Ihzh1Zsqdd83QNIAoGBMwdsrKmSzD0bQJH2tUlelM2ZzAbAa//LLr+OBfnWa6IfzEz7yVO/aeT//rvhJNjp4HSWN6OJIpGPcr5r/5K7AXH8pttWSwSTAJbJ1wM80lbBWIeU/02ws2detQz+4Ln28f/KPG50Sb4NJLL+Xnfu7nts2L5ub+bo/xz8bYUiHfWrSIkFRJBIrJmOHh21k4cQpaOoBV6v5Nwo7WSbfeTXrsJTA/RxAlWUHpARUiI+ysZYc/jd+zCAiVr5ncfhdDTUTrqJcKWlPg1FI+8xksHLyEjT/7XegN2P/CF2AuvhzXOEIv6xmQhCLanJGJ4lRRDDEoobEY7xnFltZXhHpKiAFSgTO516iul298YYFzvucH0F6RUdAGTGUzklwLkoL4mnjDdVTXX03dGS5t6Q9aMkUyIZ3DW95st8hxUTVrsf89Mx/p5jQKGCUZzbQniTRd1z47sGX0pkogWhBXEUwGWSUPEhuICWP6GWBV5k3JCqgpsKVhc+88537Pi2HH3qyqaBTEg0mE2jI3tBirpDZnPr6DdgeABOMN5f67PaMUaRpF2mxbfd6lwn131DhpSRTM6j189KOBq77jIMvf8C3M/voWjJ/kbup4jdmHP0hx1RWk5T1YMs/bBoOZtcw9eC86m4Iu5yl6mD3kVhXKPCwADCZrRbAVo9lERLu+rXlY1JgImK6642Gyjn/vh+lf/SFm9YTUKwlJ6PtA+4mPI6eOYTDgHOVMGVhFU8QgGDGoGKIt8nu2Y4JkcGtLjdGCRMFq2Sdah0SHN3Dr/YaTZwqsaUkp4CJINNSNcuzYmDbu54GHArGdowmWq68ZcWi3ZWNtH741KG02MooDRuvzTFcrNEwQN8DUDrEVc8/6UoZXPonTN34YOb5KFRQzaajaFmk1z13sND80YJNDE12nO2fwEYsBkslsmlxFyLwdjUqIHkILRmiTYqyh1BkyXs3iYmVBbGdAwCH0P3En6WMfgjCmTSbLjpuEibOsWDmc3wZstsOdVMUxcBUxBczcIs3FlzC6/SSXfc1X0fb2ctONkeZkj/FoL1GFoAZDZgiEtMmuuYL1cYNEyzhAEwKGxL13O8ajZRYXS46fKWlqw9HbPQ8c30/9+As49BVfQBAwrYLUJJegWGBjfpELX/AD+FtvI0kNErKBGolitkG84UaKKx4He/fk1le3HNOJk3DnHcQSiiufgg7mEDJFuP1H7NP/3MfnRGXg3nvv5dWvfjW/8iu/wo/+6I/ymte85rN9SZ8ytoKBswSp3Kr2tPcepr7hQ8zHBqxFxWbQYMyOZ5s3Xs+N//6FzO68CwkWTQ1JA0aHEMucYWAQrZEY86GbWgZnNnB+iialt3c3iwfOwanFFMsw6BFNJMkAHewjDQY4VWw/QZWIdoyNCR8SQSJET6QlpUhoSyQlVmcNbahoa1BMljAICe3oSBUwNKALS4RyniKCMYI6gyMhDDBRkc0xd/3KK5EPvBfr24yqpgMeqIL6nA1ppEmBsJW+xpy4nzV8+dvHlqBLTr9izq4TaGiQ2GJTRMgCQASHpgDWIDLIfVgNnXXqlBme5AZ5Ey/zOVpGzUh2m7BFCW5IMEqStjNdMng8vlb27R1z3mMafN1igGCzN4SKUqhy27Un+dGXfIgT40Bp4LxzhLLyPO4yw7n7PHv3r7O0u0HU8L9fc5r1UYUf7KG1iputUgXB3Xs3d/zETzL76DUUjWLUE5IFO8DO9Rhos800MFtFge0/PrkysJX1b1d+up+lTp9g28VXO3c+tlpGyvTwrTzwgz9M+2dvwGgglhWGkv6s5epX/gKb130ka+QXBaZVerP4sA81z4mvKtQBOkO0wESHiCchlBedz7nf9R1UO5fR1jAaR1760zfwljdWaJPfy4RMzbnrgcDd986IYvnwtSWz0RJtM+R3f+swRx80TNsFWlUSNUZqtFVmkz4jX2ABIzNSD9T2oejD4hC7cwHVAMxgvAJpkvEu29INEUmTXBGazjA4SAHR1AlOZ5yIVShi1wc3kFKE5BH1xCLiUkU/FbR4UtHmFgKOGD0SGmwI1K//E07+2isxkw3Kch5XDqiiUoQZQoBqSDCBuFCy/OSnEEyJ9ipS31F8xTPY+Q3PZs/znkfYtcg193l+6MduYjru4bWPKMwvKOcerClosCYx36vQBLENbPqA15b5fuSeuxInju9nfWOOY6slqzPHb7z6Fh66q8Anx6xXEMsaqRwy2M3yVz2L4Rd/CQsvfh7uwsvRuT1A9kPIglNCOVvl4z/1UqZvf0d+oE1OBiyRM29/J8ef/3xu+P7vYfbQkYw/6gxcw+dbCJ/2+JyoDFx++eW87GUvA+DYsWP85V/+5Wf5iv7uIZD7npqFP9ra044n2F1pW/oWzX37GCJt4wkrK8S2AVHKpkWnU9p20qGAJWceAsb73EYAYug48gJmcR658BDxzpsYiEWrkmiycE4ql/B1jyg1rVmmbgd4eQAtZsQwYDxSFgfZwnRaz1G3UAc4fqKm8QbvlaYWtARLmYMCt1VFF1Q8QrWdgVpjMN01mhBgPMWubdImmzPhutmmGxKB6DHrK8jOJaIrttUNc291ixT4dz/5W0BFzco+CIo3Sn8cKHwNi0t4YzGd7avxOR4pq4Je28J0Ay0NOl3PgURVEFoBk3v4+WJC7ttL0VGgUof6FlT7aBTW1lfYc6Bm315DGz11o4g4RGxuARFYXRVOHh+yvjLA+5ZnfPmAD3zgKF/4tAG2dUzTmCQHeffbIhtndjGdOAZaEZNi6gn92GLvfZC9p0eUZ6bYYIihU7hTsK5E1EDs+vHkqhWdGZSQ+f1dFIQAVg3BgnHbZFPcVnk6W94jSbed/1CYihJSolyf4ZoWWwjEhLOW2Hp0Y0yijwkROz/AGw8pYurN7G3r8oyoM1CVECuQPi4UuOgITkgX7eOC7/+3GFuhNiFBmK0ts3FmMR+Wss76pmXaCifWama1xTlD2yaMWJxJ+Fmf9TVH0n2Mpo6lep6qCASESQOrm0IKPapiE+MiiR61FJhKYFBhEWxMyHiM04CEFiO5t2enDRprKOexTYs2becoenYT2JICp/skQLJNdlSkzUFBeWbKQnJsWM4akCUlhhaTNDt9TqewMUZU6V10AfG++5CQi1K2Ttiix7iwDC84SPXFT2T02j9C5yrqxZ0sPeer4NJL2XHVFxGrAY3xrG0Kp0oHlOANS4uJSy9Y5aGjc6QkDJdaOF2gKG1U6naTK6/awTUfypbdo5FhMj3IbDxkbbUFlqkbISg0E0uvBIpFHvOCF5Nkjp77oixhLpbWDGllgsaIFSH6gASIa+ts9VYEsiPoZEZ5egWng237domK67xBPj8+vfE5URm4//77+Z3f+R1+53d+h9e97nUsLi5+ti/pbwz9lC+MQqkGfMpAopQ6Wl0nwxs0q2wFpfAt1gfUKKPb7uLeX/o1io3TOBOzln4nzCJtm8V7UtYUyDsH4BztfIU3inHZvxzjmPXmOHrK8vL/eAfT8TLT+nx+9j8d4dSJc/Gxz1//1Un+3XfewtvfdpK1seXnX3aYD7zf0TR7+IP/qdx1R+LMGcc7/uJMzvKkBRO6wzB0AkpFRpFLBuJtmUYlIYv4jMeUMTHqzyEUSLtFBwMExnfew52/+Cr8Q8cpYxbTUQOxIAsq/QPeE7YLiKLL74kqSZT1D17N0V/7LXQ2I2knrRQTNkCwFl9AtbnJmVf+DyZ//CZO/cKvsWN1Svb9M4goIi2YFjEBayoMPRDffYYlOdUzHDvS8KpffZBe2afnEnfc6vn5l19HaAZoNF22DadPl9x/34A3/W8oix7nXhI4eOAY+/bPKHs1RW/C3LwgGrnvgcjHrhsjscgtp3oK4pnechM6XsXrjFgm6gceIDXTbi0UWSs+dId9R10N6HarIutb5HoKmrDJ0pqt78Wu7ZIbNUFyTWWLmm+7akLd/f8wKkWUXL1R0BQpRZj3UGxMOuyFQ8OMohlRf/Sj+GaGdwZEMcahrYFen8ml5xMuPb+TLrZ4W+AHy8SqR+tmJAuGFieZItj4Hq96lecPXrPJTTeewdfzRPUYGxCzyaB/BmNazqw3nF5Z5PV/OOGXfv4I73nXJk1KbMw2+Yu/XuOu2xUbHUJJEEuLkOiRpI9RsCkh403K5NHQsXCMsvaha7nxd18DbYtMZ5Q+iyxtxV4Pwz2CdBa+KOp9/n6ISGhY/50/wd91N9hOWTRlTEJqG4iRSgypDRSzltR4ml6x7d1CSJgGKAfUhaNdmoP5Eu8cvjdA3YB2bpEN26denMclofLQmw4YbzgMSmoVZwILiydZWl5DpGV59wylIeEYTyyqDQsLDUXZsmP3Ks6NmE6GhGhQccRQEXzFPXfN+MWfuYPRJBDsFK2G1JUDN8CayHSh4O6D53Js5+7tyXEKtm4puorp9mYaAw7oxcgwdOZi3Y9NVtT4hzflz49PGo/KYEA7g42tv8uy5KqrruKpT30q3/It38LXfd3XfbYv8W+MT8pdlWw13PViJXQ68SmdfZCN6crgQpU0bwApMDlylPFfvxNz8ihO267U26UMIWCTYkTR8DD3O9sjYYhiSVXu03rrGH7j13C8HfD2d2wyrmtqhfe8t+bUmYo2Wa67/jTveUePmz8+ZTS1vPH/t84N10F/sMjh25appwtMxwPuuQOCBpLMUBIhJqDpTBdMx73u1M+MoxXDxJIDlukUJbL8XS/Azy9nzXVRVAS14I+dYPbGv6B56GjWAshNFFqTaAwE83dXBc7WDPJhF5FM0JPE+PBdrL3jncTNDYoEto1IDEhIUFYEZ3Bra+if/RX6jg+S/vp9LKxNMGI61MLWL8+BhDEOoQ9EYoIYLRoFI3BqZcoNH2/YveMc+rLAkfsq3vbWhvW1Ah9KvDckLVlZKfHtbq65uuDSS4V/8/w+v/obT+Vrvm6R0CoSB/SdZ3F+hrWGW2893UVVgvqIOEvcWCGGMcQJJs3YPHw3MtlENOKcw4rLKjIa0dojbSJpzICsmLbpfokMzpIAqgFpZtjg830n2X7NVvtr+5DTTIO1raeIKevwK4gPIIJJkfkmUK5tZsnksodTZT4GuOsBqqKHnxvmiklUjOmBG/Ckn/lxzvnB55MKh0WoKChwWU/fOKIqxkCINVEbUlrgne9xvO9DgaNH5gn1IqoVPlh6c8f47dfMs3v/GmsbgRD73HC98md/0nDr7VPa4FlZ2+DuB/pc87FVRBeh6aNJKVKiDPn5xRiIEXP6JKVvkJhxLUIk3XWY4+/5AGjAbowZaqYXKmdldBUhGvAG/JbwdwpdIJ8wsWHzHe/HbY6g2wuycGdCmiYf1pooxdDzigmZYRJS/pxSTEhQKEtULFoUqHNYU+GooA3YZFiioCJbAusE8A63UaIxg2atO80P/+Rj+amfW2I4FzoZ6wJlyHijRz1NLCwkrN3kh358kUseOwYSmxNBjEMR2jZx7EHPO/5CObMSCeKoQ01foQoJscL8s57IlW96Dft+4sfwxuTgqW0ZRDAh5oZfVxkwtqvOqWA1W1er1YwnPasL/fnxaYxHZTAAOSCIMdK2LR/96EdxznHFFVewc+dOXvva1362L++TxrYiKl2ly5ANbrpvZIZALqMrZH61oUPe5564qOLEUKTI4toq5eF7KFJCcah2r2vbXGLXhHqfe7kI2F7m+xuL9LIEa3AF/sJ9pKokJYPGFlUhpMAsTbj66jGrq/N4nePuexaYttC080Qs55zvyQl+QIxnXNtMyUoD7rq95rabanwsUOPB1ICSjIBa1JSEwrJeGqI1hJUVNDXYJz+Z2aBPpMkgSRE8gtNIv90EE0jOZgBhgkIThSru77aU355xJVcDkKxUVyCUGumNNyA2yKzm1MduIm6so9ETEpiiwE3GzIcaU2/SSw21TgkDR+MsmAHqLaQKUYcaxRU9VA0P3d/ysWtXaHw2HvJGidawa/ccPWPZXO8za3bTemiD5YPvX+NNbzjMeGIRGWDEsHvPcfbuUq64Ahbm6yx7G+coXWDXjhHD4SauVxAteFFMFFw1pO9hqU3wkRtp3/R2Bvc8RL+Z4DQSUiBsyUemwOzIMUa334WLgYDftjSOWYwZgEhCQs3mjbdQP3g0S0Z3w3ZEwa1Zhlzlr1bXCB/4CE4nHWujUzyUHND2a4+9/0HWnDI9sB8zi/THNUtBwRWsLg6ZWYft9TrBrIp4zgHYuwPXiRaJChqUkAwP3a/80e+dYbJ5kJTmEYaE1rG+YTi1ZpiNSkQbUthAk8UWNRdeAvP9go1VR9SatU3DZLpAwjGdwfqqI8RF7j9iCVFIVhFNFN7jZITvBxpjMZqQY8ep6nqbCaNO6c+m7B9NYbqJPvgQrs3y4NCpenaUVm8E39FaJQZi2xJ8FjzStVUWZxMK9fSSdCDOXFa0dZ0pwJL3F1fnQDYUhtZ0EtrR5/J5VVBoxo2o67NqHNbO4STijFJFxaVI4xKbGjnTWE4cAbEVChS9KXsOTjn/sjXKYoNhKRijiJnjmg+UHH+oZDAIFK7h4suUajAhJcv99ydan1thsxmcOSNMZ5YjDyof/pDDFVWuJloIzBHmdlBefhl+3znk+qKiIWJ9RFLaXmVb9ttpO8HIkWjsVJUfSTry5/J41AYDW5SjO++8kz/6oz/i13/91/nZn/1ZXvGKV3DRRRd9lq/u7xgdNzZ1tEE9m7puobiADoO01ezuEN4quUSoJhI3zzD9i7+iTKnjUned83p2Fmnf5h6lArge5VWPI5UVUvXAGZIRYr/KbQOxhOkc+CEins3Nmh940a286Q2LpLTIR6/1TCZKVIcPsHPvBDFjqmrCwXOVWQzU0eJDwW/9+nX87EsP0zZF50TnUTUEDIhBi4rWOPpPezKtMzTrqzTqKQ+dS+sKUmqhA61JNxvBtsQCZsaRur6g1YTdQrn/vRXBnMNapSvfG8okeSOtZxBq2vV13vXfXkl74iiqLWJsBmqNNknqCWFGE2vqoiUUIWu3tw6hICRBbInajhVAxev/8F5++qV/TYgKKSsERPEcPGQp3Iy1UWASKsZTmLXCz738IV7x8xscvjvb6Q6HE77iq/bScyA0CIakDWpalpdqDu6dcuXjFR82iSYSDRmgVsxjkqXyAf7kTZz+vh+n+a3XsNDUSDMmScwSv7MppMCd73gPh//0zZjZBEtXDRAh+wfm3dUguNmEu371tzj6/muya6ZkoKDVmINPwzZwEALNTXdw5NX/C6ftNkNBNftkRI1UTUBPHkcvPgfzDV8JyWKagCQhVn2Wv/2bmZx3Dt5ZQpmR+JYK1GbtAk2oUWyZ2xrvfMsaL//PY04c30+ih2qBJodvYWMFmpHnmV/W8oxnb4CZYcjYg4oDrK8qB84VJtNADBVKZH1FaMbzoCV//Za7mLSBmkTyFYXkoHrPV3wz9fIeUENaWaPyPgtUieBtwo3X2LE5gsmIjfsfoCBu+1xsyRRvqXRbhVITtBGd5eqej5GVW29n7f67MAJF7Cp+5MPQTmfY1LFlAJk20Hhir6TWLKFtokd8A/0CkwzqKszOXSx+17dAOcjA2NKw7UEgSp0SKy0cfnCKj9DUgug8RIf4RKhHPPFJNZc9dgNM4v3vTdx525CFBYeVQNVTev2AquPwnYHVlQEJS9sIx48nJn7E9dev8d9+5jBp6nCZJ40LjsGsDzOLU5exF4bM4IkZTJy6ltbWU62djkoWITK50iQdoPrRe7R91sajFkC4JeRx6aWX8ou/+IuEEBgOhwDMz89/Bi/kYX8Jf+vBZLTbJ7tAQOgyAzkb5W6RvBP5NXYrYOjUtxCTDxarGJOoJg0pCVBiJaK0xLrOVDeE1LYZhyCgtmBw1WXo3ABsCWWmDVYU2Oz8kbXKYyLEQD0VZpvnsLE2IKlhbdVwz52A9qnbKYO5BqGkKiNPeNJObrvtNCurgf07Ctp2nvvuHrKyEin3F1TSJ/eXM4VKXEUsKvpf+jQmH3g/JgTKuSFmx07UFqhvM7iymyNJXVlUhS3egEpn/Wo7itvfmwl0wQD5H0YVbJbvpw5tZmY0NXtGU8xsRNKWJIKWA8L0KM4V2HtPIHXA9y0mdERnO2AyC3z81pN84QGBIiGlRaVitLGDyXgnKnDvnZE7b3EkdrBvd2LtbmFzs0ZNhfMlhesxm+5jMmnY2AllFbnoksBzn3sog6DCMGc/1f2YYoV9B4fsWqq54knzbEzWQCJqsjlMWNzJbGNEKSPMeMSeFEgbjtYlfPT42BKSR32LeE856oBnvsN5iCO3VKSjuoEaRZqG3SdWsetjJEXUOiC7MEq3hlNXU5Dk4fa72T2aEDvDpIzVSDkTjgljsndF+ZjzKb/0C4i/XCF1XvBt2WPnv/xa7nnPh3PQ1gXBTgErRJuteA0GNS2VsUzXhtTNgBafg2gVHAZNwnSzIM1mfNM3LbEyPcMH3zfCWsUgWGNYXR3zrK/ZzdXv2WA06WOM48QxkFhhkjDenOPkaYEK1o9MefKVQ268z3HwnGdSXXAZ8cYj2JRwMaAdS6SRhJtuMqgbaBsk+jybnQnY1h4hZJ+GAsV4ZXzb3XDkJIVm4FwaTTrzKZ9Nx7YYH6LY2Wwb/yIqMK2z8VG/R9IcJBTeI76FfhbKimWJ7Fji4Pd+G6duuzdX5myBSxYxMIhQTBImFjQzGE96vO/tiuhuJPQxbQ8nM658Anzi6AqfuAtiuwsjC+zbv4CVhsIKzuUo/fiJHpVZRuOIphaOHo+EULGxGRjPStpoGMSCNhg+cv0ZnnD5MgsDQZ3HS6S0oCltY1u2ySuyNYU59TGaaa7bOAw12wHX58f/+XjUhk9bxh9lWbK8vMwb3/hGfuiHfogf/uEf/sy7FnZ0opAL0rnv2kXtnXdcPtCjwaZAIOIBSUVW3EsWkxJJA4GMLhepiRIwyVIki9hcFZBOoS9JFjURPNG0gKDR4M85SGuVohlhOytYTCJWczSVhV7u4ak4pDBYUVI1ZO5bv5LBF12Bpnm0HTBLtjvAE8GX/Narp9SbhpAiVWExzvHFT7Y8+XHK9R89ybvffx8RCNFy95GGD33oAQot0JC1CipqJNVYk0jLPdzB3djCIHWgLPpgBwxmFmmVmUSUCSbU4G2miLVK1aHWc1XFZMz+3xMI5FqLhWgxSfEEPL47xzIArpNVpJyMEB8woWUynCd97dexuTRAfY3efzdzvqGt5uELnspoUKGF58TJDV76n97M5sghUpCqHK4EDy191MIrX307//VnxuyaL7jg/AG79ymxneI3+9R1xakzixw744hiaNvAV/0L4fnfadi5M5A0ogiFEZ73nTv51996gGd+yQJf+4172HtwxspGi1x+BUvf+q1MludJz3oWzfe+kOYpV6HFkGAarEyxSXBBSaoEHMwmqB1i/BqSNkA9QQ1Np8TYI1KgmS0gHlIFyWPxiN8yizEQcl83iu30ER3GK6vXfpB+bLBqQBLWDYgp2xaXDZi2IUok9BdgOKB19TYItjYOqkXo9VGJGE0kn0jqSdKgqSVoyqrV6hC1jJqawAwlU9KswKWP3WR++TiziTKdKv054cqr+uyaW+dpT55jfoel6EfWN4XFnbA5ndC2liYoGxtgpIcrAtYuMFoT/vfrH+D7f+SdrM0Sv/LKO3n/B04xHRSECMZZEgWp8blPr4lQ17gUYJKz2qZXE6SFZLvDLONqbAITDWjitl/+r4zf8jqIE1xQYiqI0oLNlt5lZ76UYoGpazA5SBJJmNmEGMcYM6DAMj50iKYoEfVQFNmG2w6JUtDOL8NjHgNS4JIDmwg2oQn8bMYgKiqWMyvz/I9Xn8k0Tavs3V3y0v98Hk/9wr085xvm+d4XlzgzYtgfsrzsaF1LoS3f+FXLPOc5NU3dsLk+xKhl1sKpUyN8s8jq+oDgeowFkhGOnlB++Affw433rjApPWoHgCBVL9c8pcU7wajFcVZobAsPpFvNrS3a8cN++vnxfz4elcHAlrSnMQZrLTfddBOXXnopl19+OT/5kz+53af8jI0uo/dkJTGJGSbkOyqRaiSiaNDugI4kQKJBkwdbYKzmviZ0gKwGJWGipUw2I45dxIaIJMW7jtdFQE3I/Xj6xIsvoh72KMZjNCR84UAD0s5lc5yiB9IniRKLChRq5xg+59ksfPkXErQiNhYKi9qafjFmzx5YOTGHTUM0Qr+0KOt89VcoF5/fYmSOlTMF7SyS1DCTgpiqDJC0CRHFdjr4yTrC8mOQXU/IysMtYPowILcIQkVKQpytkJpRRxsQ8AkXO6lmAwVCD7YEZ/+OkXNI1CK1UqxvUjZ1V4URBlExHkgBYzMAM0VlY24Z943/inTuQVQVozWikXE1wH3Zs2nnlqEQpjPHaGM3mhxOhpkznxKlNUSdI0bh1PocJ08ucXCfcv55A5Z218z3PWHmaFplPBowngSCWsajyDd+Y8WLXnSQ0vkszm7BWfi6r93Nv/yG83nCVTv49udfyM59JSdP9jk52M/Si1/MbO8y5Zc9k/0//VKqq76Q5Ae5KmSU1pTYaYtbWaP0AdlYQ9cCVb2Cq1fQ2QwTU9e2ShQaKMiGWVYSqiU1Dd5lnWlP6ESkLCqJiMFiMiEmKtpsAImYClSgWtyBFgYTIz2vuLYBEtbOASXYjv0iHUc2DqjmdtBKj/E0twS8a0kxIm1FPXOcXmvRaIlJWJuMsJVDGGJTxBB4wpMN84vHGY8SaxsFvWHBU56yyNLgBE974gL9vsO6Auv62CKhOiGqMJ4Ko02YXxhQVJ6yP0Rb4fQRZW1zmZlCvb6E33CojiitoZ6rYH4BHY0zbTZBrNuOLQMuCbYEZgG85PXXRiT6LjAHNHLo9P3Mj09RaIRWsb7EmkQkUReKaRKmDtgoJF8TFuYQl/UL8A0qEYr5LEP8uMfR9CqoZ0hZkUwiFBXGFBg7ZP7Si0mVQ0JFMuCloTHKOAZ8bJmoElOJ93uxAmKUXbsN3/cfDnHovIpve875fNd3VjhzBmegX7isqqnKC553AT/0IwtY67MZo0RGMzh92uPris1J9vlIAaRr99nJRayc6tFqgpCwmtDFPVDNo76FNEOOnUJOrUCdfS2kC4RyYBU/6TD7vFTxpz8elcHAp47hcMj8/DzD4ZAPfvCDTKfTz+wFyFYWmjNN7YxJChGMDxQhAB1vGovF5E5/B4JpCsmWoaFFguZ+l+ae9PZHpLm0ScySxFtD0QwCN5ZJv4e94jFM9u+nPb7GKFkmlzwG03do3VCmFi0s0Rpsr8Vag/ic1bWxR9OWJCwhJExSCjtm3/7j7NgzBRJFOUBMj6pK4E5jygnLe0qss7zqlTNe+hP3ETvN/hhjh5GYIamGUBJsxbi/yNX3nsvv//qDGIZQt0jZBzdlbVDTKsxPHNe/6g9Y//gtoP5vzPWnG/SrBLSuOfyq3+P4X7wLXMS6wNLaBs2Hr4PZhEBABWauYGNuDp1bIhULlEkpFFQNySrMLyCzIVoLo5klyDyaDKJ9bCdUROpz8qElbr95hrMW1YTQUBawY3fDwYtOU9oJVeWZG4JJjvUzFUePnWHnvogrZ2hy2Y0vc/1wLpdfjUmIgYX5JW786JT/8d/uoKl24t0cLA6g0MzLth3Vzwh+7yLTD76f8g9fy856jfHb/ppjv/kH9Nc3MR+8hpW3votBTFRbNeytMqyCSfkQzweXdhTRBiTibSLk+jcu+E45M4PgolHq0tIYJSz1gUAwgRRbJEWMCn3pISk7ZeZeb8ASwVXYK57IdSf383P/+QZmM0OSkmQK0II/+v3TfNs3v5tjRyakBM2s5uCePqJr7D94iqo4g0TF2JLRWLjr8AZlCWUhnHfhlH0HEk6gMo6qPM3FF0aciyCGt//1UY49pAznoLANQ1cRPGgqsDqf2RVRGI0jNtSYQlhdGqLLQ9be/94swiGQYkv0NcQJIbQ4M8A0LlcQVUmmQLQkiuQ5nAXsLFKmHkWwBI24uqFKObgIFkLRImkGGtE2UJ93PivDBaa2JNoCV/VIg2HGfPQKbEroeIwOejSF0M4VGAsmRWxhmJUpW2GrocBgE/gGYqqo4xbKUXCShUNiUooi70fWwsJCwQUXRcQ0FC5jO1CHK8FaIWp27ozAvffA8YeWqSrL2mokhRVcmxDvcBgkzfO6317FTAY4GqBH3dtN7YZUoY/cegP3v+Q/8Imf+HH8sWO5DdD1ZmWLCfPpbw2fHw8bnxPBwAUXXMAVV1zBd37nd3LppZfy/Oc//zN7AaIdnaUrY6OZMZAS2gbc5iY2hC7zcjhszmg7QFAg0Yse2RxTxSyXCyWKzZgCgI6rvbXot4ZKhstEUdylFzL4rn/D0nOfh28Fe8ljuegXXokOD+FpmBQN0Xrq2OOMXaDcscR4pvgIPgptAB8j03GLqmHvXuF3X/MYLr8ysbIy4ylPaegNJ+BGmGKCrQKPu7LHlVcts3JiBx9434DWL2YeeBRCgtG0ysAskzfB1pbcMTnIB28S0DmSb7GuJIZ5Vtw+fDOGMzXh6ttJd96FysMcFD/9j6UTXgokP2L61++h/ejNJDxIy1zT0H78FuTUaRaaKTIa4QW+4PnPpVhcRKshSU33mXbUq9IyLSpSiswaISVHUskIbwdIQBE2V+d56L4RiIWkxNDgBA4eSvzqb38RF14MC/ORL/6iLMKU4ibf8E07+OKnDxEzywwFNQ+794jQYouEdYo1PZLfxZ031zRmyGSwg1A61ClBDDOburhkyPy//GaGMTB/7AjDuibefhvpppspxhOqEyeZ3XMf0maq2sN30y1gFrHFhmYb91JOx1SzKWIEFYNJAVZXcM0MkwLWR4IIdtcOvEDqlZnBoB5iCzGSDFTSw8SCZC3edq0vo1AN2Pf872b5G36A975vnpVVZTQxBDzJeD5+s+WWj+9mZSURVWmbGYf2J+YGp3n1b+zi8Ve1OJPVE8qBAztlYTExHDp+43e/mm/6lt1YE+kViac8eYmnf6nFkeWcT5/cw0MPQNUPFMVx+mXChw61HwtiDcELa5NIYyp8VTEZ7iDMz3Hm9puQ0FKFljRex4aINmfQos1tjzNrsD7GNBNamwjGErYMqmYe04DMMnAzmkQ009wyTI5BAPETmK1AnJFOrbD7O5/P4AUvoN6xA9l7gGhLmrJHsCWxMDiBkBL0SsRYpKgyiFdyto62CJmfH9qKzRHc/6ASKQhBtw/bkHKrQ7r2xtYed87Bkn//gxfQK6f05gJSjEFCdhMy2klvWVR7rJwxzC9YLrms5vRJR2rmmW0IIWTZiyb1eOABx2RFmE0XmTFArKdhRhkcetutDN/6l/h3vIuwtkruYT0MsPVwV8jPRwT/qPE5EQzcdddd3HzzzezZs4dnP/vZ7Ny58zP47lvoQO1AQoBIlm2XxPTkSW5/058hp091LQPBaod1FUWSUhhHPHKC+978F+ATMSles9EI4lGJ24eCeP8wOlfO/IyxaOlolueRPbvQffuJYvE7drKxeD4/9V9v4HTd5/S5j6NtB/zqqw7z3tmXcrr3WP77qx5iUhe0bd6vIzCZZPGj4VC48FJLbzBlPF7h3IuPMdcP9AvFhAHWQa8vzM2PwMxz5MQSH3j/AiRHXResbLb81E9dzQ0fP0HURJE8ZetppMTqbkJ0SD2jF0uuuxn+8rZF6r/8c479zv+g1EARG6QOZ59t+fSfcklCUsDOWKRhWNeYFMG32NDC+9/H2kt/mn3338v6//ptis11ygM7MH3BDiuCtQTjMBgkKmnOsnreAL9QkOos8BQRoqlJbpLV8FzGNEzGJbNJVkl01mIFytJzwaXC8g5PaT1XPXHMrp13M6gm7D+nYX5Os2sfHShK8qed+SIJ7QwsrHWoztG0iyQpWD2wn7g4ByK0u3Zl4yWUthgS9pyHJIuNXfn1+AmSNBACBQHSDJzipQP7dQEmClEsSotr6+yM6JVPvOHPOf7W9+CahFMwGxvc/Ru/zekbb0SamrKOubd96BBqSpwZUDRgGo+JHkRpqwKKMvtEWIvfAssa0KIg7FriHp3j9GbFzTdt8v/9yEc5dQxCErAFTSqzkJQF38447wLPgYP3cuGFkcc9fpVdy1kKeMdOKMtN5uYihW254GJlYRkKJ1gT2bdHWBgKCwOPKxJNs5e//IuWPXtbdu97iGowpgmJNigxBPwMvFfWZwM2znkss6V9WLOTuLCTYqlEzIz2oQcY3X6Y+aZkcu/djO+7Bxsi4fV/yurLf4nDr/41XDujSZ6iA8vS1FlzpM7GX1YbVGsiwnR+GaMli/c8yOmX/gLNmQfZWFuByy5ndmA/7cIccWGONJhHdu6gEQOlI4mQnIGqogqWMvZQtXjJ4OthFCSM0TTlne86xgte/An+6H/XGAZIkynLitDUbWfBfDYQAKUohHPOVZz19EtFfZOdF/G5gmRbql5Nb1jT1FCUifnlxG0395is7+EXfvZW7rh3nRkwkz6xcNxyyzp/8Ien2FzeS1GNsGaK9ROqaWBpGlmIuU2sCKTs9SJ/m9vp58enPT4ngoHhcMiv//qv85KXvISXv/zlvOENb/gMX0HaRgZvTWgH80Ojp7rnHsz6WtYSgIwJIL/YRMWqpWoCGx+/GVLsKEdKkSLWzzIQCXJ07gNWDEj3UNiMqE39gtYK9IYkVxGtUg9LVuM8f/leAwcv4Jmv/A3s8gHe8OfK6AkvYH3xHK69KeGbPjFkaXUfhfU1IUahLAtcJfQHSll4nvCEJTQkbNOnZAeVqzAGyiKgsWE6hRMn5hFKQuPY2FT+/M0td9w3I6hBYsLMPK00eNNQmApVIaZFPnrrgE+cuADzrvejH3kb3o/yQ+7zXP3foEBUBcpE2/OIRCQZXDDZhOnOOxjcfBO7xyPMDbdgV9eQUqGE5LbEirIND3ZA/9BBvuKXf5Ly0stpJ0JsLMkLrnJZ9ERLZn5GspHTq5aUKmxhMKI4ydl2WXh6VaBwnud82xJvfOvjuOySkoVyHqMRKBEbuwyna45iQYocHIjinEWkpPZDopR88ctewtxjLkHosePrvpZqcQ6LolWJ6S0jtsrAyySE9TGmiJiQHRGTVTDSuefl9ZTllLMrY5KA9TW2TeCF8cdvp/3oTUidMFHQ1TXW/upt1A/cj3iPm0aMcdgrHkt76Dzaoo/MsrCTDZ7CGvywh5YZvJZMfnI6/gLJwNTB6RQZtzW33zLhz17fcvp4ALEUcw0qLXXIOJQYPV/+Lwr+x689jX17evyXlz+FF37vIUwSdiwqC/ORuSoD9awIRg2ilqocYAvPrp09vuWbr0RljC2Eelrw+McX/PbvfyX9xZrpFKZTS1KoZzBrDSttn8f+fz9F+SXPwjKg/5SnkXbOg420J04zPqXMwj7Cao05tYJLid4t11K89vdw7/kgblpTWosdT+m1NRqafKA1NeKUYmMDWzc0lAye9zzsrn1Udz+A/MXb0ZPHSaGBpR3E3gAvSuyXMOhz4IufRn/PPoIIYoRoDKno4aNAKtBoSOKIzuLrEvU9Ukp88Op13vpXPU6c2MnCsCKNO/aSQtvkVp3IFl0qOwWSIr0qUlqlFIOTeTQKmgwpBEwSLrlkxr9+7oDQZMbK3LxhOmuZToe87R1jjq94vMl7D1a458HATacuY9fXP4+6v4ta5yFNSFoisSSogU46XLrWqaqCD58vCPxfjs+JYOCKK67g1a9+Nd/93d/Ni170Ip75zGd+5t68W4GGTg9bO4B6xyxwGtl3+hTNNVdDaDoA3NYDlTpbUENpwDU1EPIhFRVOrSLXfJRhCNtvpiFQuSI/jKK5eSeGNCxzFiAFYgymCIQ5R1JHK0v4vsFduINQwUTmqffO0w4FW84hqSD53OdPWrC22idGA5pd4wZVyVzPcuG5C/TL4wzLln61wrAPziQqC9iYAWUohSuJjSJSYuQSNjYG/PmbV5nMCmYMOeXmCbbCJWi9cvOZvRy+pcKGfbjVMYvHj7LvxHFkpmSdgq5k+WkCQ7doiCKZSplcrqSgFm2z1kDPB/op4hIs1IobNWAsYi2uqnBJEY2oUabMoXP7sBeez613FVx/nWFzdIBrPpCYhUXELXDqiOW2T8xoNXHiROLEsZLFpcwOEQMmFfRdgTGnqYqGxaXIFU+YsHPvKapqS8o4s/6zNnDT3YmAVoDNPgBOsEaJWqAW3EUHoT8EqTB7DqD9LBgj2kBpc5Yo+bAvolDUY4oHHsQkQZNAylgWs2VF3S1qFYNowIY2q+5pYq6eUp0+2WEhIG2OWDxximFTQ2ixbcIniIvznNizi8niUnbZ9QEaj4mJVDiSRKg06zoklyvMxmZNDYXYRKZ1op4ZjC5l0HChtH5KYgfXfsTgW4itsrQM51/g6RWeXbsSu/cYSlOyZ3eNyIPMDyLOGEi5/ZIQpDCUhcUaYeeOEluOmPpVVFp2LScuuLAEY3jHWyfcf+8AHxKzmdJEw91HN5GDe2HvMjM7RXfvoNYS1EHqczeXcLWcS+3mIVb4foWWDb3ZKZZOHyeOZtgUmH7s49S33QGzMTRTtJ0RYku8/S7SaMaoGOKvupL1osJppEhjeNuHqFY2UVvmCg6R0HeEokB2LBFMgRGLqlBoAb0+x3cMGO8a5iANQzsccGK4jw9e3bA57pOaOUzYiTXC/HKibQzaWUNn5UQ9+1SJZgxTTMzPNbhijapvsHZMUUVQR2HBscrCYMLFFxkm657CCYPFBnWnqNtI3eynbksIIBpJHtZWK+6POzh24Au4ZvQkDm9empWsph6NJbFrf3XUJVCwYpD4yZWBzzMLP/3xOREMrK+v87rXvY7f+q3fom1brr766s/4NWxxXLf1BLb47aIMRqvc/ob/nRG/mvNM3eIjxiypK4VFCV3POSIhsnr7YR74vT+g2g4GAB9wZYXGRIogzqHGov0yH3Qpi3Co8fh+lmtBhaAOvNIYQ20ji3OatQx8ykjwADG2aHKcON4jREsMuTjdK/q5xHqh46UvP5fnPPcAP/KS/Tzti/ZjkcyTRhCTUJ0yP6jwNRgRjDXcf3jMT7/0Xu68P7D7C74IufRJTOwQlyKhhdd/bMYfvuUIRQKZVMi9Jxg8cB/GO6QZd2XA9HcHA59qZL5lFU0ue6sI4g0FlmRtnq8oGPLBEzuaokmG1CjYCqTAuAFZr1FpCmXXlU9Be8sEFnnN797N7/9hy5nN/fzqr97MbLIDMbu44dqGa68ZIabHjdcn7rrDs3N3xLgasYomxRjD4x+/j7Ic0zOWggHf/p27eca/sBjjQC2kksxPyQqO2zQKzVdknGJsoGkyCryxGSuQxKC9HrXpLOzbCdrL1s0GiGLoK/RPncYcvpcqCLY10BrKkCtVdNbQ0YBVyfr7MXQsl4TEGakZo2XO4sOJo9iNNWwzQZPHKkRriQd2s+vfPZfisRdni8SkaIzEpkGcI7Q1FDGzgpLL92gyRqOMYFtPCJ4YDIJDNH9GMfSJ7Q7+6k0bjDegnUG/MBR2goSIM4IRxdBw8OCMF3//5SztMIisAw2YSHKB5DyDIRgTKArPcLjOc769R1VMWJjzFA586PGHv9dw/fUWjKNulNZHVkaJWStMqakXZ6T5gnbqIA3wssSNXMjbZS8TWcLogOj6tAnEBOLd9zG78wiVT9z2v/6AB9/yNtJ0gkst0kyonMIHP0K64yTm8Y+lfMrj6X/DlzPrG5yvWX/172PPrGOtw4bOi2SQnQilKknGkZKSTJ5T06s45/v+NXu+6UvBGkpvGFx2KdVznsv3vOwW3v2hEbO1RJVmWLfOcFdg3AEITQYKdG0qfdh/gkbL3v0VL/i+vRy8yPJjLzufCy8domadCy+a58dfOuS531UwPy+MVysqV1EWJUhB3QjeW2IruDZShAnUMNlInPQbTJ94Bb+z8YW87+TFiDqkrrP6pa1R9UgEDbELeBXGk4dvCP8EO/o/v/E5EQzceuutPOlJT9pmFNx5552fuTfPjfsObJX7nlEURycGYg1SFlkJDJ9bBdFiou30Mz3JWpJYrAhooiQhkrC1Z75pSXhSMkR1SKukfqawxZjyA28LtBiSbAl2glZzJFehhUOsYKi49UblzjtK3v8ew3SzjyERa0VVaGPFW9/bcPi+kqBDHjhaEkOBUyEmqCpHrxSWdxme/53n8IQnOb7vxYfYe7BCnJJs4NB+y9wwW/dWfcPHbhjw1rdGxhuJ9dN9xnEvMRXMXbiHuUsuIEZP3DjC6CPXM03zTJslFINtRhRRsSah4w2IExZCQ3ndx5HpBDSL4mwRiYIkrJ/SXn0NeuQ4nqYTaAEdbTB9//uw43XAIlqQxOQsOWTq5lY5PGJpbU0bxuDKPG/O0lohFIaJlAye/CRiTxgFx6kzu1hZHRJCn83JLtZWh2xMz+dtH7B4f4B9ewbcdhe0ybJ3/ybWnkSDEmUTT+IJT5nHFGsM+4LVin/9HefxhCdUOdPr2kAmW7HkddZpsndKVRgLWKHxkQ++PzE+M8dHbvTc92BLcg51LcnBVHvcceR87k9XknSA0QYJLcXaJJvbkDAhB1tyep32vW8n3X+Y8N73Eb1HJZDUohFMaMAkrBlThFk2KdIppvYUpkTHbV7P2uB1nrCwg0P/8tvonXMOzFo0Nhn1UCamvSGtzIP2MNKndUpjKsS1GGZYBR89tH0eOFbgTcj0uAgmTDHJc88DPd73Ps9DR5Wqr2S7TIukAiPQK+5l/85VvvfFT2RuoUApSWJJknvfZakYozmLLpR+uca/+KKSwQB27FnGSKTCUCeHj4611b387msbjh8zrJ6Z5/ZbletOX8HRuBeqFhoPHpSSTbOf0+lC4mY/fxY9T6EFUUtIZdbcaDz7Nk8wnI4IjaX2CWnX0RgpU4HxHvfkK3GXnE/5DV+Nn1ugnxI7ZhO0mCNJANNQqpKKAb6aQ8s+AQGxNHaRjapE3DznPP+5zD/uIrSIWdRscS8XPPdbWasv5Y/+pOGjN/bw9KikZGkhEGWCcS1zw02qYgOnitpVAoaAIxmDrQyHDszxXf/uEg4ccPz7Fxxk154KYwxLS8KP/sQB/u0L99MvhJUplP2CeWvRsIPGF/jg8SniETQ5YjScGQs+OObOW2Rj6TIe4DzGuohOZznWT7bbaxMmTUhGkUZIp0+iKWSLd4mfdyb4R4zPiWBg79693H777Rw5coQ3vvGNXHDBBZ/Bd5cMbOv+S52OTUGu8oorwFUYsdne1kJrTHbKE0uygaZvaK3Jr5UsmYsFNYnWhG2aGBFsHZBB2SnhJcS6LC28sERjS7QUlq96CmbXITQYvAghFPzmbxzhlb95Nf/5P62yeWZIHXKyHYFpXfCKV97H6193BpUBqxuGGARCS4wgNmsbWJdFiKw0lALGRdQqUkT2LAd6RQKEsoK3v7PgP/3HCZvrJRvrPXxqKAhoAaMYUBJxska89S5sEowMaFKLyISkLRIF5xtSbFiIgdU//CPCsWO5nAjbSHuPgp/yoV/4RUbveT9RfYYnR0h3HubGn/oZZkePIxhsT3CpxsQxRseoUZLV/Lu0h2rCBEHsHBiHWksUqHvzzH/bt7P49KfgXItvlROrBU2dY8H1doHVUZ/3vm/Ea95wjKQDhv3E+gagkWc+y/Id334lziriWqJEpEgMhjHPqYXKCU46KunWcsIhDEDilvYiwpYeOygFvi15yU88yNXvmPATP3IDv/3bNyLiKNWSksFf8FR+4fdmXDM5xASHNQZ1jrRyrHOV1kx9FWVy4w3c/rKf5PgfvY47X/Jf0I1xFxA6jIdqNAZa1BjcJGJSQNRjxtlBTtbHCC2GKVYUygLcEOkbqMdU9QySwVhlxzd+E/2v/WqQHq1W6Fd/Gf7LnoW3Jcn2ch+5MRR6gPddPcT0DIHMUIkzj6XgoSN9vu/fr3Dk+BBT5kNYxaAIVd/ywz/6BXzT155D5RLWBpQ5tKPrFlhKp1SFZpXDEirbsugSRbHG8h5HUQgXH1rAuBZjG0h7eP0fKdMNcGaRd77vOC97MxyPV6G2YhJmEKcYqzhXMY1zzMIcaxecS3XpuaAFVsjUOTMDSZTtGYxriUmzqVftMVpkx7/QIL0BiEOHe0mmhwAmTEjWIP2EL0q8H+CXlqiHFgkWp5aiZ6me/x3Mv/BfITvmGJd70DiX24FOCQa8KZBmnr98s+WmWxZQV/D0Z5RcetEEawRlwnO+peH7//25uRVoGmIWViaZkDUwRCitYI1lzoA1FsMCzih9GzKewDhagbIvzFcJtjwFjVC3MEuGNg5pY2KjNsS6JEQlOsdqqhjpEjKdAdm5MW+sQGxQA4No0NW1jA3q1vTnKQWf/njUyhE/fFxxxRVsbm5SFAUHDhzga7/2az9zb76FrlXZpsBnI5WMZM+wQkcpWVs9WsMU6AtU5IWbio6aVlQkV9Kagqrr16mkjDieTGG0iZmOoNfrLDxTFukwQt2ztFVFMsuwe0iz7xxEeoSQiBHGI4dvS0JboZpoW/BN6iSNLbE9h9PHYlem9l3feoQxS6ANRTHpSvG5ZJvB5pluZ2xiOFSq0gMNZWWIwaFqKbTPiRMlMN1iKmGMMqsDm06w0iMygKiUtkSbhFVDEQSZtRg/QCKkSUNocha0BXATBYftAgePbkyoOqEbEUWmNdXmBGYKM0/RrmPaKYRN1mKPk/ZcdtojDKOlIvPpC6TzTQVfWsoUWZsbsPTd34pceQ6iFjeClZUZKS2AFcbtkAfrgpPrFXVTobTUI9AYsK7g0ssc3/x1VyDGY1MPpwXDXouk01TFw5YR8rA97GFk/60X/I3qp2W8toCEPkfOCJO1OVbWWryWVMUuVI8xfcxlHD26k5O6hHe9LETlGty0hvk9VNN12tYjKWFmNYNxTTyzRn9zgouKSQXR5ZL9YHUN3VxHxiVu0mLWT8PugzBuKVKDPXUCRZE0w5gVDFNInrqsKWYrDNdnlDpkY1qy8JVfTvklX0j7iXs4XTkOfNfzcCdHNH9xNasbfYodYINlYUk5c6YhSZbFXl2BtbVFFIckQ1vvxFYnqEoDJFQCmIgphG973kV5zZoRQoOqBS0xYggJhEjpMvDM2ogRj3URU57BFYqzhksvr7B2Hdcv2L2gPHSsYMfOCfv3D5gJHNH93OcX0bCD2gkaZ9jVE0jrqRGmrmBj30XI3grlY1j19FMCLcFDihHjx7j1Y5SNp9ULOJKGHDCBcr2mDAqUmGIRMWX+2DWwXLZYFdQuonYHze6djP0JNHkaoxRVxeIP/Fvm5lsmxRCl6jAZSk3LtHWsTwAZgB9AhPkdE77nhxa5+SNraOjjpOEJT57x3O86QBtGmLDciYdtaU1Yzu56D98Pt9Zqrpj2SkU1UpaWqirYbjqooZ4aRuuJGEvEB+qpxbeRSYhsmAGiFYECUpa2zibSs+59SkQDVZgiszrvteK6132eXfDpjs+JykDTNBw+fJiTJ09y9913s7Ky8hl9/60u2hZN22z1dzt99BQNfa2QYDEqlHRgwwR2BvMhf92jRJPL3IRksS0MfKJIwsaN1/Ox3/9tdDbNZkMoEhPaq9g4dAjmF7Msaipo+9Be+Rj0vAuISYjRYqgw9FHNrQHfKN7ncjpiCb7i3rsLqipirdIbnuaSy1uqSjj33IrzLp7k0jQJxW4/7AaDMYHeIFJWLYuLwnkXVBiTDYpaddx0cyC20LSa6WMhIK5HKnfg3TxNNQcSiIDHYMQhySJNg/hsuuJM59ykuu1dgIKLymAGw1lDFS14Q+uU1rRoOwZbQ+kZX/NRzO2HobGkMOAjo8fwV82/YOovxIjD9lwnzTxBezVIIkkPK47xYEjcu4dJBYQCP0msrU0QI4gmxlrwYH8HD/ghaubZuXODx1wScC5TR61R/v/s/XmcZ8dV342/T1Xd5bv13tOzL9JoX73Ilm284A1jYxuMgbAvAcISIEAC4efHIQ6beTABDCEEyBMCIYSHhxgMTgxe8QbebUmWLMnaZ0az9PT6Xe5SVef3R317NDK2jI1lyY6OXq3umW9P9731rVt16pzPYt0QsRMIGRJg0A8c3J/60p97CPXYMa49pyaTxE+nIGRK3VaQtbS9jFYyRnYvm7suZW1uFrVJwc3v3oNaizEKGshjpGxawtaQvG0Q9bRS470SpGLtLW9g+HcfopyUDD/yQTZ+/w/BG0JV4fJIWF9DNSdEN50e82AshQTiR28gHD/J/fv2cPrIxbBnH5M8R2e6HLviEO2BCxgfvog3H8/5rV+9EethpDWzuyJNq7TVLn7iX2zzrd94nL955yb7D3pcvk70iYKZ5UrUgLEBlRYxHlcGcBNgcm7L2sndrYXF5W3m5xusKPv3Ow4caekPoCgmFAVYIxy8wNPtbuKyCd3+BEGZW9xkcVfLSIWJGfD2j1/Ax+/MoPW0Z1ZZ/53fwFVNEtdstiitR8gI4qjppVaBZEgI9KKlfO9HGP3Kr2E2xnzIHOXP9VLOVIr/23cyUyQ+S5Z1kSwlA1YMtqphUqC+QZziF/ZR7z8KPcP2E4+gl19HM7NMZVfItUe3leQrYSo2xi0/8mMf4zW/tMbWltIpxxw5OMLKBv3ZmvnZQKZD5gZb7D8Eea/FmojEAqNTt0o1n7E1L9MDTaejIC1FAUWRncsXfIhsrQu/+ss3MBxFRDImY0PTBrYnkVGwtGIBi5HENkmgYEkYFBUwkcK2SJ0SBLVMQbiP4QY+2/iSqAy8733vY2Njg5/4iZ/g5ptv5g//8A/5yZ/8yb/3fTJVBtxxPFRNYK4d+eId8yMRSQp603/zD5M3/iTF7GnTKmrSwTc6Lf+GQNckffJgIKsDZQBiJBOLbaETQJpkBIMVpPJU99zNJIywxSyx20PtVKV7bpY9r/n3nP3r/407vZp+blFz2b/8Z2i5zE13OVQzQlCqKiOoQ7Wl9Ya2jagGRCLQEEJgdlbZ2vZ85UuEn/+5i+h2I8953h6ue9xuBnMROA/MGJNegs0CRdmQ54bHXd3jyU/JeNsbJwgOIxl1U5OZjMZHVKGta8q5BWZXjqKzmyz2L0HfO6RVobIWjYlHHEKdHurpgdnEJPO80+ffATZJDGSxRtSDtbSxIq820e1NijCGsyfx9xxjZmNIu12jay13bu7nZp7CS/3diD1LzPqEZsjYWXCz0GYUsUCi4L1BdAYXM6pK2JxEqjqpAQZNLn9Hnv91jO49S3hb4Fu/c4EXfbnhXS+5H+ICEj3OphKnRMEZuO66vVx+0Tfgsunceagppg8ufErC4iEKbd1ALqyORhgMVZtRB2gzaE1EvaekwZYD9vz8z7H2gb+l/a1XMysj6rke9n5LjFMCZWYwUy2CIB7RCd3N4xTlXqrQYsYVo3vvxw5HdNrThNs+DnjaOCHOdwmjMYQuMQxo2EtbH0TJyYPDTWrCgf3s/43XsH//EfSCw3g1FHv28Mxf/QXcwkGoYf6fLPKX/2sEYxjFNjEx1CA6yx0fj9yuFSbz/NS/Lfiff9bwd++IzC0UdHoWIcncGhxBDUhDkVtgZpqsW8x0EK31fN8PX44LBovn2c+d5QnXvpiz9zcQIt1SMUSe9NSS665f5n0f2WQwKBEi/+SbL+ID72sIPkOZ5bbN3dxx7DZ2Nw69fxW9+UakvRxMjqtqytaicRlvMhqbEaXGyJgYWlwdKY+dpL73Xpz0uaU8yEeLS3mJPU65eQc+G4KM8caz4YS5IsNWsDZpWZy0iGvYyEZc+vwXcMHKMk13nit+5pcoZhcRLLkYNCSJ9EmlZEXETwx/88acMCnxoeE5z/B893cs8K9ecYZOmfOVX3GU3zx0F8970RzPfc4iRiagEGNATIToES3BPvTaqDG1swYDQ5Y3ZHmgLJIPA0YwUnDqhOWOWwRrchTPeFtoW6UaR2xUnAZimDKKsKiUiHSIaoixoc3Azc0SmzpZZIuQE9BPoTvw2cjUn/+9X3B5+0coviQqA91uFxFhPB5TVRVlWXL//ffTNEksQ1WJMbK9vc19993H1tYWMUbquubuu+9mbW3tQW94COHcvwHOff70MT3mT7+MmvTisA5b5DRLM6y7kOyHbSDg8RYmNhClxflIrFtGWYsWgcYobeGJmadRxRhH1zcMNs/i6wpf9GiNS+593S7m6IWY7jy0HqOWTAKyPM9kfpatCD4qMQrDoRBi4h83jaFtQYlEjUTGKC39QYORCQcvHLFrXzLJ6RQtK3vBmApjPeeXs1UBE+kOlMHshIVF6PaSs2KMQlBLjA7xAWPzqfWtYxwDsTtL3YVhL1J0hgQTmRhhR3o5hIq2qtCYkrSdX6vnxhxaA5Wpac2Q1kyIRui0gRt+8Vdo/9db2XN6xMn/3/+NfPBjlBqI7/xr1n7u/2Lt3e8GyamKVapiRBwkY6axK9GsCzag2TYQ6JkMqXLMOOeXf/UG3vieNUIYMddPp9IokdvHOWejolKz70BDvx9wtkJjIBJRCjSWUxXKmm6vYXn3QzsrfLqZBlNwfkxU0BAsW5sNIczyjrdY3vrXa4wOXs6o6OC8xWqkmWkYPeEIv/OxGU6EJzORkjCX0RrBq4fM4hOlBCYTQgz4rQ02f/v/YfTej9BRh3VLuMJiGBJMRWMrsA2t8bQzM9R1BROIbcHZah+/+dv3cPz2McbMMHGOtcMrmGsvxx4+hNgiWVA7h9u9P7W4BgWrs4fY2J5nawShVeb6OUYjvW5Nqy1RekRpWNkT2bc3INowO5eRdy1iSbRRnYomYVI5PnaQ2Em4nWmIeOZmx8zMJWWFTtmye5/Q6QhlXpBZMKJ0usLCUkvmJswMlBiUXl/Is4COlLrOaOjz1r88Rgiz+Nf/L8qTm7hoyWMf9QPuumuGN/zvDcZSIGwiboyYLQgVXkHjmE6+wzjuE/KLEDtIuJDeDFiHloHR4T1of55aDaMLjsC80C4OWL/mMmT/LHFmmZ/71Zv4n+9cw5cl2EBttmizivXW8+M//X7uuD8nCzmunmFzy9DpbnPppVscvUCxdouyMPT7loXFMfsObFEWqaURvaAyQWWYDg9eeMjKwLklUZmdy+n1InnuKTsu/XsNKBm+ttAu0etHJuM1jt0TCUFox4rUqQponUlHLTGAQ71LctNNxdg6qpUD1I2duho2QIuZJio7H5/1c6Z67kD4f0p8SSQDZVly88038yu/8iv82Z/9Gffddx+//uu/ztra2rmTfwiBt73tbbziFa/gve99L03T8Lu/+7v8/u//Pq9+9as5efLkg6oAO0ZIO9WC8yfWgz/SZqpT+ptO7UO9JEcutzjHyvOewpAWmoDXlnaaAJQhoDaSt4I2ntrWwAgTh2Aa1MZ0So4RMxkzqMYwGWMXlqFIPPI2KyBPXHOfFWjIgC4q83i1tLYl0lLXlqrqEENCGldjR1Obc31IUYdi6fUDzill12NMsus16jEyBiQhy9U+cM8A0jI713DkSMV4G5xriLFBJOkOYITYttR1QoP72uKDYaP2aC5UtLz4RbMYUWzuEAmY4HGhxcX4wInYSLIk0eTAh0aCD7i6oteO8M0IHwOyNYa/ehf6jnczqBp6N30Cc/udtBFmNk7An/wRe8+cxuoGTX+LM0VBPVdiTAvWot2GaD2TsoMvIq204AQ/gfe/H26+vaIoJ8zNeUw0oMLt65b71mdQHN0ykueBGGsUAVG8LxEpwST9iRDH00WRh5hbiYoYNVUOdCpaFaeS1MZOqYhRaLcUrwPWTg9473tOc/H/9bPklz6REJVtW3LkK5/NeHGBt992mDv0YiZ5h9hJG6SRHMSiQTFe0UmNs5a4PSJ787uYvP/viOVuNo6+mDp4nB9hFWLlIbRUjYfOLNqOkdEWWRwz0gVe/xHHrbevoTO7We91WPz2b4DZZdqyk4C2RgnGIrFANNKgrI0tw6Zk2Co0E3YtwqC7xTOfYej0GtR4XKYsLUT6ncR/n1/oUXYydhTyQojJvVs8GmNyzoygNKiG9LUCjJBYT4tdFTAmyyKwTVmkcba2YTAAl0OnBCtClgWsmcDEYengpeHW1QGTOEd144fp1o4oCSBsGzjeHuKPj+9mzexG+7P4bJEYp2qAIRKc0sZUBC9CQ04XKKjiAF18HOr7FAd3c/XP/Tzx8MU0RcbBV/wU5tAyB7/8BVz/6p9HlmdpGuHP/1x53wdrHIlpM5RNKmrGHt701sixk0BQrCZ8zzd+c58f/7ELmekqZeFxRWKvOmsocg8YondghWgCnpDAjvKZ5i0gSow1MzOW/sCTl575uZwiN7hMiDFjvG2oqpKFpcjewwNOnYooGZORJcSCFocnQ036/Xlski3zaEJcXWdoFqh7FzPx89PkoyVG8PGBtTuEcO5Q+A/92DHB+1yTiS/G+JJoE1x22WW88pWvZDgc4r1nMBiwsrKCc+5cduec44UvfCGrq6sYYxiPx9x555286lWv4i/+4i9473vfy0tf+lJUlfF4zIkTJzh16hQhBIbD4bnWwqcMCdNydeJ5N5K8AjJV8rbF93LKM1s0b/sw4csvJ3Yywg13IlrBxhaVETIrdDZGxD97J3FjjD7xKHE0JuYldROhGpOdup/Wl2RHD0DZS6Vj6/Drq1TtNlvW8a53nWT3FTMc7uZktmY42sZLYDx2jIYd2jYtjMPtgk/cdpbJxJFywi5GPJgJIkpbZYyHYzQaVAQ1NWh3esMtIslPPYQciNhMyTPYWF9DdQEjStCI2GQ/W9c1H/zgJldcnOGbjCa2VChx3FD5yBWXBrYQtE1KZblA3FxnrW5ZnIIx2uGIajgkOIeJEatgGyF/7y2sHFvDnV2nGY0w6xssjYZIvcmkbNHRNjbUWCPQRvoSEJdT2w5r9YWclqtxk5a98TayuksYVdx/wvK+mw5znd9FlUdqu82w8ohfZmvNIGZML4cMQ9SMe1Zhe20WQsBqzXjkMbbCFkOamDMe19Qe6lCzuTWiyAziJ4gxyW3u000tQKVB8ckRT8GroaoEkZayp0zGDaMNT6OOEFq8t4x3zbO9MEvjAsNshhsnu1l4W0us9nC6gJGUdGQOEx3tpKHa2KbeHGF9xIwqvArtqKKsPbN3fYwT7YBbqkM89aO30r39blzTpViL+NUtwsTjbJe4fhfNO/8XhT9N6w5zRvdyssmoFhYYF12a2VmGw5atzoSO+sQMkTyJIIWKOhO2t4ShV4brkTacpTc4xKB/kiNHemTv9kyMQWVMkbdkpsKYGWZmoG4mtE3NcLQBkkxybLaODV0IPTAezDZoAbEH0uJtxNURG1uatgEcdQXiVmmahskoEmlomoQrcEYQGdI0KSHe2jC4EKiywLbOEltLt2mYqDKxkrj+x26grCvOciln4l68naHRPkfHu8iySKFCfmbrHMq/Kiu2xNPg2JZ9fOjWjKdvBdysp9i3n+HcEk3XEfftJbR9OmrwczOEbbj17ypObiwyDBPGW0OsEaSMuBbcWo2r+2xtjBnNZ1SSrMVnF7bpz2WcOm2JjTKpK7ZjRvBC0wrb2y2FKJN6wqT2bG1BJjU2JuCOfprygKhBNYKbEHRAbxCI2jAzm2Fdgw8FaMbNNwnb2xlzKw2DOUeMYE3GLbfC2nBAXzJGtktDhgljSq1o3/NWfNFneGKdsdnHiWOWXZd06W5PiPmQJnQYN5EQAltbWw862P1DwxhD27Z47x90KPxSji+JZOCWW27hd3/3d5mfn8day1VXXcVLX/pSYowY84CKlrWpTKiqDIdDer0enU6HxcVF7rvvPiBNgvX1dd7znvewvr7O6uoqa2trn2EiJEqd7DgWGoPXiFGlUMXEHsWxY9z8G7/A3qt+jarMWHvtr2FtxcGrL+HU0b3s23Ut1W23sfGLv8T4zhPIj38Hdm6eqGmjsNuR/K51xiND90lPgTwh+htV6uGQ8vpnsbhW832v/ADP/aaDfOdLlnDRMT7bok3LtjjM0NDGbQwFZ86UfOzjZwl+wL59noWlLW7+aCCaMUa71JuWjbUxYx0BRfK114bUqE/YAUGJ2uHLn7HE/MwcbWXZfr5wbLVCRJkdDPnKlxve8c5Njt034I//x928+PkzVHUkhIoz1JgTkTOzjtmZApVRYlHYSCs17fpZxpvHWERpwybV+jajs1tURYWimNihv1lz7H+9gSvODqk2txitrsPWCO8iIdS040CpAXPmXiSYqYiKQWNOGwomHOWNW7u5Y3KM7zYObQLVcMy7bhvyR++aYY88gZwPs7Vxgq1qD80osna/oTOI9LojjORYEc6cgfFWjtWGybBlZqnkVf9uBd9aLj4CG2tbSIyMR2NG22PGAL5CLOhnQj5LIKlBxiS/KpZ+p+THf9Ty3/+r58abR2xNAlVTgzrObjasNg2Db/s2Gt/Dv8ny+jc4/udfrDM7MvQuO4o90SPkAhKpwpit9TPErRPQNjC6Dw2WemuTLHrkne/n4/o0fu9sxhWn38P86jGQLluVp7u6xfroJHOlo7znGKdf8xpmfI2JDTmO9W2lvWSewY/8MLpyiLX1LeoxjGSbqBaHxYWcrA1M8sh4o0s9DKyeCWyMtrn08sD3/HCPq682fPTGhrvv2eDrv32JmVlHZmBpeY3nvTCnnZxka2MD0VlqvwnBYVyNxBa0BvEgFWiV/kwgmhYbpm594wpVg8l6fN/3XYqxNRtnKhoTqMKIwAZf8cL9PPGanKuvNLzrXRXDTVAsJuSYrMa029C2OANNrGnUsPbhd+PaCzDFAu3Rx/GmO+/kTNvhO7dz5swqGsEOW6KxeFFaibTO04TITXqAf/ebJ/l3z17lkovH9OI2xbd+DfF51zDuzTFa3aDjFaxnUhf8wq8MObtW0VSwtrFNYSZMck9dDRluAl5ZPztmbaGgRUA8qjX3n10lujn+2Q/uAn+K9eE83te0Y8PG2RFiRtTVOk0VGK6NMBoRItF8+jVR1IJGvF2n8oaeGxLbDvMHDT/+Lx1/9Aer3HbXPB+8saWpLQec0uu3aHSo6fH2dzScXS2Zn99L57t/BC0/xtof/A6dEyf4+G/8Jhev7GZ1NObYhV/D//jQNt9VzTJzeoO69BAalJatrS16vd7nvJHHGGnb9v+IRAC+RJKBra0tnvWsZ/Gc5zwHay3OOUTk3Oa/Ux1o25YQAt57+v0+4/GYjY0N7r77bg4fPgykCbBv3z6+4zu+g5MnT/LHf/zHHDp06HOfDDGy0dtFVz0xbrK0/xC+zMnCCDs8gzSH0X27KL78+TT33kdvtIarzhJLS9afpW2Tv3zMSroVTKoh7vLDtHNd2uMwmemz7+JL6A7mmWmVyS/fRFnuYeXiRXRb6N9WYfU0kzYjq7v4oGQmIyJ0ejmDmQkH9geuf3rFrTcps/1Anq+xOOc4sOcoedYiklTvPlUoyoGDy0hMNKJK4E9fN8HpFrP9Tb77exfZWDvL8fv2YVlmz94SU3pEFznVHmBuWNM/uMAVjxvwtyJYX9Ji8AZ6mzVL6y2tVbSr9Fb2sLDvYEL8ExHfR8otzkqLoBSDPnMH9sNglnuKpFjXjw7amqweTfOYHMRjjCYOfWhYY4U7yBi6RUKvT/fAHubaAWu6yHpY4qLQpT+4FO3NocWQ8cgxO99n11xGq57BwDIaJTXFQrdZWgpccuksRy9aAFXyTJI2gMCk3uTg/oPnWk87yeo/NHYWpgPA5RfDrTdU3HBzxmiygI+WqIHerGXvkRXcwa/GbSrGniL6jI3xLoxkdI88n+0zr2dwcDfSySlzw659exi6nImW2BqyaJlVi/ERGwo2ZZkzeohsO5KsiypCmTNz+CgyKGBpni6Wua0x0QqOFheVQgqWLr+E5WsP0UrOAhlOI9u+ZmOcsdxTsmyKs1FFmk0k9Ig4jN3FBUcyXvL1l6ERbviA8jdv2+aH/8UBlgbK3pWWCw5P+JqvWWHv8pjjOGYX5uj2+8l6+ZNYb/+QsQXhwouvx1kLbbIOnlusKYqcl33dPPOFxecNf/DHY7ZPByrJiTHDaEtWlPhG0n3YAd47MlVC7KL5CrMXX8WZO4esmxlmvKE/3+cWezELZkIup8mzDpnMM7A5mRRsuF2Mq2ux+QL7llbo52P4ustobcTFDhWR7eOeXs8Sl5TKzSPxbuY7DQcOrSDZhFpKsmDprDVgV5mfW2JpWbB2jLPbLMy27D90KTbAP7tqFrUjts7O0u1+hPm5Pvv3LWPzGYbbju31lgP79qfBkpAoGZ8ukhgIwc4xnnRZ6t/D3GDA1U+Y4YpLDO/46+Pcfs8CVS1YlKVdQ3o9j6FHiCV1XUJwVIP92JdcTVz+Su753x/lqvvezspmTaepyETgmq/kjhvvZLIwYN+BFdrSIBoJYULwnoMHD6bL/SzX7x3MWFmWn9W/+2KOLwnMwJEjR3jd617HK17xCn76p3/67xkVGWPw3vP2t7+dt771rbzuda/jE5/4BI9//ON5zWtew5kzZ3jyk5+MMeYcm+B8xsE/KhQcASOerA6YUcSJQTTABz7M9m//Lp3WE7pdau+n2kVKOxpjmkivBacB9Zuo1MTRNjLTZbK0wNmZDvWRCwl5jtpIG4VITjQFVWt485uO86u/cjfed6hGwvZqhzDp4zJDXWVsbTRcdNk6F19+hsOHHfMzDbkYLrtqk6OXODInEKYOep82BDEWYwVsi3MBo4ZOp+bAhcfZtei4YKVh4IbEpqGuoc4cn1jLeNNH5lmbLFBQMTunWEpG9Flb3os/fIj2plvpHt/EqCNW0wxdp2I8mmiaYuKUs8y5DRcEDRGpG7JIUmvc3oYsT97xgJckuduxHss2x9qcE7ufSnzc0zGdedoNQ4WjNlBUXf6/3znF//dXZ9lWYbhumXEZ+/evUpbrzM3CeHOTLF/n8ms3WFmZ4jCEc/7vZnqKOn9+fS4J5rl/o8kmu79rCyTjpg8XnD2jGDFJO8Jo8opQg7eWyfS9GoYZ/vBdkQ+ODxDm9jFeXKLwwKRh++Mn8LWlXO2QnbyX8b99NdmowVshdsCoghdGcwuEKPTHFaiQhRIbO9TdDEHJgxJw1NLlt39ri2P3emLwYNL8Rg133er5F//sb1k7FYkxgb+axnHDjaucPgs/+IP38e53KJ2OwVlwDopC6ZQVncSsZXYG+l1L6QzRd1Kze2dJO6cN/tmNrWrE2mlJ2YBIoF/2ce0MEpM3ghgoishWE5OrozE0OKh6ULXU3RKf70LUEWJkqCVDP4e1A7pxkW5bcN9v/nu2br2LN0yewM16IRqENl+itvOYCERHkXdwtuBnfvIEf/Lf7kb9ACgR0wUDq2cN3/VtN/Lbv3UT3hnyfo1ogTUWjIFYIFgQCN4AnrauqSrod+HKqzfZszvDaBK+cgYcBXkGF18RmFtyGEcyx9LsnL5IGtvAQyIIZcr0oYOzlswFog+IGpyDLBeIAWNq9h9Y48jFZ7n4oowi38Zg2dpQLDCe9Hjt79X80CtX+ZN7jnK/Pczs0ON/9t/T+fhtxLbGRGj8CJURNjYoSZpbHqJy8Q+ZC5/rM/rFGl8SlYGbb76ZL/uyL+MlL3kJWZaRZdmDXldVsizjmc98Jtdffz3WWvI85wlPeAIve9nLklFQnhNCOJcQfN6AIwJYJVrI2oBMEm9ejWewvglWIICKw0aIPoCBZjyGGJJFrALNOImkeIudmSN/6UvYxnPp9/84W6FDNxpGY8OkLTizqlSNcPe9gdtu7dA0PWIQ6nFEFFZ2t2xulayfKfjqlzm+/duOkFnh2M23c//pIT/8b57Ek59coDFO5UEeOhRFoyAmgArBjzl4cJv/9idPYn7G8hM/9kRu/Ni9rK46ThyDST2gYZHj7SE2szN0nSUrDRQdzpYz7PrBryVbyPA/+kqyXQNsVKzWRGlI1GVHFIs40gomJEAh7GQDKTMY19AGjCQnCHfpUep7TpBtbdKSFBMkBDKUY7LE+Ku+kyf9yPXQ69JsKiNd4M7yIAezk9z+CWXUidRtl/W1Dhcc6fM933+YD75/g+1xxFpl775T/N4fXsmhgyQFPplejn5qqtI/pvwo055vd7YlKGgzjyJE9TSTPhvrytI8aIBAS5MsCWmj48OrXa5YOITfdQFL3/EtbL7/w8xbRSYb4NcwWzWFGRJu+ggGoe6U7N67Qu8OQ2MgPPXLKd76BuLWGqydwbQRl/WQogsyImiXbbOED12OHxdWV8fsP2qJsSWSY9SwdirwgXdlnDnZYnPHYNFNbbRzfBxw7z0l1s7T7U1nYIAsG9LtbSU6pgrdXkWRb5DbPVixhABRdpg/O+ofnx1j41x/2EzfOFH6hWJ1Azd9T0FxkrO10UGsEBsFddhJxLY14cAMe5eexE3vuB/xhi0xbEShLoVG+ogo5e03Uq9ex3vMlVyW3cWV4f3U3YKmNsklUz1IpG0DH/1Qh49eexL9NkkujapYiRw7Efj4JxbYd3SL9aHBlC0Eg4nTe44OsS1iIMbUXtpctQy3lF0rwu/+3uPZdwByAcGDBoSMModX/btnk5UgZuqnIUW6JkhtQvEkndVPHwlPYLAIzq0zmZwGFrGOJO5kDeiQV//fSzzjK/exvSW8/r/fzn339ji7ZlFRYih47/vhzntKLh9fywvcTeyJt1Peex9Ff47MWCwRPbtKOHkCt7CL2J1DMecAt/+Y+D8pGfiSqAwsLi5y44038r73vY/3v//93HHHHQ96fecNzfOcwWBAt9vFOYe1lm63S1mW50AmO9/7j80Kzy3+qngn+CJZ5hI8JniUFidgg6feGGI0I68C1nsikeAbIoF2uqHIOGCjoTBdbGeB5tAlnDl4JTfcH/mn3/MOjp9o2Jwokxr+5A9X+c+/+QnqumB7UuBjAXgG/VV6vRMs7N5gY0N5zzscSzN9FmaFmT5cePEaB/ZvsWvXNkUmWKvoOde8TxfJWS9tegUGy9Iuz4EjZ5mdjRQ5zKwYZLDFXccs//x7NrjxA31CzPF0qaKQ5w7NhZhnTLo5fv8iYWWJ6JQ46xjOL9IGRU1FcIr6gImJ3x9lh+JkiPrARmAQaFoIIWmZe6XpdZiUOd46tCyTeIl2idrlrF3i7KH9hL0lQ29501+d4XS1hz8bP4V3yrUQc8YbBm0qJlEImWNx3jAzaJmZiWR5oNefsO+Q0CnTmcjaB8+lHUTzP+bUcX6SakTIMkO/HymKAGoQKXjTXyu/8LO3M6zTQo7W0ILVCCYyEcfEzqCdBca79zLJe2nfky06cYipzzAGXGwhVjShpddZIpPAxAT87AIalfre2zn5O/+BWG2m6lDeQxAmbp5bWCQwSx0Vj0HIgIwQImIaxGZ47XHfiZYf/8G/4xO3rBMRoqzRmx0BfZAi0VQVnCiLCxP27B3jpMEILCyPOHDkLHZ6pBHrpyfWpOcwzRw/pzFOA5xotBcddVx0yWmc0ynFDaotuOvWkjBRHILFUIzXYbzBeM7guw6rBUZLJiawLutM9g3YmptjA0MWGyRE1twcG6YgYHBuSOEmTLTEm0gMAdTiQ0bjC7wNU3fQhhgCo3Fkq1buOrbID/3AHZw+GXGSU7gyPRIRAiMiNW2E4TDnP732Xo7d2dLtKrt2K/2eYE1SJhRJIml5DvNLQqcLIhEjBtSeo/eec2N7yIhEqZNfALDvUMvBw8ksKwKdviMGT7es2Ls/MDuILM3DhRedZjDwbI2UIIHYtDSbDvHzbMhuznbnEkNAPdhEpbYq9O86yX3/5pc4+YY34sSQ6YPX8sfiM8eXRGVgcXGRxz3ucayvr6OqdDqdB71+Pn7g08UnT5jzT22f7cL9oBOfCI2xBOuIRKBFJhWxmqBEaoRh41np9OgGMKNRUgprGqIEGgvRC9lWiwZLU3awWY99113J3kuv4/Xv2+BNbzSs/VTEFhOq2nDq3h63fHSVqy6fY9xOiKpktuWH/vke1jfv46a7VunO7qEelZTGpUkgLd/0LU+kmng2h6dTliiKOI/saOZ/qnsl0SvTtxuMKE/7siWuvPRpZNkGVhcJGWgZqNoBN97UoxELtAQaGjFQ5AQLuRU6xmAYENlP28zjijnW4yLabKGVR7TGVFWiwuUF4psdnljabKfDbhSsKoJFY0CtYVxkTPIC0++w/LjH4f6mpaXEyyxVZ5FDz76IcW4YDYWb73BMZIkPao+j9gS7aai3AjIWRhPFZtnUU0Bh1tPrKp1cpvx0kHMn0wfmzfnJ5kPNvYeK879XgNLBBRdWLC5b3vbmFtWSs2cX+dhNY4YTQ1tFJChZmyohQcaIVBhpyYo+tulCyMEb1OfUfpFMtpmYnL5EjNYQCobFYQIWnxcEG4liMHWFvP8d6NVXYbIBweYEYEv73KW7iSEHVydVwlCAmz4XxtPGQJCK+88E/ubNju/5wcjKQSh6Z/n2f3qU3/wNJS+EvEiVASvCV3/1RTz7eRcmvQt1PPt5F/H4p15I0WkRY1GpUSmnYyMPfP4s94K0VmhKLtXywhcu8Yxnvoiio4kuq0o1nuArgwUyDQg5ud/GVkPO2gVGkqE4kByvhqHUdB5/KVduXsJbfuf/BddFo0kqonhEHca1SIiMtE+TLVAHQxMjJo/4mPxMvNYExjj6+Kah1Ql3H+9z5qMlu1dKdi0EOuX0VK6gmtGEBBiMMse9dwv3HxM6PShcm8zRpo6QiMHane26xjk3ncE2UfwlsiPjqOoSGPchsESCT9RaCl75qq/E5cmREgPdfo41hgsvLDlypE+uI2xe8trfeCrf9q0nOfHOItF5vce2kVI9tcDSVVdRv/cvsaI0NhIkQ7Wgd/8aM3e+h+HeXfByTbLJD/HsfDbxf0oy8SWRDCwvL9Pr9VhdXeVFL3oRa2trj/QlPSiiycnIseqBCe19G9i7jhEjDLsFk0GPfKYkM8BwSIGiW6MkACNKRDGnTyPiqXoGkxvibBfpGyJD1HdRYPNsQz1JfuoKtEFpG4OqkGUtR492OHl2ws331azsrVm7/yz93q7UhsDQ6ysuC2wNSQ88wtR/8SHW06QKpgZEU1shz4SVvTs+4xFnDMZkSXgHwUpqk/gYmZBhuy4pkrmIi0Ls7ONjHzU03Sezp7/E3w1X2CWrrPgObK5y33/8Pdx2zcKzn47f2krWuEDUxDPf2YKNQrRC1umyUVXExXkm95yBokSX5hFzhjo3jKqAzwfU1hAnljf8+TZ3nyySsBMDmlgSfWRjM6ce58RaKSSjyIWi01L2Ar1epHT9JKQTBMx04fwsy9SfbXRypVOMWVioQSIxlHjpc/sdOf/zdTUn72sYbQ0wEbxxYCyuFXJa8sKRV0LeelDlrD/MR+OLucDdw6SpmeNj5OIZ6xx/eazLdnRQ5/hexvEiZ88QBj5wWoW202Wz4ygMBNthGOeIWNqm5E1vbDl00DJ/MJ+ORs76ZkurwmgieL+YTp4BTKzZt7elLCJ5ESkKh0wFvTodQ95VVJPVdtEpWO4LlpjK41bQ5KU4jcjUKeSzHlclbaSI0O1ArxtI1lhpyez2Wlo2gB6KEpiDaGnqyC2rl3DjGccEqGOLYYaWRd76fsd9d1kyOjSN0A2OwmvCYmiHmBWM63lOrmfcZGcJWDQaPC3b247X/8mQ576woDNnScIiAdGMzY0B9STn7OnAvoUNRJI7pLGGre2Sv/jjE1xz3QoeS9Aup08reUcxxiIaUNGUuDxw5yAufZrKqkMEaRIDYTqmD1UfkKlDACo4q8wvTdcTScKqYiwhWoo8UBaK8W4q9WzB3YfoPI6MtvVsNpEmNhjbobzwANt/G+hNRYgmxjLRjEk1YdYpfrKFxNSufCw+u/iSaBN8+MMf5syZMxw7dgxrLW9+85sf6Ut6UIg4Ms2wMUKoqT5yI+GeE0RxlFdcy+Xf+s2Y+VlqY6jrGnCEYQ1txGo62chkEzUtvgfkkcpGhi4mFziJqImMx00C6aAYKzRtcggDQ4gVedZQuIgGQ39mwoUXWa64cgASEbWpTMh4upu2SdFLi4d+sDSVEKEF2QTxOGFaOC0RqclDxIUC0RaVs7i8Ji8zKukwpksvVyxCbT1beUbozPKb7zjOx7/qB4gv/z7etL7CfRxEh5b1j9zA5m//J9rf+g2Gv/QLrP/hHyIxic9EjdON4IHrbUXxnQ75rl0sPOvpNC5jbCzkGc5YalvjTUsVwCJUpxte/dMf4sTpDKWlCMrspIPWHc6Mc7a9IKGlpMAJFGVkdl7pdoXSDZKrmgqpffLwipWIQKeosLGll3s0jhGrRK25/7Twk/9ylV/85W22tmcxWLwImC5GCwyQdRzBKsG2aBm4Mxzk13gBf2Kfy7vDdYwpUBxrccBfr5YMGeD8ALtrltkf+D58PovtzdLEgrh8gN3f9k+YzBV4iSQjC2U07PLaX76RGz50P0TFChAtZ04rk6pgexSpQ0UUjzaQ6YAyNxjx9LolztlpMpB635gWNAliiYBB0ZjmYPDwAFYgPHCS/dxGFzCItFhbp2csyjkxnRe99ABLexuCEdQJ3s1T64CxON55+17efWvGxHi8NeyavxjjV/jFX2t441tq8khyqAwWFwRRS9QOE7vASPaxNSr42GSZIXPkHcFJzn13d/m5f3M3x++rgB5GDNooEnpsbXZo2patTU9RVHjdnro3wrH74JdffS833NAQp/onp8625B0/FRpLm/6OYGCUaTKlGaibGpYxHc92SoNNcuEPtS4oQvAZQo6RiLVbiGlBwRoYDUcYlDKPZC75HqBKVigv/poLsHh6JoLNOTUyDAOM3Qzzj7+a3r4DEFOyNiSwjXA6jqmKgB1vom39KTtEqVoyFRb6XKfFl3B8USYDO4qCIQSqqmI8HjMzM0MIgbvvvvvvAQgf6RAimimEDkw6uPFpnEyIdCgf9zzaq17IH/xBYLy+j6Ht8nZ5JvewH/EBSKh5ox68JbgZjCmIcYJISA9XrAkaaUm0LysTPJ4qJlFWouJwSBYQM6HvRvSymgsuFJb224SaNgBTRUJJugnmvGLrp7+3lG4IBiQHDFbSAw8Zah2tNRRxGxdHtCZiiki3aBFKzhRLZLZPt1HUwXsGF/E3H1his95H9uQnM7zsKu44fTEmLsBb/4T8LW9h79kz7KpGzH/so3SHq0gEdY4g27QCGg1WLeoiVpNQTX30asy1z0RdS1SlcVC7ikolCZ2IQEj938bPJpU2SRCp9U6XM6ak2bbUNSCGzFmw0Ckr5mcauqXB5jl+WpL4Qh1MXCEY28EVEWtSq0ZMRtsKk9EKvtlD0JJ6ukmKFxTDvfkCoTPLrWv7uTFehWeWVe1x0h7lpL2Ak2aFaCxqLVXeI4Y5WlV81mBmDrPy8n+KWT5I7M8zckt88JbDxIu+Flm8EDGRmbBJxhjxhkm7h0o7ydZ7KgZz8tSYtl7ine/qM4lz/M3b4b77Ao16stxS5A259fQKg6hNp0wTcdbgTBcRcDbpLog4MEmsxmmJIwll/WOXNxE5ryaWITZJgBvNeNITOxy9uAHjMcaxHbvcVM3SmFka9uOZxWjghLuMW+tlRC1NM8dG08FrgQlCVOhGJdDD2xwTDDZYeljW7ICx63BwuWW+r4gGJn6JO++D971lwkSFJoJqTl0rMQREA2VuiF4Zj+Ev3jDhzJmWYbXEvfe2YISmNtxwc47LsilIMp38dwr+6anfYWTIeZtmkgKW6dP+Gae3grUOmaL6hRyHSQ6sHlTvxmb3kznFZYZoatSOiRJZ3mUxbkzR2aJfTAi1otrFe09xyV78wUtA+5xor+adH8uYaIk0fWRtjXjD+2g/8TGin0q/C+jUqj3o1LNAH0gZH4sH4osyGYAH+vh/+7d/S1mWbG1tccstt/AXf/EXvPjFL36kL+/BIen0lXQyHVJ7rAYMNWHOccv9Q376149zy/FFTnCIP2mfzK1hPxIVDRVWFSOBQMT3BpB1sVhcSBoA1nRBLHVQYkzCOi3KxDuEYtrbM0huuO7JR/iWb7yMXTOR3LZgp5rf04RASDx8wSHTYt9nevLTJLJANy0mIskj3jgiBrKGb//mPbzipwq+9ltyjFOsiWQzsyw86WroFOROkMGA7Mtezmv+oOX+E/NM6pK7TnlWR/sZT3qc+YPfZvs3fpvZSaBoA3J6E9e2ZD6SqWDrBtema/Im4jXDMo978tPIfuh74eKjzF9/PbkfYCclAUXynDJfJGjEawIkegQnFfNzhqDC3qdewmaZ40dCM1YUi80EsfDSly/x7Of2KDsTXBEITolmCARU3cO+4IhJpzBMwIiDOPWS3GmVR0ATQoMQMR4aUWauvpruyjLvvRnee3oBH7q0Qel6cE3AiiNGwfe6LLz4JXgZoGIZS0UUQXb38M+6mEaEzbbLr//P+3j/B88iZgENUqxdiQAAha9JREFUFR3X0MvS6bGVguhMOuGrASynzm4Qmg5v+WtDiLv4lV8+xvvft4mKxWUWMRO6HUPpUklabEoGRDKMlFPti4CV5LWRLO0EE/N03+eSgc+xTzz9ESIufZhE0TMGbLT0S5jpaaIJu4h3lg8ODUNdJExba04y7gv7+ei64rXGEJL/hVhEJW3a4uk+/Wno7hmstjQywU9bHbUa+nkkMx7JGoK1vPXt9/Jrr/4wwwm0qsnhVElsBjF0O0pTe44da3nlKz/C2lpNpYHV1QkaDPicj30skDs3fd538FAy/c/A+Ripc8OX6IUpIQBQHqqVngDZ03VAEsUQNcl2XOB7vu+JvPwbumR2WsGxAUzS47AGVLb4tu8suPjIBKtANLjYQKHUZY7Q5ROjvfzvDwQCc/Q7K7hRRbz9bk7+7zdgfUR8m6oXYXqAJEmY81hl4FPGF20ysIOqHo/HHD9+nOc85zn87M/+LN/+7d9Ot9v9zD/gCxbCyO+jZRmNI5AWM7TkTYGRGroTIoaRX+BM2MUwHOY4R4nbJWY0JDftlIoItVNGC/P4fI7h0GKjJUZLYI4zpx2nTzrqkEqOa2szDIcOVTe1KTZsrG9x+dUrPOv5eynLQG48TuK5nuynv4OHeG2H7bADJhLhHOgYwRDpUPOyl+zip35qmR/4gQLLmKCOajBLdmQZ6TbErmPSG7Drygs41c5wtumzugWVN2zLPJvtPmaGGTMTwWiW3AyjgcZg2hobW6TNMQGk3sKp5ywHuCW/msmTHod5/nM4ZkrkqivxXUGDJY+WYA3jvEM0jsbDJJnWUZYtF12YTtFLe3oE49ieRCZ1BE2AVGPgGc+b53FPyhkMxnR77fTeDVD8I0rU//AwUqGskdlECxMxyV1O2unme/6blYbMG+HAJbPkMzn3rTvq2EUVfEhVrGy6j7aZYWNhluJbX85Wfw7FUdNHgqFhQHjySwhqGbYFq2EXYzVkpsWawCQqvdkSJSdK8noIIgyHyuppZWu7AuPO9apb3ycEg2iP3FmKrGLQi7jcTvv30w71ubZUan89nDEthp+Lc+xQgSwT+t2MwnlceZoiV0Yss5XtYaIZxgi1ZFSmoMKke5UH/3Q79pzNLO2XfwWre6/ibr2U426Zswi5ljSmwBeW4BxNdMRgOH3KMKpzYsvUFyVMxyUjqpKXHpVA3RjaeobxKBJixub6BKJFxFNPNrF2kjbznURg5znm/GrI5ytSE0IJ00OH8Ixn7eUZz+pQ5iNslGSPHPtkGDICuT3Ji17aMpjfIEoNMbVMJUKeTQi6jrd9RnGBynbJVpbxGLLG0Nmq8WfPMvAK3iNRU3V1+t49Fp86vigBhOfTq7z3vPnNb+bjH//4ORT/VVddxcte9rJH+CpTqAp//raW2bsv5NkHW5AWRjVZyMAExA7IG0ElEBF6avEqlB+/lbh8FidmarIS0bygypb58E1b/MZ//xCv/cUX8ca/HjFpZ/mxHzqVbIn9LCrK372rx4ffn4RTDAERz9JCD7E1eWnIck8n10Q3exgXVcFhYgdBcC6w1K94/ONWOX5KGG4bTtYth/cIphAm1rIWLCPp4oxhNHFErdk2Pe5q+zhb0An19OSXcAnqlUhFbSKj3DGXN8jJO+md3ea99hLeXV/O97ujfOQvR/zpH9/Oq67N2TAjYmah2EV5+FrWb0pVAgU2x0nXPs8DvZ6nQRirZRSE9a0MP13RXZb81YvM0rSGQacgM+nER5wmo6bl/EbKwzC4zM9bjhytmJ01RK0SwEsjg7lNRlszhDqHneqOCIrSKDQOGgP3b5cstD2iT46WVg0uGCYIm4sLxEP7eNuHR0zanCwa2tDD6TK/919O8P7/0fIze0tq7XGWvajpIi5iOjl5fzfBR6II1rSoyWgx/Jf/eg833dhQVb0k362JCKoUjCuLzSzzC8oll62xewm6PUOisoUHj6EmTMLDu7qft/tPI8akQWAsFC6wf09LZ+4M1XqXrc0F1pb3EzYHtBtKqx1q26UVS9Hv0A5juhdNFZMQPSGU/PW7au6/7RCn2338XXMEyRfZGmSsHFwm5gJDqEJO0JyTJwaEJh2mNfqpVa9MaaVK0WlpoqfxQuszqsrgG8No02BM4EnX13zk5g0K94Cd8xcqRJQYPWIcTiJ79ozYu/80zl0O0SRwcaYc2l/w9Ge07FrJmF2IiExQKbCxSEqnmQEbaFRo6YKdMO4mM6VOMLS33so7X/VKrvyub8ddQqqWRdBz5bLHcoJPFV+UycBOi0BVsdbyLd/yLTztaU97VPJKFfj4+hzLzWU8NR4HHSM+2fVuO0s362Fbg6hnZCNiPc6PmRmfZXRKOWav5ZC9n1lOkGlyyTt13HDbzX0mY+Hm28DrDPfcWQIWxRGpGQ9nGW07MJs4N6Q32Obyy+ZxNtBqS68jtJvm3Cn+4bt/QaclSRAuvXiB//rfFvne77mBGz+6xMlTWzz58fN0nADK+kYkInjf4psKiAx2Ocabc2yEGWbCOmI8UgC1R3yD8Z5oMvCeuHkau3qK/jhyh7mQd9un8fWjI5y5z3HzB/q0RwJaBMa6zfjgHM/6mev5pe+8GdPk1BOBVtGQURaeLPdEsVQ+SRYMR0oIgNXkbqdg8XSdo5tZxsMGozsnLJ2CrR4+NoEAz3zmxVz35Iv4T791LLEqosFmkRe/bJE3vz5y/P4ppHLaJ0WEIIZxFCoDG7Wj16SNNagSBCIZa1JgXvLV7P+KF3HHGys0FmSSvDdaE/jQrdt8+GNdwkqOj45t28OLJToodu9i+bJrMB8MiEm/OEalaoX3f1C47dYO3YVA5qBp04AFFVpVmrjG7gMtv/W7T6B00OmmixdJAjYPzNYvVCLwwO9JtMhpedwouR3y+Cc7fuLHruV7v/8U2yd6HP6Wr2PmXfuRvzG0FLSa0xDp9oThkHPlBVXBti290OETt/RpJ9dwG5ew2lxILTWDaw5xzTP38+E3ryPWUfuc0DhOn+qQCcRGiSESaVPpG3BO6c4E2iicOhVovWNrC1QL1s+UzC9l/MK/7/Ov//UpOpl+ATfEB94zYwVJihI891l7efaT92Jcg2iZ8lWFJz5hhj/4719OpydkWRI3EpMR6THcdGi+mJgjMamdKoaxpjmS+ZZ89ST+3nsoq29ENSA7QhQkoa5UC3m4588XX3zRtgkg8cqvuuoqLrnkknMiQql8++i5LRXYKtLimuhAFTBhfc8M4+uO0u4ZUIkwYcCppYs5c+QSmmwO3xo+cHPgP4+ezp0XP5tRL8caT8dOOHXSMGr7NAJ5p4OKQ0mfo5pELYxu2kvM2LtnyFOeCjP9DBNMEuWwYJxirOXhXBZUkpVqsBXYFmOUXYueHopMClbvm3BgRek6yKSl2kwLXWg9eANRmV801HMznD58Jeu9jNZ6Yq8LopjxENdA6C/T/8htfOTH/g3VvccImmHqJe7xV/Lzfx6466ywrh3yfZdjrno2TW+O1dyytWLYRshMJEMZjoUQHbkN5GUAEZrKELwjBkHxIC3WRYwBjdtAxeGjDQeObGLMDjRJp2Crh5NaqHRKmJkVioJkz6sRkZrd+1uMHfHg0+3OMihEcXiUurFoK2hQmhBSJSTkrPUWCNdczeqeASqKrScQwRtL6LQEZ8g1x9QevKfViHrLOLPEuUWGhbLvQKDMG5xarBpuu23Mm94auPm2eT74XmFxPiISiVEQmzFpBHGRrIC9+5WlXR6xYETPlbA/+f4f3ogPGr+dPriIIhLZs3eTi67YYO8uIc9rRh1D/viLybolGgIRk8yPsPS7ifkQCYToESx2oyFvPNtDZdsIw6xgW5LK4/ogY6ME17EYhNWTOdXQsbFWMGod0WuqUkzbcuk6J8zORTY24ZdefQtbQ89opCAFH/hQIISahT2wayVQ2PCQPf/Pd4gYjLEY2QErOsrM0J1tMaZBbEBsnGrCNMzNT7AG8qxAVdCoVLHDv/3Zm7k3P8poeQ9Bm0RnDo4m9mljopma6FlqPFlVEU3kAcmBnYboJ3OOHgv4Ik4Gdk7/+/fvZ3l5+RG+moeOKA1RI9nEQhVoY8Xs1381F/yH/8L8c7+asUKTldhnPofHv/bfwN5DaJ5xv9/Fh7Pn0/2xf8fGJVfSqKBV4NgJx6gtqWOk103ArEhEqZJNrzrShG8xKC/6KsOv/PpRFuYFS6IM2TwgxY6878P3WCS4mAAZgYxIWhxpHPWwy8ZqweKKI8vAUTHeUpqx0FR9xpOCamwojeD2rXD0536J6rLLqYzF95eTnPD2Gt3ZRbovejmdu++h8/b3ETe2GdqcRgu27D7edHfJ9rAhmIru857O41/za2zNztE0MzTe0EpktmvRCsYj0GApM8iy5IUQJuDriEbDTN8h0pBlqfRuKMizlu/7saP8i399RaJPnaMXPvynLyMBayfk1iGaxKHEKP2ZCufCg99aBVRSeyWkQ2poItYHNJCEgMiosj5zV13H4Rc8h0m3R2MDhgkey1AyfBQsJZCSCBcSrqX1lkl/ht6Vj6OegeueoBy9tMFoA62wsd6ysdFlUinVBJ7x9BrBJ4CtFyZjh4YZTDRYbXD2gZZQivOrAjtkuIc7IfhUPz8CkR/719fzA//8MpxVxAmzB1fY++SDNJklmrTpGY1YjXSLZNlszRSpqxZ3epOonq1xhVBT+oqAR82Yxli21ZLnFgOsr2fUY2F7M6cOkaiR6BWbmWRVLEqv68hKy3houeeuHsHP0DSW2EZoZrGSYzPodT1lFh7eNoGc98EUhKJ2CiA156wjRCKJs3P+Bq0ICfXfLbqICkLAa5e/+fgmB77xm1n5hu8mqOAlkucDRn6JLTugNYKaDq5x2LadCm098JPDTvX4MTrB34sv2mRgBzPQti0xPjQA7uG/GKblv/Nn2AN/NmpxcUC+2aW65RO04hnuOcLZuSv5z3/asHa6xsZt7rGBydEB9HpYv0keWppsN+860+Pdw8OM5QAmLHDiuDKZ9PF1ZOC6oGmLFYTZ2TGdToWoJu0AWmbmRizvBrEVREFwZEWNK8dE83A/Ex7LBBuTUEqU6QNZbDCsG3xW0F3qog6itEzGgaq21M0MH7mp5uRJoZ857h9W3J7NsD23SCMFsbOboBBGQ5rZAWHfHiazOTZvkapiEg2r4vCqOC2ZnIAmKBtLgl+eZdIIp04VvO0tikpG4QTxMBo2qIciE7I8gal8DbGOCMqe3YIxLXmZnPYIXYhdul1lMBOniz3T1WYH5PbwrLppjUtKb5lxKHnqUaiSZZaiY4FkSnBuXdYEptKgEJRQt4j3ECJtVGqBrSBsFl2qcsDb39LlnvuWCXaBMYFxYZAswzSWFqEJERMaHJ6mtYzLHn7XPsZa0+9X9HqnsdRYhBAsXj1qtnGuYXnZpzaCRERy3vTGwOqpecQXSMiSMuKD7/a8+EIkAueFynm/LiUivVlltlfjrJIZw9AqdQmVZlPkfABtcXh6ZaL+dUpLt9vBR2B9FY8QJjka9lKEOUoVOmECGmmiI7MOo4bokyXwpNbpO6oEr2QOrFOMRLp9h7GW1ncJ7S5E+qyt+ZRgqMWQ44ww040PJFoP34Bx7j3SneT4kz4EoERJ0uA63Y4kFoj2UYWiKBCTqnFRMqpikXbXLO38MsEUiGmYWcj4yB1jtot5qtwwcV1izJEwTQam71u6Gn3g8h6LB8UXbTJgjME5R57nOPfIQR8e2PIVpU20lQhRGyITggSMyQg2o1nuc/+NH4RGsMFx153b/MS//hg3frRBbMuZZszEBippMNGlXpgo//a1G/zZXVdxTA5jKRluBdpxBxlBPlA0Wydq+t1PevIWr3xVYNfiNlYMaiCzDmsU65JKW2bg+V+5h5d93QVk8vnHDp8f6bE3U6JBPLc9vvybL2Bx9waDrmGxX2ByaEzN1sQSfcKDfOQj67z/ow3kljPbhre9u6LKi8SKzrqoWJiAKQrqmZy67LMtDWxu0wlj1E2IagmtcnIjJ05yQiV4QNuW1bMZv/EfW4ZbM2iW4a0waRoCkJURWzaoiWy1ShNSgX1+V4uVEW6Him1BxFLYPAlLYc/DCz686oNKErQOMceagJU4PVEFZro5P/mvu7zgeasYu06UVCTdvVJjs4ZgAzEIVduh9jVxAuPJPCOTse4MbVNxerPi53/pbt7x5gXytkNjDJuL+5m/9kmgNcEok+BotUQJrIYOzexBgsswbUsnM/QywWNpo2IqcCEH6bGyVzh0YUZgjNgRaI+P3RAYjXOii2lgz42f4e+BMP+R1MF/WOyo733y77AgFisTrImYzGAIhGyGKEJs01zxMqQqhAsOrvG0JyjGDPnqr62QwUlwihuu042eVruMDqwgy/MoyhOu8RitGNWO3PUo1GBQGmOICrFxRA/et1xwdJNBv2J+oMz0PItLsL3uCN7iHEwmKfmvJVGZHfANX7+HF73w0Bdg9X+I90ZIut3nxnf6eYfWMNUryUuD0dTK1OiQyqJOaMsW71queUrDNU9s+Oh4HvnaH6FaWMHFmpxtTNWmdzAmfE8gCTyh5sG53WMBfJEmAzsAQmPMp9V7/0JGSgYi4M8rDkQCDUEhBsUT0ccfYrh1Gm0duTfgDZNmme1xhtcu9bAl94JRh8Y+rSY/g8lwhWPtk7kj7icUOa1vqYYGXwWCqaeYpAzVlrmFVb7tO3osL65j3AixkdztqAimxVUIXHPtDNdfvxvzDzId+ceEBfIpcKdFNCkYPOMZe9m9LzDTcyz2Hc4pJodRvaOI5tHYZTLpoNai2YC/e6fnnhN7CepoZ3usF/nUYW6ejx/LWW2P0jMlZthS2ZKROkx0tJSsNxYTHHacqIOTCoSczfUOGgZo5miiUFeKsS39uQ2KUlEVRo3QtOnE3el7nG0T5sJo4r6bJNuSWQfnkivz8PckRQk0II6iMyTPT2DsBs54cmP4mpcPuOZyQaQG67Gm5eKLDHlXGNeRO26uWT0lSdDmnlOcPekJ0eFNRtZ4TCuMq1lCnZHJBpWtWHUX884PdBmNDE1TMBzNoMdbct/jnvsL3n3sYt598wz33T2PUJCLEKetBRPAqYPg2LPPc8llJUYCQoWJgUy6hJDRRj3HFnngJGke+FLS+D68y9d5v/f8P577wmIRlCwxdowhaGL+SIhAQFQZB8velQkXXQRZN3LdM3KqsmCbLqMzZ3GhoRZYK3tsGSUa5chRIbYtt98esLYhz8+ATJI7pRq0LiAKaGRlzyqDwTqHDq+ytOskBw7NcfzeDsbAvr2eOz/hErtFDMEPgcj1T5nnyscvIw/rdvhJFYBP93HuS3kAwzB9zZiUDBBtIsREIfcOq2AKSx4Nl16s7D0auadYged+BWvFPPbESexok82tbSAJiTHVZBA1oFPS6GOggQfFF2Uy8OiLB/cvRYSoimpO21ikclSUNJ0ZxuMJhMQ79k5prRCjYHyfdisjbBmKkNFS4EXJtQFTcH/cw0fbA2wO5qgJVA00rceHgMgAwaV+sNT0Z4SvekkPK1uIQpFnD4CMJIF5zjnnfQpY1sMdAuQ5OOfplDp1R0vj1tTpIU3SoZZmCDMFkAXe9T7lbTfsZ+x6mOuvIP+GlxMGOXW2wH94S8XHRheRTxStAuaCJxIufAKeADpgPMyAnI3tpDjYVF2M5Ay3DE4cmVNCozQjeMr1PX7oR4/S7yZecz2ZXhfQ7aaSrJv62gsPHGZ2FrXzxBce3oFUg4kziLdcd/0ufvG1u/nBH8+Ymdmi4xwZYF1GFMCOMNKCTIgxoLHknW8+wcbJGjMJ3PzO9zI6vk4eM6LPCROwrVBoF41jvux5nn2XZ8xccA2v+tlbufOeAd7Ocv8JobrhLkrtcOsn4L/ecDm/+r4l3vTukqzTJcubhF7xhraFfs/Q6Q+58uolMhfp90Z87/cPOHT4JFYqQlsnp0Vbgal4AM1/3u7xoK8fzvjk3/vA36fHKUdwSQ0xi6h62mSUCXhEu1jfI88V6UZCPoReRpy9lv41T2UjtERNOgr33hU5ecITVMlLoRqX3PTRVfJiwtd/4zK9wYSdknsMNpW/o9DtKVl+iqc8q+B7/vluHv/ERSIOsYb9R9e4/dYKZzsgLePxhKAKJgMJj47NcOcBenBmcO7SytJMn7Mdh5SdNayHbQr61lP0lHGRs7U4x/xVV+PvPUnfdWm6JV6mG79JAE7zWD3g08ZjycA/OnaQMOfzoDVph0eHr2FrZNiQfWyaowwnfcQHxDWoUVBlY72Hiz3qbctwrPjoWe3Aeu6m01fYZA/3ucs405ulUYOoMKmV4COdjoBOsNJi1ZBZ4XkvnGHQB4mGLEtcbd0RodkRcBH4wvRez3vQNW30zkFegEqLc+klZzMmk3SiVk3JgJ9A7sCroYq72GI/tQV7xVFmvv4b8LnFFI7TXMnpeIjCC9LUuN2HafdeTHSCxh7jkaWNhlOrMBrB1lpBVCH41HN1eUAV6knLlVd3+IoXzlPYIc6MaJtI9BZroNsH4yJJ8VrOTYFHJgSJ6bouuWzAN3/XXr7um2fp5JHCJmta22lQSVa8hgZlhLWJKtlMgY4ShNKDGIuooQolMXRpK0G9QVzNU55bc9HjLfbwPFvxQup2hhph7IfMsE0Uz7HTJaudx3Fq7jBeu7gi4IoaMLReaIMyvwC9uW0uvyIjNy1LC0P+6fd0OHrRGhJbYiOEZlrOlWTU9eiNqTSvndp9R2gaCMGgavHkqJaIVbBgbU2vtLhyN/KEKxi6iNEMgyM0JVEKQDDWMtweMNyeIbbwghcN6A/ac0MRY0KC+BCxVsic5cgFLV/x4iUWFgwH9g8oO8rBCxrGo5Ysq3C2oq0sGjVVMM6xXh6toahCWYJzBnE8aC60rmRsHN1MWDARGy1NlpNfdoiWhvmLjrJw6UVEHFGS3oqcQy0+mu/7kYvHkoHPS+wAZXb6XumTtZYzp4Z88MbT3B738z/+ao2t7UVsPULsBLxQRssb3ihkeUFdOU6PPRPnGV24l809BxjHPhHL2BqOd+eZveZxNDEtlBtjiD6n11GMmyRV8ZAjLexazjhywTZ5PiJBKhIATpVUf0vH7y9QXUAe9KWY5GNjbUtemORpAzhbMhmn7zEEEMe4iqgLoDMEcVSuJeAxZY7tLeClizpDbA1NVGJokMkapVW2w/QHq6OqDHUQTp1R/tsfnOA979pAVYgacS5iM8XHiA+eLB9jTcuePWMuvHQd7yOqlm4P8jziXEjJgHzSvT0CIXYqkSuewgTKTMnUkjnAeUzhQR25y7jk0m2e+/ycXbu2ERNpaGhNoN0x+DEFwQhVMceWL3jzO+6jrQwqkbIPRTnijAbGYqlCi6qHOKINYyYm445jgWHjGHuDDRVZNiErUv/fB0vVKkVPsW6bLPPMzgSuuXqdxQV40vUZj3vcGPVKaCOhzdDQ5dHtPpc2lUQQiKhOlQFjBlNjqIoW4xzOGVw0LFslZ8TIVDTOoViCCjBAg0WM4LKcjbWC8WYX9Y48A2cCVhRjlKABr5GmseRSoPUMTjs4lMwF9uxRRGoKZ4m+4uhla6zs3saZDMFM24qP5jPyNFGRdGDIy4DLEoNjpw3XZI5tB9ZYZmyk8BVECLvmqDuGtt9hWBRAGlMEkji6Puhs8lg8EI8lA5+3mIKcFBI1Jj1qMSgTr5wxh7lx6zDoPGydRXyOtoLxOaNJzuGjyq49PU5vw9B2ue57v49rv+Xb2IxdfAut8ZRH93D5VzyF2gc63cCoDvhQMDNQhDEiFnwCkx29yPAr/+kSVlYaymKqQscDfO3kIcAXIEuWT/HHdLK2Np53+lOszWka2BFmESxVnRgIYFIZNjbgDDGAdHuM+/NsxYyiqcl1E4xH/BainrYOoIYQhFFlibHk7Kpw712Wpu4mg1sRbJYWmbY1DEeJKWCxfNO3XsaP/MsjxJCqFDOzHpdHjA08WMrikVtWHhDaSoqIuY0YEyg7kEBYFis5hY38+18/yA//2DLf8h09BKWqBBVLo5FuW+HFIWVGnOkzosPNd64nrARC4QyDEtYaT0uVbIQJEHPa2Ec7BaoltjGwIRTR4jB0BwUhGJraJd8Ma3DWk5nINdcu859+51msLBl+9F9dxY+9oocxGwSdVjN2kutHbQQgCSsZETSU+AZaX+OylsbUeNNgXYZzkEXLvBVU19nM5qmYTYwUVdAccEQNZKVjfd1QV46q2aLIkzqcSAtR8D7Q1HD6pGVlZQ/O5PgquYVmVunPTHCuobADLJHrn7rFN31zhmGUygpKyiIf1WOb1qo8h7KMuCwwdWIgVbksVgxZkRPLQGtrJhgWvvybaJYvwC8uUnU7GJ36LEiSZDuHk3gMQPj34rFk4PMSO+C889HjiSdr1OBwjCiY5Ev0shozGnHs7iX+9P9r8GaRQMvuXRNydfyPP5hw4v4Of/qelrUypzaQuDE5GyZj6FIZMbPC61+/zeamoew1iASsjig6DdaOcdlZVvaOybPmnIujfgYPgi9kGAMuk3S6lCTTmmcFdWXYORVoNIzHjiyzlOYk4BmqY0vniGKgn7E2t8z7b8vYXM2xTQVtRawmtJJTjxsIFkUZDj3YHh/9UM3WeknEYUwkSMB1BFyXP/vTmttuyciKZLDS7wuDeeWuO8dMRp5ez1AUEWOT4FDqGz+SC6oSaUBaUItEm1z9LPTnAYlYG7EuYmXErl2RTtGysNQSmgptHUIGPpKvb0AQ2lZZ284JIaeNBQGDSKRjlF1FyeZWhrQFOgW6xtgjasnSjIIIdSWMtnu0lBjjyHODkYJP3Gr46IdPgTqcS/5YlsDCrFJEKFzN7EJF3jtOlitqdk6wj97Q8xJsaw0aNG3upiXK/WAmQCDLckwRUdOSl0JTwl+8vcdGe4g018MDBUWjZIUQY0Zki7n5KlXSpCGzI4z1+Dbwvndtc/q4ZWl3Sda5k/7MdvIVFEu/n2yXOzmUWUuvjBw6PGZu/jYyGx8ucezPayipglh2lG4XXD6tDOy83loKX6AmQG9Cqy3/+ffP8F/+aIN7d13N2T1LtFlBPjVHAkU0/YxH+bR6xOKLUo740RfTnOoclzagGqavCaVaNn0L1lO4NeKw4l3vUn7n1k1qDkDeUrg1aPv81Z9Hop3nL98yxi5AS4ZtQSRn5HuMgapqmBss8Ndv3GawENi9v2FpSfjRn+rwZdcNEMkRzSmNIQMW5tPbvMOxVZ32z6Z/+7DGA4n4eYt7TJxiiahO2b9RcC6nngIIMQYNwnjs2LNsWXxSn7s/IQyWLiP2Lye6HAYdTnXmufGOnLXRHKGTtM2bVhnZPnUVsBqI1qBaMTvT5U1vPMm1Vy4QTIPikxZD1tLtFbzudUOMUZ745e7cWHW6MBq35EBZBooCrFWMfYA48simAxYlpBOPmrSxmAndvqIYjK1ZWJ7AKAEKaSyZG0Hw+KoDscF4RbZGiBesF7aD0lSB0FhUkqZ9bgPzRYfReoG0BbGZYjrEIAzZO5hw9+mKUYhQd4jZFlgoywJVw913Nfj6HraHC5ieJD0GBWMaFEfhHFdfu8xrf/vpXHjRItYGxNZA5xEe4YcITSBRkanTnra00SN2g+/6/oO89/UNctrgMoPrBmLZ4EtoZhZ53btqLi13p58jSbZaJVW/ytKQ5RkHLvB87w9dg9iAs0O+7MtmeMu7KoIX/uoN9zEaLvL8r5vhZ37pUi6/vIs1AaKj34sYp3R6hsxO6Ng+L3rxEQ4f6DMzq0kgQ8KjvjqgqmSZkueKGwd2NnIFgskYISwvdrj+ugWOLme87o9y3jN7hr989Xex8oSc0xgsQowJs7HzsEbRRwQ4/WiPxyoD/+iQT/oMSUTFk0qIgItJXIU+pi7QMGRMF9/MIlFxTcR1Csg8qj2IXXws2RpaQis0OwI2kxxfgxGHGqH2Fust/VJYWrS8+GtnufZJyWo2hpwMQ5Hdx4F9LRaD2XHSm5bd0/8f3lLsObwifrphpZ5nS+p/WnVITJSfvISqbVEc1hVEIwwrT6evXHrxHMSAm13k9vmD/MXbDe/5wCwfOvMEQrtAQxdiQd5GZFJz290Vx9fnQQxiAplp2DPT0tSz3HC7EG2ZLPyMpZc1HFneIoaCOszQyVxS9sMyKAWocOUZZme3yWOgZwagLbVoYng9bKP3mUKQaFDGqCQ7atsKuTtOmTUggisaVha26OanMSYiuaWTC7GNjNukWxlFMGNQSZu0SKSJfvpam9wxxUHfJHXIaBi1GUJJxSKVqym7IzJzlhgFjZ7MTCCLFFmJM8qwrqlsn+BqCqvkGURjwBgkB0RYmHV81YuWmesLO6K1j9oVW0mmVCRJ3E62htUJTWsQV/CCZ86ze9Yy1IKQt3SiYAzEXOj1OtQsolqSUrYcCYJRj4lCp2MRG7jkaOSSKy2ZeDps8YQnTBAqYiw4ubXIvSc8Bw4YnvWcJfatdBG1BKDoNmRZTWeQJNsLm7G87HjeV+ymk0esgSRW9Sg9IyuA4NUTbCCPhjI2dMqa6BL7qjEla8Zz8EDBBRd22L1PIFq2jWHumdczOHptur9zpB4hoRCTvPNjG9/fj8fG5PMSU2rhuYXrfM5sMoYRzUBKTNun9QVjCjQ6rCoWixqLurQ4ExXF41uLRkuUtJE6jTQtRCLilCqOqavI3ABCZbDeIKooNdhIb2D4Vz91JUcuzDFTCdRzD8c5q+GHewpMKQQ05/p9ybZWEfWpQ5AuB+eEapJYGWLSqSVoC1mE3BPEcryCy77hu/m9v5rwql9Z5b337qeSDh7BR6EIglmruPFjG5w4WyDGEL0geF7wrIyZQcX6lhCDYCVDUHqF4fIL5snLtDE6k/RQRKDbV5xp6HaHfO+PdHnO8+YYlAXpXRinvvkjiE5OW2Z77uuVJcdP//QT2b1cIhGMWA7vc7zy3x5hfleGSqRwBVp3aIJiRRJ/vQkYayiLDLQlhsCkSsYuRg0qDrqO4bbQBMOkcYkyKII3GbsPCa945Rx79g5xVumYCld4nHUYdUxGGW3TQ8XipME5JVoFMkTsVLdecIATQcQiUj5i4/qZQ0Bsqi4ReeFzDpHbCu+FGHO6BgqJ1ORIpnQRJKTe0mw3J6qnigYkJ2pqS1nA4SiKDOcMcwOHs7CyIvz0T1/KvkOCySaA44aP5ZTdPivLeRI/Skfe5KZYGtpGKYqM3HaYne/gbMRKwIhNp+KklvVID+KnCYEIMYD3DiMtP/mv5rnmiRM8Q1SVoBleLP2uYh1I2ZJqB4J3gCkxkPRNzi1xSQr6UxzfHgseSwY+j3EeVUcNqjmQ+PzGliiGmhEEZWu4wqnNAdEUKA7VhANwzp4rpytC2zJtPRjA08RA1aQyODHDtzNsTjxld0I7HuPHgpMMK2BNRZbBS16+h5m5hBl4QJxJPunjYQ7Z6feZKfHCYbDk2YQ8G6GSeMBZnlOPinOiTaIRocW5CCUE5znZzJEfvoRxeTkfuXU3Z+IB1twMrRjaEHAh4teVSTsD5CRr1wzFc8Glkf5gDWPG5GZMx5G09TPL/gMl1gWMkUQLnSZ0s4NIRo1hi2c+t8MVV5eUeY2LgtX8ET5jRMRMEIrU+wfKQeCFX7uH/owltmB8JM/GvPTrdjEzHzAEMungJwPaxiPaoijRV4htyDsRYwytFqydnklYBCNY6+h2e2ysF8Tokn6G8SATCPMsLBq+5XsGXHj5Kr3eFouLAbShyFusNGyd7TJcX8Aah82mvgnscN3TPNxJCh8wJfoCzc/PNVRQtYiFqx/fozcw+BBRGjI3fW5jRpF1KXNFoyKqzM11iQQ2y1nGxgCRaGSqox/JC0NmlUE/QzXHlYEXvHyJhRWL6jYwpBoVHL2gZmnBIOrO61fF1G4bl5RFSZEJK3u6qO6M8bTaMhXfebSGakoGMttg7Am+8mWOvQfXMNakTV/Sxm+nj5+1CjGH2E9WxeZT4KPO6ao81iL4VPEYZuDzFjvCQ5KSgelGhIAzMtULCUy2xnz8HssHY43HoSFtPtYarEue5FGTuIifJgOGtKH50OfDH17lnjsr5uYyRGcYNyMOHxUytpmb1bTvUoIoRhUxOwvuA5uWqn7BVBtlZ2xEOGcfFlOP9VlfvsSZ43V6CcgLS9QMNJ4zEjHRU6AsLWeotBxbzXnVr29xptnFmbWMlXIPG70cv5GjVrDBU00iMc6wa3fD6uYq48kiuBbTDfT6kZn+GZ5+3QIfeu82440B1kFe6rS1o4hJC6WI0C+Fx107Zt9hpcwMMQpPuV7ZtzsjC1m6r0eq9SoK2gA9HthMR4gdo3EeZwqWF5UrrxaKzghhgoY5nCkSXdI3dLsRo0rbjLAmUOQeyBmtRT74fgHNQDzGWorScvpUhfeKMRbnhCBd8LsoXZ9OB/rdTfauzDCTG5zLueKagssuO8NNt3aJNufQIcVZj7E7yfMjjbr43EM1lZ5VWnCCcS0hRJQalzTAiOS4LKH8E/lAmZlJ+qTjlf2MmgK8QWPCGEWjlAXk1tPpJt0HkQqTKVluMaIYB0RYWppQuIglO4cDigSsCE3V0ikyigKWV5KpVApzXgL26I4is+zaBU952jZzs1AYB6HDuDLMGDkHJxQgsyASQPOpyFB4qB/9WHyKeCwZ+LzEzoMVAZtO9lNwkbFKlk1QaYjGkBnHetjNelwEl0+B84q1hixzqEaMWEJQ6lowxiJYonrGtWVzvaKeCGa2wUiFGs8TrtvFv/rRwxSdJvFop5uumAYjGY/8g2+BjKluL04iaOC7v+eyRLqQkB7o3KZ91SgaPc4quULp4cBuS7c8TTPZyx2nDeMWBE++vIKZX6I9MaYRRSUQjDDWmu/8Z13+8Pdv4c57+oiZkHUVK4anPnWZV//CHF//1bdz/9oAlxmKMo2XCGQuZ2fMdu0p+KPXPQuXQ5EZJIOffc1l5HnE2AYkO+8U+4WNVJXoQnQwBeJZm7jkGIeK8DVfdzkaocxbBEcUS+YsLRNEC665ZpHyJkMMFdG3FEVAxRDImYxmEByGGmMsZV4Q1aNRCAEki1Rk1NEkQSYjDIqKF7zAcNMHzuBMh6944T5mez2++quG+NZhbYW1grNTzYtHban6M4dIwu+gLdYJ0OJ9QLVNJn2ZpZY86WBIWhOih34vyQ4fevrjCa/bhK0IRsgdBCfkhZLZQK+fgSrWFkQtyMyEzM5SVR2sNOzek2NtEiBDIhp39DvGqJ7A2d0U2Yjl5ZAkfS0kXwUe9bw6MYJRePozV/iyJ68k2qTM4X3gjk84jq6XKHkyaQKsSGo7as5kZKYuYo/FZxOPtQk+b3EebmAKgMEo/dmciy6xuGyISJ8MYSxdJgxSNn+uaCU4a4CQPN5DTAI8KmiMiPGoiUQyMgk88bo1jl56K5nboLDQ7Uecmeq1iyTus9lCxE97hA/++MIOzfSEiU5ZDAFnGsp8QqfTnBs355JCGlh27fIcumCLTFq6Trng0AxPvz7QKTZomowQRuzbvUkoKta8RdXgVRAjNMYxci279ka+7GmBIwcrjLFYZ+jkOZ3MM5hVbD5EUayFrGQqf+ux1k43WsXamsFgSLfwqZ9toOzVmGyYSvSPpKyrksZVIWEyIkY7CHOJJWECedFSdiokZhBKwOAKoaVmUjsWlw1oQ2xajFrKwqIxTrXvu6im9oMxhrxIYNMdAUuXeyamIuRnsFlDLnDhkYarH1dzxdVDFhc91g1Z3O3pz54GtrjiqpIYpgnqo10E7zPEOc0OUbCCkYzgE97HOKhNJJ9fJLicaJPPRYzQ7wVUImdyx/jc+xfIrWJtTMJWJpDngnWKaI5EizEGK13QDmJa5pen4ygkrqYKRg1HL+zyzGdZDhxwXHzlJjODgMZU9TrXGniUe/juyHobo5SdZLfs8jEhBv7ja2v+n1/fRMkxLn2vwdLpVXQ6DX/5+mPE+PCahH0pxmPJwOcthEQRmmrWSwLyzcxZ/sk3HWRu0KK+gwlKbSP1OV/thLCPMWJt4r90e4ayEJpGz505VSNtFNrGIMHz/T8wz3/7f5/M/j2B3Oz0Au0UYqBJr4UCprCaRzZ2cA8JOyDqkFhO0czVuQQqcw6kRaPhgosi3/pP5whMCFlk9wHDr7/2Si7YF9AYcHbCj/zwLN15YRQCM90CbzI8wlgH1DLLYMbyml9+Mt/13RkaciQKRR4osqlokLWoCM4Z8px00jcB6x5gWIgEDGVakHf+TguEPmgf9FFQXDNwzi5ZmQrYAHhEAkIE44HEGHBdw7gxrK075hcbLJGmblC1dDrT90Va2AGakRwvi1IQIlGT8FLRhQkZTTbCFR7rlJ96xfP56q+5gJ951Yt52lMuIhfH0Yt6vOBFS4jZ5rnPDxgMeaYJfPko3pA+U0xVBgDBGEEo8Y2iGshykF7OwoE+0unjTVK4VI3MzkWUwCnvaIOZtrcjmVOsU/IOWBcpizwZ64idCvBYRDSZlYtSdPIEwRGANgFGY+SZz9zPa3/96Vx6RYff/L3nMLeQTzEMnDfcLY/+sZcHJS02b4gm8PFPOI4fn01aIS69A5npcOmVBf/k21e4585IWz+iF/5FGY8lA5+PON8PU3TaIlCEpJo1szCh29tENEdRWtsSiFPO3Q73X1MyIFAWQpYpVZUW3hQFW+slf/0GJZecbulZWYZeJ0z7r2lrjVIRJaSKgh8A+SPfJQAe1B9WAW+R0EG0PLfJZpkgZkyRB7rdiv58QPHEUvE2Mr+glFlF27Y4q8zNRTwRT0t/FtqiQ9vpsx1nWQ09Zv7/7f15nB1Vnf+PP885VXW37tt7p7PQkH2HJIQQBAkQFpUlLsgwuKEjgv6UwRkdFcfPZ/x+HH04og/8DAwfiSwuoIiiwzYCiSyCEokCAgJBAkggS+/b7XtvVZ3z+6OWVDcB0lmgQ9frQei+fe+tOnXqXe/zPu/l9a6BuvpO6hsHUNrCVpJMpoKjfKQWIPIgDZYlsR0CZkHho2RiwkwOcAL2N1kK8gqiUs/Qe/DmwYCogvCADKEFSJhsQTDX2eA9ekH5GAkqIxkaytDdo2ltdfE9j9JACYkdLEDCB1HBoEPmah8lJU4GgrQtH6U8Mjmbqm7BM3VIKwhV5PNdZB2XnC1wpASdDQ2JYZSskM25ZByCY4/z/MDXhgkTYwOZlkIiyOK7geFu2eBKQ0kYtOPgSYH2DUZrisWAGryvqoJujsaA0VjKIKXGyYKUmoxjYbQgSLIZDsiwpIuUGnBQlhPU3Bsf8IInTGucbIW6hgqOU6WmoYLjWEGvj0jXAEa4mHHL0W8wwoTjE0CQIKlEA5gsFa1xpQi8ekHkEcuyqWsaon1GgaefLDM06PJK4Rrf3pA3G6kxsA8Q6LSgVS9IhDJhrNXBkYL2KRW+9tWptLVsx5DHlR5alFEChNTB4u1nyNkWlvSDLHpTYHjIQlkKHx9tbMpDGf5wv8/cRT4Hz8zj2AJHGCxpwnEYpAjqaMOAJvu/5/tuIEpYEuECKgAVjM8IB43ENpCzJUL28+FzK3zlK03UFgwugsZasBnEsn0EtZQrNmWvipXzQRsqHoiipub0d8AF5/GkbGCTmo+wFcbKc9zb6pna1I1vNE7OwbIMrg3SqSB0CduS2BbYSiAoYztBdz+hdUBnGg0/KscSo6/tTYIQQR4GO8NDI2+3Fb4UGApBZYVvyDsKf9hmeGiY5nqPQRqwyjYeblCHrnyUyKIBS2qwg9yNjG3AMjjY2EZTkxeAQ8V3EDmNRiKFgyUssMFIgdACSwh83Y3RkKvVXPy1OSxe3IA1bhej3YWPNAQGrQCFS9l4CD9oHiWFzZArwbHQYfvdim/wrUCuGJRokwky4qWHZQ1g6cDDguWSzXqh10wFiYhKYkuNkV0YWSFjqyDpy4ig9FOBUHZcppmRCkcKlBBIaSOwErKxMy9m3EEAwkfgYxsQQoMFTUUHq2pTrWj6laYkPLJuIEPVQh9W1mXJfIferu30l7yg6FOUMVExk3Ex+KlJ8CpIjYG9xM5yKDniYRNCIXFQQNbp5+ijC9TUD+NrCX4GW9sY35DJ9mI7z+BkurCkh6KCkdupVly0Z+F6AX88wg3CEKaG5jaPQr3AVj7KeQ4py2E9okCEiXoCEvW1byJGVIglev7K4KcJQwgSyCiJMJoFC2HZkmyw91aaaZN9LAS2A6hB+vo8hssWliOQvgFP4GQkor0Vf8Fc+kQd/aKRggOYPFOnZijUPkyu1sVSDpYSGCugkMXYODZk8xpfdyHIooQFwsdId+f9JGiBHHsEout4k5IHd8Ji5GMcjkfI2OMCBkMmlA9wlMIdlniuppAXeGSwtA+iTCZrEJaikLOwrDJ1xQEMJRxpyDoCrTTG+FjKkM9l8I3A0xqV0RgUkAnuqRUNIyDcyucV+Da2snnb2yfRNiXIXzhg7YHQwRWMP6gCUsLD1RphDJYCYTS+CUivHMenJrcVO+OishrLGcQdKIHsJ1uzDcfRYezbBLm2lonJgQJiK4W0A+pjdBaMxLYM0kReCYVQQVmowEIKB4FCCic0ZCO5iDOUEvIxPiEAYUTQaFDBtPZhlBwGrRgUNoMqhwoTDYVtY9s2U5oF1Sr85jcunu+ETLCRkAW/p8bArjEelou3CF59YZCUQWrKloVHFeHlscljLI+T3uHw7e9O46OfnEq+MMiMOdv58r830D6rylApkZwmy6BKAQmMpXFsg63g4q8czozZNTuTA0nUEo9YsN5sJOZH7OKlCWKiaDtQcAaylqGlFdqnZ4OkKSVR2U5ct4Lwa1BSoTSIik+NDe5QEPc2IkdGV6nPaJQWOHnFV765isXLctTV5nDsIGlQKYXCwWhNQ6vN8afMQJBFChXULIsqEBkE4jX+vVnYqeBjj8UoIyUY+s7kVqmCcMzwsECYPNm8QjIMDCFxyRQkyraoLZZpa+nnhJNLCLuCMS6WNDj2ME0tJYz0yBdrKZsMLpKMHTqiSOSoEbjMhTAct2omWZlF+gopdOgCHt90uK+PcPxCIFWQX+FVQRsXywEhKvhVTc6WzJvbxHf/ayUL5hWZM7eeo95Wj+9WmDd/iO9c1srCBWF+htIoCyzphB4BgxZD4RKm0cZDUAPY2E5A/CRid/pIRBIgRsgJ48SIfT0Em4QgZSBgxTzm+Ebe8a482vc4ZN4krJYpVByB0NDkFCigyOcNVZPj5ps7GS7JOOclgBwZ0k0xAqkx8AZAmoB2tWI7VByNkQ4KDyFKLF0sOPdDzRx1ZJ6cAw11Q6x5fwHbHqJckUgrJOEx4VbLgBLBgplRgpNOnkRrqxOfy4z37i6jkFRJtg3IgC5VaChkqrRP72bS1EAxSkRIqJRBIrFkwDuuXZdCVuJqQdm26bXzCDFMLh/kWyhLc/I7p9HcqmhucXGsEpYg4L/HRfqabMawdHkttuMhLNBGYsijxQGelWwIc1Miw1JjWeB5EtsqoCyBkR5Ig5YSkQFlC+pqh5naYpjU1oNUPrZS2JYkX7SZcnAfUmlqmzKUyFKVQZtdkdx1GYNAI1RAiTu51WBZL2LLCgoRuH45kOdWjLB6hAKBwq8KDD7KAW18vIogY2WoK1qcuqaR+hpJW0uGI5Y3MdgLDUXNe96XpbamhBQ+UpVRlsGWGqGi2HlADOV7CrSF7bgI4WFZIwmFR+70Dyw9kIQZ8Vu4eAuP6bMFhx+lUALsomIwn8XLCGxbMKm+RNEZxJJQ9Q39gzaYbCiPSUYCQZo7sGtMSGPAGIPv+xhj8DwP3/fxfT/+fd8uqALh5TDawqgM5UkH02tL8pkK0vZRSmALsIwmKwWO8rEUSEsx2GdQ0gp2/NoJdsdCIXwH4SksBZYaCslyDlAYjTAeCJ/6JgOyhOV4CKChQbNkeZlC0SCVxndBeznQTrCzt8BH42oflZf0+ZrivNlkFx9KrlEh8yJkIDWosNnOYUurHHxwQGokpWbylG4WLSqTERJd9jB6OOx5bvB9MOMh52Jv8Iqha0KmZypuGeXYuMrGFXX4mUacAljKpba2hG1DLpNFopDCwrbAMi5NzT4Z26W+WTBIlrJUZJ2AXQ92VtYGblmBMIpJkx3etcZl8lQrTKRTiYTHAxUi5BQx4Rpj45YDIyEoFlJUywJHSRxLo6w+LOFjobEtwWB/BsexA6+KrgYubxmEAubNH6b9kIDqWpg8IPErCiUlK97Wg1K9MfseBM5vM8K0PtAXOz+I78eXIxC4OFkX40vKvs2QI3GFQFqGRQsrzJvtYQuQSjJYcqlWghLhnZXUUdIvpAbBKzEO6qLeePi+j9aBtWjCsj6tNZZl4fv+Pq/F1zoDyuD5NpljzqL/uXW05xvY0ePgqOA8Qkta2ypY9stks2DJErXFDA2Njfzt2SqaMpBBShejBoOSYeMFMUHUG88dsM9gwASJUtPas9TUSWqKLsrSLF/exoLlbVh2FWOqWDIfkNWIChiwFGhRxTUaKwcDQM2CuSz92Gzm/rKL2pYCnjFYUmGQCOHz3jOnUxkWVIWPY2ve+37JZy5qJ4ug2j+E0BV6u3NIUQiyto3DeO/u9roQAkzQZtEQVKoIWcb3qtjOVKrZZnr9mZRy7bRmJBl8agpVSgOFoJpAu0gkSmiUKLH6uNlsffZ5mpuzPIKDxMa2JAJN3GjWRNn2CglMnWZz2fdOwc6VEVqDCrwCZtxHrl8DJnLRG5SlwNTQtU2gfRl4uYRFxRdh/kDQttsIgxSGTEbSO+gzPScCsjyvhJSFoGzVeFzynaU4WYkiYIRUBvAqONY21ry/nSefdLGsiLfjVQYX7awPQEQ7+lA7BvlYukouY7AQeL6gakxIZe5z6vsOxi0p3KqHQTJcGsZEfBYi6RlInuHAnJv9hQPdNN8jKBUsnr7vs3nzZjZu3Ei5XB7x3j6FJdGWwB2WfOP723l4cAp2o0VWVsnZoVGibeYtlMycXYs0oHxFTcZncpMhZ/czc8528vlB8jU9tM/1YmZfwh4IBy4kAWujJJuzyOUsHEeAdnFsQz4X7HeUkAglOOFdTRw0fSu+X0YY8PUw2nOpLRgqnoexbbyChZ0BJU0Yxw4TrQAn41GoDd+TkM35FPIlJD4L5uVZcFgnB7fbAYOZcd8i6kIAUc9lgbI10upnxhyHQq3NQLaFjcN5NvVBNgtFqamv9emp+FhZGYRnlCCf1SxZ3scRR7gsWdrJlEmKkrHwsXFsBUnPAEBYWiuki61c8jmDo0RYullBv9n0F3sDszNVAzSOo9DG4sYbh/E9geMESX9lF6QNIBG6JmjAJQROBnoGqmQKATfEUW+3OfYEhTE+Di41uSpZ2yCxUAaUMBzUbnP4yj6amzwc6ZGxwxwADCLyYJnkAN+UmdlHEBA2NEMGXCxKZJg0SZHJ9aFdjXYFUhiE0VhOP9kaF6GDpOJqpRIysQowCWMgiGG9WRc1rnEgryJ7jCgM8OSTT3LllVeyceNGrrzyyjhcsK/j7lpWUBmwhOKx7nY2V6ejHQcHn0zGYJSLsqsccXQjX/36O7GUIGO7OPYADXUeU9pcLr9yLnPmVFl0qOQfv7AUE7ao1Xq8JwK9DgxgbNAWSkqUlGQzgctTSB8l3DBfwkYon/M/O4N//tdWfK8cZBFTRbgetVkNrosRUBVBVYYlgjh2wM4X7G6lBGl5SAy2khjPAzTICqec0cKPf3EMRx5TG+Qo6BzCHMhxbTMqXhrAtkHZwxx7fIb6BsWgKPCy1UbJyiOBrKxSX6fpGxxCZT2k0ChpaG3Nc/mVx7Dy6Bq+e9nbmdSqqBgLHwvLimKxYsR6FBALDQMa4Ul0JYMU0d8OfERZEpYNGcew5QWJ0XZIagUVTyPtYGE2xiFq2uXYUK5CNpcF6fHZi6dz7v+vBmkPo3QOqR3QEqEFQbilyiGzMlxx9QkcNKUe6Sssa+coXoEDWCUEUMQ5JcIF4aG14dhjG5l6UFfw3FYslACMQggXqYaQEmxhMTxYRRuBMQZjRucMpNgVJmSYIMKGDRs4+eSTefvb387FF19Mf38/DQ0N9PT08Oijj7Jjxw56e3vZsWPHmI8dNQPSxtA/VEGJfnwqDOrJuJ5NVYCvKgxVK3R0ewhZQRrwjcNQpxO07lQ+uZyLoEwmWyWX6SNjG4ar/ezoquJohTAuSBnGC/cc0Xir1SqDg4Ns374dpVQcTtl/qCIw+LpIX4+DdPupDDezvacfYSqghsEUUNrCp0pZgi0FwrcZ6gOvqvE8jfRdvP4Btm/vpmsgi6kaBju78YY9pJZBTFVWQQxjTJah/gZqZRnhDtLZkSdYtiSOtOjthUF8dEhvvLc7iVgWtGZoaCie2zci2VMLjTASaSRCDKJ1np7ePKqaIyM9SsPDVF3FFjUHz1MM9vehnQFUxqNohrHdHFnfp6c0REdXBd/qprecQfg5NJph6qiKPMNDVTo6OpFCMuBIcp7CooIft/m1EP4QCNAETI9Brsi+k6/+/n6MMZRKpXi+92f4TAsQvsASkkHXIJwOnPw0fJOlp6uMrrjoKgyXy2zvKmP7BiMsKsZiuKSR2sM20N3djVEelXItlu/R2+OyvWsb2Bb4NkoOIISL5xXxpGK45KAwlAb76OwQMYGTSZJORV1C9xKR7JZKpRGyG4VT9x+CihNjMghjkKKK79sMljPITCcD5SkYX1LqdtnR0YPARSDo7yuh5Hbwi/QMunR09mJpgWAYnyBZNqheihhRdw0hBK7rUqlUDuAQ7NgwIY2BSMArlQo1NTXxza5Wq0CQ/ey6YY94EViXUo79wRIiqJHVWmIDthPkW1c8GXQeU6DsIElNYiPxQiUJSmVQapjaosayfSwbClkLSRVLqLDfe9AH3cSlb3uHaB6inApjDJZl7ddFK5hfHTS+wcNR/ZhQaRrfQ8mA5U8gUEJhCx+hJcJX2JZGhE11nEyw4JWrUKp6aGMQJjBmgv2FQhC0Mva1Tz4H//iPs8gVfMLtRbgXidyrMqFK983cRgtUZGAptX+9DkEiX1C9LgxBIyaTRQqwhU9drY+0DE5GcMjCZv68YYCjT2ji5PdMY8p0lzPf4/Dc5iFyqkTVlPFNHku4SFEAabCzgpJxcO1a6hryQfwWFcixsMKSMIkgEwzICuQofBrCkse9N2KTv0fePSnl/je4hB9IjRHYFiw8dAqPPx48NxnHBMZ9BRwbgtJOH+0HXCTZTJAUm7EstC/CZ9pFGjeIUFlg8FDSjuVRCYUvfGpqDI7tIaUO+EyECnVaPDD2ZaXGm6EXIEjCDAneQQTtxbPZLB8691B+cq1muBwkXxs0wg8yip0ai6/+nxV8+eI/U/ECz5jRYdKGAiN0wF0QlVq+CpI6f/9viMYHJqQxEAl3e3s7jz/+OFOmTAGgpqYGYwyNjY2ceOKJvPTSS7z88ss0NzePyRiIDAgIFHJn3zDNzfUU8oNoDUJICjUC24bGpiytLXVh7MvDCMmwUeTzJQo1hkmTfJzMIK3NDsViAW+4SltzLZbtYxsr1Kdmj/euybFCYBCVy2Xa2trQWu+RETS282u8qkYqm76+Mk6mk4ZGn8bGOixdB9JFqmDxR2pc4VNbHAShaWk1OBnwfJ9ik4X7cpG+7kZ6eio4BUXzpHrsrMaSLvjhgiQNvhnGGEFLWx1RE6f9d30JWTCGnp4eJk2aFL+3X3cdAjQaaVSYy5dF6zzK8sjknmP2vDYmH5RFqzLNU3yUo2mf7rBsRQHkVpy5dQzd2oOVfYFJk2cxqbUeKWwkeTCS1sllhoXFsFXH1PZJNLbYKBQFyyVjnHDnr/ZbhHa07FYqFerq6uLneL/Kbji3QkuklvjSMHvOMK7bSy5v0dSUI+PYaG1obMjS1JjHEQZjHFwBzS09GK2pLeZpa21GWYLeoUFyNS9QV38Qrc1TMMIEXh1RAxiMn8GTFZStKDb8jUmTZtDcXHzFPOyTyxt1zFwuhxDijdMLYbgpSCH0kcJCa0PZs1l5TIGf/+QlhKmlpcWhobkGRwbdIl2hWHViPcX/qODYFs1NLTih8aklaLyQVTQylnY9b1FieSaTiV+/1T0EE9IYiIT82GOP5eqrr+aaa67hve99L9lsNhZyz/NiN7mUco8EIXqgjA76B1i2j6Uk2piw/wAoZYLxRETt4WmUBUKWqa3zsTLDCKA2r+grlQkKZtzQslVErGJ7imic8XjD+YnmYr8+BEYGTIBAS4vNscfX09TiIPAIqiTC5u3hEIwJdljgYYwhl7OwMhosm40bbT7wvmfp7K/l5Hc4+Hg7KW8FcV24lAIoAxUM2XDnun8f9Feb2+i9/YG46j8ur3bAGDI5wf/55tEcfnQ9vnYxtmJI21S1RU7lcXyJMa1IbTFlquHL/3Y0s2YVAwUd8V2gUQ6UpUMp00ChNhtTIe9c/vdeNncHybmN5Dia0/2rwMPzhJ45yzb095fJZu2gAIWgMVGQ9S/Q2o8JgpyMRuOjLBG0INaGqdNsvvYfK5kxqzYQeRUyXUaJdAKkcKmp1Xzl/1tJ+/TCiOvb19f6Wnphvxtbcf6jicsLlZRkHEltAaqVMuVK0GhMKYn2q0GOkXSRloOT8alUXIzJhMRMIw+80yn1+nO2v8NN4wUT0hiIhLiuro6LLrpol0LtOE7ght9LgReAlEGCkaVctA5anFrKRgpNNqORKmp4E7ivpAClNMquUqj1sawyjgXNLR6l/m6kCHbUO6V83+8Kop/7Pa4twso9A41Niv/4zmnYGY1UFWTCjR5cpQjdzqBNBWlBbTGHr/vI5KFvoJGu7UU8YYHcFoQOImUaBApBROVKWYLQQbS47X/saoHar14JxM5ghwCwEdKQzQreceokjFOhq8dgZTP0ljXCsSjkRch/7yOkR7FumHefOQ07p8Ls+UxcDGjZAuFkGZSFwLCVEk0QlhHCxLu7/YnRc/pGGFmJswf/iaC0wHZ8qtUyTkYgJQgJGoNSIQ+gjMo7NbZj0PgIi8BI1Yac43Lyqa3YKrB3BVEIMKg4EBKkEGQtn3ecOgmVePb317Umj/uGzm3crTDi+QgomCUWxZyhWi7h6YDq2gBKZsE4GA2WFOQyOXwXpAwI2mJ+KGF2KzqVNCj3dzhvvGBCGgO7s2tIuoXG6s59hUsp7EiWy9uARgjIZAzKCsqto41bclm3bIGT8agpGpTlYtmCFUfZOI4NJmhjaghyEKRgr6q1R4939PXu70ShoATNRglBNmcCEiXhBrXx8XXF5gA7uQl8agp5hC6hFBil8Ywd9u0xSC0RUgTuVmFAeAh0UL1grDADjP3ay+nV5jZpaO1Pz4CIyqkSMqKECBoJAZa2kbakVLUwUpOv1SDLCFEGFMJ4gZzG68BOSZUShCXxVA47vC2+AIeAfTAwtsR+ndvReOPmNrwsszNRz3Y0QvrkCoFnIHIaKBnlTpiAfiGsPkCCdETstZJobMtHGiveyYp4sY/O6aBwA2NtP/OLjJ7fpF7Yv27zoJTQhKyZBokxFkIrBIa6AihRxfU9pBWOS0vQQYtnhSabyeFWI2MiHH9IzRRtunbHIJhImJDGwBsNY3yk0DQ3NRC0hzXk8xrHMtjW6CYzwc7BsgWW7VNb1IEywXDK6ZM48eRJKKURxgoekoR4H4iI1I2IXggTL9hxC9MROilYjDQuQkIua6N0QJUrVRkjchg0Spmgv7sJGr0gfIQxBJQlKj7Xzmk7MOfvtRCasuE8hgx1BgSSoO2xjYXBscuUq3mkNUguB8LPYlQmUK66EyGrRF3uRKhcDYHXLGODsEIDQ4f2WyyVb8VZHY2d5D6WYwCXXCEHBLtQKWVA+RwZUSLwUVtBfiVWSBMifMAE7aOjhmcRvXOQqEhQQodNYGRVQDi8JVW4gWR7cJP4LQgNGmqLEvNyFPnbqSCkNEhLUFNwqJSr7DSnTMLbkGJXmJA8A280IndpW1uYCGQ0uazBUoELcWR9duD+t1TA6OZkPKSsIgVI26dQLCOlS0wiw4Eu4IKAdIhEnNACMoAdGjw7YdDU1FjU1ymkVGSzAimHsJVGhVUWCJesoxFSg6xiRDU4OHawWukwaCiHQVTe6At+AxEtxYYoL3vnnlaDDgiFslkPsGhtBTsDQbahQRuJMFa4UkGcuxHGWqUQOFbAqKdEtJsbefoDWTJfE/FjZ2Jjy7aD8F0+n4nXfRl6BcL4QPxTWUG2vGUldqjGIbgjgPDi4xLzOppAdrXkwH/uXweGhGcw3CAIg1BVpDK0thYQYXJqwGURGAZCVhHKJ19QVKshTbvZuakQI0/wxl7TOMdb0Kwcf5A6gy819c0+kiE8nceqNeQckNICAmWM8ND0IfwG8kri6AyHLmnl3791BHW1hLHHiIwjyC0wkfI4YBHtmJKvk0ogfJBluPtC8bYj67jxpuXMn1sgnxti4RFF2mcVyMhOBoTkne9w+cwFbSAlHgKFinfJse8Wgi3thLCHozlNXmuYR2EJ8sqm7FV521E5crmgagOswG6SOkwa3LlTiw4plcC2XKQv0I5AKEPGCCADQoaV7rsRoD1AEYhkBSM0PjVkFeSMR61dQEvwbAW2j6VsFD7GhEu6kDgKHGnIWJlwrQqegyBPoIw2TuLJjmLWInEbMiTv5/7K7XmtcMD+LdsMjCBpdpb4anykcVAC6ooqaGgmAKwgWmN8MEGZZsGpwR1SeNpDCQmuQNqR/gy4GYLeGDuvIRkCmYiYCJrwzYdw8YUgX+shKCMRFBsM+eLfyGQDV1awYRCBOxtDU2MJW22jsTHD0sObsRXhrsEOOQZkzDNwoIYIIFJ/YSxSEi7WIrYPBCTip8Hni7VwxIoaanKCXMaiuTVPQ4OFIqi9XrTAYdGiAiZslSuQcXxVxAeVBK7vNy6B8M2B2Hn90TwLQRzUVgJbWbiuR8GuhgtQmEghgLi74MjkimAKBZYNtgEdfiRghQzrCYR+y05t5PgPLjAIoTTUK2bN7WLWLB8hwUgJ0oT5FmFWfih7lpJkrMAzYJQGFSQhCiOCfJjw2EFbcrUzP0AAUmBQGDMyy3+/XOcbUpWxKwQ7950mkgjzJgJpri04gWj6BIt6KNfGGKQQTDtYIux+hPTQVBEyCC6GWTOkS98rkXoG9jsMRg1jhEttrUDhg/BpqNd84UuHMn9OHmFkoARQCPJIITnn3DZOXpNHWhVkVEI44bHT7S0keC5YFmSVIWeDJYKFPZMLeiAL6QYMjcJ5rYNOXITTaTs25e5KQKE7Bp0vpcCyAz59GeYKvGVX/11BBMyKaAdLCOYvKHDDr06kWG8hpY+FQgod0gYH5QWRSVVTkyFXsFAOIAYD9jGdQwhJNJVhNOZNxa5KC9+YnfNoN76INwUIKBRspHFRYmeSrJCAMCjLcM657Wzv7gHRj6AmfC8kktP2zrSE5BnNK70EEwmpMbDfITBCYIRLTcFGCg9pytQVDStWNmJrFcu8QGIoYEnBIbNsDqYRQxU56jZNBAKMETCvvFZjIi6GLpTsI6tmYltB05JMxg74CLRB7GdylAMaBowR2JagXNFBdcAYvi6EQFkC340aQk00mCCpzwThkIzjc1C7CfJUdMA+qoSLlAZjJFGHQ4GgviFLbY0d5gxUgmTNOKVDQ9QWOXm2UYvwG8GMF+maiH0w2e11/1cZJQ0CHbj2NXi+olhfIVezFcTCgAsGMDrIK/CNT1OLYLDSidDNYCy0CZI7QQcEZCLMm0lcJ7DHnDJvBaTGwBsBnQEjaW6RNDdAvjDIlMlFMCaxG9OAQGgLhEbJoIuiMZnAMTZh41li1M+dJCAGyeLDHFzhBh3e5ABCOuTyeQRBKZKRE22+xoYgyU3guSasdBnDdyVIofFNQKo1KkOLN31bu98R5l1ILzCMCBNTkRhhYWGwlYtSBq0NIoihYIBCXlJX65O1DEbngiZGQByGEQF7467m0BiD53l0dnaOoFzeF7phdFlmRLpWrVbxfZ+Ojo74XKP7PyQX1IgSOvnZsSFMeDVBCAbhBf+MBTrLcasn0TLt7Ugl6eh+EUtLhJYYCb5RGKOxpaB7h4dkGMwwRvYEJbNeNahWUuX4bEmyqoaGBhxn4nkTU2PgDYDUEqWztLfbrDjcZsnb6lgwvwHb8sCPFISJ6rLCHIAgaSvumhfFzSeo1QrEXuhohyWV5B2nzeSQOQVyWXAyZYyoBuVxhqD2OMVrQsqA68L1zJg9A1IIpAo4HFTEuJdM1nwLwwgReqx8kP0Ik0XoPAiFCRN7HctGqh6EqA8WTgM6pBiur4e6um3YogVpGoMqARmVCdtE3Q13FR4UQjA4OEihUKBQKOwznRAt5sneGUlmR8/zRtDz+r4f9yiIGhdFTYwsy4qPs2fjizwDVlgmoAl29gKMjZ0T5BoEk6dI8k4RaRSYLCbSl8anqVqP7eQiziaEKIAYDO6TcTBypGfFGMPg4CClUgnbtvdgzAc2UmPgDYASYCHI5zQLlnazfGWWbNagqSKlExBqxIltUY12KIwisrzf2sr1dWF2/ox0i9EGyzY4Tj+F/CSkKCGFS6EmrClOJCFO+Pl7FQTlbYZKRYc0zWP4rgRLaVwRhBgmWqmWDnkwJGEYwAcsl2D1CZJ7GxsFk6cUwph2+HkD0oJPXDCHWfNtZEh+ZWQVHxtFFvB2mRic3JFns9kRnoG9NQqi9u0R3XAyJBD9fTQLYXTuyCiIPqe1jpn7kn8fG0xoCIgwIWBn9r9ta6QcRokapMiGKYYWvgYjfJQEhRVUXKlKkIBpLBC5ILkTwpLPndBa4zhO3PVyonlhU2PgDYDvD2NMGWkU//iFRTg5G4GPNlW0CBb9nS2IqwihEZF7TA4TGAYTz231aohYGYQEoatI4ZLJEJTFmTK5vA7dipEpkCZf7hJh3wZLGapVFynDXd9uGk5CRHkbhJneyW++1RVpYLRrBIIcwtjholXCCIkWRQya+gZDXQNx+CC2mYTmqGOzKGsQIWpAesAghjo0CsXInenoqoHI0wChJzEmltpz4zfq5Lr52c3MnjMbKSVPP/00Bx10EL/5zW845ZRTXjGmn/3sZyxcuJCFCxfGRoTv+zz++OO8/PLL8WdbWlpYsWLFWEcUnSmRmxpwZkghEb4JmQcj74Sht6eXnr4OZsyYRhDGcRH0YSgEmy4Uu2rrNrqnxUREagy8AZCWjZQOUtnUWtEOzAqUQOjWMiIS/bDsJRbKkKJsQkK84tfgR9i8CAHGwtcOVRWQj+RkmdqCTxUbSw2iyJEaA68Gg4UmZ4FXtoKKAKlBhwx4r6MXBWArEfbKMEGQIDQwgq/6vJXnPipQE2TZGWMpxBUDrnbRTh92JvycJwLRVT5oiRJeaCNElUQ1WK/BjZ1cqLQBTyqMB7JaxUgf42g8oVBGovygic+r2gRGIDT42kfYQazdSMFwuczVV1/NN77+dXztc9VVV/Gv//qvtLe3I4Tg+eefZ/PmzTQ0NNDW1sb27dsRQtDd3c2iRYuorw9CIvl8nkwmw/e+9z0++tGPMjQ0xLp162hra2P+/Pk89dRTlEolyuUys2fP5qmnnmLOnDk0NTXx5JNPMjQ0SD5fYOHChXiez6OPPoLvexx++DK6uzvYurWDTZuep672CDZvfoZMJsvSJUtZf/c67r3vbj7ykQ+Ry9TQfsg0sjmHzc8+S1vbQTz//HMMDvSzaNGhPPf8cwwMDHDooYfS2NgYTMsE8wYkkRoDbwAC/oCAjDzgBYgebHvUIgevVJ4TL3Y1EqMVWsywH7v6pDQIy6CE5thjajl0WQ4fgzIBi2F0mBQjEcihQQLVctiUK+rySJRt/erKMUg+1EglwtuUnOSIMOqtCRFXwEPQnZFQxpz410qlAngoKQgaNxESDPkE+UBB/JuwdFgI61XFdLTbWqCx9SADz3XQ/eenyAwPg20wKuTo9yTGKocEUq+Epxzy85bRMn06xoCvDUYKtDH09vZy1513UvWDJMVKpcL3v/99vvjFL3LppZfy9re/nauuuooPfvCDeJ7Hn//8Z3p7e/nTn/7EhRdeiJSSWbNm0d7ezi233MKiRYu46qqrOPzww7npppt45zvfydVXX828efPo7u7mpptuYsWKFdx555185jOf4X/9r//F2WefzSOPPMKZZ57Jpk2bGBgYwLIsnnrqaQqFAr/+9a8577zz6O3tolwus2HDBjo6dqAsiWXZZLMFbvrlTZx11lnU1dXxgx9cx1lnncXXvvY1Pv7xj/PrO37Ntm3baGtr449//COf+cxnJmTSYBKpMZDigEW0AwsYXQ2Tpw1z8MEV6us9MlIifRkQkrx1N6d7BwNSSJQyVCthd7ZdlHG+GoLkQw/Lihq/hEl1RiSMiokLYQzKSIQvAiGVhIvzK8sG9+DgSFy6Xn6Wv9x5G/XDLtL4+EIgjEL5EmSZZPlcEiU7Q7NdR/PMGSASNfwYLKWwlELZdpyfANDd3U19fT2nn346L730ElprLMvipJNOYsaMGVx22WWx0ZLMD3j55Zf505/+hO/7DAwM0NvbS7FY5JRTTmHbtm088sgjvO997+N3v/sd/f39tLe38+53v5v6+noee+wx7r77btra2rBtm4aGBorFIscffzxHHXUUDz30EA8++CBbtmyhWq1y7LHHMm/ePObOnYtSCtd1Y/e/7/ssW7aM448/nosvvhitNd3d3SNKJicyUmMgxYELA0YLjGuRzwr+v68fiaUclJZgNMJEfPypW2DXCBYB2wkS4JSVcFHvRp9XIUEqD8sKXeQjXKzpnNfmfPpFJXAEqMAuhaBR2V47TYwE8kxfcTzTlx0L2g2jiQJ8GfyLDJBdQUiw7CDzwZjYIJBCUlNTw7HHHYdUkrvW3RVXCeRyOfr6+ti+fTvPPfccs2bNQkqJ4zhxvkDU9j3pxWhoaOCggw7iox/9KFpr6uvrWb9+ffx+LpdDKRWXKXZ2drJlyxaeffZZZsyYwSGHHMIJJ5zAvHnzqFar/PGPfySfz+N5HrfccgurV6/m+eef5/nnnyefzzM4OIgxhmKxyIsvvsjWrVsZHh6Or8G2bWbMmMHUqVM56qijJmz1wGikxkCKAxoiDLsoWWXhoTYYO8xsD2PfKV4TQoC0K0gFQvmJRIGoNe+rL+pBAqGPsuNGu6M/sT+GfEBACJg8xaWzc0eQOqENKB+NT0Stu1fHRyA8B3IBH7SvoCqC4IwCLLPTUbMryLDgBm2QMqBJ1lqjpGLx4sUoy0JIwaJFi8hkMhx66KFMnjyZ4447jmuvvZahoaF4Ua2vryebzbJgwQJgZPXAoYceSltbG3/3d3/HddddRzab5QMf+ACLFy+mWCxSrVY56KCDMMZw2GGH4TgOjuNwyy23YNs2xxxzDAsXLuTGG2/kwQcf5JhjjqGtrQ0hBLZtc+qpp7J+/Xrq6+uZN28ec+bM4Z577uEXv/gFq1ev5le/+hUtLS0sWrSIuro6Zs6ciVKKs88+mxtuuIG1a9dyxBFHMH369L27IW8BpNoyxQENIcDIEgiN1LmQAGYItA26ENR1pngVGITSzJjVjOPswM5E3oDd6+gmBVi2H9eeEzHqpADgE5+aw5a/TUGpYKGVlsGEJXJBQ6I9N5eMMJQdF2krbAxKC7Im+LsW4IsgJVG8VthHgAgaJxD1Wsjnc3z43I/EbvMPfehDCCE499xzY56BKVOm0N3dzcKFC2ltbQ2+LwQf/OAHY5Ki6G8f/vCHkVJyzDHHcMwxx8RJkGeffTZCCFpaWliwYAFKKT7+8Y/T0dFBa2srn/nMZ2IvQ21tLf/0T/8Uu/qTOPLIIznqqKNihkQhBJ/73OcAKJfLfOlLX4rHJIRg2rRpQFDd8OlPf3oEUdJER2oMpDhgYcJyNiOC6ow4i8uEpZiCUQlxKUbCgPA5ZGYR29mBPdb8KQHaVCjUNCCk2VmyFdsUe7HaHfAwtE93aG9vCOiKpQhTKiU7k1j2PIRlMLiySjVsImULEDrwkkkBPgLlW6+aumGiittk9Z4x2LYdEwgBcbzd8zyklCxevJgpU6Zw+umnU1dX9wqWwSS3QOT6H10SmaQ4jhb86DsNDQ1ceOGFWJYV5ytEn4/GEI0pOofv+zHfQvT3KJ8hOn70HaXUiLyGyFCYcBTvu0BqDKQ4oGGEQJtMQPoi+8HkwS+E9AJVgjLNVMx3BYMJPCqWQUqPbC7z+l9KQFlQKIAyVni8RL5B0skwEXWsAERfsCDpbOgxiVJe9x7SCAplB0c5eAoqQqBUEB5Ah+aGMuhXSSDc6QsIWzET5AsQL4ojb1y0UE6aNImWlpYRi3g8psSiGn0+WqRHL9hCCCzLiomOhBC4rott2xx00EEjjhnt+CNDQ0qJ53kx0VFysU/mLLiuO2Lxj64jCmPEtOZ7RIj01kM6AykOaAR7LY1AAtkwqy1KnFIE/O4pdg2FZzJYGYMtSxTsbFAOaACjXlc52BJqsoNodxvakxhjAwYjhoKlRssJaQdEcEQeJRyEUqCCNsRhM+J9cvyoc6/CoKgiCLqjhrw8QYvj8N1X/hMIPCSR213g+yagTNY+CB38ZOcuP7nwRmyEo9kPk4t7smeCUuoVu/fo79F3LcsaEWLwPI8kkueIjhGFDXaVvKiUGtF4KAol7KoTY4rUM5DiAIaI/4UERBFLo4reTcX7NSGC/1k2WDhkHIuI7zlgFPRfkytACFh8aC3VskW0sTLCIKImMxN4rxEkCTrJPyR/7H0xAQasKogMUqugs6k0QBWUB1IRNOt61QGCUHFOgSHoTVEul3l601PMnTsXx8nEO3p4ZQOiaGcd/fQ8jwceeIDe3t74bwsWLGDWrFkIIahWq1hW6EVKhAqSRkay8VGSahl2GgNRn4TIIPF9nxdeeIFsNsukSZPiMXqeh+M4IwyGZGggWTaZhglSbZkixQRG4FVxbIGlJNlcyP0uBEHv9yqvVqcOIJXhY+cdhtFgWZVg16WyCGGPICae2Cp2/0AA+Jo4W1BI0BmMckD4mKjHyatOvkSZ0JwWYWxB+pSGh/jRj67ja//n3+OF+tFHH2Xbtm0sX74cYwyVSoV8Ps+LL77I3LlzefbZZ1m0aBFKKdra2ujt7eXXv/41H/vYx9i2bRubNm1i0aJFTJkyhY0bN1KtVsnlcjQ1NfH000+zcuVKXNflhRdeoKuri0MOOYRZs2YxMDDAhg0bqKur47DDDmPz5s2Uy2WMMTQ3N/P4448zbdo0Fi9ezNq1a6mpqeG0005Da828efPo6OiIvQg7duxgaGiIRYsW8dhjjyGlZMWKFeTzeYARvRQmKiau6Z4ixYRHsIu3LYOlDJlMRB4Ewf/81/y2QFPIuxRqfKTxsGTgt9Y4AXeh2L2qhBRjh0FhTA3ak1RcTalqGHJ9BiuagbJicNjGHVJ4g6/2D7RrMDHlgU/QFVBjW1lAoKRi48aN/OIXv2BwcJD//M//ZMeOHdx+++3ccccdXHLJJWzevJm77747dtHPnz8/LidsbW3l7rvvJpPJcOWVV/Liiy9yySWX0N3dzZVXXsnNN9/Miy++yM9//nM2b97MN7/5TbTWXHHFFWzbto3LLruMarXK3XffzUMPPcRPf/pT1q9fTz6fp7u7m1wux09/+lOefvpp8vk8jY2NFItFrrvuOoaGhnj44Ye55557uO+++/jxj39MNpvlxz/+MV1dXWzatIlbb701mMswXDHRkXoGUqSYqDASoyW2Asf2qavLEFPsGguE/TpLuUCJkLZY5gNvgAEjFEZ4BMZGSuayv+AZwf/c/Dj/ecmf8SrT0SJH0PhYYhDh/3cNKbv4h0/YfOSjxyBU4BUwRiNEQKMsBUileOKJJ1i9ejVHHnkkv//97ykWi7zwwgvU1taycOFC7rrrLhYtWjQiCS+K2//lL3/hiSeeiBsg9fb2Mm3aNN71rnfx3HPPsXz5clpbW7nuuus49NBDWbZsGSeeeCJPPvkkjz/+OA899BCu61Iul+nu7sZxHE4//XTmzp0bGwHPP/88zz77LFOnTmXmzJlMmTIFIDZOlFLYts1xxx3HggUL+Na3vsX8+fPRWjNr1qy43XKK1BhIkWICQyCNRcap4NQ+x6TWBWEpmsFoAcrmNUmH4kbxbqKMMGg7KzAI4bGz5DPFPoXQeFaF5atmcMm8Kfieg0EGPANhJo2tX4OAkOm0tQh8TUgnbaFN0HfS9106u3qwHUlLSwtPPPEELS0tuK5La2srrusyMDDACSecwH/8x3/w7ne/+xXleVpr2tramDdvHueddx79/f0Ui8URpX5SSizLwvM8jDFs3ryZrVu3snXrVk488UTa29s588wzqampIZfL8dhjj2HbNp7ncf/993PBBRdwww03xAt6Z2dnHBZ48cUXefzxx2lsbCSTycRkRnPmzOG0005j6tSpI/IGkomGExWpMZAixURFUFlI2xSLf//WMTQ122H8uAJkw5r41/x6+P8KGCf8bhVhMkEVhyERdkixT2HAFpLJzXlaG/NhG2kd5npEFQMer5bzIcgEuYYqaJpkjEIKiaUqTGpr5sq1/xXvxDs7O7ntttv4yEc+guM4rFq1CqUU8+bN4/jjj2fq1Klx0p4xhmw2y5IlS1iyZAkvv/wyP/zhD5k6dSonnXQSy5YtA4gJi2pra1m6dClSSgqFAjfccANHHnkk8+fP5xOf+AR33XUXSilOP/10FixYQF1dHZZlceqpp3LnnXfS3t7OwQcfTHNzM9dddx3FYpEzzzyTO+64g2KxyJw5c7Asi1wuRzab5YILLuCmm27C8zxOOeWU2JOQAoRJayt2CWMM27Zt4yc/+Qmf/exnx2Q1JqfUGMOmTZuYPXv2LutwxwOS4y2Xy7z00kvMnDkzfm881+BqrXn66aeZO3fuCKKU8YLRspAc65suCwaMZ/BkiapQKOGQQSMYwuhajNQ888xfmX7IjJi7PTnW4NJcoBdMMwgfQTlgfoxKPYIv7Z/hj1Jdf/vb32hsbKSmpubNn9vXgTGGHTt2xCx88NpyO/pau7o7yecNuWwt2ncQRiCkAOGHbFxyJwnUriAMvq4gpcIYhSDYGUf5A8YERkJ0E6Myv4iUKKkTouS7ZJlh9LdkKV9UKTB6R26M4Q9/+AO/+93vuOiii15RQZDcuSerG5LNhZIeCQhCFeVymUwmM+K8SarkiKsg+jzA8PAwpVKJpqYmtNZ87Wtf45//+Z8pFArjVpb2FVLPQIoUExkWKByyRApVBsRNUoTcDa+nABWI4s7fye5smJNinyJZHx+ULmYAFbSQ1pEHZmc7ZfGa90BgWZnwuDuNppCGiKQhkGT6i3oCJEMCyeS7ZL3/6PdGJ+lFr4UQHHbYYcyZM2eEkZE06JJcBBGSnASjjb9ozFH5YfLv0e/JlsWREZH83ERDagykSDFRES4YI5P8gjI1QbDzf60FJdCbEsgk1v5UpewvJD1fxoDRFmCHO+c9Mb6ixfQVZ3rFeZMLbWQU7GqnvKe751wuRy6X2+WxXu2Yyb+P/mzkARhhQL2OpyhJkZwkTZooSJ/cFClSpBjnGL042bZNuVwesbve127s5PE8z4td/pGXYDyHDyM64oiyeHfmxhjD8PDwhG1nnBoDu0CSRvOtjt25xvHMznUg36PxPK+vhgNxzAcKxrJoFQoFurq66OnpeUW8fF8hOZZKpUK1WqVYLI7IARiv8H2foaEhGhsb493+a403GYYoFAoHtF7ZU6TGwKsg6WLaW3aqqClGEuNVoY5WLOOdkCOa2yhJaDwnjcHO8e4qhjkekeRzH+/JpMkGNNHr8Sy7UTJccse9O4ia9rS2tu6SrndfYPRx+/v76e3tpampKX5/PNfnR4mA9fX1I5IWXwvJZzHZt2A8Gz37EuP3br6J2FWP67FYiqMbdXieFxsVUZvQ8WR5jq4PjmhIR2fCj0dEmcbJBXY8La6jm6JEPOnjVRaSSPLHR3LhOM64Ge/o52z03EYu4vGMpFzsiaG1v2R9dFgiaWRFz9yBgKQeez1ja2SlzM7N4IFyrXuL1BjYBaKF2/d9HnvsMa655poxfz+5AGzbto0HH3wwjkWN7sb1ZiPZ6atSqdDf309LS0vcYnQ8W8bGGLZu3Up7e3usUKNFYTwgKQtaa7Zt28aGDRviXdV4k4XR2LZtG5MmTYozs8fTeKO5jQzBjo4OamtryefzSClxXffNHuJror+/HyEE9fX1wE4jZrwgqRdKpRLlcpmmpiaUUjFR0HiF7/t0dHQwbdq0EUbM7iIyHJ555plxJfP7E6kx8CrQWtPY2Mg//dM/7bHFHi0AV1xxBe9617vI5XKvmYn7ZiG5C+jq6uLmm2/mjDPOGOF6H6+oVqusXbuWd7/73XGb1PFmvETz6/s+l19+OWeccQa2bY/7+TXG8P3vf58TTzyRmpqaV3SRGw9IGt2//OUvaW9vZ/bs2bE3brzOLcD999+PZVkcccQRsRt7PM1vcjzPPvssjzzyCEcdddS41GGj0dvby0033cSaNWtiWuKx6AWtNbZtc8QRR8TNjN7qSI2BV4FlWSilWLhwITA2d1zSxeR5Hq2trcyZM4dMJhPH+8bTg5Qc77Zt22hra2POnDnATo7v8TTeJMrlMlOmTGH+/PnxWMeTW29XsjB37txYBsabLCShtWbq1KnMmTOH+vr6mPZ1vIw3uXBGY50xYwazZs0CGHeykIQxhpdeegnLsliwYAGe52Hb9riZWxgpu8YYOjo6mD17NjD+9UJXVxdTp05l/vz5IzgHxoLxZJi9EUiNgV1gX8Sek/GmaCc4HjE6N6BYLHLyySfH743Xhz2CZVmccsopseIfjw9wUhbWrFkzrpPakhBCcOKJJ5LP52PDZbwhyU539NFH09zcfEDILcC8efPiHfZ4S8YbrRcmT57M0Ucf/SaOaGwoFAqccMIJe2UMHggytC+R0hHvByQtaiB2B0dhg/G2u4pEYFfjjazq8TLe0UjGWcdjNcGBJAujkUx4TO4Cx8t4R89t8nWUqT+ePQNJqt4km954wGvphdG0wuMR410vjEeML3N0nCJZYlKtVpFSxlSWvu/jui62bcdxqWq1+orXWmsymUz80EfHdF0XrTWO4yCEeMVrGHuIIoLrurFrN9p5RH+LQhae5+F5HplMJlb+yWtMjtcYE78XdQ+LkrSklGQymfjcezLmaC6jtqNAPL5oLKNfm5AoRCkVX2dyDiqVCkA8tmq1ijFmn431tWRh9GtjDJVK5VVlIRpbdLxKpRIvFtH92tPxaq3jexXJViSb0byNfh1Bax3PeTKO/FqytDdjjeQMAnKd6D5XKpVYNkbLYjIUkzSykhU9SbmJ7kM0H0nynrGOF4if8aRcVqtVhBDx/Rwte9VqNU56jcYwWr5G65HkvdlbvRAdOzm2pB7yfZ9sNosxBs/z4nsyWnajsUX3xnXdOOlOKTWC9nd3x5wcb3Tvknphd2Qvqf+SVTCj782u7tVY5/etgNQY2A1Ei+S6devYsGEDlUqF008/ncWLF3Pttdfy0ksv0dzczKc+9Sk2bNjAddddx0knncSZZ57Jk08+yc9+9jN832fp0qW8+93vjhe8LVu28N3vfhelFCeccALHH3881157Lffccw9f//rXOfjgg1/RGnR3oLWmUqlw5ZVX0tfXB8D5559PtVrlv/7rv9Bas2rVKk444QR+8IMfsG7dOr773e/S3NzMLbfcwuOPP06lUuFDH/oQc+fOxfM8pJSsW7eOX//61+RyOT71qU/x0ksvsW7dOnp7eymVSnz7298eoWB2d6yRQrz++uv561//iuu6nH/++RSLRS6//HL6+vpYunQpZ511FjfddBM///nP+eIXv8jSpUt56qmnuPHGGymXyxx33HGsXr06nrOHHnqIm2++mUqlwkc+8hHa29v5z//8T7Zs2cIll1wSZ52PVan6vs+tt97Ko48+SqVS4f3vfz+zZs1i7dq1dHR0MHnyZM4//3zuvfderrvuOs4880xOP/10Xn75Za655hqGh4dZsGABZ599diwLzz33HJdffjlKKU477TTmzJnDT37yEwYHB3n44Yf5zne+w7Rp08YUboqUuJSSP/zhD/z617+mWq1y/PHHs2rVKn7yk5/w5JNPUlNTw0UXXcRTTz3F1VdfzaJFi7jggguAwCD59re/TU1NDRdeeOGI+PHll19OuVzmqKOO4tRTT+WnP/0pd955J1/+8pfjnvFj9Sr5vs/TTz/Nz372MzzPY/HixaxZs4a77rqL3/72t9i2zac+9SnK5TJr167Fsiz+7d/+LS4v/dGPfsRTTz3F1772tfi5GR4e5rvf/S79/f3MnDmTc845h5///Oe8+OKL/OUvf+Gcc87hHe94x5i9NNHcdnR0sHbtWiqVCm1tbZx//vn84Q9/4Fe/+hXGGC644AJqamr4f//v//HSSy9x+eWXY1kWX/7yl3Ech8mTJ/PhD3+Y2traeA7Wrl3Lli1bqK+v51Of+hRPPPEEa9eu5bjjjuODH/zgHuVvaK0ZGBjgiiuuoFKpkMvl+MQnPsHWrVu55pprEEJwxhlncOihh3LllVeyceNGvv/975PL5bj00kvZvn07ra2tnHPOObS1tWFMwDtx44038tBDD8Uy8vDDD/Pggw+yfft26urq+N//+3/HSXxjGWu0Abnqqqt4+eWX8X2ff/zHf8TzPK644gqGhoZYvXo1J554Ij/60Y+4/fbbufTSS5k2bRrbt2/nmmuuwfM8Vq1axdFHHx0bwOvXr+fee+/F8zw++clPks1mufTSS9Fa8+///u9xIvJEw/j0oY0zRNbvUUcdxec+9zne8573cO+997Jt2za2bNnCxRdfTKlU4oknnmD58uWcccYZlEoltNbMmDGDz33uc3z84x/nt7/9bey+FEJw6623snr1aj796U9z1113AfD3f//3HHLIIXtF9xkpig9+8IN8/vOfJ5fL8dxzz7F+/XpWrlzJRRddxB133EGlUuHMM89k1qxZ8S73pJNO4l/+5V9Yvnw5GzZsiBV6qVTi1ltv5Qtf+AIrVqxg/fr1LFu2jM9//vMcfvjhrFixYo8eoGR52GmnncaXvvQlFi1axJ/+9Cc2bNhAY2Mj//qv/8qDDz7I1q1bOeWUUzjmmGPiXcrs2bO56KKLOPnkk9mwYUO8u9Jac/PNN/OBD3yAs88+m1tuuSVWftls9hWNSXYXEcHRcccdx+c//3lOOeUU7rvvPl544QV6e3v58pe/zI4dO3jmmWfiRbJUKgEwadIkLrzwQs4++2z++Mc/jgjB/OpXv+L000/nvPPO47bbbqOxsZHPfOYznHXWWcycOZNJkybtUU5EtEguXLiQz3/+85x77rn89re/Zfv27TzyyCN8/vOfp1gs8vvf/5758+dzzjnnxLtmz/NYt24d9fX1uK47wg1/zz33sGDBAv75n/+Ze+65h2q1ynve8x4WLlxIuVyOF4qxIDK0DjnkED772c9y4YUX8rvf/Y7h4WHuuusuLrroIpYsWcK6deuYOnUq55577oid9IYNG+JzJ13ZjzzyCI7j8IUvfIFnnnmGvr4+PvCBD3DhhRfS0tLCkiVL9mpu6+vr+fSnP83nPvc5/vrXv9LV1cV///d/87GPfYw1a9Zwww03UFdXxz/8wz/EmelCCMrlMtOmTWPlypXkcrlYFp977jleeuklLr744tg4Wrx4MWeeeSZDQ0Px98cKz/PI5XKcd955fO5zn6Ovr48dO3Zw++23c8YZZ/AP//AP/Pd//3esO1pbW+PKgVKpREtLCytWrKC5uTleMDs7O3nggQf4yle+wkEHHcSDDz7IqlWr+Jd/+RfmzJnDUUcdtUdjTX7n/e9/P1/84heZNGkSTz/9NOvXr2fRokV88Ytf5Pbbb6e/v5/3vve9LFy4MPZK3HTTTUgpmTt3LjNnzozvb7lc5o477uCTn/wkq1ev5n/+539obGzkggsuGHdVSG80UmNgNxDFTWtrazHGcM8997By5Uo6OjqYMmUKuVyOadOm0dHRgW3bccJV5N7NZDI88MADLFu2jN7eXq677jrWr19PT08P06ZNo6WlBd/3GRwcpKamZoSre09SOiJFWF9fz7Zt2+js7KS9vZ1t27Yxc+ZM6uvrUUpRLpfJ5/NYlhUn4BUKBcrlMg8//DArVqzg0Ucf5cc//jGPP/44juNQV1fHjBkzePnll4FAwTz00EMcd9xxI2KfY0H04NfV1dHf38+jjz7KokWL6OrqYubMmdTU1MTv5fP52JUXJV7dd999/OxnP2Pu3Lk8//zzXH/99WzcuJHh4WGam5s5+OCD6e/vx/d9amtr4/PtyVgjhVEsFvE8j/vvv58jjzySHTt20N7eTi6XY8qUKXR1deE4TpwhHi2Of/zjH/ne977HwQcfTHd3N9dffz333nsvfX19TJkyhalTpzI8PBzzzt9///28/e1vj4+zJ4pVShnf5zvvvJPDDz+cSqVCU1MTxWKRqVOn0tHRQSaTIZfLxd6STZs28cwzz7B06VKq1Sr9/f3ceOON/M///A/bt29nypQpNDY2ks/n6e/vj2V3T8cZ7QYzmQz5fJ57772XhQsXUqlUcByHxsZGDj74YDo6OpBSxq2KATo6Orj77rtZtWoVvu9TLpe59dZb+cUvfsHf/vY32tvbqauro6Ghga6uLpRSccvj5ubmeJ7GgkjelVIUi0U2btxIS0sLuVwO13U56KCDaGtrY2BgIH62knNz7rnnsmTJEn7605/yxBNPsG7dOm644QY2b95MY2MjhUKB9vZ2duzYQTabJZvNxmPcE9mNZLC+vp5nn30WgMbGRrq6upg+fTrNzc2xaz2fz8fhCa01733ve1m9ejX33HMPDzzwABs2bOD6669n06ZNFItFamtrmT59Olu2bEFKyfDwMJs2bWLFihV7NbcADQ0NdHR08MILLzB9+nQ6OzuZPXs2xWKRTCbD8PAwhUJhRPngk08+GYdtrrnmGh577DGuv/56HnvsMbTWNDQ0MGPGDLq6uhBCUFNTM+I5nYiYmFc9RkQP/PDwMFdffTWzZs3i6KOPprGxkc7OTlzXpbu7m/r6+rjfdxT79zyPX/7yl/T09PC+972P2tpaDj/8cGbOnBnziw8ODiKEiJVItAPb09zOaGHfsmULa9eu5WMf+xgtLS00NjaydetWyuXyiLh1NE7f9+nr6+Oyyy7jxBNPZNasWbS3t3P44YfT1tZGtVqlUqnQ2dlJfX09xhj++te/ks1mmTx58h4rqOjcHR0dXHbZZbznPe9h+vTpFItFtm3bhud5DA8PU1NTg5Qy9gpEIYbVq1fzpS99id///vfk83mWLl3KQQcdhGVZlEoluru7KRQKcVw8+u6ezG+UVT84OMj3vvc9li1bxvLly2lsbGT79u24rktPTw/FYjFewKNz+b7PUUcdxVe+8hWee+65OHQ0ffp0crkcPT09DAwMoJQik8kwODjIo48+yhFHHLHHbssollqpVPjBD35AfX09J510ErlcjoGBASqVCr29vdTX18eyEI23u7ub7du385Of/ITf//73bNmyhUMPPZT58+dTX19Pd3c3pVKJSqVCbW1tPLcRg+Wezq3Wmttvv50tW7bwwQ9+kJqaGqrVKoODg3R1dVFXVxffy0h2u7u76e/v55prruGhhx7i0UcfZd68eSxevJimpiZ27NiB67oMDAxQLBapVCrccccdHHfccSPizGOB7/vxv/vuu4/f//73nHfeeWQyGWzbpquri4GBAXK5XGzgR583xrBkyRIOP/xw5s+fz/bt25k1axZLly6ltbWVvr4+PM+js7OTxsbGWB/sih10dxEZeU899RQ33HADn/zkJykWixSLRbZv387Q0FCcexMtjNH55s2bx5IlSzj22GN5+umnmTZtWjzWwcFBXNeNx+r7Pg8//DDt7e00NjbusdEd6YUXX3yR733ve3z4wx+mra2Nuro6Xn755dgLkOQBiGRwypQprFixgre97W309PRQX1/PsmXLmDJlSuwh6OjooK6ubsQzujd690BHmjOwG4gSVG666SbWr1/PCSecwL333suKFSuwLItLLrmESqXCwoULefTRR7n55pvp7u5mxowZZDIZ1q5dy8knn8zNN9/MWWedFdfqrl69mquvvpq77rqLI488Etu2ufHGG9m4cSNaa84//3ymTZs25oUgSpD6t3/7N2pra1m/fj1SSlatWsWVV17Jfffdx7Jly8hms9x88808/PDDXHvttXz4wx/mxhtv5C9/+Qv19fVks1mWL19OfX09WmtWrlzJt771LcrlMh//+McBeOCBBzjhhBPihMI9qTyIku2+/e1vs337djZu3BgTfnznO9/hG9/4RrzLuueee/jtb3/L5s2byeVy9PX18cc//pHBwUGWLFlCY2Mjra2tuK7L6tWrueKKK9Bas2bNGrTWXHXVVTz++ONce+21nHvuudTV1Y1pfqMkxuuuu44NGzaQyWQoFAoceuihVCoVvvWtb+H7PnPmzOGhhx7itttuo1Kp0N7eTj6fZ/369fGusampiZaWFowxnHzyyVx33XU4jsOxxx6LUoq//OUvtLe3M2nSpD1WUNHcrl+/nl/84heccsoprFu3jhNOOIG2tjYuueQShoeHWbNmDX/961+58cYb2bx5MzNnzuSUU05h5cqVPPXUU6xbt465c+fiOA6e53Hsscdy6aWX8vDDDzN//nyy2Sy33XYbv/vd72ImwBkzZowpxyFagB5//HH+7//9v/Ezc9ppp7Fs2TK++93vMjQ0xAUXXMC2bdv48Y9/zMMPP8wvf/lLzjjjDL761a/S09PDFVdcwfLly+NwUFNTE/fccw/f/OY3qauro7m5maGhIbZu3cqSJUuAnd60schuZDxt3bqVr371qxx//PHceuutrFmzhlWrVnHZZZdhjOHv/u7v6Ovr44c//CFPPvkkP/jBDzjttNO4+eabKZVKbNu2jRNPPJH29nYgSOa75ZZb+MY3vkGlUmHWrFk888wz3HjjjfT09DBjxgxWrVpFNpsdkyxIKRkYGOArX/kKc+bM4bbbbuPUU09l9erVXH/99TiOw6pVq9Ba87Of/YzHHnuMq666ig984AP85je/YceOHbz00kt89KMfZdKkSUyaNAnP85gzZw5f//rXKZVKXHjhhRhj+N3vfsc73vGO+HkZq16IPAO+7/PVr34Vx3HinJFVq1Zx+eWXs2HDBpYuXUqhUOC2227jT3/6E9VqlY9+9KO8853v5Ic//CEPPPAAK1asYOrUqbEeX7lyJd/5znfiXKJSqcTatWt57LHH+NGPfsTf//3fx16ciYS0tHA3EGViDwwMUCqVYndzQ0MDQ0ND9Pf3UywWyefzDA8P093djTGG2tpabNump6cndlk1NjbGCtL3ffr7+6lWqzQ1NWFZFtu2bYvj983NzTiOM6ZEocia11qzY8eO2LJvbm4ml8vR3d2N67o0NjZiWRY9PT0MDQ0hhKCpqYmhoaHYc1BbW0ttbe2IjOOenh4cx6GhoQHgFa57GFs71WSW+Pbt2+OxNzY2ks1mGR4eZnBwkPr6ejKZDAMDA/T19aGUinezvb29CCFoaGiId3mu6+K6Ln19fUgp40V3x44dcW16U1PTiIqJschCX18f5XIZ3/cpFos0NDQwMDDAwMAAdXV15HI5SqUSnZ2dANTX15PL5ejs7EQpRUNDw4gM58gr43leLAvDw8OxrO3p3EZZ3r29vQwNDWGMIZvN0tDQgO/79PT0kMvl4t13R0cHSiny+TwNDQ1xAl6lUolZCKPs8aGhISqVSkxdHSWSRvcim82OaRGIxhvJWZQtHoXRurq6yGazFIvF2JMUxcGjBjpCCLq6umhsbIxfa60plUoMDg5SV1dHPp+Pn73oGiOMRRaiyoVKpRK7m4UQsfHW29sLED8r0fPoOA5NTU309/dTKpVieYm8B67rUi6XY1kqFArxOQBqamqora0ds16Ixrt9+/b4GWhpacG27VhOGxoakFLS2dkZV+m0trZSKpUYGhqKzx3NLQTEX729veRyudhj2NfXF48xwlhkN3rOhBDxeCM9Zts2Q0NDlEqlWJ/29vbS398f69hsNhvPd/SdSC9Uq1X6+vqwbZumpqZ4TiDgLWlsbBxRzTVRkBoDu4EkP3+0G4iUxuimKMnEvyQhSvSQRwtrlOiWdM1Gn03uUqISoD0xBkYrtujYyfNH493V56PyoKTbMPkzQpRkmDzPWB76KEkpSq5MHiN6L0q2S9a9R9cbnT+az4iKNpnwFn0+GQeNjjkWz0CSk313ZCE5ZsuyYkNv9FxH44yuJclHkCzTG6sxEN3D5D2Kvp90iSavIZqn5PxGcxjNbfTZZP5F8hjRvIzFGIhkYVdzm7zPSblIPjfJce0qITD59+QcJOVjrNUEo8+RPE40xuTraJ6Sc5eU1eR9j8aXLCWM5CrKl9lbvbCr5yQaR/J5H52rMJqSeFcVT3ujF6KxJuctKf+vpRcij0Lyu8lrTMp9Uh9Hchu9nmi5A2mYYDcQxTIjgUsu2Mns9eSiFCGplKKHLSmsSUUbfT76++iHaazjjR780UobdiZFJhfR6MFKlqRFCj25wO5KQYy1/DE51miM0QOYVIRJJZBcKKOFKXlN0dijYyaNn+hYoxXLWDF6/l5PFkbLRPLcuzJeXs0w29NdSiS3u1qUo3FE54RXdgJMykXSSN1VSWby/T3tETFasSefj+h8kWxG1zB6QU7KenQvRi/4SVnelYG7O4iOn5TT5EKTlIno86MXptHjH/0ZGGkoRs/jnjTjGj0Hu3oWdjX30etoLEndsCujYF/ohaRhuSu9sKtnPGnIREjK/+gNV3K8ybmYqPvj1DOwGxjrFI0WqNd7vTvfHwvGcuzXw548HPtyvHuD5Nhf6zrGMt43+3HZ13M72mBMJlJZlhXHe6PPRGWrycVsX433QJtb2HvdsDd4M/XCnuCtrBfeCkiNgRQpJiiMMWzatIl169aRyWQ45JBDWLlyZdykSwhBtVrlxRdfxHVd5s2bBzDCkzCeqapTpEix+0jDBClSTGBEdddHHnkk69at45FHHmHNmjXcd999tLa2smrVKm677TYeffRRzjnnHA4//HDuvvtuXNfluOOOY/LkyW/2JaRIkWIfYGJlSKRIkWIEhBC0trbG7IMRxfKCBQt48sknWb9+Pe3t7SxevJjFixfzwx/+MM5K/+lPf/qmu/ZTpEixb5B6BlKkSAHsTIbcuHEjmzZtorOzE8dxmDNnDk1NTdTW1vLII4/Q29uLbdtMnjw5NQZSpHiLIDUGUqSYwIjq4V944QXuvPPOmDhrzZo13H///RhjqKmp4c9//jOVSoU5c+Ywf/58Zs+eHdNYp0iR4sBHmkCYIsUEhTEB29/tt99OPp/n4IMP5thjj+X555/nvvvui/tmLFq0iF/96ldMmjSJZcuWceeddzI4OMjb3vY2DjvssDSBMEWKtwBSYyBFigmKXZHcRJzwUfngaJ6L0eRIe8rXkCJFivGF1BhIkWICY28f/9QQSJHirYE0ZyBFigmMdDFPkSIFpKWFKVKkSJEixYRHagykSJEiRYoUExypMZAiRYoUKVJMcKTGQIoUKVKkSDHBkRoDKVKkSJEixQRHagykSJEiRYoUExypMZAiRYoUKVJMcKTGQIoUKVKkSDHBkRoDKVKkSJEixQRHagykSJEiRYoUExypMZAiRYoUKVJMcKTGQIoUKVKkSDHBkRoDKVKkSJEixQRHagykSJEiRYoUExz/f3ISgFDHFFT6AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAEMCAYAAABZZbUfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebhk11XfD3/W3vucqrpjz61Wq9VqqSVZsiRboy1j2a8sRB4cI9vEAyY2YH6Y2MQkPDghgOEBkpcnCWEKOPCDN2ACxo4x2GCDR8mSrBFZ8zwP3eq5+863hnP23uv9Y59Tt7rVkq3BUt/u+vZTfW/VrTp1pr33Gr7ru0RVlSGGGGKIIYYY4piFeaV3YIghhhhiiCGGeGUxNAaGGGKIIYYY4hjH0BgYYoghhhhiiGMcQ2NgiCGGGGKIIY5xDI2BIYYYYoghhjjGMTQGhhhiiCGGGOIYx9AYGGKIIYYYYohjHENjYIghhhhiiCGOcQyNgSGGGGKIIYY4xjE0BoYYYoghhhjiGMfQGBhiiCGGGGKIYxzuld6BIYZ4OVG34hARvtu2HCLyjM8f7m8vZn8O3eazvf5it304vNhj+G7xUhzT89n+C9n24P3xfL/vcHi5zu0QQ7xYDI2BIY4pqCqqioggIsQYD1p8B18DMObg4FkIof/++m8vZsIPIfS3Ue9X/b3180N/Ph/EGPu/Dx734P6/nKjPc4zxJTl/h2Lw+ogI1trvuC8vBoee3/q81ud5iCGWC4ZpgiGOOdSLUIyx/6hR/+69P+j1GoOLS4zxJVlQagNkcDEZ3Lfnikx8J9TbrB+QFszB568Enk9k5vmiPrbDXb9BDJ7z+nOD2/huvscY01/8YcmIGzaDHWK5YWgMDHFM4dBFqJ7ED33dWttflAfxbIvHC0W9eMCSt3xoBODQxfz5oF4U60VrMDpQRyVeLtTnWFXx3r/k2z/0unynyEe9iB/OcPhuzvfh7qXBazk0CIZYThimCYY4JqGqbN++nbvuuot/8S/+BdZa7rjjDoqi4JxzzuHaa6/lB37gB3DOPcNjvPrqq1m/fj1nnHFG/7UXsx8Ad9xxBwAXXHBB/2/XXHMNa9eu5eyzzz7sZ74bhBC4++67+eY3v0lRFMQYabVanH766fzgD/7gi97/54P6exYXF7nvvvu48MILX9Lvr42cbdu2sWPHDt7whjcclGI5FN57brzxRu68806stbzuda/j3HPPPSj681z7dvfdd3PiiScyMTHBU089hapy4oknsn//fm688Ube+c53Pufnh2mEIY4kDI2BIY451JPw7t27ufbaa/vGwAMPPMDc3Bznn38+J598MqpKURTMzs72F5oVK1Zw9913s379etatW0ej0WBkZATnXH/RWVxcZHFxEWstk5OTQFoAjTF0Oh1GR0cZHR1FVZmenqYsS+655x6stZx//vn977rllls488wz+8ZAjJFut8vs7CzOOdasWUOn0yHGSKPRYGZmhpUrV+K9p91us3LlSvI859RTT2VycpLrrruOe+65hx/90R+l0Wiwb98+sixj1apVxBiZn59HROj1eqxcuZLFxUV6vR6rVq3COcfMzAzGGIqiYHJyEuccxhimp6cpioIVK1aQZRkLCwuICEVRMDY2RqfToSgKWq1Wf+H8nd/5HX73d3+XyclJyrJkbGwM5xxzc3OMj4/396XT6bB69Wq63S4LCwuMjY0xNjaG9565uTmKomBkZISxsbH+Ij4xMdFPsezfv588z/v73Gg0+vfB7bffzl/+5V/ykY98hKIo+hGC+nPGGCYmJsiyjHa73T+uVatWoap84hOf4D3veQ+vec1r+OIXv4gxhne/+91MTU3xta99jSuuuAJVZWpqClVlxYoV5HmOiOC9J8uyoUEwxBGDoTEwxDGJehLudDrs2LGDPM+ZnZ0lxsjCwgL/83/+T37rt36Lf/qnf+Kb3/wmGzZs4M477+T3f//38d7z1a9+lYcffpi9e/fyy7/8y5xwwgmoKiEEbrrpJm666Sba7TZbt27lx37sx/gf/+N/MDU1xZo1a5ienuY3fuM3ePrpp/nd3/1dtmzZwj333MMVV1xxUNrgUGLj7Owsv/mbvwnA3NwcP/7jP878/DyPPfYYV1xxBe9+97v5gz/4Aw4cOMATTzzBhz/8YSAtjpOTkzz00EOsWLGC9evX84lPfIKZmRna7TY/8AM/wOtf/3p+/Md/nAsvvJBdu3Zx4oknYq3lkUce4d3vfjfnnXceP/mTP8lrX/taFhcXWbduHT//8z/PlVdeyde//nVarRaNRoNf/MVf5A/+4A948sknOf300/mBH/gBvvWtbzEzM8PMzAwf/ehHueeee3j00Uf55Cc/ydvf/nb+9E//lF/5lV9h3bp1/PIv/zK/9Eu/xP/+3/+bvXv3cvzxx3PZZZfxf//v/2V8fJypqSk+9rGPsWfPHj71qU+xdu1atm7dynve856+EXXXXXdxxx138NM//dO8//3v56KLLmJmZoazzz6bn/zJnyTLMlSVbrdLr9fDGMOpp57KxMQE3nv+4i/+ggceeACAs88+m/e///18/etf5+GHH2ZmZoYLL7yQiy66iAceeIAvfOEL7N69m3vuuYepqal+hEFVKcuSz33uc9x6662ICCeddBIf+chHaDabrwh5c4ghngvDO3KIYxqPP/44n/70p/nkJz/Jtdde25+ki6JgYWGBz3/+8/z6r/86P/MzP0Oz2QSSh37hhRfy8Y9/nBNOOIG77767n3MWEdauXUuz2cRay9///d/TbrfpdDpccsklfPzjH6fRaPDII4/wuc99jne961384i/+Iqeffvphme+DnuONN96ItZbf/M3f5AMf+ACf/exn2bJlC/fffz+33347r371q7njjjv49re/zTnnnPOMbdU58ltuuYXdu3fzUz/1U7znPe/hs5/9LO12G+89H/nIR/jYxz7GjTfeyE/91E/xoQ99iKuuuooYIyEEPvjBD/Jrv/ZrPPbYY9x99939Y/g3/+bfsHv3bm6//Xba7TZvetOb+NjHPsZpp53G+vXrcc6xe/durr76as4//3xOP/10fumXfonTTjuNXq93kHFWRwQuvPBCPvaxj3HVVVfx6le/mp/+6Z/mrLPO4u/+7u948sknmZyc5D3veQ8/9EM/RJ7n/Ty9955OpwOkMP8HP/hBfvEXf5EbbriBXq/XJ2VedNFFvOUtb+H3f//3+amf+in++q//ml27dnHNNdfwoQ99iJ/4iZ/g61//OouLi/1jAPjsZz/LunXrOPvss/mJn/gJ3vve9/K6172Ot771rfzkT/4ko6OjiAh79uzh7//+7/nQhz7Ehz/8YW6++Wa2bdv2jAqWIYY4EjCMDAxxTOOMM87g53/+53HO8dd//df9RWSwmqAOQY+Pj6OqWGs57rjj+mmAOiUQQqDT6fC//tf/4n3vex8rVqzg4YcfptfrkWUZGzZsoNFoMDExQa/XY2ZmhlWrVtFoNDjuuOP6i9nhqgdijJRl2X//mjVr6Ha7bNy4kU6nwze/+U3e//7384UvfIGpqSk+9KEP9bdxaDnhzMwMjz32GH/3d39HCIHXv/71ZFnG5OQkIyMjqCqrVq1ibGysny4AaDabrFq1qp/mmJmZYdeuXVx11VU0Gg02b97M6tWrMcZw/PHH45zj6quv5uabb+ZDH/oQ4+PjTE9PIyJkWXYQgS+EQFmW/TC9c46TTz6ZRqPB1NQUO3bsYGpqCu8955xzDpdddhkrVqzgc5/7HJ1Oh1/5lV9hdHS0v8164V65ciWrV6/uf4/3vl+9kec5H/jAB/iRH/kRHnnkEf7dv/t3vOpVr2L79u38wz/8A5A4HNPT0/zxH/8x//7f/3vKsuR3fud3iDFire2nh+oyxppjYoyh1+uxd+9evvCFL5DnOWeffTatVqtPTqz3cYghjgQM78YhjkkMht+ttf1HjBHvPcYYRkZG2Lx5M5/5zGeYmJjgwQcffIYWQL34DOoFWGuZnp7m8ccfZ8+ePf1tH8pcv+SSS/jc5z7H4uIiV155Je95z3sO2jeAe+65h/HxcWKMbNiwgc9//vN87Wtf41vf+hYXXnghIyMjbNmyheuvv54zzzyTz3zmMxhjWL169UHs+tpYERHOP/98rrzySs466yxGR0f7uf963w+tNKj3e2pqis9+9rNMTEwwPT3Nueeey2WXXcbo6Chnn3027XabdevW9c9jvagD7Ny5k5tuuonzzz+fRqOB955vfetbvPa1r2Xt2rV86UtfYs2aNezcuRNIxMd6O29961u56qqruOiiiyiKgk2bNvHAAw+Q5znnnnsun//85ynLEmNMv2zSe08Iob8fgyV/9eP+++/n7rvvZvPmzdx1112cdNJJbNq0ifPOO4+TTz6Z448/vs/xAJiamuKee+5hYWGhf398+9vfZnJykpUrV3LDDTdw7733kmUZMUY2btzIG97wBjZt2sSWLVv6PA4RGaYJhjjiIDqMVQ1xDGGwxn737t08+eSTvP71rwfg4YcfpixLTjvtNK6++mre8pa3sGfPHr7xjW8A8LWvfY1PfOITbNu2jdHRUU477TTuvPNOJiYmOOWUU/qL0WOPPcZNN93E8ccfT4yRSy65hDvuuIONGzeyadMmbrnlFk444QTWrl3Ltddey/T0NOvWrXtGhcJtt93G7bffDqRSx8svv5z5+Xluu+021q9fz5vf/GbyPOexxx7jscce47LLLuu//3Wve90zSGpPPPEEu3bt4vWvfz3btm3jpptuIoTAa1/7WrZs2cK1117LZZddRlEUfOtb3+LSSy9lcXGRe+65hzPPPJOPfOQj/MzP/Ay7d+/mDW94A1u2bGFxcZHrr7+eXbt2ccIJJ/B93/d93HPPPaxfv57NmzfT7Xa55pprmJ2d5cQTT6TRaHDeeedx44038tBDD3H55ZdjreX6669n7dq19Ho93vjGN3LvvfeyadMmNmzYgIhw66238uCDDzI6OsrFF19Mu93mlltuQVU5//zz2bp1a3+BfeKJJ5iamuKss87iyiuv5LLLLsNay9VXX82ll15Ko9FARJienubaa69lamqK8fFx3vCGN7Bu3ToOHDjAjTfeyPT0NGeeeSYXXHBBPxVz0kkn0e12ufTSS9mxYwfXXnstmzZt4oILLuBrX/saIsLFF1/MI488wpvf/Gamp6e57rrrmJ2dZevWrVx00UXked43KodGwRBHCobGwBDHFA6nyFeHdQe99jqUfPPNN/MP//APdDodzj//fD7wgQ/0PdbB8Hv9mXqbdR39oCDNoJc66MUOli8OKtcdqi9gjMF73/feB/ehfv+hWgWDKYf6M4PHXy9GIYS+Fz8YUai3c+DAAT7+8Y/ze7/3e/1UwqHnYPD3wXNaH/vgsdZh9jpFMBhur/ex3ubgPtefGTwng38/XIpl8LzVGHytPo4QQv961dusr9Vgnn9w/we/Z/AeGLzfBqMyg5GX+vchhjgScEQaA4cbXMNBM8RLgUMX/MF7a3CyFxHKsuyXyAH9srBBBcN6gh9cHAcXsUEPsF5sDq19P1SW99AF/dBtw5IS4qGvHxoOP1zN/ODP+rvr3w+VRx7cj6IoyPP8oH2sP1u/d9AwOXRhPNz7BtMRh35+cDs1Bs/N4HU49HoeagwNXtdDv2PwvB/6++C9Ub8+aAgMGjWD53DQYBvcv0GDZ2gMDPFS4NmW8Od7bx2xxkA9cQ5a6EMMMcT3Ht9L43u5GPYvZj+XyzEOcfRg0Hh9oYbmEUsgrK3/e++9l8997nP9sq4hhhhiiCGGGGIJ3W6Xj370o6xbt+4FO85HpDEwGMrdv38/F110EZdeeukrvFdDDDHEEEMMcWRBVfnkJz9Jr9c7bHrwu8URaQwA/bKksiwZGRlhfHz8ld6lIYYYYoghhjjiUJfrDpJTny+OSGPAGEOWZf3fB8lEIYQ+C/toxaEEL+fcQXXqh7LEhxhiiCGGODYxWN1yaEvt54Mj0hiAw1cRqGq/OUnNaj5aMViiVovI1BgaAkMMMcQQQxwOL3R9OGKNgUEMlkr1ej3Wrl37gsIgywWDJVnee/bv3z+MCAwxxBBDDPE9w7IwBhAhVj9BMUYQUUBAl97z7FDQOPC++r1S/5XDfbruala3oa0RY2Rqaqqvef5SYzAFMqjf/oJKlnTghwy8UB21IgyekSGGOBag9f/VwEgziy4NhOrX/vRS/d1XY8ZpEhES5DvMPUM8f9TXRVFMdfIPnrfq3+v5C0BFqqsziOG1+W6xLIwBRYgiRE2GABoggIpBgyLWgDx7pEA0oNFX95hgnAUxKOnW0qjcc9fddLtdLrroInbt2sXtt9/Oeeedx+zsbL8/OiSvfWpqit/6rd/i13/91/vSpjFG5ubm+PSnP83evXv7feB/6Id+iK1btx4kVlNzAera0EGhmEEVtPq99fe+MMNjaTqrddqMRiASxRIQHMMhM8SxBiUSAcFocirUQCQgCEYNqBKNIOoRSfPEtDo6ZeB4V+KMgGm80gdylCImA0AMARBVjAaIkSgZaEAkEk2OaASBKBYD2KWZ7hXc/+WHZWEMGCIOJWgEDEEcPQxeoLRgBBp9a/KZCDhK40DTATuFXMCqIiQFtO3btzM1NcUFF1zAvn37uO+++zjttNPYsWMHGzdu5FOf+lR/Mb/iiiuYnp7m//yf/wPA+973PiYnJ5mYmODHfuzHuO222/jnf/5n3ve+93HllVfypS99iUsvvZRNmzbxhS98gaIoWL9+PSMjIzz88MP8xE/8BI8//ni/J/ob3vAGLr744mcYBC8UOmAQLA0PwVSnbOjYDHEswhwSJUsRssGxpn0/VAEVy2337+DOex/m373rTckYGOJ7htpZgwFnxdgUKVbXjwJU2pA4ra6gDM5yQ3y3WBbGACiiAasBEDzCQ9t385XrbqEnWbIIn2NFi6oYAQkFoxbe8y/fwnGTo1gUUSVExfuSr3/962zfvp3p6WlWrFjBvn37uP/++5menqbRaPCa17yG//yf/zNvfetbmZ+f541vfCNf+cpXuP3223nzm9+MMabf3rXuaLZjxw4uvvhi/uzP/oyPfOQjXH311fzX//pf+fVf/3V+9Ed/lBNOOIErr7wSgMcee4wPfvCD/OEf/iGvfvWrmZiYAF4cYVD7sU6tJj+hbzFrbUUPQ51DHFtYSgHoQLZxYIzIoG8hVXTS8NSuA9z76FN4ESImzSuvwP4fE6idoer36CNYRy8ohQiZCE311fwuiBaoOKI6kGFc4PlieRgDKohWGukKRmHFWItXnXIiJQ4PqHuuNEGECA5PU6CZVw1ZEMAhEsnzBm984xt517vexSOPPMI111zTD+Pv2rWL888/n1NOOYWNGzeiqmzYsIGTTz6ZTZs2MTc3d5CWe/37448/zuLiIo899hgXX3wxqsrpp5/OSSedxIknnsjWrVuZnp7m1ltvZfXq1Zx77rls3bqV0dFRZmdnmZyc7Ovbv/BzBymeEivehCNgKpNAqxCbYTilfW9wuGv3YmRuX4rtDJEgVWQs8ZHS4jH4Wr2Y1FnogNANgrdNikP80iFeWiT/RYn1BVEQYwgIJfDFa27n/LO2cvrqjGCaRJQ8dkEENRbRoZX2fLE8jAExqDGk1FAkk8Dm1RNsvPg1VYYPjDz7ghk1JQNqn7he+hRBBYJPnx0dHWXVqlVMTEz0azadc5x++ulcddVV7Nmzh+3bt2OMOag5Sf3eQ/G6172Oq666ijPPPJN2u92XVB7sHQ9QliUAV199NXmeE0Jg9erVBzVOeTEIChAQDWAcBWl85RGcRkTMcOB8j/BSL+CHdkh8KbZ5rEKxlCHibRoPTQRbh9KkiqpBNTYS5yZqJFa/6/C8f++gECs7IFSRXWOFqIIncPUtd7Jq9WrOWLeedkUKz7Rv2g3xArAsjAGF5P1X1QSiaWHLBLL+0n5wtm8Q0rf163C4SQFBSda9GuGcc85hcXEREWHjxo287W1vY/Xq1axatYotW7bQ6XSYnZ1l8+bNjI6O8t73vpcsy7jwwgv7JMIamzdvptVqsXXrVprNJk8//TQnnngixx13HO9617sQEd71rnexbt06xsbGmJiY4K677uKcc85BVfnoRz/K6OgowIuPDFB5Noljg1doa+Teh57mnJM3sCIfZgi+lxhsNey974tpvVjULXGH5aYvDEoyprqq3PHQU2zdcgJrc4uJqVJJpY4HDISqD/r0EN87SHIANQyc91Q5kIiCQpccyZtEhTu2zRIQ3rSpiY2xvyI8a5nYEIfFsjEG0k8lShqK0g9tG2oa4LMtmRYw/dhAggzQU5w1bNy4sb/wTkxMMDk52ffQ2+029913HzMzM7ztbW9jxYoVXHDBBahqv1JgEGvWrGHVqlWEEDj33HO54IIL+n8755xziDFy9tlnA9BsNlm7di2PPvooxx13HJdccskzWqe+eG8SVJP3HxHmy5JPfu4r/OKHf4SxVQ3yZXEXLF8MRpBeio52L77CZAiAIMJ0p8cn/+ZL/Nuf/gCr1k+SIaDady3q9WQpqqgYjdWcMsT3EmIs3keMraNgKZJbKnhxuDynjIEv33A/XWly0bvPYVQjEjWVnh9URj7Ed8KyWAYkVZuidQhILDX1LSAYFKeeZzcHHBHbtxZrW1+IiMRkTMQl1b96gq0n79HRUX7u536uH9avUwKDLZYHUXuCzrl+ueChPc8Hf6oqb33rW/ufr1+rf3/RE36Ex/fs45FHn+SNr7sAH4WOa7DoQaxLnGlNg+cg9m5/UhwSDF8IFHhi9zTbd+zk9eedidM6pK8c7Hc++xa03lB1HSLC3Y8/TSgKXnvGKctjAB/BiCJ0NKfUpQgjVL6/anXbp1Sk1YCghKqELZXoykC6QPucg1TznjAcOc8XmsrHiUSXcfNdD7N+5SinbzoOgF5QQoiEEPBqWQiGOR/oRhgllYSmyM7RK0z3vcCyMG6l/6jtc+mvT1aSoYA6VLNnPNCMuqROlEQs0UFbn2QgDOgA1PrONTfAOUej0cA5h3PuIIOh/kyM6eYsy7LPB6g5B1mWHbSt+vX6ted6vNB2lIPIDNywYx+/d/VDLHYLclXmTIPFUE9TkdrU8tUj1CdmmIN7wYjAtx7Zz19ecx8LVToq1U/z7HbrMxDStQgRVegJ/M1tT/GFbz+IH64yLwKKI6AIPcZoRCGHOoyY0ggksbKY1iVs7FKqMm/HiKoQE/smqXZQCeOEflpzOHJeIBSgRLVgKir/6xt38bc33o8naQ30Oik6Y4h4k9MrOrR7U5RRgaQhE8UscT6G+K6wLByLWKUBApZYW3saKz8pDdxS7LNk8jTFBTQkVZFKnEhrEhBZ+gZZ8shrr/27RQhp6ayNhLpxxGCk4fls76VswlT7J6UYepKl4w6REKHX64GMUhtYZuAM1n6rVud7OK5eGAKGErtU4im1JfACKwqAEos76GoN8XzRLy0UoKqu6UfB0FR9I0loyBghoohkRAxBl8bH4G+DLsvSbDS8Ri8MhnYRuH//HN1snP3tQC8KI1YofFHNr0k2qixLer0uPgZw+cBlGZ7754NlYQxAMgiiKFHqkp4qhK0BMDgxA+I6B8PggXLJEOj/rEqIRJibnSWEwIoVK553WL7dbvPoo4/2F/w8z9m8efNB3v8riSXORaqiDiESVel0OpUJUGUBNHJQokAMEVke4aMjFEvpoeqFIanpCEK9/Me+AFF9mUzl16sxxAiFCCoZQSzO1OWIVSRxaXOJm0PEqKa/DBel541kpGXc+9Qu/ttn/pnFbAVxbj9759qcsHIcVcGrIcQqWtYr6BVFlbIVYsrTDE/788SyMAYMSlbntRFKpBYNBXEpFxuXvOCDoag4vFjSOyqlMUnWv6mqDG644Xqmp2d43/veB0Cn02H79u00Gg02btzI3r17WbduHXv37mV8fLzPAxgbG+sTDK+77jrWrl3Lq1/9arrdLqOjo5x00kl0Oh3m5uZYXFxk/fr1zMzMYK3lhBNOYO/evXS7XYqiYNOmTTQa3xt501iRbwB8CESEblEmg6jSbqh5AgmHVGcMB9YLgjGVAQYv4Tl86SJHxy5kyRkgJvEx0pm1gInJeRCxCMqO6Q67p+dZCKEfkVxKM1aLUJWBlJgcEBELlQDOEM8Dkhb0A93A7o4FVUyvYH/Hs3GlEGKkjEKISlCl8J6ycnDoG94VN0cHNzu8EM+FZWEM1IkCS8RpgYldtDNPMbsPI4GoBUb9s35aJREEo2miktNatR6TjyTLXpJCoXNZPz3gveev/uqv2LNnDzMzM7zjHe/guuuu421vext/+Id/yKWXXsrc3Bznn38+5513HuvWreNf/+t/3V/Qu90uX/3qV8nznPXr1zMxMcHf/u3fctZZZ/Hwww9zwQUXcN999/ELv/AL/MEf/AEAIyMjnHLKKbz//e9/SXgCBx0/qVZXNS3wvaIEEUJI+U2J2q+bjtGkRlCA1CNp6N28YKSUkRACyEsw2oR0vw4ntheHlKwRSk1Leowej1AAeTQ0IOmcV2TP625/mG/echvrXnV2ikbKEnHQEFAs3SBEIziFZk1iG4bVXhhEKLF0zQhSlBjXYKqbGhERIRiX5jSBMkR6RZmMARFMHbkZ2szPC8vCGFAsHosh0grz5GWHYvsdzF3/D4yHKaIUtJ0cnjCikMdIroa2jtFubuCEf/GjyKpTULcST5ZuqNL3c/2dTocHHniAX/3VX+XJJ5/kyiuv5NRTT+Wmm25izZo1PPnkk0xNTfGe97znoOZDMUbKsuTLX/4y4+PjWGvZu3cvl1xyCZdccgnveMc7+PjHP84HP/hB/vRP/5THH3+cPM95+9vfzqZNm/jv//2/84EPfOB7dA6XRDwUJUatwmlg8QQcnQAH5jo0mzmTIzm5xuQh2ZemNv5YRAiBGCthKzdcwI9EiKaYQKnKjuk268ca5DYRj0VTFGDX9CJz2mKlmKpjalXiXJEMVSyFwtN759mwskVun1sifYjvgLpJkTgaeFrNnNJXheQxRTZjJUwU4sB8BsnpkRfY5fUYxrIwBoSAIxAQFu0KGtlK7NYNHLflLRh6gDJqn0NSVz0SIyPRodLEuGa1wBkcgmoiEHrv6Xa7eJ+iDDMzM+zevZuxsTHOPfdcfu7nfo73vve93HHHHagqzWaTGONBnrwxhtWrV3P55ZezdetWYozceeedTE5Ooqrked6vJqiNh/379zM6Okqe59+TG7iuCagN5ajgYwqhpbatkaiRblT+5P9+hXPO2sq/fNO55EKVkBn2NXyhSMZAxJcBbS6L4XbsoJa5JeWepztdfvtP/pb3/OAbeMtrtwJgKUEjXTX0bCuVMlft0KMItuoAqij7Zhf5vf/9d3zwPZfxupOPTzyE4bB5AUgpXFvRvEccjDQchfeIRjQEYhXljJGqzDASqsjA4ao4hobBd8aymp206lgYjUPF4WwziQlVvQueFUYJ1pNYw7ZPGlyCMDo6yg033MCDDz7IiSeeyFvf+lb+9E//FGMMH/7wh1mxYgUnnngir3vd61hYWGBsbKyvPFjfaGvXrmVycpL3v//9fOYzn+HKK6/kjW98IytXrsQ5R57nbNq0CRFhzZo1fdnja6+9FlXlHe94x/fEEEh5TEEqTYRS03OqSS2RBgxFKHlqusvxC52qtP1Y56vXPJUlMtgSR3wwBnmYZ5U2QAwBjQEfAvXLKqktLlGTzHbNZteISiDiEBWMlCxlsQ+zW0O8KKQUWar4CAJFiOxpl0x3C0KIOMPSOLAuzT0Dn62saQKJj1QGz875gvl2L1UEVXwRqcaZVpoEUl1AqeujjzHUI0pVsepJ/A078Ncq6qKKRCV3jtx6YogYAqGShFZNiqq1CnFSqU0OThmU7Tv3ccJxqxnJLOnVxDnrK9cfe6f+ObEsjAFVIcaUx3ZakBMxYqprab+LiypYDg11L82mIvDmN7+ZN73pTQOvCW95y1uAJS2BP/zDP8QYw9atW/vvGcQVV1zRf/3Xfu3XnvEeEeEXfuEXAHj729+OiPDlL3+ZH/7hH+aMM844KOXwUrUvBggCritkvsBqZDEILuRIKNPAECGIkBvDgpsgWkeOYgWwzRf9/csbVYOnqgRtCfUsdLi+DnVGGnzfa4lILPFkdI1jNHRAbdLDsIJ4wWigdAuUjJNHR2bmQTJIFfDP2P4QLx42QM806UpauGdsRtFoIhqxJKKHWsEgtHIHIWCq28HGAEFpu4y8ojTPZSNkxpJLQKmtiZC4HiRjIpkOvvrt2BTGKRU8ymjsoNESXYq6ZBqIopSSESIgBrEZI66HiYm8WYohqBB8pBsgs46W5PSCUBowGpgrPP/1L7/Ir/zbH2XzihZWPUJK/QxxeCwLektdp5/K3743vcLq76gfg89r1L8/mwzsoWJE9XYOlRdW1b4Q0Tvf+U5OOOGEZyUNvmgyodRejPS1FYoQiWpq0UFgqeKt7gUu/Vc5Jr2XGqmHheuXZaYXa8//2c5LXbUudNTSlSZeBcQRxLKvU7IQc57uCo/M9uj4lLKZ9cJUr4GqxSqoZByri8XLgX76TBWrikYh4pjrGbqaJG3rFEIMnpYNNAhkBFxlC3ox7J7rUlbjSfv6D7Zfc5Bw7I6hw8FQJfzFoGLZNVew6LWKwaUUQR1hyfOMvJFRhlotNvavXQSsEXJrCTWnAKHwQqG2rwkxOI/q0Jg+LJaFMQBLgkBHAwYNgzPOOIPJycnD/h1eOgGiqIaQMqB0Q8RjUo7tKDmn3wsoKWJSVpGTWt9i0EhSWZpWqrZX/XBwlNTytkM9kVnKaPjkF27irqen+OMv3cov/snX2HlgARH46ytv5c++fH3qze4jJU3i8gjeLUMoiFKSqmZMgG5HiKHB3/zjDdz4wDZCKjqki6EbIplERANaaQ4HMeycnuMTf/kFntw7Q63SEUXwxiYlz4GI0vfCiVmuMJAMXhyFzfjzL36Lbz+8h1BrN8SS+cUeBqVhhdy5RPLG9vUFtLInrBHyzFL2tJ8W7Raa5rhYx+hkuP5/B7xsM80LXdQOVfGLMTI3N4dzy3eSrJvWHK6vwaHv896/eB6BQtCk0tgOys4Dc5RqCRUJZ3CQDG2Dg9GLyu6pWdavnKRhBEfdr8EMJANqnsCSzxFJodB2t0gOUH1iVdk1Nc+BbuCpucgT3QaLZSCi3LZtP5opxIgYjw8G5+wzJrHhJXppIBqTtoAqEoWuF0LMmfUFu+YW6OHo9AKPTU2zux2IYihV6JJRArkIC2Xg8d0zzHVKxkZTFCcAsz3PQqfDcSvGDyIpDyQNX5FjPjKQJOQtEcXRU+HB3fMcd6CNF4MJoETm2okcPpIJzYajCErA4mPqGRFJBEIjkDlTVYSlMdn1gbJqT9fXHahteanjoEMM4mVZUWOMxBhpt9t8+tOfZt++fZx22mn8y3/5L/nSl77E/fffz8UXX8zll19+0CJZ/6wXfhFh3bp1LC4u9hn/yxW1hPHhMLj4G2NYs2bNi0oXGAEfBK+WHfs7fP7rt9ANExxKD0xNlZb3eX2pcWChw//887/nZ37iX7F59TjOQGKP15znyu+rrSpVVFJ4ct/MIg8+9Aixyh2rWGIIlCp4MaixLIojaqrZmDc5K8fGMCYpQdlnu+bDgM5LAqmIZlEsRYBegIKcgoxoMzyGb937BH/wtzex049y1qYGpVg6pkUXaEnSFShNg2CWjMIiKtfc/jh33Hk7/+nDP0ImYGJMrjD0zcdjdUFKR52qsKKmxkOdbII9890UqbE5xMBCkRpDNazSyjKKqClCJ6kZUfCBUAZELHmW0S16hEqwqF0GPFIp1kJd2KH9stCKwDlEHy+LMVB7uHme8853vhOA3/iN32D16tXcddddfPjDH+Z3fud3OOuss9iwYQPOuf5iX/dtr7fjnOuX6R2teDY+wguCpvrbiBAkY6bt6QVLSdYPaw6OiaP3rL4wFKrsWyhpF6GqY15KExx8rtLrqmnWiZUiXYgRHy1FiEx1Q5JPJSOqYEKB4IkaWeh6ForAcdamZlo2w0mqcz/cNXk26e0hvjuIJtVNgCCOjiq7FjqUJkdtlsRrRJj3sD+06NpRohYp4iO23y01RYEqPonGZHgD9z+1iwOLZfq71jnrvjLBsb0MDWTaVJTgoRMN892CRQ+LEUadoxuSu9JyhjxzzC92U/VADFUl1FL/F+Nyuh4WQ6TrlfkyGd0h1pSngzkDQ0PgmXhZOAOD3fnm5+f57d/+bSYmJpibm+PVr341J5xwAieccAK7du0CUkRgx44d3HzzzTz88MMHEffg4NTB0fgYbJj0Uhg9AoSgBDH0glLiUj60n+x+6TkKRws6XvC2hWuOLIUA9NkNAjEpTxlFEeewjVE60mC6iPzlP13Pvdv20JYWPgrEAqddJATm2m06nXko2imtY0yVsX6mySGVaubwSr1IxKRNUkZhpgx84ZobWSg9GIuJSq6KmIxS8rR8+C5WPVYDVhWHptYoKeyDkZQOCqrsXywIttGXOAYGiKdwjJsDFVIDulgWeB/oFAVXXn8Xf/uNOymAMqZIS+4UZ4Ubb7mLvdMLlN4Tg09RuBgRI9isQQnc8eA2/vLvrmH/fBsfwR9UCzowzw1JhM/Ay0YgrBe6E088kf/4H/8jIsLevXvpdDpA6qCX56mEKoRAp9PhwIEDzM7OPiO3frSLRxxqHDwX+oxoFCVWj7qtqvbfFSTV9LZ98lSj0SVxDqkr5WNlNdcfMzXd+iU/xuUABXpeKDH4mLw+7ZdgVFUjfRJmRR8MAVsRzATwGKKkfOcDO+fZ0y4IJBncEMFqwGtkpuxRFG1s2cVKKjxLHhCVyE11VSKIWlBT8RCOzmujBz2qc6wRNKCaPMJSoauKRo+qTwaSVuNAv1Or6ETy1AhGPZ2i4OkDs4lnFmJVURqI0WNMKgXUGDAxYkJBAAqEbkzXOHVKkcQLEIMXQzBVG916DPfHsgw8jk2oSJ8EWAbFa2CxLLjjsad5Ys9eEAi+xBBxTslyy/TcAvPdoiL2VtUbGsGAa+SEwrNz/xQ33vco8+0uxKQKuxCFQiB1n4gD43WIQbysBMK5uTmuuuoqms0mRVFw/vnn81d/9Vd89rOfZWFhgZNOOqkfBXjVq17Fq171KkZHR4Glkrz69yGWkPo2UtFlUj2zr15LRXFCIYFGnKdbClFHCKbEm4iQ8tUWj5D02U1lEgQEG2M638foKW8XiheDmMETkJrepzs1kBYWA2qrdheRXCxGU2laUzym7NCRnE40tMI8PgS85FBaesC8KqXvEjslRKWn6fopFhs7qa9GJHEWgiNqM7Gn7NG7qNRreQrnV4VkUauFRLhn5xRP7Z7ninM2ggt4M0IORE0laKme/zm2bQQjSjPO04kl3jfJKCBGghpKY+n4iMQumRujG5sUPkMQbtk+TXfXLlaccDxtbaC+EqVSQaISDIRaZoAlrsAwMAD9gxewaukGSyd6FlAKO8EkPVqAxJB6zogg1lGQM10YVJWC1JuAELBOMdaSlYF23mQ2HycGsBrxIfC5mx/jVceN8+aTJ6tr4KpEwTF9EZ6BlzUyUHcAbLVa/OzP/iznnXceP/uzP8vatWv56Ec/yvj4+EGL/uG2MTQEDoGCVU0TpkrlMdbLFdQlNaHKZRdFQENJJpHoy+TRaIbDAY6oKR/aA7qipJaQx64NXZYheZsxVr7cwV5dfTemKOTSs9rvMJK8xRhjIgqqQijRkDpmGknb7paesgh4sXSi0BVoR8u8QkDxoqhJC2IgUAiU8hwS3EcBDqvlVPvgYnl05zQ33b8Nj8XrkqcXMSkiA4fvVzKwce9Bbc5iMETb6H9PfbW992xct4oGPTQGymgIarj30d18/dpbaBeeMgpF0avSekJRCj4AxiwdQ4xHaxDnBaB26qr7PwQkRLyPdIqQynIBX0kLOic08yQY1G57TNSljF1Mzk6WZSwUBb2guEaLToS2ZsyXyhe/eQt3PbKdSEYkq+6No3fcvFC8bJEB7z3NZpMLLrigXzFQpw1OPvnkfsfAoYb084WmcLFALVAj1MTlpcUpxMSa7hbJELCxR2bSHOUSzRaiSWqPkMhvgGrdm+DYRFEU/SZUwHdee0UOSqtYaxFRvA9pgiMJ2KgPOAlYA6hSFoqzOT0a7O+VfOofruf8047nsSf38GM/eCGZFZriq+6TBV6UAvqKdkcrBk+39sPthqCw6B2LkuGtpWFTggwVROKAvO2zQ0nagD3NuPW+fcx3I1IZEbVYje+0OWHNCroLsziUXrSoyej4iDc5Cz0PWU7hIxpTRK1bGHreYBlGAg4LoZJoTvHLUAaIEV9GfM8Tm5YA9GJEo2c0tzQqbejFdpexLKIhGV5BFYvQyHPmPSz6tM3FAN6N0AnQDUKphiBSRduGOBxetshAzQew1vbr7Ovng0p/IYSXvIXvUY+qtrasHpAGm2gtgpMmt4DFl55TT1rL616zBfUFYqr8nQEkYqLHaSRTaChJQ/8YHj6l9/3IwPMhVyoV0ZUU0fIxqT6WsW4SlTjoxlb3fQ9ajRG6quxY7PDPj+zmwZ1T3H7/Uyx2Nclva8RoxASPxJrdcaysMkKSfjaV10jyIo1L51mLJDkbSoyWOI3fMaBVC0R1cTyxe5poMpJxHSmryl/vPScfP8ZHfuSNSCyTTK4aut5QmibRNWgXoc+4iar0CigCxMGwhBxOtvrYRT0+YmVoa4zEICkSV3FmvPdkeFaNNhhpJDJgz8d+O/agKeKWIVgjzCrsm+3R7ZYUMVL6gEhaU5w1GLRP/hyuMM/Ey5omqCsKnHN9qd7aKKhTAFmW9Z8P8d0hIuxf6PGV6+9hf7uXyGd1jlVBYsSHiMdSFJ6Vo4Y146kldBAIEgl4NA1BRAWr4IJC8dzCSEc7Ygx90uDzuie1jhBErBHK0lNE6AalVEu3FNRkYC0hgBSKk4y5rmVfO7JgRmiTY9w4xtiqO5vFYDFBsAFsPHrXl0Gq3aDNk1gYKXrVWVzAeJ888Jh4+xoDogUmdpMx/CwGQV9PUqFQR2kaqWwtFDRsxVUEisIzmgtb1zSQ4Ol6i4glBEuJY6HnUZMTIvig+BDplSHpF8QBc+1ovVAvAFUCjRKLiqP0gRgNMTp8ooWkd6inpV1OXDtJw6YKm544SjF4MsqQFvqGzWjkhnu3z3DvIzspPGzf38EawftE6M1FMVqCFtj0za/gGTgy8bIYAy+kvG6I7x4FcM8TT/P/+7tvsG1mngJIHOxQsZmTlxLFUZSBhihNE6s+7rWedyQolDi6QEdg0QghG+FYtqP74lD9VMx3h/oWtkaw1tCLkRJDoZYuGYVklKYBWQPvQUJgw9o1BBFmeiU9lzPd1ZSjxlII9MRRkNHDEdUMqCEe3eifdqkqAEgLSlkWmOhTVMw06JKlzoLi0iL8XAqfmgrbJAYihl5I7PaGUcR3UV+gKAWWphNGVHExUITUUMqXnp4aOgGiOHxMlllAKGMqi6uvztF/hZ4vkuffVUtRVwbgCAFiFDCJ/JmVPX748ou58LSN5KJo1mRBDXMhUtoGkZRutoC1yh2P72LXgUXybIQndy9SREM0BsRiXeVkDlyR4SpzMI7dZPBRAq3IfrNBmZURvvHtJ9ny1pWMZHXBIYBUte+GXlEy3oo0bESqhc7EVHcQgtKTEfaFnD/72u30eoE3nnE8bzp14zF7o3hfEQjhu57V+3oYKE6EzBq6RaCMwu7pHjNtz7X/fA+L5ETrMEaIRcmKsZyuRq779gPMd7ostDO8gQ6Rm257jJ3bnuSKH3wz88bi1A+Ujh4705oqfWJgp9NBsJQilOR844Z72bxygnNevZFMlFzNc58ZDWhIxkQRItYYJhoNytl5oldihCJYcmtoiGI0UpRgIoSipOstt927jSKm3hWRFA3wQSm9EvNj57o8X0Tg6lvuZO2qlUQzgZocMY4Y60bD0Agl556yhjWjGRahG5Qn9s0zs/sJeipVN9uIQWg2DYsYGrbF2Ng4c2pYiBn/dM09zHtHsA0iWTU27TE4cr4zjl2X74hBqp/WWFKqEmMBsVgSHNK6LvY5IIkTsCCjXH3nU8wudiuFrjovChJT8qAdApi0SBGr8poIRIMPhqiGxTLwt9ffz+euv487t+3h2YWTj37EUBIQ2pq8mVrZQdGqzjkpPKaMQBWq1ohRj9EkBZ3b5EFqVHbv67FYRB7btZ+FbknLZpQxaRk0JIAGvn3vE3S7npnFQKFKQLn14Z1ce882ZjpFav8qjlCJGdTd25b0JpaUJpa3X9pXGUhBfV3y7BSl5yNakQm7MfL5q2/j+vueqJo72f4nD9YsOFh+IFYd8EJQovd8/4VbePPF56S/aWpBnRuAJCGN7xI10PGRfXNt7r7/iZRuC0qsFqiepvSSqFRMByUV/lb1PRpRPbpjOpFUBaNaEqOnVEVDCaFI9f/AlTfdydW3P0wvljiXhOmiGpymHiAmejJrcCSuTG4tDz21lzse2ZHufU3RzGAcOQFiSenyJBTV8xSacevDO5gPliBVF0k1dDF0VA6aY1WXtFmOjrHz/DE0Bo4AKAFiQRsIfhFCe+lW1PrGPDxEoCkwilLICDNmNTEq+C6+TJNdKdAIPUwsmdFIcGBiRgyJN4BJj45XGmE+ibDY1URGU7H0MYwYPaVpcPuugsf2LKTyi5ikiWsxnJKqZFDLvjihaGqyQlRGGw1mSgu+R7cMSQnStjCiTMRA18O8tYw5DxKYtysRbTHdi3TV4qIyV2TMsQqnQt7rQcwqSkgtF8XATz3o2fJEVSWjOpAMUYx6HFUjqGhAQwopK/SkxYIbpYGSExFZIlXUZ+OgMyJCqNQci7IkF+WElrJh9QRFFCRGxHcZy4VCLG1ybJinK8q0GtomJ5gWeSwR8fSioBgWJRFvRQWjio0er0IPASKiBR4lHMV+qdblzLFD8AULEfAdNM4n/otCJ1vJXlbiY0EmXTR6fLQ0fapfKkJBbADGYENJXrYpYoOOTOBMQEIPjUIvyxkxnlFdoG3AZk2yThuLoe3GKI1Do8f6EnyPh/fMc/v2WcpaUK1SMwxUFVTLety8cBzbM/0RAlUhGpdKxcSCSaTKvkf0nSaNyjs0ophQVqqnFm8cC2qTlR4TA7csS5rW4GJc6qSXZNMofJGs7SoPGrF4PbapNoVCVzOuvvk+7rz/MZ6hHCeCr6o4ohqCGEqTEc0IXQzB1E1UhBCg0+mmayoGI4KzhqhK6QO5sxiqvKnCYrdLgWMxKjNdT2kyisoICd5XRodWLGnFVHoTS/6o5dBmVMsVKXSsBy3upa+06ankya3D99+y5JMPPjO6VIqrmIoYqphQ0NQe1nfJVDEifaZ7bh11RU7Z6xGj0CsUFUOsmuaoKj6ktaWMqScFtXKkpDiFg2rMRY5uhYhqlCggFm8y5gyEzBGt0LFQoGhVXRMgdedE8T4uVROIxZGiBKdt3sjWTesoo+JtgxgCGj0xBpxRms4mbRVRbN3BEF/5+ZGgEbEGNYYbbr+Pz37pm3RC+rsaqS9Tui7HKNFjaAy84kjeRBkd37pjG7umeqhkSxSX70JYRknSqELEhnYSuDFNnp5u89XbHk810SGFVItej5azOA2Ixkr9Pj16RS9NsgFUDF4sRbTHqhoxAF0PbXLmCqGrjqCWQUJlUHhw236+fP3dfY5yKUIhptImhKzRoNNTSlXm211UUiWNQbDOEWIkeE/DZeS1IajK3PwcPTL+6dtP8dT+BXpBeHLPHPtnFpKhWBMZDpUlrlijR23pYXXI3lcRGkmlhopQeiUMnoq+9dDP5fRTDUEsRQhojBjfpRUXGM8TYTCGMmlzRO1XOMWo9HpF4tb0kjJeUupM31mG9H0haGUMaLVfSTo661+npGZgjuIVR1CsgmrO3sXAP97yBFPdtMB7AlZCOlc+4D1kzgFKGTzRGLoKBY5cwGlg45pRzthyPIoQTYazUMaSMgQa4mm5DMHiRMmdoeOLFHuRiOIJMVTZUEsHw7Z9U3RDIEiK1qSrNCDedgxiaAy8wlAAEbpR+NqN9/LU3gWQbOAdwnf07hQKTCXmUVIKdCXjrkef4i++dANTCx28RgLJYm5YwWmVd0UoBUqg8LHqtEfl9QjlUZ7b/E4oVehGy3S7oIgkdnLfr0tCTtfc8RB/f+3tFBqxfS890ooep11cntHzikdo9wpUDIYk++ycJWhqx5pZS+YSEz6q0ul26Ublizc+xIEFT6nCQzv3smf/FKqRKCkHigqiiT3fL6XTo9e5qY/Lh9S/Pmqlbx+UMqTnMQ6kFypZ6DrdpghRhY6S8vsqjGbCW7/vLM49YysNZyi9x2ta1K11gKCxEo8KkaIoq7x/8idDTLyDRNaNlfx9Ivd6qWoVY0m1TKb9OcqtbJXUEXL7/hn+6gvf4qldsxjNGFFooggGHyLBRzJniVWTpyiGLkJpHBmpN4cl0hJP4T1WDA0HPVV6GnFEGlmGmOTk5DZVdAyyaWIMSZdAHDFrsuCVXkzVH6q1NgvVT0k7f3RfnmdgaAwcAYhAEZWZHnQ0Qyvd++/Kc9AUDF4sEwktYnh49wwHuiXBOqZLg4+p/rmMlqKINLKczEE3ws75RR7bNU1PlXaI1aQmxJjEn3y/7dexiRCVIijtboGP1RVZqnWjFGFPV1hwE5QiGJJIETGSxx42dskbObv37qNT+CSUU5kCRoQsywkhJGEUY8mdw5J6IUQj+KjMm3FKsZQhMBdtEousojoeBqI79J8dvT0Nl0K6ZVmmPG9UigJCTAutqlRe+yGoogfdAJ0IT+yfZ/9CSRSHJfDak1exce0YmUnGRRkjvgwY6yphyZTOcS5PYejqZhBjKEql9CDWUVbCOB0feXLvHDvneoQIBE+IUKolhufmAi13KBAltfFOfncDi8XFjKwUxBtULMFHgg80Gw7vi2TURWGm4+kFg6u2JSLJAOh1Mb7NipawfbrH3oWIESF3OZgskQ6dEsX1I3hGFQ2V2mFlOJpsBEwyEcWYAZdLnilucYxgaAy84ki3bK/0dLyhXQ7kR+vHd7gnjQbahaEkNcL5w09fy7cf2olXpSRZ3N571GT0iojLcsQaFrFce8eDfPofr636gMeUk/NVvjN6NISj3oN5LkTvIQR82SP4JX355DgkDfr5wtCWJkWlLthRoW0shTiiCDZ3PL5tG53C46OgatCoWFKuNMRkDGTWkmd5PwctIgRfsBhd6tkRSxa9kOfp+pUxUgh0AS/1AlhT5Y5e1MPBpwYAiCTWf4oI1NE2c9B7E0/DUqhQGpgpS/7o01dyzW2PE0yKxrQIOFLL9a6PFFqlCVxSOfQ+4qwjzxt0O12MrQ2zFMnxISQ+WkxGNVmTT/3jTXzlhvtSJYoYCjEsREMQd1R7nkuJqv6STJCk9riIoUOqHEAMGgNZZojqiQLdEHj48Z3sO7CQHCKTETXNY+2FBU5c1eTVW4/jmjuf4O++eS9iHFnWQCXDacQiqLjE0lCTiJyknl6mKrOWQ+4PdKDqROSYzBQcq+XjLzOePWabBk2kLEp6QekWFcdY008VV22hzyLobzI9V1DPQjdSmrxq79pipoSWAJUscYwB43IKv4h1Ob1ul+1TkU6utMnpKHRKj4oQgkcIoCUxFAd9/7Mdw9FkRQ8eafAlmUm686LaFxOqRAmxMRLLEjU53SDc//RuHprPsCOjZBro2hEmrEUrgpuqxRgL0eCMkOWWECPRB7KWw5qAtXapsVR3kV4+zorc4srURXHV6tXkec7+2TmeeGKGM0/bDNZgpSolldST7WghD9aoQ/5VlSGl99T3nQ8+cWWqUkFF+gtSfRqSJDds2zvL0wcW2L3gkSwZzA2BjGRQZHnGrn0zHJjrJnl0a9FKoCupp9qKkEtazGoOQwgpWhMiIUYKHLMhZy42iTapSO6b6/DU3jkuOu04nlUecVmgru9YusfkkNdsRZQ0KNhI1wr37pvm4afnOHnTSgIGK4YQA43MYarKDjWGbbtnKENq4V2SxKYQg4aS156ykZM2TfCNOybY145EMViXo7gqNgqKIypJxpt0qk2VPooF/bJP6R9KZUZL+puRJb2DYwVDY+DlgPb/e5a/Bwrv6Xhl3qdaV0ulhS81oSw1Gu7br2pAQiUnoPhugUqgxNGQjI7NaAYQk1YtVWhZxZeGVmYonOG2h3ayZmYVWyaaGBG6RQ8NSWhF+kZECkR31JApWAJIar6TzOdqyBwFo6a/2FDllUkKhErqPBg01K3QqQjIldRzQcQTo/DF6+7m64/OI6PrOGvLBgp1SRe9mvSMS9syRDITyTNlMRp60WPFsWYkw4SSRtNxybmncMfdDzDnC0byiFVDtxSsSxUi9z/5NF+/8hZ+9Wffx9hki0hSbqttT+kvNsvv4gyavlKx8lN6JaVBgiY+Ryphg8J7gpL44xrTZC8pTJAyzmnytxq59e6H+ObDMxwoHBNqUzhBLNblyXt0jid3T3HXw08TQqyutdISzzlnbOLxfW2e3u+RLENVCUYI0ROiQaKgPhCJlDHSjRbXaqHGIKL88/07uOafb+X8096Xxs/yuzQJA3OaiiAVBymd76qxt4DTAquKs5FgDH/9jRu5+p7d/NCbX4vXAEQ6OJoOGpJaT/c044Z7HuXETRtYPTmOVPeztSNkRnntlvWgPXw09EyOIDSyRMhVFVQiUSJWUxuvSAOJUGtM+7I8uG9EZTAKmvgCg87bcr0+LwDDNMHLgjp0e/iHSKQbAu0i5YQDJCNAUie2VPta96gLKB4CxFiCBlQMdHtk0kMRbCh5cnoh6aVrCneGAJNSEEVYMZKBgUU7Qic6CjdKCyEUPRyWTmihGsmxiQ2tykPTXaa7BRp9NQ+EKhh9dEkSKWlxqSe0gMWLQ8VRqBBF+7aPUdAolICySIYym61mzrUojKXjFYlK07q+n56umcdoj0wKmsbz2GzJTBHJLZw4LjS1y5rRBu9/3QmsHXE0Qo9R8bgsoygFZ4UAzGvOjrACQqRJfT2SX7TkGS9XSMo5k5oQCYG0dBgMAR/AG4f3SkQofEnEEgwpihMVtEC1ZN4rTxxYoIyRBm28yXioN8oB74gBcnyqnrENDJHcCD3bYipYVCJWkujNKrPIW86cxGkX23AY1aQ5YQUo6JZgyJCYDMfgk3yxi73kHUtgb5mx6MaOglGjpLloQLshJvUED+xeLHh8rkcIPYyCI5AbZTGMsWBW0PE5KoHZdsHOtmVF0zBqEg9jx1SXJ+cd61e2WD3SINdAHj3iG+QGzjxujMkYaIilEx0NozRNIFcP1qEuEOnhaAOOklE0Jv6CSqBX+kTqpF4Al9J/g/Tg5Tt2XhiGxsDLASHlMA/3qJaJoigoe22IvvpQHWCTg8JVisGro6i2KZL6q891SzQmDypguOaGu9g9vYBSVQWEmJjqooy0Goho5fmm0HcGBF+QGSWGSnpDoQjCXC/yqb+/gX++/T7E2IrYWOcplrF38xyojzBE+mS02NdloH/MSmJAp7+nxSpWOccY01SZ2SqxLEIUW73HYpyjMdLkmzfczf2P7sHlOadtWc+J6ydomshIZhkbHUs5TuNwLqfT8eQu73tLiTTHAK/j6LkYA3cZhyaqlKTHkKIsVI24BB88XsCLwaulJOfxvbP83p9/nn2dHiUZPdPk6f0LdH0iH1J1l7QmtR3OncVIKvsU9TScZaLR4HXnnM6Ja1cwapUGnvFmxmgG61aOEUPVeU+ExTISVQhBKMuUPqjRLcs0bg85uuWOZOjWkRj423+8lr/8wjUE20yLsCbPXcSm6hcsPsKOXft5+NEdZFUTu4Bjx54D+NJzztZNuAhGAkZClQaLWAPWmlRSKgas4JwhV8+pJ6xn3FlyEVyWQzWDBgxeDV6FxV7JEuH20KNg2ZvRLxRDY+BlwbPfWIms4uj41KVLe21MPfH1Ne7rG7TqL6DCbFBKFaJCTw27Z+ZwktIIJYZOKRQxCaOUFSPeZTkGGB9pJq8GoQxVLhzwRUErd8SQpIuDCkWEhajsmO6wWPiUt/suj215YqlRlkYlhiWSgMZnMie0Io9plY9Mb0iGXIwRiSEZAxqpZG9ShblYjE2GQzca2l7wQdi6eS0/dNlryEKXhhU2HLcebNJ6yPMG7XYntQOvxHPqHPmxhrp8EAFRpQyRIkQkKr2gzHlFTUaphq5a9rWVAz2lFFcpRgrGWHxVBmgQMmsRlLwymjNniWVJwxpWtHJ+4t0/wIYVLZrSw2mXkYbhuHHhvDM2UpSeInjEWTrREqMQotItAz7UJY3Q6/XALGXXlzcG2UIVU8CkFNbe6Tl2zHTpSU6JAZchYjBVisxlqdlW4QPd0oPNaI1NEsSAbbBh3WrefM4WsqoSQFCcSSW71oLYlKoMkoSEsswwYgPff9GrWNkQHBGXN5EYsOopo8Fj6AZlam4RNC6ZY4eQA/TgwztmMDQGXgbESv3v2R5dNcx002AqO4vUnPCUI00Tn8aYwqQqPLJtF//rM19nrhNAoBeEuV7ByrFRjCpeDJEGC+IQk1EEKDwYa3FEWnmqS0+SromAEyL0ykCjkaMx9MlRhQoF0ImOnhpKTFLbS0LGaYFc7nPacyDVjKcDjPGZwd3EJKev8hgqeyA5nIJVJa8WLKBf02xiTM10XEY0OfNFEoXKgPEskmuP3ArNRo4JISnYGUvR7eKcrXTVWdJXP5ZQEfZUTeIHEPFBCTYpON5016N89qs3EXzASWL5d6Jlz5ynrvRvmoCGXp/2IgqZtRADzoI1YGzSG8iM0BBhxEJDlVwLRnPD+GiTJj1GJPESilDQjSVP7dlPLANGoecDZaylh5MC6BJpbbljqcwT0vwSNZHwCnGUtkURDZ3S9Qm3dSzUiMPHZBh7BescWZ5DFd0ZbwgrM0lEZkk8KmcilpC4CDY1QQ4awFgyIzS1ZM1ITksCNnqctWSU5NrrKx12Y2R6bhFUk54KpB2rxmVEq8ZkR8UFel4YGgMvE1JYM/Yn7xiTV1f6wO75HnMBipjY67BUHNY3BkIqW/PA1GKXmx58kqn5dhUqVsQKq5sOqz0kywiasWcuEsXSickjyvIcY5TcUEUfhK5XphZ6tH2gU0QajWaqYdcIxhJCJEYlYOmKY3/P8/T0AkU0+Di4p0cjUkkmmuqcy+r3Q99TG3s+pvx1iInQltjQkcyAlVokGJxGcgKZ79GwaUIsguAaTZxAy0SslhiBloUGJTmekUzoLS6QGYvG1GglhEpl55iA9L3Q2liNMSSybUytvKP3THd6PLpvHo1JVS5GpVBh1/QC7SIp/2W+S24BkzgWuTOsmmhC8FU42rPYC6hrIMbgrOJUyY3QsOCMJWqkZSKjNkV1ggaiBOZ7JaeftAUtPfOL3STmpcl39j4pHi5/r1P6vJR+QkeoUmGClyxFBEySje6XGUpd4WHxGDxCUXqMtTSypPfQzGDUBpp1UM5kqWLAgq3SBbkoTbpkJhE+nRFaNtKySiapjNBag9Meo1L0LZEyKp1ugQVCLRFapQxiTAbCMTOcDsHQGHg5UIWdxdQcgDoHnTz9v/ziDdzx5AHUtap+7VXeGelHCaiUAIMmtcED3tCr8v3Rl1gpOPfU4xlxgTKUFCXc8dA2CjXc89Bu9s0skmU5DWtwIhhJ3lXPwyNP7+fuR3dTkJG1Rinrmm2FECIZySvuKHzztof4vf/zjyxW3Q9F/WGzb8sVMsgHUFIuuPpdDzNLaF1fTkoXRE2GQK8oKwa0IbMpEpNbi1VPpiXjLrJl/UrySgg9kjgkDpI2PkmjvWUCo9rlzJOOY814g7KziLMuTbp1iuJlOztHDurIQNSAoarvFwMa6UpGx46ipLK/jo/MB8envngt37zlXiKprLOZ5ymHD+TOMN40iDWMjqRWSN+4/h7mSog2jQMrgjWpxM1kOZLlaPDkYolk9HwPcclgXzc5QSxLej6mxbBaKMuyrAPqyxvV8dS/LpUaVs1+BgaS+ohowGiqzAAoQ6RX9UDxPpBZQysTMi2wvQVOXDNOq6p1C2IJpHI/Z5JmwOqxEY4fzcliQEIktwaHp9WwqIGogVbuWNEQNqxoVnwqTSRPa7FSG2hLB6TVwdQdSY81DI2B7zEG76m6010IgaiKmBQi2zFbMNUTeuooY0pgxYEtKCAh4mPEq6bcl21WuueKBI+TgssuOJ4Nq1qoKNY1meuWYDOm5+YoouJclkhSkjzdlCaAnjR5YudeZtoFeWs8NYAhlW1p8OTRo2WBNxk7Zjtsmyno1IujhkOOcpmhDrUPHkOdTFQlVKmBNEE8s5tZ3WQoGU5aEcciZekpfUBDJMug1WywaePxGA00CGxa2+LHf/hNNIymlrakdtIGcGj/+ow6Zcv6Fbz3hy5k/YoW4guajazfOjn2S7qW8TV4AajV/1TT+fOaFO8kKoVaeiavFBqFhWCYlxF2LcKe+R4dNZSS4/ImISnQYMUkuq4qqycanLBxA3un5+mqRZyAuDQmRcBaTN6gUMiskBmDjyly1GgmKfERBw2XDLyaYKoKZVmkNbJ/ueqW0wz8vySAs5ygdYqMlOJMDBlQX2I0iZf1jQEfKQIglrKS4nYaaGjJqhHL97/+VRiR9HeEKA4x4Ezid5xywjrectGZ5NHjTDK4DZ68CcEajBUaVjj9pA1ccsGpaa6K0OkFsjzDVeOrds5SNLTSIThGQwNDY+B7jtQ1K5LykrunF/ifn/sGu2fbaaCI4G2LomewRHohlY2ZSuRGEaxAtDmf/uI3eWLHvtR5DUdPhVBJe+Qamchh0wqHVQjRE6WJKnSjMGIiDaOMNmzqtAbYaiKNvsd+zenQZMyVaQEUQ2kgxBKNEES46tZt3L0r0nNjRBVcrY2/XD2dPnuoMtKqfKGpCZWAjxFDQFQpsBTJdcBoCvX2UHwQTJBUxlkrnxVttu/czWK3h7OKWsvkSBOrJQFFnGE0h4ZUDVIIWDPocKVzao1lzEbWNgy5RNS4ikAYKgOlXjZSNX1AKGoR12VuI5gq8lyXhPfX0MoIKk2oJnRLjKmuPOLokTQGOjHyR393NX/xj7fQjTld06CHw5M81NxWqTo1tBoGWwnbNMQwmjcoXQsFXF0NREX4NRm5cThjwTVoZikKd/XtT+BsTkZJq1k1T4oR72shHEmGIy5xS1K4CbRq96v0nx/ply1dh4q3ggIphVYCpdapgFSlVMZIIjZrEgHSRG6OUXGSOnAa62g4SwwlzcwxmksV2pe+maxGcJIqPjIR1oxaBE/ulKaF9SOGcVc7XJ6Gc4zmjrFWk9KXGAK9Momv4ZIIFKpETamjYIQv3nQPN9z3WBUhOLYwNAZeBoj41F42ClOdLp+7b5onpjupFlqEUg2uN89I7NELloCSxYj6QAiCBghZxi3b2mw70CMjID71R5/zsBiVLFpGjfAD551CA4PgQXOIkbmecv4pKzh+MqMZilR6heC0RNQzKos82YNZn3NcNo8PBYijcIbSF5QC7Wh5ZH+PW5+ao2ca2FBNkm6EZWsMQH8CDsRUyZ7IGRhSm9VejJgYsKJ01dCF/pIbgH0lhOjIfOJ0dMmINBiTgqluibc5zgghy2gaj7FdemLpuWaa1EySRbHqyU0qSRRbEZwVTN6iaZQJUZqZpZQcm2U4LVAN1YKSGHBGS+aDsr+EGHp4XyzbCU0GHrG6vZLxnP4aNFK6Mnn/6tBYMBIDZczoiNIIiyyWga8/uI/793rUR9RYolryWNI0XSZcoOiWFLZBZovUttg4RjWQK3TMCFY9TaGqviGVHGYjjBphRAw2a7B2THhs/xyPzo/i7BjN0MU2IRqHQynK0OfoeB8otTIqAY1lqkTQRF5Dk8jXkR9vCyRzOWmZoAUaIrMR5oMioUQrY6CD0lWhAzi1GDUUgMRI7jspcmAbifmfNbFGGDXV1ZdE3nQIwSYdByfJQbIiYCJjOaxoGP7DB65g81iLlhVylIYxOA2YRpMillh6dHyAZotgk8bEYjfQk6Qq0onK1dvnuX+6d1QzoZ4NQ2PgZUYkyWv6OmFVhaZCiP0GNKqCGotaB0YwhtSC02YUJqOowmYPPrmTP/7rf2JqoVuV7QitLOXW6nqZECP3P/AUa1aO4hy0Wo0+d6Gud/dRuOehA+zaM8PIyEjSefeBTFJqImhdSy9J0lW1qs+uDkqWsTEwgL5XLqSQpiZypopBNGKixylVjjqJQV397QfYM7NQdR70OA00RVNrBzKCcbgs1Uo3GhmCYDXiNGBJnIL6u/tchYEdcpZUUmWELMswEhlpJiU+r0IUQ+GTBRGx3HbPI3z+yzdSBkliVMvZUDsM6shAnddVpRo3Sp7nqYOhD6lvgaRS3CjSp7oZk86JESFrJLZ7VMHZ1ONASSk0JykO4aoKhRrOQJZZrBFyqzSdZcO60UQOFkOW5YgqxgS8L5NyZZVqSqkkD6pJEQ/F41DnKmKdcGhPhSMbVfSposZGsXzjhvv43Fe/jbq8z40IFe8mapUMUyjKEmMNjcxSlj4RAHNLQwInrR1nNM/6Y7EekkYEW10nIZV+WoGxsREEWLtqktyZqs+H0LSRpo2MNjLKoiRG6PYKGnlOZmF6ocMffurLfPuxfXjJ0V7J7P596b45BpsTDI2BlwlVi/lEsIkRH2thn8TcL4KmlrSV6FBXoC2p4yBUbPYIHWuZF0e0TWYWO9xw33b2zS6AzRBj+qU7tWwrCt1Ol0beIHOmsqqlCr9WaQbXAF8yN79A3hghqCAxMGYCMUq/bE5ZMgR80L71fGR7MM8NrSyAJINSwVQ1EqqJB0AippnosdQ8ifSenbNtOlgkcxQxYkKPpkRCtCgZQRzilJZTOosLGIVGLGmFHo4kdKNofx/g4IWgYZXMeMRAluVYImNNAY0UPk3AnVKJODyW2U6Hnftn8VgwlqMVOmAQ1LyPoIDN6HmXkiaH5kiqhStq4hqYfIRuNGhVJSCkdJiKpNJCApmztYPaZ8NnFoxoihrYVPFhSPLduU0LlISCorOIEanGitDxSqnV9lA0RtpYulRpQZTUvkqOeFJums6Wap4Uh4rh7oef5O5Ht9PDJmNASRU5pGuWjDEoSs+qlas4/rj1lCEykglNCxtXj/H//PAbWdnKGCDvpG+RlDYz1UjJnMMaYWJsPGl6iKAxvSd3hvUTkaaWTLYadLtdfIBOt0czdzgpaUfPzY8f4J59HbrYpGFQdNBgOBbVO16QMbBUHhef8fPQ1wYfxwoOOubae6n/RrKQQ1wSIlFNokBqXFpoBL5+8wN86do7wKSh5n1qtXrVrU9xyyMHKLGUaphhhIUgYFxVL5vC2mZJJBQ1Bps5DEJukzFgUqYVUNTmbFwzBtGT5RkGg4ueda2Uq4taS/RKn72eOsbV6ncv8wl+iVCHnEGwWskLqxDE4CVdlxiqgxOp+hRoPzQfgZ7kmEYLrKMXNZU9GSVKhpIaFDkNjEhJph5iYO2IZU1TUpRBlhZsGRiNdZpg1HpaxleTX5LibWXp+4uKM1J4xatQInSCIZgMjKkY3csZ2h8fh5If6rFVRwl8VIzL6fQCDzyyp2Kqp/cOFCQm+eKQrqHNGwRNYl8ZHkN1j1fMdVHFuWRg19+f9OuToW2I5M6ACLlLFQh5ltJvY5mlkVvUGHox0onKvpk59hyYpix9iqwZ4as3PcitD+1BKrHlWBuEy2pMCRGLB3oYQt6iNEttb0IIB68FpPnDWaGZJ1G0hoFMIiOZsmHUpVQoVD1S0ii1AtZI3zDLncGJ0mo2cFaqyIEgBprOsH4EmrHDRMNQ9Hp0Ky2VZp7RMJEiwoyZ4KoH9nPnU3sr6XUoi9rIPLbWrxfcqChUEpvGGMqy5IknnuDxxx8nhMBJJ53EqaeeCkBWNfOw9uj1Up4Lqpr07FXTTW1Sr/pkJktiuYrSKQOu0epHBm6+93E6peedl57bn/BKFW6/7ykamSGQkzVyynySA22bFNUkkaBMpaUeB+IExhisBEbzSqrTl2SxhzMZxmVsXGnYsyMw0rRI9Jy9dQtve/1m/una2wk1w9bYqgbX4MsCTCulq1/JE/wiofW1qUKdQaBDIn/1qik/zzNiUdIlY9EL487iTPJ6yqBYFGsdi9HhxeKyHHWJHOYQRiQyabq86cKTuO2Rx3nPD76GN21Zg41Vf4pq4nGDQ6Sysl576ka2bFiZIgq5QigZy1PPhMWYUgNlWRJU8QilJkJp3aJ1eV+cFJEylj6pLhlwqQunakw96TVF2zCWxW6PvQtTrNy0IulgSFKUNCYp1fV6EWPT8yx3GI00tMeIlDhANHmFadQE8qyR/HRNxppUKaR0z1RphNroiklCesQGtm5cy5bNG9j7VI+5XqSjsH9hkT3TC5w0uaqKAihX3/YQJ564kTefNglq8GLJkjnCkX/xBooKq4hKFINkWYpyVu8IMdRmHTGE1Jo7RoSS3CVDopkJXSTpbFiwlTFG9Q2CYC1kmcMaCxppuFRFMNJMN4iIVMUeBkPkTeeeyjp3GotiKXo9vELh0+dKgYChlAZ3PrqHu04eZe2KCea96zdeCiH2Ixmy7A3r74wXFBmoT0yMkdnZWf74j/+YL33pS0xNTTE3N8c3vvEN/uRP/oTZ2Vm89/0TeqxAZEnStt/yNq01VS16rELDS88LH7F5E61Eh9rSYtE0l0Lxmry/rm3RjhZLUqXrqmXHvjbY1PM+fc3SZKUiqM1wVUe28aZlxBpWNAwnrV/BeKZYCxvGBas9RnMlR1nZNJy+boRY9KrIRjqmUEUJahnX5W0vLxVzSbXSeISn9s/wvz/3T8z2SkJQMiMEMp7c3+Evvng9HXWAhRBoiJCFgsw1+MyXb2bHVBvJmxRiMVKSE5iwwhrnWT9qybTk+HHD5tWjmH6ts9Zx6IMgwPqxBievX0nDLHlDVoTphQ7X3foUEaEsiv5EWPqlY1sOy8lzI9X1x4GEVArmSP/vtacZVBHraHcLekEpo6RoW7Wg5I0cYwwhQAiCiNLIlIYJrMg8J6xskdWRLklOjkFp5Fn6znphSjY8Gj0uk0q0qIoupcQQK1uW41eM0sgtPTU8tX+RL193N10MpWlQaN2JVGnbcXqmReq3GKkLWZfFyNKDKfcV+Z88q6y3CsGHvsHrg089CELAxEhuhSAO5wTrMsRYMupojlIXKqbIgNLMM5y1oAFnDNYoo81UUgpLZy53hg0rRjhx3Qomm+B9iRdLr/DkDqzNKDUZHyKOWx5Z4M+/8iD7Y5NQpYPqdetYiArAC4wMqGrf2m40GvzwD/8w69atw7m0Oe8909PTjIyM4Jzrv/9YweDNkyaqSmwjLuU263dETamVng+4RpMQFlGgMBndKixfBfMJqhSSmm9koYNGT8Qw3+4kCno1gERTuVpQKp6CRVyGaMFoHsnxfN95Z2BPPpX/759+g4VoOG5ylNHMJOncWDKWG0bUI9HT7gTEWKJP/cGjpn7tSmVNHtGXtlYQkCr0qv0Jv35WOZsAeIGn9uzn9oee5NLLPJ1Oj7HWGAtF5OmZHjfft4uffscbaGEwGtBel8mGw1nHQ9t3w9gaRsbHCdLGaQfrhRPXreGjP/bD7Gl7nHpyDWRapChQbVE90xZIE2BZYK0jojRzyKzBOUsRhf3zPXKg7HUrHoj2VRJVazHr5YuaFxBiwJHq9/uHpHXKLT1RBWMzirJDiEIRIqVPRE4Ems0mZbdNjJHgUzB+rGWwvsOl37eV91yylcwKPRQVMMYhkOS5RZIWhFYtb0QwBPLc0CuSOJRYiwSllUPWENZOjGFECCZjvtfj1nsf5fgT10M+Ajan9EowStc0KU0TVU8i4VFJ9x5BC1CdC3wGwdX0X14iwCqNzBJ9QT3W6kZNSnKUJiYmUo5fI7m1RLG4TJAsB5NVZZiHjoc0p7UaTZxLJYUaA8RAJsqhfD8nSgNwMWA1Oa5BoVt4mrlhFkNRJEPeROH2R3ZhTYNyciz1mIA+D2FpDyqnod6z5T28noEX7LLXvIA8z3nyySe55ZZbgHSxv/rVrzI7O0uj0UidrHgmz2DwcTjuwfKxxmrfcklYpEYA9i/2+KdvP8T+hRR0LiNJgKPO52uKDnSiSY1SfAGQFn1J07lDiTF1JxSAmBTNPIYYAnOdEidJ9jYg1FXNqQWs4LFkIoyHBcali7GWkWaTzRNN1pg2a8IMG1eOc/xoxLmM6DLGbKCRWxaD5Wt3bafo9XAhVFK4ShFjFYVgYHY40jBA2OhHHCNoKuUqNOkFCFLl11PIf66rzDHKTFfxZclEMwOjFBrBZtU1TlKqkRSqHB3N6JoWRUzEJomeUe0yrh2aYtiwcpIm0DCCU8GJRWzGiA1MxDmkul4oNDUwLotYAxiDiT5pEYhB8jEaLi2NviJt9apGOFah9KlbH3F5F0cpaa15emaRb9y5nfkgeAGrHjQkEmDMQGslRsgQSgxda3C+W3XXTkbySGZoxBIPqZSXwHgOuXhW5pG1E02QiCPgKvc/iE0cmyrCVjuq46Zgdd5jlSkZCwtpwbBCIJLHHmPSY0VusKSGObEsKMjoBqVpIrmBh/cv8s17tuFjoGk8kCVhHZIh8IqrFNZ8jDpyhRJDgWrER9I9Roqw1LERjUqIBmdybFUtE4FOjH3RoRLPyIilCoBijcdqQWZJqWRbp2Jqtdal+FYrdlnnFnEiqFgaoqwKM7gYiFWTNqkcr1qpUA1kWWqh3IlK2weaueCMoeMDUT2igZ445nHMt3vsmvN86Z8f4ut3P83je2YSX4h6bteBk/MyXo+XAS+YM1BHBowx3Hnnnbz97W8H0qJ/3HHHce+993Laaaf1F/YQAjHGfqSg5hHUUYOyLMmyrJ9WWF6RhGTH1tZsLRZUivD0wiJ/8I93sH7NRjZsahGiJEu2tjA1Kcl1YsZqK9iKM+DJcLqQSEyUFCFN8o6SDI8iLFST/mxPOV4KGqKUJsMbhwZPEJsYv5oxQuQt520mFBuIJOb85qbh317xepzAqzavZ+KtF9DOx+i4jFFTYHPDvsLx1zfvZCQoDY0sFgU0Ip3Ku5JnmvBHGOqpTCrDJTWoWXSjxAgrtURck3pia+KZ7yrzOsZsT4k+MNGwNHII3QKrHkcqcyrE0omp9HO0JXiTYYsODcaZzIT3XXI+37cxo5kl0maDgMbEhkZSJcCFp2/gg5efxf/7jceQqszwjOPX8pF3XsLESINoBBd7gGJE6JkRRgxkoUOkQcDSCenYsghtn9MJeTIuqjtyubJ1FLh/5yz/79cf4qRTTmLTpKURC4hCUAs+RzTpckSBEVFmXEY79Mhjh1gqUVNVweSIoZhKGg/gyAmcceJqrsmFUQlkxqBEnBbkmiRtS2mQOSUjEqxDVLHRcMXrTqerSrRNWuUCXWsSr8Eo5522mtdc/BZaGnFRacQeTaP0yOhFwwrrybTHTU8tct89T+FUmNR5jG3hq2uV4g9HGGtAA6IlPig908ArTAi1q4FgkpppmeO0iZFpiJFuhGkFvMcFpRO6iBHUjxGdImaeXBdpipKLwVqfuhKq6VdgQeKEvHbzWk5e1aJZ8QxedcI6fvlH3sSG8RFKDE7AxoitsjfWgDeWIJ6GCSx6ZSFabA6ZwHTh6RkgWkpjUTyu9Dy0r8cDD29jzZr1/Kvz1nDy+klify5VksXyyl2K7xVecGSgT8qp6nuffPLJvlf/2GOP0Wq1UqiyMhhSvi5w4403cuWVV7Jv3z5UlU6nw9VXX82tt95KURRHFb+gXoSKAL3Sg1TNMZS+MVCzVmPZI3dV/b8CMaDB49VUmUjph9ZSejuxcI0oi51esoyl6pLeD+cly1rU0xRl07rVnHzC8WQKOZEWgUvOOYWLzzmFyVbOeWdspeEchkgjsxhJ7OpgHCEGxIJYQSUSKmne5RPBGYDJeOCpab549T0U+kyiXRmUMsDMvMc4S6NhaDYaiKRyKV8VahiNZKHLyjwwaQps6GJIocuGRC464zgufPXJ6TwqRGPxtkmoUjoGZd3EKGedupHMphSAUWVyrMVZp29NIkRQ8QkEQySTkLZn6mBqRZ6rjJ4y+D6LfjkjMcgrJUjJuPn+nXzrzidQaYBxCIqVikRIFRlwhoZoipCoZbHyYFVhxcQIzgg+JM/WCGxenWFjj9xaBKlqyxP50pj0eyNr9gmCUnEYTtm4ntM2HcfJx69g6+bjk14EkQYlG8Yzzj7thNRbwghehOhy9s4Htu0ric4xNbfAtt2zPLW/y86pdpKeroZRXblwpM2CioBkYDKuv+1+7nt0J4lHVL9D+iXHoeptUkrGV667k+172xSacvQKOGOW7mtjwWYpRy9KJprIr7KUfkh8AeG4tWs47eTNSSFUYaLpeM0ZWxnJHYZKGEq1iq6kM2jQ1FMiy9k9VXD/wzsxUbHO0S4MKlkiP1ZHiSqdwtMTS2EcRUwVPEmqOlV8JKqEPCM1sdzxou85YwyXX345n/rUp/hP/+k/8R/+w3/gtttu4+KLLz6IiSkiLC4usn37doqi4L/9t/9Gp9PhU5/6FA888ADXXXcdX/nKV5ZZiuC7gw+BblFU5WmkRbs6xFiXqRUdGrYqFYsgVRlaB6EnNkU8Y5WSqLxKX0asBhbaHaLYpZu6z3VKz40kQkys0guiisSSjJImSkOVEZNCpg0TsFrSzJfajQYCq9etYeOm4xP7nsRz4DBa/UcmlshFSSteuP+JHXz1+ttZLMIh3L1kdEWEuUVPljsauTKSNzFqCJJkoD2KxEhWLPL9F53GD73pNZyyfhznuzgCDSkZEcg0kpmU0wxi8KZJqIad0Qgx0kDJNGI0pSmcKBmK1arQrKKxZ+ppSSeJUFWCVIimTngkBbvC+4OyIssXlSmtShDLHY/u4Nq7H6VnMjA5aMRQEqNHNJFarYnkoU1TA10yDhSRaHOcFSZHBWeqrnQktngTGJUSE0P/3gCLSBIVMio0G81kttUp8+hxorgYaWhabBoo4j0joUuugQYpcpTIu47ocnbPdnhs9zSaj3Bgoc30/AJTi232L3QweU6q/amiAbr0eOUweBelSJaKoxDDnQ8/yW0PPd1v010jhIj3AR8iimUhNrnurkd5dPsUwbRoi+Cj0HR54hGIgrWoa+AkpVQaxnM4tzst8HXn1zQurFYdCutkQm1QaUX+q0uoBazLefzpGXbsmUpCXyLMt5MoVT/wX+WmijKgJsdjaHeLxBOpdFuUisN1lBkC8CLSBDVCCGzevJn/8l/+C9u3byfLMrZs2cL4+DghhINKCletWsV73/teZmdnufrqq2m32zz44IP86q/+Krt27eJv/uZvuOKKKwAoyzLphlfpg+UMVek3vyhDIiLFiolb161LLMmdwReOUoHoiarc/sQuThpv0WqNUC/vSiLd+CA4SjqdLlHGwZjKkq7ep2nxj2rwKmBcEg8yqa5ebKqnNigxgNhARlLHy03EiuKMQigYaY2wYjLD7FTEsFQRUe2RHGYAH1moDYIU6ViIDjexjjhQD10fQuEDQYVOEckyy0geGckccyYJ+/RIQqyiKQd8ytoJTlk7yqaxyJ5yjlF3PEECuUaMFhjJMaRSJrGuzwWBQCYOZ6oQJynSo5oWhkwsCgRNkYEmnnHaOGeIxibDLCaCXSTV1ZcxVD3ZDzqk5YkYMSRBLhlZydTMAeY9ZE4qQ7RASYTaGCGzntEwz7gaFgvLtx/ZScCSGc+KlpCbpQ6UjkATpRUWmciTcZCm+zRfmarLXsNlNS83rYmSPNBcSKxzktGcGwvaY20rJ0sMQFQjzqbrp7jUIMk28OIoIpTiMAbaRa/yZKsvOSJTb6k1cYmwEA1GmlW0YEkeKWqS5LaqoIaeZiyaBh0vlDR4eq7gwGyHkYkxCl9ixSDGoSYjEyGXQFO7/fM9eAoU0BiTSJcqGgLG2MRbqkmXVBEMBSMOSGqfBhDXZLYHwTYxxlKGyM5tO+n55FwZ6jbGsNDu0rJKp1Tm2z1qIajBGocjPz36/PGSGAP33Xcf119/Pd///d/Pqaee2q8qqH/WYkQiQrfb5c///M+5/PLLGR0dRSTJrGZZdpA4xY033sg3v/lNnnzySd7//ve/2N18RdDnEEgd8ISy9KiAjwNtjMViTIqe9NRSSKrIiFH4zFfu4KzjRrni+1+fbuoYCcZWoWZYNT7CdDAYA86a5FkmzcBKVCiFswJShZZTdzdnGqRyJgPU5Z8BJ4aGMxy3elVq82rTItSykYZ4MolkztEvvF4uJvIAEzqqoV0IweZp9w+KRKVmMgFDzyt5BuPGYwrFRChJ4eeiTyhTcgOrrHDFxWfwmjM2s2/RctOep8kqQ1grT7QhiWCWSUyRH0khTFeVhNZ11SJ1axYhaKWAGAKnb1zPv37b97F6fBSvSQzHCsQQkiiUQBEDPi6VYy1rpNgx4iyFCu0ilQtGV1W0aCrHU4UYhPWrHJdvPYsHZnrceP82vnb9fTTHVtOQHuvGHBecvZW9i4HoA+e++lSOGx/lg+/8fl6z5XgkkgpyVBBiSh+I0spTiSGSInpVqCYZBaSnRlPVwv/norPZunEdNoYk9KUFLQqwlq61dL0j2Aa9IHg1BGzlcVd18vViU7HjX9nrJwP/L42PAJUxs2QEpHkuRdRCTNEXK0mTpINQeAjquP3hWbbvnOXVK46njB0yyXDWIcbRMIbTT1qPG+8XeB68N7Ik3V2fnKVCnL4lUP09YlxFxqyrP7IGC0VKH9lKL+W+hx8jik1CT5LGHcbSLUsaJhls++bbdHEEFXJNPQ9SakQ5Ai7SS4oXZQyoKlmWceutt5LnOTfffDOnnnoq3vu+ITD43na7zSc+8Qm2bNnCG97wBvI8Z82aNdx2221MT0+zadMmIIV4vu/7vo+LL76Yq666apmRCTnYsq8mER/pa6grB1vTRaVy57KcxdBg+75FYsWQnY4N9rcDQSPel8kkNZaAY+fOWTZtmCDOgLNKZlLlQS4eUY9VjxhHriW5JCndEBScPcib177AZ9Job+SWk07cSEbyfFvaoxV6jJqRpL3vXBJLYmlyPFJR8zbqSSMdZaRXBEKMFcmub7alyIGkoGC3CORGyUKXZhRM1R73iX1zHNdaiUTFkyFiGDeeS8/ayByGL/3zU1hnEWeqnLWSizKinpafIw8FEFFNnr9BUummQKRafIBE/qsnV2HDihaXrppkbqHAmhyJnmaWVzr8KfrULQvqmE3/BBy5l+fZUU3uSpKY1ZDKXEVjSvUgBJMY/Ek3KjLZgndfdhaPzQdue/ApDgRlstHA+AXGXOS1Z2ziyluewIly+uZ1rGxkfP/5p2JjSKRcTfe1kYqaGXs0spRm6weJax5HWv6qnymicM6pxzPRzDAEgkCTkgl6eGnQKUoOHFjAZSNEtXQ6JUiGxmRI1MMohaqrLQuvKPnzYBM5VOZpepa6LyZehVb7nTgDgSyGxG2KSpmUvFG1zBVaVd/keBZwMTklzjlaVti0ZoI1ayeqyII8R56kDntV0ZSakF3Z5wFJbaYFRAPWOLJmiyd27qXAJg6bzfBSxXakPsbKt1FD1DTnPr1/hvmo7Jxqc8Jkk5UukbxFamGv5Ti4Do8XxRmoqwTe8Y53cOKJJ/L2t78dY8wzDIGabDg7O8u2bdt48MEH+au/+ivm5uZ43/vexy233MKOHTt4xzvegapSluXSDlbkwyMZz7xll2zmOjLgfUX2qoyBWN3voQ5PisFYy7Y9M3z2S9eByylUWZAWC94QNKaUS1UvGxEeefRxmi6S2WQEpE5ekOG58NxTGWtmSNll42SDU49fjQm9lAYgleCgJabKVqYyRJtaqaKMtEwi9BhlzViDs0/dREsSs7qZZSl3x1JJXr+4UpceR0Rf9jp3qxVXgohooOi0icEP8Cvo728ZUhqn2/O0mhlnbt3MhWdtpmkt84td/uL/fpkdB+ZAoCRDXAahTSu2GQOaNhE3g3GozUhqUwVrJxpcfvFZHLdyFCGSEjQp1FqTE2PfuDLUccs6amQoaZEIcjGkn81GgxA8IimX2S16fWNgkBR1sES2HhINeeWhh3nQvy8jhB42dqtS0NRDIIhJXJpEmCA3MBKV1ZlitJcqDFo5WrSZbGZkGpAq55+JkmtBi0hOrNJliYWuseSk49fTyiAzaXlRtE/MDAihSmLXhqaqIZMkMU3lsV509ilccu4WmrHEqbJrxx6yrIGqpd3pIViIqRFGTZSDtN3v1LXw4HM1ONYG/j3Ldf5uxqQe+kzjgDSwEnx5yDtSusqHSBkS615CSdASjREjQjemfp8CFN5j1CfnxVlyhEyVBr5fhnjovXvwfVsdY9WULQ5oDUQh6T4gED0iQt5scf/Dj6fybGNxLieI7XMGYOArK/Ou2+kw3y3ZPrPAb//ZP3D3oztQY/tRvaMNLzgyUBP9yrJkdnaWyy+/HKgXPs+uXbuYnJxkYmICSIv6xo0b+aM/+qP++wBWrlzJL/zCL/RJg3W0AVLdqYj0tQqORNSeZ1poknmauqRFXD3Za2L+qyhl9V5CJbdZfa6MwkhTsJllphcpjTLVFeZsSacV6EZFfYGQ4dQkOdZ8jKglzhiEnKCQaWDEz/NDbzqFJ7ftYWqhw7mb13Hq8ROYsEg0rrr5I2BJ005S3jM4QrHAyjDPqEsRgwx47Zmb+VeXvoq//tItSPRYl6dwILFuR0KswtZKiagFiaDpu165wI4sORH91yJBhZ4PhFhWrWnTwgxV2qbid/S8Z9wa3nj2Fk5tF1x1w93MR5jvgdfEnu6VJXmegygSUiRhzEGOB2vpITiNSOgx0mzy/rddwCqSNKoxBlHwxlC49P02UlWFLOUnPYpDMNFiTEoVjfgpAhNIntFTxWnSIuh4g1TKNVGTcbjE7QiIGpBU1/5KRw20+q8O86oq013PU/sXOHPjSly1oAlC9AYTQirbTWsTMbrEmUjrNY7U/W/UQi5JeGY8L+g0HM7l5AYQy2IRaRlBCFhNaTKVLHmVClYcbzxrM1+89XHyKg1hpPpS6jNpKr0QoVQopDbI0yIlwOUXnMamzfPcfut9jIysYaoQVrQcT2tBz3sChozUijpicP2UW5I4fq5LE1S5++kpjl89wbpmFT8QatME7WfBlxLqhyaOnvPyS92sa9BjHHBoQuh/F1WVwHzPM1d4MhTBE6OhF3IQMLHEdwOYnKzh0DJ1eXRASzxiU2OonBT5qaus0NDn9ZhY5XLqZgUcvCZH9Rg8KpZExYWoFieWFc5jCfTEJglpl4Ea0B6YDI/DakmOx4vFh7RvPa/Ml55tUx3mFtuJ0KqCXTq7Rw1eNGegKAquuuoqdu/eTavVwhhDu91m/fr1vPe978V731/Un6+HX2sQHNnVBWk5tUSMlgTJU06+qkePKlXIOYmq9jSVj6lf0qSn7BJNg6bxZDbS0RwVx/ZZJZhZehOOUgMEj9KCUmlYz0J0GJuR2xLRiFd41fHreN+l57Bpcoz3vuE0yrkOrz7tOEQCWgmp+CoEiowiUiAaUEkSu8etavGuC05i3BoWQzIXVljPpIOcknUrR5kcG4GoGA2I1EefhoXBQzSoLVHcETBgpIoGKKKCmkhJRjdCGYo0pDUSJeXZI6AhYlDawbPSWiYNqFVWNAt29TKCybGuSRdPVJ+ap5gmUdLCNSqBphbkRlENKayoPQoZYdJ4GqFNYcb63mCwhp5J05dET7SSFgoFEY9oBpQoOaUKYw3H216zmqfuBpMlyVvRLkYtnZDT0iIZA/1zoFUDnhIXc7A90LqxFa/wBVryaSNwz44p/uhLt/M7/89bOG48RzRgMPRCE+Nt1YdAsSFiY44YoTBKtwhk2RhqhEwgs47xpuO801fyzf17aI5O8P8n77+DLUvu+07w88vMc8699/nytr13QKNhGobwIEGQEAWKIjWUKA01Sym0MiHN7MbsRig2tCFtxEbsaFYRw52QISVRJEVAdLAEQHjTABpooLvR3lV3ddlXz993zTknzW//yHNfFUAQlIDWoCVlxKuqZ+rdc/OczPyZr7HTbRp1BAZUkgmBkizJRIIRjIIXAV9wuAr8xddezYnD+/HRks/bhErOOI0qgofkaBRqIo4AKeGtwWliWeHkfMmPv+Z67lvrs/3CBnddNU8a7eOJ1RpvHD1tSRrxGEpgBhB2f8ZNaZPyv3zwfv7iW1/Be28/RBYop3PVTCQx3XE42zu7knpXtbiSEvin3Ze9bytd2T4fgG13GM4UPaULHM6s7bBZtywIYCJBDdO4QCsT+nEMHjwO4wwpBFJR4JIw0DbjmQxYXJ5jA4SImoZWM3WwVIg5GsaQqwxOFdR2wXP2O5gFkJmRW1EZw+tuOMhnH32RFxpwYkhYrAoFLVFLpuLoS6JME6IILX1M64klBBGC7XX4nkB0Fd9Jq/yvY/zAwcDsoB4MBvz1v/7XWVtbY2NjA1Vl//79HD58eO9nUkr/DRgVXVm4uzKWzplM0/oMdEodqE8vf38Ws/eco3L5AA2qmXYYAqKO4CM+RbwB6wwpNPSMUATPSmHoSZblXFoa8Avveh2tCNe/8WZMGzClw4jPPFmjuDSGndPI/I2kwnTyqvmqDywO+Ol3vpEyeeqUQTupyP3sQgLXHT1EKZHSR8rkcnTtOpW2rneqxvByM2Hdwxd151/d+GzANPvi7K+kxI6q17QtRd9hRKicY3FxHh22tOrY9tC2kSiWotOaVsmQTeNK1GRDlcHkHGa6AfOHQSySGth9gWJwAnX7s0a+Qk8thgTSAP18MRIg1VTtDtpcQgbXIabHvIv85Xe/ng+euh9PICRHkqyhH1vfrepOwEbZS58Eg1oB3BV1hyve/8tgtN4zadoOTJyrJCnNtBRyNdKKYjQrMgYpWR1FxtHSd5e9C6qq4PjSMm++6yq+/pUHWRoYRlPLcDTBW0Nv7jrU5BZOkqJrI+VDLRowOH7y1TcSk3Sl5Cxb1XYzV2oNtJmnTrYzlg5Uq93cGjz7egV/9b1vYP0jD/P0Exe46dAt7Gws8MT53bxWNHuTXB7/cbwcVc0+DN6TVDuQ43fl8HsMBXKZ/4rXyBVJ831jAUPO3unamJcbT1nuORcysoRZAnaGQ5aXFnKCYwzjusZKbq8YZ2l8mxMSsoW7Mbl/b425DA6cXZ8oSCKM1ijmEmLnwBg8dBTchi71wHUtHotDNVGFmnkX9qjRkpRX3nIV1x0/zblnR0hoqZyhZzxVnDJOBdZl7QqvBsQSYqSVRKpMF0jPGAWxC7K66/yvaPzQmIGZhsDhw4e54447uPPOOzl27Bhwucz/3+pQvWyz0bQNsdvUZkBCZIYhyA9zvyionCVqwne0QKdgvKWtAz4mvCgtHusSRWq47tB+3nTHVdx0ZJkqgfENA21ZFs98HDNvGvpEKjyoz/jDdoMXP/NbxOHFPSSzJZfpLIpJCSvdErAGKQwYoTKRpRKKGNGYufhJbNcHjGTVxYLaCIj7rkboj27Id32mqkzrBh9nKn3d18nArdCxWpqmpXIFVqEqHCtLiyCGabJ89oHT/LPf/AwTDy7zN/Pv6JDLarIq3aUvf4BzH/6nhM313FdOiXNf/gPq809mvwppcUCVyg4qMAOldQehKRmef4rzn/5NGF+kLy027mJSiyahZwxtzIqVYEltAwlSkr3s8nKIapmKECn3tvWXw/25PBQxZg9EJ2YG6gSfstBVmjEuyH3oqZb889/9Ap/+6rexroDO7KeqKuatst8Ktx5eYH/fYqxh7dIlVi+eoxz0SMxU7gyWBpOGOA0ZJGig1JaeRCqJSKiB2aGjna9EPgqNKr3QdIdnF9pLPjhKUeYF9pmGo2XDkTnHQlXS+ICRHAxougLw+Z84TLf/fq99Vv/EAswtMelEy78fcqDjOuXC5SwYkNlXDdMAGTWQ2wVJhOHuiIPLC5ACXg2jyYTRZIIUFiks43qavRdMTnSkw4NZa7HfgTPryhdxl2c+/3u0Zx/Exu0rvh+QuIvQdq2MXJXVlEim4uS+Be44sUJpc1BmjdCzhptPHqBHkzFTKdLTKXdfe4gjSz0GEikteHWIsWgKxJiIarv11VU/NTO14EoY+H8d4wcOBmY3cQYYnKkReu/3lAeBH6g98F/T6Dw68D7/I6XLAEKYBQx5ux64gsJY2qRMY+aL26QkD02bKWNqQIyioeGaowf4qTffzftefws/97Z7KCRgbAacoZJldq1FwhiJu/jNFzHBY/wuxfpT0Gx1mJwOv5AiVjocgMasCSKGQpQCKFLLQj8gZWJbI49s7PLw5i5jTZA6t0WvPH1xSIch2sNF/KjGd2+Rqtl5sQ4BP+s3X7GsZ6johBBizM85UBhhoZ+ltJOtePSFVU5tNDRqcdZ02Xfe1I01WRtdIvPDZ1jcfBjaSQZSxRa3cwqZrucqBAZVg5USrxZPkZHkCl6VRiq03iauP0fy07zBGwe2xCalJ8r6bsOOh5AMGv2euVWH7WQmlJKi8PTqFuOY97Q9kNnLZEiXseoMFDCrDABtTESRztsvW2oXzlFH4elLYzaaTFHOLS+hcAUDJywXBX/nv/sJDi/0EGMxKC7V2aobkOQxtJh6lbj2MEUc5d4/CRWXhYCGL5K2n4HU4qYb6PpzgOs0PHNmOoh1Nq7qBL7yG3IIBiuwVDlOHFjkmqOHiDEhpsxOiyLEGP+jqwF7H+SEwsyAcn/a/0H2PpJe7kxm06U/41VVqRNcGI65NJruiWWpGjaGNReGDTksU1qF3fGYlUGBpEgyRQ7syHGycY5pU3dBnu71Ka6Utf+OZ0E9Oj5HeeEB9PQXSRtP5vlHce0uYe0ZjJ/k5sBkg7j9AiRPSMLr7riOv/iWO6gseziPvhXefe/1LFcZQFyVJTed2Mf/9Etv5967jtOjYVBaki2yv4Fmx9I6wOlLNa2UxK6Vejm8/q9r/ECntIjsBQKz8v+lS5f41V/9Vb7whS/w7W9/mzNnzgCXqwf/LQ3tEOGCEnxedCGmLNbTBQMxzYyNlKgJSZFBaXGd2VCQfMAMXElUy6SN+JCwJlNbCg0MLCyUjhUjLJVgxKPWgKlIpqQ1Dm97YISdc89y6uO/RRpvgZ/SDzuY0GBEkU69MO8NGd0rRvbeRw/DALjx2GFuOLmP5BKPb474n//1H/J//41Pcmpt3AUDkRfXdvnnv/c5Gt/1gdPLYdHMFu+eHBOtT/jUedl8ByqcTtEv3yMj2bGuEJgrFCsJnxJTdUxMjyYpRTFzV8l91H6RoB3TN4kqDZljjDWJnhWMegZxigk1GXxWYGxmG7RJ8ZS5MhPabOCSagodIqkhmJJdqYh2EUPJW69f4o6r5nnwyXN864UhkwikmLPoK5bcLAdspoH/7f0f5fxO3b3XwMtqU9uT/b08MvBW8Ch1VLxCIEt8zzLViZmjlYrSGtDs7WGswwkMBPZXjsoI1jpMCtx28iD75y2SEhCQVLPz9Dd4/hP/Bp2sYQkYPNEUBCNsPfgJNu77PfBD6ic/x5lP/hopTEnk9sLKoM9Pv+luTh7ZR5JsGGUgi3yZnIfbso8KFIUheJ99DiTvn+G7kPl/1lDNdNM9cOCfPbHkZ9+QcAQ1Wbvi+70G0AaYJOV3P/llPnX/o7kSkASNwrNnNvj1D36ZOoBXqIFx3bA4EIg+i5x1w4jgrMW3+X0ak685xoBckUx+50iEC8+wtP4o/oEPsn3/RyBOMSkQ107x/Cf+PX7jLFYjw6e/ztrX/gCJQ4woPWfYV2RAs9jcPnMo804oabECYixLA8vhyjKwicUice3xZTAWp5HluQoRYThu+fcf/BqjVFKbkiQlKbuTvJxWzksyXrKU/cMf/jBLS0s8++yzjEYjvvGNb7xUv/q/6DE7C2dtgdnGnGWIuzZBlz33nKEwFh8jweRe4vL8HFoUDH0gxUSlwgChL4qTQIe7AXJGpOIuA8dU96hXOt1gsPkEEnYgpOz/HVPXp+6Qw98RtM3K5oZCwCXlx+65g3vvuJ7SKMNGOTexnJlWDOsAyaNExh5Wp0qMgmrsNN5fRmMGgoqZUrm3qeZv5vZA6xFjaUNEpEN2awb3OSJoZFw3NGoICs7CjBUi0DEKImUKRE2oqRCruZWvAY2zCc+l+8pE+rJNZaAATFhDJ09j23Vc3MZMLzGXhhTtOpXfQENNoYG/89N3c+uJPo2xvLg9oo6RRCCQWSuz52AG0Use1oJSQ1c5+C9gO0s5OJv6QCPCOCaGbcqo8KLEJI/XgmRKqo4hADkTNSbfuyz1nLPk+cLwF975Sg72LRoCSJa3DbvruNGLQENMMSPgu5lL0zVkeBZ0QhXXGQyfRKbnsASSevYNHH/px+/hmiNL0IFV6Z4TmWXjtsAWvczumO6yr0zM94rLtLk/Y3z3z8SYA+2kM4TC9/m/zOiQwqgN1Co0f2ZlQFBbsJNgtYVTa7u0exWJbOJ0ehjxtmDYRHZDok3QtxlOHDVTY/tVD6NQWockxWhuq0lXRRagLB3Ofte1iJDGOyylHeYmZyknlzrGFlitcaNzwAQTJ7jtp1nYegTaNVTASspgzq69kbWBEgVZeRISYi0L/Yq+ZCr2YhE4uiTElJhzwi3Xn0QkIwS2J4HWzVGLYxSUtmu0vMx6bD/0eMmCAVVleXmZEALnzp1jMBjs9bJe/tRA9g5k1cugvnyKftfHld+94seuHFfYXmSRodmhP/sc6SoE+fOUVTnoO5MliVPAx5y1zfX6qHPstrlHORDLNQcPMV84SqcdIAzozFejZhEUl7LnQEULxlCEMSvtBWzapQ1ZSS/F3NfUvYPDXL56MZ0HwkxaJdEzSl+EyidcA8bPobqUldTI3domGhrTI8acEczm5nttVn/K9P1QQ7/Hx97oKh1RwYeQ5VXjd/1/zfr+ZVkRw0zbIfeJjx8+gNFADA3j8WiPC24NewAtizJwjpMHV6gINFIylXmU2P1MImhBUguaMSErPeG2q/osFgVFDEwuPsxTH/z/svXolyEJ/rln6K8/Qf3h/yfTD/7f2P32H2EJ9AwUKNME9337WbanLYmER7ky50/doRa8MFbL9E+Q2H8UQcF/zJ1XUGE0GbO6vkFyJU+cvsCvv/8jbDcR60oktQQExFBaQLtgwLpsaCSCpNwGs9YisebgnKNIAeMMUQrUVqQYcWkKKMkUtGpxaUihdSf93YL4zP3cOcvwq7+LNJc6oS/Pos0gQjoRpNxma7Fk/Q9DrjCVwDUHF7jtxDKlRJKmverZ93p29/aZK2dFFe/DnrLrrCr1J6dvtqflpGASIu//gz/ivm8+QjDyPV7nO9sQ4zbyb373K3zruV1WRy1Bu2cpKUEc02KJ7abl13779/nqt5+njUpptFNkzFWy5fkFCmOprIOYsF0wYBBSTMQYKRzkAvPl96A4RBxGAyZMKIiolKiY7C4axpjdTSTsUuycwp55gPFjXyFp5+mhWYhr1maaNUxM12bCCnNzfVznOzBX2o6FYuiZxGLfYYWM83IVDRV/9PmH+cBHPkWtSuS7zoLvuoFXniP6HT/3n2PXe2nGSxYM/MRP/ARf/epXue+++zh9+jRvfOMbv0OG+OU89jzf9iD+CVKNqu8WxhXbql6+uflnsxa3dH6biW5RSeL8ODGKiiQhhuwml5IiURhP66w3ohDUYQn0i4hay8RbQhAchrKwJFF2o0BZURaG/9Ofv4M7rj2I0xloL1+KSQHh8sM/K5mCkHxLos5LoQloMvjUAWJmzm8dYtZqLucF6Mr/+eBElEqgEGU8FTRVuCbgYgTnMAlC3eBjSwOIms6bndkVff/D+occ3+t1upnpsqDIVA3PbEbalHOFS5NI0GxoYhSCAr5mrrBEzfoLavLcvv1VN3LvrVdDGxhPA1Yslia3f0SAgNOWqw4u8jf/8nvp+yEyHSKtJ44ugU66/dlBqqHDZ6wszPN3f/EnuenocsYRTIeYS8/gLz0Hw+eI2y/QSyOqC19l7okPUl94nCAm984RjKl47tw2q+OWWnokFQqNBLIAS5GyecvEKZ4KiZ2tsc5ABd9r03qJbsiVG+R3vErae92EsD6cMm4jgSzPq10mD+CTYxoMPkTWdiY8dmaL0aTGiMmgsZRVN0ujIFl5zllDMeunS0bGG2uItqCsCorZW08WVUcp0E8tMnyRFNsMitXs+FlKjdNOlyMFeqFl9/QjINMOR2+IRmilBLWItqAJ7bLjqNkErBcnWOCn3nYPf+Xdr6QkA3obDOcnnjO7DWMfWG0jW5PL2I/vOmH2HEuTGmK8kpipe6fSZW287LEA2U3woTObnN4YkZISVPFJ2Z62bNQtrSZIDWggKOzWLQ88v8H5YcJHwZEPei8Zte8Kx6ltz8OXpqxNhRQSvcogVmhDPniX53sUJlG5bNSlAmpBJQdnyUecCiXk9oXm4I0USUSCMYgx+MkWuvsMcuEBpN7ERU/aOJez/maCm67TbJ7D+DFm7TE0Tph5GAA0OKaa17wRS4/AYjHTgRFKUQpjqKoeTj375gdI8rjC0WjWcHny4pivPHUen+jueyIyq75+r50tdfcl7f0rf2smqvTyGj+0zsBsfOpTn+Jv/s2/yeLiInNzc1lQpQsCXu64gUgGupmUSDZvAOiUQB+04/xKtxiFDnyTIynTLVCMQekU0UhMWs+v/uE3iPNHKGyFqtBqpiyJFnz7yefYfMuteAWfShwNg8KTrGV7YiijsjIYEMMYVzl2vaHo9xDbctWCMEfDJEVcd/1F8khqEVvRSja8EZRAiSORGk9TOOasYNqWMng0NGiXrRqxeBFKBUkNKgWNQqkNJvpOlz1zuNUIO6mgMcISU0qNRDvAaomEdYSGcRcgqURm5i//RzwB332Q7XWhBdDAprf80/9wH6MmIq7g419/njt/+g4WTMSYrkfdTBi4AdvJEW3RKaN6Dvd6vOqaFb713AbD4Og5ydrzBryUFOox6imlz3KvRM+cQS88TVmPmTx6P4vXvT5XGSRi4jYqEcGi4jg2V1B0J4eRkoXgGeg2zed+ld7aQ2ArlAIbW6qqxBoByVJRFbA5TnzmwTOM7QL95OmlhkiJwVAEcAa2nJJCQRGyBWzQAidXnNT/h63RWYCYRXumyfIvf+fDvOMdb6ZWi6rZY+HEoAQtM9c8jqkpmBYruQpjso6HpkQpDYVJqClxSSmN0JOOAy+a8TSieFchhWAlAwgLyXq5PRJp5xLbf/T/w7xjhfnrXg1aITbQD5vUvgYKxAf6KTEWRU3m4BA86hxpJkWjU+gCA1RRo1y1r0991X4EWKosRweGShtCVXBuCP/4336G0cY6f/fn3sLXT4+ots/wt37hXcwkwkRnYUGu2LWaS9ghXJ7T7/yb7v95NOWSvxHDZP4QQyoqk8VzksIffO5ryNyAn/2xV1GmGtSRCkfQxGpbUFtDSnQCTEJDidEWCZ73f/45vr0NdyAYn6icIxmDjxYlsDRf4DYiVQHBFZjUQgGRRLQFMUSsCiZEvLUUGjG+RSSR6h0wPVQb2rVT6Bf/Oc2551m+9VW4WKPjS2BKojoqjfQtpPOPcPazv87RP/cPYLGPtQZVIXQ0xBAUZww37a8YVAXGWLSrYioGU/Rx4qisocDTeiXYeawEdmXAruuorbSoOrx0HiHQHfBX2sjPbI/zPYvkNmCW1H75nYcvWTBgreU3fuM3uPvuuxER7rzzTk6ePLkXCLycGQWzIpt2Ze2kQtKSkZYUxjC393MzAxmYLTqVnDnmvKHbHICQHBvjQCwCtVimGMYxMfKBZAu228hIE1M6so9YjDN58SdlrnT02glSR0x/kenIs9IzhHaXeSud57qllOzblgXO7RVe9jOzonydRgMmBYixK4mOcH7jO0qMlzvnl8tehbYUpouDuntojDCp2+79a5fBOCKWSUik2Okp6GXo0myP2gsQ0cvqYXLlq/+nje/4FV0u+f1a4UmVrZ0hVVWRRNjcHmYHRjEZqKaRJgpuMEezmzEPmSpmcQJve80NfOrxLV5cH3NwvqCsI4UKJENSizEpV4A0EdM2RhPOeMabF1lMFqghTcFrpgfarNc2yzTQGtdsUIVt+v4ifvtUpk2pIiZhUssKW0i7TSoP0neWKk1Jps/pi1sktegVNuDaqbUZAULCRSE0nmhgMyj7S8NMsuU/u/NkF3Bcvj2WVmEUldVxyoyI7sGb2cX6CEW3rKxGImBcgTFC2bk4A6gmrMuVLcPMtCv3/meKjpoSlkRhQK6QoRXJan0VE7j4KO3mc5ir7yLZHlEdXh3GBdRPkAhQ41KNtgl1CevPMpeWULeIsT0wWTSMMMSmyKBY5rU3n+RV1x+lT24bHuhXHB4YFq4/waXVHXbHidHQcKExPHtpxL56AjOSyuxKZ8kImf6aMQN/Rgv2iltqJM9d7TPwsBJlEmF74qlTYjcpc1J0Pf38OlETIpYmpM5cSTqcQkSs5dL6EFNUmaYrpgPTGryPGI3M9XMmbm0B5LbJHBFNkVoNvtnFiRCNQYiYsNHFpguYscdVS5jRDoXfxW6dgt3TsNWn0k0ktpm5FidAQv0U3XwO3XoB6lXs/EEwc4jCIDUsB2WJKcSGt997CwPNnhTWCFL08KZAHHgvlIWh1EAi74EkqHSaA/48mwhdhW0vBcmJT26tCpZs/gb5Pl4+/y0/6H73n3O8ZCf0XXfdxY033shoNGI8HhNC2KMYvpwDAegOrNmBJLkMN9KK3/nsQ3zlsdOXD1jJZT/pdLohq1N5slZ5J+ORqeJJ8Cq0YvDGcGE38K/+4ItcHAa8GE5v7PK7n/oqTYz4EIgdFcdJRKOnIHDT0XlOrvQYDYc88M1HWCiFq1dK5ktLMCWxrDoBlgTiwPRyWXt2rZ0kqXbvMccHkZAiolNcu0HEdRSqGWJgJjAilEY4vFixOOhnidHU2YEay6Ru9sqTsQsGpgI7AVLIOJHZvEkn25GDjE6uVfXy11+iilkOBGa/N5KL/N+5WYbQocqNoSwrUuhUCGdXo0oIkV7VI4aQLZxFQBwmKYuFZc4qPTzXLDtuPrqPsts8xTiQ2dEawY8IdkBrLUWvhFQBkaAtGh2oRyV1VaYpomPanTMMH/hj+rpLfPqruLVTeDF5LlUhefzT97H50GdBI4fmKw6UAe89re3vidjEbsNJaCc+J0iIlBFSjLy4scuvf+Rz7DbtXiA0a5XNesYvbRtnj6+RM34MHsNYhA98+gEePb/LVGzGOmiaNRLwKbe7nNaY2NK2uRUgRnCGrh+fA9KsM5CHs4I1CkY65LyF4HHJ42axaZe9Mev1x4YqbNFPQ1QMQSyCISXDZOMFLn7tk2izi0nblH4baUYYP2X69Q8Tz38bq1O8RoIpMh5l5xxnv/YxpFmnJ4m5wu2ZIi31LCcHgWuWhbX1Ldabgl27xNpU8bbCS5E1Qbo1oswSz7yKYgh7LZLLugbfPeO5ijk7eLLUdqJpM1DWaIMVZZIKnrhQ86/+8GtMUwFJcTLDM2U9gGmABmjJ/9dqbkla5/DeUzdtBhtbR1LBtzXzpWFxLoM4y6qXq68xsL9fsVQZjCb2DwxH5rKVesmE3cc+w/bDn4F2xOj8abAOUqQXx7h6jZ6O8C9+m7LdAD/Nlc1Q5+c2jpHtZ5lr12H7FM9+6UOE8SYSx+w8/HHk1Fe4ZlHZN1dQWcOcBEgRkzp8gSZ6qWapJ+xbLrGSuiMhv99CMyw3IATJz9plcCpkpE6kBbzAzMhJdFZFnq2nl6fB0Ut2SscY84bUtkwmkz3VwZmc8Mu5TbCHq+30wEUMuwm++uwaT53b6Ljos+1M0Jg7RV4TWz7SaMqgleSxKRvIGJWciaNEVVZHnq8+doaNsScZS2MHfPPZi4yjZJMZ4xCx2NjgTO7b/9WfehV/7X1vJFCwOQ7ccfPV/L1feifLfUdjetS2lw+d1BJxe5tpp/BANh6iy1QtgR7qG6J6vCSI48xzn1U89nb+DL5aKC2/8gvv5E333J7bIV1WJ9bQtO2e1WpQJSTDZkist9opJua+Iwk0xSu40XlTy8I+Gcn9Ug6F7Nswa7F+92kmGcVcFK7zBsgoY0OElJF1JgUqmzDtmLIrZSexiGTN+zmXMLHmZ99xF7/yF99OZRRrMzBJNfe7LQbahO67Bn/sBlLRh2RzsCGGoBXaCTZBgGYNbdfxO6dpLzwJRGwzxBpBl44RcHhcDtQuPUN79mHED7n5xEH+zi+9h+Wlhdz6IJFSpMaxXSe8dgeCgEbFxEgMge028dUnz7A19UTVrPCnsyN4FrS9tHdmZjesXa96FCMbPvGtU6tshopas0NhCIEmJXZjopUcOuyb7zPfK5k2kGwuYRtDJ8LbGeNYO0uecQLO5KxMu+qXiZ4y5P7/DNtDGJHqDVKs8zpwuUbT2ooggg1jijimH9eYPPV5qNewpqZsNmB4GsYXmJ76Ju1wCzUDGnF4MoXUD8+w+fxDSBxl/YMEmJw5O2P4n37xnfzMvTezf6Gi8ZEoBePJFB89klGpOZjVfKjM9PaVzLBImojxT6eH5oBHmFFnkyptiPjUvfeUKy1TqXj0xW3uf+IMdVQwNutcBNDOlngShW2fGIVEjAmn2QAok3EsISqqOTgQEVJoWapgZa7EGSgKhwbPnInceHiBu471mYu7/MJPvIG//t57KZo1THOW5tSX8Ge/CXGHWF9EJYJEbJoi4w2quSXs1GN8i4Ya1BNTJJkSabYpNp5mnimy+RyT5x9A6w3Ub1Ne/Cbl1hP8X/6Hv8Drbr+OQmeNKouGllIDc37EzQsT/uEvv4PrDveJGKKp8BTZwUoMNQXbSdkOEJKCemZCV2hCiazXkZ2QGPtESpd9FvJTeNk79eU2XrI2wWAw4NixY7Rty+c//3muv/56brjhBoA9QaKXZ0AwuzUKXblQgAefvcjjF8dce+hAXjhd5r9X0U7Ket3wv/7Ox/mZN9/NG286Cmin8Q8iCSuKhJydXtqesGLmurIw1JTsBGE8jdjUImYeI4aj+5fg9CVKYzk8KKiMQ20fLRVH4uqlHpU21ElIruhkOSPBVLRARXZjU00kqXLGlEaQlEAF40toaAnW0NYjZt3ZWXk115QLQKiMcGyxjyg4vQxBF+OYtm2XsyQa79kZTfl//cYneGKtoaBH9D5Xw0JXCXBC0Cu3LcGk1KnM/eDjcgtC9qxUExaT9eBypeCK5y5Gycpn1mV0dCc8lMV8TBesBHrGY8KYgckKa5GcvVSS1RmNwErfcWjBUVADFqQCzcBPEyOxbpGFY9TMEaQC49HQAnkuMBVRhSJNuHjfhyjm56gWhF4YwsIhmnqIGcxjr3kN7XAT11sg+oqiHeNP3U9z6n7mbn4nJ1d6lJLV0uYKIdSRZ9dHfPCjX+Bv/NybuOPIobzphwzKSimSbMmYAas7NUeW5nAqeyY7syc98cNtWXrFv2TvK5pNnoDf/uBn+MqLE86OC1JvkZAMNkUwwiPPX+Jbj3yJA9ffjgILvYJCLZNWqJOhCRFjcwVA0Fwp6FTsYoqggdJkg6GZr83KoMcNR5fpG2HGOgiTVR7749/lxvI82CL34VWoAKsBHZ5Gzz7OXNpFh08Rn3gBFzy22ebCFz7Aobf9Amm0AapEKfMOkRKaamx9iUEagh+DJsTletWsLXF8sc+iGg7OGZ7bikCkHW1nyuNl5aK9YCZ0/bsogg8+P7uddPb3WyFXNOvwMXagw7zOg1pa6TH0hn1VrwPC5hiibiNIXhPD1vC///vPcvvNVxNToGchxLSH72h9osBiizK3Ceop1x+f49j+PqVJlEboGzi+NODE0jz3nFikTcrhuQobRzzxiQ9w9Q37WNJtfBiDDkkywS8sIMMCG2qoW8zyQZgkRCekdoKkKZNkmS/naV98ksZPGaQA2y+yECaYsMPOM6eIT3yR3p3vYt9KL7c+UNT2SAjH9i9hxHBguc9hU3Prvh5P7kwQY2ijIbmSlHL1tikKfvdLT1IMd/jbP/VqnORW38yhpQ3Cv/y9zzG/vIzZusDf/sWfpkqKcTJzh3jZjpcsGLj++uu55pprOk1xZWNjA2MM3vv/AtoElzG7QkI18OKFdbZaSx0vg0ASXd9NIVnLrm/4xgtrvPq2XeTG46CJphNICcYQTEU9Ddgk1HXED0piUGyMqHE00dA2LTZMsT1w1vL6u6/j/Q9ewhphzgjW5LI8UbPmdppg4i6xHlHO9bFhK5eAzTxOhMrvIHEDMT2k2Ec2yrmA+jFODHbjCYxzJDzJ7+LiFHG9WXOh264NKtlmyHWgmIxJyPNknWVa10StiCbio2faeJ5bG7PROI5WrqMz5YwGI/igRJurCEYklxNTwM6qDT/QnZsFArMsNlsAt1ERk1+/6hQEZyNllaFO7CUyTcJIwUim+tWqNFgGLgcK2Ywp90Nzxp8y6EgcpQiFzloR3TOuCSuCpAmpXYfegPkTN7H93BmIFzF+h8q3oGPoDgYTJ8iFR2FxiXLuKMYqetUrsQ6Gq9scvOencReeYtRfpjp6hPCVD7IY1jDrDyE3vZ6B9PPBlSIDm5giPLtZ8+haZHvkUQyNESYp4CXhkydECKlid9KQJAc6szkVlPRDhQHd2AOfwIxyNyvPJxVeuLDJYxeUsXXYmPNemwJtCFwYTXno3C6vOOpJxlAWDvGGJlpqHNOUCZO90mX0vghFkbNgIx2gK4XZqgVVrj2yxN/9a3+Olb7JJWA1SJwyGD6HmIs548biGFOGC6A9YrNKGK/Sbz3zsorWjmQXCEmww9Po+CzS7FC2G9i4zVwKqFtARDHjVebDJlpvI3MhYwDMrJWVMSOVqViaG2AZ5gAlNqha6pSrfGVXuYtAk3LbIypMWk+IiaSpq+v9yUpOJovkQGDGmAohdEqEgqdkqlAnOlpy7DL9jKeo6yb/HmMZtcrzl8YcOJLo9ea499Wv5NzmmBBzEuVjxGFwXWWF5HnPm25nrm8o8cyVFhsafu7db+SGg0tc967X7lUxpR1SbDyHOZqrVoWUmdPXWyKdvJ7RhdMMDCgWGSyTzGbGZfgp+F2m1TKL196GO/VkzvT7C+jWeQY+IM0maXyRarqK9S0Spti0DWpJ/YOICu+69xZShL4DDZ6BeHqa5d6NVlmivfuYtInHzmwSVi+S3vta0MwZCBhKMdQxcXrHI3XDwmRC0/maXPYHkZdjUQB4CYOBj33sY3zxi19ERFheXuaXf/mX8ws49yOvCly5SORP+fp3e94H42ilwFnXZRGzzFPAWKIqrRh2zTyNlCgl0cKDL2zw5KlTvP2N99DaeULqY9SRxOSyUxuwnYa2YiAEiuQxmrXWB52EpjWm09bOwKkegWXb0l58itG5Z3GNYX4A29/6LAv7j9C7/iBOhXDhEUaPfA534mYWbn8rTCdsf+sPYdpg6jH61BcxmrBxTPPCk/Q2zyAHlzqcwAz5mjPsjL9NQNkFSXkCrXOEGBGb+2wRxbisdhiLImt6+3DF9iSoEXxSPvOlb3DLjddy9bFDVMZ+1134Qe/u5cpN9ksQPvzxz/HKu+/kumOHviMYmMlDW2sgJibJ8bWnzpGalsWFPo+fHVLbeUJR0nQ+cpDpQ3tuaMaSjM2HvlqkK/nP+ovohHbtSeqnvkB59CakXMY0TzJ69NOUc4v0/JgUN0EDVkvwI3rDs2izAWkDYiQuXkuqeuzsrnJw4QYa+qTefqaL1xGkR0+H1M98GXP3L1KazJdOMdCzkVGETz+0yqbso/WZrtWgPHH2AuNQE2IgxQjJ0fpwBTbgyj//42b+ys++1wrfC/SU3FaatW8EarXURZ9aK+alwcQE7RQxlrHts5kG1CghQVlaJBqaJLTJ8M3HX8RH6JUO1QZEsJ1Bk5DolY4ymb36hhApxLDSL7HaoCmSpIeopxqdoyw3ILS40pHOPcK09hTXv5XR6ccxqQYtsdIQy4JR2EfsWwgjZLSKbbeZPPpZ5o5cR/PC45S3/Dhm/3WYZoe09QLbT36TlTfe0TGPpDsYAoghKlSDBZLu5szSt0xTn11x+JTByREhqPKxP/4it95xG1dfdYjaxxwM/Cf4GmjXJkhdoD5Oyie+9BjPnL6Y9780c+rILINpnf0YEKGJsNsmhnWWRV9e6HNmbZeY8ve9D5Qpr6tsy+A5MHAk0VxFaKYUBA7NWyqF0oS8xwbotZ5+kxVRG7dEjEJl5ghygFReRVMdp0AxBHR+Du8i6gwptqA126Hk0MFjVKceZlosY5YOIjur9IJFml1cvYWLdaZOa2T6/MOEpmX+jndS2JJ9BZgyv3/jsjEVKqy4Fi0Mu5oITYOEKUWxQqOWJD1898THlPCmE3uzBbUbEM0AweFNVmisSHuYs8vj5RUV/MDBwEw/YCZScejQIf7hP/yH9Pt9dnd32dzcJHba7i+HQGC2Kf2J6BnIII+ZcpghiQNNlCYybur8cHBFsS2jxXLmqxYruZcXFZ46c5EPffUxXvX6V2Vr0tAiNqOkAwXJt4g0NNYx1RIfEqqWMk1RowQjFAZKI13bQiglcOOJffzEG15BOPNJts48AXodJvaZPHUffukgx699DSLCePURmoc/SBPexeLtb6O++Bw73/oSS8dPMDh2lHTpUXphijOGuPYMYWsVe/AOAmDVdFbMIQdAOsHblc4Ez4EGHCkDsKQkuR623ST6lhAT/fkFfuUtr+Lh+x5lHAMeBZ0iVFhyWf5zj71Af/8+bjiyP5cgzaw98YOOGZw8311HYqjKHz14Glk6xI3H9megFQYVR0gJEpQiTNUy9sojz59n+9IWx44f5HNPDlHNnGMvBakoMZqtUj1Fbv+43DowpqOOJZ+fCVNmVohCfeFxRhef48BNr0PdgBAD46e+iFzzSmwKuOkGxJ1MY51u0Iu7hO1L1Ds19uBx5u78GcQFjt8gqJsnuYpoeiBVllg9cpK4doY42cBXx7PJVBzTHwyoJfKNZ9fou/z+GoFW4cIw0WjJFGWgAY8wCUpJ5vdPMQw06/InNd2zzvcEp+U5V0L3I6aTNjJXtENnCpY2zbAIIVsSxwpvlabodeyBhCViYkJj6sB7QhuVuk04VQbaEF2PSYK6bXjw6U1uv+FqTNlibEKdxRYgIftr/OybbqMyKR/AaH4yotAznTiQZBCt+iH99hJG12mcRSRizn2L8dMPEvuHkN1zVCmCWFKoibahvPMnKW59Dbtf+yg62kHFUWw8TXvmG2x8/Qss77uW/v4bYDxm3m9Rn/46vObd4OYJ5FaCqOR9BmGll2sxDZbVtmB32jIoY54bzUJWu6p8+tvP4pYPcs1VhxglJYrFa64JiHqsFHsHjtHYwWhzZaxUpU2JEBwtmU7ZtJE//tZzvLhegyxi1WC8kOkW2WckSkmVGkwIjMQy7Z6XwgjBe2p1qCyQfCQSswMh2XuhMJZWE1Y9LYZgDKXG3HK0tmN0KIjH4aGeojFT/EhC1JL+Va9k7ppbSU99gfr+D1JUBaGwVK6CGNF2ExNHUBxiXB1g4ZXvwPTnaT7/G/Ssy/bwTZPbkWkX4ojJuceo1y8xf8trMFripEBcH28sCUtS4ZrlOf7xr7yPSW/Ab3z2Me57aDu3EX0CrQhSdC6V2VDO7p0jQsThxWXsBTNNgi6R3DtDXl6BAPyAAEJV3RMUSinx7LPP8oEPfIAHHniABx54gD/6oz/isccew1q7Fyz8KIde8fEnv5ezyXxfc0kxUGREf5h0HNXMbdrre0ruORWqlCFgU+xuuqJq2EzLfPvMCJNqfLODcZEo0Gq2xpQy0JiW4Ax1FILp00s1SiSiuDClLzMmBpQEDvXh4ILDxl2cerwmVJS5doOqWSdN19g99QDl8AX2+zP0154iTqfMNRssN2NIY9oj19D2K6y2mNij0jEmNWgMSArQjtl64kukyQYaG5TIkLwxqxjoFnrP5YO16s3RJ3uxX9weYpPnvTcvs79fU6eUtcwlgARsp220USywrQUuhs4y9nsjof/jxiw8m4kKJURbgsBGeZhhKLDaEpLy1UdPcWanxXdAuaoo0NAiqkRb0GAYm4pR7wCFNszhcy9UDJqUMrWoZA9z5zxWAk4MUZR6/Unqc9/ExF1CglYr+gT6MZD6h0muZNKOWfRbuHo93+fJLv7it9l55KOk6SZBoWgukvwmo303wPJNsP9G3LHboSho/YxxQnYqPHQbaIEJDb4oEWuph1soFu/6NLYPccrjFzf54pMvcG5zyjPnJngdUCdBaInaMGryRpw08q0XLvHUmYt7ga2G+H1nv03K1x47xZn1bbzmjFz3PvKfMddRM9ddcsbpp4HP3v8kz+1kP4uSiOmcMCMWHxIuefx0xM6wpYqR/U7Z9cKZtU0m4yG7sogNhqPzBqsj2tR2jBehNIYblgquXswtPSERjUWcIWMKDRqmrD/2WdoXH2DOTKAeEpxDLBTjsyzGDUwa4ZptiAUTt0gq5jDqSfuvwZ54B6k6Au2UsVaYZhdTb2D9mIIGKzAdjunHEXObTxIvPg7GkzrAbe61C2UMHC1rrDYEW3Fm3KdpEi5GQurwDjExTnCpWGZ9HLBJObtdU0eoY+rEbHIAn5BcpdKASW3WEoDMONKA14ppzIooW8MpZ+M8k6IgSSDhOp2y3LqbBmi1oNQaEyfsBMOoVVxs6BtQjfjSEeKA1AbUZpfTQhLOVZTO4YxQaUOj4MXQt1n8SY3B4LODq0nYOMVvnmHQ7mLFAw2FbTCLh9GTbycdfBVq55HiALUsIlWfZrRDeuJLLLaXoJhjxx0gHXkFsngdgqXyU9LGOSRmqXRTr6NpQjW5RDU5SxqdYeO5B5A0JGoOxgKWQmER5Z6T+3nNoQGL4lFj8BSZlxKzhorrAtlCoAcYDKYrq8bosWTFSSdZZEghe4a8TGXAf+CkbFYVALhw4QIAzz77LE8//TSDwYB3vOMdL4tAYO+40A5Mplw+1LuvozprrXXlZiWlLCikMf3pfYYrPtVO+lLFsLlb86GPf42ggk9CYYWCRBTLKAqqjkocbdvShkRIhqqo6BvDTUcOcPcNx+kRqKzkvrR4Bi7hBEiREHyW/RQhmB7B9Ui7Z1n76h+Qdi6gxtCuPknceJQYhxRpB4iEuSNg5omyTH3Va/AHriY0q5g0okgjpDnP7pd+jbRximj6RHuAnmR1vkwTzJ0zQSnwvOueIxw5vI9JhCfObnBiZZGDNtHDIzFQIGDm2LMzTokUlGmje2X1H6pNoJfv416wp1l9DdVMd5KSLRX+xUe/yjefu5grHmLxSVhwicnOGtMEjTqGtaENii0rRBRnMsVKUoC4SxXHWM2WqLkykFXVLj78Bc5+4bcRv0apNc7vAgFHwJRzmLJk4LehnSCjS/TikNFkzM79f8j2p/4Zk9VVRuV+IoE0fw0Ld7yH5EoUR6ERxeGcQ+wA7xaYRkN59FbMYGmv1JxwDBslSMoGR9pirOMPvnKK//f77+NffPgBnnhhFVRJvsWFhl4Yk+oJmrIwy4MPPcaDjz+dg98O7vH9xsQnPvDpb/LY6XNE6Q4hDErRvftMs8wGGo6WHrWpeHp9i//9977G2Z1ZTcASxXXGURn1rikHwy+evsD1Vx/h3W+7G0ktF1dXabxHE/Rc4j2vu52feO2t9CVkVUHTZZbSIbdl1vHt1nWnJRIn21y87/34r/8h0SfqtqTna0qraEgkY4j1lBQd9o53UP7YLzEpDwEOKZfBLiLGIcOLLOw/iF0+ANMhpTaIOKQZE8bDXGVpay498RBoQ6lTSr+FpaVMgTJsc+9tJzmy3MeibG7tMh1NaJPFd+qCqNI0kTbAzu6YqMqZc2sM+j289wQMSNY2CCJZOVRKSBaj+fMxholkFb4YM17i/kef5vTmNrUIwQmt1QxHNjmQa5sGixI1S4zXUjFsM92zX+bEJrY1hba0MesQlNZgTfZ0LASOH1jhZ3/8tfR02ikhdlVa9TmjR0hqGcRdZO3Z/DWtwa/R022MKkZ7BBPYtYl06LX0jt5NPT9PnA6ZfvH3cc0YU81TpRqTAlotULsFEgkuPUF/+FyWEU8FqsJ0tIuMV4kXH+b0Vz9G8jsYElbAqcfEHSRNc/AqWQMmiAM06zuESJlFsDsQiGQV2lkrNUVCDIQEqZMP+ZM73csvIPihKrQzMaF7772Xf/JP/glvfOMbOXbsGIPBgN3d3ZeJzsCVnPbLYqg5QJuVLy8Dm2afpNBlFfHP8veaQa66v8Whtsj9MLVMfaJfWlzMC+bc1hY2CUWbFQHqpGiRD8y+c6z0C645vI/SKNZ2ylhiKUqXlQ+TdpapIw4PJFcjSJh2k8XJ87jxeVLwzDGhPfUVwuoTlOESbJ0nmTkK6VHrEpNDryQduZndZ+5Dw4RkekiYsDh5gfjwByE2CImBTjCaul68IYrBOcNAal55WLn+xBIxBobRce3x4/SdASkIEXrdIRVxeU5TIAbPuG47jAJ7M/fDjpliXYYZ5fs9rhsi2eVu2ywySkXeLFLAln0WbED9lIu7hqmWPHd2i43NTRKGqiogNBA8hkC7+iwb3/48Jk5y64uMvrepYTlcYiFuZ+DV+AL1o38EuxeYlPuwC0cwpkc5XqcYXsRN1qEdY/2Ype1HOVY/gZlskKol/OIROP5G+je+lWAdqiWoQSmpi/3o3BHM4Cij+Wsxh28jzB+EZsKASNUpPfZLy8HCc4ARJw6tsCXznE0rvDAyTNXgXEHjE61PmKCEkIgdubINwjAVTMkmUyLfn/ZZx8QG84w00y6lk79OXcVHyDoAiKImr0AvwkNnLrEhc0xlsKdAkTC0CSKGMKO+AcPhDrddf5Sbr1rCasxeA7YgxkgpkbuvPcydxxcpQksfwMyeOYNq7jSrCFYDRpVkyfr2zTb7pqeptp4ktVOUQc703AITt4LXhJmsI1Hhmtejt7yXSXWEkBxJBqhk0yFefJzB0ZNw4CTpxWco4xhJidjsIKnFVAXVwiJ+dx38iDg8x+bDnyZN1qDeZPjQp7hu0XN0saBywmg0wkokmJImpi6IVqZNy9Qnpj4QBSZNy+GVOSS2uYrTtRyYrSoR0Kwf0qjwyYee4eHz6zQYJIGqYatuiK4ipdySDChNxxoSlNa3LA4caiyN6eFNxVadqKMwKG2WHE6BPg2TNhLUULkOwGmgZ4SDgx5vvesalgvBzmypEVQKVPo55vRjSr+Z22uUpNVnaR74PYp6u0uiLbGYY7p0FXLgLrj2DQwHJyl7c8z7S8zPz2HKZSpJSFGgxX42ymP43n7MxaeQcw8jGmnUEmNNu3OJIuwikwv0/TaSfLdvgKk32Xzw4+h0jZmfmGJInRgTKCkFCny2n6ZH7LQEhKzLQPSEEPBR8rOcUZlc/vPlFwjADxEMzLAAqkpRFHzpS1/i/e9/P7//+7/PRz/6Uc6ePbtnVPSjrg4omrnu3U1ImjP/1HFt6UQ9vhNdqCx2Jht/9u/PIwFBE2KLjkNu8CoUzjDo5mJnOuYt99zBdUs9YmwZ1koyFVU1oDKWQlMuCc+yM4HgSih63asINrb8yp9/Cz//9lcwYILz28QwxjQ72K2zuLLEHTnJcPV5wjNfwcZdWD/bofgFt+8E+25+A025D3/2QdL4Ai2OaCs0RcLjn0DabWxqkDhFiGjSXOJVKJ2wv/K85sg8c+rpayCFTBP0piAUfaYhUcYs6lHP5ihlPvu0CczgZob4QxcHQlRaVdquvJMVdrPlLZplVFPwGa0eW2wKlE74iz/9Wg7u38fmSNmpI89fWCP6QEpw1w1HWCg7VwNVtp57iAvf/AQaJxgBEcUasHgKv42NDSp92tEGq5//LdKFp+HkqzAHr8MuHadc3I+ZbCDTIa1aBtN1iu3TFKmhrM8ikhj82C+xdM/Po26ZJIJKSZQ+xlUcfNsvcugVb2fh5J0cfs/foVi5AbN8FeyucqI35W/87Bu48cR+lmzi77zvdfxff/FN3HZsETTSSMkogKaIsZbtADtkauHYKw1CSNm7fUd6TKGjp3//QC0hjFPOvIm+07XPLTOnSpEiTnOJFjSX8YEHnjhFa20OCKNn0CtZWVkhqhKidn4d2ZVPNZvf9A04DV2gkXveYhKFKH3JGIgqtSCBECGqZJwAQKyRtIVNw9zaNIL4IX3bUJiWvg0YU0IqYOUG3M0/BkYpJmewocYOjlIu3cTc1a8gLRymd+xaEIOJLYy3kd4S9JZJmxdxqUXDmFRfxKcAvQH05ijCBPyYeusFzt/3+7TbF0mTDda++Uni7nkqCfRKh/cth5YHUFQ0Mwl7k6mUPsE0JJoEbYjMmzYD47q1KSguJRy5AqqZNsAkBP79J7/MJ775JA22S4IAW0K0VMlRZgPH/H9S1knxbcuhhTI7/RlHjJG1nTFBLYPS4hP0LLz11TdTJyGIo7I5SHaSJaH7GlkU5W2vuZXSmr3EyeOY2rmcmMUGSZmd5G1Fb3ia+K0PIT6ClAQD8ydexfEf/9u4AyfoX/dq9v/Y36C86q68t1eLMDhMkBK185jDt7LvrX+V4hU/TruziZ2s55QptMjkAlW9nic2JjRqZ89iEI2EZo3V+/8Q3XgK1QjRY7v21vEj+xkM5sipUUMrwq5U1Drzt8ztNTTlqgnZFXVGDX25jx8oGJgd8sZkP25jDKdOneJ973sfd955J7/wC7/A2tranmPhj1xfoBPMiTM/dM29m6Ts9auvrFgrOVDYf+AACTJi9vuMTooIUSV4DwpF0SMx40NbCjEUTrDScPP+PnccHEBsOXVhm6qwDJgwMAEN2dc+GEdUxUoiaqKqSgwxu6H5MXeeWOTqZXBhlwET2hDyQbYzZMwSfv+NiDEM4pCkJaUVnMkgLnvgKNWR64n9gwyaDdIzH0NOfxHT1kjyFBIwacrUzBHNfKZode2TCNjkWUg77B8+wzwtLkZsaHFWaY2gqcmmJGTa4UPPr7Nde3xI+JiY+kQys6n/IUWHNGMHn3hhlc1xptGFCD7CpVFg2gZMDPTFU5nMjTbaMqdjXnHVMvtXlri0ucP2qCFQIBrwvuHkwR7zLmA0gi2o/JCl5hxCM9NxwVqIUmGtY77dQMarQKKINTrZpNp3DCnnMf2D+IO30FISpjXTwWGsH8N4BAzg7CNEo7gb3oM99ApEXNaoMNl2FrHYE6/BHrgJqQ7grn8b9A9i5/Yzeup+5NwDvOXGZW48vMD+0vOmG1d45+2HOFB6emmME6Wtp7hY44zw2LldvvbiiC1ZYFcLHnr+EjtNoFbLMxuRZ1bHHeR/b2V876nveqOms9NGIzHE3GJLEYk1pJCFYzTiUic9IRGVQBEa5kxksWc5cmh/RrvHfOC3qhn0CcwVlr5Az2Y2QuoUCDNjUFmysBhGxNVTtMMXcSZiNV8HgKQxu6e+yuj0/bhZaFrv4ub2w+AQxaDP2M7jB0eY9k5QnLwbKJCLT2F215FyAOU8evh61ntXYQ6ezPLIVmilR10ewCwcwqUWAdpzT8LkPFpUUM0j5VwWR0oB225z0F+koMFoYB/blGGESXkey8Jyw7H91NOard1ppgEaQxMjAcvUdzp3xrFQGfCZSZGD7ZT3iNAiKWCKDuekytAXTBnk3xfbvP+JoUyWfjSZCaDgfcwW21EY7g45tlSwYFuWSuinKfVkwqQNlM4xbjwmNtx21TJbwynbk5Z+YYGE7XQfnAZ6KEcW+1SuzHVAyVTJqLlrl2L2o3B+Si9u4/yYXhpjpCCaMpsR90/SP/kW2qIPy1dRHv8x4uG7qM0yprcM5Qq1nUfdAvT2sXznuzAn7iEVA7JRkKVINfHMw8xbD9Uy1FlFUWL2CsiVvhErcZX6+W9i4oQ+LX0CEgNXHz2MKyt8EtoYObUx5f7Tazx6fp0kuYIQunURQiRhCapZaOp7bVwvs/GS1e/vuece9u/fT13XfOQjH/kTgkM/0iGZXqXG0kRyZJ3yIouzbBK+4/4kTeAMrcbOdOJPGdpxZbu/NQZUA84KKUWapsHagso6BoVhuRd57dVLvPP2q1le6PHNJ1/gxIrhZ15/DfvnWpzxtM0UYwSrkTLussyE/a5F0hhSjU01Ju4iqSFqkSlBoQbviXNHMXf9FHLkdkwX5evJV5PoYZ2QSkfdX0bLRRaO3UoljvT5f832R/8xuvMkPWpqM0cCppAPhdRiNCCdTKxVT7/d5MLXPwShZZIM4kfMmZYK5aDsMplOGSbH+VHL//pvP8bjL1wgQAY9pQ5Iw8w8+Qd7PlTyR6Pw737343z7uQsolpggiePbT53hzG7DRApS5w8xwrI4P8db7jjKfgeFs2wNRwzHUyKmc37M2dWCm+FJLFVqWAxbiIY90RjXbahJDXbzNPWZhyHUaGiww7M4V4IZgKmobnkrXP96psMh9dxB3METBLtIa5Zp1y4wuO4OKE6CKbP5iYLVWYvKgVkgSYWaHt4OSFJS9EraZ7/O1jc/zqAdUsSWKnnmUmKgWW2wCB4NAV/X3HhyhVfcdoL7H36OD3/uIabGsVYH/rff/hgPPvU8k+T46hNrfOBjXyfGTDP9fiOlREy5N6riSLZH63JlIfeFlaSOqZqMYO8O52gVJHJgvuDQPMwZz1xp0NgJ6SSl8YorS6wx9JxQiVLs2YDl9ZqZC5FXXXucv/bOe9j4+oe49OAfYdMGRdreq+pos8GFL/wHzn7q36HT9RzJNVNSdYh25VYYHGbuje8jXPdqRm4edQNau4w2U+rhNlr2s0TviTuZu+cvQLEPTLYQahaOU1z9CpJbwGhATUHz/IOk7edokiUUc1Au5uZxSpjxJgt+I+NQjMO2O2g7QlXp93qQIseXevh6wkOPPkXKCSxtyIyYaWtyhaCNmTkSYYIwoQscZwJpYnLAbSIkSDKHcYv54EstjWrWLUCRGCEqLcpEE8FmU7VJq9x0tOQn772eA27KbccXmK8MPiYWBo66jYR6zKL1bO6MGU49pbVYyUmilBVGBJNyI8ruSXVnP5U5HTOIFxA/JonBhgm9uJPVW3EZr9PJ/opY1PQIOJKUqOlRHbkVPXgbakrECMEOUNsDHOqWiW4FLxVqK6LtI35Kfe4Z5MAx2v4yMt6i327DdBOT6g4b1OJ0ysbTX4fpKjZuUfohlWR2mYrQpIQXw/v/+Ov8w3/5YX7tDz/TOYQ6vBpSVNo2K7CGtNeU5uVeHXjJgoHhcMi+ffv4+3//7/OP/tE/4rbbbgMu9/5+dNWBGYQwHzttDHzuyw8wnDaX+8w6Ky3T9bTIWXlZsLG9zZlzq9/xG6/40fwKqnmhS7bMlJRQzXK7MYRctreWXmE4smy5/fgyP3bXNRw7vEgwJbccW+Dn33wzzflvE3bO0zeRUlqKOGJ89hEWJqe5YTGQVp8iXTiF0wAxgJRM7DLTUGHqCVWsiQdvY/HH/nt6B66j2NmgjhVy50/jqwMZxOUqxoNlku1THrsVBkcp/JDl4VPo818CZ0mmQJKwGMeEF75KO1wFAtLp6ItvWLQtg9EZnLNsSQ/1ExaZUk3XOOafJ4SWzz/xIs/vtmzGHtuNp07gk6GJXS9uthkBl7WD9fIsz8Cd+p0wwctSufnPCIy9sj1picYSkhCxNJQ8dHaHD9z3NKsTw8MvbvHMeuTAvhXefucR5vHMlVlLIGhWIrREUggUxrDctzhriCJYIlUa5zK4yRLSVhQXx9kvIETSdIiZbrPkL+G2TxMpmNBDCczf/Hrsq34a0YDpL6JX3c7Q7SdpSbtylOVXvB3VXk5ayXKwpAZH2z2jl5UiHVnkxNrIgt+gqtcw2tAvS8QWWMlPfRBHTEJMBU0TueuGw1x9QBANpBRAPetTYTtVSDVg1CrDUNJQoTEh2llyqV4x65fvQUq50tNECFKw0xrue/wMW00giEHVEih4cWvMN596rsv4oVZIRjhxaIGrDpS5VULMgXRKhKS0XplfWKLq9aiswSWlsLMN1XQzkWmCh+fhZ95wM4f9C8ztPgWT04ye/nonVxshjeiPT7M4PY2EYcYOpQi9A/iVG5kOTlLd8+fwR27Oxk4a8HPHcdfcgtoCyh5IonfyLpZe83M0boVkHMYWTOePUx27mVjME1VxiyvscxN46pvZP6RaoDX9zJpRwbRTrN8hhUDCUBCR6YTClVjnKK1hqQcmBYqyzBYjKGfPX2LaNNQeNnZqhuMGOyg5td7yzOoun/vmU5xe281celNk8DKARFJQCI7kC2xSYmxoNB/8MWunEy20heHZ1VUefPYFhj4wnERuOr7M+956J/tszZ1XzTNfZqGsXs/iU2YlLJY5+xVXUMwqAqXDlmUukceQUfid5wma6Xa69TTxsf+Af+TDkGq0XCFGC5p9O0qZYkRwKiATxOziVDoX2THl0etxJ+5ALSBNJ/UMJJ93fGOwzqGuj5ZzRN9QhBaO3Ehwc8j6s6yENdL5x5mcezrrGJi8PxU6RuIm289+i7LdxiZPJTG3bKKSXMG6N2ybZbZa07kSZKGoqDCZTAhJr6iMyxWHh17e5l5G4yUNBj796U9z7tw5tre3mUwmxBj36Ic/qupALvkn6DZwUD76xW9wYdrgU9Yw3ztkrrBzjckw5xwvrG5z/9NnUSQzElLMmxqGFrI9aqbFAkoblMX5RVLIWYkh4YyBomXBRua0AgMDC3MEjCaO9JR+bNi+/2PEtef5+Tffxn/39ldi1bN6/4f4yWuU1914hO1vf4r6sS/Ti6MMJiQDcKz3aD3ESUNj5qA8hBQL+NE29dwJ5MCt2GJAz1VoIKsTEhGraLUA6iFO8V/7EEYVZyxEsM0261/9PTafuR8NGalrkjKKykBHVDnfY0JBm5TSeHTneQ5tf5MXz2/yz37/Kzzy/HmicURnCCnio6WIHlLWddDkmHnUwWW/gnwAhe5j5hkOqoGkmg8U1fyzAmoNjWZlOx8EmxJNSPze187z6598ko3W8PH7n+XDX32OykIv31EWSoNLCS89YjEgmSxUs1wV/A8/+VreeMvV2FjTGE9jBxBzv7qSKckAmuWgvfRBFVefo9/vo7qA0UhBA1qgdgGdm8fbgp5dQq57N/13/W3sNXcx6R1Ein0ZmWygJD83yJ51VIeOByF0rBgl2RJJNf04QUR516tv4J2vvR1EqTTw1juPMzdwiOb+fE88+5LHIOwUi8QkbGx5GixNEnZVKF2BK8AahxoDyUPyuaSraRYGANn3oI7Z3jYB53cm/H/+/ec4dW49906L3O/9wiMv8juf+hbRKN5HUmNQ7bFoE6+75RpULYVEkgijmBkJMcDiwgLzVcGCy5S5tlwAKejFMUbanBF26olONynrNYq6xp99nLNf+B38+Hy22jU2Uz3rTQhZfCbGAKWjuO2dmFf/Er5/Lb2bfpLlV7wHrZYZ6hJp5SomvQVwDrBEs4S3C539sSG5gpYKpKK47o2MD93CtCoxsot/8n4wJcWrf57i1jdTiIVYY8Ioi/6krl3pPbJznr/01tv5uTddh1PPwf1L3HRsgGnHeIShgY987Wls9BBGPPbcGV64NMJWJU9cmPCHX3qEf/PJb/DVU5cIKXuVeLIjakxQ+6xU2AQyDz5m7E/bCstmxDtfeZIDi5aghk8+cJrf/sKDbIfIbgP75nr0xdCzPQbWMei12KLh6FKPV19/EGt79F2WbnYExAqCQ4oeZQGiDUigNaA2Sy5bbUkokxe/zfYnfxX9+m9RVftp7FVMLEzLEl08RDKGZPZY+tCthmxANgWxNNLPbpUm61OIZLoqKhiNmDDFLB7EvfJd1GZAii2mqHCpJl14kjLuUD/zFTa//ofgx4j2KFSxKdLsXOL8Z36TNx/1XH98mb54BrS0MRsVtSL4KCSpslw5dKRaCMETk8Go2WMS2ky0zRibl2GV4CULBgaDAQ8//DC/+Zu/yW/91m/x5JNP7gUBada8+1GNrqdmiRQWpuUyj642RM0a5nuHkaQ9H2pNlkoVb+fZYq4TGEqQIgnDRh14dm1CsgU+RdTkoMJH5cCBg8SkXcVOcdahVcvAgm1LfPYBYqBKKcK+QYlgWWzWqdod7j7W5003HcEkz9LkLPceVQ4uL1KlSyzGNSo/zNcdoYojquk6GqYE8Wj2KUV7CxhnMYdvxqycoHHzuP5+gi4SGGQMt9Y5iBEl2h69uIukQJKio1M4+jKhaC8St88RN1+kUk+LssIWNtRZayE2hLZFmi3k0lMcjue4tOXZMotsTfKGN7P1DNFi2wnOCDky6ZzmVLvsN3WWyLnlQteayBC0zJVOQNuFCR0xmpDbnBjJkbmkXMJ/bqtmYiuCsZkaFQtcanFiUFfSLyxGY/ZorwaZA+1r5gXecvNxrluyhNXHaeIW06TopXNURFyaYoC4dZa4uUaFYCarxI2nYN91xOVbqJxSxB2C6ZHEkaxlans4M8DsfzXu1X+FdNObmNh9YPp4oySr9LTFSCJKSZQsdJRkZkbtiZ3kbigWaN080QdQwyuv3sdd1x7CINgYeMVVi8z3wRpDHaE/6LFiDVAwKhcpESajMU2CqVdWRxNcqHEmI6WzFn6WF/eagXs5ps9GXYGMzdCQg9qghrXYZzqdZhpsR3t8brVlU1dynzpGrLdo7LFgEnecOEgJDCS7d05CQkVYvTRiue9YMIFBoUQjhKIHarIIkMn6Fpge2ApJu4gkvLe40RpLzRmMbmWqoZ0jSUFfPTLczOyY0CJWqK55A+Ut7yGaBTh6N+W1b0arBUJZEfedZLNcRosBSS0ilkpStr1ViDoTVArY/TfTHLkLrRaY2oqy8PSqAnPTeyiO3E4x3SGc+TZp7VkURZpdNOxgJBKHp3nrTQu89kjFXKHYouCGIwuk0OQAysDYW240axziInWKTOnTKwpaKdmeRjZlnkfXszogEtiatjxxdpuglp3JFDWRnTag1rEzSaxu1cTacJAd3vfaazk5lzBeObvdZ6s6wuPnR0ySZaEqKEVIOsCVlqKsqXrKwbmC11+zjEiVEfwo1ihFWWLrCb3UMie5JRFdgVqYSxtUu+fQzWcxqSFtXaCIQ3q6Ab0VlJKkQ3aLPunIHXhstocXgBJNfYLptEliplPWxQo1A3Swn7FdQIsq78lYkh3Qmnma3nHcjW+mMXOkGLDO0JcW8SOiKHa6yr7mNNACJUXwmBixqeZo8zz37Bty66GKxfEZ9jfnIURELWiiSAlLlkG3StdKzXuZp+gqAV0kj89QdX15yvO/ZHLEb33rW7HWcvDgQQ4dOsT8/DzWZuDEjxxAOCOwiSWRSLbiN//DZ3nz//hTLM5XXUiksyoskEujzuXrj7HrxZEpOAnD1x58lH/1yW+z60uwM+tUzbS+ao7p0KMpH4Cm6qGmQKzQPcrkgCNzeG1vrhMLMWSDzAk2KowuMQhjRD0gnUtbQFMDcRcThlgTsfWQMNnNiGJDfq1igBjFLRyG/mHkxrchh2/F3P6T9A6+CjV9xC6itkdj99PKgFJrpDfAGKBZxfQtVgOp3mL9/g9RFPOsvP2vcfe1x9i+ap655gw2tbg20MbAxW99luHRNZx6Njc3ceUKn3jgDJM2oJJbL60qTSdkVNhMjJS9SDn/vUc3sz1MUgrhsj6E5irBDABqOtORVrKnutWWqJYaS6uWejjKYLzulUJMOGc761swheCNwUhkyQUKxrzr3lfScw5ECOM1XvjUb3HcPUUavcja596PnX83QUr6cczOA7+Hu/gkVsdw6SG2V8+ycOhWTGgzA8Rl30OHw83dRLW4Hy0VXAGUFMdfwbLs7/QYZkZZ+VqvxKrsPZqaK1jSPc+NVqizDKInaZ0BjSHgi5JpgKIosn59MaANQlUpRpRB2GUpjdjd7WNdwfkdZWtzGxignVCNA6KUTLu2TjLQ26tQZJCgxohvM+XPaYKQOuCegEbGDZw6u46qYbfJqno+5c3QWsfh+T4//oojDEdjSBHbjNAUeeL5C9x7+zVYU5PKHglYNA0ueWo7T5SM64gCQWymk2rE+DEaRhnpT0EjPRxFLp+Hhp2HvsTK4VuQOEFMhaQSkwyFjWS9OA+2IbkaOXCSpZsWkXIRsVk6Oz9vWbLbRUtFQq2iVik0oXEJTtzIeO1DVKUCDhFH1Wyy/pl/Sy+sMS8e2XkGmZ+SYsNk+yL9MOIwFWWqKUqgnGe3aXAoSxo4zA5vXHwRqY4SNWE0MWeUQgO744ZJNHzpm0+z/qaTHF7s8cWHH+VjX3ySf/q334v6mhA8Q28wRcHZzXW+9dgpogrXHtnPVQcGvOnOazjzxWe4uL6FVov86u98DjGG0tlMqbMWV1p6RUmSCgusVGRzq16PaOdQESpjecstR/C1p68eTEFDxf6B4c/feQj35B9z/tSYEz/5y9j1c7hU0jpHsai40VlcXRNiDx0cwIzOYOOYXucIi+koyljUDEgUlFe9kiJuor1jLN5wL9I/TBSbD+Clq/A3vody/yEolyAqKRbQO4AUfSTpnq1yMmavxRAk63tIyEZuzu/yY1f1qB97jOnGkEIKYjFHENu5Ge5BNTJJQROtCnVSxk2Dzg+6PT8x84B5OfYJXrJg4JOf/CRPPfUUy8vL3Hnnnezs7PCe97ynO1Rfspf5wYZcZrMnEdRVTNomi0KQTVmuxHvmtk7O6JGM/ZnFAoglijCsA5vjQFss06QsTWxUid4zqJRxaElSkFSwpcNisqIvWehIUeaqPjGOWVyah+iR2CJ+m+aFBygOXoM//U1ksooJGZJlO8tdCTXt8w/hjiSir+nX28TtixkwZTIyVlwPZ8D1V0jFMvvf9JcQWzJ3z/swxSG8gqWHMQX26G2U0ylpY5NUVThtaZ//Km7hKG7rAmlhjrnhWejvx2jD7dccI91xkvbr38IYx6nTq+i44dj0PIPNU4BBU+bnX/IVlSnxqqRukZzdmnJ2c8z1K/0MBdOZd0W+CypCi/LshW1W+hVXL/UwnVhMvp/w1PMXue7wCr2eZiEj06eNCuoJsTuuJPsIZFBgl1eHgLW2Ew4CLSzeWgwtizJmwYz4ubfewcDZHGxMLrGw8xT96hzaXiJsPw56NzEt4c8+wvzaA5C2KI4fI1x6knIyRqp7mC70kWIJ04mV2GDQ5Vvo7TsMZUCdYpPBHH0lB47cQbLzWK70CsxhgXyPTUO6Z9oYYc60+GYdzn0FWbmaauEYnHsWc/XdGF1k0OuTUkNlwY6HzKWGqsjytKSGNlRgKk6vjXBiwChKbisY4MXNXXbVsH+hz4vn13n1tYc6Qz3JB2MM1EE7E6d8WAbyXkxS2qg0yaCamIRIMpa2E66yruCqgwv84ttv57c/+Q2iOOJkCMYxkT6DXkEhE3odKr5IniLlMu/It5m3Tt5irWYMih9ukMbrWG2RzqqY1CIaKSTgLz2Knv8aeuEJqI6CZoMqo7m3Kwha9qntALfvRk4cOYHYJdTkrE+kc/wTxaVARYPiiFjmaGjVYG9+M+mpLzE3P0+SHtDDamD/+BQiCTEQnv8KbmseTYoM10g75+ivjdjPDnNWsUWPUZN9SZy2LDnhtvHj7GrB2RRZoGWu09HfHHsmWhJDVhwMYtlshUt1ru6EkNs84yD0bWLsKjanLVEsb33dnRxZLPmZ19/Mg0+vc/+pHdYngm8cRwfQsxYLqBGKwjKwJWoqFOlMu8BYoR/GzKthYOFnXn87oBiZkqQiAAf7BX/53a9DP/dFmhfvp/72EuWFx9Do2KkOsLS0H3aepByOMbpA29tHzRb7YicM162JHEaaLP2NY+HGV2OkwRcHuOr17yWZMl9bjJilkxx4998FSaThc7jQQHBQLmOLQQYCpwRtg0gu8hMnUPWzrkszpI0waCf8xKv3cen0eRrZ4gvj66j780y96VK7y5m+di2gZB3b4ynb4wnpwCAbV80Szs4W/eU2XrJ6xerqKvfeey/GGJqm2XMrtNb+6CsDe0C0zp/QViRT5CDB2D+53WpGShubt+cY02XoVOfhLUUPdX1aCmqxtAhBDSkleiVo9GhSVAzOJKrUYk0uIVkBJfLaO69nuYCBCxQ6oacT2tMP8+If/Robj3+Gc5/7AMXwDDTDPcSiJA/TIWe/8EGap+/DmIRYjxuez/mkyWYcWlZgC0wxD8aRiv1ZG708SLCu0w83WE2EuQOYsgQDbTkAadi57z+w8+l/g10/ham3GPhL9NIYQShMJPkpIKxtbPPlJy7w0LmaUiLleDW3A3xDz0am0RCNoY15Tls1PPLsWT7/jccInYjHTOfhstVN1rz/7Q9/no987oEMyty7S1mc5gMf+hSPPncuq6MlmEiVtdwFUtswiEN6OsF0i3DQ76GaaL1HTL6vBgUjBBEqE7n+UJ+ffevd7K8KKjJMTYcXGDTryHgXIy1VvETaXaWIngsPfJbmzGNZl39uP9OdMT1aKPqYO96NOXY7glCSed/JlCQZEB2I8ZioYJeJ5QHCXlyudDWLP1O1VAzYsE2/HjL+419l68GPU599kNVP/DMYrtKThBVLYRpWdMgbTvQpTn0Gl2qilrTVImoMSUoubI/YPz+fVRU7xzxU+eP7vsW//sj9PHfmEv/69/6YJkRUTf5I2ShnFDL6fBa+1Aht9158TLRJmdYNw8ZnDQEMgsc5g0NZKQxqCoapYtQGfFKiKajrmje/+jZuONDHhEQblasP9PlLb7qGW44sUgJFaMiWwZ3gTDPCX3oBG2qkXqcXh4i/hEsNRhJ29THqz/0G9aNfxLiUsWo2JwkRi8oAs3QD++/8SaS4hlQeojVF9mDI5RhQk6lkLkttqw5AHSZ5kkyQqg9mCbt4jNZUpMF+OHQdRRwiJqErR4jPPUz8xidJSwdIBPz2GaaPfoIT4TTLsaZnhNA0GAyNFkzLFQY6Zc6BM8L1K47Ffo9gB2x5x5TeXivTqJJUCMUcNYZJVIIp8L7hoK7ntpgp8Skx74RSYNkKSy7jdbZ2Pbuml4vmkq3GcVAVsORgvsuGpz7ijOHoQo+/9uZr+Zm7T7DgoGcSzlqilEBBpTAIkb5N9GgYbD3D5Av/FrYez94k170VOfZjeG/RUUOURDp2LcVrf5Y0d5hoLGoqEEdGb+T9XFRRN4+6fTmArZbB9rNqoYQMpOwfIpYHwFYUYYL4Sa7KGYtis85MO8k7T5xC3M5VIFdBM6GWkhACRbjEyuh5rip2samm0ZJx0ylc6kxiMOtiJFXUGKZtFlhLHQj6cjajV/z75TNespT9TW96E7/+67/Oiy++yAsvvMA/+Af/YC8I+FEHA4accyayOEdUEOf2tObN7EzaGxnnMGtzxDjDPMwK/EJRFFlj3BgaDOd2Ww5WhjpAuWAyWlkUI4Z+NiAFPNHmY81Y5ZajCxyyUyptMxshTXF+g6Xd5yjG17NYn6WIu8QwzaWolI1etBmxpBdw608So0fnF2H7Aq0dkGSBec2uiLVboCzmskZA576oYjPNh5lOphBsL5fs1RAXj2G3xqz4szBdxWmLH1+C8RgzfzWIQySXesWUSPTs2kMkJpn7HVvUKj4EjHqsUTQaNErWYUggbo5dn48OI12gBnt9N0uWWt6uI4sNuX0yWz9S4BFGwTBOjtaUXJo0TEJG+UYKbNzhiD9DHRxD06N0wuFDBxme3cy2rGZu777bruAgyXN8f4/3vvUeFogYbTEYJrsXkGaCmly9CGGEq89xPM1TDE+TXEWjPUT34XsHKZrTmGKBhZvfiRZFl8sExEaMWKZmH7ZY7OY+EjPsqrPGnrVMAJV8bVe0rr57qAjBFJhYYNIavh5R+oBpLoAqyVhc2cOxzkIaccNCw/r0EeY4ThkTRb8g1S3TkLi0ucnNR1Y4v7NKTBkdTYqM1XGxNuxOW7Zjj1aFImbKcNRM0V2bwmartFHwRji3AxvTwKBKpBQQazHWMBxPmKsqoiactpQ2l5mTKOJ6nBsbdsdChaeIQzQUvPstb2ZeA5qU0e6YW48c4v/847ewu7lKNVlDdl7ALZ1EYqSaW6HqF8jORSoaZPUR6BVw6eFMAy0WqUKNbD1FGYc0pSG5Dg4pGe2PKXHz13L1K68BySwANV3gmHIgMOuT7NqSplhkMZUYEYbSZ9IbsVQIEgroH8oytr0l3NX34p/5OPSW4MDVmK1HABjPHaOUbSSMmG/OcYc0rAyfY6U8yfOhpknC80M43/aYmDmC5jVzw+E59s33UWPZnkZacSxppl86Er5N1FHZ8olzE2ikpJxuck3zFGvhCLuNsjOZMFcexkiiAuadZOVw7fRCCkuvKHK9TiKlVfZLYGM0xGrKksNxyuFBxd999yspiZ12iGR6LBWFKlVqSDtnEVszGY+oYoNNYOZL6gCLr3wPxb57aO0fk9wZalcyOHw9/UP30tglEkJl3N7eQNdKc2R3WUgUJMDmFqdGREPXFjY56bFlVoRsx4gz3dcLrFhMM83smjBCNp6jtOAxFL4mqsn4rzglNbv0tIdFGU4806gZnzUzuVPNNG8lJzCaCP57uXlewS54GY2XLBi4/fbb+Xt/7+9x+vRpbr/9do4cOQJc1hn4UQUE0h00prsGgezp3fmh/2k899zeyAs/psuVASFnCNbIXi96fdzwv/zaR/gLb3sVwZYUlSMGT+rEVo7MC0vHl3nWKxtGO8+GwKG+4623HufA0gB0h5giJtXMpR1Ux5iU2wMxeCDlAINEKRHTrqNPfQXtLZKWDqK727iTdxBO3ANSEW2FO/kqzL4TXDZZykdNLq/mnm5Dhe8t0B8bAn2qI3ehu1u4+Fim2ghw/mlCtMjhggLBqCdIhYTIjUcL+ucjJxYqDs33kJ2AIRARmpBwGhAMoYn5XqghSEmULECC5sWS3xmda2JEpCCKI5iyU3bsjECE7FwnJbHqs4vw7z56H+vbu0zrKY2UUO/w5qMt7tKUcyEgKszNVSRVmtZjzEKuNGjG9RoF9ZG+NZSAUY9oDZoIowtYlOALnDiwyi3zgTuXlMH2aSb06B19JdXVb8Cfex6LRd0i2AVmp7mKoqbFKLhjr6FYWUClDybbvTq0M9TpkMYdRgJNfD8TJ0VoTI8qNhhjSYm9+6x+QlKoigIkouKQesp8u8qCabhjMXFwHzz6/JiWPqPJmGNLJ7FynpQEr4AoQRwjMUzqlon0aVXoSa4chCQEW/CZBx7j3uuXuPnwAtGWvP+T3+TkQDhxzxE0RVzhsOoY1w1ZsjVREuiZLNMStMQYw5ceeJLKb/Pa6/exXFluvOYgfcnPq6pw761Xc2h5H8saef21y2w8/CQXvvwwJ97130OKeNOnX0Ts+hapmTL6zG8hg4+R2m0mWlBd81p49mF60wskUdT1oEMKZNdF01X+yoyKT5JxE9pNbAbkdDOccFe/Dj04RSgRUYqr30AvbiOaRaPUDjBdlScdvgs/OIYpLXZuX1YnrQ7QO34XYe1baPT044jXDy5RPv1xFq77K/jgmRjhX3zoK5w7f46w7Lo2mMfiWbGJubjLRF0XsOQ1lhBGbfZb+czXH+NTX3uGcVxin7/EGxcvslUc4b4Hnqa0geItNxEQChH6zrKyNEfYqglFQgvBWQNRUfWUKXDb8SNsTwyVTrj9WJ/V7QP0gX5qUQ0EM8BpxGFxMWCMgN/i9Bd/m32H5gnnn6HQEnv0bvx8xe7Zh6ncIlTH8CtXM177GsWhmzCDqwl2CcRgNc94x7ftduvc3kkCqpECj0qfSG71iMnPvdOUpZrdHJQDpD4PrkBdSRKHsRYzHZJ8jd88x8aXP8pCnCB2Hml3KWKNtDUpBuqU959SG5qmYRpCLvhLZtRgMsMpqlIYYb50pLrBQtcOnRXiXwrr9pd+vGTBwJe//GU+9rGPcfDgQT760Y/yt/7W3+KGG274EfsS5CHMmv4GOqRnPlgz7Hy2ge6BCHWGGcjXHlNGuGdTivxMWtFMXYktk9bz1LktLg1HTNvEvl6RAw6bA41rDy3yvrf9OP+P938q/x5AiBzsl/zKz/4YvRIYjWm0pEqZB55bEoZo+viYr19j6mDyDSUBDQnMCnH+OOPV51m696cwV78bNXOMLKy8+efBXQNIFxTloMCozyh+hbGZQ4sBVHPQ20fvqldTv/A0BocxgShCGTbxukSruQVhYotKgUuB192wj30PrfK+172KmzcXSVsBm7J5yjgYsrWRIbQtKWoHqsz9vjz0ivsEdIwBI1nURY3pzGeygMf5c5dol1aoteDpM1sc3tfnmdVdYkqsrm+yujtl7dwLHGme5+refszQY2xBv5phEwyFK7pgIGcahUi2KZ55sadAM1oHPLZZo9q3SNjITmVJW9548wGWTuxn8rGLTHsDVt7w55GlG9n36EdgDMkM8qOlQLJ4A8F4+rTsf9VPgXPUVJgu+Mj2PF2vvuPQ5/6i3xNd+e4nevZ3gdKvTxN0nl6zifFr9NsG1h+kWrmeeZtBdhO3RJsqFGWhCPyPv/wGGL/I//yvX2TbL6Ea2TdfYiR0pfx8b6JY6mSZ1FNqCnwUxsmzsT1i4g3eWDA91sYtV8VEayxNCFwaNZlB0ukD2NLQZNOBvKGahNRD4mgDmT9KzyqN90hU/uq77uQVJ/ehtswGX6akioG/+uOvxong4oT3vPYWxu4FeOwrELIPijcV2oc4HWcb8PEZdPcFfNVjd//dlG94HyEa0hNrxMLSmzuESTPDrFypyXiJFlWDUCAx4qxmrwPc3lpClKU7fjofAs6gUrN413tJGpHtJ4jiSc5Qai49uavuQo/fQrN1Gtsb5Fc7eD3Ld7+F9c8/i7YeDTXXugukc1/DrryDgHBh3PLixpjFsE4RJxhGGFECQjm6xL60wW7okfoVErNWRo2w5bPAz05Qzk4sdVFQTde4deksazf+BA89MMRawdpM7RWBqjRcdWKZ8fY5PBGkwEn+nYXJgM0ff+NdeFV0+Cx37G+5+r2vxxj5/5P330GWZ9d9J/g5996feTZ9lvfV1V1t0Wg0bMM7EhBFgqRIgRIpM9RqFBxtKCZWGzsRaxSxG7G7MTGh2I3RaqQlGWO0ooaURJESJRp4AiAs0ehuNBqN9l3epX3v/cy99+wf9/eyqkGKlIAGu0ieiKzMrMqqeu933bnnfA0aHGodtUJGi929gc52YfkwqjPKyTOYl7fo7b6E2gHZwz9FsMrkwqMsmwb6OYv3PcD2S/+SlTd/hGx4gghk6jsAStq7VJI5mAC2AxMLkSy2qO3TiqSEXAyiM6y2qIwgX8IuHUAvnoesgN4QFYstMnTqCW2FTm5gdy9RDgtmocVsnGeoE8J0I9nRS4ESGZiGfpkRigFbOzsdxuzmbhajsm95gYP9nA6Y1sGh5kDp268qAK8iZuDxxx/nZ3/2Z/n7f//v8+EPf5gnnnhiryowpxbWdc1v/dZv8Qu/8Atsbm7ivedzn/sc/+Sf/BOeeOKJV1AR546H32tVIa1F7d6pMDSGDzx4lB5TJgoxCs5XKIYphhgVmxiHGNcdTCHQqjIl9YPyjgfvRcnjjIxA43IqMiyW9UyoBbYTbJAlK5AlIQ5tph1Xpo8lSYoWohAjDQWeASI2Kf6JIUhG44F2i1BPEqLW9EEsJhpQJfTGSG+MjE4TsxHY1LHFHUVcr7v66t6MDZIRVNG4iw8eMY5m8TTezxDXR41B6HqxJjm9GQw+NsAUTI1MpuShJtJgjbDmZvSaXcLa3fTEUMSGmc87c5mAD8kiVBBs9LTYOVwwgeGgs1mNKJZKJal5zW1cgUaEn/+Xv8lXn96g0j6//PGv8j9/7KvMoqCuz+e+eZn/8Xe+zq//7leAQO4nOBFsqFnOWggRB2QmHUhRwBO7PpKlMELRLerNr/82m0/8NlECsriKIdlxmyzib1zAbV0k95sJf9BbQfIe3hRgMiTuALMkySySVNhShxspxpANsEk6hZtIiW6OyxwgCIjt8McG0914VC2WiI2zTonNYf0M204pqmtEBRcbpp/4Rdz2OR45NuLswXWCWOrWk4eM955a51i/YnD+k9xbXqIMN7DRsViUKDm1THEoqslJsPQV28HjxROC8ntffIL/9lc+xU6ExV7ByYUEktyYdaVaJPHnYyAGRUzBsAzUVaRCaF3OMNQsXvwkG1/7VwiRoc0pFN78wHFOrfVZloYhsofSxllGThhIAGcpLAzaS2TTy8QQEYXMz9CiR5sN4cBxxAasTMj9LpkroH8ILQdgA97mmOEKwtxkZv6E07FjkvPSnmCM6f5svpcLFtwYzcZJFtmklkFwY1QDkUA0OTap8CfzstHhlNwVfayF1hVQLFDYDKlnFFS4ehe2XmTn259DwoyvPXeJl29sY6QhswHxNVnb0Fx6kdlXfwlrWqLrsVAIReEIkpKV2ASaekYdkldKRiRrJ/TabcaZp5Gc1o7oScR1z/jBI4u869SImevRLzI+eNcBcquY3oR3nj3O2aU1elYYEbj+5X/Lzuf+GSPTdlPVEk1idRAqLnz+X3D5d38+6cv4jKLewT7zeWKZEc5+GDnwVsSNGVCmBNQ0+GyJoD1ibx/BFJ2C5JxbNF8ieyMBRrAITiyYlFbfNJvvAMnauQnaPuV4EWIDpsRlfYgBcRZEaFUxs2uUcUaTL0PZJ16/jCEizQT8FBtmWJR+maq/w2GfQhQJKZ2HSPAtVVBGJrLaz9gMlgpSlU9N2gE13MwebqN41ZKBhYUF/tE/+kf843/8j/nn//yf861vfYtf+7Vfw/vujqGK957xeMznPvc5tra2ePHFF/mX//Jf8rrXvY5/+k//KRsbG3jvUVXqun71NAo6K0pEKI3hI4/cyf7FnAvTwMwrEhraENmMwsa07cCeFo0VGR5tPFs+cKFpuTKp0sGkhpnLsJJMWL0x7AaLbwLruUHKkmt1GvA8JFoW7YwlMyP3E2R3glHINeI0oDFiY8QoqS+PdEA3Ejreb0E9RVDamFGRoerAZsSyhKxAs6UkciEzchRknIyioBNUSmPRdL4BhFnK8qWHrj8AgzG4DJMpYho0GBozoLZ9jK8owwZU19N70kgmEY+hkhKjkdzmmId+hLK/Ri5KG8uE1iVQA9eaNJaWljZyS4vG7JVqEUMtGdemnl1vaNp0axZRGgPXg+VGJdQxZ5OSy00G4vCasWNWeeJ64IoO2aGgyApyP+NAuMQRs0vmUoKRZRYnHglTFpsr9NurtMheGwIsw+k5BltPEdoGHS529ciUi0lTwc42aINxORQlaoVJb52pWUBpCKalRVADDqHEIRRzDV0ySR903gPIXjHx5t2hSwbiLdsbkiMxpHKx9Jn11ojFGuosptmhpcRLpLd1gayt+KGHT/Hh1x2ibG+Qhx0WEH7y4aMM/UWK3WdZ9y/Rk+SRMCwLohTUMiMnKeQ1HvptxUbdELTBB9itAs+3BZuzhlMrPT58NGDrGVe8Q7Fk2omNmcSmCV5YGlp2a+VqG6iwDPEcmn0De+Wr2NiyfzSg56d85G0nWRuXCAYnYETINSSLZCRpLpgstezaG8RQEVUgKrkBGe1ns3+MeO/7qEaHiOqIZLjhGpKvollO1JaqXEHH63OsJnRImpQQlF3p36YBJ0uHfzdcXXYCkg4fUYtSEo3BGk9Uz27sJe0CAkiLWIsOD+DV4vsrTGRAdEPIetigmFDj4oygOUEC/eY8RazZnChVEEKW06JEscSqYdFvc3j2jc5q1/Cm1YYDbhPXHZD4QDQZV6cZQW3izZPmWo7HGsMCNQfcDQpNB/q7HjzDO88cIc+EA67lb7/nAXJjsM7zk4+c5f4j61gzIWsu0bv2OIPtZ8ilSZoSnTRQTyOI4rafppg8kZ6tF1xQHDXtygEG7/ubuLUTiHN4v4jXnLST9CnaDLEQpKvkSlrft2ZilnlzJ4EfHQ6klypO0MkYg0gO0oMoRJOR9QapqmNKpFylHqzTuF5ytaTFbL9I6af4cpne6hpMthGTDIyM36Vot3BWyEh+GqNehlNlFiwXp55p2zKbTqmrCUvNNfabXXaaGd4CHT08vY15hnt7xauWDDz88MN88IMf5NSpU/z4j/84Dz/8MMvLy+k/MYYQAkVR8PDDD7O6uoqI8Pzzz3Pffffx+te/nn379vHcc891IC3PV77yFf7hP/yH/Nt/+29fdbyBlQT0+4V/8WkubSdZX8Tw5ce+xS//1mfYksg0elZHBUuZ0KjjX3/2W/zffvE3+H/+wr9iqw3M1FJJSW16+A6o8uUnLlAFpdcfMBqMiG1Si1OJZE3LAwcWeeDgmMmXf40rn/9l0F1EG0BQjZR+k56/DtbRxpJaCowRnLbEyZS2SrbCbZYTyjGBQMz7SG+MumHyVwfmhZA5mCekT4nWREQiGOPALmL330u5727KfXezc+gR1I2TxrYb0+QrVOsPEYtVjJlQv/j77D77OOiAxrTUocG2u+RaMZnscnWrQUYHaItFGptuyi3gsozNWvnK15+G2BAxeN/eMiLpdpzoPUn+9//3rz/OS5e32W3mlqpdE0GF2gtNTLeFqgYfTZJ/Bp59/grXN3awHdZjiSnvXrzO4PxXQFum1iG9frLn3Xieo8//BnfLJTw53lraDkembcDOaqT1SH+BYEuMsbiyT6wn+K1LWJPTUoArIV9A993H9OAb0dUziO11VsqppCwkcy860OrNQ/+WrzpMi8x/6X7wVnphFCGKA3KK0Tru8AP48ZHUAqo2Kfx1nLZ4sWhQMmM4Pi55y6kxvawiN7tUz36aS7/5C9jpDqOyZFg6YlZSDjIcNx3wVKEJQtXW1HUgqGWm4LOCiOPrT3yT5sK3WL30RTYunecXf/2rtJrsjyfBMiNVFlys6Rc5H/vqc/zCv/49cpclip7JwFfYMOXQcs59B3ocGuRJorfDU1htIU4JmipUGJc0A9TvWcXid0FbmnyRuHKW66sPEY6/m83Fs+xka0wOvIFq/0NouQ8tl5m6ZbaX70GHB+YL45Ufe9f/+Xh1feh52UaSRbDulXFS8c1Awmb017FHX4/tL6GSE80QLzm2GKXqUf8g11cfJqzeBW6AyUrEezSEvVaW0UiMhq3tgOIoNGDFUEfhC489leR+w4wz/SnL4RoPbn+KB/UpnAYmCg3CtI584ZvXmboR4grEOoiRnJZh2Oa++G38l34Jra4hJqC5Y1g4Hhnv8LblQC8zmGDpxzFD0yBZgzLj0td+A3PuCayhc+S7uYbTIxGszUhJlCJhG9oZqkLmsrReBGR8FD35bmR0BkwfG2vyWCNxlpwSX7EO5OaQvHJ57BnnzSs7kOimLcn5U8WkuTNYpsnGqOvBgfs4v/wQfuE4MQaKrRcJ3/g8hBlFbrFFiW5dw4mnblum33oMaSbkueXe9YwH1nLuWDLY2HChMvzf/9kn+caVHa5tVxwolLPmRRaufp6l9iI5LZgaFaUBWnHEV+/ofdXiVcMMLC4ucvHiRTY3N1FVPvjBD3LPPffsyRGLCNbavdI/QNu2e9TDuQsigLWW++67j5MnT/KpT33qe6oOCHPg301Upwe8ybhybcK5GxWnxguIwsUbOzx5bcKb2kBjDYcXcv7S+9/Ck9+6yLlJy1df2OTUwDCJSoL0CWpyGhJq+7mLVzm5f43heMTaaEh5bpJkVjUwzISPvPst0Fbov/0/4ne2IP4FkGXE70Bzg0InmNkNjHiknqSSVtEjZ0Yzu4Yvx7TDNcp734/0LeHj/4ooEPI+U1lgAZuyTjVk6aqdAFEyL7dGRD25yUENkq9y9B0/gZQ90D4Hf/DnMG4hMSSyFaS3ytKHfo7wzU/Tfvb/Q+438duXwBcEM8XZSG92mXHrabYL3GiJYukQXkpcVmJ8QgfsX1tjwzu2r21TSMCrENv2lhHRPZvPgFBHuLw1YyYF05DEd+YXuKDC1CcUuyBUVaCJkmhdxiQb4zmqOstw7ZS79AI3LjzDgt1Ha0sWxoPUndi9ypmdJzjY3o3PHgSU3G8gOkNii62miDPoYJmJG1C0OSYbkFUVsnsFGSzSuDHq+ki+xOpbfxya93Qo8hIb2+5m4fYOje9m/soeLUm6cqQhsz0GB0/Tf+9fpf60J1x9nrzaJp+dJ2hDbcdE3+I08vZ7jvLQ2f0Uz/waje4Sb3yd/PxL6MHjvPOBe7l6fYlf/faEQenIQw0hiTV7hSrmTH3LThXw3rARIfQGxAjTumbYXGF191t8OX8Dl3ZNcobDMFFHUGg1qTX2sxGPXdhgOOpR9ixZJsQgWD+F5jInD5zm//pzH2KpJ2RxQoh5Em6L29DuIGUfOgXEKMnGm+kWttlCZi+isykNhqWjr+PsibcheZ+1N/5FbmycZ+Xdf5XR4ffjTQ/JB9RugYMf/GlssfzdDcrerOWWG6tiSfr02egIhz/4N5HeegIKSsIBSW+IuD79A3dy5qOPIChReokb76ub/6pJehNRLZs7FRFHT5PLodqM85sTlocVZa78zPse5NnfucwD4UleZpVJ2zJAGVRXWNEbXG4zgsm46+g6/fMZqool0KPhjYu75C9/HvyPYNRS+xGjssd/+7f+QmpFWUFrMM0M3CW0WEYDhK1ncbPzGHOSvYktc+ZLd8i5kmB6QETCLjbP8YMDVIwY5gsAZOsnOfqDP0s7PIbv8EitFJRiOlzG9zY6UXiFhowWQ2o7AOvIjtzP6R/7r9n5/D8lk0Axu0Az6xHdADNcIZoeEgOuHCbM2MZ5+g4Whz3+iw+8mXb9dXz70haPfe5lXnan+Or5im9vTnHecO+Rdf7aWcOXP/M7ZNWplNiQ9mG/V9m4/eJVSwb+zb/5N6yvr/OmN70JEWHfvn0YY/YO+Hmb4Pz581y/fp3nn3+eo0eP8h/+w3/gzJkzXLp0iSNHjuwlBePxmNFoxNra2qtbGUgtalzeowau7s4Isggaqehxvs74H/79V/nWC+f48EMnKPJkalL5PpXtMwmeNoAJLZk2xNiVcjVlfLvVlPEg58DAMPC7jHqOQQaoT2V0kxF1C+JV1AQCluqpT6EXH6PnG9g6h5MMdl5G/BZhtI+iuQbTF/FuzMbyA8TBvYxXBvjBp3AE1PSYlYcR1yNqwGA6vMpNN8akaCd7fgkpWy4w/f0dpiCjyY9RtNsEkxOXjtO0Y/rDO5ku1zQLv0Vv6wqm2QVfY3UH/A7xmS9w3J5Eti2DQyNwBc45RllkON1hvRdZ7Fm+9MQLlGFCj8g2PUJbd75EezD65FUvifpZq8WLwxtH7G7Y0Scu+K5XajqqX5vMcnomMNOWKInWmVFjRIgmh9k2x/IJh5tLFM6y1gMNimkDRZjRpyUzkb6/zvUvfprFAwcwzRYy20XLIdpfpV44QHv9GawZkItimy3a8UFm7gDqhnjNiOUBsv6+xFdHUr9xT4r0u4ub99TYHTedyRMOcSOkfwQ/OAjFENodwgtf69TalDC7iqOmJ47CCQ0Rby25v8bQX2VS72d151uc2L7EPrmX5SywbCqIPTyGpml54eI1Ko1s1Rk+OH71U98ktGne78xaFm1FTstTl7YwmjNmlw0zYtooRfQdY8Oz0B+yLSUifYbW4aQh9w3x8stsP/5Jxm84xv6sj6NJtE9nEVGqyy+w89zXWH44iWahAeP6SDNhdu0CxewGzed+CWstJUsY10N6a0TJsP01Qj6GhSNINsQRCDEQsz6mv4KY/HsaG5X0S7qhxoQrEcGbIW54LCXznf6kBdqsoNEc7AIMjiOEJFZmLVQ3kgKjKN7Y1A7EsDNr8WpZdi0FkettpHE9YthEQ8t6EXBZnvxK2j6/8rEv8RN/4d3c487jB5f53alDNLC/GJNJmxIsk1qQq33DYrXD9Sc/Q752lP6Jd1OZHsPCEUWoJSKuZuuJ/8Dk6pfZ/5a/hXH7GPgaF6doBz7sENddviooFpP1aWJiP2hoCa6PX7qHun+EICOMJA+DONhPLY4CxRRjpkt3MnKrBMn2UDXfxcjgOtq0IBA91gjeFlRSogLR9mBwEGuKxGCKMxozZmtwkuHyXdhcqLIxZd4nNhX5bIYhUjjIp8+z+6Vvcajo88j4Kr/erLJthvzqF19mpMqBLGNNpwz9jN060FBQqkOwuKhd+4t56fa2iVetVnHy5Mm9g9xaS57nexWA+ecQAl/60pe48847eeKJJ1haWuLHfuzHePTRR/npn/5pRqPR3s9BKv98r7gB3ft888GnMpbDR2FSt+BSKb9qMy7NHJ978iUmVaBnLHkmXa9UOzZrRltDFmpyrTEa8C0glllQfKwY5PDB15/iWBn5uZ94Lw/fsYzxu1hjOiW9gDM11JugnubJj9F842PEqNC2xBCxu1copaEqFsj8DmbjKbBDVt7zN1l96COUh99B9uYfZkrJ6PAZTn7gZ5DecmdjapPwiOyRcLpNL0O73jQIai3BZol6I4Lv1BjqbIH2yOtY/+BPE/sH6J95F4uP/HU0G+Oqa+jsOcrJVbJYY659m8P2OtnsClmRIzYns4aBTji1aPjf/bX38+a7j3B9e8qk8vzQu+5LY9zWaVxkr5ieFikpGYgxtQRCJxQlmuwSQnRc35kw9Z6yKBL5IETe/sazjApLCJHcKJmfkluhdQVVVrKaN5zhAv+Xn3oXb73zAJDUGytTMJQJ+5rzDKbnaX//38D5xzB+iml3UK/Y4X4OvOuHMMN1KFZADO10h+yut3Ly3X8ZcQvpJi2ORnK8cV21+dVaXnNia0wsFpMSO0yGuBGhv0oshrSSE889m+Z8qMhmL0FzHoPHJp1UGhyqLRIn2GbG4OKjnJo+zpJe4cAo56MfeAu5piRyFgJXt3doMOxWPSaTwMe+8hhPnL9B2xoqb3jzg3fhegM2WsexlYI3nT3ETDOqkKS5BUGt0C9KAkoTDSEKhalYZodsep3m+a+BCWQyL55miKQD0e9cYvuJT6GTS5j6MtJuQAyorwhNTebAfvtz2G9+kizupARYEic9qmPCAM2SmJIhAQdnMkQlT5vx94Dj6jDJsMeZSRgHjMNLSfKxVzJNGoUxH+OLVdAcL0mmV8VgrYHpDURDcpy0GYoQxHBjd0JWlPzoe9/Mcj9ZOntcssoOgZ429IzS2BFTenzqsedpqimnzQXutS+wFG7Q9zsssUNBWnOCEI0juoy69VTPfZXm/BM46sRuMYZgE1URNqnO/TbNM59Gr1/GVBNs1SZqsLnlLtlRhDUqiMXanCxUUF0lAi05S+/4qxx4+08RXD9pS6CIyck67EV+4AyHPvL3yFbPJBzIdxmpmuZxmjwzRNv0OR8S+2upKqqKMRlGOhWaYPDjIxz40f+ahXveT3b6bfjjb6SRMaaZkM9uoCZPLqIbz1N/+3foPftrvKE4x1J7A6vCY89e4dEXNxOQ0rcYKXjxypQbLey0yWShAGxMniu3W7xqlYHJZMLv/M7v8PTTTyMifOhDH+Luu+/eaw+EkPTLP/KRj+wxBGKM7Nu3j7e97W17f36r2M+rFWkrnTcM0mRJINJICMl0JRKpm4wrW6lU1SNQWEcoIrNQEQJ4LC3QtJqQqBpALN4bNES8KE4CSzkUA8uJXsv96wZ96re5OqlYe/NHIdYEbYk7l7n4mV9m7a1/hXF7meivdxV+w06+ilQZue3T9BfpVZ7m0U8Tl9+NXTtL6C2nm/zht7N7sWZ1dAxbHiFKjyAGR4Zoclc0c9S+Suq1MscT3Hwicy0GS+pXtuOTaBaQA68HUyCDErN0L9ZYmm9+Bj/ZwrzwJNY6rDQM/Bam7RGzNTAF1mYMnDLWXR48OmJncxvFMhhknD4wTpiipkrti44vrF25VbsbhoaQ2Ljda5tXOCKGi9evM21bFkcj6llFNd3h/uMjHn08UgnkogxNi5NAiA3BGfoy48FFz4PrQ8aZRZodtp77IrWfcO/wGptygVFcZzy7jlQzYhTEb0NcRewIDq7T5gsUbhm1O7QR8rWzFAcfRCnJTAL5BbhZBpQ9dNqrMIkVJGDU8IpigxiC6yG2jx0adONF1DryMMU//ptMNzZZfOfPgRshTZv+PgZMwIYpWXWdhdiSu0CeG04dWKJ83GA04CQJF3mjbGwHVB3bxjLdnDDUPtM6sjYuse0uNtYs9pSisEiW8+hTz/Krw2vcefYs3maMhkNyrcCXKCOWysihsEPfTzBha++WpGQk5QUBPFmzzVJ7CdNeYeOxJyiGy/Qf/GHwNTN1DBaOIje+jQlTTJm86yMWp4GQL9Cu3An0UE3JEwvH0IOvQ7IR2t3qv5uY61QIqY2lmhgHdn4oCoAjYNItVSNheIDJ8DjkY6ySFDg1ggRmLz1F308SFiJPPXUvlt26wcfAidURpTbYGNFoMWGKVcW2O5wup2hliGKopKAKiX65ELe7PcUycJGJTUmeVY8TxUiLVxjuXsLVhyA6sj0pBSXHg2/JpufoN7vE57/MjerT5FpR5WvkuA7I1+2rextKkqouL3+bjd/7VUZ3vTklaev3IcW+Lm3q8BVYyqTSA/kysn8JxeHkZqXhuxufSGTO5kleKIwPslseSKJjpGdvXUFrRmACLJ3Crj8EvX3E2DA7+Ea8Osz1z8LWderhfgwtsnsF124yMrvs00VGoaZQSxstmxjIDRImtL5hK1j+3ReepZxs8JMffJhCb1b7brd41ZKBa9eu8Xf+zt/h1KlTSfu9+5hXBeYtg/lN/zsxBLcmAK++SJG55QaQaGXOpIWrc0EfUaoqErVIRpNa0dY1/dURG5MproTG5FR4qpDkcj0Obwp2q6S9LsYyKA0lsDQa8t/87Z9kYQzV736catsjr/9BpNlCJjews6v4Zz4N974FG6aJckhSNKzW72H/Oz/E7md/hUoti+P9cPV5smVFJMNqjY8l+ZFHOLR0nDg4jMiQVhIeougAVmlbskiMqDEdIrsTuUlLZS9JUkm/j+Tsv/+9RPH47ECSvNVdkCHOVxT+Bs3zl8irDD/sU7eCUY8PSsiGqB3iXQEoTlv6ovTCBCuR3DoWiwxLMrcJXVsATVarxnYVpKho8F0S429Wd0LS/b547RpRI2VRUDctmTUMM0OOxxnhA+99B8svfYusjmQ6wTFhIA0/8v5HyMtk+0xzjfaF32Uo17ibq9RuhVKXITra0KfSgiLsEEKD5iPEDtBshPZW0JnQiKVfrtHYEQ7BxoZMTKI5dfiMLr16laqBiT6HJLUIA0jnomldRrAFg7P34790haZuKOMMf+mxpArZ/BSiRcIDdFRNNQETdpGYFNpCMSBaQ24h1FUSi0p9HIw13LixjUGoJN1w+iLsTCb0pWZRN1jQLTQGtr2CRq7ttnzsqeucOaO0xjEaOPI4RXxB1AUGmWc1JmlXF6adeIswV2CMEjHqsc0Og/YGtBvc+PaXWdx3nMEDDRo9vlzBPvQg/jP/C2HnPE2+QOb6tIDFkq+f4o4P/AxutI/WJJGZ3h1v5fjhs1CuEXGY76GLI6Q1FnF7LTjp1lU6UTNaTFL7FMtw/Q7ueO8C2BF73mgx4kKDrXfQWCWmSF6gbRJ+msxmaPA4v0MW64RKD5FcW2LrMe02f/cvvY3tX/8kz0ymKLCjGbXpE0zOrh0xdSNMYTt5dSWPNSWBftyE2FLsbqCtRbVAYiQacMwQ9USfE2eRQW2Il3+favcJ7OA4+ZH7OupkehLIvFWQtCScBsrZObZe/jJ6xwPgK8iWUDfEhYbWONS4TgStRVFakzPTRF2UWCGm912vlvkOFxFyyVOvfv0k937op6C3mgC30SC2R2XHSPCMTz0ExRpohrc5+x7+i4TDa9Qv/S7Ge5rukqiTbYLLCW3LoX3rnF04w4svmUTfFXC5ou0NRr3ILMLXnrlEsfsyP/IDD6MKZSc3cLslBK9aMmCt5R/8g3/AsWPHsNbuMQrmB74xZu/Wv4f+7HbJGOMetmCeKLx6cbNPjtYgGQGDkRyNhjYEIhlPX97miRcvIjFSWkMuysxHlocJCa9Tj0iGqqdqayaxpGUMGnjx3BWqkAQ6FjMhE3CFZS3vY9jG24bC70Csic0mVBOcr1ngBhmRNuthmJHc0HKiHSEH30SW/waFBsx4Hd8aYm8ZbA+ixVhBZYxbPIFKKismSRS6y2hnjgR7s66TXOq+vdUEpxPxADAldlCmyoLY7rmlKopjFxNqevUMzVaSuY5vQAyNmtTTJekYqDiCLSnaLQ5d+gT3mykDs86J6VM8Yh9nGu5Hgc068Gtfeo4r1ze5/+6TbF2/zKFjh5OSoAQkacViZEaIPSamz2Rng0GAcc9yfdZifKDvMtQY1AQOrozon9sBSSYyhTHkYUaZC2rBbr1I87VfYXH3BaoQsL5iSS5jRKldL1kI+wn4BrRFnEPEkkvE9IdQ1XjXg24zTMAp2xnZ3Jx3Ooc/f0+zt/tVbibL81qDigGTYU0kRIMunqAyY3pyBaMNrpkwuP4M4fd+nrBwFP/UZxE/RZr0orXaIEiJU3BZj10R1KS7uYRAiPAAz1D4GRvesuimfMofY2JW2W4Ch/xV1s99Hu8rcoHcZKxZz6qt2aQkjJeYdjTWpRxKGproiQRUAkEbgipu9zzTr/wS/bPvR0ZHiJ3orGhDrKZshJKVOKWQbUQnRCNgHXXwxLXTzNwCmVzBFCOQDI8QjGLdALd8MrEjkksYlCtIuUQgSyX972lLTrv63rrqEts95gsmlf21+7kswywcIlGHk6COhIatMMKbIWXcQPGQZ6gaNn1k11vui08hz55D45SgAecbitJgnZBf+QqFXqSdvYTK0VRR8CA+0GOyZ+0topQ0DJrrHLz4KfrxIUrT4IMnTDeQsMPutz+B9A/QO/b6RFHWAtFNnO8s2ieXWJ1cpXL7iItryVuDDo+kAtMLbD7xCQZHjtEq5BLpt9dg82WyPCe6Am+EvNMjmF8E9ma5Qi5pbsr32mKb07O7MpoFTDbGLpaEDjegYrFWyOIuhhqf9Qi2JAsRFyEWa7BwktYWoA3RWBCD2b2IqT0hy8nEc2xYYXxAigVAKK0jNjULTGiiUveWqHYuM/NKYZOipXvVWoivXrxqycBP/MRP8J73vIcsy7DWMhwO9xKAW1kCt36ex63ff2eF4NUIRdItCn9TxVoyWjKqKHgcv//cdZ69dBXneqz0Mv43H34LD55axPptFk3Ny7MZy/V1VmQLqh18tETpY+MuVzZmNPTpacNCr0jtDptcDCUavMlJMzJxkX1QeiEQY0WUIbUZ01OPsSVBc0pnIVtFbB8NHu0PyXsrlGffALaH2AFGUv9JpNO/7/Y0u3faO+xe2a57/ntPZL5d2VuShZu3MgGMsXvfRTMAZ2iw5GaMhJqmb3DlAtm0o860E6J4RBqMBvrU9KXBbDzDgad/hf/TD/xt2HcXy4//j3xkeIFfCndS1S0Xt6b8fz/5JJs7M97RDtg8/zwfGC5RmZIgU4LOEfQtkZwZGRGHsxnOwkJecdfr7+Dw4njv3C0l4uIEsRGVEjxYCWANHsVsPEX40r+m10zwdoArh2QKkhs0c9hwDdfeSKJLGsG6dFugTAlZvgvWIdbhNHQbT6cVMD9b9Fai03cfN8fH3fy++0LVJrwHAWMc6hbxZoAJFWhIjpmbV4if/5+IS/tgawuhxtYhJZRhgtpAriXr/UTlGpqaQXUt6V1o4M3ueZbCZW70Cw6YDR7dPcAsBtq8x7DaYPXCpzhnDhElQ6Ly0Xc/yOEzM/5fv/oYZWZoCCzoLqcXc378fa/nf/3kcxBbskwTvi7L4coz7H78fyBbP045OpCeowoaG9qt61SaQ3WVMm7Ry2ao34ZQ07MBcWWi1WIpi6QbbyXJElKT7gAAfvpJREFUwjojQLZnV+1EQNNztHtz/nsYGbF7f38vwZ5v8l1SUAJzainInjgOgFEPrmT4+r/I9otfxFx+Oh1SrmBQ7+Anl2nbAffGZyle+By0NxCrjMTzxnuPI89/Afvi79E8PaOUglpOJspaG8j9DI1113RJqng5DS7sMLr2JQz3I6ZHvn4UvfYyGrZpn/0PxNFd9A+fTWV7M0RkBxsqKtOQ1TN6u5amaMhyA9upkmGpEr1z8hLxy/+MaN7TOVcWuLaCnQtkeZ78UUSIajCEmw00SWPihA406JjrOHy3YyMdiHo+zjmAJofOefLmFWxeYKTBaJ1oxUAuBuM90RXY8RHKo3cSn3weycqUfN94hgUZEH2Os1N++D138YmtbZ44PyEXZdC2xHbKolQojmu1Qytha2fC0mL/NiQVpnjVkoGnn36an//5n+fBBx/krrvuIssy3vKWt7yiAvBaRbJXt1hKgjgckdIkC8+qs7ttmwqXWbDCQu5515lFls5/hs1Hf5sTsyHfng54fX6eE26DvNkij8muFbEEtQRxNKGlHC+lNa9JBtZKOjBajYkjbSw+dvzp0Hal8h5BS7A5wVpqUTAZs9FpZl4IzuGzIaOVA+je/X9+0n+HEcatpYBbvvyDIyB/yHfyB35eu1JxMGOuLL2O/nQ3ZdLxBraXEr71bIZzU/I8HUw5NUfsNYpqk/DyLgMbGa0NWDg05MZnX2A5E3Y3rvGPfvUzLB46ljS/s5JzF7fwk8ishTYkWlBSCTSg/WR6Expa36daWEfzgoN2yrvv3s/RgWG58GxMAv2sK0GqY2gDpXicNWhTpUpHaLECNTmN5AzzSF57+oXFEZB6gjZTom9ovEddgWYLXF+6j/7gFPnmZTTMUJsn5PR3PvM//IH/Z4f8IV+94k9FkRhQScYqYiS5tYl2tNIEjJUww21f7sq4AVMnaWWLoqHGied4vsuCBML1p7grv4LVmrxuKdpNxrpBGwoyq0xkSGUXKSSyZGcYjRhJLSHRyJH1Jd5kHetsMLDLFM2E1a2nqZ+oeffZd/OvP/McqsqIlizOiMZ05jqBoAnMlbpFSf2z2rjAYn0Jfu/XKG68QGZaNr/4r1g8fgpHRIzSisObElcMSMV5vZnWfueh/ypXHf/g6NxcQH/o+M2xEaogGQ0Ws+9OhsvLyI0S1YA1hgP1SxxpnuPZagFrIlmcUugUjS153KW/9QxZnCFNjVOl1sjcDrz1LSYa1CwwwnC9ExoxJtKaIql7erDSh31naDdu4CKoqTHtJS5/63cYlCULx9+T7hIxgg+Yagdig2srrDWotjhtmZ17kunLj7N48g6K6SXcxjlMHGA0Uu3ukl+/QGY7wOBebXJetfxDnuGrMkZ/SKK393+ldoY1wtQsMh2cYKAvIRopNZERUwtDwTqa3jLereDLFcRF/GSCdS0mL5E8cPDwfpYWPdmFLfphi/HF5wnxcUpjmE02ebG6gNna5WO/93V+5gfemqzLze3WJHgV2QSf//zn+ehHP4qIUBQFL7/8MsBtkQzo3mbtEIU+nmW9gUiLnzMXTEI994ZDstzRkxZz6cuMvvnLHGpeYjatuDe/yIO9i8S2IsaQULJS4iVDOq24xcUxjhanU8yeSVLExgriVQjXUAKYDPUNsb2KiR6iIxhLzC3RCkhg4U1/gSNv+yjaO0CTj1Db626CKbpthe8JEv2fEILBrp3gwF/8b1j+yN9j8O6fxvTXkHKIKrzljXdz7x37iWQgGSqRv/iOs7z/uNC8/LVUGdFIrHcx0y1qD1s7U/7F17f4+MuWhow2Cte3d5nUnqpVfLzJA0lv0dBopFZYUGVVtlg0E/7eT/4gbzu1yL58wg++6U6yWDMoHIrDqHLf8TWO71vAZDnSFaBjXaWKy3CN8tAJtJpw7MAqd545hjbT1L9tZoS2TbQGMeCG7H/HTzG+4xGKoqDQJnlH7CVmf/KRetQtQSwz00OtxUhSgJv7aASxiBVcu4sNE6y2SNMkRDUCGun1evzYe17PgtRw+TFOm/Np4/ZTJHpyrXF+igpMYrJ/fd+Dh/ivfvIdOJOqLgU1opECz13jjJ948wlcrCnClCPtS9Tf/jhjaRBxiMvpqScf9QmLa2lutN2fqUFijfgJ+Iow3WSk25hnv0ivuY5eeILq6/8era/vIV5q02diF6FcBGVPXvf268reGsKMJC1tRLCjdXaGp5FiTGYCQ7/DqXyTftjco6miniYGhrnirj3JuG9Q3xKDx0onoawR33oiKTH7P3z0bRzNNlmRiqWw0clwO3Ktk2iQ69FiIXgkBsz0MrMXP0918VHAI2rJupajrbdAK5yvwDha70FrmvOPM/3mJyEGirCD3bmaWqJiaU1Jc+VlTKedMBdDUzHfeY35kwsltUFRBne+heUf/Fts9o4m8K/OOmOxdNkSMdRumXb/A6y950dp8z6+rZI9ejNBrEmst5j8bka6y9r2N8m3n6fvWtZXRmxPJsykz6PPXKQ1c9Gw229uftfJwBz4573niSeeYP/+/Xz2s5/lySef5Dd/8zc5c+bMXiLwWroW3golISYdbm48y1r1bYq4gwktRpP9qgK94ZDgStQ4Ymzo6S65BLzJGdZX6NdX+NbFG0yaJkkVS0IMl1LTk5r9Cw4zvcCNpz6N89tQbRJ2t+k1m7S//7/iH/91sthCNkbbFn36Y5Q7L2JjixFLtDleknyJjI9ixkfx+QKVTa5b+opi/59EpCy+zQaYw2/BHH8ETr+LbbNGzAYYU9Ib5FhmmHwBdUOi7VHmNevZBj3dwoVt3OQCpr1Gv7rIWHc4km3SkPPi5U2aNuAVtnan7M4afCdURfRYbTExJQRXtidstJYj7Tne2X6eE/4lTq2Pya4+Rv3sZzm2XDCwgV4WiVHpScuK7ODCNCG0g8cQ8fUEUZ9YGYv7gUgmLZkk+WnT7hD9DNGIleRdIGKwyyfRwQouLxMYS14tcOD3EpGYDdlxS0lZDU1zN8HWqNyQmPdR9Yi2CAHtQIQJDuJQW7C8tojFM6ou0Z9ewEuGVyHYkiAZYhLYLpeWYXOdh5ZrTmc3MDGQEcljTeqSt4QLX+F0cQNChfqa1bjBKF4jI6KmQI0lVyEUI6ZuERWwkgC4Glt0comrj32CduulZAVrM6zOML4mizPGYRNpZojJEDLqch833D7CYF9S79vTd3vNB+ePDBEw7Q7Wz2j6q1wf3cO0PEzIF4hqWWLCKM4SGh5LMJZaDaGdMTZTjASQ5K0QQ+icL4UQAiE0rJbXOSuPcmd4nKXrj3KifY5Rs0M/wnKzTWEnSA7WBWycYWLEbF1jtHuFYvMyqp4ExUx4IPUTVEOyW3cDgskAT9FcZ0E3U1IXA1rtQGio7AC7eoJq8zrqCua39YT0f40viHN/mXwVXXuAq/kJyBaQmMCMN1UKDL7Yz9XyJLJ2D2r7ZFkGoQWTdE9EI0VuknOktvSrixRxFxMqDq8tYEWpyWjLBV66sctXn/j2a5cI/RHxXSUDt+oHGGP4rd/6Ld7+9rfzhje8gTNnzvDBD36Q+++/f08fYJ4QvFaR7m9tuknFQHPuCZa2n6QnM0yHWq/rQIFnXAhl5pKuuh3jzZAmGEzw9GwkAr/9lW/i2ykrs5dYNRNMbCilodApIxfRy9/g6uf/FVSXaLbOs33xZWT7Ev7TP4//wi8hoUazBawI8av/Bnf5G5hYI65PJQssHb8vlTPsEHFZ6rXZLE1Oc/Mm2vE0+H5ueul/S7z2IDneraH9o6y+4ydh7QA+CtHX5O0E21tG3YA266PNNmXYhVBT+F2c38LEKXmmrK0MeWBhRi/O2LpyHg0tCwsLOJewFdOpoKGlMODU08TIDLiyPWOzjpzKLvCX+1/h/vYJ8rjD7jc/Q/X4xyj8FqUJFOoxoeH+Ewf54JvuYpALweQQI4In+jrdOvMR5MPU91SPhNRGkGon3ZSsw4pJB4woajoa5GCZLbOUdOVfu2ndDVDGwuGzHHv7D2H7q0m3wfWIHYizPPMwcfk4aoqusyTpViYAsQPWJW54xJDX22Q0tGKYBSUaR0OGNxlOA6cX4e98+E7edXrI7PkvJ5U29RTURAUNDZtPfIL48teSwI8qPW0RbbAIucvIaHndXWcJvTWqYh2VDEvnJKozwsaTXPvdf0Zz/qsYA225nGiBklhBe/1+k0O2wME3fZiFR34Mu+/O1EbbA6Xdrt1ZAKVQ37kiZ4R8gd3efuzbfoZw9K1EMvJ6h/c9dCfvevODiDhCQgmRm1RuV2uS0Q5zcyVDDIGmaYixwTYvEn7vv+d1+bPs23qUh3rXGDRbLEbPX/vA21gYGSRXHDNcvYn4BlfNyHe2cLUHOqfTCNEViLRgbEoCykXaGCDukPlNrARCbKmjoZntYMOU8q430X/ThzDlEC1G6VXumZG9xmESvFpMiRsd49QH/gbD4w92OJC5DwYghrWzb+Ho238S8v0YNyCGAMbQYlD12LDLotSp1QWUme6deQOrZKHCiDAj56vPbvCbn/sa/jV/AH8wvmvMwK2H+9bWFr/4i79IlmU45/j85z9PWZbcd999ez/r3KsGT/guIvWpFIsoFO0my9xAJFD7zos6Rhak4sxYqbenFCghCMb26eeWQ+ySa000lkmlbLz4DO9bvsLVrOCLcSndFFtNtqCb51lsLiP1dUQ9RahwocbGLTLnad0BoiZKXhYnQI5KRputMLH7WNz3ANCjlQLb9X/n72Muq3wzs/x+Z5ipYmJQXFRmxmLLFYoz76F97CLGWGS2S2+2STlcBGORrER3N7B+lhTZNEO0JLplmuFhzPJJDs4s5TSi2tLGyNryEtd9S6iV6COigXE/B1U+9tiLrKwuoBhyCfS5wvHZ45SxQS98gX57DddcZlwoPasY31BaZWXBUd51iAtfaYlZL8nYRo9Wu5hYYfIBUiTgYfQt6uv0ZCfbab5q0R1CBR2jHCtCWDrJ9fHdrLvxnj76axFpDhTYwWGGJxdh+2K6eecD8B2w8fDrqMJTFFdfwniPYghiSMK5HqMtuZ+mCoGCaWcoEHwgRE+fCkMgqqOg5q4l5a88cpaVeJ0bsQGBjEAhgS2EoIFBdYmx79OYiIaWXJKQlFMo/C6L6jl15DDt1RFNbwEfEq5OJYDfYPrYb7I6eQz79evktRAXj6HbLyQcrAreZMldUhV1SwxPn2HY3E0s9+ORPfW5uW7N7XcH616TtmB6yXehtw6DlvLuH6S69C2scYyM8paT+3igL1TfTEK2pZ8yiDPEOLzERI+O6fBJokeGumkYoGhTszS9xFIdWMr7LHMFKw2Z9bzxgdNc//IXQDLy2GJvXMAtF9hqi5h5aFdRQqcSKqnqZMC7Hq0tyfMFTKhoXn6c6oUnUIW8ugHG4rYuUTegb/gw7sSbCaN/T8hGCLajXSZm1msVKhCiRUzngShDRqff2oFyHckndF46E/J9p7EywAfF5gOMgRg8zgSy3cvMHvsYq36dBdeQSZ5q0a5PNAULvYwibKHOUQM7KmxGhwfyP+Z1/knHd31CzwWCRIQsy3jrW9/K4uIiIQSstRw+fHhPV+DVFhH6z43Y1QacpMzU0lJIRRChpUioUuCtdx/lh95+EqkPsOhmNDrF+Ip3PnAHd9z7Xta/9hQXz71A2NjCXj3Hew/scOzd7+b/8WjOl1/YSLdPl1Ffu4apN8HPIILzM0CJxlBh8WLoZRArQAwxelrbJ6yf5sDrfhjW7iXSpxGD0wqxcc/K86asza3x/dvu5uQhQ4v4Gs2HydvdrmBcAaqYahtXb+B6BRDIrGCabaSdotLi/AzjK1SFSEaZOR4+OebvvPkhfvXjX+W5baFXZDiTRHd3d3cZ9nLe/ZbX8dRj3+ZffPZJlg+t88GTyyxlqddXaM2R+kXCc5/ENJvkfocTh1f423/jI6zIC8zqCQUVhG188MSih/eBLHp0tosQsHkBrkiMBd9CaNCoxHqCXVhDjSfYAjU90raRWmPuwL0cec8ByJfSpfo1O20SCiKYAU4KxOyAydGsB6ZCscRsldjfTygWyeKkk3w23aYckNjg/G6ihsWYEjgU9Q0mNIziFqXWZKbk4HKfn3zfGxhphYSGOlgGCJbkYBkViJ682sA1Db4A8TVOlICQoyyZiodPHGQgN5jYgvUzDyLP/HoHqAowu0b1/JdY5jzxpXNkw7vhzIP4lz5LRgOSJclpbZPvhxnQmgVcXtJIjyRyK3tImtu1NqBAa0pQIZOK/sk3cPzg61C3lHRAxHDsyBFO3HkE8/TjeD/DWWXQ7jDWCUiS6zZC6ltnOVKlubi9O2ERR4wjbH2enskxqlidohKILiBMockQxtgWzGwDKRYxzRbWKXWYotqmak+U1GYzgs97tKaAcoz1E/y5x2gvfRuWDyPTy8lAaXYFmTWEYo2QrxOLBaIp96pRc4fD1y4SMNkQE15LHI0pgORdKTFgOvXW5JjoaKRAxGNsjlib2pehIt+5wM43PsmPvef/zPB0wa//xieSH0yxgGY9lno5RaxpYoP3kd1g2I5JobN/m4EIv+tkIISwhwVYXV3l9a9/PQsLC3vYgHlSME8YXksQYVLe084hUGmj4hDGccYLF6+yUTdEgUOry7xufYw7/3XkwjYwwcbAUm45fmKBnRcH7FxyOHFY33DIXOZ47wXuCcrjcYxH6GnLbPcGgoe2RaQAW2CbaxAiWvYJwzEzBNkZELQh6yhKbb7A4NgbIBuDKgWKkhFNj0034qA0GK1AeqBz6p/9vl59lJR+GARMyma9pmc6bYdU5PR2LzItVinyEqJiswHiryTWRdhF/A3CxUfRtVUkNAx0QlFd4SP3L/PZr/Z5dnvCIDM4Y9iWgou7nsHCkLsPj3j08QFTiYyb5AduEIqsRFXp+QvUW5fwTYO2u4wl8sixJYqXnk7gv/OPoQdPJcEdrcjCLmpaYthCpCV3JZEeaiwej/qAaA1xgvTvoNUcn/eZ3xDUdIDY8gCjQ4e4SSW8qd7wJxuKSCSqgZgBQh62kLIhuogEh8tgtnCIaX+d9fYi0uxitEWIeHHJftZYJDQYnaGhQmPSXmgULDXj0DDTlnGmHDq+gtk5Rzz/BazsAA0iDU48hQlI1GTW02xSmUDQyIAJPuQUEumXcHz/IsZdJ5oRxeJR1ER8sBQxB6P0M4+0DVlUolPawSLBWjJfg4Xh5AX06U+iTYE1JmENTKLb3pTevul0eVtGZx5mu4PRLhxhuABEj7geYmB95OgPe0yoyFxDViuekoxtgjgqt0jJleSeungSvZrTeOX8rmef2EQ91QJtW5w41CutGyecATGpAqrgYoMxE6zfxLYzWt/D6ATF441DqYm2h5DhxOEMMFghaKRsZpRSEUOEpsE6IdT95HciSX59IzuA1ZxVndEdt6/5yJjuVYhJEmyp6JTYGHTgQaJBJUs6DYCJYMqcRkv6YpF6ylBm+Nhy4uAiD7mcj/tNPDk3yuOMsylrlz/GQdnP87JKALZqpY6C94o69s7Q1xpkD99D4nyr0+DP/MzPMBqNXvGG5uJC88+vXdwsrEMNNMm8hoxTSyVXNrf5xkvX8RjEZuRxwuzRf8fuk59PGAMbkHYX53eweByKD5bcZfTCLuGxf8+pKx/nlH+RxThNt6ZmFxN30bZGTIbPBxhnMQFMtExtgbzufciZd+KzBaIarHpsVuDtuDPmSb1YK45ifJS1138YycddAct0ohnpHX4/208qEDplODF50lnvYAu9g3cxOn4nunmZsHAMbJF6btkAbRpMtQXXz6OhYuvZ36e6/C2CGDIrhBcfp7z+TQonqM3J1TO0Sejm6vaUhV7BYWpGcUbhMnptTe0jxjh6PtGCDBW+Smp0IQayGFnQiPE1uUZmT3+Rra99HIMjk4CNDSpK0JqYD2jzMWKKhLCOLQSPNSDioRwTsgWiy0CbBHqSpIyX2NAdD1peu1tOuv969i4YXZmidQVt3gfjECkpj76J3j3vx7slDA6nOTH0iPvuQbMhweSJORC2Ed8kU5e2YqqCczDQQOFbYltjwoTqyS8y/eT/DNUVkKSwt5rVfPDBIxRhSmhqbHUd1BMV+rpNHmoK3WDVbLDkakLcxuKSypxVgjqMJu/6ZKrVR2NGHO2HwSEi6RYdtER3duDxL5A3NaKp1aHS8cqZ22G/ZsPynxaaEmsrkWgyfIcwV8lRO0wiX2ECJiMaUK2RKDR2gLEtbmE/43vfBzHHrp1G7np7h3Fp2WqgbWqk2iDGlrNHlzm0Mkhto0N3o6ZE2xmWnYSFwRIkYuIE01ZoXYNPCoQqEJzFrBygzZeJg32Yoof2BkRxxKpGBkOyqNBGsIJxQ3yHSxGNLJ19J8PTr0vaBWIT4+g1fvx77AuxIIITSWmKCIhBOznkgCWIJUfJiQQjtGYA0oeoGG3xWIwYeqKMpEFtj+LOd6FOWX7pN/jr7zjOydUBqGcalbqNr8DT3S7xPSUDc2nhsixvg0P/j46IAdMHHD4kYMydRxY5dvQQGzPwwYKLqJnStB6dgfURwxSqCygeQbAmWVH2TYP1M2TrEiebb/GI/j5HzbVUNm8rBvUNtJmAsfi8R+gtgskx0SOuT3n3B+D+H2GarROtBTyZEWxX6EwZtIIoxfgk63d/ENx+gqT2QSuKRwlzXvn3KRIMa+5VPvdxBzGWbPUQg1P3EdpIsbJ6k64mAsGTZZao6YC1GtDg8VgkK8j8LltPfJJy+wVatZRWWdIdlvPA1vUr7MtrDlx/lLvic6lCEhXftoyywFCmSGgQEVyYob4hRJfK1CIQKzQ25Nrgmm3EetQ5gvaJsaBthOnoODu99c55TrGhQeopkg9oTYmWY3BZeu9681m8Ml7rLU1AU1UpOkWzHjfy08zK+6myQ9RY1O1j4fBDLNzzPrzbR2CZNo5o7D7q9buRhVUIDRIq6kvPM9u6jhjLTgtPPvty8nigxhql1QyiEOtNpN5CorJrl4kUHLHb3J1dJVz8MoN4jUynmDDj/IULZKFiOLtIduNxzlaPU5z/Mub8VxhIBc4SsrzTxUpql3VwBDOiNSN05Xjic8cGP1jlerbErL9EI5GcHeSPGYPbd0e6GXvvYF7RMEkiWsUkD5TQYGJAo4fYJpOhtRPIwbup8nXCgTOwdowyExZ0l/PPf5tYbaPtlCxOOLRu6PlNgmQ0+89gRmuwe4lw7TlcVrJZHmXCmDitoJ3hmilRBRGLizWtKbHrdzMrDnJjcCc7xSFcBqKGcOUcuv90Ahhfvwh5DxNn2OATMFJK9p19I+X+swQzppX8FfTo1yJk72P+q9zye9/5U6/8ymZFUiJ0LlU/9toeqbVjjaPsjVm44/W4coVytsm7z65xfBC4fm2Tly5vs7Wzw40bm68pqP4Pi9u1pfaqhpmLkIhJ2amvKE3Lum6wrxfYqlp81O420RIB0+5iw076+dkNiB6VDKzDK2Ra4SzYMOUkL/EDw6e5s7+DtRkGQxZnaDMjqqPNStpyCAIuVljj0Owodu2NlKfeSOsKVCLOSKKIx7TJI6BE1JWo6RNMRqvJfAMACekW+308lF6JyTbMZY5EHOpG0FsnmhLpj8AkGVlrLRJa1DegETGpr6xNjbiSmPeg2qL+xsdZmzyDEFnqCX/5va/j4bNHmc4aVgaCf+rfc2d2EQkzfBuoW889x9Z429nDWPEJ69zuEpsZdROJrU+2sWETqLGhwrVbWNtAluNjAWqI0VHc/wFGd7+NgMGTkaNQT4j5gMb0CdkIk+WpCvIKxsatz/r7r/Hwx4YmHExDIPQXGb71pxm+/q8wPPt+NCvwFjSzaO4IMiW6GjFTfC+jzgpaitSv14rNZ79GqHYJwXNxp+LTv/c1BnGKY0pmPUpy+svZIpcZBCW79wNkh+/m4TtWyS58kelTnyCrr2KNYmLg2XM3cM7R85vY5z7Lu5cu07v0FeLjH8PEGjVCm/UQSe5yBI8pFrBrp2iGxynu+gEyNRgZwJt+luEjf52ZXcDsO5nEqP6MhWpKBowYokgC2/kmVd2t4GwgCEzNAlIuMTEDGjMg769w8uAa7339XVy/sUlVVSCKMQG++WnyzRfAFjRuGbVD9Nw36G2dIyvHjN/5k4TF4wklHzxZM0kWA/QwvgJ1SLlMS4/VN/wwa2//KFKOyVcPMbnyMrp4hLpX0m5cRrIBSHLJNAAmx9shakfUndEbmkTZXvO180fE/JXtCSXNt9w8J5iMmLl0kZCY6JYo1hqMOKLa5CZqS0oXKKTmTQ+cZqs2PP3SZe44vJ9h+doBKP9j8T2tJucc1to9ueHbMxSrsXMOAw1T4vUXWdQN9m8/zv54gZ3ZLiohGfy0gq93kdnTyO6zRLtAM21TL9U4IFJISyEtTafN3Q83ONg+w6i5grUl3vTA5sS2RsUSrEWdJRKxIVEcvenD6ADlsdezI0MaUyLWJsce7VoAIl1vLzEKjAFnFKea9OTVYNTe7Bd8v57f/NCTmx4G2lVa1C3iOzZEkhU1WOeSQDohiTkZl95HWyWRJ8lwTlmqXma/P0fW7lKK5/1vOMnJg6vUUpL1CvL2GmXYInhPHZXKRw6MMk4tWYwGVBw2TNB2Rlt7dLIJ9Q3C1W9BnGLwuMlVrKbWUAwJBNnWDe7QA5QH7qE1Q6ZuNb32ZkKwGa3J0WwANiezqWyYps+8RHCLINJrGCkpE4y0RIHg+ozPvpfi+Nuxhx8kGIfNBRUPTsnsFJu1WNcwtZYmHzEt1/GaQVuR+02Mr7Ei1OIw+YAizMhsTSbT5CrVVLSbL2DCLsaWlPe8H3v4AdbWRyyZTYr6GmjEkyMhUtGnNkWy1r70FMfcJfb3JmSzK2l+u4LG9rHqIdYpmcsHsHqMWbZEXD4BqkyyJcKdP0j/vvczG+3HHzlNayzzy5Xq7cjc/s8M7dqv6UsiEWKLaZqO0WJRbRK4zQ33KrFic0w2YCFXXnfHAbQc05giSf7GhjzsUDRbhAhkI9SWyPY5bL1JpCA/9RbMaD3Nc3FIqIne0wSDtg3GCC4THIHs4D3YY2+BYj+DI2cxNMRiGR0MoN0BO6bKFwkUe86ogoBxCdCpJEth2u9nQfNViFfWCOZLPboiaSbY5IVC1wohho7eSZKkNkkzppUeGMv6viVqzZlMKt56zzEOrY5vu0r6d3WKz7ECt+IG9ibmd5gQvdaRJqPHxCYtsnqH5vy3WNNN9m98Bf/cZ9mZ7YL1ZCFg6pYeM9pzX2L27FeJ+86mvubuBSTMGNuaH3zDSc4cWsG5mypaWZhx//F11pdGeBxxsEKc3AC/jceQFUWyCraWJuhev8qsnaF/+s1U+QrR5t1qmZ/vCTAnNBgzS0AtPBZN+YEaJGbfZzhO2pZuLanZOfVGcrRYIJoCsSVJT7zzZ/dt6hmjaDGA6DHtNGXZJkei0gu7LMdN+qbFKOQKC0WOYOgVFiOeVoUQI020zIJQSkPZXE+0MnJMMyHTlsJaZPs8N577Che+9Gug0wQMunYRrWdEW2DDBhKu0bYTtFwmyJDy0D0UD/wAZrCCzHawziVAWtZDbfKPF5knXK8sJM6fzWsZyYclYjEYDOr6aNYnuiGGEpEBRnOEBcQXoGMMI8b3/gDjo++iuOtdtOUSiuDabTKJEBqmbaDoDSkl0u8J4zKSxUjcvIyeexRLjUZLzNbQ/j5odnGahJo8BSp9bNsyCwYpR7RuRLj6ImXcpNdupN50NkBsTnBDbGgwfpqEisQQixHOGYyxuP33MnrDj+F6B6A8QnHfjxFHp5JGQrdLi/xxDYM/HTHHf+gedDegUfBuTGt7uBwcDWK61qJNEjlZXmKnVynDdXwEk5WpNdc9IysBK534mzGwfTmBYm0PcQvp6xAhGyNEsjgjY4qGlmgyxBkcnmhKKlPi3RI6OIhYA7ZEigKZbaKLh5C730scHSbtXxGrEYl+z5wa9aCvNaPgj465cPIrvhNQl6EmTxXOjmmQCgQeK5paok5AW0I0eNvHROXo4pB7jiyRtTssuJh8a26zs/J2vtK/OtFdahMkD7BCSU3ebHAknOegucHurKWuG1ycQH0eO7vGKFY4hebw3fQXRsjVJymrS+wzG/zsD97DI/ceIvMTNLS0tocWIx667zRrfY8JAfIRcfcc2lxM1QEpwPSo3RKtG2Njm2Bo63ex8I6fRMdHiVkflWSnnJZK0mqHrn/4iugKWCJ8P+9E0v1Pe1gBFBM7iqMIFINUFTDZ3k+LGIgeYkgizfkAI2Ca3aQA2JlEiTEMbOqJhk4D4tCCYxi2WGMbM7tBHQJNSAjcSaNJ47zaQI2jlQLTTDGhoZc7zNY58uplhvXLCA1RHNbX9LIcXA/nL6DV80icQeZQtWTr99B/y1+itmN0uo214KwByZCs7Baq+YOItFuvC69VSDoukmWs4FQJBnA+qaGRgRtDtKgM0dAj6CKNLNO/78P073gv5b3vx6weJ0SDC1MMgdDM2NjaTmhwhGKQs75/SBErtNlEpheI2hJIyoRZb4TMdlD1RLUoJdYUDPyE0FQ46zCDFayfQjulrDfREBNwUTJwfVxsMfUO2u4SNaI2Sza6tPjlO+g98tPY4Qqar7D+5p/CjU8zaSSh2Pfm5p+lUDTWEGpstMjwAE2xCEYppe5scA1BHGIybFHQa28wmL7EyLas9Q159HgZQudnYrTBSg0OmhuXmFJSNYAa8lhjbEblFkAcxewKdvdJZjsbmJUjxHyBqhijNgeBSIb21/FzUa6iIFQ70F+jeNtfZrp8B94Okr1z54lh6aoE0hkR3bZxa1VgnhZ0HOKsSNexfEiUIl1sVJOVuChGApGE42okI0RFZuc5Fl7mb7xpjTXZZmVp+Nq9tT8ibucRefVChCiWWqEQg/ctw0zI4pSVnrC9k6yK/cazXP7kJ1icXce1Bu9K4mCZfDZh9oVfJ2xfIauuw/O/i2mu0IsTTCxoXA/skKAzrN8k0xpxOfUTnyPrDRHraN0QcQuEgydwq8cTFkGhyVfJ8sNUZoFBXiLGJy4wLt38gXiLQMfcJlXl5lH0J6fiICmjjy1iIioWsiK1D0xa6uk1CsRAUhqbJwMTpJ5gosWNFmmKEaHZpT/o4doMzQaowr6BsBKv0zz1NHLtOXR4dwJ8RsOsVdwApJkkBDYOt72JyXPsSKge+xzZ3acp4xZilBgdtpmm51gMmH3z49QhYmKqUCSn5zFkBzHZmOapz5EdXSezhmgMkhVI2958X38sXO1PNuZ3R6fgImlsnKAyBWmQaCA3eFEwitqa6CyzNuJ6Y3ZdyaDcR+MWcCpksU1lztCyPZ0SfEAUZtNdTLiCbZew1SZFrIhGOunfFiksTbWNlovpqaqhEOg32+zEiqLwkA/ITAtNRcE2Yg0hhNRO6xQIufIyG9sXadsZ4ixiAuI8aiyhXEfVoFgwgh2sURy6K2lFRO0qan/a04FbUxpBokcl0rYRHawRbYFuCgUtViO4PrUdUNgSycok+vPMF+g3Z1mMW+SxpZUezjSpChlbcqmpJdLOJsTRYfLRMmjEhopYlEzqPoVY8t1LxM//L+ysv4d88Qhx4RjV4gnEWHpaA+B7S3iTpRZmllM3FUU+pu2fJi7fgZTLeLU4YY90M3eMvSn3e3tGsh/f+6r7TQFXEDGp+iYFSLuXDIBiTcDmFrKS/toR4vMR//lf5kb1W9z91p/mnlVHf9QjduyX2yn+fCQD3RoTAawQjcOGxKHNyj7STJjEBapqm3jtcYzfJKH5E5DHuwJ34zmc38WGiub6OcSnnpf4BmlniB1g1aFqaMQhhSDNFmF3K/2cg2bpAKMf/vsMh6cg66MChqTFsJUtMhqtUmqDSIvDcqul8CtC+MN///sScwjh/D8VsKlagRjEGlysuzKtIKq4PCfUE0QdLkbUDVAKxE9x5NjD99CunIBLX+fUgVXuH62zb/cJst2WQnOO6jnKrUv0pMXFXZoo2NAj+paivYqpLmNMSYwCZFhydHEIF54jPzclRocvC1xTgURcZmkWDtHWgeLCE+xWc9vbVPHAFvQcmHANdUdpin3J9tUO0JAOH0ybQJ24bqPoJpXKn9RA/EdDJbEe9qpHMSB+wi6OMitJCuotRivMYJXr0x65G1MSOkvXGtdWhNDDhgnO7Ye6JaCELMeMDmI2rkAxhFgjEawYTDvFiE3YgXqDqRsiocVKi7MVFUpdeYqFSEUPZUDpITfbaR2GCpyQkfqrTC5R130GsUVchreLQI9MI17SjdTQnfvH38DagTugXAaxWLl5iN6KAr+tQ+fcdpM8U2hRNUDJRBbItEwXUqZkd70JWVhg9uu/Q0GFsTm4EUaa1MaMA3KnuJ1vsSCHGZguKdMKiR5vS0RMuli4HBHL6tt+AnPsDDrbZDs7RHn2FP1LF9CXn8H4Brn8FFH3wcH7cCunOfjh/y1kw9QjF0FySyj6iO3h7AI1ww4w6Dj87p9K1VFJYl3YIu0kIvxpKOMIJABmd/NSTAK4Sp8sGnzWZztfYT1cTLLrscWrsBy3GJQOesv0H/oI7bMfoz33BLlb4chyyX/3X36EvBylpOg1fo/fGX/22wR7oR0H2adNJXqC9AjGoXFG8BVLMqUfJtjYgChWG5wYkAGunpDHKWIUiRGJggZJtpcmYH2DaRXVhJiV3CASkMkOlohYS1WuwOAMsTyGmh7RCC6CcX3KYw9jF0+C5szLeiqJWjhvBNz6YW75+P5HqlDc3G9dKqPPBY9CTdu23Z9HbFYgviHSQ3CQ9XARJMwQo+CWabIFrLSU9Q3ed8xy5Opn2PrEf8/Vpz7BYbnAwFSEkBTyYvS0dcTXFf7cE0yvPI/pjyi0Ttaqtg+r67T1DeKz36A2K8jKcST6zlTFUe47juZjetVGsne1A3RuQoSlyGbYbJOwcBg5+SGy5TtxZZ9IAkWizZ5VcdyzQn3t7zZz/XSkRQ14hChD3HAf+dlH0HwpIU+ioPRw66cZn30Xki0nN0IgNy3WT4kxT+hzEbQOePWpApAtYH1ApYVqGwkG2oCNNdgcXB+ptqCtEV8jeCSL7ODYbi3G5pRH7yUeeR3TkOG9R/MyCTwZAelBbwjtZXphmsSGbEbUDMgQDalhJklHwEgEN0YHRxA7SIZFt/Zf5XYYmT865q8tzltrmr5TFIoFyv13EWPZyV1XxGKZprefaIa46DBZCabESpXes5bYvKRgi36cktucgEmMKPEEMahYoikh67wrxqchX4Cih554O3L0bagru9eUEXc2kZefpByvgR0QBydA8m7tG4wVrM3BZJhsAVVDzHvkIujwEJIvYiVVkESyvabn/NJ9e4/PfO/1pHEBOhFh6wpk/0myU29Es35SLhVDq8LYtJTlEM2HaO8YwYzJmGGZkBnHcubpEW/LItaf/cpAB8RLwLeQqDoaE9I81FjrmDU5R2YvcTA+SQwtqjFt/pp8rcU4DIEEKbfQzLAxdjQ2TZVz34DWELcxzRaUMfmqb1+gcKvEwX42dxpWbElUSZtgIuxjisOceOtHkaykjSA266oGiiFpkstrlkd+Z6/8O7/PaNwCWexaCMYmpG2MRBW85NhenyJOCW1OGAyAHkhBFmtMe50ffyhjJx9SPv0pVssNjpobZNpHAa+p11lNb3B1o6XX3yUaB8WAfPM5MCVTDIMzD6Dffpy4u8229BgtHsJlL4JPWg9ucSnpOcSAmbtpdge7sY5Q5EyjxY5Ps/DQz4ARNq88RaMx3QrEoFETndHeHitZAKvdxtWxn1SEGQW99QdYfe9hNBunjqcp2CwOMd53N2v3vJcqL0EbQIiuILYN6hsa0wN1eHWEGDFOEGcQSaLezG4kKbaoiK8AQYsesfWYdhfRKh1oriQqhKyHyXv0Hngf3HU327/6/6aKFRkt4htwOZtmmcwN6U2vMHSOWhzOFuQJEfEff/Ov6O3+aY1bG0/JBMiVY4b3PMTmo7+baGvBI7bAYMhpyfGIMWCS8JVq2yljLuB4mbH1uJjEoyCBX+P8KLYZwSVVVOkv0pLjihXW3vghaDfZfOKzONNLWJ82YIc9hvsPJd0B5j309FoNGYU1iAU7WiSTChmtICQ9CswrXT3/9IzR3JugBfHAXKdGCXnO9ZizcuIhFu8aMH3x91E7BJ+o6So53va76WlRW5DFil6cIu00yYV3ioe3W/zZTwZIQ5sQn8l4I8wBNaHBGcNL13Y4EB7l4OD3MdHj2xobPUaStoAYt7fhqjHEZorViIkVBEHVdF4Nu4RLTxF2r6L9ghgs9upLuPUF7L67iHWS40yVMtmbEOr6aEz9X+1M1xKpYO5H8P2VHP6eIhsQDjzAwtKRNPmRJG/rZ5hQ0yJoOURig7QN3gzA9pHeMgK43UuEz/9PDAYrmGtPcSDf4FS5j74rcdYwaxrUpA3v+YvXkSM7VP01YrkPmz+VADpFCW6JkC/RZJFqfIrF5YME/UJSS7N52jgB8R6TKXucNAGMIYzvYWf5nfQW78QPxpgQ8f2TxDBOqPXOsTD5st8+kdqacwCJYlQJRmikR54dSNUwgSA5k5X7GC7dA+V+gqSWB2IIriSEBFZreiuEiaEOJilwGgO2m//tjOnTX6WI6f+xscEaSzQ92lmDqV9GFgZEjZAVif6J4qxAvo64kqlbouhnxGYb8S2Qoytn8GYC5z+HuX6RZnAHuUs3rtccpPknGCqOFouRnFAsEFRAPRoCxhWIGHpa43XWsQIcagDqVOHqL5OrsC9vGeaabviSoaHGlCVtFKzLCbZIjo+uTAmxKZFiH9IdZFEMkpX4uiHvjxHbQ+wctxS7dMAgmmNskV7HYAFbWPLxGkJ+21dm/qhIsKzYAR1SiyCqYLDgFghrZwjFEcRltNkSvqmQMKNUj1PfYbxS205NnuihsYVmByS1WG/HZ/PnIBnoHrtqQriTMbULBCkRbcmzjEYdy7LFWv0iXsqkOtfZpYq41GtTxRqDGpcQ0sbjtEVaCFHAKtJuETaex9QToh5glq1g6stobOnd9WZOn15BbEnyjOvgaHMkdHaz7C90LWk1qSJwmxla3Bp2sMrBH/q7yGCNaHIURaxg/DZZrIko0fXx9MB7gjiwPfrH76d+YYVSlfr8N8lOvJlocgZa8bYHjrOtQ2SjRcTTiqPoD9jZ2iCXwMKbPoTfdNSbzyLtLi2K2hGNGdBfgBM/8DPEa88TXUlsWoIryUwaR7wnK24+e9dtpOP7f5TRXR/ALx4ECYiD1Qc+AKEGVzJnFNwsb84bn69tjq/QbTARNJAjOE0XM4xNc14VyYcc/8BfS4h8N+i2o5R5RlsQ2hpLZOGuhzGPn6PyNpXzrUGdS/PUN/grz9IfLxEmE6yvulwqQ1xOXm1igyMYIZqcHE/PNFhtwQ2AAt8/yOj0cSYvPonxCrbPibf/EM1LS7TPf4aiuUozuBtP9gdYMreZYNurFvN3GVTxomQ2rRE1BrQlBo+RAoslDxN6OsO5ju4qgsYZGGjLJZwP/Oj73sTq+c+gOyXBCFIZWFwl7uxiJQOXJefKsiCT5DHTisNJjslSJS6aHG2Vcnkdsn5qOaCp+ifJUcGYgjpbIjMj/GA/s3KFYW+ZuZ7QnwJowB8eSndVyzseQSe2JjnlwlHu+oG/gRmsEXavoar0wy7xxjOUeclIdyndWlp3NiZtGnEEKbE7VxL42sJr7HD2h8afg2SAzpEtpAHOFugff4hq83F67TWcsRibYeqazNTJuU0UFZc4uibD2JQdBgzRlbStp3RNqjSErkSrLSbsYI2jyHLiyl00kxH9G18DLOQrmP7RvY07YdljAuGJB3yXgNiUBKjpdvS5Bv5r+QT/iDAlLJ5mXkCMpLK7NBMMnqA5WqzSrp3Fbj2egF5GsPvvZrrvAYobz2KtpVVLOzxJfzQityBeMa7EtAFX9lksh7QbNbaZIEtvpLYr+EPnkMtfIRIQehjXQ2MFi6eRja2uVGmIJutETwR828krdwVPBSFDFw4iJI3y1HkHBstATOMyP/Rv0dO4OSiv4eB0suAiBtGA0CIxyWbPe7PaGcawdLyrkHQIbwwYIUpGaCucbzCLh8BcotUksYrJ8DbvmlSRXtiGfJXYglGf8AomQ7KMcjbBhBFqXUoGYp1sWiUJVuFG1Asn0dU7yUKJNi1IgRntxyydYnd8lOz613HDJUw5Jroy2fNG5Q8wa/8Mxk1MjnQaCkBs0eDBpoR0ZDyLyz3miWgkYnQGArFYokAYlR4bJsRiSJv1sD4SyhE6bVCRJHWMgrEYbVICj0PRpKyKJ9o+mIgOF1CX2gaOQOqb23SZKYaEfWfR3gHaYh/twYehXAQiwdx+ALn/9JhX2roB6QywDCBujBn3U3vXbFIYxU0vMfnGJ3l+8m367XUkHrq59hAqGVONjrP75Nc4fOf7kcXha9j2/Y/Hn4MlBnv0EHEEt8i+R34Ud/IhoinIrAUN1GpoTUFGk+TtJe8+EhAwikWzErt6AIxBQwMaiJ1qmI0NTicIFSEa8uNv5uCP/F048XqicaiUBFsAEdHUh7rV5CZVA7rjVGLSG7CgRm7KD9+GERG8WNCk9AigpkzWuq5PXS6hS0cp3/AjEEPaUEIkO3AvKx/4WepskACZ7ZTy/vclwZJW0QB23wkWypK+hcUMVsINBs02ZGPGZ9/B0nv/C2blapdMOazLU4vUjZPYDppAgi4HTGrPtE0HI5nXYHJUksESYhAVpAOuzRXZ5sZQ8orKwK1wztcq5piSiJqEb1FJ/f1OgSDRP+ev0SQVO6BDr6dzWvMe2s7QZoqO9iEmY9ZGQlSCzfBZL0n/OovTCVFdsklWBUxqw9icTFNf1KDgEiZEQk1jyi5p6HPyPX+FwdE3s/jQj7D8yEdTSVVy8v33ML7//agbsHjyDLEcM42doY1Nlbk/c3Hr1NlrC3azyiSdT9QTvMe4HgbL/v3LHDhxiOSoZZMmA3U6v8pFbAQzvYY0E0I5pC0XqU2ZcALGkSzH0lVE54ZBmpJfkWScJNYSbC/N+7yHmoK56LloAjlGIGYFR975o4wOv45i8RgH3/dfQjFGaWhv3y3rPyESeDBVA9Lv2L0zRFCb7a0rYyI2bCGbz9JcfZqCCcaaTnclJC+btTMsfeBnKLQh7FzoWAm33wP6c5EMSDfTVQwzMbS9dVg9hboexiRg4YyciRmkg9oaou0RJCOoJmcvMfgg+HxA4wPa8eijJo97YsvOy8+y8dRjNGqhdwAGJ/DDQwQyUjYNdPfnvV6oQKIxlkCBJtghKuAl0poOYXybhtDpjMcaNJWNgyuptGAnW8LuvxNbrBAXTqExkhkFCTSuTxicwGYlrp1ip9eQYoVQHCaoUDWKH65TGsu+gaPndzhWTNmXt1iXnN0YncD0lzFd08VZhwj4PTOUkABYNh3sCmiIGJMOREVpxdCIJA0lD2iklUg7r3Nq2qJvKpLNVQdf+zER1WRpTUOEhBg36VYeJKfFpZsggGrH7Z5/hL2zKGYl7WQHoxH6S2AM5y5ep/WeYBzR5ajLkbIkqUqmxHhPfdE4cBmoxzez9FtZQW6UoJHKDlJlRnJ0eAhf7sf3jzArD6VEEiHYRab9Y9TSg7IPtkQHKxjjkkT3n9GYt0JEUgnedjNNRBFNCoQx+CQ5LBaDR/1sTwJe5xx3gWjLpGzXbBP9lFAM8OUYb/I0XmKYs5OMCGFPQryT1RFJSaUtCK6f8FHGEdQQdK6ykcYiCmmeFfuRbAExJWFwgpREp7n2fVVJ/75H2hBSgSCxCoQG8Kk+IqR9xZjkbtLukOmUGNvEUBOHEsiyjIlbRtbO4iz4808B7W3Z8/pzkAzMH3okGpMkMW1B+YafwN77HhxKKyXeFASjiI2Iyakp2S0yfEwIazENVhvEFYgapGmInbUvSLqNXX2WcPkFhgcOw8IianqY4X52zDIoZKHuVkiW3AkTMq57ffP+s3SLNllsJq3r1+Cx/SeGqGJjJFqDSpFsZBVsVmB6JeN3/l0GR9/SOQdmxNGh1KuPCm6UfACaCupEz7F5xDaeWiy+6PPAwQH/+7/0JpZHhoHZZTlcBS3QPCLZkMXT78TrIP2bRmjNAq3k4DQ9Oyu0MYfYx9sOFKSjBO4hySAnupPsfewZW83fI995/79dBiTNJXDdS5+/h04DYt7KuOXT/G/twbskI4rF19exDkTGqDFc2bpCiBlIH2sLjBN8OSTYAY0ZogaiCWA8ohXeDQlk2HZCQ4YteozZTTRBumTBCNoBMBMF1yRbsBgwainKHt451EJx8H4OfPDnkOE6mBwnc2T6TZzG7TIK303ME/y5tLeKgBRkmuTHEYuNAaTExBaR0Hl8BMDgsgx0htcF6rgfxGPxzExOCDNsu0vI+lT9fWBzGtdH8DiT+tgBwahHcSD9hFcSQ+06KWtxKVGzBVaEsoM8q+mhSdkDg8XYYRIdQjomUY5QkPOneHxSaaZr18xN7m7dH8CqR/Mx7fAQjfaQ2Q69dpe+VWIMCJ5ARm3K5HA4WKM8fBfh0regupEYa7dZ/DlIBrputklZuCUkPN7CGeLCcTJJGv8uGjJt0ySwi/iVe9hePoMZ7aexC9TliHjwLjRfQ4JiiIgxSY9aAqjSDxN6cUqx0IFubAajg8jyKRI9sOkycMvc8mfead/bsGW+VQum+1u387JKLItALY4gNrU6RHHWIkTs+gNIbx+aw4w+unomyaeqYsQSnUOrCeHyZdSCoUZ8m4BPmWVsppxaLnCiONNQ6hSlB5L48GHhTtrVB6BcpCgynCmS/rmF1o3RYpzEiaRPefAMjfSJkm5JVmts7ArncxK0CFZseu57YzJ/r/Nfb6cxyZnro++BT0lvxXFrItnhu0VubnaQ/q4VjN9EnAHTwwdPMAo4jMmxLkuGU+WYKvYxy4cQkxEwYC0ihlYKmmwRUSG6PtJfpE9NQcSYVJVDFCsRJ4HcKHt3Uk0YDsl7VLZPsAXaW0XX7u50BBKAUfjToyPwx4aA7hn5pPWv2A7PUoN1GCJJZyGtqdiZ/cQQu2cCbv0BsqUHQCzZYJFqsE4ILXWrxKVTxIWTYB0hy9M+FT0+JHKb1TY9RXW4jjoYbJ4EoDQmkKHNMQh5l4hFklufJSQNAUzaMiV9YB0iZef2+ac10mqaG8qn37HQVXhTSzegWU5cOUUo17Ab11nKLMt9Sy83QJNakcUwaasYi13cx+6zj+JferKrDt9e8ecCQJjils1DDEGTvnRmrjPUHcrQkAULWhAGh1n40H/FwrCE/in8zsfYLg5w4IM/h04D+ql/h+DT4g2zDhn6/2/vTWMsS86CzSciznKX3PesrH2vrurFSxs3eKHHjAUMMvjzCAR4GBgjm18fi/AvZMlgsQg34gfYwkhoEIIfWAKJsUeWsBh/g7FsjOxx711d5eruqsqqyspacr957z0nYn7EiZMnb93cM7syK+ORqjLPzXPjxIn1jTfeeF+JxBCYBBN0YGQ3TR3QcfLdnDr0GAQVEJENb8nqU4ko/L/7cdNQwfZbBGgZZxNANtwFHcxXj9B96DwmiLKTEgYhAgJdRzemAIMJyqTaBjeRYYDW80ijiWnS1IvUTaZuNgakoHrsKSqjY9AxiKx0Y+anCU0NohLT4RDloAMpQYQhPe/6KNNXXoUwybYWUoRIsUc3Xakvm/l3N2KdLUW0TpyFK2EIJATzUxD15m59gyAkooESIFQEQhFU+qE8SXTsAosvTNqVPjGoKkEQoc68k8brzyOCCpT67AQhDaFcrmcRWH8NgcuLVKRSEh08Q3PoHGncb1eWwtokFLUajxJtre0FYOyeswFImqRGYlSAEMqOObqJkkDUyYEP/W+g+jGqSnz0XVTPP0MyN0kzHqTvXT8DgWT6pa8QokFra+8hIozzqucygt2WEFJgwpBURJmzIJGNbw/m3u2hP/gCjwLt+5bACnFGhAhdp/vpn8DMvkD64v9D3FnhwhOnma7b0O3SaETcQSOsWhcPMiGo3aM+eYXoTBMrXOwe9o0w4DqeyNZNWkgSEaPSBQbFfSJTR5sSDdFEB52U+y5gOrsQ2na+RHZAzwXgLmpxiqQ5jar2IOfqCNPEiJBAN9E0SYIKqSpZ46y4H1UaABNaAy9jd952ny3pFhASYdeJ2JE7JFGlTPUpEFKgVTeL/Y8ju4+SSInSdoDRsmRXGmYeYwxalWmahEBrZBCTpgmhTumLYTECog4QMVJk/h3CbppRJ0aA7j/B4lyNsjEIFTEnO1A9Y8jOIbSKMJ2nqAWddKo5RKoxlDByd63zHwYKg5q/S1oetTHZMZA26A0XCIRGqMhGaiv1k6ouZOcB66oZjZGhNbQ1hqT3MKZ6CxWWkVGVskyJhCZUUOyBdhox2VFagxGKBJDVYaarp+iRfVZjQMqjXTtLwb/If8tWpTIL8JPWMg1MAEaiCVHpom3/xJiuE8g0wNDExMPo7hH0zddJoi5M9TBBkJISECmJUSGpqhJ0VJmtjCBknNnKubOAqR0XgzJJ0AFyyjrnehTCQ28rgkRI61m2ehBdGcUIRUBCIBOiwI6BAoHpPsT83WkgRAAlmSBq98AZke8iHoowYIwhSZJlRjBKKUxmjOfciqZpml9vDaf2sb+7pq1lRDVO+dj7jjL+jf+E4aMk6SRpJSIOYpqiQiTrlKIEQQyyC6IaqnaXNFLo/mNQm0Upg05BmhmrxpMxRmsCITAytgFmRaYYEst0FIX87VVE7p7fDW2y0oXpHSKt3wchMUIQ9h5k9IO/CB3D1l0zGiUDFlQ/JVHNzvvb89VpWicwTaSMaWpDoBM++hPPcK/vh3TPQrl/1Bo7GasY19IeeopP/hhdo+fQYRcyKKHCkPITHyAYe5pmUEJRRhtFksyBltRFjEFQ3svFvwUMBlJsaNukQT3soaoUgdR0hwlPH4goB6BCa1FOeYBUliHoRoQVNItYYzFBGpQwHQdoDJ5CaSiFkm6xQCwS4iDChpwms5q3uAObRkhSAVp2cOTH/lcqPUN2xWn03u4aq2IFItzKm8JaVCqUilDpIqZ219q+ZAagqYyIG1YzIKSgKSIrbIk6RoUoERA2ZjCyCyFDjAhIgyoJETpVBKKD7nPvpOPAMUTUkT01M1IWAU1RpVE9QPXEWea+dYsgC0+/C4/FP1QMVnOVhj0klYMkRAS6gUmboFN7okrElE4/w+joGVDdpKVOmqnG1Gbp2IUGhA9VM6C1JkkSbt68iTGGgwcPIqVcNvlrrXOhYXNkPv5Z8v+d6wfCmPTGawwN9DEv7iL7DmDqkKgEIRK7ByuayN4BRNdBQCHSJiENZMcISccQJuiCygAiTQhnL9OIBzHlLqRwQZMz4SMzPFlaH/HA1Z4kz7rJpF0bi0CXu0mbs3b1D6i4h84DT1hnT2DV0YTQd46FjucpzV8hlBUgAr1IkDYRskSiIjAJB/r6KfdWkLofEXXa8VPY44Jh5rdBdh2FrsMsEhGrEIm2ESL7z6JFSKgUujrAYlzDUKa593eet46AIIipNVNEeZSqiikFguFggQO1GwTVBKlK1AmodA2zoCIIOqzRYZaEUiHN6hhR9QjzvSlBbZbeKKCDGpFICQO7NaDzRy5pBqyOLLPbECFdo4+R94lHvGqWB6sx2bQMECCDCLk4Q+3y89a5mdCg7Z691Jk7YpzNgV3ZCwFKamRjnjguocwiRnTSqB6kc/Ak9R++hCFAdB4m7BiyAl5+TkZYnyDlIRo9p+kavoCRX7Mnb7wU8ABKgCCgKQJq1YPIoEyYLtohXVlfHgiB6jpEteswKQId2Hg0OqlRPFa+W3howoBSNlrf17/+db797W+Tpikf/vCH+cAHPrDs70oplNqqUt1NyynKaIywpiFGSdK7VyhNzTJSm0aJwzSiXgKjkaZJYCRaRKiD7+HAhw4j407SICARAaLST1juph5W6fzRn0cni8x/4/8kfuonCU89lRkEBUiMbTjLpH+wnbcoCOz1DmePHRkCa60sS9nxGuuLQKJAlpFAQGIFBxEz+t6PwnDA9P/7VyhZRsqIgDpBWkeoMokKMTpF6EWCZAGjytnUYd2iCmOtse2wFpA5g0RISaJiTNCVD3oyrjD6P/8KhBrTOZSZAxVPc+wvnEGhjMqIuErn6fciVIWShCE5zTF9lSCNSWSIURGid4RUKkwUY0KZhTEO0GGJoR/7b4hqL9VDTyOTWZLJNykFkjAxBMoaD2YPzbUDxR4RkNg2Iqzq2mB9bexxUXltnLoEqxW1nqVt+OxQLzB3/RWqpo4Q2q7QhUKkCc6ZeUgKRtk9bIw9197URCXrrySJezn8078OKmHxO19B6UUMEi27MVnEAiPsscJExoxeeD+i8RSm1rBbQ1Ja7ey+MDVfJ8agTNO6GkbScfppzAuHaczPYLTEBNYdsdRNEhHSEJLAJNbJEymmOZ95KHzYL7KchyYMGGNI05Rvf/vbfPKTn6Rer/O3f/u3fPCDHyQIAq5fv87k5CQXL17k3LlzW38eblDRWUeygVfK6QxHqdGvIDIBdSoEsma9u2pBQ5URpcOoAwftOWwV01AViLoplzqoiRAxdAGDZir4v+jpP0tcGSZBkApBiLCGJA+cSy/un+7dAW9pt5MlQyMh7XllYaVje1ZXZNrQFGUadrURxIjOA4hDT7IY9xDLiEDakMgybVibATJhwNSRaR3tbBGyh9pz9ApBEzAoI61vfCGpBV3ooJw7tjWqjDzwHppK0DQxsV6wQ6qs7N0K2DLWiYoOy4QDRxEyIg4kA2qBvvo4EcdYNAE6KGM6++1R0CDEhKAlGFUiISQeepxEBGgg0nOIuTtgBIHQNuS11pkffSsG5L3BCIzQKFPHun+NMgPDgoHbvmBp/0QDKogIREopnUPpxAoD2KPIQtuJRQgFJBgpbcAh00DIgCSVqMwBVU0GVPvPQf0uIAjTWYRukGbB0DBYPyoSEiOJO0bBDNJMb1snRZIHzsTbvr6HDG23Gfv+TRpCkmpN0DkE1V7E3F1MCoRB5iOijhESnZ0as0cwNboxD7r5cF+iDQ9N3nOGKYuLi3R2dlIul2k0GvkWwfT0NK+99lq+hbB5rGGM9Y4nMSKyUQN1io7LJGFMXzLJwXgBoyAQygblCEJ7mESTKZOthzcbiauJChRE3SSqCxP0YEoDhCIhFALCXqs9yJ6vswNDLPv36IjaRkCABGn1LyIVSLGICOyknUucgsweJERgHZ7YYzclmuEgRjVQzCCIaBCgw4BSMgvpAphFVKOGFMoeyTKLKFMrFGN+NhCJRFZGGPrg/0HQccgeEjLSenULKghRJhAgRZDlZb9isL7vm/aIZyxJVIlOFfLT7z1DGNVBKKrHf5TSh/87qvs4XT/+3xEdhxDlYVTQRASSUIARIamLrinLCFWmRy0wqmaodx0Bk6BMkk/0SyoCe35dYFdZtmu4o4PusOSjiWut9jeV/yYR1nbm+Pvs9opU6KAbKQWRnkcnTUxgvUkaa8bmAm0jgiqmOU8aRBhVoWxShAzBwKLogLSJME179NRkTnGlFbpigRWMVSciUiS6CXoOIWqkmfgmjUZqwOyyZe3bjBEhCklJ2tgc+vzP0igNohZvZZEMFIgSAYqKSQkRhINPIn70EzRkbJ207TIemmZAa00QBPT29vLmm2/SaDQYGBiwFuVac/78ec6fP8+//uu/blEYsMZqgI3hbcAFnTFBibqKidM6ioC6AmXsSokgQhgI0EgDUgvS7EC6IkUpCWGZRMWQWeqGukEorK8COwGldq9PhLSf/B+NHWuBQBqVGQuC0IImceacZilcp3MaI0R2pMZgbQdUhBYVjEgRgSDREYlIMWFIqBdJJ15Gl2LE3SvEw2eyUwo2yE4isH72C4OTEUDUS9+p9+L2nqVbBZGdmbZ+eN0L7EusxkbRaEYk0Qg6rGBMTCgDDo/0MxeUSVUZ0X3cnvnXgsqZ48A8uvMkC8EbdgMoU3VLAaEwNhSBiukUdYaiOqbngLWTyzcGnEGvyQyxwJ6nL2RumevnR49cH5gdn7TNc2k8ECaGwTOkb30fqazHTZHUCXQNow2oOLtT5aeTrFKuhDSL9iiiiu02grBeKecrB+mLeiFzQ5z70siea5cvth+JIGShNEqnrhCIMLOvse6v7USnluV3X5G118x82S4VD78H/f3/G7lwG9Vtgzmlwi4opW5gkKjOw0SnP8T0+GVIGg/3HdrwUA0IjTH87M/+LP/wD/+AlJJf/dVfzYWBrRkNtrK8yVrtg0SFMUbaickARipQgfWSlkUttD3MquXshB4iKCGDKiaKSWUKgbZucMMOEuz+UIhCGA1553lEVznCCks2KFBMKkAFAb0n3keaLqBViFxmC1YoAwHGBBBUbGAdGUGpn4YJCZsLqDCkbppM/o+/QdZmqE6/ScfAAeqAkTb2QItHoFxwXG6P8eCj94OB2npIZUT/yfej+4ZJgwFI5jCBIGkaTFqlXuqgJCOkrIAxNCQgIjrOfJD4wBFQ5cL+P0v7RiokCBTlVBOU4mzykNmEv2SnsWyTbHnTeORp3SBs/c0ohW40oFJGSnvqAq2tMLDC+Cjc9oFUmaAVkSCQpQGO/dT/TtTZS6JKOKuDB1LJ+pOq9HP4f/ktZN8xEtFhw6sD9vSIIYHMEdF+RCwNH8aOMzKMkSqEJLVaY1qPY1rtsAwjK77tQhfbD1UzAPDYY4/xR3/0R2it862DVkFg60cLH8QYkEGMFjHOKSgyBKMxspnbOlv3KGlmECiRJkSYCoQdmLhCU0oIFUp2kPadpEEnpdxzVRaC+JEmC4qjI4xQpCIFIymdfBajmiwS5quWtt/O4rKHQttBLOpCBCEdzQWkMCA0XfNXCGYmiGggZAONoSEEJQOByTzue4vnDWOEoCEkpfIB5FAPTVlCyml0WWCaiwgRk1a7EELmDoKMsDEdo/7TlHsOg4jtaZ3iWXQDSEUQBJTShp3IjLTGb/kNS7YkvubaIMCoAJp1tFAIaf0xCJOSGmMDFQFFayiwwoCWCiGzOAYIEiGQskQ0dB6DRjvnGqs9XlUIRt5JU8QkRthttexZOoud0tZp0n4hl2cFxigIrPbE1JsEUi7ZTwFWEy2zbpGFgtZeGADs5K6UWjbJuyOFrVoBJyBs27MBo40Naxx1kIiSDbhhFDIskRqNUUvT19L60qCN3SQQQYxWFUzYyYIsgyojSwP0/sjPoXoOo0WINGCEslHkHlgDPFq4XWD7X+YqNRzEyHRd3xdS2DgPIgBVQgpDrBeRJsWkKXE6i2IRbQJEWCLAagCkadrAUrK8lJYXCtaNIbMkD0sIGWcasSY6MEg9jwogrXSAhkBra0UNGBpoUUGH1WwAWToXYC3PJVIESCUpmRrSaHvePdvbtgKkCyTtWQkhFTJpoIWy84kKkWmT1EpRLKlhLEYIZJBF1FMKYRpg3RTZUz1hB9KkhNnqfrXSN0KioxLCWJsQhUZoGxdBZWPaUp/ff7gtLrBjl1QRYblK89ZstozUBa1LFiTNgJISZTQ6ae46q7GHerRwrc+3TQgQS6dpHVJITFRBxh1oEaKlIghjGmmCUXawspufWacxMtuTMxilSOMKgewkKY1iqGKCTiqnP4AWNtxnZASptGcXwkdYI20P9tlAOS7MbyAFWioSFCHZtugKBSCN3b2sq05SUQGgFAbM3W9SNdYFq9CCuqlYZyiqh9ANgkaDaWIjPj6qJbxzCAyBsMfGUul8cyZoWYK0jpIJOujMIurVQARIAmJSJMaGNbYSAE4taqcoad1MS0WFBaRJ7R4qLhSs7V9a7LrTVbsKIQSkidUMmNRG4tR2tW+9fhZFAXsyScjACgPSRu20J2ysR4gmdgEmTB0lrIvpFfuNMGhSpEjsKSpjrF2OsVOGarvHsL9wwoAVCySVji5qjSZCu6im9nMn+IJBKHuyQKdpFnNi94xb+6Q6iyvzrAKkQqgScaWHFIWRChnGaBmBjKz9QP4NCTo75qQMoqxIgxDZNUr10DsQYRepETRVD1pWsr2kNFOdmiV3n48kAo3COtFIUEaCtms/DQR67cZuZInykXche45iVMwiAbL/GGH3GGkCutakHg4wM/AOdP8ZXChVLUOM9ILAZhEGIg2ClERkE7WJSOUgzSaIKKLzwHkbqlXVSSWkSCQhQhu33llKD7tbow0YFRJEId0lG8xLY70MAnYrDqx2zrMiwhh00kREMags2JMTBuRyUcB+QSCkysIQhxgZWVfGJgG9iPP5YY+9rfl0BApp3NipQLjTVDZvDx6X3i8stXsnBhsEoqMTrXUWkbBQNllwMC2AICDRmqTpDQgfLnn9aHs0RkiCqIImO3YWRmgV55qBJaMoZTUDApCGRqCQKkJ2D3PimZ8EFSPQNFGEGAID6CZK2Hjytrk8mmsg4yRj0cCKTeVspZjYd04lQq6ijkSALDPynp+mGfaR6ikWZZnqyClk10GMEShjSIMuhp/9eaLRJ7BKS6gjiUW0qk2CZ2WEEWBNPGxsHAykZVI5hK7PUlIxQfdREhmAMDSz8E6RiUBrpNL5SjHHgDYGKRVSKgJjz1MbIR8I4W72967zGghkEJGKEBFV8gnF7jU7GxlD7gvclaUMbb+TIUbGNBA4E0/ne3XJh8MqZW+yo51GIrDjmJPrJTozjt5f00eRosGsO5VjSmUgi6zZIigZsNFTg5CmUCRJSpRpBpYbPT889kVtGoxt1AYgAbFISgVlSggpCMQCdR1hojLy0BMkQTnTHiRW5YbVZ0pAlEYw7/hVgv6jyLDHnq1XEUq4U9GZ5KyC/Pzuo7wzalXLgAwKR/4FiixM8xoykCA7JiX7EDJAGEkgNJGpgYpIgxJaGIIoRJT6EaqDFEkTSShsKGmvbN4k1sYVhMpO+RuEgjSOCObvoUUAYQUpwJgqCkXgwtaqQps2wu5rA6CzaIOKRAm0boLqIjCKMmTHQrPw1r7eVkESjb2b6i/8GbKjH8IBRO0uCmgGkd1q0RojIpqAShdJRYzoOIDEkAq7VRMKABsCOiSTG2S8rjHJeqjEfWvJRtfYbYr9itOwJEBoEivoagNhGSmwoaKLPjKyuSEUBoIBuj/wKeKhUw998m9lXwgDDmGyHR6R2ilExjSjKoiIRVmhXOqm89i7SYMK0ESIFOPWncJNXF0MPv7TQHYuOCgYGrqQspk1df6H5b88UjjVcHGFaIsh21ZZY8wQFCeIBGREI+ikIQJCpRBhiMGgpEaoGERgz3cIiI0NRYzwk8qmyfzRurMzKA0hKD2DNgYjZbaOjJBG5L4iKGp7jEEL62/AaonsRKKVslqhoAxIlDEkIlOpoq37Yc8KSGR1lPDkwayUmgju2vJXUTYZp5gsUJQxNRtBstSJKsckKgBE5jvA7lurbMEqCNZW8AuW/D6IZT9wYcn3L3Y+kNlWSYpAyghdHWVRVohDG64+l6OyeUcJQHXQcfSZPBgfPHyNgGMfCQMmNyS0oW0UWgXI0dNMXT4AXYehOmjDtWYGOvlxqbwzZDYE7ghkoRKXVago3v1ok4tCot3na2NcAesk27uO4eDT6K4eEDHSaJRJkVKhArvCESbrWPvF5GVHcRO8M3ayIaeFTjC6iZDLXQIXB7jlWDW1m+qdu1whJeIBYzfP+ij0q8w7k0FiZGC3NUUKmVAlZIoUGiMFutpLEkRLK/kHxqa1+6douUk8+Nd9jLGeGE0Tg42YGhIS9JyE7kOkqsIybaWwJ9h22+Tfyr4QBtxAZLfXJCazR09VSOnU07z1//0PTvzYTyKHTqKNRChnEa3z7y9LL6vM7QmvvL+xtuUGRQJGk8oyw8/8PEj7eRTFVpsjQ4QqQebn223JeIFg6ywdDMx2DoQVzkiTB2eFNt/M96zdkZJsJSqERAoXhdQ4yc+zUZyjJiHQQpLKCCOsXw8hyDxA2k0AI0PSvtM0VA9++2xnsK1Yg2lYe5rMTkB1jhL0DCJSe6Rz2Xd2uSAA+0EYyM/kisyARlrDKQGJUKhomI5T/xNq+ElQPVbidhqAwkSzkkDg2RpLdrcuhKugFg8SAIGeISh1Y1DIuAOkjVgoMLbhiv0WzGbncH0DIQmUxCQNpE6yQFCwZBjV7ptZcG67mYqRduIyUmGy0zTGRcXxtbUJMut1IUhFgOwdQpa7gRLCZL4bTBlhFFKU6XjipynJCC8M7CQ2koTONl2UyRzVCZD1+2AaIEr53Xthvnj0hQGwptICtDBIA8JIpBAkAkR1iEM/9t8gLoMuLxnE2UPztFP374WK3Svk6uPMO10ANIS0+3FGYcoDJCKmHvdQirpIUQQmtS6QWdpm8DWyNXIvwkYQKIVuNuyZjSUbqFW+mbHMPkZmdSraq6s9G0dINBJZ7YagQopAGZEdXY5A26A5wfCTNuiQiwHi2WYy3aQsIZHWAiOtI5SiGXaSGEFsdp+HwbXYB8KAW+VbJxqZVIDEWPfeIoZ4EC0FUkhIRa7t1IVVpx/GdgaR618iEDaIrZW5DcIIRMcYDdWB6h6lGZQzVTQU9Qm+brbO0sLdqvZVaiMMis3GCMkMpISUIO2xQi9EbxS3GDF53aRCEURltD3ghxIGYTQmC46mhSEJu7IIkb68dwarAmtiXQtLnSCywETxifcTdFZBxmumstvYB8JAkWzf0jjFZoIxCmOs/+4wJfO2RmZsCH7VubOIzGrAelkzCJMQGgEmtfN+zwFE7xgdj/8ItaIbVGOWjlh7NknRpK/gQkYI9PQUoU6X7NdMZiD4QIE/4Dwg0wBkmgEhESLbLsD1Jr9dsBa5IX/unMH+1EKhgghjQNtzNQjRQBDbI25AQ0CMfMQDQD9stNXSmKb1DiljakLR8cSHs/Vm3BKgbfezP4QB4eINWmMmoezJqJggOwFo991EQMEm6lGPpr47cIFRl04lqOyoot2waXYfYf7IT9HR9xixSTEysG5Zs0lFGJ1v53g2inUOZcMHa5TRGGEQooRcuAlxJ3bTbCXtgAZt60RkthxGZb0mSGiEVew5xXLmyEtZQ1EaGFOmKSB6W95zb9JEEJgEYRIbXTUQ1IJOYiGQur4kXIncgwASG01QrFhnnu1AoAgAmUWIBEUsQMhydghk741Jj74wUDjTpFwHyc5IFz16ut/zkwIsVeXeqtK9R95xhHlgEOs+cJyuvl+GUjU/yqmdTcHSTvfbnudHAgFLcQW09SgtBPWmpJwsoqp9rGg4KOyq1UUasFjBTGBAJDZ8NQKEtJENnco7C5PTGuTVs4QRgtQYAhIgISVGypCFoJugKekQzsnXUpAAV092feNLd+ewS35rW6byCSJALPO/sdfK/9EXBqAgqUHLj+U1Jtr+6tlRxAP/578ag5AhIurAiBiyM71Ld/mT61vHnp4x2caZQdE1MEISVkiJWb0nZIa5kHvHzTYIwBiUEChpcmd1VgxQ9ly8AeU72dpkQpQGpIjpP/Vuyr2DpKpqA6S3lOHenYr2GsujNj4Kpb0/hAHP3kRgDxEGVUxmMOUNBreTfOq2vxurco76RxGdgyRBF2u6nRXZkd3cqFPkaQkZ2iBHwoobGhvoKCRAGEOQH0v0NdqKwAlYMitjgVZlBt79YSCkIUJfap5txQsDnl1MtmUjVnKf6ofDreAMZJcUygZtBEpEJKqCDitrCgMGYWUIAzYaoZ24FCFalZmTHVTiKmAwGrQkj0ogcmHA0w4JefkLY/sB4YANQiSkb/6ebcX3RM/uRoilY2rCqkWXN1o/Im4eF8Gu4JtLKVAKHcSYsMxa5Wun/qWtARsdT4CM0aV+5uIhCDoAUEI7s0+8z4G1ycQAQBBkW50mqGJkhPQmgp5txmsGPLsck6ugl+wKTB4Mifwzz8YxBVfERedBEh1GEJeWByRq831IsgiVxi5fhY0jqUVM58HTNFJDKsuARpgEJSKcAZbJDD997bXHbqAohLFeBYywIaStQ/WEovGgx7NVvDDg2dVYQSBt/ZSiettPJluhcI5d2HU9wqCDEBFGa1hoWJNAaZyGwODOJiAUlSPnqBw8QV1GKOpgNBLntd1tEvjaa4fIVTX2pyDN3KRkJWjqCOK1bTo8nnXihQHPHiDzfb/s2rNljEGaBERIiiCVoIwGPUsz6CIMwzUkLQlE2bFciQ3bKokAKSUiHsYAgQBJCNIsmQsWT/h42rJUOksasCwsDsKW8sPIlucRxQsDnt3NkmP71j/4qWSLOL2Kjb5pBS6RakibLAR9VLr6QKziw0EIhHUcnSVm77X2AwJkFutDCDAy8yS95MVw77lleRtZdvbZhpdepgcTfuj2bC++RXn2AH7K2AmcOt/uTLsj7QLCbppdx9C9w6we7OZBHxFLc1jLiXfR8nfPBmj1HuBL0bP9eGHA49mv5EGfnGdAa5hpom6O/uhHQIUYf57d49kXeGHA49mvGBf1MTtgKNLMIK2CqFTRBvy+tMezP/DCgMezj1mKVegiDEh7PNBIGyvK4/HsC7ww4PHsUwQuXLdh2Uk2A8t9PnqpwON51Nm1woAxZu2btpBu20hsHs++I80EgqLfBp25FyYLz+rxeLaTnZyH7Omgjae7K4UBYwxaa4QQaK2Rcmv7ljslWHg8ex6xdIZ9WTRIf+7P49lxinPTVgUDN29C5udjg+ntSmEAbMGkaYoQAinltkzoRYnJCwgeDyyb8c3SZ8t6h+8rHs+OsF1zklswG2M2vXjetcKA0wgkScJ3vvMd5ufnt5ReUS2zlQLzeDwej2crOM33dmwXGGN46aWX+NCHPpRfbyY9YXbhEllrnas77t69yyuvvLKlwnLbDa7w/+mf/okvfOEL25Vdj8fj8XjWhRCCP/uzP+Md73jHtqVpjOHpp58mjmMb3VWpR2OboLjfMTQ0xPDw8JbSM8bk0pLWmhdffDF/htNAuC2JorTmNAjuuy6dokqmnZahVTJb6br1p8sP8MC1o10+gGW2FcX8u3SKn7e7LuYFWLY1UyyHdtfFvDmha7Xr4v1r5au1nNdbF8V7iu/T7nozdVGsT/eO7rPidbHdrbcuHDtRF2u9z3rropiue+d27bGYv83WRbE82pXPap+tVhfuvvX069Z0W9Npl7/WumhX9tvRz4vfaZfXzfbzIq11vh39vPUd1lMXm+3nxWdspC420s/bfaeYj2KfeOqpp/jABz6w7LlbYaW2sBF2pTAAO2ftL4Tg3e9+N7/xG79BGIY0m02CIKDZbBJFEc1mkziOaTQaVKtVZmZmqFar1Go1wjCk0Wjk9xWvlVIsLCwQRRGNRoNyuUytViOOY+r1+gPXpVKJJEmW5c0Yg1LqgcboGr+Ukvn5eTo7O1lYWKBUKrG4uJin7a47OjpYWFigXC6TpimNRoMgCEjTlCAIaDQahGFIkiREUcTi4iJxHOeN1b2bKxv3veK1UookSQiCACEEjUYjfzdXBsVrVwbNZvOBgbnd4NY6GZTLZaanp+nq6mJ2dnbFdy+VSgA0Go08j64+gyDI37ler+dl4H4Wy8a1g+J97ntxHGOMoVar5W1jpfx0dnYyMzNDd3c3CwsL+aDQbgApTohCCIIgoFarLWs7rlxdnbWWszEmf5fWekrTNN96i6Logfbg0nJlVewTxbJTSlGr1ahUKszNza347uVyOW/jKw2crjxaCcNw1f7jrl0bL+bV1V9rfy2VSiwsLNDV1cX8/PyydrBSv3Zl4955rX5dvE7TdFm/dguOdu+9mX5eqVTyZ7g+6OrJvUOx7brvrtbPi+3FlakQYsX25say1n7u6r3dJOXeU2udpxXHMfPz86u2pa308+I7F/t1cbxv/V6xn7sxdbW6KPZNV57tBBwhBEeOHHlAkNnKnLcd8+Wu3CbYblpXM+663QqktYLcZysN3u73orEjkA+8Lt3W63arIPdPKfWAdOu+U3z2SpI/PCjFtltxta4Sium5zuMmbNeY20nS7b6zUhpKqRXff6WfG62L1vy1q5vidbt20JrfdvlvZbUJvl3+N1MXa12776x3Fd7u2au1l2L6rauzdt9daxVW1Mi1e2axDIpl33q91bpY6XvFz2Htft16Dcvbzmb7+Up5XKkuNtvPVyuXdt/ZSj/faF1stZ8X879Sv96pft5uzGx9n+2Y0LfCrtUMbDfFgm43Qa40abb7/krXrZOzo12Dav2s3cTurlcbnNr93jrQFweKdj9b89RaJq3vt9Jz17pul/ZaP9uxVl2s9vx2163v7f6+VodvTafdM9rVXfHedj9XGlg2+m7thMT15GW1PLaqxtf67lr5LwoCjqKwUqT1s63URWvfWOl7xbbRynr6eeuzV6ur1fr5Suru4ve3o5+3u7/1b9vVz1vb51p1sdV+vtL7bEc/X8kgcKV5pbjl6Vitj66U9+1kXwgD7SbplSZQWN7xms0mExMTXLx4kVOnTjE1NcX09DTnz5/n6tWrzM3N8fjjj3P9+nUmJyc5fvw4d+7coV6vc/LkSS5evEgcx/T393PlyhVOnTrF4uIi169f58yZMywsLHDt2jWeeuop7t69y/j4OKdPn2ZmZoZbt25x/vx5xsfHmZ6e5ty5c1y+fJnOzk4GBwe5ePEiAwMD9PX1cfHiRQ4ePEh3dzevvvoqg4OD9Pb28uqrrzI2NkYQBFy7do2DBw9ijOHGjRucP3+ea9euMT8/z5kzZ3jjjTdIkoRz584xPj7O/fv382cCHD16lKtXrwJw7tw5XnrpJZRSHD16lMuXL1MulxkeHubFF1/kzJkzCCG4dOkSp0+fpl6v89Zbb/HEE08wNTXFtWvXeMc73sHk5GT+ztPT09y+fZtz587x5ptvEscxJ06c4JVXXqFUKjE2NsYrr7ySv/Nrr73G6OgoAwMDvPDCC4yMjNDb28tLL73EsWPHUEpx9epVDh48SEdHBy+//DJHjhzBGMP4+DgjIyM0m03u3bvH6Ogob731FsePHycIAi5evMi5c+eYmpri3r17PPnkk0xPT3Pp0iXOnDnD9PQ0k5OTnDp1itu3b7O4uMjJkye5fPkySimOHDnC66+/TkdHB4ODg1y9epXOzk4OHz7M888/T09PDz09PfnnfX19vPLKKzzxxBNMT08zPj7O+fPnuXPnDhMTE1y4cIFbt24xNTXFk08+ybVr17h//z5nzpxhfHycmZkZTp8+zeXLl+nt7eXo0aNcuXKF2dlZzpw5w8svv8zIyAg9PT1cvHiR4eFhqtUqly5d4tChQwRBwA9/+MO87d2/f58nn3ySqakpXn/9dc6cOcPMzAy3b9/m1KlTTE5OUqvVOHPmDK+//jpBEHDkyBEuXbpER0cH/f39vPbaa5w/f55SqcQLL7xAX18fvb29vPnmm5TLZQYGBrh06RIXLlzI+0R/fz/lcpnLly9z/vx55ufnuX79OgcPHuTq1ascOnQIpRRvvvkm58+f5/79+9y8eXNZuxobG8MYw8TEBKdOneLGjRvUajVOnjzJ+Pg49Xqd48eP8+abb5KmKSdPnuT555/n1KlTVCoVfvjDHyKl5OjRo7z88sscPXqUKIq4ePEiJ0+epNFocO3aNc6cOcPU1BS3b9/m+PHjTE5OkiQJFy5cYGJigjfffJPHH3+cN954A6UUx44d4/XXX8/b9YsvvkipVOLQoUNcuXIl7z+vvfYaAwMDDAwMcPHiRcbGxpBS8sYbb/D4448zPT3N9evXeeqpp7h//z7Xr1/P33l8fJwLFy5w7do1FhYWOH36NG+99Rb1ep0TJ05w7dq1/PdXX32VI0eO0NHRwZtvvokQVn390ksvceLECZRSvP7665w6dYogCHjxxRc5ffo0UkouX77M6dOnaTQavPHGG4yNjXHjxg1OnTqFEIKLFy9y9uxZ5ufnuXHjBhcuXKBWq3Hp0iXOnTvHzMwMN2/e5OzZs9y/f5+JiQnOnj3LzZs3mZmZ4cKFC3n/GR4e5pVXXmFsbIyBgQFefvll+vr68jY2OjpKtVrllVde4eTJkxhjuHbtGseOHWNhYYHJyUkee+wxbty4wfT0NI8//jhvvfUW9+/f57HHHuPWrVtMT09z5swZLl26RKlU4uzZs1y8eJHFxUVOnDjBlStXlvVrNwa/8sornD17Fq01V65c4fTp08zNzeXj6+LiIhcvXuTChQt5v3bjimu3t27dyvNy8eJFuru783cbGxvjyJEjRFGUb60YYwiC7Z+694Uw4FhJsmz9W5IkNJtNXnjhBb74xS/yrW99i1u3bjEyMsLc3ByNRoORkRHu3btHkiSMjY1x584d5ufnGR4eZmpqiiRJGBwc5Pbt25RKJaIo4t69ewwODtJoNJienmZkZIT5+Xnm5uY4dOgQ09PTTE9PMzw8TK1WY2ZmhgMHDnDv3j2azSYjIyN5etVqlZs3b9Ld3U25XGZiYoKBgQHiOOb69ev09vYSRRETExP09/djjGF6epqBgYH8+QcOHODu3bukacrQ0BC3b99GKcXw8DD379+nVqsxPDycf97V1cX9+/cJgoChoSGuXbtGGIb09vYyOTlJGIZ0dXUxMTHB0NAQaZpy584dhoeHqdfr3L9/nyNHjjA7O8vU1BSHDx9mZmaGqakphoeHWVhYYHZ2lrGxMSYmJgjDkMHBQW7evEkYhvT09DA+Pk5vby+lUombN28yODhIuVzm2rVr+TvfunWLgYEBjDFMTU3R19dHGIbcuHGDgYEB0jRlenqaoaEharVavo987949+vv7EUJw+/btvH4ajQajo6MsLCxw+/ZtDhw4wPz8PAsLCwwNDXHv3j2EEPT393Pr1i2iKKKnp4eJiQmq1SqVSoV79+5RrVbp7Ozk2rVrdHV1EUURd+/epbu7myAImJyc5MCBA8zNzTE7O8vo6Chzc3PL2lWz2czbW61WY3R0lMnJSYwxjIyMcP36dbq7u+nu7ub27ds0Gg2GhobytlKpVPJykFJy+/bt/J0nJyfz95yfn+fQoUPMz89z+/btPC+1Wo2hoSGmp6fRWjMwMMCtW7cIw5C+vj5u3bpFuVymUqlw+/btXBC9ceMGlUqFUqnE5OQk3d3dxHHMxMQEY2NjJEnC5OQknZ2dKKW4c+cOY2NjeZvo7u7m3r179Pb2IoTg3r17jI2N5WV18OBB5ubm8vpO05S5uTkGBwe5d+8eWmuGhoa4c+cOxhj6+vq4c+cOYRjS3d3NrVu3GBwcJAxD7ty5g1KKnp4ebty4wYEDB9BaMzk5ycDAAPV6nampKUZHR5mdnaVWq3HgwAHu3LmDEILh4WGmp6e5d+9e/rlSiv7+fiYmJoiiiMHBQW7cuEEcx3R2djI5OZn/XuzXri1rrbl3717+ngsLC/l45MrHtevWfj05OYmUMu9LQRDQ39/P+Pg4g4ODeT1IKenp6eHmzZsMDQ3l/WB4eBilVP65K4vR0VHq9Xpuy3P//n3GxsZoNpt5m5mfn2dmZoaDBw9Sr9eZnJxkbGyM2dlZ5ubmGBkZYWZmhlqtxuDgIDMzMyRJwsjICDdv3qRUKtHZ2cmNGzfo6+ujs7OT8fHxvP3cvn077z9u3Gk0GszMzNDf30+9Xmd+fj4fRxuNBmNjY9y9e5d6vc7g4CBTU1M0Gg0GBweZmJggjmPGxsYYHx9Ha72sX7s2XqlU8r40OjoKkI8Zbux27brYf2ZmZvJxZX5+npGREe7fv0+9Xmd4eJiJiQkqlQodHR2Mj48zPDzME088wW/91m/xzDPP5NsXOzI/mo3qJvYBaZpy9+5dfuEXfoHLly9z69YtkiTJ1VjOGAiWW+C2U23CkqBR3Ddy+1Lus3b7ei5tJw22U08VDZHa5aV1j611P7NVDdq6F9j6PJdOMY+t+XKnM9rR+p1ieu5zZ3zTmmYxP8V9V3ftVHWtpw5ajRRd/RVVma1768Wyb7UEdv+K0rnLWzt1YeuerEvb7S+3WnQXy6pY1sX3Llrqt5Zf0UixtQ6Le6PF77jnun3sYjkX22DrYFTMj0vXXbvnu+8V33ul57XLr3v34vdcmxBC5IZvK1nku3uLp4Zc+3LGZe3KojUdZ1RXrI/iOwoh8rZVLLPiuxTLy+1dF9uiS7PYh1oXLO3GmlY1+0r92qXZ2kday761HRXHq9a6c+/h0iuWR7FNFvNeLO9i3ypeu3wW+2A7lXyxDxTHzeIY0prXlcq+tc5b20O7cbL1XYtl1ZpfN960PrNYrsXP3XNOnjzJX/7lX/LBD35w2ZiynXjPOxnFQR6gWq3y27/923z+85/PVyuw1EmKjdV9x1nWtxtQihOVS6dY+avtSYEdtFo7f+s/95xiGsVGWxzIW/PnBl2tNWmathUc3H3FNNvltXXQdvloV87F/LQKTcWO5gbY4uDi8tsqLBUHNWcJXnzndvlbKV8uvdZBrihoFMu2mEcn2Bhj8gmrWE/tJrl2QkGx7MMwfOCoWbvya7cnWbzP1XfrIAUP7pu2DrStk1zx/tZJzZWJG5iLA3SxD7TmoZhf9/zWPeVWlalrm8X6LqZfbCvFybG1H7UKw65+nSBQrJ/WsihOXK24z4pjiXt+q01Au4nBPas4ubSWyWr92uXNtcnWMmpNx713UchpbQvF/lm8bieQt44p7mdR4Cv2pWK/L/aX1rGn9V1cftuVvWsrRaG0OJa3Lgrc89r1k+Lfi99pFQyK/aDdmN2aZvE5Lo/Xr1/nL/7iL7h69WrbtrUdeM0AyyeJ//qv/+Lzn/884+PjGGOoVqu8+uqrTExMAGsbYzlWGlhXu3+le1aSUreb1s611r1beaftSH870nCdrnXlv5nnrPS8tfKx0/W6nc98u/PaTjhY6b715mur926kn2xHHjabZlFgaBV0tiuvK2m1Wr9f/HvxeqP5Wa3s1ztObuaZm2l3rRN8KysdM3bfLb5PpVJhZGSEf/zHf+TJJ5/cEc3AvrIZWAnXUWq1Gn/wB3/Av//7v9NoNIAHJf+NDiLuHP968rCRdHeCjaS73s72MCY6x0aEmtZz4Nv5vN1Qt63stTXAWvld70S0nrTWk+5Wy287hJrV0lxpq2gzaa9nslst362fb6XstmOhstHnbzYtJ4ittJJfbYXvtCvOFqe3t5ff//3f5/z58zvWd70wwPL99FKpRLPZREqZG9UV1YMbTXdwcDA39tosRVXzZhuCU6EmSbKjq1QhRO68ZSvqrDAMc7XkTk5czshodnZ202m4sm02m5vOq1PfbiWN9eJUqCvZdayGy5vbEtts31gvPT091Go1Go3GprQ2xph8q6her+efbYZiP9wJXN9zDslanZJtNC3nXGcn6erqotFosLCwsOI9K2ncipqLMAy3lNftGnda87ZZnN3TSnlRShEEAfV6ve1zOjo6OHr0KF1dXTz33HP09fVx9OjRHV0w7EubgZX2baIo4pOf/CQjIyNorZmens4ltM08Q2vNnTt3tjxgtu5tbZTivt1aaWzHiscJHFtZZbs0NvvO62VqaiofyDbb0ZydxVbKbjvSeDso2iXs1KRYZG5ubkuTItj+UzQA3grt9oy3C1f3awns66G4R7+TfWh2dnZNzWfr9kDr527M2ArFxdJO1c9GKdqvtFLsP+3yu7i4yI0bN5BScvz4cY4fP77pbcz1sm81A25wcJNks9lkcXGRV199lZGRESYnJ5mfn3/Aycp6cRW2FY2AY6uS7k42oHZsxySxU0YyrWzHynY76ge2p9zWw1ae4/L6dtbPVldDbmLcKludsN7O5xhjdlxrs14tyXq2eLaj7W9n/Wx1vFwrL60CUPH0gaNUKvE7v/M7dHd3P2CwvhMCz74UBtzk+IMf/IAvfelLLC4uMjc3x9zcHN/85jdz4aB4v8fjeTj4/ud5VHGT+sjICOVymaeffpojR45QLpd59tlnee973/vA6Yud0nzsS2EAbICLz33uc/zbv/0bi4uLy1Toa5079ng8Ho9nq7htnI9//ON86lOfYnh4OPd9UTz++7bk5W15yi6gaCPgVFKf+cxn+PKXv8xP/MRPAEuqneK50OK1Z2/iOtxOHMfxeDyejeIm+SAIcrfPFy9e5MqVK7md2nYcYd1Qnsw+WPYWDVW++93v8id/8idcuXKFNE1J05TZ2Vlu3rzpNQAej8fj2XFanRiFYciBAwf4q7/6K5599tlljpjc/Tuep/0iDDg7gI9//ON85StfIUmSt80IyuPxeDwehztKDORxM/78z/+cn/u5n8tPIbzdWsx9YzPgzqtXKhWvAfB4PB7PQ0MpxeOPP86JEyd45zvfydNPP8373ve+HQ1EtBaPpM1Aqx8Bp46Joohf+7Vf49ChQ14g8Hg8Hs9DIUkSXn31Vb773e/yzDPP5AGIHqa/kUdWM+ACXDSbTer1Oo1Gg0ajwfe+9z16enqIomjHvXN5PB6PZ3/SquZvDXbX09PDn/7pn/IjP/IjDziHehiGzo+sMADwve99j8985jO89dZbuY3A+Pg4SZLkUeTeLkcvHo/H49kfOCdC1WqVzs7O3D30Rz7yET72sY+hlKJcLnPu3LncduBhn3R6JA0IjTFMT0/zi7/4i/zHf/wHSZLQbDYJwzD3Xf0IvrbH4/F4dgnulECpVKKnp4ff+73f45d+6ZcIw3BZGOnWo4QPLb97URhYK8tpmjIzM8NXv/pVZmdn+f73v8+Xv/xl6vV6Hpmu6PrRnyrweDwez3ZRDMLkOHv2LF/72tcYHBwkiqJ8HnOCwMMWBvbsNkEx/rzDGMPzzz/PN7/5TRYWFgiCIL/PbQlsNZynZ+dp3TsrdpqizwgXHrQYrrU1ZGsr7u+uPbS2oe3KfzFfrX8rPrf1uuhytPiu24V7phBiXSGbvaDs8Wyc1jEgiqLcwVAYhg8Ej3rYggDsYWGgiCv0qakpPvvZz/L1r3+dRqMBPDhpwNsbN96zcdYb/3ul6JPrqVvnbXInbEZcPtu9R6sXzNbrlSK7bSfFd/b9wOPZGeI4zuecwcFBPv3pTzM4OJj/fTcIAEX2/DZBMeznwsIC3/jGN7h9+zZ///d/z7e//e38ntaIUHvwtfc1RY9dG53415PWdrNW2q2uRt9O16Nvt5tTj2e/oZTiYx/7GMePH+fs2bM89dRTnDt3DqUUxpiH4lRoLfa0MOAm+BdeeIEvfOELvPbaa7lG4NatW9y4cSNXhRYH/z34yvua1SavzUzoOykMbCTt1ntav+s1WB7P3sRtBYyNjfHXf/3XuR+Bogvi1q2Ch82eFQZcvO5Go8Ev//Iv87Wvfc2rPz0ej8fztuPscIwxBEFAEAT09PTw3HPP8dGPfpQ4jpfdv9u0ArBHbAZa1cLuaKAzCGw0GjtibOXxeDwez1oUI92+//3v53Of+xyVSoUzZ84QhuGye3Yre0IYcBQn+kuXLvHVr36VmZmZB4zIPB6Px+N5u3CG6uVyGYB3vetducfBovH6bmZPCQNgC/bq1av8yq/8Ci+88EJuFe6PQHk8Ho/n7SaKIqIoQkrJ0NAQn/jEJ/K/OduA4rHh3cqeEwaMMczNzfHEE09w7NgxfvCDH/DGG28su2ctQ6z1XLtnrZTWdhp5rZV28Ry9y9d63qXd7xt5n7XKaSPv0Fq2reW72vu03ruZvK/3fTZSFxup963UhXtuq4+FtU4rrPcZu7Uu1nqX1rpYbz/far9YL+tJs+gvpV2drFUXm6mPlfK50vV636ldftb7jK2MuRu9bvce7fx9rFZuLgSxEILnnnuOp59+ms7OTjo6OhgeHl52WkCIh+9QaD3sCQPC1ixqranX6yRJwmc/+1m++MUvkiRJPnA6ttqRi04jVvvpntuuQ6x0vdIzN9OhV0t7Pc9dz/dW6vhrsVKeWwfE1cpqI4Nqa1prvVu79ylONCvV92ba1Ebep1UY2GhbWuvZ7a6LdbHS5LvWO6+nz220bW1kEt1InaxVzxvt5xvJf7t2u1bb2kq9r5TXrfbztd5tPULDZstprfLZyX4uxNJpgMOHD3Po0CG+9KUvcerUqTzuzV7YGiiyJzQDrRUspcw9OjnprOhNzTUed3/x53px97c6kFnpZ7tnrHW90jPb5blV0Fnpuxv923rys1L+NpPGWmm3u16pXFp/ttb5evPV7v6V6rlYD1st1/X+bPes7arT1dJeqXzXk/562/p6vrda+axWZuthvf17vf18I/lvzYN7n53oy6vldSv9fK13W+/fV7t3pbF4tfysln6R1jFjvf3cCQtaa2ZnZ/nEJz7B4cOH8/lpL7InhAFXGa1SnlKKD3/4w8zPz+e2A+0kwPVKqcVnFNNa62e7525GSt3oimy1/KyUj/Wynnde73dXY63V6EormdV+unSL+Sl+VrzebF20rhjWqv+VnrsdbWujFL+/Ec3ASs/cSF2sdf9W6mKl/BfzsNk2tZ662Ez+V1vxbqUPrlZPG3n3zdbbetrSVvq5u7e1bteq65XeZ72aAfeZuy8MQ5599ll+5md+Zplmci8KBHtqm2Clwdz9e1RpbZCeh4evC4/HUxwHVpr4tyKwPwz2hDDg8Xg8Ho9n59h7ugyPx+PxeDzbyp6wGfB4PDtPUUm4sLCQ752WSqW2qtB6vf6Am9VW9pqq1OPZr3hhwOPx5BhjmJmZ4dOf/jRjY2NorRkbG+PjH/84YMMfl0olarUaf/iHf8jv/u7v0tXVBcDi4iJxHBNFUZ6e89nu8Xh2N14Y8Hg8Oc4wqlqt8pu/+ZsYY/jjP/5jvvnNb/LDH/6QiYkJjh8/znve8x7+8z//k7/7u7/jIx/5CP/8z//M4uIinZ2d/Pqv/zodHR3e0NLj2UN4mwGPx5NTPIIlpaSjo4OjR49y69Ytjh49Sn9/P//yL/9CT08Pjz/+OJ/61Ke4evUqr732Gv39/Xz/+9/n6tWrJEniXYR7PHsIrxnweDzLcKHAhRA0m03Gx8cZHBzktdde46d+6qf4zne+kx/nVUqRpimHDh3ix3/8x3n22Wc5ePBg7gzM4/HsDbxmwOPx5DinKffu3eNLX/oSzz33HIODg3zoQx9ibm6Ob33rWyRJQhAEDA4O8jd/8zeMjY0hhOArX/kK3/jGN2g2m36LwOPZY3g/Ax6PB7BbBGmaorVmamqKNE0JgoCuri6UUty/fz83COzq6mJhYYGFhQV6e3tpNpvMzc0RRRFdXV257UExYIvH49m9eGHA4/EAVhhIkmSZW1WtNUqp/HMX3U0ptczzp7s3COzOo9YaY4zfLvB49gh+m8Dj8eQopYClqGxuIldK5QaB7h5YOjpY9MfuBITifR6PZ3fjNQMejydnu4aD1QIVeTye3YcXBjwej8fj2ef4bQKPx+PxePY5XhjweDwej2ef44UBj8fj8Xj2OV4Y8Hg8Ho9nn+OFAY/H4/F49jleGPB4PB6PZ5/jhQGPx+PxePY5XhjweDwej2ef44UBj8fj8Xj2OV4Y8Hg8Ho9nn+OFAY/H4/F49jleGPB4PB6PZ5/jhQGPx+PxePY5XhjweDwej2ef8/8DlI9cI0ZYHv8AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -450,102 +499,112 @@ "--------------------------------------------------------------------------------\n", "\u001b[33mCritics\u001b[0m (to Commander):\n", "\n", - "The provided figure shows a time series plot of high and low temperatures in Seattle. Here are a few suggestions for improving the plot:\n", + "The plot depicting high and low temperatures in Seattle can be improved in several ways:\n", + "\n", + "1. Date Axis: The dates on the x-axis are not visible or readable, which makes it hard to associate the temperature data with specific time periods. Consider formatting the date axis so that the dates are displayed at a readable angle or with sufficient spacing.\n", "\n", - "1. **Resolution and Clarity**: The image appears to have low resolution, which makes the text and lines a bit blurry. Increasing the resolution would enhance clarity.\n", + "2. X-axis Labeling: There appears to be an issue with the x-axis labels or ticks as it shows a dense black area, indicating overlapping or condensed labels. The frequency and format of the labels should be adjusted to prevent overlap and allow for clear reading.\n", "\n", - "2. **Color Contrast**: The colors chosen for high and low temperatures (red and blue) are good for contrast, but ensuring that they are distinguishable by all audiences, including those with color vision deficiencies, can be useful. Consider using colorblind-friendly palettes.\n", + "3. Y-axis Range: Consider starting the y-axis at a lower value if the temperature data permits, to give more space to the temperature lines and improve readability.\n", "\n", - "3. **Line Thickness**: The lines look slightly thick, which can cause them to blur together when they cross or when viewed at smaller sizes. Thinner lines might provide better clarity.\n", + "4. Gridlines: Adding horizontal gridlines can aid in reading specific temperatures at a glance.\n", "\n", - "4. **Smoothing**: The data appears to be quite noisy. If the aim is to show trends, consider applying a smoothing filter or showing a moving average to make the general trends more apparent.\n", + "5. Legend: The legend clearly indicates which color corresponds to high and low temperatures, which is good. Ensure the legend does not obscure any important data.\n", "\n", - "5. **Legend**: The legend is clear, but it is positioned in such a way that it could potentially cover up data points. Consider placing the legend outside the main plot area or making it semi-transparent so that no data is obscured.\n", + "6. Resolution: The actual resolution of the image may be fine, but the x-axis issue might give the illusion of a low-resolution image. Once the x-axis is corrected, the overall clarity of the chart may naturally improve.\n", "\n", - "6. **Axes Labels**: The font size for the axes labels and the title could be increased to improve legibility, especially if the image is scaled down.\n", + "7. Color Contrast: The blue and orange color choices are generally good for contrast, but ensure they are differentiable to all users, including those who may be colorblind. Consider using colorblind-friendly palettes.\n", "\n", - "7. **Grid Lines**: The grid lines are helpful, but if they are too prominent, they can distract from the data. Lightening the grid\n", + "8. Title: The title \"High\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mCommander\u001b[0m (to Coder):\n", "\n", "Here is the feedback to your figure. Please improve! Save the result to `result.jpg`\n", - "The provided figure shows a time series plot of high and low temperatures in Seattle. Here are a few suggestions for improving the plot:\n", + "The plot depicting high and low temperatures in Seattle can be improved in several ways:\n", + "\n", + "1. Date Axis: The dates on the x-axis are not visible or readable, which makes it hard to associate the temperature data with specific time periods. Consider formatting the date axis so that the dates are displayed at a readable angle or with sufficient spacing.\n", "\n", - "1. **Resolution and Clarity**: The image appears to have low resolution, which makes the text and lines a bit blurry. Increasing the resolution would enhance clarity.\n", + "2. X-axis Labeling: There appears to be an issue with the x-axis labels or ticks as it shows a dense black area, indicating overlapping or condensed labels. The frequency and format of the labels should be adjusted to prevent overlap and allow for clear reading.\n", "\n", - "2. **Color Contrast**: The colors chosen for high and low temperatures (red and blue) are good for contrast, but ensuring that they are distinguishable by all audiences, including those with color vision deficiencies, can be useful. Consider using colorblind-friendly palettes.\n", + "3. Y-axis Range: Consider starting the y-axis at a lower value if the temperature data permits, to give more space to the temperature lines and improve readability.\n", "\n", - "3. **Line Thickness**: The lines look slightly thick, which can cause them to blur together when they cross or when viewed at smaller sizes. Thinner lines might provide better clarity.\n", + "4. Gridlines: Adding horizontal gridlines can aid in reading specific temperatures at a glance.\n", "\n", - "4. **Smoothing**: The data appears to be quite noisy. If the aim is to show trends, consider applying a smoothing filter or showing a moving average to make the general trends more apparent.\n", + "5. Legend: The legend clearly indicates which color corresponds to high and low temperatures, which is good. Ensure the legend does not obscure any important data.\n", "\n", - "5. **Legend**: The legend is clear, but it is positioned in such a way that it could potentially cover up data points. Consider placing the legend outside the main plot area or making it semi-transparent so that no data is obscured.\n", + "6. Resolution: The actual resolution of the image may be fine, but the x-axis issue might give the illusion of a low-resolution image. Once the x-axis is corrected, the overall clarity of the chart may naturally improve.\n", "\n", - "6. **Axes Labels**: The font size for the axes labels and the title could be increased to improve legibility, especially if the image is scaled down.\n", + "7. Color Contrast: The blue and orange color choices are generally good for contrast, but ensure they are differentiable to all users, including those who may be colorblind. Consider using colorblind-friendly palettes.\n", "\n", - "7. **Grid Lines**: The grid lines are helpful, but if they are too prominent, they can distract from the data. Lightening the grid\n", + "8. Title: The title \"High\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mCoder\u001b[0m (to Commander):\n", "\n", - "To address the feedback and improve the figure, I'll make several adjustments to the script. The improvements will include:\n", + "To address the feedback received on the figure, we'll make the following improvements to the plot:\n", "\n", - "1. Increase the resolution by specifying a higher DPI (dots per inch) when saving the figure.\n", - "2. Use a colorblind-friendly palette for the high and low temperature lines.\n", - "3. Decrease the line thickness for better clarity.\n", - "4. Apply a rolling window to smooth the high and low temperature data.\n", - "5. Move the legend to an optimal location to avoid covering data points and make it semi-transparent.\n", - "6. Increase the font size for axes labels and title to improve legibility.\n", - "7. Adjust grid line style to be less prominent.\n", + "1. Format the date axis for better readability.\n", + "2. Adjust the frequency and format of the x-axis labels to prevent overlap.\n", + "3. Extend the y-axis range if possible.\n", + "4. Add horizontal gridlines for ease of reading temperatures.\n", + "5. Ensure the legend is placed properly to avoid obscuring data.\n", + "6. Check for clarity once x-axis labels are resolved.\n", + "7. Use a colorblind-friendly palette for the plot.\n", + "8. Ensure the title is descriptive and relevant.\n", "\n", - "Please execute the updated Python script:\n", + "Here's an updated Python script to make these improvements:\n", "\n", "```python\n", - "# filename: plot_temperatures_improved.py\n", + "# filename: improved_plot_temperatures.py\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", - "import seaborn as sns # For colorblind-friendly palette\n", + "import matplotlib.dates as mdates\n", "\n", - "# Ensure you have seaborn installed: pip install seaborn\n", - "\n", - "# URL of the CSV file\n", + "# URL to download the CSV data\n", "url = \"https://raw.githubusercontent.com/vega/vega/main/docs/data/seattle-weather.csv\"\n", "\n", - "# Read the data from the URL\n", + "# Download the data\n", "data = pd.read_csv(url)\n", + "data['date'] = pd.to_datetime(data['date'])\n", + "\n", + "# Now, let us plot the high and low temperatures\n", + "plt.figure(figsize=(10, 5))\n", + "plt.plot(data['date'], data['temp_max'], label='High Temp', color='tab:blue')\n", + "plt.plot(data['date'], data['temp_min'], label='Low Temp', color='tab:orange')\n", "\n", - "# Extract the Date, Temperature High, and Temperature Low columns\n", - "dates = pd.to_datetime(data['date'])\n", - "temp_high = data['temp_max'].rolling(window=7).mean() # 7-day rolling average\n", - "temp_low = data['temp_min'].rolling(window=7).mean() # 7-day rolling average\n", + "# Set the x-axis major locator and formatter for better date display\n", + "plt.gca().xaxis.set_major_locator(mdates.AutoDateLocator())\n", + "plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))\n", "\n", - "# Plot the high and low temperatures using seaborn's colorblind-friendly palette\n", - "plt.figure(figsize=(10, 5), dpi=150)\n", - "plt.plot(dates, temp_high, label='High Temperature', color=sns.color_palette('colorblind')[2], linewidth=1)\n", - "plt.plot(dates, temp_low, label='Low Temperature', color=sns.color_palette('colorblind')[0], linewidth=1)\n", - "plt.xlabel('Date', fontsize=12)\n", - "plt.ylabel('Temperature (°C)', fontsize=12)\n", - "plt.title('High and Low Temperatures in Seattle (7-day Rolling Average)', fontsize=14)\n", + "# Rotate the dates on x-axis for better readability\n", + "plt.gcf().autofmt_xdate()\n", "\n", - "# Adjusting the legend\n", - "leg = plt.legend(loc='upper left', frameon=True)\n", - "leg.get_frame().set_alpha(0.5)\n", + "# Improving Y-axis Range\n", + "temp_min = data['temp_min'].min() - 5 # Give some padding below the min temp\n", + "temp_max = data['temp_max'].max() + 5 # Give some padding above the max temp\n", + "plt.ylim(temp_min, temp_max)\n", + "\n", + "# Adding gridlines and formatting the grid\n", + "plt.grid(True, which='both', linestyle='--', linewidth=0.5)\n", + "\n", + "# Providing labels and title\n", + "plt.xlabel('Date')\n", + "plt.ylabel('Temperature (°C)')\n", + "plt.title('High and Low Temperatures in Seattle Over Time')\n", "\n", - "# Adjusting the grid\n", - "plt.grid(True, linestyle='--', linewidth=0.5, color='grey', alpha=0.7)\n", + "# Adjusting legend position\n", + "plt.legend(loc='upper right')\n", "\n", - "# Increase tick label size\n", - "plt.tick_params(labelsize=10)\n", + "# Check done, no need to adjust color contrast as colorblind-friendly colors are used\n", "\n", - "# Save the figure with high resolution\n", - "plt.savefig('result.jpg', format='jpg', dpi=150)\n", + "# Save the figure in high resolution\n", + "plt.savefig('result.jpg', dpi=300)\n", "\n", - "# Show the plot\n", - "plt.show()\n", + "print(\"The improved plot has been saved as 'result.jpg'.\")\n", "```\n", "\n", - "This script should create a higher-quality figure with the suggested improvements. Once the script has run, please check the `result.jpg` file for the enhanced plot.\n", + "Please execute this script. Make sure that the `matplotlib.dates` module is available in your environment before running the script. If you encounter any issues, let me know.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[31m\n", @@ -554,17 +613,17 @@ "\n", "exitcode: 0 (execution succeeded)\n", "Code output: \n", - "Figure(1500x750)\n", + "The improved plot has been saved as 'result.jpg'.\n", "\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mCoder\u001b[0m (to Commander):\n", "\n", - "The script executed successfully and created an improved figure with high resolution, colorblind-friendly colors, thinner lines, smoothed data, a better-positioned and semi-transparent legend, enhanced legibility for labels and title, and less prominent grid lines.\n", + "The improved plot has been saved successfully as 'result.jpg'. The improvements should address the feedback points provided earlier, resulting in a clearer and more readable figure.\n", "\n", - "The updated figure is saved as `result.jpg` in the current directory. You can view the figure by opening the `result.jpg` file on your computer.\n", + "The dates on the x-axis are now formatted for better visibility, the frequency of x-axis labels has been adjusted, the y-axis range has been extended, gridlines have been added, and the legend has been positioned properly. The colors used should be distinguishable by individuals with color vision deficiencies.\n", "\n", - "If there are any more changes you would like to make or if you need further assistance, feel free to let me know.\n", + "If no further improvements are needed, the task is now complete.\n", "\n", "TERMINATE\n", "\n", @@ -573,7 +632,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAEMCAYAAABZZbUfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5xcxZnvj7+rTuo4WRrlgAABIgjBEmxEssnGkTVrHPY64h843b2GdVjjtVn2Onsd1r5f26zXGHudTbDJOecsISSSEsqTOp1Y9fvj9DnqGY2EwoxmxuqPXq3u6T6nTtVT6aknCq21pokmmmiiiSaa2Gchx7oCTTTRRBNNNNHE2KLJDDTRRBNNNNHEPo4mM9BEE0000UQT+ziazEATTTTRRBNN7ONoMgNNNNFEE000sY+jyQw00UQTTTTRxD6OJjPQRBNNNNFEE/s4msxAE0000UQTTezjaDIDTTTRRBNNNLGPo8kMNNFEE0000cQ+jiYz0EQTTTTRRBP7OJrMQBNNNNFEE03s42gyA0000UQTTTSxj6PJDDTRRBNNNNHEPo4mM9BEE0000UQT+ziazEATTTTRRBNN7ONoMgNNNNFEE000sY+jyQw00UQTTTTRxD6OJjPQRBNNNNFEE/s4msxAE0000UQTTezjaDIDTTTRRBNNNLGPo8kMNNFEE0000cQ+jiYz0EQTTTTRRBP7OJrMQBNNNNFEE03s42gyA0000UQTTTSxj6PJDDTRRBNNNNHEPg5zrCvQxJ5Ba52+9/b2YpomhUIBKSWe59Hb28vkyZN59dVX2bRpE8cee+yge4UQ6ecHH3yQqVOnMnfu3G1+F0Kkzxr6/MYykmuH+00pxU033cRJJ51EoVBIy/R9n56eHrq7u5FS7vRzEjTWLbkmiiLWrl2LUmpQGZZlMW3atG3alfw9XDuGPrPx+51BY3lD2yGEQCk1qMyh7Rnu83B1Ga7ejc9JaH3rrbfypje9iUwms91rk+uTe7Zs2UIURRSLRVpbW7f7nO3VaWidh7bpscceo62tjQMOOGC7dGysk1KK++67j8MPP5xMJsOGDRsGtbO7u5tcLrcNzZJr+vv7eeCBBzjjjDOQcufOREPng1KKjRs3UqvVEEJQLBZpa2tLx/DQftZa89BDDzF16lSmT5/OLbfcwimnnEK5XOa5557j5JNP3u44GI7ew32ntaa/v59qtcqUKVO2e9/Q9iR/N35+Pbo0tmt7dWoc4w8++CDz58+ns7NzEB2bGB9oMgN/A4iiCIDvfve77LfffvzjP/4jSileeOEFvvSlL/Hb3/6W3t5e1q1bly6mAEoppJTpZP3jH//ICSecwOzZs9PfYPCETTbXxoUk+a6xvOS+5Hlaa4Ig4Ac/+AGHHnoohUIhLfOll17ikksu4Xe/+x35fD5t03CLSvJ56HfJ34ZhpAvij3/8Y0qlEk8++SS5XI4DDzyQrq4uLrnkErLZ7KD6NW6ACT0SNH4/3GaZLP7b24yTspLvk+uT77/5zW9y9tlnc9hhh6XlRVE0iDFqLHt7C/DQfh1KKwDf93nxxRc58cQTsW07fV7CkAxdpHt7e7nsssvo7++nWCxSKpX4whe+wPz584fd6IfWJ2njSy+9xG9+8xs+//nPI4TgzjvvZO3atXzgAx9Aa811113HQQcdxP777z+IORpK86QtK1as4KqrruI//uM/WL16NT/60Y8IggDf97nrrrv49a9/zVFHHYVhGOk9SX2klGzYsIH//M//5E1vehOmaW7Tp1EUobXGNM1B9Gsc30EQ8E//9E94nsfkyZNZtWoVH/nIR3jrW986aHw2tuf3v/89J510Ep2dnfzwhz/kyCOPxHVdVq5cSRRFg+o79N7Gv4UQw27WYRjy1a9+lfvvv59rr72Wrq6utLyhY6JxLA5FY981zqvh5n1jvyRjqZHmyb1r1qzhnnvu4Z//+Z+bTMA4RJMZ+BtAsnm4rovv++n3Simq1SoALS0tdHd3A1Cr1bjjjjvo7+/n0EMPZcOGDZx22mnpJnrNNdcQBAGnnXYabW1tgyb7wMAA9913H+vWrWPu3Lm84Q1vwHEcnnzySaIoYtOmTQwMDHDqqacyadIklFI89dRTPPPMMxxyyCHbXXhc193mFLR582buvvtuPM/j+OOPZ86cOTz99NNIKTn88MO5//77UUqxePFili1bRqVSYdGiRQghaGlp4fLLL0cIwRe/+EVmzJjBxz/+ccrlMnfddRcbN27k8MMP54gjjsB1Xe644w5mzpzJ008/zcKFC5k9ezZ33nknAG9+85vJ5/M88MADZLNZXnrpJaSUnHbaabS0tBCGIcuWLePxxx+ntbWVk046iba2Nh5++GEsy+KVV15h6tSp7L///tx333309vZy+OGHs3DhQtatW8df//pXtmzZwoIFCzjnnHN46KGHOPXUU9NnJRKdW2+9lWnTpvHcc89x1FFHMWXKFO6++256e3s5+uijOfjgg1FK8dhjj7F06VKKxSKLFy9O+x3ANE3mzp2LlJKVK1fy8ssvp58XL16c/pbg4YcfZtOmTfzsZz8jk8lQqVRwHAetNX19fdx777309PRw9NFHs2DBAqIo4vHHH+f555+nWCxywgkn0NHRwc0338z1119PZ2cnBx98MNdffz0vv/wyrutyyimnDOr7arXK/fffz9q1azniiCM4/PDDsW170Jj5wx/+wEknnUQ+n2fevHl861vfQgjBQw89xKpVq5g/f346tpJ33/e57777eO2115g6dWpaVm9vL/fffz8bN25k/vz5HHPMMVSrVe6++27OPPNMLMtiYGCAu+++m7POOgvHcdJ7fd/nYx/7GCeffDI33XQTP/3pT1Npw+OPP87SpUuZPXs2b3jDG1IGtHGMCyHI5XLMnDkzrb9t2ylzcOqpp9Le3k4QBDz++OO88MILLFq0iJUrV3L66aeTy+UG0W7Dhg0sW7aMww8/nLvvvpt3vOMd3HnnnRx00EFMnz4drTW33347Bx10EFOnTuXZZ5/l8ccfZ9KkSZxyyink83nuvfdeWlpaWLFiBXPnzmXq1Kk88MADlEolFi1axGGHHYZhGFQqFe644w6q1SoLFixg48aNnHLKKSilePLJJ3n22WeZOXMmixcvJpPJcMopp3D11VfT09MzSDrQxPhA02bgbwTJAr5mzRqeeeYZnnnmGZYvX56esJ9++mmuueYaoiji29/+Nn/5y18QQnDFFVfwk5/8JD0V/eEPf6BcLvPII4/wf//v/x10QgZYtWoVK1eupFAo8Lvf/Y6f//znCCG44447+PznP8+mTZtYunQpl112WSoavOyyyzBNk+uuu47Vq1dvswgMJyrv7+/nk5/8JC+88ALlcpmLL76Yl19+mdWrV3PVVVcRBAHf+973+O53v4vv+1x99dWsXr0awzCQUmKaJqZppnSRUhIEAV/96ld55JFHyGQyfOc73+HOO++kVCrx5S9/mT/96U8IIfjsZz/L5ZdfTqVS4ZZbbuFnP/sZANdeey1f+MIXqFarPPLII3zxi1/E933uvvtuvva1r2EYBs8//zyXXXYZruty7bXX8vnPf55yuYxt2yxbtoy+vj6y2Wz6bMdxyGQydHV1MW3aNKIo4sc//jGVSiXdUG644QYAfvzjH/ONb3wjVQF9/vOfZ+nSpZimyeWXX85jjz3GI488wr//+7+TzWYplUqsWbNmkFTB932+//3v47ouy5Yt45/+6Z9YsmQJAwMDfOYzn6G/v3/Q5tLS0sKrr77KX/7yF1588UUsy8K2bSqVCl/84hdZsmRJ+vxHH32UcrnMU089RT6fZ8WKFXz+858nCALa2trIZDJMmzaN9vZ2isUixWKRadOmkc/nB6kxLr/8cu6//35yuRzf+973uPXWWweNF9/3eeyxxzjyyCORUiKlTE+f11xzDWeeeWYqYVJKoZRCa82VV17Jf//3f2OaJldffTXVahWtNa+88grr16+nUCjws5/9jD/96U/Yts0vf/lLli1bhhCC22+/ndtuuy09uQ8dv1prKpUKhUIBwzD44x//yDe/+U0ymQy/+tWv+M///M9UgpcgofPKlSv5xS9+gVKK66+/ni9/+csMDAzw6KOPcsUVV6CU4tZbb+XrX/86lmVx9dVX8+Uvf5lyuTyoLK01d955J0cccQQf+MAHuP7664miiGeeeYbf/e53APT09PDtb38bKSU33ngj3/3ud3Ech8cff5yvfvWrBEHAb3/7Wy677DI8z8OyLJYsWUK1WsWyLP7t3/6Nhx56CKUUX/va17j11ltRSvFv//ZvXHXVVURRxG9+8xuuvPJKcrkct912G9/5zndQStHe3k5HRwdLly7d/kLWxJihyQz8DaDx5P7oo4/ym9/8ht/85jfceOONhGE46LpSqcSdd97J5z73Od797nfz/ve/f1BZb3/727ngggv41Kc+xbPPPovneYN+nzt3LtOmTWPt2rXk83luu+02giBAa82pp57K+9//fi6++GJWrlxJqVTij3/8I+9973t573vfy6c+9Sna29t3qk3PPvssQRDw2c9+lg996EMcd9xx3HjjjSxcuJAVK1awcuVKHMehUCiwcuVKli5dypFHHjmsqDvByy+/zF133UV7ezu9vb20trZyww03oLWmtbWViy66iPe+970sWLCA+fPnc8EFF/CRj3yERx55JF3wzz33XD7wgQ/whS98geeff57Vq1fzy1/+kvb2dvr7+8lmszz66KNs2rQJIQTnnHMO73vf+zj66KM55JBDyOfzrF+/Htu2ueWWW+ju7mb69Om88Y1v3OakN9wp8kMf+hDnn38+lUqFJ598kkKhQKlUIp/Pc8MNN+C6LoZhMG3aNM4++2yOOOKIbcTsjeUdeuihXHjhhXzsYx8jk8lsw6wtWrSIL33pS9x5551cfPHFXHDBBbzwwgs899xzPPPMM6nqIJ/Pc9NNN1EsFlm0aBEbNmwgiiKeffZZNmzYwKGHHsq0adN461vfysKFCznkkEOYP38+5557LjNmzEif98orr3DnnXfS0dFBT08PbW1tXHvttYP6sVar0dvby6RJkwa1a/PmzTzwwAOcc845qWTp6aefTpmdv/zlL1xyySWcf/75fPSjH03nzLx582hvb2fNmjXk83luvvlmHMfhnHPO4U9/+hO+73PNNddw/vnnD2IGEonct7/9bT7wgQ/wzW9+k0996lMpU/2Zz3yGCy64gC996UvceOONVCqVbZjrRiRtOeuss3j/+9/PRRddxNKlS3Fdlz/84Q98/OMf54ILLuDiiy+mWCxuM7593+cvf/kL5557LocddhjlcpmXX36Zc845h7vuuotKpcL999/P/vvvT2dnJ7/4xS+YPHlyqgJKpFYA5513Hu9973tT6Zlpmqxbtw4pJbfffjubNm3ioYce4gtf+AL/8A//wHnnnYcQAtd1+e///m+6u7vp7e2lo6ODW2+9lYGBAQzDoLOzk1WrVm2XBk2MHZpqgr8BNG4e73znO/nIRz4CwNNPP80ll1wy6JpEjZCcxjo6OtIFTghBZ2cnALZtE0XRNovXT3/6U1566SXe+ta30t3dzfPPP5+eeJLF2bKs9CTe39+fGgYWCgUymcwOdc3Jb9VqlZaWllRnO3nyZDZt2sTkyZOxbZsbb7yRQw89FNu2uemmm9INcEcolUrkcjnmzJmDYRjMmjWL6dOnA5DL5SgUCmityeVydHZ2orUmk8ngeV6qa25vb0cIkZ7oS6US/f39HHLIIcydO5cwDPnXf/1X2tvb0Vozbdo0DMMgiiK+8pWvMGnSJBYvXozv++miOJyhWKOOO6GLaZppvQYGBmhpaWHmzJlIKZkxYwZz585l//33JwgCbr75Zr797W/zoQ99iLe+9a3bNRZrb29P+9+yLIIgGEQz27Y588wzOfPMM6lUKlx22WVcddVVLF68mEKhwOzZsxFCMHv2bObOncsTTzzBV7/6VT74wQ8yf/58brrpJnzf36bPhzPqE0IwMDCAZVnMmTMHy7KYPXt2agiXIJEEhGE4qJy77rqLefPmMWfOHIQQrFixguuvv55cLsd73/tewjCkWCwC0NHRgWVZRFHEt771LXzfT9VBt912GwBnnHEGF154IQ8++CCVSoWjjjpqmzYYhsGFF17IkUceyQ9/+ENuueUWFixYQK1WS+dSsVhEKUUYhq8rGhdCMHny5JT2ENsBlEqlVP9fKBQGqSoSPP/88zz66KN8+9vfxrIsVq1axfXXX8+nP/1pWlpaeOKJJ7j++us5//zzASiXy8yaNYtZs2YB8K//+q9pXadOnYoQAs/z+NznPschhxzC0UcfzcDAwCB1ZGIIPHny5HScu67L3LlzmTRpElprjjnmmHTeh2GI4zhNFcE4RFMy8DeCoZv29hbbQqGQ6rNLpRK33347QRAMEmE2GkkNLWf58uUcf/zxHHvssfT19aWLQnJP471SShYuXMjNN99MX18fDz30EOvWrRu27kop+vr66O/vp7+/n5kzZ7J69WpefPFFtmzZwj333MOiRYtwHIfDDjuMK6+8kmOOOYZjjjmGn//85xx88MHDLpCw9cQ1Z84cbNums7OTk08+maOPPjpdeBMaNda/8RSYGJXdcccd9PT08PTTT+O6LjNmzODv/u7v2LJlC8cddxwnnXQS8+bNI5PJpDRITpCrV6/mtNNOY+HChaxfvz5tt+M49Pb24nketm1j2zYvvPACmzdv5t57702va6zngQceSBAETJ8+nVNPPZUjjzySzs5Oent7Oeyww/jnf/5nzjzzzHRjG2pAtz2Dx6FGaatXr2bp0qWUy2XCMEyZuoMPPpgoipg6dSqnnnoqRxxxBB0dHaxdu5bp06fzpje9iUKhwKZNm9BaY9s2vu9TqVQIgoBMJsPAwADVajUde1pr5s6dSz6fp62tjZNOOim1jWhELpdj+vTprFq1KlUBeJ7Hn/70J971rndh2zZCCN74xjfyta99jcsuuyxl/O69917K5TK33347ruuilOKll17ilFNO4ZhjjmHDhg0prbu7uznkkEP40pe+xOmnn5726dCxlTBln/rUp7jzzjtZvXo1Bx54ILfccgv9/f3cc889TJ48eZA6ZKhaLJkHQw0VDcPANE0OO+wwbr75ZkqlEg8++CCbN28eNDejKOLaa6/lwx/+MN/+9rf5+te/zg9+8APuvvtuXNflrLPO4kc/+hHr16/nmGOOwXEcDj/8cHp7e3nDG96Q2otYljWIGfV9nw0bNvDmN7+ZQw89lDVr1hBFER0dHRQKBR5++GEGBga49dZbiaKITCbDggULqFarLF68mMWLFzNr1ixs2yYIAl577TUOOOCAHR4ImhgbNCUDfwNIJlZnZyetra3p347jpEZD+Xyerq4uMpkMn/vc5/je977Hn/70J9ra2sjn80gp6erqIp/PpxvO9OnTB20OQgj+8R//ke985zvcdtttHHDAAcyZMweA1tZWWlpagHgTTe59//vfz+WXX84nPvEJ5s2bx6GHHoplWYPqb9s2YRhy0UUXpQvgJZdcwoUXXshXvvIVhBAcffTRvPnNbwbg5JNP5u6772bBggWp6PHEE09M6zgUXV1dtLS00NXVxVe+8hWuvPJKoijCsize9773ccghhzB9+vT03vb29tTbwbbtVHogpSSTyfD5z3+e/v5+/vmf/5m2tjYuvPBCfvjDH/LJT34SKSUHHHAAn/3sZ+nq6kpPTplMhg9+8IN85zvfoaOjg+7ubjo6OhBCcN5553HllVdy6623ctlll/Hxj3+c73//+0yaNIm2tjYmTZoEwLRp09IT1syZM7n00kv5wQ9+kDIUH/3oRwmCgP/6r/8iDEMMw+CTn/xkSpekXxNpRS6XY/Lkyel46e7u3qZv+vv7+f73v4/neWitmTp1Kh/60IeYPHkyl1xyCT/84Q9RSpHJZPjoRz/KG9/4Rm655RYuvvhi5s6dy8KFC7Esi+7ububOnctFF13Eueeey3HHHccNN9zAxRdfzIUXXkhnZyfFYpHOzk6++tWv8pOf/ISf//znGIbBe97znkH9YxgGp59+OnfddVfqKrt+/XqEEJxwwgnbjIOk3Zdeeilf+9rXuOOOO5g7dy7z5s3Dtm0+8pGP8OMf/5g//vGPzJo1i5kzZ6b9/ba3vY2//OUvnHnmmcPOvSlTppDL5dL+Oe+887j11lv5zGc+w7e+9S0uuugistksl112GZZlpXNMSpm2yXEcpkyZkkrmkrFnGEbKCH3sYx/j8ssv5+KLL2bWrFl0dnYO8jyoVqusWLGCf/mXf0mNEbu7u5k1axYrVqzgTW96E1deeSXnnnsura2tCCG45JJL+O53v8snP/lJLMvikEMO4TOf+QyTJk1Kx1kul+OCCy7giiuuYNKkSUyZMoWuri6y2Syf+9zn+P73v89vf/vbdB0xTZN/+Zd/4T/+4z+46KKLsG2bRYsWcfHFF7Nq1SoMw2D//fcflpZNjC2EbrJoExqNpwzf91PjOYhPGr7vk8lkUpGqlJKBgYHUN/pnP/sZtm1z6aWXpgZDhmGk9zqOk55SktNCsjGYpkkYhmQyGYIgQAiBaZrpNYk4MAxDPM9LrxtaZiJahK2LuG3bqaGc1jq9B2KxaWM5rutiWVbqIjaUPr7vp0xGQqfEjStxr/N9Pz1RJnRMjNISGl566aUce+yxqU46EeMmBpCJlCSpu+/7GIaBZVlpPyU2GJZloZRK333fRymVWpwn9DBNE6UUtm3jeR6maab1EkIQBAFhGKbGkgm9h7av0eWrVquRzWZTNVAjDZL+b+zv5BmJCijZhBLRd8J4JJKZpH+S02BC1+R7y7KwLAvf9wnDMKVPMnYbn5nQL5GwJHXq6enhC1/4AldccUWqkkkkDkPtIxrVLYkULGFAE88I13XT9vm+TzabxfM8fve73/HEE0/wrW99K6VLY58nfZLQPoqitNykvUkbGsdWokZLmK9kjAVBsM3Ys20b13XZuHEjmUyGBx98kN/+9rf88pe/TPtOKZX2a6MLYWP9knmS0Dvpq6ROjeO2sS8APM9L51BCv56ennRu/ed//ieTJk3iE5/4RDrWknuSefnTn/6U7u5u3vGOd6Q0bKoLxg+azMA+hGTjffjhh/nJT36C53lMnTqVSy+9NHU/a07Q4aG15pvf/CaHHXYYp59++rBW5U2MPpKNL2EIWlpaUmZjJMZtwmxEUcSPfvQjHn30Ub74xS9y0EEHjdm80Fqzdu1arrjiCvr7+7Esi0996lOpG+1Y1enOO+/kF7/4Raouu/TSS5k8efKw6o8oitiyZQvt7e0pYwTNoEPjCU1mYDsYSpZdHbR7ev9ooHGha+TaG4OuNGI81Hl7GGpwtzee53leemLa2ah1Q8tIMF5pOx7HbSOG6tuHBrpKsLv1brStSCQ925M67Ql2hc7JnA2CgCAIME1zkHRttDHcuFVKpfUBUonVcHRKmIFGidPeYAb2ZL6N93kwGmjaDOwAGzdu5LrrrktPHruKZGHZnY1jNPB6fF8ySYdzRRtvSNqyN+k7nMHd7ty/J2XsDTTSdjyOg+HGcSK239P67miOjDQdhkYX3NV67c1+GbqW7SqdxqL+u0LfoUja29HRwbnnnjsa1Rt3aDIDO8CmTZtYtWoVb3/723dZLJzoMPv7++nq6hp3C+pw6O3tJZvNprrf8VrnZGFJrNM7OjrGuEY7hy1btlAsFgeJSccjEvpu3ryZtra2bYwKxyOUUmzYsCF1Y50I2LRpE21tbSMudRhpJAaKSfCoiQClVOqKDLvHDFQqFf785z83mYEmYmvimTNnsnDhwt1aYIIgoFarDRsgZDyiWq1imua436xgK7Pl+/6gPAfjGaVSiUwmMyEWf4j90HO53ISwj1BK0d/fT2tr64RhBgYGBshmsxNiPHieRxRFaWTH8Q6t49DqLS0tuzUelFIMDAxw0003bROj428VTWZgB2gMZZsskEkCk52B7/uUSiWy2eyo1XEkMTAwkLpJ7c3Bn4QQ3hU0eiFMFGagVqsNstYfz0hOg5lMZkIwA0IIKpVKmlFxIiCh70RA4hkxkZiBSqWSBpnaVTTaBo33uTpSaDIDu4AkQMrODo7E/zpxExvvSNzchrr5jSYSxiqRnuzMMxNO3TCMYdPwjkdorVOpwHheYBrtIrLZ7IRhXIQQg5jCiVDnXC63TRyP8YpGo9nxXM9GJPEcYPfUBBOlnSOFJjOwC/B9f1AWv9dD4l//etz0UIOtoRjqMz3UsGukjJ5qtdog74KdxZ4a1vX39xNFURofYWcRRVGqhpkISPy8J8oG67ruhFETaK0pl8tp4KuJgIkkeUk8BxLJ4URAMh7G+1wbL2gyA7uAZAPe2dMrkG5w27un0ZWpMdBL8jkpozFAD2wNc9t4b+Lmk4S/TU7PO7u5D3X92dl2NuY13x1Dy92drElEwImCibLwJ5hIMeSTk/ZEqS+wTUrj8YokwNhEscWAeC1Koqk2sXOYOL07HqDjV7Jha63T77Z51bE17nr9p8Z7G/DNb36TcrmM1nGq1VdeeYXrrruOnp6e+v1bmYQ777yTRx55ZFAZSikef/xx/u///b+8973v5ctf/jK/+MUvBkkdXu+VBHNplDi83gtiq/OHH354EDOzs689xdDEOuMZSZTB8Y6k/5NslBMBQohtMmyOdyTR+8Yj4rUqfkE9kmd9rm2dvwx6MeQzYzx0kqiSTewcmpKBnUBEPK6l1uhQoSQoAYaUbG/Eaw0KAdKgnmIm/k4pZN1ft3GgvvrqqynjsG7dOjzPo1gsIqXklVde4Y477qC7u5upU6eyZcsWli1bxpIlS3jjG9/I/PnzEUJw3HHHsWjRIi699FI+9rGPYZomv/rVr2hvb+f000/nqaeeore3l40bN3L88cfzyCOPMG/ePI466ihuu+22NMXqW97yFgBuueUWBgYGOOOMMwiCgKeffppKpcIxxxzDAw88gNaas88+m7vvvps//OEPbN68ma6uLubNm0cul+Pxxx9nwYIF3H///biuywknnMBDDz1EtVrltNNOo7u7e48n60Q6aSdhdcc7EoZwPNs2DIckzO5EqfOuqsX2JhJmQAAagUaiDIuK1uQi8A2NoyVainhtrF9PnfRaw1h2g9Z6t+PD7KsYv6NxHMGgvrkL8A1YPdDDbUsfZ4sj0DsYa1or/CDAdmxMrckHcOK8wzi4cyrOEM65Wq1y1VVXkclkWLJkCe9+97t58MEHmT17Nj/4wQ84//zz04xobW1trF+/nrPPPpuf/OQnfPOb30zFeMl7GIb8+Mc/5pxzzmHZsmXcdNNNLF26lPb2drq6urjiiiu46KKLuPrqq5k9eza/+MUv+OAHP8jy5cu57rrrUvuBqVOn8rOf/YyTTjqJa665hv/zf/5Pmrzn+eef56qrruLYY49l//3356ijjuL3v/89+XyeyZMnc/vtt9PZ2cmvf/1rvvSlL3HdddeRy+WYNm0aP/nJT/iXf/mX3Z6siRpjopxcE4zHID5DMTRK3ETBeArwtTPYU1ub0YTQ6b5OBBhK8Njalyhpn3cesAiB2PYcJCCReyVNGquWjUeajnc0mYFdgBYQCcjm8hw5dz6GsYOFR1MPIeqTyWYRaEwNU/KtaGLGovFux3E4+eSTKRaLLF++PP2+Wq0CsGjRInzf58UXX8QwDE444QQWLlzI//zP/wwreq5WqyxZsoR8Po/rummWs8WLF5PJZFi2bBlHHXUU1157Lb7vM2XKFI466iimTZvGtddey2uvvUahUGDFihVpUpfjjjuO+fPnc/PNN3P//feTy+Xo6enhtNNOo7OzM828lmwmSb2OPPJI5s+fz09+8hNM0+Sll15Kk5nsabS4iSB2T5Aki5oISOxTJkp9gW3UXOMdE4K+GpSEKIi4Z/2LDEift85fFG/2okFiSrw+Sg1QPySNcTeEYTi2FZhgaDIDO4Fk8wZBFknWyjJ1yhz0DhcdTRhFRGGE5djousDNIJY0DOWqDcNg1qxZtLa2UiwW040ycY954oknuP/+++nq6krzym8vDrjWmmw2y6GHHsqpp55KS0sLnZ2drFy5MhWrJ779yca9bt06nnzySV588UXmzZvH1KlTyWazHHnkkQRBwMDAQHrv8uXLOeqoo6jVaqxfvx7LstiyZQsbN26kra2Np556ilwuR29v76BnHXHEETiOw8KFCwH26GSfLPoTITpegokQzCmBEGLcB8MZiok0FoBUjD1uGZh4yQJAOwY90md9UMZHkdEGyHqdlcZHoaUgE0nQIMZBVyRZRZvYOUwcmdoYYiiTKxBIBBK2+xL1dxVFKQNg1O9DC+J/MbTWvOUtb0nTqZ588sl0dXVxwgkn0NnZyUUXXcRTTz1FrVajq6uLQw89lHnz5iGE4IwzzhgkGpVScsYZZzB58mQ+/elP8/LLL/PUU0+hteb444+ns7OTjo6ONO97Io3o7u5m7dq1tLa28ta3vpXzzz+fbDbL/fffj+/7zJo1i4ULFyKE4LzzzqOnp4dCocBb3/pWZsyYwcKFC3n44Yc566yz0tSzb3vb25g0aRLHH388AOeffz75fJ4HH3wwNZ7aXbFuEot+IhmNTRQDwgS+74//k2sDtonnkRi00WDoxpjbtaWo1WrjlhHQAqI6oUxgCwEbN26iVqviK1XfOGKJQGAIHnhlGUt71hMagITxcCafKPFdxguaWQu3A601L7zwAvfccw8f/ehH0UrTN9BPS1tbuo0nm/727o+iKM39DSK9uPEePWRpanQrTBaJ++67jxtuuAEpJZ/+9Kfp6uoadH3jCX+oN8DOtNPzPH70ox/x4Q9/mEKhkEoAXm+h0lqnh4fhTvmNSUKGqgQaPyeRD3f2JJq0M8nFPhEiECZ+8I7jjGs3rUYvj3K5TD6fH/dGmkmdBwYGUr9ygUhnVoNdW32sjrkEG601pVIpDTw03mxJtI6ZgfpKwtLyFr5371+Qjsk/n/A29rMK9U1fEKH52oN/YUq+lQ8fthgpBBFgMXZGhEopSqUShUJhtwxhkwiG3/jGN/jKV74yrvpmtNBUE+ws6guIUf8M7PiIIeKNPghjA0LR8P3gywZ/MTTLVnKiP+aYY7arGmi8d3sb7vagtcZxHC6++OJBOu0dndq11vholNbYQiLrCkQhtj/5t7eh7AkvGoYh1Wp1QjADAJVKJc39MN6RLIYTJTaC1ltj0cPWqRkRG7WZbJV6j5dlPWEOxyNjKOqSlEiCoWGgUmLu1OnUylXKfoA2Qeh4UZQa1lLDCWxMYqmAOcbeBBAHM5soa8N4wD7BDOzqhvN6m+j2NvbBD43fUveh7Vy7M3UbenIYDWFOol9rlErs6Dlr+nvwfI/9Jk0lznGYxDPYueeNBKdtGMaEyfsApNH8xqtouBFa6wkhFUgghBgSfTCRuQnM+l+JCxx6HIgGGBwudzwiUXUKYEulTFehhU1eHFWV3FbGSmlNuVbFtXI79K7a2ygWixNKzTXWGL8jcQTRKLJXSg36nFikJ6+RhBBipyxatY4z8CX1Sb4bai3f+F3SjkRvXqvVqFar1Gq1VNc7NKBQcv1QGiRotMZuDELUSB+tY4lAT63M+oFeAlWnY7T194TejX831n+kAg4liYomCmq1WhpLYjwjGQPVanVC2TgkQbsSCMCIQITxMTfSCiLdoEAYW9RqtXFLXy1AyK0bxOZyiU4nT9a08AM/NaSKpS2aSuBRC3wU9WPBGDMFiWRrvDPd4wn7hGQA4sFx1113sWzZMqZMmcLZZ59NqVTiL3/5C21tbZx11lkjfsrc2ROgUop///d/59Of/jRtbW3b6P63RjHc6ked/B5FEddddx3PPPMMTz75JIsWLeKYY47hrLPOSqUJw7lcJa59jQFmEqv/xgW1ceNO7RLiP3jiqcfpxmb+rLloKVBKYzS4DA61fWhkCkbixGkYBo7j7HE5ewuO40yIk3bSbxMlCVSCoXHzFYkkACooetwqUzN57G2Uc2OD8aoiSJAGEwIGlMcM6eBoEz8KBnlSaaAS+LhREEtgxDAxCPYykkRbTew89hlmAGDOnDnMmjWLX//613R1dXHnnXdy/PHH8+KLL3LHHXdwzjnnAIM3rQRaa9D1kzHxWB9kP7ANkjLq8Qd1/F3yb7A/Abz22mvp5hxFEXfeeSfLly/n2GOPZcaMGSxbtoyDDz6Yv/71r5x//vncdtttnHnmmRiGwTve8Q5OO+00PvnJT/L5z3+e5557jh/96EccdNBBnHjiifz1r3/F8zzCMOSQQw7hoYce4qSTTmLq1KncfPPNVCoVpkyZwsknn8yGDRu46aabyGazvO1tb2PJkiWsXr0aKSX7778/DzzwAB2dnUw5+nBuuv4vvHrPY7z7nefR29vLm848nU3rN7B+/Xocx+Gll17CdV1OPPFEbr75ZjKZDG9729vSxELDSQd2VmKQMCljFTJ3d0T9YRimJ8GJIL4cKq0aa+yQ5jr2fkBAiGb9QB9OJkunnUEIWFXq4ye3/pF/efsH6TLkzuuzRhHJ2N0ZtdxIYHfGrNAxU1VRHhlhYBsGgYhXwFRNgEaJ2FVDaWLJi46lC2PJFHieN+xa3sTw2CeYgWQCTJ06lT//+c+sW7eOlpYW1qxZw+LFi5k9eza///3vOfvss9FaU6vVeOmll3j55Zfrm2iEUiFCh4RhSH8Qsfy1jfjGjg3BlNJESmNYJSQaR0XM6mijq5CNDZqGnMLjexRLlizhtttu4/3vfz8//OEP+eQnP8mNN97IwMAA1157LYcffjhPPPEEZ599dnoCT04Y69ev51e/+hX/+I//yB//+EcmTZrEddddxwUXXMBTTz3Fyy+/zBlnnMF//dd/8clPfpLf//73XH755fzqV7+iWCxy0003ceaZZ7Jy5Ur+/Oc/09/fj+d5nH/++Xiex0EHHcRNN99M0S/RMWMmJxx2HAcvWMC/X/avnPCmU3nttdd47rnnKBQKPPfcc3z4wx/mBz/4AWeeeSZr167l2muv5T3vec82wYnCMHzdBVEphWEY6YbaqPZpnPRJOXIYKUXjeBjqubE95sQwjDTx0yAx9JAyhz57uPIa1S1JG0zTjMNU1+sLDLr/9drUWI/GZw/nxZHUIXlmY/lJOxoTT0VRNKi85PqhNGh8b2xL4z1DadJYv+TexvuHa8Nw98RtAokgDANqQvCTJ+/mmDkHc8b0eUgEA16F54MSRIpABRgN5Q/33ljPoXVpRGM7d7TZDu275D0Z98OlRh96z9C+GkrH4ejbOD6H1rOx/KFtipRCCAmhxrUEru9hC4ElJf2Rh4oUkVYICX4YIoXECOLYKoaAKCLVMQwdO8kzG6WccR9u/W7o2NtekLKhfTfcvUEQpHN4aHuHm0fJ+74WtGifYAYgHuCWZbFo0SLWrVvHpk2b0u+HLvau6/LUU0+xdu1aILZKDQMPHfpgOJTdgBdffJWSzL5O4CGIIoVvSUBRiEIy+xu0GiZKh2CZRFGUPj+xjl+xYgXz589nzpw5dHZ2UiqV8H2fBx98kJNPPplrrrmGAw44AM/z0nsT3fnKlSvTkMKu69Lf3097ezsLFiygVqsxMDDAfvvtRxiGlMtl9ttvP2bNmsURRxzB0qVLefbZZ7FtG6018+bNQ0rJ0UcfTWtrKz/96U9RShEEAavWrMbMZGhpbSWTzRJFEdVqBc/z8DyPbDbLokWLaG1tZcmSJWTr1+y///54npduSIl7YKlUorW1lVqthm3b6aZpWRa1Wo1sNkulUiGfz1OtVtO/G+0jLMvCdV2y2SzVajW9NpPJEARBmukxCAJs28bzPHK5HOVymVwuR61Ww3GcdIE2DAPf99PycrlcWgfXddMNVes4q5vv+2QymfTZybWe5yGlpL+/P62f67rk8/n02a7rps+GWAUSBAGO46T3JHQYWk/TNPE8j0wmQ61WS8vNZrN4nodlWSk9bdtOUxM3timXy6U0ShisSqVCtVqlpaWFcrlMsVgcRM+h9Wx8dtKm5NmN/ZPUs1AopO51nuelxrZD65nUr1qt4jjONn2ZyWQYqNagUmNLGGAUcrxQ3Uzr+lX8XaEToWHF+tUMRC691TJhzSefz6euZ67rYtv2IFfgofVMxlzS7wkTa9s2lUqFQqGQumIm1/q+n2YCjaIIx3HSMVGpVNK1JpkbQDqOHMehWq1SLBbTvvR9P6VRFEUpPRPaNNI+eTbEEqmkvMZ+T8ZTY7bTMAzJZDJUqlVyuTxuqYIuZunr78N3XWq1KrXekIF8P27gk8lmWN/fi9Aat1ajv1xGeh6WaRGpKB0jyZrQODca29Q4PhMPoaHzPQiCdPNO5lqtVhvUpsZrS6VSSs+hNErGsGVZ6WEi6feknrBVejOR1GW7i32CGUhE7+VymdmzZzNr1izWr19PsVhk1apVLFu2jP322w+IJ0RnZyfvf//70zgDHR3toBUD/X0Ui0VyrZLzzzwRYwe6R12PQOh7PvmMA6i6q00EIgJsJHH8gWSxfOGFFygUCkyePJkHHniAQw45hJ6eHvbbbz8OOOAA7r77bi644AI+8pGP8A//8A+p20yyGRqGwbx58zjooIPS4D/7778/N9xwA/l8Htu2sW2bbDaLYRjkcjmWL1/O888/z+OPP87b3vY21q1bxxve8AY6OztpbW3l7rvvJpPJkM1mWbVqFe9617u48aYb6dMKO5dh9do1lEolOjo6eObpp3n84Ufo7OzEtm0KhQItLS0cffTRHH/88XR1ddHW1raNu5rWmvb2dizLGjYffWtra/ouhEj/TiZte3s7MNhDoa2tbdC9Q08njdcmz0zKHw6tra1orQe9DzfOkvo11rMRxWIxjUQ49JrhJAmNdU7alLwPh+S31MVuOwvZjtqSjKfNmzcP6pdtLfYHI2n30GuGtksIMWw9h7Y5QbFYHESrbaQUQpBrbaP/tfVM6u6iKgUVoYgck/bOLiTgb3yRQGisrMPUts5hyx2OXsnYahwjQ9vT2O7G/h+O9smzWlpa2Lx5My0tLYMSWDWWndAoUavtSPrQWO5QDDcuG/ug8blJ2a2trSgNbcUWyjI+mXe0tDIpqOGamrb29jTkcGCbtGXzWIFFrqVIq25FSZEGKGx8xnD1bGxPMs6H0nN7bUr6Z+icS5iL9vb2lLbbo9FwNG1paUldgfcFRgD2EWYAYk76f/7nf1i/fj25XI4PfvCDHHHEEfz3f/83+XyeCy+8ML22UdwUv6jH3pYIKTGEwNAayfYtgWMTAR1PGKnr4Yhl3dFpSOAhHWf/e/bZZxFC8IY3vIHzzjuP559/nosvvpjOzk5OP/105s+fz3777ccll1zCfvvtN0ikaVkW7373u5k8eTIf+chHeOSRR2hpaeGQQw7hrLPOwnEc5s+fn54Uzz33XKSUHHDAAbzyyiucc845LFy4kP3335+7776bzZs3c+KJJ3LMMcekeQ0+/vGP8/DDD3PyyafwAjWctiLm8nW8uvJVPvzRj3LLfXdx3HHHMXnyZGzbxrIsTNPkE5/4BHfeeSdbtmxh8eLFqTiwUazZSPOh2N5mlkh7dsYIq7GM7U3u15v0O6rj6/2enDwSN9Hh6ryj5+/ugrSrdW1cGBMDt2Qe7OmzdvTdrrR9aF9qDRYamXNQAta4A4T9ZSpdPom9e49bptjaQs1zwSkixM6PtZ29ZihNX68s27ZTyUFy/c6OwV3BztRrm3FAfY0SoIjVeHkng2VaVMJafU2MD0OhVmQNG+1BhAAlUfVoxWIHz3i99u3OmGj8vtG4eHfm1s6O+78V7DPMgG3bXHjhhekmIoRg0qRJHHbYYcCOue6tiH+TaVDTHRilaEArVBQidAbqMdGEiBCoellm+ux3vOMdAIP0wccee2z6+9y5c1PpxTve8Y5t9IGO43DWWWehlOKggw7ioIMOSn9fvHgxEBtQJu076aST2LBhA4cddhjvfve7gTi5UUdHB+edd17ajOnTp6fPmj9/PgcddBCR1ui1K9hSLfGOC07G1BpbSd57wQUYCY3qG71Sis7OTv7+7/9+K2lGyGBKKRUbjY1X6EFvuJ6H5TiYutF+TQ93y6BYFnvb9j1hMD3PI5/P79Vn7x5iK7cBv0aLKHLvyiUcO+tAwqiefFxDNagxqdhJ1a1By1b6pzZuQzauvYFEdD7mHiZ6GHfAhrEbRCFhFKLDEMs0Cdyg/lt8Uag0WWGjIpdQ66Q7xhSJ7ddwUoUmhsc+wQwkm+vuu/HEp/oU6cwR9RP/cLdokCaGFcsDEi5bp2VtvW9oboEdiXaHY1oaPw8Vv2+PuTEMg6lTp/K//tf/Sr+zLCs9qewo+qAUsae2iSQAcoYJBphCYLDriVd2lzGQUo77ZCRagZaxZijMZdiCZnpqXKWJ0BhKoEUcv2GjW6OkIg7MtqAMHeeyGCNkMplx7frWCC00bXYWhWRTtcr8STNYsnElEQqpwPV85mba6fdqceIxtqYmHysSjzfXwsbjjSCmTSQgDAKcbIaMZWMakiAMCbRiRd8m9m+bTBBFFJSkZoBUEdowGWsHWiFi18KmF8HOY/yMxFHEVnH/zr22B601ekggnZgdGO4V/xaFAfXcRA2MQD2bxw7qu6Pvd3aj3RmRY+M1iQHV695HTAtTSNAqZXSSE+zO1C+hYSI92FVxnBBiYgQdEuACoQFPblzFbx6/i8BsYOQQ+DJ2V40k3Lz8CX73zH0EBqgkR+wYYTwHxRkKIcAtVUAIgjCkYGdQUYTSccbRIAyYlC9SdmtATFYfCEX9FDsGdB4viYpSBkDHoYWlHiwxcYMA/BAdRti2Rb8IWOuW+c5df2Ig8qhqhTYNItsgICKSQwoeI1Sr1XHFbI137BOSgZGAEALbtimVSunfrzeJoygiCIKd2mDHEgljk1ggJ/r87V2ngAGvCjpODiNNB4EmlHFM8l15ZoJdFZUmBpOZTGaX7tvrqIufQ+CVyhZervTiiXoSF2L306d6VnNA6yTypsPaqMJaXEIgozTbWGHtBSR9k81mJ8xiqjXkCnk08Uk25zixEZnWBAKCIGRSpkB/zY3HDqSSOjlG0oFsNjvm60JsCxV/SOIDJBACDC3ojTw67CJZJ0M+LONGIT2+y3NBD1XfQ2uFJSWOYRJGEdrS8Towxm3L5XLjgtmaKGgyA7uAfD6/076nWmt8309df8YzksU/cadK8qxvT1URaMUzq14iY9oc2TmDyS2tmJpdYgYasTtZxZK6jGubAQANTv302VMrU1V+vO/Ug7LUVMD37vgTnzrp7Rw9eRa1KKDfryCVQkQahLHXN6qkLxK3rTHXae8EJODWatjtbXVjNwetYtWLrxXCFEzOFli6eRUbIo9uLEwhwIg7R+woBekoIbHJGDcbVn3uKgERsYpKalhf6actkyXwAzKYOH5EqCJ6/SqlwMOINDkMpDBwAx/fUVhKvF5UttFtSt1mYEeeN00MRpMZ2Ekkeu008dDrIBGBJ6l5JwJyuVzqAbAjm4FIRfTLCGVJXB0hTROzvqDuzraxu3o9IcT4zwBYXws1sLlSoqp8tFagDbSAcuCxJOpllTfAIgFVFVKqVoi0JrDk4AmqBxsWjjYmVDhiIbAdJzZ4C0JytlNXE2i8KEQaBh12nqW9a/jufdfypcXvolj3B0oYgb3d0nFn71LXSpVCn2oY0JXJIzVsqgzQ3daBZZooZSCCiBoBoVa8OLCZWZl2EBLhWGzwymys9HN092ycMbR3abQZmDBjeIwxMWSAExDJABz3J9cGJOFyt3UzUqDjU5bwwY9i18BMNkN/5KcMwO6qCHd3sk6UKGGq/ioFLoEpEErHRoUK+kKfbLGVFeteowYQagLPx9WKNKVRg3V2yjftBX3sWIV63h1oNF4QoLQmDCMcw0GECl8rIqUwtKDoZHihspGHe9dQSULm8rp+QaOG8ULf1D5Ax26ad7y0lF8+dAdJ0OGy75M1LFQUYUiDqtREfsiCKfvxxOoVVAhxMLAMk+c3b+B/Hr4Dfxy0y/O8sa7ChMLEOLKOE+zKppVwpImIdSJwp0PF9UIIFJpIgak1gZQEMsSPIhwlyEuLahTE7oQJW7mXTljJIjruRdh1fXSkFJGOsEwzNkI1YkOtUugxJ99NteYSaYWFwJASLwppNczUOBPqiXdEgw/4KGN31TdjAQ1I0yBSCm2CJUykFgRoIqWwhUFHNo+JoMevUdUhWjQsf2PQzERiOJan18RroHHrftXvZ4P263NMUFMh2UwrUsSh0jypUV7AAa1TCYMQV4dkhYEhBBvCClXHwBgLvcsQjPu1YZyhKRkYZQyNcz6eMVw9FRApgdaCXq/Gtx/6K1tCD1NL8laGauCm/sZ7E8lGNRFoK4BQRdjSxFDgqwijTrOq6zLZzqO1wlCaUCjyxQIlv4ahtooBRIPxZvzN6GIi0HUQtI5d4XQstbLqai5FRKgUlhAUhcHxXXNoNzNUA6/OuGqk0IgxaG4ihRtTI82GeAugUQL6amVqKkx/jnSIWa+jIQQqUlQDn9ZMDi8M8MIAyzSxpMnayhaqKkwLH+txNFGY2fGAJjMwithdt7mxwnAZ9WJnSIEWgloUcevaZTzdtxEhBYVMFr9BFLc3W9noljieIRJvAq0giHBCSTUKQWkCFCXXZVK2EP+u41NsR65Ir1slkOCj4iBPdZfVxE11tIktxNYw2RMFSkVEUYgALATSNNB1VYGUEgvJx48/h+O756H8IDbQjGLJlxiDdqohbspjiWQ4RRr6PZcSHpFWaA1hEGLU8weY0kBpTSUI6LCzeFGIF4XYpolj2ayv9lOKfLTa6jo8Fu1LQtA3sfNoMgOjiAlh4NaA4eJwSy0wpUDJOIJiuVbjV0/fSyQl2Xqyn8Qffm8yA4m3w7imbwNBIq1xpEHetikrHy3AFZo+r0ZrNoeHItCaKIjotlvo82qsqvazpjZAIIjtNaj7gI/i2trY/xMpLrtAYNeNBg3DwJQSwzKJVISnFErGocSn21mmZYv0VgZQEnyhqRCNic1AY46K8QBN7ElQcqtUVWx/IQREKsKxHSzLwjKMWDIQBrSYDhEaLwxSZmBDuZ+aCmPbljHkcRJX8PFC24mAJjMwikiykk0UBL6Piuon7XrIXFF/KUBFEQdNmslmJyTUCsdy8IKAZNYnLnN7A4lUYLzTN9HvK63xfJ+saVELAnwBNz33KE+89gqOlSUUscumImJKtoUttRJ3L3+aG559BB+NrBt3JavsaC1xySkuCUc8Hk6tOwdNya2yMfLQhsQADCnjULpKIXUcy9HQMG/aLJ5bvxJPwtK+DVyz5CFCQIfxyTjUceTI0bYsdF13zCUDjREHUxuhMEILUMQSqSAIkUIQenEcEh1GuGFIxrZBQy0KME2TrGmxqTxAFIWEKB5YuYyS78ZrSd3Nc2+qFF3XHfeSw/GEJjMwipBSks1mx7oaO42Mk4nzvDd8l0Qh00CIYqqZhzDA1JKsYeFHW63597be1TCMCUNfpTXCsWg1nDjSI/DowAbu2vIKGdNBEhsZBgZ0ZnP0uS4VYG3kAYInN6ykN/JhL2xSEDMDEykcsRIanc/w3QdvoFf5ZABLSvxIERKSxYiDCwFz852sdvvQwJIt67n+5aWUtYIQAg0BDPI0GC3kcrmxp6+AegaHunRPkFESQ0hCNJEWsaum5ZAxbSzDgFDhhT6GbWEhKEcuWJKc4VCKQvKGRb/2+e5Tt/FKtS9mArQiYu+K7XO5XFMysAuYGDN9gkIpRa1WG+tq7DQqvouvo/gkW59DUV1HbQBuFJB1Mph+RMY0yVgWvhdsPV3sZV/tiRKOGEBrRc2tIethlB0FtcBlbbWPTsMm1IpARdjCoOhkqPoeZTQDbhkVKv7tgetY0ruREI3Soy+AEUJMqHDEGujt6WFJ31qEZWIiEZZBoEJCFeI0qJPas1ncets2lQcYCFwCQDlxDCKnHhAqglEd0OOFvpLYzRViaYCwZGyMqeK062EYgoCq52IIA6005SjAIY5H4vkhhmVTyOZoM23anBz9gc/6yGNprZd+FYIQcbjyvSg5rFare+dhfyNoMgOjiIkmGchms9iYoMDVCgIFKj6KGsTiwJzt0KJtMqZFVlhxbIIxqu+ECEdcF41GWuE4Do7jUAsDlIaByCdAkTctfAMqKsAQgqxp0+vWWBOUeaZnLeXQYx0eA36N5QObeXrL2liAO4oi5iRg1pifXHcBmVyWAeXTJmwMIGvbVIMAv55tL5FcFQybKFKEWjEQevhRiCTep0ylQcW/jfbONR7om9qi1kUDSisMYWBi4KogVRvk7Qx21sEEDMekR9VwdJyn2Hc9CsJkVrbIm9rnMjPTytraAJu0yw/vuoanXnsZLUSqqtkr7RIije7YxM5h4sz0CYgJcXJtQK1WQ4URZRTP9LyGr6KtrkcaXB3hWCadmTyFTIaMMIh0zAzoMZDGRVE0YQKLhPU8FdKQhJHClxodaqaRpSgMTMOgHAYgBBkzw9LNq7njhScJHJMNXgVV8+mtlnlwzUvc9tJzDdGHRgcTTTIglWZTuUQ7DgdYrSgpaLXz9HsVgsDHNIxU3WVqAbaJHwaUtV93MVQYOpYG3LNuOc9uWo0c6oA/whgP9E2bV6eNUgoHQWs2R59XJahbDhh+hO/7mAgsx2azX8auG2VWg4CcYTKj0MqXTvl72jIFHt64mqqOWFLdzEavSrS33GAaUKlUmmqCXcA+wQw0urjszGukMBFS7DbCzjhgG7xY6+Gbd/2Bfu2jGkaIF4VYtsWUfAuTW9uxhUwNjSB+99FoBYHWhAk9R2FB1VqPHX3ryuSkabrh89DrEqO/MArJZ3M40oIwRANt2uSS49/O7GIn+UhS9n0QElNIVm9YSyabZVa2g1WlAaRls6ZWoqwVG2v9hPUkPFA3+hth8+3EZmCiLKZCS2Q2wzFT5vGOI95ABLRl85TdGkEYYptWvds0CIG0TLzARwlwbBtfR2g0JR3y7Yf+ymOb14yimWYMx3HGRawMDeh6jCCl4pTa7ZkCm8olXB0hpMQxLRzTRmjI2BZLV7+IbcRqgj7lY1oOpiHpEiZWMc9PHvwruWwe1xT0uZW64eDeNSAc91LDcYZ9ghmAwX7pySuKokF/j8YzgyAY8XJHC5EfQBiyuVrmSb+XLV4lTcccCVBhiGMYvGXWAo7pmEFGCCqGiuO7a9jgVvl/z95P4EXcuOp5bl+1jNGyGUoW0bEK95ys36/XvMQbo6RDMoGmA5u+yEMHCm1rTp9zAK25DI5hUg5CWkKDKdkCXzv5PP581sc4qHUS16x4lK5sjqpfpS+osrR3PTWtiYTYusGNsLJGCIHv+2O+Ue0MRP3/klejXVi0WDYmkDNtqlGIFwXYtoUSGrNuLZcTNmtCj1oQ4NgOKgxRGnyl2ORWqQYuwShbxCZSrbFWFSQKEaEg0IrIEvxd2wyeW7+W9b6LIQVCKTwVoQS8YcYBVLRHm2FiI6lFHgUtYtsDUzCrpYOy9jnAmUReOPRHHoYGJfeuFGSijN/xgn0mHHEQBFx33XWsWLGCmTNn8q53vYs///nPvPzyyxQKBd73vvfR0dExohNTCDFhkhQBSCEQQuJ5HtlMlo29vRzY2gXUI5EFITnD5MiZ8zCEZFOlRNRwLF5fq/CnJQ9xwfxjeOC1F5nd0oGSdQOlEa5rEsJ1TOhbX19CSC3Ut3uZjN3UokiRsW1kNsNLlS30Kx8HyBqxHtUyLLzAx9GSVifLGw88DEfBUZPncP3y3zN70kyCwCcwFRUCPCKy6fTdet4aCTo3htKeCJKB2ONFEIoIxzTrJxyBbVh4vo9tSDJWXYJUNxCcmi3y2Uf/SLW/xOEt06jpCK0UL5d78B2TsnKxlB7V41IydpVSY8sQpMkJ4giOAG35An9Y9QxLH3gN244lAJbSSDSTc23kM1mEbWIYEi8IMK166GytObRtKgcVJ9OayVNwHCoqgCTK414cThNp7R0P2GeopbVm/vz5vPGNb+Q//uM/2G+//XjhhRd4y1vewuzZs2ltbU2vS94b1Qavx2HuKL74mPoRD1Ov7dVVCIEwBK7v02UXqERBnQYCLTQqishIg6yWRLFjcoPgT9OrXHrw2RjV2BRV6Q6LW38dQRIk9d/ZvhkNuFpTEdCuBTrJF6D0oBzuWmuUqNMuDDGFgWHb3P/0c8xrmUyXcLClgYjAMgxqoY8pDGxif3ip4LgZ+9OSydPW0orvB5iGwLRil05l2rEeVsTsgNCMiBg2oW3yPl5OVzucY0JT9WrxJhV/g22Y+H5AzTFpMXMYOiUXp+93GP/fi/djY1B0HEpRwAOVdXz11t/SUiyyqtRHoDUOelTNMxrbNNp03pkcCErr2Ig1m+GRnlcRfsDJsw5GSImhIgwFLaZDt5lHmCZISTUKkNJAK4VQmrn5ds6fdSTKMslMOwhZNzIWdd5qLMKXj5cxPJ6xzzADtm2zYMECgiAgCAIymQwtLS38+c9/xrZtPvGJT9DR0YHWmlKpxJNPPsnKlSup1Wr4vp+GFdZaYxgGYRhimiZRFCGlTAdbco2U8Qnb931830dKmZ4AEnVF8llKOaicpPzktJBckzwzubfxvXFBScozDGPQ+3BMQXK/aZq4tRqmYVJyq3SRoz9w8WsupmHhCU3N90AKwiAk0CGRirMc+r5PqA36KiWCmsvm/n4qbhXPdgm9gFBsrVNy4kzaG4ZhHMikoS6N9GxEFEWDaO77Pq7rDvLYSBa8pE2NdGxE44Y3lI6Ni+bQcpRSGEKytG8Dj61ZwfsWvDF2vRSxKFUk1xhGHG5WCpTWVAMPA8H0bAsauOGVp/jowcejPJ8IC6mhN6ggpCB0PYQh8SONiaJbZFjQ1s1La1biSBGrFDyXNsNGhAohQaEQdbev4cZG4/iMogjLstL+GDoWEwbA8zwsy8JxnEHXDC1v6HhsHHONfTm0Po3jPLl3R+U1/j10zoVK01cq4ZgmoR8SqAhTCPwgQAWSafWgOdqSBGHIXLuF759wATcseRTLcujp7+eKh67nscp6Ti8ehK81G4MqXb6Zzrmkvo1zLRkbQ9s7dBwNHd9hGKb0tW07vbZxjg4de0PXmMa1JqlfUoeh8yjp98Y1Ia2LVggVRxv1Ah+hNHYEfqlKf1gjqw2U5+NHCiPwKQrJwbIFI9KEaCqRj9SawAuQhsAIFP9w6HEYaF71Stzx7MNUPQ9LGkSRj9FAs8Z5ntRrR+tdIz2HGyuN65/neURR3fBxSD8l5WyTmK2hnETFu6+kQd5nmAGlFGEY8pvf/IbZs2dz6KGHcvDBB2MYBr/61a+4/fbb+fu///v02oGBAUqlEq7rUqlUCMMQux5+N5fLUalUyOVy1Go1bNtOJ6yUkiAIcByHcrmMEIK+vj6y2Sye52GaZrrYGoaB7/tkMhlqtRqZTAbXdclkMukAThgH0zS3ebbnedi2HVupS4lhGHiel5aXy+WoVqtks1lc18W27XSxSJiV5JnZbBav5mLYNj0DfRSlSV9QpVqtYhk2A6FL2a2hJdTcGmWvRmAJgiCgXC5jYVGuVrFth9W9G+jzqvRUS9Q8F99zUxolzEAQBFiWheu6aT3z+XxazyRuu2EYKU2SNiW0qlarBEFAqVRCa41lWdu0v1ar4ThOSqOkf4b25VAaAWk9k/Ky2SzVapVMLstTG1/lvlXP87Y5C9FobGkQBT5OvV65fJ5atRqX73uU3CoZw6Rbm7QbDo9teJkvLDyNUl8/2s4TBAG9tQpZKahWq8i6f3eYcZhrFDm6MIWnvWWEJlha0F8u0RJBJgJpCtzQJ2vH7c3n81QqlWHHUULzbDY7aIxkMplBG7PWcXroUqmEUirtn4T2yUKZ0MhxnG3GXDLeE3ucxvGZ9HtC++RaYJu+rNZq5Or1bRzvUsYbu+M4lNwaVc+lxSxQrdao+S46iKi5NYStEKGi0j+AyjsE1SoFK8d8keeAvzuD/37mHjaVB+gLPOZ2TCNrOmQiSblcwY5iF7XGedRIT9u2U9o0rgnJmEvaFEURtm0PopEQgkqlEgehahhzvu+n9EzKzWazaV8m5Q033pN6+r6fZu0L6zRKxnDynq41YYDUAolgwC+BUsiaz6H5ybzs93Jw13S8cgVhSvyqxlDw3iNPway6BEFIya0iQ01/rQ+ZsxE1Rca2iESAdKu4oU/fQD9FK0tQq5IrxPRspFFit5XQKKF543xP0pUnBwHHcQaN5eTdcRzCMCSKIkqlEmEYDhrvlUolfXbCFAPp3EjomcyBfQX7BDOQbL7XXHMNL730Ep/61KcA6Ovrw3EcKpUKnZ2dKWfe1tbGW97yFl544QXuvfde2tratuH0C4UCAMVicbvPdRyH/v5+Jk+e/Lr1a2lpQWudqiuS74fjSHf0zMZrhBAUCgWEELS0tOzw2QCB52FmMuSdLO2t7eBYtLW3I4UkJ1oIt7zEtGwrhZYCBVFgS+ChHZv2llaKpkVmwGFKeyeikEVpTZCzKBSLmC0tg3SFw7Urqe9wbWtpaUEIkdImucZxHEqlEp2dncPe03jtjrj7xr7c3jXFYhGtdfyuoJaz8YpZOtrbYwOrujF/IKFYKBJJQa5QxESTp0i2byO+KZna2s5phx7F2iX30NrSyiTpoLWgrdDKar/KjEKRlo427AgiKYgE/J+zzyeHyR8KBXrwacsUsPN5Jrd0xqJvCS3EJE7anbRpuHYndEzG3FCaJ/Nl06ZNtLe3Y9v2DvunkUbDXbO9OjQ+u/EEO+heIFssIoBCsRiHxk4CYhGLnC0tcApFys/UOGTOAbS2FmmjSH+fIDJjt82uXAutk7tidU4hj9CCrCiiNUxv6yQwJYe3T6dQbCXwa7RKC9uy6e7qGETP7Y3Pxt+Sv4drd+O1GzZsoLOzM2VsGumV0GjoM7c3jofWYRAN6/ck1wx91wAqpmtrTSJtk4OnzeA7536QK27/LTPyHbS1tlELPVo7OrCUprWrA62h9dUCaMgX8nTZORAgW2LD1lCHdGYdXEMyuXMSNgLZ2oIWUCg09KUYbJqRzPekLTtqU+NYbnxXSuF5Hm1tbSltk3KSvhyOpo3llMvlCWM3MxLYJ5iBxDL6ySefRAjBj370I9797nfz0EMP8corr9Dd3c3JJ5+8jaiu8X1XE4ok4qpEhL2je4cTWb3ePa+H7ZW5vesAMpks2jRxfY9iNsfmUh+B0NhohBa4aBxppjpZU0hCEesCtYAg9JmcK9JbLROEIYGOE8AIkfy3/XbtDH0akUgNstnsTtFpJK5JfxfQWy1TCwO0iLM6CgFJxmGhRRrgRifeGFFErlDEMCT7tXRyVGEqWcOKfxXgCIPeWoVisSt5BJJYdNtlZYgihWOalN0SLWYRP4ow4kqhiCNEiuTG3WlTHY2bci6XS5MV7Qn9dub7Ya+p0zDZKJL2yfpv8d8itn+ToISkI1tMvQssKfGlQochjmESCYlZzxYhhEBqQSghb2fYVCvThsFMp4Bv2PhBRClw0/J3BzuimdY6HbvDrTe7U+Zu1aP+nyCew1qDlgJLC+ZZed578LHMa+vClgaGzMTjTAgkCiXi67QfYppG7LIZPxGExlSSjLRxvQiNQMgkZLmorwlJ/Uju2uk27sy4btz0d2d92dU1f6Jjn2AGtNY4jsMVV1wxSEd14IEHDtKTjjSiKKJWq+3USX48wHNjN6KK59HV2sIjSx9n4IiT6TQs0HWdXqKXE7H3QWrEB/hhyNR8G5srAyjLwAhUHM6Y0TEiDsNwTOgbCU25VEYHASEaOzFME5ok6K1BQyAmDf1RgF2NiMKIwybPYL+T3kFOGIQCLA1ZYdBbK5PP1g3g6jugqBu8KSnIWDaVAZdirpta4KI19bTGI09drXWqakjEzXsbup4gQKbNE8kP8QamY4u0GpotXo1S4DK92I5SxF4sUqK1IgyCOOjQ1hJSEzYJFDJZlq3bRM40edPcBQituXflMnrd8qi2L1HPjLVrYSNUYosgBYaCM2YdigDK1TIqCMnmc8DWyIWmYWAqQRzzsQ6x1d3TERIMgUeEg1E34NQoIEJgUne/TQodIWitKZfLE2btHQ8YP6NwFJHoqQ3DwDTN9JXo2YUQqahuJDnBRDIwUSxZnYyDMCSV0OeYWQfSUWynFobprhYGAbIeyU3oOCscdQt2BQRhSHe2hc1uBcM2saLED390uGvDMHAcZ1TK3hFcNGW3RkaY+CoJuVSPY6E1JRnhodBKpQGZtgRVprW0YxiSAgZTrUwa8U5rsA2TnrBMznTShVHQcHIT0GHnqFWqtOcKVGujH3c9l8uNGSOQQLFt4ColIJKAjNNAX/3kXTywajm5liLtViZloISQKK0J64anQ6GJaZ+3Mwy4VQzT5IC2Lg5pn0yLk6EUjG50y/HGCABEOsQQcbIyJWPpiQCUY6JzdhrNQhBLASzTJGNaGIh6QKeGwgQ4QiJNg1oUoNE8tvZl+rza4CBZo7A8JpKtibL2jgeMr5E4SmgU87/eayShtU4NhSYCXM+LU75KTbeRIa9NIh2m8zsxZEwEp6aQCA2RjpkBXwW02zk2uQOY0kQoPWqZ4hPL37EIR1wNA7wgoMXJ4euozhDFcLXid0/dx6pKP8n5SWvoD1wyutHuZKucVADSNBjwq2RtO85gWP8+grTwg7tnkwsFk/JFarXRD3NdrVbHNFxuCAxEQcxYNYyjdDZp8IE7Vy1jef9GtCHI6FhiZQK6wSrcNK1BZdel1UjAERY1FRIakkiDiCBn2dTC0Q0YlqQwHk/rQxRFSMNAUhcbWwJMAUE99HedQ02CkTmmRd7JxKqyWE41CDYCaRn4YUiA5jfP38+qah9SkcoSRqv11Wp13DFb4xlNSo0ihBATKlGR7TggJEpqskKSty38IEil0CoIMWXdHUgJpAJtCGo6Qqo4sNO01g6q1Ro6Uvhaj1pa42QRHQvJwJZaiYKVIWfYKLW1gVorPCLuXP08j25cRVj3/VdoqoFLZ76IUBAmW5vQmMQnXWlIaq5Lxhq8aTXqyee3TuJdhxxLh52lFvgxo9UgOR9pjHUinVoU8uO7rqPXrUJDxjuRbCQ6/uw5JkvLG8nKWJ2lRBz9whQCD0UYhNim2SDIjtnZJAiOISSe9lHmVuNE2zSphgHoOM6A0nV9esOBdk+RhMsd+9Nr3LCqVnhhFIv2iWmriNucFQYF00lplmQgzOVzTMkWsESstmlkcxPxvy0EXhiilGZN5NLj1wCBrDMVWozO+M1kMuOAthMHTWZgFDHRXFPCMCIKFREKLSVZ26EcBmgRW7UrP8KSFsl0N5RAuT5PrH8VD6j6HkXbJiMtTGHiShDRCK6ewyBxC9qbKEU+bU4GM/Upj78XhgAFFdvg1pefxlVhffEUKBUhqRsXIOPIhXV7gUjEulcZKrKmg2brqcmEVGWwf66V/9/hJ9Ju2AwEPkrWz2ejJGZN4muMFUqhz3WbVrDFq9aj29U35bqhW7xRCaII7lm5DBkoVN2tQwnICUnJUIRBhC1MZBTfo+qnWKFjxgxD4OsQUwosoTCkxrFsSiqob/4aVVeFjWTU5/GyNig0HiE/f+x2XhrYQkZaRGi0TDYITaAVSjWkN1cCraC7UORAq4DFVvuWFEKgDUFeS4IoQkcwUHEZ8L04dKfYam800uIBrfWYrA0TGfuEAeFYYCJaowopiLSq+81LHMtiwI8N1ZSIN15HShAQCtAKtB9w62vL0S1tlIOAvGlTdLJgxr7d0dAFYqTrPAb0DcIQy7KRkYfSjbtDrLpodXI4KqZXYFqYKk7/LGwTBJiK+ioby1wFGss0sKVBxrbrwtatJtZblQkxHNMmqCc7Gj3zTEbchmZXUY58+kOXdZUSh7R1pydOzda9xJOK1kyGfKFAaMk4eI7UaCFiyYAOcAywiXc2OUiUHUtubGniRgGmkBh1gmcNiyCKc/YZiSQBRpTU40WErYGSCrjp1Wc5LmPRkrFT7xRRZ7yEFCRHeC0ESmpkBAtbp3DAkYsHtUXUXRNio9pYleApj0ArevwaPbVKLA1LHj5KQ2yirb9jjfExGv8G0Rgpa6JAAyEKLcARgqmdk3mlZz1ECqXivOaONOKJrDWR0Gw0Q65Z/RTfuvdPVKpVCpZNi+XQaeQxQ/BGK1PRGCDxvw/DENMyY8NJNbh/lVZYCmzDoKoilpd78FSEryMsw6zTrl5eWjBY0sDSEjt13WS74lNTmAR6dE+V4yEMcb8X63y3eLW4TnXZc4BiQ1glEhAQUcCkw8hhGya6Ie22ISU1FWLYBqaon2j1VoYiYbRsKfGiEAMRe4EQu3qqMCAE0KOTv3Cs6ZvAAKIwYqOqsb7UR9GwMaMGG41kLauPdUksIBFS0G1k2a/YtV27K4GIAwkFPi4RVUIGQpewQcQyWtt1YlfUxM6hyQyMMsbLhN8ZKKUIVARSYCGZ1NnFmnIfryqXezevZJU3gGmaGDoW/0do9i90cZDZRjnyqIYBLWaGjmyBdjND3rEpBaNj9Z4Egdpbk72xH/0wwDat2GCqQTIgdGwLYAoDZUjWuQP82y2/ZksUG4rZEYSxojTxjovvg1gqYNhYyNe1szCkQaQSJmv0Tj5jzRDUfJ9JhdbYqr/BSHOLW+ayG37BlrCGGSky0mCGzFPwNQIR54MgNnD1dRSHi9aCALYR80sRxyOoqdiKXhIzHUUni1d1CUXsypFSeQTJnYzdsT69CuKQ2eXIp6fcR9600cPEn0i8BWJFV0xnIQTpv+HihwCOZeMHAW4UkMvlCHwPMYrjFmKaNoaObuL10VQTjCKklHs1c5Ye/B8Aft3q10qFzw2TY4gI3zJNlIpACwwELXaOh1ct475NK3hx4zoKVg4DAxlfgi0kXzruXFytuPie/6EWRthC0m5mUH4FZdlUXQ+dZfDON0J+xXuDvkO3Qg14kY9j2kghB0sGtMBXEaaQaGmw2u3j6XAL64IqhtZkTBukRMvBUgEhYslAxrJ2KsOjYcTx5Ldu1CO74CULqGVZe2cx3cbDLP7kBj6T861Uw1o9Wl38fVlHPO5voke5TNIZEIKT5xzC4cXOWNVVF0EbGERhSCTrTAJbpdJ1U45YKmNIvDBAapn+ls/mqFZrRImBQgNDMFKS7b1G3zr0Nh8AEXusuIRgm2wqbcG2sngSMg2XJSGYIxFLEiQQxCYy299E6k1zLBsvCHB9n7ZsHr/mpTYzo8kT2LbdZAZ2AU3JwCghObV6nrf3Tlf1x0RAHHkFrl3xDLevXEaoND7EFlhqePGzcn0GfA9HmCgpmGxm6A9dHul5jUxrK+3CwRISJQWYEiGgxbToMCzePHV/Dip2kpGSM2cfzLsPWEjWtukNg9Q9LrFMHgmDt4S+vu/veWGvg2QToe4qWYsiCtLElAZVFbcvUgACLwqxDRNbWqzq76fH8/jzy09jRoJK4GMF4dagTfEtSCFolQYthohF2ZEgQsSGbsPQypEGNRHFoYghjQI5om0eg7GrScYuoOKTaqeVJ/R9lKwHctLwWM8aXDdABYoqisiADyz4O2bbeYQUmHVxv5RgIqkYsZGnCamxZ5w9D0KhMaQkCEKUYaA0CKWQpsWaWomV5Z7Uk4BoRIZuioS+e1P60vioOpmRgKtCJuVa2FweIGdYqYQkvidWjQVBMGjDsIi9Dne0qRtATppUwxA/Cpns5BjwPSIlCRCpEnE0vI6S/AJN7ByazMAoIQlktLPhckcMiWRAgC/g2ddWsWLTa3Hwm4aJMVyNbMchQJGr+7q3W1lOPGgRx7XM5Csnno/MWFRkvEjE6XJjaYMVwgUH/B0fPvrNWAhmtncxb9JU8lYG369h1FcV2SAR2NMpOjTc895B3N4oipBCMiXfxqZybxySuG5KHagIxzApOBk2lUqcOeMwnl73Ev3ap71YQJh1P4G6RCA+impmtHbxniNOJBdzB2jEdienLWTdS6OhH0doiDXm4BiboDjxIFECaoFLe6aIFwb1jUvTH3n87PHb6BUh1TAgVBGWkGSEpLUefjYxuNRSkDEtrHoUPGBrZEe2vtuGiR9FyKRvhMARgpJb4en1q1B1g1ll1JmVEaJ1LpdL6b03kEb6Y6t0Q6q6e6bv0VpswVUhjm1jNrgFCyEwTRPHcVKjwjSwE9snR/KbbVl4QUAQRrTbeWqeRyR02k+jhWb0wV1DkxkYRYRhSKVS2XuTvf6eGPh4KPqMgHVhCai7qzXM3qHTsOa6VGsujjCQSmMrmJVrpz2T5Y12FwcYRbKJs3Wkt4bcldAibKbaBST1k5nSFLNZ/JqLpxU1FER6q658D9eARCdYqVT2rKBdQt1+v575cVaxnTX9W+L0wcT+6F4UkpEGBTvDa5Ue3jbncCzbxhMRUcXFq7tnNTZfCEGrneUt+x1BXpip+qZx8W6ELSQoReJPkLghjsQoS8NLa02tVtvrBljJgqQA3/cpOhnchuA/qwd6CKOIQ7pnoqOIUIXIesS8/v7+rQXVCTfFytOpbZKIebrhlei+bcPEEJKc7aT0LgjJgZOnU/Y9hBJUtI7jaQxhqvcE5XJ52NTiowmhEgmMrtu4aBQKL/DpsFtwDIu8aaVGrgk8z9ulk3ajANAyLbzAxwtDWmSGqG4EajQyvCNMAq314PHQxOuiaTMwijAMg1wut3cfmmwgOo7PPuC71OrGPUZd9Lw9vbSTzaBqipxlx+JrBEUlMS2bydkiXz7jPUwRJhIF0kBqUEIQWvF2JBteALZl43k+z/evx8zmONRsHaqu3CNYlrUX6ZtqmtFKYxkmc1o6uP6Fx1B1w0EhBH4Y4UiTnOWwutTDlGyRYmSQR9JSKGBKmQZuga36eUPHSYmSzkkYt+H009KQ1LSiIjQZtjIDI72gZrPZvScZEA1W/lqjpCAMFcVMlp6BXqj/1lutcPZ+R0KkEH6AZ5pYRhyoqfEkKDQYCk6ZdjAyDDGJSRtCw/iP1Qm2MMgaNq2ZHFLEtgUZITn9wEUsWb8KDdy1cgmOH3DmAQu36hr2EIVCYa/aFEHMvCu2rhGblUtNRdT8gElGhm6ZpUVa24w727Z3LYNf2plgCwsvCvGj2POj35AEWo2qCeHrZdhsYltMOMlAomMb+treb2OJJA/83uL8G0/c8WKoCYOAPr9WTxACWuhUQTeUVjXPjfOMWzYRMTMx2SlwQscspCGYlM0hjDjoaFQ/OiRhRWVjHer1cDIZBjyXa59/mDtWP0ckqasrRqa9URThuqMXlje1xWxolNaaMAqxDIMphQ42uWWihrDLXhTiGAY502LdQA92vsh0u8gBbZOpui4iGv6krQHk1gh4CZn0MENHSMn6aj+r+3u2LuwjDCHEXg1HHJN5qwtfhCYKQ4pOjkBFsZpAQJ9bZXImT4thUY4iKr5Hm+lgaLaREkkFp8xZwJv3PwIZsY3OPxGDm0DRdGhzsqC2hoDutrNUA5cSEX988VEe7lmFN4JWA5VKZe+7vomYzpI4jPg9ry7jl4/fTsXzmebkOap7Ll1Obus4rCMMw10L/a23zh9LWgSEuDokpy2EEdvWDDUZTV8jZFe0d6WGEx8TTjKQGI4lura+vj76+vqwbZvOzs69r6PfAcZCMqAEyPpM9lXs8x4EkkCBKXVdhSBSMaAnwFQaQ4NjOwRakzHs1IDoxNnzeYM+IDXGEvVIIaJ+lEvV3jTMXxVHgGuVDq/UXFb09VAK+zi5ez6HFLtGzApeSpmGdB0tKGJbB13XYwvA1RGdMs7IZgiJrxU5HYfC9aMQYRm0Gg4q9Gi1HP7x0OPJmhYFGZ+uhm12IgVoIM32qGNJyXOldfx66f0cevzbMXSs0x6pyZzMrb0lGYgN9jWRjgMyKQGmhigKabUcalIRhCFZaVL1XVqsDMoKqUYBBJqMbYGAfD4/uGAJLUIgUxuXuhFh2tCtqoL9rBzdTpEIMFWcYreYybAprBKqkPW1Ei3CIRrBtSWxGdirqGd0NOqMV18Q8lzfFma3zGC6XeQDp76RLsxtmIHd8XxI7IMcKQmFpqp9bMdC+JIoigiJ+6Nx7RikQhtOLLYLyOfz42YvmAiYcMwAxAvHI488wh/+8AfWr1+P4zhxel3D4JhjjuFd73oXnZ2dYx7ha29ZuydIvKAgjv4VqjjuuiUFkdCpUVp8yoojiHki4oWe9RzaPpUoiCgFHnnbIYm5lhEGQhp1tUECMaxoOhE9Jm8Fw+G1Sj+G5bCqZx3fuPX3/H9v/ShZae7xRG9MVDSa4sDkdJMEABIIAhVhSgNDxExVpFQqOQ6iCMM0yFs2bZksOSmZ3jEFgC1btqBtZ6v1VWN72Lp4vh4MaRCYgqc3rcLTKo47wMhO5sZwxHsjc2HMCMUhf6sSMjqW/LRaDo4bsaxvI1NbOrh3yyu8Y95R+L6HG/kIFE7dhWyQlEiAMMRWmoghG00DLCn53JveRauVjQ3qRD1ltONQjQKU1rQ6BVSg4vk1QvuL53ljengRIo7UuGLDWlZ2zOSQzim0GSYiEtuMxSiKCIKdT9yUrAVaxG6zgYqoRQGZbAarLBFRHBQ6MaQd6k2QSDn3hDJjkcRsImPCMQNaa1zXZcmSJXz4wx9m5syZZDIZlFIMDAzw8MMPs3TpUhYvXjzonl3BSE3OxKNgb2HQKV0IIhQi1JiWGYfNFVu1pT7gRFAKyvzi6bu44tT3EBqSLVGNQ532dHNLxNSvR5Hk5JVcLDSY0uDV2mbmTZ5BsbaZ54Jeqiokb+z5sEss3vcqfevMVhRFse6/HnQliqJ0JvlhgC1M8pbDFDOPLbdupCNVV1MKupWDjiJ8InJaxi5emhHRZydqo70ZjlgBBoINQYX7Xl7O2fOOoBZFOLbNSXMO5unNa/CE5t6Vz/PhI06mXCpT0i7at8jaDmh2m2kRwHSjAEqjhUbXPQ8cYaLDiEBoMtpEWiZ+FIBpj0ibxyTccwNTpAREIiLf1sJKr4cFYnqqrhpaq12da40rrmkaBGFENfBpsws4SHRYN8ZMQ3NvrV9ymNlTyox1+u2JhglnM5DkqX73u99NoVCgUChgGAaGYTAwMMBZZ53FSSedNGjgJoubUoooioiiCKXUsK+JjoSj1wJCHWJKiSkNVJQkxR18XVmFrNEuNaW497UVPLNlDZ2FQpxToJ61bKdnpSbV7QoNlmHQE1ZpzWaZnm2hN3LZWB0YUSX3WLhtqiiWDEgEQgrCejRAJcBXEVllMK3YxuGFbrINzMCIhKjWUMDk0sXnMa9lEmEYxnYbIxz1eW/HdRfEPu8rSj385om7KIc+FR0iDZPuXCulapnI9Th51gL2K3SRdxzKUUA59Mli76GFv0CbgtCS+KYkqqvRTB1LwMqRT840wYyDE41U9LwxCVmenMLrxr+R75PL5+nTHhnTTGNfDNfCXa5nnUGNJVeKqu/RajsYGJQJGdARWsT2Ngpdz0JVf9YeNXIP6rwPY8IxAwmuvfZannjiibSzlVJcddVVvPTSS9vEyU5EnldddRVf/epX+X//7/9Rq9VYvnw5l19+Od/73vfo7+8f8cUvYT725oBMDoiK+JSasR2klLEou+E6qz7jS1GI7wVUAp//Xno/D65ZTksuHxumRYNF/zuD2G1JILTAMAyqvkdOWsxx2piV76RPuakqY0+QMHh7PzOZ2MoM1B2uFXEa1gjwdUBRWkxxClx48lvJNUhjRqKugniTWjRpOjnDphLGAXlGwzVrb47dWHcPy8ubWac9XKUJlCIrDZxMBtfz6QtcFnXOoFUY5DIZKoFHVfs4ZuxNsCf01fWwuknAIqiHKhaSiueRMS2kZeJGaQLqPUYYhnv3AJKqugAdj9coCMk7GWpejbxhpLkZYLDoXim1a2OhYTyaUhKEITXXpcPKYGYsXnL7uebJ+/GkpqpCBqIAZYyAOKCOJFBS02Zg5zHhmIGkc59//nmOPPLI9HvTNFmwYAErVqzY7n0nnXQS//t//2/Wr1/PY489xk9/+lPe/va3M23aNG688cb02h15KiQShKHXNH6XTHApZRoSc3teECP5ov5SaKTWBEGAbdvYGjwdOxinImCl0ELjBgGBF1CKfFTeYlHnDHKmHReFikV57MTzU//r+LMWCltIvCAga5i8edYCjp00h4rv1em5LQ135ZWILW3bHnE6pgtfvT1pWty6iXSoFIYUSBHbYARKpVZQtSjAMS0cBJ1mJnYXrC+vjUZYu1snXa9HXkjaMzme37wuTi9bD7q/vfE43Jgddgw1zBfbtl+3rjtb7s6M20jAktdeoZDJ4ekIHSgcJI7jUApctoQuOctBKE3Wdqh4Hp4KyZkWCIHjONudwztus0YqjVF/CVXvTAFISSXwyRkWpjBwA2+3+m84OjuOM6wEc7ReSqn6+InTZou6wWvBtKn5HrZh1BmAhnlcr2sifd3ZetLwsqXEVbGaIGtaZC2bNeU+7nptObUo4r4VS7hnxRKqWkNYVwHW7x2uDUPH9vbouydrQ9LOfQkTzmYgQTabZfPmzcycOTMdEOvXr+fwww8f9nrLspg9ezae59HX10c2m6Wvr48DDzyQbDbLr3/963Qg9Pf3c9ddd7F69WqiKEqDr0gZW8FaloXv+9i2TRiGGIYxiAFIjK5qtRqVSgXLsjAMIzVyTAZ0cq1pmrG4t+HvIAgGTT4pZbq5J+U0vov6KVWHitA2MPyI/koF0xA4oaanVmWSMuOshBJMFaEUDFTKDPg1+rwaxUrAv735PThKE3g1IqURQSwKT9rU2N7k2cmCpgIVn56UhyNNhO/XU8lq/m7KLJ4vvUZ/eQCv1SPScTlBEGBZ1jblJRMxMRRsbH8YhliWRbVapVwuD/LVbqynZVkEQZDGVU/KS+gZRVFK+0Y6Nl4bqghp2SjfR5gmqq77VGFE5HvoMGLAqxKYOXwVUgpdIitD6PtxDndppBt1X18fSqnUxmVomxK6aq3Tz0n7kzFhWXFqXWFY7FfoYk2pD+UFeDpESGPYNiX9k7Q7DENs207HWOO4TGivlKJUKqF17FUQhiGmaQ7y5EnG+9DxmNRz6NxoHD/JPErqEAYhvmVQDTymWEUqgU8YBoRBhKUU/W6Zcq1EwSlSq1UxtaBcczGVxtaKUq1Mf38/tm2nz07a3ciMJ3UwTXObdjcmDoqiiFDEtOirVChEEtMx6S8NULULg/olaVNjuQkdEwnl0PkTBAEDAwOIOhOTnGKTejT2k+/7Ke2HjuHhxntjmxrnRBAEmJbNmkofSzeu5dTpB1EJa1gaev1qHGq7UsWwDMIgwGyYP+VyOW1fo63McHMtmUdJgCNDKfpDl0BH+KGHhWRDbx/LgjIDpSoP9bzGgI7IrmnhhI4ZBITYlkHgxeMoGdONAZoa14uhtE/6pL+/n2w2SxRF6XhvXFsbjWMb14SkXN/303GzL0gYJhwzkCxCp59+Ot/4xjd43/veR3d3N88++yyPPPII73//+7d7n+d5XHnllRx55JHMnz8//T5Z4BKYpsnkyZOpVqusW7cO3/cHLV5SSnzfR0qJ67rpYp5M5qGTuFar4ThOem/y3OTapG62beN5XnptMlCTRSd5Zq1WI5PJ4Pv+oIVPGAah6yOFQ+D59FQHKDhZPNfFrbkEMkugI5AQoon8iA2RTzUI8CoV2gpFisJE1zxCw0g5e1mfbI7j4LoumUwmrUPSJiEEKogwUHihh2XHIkhHGphCooIAR0t6SyV83ydU8UT3PA8hBLVajVwul7apcVNMaOK6LkIIPM9LrZullGmM94RGjuOk5SYTOqVRPXJh0pdJW5J7kmcD6QJqIAg9H0OA57qEKiTyQgI/QGtN1XPxLZ9a4FOr1YiMImEUUXNdDMfBD4M0pGvSr57nkclk0nomz04WvDAMBzGeSf0AXN/FNuPAR/39Pfh+QBi6OE4mtVBPxuX2xhGQ1sF13XRDSjaxZFFNFtBarUY+nx803oFB472xTcA2m1gj85Nck9De9wP8SBCFIaY2YomVCjG0QkcRkQrZNNDHjO4W/MDHUgI/9NkSBeTrYyMZI0nbbNsetIEm/e77PplMhmq1Si6XG9TvjYwXpoUdwsZqmaw0sEybvkqZoCUYdIp0XTeleTabTduUbPwJ7S3LSudPUoek/xMVx1AaJV4SyT0J45v0zzZjY0hfJtemcw3B8s3r+MmKe1nUMZOqDslIk2qpQs7JEHg+WljUfI9sfVw2ZgBM/m7s91qtNujZyZjTKo6CYSLwPQ8sDUFEZJs8/tJSqr7LerfMy34/D6xezpZNGznitH8gcqsIYtoka2ziMZb0ZSONEtoPHcvJGpzMqca5NtxBrpGeruumtmX7CiYcMwDxYFi0aBGf+MQn+P3vf09/fz9z5szhq1/9Km1tbdtcn2z4V199NT09Pbzzne/Esiy6u7t5/PHHWb58OYcddljK8RaLRd7whjfQ2dnJvffeS0tLyzacYRI/YBvf5oZnmqZJf38/nZ2dr9umQj2u+s64yW3vmQogR6wbzOepbHqZKe1dlGtVWopFCvkCSiaBPRQbSwPcsXYp/VHAQF2bmDNtcvk4E5yQSabDbZ89bB3qBoRZkcdUmimZLEUzQ1dLO4V8gWltnawZ6CdfLGDIWD+YtDdp/3DlJr81vmutsW2bgYGBYft8R+UNRdKXyT1DoQCRzxMCuVweYRp0tLTRUixSLLaQyWfJtxTIajBWmXR1dJHP5cjmcxgacnUCep5HS0sLtm1v0+7tPXvYNpEHBVM6JrOqPEC+mEfKHBKZXrMz8S22R6Nkk9u4cSOtra3Ytr1T5e4KzZP2J9cqoOLHC7yONIZlYGUcWrJ5Ck6GfCZLxdK0F1tpbW3FCzykFpRVQGexlS6nyGtr1tLR0YGUcqfoucOxDPga8naWV6IqswtFwryDb5q0tLYOmhND272j9jdes379ejo7O7Esa6dotCPsDO0LhQIoMFrzrFADVLIGkYxDjh9SmMyMYgetho2SkMvnEQ3lKaUIgmDYubajdivADMNYymDAtK5u2lQ/a6p9HDZtLr9c8RB9octA4OJlTPK5PLlsDgEU86/f/qE0SuiQBHxrXLuTa3ZmbuTzecrl8th4fIwRJhwzkCxUQRBwwAEH8M1vfhOI1QDbE+cknOSWLVuQUnL11Vfzzne+k49//OP88Y9/pL29ndNPP33Q9UPfd2dAGIZBNptNpQB7C5LYdbAa+OQKrbFRUMrhijTQyvP9m/jriicwTYf/evIO5nZNwjBNkEl7ReqptvOtr+vZhMBCktGSosggELRZOZa469BJ+bs5xxr1mKPqp623GlyJers0Gi00hojDCpuGQRCGqQV2GARYlkkj4UT9vsbEP3tUZx3XyjZMfBGSJIyKn7XnhplJ3bLZ7K6FoN3dZxInIdJ1Vb1j23ihD1pjSokjDDpaWnlo86tk5x2FII53HwUBZenjSBuh441g6Nzd7TppkELT6mT45YoH+MoR51A2FKWqO2J0ToI6NaoTRhtaaMIworKpl6fWryKIFMdP35/FU+bRIszYGwiBWff/R8R1tSxr18Zu4llEHKzMMA22VEtkDJN2kaWrtY35bZP4/tM3c3jXHGYWO6mFLioNaLZVVbc7EEIMSmK2q+XszT4ZL5iQzEAYhvzgBz/A933mzJnDe97zntftONu2ufTSS7fRAX3mM58ZZDAykp2/N4LiDEVq/yM0lcCnzXYQWhDVjdyE1nHsAC1YE1WoWtCdy3HPa8uZ1tZKoBUmGqPOCOwqNRIfZnQcpnhWvo0WK04AkzNsqtpPI47tKaWjKBrlwCL1Ban+11ZPDY0U9YyNpokfhcn+jBcGqXX7UPOjRN2xJ2NMN3ywpIGvQ5RWyEGm4nuGZD54nrdTp9KRgiLOlJexbdzAjyUyIrbun90xlauX3B8btwqBKQxMJLXQx6jnexjp0NRSwxmHHcOvX36U/Tu6WdXfy2v+AKEGMwmdLERqa7irtHddl1wuNyr+8Knxm449JTR6a8Axz2fRlHls1DWCIGB2roXpVgsy0oRGfYzFgR9S7GrQofqj46iPQtKWLbCx1E/GMMko2M9uobPQgisjckpywJR5rBnYiKcisoaJwZ4P5dEMVf63iAnnTZDo1NasWcOb3/xmlixZkopydrTIGoaBlBLDMDBNM7WOTfRfyWuk67qni/+uQABI0DJO0lINYzc3KQVBbDpIqBRaxSZtfdUKmSDizV1zOXrW/kx1ilhCbjeR0c7WwUCAFNhCcMXJ7+SQ9skIAQXLIQjjmoyEJ3HiTTC6iO2vFXGIXKEgQGBKiZaQlxa1KIhDFkfQT0iLkUlPRo3NTMbCnlopJ1KAgjTwUCCoe32MDJI67s2xawI+GivU5AyTMPJRBiAlAphk5wkk5M0MAZocgva2VpTQZAwDJIO8CfYYAnyhmW3n+cCBxzIpV8DOOPT5Nf7y/BP01mqEGiK9ddPbVYzUeBgOmtguCAWbalVeLQ+gI42PJghDJrVMouLWEAgywkSagCMwhcCCQYxAYruzPXXG9iqgdZyASwiYkssztaWIoWFB9ww+c+zptNg2b5t9OJcfczZfPPp0ZufbiMIgzv8Q6T1mBjKZzD7nEbAnmJCSAcdx+Id/+AeefPJJPvzhD6e/bW/hGitRj9Z6r4YjFpBGydOAGwTkDIeiNPF0wMawxvJNa/m76fNwQk0t9Jji5PnggjfSU63Qt2UTKorQhgHbCaH/ehUQbLXcBujIxQGM0ALLTIx1RqY/due0sksQ1EXyWxd8VaevIWJBcd6wqfgBCgiFAqWwpTHsIT0IAhzHGbEFyjRMgrph1+6cTLeHxGgqMb4cbaQSl3r9s04G1/dRxG5pGig4GdqlgyVN7PqF7S2ttJazWFqmqsMRk+5psDUgDD541CnktEF3Js/6SonHN6/iyKlzactm07TIu4MgCEYt3LMAlFa4hsE9a5ezZvMGPn7cm3lkwypedfuYVmijUi7HabJfRy+eeEPsylxLI5fWJ870TBFZDDG1oNvJYhlZym6N7PTDOGDKDIxQ0xZI/CjCVhot90zQtbfX3r8FTDhmAOLBefTRR3PccccNMvBINqHEaji5dqywt20FEnGlItYNBirAxiAvLdww5ImNq7n6oVs49F0XYUqB4Qb80xvfxhEd07A6BP0t3XWGQuzxojrcvYZhEkVhvJuOQL/sjXDEW6MExGLsCIWuh3YWGjqcPOsrAygJbqSQkY6ZAaFj0X0DdkaCtSswDINIKZTSYIycmgC20nbvRniMffxtx6bq+0SAXW9Q0bTZ32rFSlzBJGQMh5ywkwqPaF0FsZoglIJCINAmtGfzrApLvCRK9CmX2fWNTsvdG86jTVtbC0pCs6JvIwNhFY3gz88+QK+lecOMg3h2ywtoM+7j1xs6u7OWpSpDAcfNOJgwikDE9gixhGAmh0yeiQVILSlb8NOn7+HihScxKZPdceE7gWY44l3DhFMTQKwL+vrXv86f/vQnXn75ZTZu3Mi6det45JFH+MY3vsEdd9wx5i4hyeQZi9wEkJy0NJaUWKaFFyk2+WVeDAeoBh6+IRA1n+NapmEbBo4wyGljRDasxgiQoqFWhmkQhSMXMXBvMANboVE6zqynlU4X0A47z9OrXsDXimoUIQNF1jSJiDeTRiqO7OKvMc0kFgEjFhUPtuZQ2Fu0jffU2EBFRGCbFrUgZgYMJFLAtFwrn1j8VlpMG2UItBAUtKBdm3FGSTkKY0FKtJRgSpQQWIbJhtoAa19by2tBNTUwTRuxixhN40wBoAQGgkq1SrlWI0TTJwP6whpdmQIVwjiOxuvQbbfWssZmScGUTJFZ+TYiKUBItCERwiArDEwNGNDa1cHPn7uTZ0ob0pTge4KxTlQ30TAhJQOO4/CRj3yEm266ia9//esMDAxgGAZz587lrLPO4uijjx4XuqLEX3vkC25ce7Z+Eg3nWA0opTEMCbaFr0KqlQqeIXB9H8PJUYt8HNtO07rWRIQ1inQzpUEYjcQ0jzGi9NWvt50KvCigFHhA3dJYw9wp09DLTdzApz90yZg2tpGalw06cYUN4X33/BAvYnoGYf2veml60FvqzbCrSGg74vNoaP3SrzVKqzinhWlRrbkIRJz/AUGraXPUpFlYSoMEGcGx0/bnwEnTsRRogzT2wUjCqp/8pdZYQtJuZVjYNZtHV6/gzEnz4lDQdcHMrmI06ptAA8g45HDJdxnwXUoqYsCrUfM8ik6OqojisOFimE2zUT2mY0Z4Vw5YjeM7iqsSp6euWzEmw0rUpS9CwZs69+e+1incu+oFDm7pYka2ZTdbH2NUVYh/g5hwzEDCoU6dOpUPfehDfOADH0gDYjS6v4w1M5Bw/I3R8UYaPmDVVfBCa0KtkErEoYhNTSgiMghM06AWBtSqLrPaJrFi/VrymSxrgwpFaceGw4JUtdIYgW8kUDcZICMMAq3wtSI3QkKpERUFRgrPENiRIBSaUCiyCISWIOH+jSt5fO2reAgyUhBJaBMORelQCgJKXpVCXbxps1UPntTQsOx6RMJB9lm7jET0mhMGSis8rbC1rNtr1C+qbwS785zGoEsjfXJNvF20hkiCGUEYm6jgobCkICctVoceRWEi6xn0TCHizIxJfSTMLrQyU7Ri6Fg/vksGbjtTT6gzU3EIXyQcb0/imKMXcfXSe/GFwsZoSG+9axhVMbZIbFgEAyJgwIgIlWKLV8Mt1ejK5DFDQc3QGHJ7Cvr6CJISLSTC2Pk5m3rgiAbxsyRNhISI50j8Xcyx/t2UWXz2+HP57F+vZFHXLKbPXbBHDPPoGxf/bWHCMQND/Ygtyxp2ERgP/qFJZMHRKZzU9S+2zdf0iAjTkLQpA6FjYzZLGliWiRsF9NYqnDz9MF4qb2LSllYydoY2J5cufKHvo+p+zyMpYkvqaCIQpoyjILLnC3diNDYS0ICSGkNBqEAJhWFChI43G2Dpptd4astrtGazWPXTlIkkowxcFVHzfXJO7EYpdJyETYn6qVFD4LlkbbO+qO6ebKA++utMRhwYKqorCXSDnij26tjtxwCjZEAoIKShbmzNYhuhMA0DS0jKkU9exsuTaLSOFFvLMVPpS9xBIzrXRD3YlK6/0NhC8v7FZ8TSCwSBinD2YENPDB5HC0KAVLErsTAlQRSyWblgaCwri0Fs92JpsY3NQ/04EP+vNSIKCYIK5HPsDIvZ2GXbrCT179OEUHVrQ0fAYV3TOHDSTLxwz9W8TdfCXcOEVqrsKMnEeEASFGe0YELdhU0ToLnykVv48/LH8IVGRgpUvKmbhsGWWpmNpV4ObOtkIy4Vz2VORzem2GrmlnMcTNMcUUYgscIXxCeARFUwEjBNc0TdyTQCpeBXLz/ODcufwlAiTeEcKsXz61ay2aviojCFxNCxUUDGtKlFPiXfJWdnBqWB3aos0OQcC1OCFGp39+dBECK2BI9UFLuD6nhjjJKT7G4i6f9cLjcqetc4fkDsq6+lxqzrveK48BIp4lDD5i6c9IUQ5PP5ETciTD9ryGhBp5UhIw2ykSSK1B55yDYGoRoNSARax2PN0oJq4GMGijm5NgqWhW3GjJcYrg2CemQCjdARpiWwMjn23OFv2EcBsVFhp53j3YediO/V9oi2QoidijTYxFZMWGYgCTG8Zs0abr75ZiqVCmvXrh1XeqIkydFIQ0NdNRC/ayHwleL+DS/yXM8aVN2gKkBjSoFtWKzq76W7rZP9Wrvod6v0Rh6dMoPZsHgm8bhHpb51GFISqpF5RhRFI8r9G0qwMXT5xrO3cP2m5UQ6ThesRRwhD8dCZQ1CreJANyo2InRsh1rg0edVac3kUklCzADptMMqro8XgRbGCNlN1BPbRBGR1lQDH61UagMSwm5JBRJPkmq1OvKGuLouE1IQas2ADiGMbQVUpBDEqa+9wN8lMbrWmnK5PLJ1peGEW3ffNLVAComlBf4e2r/UarXRS4JTl2YkUr6MNClFLm/snMu/LH4H3RjkDANhSLQc7vmi7h6oQAh6aoqn1vThjwIz8P9n77/DNEvO+m78U1UnPbnz9OTZ2dmdzdqVtEFxlRNR2AL8miSE8fvDGP9sY7hAv0sIZMMrgzMXGBuwjV8yBiSQEMrSKq1W2pzD5Ome6Z5OTzqxqn5/1DlPd8/07M6sZhGDdO/17PRMn+ecqjoV7vC9v/doDA0EQrIjrDE0X1taoLWWwWDwt8JDfLnIZasMAMzNzfHzP//z/Oqv/iq9Xo8/+7M/48EHH/x6N2skUsoXhvhClPnu5Z/GWgqt6Yegc0eAU1jLEI0Siprnc6y/wrZmh1ZYQw9TFvIBY340iuGCA2a+IGxo5Z8SgafWPQNlHaTnbQEopYii6JK0kbIZA52TZwVLq2ukOEVLl2h9g8X3PEShkUgq87sWhsRZypnuKuNj42AqZcCOSkAbwHgRAw3pRn/+szZoc0nYkfer/LUQjg65KDQrpuC9H/8DnugvObe7LRf312i5XurNVABYKCQ8ubrAb37xr4mFI04yxiBLcrAsTS8Kb3PhluB5ytaeNVBVqKf6mxXuA1AIh4QfFu7AsvZ56Vyb6Iifj9iNH3vWP+D2BSNACoGy0E1jZmstbpjYTqgFNc8n9L2tPQOUZYSBXCgeO9PnP/3ll+kV5tw5WYFANo0pFzX3TLkkjICGH7Cm01Enn88+8U3PwMXLZa0MPPzww7z85S/n4MGDWGuZmZlhbm7u692skRhjRpX2LrlYC8bBcpWBtCjo1Nt4uXFuYmEpMARS4iE5lq0wE7WpC4USktPJkKh0wypcqCFLM3RZRfFSSkWDagV4QpFqDfqstf08FvulpiO2SmCKglfNHGBG1sgosFiEddXstLXU8MisGbnhBYIg8OnpnG6/TyvavAEZLNgMbeFDDz3DZ5845pD/Z/XVVv+NNtISB6AthQWDxhqDI+nNsbhNvm4la7rgwcUTfGD+UQ7HXTfWX+MrrPAul3ouWFwQ3mBZKlL+fO5hlosUjZuv0pPUhGSVnEiqizpkB4PBc7bXWotGo7UlpzzMz3Nt9eyR7uZcPSgF0/U2J4drUM6P55PamSTJORVTL1Q2nvsah/a3ppw/2pbzTlAYQ2gkQip6aUIUBE5BFRYv8Kh5Hs/lpzLA46eWmR9azsQFBYUDxJT9tjYdzV0o0JtaeOE9sqLEjQQ+w6IYZTJsus8F3tJa+4J4Zf8uy2WtDMzMzHD48OFRiOBzn/scu3fv/no3ayRKqUtLkbpBRKmR55Qu3TxjWrWwqSETFmM1ARIfia88lno9ptpjNKXEVwFLWYLv+whpkcItxCAIkJcYQS5wVqoBhHTUp4l2R+nZxsxFbR2l+/NSjq/AYo1hOmxQiwIKXSAxCGsorItn7wpahNWyKas6hp5HbArSIqdBuCFeLygQYApSA589tsqji91z+Adch9gwAJW1pSms5tGlNVYGA0SRIzRu08cpAx3rs6Jznp6f58Ce/aTD2I23cFS5z+dNVhwRLxQdscDgY7FaczjpshwPEAhyaxFKUheKZZFRkxeHb67X6xfQXgNalyydGkxpAW+lRIh1kO5GX06AYHt7nBO9tVFBo+cjz4eOeDRNNiwa13yDttDHUpSpgAjliJs0+EHIcjyk7oUoBEa5LKPA80bZEOc+qyyAZS2H5ta4et8M8wtdchzVscEgNnJuW1EWJ3KhsYsZlQpb4+F4JrLc0ac7pWO97xd8PyEuqdfwG0Eua2Xg+uuvZ//+/Rw+fJhf+IVf4IYbbuCGG274ejdrJC8kJaYVgkIK7jt1lGPxGitZQltGCOu066QoCIU72AOlMHlBPYrwEEw3OhzvnsFTVXTZLbOiKDDGXFJrsMI3KNynaXx6umCgqq1mfaVfjEJQbaKXanyrMyQ1hlAqPN8nK1xFQCMkWVHQtIrbJ3dxW3sWH7DSbXw15ZHHMZkwtKQapaONAs7SZ5gXnFmNWVjulf6Gs55fegsshkLk7qBCEEv493/xRT7yzCoLqUanFkEwqh/R8CPW8iHdXp+bp68g6Q8oyxUgz7PJP5dsrAz6wvDmO+9HXORMRk2W+90yTKCRSqGkJE4SfHlxGSdVvfpnF4G1HkfjFGXK+5tnV5rOVgaEtXQabbpx39UCuahWrkuFb3relflKV75XhoRiDB988j6OxKubCv0UwtLyQk73ujTK0I8WlrYIaEnfWfJbNEGUz8gtdLs9btm3jWeOnEFaSCVYYcAKhHWHrpZgUfjkIzriixWJK1S1FPfp68IpKs/zXi9sEbO/e3JZKwP33nsv27dv58///M/5wz/8Q971rne9oHn9FytVgY8XQiqA2Ice+zJ3HX6UVZPTsgHSV2S6INY5demSr+pBSKR8al6AtLB7apqjS6dLtPb6VialQopLT0Fr7fpEq3s+9y8f4y8f/wpaO9d7Vb72YqBq1SF1yd536ZqPdUHdqNE4CiMwOIBmHcGbrn4R/+DFr3bsv8L1K/A8VoqMWBhaysOIjQcHaCSp1vgyItMeuTnXZB/hALBYKxhYxXysKQycXBa8/6+O8A9/85N8+pkTWLmejTDZbrM06JIKzQ7VZlBugJKvbXG/0HTEFkucp+xrT7HY7zregUKPeETyPMMXF1cgw/O851ReDJInl4e85/c/znJi3KGm4IIfZJ0yEHieS72ktISfhyilLj4DaoNrYFO8HkGM4U8e+gL3zB2m0kUNlkIJJqI6p9IubRURWJdd8PJtV/Lq2auQWz5/FCRhmGuEjLhl1ziPL53BZjlebpFZgSbBkjPUBf1CY4scCo3VF6aknx0qlAgCPB448TT3HX96VAbZXqSnAV5Yjpe/i3JZKwOtVosHH3xwFBvKsuzrTkO8lVxq60pUC91ajmU95rMBfXLGPR+pJIW1DNKUZhCBFNT80CkEnoe00PEjlpKe2zw3t/SSt9eKdfCPAaJajU+fepy75p7AmHUv4MUqA6P7X8qxFYKYgqZy45gbgzACaQWZ1XhKMe75TPshpS2Pb8FTPidJGSpLTSiMKO1I4dI/rRAU2lDzJJ5wqYDnbm0WW1Z1ESgeOrnEj/+3v+JTT5xmdyvk5v0T3Huqx93zK+jSiyCsYLLTYbG3Sio07SCiJ/LNd36eZ/kLmqJrLQhBP0nY15hhKe4jBGijUVKiPEWSpCVpzIV14EIPVYHgK0fmeWwhZWGQuHoTF9FV53ERhL7vGBqB55so+nzGeP2IhkJAbA25oCwGZlk2CSeLLrqksiisRkuYCOrMD1cJowgXqIEX79jPbdv3PwdrgCUuNJ4fsrMRsGYsQ+Px8GrGmvVIhQutffjh4/zZPY9RWMmiDp3X4ELH4az+hUqRhZLlIsFY4SjAn4cy8M1MgouTy1oZ6Pf7/OVf/iU/8iM/wrve9S7e9a538ZWvfOWc687HR/A3wVNQsSNeStkQWmYx6bOqYzKd0/ADhHKpe4vDLm2vhsDS9AJ2qjp+GQSteT6IdeYxi3AZCMY4StgN7XUuXVNa79p9jMFYTd861kNGv9sKRmVxgUX3uzAMeXL1NHP5sETpu9i2i0Fe3NhfarpnYSG1OaHn4Qnp+laOTaI1SnlIs25xCUBpi/Q9PvzQ51mNByjUCIVtAWEcfmOl12OiXsOaHKP1OQhuK6pYqwQt+ORDJxnWO/zGZx7lO27fy8+9bT9vvmqMldhgNSMNa7zRYXnQIzYF9TCkr7PRuLJhE72YEEwlLwgd8YZ2deMBu8cmWUkHrp3G4klF4PlYo6lH4YW3WkChs9G4uPloNsxdgzUWjGFpkHLt3h0cPbVGUCpVZ2dsjCDsW74nCJVProtR1sjzkWc1XOzWn41PGuqCP/3Spxjo3KHxrSXTBcMiQ5deg2GR4Qc+kfJ58vgRwiiiKJUHD+Holp+tkVaQ5DmKgprQhLLOpx6Z453/4zO8+4NfZDWVGO3xxVMDPnd4lftPrPKLf3wPPett0Y1nn4VVwFIKQeApYmkphPtWtV4uZqRfECr4v8NyWftRbrnlFj7wgQ8A61p2s9nc8lpjDGtra5w+fZodO3bQbDY5deoUq6urKKXYt2/fJjrjSyEVCOuSi3AWdWEMmRCkRmOyDM/3kJ5PrjV3zz3Nzdv2ogxMyoB//5p3MBPWMMLF5Ga0JRISYyyFlIQF4CnEWf23uFiuER6SGKnBErEYD3j/xx7nh195gBumJ8BqtJTnWBnCWoTQWBTKCiaCOqdX1pgerzuecgmPnjzMkaUzfOtNt17UMEgpLxkFbXV8F3mOiALqsUduClAGiaBvDL7wUBasdBUJDW7jump8hptmdjFOQOpbWlpQeNblzFsQwjC/NODA9haHzvRJMoutiU32pMAgMRTCw2A4Ocj5199yM/fNneH1V+4irCne+/dfyX/+6FcZGM2YsAjlMxk16fWGFDXoBBE2yzFlHFuWG30VlRAbMATPGVkv6b1fEACh8MixrMUDDs7s567lU2hAW0MARCqgpiTjQXiBNrdAI4lChatxYJEUGAQSRS4UgyThxMKAfTs7rA7hdQdmue/EEm++bhdCWhwm/xx0wLmPso6kN5CCRBcYa/Ht1pc+l3wt4yssnM5i/ujkw9yZ3U7D8ymsdopUrvGtwAjDIM+oo2jJkG1exL7mOJ7AFQcSgDq7tuaGjgIUHv18wFiQ4AU1WqHPR548SWwsTy6m3PXoPN/1oj3oJGZuaZm7T61y16HjnFi7gfaEB7YaVecp22qorHBzFSEwWJSneP32q3nkzEmixPLt173E8VBc5Bh9k4744uSy9gw89dRTvO997+N973sfP//zP8/P/dzP8dhjj215rbWWj3zkI/zMz/wMX/nKV9Ba82u/9mt89KMf5d577yVJkkvuGbDWvmCUmBZBXKS0ohraGOIsoxaESOni06nO2TkxU653we6JaULlIYxlZ6PDLe3tTAQ1JKJkzBNkubNaN4qwIKXAA4zwWM0UTw5y7j++xtOLGXc/fYpMgJX+llq7oOT2t86tGTUa1HwfPwxcXrm13Ldykj975t6RRX0h8kKkFiIERZHj+z6B8sh0NjJXcq3xPK+sxLjB0taGParJT974Jr5t/80ECKy0o8MYBMIKuklKJGIaQchanJ4XsCWBQaZRWcKV002+98V7adTAM4KpVg3PKD7+9Gl6wkOYgjHPoIseA51TD0O01g5QVu661T0FXLBZVYEzX4jUwqqjBktSJMzUx8iLghRDYg14Ck9IZk3IeHSheeIWiSHvuQhzXAiywkdahbAKD8v/ufsQP/xbf8XjKwlymLJncoy1VOOgmlkJUhuN1Pmbrt27yIOApMhJjH7ebI/VnvO8UgsFrMQDjg1W6Oapmzd5uR9ojZaO5UJkBePS57Yde/l33/Yu9tU7zlm3sbKoEFv3ujyg+4khCjyMLmhFkqOLC/zmO27mV/7erfzV06eIjSXMDV7N4/RKzNXX7uSxZ44icTwbm4DC51U93L9LoCEVb7v+dj761P186PhDm0IjFwMm/CYd8cXJZe0Z2L17Nz/wAz+AtZbhcMjv//7vnzedRAjBd3/3d49YyjZSrl5zzTWb0pKMMWityfN8hK5/ruI91aI++89GozH6/flk43fO1/ZzvgMsDntMBQ2nDOQZU80mUkliU2CNoSZLQJV0FqrEcZBP+zX+5Vv+AeNBDVltRsJSiyJUCcKq2uNc/+74M/h86dBJPnDv07z4wAzX7umwtNLHWI3AoIRPlR+/sW/VXqCEZVfQ4NunD7IWQF4UBDLg6XSNI2JAXOT4/rna/MZx2ThOFd3zRnfrc72fs3/eOJ4WS5blhJ5PUJIjmbL9RVGMwKDWWudalpbCE0htuHF6B3p6O761ZZ61cOmf1oJRdDPJVKfO0CiWBkOsaa+nMJTXu6p9hsXBkPFQUlfg24JYBUQF1KXhR970Un76f/wVaXIj33PTfqSUFFHEmdzQDiOGRU6hDR4S7YEydjO3fynmrHm61XhXa6KaB891aJ3vXmfPbQvkGHJraPshnpCkRY4xmgjFpBfwE7e/jV31MYc1OTt0dc67BKU1YaeDtZIPfuFRrCf5njsOIlSG0ClHlwQz+67k6ZOrLPRXaLVC0iKnKDSeD1ootz6sO7xspfFVf1biNDxqyuOZlVP86lc/yr986ZtQG8bo7D/PHofqz2az6RgkjRmRD51vDxjdq7KgBQzyjJ7O6JocYaGXpUzUWyRFxqlkwLHVMwjjiLJm6022F02UBisrfsxz3/movSMPi6Q3TBjvjBP5Hrdd0WKmcwMv2zeD1imRVaymCWvasmusw1cOLfLG23by9NIq2lqk1e5JUqGNRG4VDKzmp3XGhy/giqhDIWEhKtDWuFogG0IF5xvrjeNXr9efc289ez5t/LcXImz8t1kua2Wg1WqNUgmttTz99NM888wzHDx4cNN1QogRcrfShKWUfMd3fAdxHPM//+f/5Hu+53u44447ADh16hS//uu/zuLiIrt372Z5eZk8zwnDkCRJaDQa9Ho9ms0mg8GAKIrI83yEhM6yjFqtxurqKlpr1tbWaDQaJInL7a8UDKXU6NrhcDj6s16vk25gYNNa4/v+6Nn9fp+o1eaBZ55ke32Mk/0VVv0+u6M2WZpxJu7R7/cphkNOrQ6pNeskcUIYBORaI6RkXCmWVk5Rq9cZxkMajQbH504yPTGJMa4CnLWOyER6HmkxoB61+fLxMzx8Ypl2w2PXeIu5+QHLy6eoW0ua+wRRQJIk1Go1BoMB9WaD4TCh4bnNty0k//TFr+e/3PcJFlZXUKZg7sw8Y36d4ytLTBkXWqni1Z7nEcfx6H7VmNdqNXq9HsPhkMnJScC5XeM4pl6vMxy6Pg2HQ6IoIsscvW31fja+y36/78YhHTIcDvC8kKIoWO2uMc8pmmGTU4un0Llmfn6eRiMijzNs4JHi3mWoPGycEtVq9IcDmo0G8WBIVKuRphnL/QQ/7uIXASdX+pycm6PZaLgxqteJk4Sw5lPEmseXDU1fsbw4T+g3WCy6zAQe8SBhJgq5anaMux4+yqu2TzMMErpJRpwVqDhnLu0yP1gj6sb4rRppOedsidYMg+CcMarGM89zlFJorTHGsLq6Sq1WY2xsjH6/T7PZHI1nUZJTeSWqPoqi0f36/f6m+V69y2oOR7Uax4Zduv0e/ZVldJZz+vQC3bVVdJoxOLPCHeN7GJw+g2m49169yzAMR+9SCEGe59SiGsNun4VhF7U2zadPZAwZctu1Q5pmGYxhcWWZl++c4sljCwwVRConHnZZ6afML67RGavR9kAUBVHgkaQDwqjOcJjQarVGYzRIEzzPI9KGwAj+6sTDvH37NexpTdDb0M5qzlVruCgKwjBkOBzSbDbp9/skSUIQBDQajVE542pPiKKIwXBIs9Wk3+tTr9fc/XwfjCU1hvml03iBz2p3lfmBZsEMiaxkudflc08/yB89+mW+65rb6cUxq2trFN0hUavGsHz/1brKsmy0JxZFQRRF9AY9mvU6/W7K4vIKaZKzeGqe68Y8DrQnWVwbYNMeY2nMPYdOMIgz3njdDr740P1cKffxocU1Di+s0hQFoYI0y/FrTeLBgFZzfc5lWYbyFMZYjNaEgRsj0axzQLVZWetz4tQ8E7UGRZa74kvlGt445zbOkWouLywsMDs7S57n1Ov10f7R6/VGzw6CYDQ/g3JtVPtw9d6er/fmcpPLThnYqKk9/vjj/PEf/zHgckqfeeYZ3ve+9z3rdzbKi1/8Yqy1rK6u8tRTT3HHHXdgrWV6epqf+Zmf4amnnuILX/gCY2NjI6awSpuvqESr4igbNevq5yiKSNN0hGOovmut3cQ8Vt0XnIIjpURrvYmqtLpGKUWz2UQLgaqF7K7VmR+sUljLZKtNPYywSuErj/FWmxmvhpCCdr2Fkc5Vryx42lI0mxgpaDQbSKXYvXMXwagKpMCybo3kIsQrfE4nGfVmnQEhe2bGOX5aU+9M0BCShvaQStBqtdb7JATtehthBYkokFYQSGgFEaIW0g47jNmQ2cYEqaeYak+cs/Da7fYmS6oa82pBV2NnrR09u9FooJQaWbdbWcHttquXXl1Tbzcxc08z3ukwlAW+HzA9PYOyknq7SdsWzMzMYKXBNgUeggpC5lmBbbrgfLPRRCKoN5tYDC3dIuc0e3fOsjKw9FFsm51FWEu9XnftbLUohKZbDHnmzBmu3LODyakJBCENMjyR0Khtw6qMf/ztr+A3/+JTTLWbZGGNvRMdoiRmptVmbrjCAwtHedsVN2ARGN/j+MI81+7ZT4CrENdsNFGeGo1b5b2q5lk1N2u1GlEU4XneaMw3YnLOtspardZoPJWUNBpNtNXEaUozqiGVom0MhbWEShMEAft37qZ2+H5qrSYiDfE9RXNigoYRZGNNvLJ9GwsRbbSky0bjNVvUVhS//KnH+MjTmqbt84n9c/zIS/ezVFiKxhlu3NXhDx5a5fodu9jTDIlIKJoRv/nnn+fNt+znbTddiQ9Ia2i06xRW0Gi2UVKOijY1dQNpBGNS8H+/9tv51fv+mrGJSRpRk1qjAWeNkeM1MHTjIa1Gk1azhZBidDhV991oqDjwp6XeaqKkolavszboU+90CDwPJSQGKE49xd7tOzEWpmZm6c89xhUzOzlyZo6iEXLMDpHKZ0d7ik6rhajVMJ6iUa6jZrO5pdUspaTWqCOx1Ood0iOL7Nk5yfTUJM1aRCEdEBkjaE01OJnAzRN13nbzXga9Ia85sI3PHT1B1wh2zEwR2JwWEisU7WYDuWE8N84lbS1CChqdFoWU/PjL3sYfPvZFxiYnCX2fVm6RUlD5Hqs5t3FuVHuELsN61ZxUSm3aN86ufltJdX2lAL5QuJm/jXJZKgPV5J2cnOTOO+/E8zw8z2P79u3s3LnzvN+55557+PznP8/jjz/Otm3buO+++4jjmHvvvZcf+7EfG1nrUko8zyMIApRSo89GuRD+gCqm3W63z5lQSqlRJK2i690I4NgKyLjxmQZI8pzxTgvPwgopdRUyEdZJswwjJJ7nYz2BJyQoMSL+EYBQzh1H+TOAyTRCBBB4GGGRaKQtEMrHiIhukmLSNfZvm+BQP2P72BjaziMIXbW5Ucj1rLaXf41EBfazzg1vLVoJ6sYnChuk5sL46CsvT5ZlIyvxfGN1MYBQYaFPwVVBwLL0SLGOmMlCpnMm/IjCV0TW8dRLK1DV4J2NjCrdndq64jtpnuGJFs1AstAfYqUlLyA3kpYCpQSLieSf/8GniQvJf/yBN4JSZSGpEPCQUmFFxKwwJEUASlKTsLsxifXWiJTk2vEdfOHk07zxyhuJEJwcrPGfHvwUv773SjypylrSyvEQnGdsqrmapulIWXkuqRzPQgOeROaW1BM8snia/3PfZ/j5N34vhZQEUiKN5QvHn+CmHVfQkj416RNbjSwsnu9T8xVCC4SyW6a9bdUeT8JSojnUzXnd9U3oak6eScCTDJIUPyjYNRHy1KE5Xn/VLDIUKFnjZDfjaE/w4OmY7xQ5VoYIK1kYpvzHTxzhn716DzNjDbyyJcoDoQVKCa6ZmOXKokHmgmRIJLGCZlnt0ipDYQT9Qcr/c/df8VOv/XtMSx+U60PlQau8HNU0qj4Gg69hICX/6Z6P84qDN/GmXQcdENTCkbUzXDe2g9+87+NcPbWDo2vL7J6Y4tjSKU6lMTbXnDApO2SAh8IEEl+I0Xp/NgmkwFAgjCRJJfUAigLwfQI0WAUyYLoheGC54Pa2Ytw3/NBrbyKyOa8+eAWff/wkN0yNo1RBIkI87VJrjTR4UiCsKqMDDmzrsR6RUcDN2/fy4Se+QoElEIrSRtlStpoTw+GQsbGx0Tyv/rxQ7pcXiiPmb6tc1gDCRx55hDiOuf3227n11lt5+umnueuuu7a81lrLrl27+PEf/3H+4T/8h0xPT3PnnXdy22238e53v5sDBw6Mrt1KazwHcPMcH1inIz7nd6LC17oDhTKXfYS7fa57l/cfZhktz3kohkXqYoNjEywsLaMLgycVsozHVd9VQiCFQEj3p9xwXy/ysb5ByQSfDGEluQ1AONj/mURTD0J2TXRYXjzFTCtE28zFn3GxW7FV+6X7qPL5HgIlJNoYBmlCLQxp1GsM0xgucGwrF3VVTOdr/VSS2YLI8wiUIiscC6AVgkES0wyjETJaUfZrYx/P7nM5vkbCME6YbDXptOqsrPVJUXzm6Xne92d3M0RihOKrjx9h355tvOlF+9jejlAot00KhRBBeU9JJAWeV2OoCySCKxtTHPQnCJTin7zyOxmkKYvJAGUFq2nMI9kySZq6Q0a6tp9vnm2c90EQjIiHnms+CrGOwtduSvPxww/zwZVDPEwPU6ayCdzvTq4scePuq/CFpBGErOQDHonPEAnpNiXprr+g9QCEJiavhUzVGvw/b72Zf/btL2XVFORWorKcMWXZNznGj77qOu7YN0mIRxRNMD+/xtW7p1js5hjryktbC4/Pd/niE8d57Mj8JtCaFaCVwNOC0Ah6vuSZwTK//eBnWSkSl74rKdcCSGkZioIvnTnKmXRAuRoBRorAumVe7gklqNeWdL9fmj/MBxYe4/RgDVmuscwaBjrjNbuvQ2jD8cEytjtkNmrhIegOB+yYmOJEtkRUZTSJ536Xo0859lbAIEkZb9QIQn9DooXASo92s8WxhZyw3UYIzx3yUvGifTM8Nb9Aqg1HVlPWUo0VJSAZzejoseuQgWq9SOGeHkiPZlBnedgbzdkLmQ/V52yP1/PZD76R5LLzDFQv6vHHH+ejH/0oeZ6ztraGEIIvfOELvP3tb9/yO0IItm/fzuzs7KYXvmPHDuDZAX7PR6pQQEXpevYEs9gRDaoRII1TtsUWYK8t7w/0TELLC7GeZJhnBJ7HbH2cB+dPorXFRzqE/gXO7awokJ4PNkfj88XDp/j8oyf559/6UjxpOLWasLM9xW0HZ3jyaJ2x0EcLR2EsSsxweZw857M8JLk1ZElMrR4xEdXpJfEmAOKzLUohnHvzUpastlgKXeALn1B6JFkOxlJIQTeJ2T++rdzCKlvmOW+ItIKhMZhC4GOYnWqxstJnmBV89snjfPx4j5/MM8bxeeTwKf7ey67nhpkOIRq0wnrinHt6COqepJvndGoer9h7FZnRKGvZ79WYbHdYzhOuCJusZANWipiBzhnDpRkGttTvziNCOFd8cYFFqzblgJc4r8yDT554lA8eepB9k9uwFpRx1QoLLKnJaSofATSDiCeXTvP7j32RW1/2DkcCJC5uczKyYHWQE1mPup+zR4LtDVnKNFlREIiUhif5wVdd5Q4kK6i3mjx6bIm929o8cWyRBEXTZBgijq7GvOjKKY4urWGtHB3upkrRAIS17J2a4c+fuIdPn3ycF+3ezx3eTowv3KFtLdoIlilYzAecXDnDtTvGRm3OsmwTcNlhFe3ogJQ4j+Zn5p7imWyFZDjEMQBbEmsosozbp/bQffGrONRfpkhTWqqGloKFYY+D2/bwzNIc0eQBhNhQxfIC9gMXqpAUwDCOaXgehc4ROIC2EWCtpNZsc+rUUZov24GuSh5Zy2wjIGq2OLLS4w+/+BCvuW4fr7p6z0ghqKqBKltVRxSb2iUAJSStqMZqlpTfOQtz+xzyTTrii5PLzjNQbU4bUwG73S6rq6u8/vWv5/bbb9/yexW4rwoDVArBxn+/lG6hjffeSgyAsQzQHNdxCSq88PtbLL0ipR1EJLpgYeUMoe8z5ocsmSFGMrL6L1Q8ofBNgLA1EhnxkceP89fHllnoDsAYTq50uWIs4pbtNX7y7XfSUBLrSdKsyjrQF5T6IwT40iO1BStZTLNeZzKK6GXJBZOKnG3Ffu3iPABaa5SQhNIj07rMK7d005hWrY5nLzy9SQBYGGiNRFELFM3IR2JY7A9ZW11m345x4swhppeHCXvbTZoUKAVyixxwUfY58mGQ5SAkDekz7kUo5VEXkolag14ywAhBP00Zj5o8sXjSHTClgfVc41zN3YsZ3zKTEokgNy5V8Kde/Q4OBOMkRUap/5Jbi7aGhnThivFWmweWTrBGhnqeFLJD3eC+xZi4XmA8nzG/xq6xOo+eXuap1QETYw2kMPjkKGlBCfbt6PC5J0+wbaJO6Am6mctK0dbyzKlFbjswzfwgcxZ62UNJWeXTA6sE373/Fh6fP4quB5yKe85Lsm4+IywMs5TxsXGeWTntyIGq357t7aIKDzgyLw9BruDEcJkXTe5lUGQY42LrA52ilGJceuyudfj88Sc4KV1VwhzD093T7G9Mc/zMKZphtOmsveBtxgoyDMMkphMGCGnPIv8pGK8r4qVTTDcU0pbjJAShgCtmJnn09Ar3LeQcX80w0vLoUo9eCrZwZb2dT/HcPdIpA1APfNby5HnxDGwMv3xTnlsuO2UAnEJw00038d73vpd3v/vdvPa1r+XVr341Bw4cGKFyN8rXy0VUAZ22uqco+zGXDPj3H/8j+iYHa7ZeqZZ1QjRb/d0yKDJaYUiBJckyAs+nU6tzJuujfJcqNXLDXYC4kILGWklRWNLVNV5yYJYnTi2zlFvuXxwy3g7xFVw10QCbE9Qi0jRbzyQu21al6q1vcZt7H3g+uc5ZiXs0603aKqSfb84Ltuf7OutK4aUkiTLWYrTBV4rQ84nLIkiFNQyKlIYXOg/OViNavpxR30eDAXFRICiIlMCXhkZrnM8fWmH75CzXtGosDjWrhaWQHg1PgpTkeI4G5ywNscwso9P0WOk5Gm7rTF0HKpOC8bBBvjYgFzBIM964/xYeXjmJLK1z8xwT4kJTCc9uWNVSz5ahFCF4886rmam1OJUMsQJ8wBhLVhREnktFnWx0+NjhB/BjDb5XpsHC+fjj1ks9r4/3n3z1KB/+/IO8Zv8YTVxY5UUHZnjsqaM8eKLPNTt34RnQIkRYD0XBLTMRZ1b7HOiEdPyCQZxghEdhLEmSct32cU73c7Isx5ZZIzjCTXdYAdNhg5dvu5K3Tl9DnKWYDfaEFaCw2CzjqsmdHF9dYuPuVM3djd4XDQxMwVLiKjn20IQ5vOel38EQV7gHKRjGLrwmgF31cZ48doinhmfoKJ9pEbK0tszuzjiDIqMR1dyksVsupSpXb4t0OkGqLUYoalKsu4BKP6C0GbOtkOt3jbGtFSJtMfI+SCvY1/F5ZH6R46s58z0otOaXPvAFnloeIIV2aYZOu+XcXcqpVI2wRq/IoCrPfHYP7LmfdVzpxVWE/EaXy04Z2Ghxd7td3vOe9/DOd76T9773vbzzne/kySef/Ho3cSTP5sau1sCSyfjy8gniIjt3orPhLDRuo6gUgtQ6Ipy68nhZZxc/fMOraQpFKwhI84yk5Aa34sLJUnOToWWKlTkrcU5ha1w/GXJ4NeZjD8/xgbvup1lvYAnxsUjP0JA+/SzFVkXfHVfuJsXg3Aa43Ocsz1mOh0zUGoQqIC7r2q8rE89uxVSu7EslFatjKBXNoE6/iNECFuIBc4MVxqPahpjpeW7AuiLgKhAWJIkBz5XslVpw7f6d/OndJ9i1bZYDMxHv/4uv8PBCH4IIqVzA3VVLNIizeYtLq37PxBhHV/ol+FRQsRsYYDJqsDzoo4ULb1w9sZ2FYZ/clNTRFzAjhBAXXLWw8giI0V9KD0BhGPMC2l7IUh47CufM0ehqC4EKkBqmGi0mrMerpvcTlnFqaTecPRufNVKIXU0BbXNSbfjUE0/z/a95Kd91/ZUIDCh48RWzPHL0NA8dX2NXu4UQBmlLu90Krpps87PfeSsHpzo0fY8z/YTTCWBSTO6xo1knqnmsxCUupvRTW+Esfg8QHvzTl72Nl2+7gmGRjNzkpnpZUpIUGduCFrHJ0Hbdvq2qhIIrOlYxRT60cIL/c/8XMEISZynNIGBnWMdkOUY46zzPM2QYIi3sao3x+htuZc1mdJTPnQduZLbeYabVoeH7NPzQhbu2mrMblFYwWDvk5DAlNhpDTn/QJwojlBTowriXUno/hPDY1anzb374jWxv1RGUeA8hQVhmWhEffnieYpDSjxX9wvLIsuXEWoIVJZ/DeiPOaZi00Ajr9POkjG7YZ50T1jJyH2hrL+ne8I0gl6UyUH0efPBBbrzxRm699VZ+5Vd+hR/6oR/6W8VHLaU8Lx2xAISUzC0vsEJBovPzmvBVj/LqZwt5eShEUvF9N7+Kf3DtrdSFIJKK8aDGsKwadjF6se+FKBWAEPzl3U+wFGv2Tk+y2B3y2EKX777jBnaMBfjaLWQjYbbmszQYOnBShZzacKBv1QKBo0ROioylYZ/JsIFflgwuyq+MvvUsHVBKXVLKUYPbQALl0QkiejqhAI4tL9BoNOh4QbkRnstUZ3GKl9nQZIvECMnJpS47pl16lC8VL9rZ4PDiHNNNyRuv28beqTa/+iefpBOAUhaEQbIOoDtbBLBvss3hhZVRpSdHyOus1ZZfY8k412qSZeyNxinijCVbsGxS1AX4W621I/Drc0o5F51V6MYgtgVKuHLEY35EUiQYazllUx44c4IAhS/dwbyz3uEnb3sb737t3+em8R2jHsvzPLqq1GcArKaXpIxHHjfvnEB6AiEl0grGQ58r9+9kafEIs52aA8CX7RXCI/Qk73jxPsZCj2v3buff/cVH+eHf+QzH+poBkihSNFXOWq5doMCKUaXKKhyipGQmiGiGIUmRjdg8LcIpD1KQFgWtkrdjozIQho4xFFu+RuPs4cODVR5JlyksDOKYhh/ghxFZ4QwLiSXOczwvRBpBJARv2nMt+/wmNanYV+9w5/R+doYtXjtzgGlVo9LJxRZKVnWQ5kiGBn7xDz7NXU/Mo0XBia7Gq9cIfQi8sJzbDkOBDKkrxYFWRCAkSH8UJgDD9k6dHTXJv/qu29D5CmkBSS5ZWlsDWcFw1+fQ2XNKYmlFDfrDKuy51VxwHpiq3kJFFiUthEHwzTDBRchlpwxslCAIqNVqTExMcP/997OyssLa2trXu1kjeTa6XMfwZVhYW2Kq0SYuinUI8tn3Aax0Lkch3McrV7CyAl84BLK1oKzgqvEd1P0ALUaEaRckeVpgMkjxOLba4++/4mquaDc4uZZxfNDl/37d9Uw3FMoWKCPASmaaIaf7Cc55bhhYQQHI0bEoz4mxCwStMGQlGTIoEppejcj3KQo9qq1+IUvYGHNJQUIaICtAeUyHNdbSGI2h1+/xotn9LoPAbLaAN0ouKCOg61UJrRZ8/NHHecmOMdI8x1jDrprH7fsCdk222BMJ3vO2F3Pr9TN8yy1X4qMx5UsTduvgvgBmp8dYXl4hp2IYVKNr/SBgmCcYY8hszrQfIa3l9x76HP/7oc9dkIIohHh+dMRlSc1+ntPGQwtBo15jkAxZyhN+8tO/xx8/8WXedP2tBFaQezDuBXz7gVu4JhpjAt8dVqI08raYCAKwpcIkkPSygpoymDTB2DJJ14JvDd9720F+6h130vJdLoMLkTgL3xkVbhN8w7W7+f7XvJK1tYIHVmLGPEEDy0yzzVKvQJZrU5R9FGJ9ubpiYCFZkpKWk0NaZ4kLAzrPGfMjMswmZSBJkpFnQOLuZ7CcGnQ5HffQxnIsXWNHfYypMGSFzPH3CVgzKR2CyvvPizvb+dlbvw2kYF9rkn9y+5vZJgN+5jV/nykvopClErCVIljqnBpYSBQn44CPPnyCbubxXz70GEQdKBKyPMMiR9kG6/+dG4q1wEzN49d/8A288cox0mKNLM6Zrkes9RO0ledBC2yWsajGWn9QAha39iBUnwJLXmk6BuISV/ZNuTC5rJWBm266ieuuu47v/d7v5ZOf/CR5nnPbbbd9vZs1EiklURSdn2IUyzDLmIya9IvsvPE8D7eQfe2oWXOjodAuPRDwhUSJEggJXN2Y4NrOrMspvmDEAERhiBSKTBtio7jtinGmGgFLsWaQeDQDiUdAoYLSioGd42OcXO1jrUYbw2997AHme0NAs85JvrkNwsJ4rcFKMiQ1OfUgIFIeOi/Q5Sic12I4a3wvZSGoHIMuNL7yaPk1POBMOqQbD9lZa40s4K3tdYskRegMqwsK3DvqJTmLScFNu2eIwhoCqPs+//Ydb+KqaR8bBDQCyU++8eW8dOcMnlBAVfBJbAmfFkArlFgjGBbOQgXPWVMWGlHEoEhZ0RlrOqEe+AwDwccWnuTzS8fpX0B5WWvtiFjrQqQ0yNwYWcuJ3jLTXg0pBJ1anZU05p75Q3x5+SiPrs5x7eQsCoERjrBJConwFPhqNLgj9PuWzzHuMLYu5bUT+rTrQVm9r9QkhGF33ecV+3bgCQtGlsrm2StNUFeSb7tmL9930wQLZ1aYCCUSyc6JCU4srbgxPp+rAqgpH5NrCpyLeikdcs/cIbS1ZHlOxwvJhaP4rSSKohJTVPJ/lJkYS3pIN0vQWE4MVtjeHqeFjxSC1cIpvyt5wliZ6mqFpaY8rp/YjpESpSRt4bxQkzJASkFeKVdnvc6Rom4TfDSDpGD7REhiJYuDjEfnV5moBSjPJwiDC/Y0GhRCBuysR3QCj76RLKU5s2M1BnFMIeSGl7v1uFpgMmjSTWI0m5fCJop4bfEyS1CCEgsBQjpyoW8qAxcul7Uy8Nhjj7G2tsaBAwf45V/+Zd797nePWOX+Noi1rmbC1q4qgRWSOMuYiBr085zzLQrJ+qI9Mljlse4imdV4SiEMztkmhDtIDbxqz0Hefu2thIVbGBe6HIbJkExo8iwGLWj6BX5g2d8smMqH+F6BsdI1SDmrattYjZOrKVhLYgR/8cgSj58eUpU+Pt/TW17ISpGQGUOoPHypyLO8VCGeW4ERJfL/khUjEQ4oqJWgjssu2Rm0OTZco5ulTAS1kdfifFgGaXKs9Zgbap4ZFiRYjveGjAVjNCPIBwnKGKy0bG9ENKwgEyFWQM1WVpKHxGUcIM6N7leKiC8hCJv0Uw1WUyDIEQgN41GNlSTmntNHWF1bohPVSKQhNYbVQZ8HF09ckOtlMBhcUNitulX1tq2Frz7zGC++8lpqQCeqczru8fHDD/GaAzfTkSHjXggCPOs4GYwUmFI5GO369jzNtBZTIvwFkjP9mPFmm6Tfc98vPSoFCmklgS1cw4zAbmkauwflnqXe9ji0tEK9o0gkzLTqLPZ6GLMerju7TRbwfA+T5uU7FDy8dJI/fPBzZNISFwVNGTpX9gbPQBzH5WEl1pUcA4MsweYFBsvS2irTzTF8IdlbG+ORlTlAsJLFjEX1UVustAhhCK0r1oQsPUZCYJUgRKDKyXP2nDKAFRqJZa07ZPd4E60zFocZLdvllilJXkiSJKmSB59TXNBQUCintCvRYimOmRpTDOMhGuHiIpxnjyjffcvzSWRBZgqqDMSzx37eJKTCIDSbSKqGw+ElBRj/XZfLeqQajQb33XcfvV5vxEb3rDXC/4aloi3eSjsVWIzAWQ1RkzhPGQX2zhKNwwvkCv7skS/xuw9+jp7V+EKWB1P1PWeLTwU1dkdNh3w+j8/dJQIarHF13gtrqNU8kJZuEhN6Bb4nscLyj990K//4TTcTiBwpLMoWGGGQVjLeqtMdppwYpAxTzVLmc3gpHSVjlQ87p++tqM7KsEduNIGUeMqj0MUmXoRNzbabPxVb5PPxDFTUp9Y6S63ADf0gjRGNEN+42PCuziRHukucLmLqfjiyfN3mWQHZKsCgwIqAREj+20e+yr/53U/S1fDxex/l5t3bkCIri2gJjCjIhIXMPcu3BZn0sKXWJwyjmLg9R5Esw0OAH9aJ06y0dN31wkLbC8l1wWdPPM7LrrqRtlUEeDRzxesO3MKRlUWwFqtd7YlqLM5+T/V6HSXUOZks58xRu/nnBMOZwRp7J6fxDNRUSLdI6Xvw5m1X8bLJPQRIjCjR9uW79szmzdwdXBZrdWkJmtFhXqAoZz5LvT7jzQaddqP6GoiyKLRQG7As59eBpNWEGUw0pvnisSH7J6eoG2g3InqDvpsr5dhrqzHWrZvK0vc8z5W/Lt/B0eEqR22fxGqGoiCSHp51KZfVcFWEWRtVPmsNWZ7R9iNSo1mL+4zXm0ghuGnHFTyxOAcGkjhmLIhGWI3qtUhd/d3dszpqlXaZJBY7UjLLQJYDLxJireLUYMD0WB1kyPGVId/+sgPcfmAG5YWEUXAeZepccXqHQaORUtDE0B/0mKkn9NOcfLR4KgXSYG2BNXqUNWAt1MvCZXGelbiNar05iU3Br3z+gxzNe1hly0wUd0G9Xv9bdR78bZfLWhkoioIPfehD/NAP/RA/+qM/yj/6R/+Ie++99+vdrJFUmIGzPQNiw8FdpDnjqklaZC4ueZYIHCERFgpjeWywxNNFl8QYIi0xnqDKV1CA8iSq8mgGgi0ZPMvYYVYeqoWFBEs2zBCZ5lQvY6wlsCKiZiV7mzVu3jmBJ1old4FPITRSe7RDj2t3j/OeP/sMi4OEnc2CIwtL5FZhUGVU8FwNpx1EDJOYzBQ0hEJKVyUwsOUGtuHwqc6pyuqspCJ1ej7iCqMYhzq2jghnJR4SNOoEwqKwtFptHjx5hLuOPoJnBJ6trENbhjPWG+ni2x6ZzTmVSlImWO7FzJ8Z8rqbtuMDPZORSYGyigAFkUBJB2YLRvFoygByWUVvq8YLjULi1SKSOKEQBmUhwIKEhvS4efeVfHbhaV6y40p8K5lstqn5PjeMz7Kc9ilKZSC2mqL0KJ0tSRxjtKGy34ANh8gWUs6r0zpFW81MUAcBQa3OYBhj85w7Z/fzL257E0rYEeeBrLosN4eHbJVcbnMMlSKgsbbgqTMJS4OUQmnO9HJmWjUGwwE+yhEqeY7E2T2jRLl74J9ny9MC8Cy7Z1r0zpxgx2QLKyzNhkc8GJIZy+l+TqIN83HMkdUeGE2GU6Qi6RFrh3mRGk4PVlnLM4SBoTIu7RePodWjTm4yXspx6OuMtNBsi8YY6pyVLGEyqGMFTNZarMZDtIU8iRnzQjLlQiWqssW9yiYvKXjLDy76tO5JKBVhax2+x1oFOuf0YMD2yKC8Bp96+Dh7Zzv4UmKzxGWXXOCRYQErNYEVICSRF7M41Oxs1MiCSfrDhApoaTVoo9FFjtXOQMmxWCOoScVYFLEy7LMxBVEDVsOZLOVLK3MuvVmBsAaNS59NkuSbAMKLkMuOgXCjXH/99fzRH/2RQ4AHAcYYOp3O17tZI3kutLvBkpmC2bBJv0icerDV5C03igLwcosoCvKiKElpSm6Eymw9xxFwnsWgBUpBIV0KnERSyCYPriR0u4bttTahtiA0QvjnxOsCPKyySJHzjtuu5cmjp/nKqRV2TUfEcUJhDIFyioDYYgOJvJAsd6Q5ylP4GlCQ24KAYPOhsOF7FaZOWje+rqjSRYqFBxeP0xv2ecW+awkKsAp6yZBpv+FctsYQhBFfOPUU33v9y7iiM4lww1YWs7GbhlcAWEleFFjPY/tEyJNLMWGoaIY+GE0Y+Hhl3Fls7OA58lxID/eSx2s+a4MMNjhvBa4Q1VizxeraGuOBcyXva07QO32Gbc02Xz3SRVvL0aLPIyeP8rY9Nzi09sYnCEEQRWhPrB8obIUAYYTgrizyPM8IgwBVIuxatQa9QR/VCKj7PtFGFDnnTvn1vxpyKZElMXNVSltrw3/88y/zmpv3890v3kl3rc/Ewd2EfjYauWcf3y1G1EqM1ByYbvKvXvci9k40keTUfZ+ehcVBzk/9r4/wz771JXzm2BKPP3OK//7O1wECLSS+8MjRzuMiBGu9HtKKUYqb73l4ZUVC6u6ZVe2TjZIUOZH0CD0Y6BwKSyhcXknoByRZylBaVsigFlbD5OoNPIf3w1a/tSV9OFWIoiyfTEI81DTGx+gE83zwK4d456vegochjyRBETn69AsYUlH6LCwuDOQpOLZWcMeONrMrZzi50mdnbYpUQKg1sa94cmnInjGPtnTgaiMkyrjCX3Nxn6v0Nuy6kweLJS0Kev0+i1mMEQIpnLoiBZcUT/SNIJe1Z0Brze/8zu+Migx97GMfY3Fx8evdrJE8K12utRRGYxWM12r0soStDgGLm/yqdE8HRhBJj16RjRjqZLkTXyg2wGKxUuNZi19ogiJBGsOH7n+Un/2jz/DImZiJlnNB5nLd5ViJQCCMwAiNoGCHr7hx5zY+88wSV+6YRKc9stKiXE8x3HwHTwi0rIIJAh+B8BR56RLeOIbWGoSxCONyj6tJ+7x5BgR8YP5hfnvuPgpjWLM5XZ2z3O8xHdYRJXtjKAMW0z6v3nstdeGVaO/SU6Gdd8GW5rBwMRn6SUHo+xyYqnH30WXGOmN4OEBVkWWgXb2Dr03c0ThTD1kaxpSceKO+CWBK1djrtxgPIiRwy8Ru7pjZy1RYZy3uM7SGP3jki/zpY/ess7udpfBlWQbWIl1CvzuOtdnsnnFXOw6B0m9gCsfiKBEYC03lk8UJWpRuXMEFWWzWwicePswTp7tgDRaJQbKWW473FfedHqCBbr/HRCNw7X1eUvHhW1qe5vvvuIFOqBDWoKygkDXuO77MStDk/vk1nj4lWDITxHlBYJ2y5AmJVW4kCuXqhjTDyBXjKgp8T7lQwga39YiqvBx4CyRa05AefuCzmscEvsIv1emaF6DSAqs1ZC4FtnrnFzqn1t+cAatdmJCCpSTjw492+fRjx6h3WrzmqmnGGh7bmg2EMWTGUOTFlnn+W49oqWiUGRuTzQaPzA+YaLW5bfc0H777PjIjHPU0mqVM8/4//DT3PH1yRJmtJFgJu+pj/O7R+3h47ZRzq27QfDOTUxOKJ5bnyxweMQKefpOO+OLkslYGHnjgAfI8Z+/evSO2v4ceeujr3axNcn6KY2c1aAmdIGSgc56NHkhYKDAYY/GCkMVkgJTKFR4qv3ahygACrMwcran1yUxAagSPLi4ws3c3n3nsBHu3j2GVKzt6vn3GWRcBUmheeXAXX3nwEPunWjSjkJVBTmpd3HYrkVJQWI0vnVXrAyhBUWEGys4UWGIMptwEhGG0IVUEVBcrGsvqapfH5o5xctjjJ7/0f/ixv/5fPLKywGS9hZaOVKahPGZVnbYXlmlkrvKjtVAIQWYFxchudorZyiCnUw959dVTfPzeI8x0Go51T3j4SqBEZeE+X4Wg1PpEwbamz0KvVxLiOJ4BUyosN0zu5Kde/XbGgwik5eDUNr7j5pcRllknS0XGYwvHSSNXPXKjGlod1EpKlBUlbXbBGZ2NcAmVVFiDglI5EmC0xvPU6IwKhHSIdqPLUbowxs+sgP/x6Ue598QaBl2GjiRPnYm5ciagnwzp5wqLounJC6p4ubW4uLk0nnO5l2RPkhDPk3gi4stHjvKqa3bzxGpBkHfZ1crpJhphqowe4TAFxpIKQ0pB3QsdKLXQeMp5BjYCMqu9oYqPO2WgoGYlvqdYyxIC5bmqo9YpA2tpzIrOIStoer5LKX6WLIdze7rxZ0lqJae7Gb/1mcf56Q/ewxtuvorrWg1u2jfFP3vjTUw3PBAST/goVYZuLvBJtvy/BK7dvY0nnplnol7jldfuZS33WBgmDtQoLYcX1jgVa073YqdIWjc2RsCt03u5/9Aj/PljX94E4hRCMDQZN8xcweGFObTWrOOn+BrmwzemXNbKQBzHTE9PEwQBWmtWVlaen9v4BZKt6EY3irYORNj0fYY6WwdobSEWSNHI0CP34ItHHsWTrq/nAO02/f0s6tZy15FW0s0N7//kQ/zKJ+9hYZiQpor9jQbYgitmOnhW4Fu5dZtKC9Qaj1xarphuctW2cXaPNxhv11hc63Noocfpbjwag43/KSFQyqPTapeMbo7ZLdPFpv6cSQZ88qkH6QmLVs6dX2VWXFDa0BaYg4G1mNRw0+x+7ls6yeeOP84cCV9ZOETTL7MGrGC81uCg1yEIfExpblTbS99oPvXVh0i0doe7EWAN3ThhLJLsHvfxoyY7JxvOiT869Czi2aoEXahYy1gkWImLdT+9LZUBCxMi5PXbDhAACEvNQqQFvpQIC90iI1IRDS8kta7IUfWeN1E9C0vuCT76zEP8yYNfIFFiBJ6srrNYFnurpEXucDBFgadcxUyLK+Vcb9QRnkLYC092HRYFhwZwrOdj7Hqi6gPHF3j1wRl8HdNNc6zwCEbhl4tXsqwATV4BByiUIrcSqwXKy1DW56nlHq/ZO8EjcytMtxQ7m5q5JENL0Gi8kpnQaENWFOApfCvRrIcJVMm6WY1bBT5c130dxXhdBAS+Ty+N8ZQaKaCB8jiUrPI/Hvs8q7ag7kUjPNFF9Lb8U6CFolto3vO7n+KvH53nn775On749p00fcWUL/jBWw9Q9wwGiW8c8NVcQFqqe8o6hFGagm2tkPF6wFjoUfMtE80xTnQz5+OSipNLA/ZfMUs/BoSlkNLhGSxcURvnV974g6wlsQMelnPVYhnEMTtaYyNA5ygTSTz/+fCNKpe1MnDzzTfzwAMPcPfdd/P+97+fu+++m5e85CVf72aNxBiD1vq8EzIzBiGhEQTlJrH167DWEdpU7kY/DPjQ6YcIQ29kVRjOTzBkKRzIUBfY3JAYDblgbrnL//rkcf77lw7TS1KW8ho3TFhu2qZLF6SgOCdIUIoAgYeUoKyi6Xv8wne+hCunmkxOjvPnD53gJ373s/zJvUfKWGo2AitaNIG1zIRttoWTPHV6lQePLWKUhcIiCneoZVbzp0/ey6/d/ymSIh9R+WzUmZ4LLTy6zo7YghnkCUHgc1Vtio+ceJQ3z1zNd1/5Eg73F2l6IZ6V5EqwLYj48Re/jkmpYENKmJSwGif8+hfX6CYpRlc0vzlLiWXGk+A3eNmMZv90B4mr1e7YgC/B5iScFdtuBiwmATLXFK62LR4u7VAFAl+59FUql73nGPOslOR5QiQ8Ai1Zs3pUQXOjaK1LlLflnuUTPNBdAKw7M3UJptSQGMt/vvfj3LN8EmkgI8d6qvRmCXwrqNciIs/HXIQi1C00E62UM2s97l+M6aYpqbEcP7PMrp2zCCsYZhl4EqnkBVdZ3GI4CfBKQg/HixcIgZXg24yhZ+n3m1w100H11piZGWO81WbQix0Q0iqUkOQKMmsg01gpCFEMce51JRUNGXAqizkSD7CZJbUum8NasIXBaMtS3KPdaFAXHlmcQBA4JU9CRyr+6e1v4e4TjyB8qClF/rx28BSM49U4sxITdNr85+99Ke96yQGaKkT4oFSEJxSB8JBSoq3BmhHh8AWIKoGMjkNi+8QYP3jTFGORjyJn30yHp870XPqhUCycWeG6HTOcGlqwokQbgBGu+uq147MIa8iTDLRFak0hHLnVeK2OjHOGwtVEcFwTtpy/Fz8fvlHlslYGxsfHee9738tP//RP84Y3vIFf+ZVfYXx8/OvdrJEIIZ7VU1EY59ptBCGFrlDGW8P/DKDzgpr02EkDsdhlX2fyHGLcrY+adW15KSvILWSe5Ew8xPMVNodBAg2reMuNB/gn3/J6IgMUJRnK2TctY76VhauEQiC4dmaMcQQz7XH++O7DEAkenl9G5wIKOWLvs4CRgjEZsk3V+MzROT78+HGU9BmagntWT7KcJcRFwVdPHaLT6WAK7fbq8mOtRUr5rONr2QA4ZF1ZGuQZQRBw3exuvjr/FK86eBO7xiYZmhwvCFDW9TsUkuuvuJJQrod6qrG4++gSJxaXOTIsKEqrddlYPvfQYXZN1WkA//Lb7mDvWGM0/kEQuDH7mjaoSjmTtBs1hsPuOg9+2T4pHGgLKcrUxLLREnwp0UqwmMa0wxqNAmRVU6F6gnVFijzPK1PfBHPLZxgUMda6zAUq/EQ5ZxfyIU+tuap8a0lMK6o7dkwLSEEtCKl7AeuJhM8t8dBwxdgkdz9+iB/+rY/xe/eeQKaGuJeyp62o6QGLSU7kCQJpnzdgrDqwhBSj8XOMgAYhfK4bU9w6pejUfH7sW27lNdfsohXV6Q1zFzYRFiUcsk1bl2mirKDm+9iiYEBB5HvUvID3f/Uvee89H6AvDW0ZIBGkwiJK3o65eI0d7TGU8lguYmoiGGUZ+ULysh37uXPb1RyoT4ywBBfVV1vVsnDx9bmVZa7ZM8uNOyfxhXToHSEQQiGkHM1X5Ul8L+CCw1ui4gtxWIyxyOeH3nY7tdDVad8/2+HIyTNo63BAi90zvHhbi9W0izaWggJhNapMjmz6PomyHLcJRjgqdM8K+mlCs9VCGUitHj0RvgkgvFi5rJUBYwx33XUXH/zgB/ngBz/IXXfdtSWg7Gw3+XN9LpVYa4njeOtfCkhNQSA8atJH62Izr33Vng22cK4LAql45bb9/Nwb/yEv33X1Zp7584AIq1i3RvLbH/0SjxxdIReSPDO89kXTXDM7wZOrBR4FLWvYFgajDb/iwnsuERU3qzWM1Ty01+LH33IbgdY8eGqZXLm8cJfhJFAWXrn3ALfN7ObwWsyhtYzIBhxN+rz3I7/HPceepq8NRRiwPWhjjHa13CkR81KitT7/+FbjWDksS9eAwdLLUzzfY1e9w3I8YMpvMCFrdFREFIYujFIh6sR6uetKCguffeY0B3Y1+aU/vpvDiz2MgMWBhiLn5gPbCdDMNgJ8UQHrXFjLGPM1uS5d/x3wsuF7BCKnV1hnsW1x202KonXx+7rwOZ30adUcrL1rNUO1PnOqam9plmKNJbE5qTAEVqKNS8c8Gq+R4zZlC/TjIcd7a+QCVuIB42HdHSJGUCCICsmsrlGh2Z+1j+XcX80sUxOz/OQbrubnvuc1PH78DGdyTe616IQek/U6Xz6RUa93EBgGg8Elcwu7mHSBFT7vfNWN/NR3vJRAWt54cJprxmq0w5DVJC/TejO8EmdirCETBr+M8dssZ2A1gZG0Vcgz3QUeXTzBsskYDocuFbFcOz2b8/DJQ1w7uQM/ijg5XKUdOHImWUJpalryfTe8iu+87g6UGTkzLrhPANp6ZchMcHxljSvGnr3UrxCCoiguGpC3fkeDj6aGwROA8Nk71eLoidP045TMWgaFx7ZWwCAv+IMvHWIpyzFWY1y+ICGWIAz51c//JUO0o/4uLL0sphFGBGHgqp6K9doR5yd8+6ZsJZe1MvDAAw/w4Q9/mB/7sR/jJ37iJ/j4xz/Offfdt+W1xhjm5+f5whe+wNLSEsYY4jjm3nvv5cknnyTP80tOUCGlpF6vn/Pvlad4mCXU/AAfibUGfR5CD1uCCRKdozyPV19xDd92xY1sC+oIJXDFc8r7bjn3JRLL0GjuObbC/fMrCCswQ8Fte1rced0ePnD/Y4xPh3gBKDRWWaxXHTvPvlFUUgiBUZaxCG5oZbxi+zivObiTf/8XH2XRGvQoDUCijODVew+wf3yatfmUNDZM11t8ef4wstPkye4iqzalIQMaeAxMMUK9W9z7VErRaDSe9R2MqMqFRUtLjmWQxTRUwJgXMh7V6QQRM36Nm71JxlXgyH9KwGAFVNrYz8wYCq25es8MXzi8xiMLKxRCsLI0YP/UFG1POjCkdIC66n3XajU8z7sECqcB4YpSdWqS08NhCczbov8bfpBCECAIm3X+8NEvkgQCZSWB1oRnhS+stdSiGkjBIM+RUUAkFBrL0bjLL/z179PNXSqfwZKmOUvFACMsZ3przNRaVEWrAG6e3Mmt07sR2HNqVZz93EoG8So7ooTvfNE+XrNtDN8UHIkTlO8od2+74Ro+9Ol7ifwIIxTNZvOSKfNuLUk84THuS5oBKGGpC42HphFJ4syUxZJwGBgLBsNSOqQmPCLPJ9UFWIuPYm9rgn908FXcue0AS4Mu/lgT44FXONKvh9cW8IVid2eSVhBxqrfCWFBz6XSsK8K7oiZ7GmPrBx9bGwHn9Km8SiERwpIVhieOneLgjunRPD+feJ73PC1tAcJ5AzzpMp8Miqmaz/jkJP0sp29A6xp+PWLQs/yHTzzKUwtDBlbwxHKPwgqMLbhhbCeHFufo2gIlHIA5s5qW8Kk3agyyxL2P0mh4rr3hm7JZLmtloNvt8vKXv5wbbriB6667jpe//OV0u90tr7XW8sUvfpH/8l/+C/fffz/GGH7nd36HT3ziE/z2b//2eZWIi5GNIDVwMdfhcFg+f/1D6apL0pRaGOKXQMMKSb9xP7MwKgySmBzhedQs1ApXlKiqALC+7Z6nYViGxtAj5C/ufZpuXtDLNRORx4GxOk8/dZSddUFRGJSVpXNva374s0WIdYVEasu+sRa//H0voxUI3nDzPraPzRIPshH9kClThnw0KQUqzfA8mBqb5v5TR3nx7JXcd/IwJ9dWmZZO618r0hE2AusO6vN5BkaYAlsqA9aypnOO9ldIsdg0o+mHtGp19tXGaYYRuzuT/P/e8r2MGY+ixAOO1IGzkO+5MTTSVfbOTpJ5EXcfW6KnNXPdIZOTTRQGO4qZypE2EMfxJSqr6jAKHrB9ssOxM/GWqsBIjXM7PZQtumNyL3alx5hfI/A9cp2dgzcRQjAYDtBGM8xTPC8gsJLCWj745Fe5K51nLR0ijSU1Gi/yyYocrQ1L/VW2tyZdt6ULubzxqhfxqt0Ht7Ri3Sva7JWz1jKMUyaigFyBDA2rOuff/8V97GyGBBS85IpprptSXDmu0Dj65EspBs/xSQgcJgOLtRFGekRRSB4PS6pwD2EFvvLIdMGxpdPsnNxWWqspkQElBTfN7uFf3fZWpuot0iQl6w3QZdXJuMj5T5/7M66f2omSkvEg4nR3hWYYlnO+fJtSjDIyzMYsggs0gE15UhphWekOKIAd481z5vjZcvGeAVdQzXkr5egDFoMgEBo/CBkmGUZrjEiZDH20zmlPb+crjx3iiZUBv/C7f8UgLcik5G1X3MRVEztYSxOUERjlyIpa0iOKIvpJvImo7FLPh7/rclnnXszMzPBLv/RLzM/PA/CpT32Kt771rczNzfGOd7xjRPcJzkp/+9vfzvLy8sjt9eUvf5lf/uVf5vDhw3zsYx/jpS99KcY4wFSapgwGA4wxm1y7GxfLVlaIC5EKMBZPKhr1BtoYN3nLc0EZgVaWtMgJlY8U0tUbNwYrSrpSYzldJHzymYd5+8EXE0hFVxfUpO9yvsWGzb4SY8tY3Xrcd4TiN4IsM+ya6KDCjDhPOdYfcMv4GDdsn+B//8R3sD2U+MrRzwrjFrMdhXjPtRyr+1fikAOShie5erqFFgIlBAenJzhyZIF91+2mUM5VH6BdRkNhEb4m8j12Nyc5vHyMb7/yRsww4cRwjXoYApZhnlGtcmOdhVEVKtrk0RFOmzKVcmItRljuO3GI//zVj/Jv3/L9DNIhdc+nphT/YO8tTPkRCthdbyNxWR6UXa6UoWpMoQR+FpprZ+r8xMt28cQTT/PM7Vfx5NIKr7xihwNboVAatLdOCVSv10fpTlWbn2s+VddU411NMudlMVw5M8GXn5nn4K42+1o1NmpuZ9+vYsB/3Y4DHPiOH0EYy++t3sWKzSiEpUJfVPO9UW8gpWJx2GVP1GIlWyOzhocWjnP99r30kyFFfYy0yGmHdYq8INaagc1p+kHJPeDegVcpwbYM3VRI+rJvOeBblxkgTIEVsBRbmrUGxgpqSvGa/RPcf6jP666awTOChoSf+q5XMFGPUBaazeazjuPGfz977lZju7FdlVbpcCflarNghKIeeAyyFGszrHX8B76viIuclSRhNhojLjJ6eYYR4ElJw0q0hJrvlNtaa5wwFwhfMNSaer3F6w+8CKUtE1Gduf4SMgpQGoc+3ZTYU63t9Xd7Pp19Uz8RCGMwUvPhBw4z3WrgCYOtQnBi63Xu+/45Y/Rsz1qfqmJ9Dyn3IoMjxpoOJauJoV5orJQ0PcP2puIls01OLJ7h2HLCI2csK1nBNCETgWLP1Axn1pbRURMrFInReFIRSkWiC6osA7A0Go0t96mz597Z73+0b17isPHfdrmslYF2u80P//API6Vj0LryyisxxpzjzhqV1dzw4ouiwBhDEAS02+2RFimE4PTp0/zGb/wGi4uL7Nixg+XlZbLMccvHcUyz2aTb7dJqtej3+9RqNfI8d3XUlSRPMuq1Gitrqw553V9jJmjQzxJU4ONnhtizLK4sMRz0GQz6JPGQle4q/WFKrdEgi1OeMH3++JEvccvYdmaCOscXF1DacPLkCRqdJskwJooi0jRFKUdqkiQJtVqNfr/v2tfr04zqDNKYk0VGI3AH2fypLo8fOcUbr91OsXqaK9sNjs8tIcbG0FqPGB2ttXieR5Zl1Ot1+v0+jUaDwWBAo9EYPVsIQZ7nhGFIHMfU63UGgwFRo8nsWJ1PP3SEg9vqnBkkfO7JE7z1pl2MhyHPnI6xyoNUM2487tx2JftsyDGteXj+ELNBnSzP6PV7nByeJOq4Z7dqdbrdLnEcMzEx4doZ+CRxQqNepzcc0Ko3Sbs96DT4womnKTzFQ8eeYTVeQ4Yhi3NzvHbPNfROL1K0W2T9AWEYUhQFQgiUUqRpSr1eZzgc0mg06Pf7xGGTNIeZSPCPbt/Dn/qWp04uceLUMmNXbefk3By1xiR5t08wFqHjBCkly8vL1Gq10Xyr7tdoNIjjePRscDno1XgmSTIaz3q9TjocIOptTB4z5gs+/sUHIenx/3ntDcSDAa1Wi16vR61WI01TfN8fKbVhGBIPYsZaTfr9IcIY5hdO0S1qFDpHSjm6tru2hhcEzGXL1DPNiTzhiePHkEZwgAZzp0+wS4XMdbsEVtIfxJzur7I87JP0+8yv9AiDEFPm1m+cn8PhkFarRbfbpdFosJZmdEROJkM3/3zJkfmT3Hb1FSyeOEWj0ebO3eO88Zp9kA5ZXFxBCEGtKLDknDozpNfrMRgMqNVqo/EclQiWctP83LiG4zgepSdXe0Icx9RqNQaDAe12m36/78Y+jin8kMEw5sxKl/5al3wtodbqUKQxc2vLHJo7yUuv2E/a7XM0n6efJ5xZOE0UtVjMBgSJ4ejSPPszjzoKO9FkrrdKy3jYQcxS3KUdKCaNRBWGhbmTRLUaSZ7iK8+lQmqN7/skSTKaR9V7r9frZFk24jEoioIoisr502TQ7+K3I+4/tsgP3HktSwunCErg4MZrm83mqN8rK2686/U6Uspz9pqNY5QkCb7vjzKppJTlOnLXNlrjDLqrBMLwgfuOcfXuccaFYHHxNN/5kiswcZ8/PqZ57PASfjjO40fnqclJbDrEs5b57jLLJkTWavRXVtETKWmvz1K0ytzcHLV6jSLLWFo6MypmVu1Z1Xuv1+ukaTp679ba0dyo5mc1dpsU8b/DclkrA7Ozs7z85S/n+PHjo0V/8OBBpqamntPiCsMQz/OI45jFxUWmp6dH187MzPDud7+bp556irvuumt02AB0Oh2EEDSbTYQQoyqJZ08Yay1Bq8GZfpeTgzV2jc2yTXQwUuAVlqaCcG2BbcEUnU6HWlij3mgyPTYJCHTT8MTSkNgWTE1NM64Cmr0GmbLs3LUTKy1j7c55x6aiZW61miAsddvh5LHT7GjV6WaGQRgSRT57ZsdpmxZ4gl0ypFaOyznWaClVfzfSPm/UpKWUjI2Nbbrm1msjPvHkCs2JceYGp/jf963yhlfeylgdGkmXybEGcVwwXm/y7te8g7Fcccor+OOn7ueG5jRZqwkItu/c4VKsWm0UjDaeqk0FlomOc5l0Wm2QkuV6iPID8rrPG8JrOJ0MCLyI8WaLHdtmMUoy0WxjlUC12lu+Rynl6BmtVou5uKARBcyONYmwzEx0yLVBeQEzk2NM1gXWhshmA60MXst9NwgCGo0GSik6nQ7WWlqt1mjMzh7H6ueqPe122/17p4UWHlK0qWvDm+64Fouk3ekwPnrvrU192NinTruDVYp2u039VJ2JsQnGx8dGWSKVZ6BWqxHV69x/ZJUdUzMsmhQaNWbrbWbHx6m1GoyPjbMqBc16g6gWYT1F4AVMj03SUf7In3R2n6o50mq1sDiG3lDnpErx1Jk+u8faFPZRtk+PsWM8Ausz1g6wIkCIJpbNfWq320RRxPj4OEKI0Tqt5udG7171u3bbve+NlU6rd1DN3eraVqvl7tNukgtFGjXxBDTak+Q1S0NIZtotkhCGJuP6nftZSmOM8Kj3I2ZnZmiqgFB2mB4sMrQ50xMTqGad//fhz3Pj9v106i3GJyaoGegIy4/e9DpuntrNtrCJFpaWLTM/ziIZ2rgPbXzvZ/ep3W6jpaTZqbMcZ9TDJjfsnqUtDWIDkENKOep/dd9arUZRFCNcxkbjqrNhzm2cw2db29XcE8LSbNWonxH8zse/yMwTS/zit17FzMw2pqYtRTHOhx8/TeZ57JutQeAx3mmjdJPZtUmWlGFiehuJJ2gFNZr1BlOTU4RhyPYd210btCYIfMbGxs5Zw5UHaasDfuN7HwwGZQbQ331FAC5zZeDQoUO85z3v4cCBA6MUs8nJSWZmZoDNrh9rLZ/97Gf55Cc/yb333svk5CRvfetb+Q//4T+QJAk/+qM/CqwTBSmlUEohpXxeLHcO5FaQ5hkff+TLXDGzg1kVOYIdz5UTzbSmpnw8KV3MVq4z6lkUSVGwkicUWKSQ5FmG77m65o6H+0ImqcDYhFOZ4lOH1miPjdHsZ8wvDYgCj0hahHDWhjUFxlSpRRfH7rdxwWxePJaJmgfKYy3TLPYzlvOIj3z5Sa567dUM05xOPcCkGbm17MRHKBhvjfF4fIp31G5C+ZY8y5Geq0cmLIhyg9Faj9rpMAuOO6YCTP7Cp/6Et1x/OzbJmNy5nWfmjjMZNGl5EZ7y0FLglRiBZyNy28gkqXWOUh6+BB9LvR5w+MwK1hTUAh8hCjzAemXKWnkkVhb3s6VDnn8cNzbGHy3cpqd440uv4oNfPuzm6vm7sOEhbowq92+RFyXBkPt1dWgXhSOASgpNPQxo+CGn4x4N69GOGqxmMVK4HHRfKiLpsZYMHVisTE07uz3n65NzwvsMspSf/52P8553vZWksIwFEinBinWa2c0VjdbvWxSuH1s943xMoFtd+2ybvxIu/NNRoFEcTQr+659+ip/+9tcQehEraYz1oOl51IXHgi3wcHgC4Ul8C5PtDifnD5PmGdr6/OXTX2WoJAGeK6SkILLwjpteiVcpNLg943w0Dc91YI32QixIy1pqqQUeHWWQZe2D892v2j8rhWqrkOkFt8VasDlC+myrGyIPBoXHwSt2UOCyY/Aknmc42dPsHg9YjY2jXJeKVhDxv+/9a75n93UIr0ZsCzzPww8C8jxHyjIYpuSICr569xd7qFfr4BtFLmtl4NixY7zlLW/hB37gBzYt9q1eujGGG2+8kX/9r/81QggmJia49tprednLXobv+4yPj28ZS3q2e54tFXCtOqwCJC0/ZBgI1oqMWRVVN0NgGeqMugyRwrlmi4oVp1yaSVEwICfWGfg10iwlGm+Pvl+B9p5NtIV7nl7h/rWE3//sA/zC978WbTs8vtCjFkV41qVPGVyRj40L/VJoxNa6/OiJULAWp6wMNW+/bS9n1pYw1rI21Iw3IvqrXZKStz/3LDN+jXgwoN1oQJYRZ0OX040YKQLAKERRAQYxoMs8rOU05tOrR7nvK8tc3Rzn5uh60jyn6xfUVbRuDZUHzRbQiC0lzQtkEDnlwVqCyOdEN6dWD4g8x9BXsUBV2D1r2aRgPd+xdV20SOsqO3loxkPFIHf13sVzUdPazXhQ3/NGoYmzQ2lCOL6CfhGzpz5N3Q85FffwfZ+o1eD06ZOOYc9aQs8nEB69NEZ5al0JEPBcs9SWGBCLIzI6mtV5+kyf3AREwsNagZYV4XMFWN34fddmpdTICn2hrLkKxyeUpJAeR9cSPnNklTsOn8T3G/TiDKwh8hSR79OPe2U9Bgf2VcYyVm9yJukjPI8sSelScNeZp3llcw+eBuM5zoHQruMANm3U4oKm6bltt2WJaAGLvZTxVgNJgqGBEufLRykfeQFKwHM+H6eMOOSK4JX7tvHvfvBO/uxT99OOQny0K5kmAzr1BvfPxbzuqhZxIV1lRSG5ZfsVTDVazMU99gd1cq2dMuD59If9qrGI0hvwfNfbN5ISUMllnU3wkpe8hKeffpoPfOADfOxjH+NjH/sYCwsL51xXbcITExPs3buXvXv30m63UUoxOzvL5OTkC7J5SOtqtE9NTnNiZWG0EKqK5onNCXxX3S0MQoY6KQ81B95LdE6BZS1N0AKyNKUpwxGa/mzEkKEqS2pdARKtGRaGf/OJx/nUQ8f5N9/7Gl69t47XbvNkr08rVOU9yowEIRHi+S/2rcSWaPxOWNBNMobDhKvHFVlZ76Y7jGnVagTKUmhXGDgHpoM6B4qIbc0ONeUTW1eEpsohNtaOkP6ZtSW/foleFs6SXEh6EAU83Jvj8fljzAR1dG7oJQmNkgBHbmrruhW0XoJoQ5ZICWDMsoLAj6gYBBr1GkcWh3QadWx1oG4i8N/w49e6yZS3FmX70AWtSJEkKdbkWJtjSpClHaWwmPVP2aPqDQfKIzUFWuDKFVuL0O4yoxTWCvqioOUFNLyAbr9HFAS0ozoPHHmKQhtSnRMKRUsFnBp2iTwfT1hSC9pYjNFoa7G2/POsLgk3MFgB/ULQs4ojp5cxCJSSuJJ8YJBYsU50u5W80C5dIwSFMhgJS6nmdz/2AFdeeS33nVim4TVZjteQQqFQBEFIL88Q1ina1bqvSZ/Y5BhhyYuCyeYYh7oL1Grh6P06mgunHgmrS/pMW9YG2Nx/W75ra3S5/rUDsZ41TKK8pbVwpjtgqh2473LuPTfffzPI7msRt90olICOZ3jD/jHe/faX0FLg2bRk6xRsazeYXzzDTKdJkqUlINgy69e5YWYPvTh2FMm6IFCKmueTpVm5hteV72/EQ/35ymWtDJw+fZonnniCRx55hPvuu4/77ruP1dXVLa+t3IeV679SEDa6xM9fVOjCRWz4wQrnkZitjbPY61FIUMaOJqzOciLPw7OGRqvJ8nCIwY7SYwZ5zrZam7uefJjEwjCNmVThec0Ct9W772sMaMOpbsxTC0PmF4bcsnucuqcY9xXz3T6t0CJEMELNa20x5lIvHosQmlrD50wsKOIB7bZP1zgXXC/p04l8AinItKP6DYBWWOPnXvld7GlN0PI8+uRugReU9coFVluSouArJw/zzJkFR8CkXNEjJaDbH/DWvTfya3d+H//sJW9mMmrwTLHKA0tHaEc1tHSo5o3jV7W5GkvO2SgtSV7Q8D2kkFgBsy2Pk6eW2d4IMELg4YHUjod/A/nDpaJHlRawsmQAFERSIq1gLSnIi5zCbiSRtlt81vtbVx6Dko54LU/54LGHWELzF888yIlulywzzHVXaYYhgQpZyAY0fJ+DrWlkrU5hSj595TMe+Bzud+moGkoUfO7Jk5xY6aF1gca5hws4z2HuDrG1JGf/TJP5xRUKK8GXGOHc6xJRvpktvl2FNV7w+K5AWENDwlBK/vzBY1w7bjm5uEpd+hzNFqk1a3hIasqnW+RIPIRwSpiVUJMKpS1ZmrFWJOwKxmjGOVP1JlpZlKHsqStAJcpMAqfEnYcLxQKmYE0b0iJH23NZS6pRN0KyvJox2wRDvWT5e5Yel4fqxiJLz1ec/8HVW8Cr0fQDrt42SSgEQjXwpEIKxc7JcVoBjNd9dNqncITaSAF1LyTNNDGaOE9peCEdLyQeJmQWcgsIzl8x9puypVzWYYL5+Xm+5Vu+he///u9/1gpVf1MAkE2KQKmZhmFIR0UsZqujejLKuipvWZ4zrnyEgHatxnI6IEcgJS4VK8/5juvu4OjRo/RMxik/px0EI2tVndUtVarEFkMmNL7nc2JllTuv7rCnHjAeOd2vVgtYWEmQ19cwOBIVi4/vB88LH/HsY2JRpmCyWWepn9DNLTfUPWyRYIWkN+jTru8i9H3y3JlEnoCmFdy+72qQkoYfkGQuRatykQrrqlQGUcgXn3icvZOzHJiaWT/cLXSHQ15am+Htu25AWDglC1bjHoMioxnVHObCMuJocDnlGkr+BpcZXWoYzneCFRAXBSp0cVaJZXtN8qpdTa7fPkFgcAqAklWu1mgsgiAYxSGf75ysvjU6UIXCU64U7AefXmJnYHndwVmkMFAFPzZDOEZ/FYBfel2UgSNpn5+5+4O8/tp5Pnn/l/mnN72RR7JV7jv8BD90y2toRTWeWVji5ZM7aKqQQHrEJifJMiLfp12rMb8yzw3BGBbJ3Y8cxV67m93jZfEnJD6lwSs2NQlKDoSk2+XgdMji2gqyNkPkVfFse25fNo6LEERR9IIjv90UVATC8srdHa6YaPDmg9v4z4eeoJvv5ni3x43TO5DkNAOPPE5oGk0hfGpl30PlYbVBBQFrvVX2d6a4bWY3L5nZW7l9KvURKxS5kmXap1l/f2JjmyzaWmI8fuOjD/KWm/dww7YW4uyBFpCVP/T6Q67ft73823OP13NRf1/o2HEB78Zay7ZOgwPjHuP1iMN5gcWFTjAQyICBzljLYjxP0ZEetSAiLnK3JgUIw9/IfPi7JJe1MrBjxw7+63/9r6gSGW2t5fbbb2fnzp1f76YBzhJMk4SmF3CsyMpyo5Aby0PdMzyWrXKH71EAk0GT1TTmI4/cy7V7ruBAfYwiz7m2vY3DwXGeHq5xor/KmB86F/Z5JrjWAmVyVGDABiz3DK+8YpzvuPUGQlGghWKsGUJvmcn2Lc4FicbikWxIR7qUYlFMNDt89qGTeDKiHoXYIiczkkFe0PIh9BXDQmNkWUegUkqMpRNG9OIhBRDISglyJZDjJOV4McDmXTRO0arK+M6nffa1x8klRFYwhcc/2Pki2q0WHeWPQg4VzsNasMKAVRzp9unUQmY84VCJVMRQ0C8Mvg/KOhRD0xf87P91J01POoVMyHLz2vyOqlSmr6W0ahnVAeu4IY1xhYAaAfzCnzzEjePwqgMzzgITcjRWVK5ka0ebssDiISl0gVGw2uuyuz3FX3/1i1zRnuH/zD3KA6ee5Nt2XceeoEU4tYt/e8+HaFx5BzUENT9gUOSOL8Pz6UQR8/EKL+vMohEsZpLDK0MXjikZiNaj4JsPKYMDxS4OUnaOCw4vSWrGEI6wgu4YfraDazgcjrIUXiipxk5h+KE7X4RB0FaWT+3fhVY+p5dWmNzZIrYGVMAgKxgTgscWu1w3XqMufHwpMYVhLRkyt3yGKyan+dZ9N42U+/URMvS05DOPPMUbrr0SzzN4Vp7rzy2/MDCWjz1+iumJulMGql+X3igLPHF6hel2neX+GlONK0eaxdl6w9lSFAV5nv+NsfrtHK/zrTfvZjzyGKaudLYtQ4FN4XPKxIz1V2g3W9SFRyB8EpuNvJzg5sPGrKdvyrPLZR0mCIKAO++8k16vx8mTJ5mbmyNJkq93s0ailCKKImphyDDPUNZVNfvyiUP88z/7DR4++hRe4OFZwXityYneCv/rsc/zSPcMGhiKlGbgkwvDz/7Fb7F6eoFmWHOb0RZhvtjAXz58nLXMIo074BZ7MdvabVrlQrJGMNXw+dZrZ3jJrkkUEoMPSGpB8AIoA4JCeLxo7zTd1VUePXmaWhTgKYcbSK1PzZPUfZ84L8qDvCywU34moxbddEiq85F3xVgQSlEPQubzPgtxb2Tha2ApHfChJ+6hGdUJHKKTwMDbX/xKvuXqW/BHB8uGHdBAXlZ4/K2PfoUvHD7lqv6tIwYc012a0wp9hDUgfCQe44EirFCIQrgKi2IzdiCKoq99fEUVzigDGcJVRHzTrVeRWpgvGiSFJUegbeVDEmVphtKfUIIMpYXA8ygKjRVwqrfKd++5mf/+lnfyfTe9grmVeX7kxtfy47e8gY7x2NYcZ6YxRt2L8K0g8nxiXZBrTSA9OkGNU71lmmGEEYLl1HCq7wIDLg9EjXAzm8XhAAok813D7rExGqKgI+JyZlZSMjpuNSxCbEn9fallZJULGFOCCelaNB7UkVoQxEPaQZ27nznN5588wbIuWM1zfvH3PsXpfoYVglD5WG2QYchaPmCq3iawjlFUbZiVGsOxtZj/9tF7WI0zcsoa3meJpXS/W81aqjndd/ifTdeUiuDvfOwrPHRiia6xdGp+uZ7OWgdbiO/7f2OFf4QQTNcDvuWWKxkPBIMko0LxGCzboga/d/+neHDhmNsPcRwWmdUllgiw36Qjvli5rJWBPXv28Ja3vIWdO3fyzne+kze+8Y1/a7wCwIjwIohChnlaln0VHE66LHuan3nrD7CvMYFXwHijzTMrZ3jMdvnSiScorCvCEUQ+zXqNRwanefvtryX0AqA6YzYXWFqIM37xI/dwuBtjhaQATvS7jE90wJjyWJA0fMG//K7XsStydQBN6SBKhgP08ywDe36xKGuZUJrvvOMAuzuKsdDHV4ok1+TGI1CK0PcpshzPls7tDcpOzffxlc8gTUbAPgRoY0jjmKFOGWbJiFLXAsdWz3BysEIQBkhrKcpfNKVHvaquM7rbOmhQY4mN4YETKzw8f6Y8eEvLqgR2DeOEdhQhrMEg0EIiXFS8rBRY7q+b4IeOjvjZSlpflJRKRpVyd8POcWZbBiM9ksLy+IlFhlmKAVcDXsDcmVUWV/ujPlnA94NRNsFivsq+RoeXzezhwNgkE7nhXQdeyg2T28kDQU1J/sUNr+Xa9hTCGHylSAtNoQ2+8qh7NdbSAfVaiLaCXqZZXM1H3ggj1tUqB3Qz2JL6TlmDb2BtNWNfZ5LvuuUqXndgelTKtlKyBFt7B6y1I6KYvwnRVYqIhRxJO2iiCsFrrryG8VqDY92CQ8sZq0VBX0ie6llWk4JCWDwEnvJYHnbppQmNMMJUk74EfLq5KHlsbo3DXc1qkqGp0o43AF1Lhc8KsIWmHnikmcYaORqX6ju5NhwbSub6Obn0CDzfeWouYLnneX7RhYq+FlFW07AJkVIYUUOXrKsIuHJihlWleWzxOPUgQgtL4CkKozF2vSbjpSxc9Y0gl7UycOLECd7//vfz27/923S7XT7xiU/wwAMPfL2bNRIppfMM+L6rACcEIRJpcn70Ra/lVRM7aHgBCMGsX+d4vMBVk9OsdJc5kg84PbfArN/gzbuv519ccye3Tu91dMZUx0yOpcAYoNCcGWgW0ojTqwOE8Ui1IRkKttV88BVS+PjSbUQdz0N5EpTCw90zqjeQL4BnQEqJ8ny+7Ya9/Mf/63VMBgoPQVZojM6Ryqfm+2Vq4WjfH4UXPRQzNmApGyCsRQuLpgQ2hR5+qomzrAr3E1h4sn+G77vu5RxsTyOEwhOO9jUUIDxAFmALt/GaHGsMSEtoFKvDnJrfptuV5AiwhgxJbg2+ThgMMqIwcJwR1qDLXMKqSoRAuNj4KGbvOhJF0Yjh72sRt2hDFJ6rAucpppTiFVdOsKuV0Us07/vApzneT3hkbo0//PIDDHLNb37pKf70oSMc6yaI3JJR4KPQufO0xNrQCut4wMHONL/4irezu9UaKRyBMLx5/zXsbnQwSqKEROsCW+RY39JpNJnwarRqdVQuSXUPo7vkVBkwJVDVZgws6CLFmJy8xLkYoVmNe7RbPt/+on1810uu4rks1o3yN+EZcCIdSFQ4l32AwPcVgZG8+xXv4PbtuxgmmmHikZoV+tZjKa8xHGZAhqDADyOsUvR1UZYyLueEtaBTjCnAesytdLlicpqlNKMmcAjaUrk1xmBNSmESEgzLQ8O2sRbDJEVLKDBQGAoDqTDEecaJtSFPLAxpZCnGF3hVdc7nEM/zCILghRvSs8QKh71RnscQDVmKLUGzuzpT/H9f9BZOpn1qvo/B0haC3GhyYxHGAgX1ev2b2QQXIZe1MvDYY4/xyle+koMHDyKEYGpqilOnTn29mzUSa62jwlQBic7JhEVYSEzBFc1J6mWBYCsFrbCGTWKuac0yEba47+QhdkxuY7rR4dXb9vOTr/h2rmqO41PFVymtUXcw5gjueeIwYxEsDvvkUtLNMlbWVmnWwvW88Wf5pFl2ySs3ruerSwIhaPseUgh8JcmLHG00gecR+AFJno9csNXHCoOVOY1Wg5U0QRgXIlFWQOHSBJXnO2tTMXKjz68scsf+62gqD4QjaFrPlRZV47BCMMQjH53bHscW1rhy9zRz84ssxhlWeHgYPFGQC8lg2KcV+U4ZwIEI10sdl4pMhRnYYJmkafo1A5rEaExdrXlZ/hwIyU99y61cMRHx5FLM8YFiLlZ89VSP//Dpw/zSR57gmdjyoadW+J1P3I8VLloQ+P7IMxAXBZ7nI4zLMtjfmUZYQUBVX0GMSiUL4dISC104alylaMuQm2vbmBYBcVI45VIYtN3cA1V46MLwiSdPs2IVFgcQsxZyAzVf4okq00Ns8Ag8u/yNeAaqecSGtYPF9yVFoWnKAF9IesOYQZqhbIHOIQoUvTghFwEIn9D3Wel3GaZZeciuD1IhfTIUxgq63SHX7J7g9GpZjEpKl7FiXVGwrAjoxh5hYVle7bF/ImA1yzEMndfKyxEyx7eGpcIy1qzzqYcOYX2BLwRaqlEZ6mcTrTVZlr2AA7tZrBBY6eH7HkJoci2QVowAguMqZKXXpRHU+dIzp9HWY6gK1vIh2kIhFXEcf9MzcBFy2SkDlXtscXGRmZkZHn/8cXq9HkePHuUTn/gEV1xxxde7iZskDEMiBEYJBrjUsr7NqPs+o5CygJryOVib5vrWNFO1Jk+tLDDZHsMXgshKIg2BcYjrysKCdcUgEfDU/BLffccVLPcGgGB5pc/sWJOGf2HWfoV2f6FFAIESpLqgMJZQKTw/IM21y4awGwuEWJTVTNXbLMYDcgmHB6t0deqyATwPqSRKCGIMEueO7vb7TDdaz8LSKAGJtvCR+w5xz+GF8rlw39Mnue3aafJ0yDMLvfLqnNVC8GuffoKnugVTDW+EcHY6yHPHXStq0xfKWpnxBENj+Nk/uocjSZ3/9zPP8Pljyzy0rPjDR1Y4trjKM8dXWcir8IL4/7f333GWXeWdN/pda+14YsXOQd3KUksoJySiAmBAILIs8MzYcI1f7th3XnuusWfeGdt3rmc+3Lm2AQkkEWywMbIQQRIWySAMyBIgCbVCS92Kre5Wh8on7rTW+8c+e/ep6uru6lhV9PnpU6quqn32XutZYT/rCb8HRymiOI3VCJIIaSmESU+7BdvFIBFxQj3RhDp9YWth0ngDaREkCVGc4EqFJxR/ePW7WF9dwkTQplL0EUncMe923DtGYKTi6Z2j/Lc77ueh53Zja4kwitgI0AbbUl2BhnOH7/vzdhJ0bEHUib3QCOqtkHZsKFoODi7Lqg6j7Zhndk8w0gyxbIm2JXGskcqi22X10JbtPLljDI2m3Wpz0rJhRifrKQtgThsckyjDz18Z5b/e9RPGjeA7jz3Hq04aQGsw2mAZgSFBmRgrlrwyFXLhmmFOXyVYu6KCr+lYZDioceBoZBMcKoy0cBQUlWCyncY8ZU31bJuxqRq+VeSzP3qMF0faXLRkDV944l8ItEYbmWcT9DA3LEplQGvNzTffzLJly9iwYQO7du3iE5/4BFdccQVnnHHGfDcR2OurS5IET9pEccxI1EYYQZgkuJbdlfcLljH8uyvezNXrzmHQKfJ8c4yK52MhiJUgtiW6E24sTDZwCo3CwhAkmlZsuGJVP6ON1CcbhZqhUpm5LuHjVZRDCLCEpp0kRFrjKYFlCdrxvpXCtFG8MqVZ4vfzzMh2pkzCX/7rt/j8E//KlIhphQEFYWHr9EWITtM2W3FESe6n58KAEakiBXz3yT386+adeeDfnqZg/WCZ1190FuNTAenZT/HsWItbf/gse2qwtOh3HAMGJdIQrrmcro6ZfCVIS+G5FpvrMdW+Co8//xL/8vAmShJGGg0GPcPvvPF04nCSpBOl70iVZhMASZLGAQiRRpcnScqKmRjBl37yEL94YUdKTIRGIfCETcvExHGMg4USsN6v4ElFLQqpWhoTh+mYdvW5rQSPvjzCq847mxd2TBAahUYQJylxjmelqZxiDi+pDBkd8XzBVoo4SuNGNNCKYgKhKAoLV3gsLdvsrjf42o8f50ePvYy0DLWwgUKiOnMn5Y0w/PylMR5+YYQEQ9BusGKgwEQzBJMgjUhjYwS0pWDjeI3vvryb2x95judrEReeupKCgXaYxspYKBJsIqHYM15nfZ/L719zOW8+91SkCbFMiJUHms6OrGDZ8XyxZrkjDpqhvgovT9VTt0dnQrjKJhYC13J5cSpm865Jrl53IT97+Wme3PUSaD2v82ExYlEqA5CaBKemprj66qu5+eab+au/+ive/OY3H3Uz95FCCIEjFRaKJ3e8gBYQRTFWp/oYpOQ2lhGcURlmmV1IA5DCMUq+jzTZGTarY07XBpkGAEqTEAQhynJZWi3xwDOv8NyeKaYSkJ4151PWsaRxnfYcBLZKaAQxSIUlDI5jESbTqUMNhrEg5OP/8G2q5X62Tmyl3azxTHuKTz3+A37y4pNooGRsZJLWeiCBSMdEymBJi/3SpHQyEhKj2Vo3vFxPTdWJMTRCzbBns7LiMVVrdOwNipGRSZZVbN567lIqjuqkEGY5BmnPDtjvYylfkwZqnubbDAvD+07v579+4HJC6XLOcIGqq1g1MMwN551EkTZRx4fvWBZxlJZ+1WGUB6h2MgERaEIh+NHWMX72wgSJiDGdfHfPsmnrkBiNjYVJafVJJEyZhCE7TV2M4r2MjhiDZRJG9tS54qSl7Jls8IuJOjuaTSKdYHSAbWV5IYeGeTMJC7AdOye5MQJaQURkJEVcHGDVsMfOySlGE4sXxpsoRxHoEFuoNO7D7I2W3xUV2NnUhEl68BmquNTbKk17zWAsbBTB9h1cdfIq/v47j3LV6StZ5oIvQ6Z0TCJjMDZjieDrTz7NY89v5aRVQ5xTrrK6VCFWEozFXqLn/XTvOO0L057ZsZoqk7BqWYVfbR2jkSRpxpAwOJaN5Tj4ymHI8/n5sy/h2AXec/pVPLxtCwjdcxEcIhYdz0A2wJOTk/z+7//+PkEtH//4x7nyyivno2nT0D0RlYDXn3wOu+rj6UahIwqWQphOolUnilgYBULQ7/u8Uh9PU5CMyclxpq/Y9FSblehpxJqisljWV+KNG5ayZbRJIQbfkvtJ59p/m4+HdUBaFlNBgm+nwVCOMIRxTCQEjolBWBhgrKV5fFxiGRfXr/CDXZs52evjzWefz4ujo6zoX44jnM6LJEbbhjBKMLaFI9OYjH1gTG4aNbEgoY0QFqHR6EjQSGpUbEWfZ/HcSBN0GpuxfarB7735VVx/1sq0aAxZkODccczkKgTKGD74mnM4a+0KVlUshG2xpCw5f61PYVSxdKBI2RLYooQxMdIIHCFpJTExhkgnFI0ikSb3hVsmoSFswhZs2lMjMoqCSZn0PMsiSCJaSuOJVDEFjRCGyZZiyPNpqJAw1uDINM5FgIohDByWVUr8/YtbuOOX3+adl5zFH7xhDQhDGkUgOkrwQRLgO5hXc7ABV0raSWrmTwy04wgrErxp9QZ27YmIbZeXXomot1q8oCPOMYIwMsTW3miICHASzXgzJnKh1UwQjk/Jd4labWIDSmpiI7E1IDTNluEP3nAO5poLWOU72NLgyIhGnGCMQmvF7skW/59vP84Zw0X+w6CPpSRGkmYRdReR2A/mj9Y3gcTmjGVD/Nk3vs26YZ/fOHsVyiR4tssyJMLASUs8wnabdpLwxlVn8bcb7+8U4ppHBXERYtEqA9Vqlc9+9rN5hcIMnufNR7NmRUbhqYRkqV/ixZGdGAFhEuOpVPTpCyVVg6VIX9ol16PeaODYbr5RdM/pzKJgTEZ8Y2hFMUUl8JXgzJWDPDXWYtBAqegxV1trVs/9WEMIcGyXsUaEb6f+a0cpkrgToKRNTvpXa4VMhIbJIGBNcYhP/9u3uWr5OVy7/AzuefF+JqMWnuMgdUKYBGi3SJikLzpLpiQ3wohpIsjOnQIIY/DdNMMjwRBGBmkJbKkoOBaTcUKCZMdEk/sefYn/9zsuxunEVaTxCHn5nIP2O6taeCwgSANR+3ybN5y+BCEEtSDiA2ev4IarNnDXz56jz4kwShILD6NjkDZKSEKVln/WkjSorOO2MnGCNBAbQUV6hMIQdyiWdSeAsK0TIjSO7ERvduwo9WZEtVhAOC2COAZho0xq7UkkBFJTLltM1kYpFhxeGGszFWgs28kVrVk04APiaNDlHg5SC4siSLKMEoh1gifgzWddxP2PbmJUujxHk0bQoplUUIlDrR1ipMEWeyNODJKJZh2JSztOULZDteAQtGqEnWDOjHI8Egl1IxjwHFZXXUyiaEtwLEEYQ0Ka8TI22WCk6THZlvS5LqjUOqc6C2EuEj5adMRzRZqpk77RVxQdqp7Ltx56jmvPWIElNWuKVf7L1e/GQ+FYEa7lE0eGsuPSStKg1Tien/mwWLHo3AQZSqUS5XKZUqk07etI2N2ONpRSeaSwbdm0gzTvO45TquDU/KYRKIxKK9ApDGWvyJDwKDpuNx1Z/pXmBqenEEFMIiXNIKTkpKU+C+V+/u5fnuBLP32KUslnrhuqbdvHhIFwNpQdi5F6jGe5KASWbWHiuMMvIPNNqhkE+I7NWKvFO067iKLjs3J4mCGnSCOJqOuYsutRcBwaQUo41UwiStio/QRDGtKIZGkEYRLjWw66Y4JsJCGelVJEe7ZFFBoCDL/YNkk9UKwsOp0hyTbwuTu2bds+ppaBvdkMAq01Rcfi96+7kPW+5E1nLueitUuxhCAWhihJXyhKSIzQJDrpRGqnWRGGNPhVSAmJwVFOWufI7FVmrE7Fw0RrlMzYBVOCo2ajQblYQLqKVpTWShBJRvUMJG2GXclvXrqG//lbV1GULV6uG0rlInaHVGu/PPz7ged583YStCyLKO7Q5pq0PoUtbSwDcQIl20LJhJYBKVpYVoGpOMIWBidNm8EFEqFoRC2iqEkrjnFci7IlEEoyFRqE6Vi7ZEpBncQxjp0msqaqqaHge9TaCT/b/DLjYcSLe2qctqyfpUUX21aduZJlpnDQ6WuMSSsDHs8AQpPG6STKUHUlf/SaCxiPDWGs0ULQZxSX961GRwLfsfB9jyiM8Tu8GbHROI7TCyA8BCxaZeA//af/lFcbnPm1EJBp0u12GjRo2TZhh0EvMTG2VCA0CE2oYSTU6AS0NvS7PpdVVzNkezAbKYgBOhXgarHm4VcmeXk8YFmfj0BTcW0mWwnPjrcZKO5bq3x/CILguGj/AsNg0WPbaA1XpeFTSsk0Xx1ACLROCye12yGrSkXajRar7QJXDZ3Ctes3UJUWLZXw3J4dDBZLlD2PWthGCMOexhRDXil1jhxgLxAaWklMwVKdQDeoJzGeUmnEsuugmyGRSdi4+Vn+07suZVXJwjIJh+PTDoLguMW0SJmmHSqZkKiIM9b0c9aKJTikZYmjTl6K7GREJLoz7h2TsABa7VZK4mI0rmWlikCHwEgbg2VbhFGajqqkyJUkLRTNZotS0WeoWuDlkcmODhGjhSA0AhnF9CvDR954MZcO99Ev4endk/SXC0iTxmgc6kpuNBrztvnbSqYBuAiMBpu02qI0mkgrilJQdl1agaZsaTynwtaJUZQyuatPGEMbSHSITUIjSrBsSQGB5VpMhRHCgCWyMQDdKeGbOQIlGt/1mGoFfPVnz/LCaI3t43UuWlFgfcWb3W02B0RRdFwL/2TOE4PGQvIb562lv79AI9G0O1kXSqTu0YLrYFtparQrLRCGVhLSard7ysAhYNEpA9kLv1wuH7dT7OEgq4To+yldpmPZhHH6Asek6SEhcQAAYPJJREFURDqmQx00Wm9x6z0/pqUlRggGLZ//ct0HWOVVD8AUmhAB9z/1Cv/XPz7IL57fw8krlyEMLHNtlrga27YYcua+pWZ0ucc8mwBYMVDi0S27KXkp4Yq0LJIkrWqHlCTCEAtBPdAsr1g0WiFKCv6Pq36DM9wqBWlhXJs9YZ2l5SoF16EZhRgEuyYnWFbt2+/zOxlsoKEdxxQcidFp+dN6FOEpiRAG37OI2jE7GyHNsMEVyz2EVkwrT3wIcF33uMzZvfnvgFYkOFhoHBMjRWrij5IOb4CUKc9NkqRxB51KngC+7yGVBKOxpUKgSXRGrASWSoMPjU6LRtGJgdEGmu2Qkid51ZphNr28A1C0peLlySZbmwF1Uo4Dl4SCkiyrFvjit39O1RGIDs0yqEPSueaPftZgO4IoSpVZow02Aq0kidEEsaKgJENFD0e6DJeKONpiKolQlsDI1BxuRMLzO6cQkcQmoRVoHFviAX7ZY9fUVMc6k7LxxRqMjnCsvWKSaDzPZWKqwaZxwY7JBuPNBq8+qcprT1uOxYEzB/aH4006hNHEAiQSKRS2HTGEJAxIZSsFoS2Io4SytHAdRRBFSAOu71EPWhQLheOSKv3rghNWUlmKYvbVTet7tBDHMY1GEyPAIyVoCYwGbVDIzqFfMF6LeGosSs2nIuUnX2m5OB2fWcpSbvKa8KbjM4wN/GLLTsZUlS27p1izrB+BZEnR4v98+4W869ylDPtz5xNvt9t5euExhYFTVg5y2rIyA0UfYQyWlMRaIIho64S/++FDTLVa1MOQgWqBiQASZRhSKamLEoIzhlby2OanWD4wjGM5NJIgrekQNPBtP61CSJTKS8dpgKE2xBrGwwRDTCsMKdoRlpREiaEVJxStGAH4tiCKNc+ONCj0L6WkwCiLRFiH4srO0Wq1jnu6k9QSGxupO0Q5UiBRmETnbgJLQytJN9I0sD0d/0azRaxBJzFKgGO5BGFKc5VmhNi0dRp8uH2qzebReqdigiaINQVLsazkM9bSGCNoG8nt9/yMP//SfYy3WwS2TSIlRgrecfV5nL52iJLnotPsd/byUc4NtVrtGEjw4DAIHEsQxUEaE6E1qDSpzxgItcBTkgvX9vPqdUvo92wKGkZq4xgpaCSGlk7jMZ56fhtXvepkpIlotAM8rwDGcN7aJdz9wweomVRRMkA7iHA7JF4i9R9iUJQ8m5fHaoy2E/bUWrQTuPDkZVy+Yc1eeudDRBiGx7XuSxrr09nrdMptUbQEUbuNHQt0J8iUMMJRCsu2COIEiaFqF6m1Axr1DjcDHa/q4elBJwxOWGUA4MUXX+Tuu+/mnnvuYceOHUfdhGvbNoWCjxbgC4kWhrZJg7KUEBgkMYo9U3V2BmnmgEKA6gSn2VnApEZ3JnVsNNunmoyHEEWaiXqd9f0C10ooWBIpUx/ab56/hr+8/gL6i3PX5j3PS02Ox8G0VrQV7z9/Bacu70dKcIUgiC0gYtPuOl9+eoKdtYjJMGR5X5GpIMHWEktotJIYYXj7mrNYXqywwi1TtFyaOo3JaMoWjiVBw2SoibUm1gl1DYmBV8bq/Nk//oC6iai3oeraOJZLO4xptiVVVyGNxJMWK5f288yLOyn6PkKkp+PMN36oKBQKxzmmRSCsTkqqVAhp4UiBg0ot/jLNVLG1ZErHWEk6LyUCEoNXKCGlTWI0lgTfdmjFMYnQ6QlM2TR0quB++/EdfOrHzxAnmsQkNBND0bYpuRbNUIFIMImhZntc+qoNnDdcwOq4KhSa5Z7i4iGHimdhRIIS6VgeiphLpdK8uQkdCZHRaGJiEhLl4hJgjCDUIZ4UvHr9Ev7TdRuougllZbFm2VIKTpG77n+cTdt2E6FoxiHrBx2MjmkGbXzLR1uC1520DOktZeOusTQuAUMjjPAdLw08NqBFSrZTcRXP7J5g9dIiE7WQWNsUHIUlDRlF1qFACIHjOMetUFH6UIkilWcal2ojyjZ7ojZGKCDG0YJARyjbxlGSdiQwMqaPIqNhgFMsdCTV0QF6isABcUIrAw888AAvvPACfX19016Cs70Mu60G3VaE/X1BGj3ebDYRxiBFx/SdpKdOpSQISYLglXqDVrNBaLr99d1tsFGdTbON4gs/eZIfPPEKk+0Yu+xxw6tWct1JQ1hi7+elELiOnS/7g7U1o07uLqQzlz4e6t/39ijiirPXcMbKQSRgWYJIh0wlLn/99QfY9HKTl2oxzXbI0oE+2s1WXskwY/1bIn3+n6+5niXSp2g5BEGEMppaIqhYCSOtFn/yjw8wFQa8WI/5/337MeKkzfZayM93tdllLCYbbZYUXVynRDOIqdUTyqUyUoCSsG7lEE+9tJuyY6XJbpn5fQ5zYGa/s0JFc51DR/y1dxvsmhegXUktSUCESAmRiGkne11bAAiRtlenrgEjoWJLmlEEHauWaytiHRNowY5GyNaJZsp+ZyRRUMfxHHzHoRVEHUpig4hb3HjxyXz02ospmzaKkEQk2BhuvPpyLli/Mi13bFS6Oc1RtsZML0xzpHP3UK4HsITEGEWiUzeJlKJDxWyI4pRXRIk01bfsQT3SrCn10V+ssHm8zu56hMDQiqDsSQyaWhhTsNL+FH2bs09ewe4940hCQDAVgeUVUYhOKl2MAgoFn83bG5y+1GOk1gAd4ig7r39wqP2FvUXXjt/c7UzDPBbCULAd/u35EQIEFjHKGJpaULBcykoRRWnI6XB/Hz957EE2796OMQals4ytDs/jHPt/ouGEVgYsy+Kll15iy5YtKKXyIjJxHDM6OsrY2FiebjfbRDnYQsrKqorO5pBIiJIITHoiMya1XD2zaxJLayKTYEwyyz0BnWr/Y82Q7z7+Ck/vqVMLQjzH5k0bVvObV23AEfG0z3XnBx+s7TDdpz2XjWKmXOaycWZuGaETXJ3g6bTNUhpE0iKINE0dceFJS5hotQiadZZWXMKgTWzSCGqjYyJhUEKxttCHFOA5Lo0gAp3QSBIcy+HxPU1+8GLErkbCo9sbfPuJ3bSTiIlI82JNcNv3HmNPvcZw2UFZDq0oYbLeoFwspWZKDCuqNlt2TVEuuJ0XkwAz3dQ/1001i8mYKbtuec4m05njt7+Nay7yN8ZQcGzCdgwmSX2y0mB0Ah1XQjZ3UvpkCGMDytBnCSY69SGESVXUMIlpJoZGGNOKIqI4IdAC4jaWAk9BaAxtnVpoFIKibXCzWBZjIxMbK9b0W5KyAKEFGGtvFco5bt5ZYZrZNvTZ5uFcX0zZ5w803lIAwiLWaSaHNAlCCsLYECdJSrEsDBZQ9nzG25L1ssQKp8q2lmF322BMQiuWFCwLaTlMtGKKdidxVWuGSj5jrZA4MWgd04xipOOhTEJaATJtS9lzGbQ1b79gPdvGJhCkcTDS7N8derD9QUqJ67r7XDPz+6F87W8M0t8DGoQRxGmVBQYcyY83vkwj0UCMMIYgAW3bGNemGcdYGq5YvZ6zl62i0t+fNTR1yYpDb+eJhIWThzcPeN3rXsell17KQw89xBe/+EX+4A/+ACklo6OjfOELX2D37t0MDQ0xOjpKFEW4rkur1aJUKjE1NUW5XKbRaOB5HlEUpdX5lCIIAgqFAlNTUxhjmJqYIiy6NMOAkbEx4jhmz55d9FkFxoOA53eNsaxcYnx8Ep0EFAplWq1WnsoTxxGO49FqBYwKm2LR5+XxKbZs3YNshEzu2U0oBMqStNqj+L5Po9GgXC5Tq9UoFou0Wi0cxyFJkrydrVaLYrFIo9GgVCqxc+dO+vv7U3pZx8kXq2VZBEFAsVikXq/nnykWiwRBgOwEnWUyarfbeRuyZ7uuu1dGlqIdtKhKj6mgTrHSz87xGu1Wk5e27qa/ZPHqk4Z5+ZWdjIxOEU1N0mpGPPfSNob7fIL6JFapQjhep5lEBNU2rWaTyVqdba/sZrw2wpadfXzx+xsJdZlnd0/yr7/YjDaKHbum2LWrhtIJ333kZazzlnP+UhchNNt272GqGTDga3bu3o20Ia632DEVETZqTE5MMtloUS1JWu0Ey7Lzk34mo6zfpVIp/95ut5FSMjY2RrFYnCbzWq1GqVSi2WzieV4eU6CUmjbnss8UCgVarVY+54QQ+bM9z6PZbFIqlajX6/i+TxAEudVLa43tush2k4mxGs9ozWhSYiJsMVWfJNEJo6NjSKNRUcxYs0ZtfIKRxCNIQoZcj6df3s4ZJQfRTpiKJgnikFpooVs1yrLArpExdkWGOEyY2DNKYkGoJS/u2InRNkksGK81GGvWqBbL1CdHKReKtFtNbCdVRGOd1nFot5sUOnMu65PneYRhmAe6RlGE7/vUajXa7XZ+bbPZnPbyyq7NZFQul5mcnKRcLufzM0kSkiTBdV2azWY+lpVKJZ/3rVYrd/UkSYLnedTrNQKnSKvdZqJWZ3zPGM1mk8gy7NozzvjEFGOjE0yVDeFUQNF3eWjLLm44exlGSPbURnl5vMHoyB5GxhtMjozTThK27pnkpKrL9m3bKXsFwqkxfvLMHq5Yt5wB0WJspEG7MUVtfIRaM6JYLjE1OcqQ5/D/estFLBUJ2yYiqq6kPj5Fu7kHvzQwbX4WCgXCMMytQnEcd/q0V+bFYpHR0VFs26Zer0+bc77vU6/XqVQq+V7TbrexLCt3u0opCcNwn30pe3Z2bbfsS+UqzYkJCpUyE+02/S6oVovJ8Ul27p6gJSYpun2MjYxS7i8x0QxpGxjZkeAUyly2+hQmx2uMM0YrbOOXSrRqdUrlUv7sIAjyPdEYkz+7UCjkVqYoinLl+NcdJ7QyMDAwgBCCdrvNr371q3zjGBoa4o/+6I/YsmULP/nJTxgaGso1xb6+PoQQVCoVICU/6oYQnWAV0pNKvV6nv9rPhImxPR+/WMQVDsuXLceLwU40xXKVYd9CSo+VS4dAKPr6Kp18b0HKtm+TaBjfPca6QQfpaJxCmZOGlzK8dBgbkImgrz99eH9/f3pKKJeRUtLX1zetncaY/JpqtdqJKjf4vp/nw2cngm5UKmm7svt1L5Ts35kcs2symeWathCEBrzEUBJVEqFYXSzil8q41UEGBvo5c3mFR3aD5YectmYpP3t6B5XBAfrKHlaliBY2iVui0WpRGOhjvS95YuvzLFmxEmerwqos4eWpLZy5wmdCS5RMOHttP06hStFtc/EpK9hd04wEDmvWrOD52nYq1SrxjldYvmSAJUsGMMSsFhFWsczJq5dTrpQo9FWxCKhU09zuveM+vd9CiHxuVKvVXKkqFovYtp3LvlKp5OPTfY9umfZ3TjjVajWX/Wyb08z5OZM5TojUhD08UETbkpZX4dY7H4TTLIyjKDgugwMDqA7pkJi0qJaqjGyfYmiwnxVDZba3Jujr78OKBUNthdiuiKSiz1Gc1F8i0BHlgX76KhXWLB1GEdNfLeGWy4gY+itllpcqOOUKCEN/pYgxmjLlPM0x7iSW9VMBZC6/7j7N7FtfXx8jIyMMDg5Om++zsWpmf8vW8GxrI/tdf3//PmPZjfRvFcaj9EVWKhRxltmUS7vBVZSrFfyCx/LlwwxUC8iSYXyyjd68h3WVPqximTDaTiPSDA4NYnk7OWXtavq3jzPVDOgv+yxbsRzHJJy6WvDQN57kJ2eM8sGL1lAcj1k6WKZarVLts4iwKBb7sAlY1i9oJ4K+/jInrRmiv7+M7HPQ0pu2LrP+7tun6f11XZc4jnOZdct0pjy7/zZzPs+cn93Pzz4zMDCARtBXLGKkoDDQh6vbvPnKpfxqdx3LcVg6tBppFMXCbpa4HhW/zPj4JEtWLieQFkOJRzlxGBgcIBCpQjJQqe7Tzu62dcukr6+Per2eFxc7EXBCKwP33Xcfjz76KBMTE7zrXe/KXQUZshPvofEX6A5bYFpaNqt57huFMA41HVOWDlooUG1asaGQhBRLPvXQIIRFyqudFuVI2d0lMQJLaRoR9Bc9Jlp1as0p7GpaYU6ahFhZ2GL6C2q2f+8PmYtAdqWXzcTM38/2jLl81gOwBQILiSHWAksoJsMWrlug5AraUQACKq7FkkqBx7dPsOzM5RjppH5SJVFSoITAkhZxlPIMjBuNCgTvvXA9K5YO8MnvbuLMIYtq1aIVa4K4xXsvXsVDz0wy2mzguA6+5dEMBVGiKVsi9fliUfLA96YoOgphhVjaQ0hv1hCsg8lGSpl/zVV2s8lyLvLd3/2kAM+zqYVtqoHL05NtTgvLTMRtikrywp5xVi/pS+NahCFRUI/aDFgWru/THG+QyAiNph4ZQhJGTYuTxXLW9Fd4tiZY5wcou4SW4AjFmVX416d3ctHaJdiejaNEvkYgTePsZsffS22zNw3zYH3LFNfuNXsw2ewPB/r77OMhsYTBqJQSuq0FyhL0SU0zMYRGYFsKZSyMauFJgUgssAQ1bej3bBpBSNs41NsTDHs2QwWfp1/ejecokBKRtBkq+py/vMz/+P4mlvf1EUUxbtFG4IFM94HUt+Kk/l9peFUpZmVBECuDg9OR86HPsW7ZHoqc9jcOB7uPArBTrgkHQHoMOoJVA/3srgecvqSA1prAyNQF41m88kqdRMoOeZYBW4IUuFmcj+w8e44BlNkB6UTBCa0MXHPNNVx++eU4jkOpVMp/PxsX95yUgfwznQhWk6YZaZFgoSnRZiKoo5x0uzPSppEEKAwDJZdGq00kDFpIwME2IDUgO5ungalmwlClxFhtjPF6nRVL+hCCvZS7Yq5TfV9kboFD6vPhwKS5/nnGutEokcaV15tNfMfGc2ya7TZJYvCU4sKz1/PgLzfyxjOXd2o1pOlFiU6QgKcsAtsQmAQ3MERxwlC/z0UnDfP5f92IpyoMuBY7k4iJRsRpwxLPgnqjSdF18R2bVhgRxql/tyMBSkryunXDLHHtvNy0hk57D6HLXT5SOIaynQMKjkUQhrTDiFozJDYFJqIWY7HFx//+e3zqo+9gtafQicDWmnY7wPc9HM+lFYbYRvDkRMBffOPHlE+xSHQDy/VYs7yPnz47ylQ8QOIknWp4govOXsedP36Es1YO4rsqna/T+n9ksshk2p22eVzlm8cMSIw2tIII37HwbAjCkChOsO0OGYCUWApMkhBECQ0TMVgQEAXUowRPJBQUbFg5zO33b8J1bBwDBpfBEvzRb72Bx27+PttHJ+nzNb7tdNKP6VKw0jUlifnQ1ZdR8CxsDAaJEeRl0Ofevb2+/PQ5x3fuZq9waQye4xAlCSAQEsIoJXzyPUWt1cIgO2MhciItcRhtPpGUgAwndACh67oMDg7mJqujOcmNybRpxT/99Eke39PAd0psrY/jezYWCaPNmEde2o2SmgEf6q0A24RYOsmDpxDpBpfF1E422wyUy3hOgV31gKrTMVeLDk3pEczh40lH3A1Bdga0aIQhRVvj2Q7NdkCsNa6lWDNUYKrVJsyShjsnQcdxEMbgWxZbkwY/GdlGjKQWJxQ9jw1L+vidV5/J285dR7+dEAUhYy0YLLhYlkjjGhwL37ZohBFhbLCtvayNvlL8yfWvZ3m5gCBlN0uzCQ69n93ul/lEyRK0Qs1UGGNiQRwLakGTemLxTFRkMhIIE+NYCoygFUR4rsJzLNphhNCKh7dN8m8jCaN1g4kMuBZnLR/k6ede4f//jV+wupAGzAEMlT3aYZuJVkTR2fdkerQwf/XrBUoKNJJEG5phSMFR2LZDGIYkOmbvspJpmegkQrkuU6Fm0IdmpHm+EaCkTSJhdV8Bxy1QsB1EokEoXJmwuihYa2nGGw2CIKEgnTQwbhYiLCUN6/uKrHBcRCLRh80ykO5lx5WOeD9wLEkYJSSmw1IaxdiWRcUWTEUdBgyTZrQ4znFMhfw1wAmrDAghUErlroHs+9FSCIQQJFrTbLW4++Gt/HzbGKViPy9PTOHaFoqYp7aN8MXvPQmWQ1/BZbQRU48sdAy20UhCtIxJhOwQ6MBkM6BacCn4JXZMtOhzVU4Dmw7m4W+GWWrh8UZqkhYgbeqRoWBLXFtRa4coZeEqqNqKWPo0wziftHGS0Gq1kRqKUmEh+P9+++/ZEbdphyFV28I1CTddfAbXnrGWqgW0NLV2yFCxgBAxcZLgivS03AhCwkRj2Vb+IkPCkEpwpMZgw2Fvp/NDOjQbirZNO1bUooSCX8IYQ73VohWGNBoRX/3Bo4zHsGeqyZbxBpNRSNnRlG1BEEm0lIxMhvh9Sxhv1UjiNIByecHjbeet5upLT+Y9l70qM1SlZDEGRpsRJe/YvFCMMXlw23zAEgLTYXNsBiEFV2E7NmEYYbRBSdFJbZO4lgITMdVsMjoVs6RS5sVXxvmzr/6cKLFAKYYrPpcv8+mzU34SI9PslrISfOQtFxEKTdCOKVru9NLGHaRpuCnPqehYLSTk+8ihwBhDHMfHlXRoNggEjk1an6BzAEqiEMdSVGxFI1FEcSezAot6h3Soh7nhhFUGjgeUlFQqFc46dTV2krDMEoxOTqDcMgaL8SjhyT0hwvXo76/w3Pgkf/K1B3ng5dGUXctIjHHRRtCpVUYjiKn4Cs/1eHlPwEC5DMZkGcRH1F7f91FKHTf+/BwmZaIXwmKq0aTkuniOYPdIDa9QRpqYoq0wlkM9iMj6KVWH7tmALyz++Kp3c86aUwiTBB0mVHwbLWKULbAU9BcKvNQMaAQJVc/GcQyO66GEwPdsGu02YRxiWSp3+WgJkggtE7QQGDQdavhDhu/7C6KQVtn3abYCGsZQLpXQxtAIEiYjw1C5wj/+4mVu/dcXeXqizd/++FHGEkNFGnxhCGOHtgFTC1hWcGnqSVpRjKsdLB3zvovX8V+u20DJU9jaYDDYAoT0GZloUC74x6xfpVJpXjZ/Q1ovQApJFBtaYUjBsXEd0uJkWmTuagwCW0lIQlzPY7IZMFwtsaxS4Mltezh95TC+TBh0DH/53qtYUnQIlQRCjBFI0tN+kISEYULBslJa8326LdColBJCpRUpU5uMQRzGPmFZ1gKoCGvS4mGRTinFEcRRhKMEZc9mohkwNtUgpbOW01y/PRwcPWXgqEOSvSriJKbdbHDx+n50U6Asj9FgCt9ykIlmqhWyM9Qsq1RZXbJ5bmScX421+e5jL5KICG00ESYtU6wDEhPSiAV9tmLVYBXCOsWiiyJEoEmO0PyanVyP1+kq8wUiJBZgkbC71qTfdXGlZKQesHrARggLSwj6ShGPv1xDaE0jDhgLE8JmHZOyinCyXeKclWtYZnuEbY3jSYSwsAUgLQaGqjz24stgF7CVYsC1UEUPhKFoKVpBDFEN15JoDJgOJa5wEUKllQ45PCpigGazuSAsA9Wiz2groRGHDPk2oYmZCgNaQcD/8bo1fPL/cTWbXnyWpycDXhiT7AkEnudhKwXUibWhHrZZ6doU3GHiKEK7GikFBduiX3ZitaSF0GkhHk/CzrEJhkuFDhnS0YUQYt7oiCF9F3tCEyaaVphQVIKiNIwlAqMSHESqWBqBDcQyZKIeUGuHDBRs/usNF/PJd5zDB648LQ0IlpKBYuq2s0mDWdN1oHAciySS1OMWeGa/p32RBmeQVbOEuQfPzbzP8aYjnh0G27ZoRgZFTCQgiFPLgGMrLlxa4guPbOfpsRYiCanP43xYjOgpA0cTncWXrTxLKQoFn5Jr0wwFwvEZjaco2g4CGAsUfbLFmcuLDBd9JhoJfQWLZmShE0Mi06CZqUjT0oIYQRBG+LbiVavKnDvs4MosIrvr5XqYyOiIj4cy0O05NkIgJcQCtuxusG55H46UuH6ZgZKDEGnI0xlrlrDx2V0kSH723Hb+9sePYvlFjNRgIixizu9fwTvWbUC3QkqegzKp+0AawerhKvVt21jphygFywo2a8oWttT4DkyEMZYS2J0gQWMyl4CFRHVS3zqFnA5DRAvFMlD0bGrtkEarxVDJJtGaWtwmCiPWVz1et66P1YNlXhzXbBtrM9Zs4ztOXnkz1oaJeJKlBViiClQSmyIgpepkw0iUkJ21oLClwVhlXppSLCkdm9OlEGL+ToIdf4hvScIkoR0neJbAV5J6DEKkNOPZK9sSAmnbSMun3Q6oFCxO6S/w3ovPoKQ6c0zaCCURUmGJ1GomhEKSKgNxoGkmMbZtELO84tNdgc7fsuqU2d506JPXcZwFYBlIK4m2wpTF1QBRkmA7NrFQrBkc4ovfe4J7HtlCLC1K5fIJkxZ4NNBTBo4RsujbdruN5zi0opCS7TBRr1F0PGJpMRJI3nXOUs5cUsFzJKVimYFykcQkxLHihVqESQRf/ddN/OLFSUIUcdDEtSzOHq7wJ++/lqJUGGGDkSmN6xGg3W7vk1FwXGDSzTw2hii06C8XcKRhyHcp+W5u3jxj+UraSUQiBS/V4d9emmIiTKjHgtEwwQi4aHg1163ZQCtoU3A9MguqAJZ4Fn/5u+/iw2+6ACk0J/eXeONJVXwhsJRhpJlgOz52J6RRTEt4O3IcrxLRB4Ot0niWeiOhr5IyItaTgERbeJ6LElAqlNlZM7StEtt2T1KxHRxb0gg0OyYCYhMy6Ie4Cmy7QLkTAjp98zUkgDIhwi2wu27T58+elnmkMMbQarWOwZ3n8vDUF29bDkGc0I4Evm1hKYswNJ3TeXqpMKmZ3nZcJian0sqEcm4l2LNV6dqKIGzT1Ba+OtJIoTl0z6Tl2MMwPIZPmRuKrkOr3SIhdeWFSYRjCRSGNcv7OWtZme2TIW0jaDabx9/luYjRUwaOEbIARce2KTguzSigaNu04pCi47JjsskvHnuS37n6YlaW06jX1X1FlpY9krjJaCPkL77yPZ4db/PYaJvHXqmlJXLadVzXwROaQV+lJnD2WiOOZKN1XfeoBlHOBYK95XZX9SlefVI/BSlwpGbDgMeAQ34KWOLZTIUtYiBoREy0JFrZ/OiJrdzy/UeIhYMjFArBpA5wXEWSRXEbQ0EZVhYsltgCBZy7bgVvv/hslJGUPJddNYPr+2kwWKd1chZ+/8OF4zgLoqSqkmlaVq2p6a+4CBST7Rbg4FkKG/Btj9FmQtGzGZ+YpOw7+Mpw1qph/u3ZnRSkT8mRJNIQKgvt783AmJZDThocurIA5WAPRfvY9D9jkJsf+RoQGsdyaMcxQWJwbBtlWcSdmg97ZZK6tGzXByGIdYLnWHPOZjKAbxmiOKCeSHzr0Mo8Hw6yvWz+rVqComtRb0wSm7TUdZBEeMpQIOSMpSX+8kOvgbiFSTSe5/UsA4eA+R7dX2tkdQ58p5gqAbaDdCzKns8rI3WW93ms7SsgdUxguazvU0wmECnBS402//ZKzG33P8lLzYSlzRBtDCJuYjtp7TwlOuQ1pPnciMOtp5cijuOcuva4LqKOMvD2y87ENxLXGIRO+O2rX8VQOSMk0PhCkihBECc0W21qbWgFbba80mRrWyA1xBK0giiOqQqB2fuGIj3tk6Ylkpr6BTERkrLrs2ciwF1TQpKkwVdkjBFHRxYLIV4AOhUxhWGqFXHmKgdGBKNTU6y01+HYCmWg4PqMTo5w7tIC0h2i7FvYxFy4fgl/cteDvOnkVVRswRqnj1IQYimxD8dFljJqhMf156/k1euqWEodRYlOx3xSxxqjcSybdhzTDkMKTh+NOCIMohkv+vTNbTkezVZIGEXY1r4kVPt9DmBLiTYWE7WIomNjOpkCxxJJksz7/DVAyYVmu4nO6gdICynT44IrBaf3+yhpaLcjRIeuG9J44Fy6Pf1gVvSUgWMMKSUFS9JIQmzHpqwcSsrhlXqNS85Yi+9aGB0hMWxYUmA81Py8VuCliTbrVgywcdsetsVFTu+30JEhUR6OEBiRKgRp5rDGoMh4hw4X3ZvW8d5UBbC6WsCJO3kRQrG2z0OooFMYSKCURGFoJ5qpZpNyySHQsHVsimYcQQKWMjS0wNEOnsmsJaajKGWbbicWQKRMZdoIyp6FlIZquYIwCbJLnkdLCgvjlGLSzTMWtLRDv+8ijU0SRtgFC0cJtIlxHIFuNTh/eT9RHKcseAg2rKhgPBuvUKagWly67GSsFRa7pxqzPEt0rDqCtX0e6/ockiMgxToQMobH+VEGBAZF0TK0o5hWrPFsi9hoGnGCMl3KgEhJAh3bJkiyIkZz34YNoKSmGSXgWJTdvW6CY9nrTL7zCQEsKfnU44Raq41vWUjsTpaPC0LgoBnwSuxuBixT5ARn3ffoYXb0lIFjhMzvLqXEQRBLgUJwslOlIBXjrZglvoWQIFA4JuHy09cRa82j2x9nfCrgmvVltk/18exTdSKdEEea2PFxAYVGiCxzITvFHh0cbQKmfR+w748GcBFgdU7vKWExCS7GtEHYCEvhaUMrNjSDFif12TSDhN2RJsYiVgYXTZxILOEgrGzzSr93DhAp8Q8ABiHslD1AGlaUJUs9O3VdGDBCd6wuR2cTXBjKQFqaWSQWgbCoOi5uaHNacYASFo4lAc1AQXJaVXHDpadRlAIpBAKHQUfz6qV9DJUdLNXGJAIpDc6sXFWpNiUBhAIUKtPCjjLm92UlMMKi6iTUgxbNWONbFkkc0UjA0SZPLUQIlNYULUEjliRxlJYznyNSy0DEYMVmeLiCZ2K0sDKb1zFBpmDNtzIAUFWSyuAQO8carB2sIo2FFAalBbEEjGGla7O92WZ5RYI2aJkqoOLoLeVfS/REc4yRJAnKVthG0IfDdSe9ihjF1kZEybXzDABBh2NfSVylmGq18G2XVUXJhr60itxEHGNLieycbAXZ2SuLGT6ybXZeggc7SAOyuyKe8y9A2CjS+IiCjNk11SIQiiX9fQStCAuFVBB12h4lMUJKLKU6L6KuW4mun4XIYxaUFLzv/OVcvHYIIY6+VQDmV77dsIQgJCDSAQXf4eRCmT+6+gb6UNiWixEWG1YNcv05QyxxLQYLDirnYJK87+J1XL6mimv7NBNJEkZ4s70opg2l2CvvY9Sv+QzOFMbgeYpmqAnCENe28sp+kIf0AOlJtWzbTLQj2lGAewiWAQFYQnH1acu45pQlyIxi4BjqmTPpiOcVwjBUKjLRaBEZg5EyrcfScQNICUuW9vHyrvGUrZRMNIdJDnICoacMHCNkp0DbTk//FgJf2dxw3qt5+OmX+eq/PEzJs1MTtkxP+JnBz7ck480WBcfnbZeewh+89VySVsjmiSZKdvLcNUc9cGih0OV2QxoBIn2pK2L6K1We2DFBpeiypOTQimMsAZKEuLNZteMYZBpTIWFOclLADRedwkn9BYxIqVkEe10LRwMLRb5KCIyIsXWDom9RNoYL+pbhatVxpxhWV33eesF6PJmgSJBC53vpRWuHOHNpH5Zl0U4MSRwf0gvtWMAYM390uSINMnVdl0aYxqs4Djh2WoZaEO9VBjrO65Ll0MYQJxHeXBnATbphSyRvOv80Llo1iJCKY/2Wy4KK54OqfDoMoBm0DRPthMjEaKW6irOl3CAnrRpm287dCNtL3SfmSBlYTgz0lIFjjFarjSMNQse0tKZoBNunYDRyKBc9yLkD9/oUPaWZaAUUPJ/1VZuLV1SZnGxx+/ceQwsbLVXH7Hp0EYbhwtD+p6FDUWNAiIhSfx//+vRWTh3qY8g1jIctsFKngtYGjSGIEiy74xbQc98qU9dLx1Igkg5XmzxqOlcQBAugNnpq7/A9j2WeR8EWBDrESgwGgZIgTYwwmrjdxnSUMTI5iCwDxGBbkiSJiOMEZTnz2KcUrVZrfmRrUun4nkejFRInYKuUgTSIk9Qt0x29JqDkeOyqTRIbjTtHN4HAdEoQpBkftgCUdVQzXvaHhZFamMZHDReLjDViIjRGqU5AbPp3iaG/4NFutphsNBFZkbdjnXLxa4CeMnAMIYRIKX4xuJahHmsEhtFawHClxGAxS8fa66NPi+4YxtohnmNh64iKNFx58dm8PGWwHIu8fN5RxvylZh0MqRnEYKhUPB59bhcXrl9On5swHgUIy2DrBJ1otIF6I8D3nemRQ3OAwSIWEiMSIMIIjT5MkpbZ4LrugogbMAYqvsPyYhFPCto6IMSgRVblNcYgsPwyRlloITtc92nbYxRaChwliJOQIIqx5v3UCIVCYd6eLUgtP81AYxBIIbEsSStKsKRF5tADgTEC37XRQqEs95A2YUGSphiTkTpJJMdegbcsC8eZf4UPDAPlMmO1VmoJzF2Le1dp0bE6dM9+nnWQfbanFOwfC3Hn/7VBRjoklE2f69FoGxIRY5KA//W+C1le8Ej58cij2xWGZeUCz42C70qMsLGE4l0XLMPD0FcpUzAhiKPvH80KFS2EF1Y3UmO/BuOxuuJz2rDHmqEyvusz0VS4SKSIaacJl7QbMcWS6lCwzXHxdzaVdNtWpDXhO5UgjxLa7fa8uwggFcu5y4us7XdxADsxtNNUeYQRSOMgpCJqNqBTInrvjEjpdIWAorIJI4tmEuKr+SdTajab8/dwIVPGwUhimQQhwLU0Y4nGs7xOIGUEWiG1QBdixne2EMbDyDmuN0HHZSY6AYOZNfHYK2JxHC8Ay4BECIe+aoGRpsHEhoLQKJGVZtaAjaNACZux8ZGOQt9xYYmFkdq7UNHLJjiGUEqlxBdAyfeZarUBnyAKWNlfSiv1dZD5ko02rF0+jJn4FX2enfoEtcC1bQYdzarBImAD8qgbB1zXXQDEItMhSOWiRWobWF3xef3aIQpKUvJ9JuuTKBOilCDqHJAmW036/MIhiUfs86+jrxD5vj//lhdjsDC89pz1hLFEkW6WsU7S2gsys1IJCr6HFPuyMGZuG8dOq/K5lsae52kjhJhXywCAY1m0owhIXQSWFAQhKJnFMpg81bLkKrQ0yCzIdU6YfgLOf3ccYNv2/M9d0v3AdyRRHFMPwFWqy1CazlsJWIU+YruCEKnbCyExRznr6tcN8z+684QsQjaLks2+jubJTWvdiSbWVP0Co40WGEU7DvfLxGaESMuXrvQZ8iyMSZPbjBAsFU1WeDEadUyMXWEYLgi63Gkw6csnRmCEYWXJ43euuwwbqBYK7GmGWFLj2TZBlF472m4x6FgL4hTejYzueT6Ruk8T+hzBsGejhCCWFjpJiatEJzIb0op7M2WY/WwwWJZFFMXEicGa5x12XumIIa28aSnaUYTpohaOohjZ5ULJ4i5KUjBaq6Nh2qFgoWJhWAY6TJOWRCdtpoIYW1l5hVGDAJO+8l2/xM7xZlph1KQVXxMxLXijhxk4YZUBSDfn7373u3z9619ncnLyqG/UQggcx0GYhKUDJbZPNtBaEEMngng2PnJBxXH40998IyurpXSeG40U8O+uvYgzhvvQRgNH/6W9UOhy94FI9X2FQhqDryRKQNlz2DmV4DoeBccmCBMQgrFYM+BYC27dO46zQFwwqXPKFWmFylhYGJ3GZeRFmIzBPUB70+hySIzBGDXthTdfmK9COpmEbEsSxFFqshYSIWTK6jlDNomAorQQro1RclEoAwuBjliQev0KjgITsqfewnMd9iYPpi97S0DVNVg6SKMEOkyt0phccehhXywsm/Bxxne+8x02bdrEunXr+Lu/+zt+7/d+D6XUrCfKwz1lRlGIMS7VYpGJbTuIY01i6FAJmxlzMw1wUcawpuQgEkEiQOoYC4vLT12JlSSd8roJBoujGRATx3He/4WQAgfkZlELEEm66BOZprn5jmC0FuGtKeEREUYx2hgmg4Cq45PlYJrMvDDPyOhc5122QpAgkCQgFIlQaB0jSMmFjDEYIXJ63/211ZICrQVRbNIXnjkWxYnnBmMMYRhOY9A8vg1IT/iRSWeclBKJIIkT1Iz6ARpwlUUzDjHC5GEtC2K97QcZtTrMfzttaSiXCuwYq+PYaV2XPDTQGJQwXHbmKkRjFCMMWtgdptYYWHgWw4WCE1oZ+PnPf8773/9+1qxZw5/+6Z/mroIoiti5cyfbtm0jjuNpQXUzT0qzvTizn7XWSKnA2Hh2BM0WE3FMOYoRlpx1o03TkA0k6UtMaEBIrE76kpCiYzpX0KlJ0J2u1t2e2b53t7u7vTMxm5Wk+z5p3+RB77M/xWo2Oc5OJ2vQOusDIMBoAyJBGWgE4yyvrKbdrqcmWqNp1g1OwUboNPIas7cvB5LN/mSVx3PM6Gv37+d6n6yvWutpcyo3v88im+6/z7z/TLkftG8YjBEpY5sQ2MZgaagnaRCmMialDNYRQoncddY9PplupQQYHdLoEEIlWqdpXgcZ/9n6uT+Z7+/7zGuynzO5zvz9bOM32zjN1t7Z5uq0nztKvYUhwiJKwtQ0LRRKujhSY7RBYyFoI7RDwVLEVh/aSpWGme3bnzz29/Ns8ph5r/3Ny+4+HaivM5+5v3Hpvs/hHCxmG7vMfWV0QiIShgpFXppqsH7QAWKMTrkQtNGgYcPSKpNjEcLsLR6dRWzMnD/7a2/33F8YFr1jixNWGchOEo7j4DhOrggATE1Ncffdd7Nz506KxSLj4+OEYYjnebRaLYrFIrVajXK5TL1ex/d9oihKTwNSEoYhvu8zNTWFEIJmM0BjU5+q8eLuGjYJE+NjaCkIg5BCoUCj0aBQKNBsNikWi7RaLWzbJisf6jgOrVaLUqlEvV6nVCrRbDbxPI8wDJFSpiQw7Ta+79NoNPJrC4UC7XYbx3Hy07+Ukna7nT+7VCqxe/du+vv7GR8fzwsWGZP6hsMwzPtdLBZpNpsUCgWCIEAphRBimox835/WF9d1CcMQpRRKKYIgwHVdms0mpVIpb0N2bZIk+bOzPmUybzQaFEo+tfEWp1QSVhYlz9VhfKrJKztjRkdq1GoTTLkR9WZAwffzZ0spiaIIx3Fot9sUi8VcRs1mE9d1ieM4J1kJgmCajOr1OsVikXa7jWVZ+YaRsc1l12Yyyq6VUlKr1fLfZdfUarW8357nEcdxfr/udnbPke5rhRD5s13XnTZHPM8jCAJs287nt+u61JpN+golJttTWFaZdrPFRL1NELSZGhtjSmisOGSq3aZWq9NX7ctl32w28V2fMIqYrIWEYUgQpRawna+8Mq1PmTyzOBTbtvO5kbVzamoqnyNZ6lo237N+Z/O90Wjk8z0jwInjGM/zaDQaRFGUz9NsHmVrOhv3bhlNTU1RLpfza+M4RmudrzXP82g2m3vnXEf22brM5FlvNCiUCoyMNqjXQ1y/zdTUJBONEIXAJBG7do1Q9ByazRHKhWEm6zWGSgUI60yMTxDHAUKQr7WsT5VKhVqtht81h4UQJEmCbdv7zM9arUahUCAMw9ysH0VRfr/uuddsNvP7ZsRC3fLs3j/GxsbyMcnmXPdek+2F2V5j23Z+iBIdK1O3PLvbmVkjs2dne0L3PEr32BiJJnI0Sse8MtlmmV9nYmKCeqM17dogCKjX61giXcPZOi+Xy0xNTeV7V/dek417tndl8jhRcMIqA0IIVq9ezUsvvYTneVQqlXyDGRgY4Pd+7/fYvHkzP/nJTxgcHMw1yL6+PgAqlQpCCKrVKjD7Scf3fSYnJxkeWoJutRFCYWybSqXCyuFh3K72ZPft6+vL77s/7Tp7Zva9G9m1M9t5IM28Wq0ipSRJEorF4rR84pkacaVSmdbe2Z7d398PkH/Prp3tRDfzmtn6lH02k0mlWsUgKNoB//Hq87nwpNWMN18CJRlYshTXe4G1q5dTdQXlakpKciAZdPdpthNSJs+sDdn3mTKaOUey9mbXSikpl8s4jjPtftn9Z473/vrffe1MZPIsl8v7tCv7udLXhzKC4kCJIBD4vkfBt3EcRf/gAEoabJPA+BjVSj+O7Uyfcx3LQNttotQ2HGVRKRVZMVgFY/I5N9scmTk3Zs6n2fqVPbt7Ls884fb397Njxw6WL18+bV51y6/72u5nzzbn+vv7McYwMDCQX9M9lhmEEFT7qkCC8coo8Rwlz6a/rw+/pPEdi75ykWVLh5ACqn0eIrHxK0U2DI1gx5KBgT6EmB7bZozJx3nmWM72724Z7Q+VSgUp5bS9JrtPd3+6xy67r+M4RFGUy6Ub3XvNbPLu/vdsfZrZhu7xmTaPDGBiQqlZu0Jwz5ZRVr9qNX39A1T7mHZtpqRn4yelnCaj/Z32u2VTr9dz1tATASesMgDwjne8g09/+tP86Ec/4oYbbsi14yyILvs5+zoQZjPtKqVSohlpcKRE4zFSb1Iol3HE7Bzt3eaxA/3uUNox18+67l715HACCQ9FRofSrpnXKSGItUFJwcWr+im5iqIraIQxQRxjWQLHkghhpqXGHY78un9/sDbvT/YZugM0Z86p/f17rn8/lOulECmnACIvkmO0RgjdmfMatMG2HazOSXT6zUl95EqhtSYhRspOqZw5rJWDtfdg18w2DsaYvH79weR3JG2abV2k6a8JUoGO2hS9CkIKbGnwbHAd1SmzCwILodL6Ir9x1lIcexXQcSfu59mHMk8OhP3RCc9FXt3Bg0cy//a3huY0ZmkIEFII+ssFdo9MULIMQkhmXiqlxPf9/N8HatP+sCCDqY8hTmhlYOXKlfz5n/85sJc3PvuazR93KMhM7GEYAAZbSsBiotnCL/pIbRDy6HMFHAkyc2GGhaoRGzRCxATCoIMWSXmAgm+ze6pBEMdAgpIChO6Udj12xXHm3OaOWypTuOZLtlmQVYasHVGip5MLCZnSJxdnWLy6/qeUTAPLjElfNPtRcI81srXabrfz3x1P+ZoOJ76QCsdSlIpFAJQ0+LbBs7tTC2X2CVY6gupAlSy6cMGut46rMupwKMxbO7vigCtFm1YQUXKcDuPjjEuNod1uH9DidMBHHUKMw68LTmhlIPNfHytIKfF8n8SYlEdcSJrtkL6il0YRk7NlLAh4nrcAipHMASYNBpJK4HgVBOA6Nq12SDtKUFaELQWJUXsrCyyAjdbzvAVx2uiWhASE0DQTsDsnLIVBAwW/OEt7TX6PNJsAAilwF0C/ip2X8HzAGI0QNgUnYGXFRWlNJCQl1cK1LYRJOnNQdsiEBZWin9YtEfMvu4NhvtMKoeMlEAKJxnUFQz4Ufa+jWu27vovF4gkT/Hc0sPBn4TFC5g6Y+XU0J06SJDQbTYxUWBISIZlshRRdmwWR6zYDrVZr4ZEOzYq0dptJmjSbAZYxeLZDK4hoROC5NpaRJEiE0QtG3Wo2mwtCvoK9KYBKgpKCRgKOSjd8YTRaSpqNFjrZd55q0rq5lhQk2tDWYvYSxscZtVptfh5sDIKUFvuK05dyztJSesqSiuVeRNlPuUYg7rDlpSx5U81mmg+0CJSBKIrycszzBpFyBkjAVZLTq4LBor/fy2u1Wk8ROATMv7r3awylVFqoSAu0sIikZmerzeWegzBqQZxWu7FoLAOk5wClFK7vYIym6DnU220mgoiSa3e4CTQpDenCsL/4vr8gTlgzIZVFEJiOFcBknEMUCgXkASrqSSnQSZLyZqh9aYuPN+bPMiAQwsbVcNOVF+LqVBKWNvzOW17H0koJRJI6q/I1bygUCovmZWVZ1oJoazrLJMO+xf/5gTexvGgjjWa2+gzzaSlajFj4KukiRl6oSKc52WXfZvP2UZaW3Gn+r4WCIAim5b8vXKSeV50YWq02Aig4MBm2eGrbHgp2ylcuiVOegQXSn3a7nacDLhQIwFKKMIz2CRI7GH2ylBDrCI1hjlV4jxmMMfNYqEgAAik1VaPxpEZIgSPhtIEyZUumLHhGpoRhneHP2ruQ5sP+EMfx/FsGMrXeKHwEpw1X8KdX0ZqGRqNxQvr+Dxc9ZeAYQgiRUqQqUMJw/tqlTOyqMewLkgUo+awYyWJYQNpohJK4nodB4yrBVCL5/i+eZahS6nDwx8eAtPnwkZWIXljyNagON0YW0W6M6ZTkPTB9shSQ6gr2PmRDxxtCzF+hosztEgsJWqGFJBGkNTQTjSQhQYGRnSvT8c+i3ee7XsVcsJBKGCPSuAtlkrS09n5eY/NduGqxYQG+kn59kBFpGGEAzbmr+nnNGeuoeFb6klpgB4KMfGPho5PxoSGOQxASW0paoaTaP8wVG07Na8cDC8YEk9H7zv9JMJNOmjVjKUk7jDqmfpH7sLWeZT5kB1uRKgNxYjBG7v3jPCKLdp8PGDQxgJQkCHSa8wKkzJmZZESXjMIwXCDz4eDQWi+IeBcj0uBWAIQhQaL3I79ueuoeDo6F58D8NUKeqmhASIvTBi3+r+vPw1mgfvmFEOk+VxgUAguLIKV9tSzaoUW/H7LcVulGIXzshRIwwMIwB3coAkDGSG0RY3AsmIgMBcdBdjI10sDL2V9UgjRS3tKg3SJxDFLoToz8/CB7qc6XjKWQeAAK7G4pKLl3k5Ugu85f89neQ0V3yvV8tllkc0ykUUEHeoEtFtkuFCye3X+Ropu4SAoouhZMP7cuGCyExT4npAcuhOhkgAC2VEyGYFwbKTQQ5v7ZhdKbbC7Mt/WlWx5CpIGY7XaAbXcqPWbjP6sisPe7EJL+kktBGYyY54p2neygeZFtFz+J6ISoiGm/m/HVkWIWrLvg11sHRzvb6lAhsv/2kefsWHguuYWNnjJwDJG5CTIs9EW/aHi4TRbxboiTBEyaauRIQ39fFUwMIiYPOFogyOoOLCgYUFISBG3sLICwI7bZ2ms6PgJFujmv71OcVIxIjUrzK+v5dBMcDhZTexeKm+BQEEXRgt9zFxJ6boJjCCkltm1P+91Cnpy2bS+e1EJjkFJh2S5SgK9gndfm9AG7Ux/eQiDTHLkFIvNuOuIFAwGyU5DJsq38d9AJeJxFdhqFNKlT4LpXnUyj1cYyYtpnjzeEECn19wIZ67kgC8hbDNa4xbIvdMPzvEUh24WCBbYz/XohSRLCMJzvZswZQRAsoiDCTL4Raaqh5r1XnMFla4bACBKc1By7gLqSpW7ON8yMH2ylaAUhjt35RUbv22rN0l7RCeDSCGM4ebDEq1YMoDr8BPMFYwytVmvRzF1I58NiaW8cx4vKkpHNhx7mjp5l4BhCSrmotNOFQpc7V0gpcV2HLIjg1aetJks0yh0EC6g73YWg5g9papvBSuMpDJRMxFgssKREC5MWMdIGv1DYp4AOgAIQEoTASv0Mx7sT+8AYs+joZ7PCSosBC4V0aK4QQuD7/qJRthYC5n8V/xojSZK8LvZiwOKhI04Xe07q1AkksoRA5cGaXdUmF4j4uwvpzCuETn3/nS/XktQCg2dbZLmDQqSkLVpPnw+CTtVDkQXGqs7X/Mu5Xq8vmrUG5JaMxdDmBUFHfIhoNpuL6nAz3+hZBo4hpJQUCoVFs+ALhcKCpMudDcaY3PKyWLBwToLdbTBYrmJiok3ZsRHGpAZ/ISiWDkxHvNBQKpUWzVqDlHRosWTwLKZ4ogyLae9dCFg8K32RISthHATBopmMB6OfXWjQWi+6mIyFZLZMmfMMluMwNVWj4tmpJUBIDILWIpoPUspezMAxQpZJsNhiBhaMJW6RYHEcAxcppJQLhMJzbsjoiBeL8rLY5LtQsgn2vn40qWXAQypBxbeQWcylAMexF81cABZlNsFiaK8QYtFZBbLskh7mjvnfmeYJxpg8ct4Yg9YarfVR09Qzn/ZiOrnGcbyosgm01ovqtBLH8YI4aQsjkR2KfIOgouA1a0ssK/tIYXWyCQRRGLFIpkJuhVtMiKJoQcyHuWAxWgYy+u8e5oYT1jIQRRFf+MIXCIKApUuXcsMNN6CUOqqa+mLTqI92/48lclbHBXDSnisWRls77Jcmy7cQbFgxyCnvuoqSlc5VienULFg8lgFjzKKLeJdSLgpLXLbWFtNelu0NC122CwknjDIwU0OMooiNGzfyH//jf6RcLufX7E+TPBwNM9v8F5N22s2XvtDbvVja2Y1ujvf5gqHDw2QMFpo+R2GcvbXfM7kuNvkuprk7GxZym6WUOUPpQm7nTCzm+XC8cUIoA3Ec70OtmgXFfOlLX+Kss87i3e9+N0qpnKxiy5YtPP/884RhuA+lcPdm3h2tOjNyNQxDoigiSRKklLlJMPt89rvuiOLunzNu7Zn311rnf5vJv91935nfZ2rJ3fcWQhCGIZZl5e6S7nbNvG/Wp+zZ3feZrS+zobsvB+rTbNdAqtB1j8/M/s0cp5nt298YzBzH/Y139vuZn9Nao5Tap71hGE4rY9w9vrPdf67t3Z889xepntDxD5oYCUiTIKQiYe/czlxcGaVrkiT5+pg5prPNy9nmWvZ95lh2z5UMs83dmc+e+bsgCIiiaJp8u58/2zjtb43NlHn3z919n209znV8MiKfmbKauQccTK77u3a2a2a2a2af9re/de9l3fc90DjN1s7Z9qOD7W8H2rtmXtPdhjAMSZJkWp9mm2v7G/9uN/KJYGE4IZSBJ554gi9+8Yv5BK9UKvzBH/wB//N//k8A/uIv/oJLLrmEU045JVcGHnvsMXbs2AHA5OQkURThui7tdptCoUCtVqNcLtNoNPA8L9+EpJREUYTnedRqNZRS7N69m2KxSKvVwnGcfJIppQjDEN/3aTab+L5Pq9WiUCjQarVyKuM4jnEch1arRalUotFo5PfzPI8gCFBKoTq0sp7n0Wg0KJVK1Ot1CoUC7XY7f3bWzqwvzWaTYrHI1NQUxhgmJyexbTtfCJZlEYYhhUIhv1/WziAIcnNct4w8z8vvmz07k5FlWQRBgOu6+TXZ91arheu6uYyyaz3Po16vUyqV8mvr9XpepnTmta1Wi2KxSKPRwPd9oijK3SBxHGPbNkEQUCgU8mu6xwfIxye7JpNV1m/Lsva51vf9aePTLaNms0kcx/l4+L5PvV7PZeS6bq7YKKWmtbN7jmTXZs/OxmfmHHFdN1fwshe84zg0Wi0KpRKtRoOi79NuNPF8nzCOciUmi8YOw5BKpZLLPhufTLm2LCsf96y/WZ9mytO27XxutNttisUitVotl0c237XW0/qdybPZbOZ9ysYyW2utVosoitizZ08+Tq7r5hv/zGuz+dM9P7M+dbez0WhQLpenyT5Lv02SJL+me45k63LmnMvme3atUorx8fH82swUn7Uze3a9Xp/1fjPncLbefd/Pxz3bP2Y+Oxuf7NpMRnEcT1u72XqfmppCKZXvH917TbPZzOec7/v52ug+/HTLvrudWZ8yH/9s45O1M5NRppxkz+7ew7plH4YhU1NT+VzL+t0to+792HGcfNyzzJTFwrtyNCDMCWA/6S6y0a35NRoNpJT8+Z//OR/+8Ic57bTT8muMMWzevJmf/OQnfPjDH571dLs/7TL7OYoiJiYmWLJkyT6fPRxt82h8ZuapJvu7EIKRkREKhUKeDz/X5x2KKW62U8mhoFuzD4KAWq3G0NDQfq+deYqcS/tgesWzmRaA7utmk+3+LEW7d++mUqlMi3o/HvNgnzmA6aQPAiazEpicfiDrx549e+jr65tzxsbhjOeh3Gum1WjmeGzfvp1Vq1Yd8F6H0sYDWYiOBnbu3MnAwAC2fWSxGQdr12zz90Cfne13zWaTIAgYGBiY1TrU/VmYf7O81pqdO3eybNkyhNi3ouVc1lCj0eATn/gEf/Znf9azDPy6YLZAkomJCT796U9Tr9c566yzWLduHTDd79hdfvhgk2G2RSalzIlFDnb9XHA0PnOgn33fn0Y6dKgBb4eiOBzKZ2YiMwsqpfYr39nuf6jtm/nvg93rYH0rFAr5yW6mifRQcKif2add3aRD2d+6fpVtmr7vH/KL6mhumvuT52yyM8bkpEOzzdtDnQf7u+5o9q9YLB61MsZz2Z/2d83B+plZMbNUvbnM3fl+eUopKRaL+T48s02Hs1f9uuOEUAZg34Ht6+vjj//4j3NT58xrZ9OWDwWZNaLZbFKpVBbFxMoKe2TyWKhtzsYmjmOazWYeALqQYYyh2WxiWdYRnwSPDfY90WVm34UeRZ61uVarUa1WgYU7dzNklsnueiALtc2ZlTMMw/wFu9ChtaZer+d7w+FY3040nDDKwGyYqQTMZpbsNkkeCjL/n+/7h/X544mZJ8GZ5tiFiEy+GeXoYkA33fNCb3N20s78uYsB5XJ5wZip54JSqTTtxL5Q2yyEmKbALtR2dkMIccTzYbFwQBwtnLDKwFxMgEmS8MADDxx2Kcx2u02j0WBwcPCwPn+8kC2U8fFxSqXSAj25TkdWHjoMw/w0uNAxMjJCuVxe8MxzmRI8MjLC4ODgolBgkiRh9+7duY94MWD37t309/cvCn6EWq2GMYZKpTLfTZkTkiRhZGSE4eHhw+b3aLfbjI+PH+WWLVycEAGEh4MsmnrHjh159P2hfv7BBx9kamqKa6+9dsEu9mzjN8bwmc98hhtvvJG+vr45xUnMJ4wx3H///Ugpee1rXzvfzTkojDF88pOf5Ld+67eoVqsLWrZZgOZf//Vf85GPfIRisXjwD80zdu3axTe/+U0+/OEPLxBypwPDGMP//t//m49+9KMUCoUFPR+MMXzrW99i3bp1nHvuuQu6rRm2bt3Kj370Iz74wQ8e1nzozr5ZuXLloujzkeKEtQzMBZ7nsX79euDwYgZeeuklisUia9asWbAbVHf6zODgICtWrGBwcPCwFKDjhazNy5Ytw7Is1q5dO99NOiiMMQwPD7Ny5UoGBgYWtGwz8+jQ0BCrV69e8DEZWTrg4OBgvtYW+uattWZ4eJg1a9bg+/6CbrPWmqVLl7JixQrWrl27YNvZDa11Pn8Ph1n1RDwj9ywDxwhZgJDWeprvaqHBGEMcxwghGBsbo1qtopRa8MqA1ppGo5H7Bhc6MrN7tVrFsqwFL1tjDBMTEwtacclgTEowU6vV6O/vX9Av1gzGGEZHR6lWqwueljjjHnEc56DZOwsFQRBQr9fz/WwxtHm+0VMG5oCZec0zc5b3N9G6CWlm3m/mZ/eXA3w47ZztWbM9o7sdM/kHsq+ZubkHa9ux0MD3l9OfnWC7N9LZMkFmG68j2Rxmu//MeTHbZ7pJWGZ7wc4l9/lQ2n2w+TDb7w6URTNzrhyr1LJDzQefGeh7oBfrzDncff9jfXqcue67c/9nW2/7+/zRkO3+uAIOtpftT7YHG6fDbfPB1vLMe2ftyArPde+9B2rDkcyDXxf03ARzgNaaBx54gIceeohqtZoXNbrzzjsJgoD3vOc9lEol7rjjDvbs2cPHPvYxbNvmu9/9Lk8//TSrV6/mbW972zSymU2bNvGd73yHU045hTe96U1s3bqVO++8k3POOYe3vOUth73otda0222++c1vsm3bNs4991ze8IY38Nxzz3Hfffexdu1a3va2t7F9+3buvPNOTj/9dN761rcyMTHBN77xDSYmJnjta1/LRRddlD8/DEO+853vsGXLFq677jpOPvlkvvrVrzIyMsLExATve9/7OPvssw/7dJMkCT/96U/55S9/SV9fH+95z3uI45g777wTgHe/+924rssdd9zB1NQUH/3oR7Ftm/vuu4+nn36aZcuW8c53vnOa73Xjxo384Ac/4PTTT+eaa67hhRde4Otf/zrnn38+11577RGdxJrNJnfddRe7du3i/PPP58orr+SZZ57hBz/4ASeffDJvfvOb8/E877zzuO6666jVatxxxx1MTExw5ZVXcumll+bPj6KIe+65h61bt/KWt7yFNWvW8JWvfIXx8XEmJib44Ac/yGmnnXZYJ/Qsxeruu+9m586dnH/++bz2ta/lqaee4vvf/z6nnnoq1157LVu3buWuu+7iggsu4Jprrsk31G9+85sUi0WuvfbafGMNgoB77rmHl19+mbe85S2ccsop3Hffffzyl7/kd3/3d1m+fPlhyRXSTXnLli185zvfQWvN29/+dlasWME///M/88ILL+TP+/73v89DDz3Eb//2b7Ny5crcEnfrrbfy/ve/n5UrV+b33L17N3fddReO4/C+972PHTt2cO+99+Yvk4997GN51s+hthXS4Lqvf/3r7Nmzh8svv5zLLruMRx99lPvvv58NGzbwxje+kWeffZavf/3rvPrVr+Y1r3kNY2NjfPazn8X3fc4//3ze+MY35vcMw5BvfOMb7Ny5k7e+9a2sWbOGb3/722zcuJGPfexj+yXZmgviOOZ73/seTz31FCtWrOD666+nXq9z55134vs+73nPe0iShK985StIKfmd3/kdhBDcdttt1Ot1+vv7uemmm6YFwT700EM88MADXHjhhbz61a/mvvvuY/PmzTQaDS6++GLe9KY3HVF6ajZXpZS84x3vYHBwkHvuuYcdO3bw1re+lXXr1nHvvfeyceNGfvd3f5ehoSHa7Tb33nsv27Zt4w1veAPnnntuPl4vv/wy3/jGNxgcHORd73oXjUaDr3zlK1QqFf79v//3h93OxY6Fbf9bIDDGUK1Wefe7302SJHz961/nzjvvxLIsTj31VP7u7/4OYwwnn3wymzdvJggCjDGsXLmS97///Tz66KP88pe/zLXZdrvNLbfcwtVXX81jjz3G448/juM4rF27lsceeyx/5uG21RjDmWeeybvf/W6+9rWv8cILL3DLLbfwxje+kU2bNvHoo4+ilGL16tU8+eST+ecuv/xy3vzmN/PpT3+aRqOR3/PJJ5/kgQce4E1vehOf//znieOYt73tbXzgAx/glVdewfO8I5ItQH9/P+9+97up1+vce++9/OM//iPVapXly5fzD//wDwCcfPLJPP3004RhiDGG8847jxtvvJGtW7fyi1/8Ir9ns9nks5/9LNdccw0PPvggzzzzDI7jsHz58ry/RwJjDGeddRY33HADX/7yl9m2bVs+no888ghPPPEEtm2zYsUKnnrqKSCtXX/NNddwww038IUvfIFms5lvpr/61a/YuHEj11xzDbfffjsA119/Pe9///vZvn37EQXwZfPhnHPO4Z3vfCdf/vKXeemll/jMZz7Dddddxy9+8Qu2bNmC67p5e7N2ZS/l7t8BPPzwwzz11FNcffXV3HbbbURRxNKlS5mcnDwq0ddKKa677jrOPfdcbr75Zh555BEefvhhrr76am699Vba7TZLlixhamqKsbGx/HPf/va3efDBB/dpwxe/+EXWr1+P7/t861vfYu3atXzwgx/kkksuYefOnTkN8uEgi18577zzuP7667ntttvYunUrn/vc5/iN3/gNfvzjH/Piiy/ieR5Llixh8+bNCCGo1WrUajXe8573cPHFF0+7309/+lNefPFFXvOa13DrrbeitWblypXs3r2bqampw25rdv8VK1bwvve9L2dYvf3221m/fj2e5/Gtb30LIQSnnXYaGzduzC0Cjz/+ONdffz1vf/vbcRwnTz0eHR3ly1/+Mm9961u599572bFjB695zWu46aabSJIkv/ZIYFkWb3nLW1i/fj233norDz74IM8++yyvec1ruP322wmCgBUrVrBr166cUv3uu+9mamqKd77znbliKERaY+P222/n/PPPJwgCvve976GU4tRTT+Wxxx47IWMFMvSUgTlACMGZZ56ZR5V6nsdTTz3FVVddxaWXXsrzzz+P4zhccsklFItFpJTYts25557L8PAwwDRK16mpKbTWnHnmmZx//vk89dRTrF69mrPPPjv3bx3uAsrad8455zA8PIxlWdTrdaIo4uyzz+bSSy/l8ccfZ9WqVWzYsCHf5AcGBjjzzDOpVCq51p/5jp966inOP/98Tj/9dFzXZXx8nMHBQYIgoFKpsG7dusP2y2WfOfvss1mxYgVSShzHYdOmTbz61a/miiuuYPPmzXiexyWXXJKTtAgh6O/v59577+W5555j9erVwN6UIsuyOPPMM3nVq17Fli1bWLt2bW69ONLNqVgscv7559Pf35/zy1uWxVlnncVFF13Epk2bWLNmDWeffXZu4cn40u+44w6Gh4encfZv3LiRSy65hDPPPBOtNZOTkwwODlKr1ViyZAnLly8/7E0qi6k455xz8sDQjA//zDPP5LzzzuPpp59mzZo1nHHGGblsWq0Wd999N29729vy3yVJQpIkbNy4kUsvvZSzzjoLrTW1Wo0LL7wwv/+RYu3ataxfvx7btnEch6eeeoqLLroof16z2eSCCy6Yljb2wgsvsHv3bs4//3xgrxIUxzFbtmzh0ksv5YorrmDTpk04jsPQ0BC/+tWvuO66645orUkp6evr45xzzsnTBLMU0jPOOINzzjmHLVu2sG7dupzuHNI6Dbt37+bWW2/l5z//+TTK9Mcee4zLL7+cc845h1arRavV4sILL6S/v/8IJZua+Tds2MDSpUsxJiVce+mll7jsssu46qqrePzxxymXy1x00UW5JVNKieu6fOlLX+Kf/umfCIIgd3nt2LGD4eFhTjnlFE4++WSef/55yuUyxWKRnTt3cuGFFx5xm0899dR8Pniex2OPPcZll13Gq171qnxvu+iiixgcHMzXyY9//GM2b97MrbfeyrPPPpvvZXEcs337di688EIuu+wynnjiCarVKhdccMGCj4051ui5CQ4BDz30EFu2bOHjH/84v/zlL/NAu5n+suzfWmvuuusu+vr6OO+88/jud7/L1q1bueSSS/LrukldjpavSoi0kMfnPvc5Lr/8cpYtW5ab6bICIt1uiMxiMTk5yac//WluvPFGtNZ84QtfoFqt0m6383TDrF/GGH74wx/ymte85oh4Cbr9vT/96U/Zvn07N910E/fffz9KqWkFT7JnZ+21bZs3vvGN1Ot1tm7dyqZNm3jllVfyDSgrqNJdGe5oybjVanHbbbdx7bXXMjg4uI8sZ7p5jDEsX76ct771rfzDP/wDu3bt4jvf+Q7Dw8N54Z2szZlMfvjDH/K6173uiChrM6Uus0a9+c1vpq+vL/etd5emzaC15kc/+hFBEDA6OsrWrVvZvn079957L8uXL88LL2Xt7R6fo5GSKoRg27Zt3HHHHfz+7/8+P/zhD/O1Npt8s7l6wQUXcP/99/Pcc88RRREPPvggV1xxRe477pZtu93miSee4Kabbjrs9nZ/rtVqccstt/DOd76TcrmctzUr7jNTLsuXL+fmm2+m0WjwJ3/yJ5xxxhncc889rF69Oi/oBXvlezTnrzGGf/7nf8a2bS666CK++tWv5nNhtr1MCMH/+B//Ayklf/mXf8kTTzzBCy+8QKPR4OSTT86v797LHnvsMdasWXNUOEAy19Hdd9/NH//xH3PHHXfs8+Ke2fapqSne8573sGzZMm655RaMMTz66KNceeWV+fXdlRFP1DiBbvSUgTlACMHjjz/OV77yFf7zf/7PFAoFTjrpJB5//HFWrFiRE500m02iKMqreH3nO9/h8ccf5w//8A9RSnHBBRdw9tlnUywWMcbwyiuvsGnTJi655BKSJKHVauVEOhkP+OEgjmO+9KUvYYzhne98Z77h79ixgyeeeIINGzagtZ72vCiK+Ku/+isuuOACLrnkEmzb5uqrr85PDt///ve58sorqdfrDAwMEAQBjzzyCP/tv/23oyLjX/ziF3zjG9/gj/7oj/A8jzVr1vDEE09QKpVYvXp1Lt84jvOKjlkRqP7+fnbu3MnrX//6vHJgu91m586dPPPMM1xzzTX7yHeuxXf2J9/Pf/7zlEol3vKWt5AkCe12m927d7Np0yauvPLKac/LSuuGYcjq1atptVokScI111yTW5kefvhhzjnnHMIwpK+vj3a7zeOPP84HPvCBIw4Yi6KIz33ucwwMDPCmN70pn6M7d+5k8+bNvP71r99HPqtWrWLPnj28+OKLjIyMoLXmzW9+cx5RvnHjRs4++2yiKKJarRIEAWEY5n3r3qwPtf27d+/mf/2v/8WHPvQhVq1axSmnnMLPf/5zLrjggjw7J6uo2G63SZKEyy+/nLGxMUZGRnjllVe46qqr6O/vZ2BggJUrV/L0008zNjaWpx5u3LiR1atXT1NyD0e2kMZ8fPrTn2b16tW8/vWvJwgCJiYm2LVrF5s3b+ad73xnPm+750Icx7lLMZtLWTXKRx55hDVr1iCEyCsrRlE0Tb6Hqxzef//9PPDAA/zhH/4hvu8zNDTE5s2bGR0dzVOps72s1WohhMjXXFbK+sorr8yDYu+8805GR0d54YUXeP3rX48xhu9///t57NNcgkAPhO3bt/PXf/3XfPSjH2VwcJBTTz2VJ554gpNPPjmfj5l82u02xhguvPDCvP2ZG2D58uX09/fT39/Pc889x6ZNm1i3bh3GmLzqZVZ5M5PViYQT2y4yRxhj+NGPfoRSii9+8Ys88MAD3HjjjWzcuJFvf/vbfOhDHyIMQ26//XYmJye55ZZb2LNnDz/+8Y9JkoSbb76ZzZs3MzAwwOrVqxkYGODGG2/k1ltvpVAocNFFF7Flyxb+8R//keeff5677rrrsEtnZilhDz/8MKOjo3zyk5+kVqtx0003cdttt6GU4rLLLuP555/n7//+7/Pnvfzyy7z00ks8+eST3HbbbcRxzNq1a1m5ciXnnXcey5Yt41Of+hQ33HADxWKR0dFRzj333CNmV8w2ix//+McIIfj85z/Pww8/zI033siDDz7Iv/zLv/Cbv/mbNJtNbr31Vmq1GjfffHMetPWJT3yCiYkJrr32WpYtW8aaNWsYHh7m/e9/P5/5zGcYGhri7LPP5qmnnuJrX/saTz/9NPfee+8RtXlkZISNGzeyc+dOPvWpTxEEATfeeCO33HILfX19XHDBBTz99NPccccdPPPMM3zzm99kZGSEz3zmM/zVX/0Vr3/961mzZg0nnXQSS5cu5dJLL6VUKuXBb7ZtMzIywsUXX3zEpmFjTN7eHTt2cMstt5AkCe973/u4+eabGRoaYsOGDTz99NN87WtfY9OmTdxzzz1s2LCB3/qt3+J973sfb3/721m1ahVr165l+fLlXHnllXiex6233sqNN96IUiqfQ3/7t3/Liy++eES+11/+8peEYch9993HXXfdxSWXXEKlUuGzn/0s733ve/E8j7vuuovnnnuOv//7v+eFF17gN37jN7jpppt4xzvewXXXXUd/fz8nnXQS1WqVf/fv/h333Xcfv/rVr7jhhhswxrBjxw6uv/76Iwpsy16G27dvZ/PmzbzwwgvcfPPNeaDbpz71KVavXs1pp53GY489xr333suvfvUr7rvvPrZt28bf/M3f8NnPfjYnolq7di1Lly7lDW94A8YYPve5z/HBD34QpRRf+cpX2LFjB5/73OfYtm1bbp07VERRxI9+9CO01txyyy1s2rSJj3zkI/zzP/8zjz32GDfccAOTk5N89rOfZWJiIl9zX/7yl/nEJz7Bqaeemrv0Vq5cycqVK7nmmmv45Cc/ybnnnstJJ51EGIaUy2U2bNgAHPlL9d/+7d8wxvDNb36Tu+++m9e+9rUkScLnPvc5brrpJpRS/MM//AM7duzgi1/8Itu3b+fGG2/kkUce4etf/zq//du/zeDgICeddBKlUon/8B/+A1/72td46aWXeMtb3sKuXbu47bbbGB8f5wtf+AJhGB5RexcreqmFc0D3i3l/4srMsQdKu+k2zWbmyu5T1Mw0o8NhPZy5SXSnjM10R2it93lG9nnbtvN2ZmbgrK0zTcNHksfb3eZMPjPlONvpYraUqExm3W3u7ld3OtKRUMBmaUvd9+seuwOlr2W/y75nJuTuscnkrLU+Ik6CTKbdY5+1u3sMZ7qMshrzM/tiWdY+49U9vzIz8UyT+KHIOVsT2b9n3qN77s42R7qfn/VxtnS0rL1H4ieeuS66+5B9n1lyubsP3T9n8s7a233P7PfZv7PPH451YOZeNnPuzfxdhv25KbrlnlkNss/OTPk9HGT3nW0f63YNZHtZtwu024KSfb57bc3m0upeHydaDEFPGZgDujeZmZv/TMy2Kc3cOGe7/8xFCYdeQnjmpjNbm2b+Lmtj98sz2yiza7o33u4XdnafI/ETd7erWw4zN8zuZ83sS4Zun/LMv8+895G2uVsmM326B9r0D7Thdt+/+/ojNWPP9n1mIaqZz5hNyZnZn/3N29leGIfS5u52HaiN3dfMpijOppztr0+Hg+zFPVM2B9snDqQczoy/mE2RyMav+7NzxWyynU1+M/eF/Sm1+5PtbH07HMw2H2bKfH8v9tnm5YHW3Mw97kjmxmJETxmYA46liA40QY9koR8NzPZCPti1h4pDafOBZHUo13Rfezg4nkvmSDakA218B3qBz3wJzbZRzhXzPYcPhmMh38PFoczd7s8cCuZru19Icp4respADz308GuNzM2RVaJTSuG67j58EZkiYIzJgy6Pxom6hx56WHjoZRP00MMJBiEEQRDw4Q9/mIGBAVzXxRjDBz7wAS677LL8Gtjrs80q7GVpiTN97z0FoYceFjd6ykAPPZygaLfb/Pf//t8ZHh7mqaee4uMf/zi33norTzzxBD/72c8olUrceOONjI6O8k//9E85Pe6ll17KV7/6VV588UUuvvhi3vrWtx5RKmwPPfQw/zixwiV76KGHfSCl5Oyzz2bJkiVs2bKFFStW8N73vpfly5dz++23c9JJJ3HqqafykY98hMsuu4zPfOYzaK1573vfy7/8y7/wyCOPzJtft4ceejg66FkGeuihhzy9LQxD7r77brZv347WmrGxMWzbxvd9li5diud5/OQnP2HFihU8/fTTBEFAs9mc7+b30EMPR4ieMtBDDycwsvSx559/nu3btzMwMMATTzzBbbfdxhNPPMFf//Vf51HuWY72ihUr+NCHPsQVV1xBEAS9evE99PBrgF42QQ89nGAwxtBsNvnABz7AmjVrcF2XWq3Gu9/9bi677DL+9E//FEhJhiYmJrjlllv4m7/5G15++WXe/va3MzQ0xC233EKlUkFrzcc+9jFOOeWUnkLQQw+LGD1loIceTjBkqYWjo6M5a1ypVMo52VutFpOTk5RKJYIgoFqtEscxExMT+L5PqVSi3W5Tq9XwfZ9yuZyztvXQQw+LEz1loIceTjDMpOjN0E2TDfsyF3YTFM0kJjoRGdt66OHXCT1loIceTjDsj4Z2LnStB6LV7ikDPfSweNFTBnrooYceeujhBEfPyddDDz300EMPJzh6ykAPPfTQQw89nODoKQM99NBDDz30cIKjpwz00EMPPfTQwwmOnjLQQw899NBDDyc4espADz300EMPPZzg6CkDPfTQQw899HCCo6cM9NBDDz300MMJjp4y0EMPPfTQQw8nOHrKQA899NBDDz2c4OgpAz300EMPPfRwgqOnDPTQQw899NDDCY6eMtBDDz300EMPJzj+b3fTRHwPX2MrAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAEMCAYAAABZZbUfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZweVZ3v/z6nqp6l905nJSQh7BCWsC8KKupFBJdx19Fh3MZRR/25XfXqHcf56ajz08E796KOjsi44rggeN1AEAEFCWEJhCSQkH3pdNLrs1XVWX5/nKrqpzvdWaC7k2fyfHg1ne6up+rUqVPnfM/3+/l+vsJaa2miiSaaaKKJJo5ayMPdgCaaaKKJJppo4vCiaQw00UQTTTTRxFGOpjHQRBNNNNFEE0c5msZAE0000UQTTRzlaBoDTTTRRBNNNHGUo2kMNNFEE0000cRRjqYx0EQTTTTRRBNHOZrGQBNNNNFEE00c5WgaA0000UQTTTRxlKNpDDTRRBNNNNHEUY6mMdBEE0000UQTRzmaxkATTTTRRBNNHOVoGgNNNNFEE000cZSjaQw00UQTTTTRxFGOpjHQRBNNNNFEE0c5msZAE0000UQTTRzlaBoDTTTRRBNNNHGUo2kMNNFEE0000cRRjqYx0EQTTTTRRBNHOZrGQBNNNNFEE00c5WgaA0000UQTTTRxlKNpDDTRRBNNNNHEUY6mMdBEE0000UQTRzmaxkATTTTRRBNNHOVoGgNNNNFEE000cZSjaQw00UQTTTTRxFEO/3A3oIkmAKy1B/y7EAIhxD6/T/8G7PP3Z9qW8eesb98zvUZ6jvpz1/9tovtrdNT35YHubbIx8Gz65FDHx/g2PNvncaBxPRXXaKKJqUDTGGjiiMHmzZvxfZ+FCxdirWX16tUsWrSIbdu2sXXrVq688sp9PmOM4bvf/S6veMUr6Orqyibf+gl2ogl+okm6/vc333wz5513HkuWLMn+vnr1ahYvXkxHR8eE5x1/3YlgjOHJJ59k27ZtY9q3ePFiTjnllDHt399CcjD3UN+e/Z0rDENKpRI9PT37bf/BLGzjrwtw77330tLSwvnnn7/fNhtjeOKJJ3jqqadob2/nvPPOo7u7+6Cua62lt7eXefPmIYSgr6+Pzs5OcrkcK1eupFKpcNlll+23ndZaBgcHWbFiBZVKheXLl2fPfyLjbbL7GH/cmjVr2LFjx5i/zZ49m1WrVvHmN78Zz/Mmva+Jztk0HpqYDjTDBE0cMbj11lu54447ADeJ/uu//itPP/00bW1tzJ49O/t9rVbDGIMxBmstv//97ymVStRqtTG77/R7+hmlVPY7Ywxaa6rV6phj4zgmDEPuv/9++vr6srZZa/lf/+t/sWHDhjHnN8ZQrVbRWmc/p9fUWmfXMsYAbiIfHh5m586dfOc73+E///M/2blzJyMjI9RqNeI4HtPGOI6JogiAKIqyf6d/V0oRhuGE95D+rLXGGJP1j1KKarWatenxxx/nuuuuy9qbfq//9/hzaK2z55AiiqLs7/ULWFdXFx0dHfvc0/hn9Ic//IEvfOELKKVYv349a9asGXPutG/q+z19pqVSiY9//OOUSiWMMfzzP/8zTz75JMYYnn76adasWZMtomEYjunH9Ku3t5e/+7u/Y/Xq1QwPD/Oxj32Mu+++O2t3fZ+kGH+udFyl/Q8wODjIzp07+da3vsUtt9zCrl27qNVqHHPMMQghss+kfVffz2kfKaXG/O5QDLMmmjgYND0DTRwxSCdapVQ2QQoh2L17N08++STLly/nm9/8JqtWrWLBggUopfjkJz9JFEX8+7//O729vSxbtox3v/vd2W5La803vvEN1q1bhzGGd73rXZx88sl85jOfoVgssmXLFi655BL+6q/+ilWrVvG1r32Njo4OnnrqqQPuBoeGhrjuuuvo6+ujo6ODD3/4w9xxxx0sXbqU+fPn8+lPf5ovfelLPPjggwBceeWVCCG48MILufDCC+nv76etrY3Xv/713HDDDfzHf/wHQRDwN3/zN3R0dPClL32J1tZWdu7cydVXX83KlSvp6+vjIx/5CD09PXz2s5+lWCyye/duXvOa1/DiF7+YFStW8IMf/ACtNZdccglveMMb+Jd/+RdqtRpRFPHGN76R7373u5RKJY455hje97738etf/5rf/OY31Go13v72t/Ozn/2Mj3/841SrVb7yla/w0Y9+lC9/+cvZc3nTm97EjTfeSKlUYv78+bzvfe9j5cqV/OhHPyKXy/HiF7+Ya665JuunjRs30t7ejud5fO1rXyOfz7Nr1y7e+973cs4552THrVq1ijPPPJNrrrmGfD4PuEXwpptu4s9//jNCCP7qr/6KM888k+uvv57NmzfjeR7ve9/72LBhA/fffz8f+9jHuPzyy7n77rvZuXMnV1xxBa2trdm5fvCDH7BixQqEEFx77bWcd9552bO96aabOPPMM/nABz6AEIITTzyRr3zlK7S1tfHAAw/wrne9i3K5zJe+9CU+/OEPc/vtt3PXXXdhreU1r3kNF1xwAf/wD/9AsViku7ub973vfXiex6WXXsqll17Ktm3bWLp0KW94wxvo7+/n61//Os9//vP54he/CMC2bds466yziOOYJ554ghe84AW89rWvZc2aNdxwww3EccyyZct429veRi6Xm8pXr4kmmp6BJo4s3HTTTXz4wx/mIx/5CA8//DAAAwMDbN26lXXr1rFixQo+//nPc9lll/HQQw9hrSUMQy677DI+97nP8cc//pE9e/Zk5xNC8N/+23/jFa94Bccffzzf+ta3UErx0EMPceWVV/KP//iP/PKXv2RgYID//b//N29/+9v52Mc+Rq1WO2Bbb731VnK5HF/84hc55phj+OEPf0h3dzd33nknDzzwADt37uSxxx7jd7/7HXPmzMnaM97IuO+++3j00Ud55zvfyaWXXspXv/pVyuUyq1ev5r3vfS+vf/3rufHGG/ngBz/Ii1/8Ym6++WaiKGLFihW8/e1v5xOf+ATf/OY32bVrF9dddx2veMUreNvb3satt97Ktm3bePzxx1m2bBmf/OQnWbJkCa997Wt56UtfyuOPP85DDz3EFVdcwfOe9zw+85nP0N3dzZo1azIPwhNPPIHWmlWrVnHeeefxsY99jO985zscf/zxvPOd72RoaIg77riDW265hauvvprPfOYzXHbZZWMMp507d9LX10e5XGbt2rV88IMf5I1vfCM/+tGPxjyna665hkcffZQ3vvGNfPKTn8za/tvf/pa3ve1tXHXVVXz1q1/FGMPVV1/Ny1/+crq7u/ne977Heeedx5lnnsk//MM/8MpXvpLzzz+fD3zgA7zpTW/K+jt9Fm9729t4yUtewvXXXz/GE/PEE09w7rnnZs/opJNOYu/evfT09HD33XczODjIgw8+SBiG9Pb28qMf/Yi3vOUtvPrVr+brX/865XKZlStX8qpXvSozSMc/77Rfoihi7dq1GGNYtWoVF110EZ/5zGf4yU9+wsUXX8ynPvUpbrnlFkZGRvjSl77EC17wAt7xjndw3333sXbt2kN6p5po4mDQ9Aw0ccRACMGrXvUq/vIv/xJjDO9///vH/H3nzp0sWbKErq4uTj31VNra2gBoa2vj1FNPpauri5aWljEL+dDQEJ/5zGc455xzUEplrv/Ozk5OPPFEWltbyeVylMtlRkZGOOWUU+jo6OC0006btJ3phL5hwwYuueQSWltbOe+88/jpT3/Kq1/9ar7//e8zNDTEW9/6Vu6++2527drFCSecMOk9P/XUU/T29vLzn/8cYwzLli0DYPHixcybN489e/awZMkSenp6OPbYY3n44Yex1rJo0SIWLVoEQBAEbN++nS1btnD33XcjpeSUU05BSkmhUOCss86iUChw22238aMf/YiLLroIgD179rB48WJ836e1tZVyuZzdYz1/oaWlhWXLlpHL5Vi7di2VSoUdO3aQy+Xo6enh2muv5Xvf+x6/+MUvePnLX85VV1014f2ecMIJ2X2MjIyMIfcdf/zx3HDDDezevZsf//jHfOELX+BFL3oRvb29/OIXv8Bay1lnnUVvby//+I//yMUXX4wxhr6+Pnzfz+6hUCjg+z4tLS0UCoXs2ps2bdrnXPX32NnZyeDgYHb/lUoF3/fp6elh2bJl3Hvvvdx11128+tWvZseOHezatYtf//rXAJx99tlYa5kzZw4nnHAC+Xz+oGP7LS0tnHrqqXR3d7NgwQKOP/74bGyXSqXM6/Hwww+zaNGizGvSRBNTiaYx0MQRA2MMhUKBtrY2jDH4/tjhuWTJEm644QY2b97MQw89xPDwMDC6254ojrp3716stbz1rW/ll7/8JStXrtxntyaEIJ/P093dzWOPPcaJJ57I6tWr9zmXtZaRkRGGhoYyN/L999/PBRdcwP3338+JJ57I7Nmz0Vrz9NNP84EPfIAbb7yRE088MZvcJzrnKaecwooVK7LdZK1Wo1arTciAr//d5s2bMw6DUopFixaxePFirrnmGk499VT6+/uZO3cuAFI6J+Djjz/O85//fF7ykpdw5513As6QGB4epr+/H8/zCMOQXbt2sXnzZgYHB7N+lVLieR6nn346S5cu5dWvfjWlUomWlhbK5TKf+tSnePzxx/nGN77BlVdeOSExbrIMDWstmzZtIggCenp6OOmkk1i7di3HH388c+bM4Z3vfCctLS0MDw/T29tLZ2cnb37zm/nud7/Lrl27kFJijGHPnj1IKQmCgN7eXo477rjsGkuXLmX27Nm84x3voK2tjeHh4WyMCSF42ctexle/+lUuvPBC2tvb+e53v8vzn/98Wltbufrqq/nc5z5HEAScffbZ7N69m7lz53LttdfS3d3N4OAghULhGWeE1H+u/vOFQoETTjiBK664gosuuoiBgQFmzZp1yOdvookDoWkMNHHEYOnSpVl8VwjBmWeeSVtbG1prjj/+eJYuXcqrXvUqrrvuOubMmUN3dzdCCM4666xsJ5bugFMsWrSIZcuW8alPfYpFixZx/vnnA3DOOecQBAFA9vn3ve99fP3rX6etrY0LLrggyxpIcdppp/HDH/6Qn/70pxQKBd75zneydetW/v7v/545c+bwtre9jSAIeMlLXkKpVGLu3LlcfvnlnH322RMujMcddxyFQoGLL76YDRs28JnPfAbf93nRi17EeeedxxlnnAFAa2tr5i3o7Ozk5JNPxlpLV1cXP/jBD+jr6+M973kP8+bNy9z4WmvmzZvH+9//fs4880yKxSIAL3vZy7juuutYtWoVp512GvPmzWPp0qUsWLCAL3zhC7z//e/nL/7iL/j85z/PkiVLuOSSS8b0McDf/d3fcf311/OpT32KfD7P3/zN33DvvfdmYZ1rr712zP0uXryYtrY22tvbM49LS0sLZ5xxxpiFb9u2bfzkJz/BGEMQBHzoQx/i5JNP5pWvfCWf+9zn8H2fiy66iGuuuYbZs2fz6U9/moULF3L22WdTKBR42ctexr/8y7/w2te+lle/+tX86Ec/YvPmzdlOe9myZbziFa/g85//PJ7ncfHFF/P6178+G2+XXnop/f39fOlLX8IYw4knnsg73vEOhBCcdtppHHfccZx77rm0trZy3HHH8fa3v50vfelLSCk544wzeMMb3sDy5cszw2s8TjjhBObNmwdALpdj+fLlWd+mHIDly5fj+z5SSs455xxaWlr45Cc/yTe/+U1uvfVWOjs7+cAHPpC9J000MVUQtklLbeIIQMqirt/l17uQ059/85vfYK3lj3/8I8cccwzvfe97gbEpdOk50vOkTPh0gUoZ3OnP6XWBjCkupdznPONZ3OlnlFJ4npctAinDPt2t1p9n/P2OP48QItutGmOQUmbXrf93b28vn/jEJ/jGN76RfaY+RU9rnS0q4/t1/D2m7RnflvR+0uvW30OayVB/32n762Pl459rek/19ze+T+rbnv4+zWpI+yb9XfoM6/smvY/JUvLGn2v8M07/Pj7mX/9cx7crPXb8+Ku/t/FtS48dP84n6yulVPac/ytqUjRxeNE0BppoCKST56OPPsratWuZN28el1xySeYRONomxpSs9tznPnfSnWgTTTTRxMHiqDEGJrvNeqscDk6kpYkmmmiiiaMHR8Nm46jiDKTu5ZUrV/Le976XdevW8bOf/Yy2tjbe+ta30tXVNeb43t5e/vjHPz7rned4F+yRjEZqa4rxBt2RjEbr32bfTh8asb2N0lZ49u211tLZ2ckLXvCChrrvZ4qjyhjYvXs3v/jFL+jr60Nrzbe+9S3e/e538+CDD/KrX/2KN73pTcCoS3r9+vWsXbt2QhnTQ0G1Ws0IXEc60rzrlFx3pCMVKWqUdKtGGgvQWO2t1WrkcrmGCZvUarVDSkE8nEgFpxpF7ChVunw284JSiltvvZXLL7+8YcbUs8FRYQykRJ8f//jHXHPNNfzgBz8gDEPK5TKLFy8miiJ+/OMfZ8c//fTTPPLIIzz55JMsWLCAc889l1qtRqFQIIoigiAYQ8JSShEEAWEYUigUxhzreR6Dg4N0dHTg+z5xHJPL5ajVahSLxWxCiOMYz/MyEpXv+0RRRKFQoFqtUigUCMOQXC6XEbWEEGitCYIgOzY9XxRF+L6fqfiNb2f9tdNjU4lXz/PwPI98Pk8YhmO+x3E8htTk+/6E9x0EQUZCE0KglMrue/yx6bVTIlb6EqfHpNee6NhKpZKR1tJ7SvtofDvH91EYhgRBMIYYlrYzvWb980mvDWTtHH9P459lSlSLooh8Pp/p59c/y7SP0mdZf+39jbnx7azvz/Tanudl167vz8n6KO37arVKPp+nr68vS5esH0fptdPxmT6f+v6sf5b1Y7j+WY4f7wfbzomOTY8PgmDMmDtQf47vo/HvZf21x4/PYrGYjaODbWd6T6VSifb29myR3d+7MX7M1b+Xh9JH44+tH3Pjn099H6X9293dPeGx9e/lZPNcLpfL3o0DtTO99kRjbqJj69/h9BqDg4PMnj17wjFXP9fU9319H2mtuf322xvCWJsKHBXGAMC6det49NFH6ejoYPPmzWzcuHGMVnr9TrhYLDJ37lz6+vrI5/PZbsP3/Yw9Xe/iC4IgW0BTFnT6s5SStrY2CoXCPueY6FgYZVnXH1t/TH1bU5b5ZNeu5z4EQXDAY9OXL732+K+UzZxeO12I0/PVtzltZ30fTXTu8Yz5+v4c/zX+2JR1HQRB1obJ+miy/pzsWdYfm567/tiJ7iMVvxnPQ0mP7ejoGHON+j6qf5bj+2qidtYfW9/Wydq5v3E0/tj0uXZ0dJDP58dkBEzUR/XjeaJrT9Zf9eOo/vmNH0fjx9z496i+P9MsgYnaOVl/TvQ+1I/3icZn/T3vb8xNdk/W2mznOlH79vcsx7cz7aP6hW6iPkr/XZ+xUP9ujz93mi0BZH/P5/NIKbN5MZfLZeMlvW9wC3P9seOzM9J7Ss8z/rz16anpvJSeJz02/V6fmZN+tba2TtjO+nOm503PUywWs/6sN1yOBhw1xsCiRYt497vfTX9/P62trfT09LB48WJ+97vfsXr16kyRDWDBggUsWLAAz/PYsWMHQRBkL/r+3OeTHRNFUZYTP9mxz+S803FsWvQmzdWf6ms/m/ue6FhrLeVyOdMEmK52Hsr59veZ1Duzv93GoZxv/Gee7TH1x1prs53TwbTzYK49XfcUBEEmgDT+czNx7YNF/bGp6FG98TKV136271q1WmVgYGDMYpsWZTrSkW700kJWh/K5OXPmjDGYjhYcFcaAEIKOjg7OPfdcwjCks7Mzy1G/8847ufDCC8fwAupzlJ8tycdaS0tLS/b5I3lwWWvHWM9HcltTeJ6XGS5HensbaSykaGlpAY78tqYGbLorbYT2FovFMVoPRxKstZRKJWbNmkWhUBjjGWkEPNP27t27NwsnHG04qu5YCEGhUODCCy8EYNasWbzmNa+Z9utWKpV91OyOVKQEwkYh5KWlX9NF60hHI40FaKz2pnHfRkHKozhSXdH1YkopHwCenaFVv8kaf576uH99WCjd5adtqT/PZOdKz3coxla9sNfRiKPKGDhcaBQ2NjROFkGKNH7YKGiksQCN1d60NkCjoFHaO6qKmP580J/M/jVejfG2225j3rx5LF++nIcffpj+/n46OjqoVqtcfvnlYxbk3bt3c/PNN/O3f/u3Y37f19fHd77znaz42OzZs3nzm9/M/Pnzx1zzaF3cDxVNY2AGkMbhG+HFP9QY2+GG1jrzZjQCwjA83E04JDRSe1OWe6MgDMOG8WhF2iCtRvgBggMvrhYQWBSCvLBgJdSFxzZu3JjNh7t27WLbtm288IUvJIoiSqUSd955J8Vike7ububNm8fatWu55ZZb6Onp4dJLL0VKyezZs3nPe97DT37yEwCuuuoqHnzwQcrlMs973vNQSrFhwwZ27NjB6aefTm9vL2EY8sIXvpD169fT19dHX18fl112GXPnzm2I+Xk60TQGZgCNtNs+Ul2WkyFlRzcKUmJeo0w8jTR2G6mt0DjtHQ5j/vkXD7O3apEc7Li1WGE5oafI+688g9y40L21ll/84hesW7eOtWvXcvbZZ7Nu3TpGRka45557CIKA7u5uvvOd7/DZz36WrVu3smDBAr7//e9z3HHHsWjRIoQQFIvFjOB68803I4Rg/vz5fP3rX+eyyy7j+9//Pn/913/Npz/9ad797nezYsUKZs2axW233UZ7ezunnnoqX/nKV/jsZz/bcHPfVKNxZtEGRpqr2whI43aNgvrCO42ANHe6UdBI46GRxgE0Tt/mPMnlp8ynrARCSjgIzwBWILF0t3hIIRhvQwgheO5zn8vzn/987rzzTsrlsvuYtTz99NO8+93vpq2tjTvuuANwFUMvuOAC7rnnHoaGhli0aNHYy1nLypUrmTVrFrt37860B84//3zOP/98Fi5cyMUXX0x/fz979uwhCAKuuOIKTjrpJH7xi18QRVFDhcSmA01jYAbQSJN/E9OLRhsLjRRvbbS+bRQUfI8XnbEIUnb+wXTzQQybNATQ1dWVGQNCCM444wxuvvlmZs2axcDAAEBGHpwsO0AIwQUXXIDWmvPPPx9jDJVKJSMQploP6efjOOb2229n69atdHV1NYyy4nSiaQzMABrJ/dQoqUMp9jdBHIlopLZCc+xOJxqlvUIIhLXZ+i4OxhrYzyHWWl70ohfR2toKwPLlyznllFMoFArEcUxPTw9//vOfGRoaYsGCBcyaNYvXve51ALz0pS9lwYIFY8536aWXAjB37lz++Mc/sn79epYtW8aiRYs49thjkVLyV3/1V/i+z4UXXoiUkscee4xjjz2WMAz54Ac/2FDjfLrQNAZmAI1EwkqljhsFxpiGcg9HUdRQnIFGImfGcdxQngylVEO1d6oghOCEE07Ifl6wYMGYfti2bRv3338/5XKZ1772tbS1tbFs2TIATj755H3enfqQwRVXXDEmHXHevHlYa1m+fDkAxx57LAALFy7kwgsv5LjjjsvEhY7GZ1GPpjEwA2ikWFSjkJpS1Ev6NgIaaSxA4+hNAJmkbKNgvDzu0YDJBLfq0wAXLlzIRz/60UySuF4JcLLPjf9d/cI+0Zh405veNEa6uAlonDengVGpVA53Ew4acRw31G5Qa91Qnpe0sFKjoFqtHu4mHDRqtdoBSXnprtFai/vv8KFarTbMbjTts7pfQF0/Hup56r/GI60jML7Gx2Sfn+g8qWdgMtTXxmjCodkbM4BGySUGxtRhaATUyxE3AhppLEBjtbdejngyhErxvfvWM1ALkwXk8C3G9dLURzom5OZYAxx6RkSaATTRYl2/W59s556GBo0x2b/HGwMH4hI1vQL7ohkmmAFUKhXa29sPdzMOCqlXoFEW2EaUI25vb2+IScha23ByxPl8fr9ksJFQ8e17nubc43roXhBwcNT46UEqR9woqOe6WMCKRHXAKQwdElIFwnPPPTc7d3r+/XlLhBCsWrWKX/3qV2zdupU5c+awcOFC/vqv/zoLaaXnStN4x7R7AqOhEd7FmUDTGJgBNFKc+GAEfOzY/4E4SIbxNKApRzx9EEI0iJHlxmG+kHc57QeAyRzbEmH3zYGfKRSLxYZYiKwd7TH32luUMQyWasxqLyJF/SJbfz82sRPGxvuFEGzevDkz2qy1bNy4kXvuuYdjjjmG5zznOTz66KOcc8453H333Vx44YVs3LiR4447jq6uLs444wxOPfVU/uf//J+8/vWvp729nZ/97Ge0tbXxohe9iI0bN7Jjxw527NjBRRddxKOPPprpDPzpT39icHCQMAy56qqrsoyGJprGwIygkWLaByVHnBgCxoIVBs8eZO7xNEBrTRRFDfNSh2HYEAtAimq1esR7Btw6ZKiFNfL5AvtNErMCI2wSH30GW9opRKMUVrLRMLU//Rt+tQ8hJCDQxiKrirglhxQT7+SttahZx1O44G1IOXnosVKp8OUvf5k3v/nN3H777Ugp+d3vfkdbWxtf+cpX+NCHPsRtt93Gxz72MYCs7HOqG3D99dfzghe8gM2bN/Pzn/+c3t5epJQsWbKEz33uc3zwgx/kW9/6Fscffzxf+9rXuPbaa9m9ezf/+Z//yVvf+tbp6LKGRNMYmAE0Wgx+MoxxsRnDnWt3EEcxVy1fOgMtmxgNI0ec9N0zliO2k9O0ptO4aBQxFm0stz6yk0uX+Zw2v3vS49IhLIQAYQ+rORAEQUMYhhYfP98JIkB4BrCgDVbUkG0thJEmjhXtrQUYYxgI/Hwew/7JaaVSCd/3ueCCCyiVSmzYsIFTTz2Vn/70p1xzzTXcfffdeJ5HZ2enO2vi+k/DWKtXr6a7uxutNT09PXiex6WXXsqcOXNYsWIFy5cvZ/bs2VSrVWbNmsWll15KX18f3/rWt6ax1xoPDTCLNj4aRXYUDqw4VwlD9lQVCzsKrNwyRLUW85Llh29CPRBr+EiBBUphxO6RCl1dnRxqjzmqm8VYxe6RmNmtBTxPTjsDuFE0HJQV3LahwuJjQk6bP/lx2oIwiV/AjlbiOxyoLwt8JEPmCnDh2zEacjmJRRBGmr39FTrmtlEpRQxXQ9rntuMLwejYtmjAm+AerbU8/vjj5PP5zKt3xx13cNddd/Hyl7+ctrY2/u3f/o0bb7yRT37yk1x99dX7bFSklLS2tnLOOedw2mmnMXv2bObMmUNvb292jOd5Y7gIe/bs4be//S3bt2/njDPOmKYea0w0swlmAI3wwh8MLHDXk3v54HdXUIk1AqhGjbFYHAm4e90uvvXnnahnYDqlsdpyVfORH9zPpj1DWBqrwuR0IZW+FxjkAbIDtAVM/YJ1eNEIngGQGG3ZNVjBWItAYIwzTgUCg8BYmwxSkTwQAULi4b6PL2H8kpe8hDPOOIMoivA8j//+3/87YRjy6le/mgsuuICTTz6Z6667juOOO46///u/55prrgHG9te1117LwoUL+fCHP0yhUGBoaIjOzk6uvvpqTjjhBHp6evjLv/xLhBC88Y1vZPbs2cydO5euri7OPPNM/uIv/mKG+/HIRtMzMANoCDd2gv2m42ApR4q9VYU2EGtDOTKHNVdbCNEwUqIjNUt/Sbud0jNZBIRFGdhVskR6Zpazxhi7dQx3u6/jv57raqyZNL99ptEo41ZbqCpLVbtwjPRcP6ad6iQHRvt0TO9PIhK0dOlSli4dG1485phjsn97nseFF14IMOkO/rTTTsv+feWVV+7zd2MMJ598MuCUC5VSnHzyyVx22WUNRTqeKTTCm97waCTS2P7dwgJjDcaKJHUnphzFTDD/zhiMMQdHejwCEFnQOsQgDqEUrIMALAIrwCOlvk3/YhJF0bRfYypgAWNBTbTIW4vBIq3b0Sorkj3t4X0nG4X4OlyN2TVUQRso1zRdrZ57543LMrBWo61EITgYdtRUzIUHOkd9CCY91vd93vOe92TFi5oYi6YxMAMoFosNo0d/oJ2g21m5eGtsLGFsnIvwMKYWNgpBMzaWSOtnrHsnkv/Z1C07A2gItnuiHWQsrl8mGorWcsea7VSVxaS72MOXVQg4+eQjeU4QQqCUQmlBrJ3pFMYKa4NsobXWYo1GYBIRIsER4HQZg4mkiSfyDNVrExyNaBoDM4BGEh2KogghxCSLgHWxQmvQQKwFsUnchJDNym7nOzPx0FSOuBF2WEprQu0WrWeT1ubc4VPYsP2gXC4f8amFpMLC1rjxaSxGgKRebEbw80d20NWST4wGskdQv7BNpoE/HahWqxSLxSM2XNDe3k5//162D4VsHnDp0UNtOcycIrtLhk39FfKmxua9VfZWY3KqREvggXDMDWFdaNE6t9aMwlqLUuqQNwpCiKM2hNA0BmYAjSHc4nCgVDJrBRqLNhal697xZLe1caDEPY9v4y+feyqBN/0TaiPJEVulCJVISFjP4jzWYozICFzTiUYwssCZoBiDNtA3XOGWR9bzV885nXzgJ3+3jFRjOlqLaOw+xlRsDD99YAPnLJ3LKfM6Z6TNLS0tR7A+viVXyDN//jx+unot3/jDJgBesXwef3/6cv60dRv/58713Pi3z+HmP2zhj+v7+fY7LmbJ3E5nAAAi8RQgZv4elVJEUXTIc+/RHEI4Ukfifyk0UqGiKIr2Gyd2ngHrvAPjXN5CwFO9w/z4oV4iPTPpfqkc8ZEPgdKW2DgSVkp226dwzvjiK+NXLTvm27SjEcauIPFOGYO1hm0DFX78cB9VZbKO0sYyHBq0TgmE7veZVwD49eMDbNw9c/dbrVaPqLTY+jGZ6QYKyWCoKWtBzfpUFEhPUkNSiQM8AmqxoRRLrMWlu0pBKdLUkEjfVR6c6S8hRJapcKifg0bJ8phaNI2BGUAjFSTJ5XL79Q6o1A1rLGFqGODY8RaBZy3iGSXPPTM0khyx0ppYuf5L4ahtGkgX/pSlnRgMdZ9PfzbWYqyZkT5uJPlk1y9QjRVaaTAmK6OjjKEaOwNWG+tSDLN+dv9pYiI7c4tzoVA4wuaF+hGXGkmWcqQxeLQW88QahBWuQJDQKCC0Eo2llqRsagTX/eph7lq9HWzqJ5i8CNF0fEkps3nhmXz+aETTGJgB1Gq1IyKV6WCw/xLGAm0NNjECouQ7Ns3zBmMFRggmUSidcqRyxI0ArRVxwmwHw0AtZKgas32wytaBChZLVWl6S2GiB78vTLKrdXnd058v3xhel8RIwqKNYSAylCPB1qEQYV2miTKGSGnihGVu3CCmHGn2lGtgDdpa1Ax5tMBlGR1R84J1JNe+4cqo5wRLqer6pLMgUFplBilJuEUZEFZnWT3WwtYRzVDNZMNzppdXY0zDzAtHCo4aYyB1f6UpJ5P9PB1oFLY7kLnLJoNJ0om0sWil3IaWGecHZTgccsQHqsc+yaeIkwIvOpEW/s49a/jW3ev4yA9X8OEf/JlqpPnzht187uYVRAYko7nco2dxY3Y0m2B6e75R5IhhVI2yXFPsGVH8080PU4lVwnGBSBtiI0YXM2u5a+1O/tevHndGrDZZau1omGb62nskyhE/1TvE//P9+xmuuQ2BtTBcUwgsHUWBMa5/dDZvGoxxfamV83BZa4ljc1iJkQ0jU34E4ajprTiO+c53vkNvby/HHHMMb3jDG9i0aRM333wz7e3tXHvttRnjf6qNgkaRdIUD37u1Bm0Fa3YOsKFvmK46go7FooXFIp3I2wzgcAjIWCwPbuzDl7B8yZyDIvFpa9k5rBBGY43LxhiqWmpa0181KOPSNtf2VdlZEpOka0pXHMrOnIxto4xda504jrWWONIoLHtrFoNk28AIP3tgK4O1Gk4wUzgzS8BAxbCrajBWogxExvLA+t20Fj1OP2ZWopkzPYP5SOILpCjHmg17YwYqMe1Fn9gIqmGMxdJZ8Imsh8WirMQi0RbiRLch0gaLSUSKRBL+OjxoFJnyIwlHjTHg+z6vfOUr8TyPT3/605x//vl8+9vf5h3veAcPPvggv/rVr3j9618/6eenavI9otyCB8BEbTVGYyzcu76PLYMRncXW9GAAtAZrJq4dPt3tnMm+/b+PbCMIJGcvmXNQ142VYd2uMsqIjMRmDEghHPENibaC7XvLKMfSJKVx1Z8/IxnW8w5m4L6P9HGb9ouxllApBJoICQYe3T7M//nDeoQJCJXzqpik/6JYEymd8WBiZblpxWZOOqaL04/pwuJNax7nkaKGmCKKNWGkqITKcS6MpqocP6UjD5Wa8wRop0fswi1GE3jSGQPWGTlhpOruS9SlHs88jqT+PZJx1BgDQgjCMOSGG26gVCrR3d3NyMgIxx9/PFprfvKTn2THbt68mdWrV7N27VpmzZpFtVolDEPy+TxRFOH7fmZ1SimzfNYoisjn82OO9TyParXKyMgIvu8TxzG5XC47JgxDcrkcSqkszcgYM+GxURQRBMEYYYz02ImuPVE7J7t2WtCjUqnged4+x6bXLlWqGGsYLIdO0U1bBgcG6WwrUgtrhJFGW0O5XEF7o+Sd/fXRM2mnMc4NmbLdBwcHxxyb9pEQAq31pH1U359pOye6dhzHWTstlko1omgE1WqVOIwO+CyHKzWUirFGs7m/yu+f2E5FgSdsRnzbO1hi254RwshQrYWE5Yh8vkAUxQS+jzKGcjlEW8vQSIlqtZ0wiijU3VMcx1kfWWsn7M/0vidqZ30f5XI5SqUSxWIRrXWWdrW//jzYd6O+ndm14yhrZyFXIIxDcsHE/Tn+fMOlElYbdg9XeHj7CFYIjDJUamWGh8tgJVpqoijGWChXqoyUcpRqEbXYMDg0SBgrhkYqbB2qsKg7T6VaQyu9bzvHXXt/z31/fZS+a8CEfV8/5sCF8A5l/phsvKfHTvQs9w6UiIxgzdY+Htm0k8tPno9JQv85Aav3VlmzpZc4jDBYatWQWCnyOY+RasQdq3dQDDwipYhjxeDAYDKGo2c8zz2TMSeEYGRkZL9jLu3PyZ6l1rph1E2nAkeNMQAwd+5c3vWud3H99dfz9NNPA6OqU/XxJd/3yefz5HI5giDA8zxyuVz2XUo5RupSSpmlpaTs9vpjwcVe02NTpmv9sfX5rekknp5v/LXTcwrhWL0TnW9/7aw/X9ru9JzpdSe9by9AALFy+1aNIpd3x+RzeeeqBTzPJwhG03TSe0yvMVE70/tO2zn+ntJ21t9TutCk7czn89k50v5MPztRH9W3q76P6o/xfX/MtY011KxHd17iex5ygmPrY8FSSoJcDqRAW8HGvSV++MA2ju1pp7Xoo61zW0vPZ6QWo41AeB55L48nPXI5gZQCrIeUGovA93083ycvGNOP6ThLx9Fkz72+j+r7vr6P0r/7vp8tWgcz3uvFeyY7Nj1Xen2EICcCpBTkcnmELwlEDk/u+24IIfa5F8dtMPSVQ1ZuGnYxAKsRIgdWYPAATWQ0WlgCKfGDgFgrIiXwAx9tJTFQrbm+CPwAOa7IzkTjqH7Mpcek7Rw/1sa/l/Vjq34MTzbex/fj+PkjfZb1fV7fR+PbmT6f9D1RFmJg3e4SD2wc4PJTFqKtW1w7W4vsGu5nza4SRjhGixAeWkiKOUmkLb94dAcLu1qJDYAkl8/j+YK8mHieq7+nyea5ycZR/T2Nn+fSeXF8f2bjbZL3vb4/oyg6gnUgph5HjTFQrVZZu3YtxWKRoaEh2traWLBgAX/4wx947LHHuOCCC7JjFy5cyMKFC2lpaWH79u0HTLc7EDo6Op6VMM5Uk7jS80103vRFSds79hiLl7x4Wussi6BYLJALfIJczuV7W0suF1DI7zu8pvpepJQEQTBtwk4TtVdbS2TB9wO3cO3n2BQF4SGkAGuJNVjpExsLuPxsi0X6ARUlknxtn2LOGyPYYoBczcVhc/kc+VwOmPxZHsy9HAhdXV0zkrppsRh8Ht3Sz8beEq88fzH5ur6dDOk95QGNRBnXnyJJdZV+gE360OJU6YS1bOqvsK1/hJrWxFoT5Nw9WuFRsxbPD6Z0rE50ro6OjjHG0XThUMaG8iQaQ8VIPM8nn89lIlmz2vJIAZHIAY6p73keHpZi3hkSVW0pRZrIutDALQ9v55JT5rN09oFVLKeyv5VSdHZ2PqtzjjdI/qvjqDEGhBBs3LiRwcFBXve613HWWWexaNEibrvtNpYtW8YVV1wx5tjxcaZnyvq11lKtVuno6Djic1gdC9ixiPOFQhLps64EaaI5bi1oISkrJ/nqsglcyVJhLcpYrBXZhDzdMMZkcsQz1bfWGqpRjLHOYDqU62prqCnHCVDaoI0r/GSASCsqYYwUglgr9lQUnoBCLqDoe65crAVNSj4T06qvn47dzs7O6e3bdKeGZMWmvTy4aZBXnrcYIRLWxAGu7bQunCdgONSZd8pYi7CGUBnyviRUPjrWCGN4fOcwT+8a5pRju9FKExsnUVyLLUo5QidM3xi21lKr1SgWi0fMnGAtxLHBGsFgOcKgM5e6ENCa9wGP4UqciY9p44zUllxAOdKUQ81wLkJrRS3W3Lqql3mzO1g6p3NG0wuNMdRqNdra2o6Y/j3ScdQYA4VCIatfnQ6O2bNn86Y3vWnM76YDjShHLKxJyo9KMg133EumraCkJJ05t5OCtKoeKO2MgZkqbHw45IithVhpZ/AcwmessWhrCJVOyGpOAMdYiwFCpQmVwfM9NvdX+MpvHqWtUOCV5y3mhactRGYkuVEPznRPczM3dp0xaZKF3aYs/oO4QQEutQ2PP67bS6Tc2DWJxyVUlsWz8vSP1ChZD5Mw37XwiGOnSqh0Qj6MFJGy6HQzMFFSxxShWCwecTvPWAmEFQxXIozVSZVSSyCho5AHKSiHMZ70kgwONx7bAkEtjCjVIooBGG2JtaUSKw4Hqd/zvIYSzDoScGSNxGnEeHWpmdylVyqVhrFOUzninSMhFW2AsW9yOknGUcyVZ88n56e52Ek2QZI6l7q+7RjB4qnH4ZAjtuB2ROYQTZ7EsxLGCm0h0rYuX9tNnsoKlIJqJWbjgOLJ3oiRisle1FSieFT0ZXqNrpmTI07GlXIZFmP+chCM+/SvI1GyficGk7aCMDa86NS5vObCxSgNBkG5ZlBGZH2eZhjUIkWoZ4b4fqTIEY/2rzOcwDJSDTOjU1tBXljaAokQoIxFWaeBYVxlKAo5jy1Dir2lmOGKItIQKkOonPdgptE4MuVHDo4aYwD2NQjqfzedaBTPgMXFwbUQfOrHD/Dolr3Ub4sEzhiw1lJVlu5CfowhACZJLzJYqxO1PDOtM+vh8QwIlNk3lLQ/pCJBBo+qMk4hzViU1cTCYo1AG0UgJRVl2Li3jFWGWqyTOg/uS1uDRaCshRnI456pseskrTXVcLRPDQefFmZIwifCpWlaBNZolNHUlKKY92nJeahYI6xhJIqJlSGOYgzKiUEhqGiN1gpr9hV8mmoUCoUjxjNgScMEEQbBSKwwGjQCIeGMhUV6OgIC4QqVpYawTsKCrYHPr1f10jsc88SuGqXQUo1jakqhZ1DiOcXhmBcaHUfGSPwvjkaRI7aAimNqUUzvcMidT/QSxWMXnFT0JowNed/HpDnEyedrCpSV/HrVFr51z5M8sXNwWtucljCeSRhrnQfkEBaL1KnvS0utphiJBf0VzbreCpXQ1SeItaA9kMxv87lt3W5KIZQii9GGhzf1c+OfNhBGSZ78DI2nmdxdWSTlJPUPC73DFW57bDPaqgP2dL3NKTEEaJRxxmuoDPnARwgIlcUISTlUDNQi1vfXXElj4wy0WKUaEClpYPruNwzDI8QzACs39bJqax+hMggL5YhEMwBafMGHXnIqbZ7Ck4Lt/VUe2zIASYhLWEtLLnChMyCMXfjroc3DDIX6sNxjyiVq4uDRNAZmAIdTjjiVDHU79APv0j1PYoWkoj1+uaqX4VDh3NHuhU4n6lBp8oGXnc59F4SxJtKaf7tnK//066e598m+6by9wyM7ak2yIwKDSSSt9Rjxo1QlsN4IFEIQeB6VMGKgougdqPD07irV0H1eG43xBIHvcfeTe6nEbncVa8uvHt/D1+96iuFKnBDmpnvf6jBzY9ft5qvK9aMAVm0d4Kt3bSRUB+cByWiIAl52/kI6AoOxEMYxeV8igTB2IaxqDHtKIU/uriQiOo4nEGtX3GgmjK2ZliMeldA2jFGxFIZfPb6LX67aSaQUVkAlNBiSctsW2vJ5CrlWckKyetsIf942hEU6gSwMxVzAaEjRgrA8smWYauT6ltRbaPToezGNfZymHTdx8GgaAzOAwy3pqrO8ALHfBUTiJsE4VkTKVSSz2WdH2cPWeETKkvM9xDhp3DBWYLXjFlhDpKd3iB0OBTeD4wys2V3i/z6yCWUtllFxEks6LY4u2daCFOB5AaXIEisXV7UYpBRIPLS2SCsoBh7SCJQxhFoSG0s5DrFGEBsXDzdpFsd03+sM7eocAdWilMhGXDnURLF1ugsHcQ5rLdJarBBcfuJsWgqB82IpTd6HQEKkNZ4xVCInmy2wCOPqRuikmJFCJNyY6e3fw+IVSCg+Y6V0JFZbQg2xccZANVYoI5O0Qsce9iX4vmYkNgn/RRJbjcHQkvOwSKQQCOHGNbgedB4aza7hGjfdv4HIJDUMpvM20/TnJg4aTWPgvyDS+F+6gyxXI6yOMRxo8nEiILF10qLGGrRxqVjDkSJWysnpIomVJvA9hJB1Br7zDKi6bIKZeCFnPARjwWrL/RtH+Nkju3BFWr2sLUprhqu1uunQQWIIPFxJ2ETJEFx9eBBE1iKFoBD4rgqkBc9GjEQxQ5UqxlhKscEYibH7N+ym7FZnoG8zoyZJt0y9T0PVkEpkEs7ExG0b9ZLUeWAQ+L7LSFBGECnI+xIhJMp6aOFRijRJyoKLfScS0VqrbPc85hrT1A0zPnaF82RVqtGY8RMbSaQsoRbkPZE8BxcukVg8AR15wfNOnUNFKbCJwJGxYDXFnECi8b2xIk0Wd4wQkk17K/z7vZsZqoYkjsQmjiA0jYEZwOGq3mWsYe9IlQ/98H52lRTCHiBfG2fVa5OkWmmXox1byz/f+hAPbdmL0hpHtYK8P7r3dYV5nS68c6O7xcopkU3fW58qks0kjLXEzvGBzAiUMsttv3NdHx/43oNuwck8AxYrXJ+VQ5PVI7QIfGHxJCgNnoB84Ao9GQEWn5+s2M4f1u6lRsAtD653BER7cLvlZ4uZCsG4vpBEWiGMwCIZDhU1pYn1/hdMg9t5auvS4nqKlo6CD0KgNYTaUPClm+2E6/tqFJMWk9YIp01gINTWGQlpCGhMC6cWqSreTMGlYAo2D5T50E33UwpHS5UrranEmkgLWvN+ko3h+sUg8aQg50tOnt+JUTHSCqxIwgTGIx+4NGTPk3iJPkQ63aSiRcZohqsxI1U97WP3cMwLjY6mMTADSIV8ZhLpTmkkjHlyV5VQaaw4sGNZa001jJySm4rpK9WIjWZjv2HrcIxOXHxSCALP7YmrSjNUi7AGIkVCyErOZ1xrpgvGmBnvX4sTDxK4CdOIxLWdGAZP7Rpk80CI0nrUDrIAkkDC3kriLUn+5knwPIi1RQrr0jUzGHYNhdSUm5h3DNec2WVnZmM1IyQskYSjLMRaJyEQqMbOXW/2O4Ysyij2lDVSa5CW97/4FJYd04UnDEoZIm3J+T6eEEirscJ5AhAutm0sThXS4jQGMIRGs7cSI6YxYyOKohn2DDjdhlK1xpN9VeJUWcmC0oZqHBNqaAk8rJBYNFFiHFnrBLKE8BNVTOcx2V1WGGEpBk5W2fMFUiYGcGYMmGxjEBtJIl46reO3XkCtiYND0xiYAcx4iotNXzZBTbuXUB1gd5V+0A98NB5Gw3Ds8/EfPsSWvRWUNpQqVbR2i6AQAt+TYC13rd3BF2591MW4lUFZ4UhDuEkmadK0kN5SLfOZRL2xM5qBJjJjYPdINSEV2ixcY7BIC0HgsXXviPtw0hmedBNjpCyeFBT8dJoUpFOmBayxWeEUa6bPdV2PGRFusVldO5R2i4sREKX3Wnejtu4/cEVy12zr55M/eoCqcuGW7pY8gfTwhU+s640BiUQgMh91qpGfhAmAWBuksazbMczHvvcnSqFK/Ad1pNApuu1UX3+6Mfru7dtydz+W2FjCWBMrQzHwXC0HI1i3c4CRyOAHPn7gakcAdBQ8ggD+921rKYeWQs7Dw+BJi0wFo5J+TitExrEemwkzjeM3rbPRxMGjaQzMAGZOuGUUEkAYamFEzUCkDQdyLAtAxYpSpYy2MdpadpQ0lcigjGG4pgiNh7DC7WA9wXBNs2LTADvLbqqpxAajTZIHD1EqzJOxh6d2BjgsqYUG55IGlBXY1GUvnXpeLZZYq6nFipsf2sxtT2znnnU7nZKb1U6uOVvkJTkp8YVEKYvwPAq+THZVFpMdJ8BoqkpgBFSU4o4ntlKNp6+qmrWWcrk8becfD2M1NZUSUi2hAmMFqn7IZIQY535e+XQfj+0ssXXEkQBB4Hu+K16Dx9N7h1DGkpMmIbYJfFKXuUQ6LhyxcQWolLEYPPZWFVuG40SWWPDY1r08sWtgSlnwMyY6NObdsygEwnrU4ohfPLqV29fsIFQWFRtioynkfGcgoHl4Wz8WQ6wiwlgTWANW8IpzF7Bsfhu9ZU1koOA7b4InRLKouOwNgUAlVQ+r2mlBzITugNaaarU67df5r4SjRo74cKK1tXVGryeyPYCgHBpibYgPshRnEAQoETixEeF2E6FxKVflSCRhAvCkpRAIhqqa3zy+h/MXt6AR1CKFQWaeAa2dpCkIPGERU2x/ppXGZhKpRGv6733+bhTK+gxWFV/89XpqsWJuUWA8j/ZgrBdDWks+8PClM8R8C+0trVgB89sDFnXleXBLBWk1xgiqMeSQ7B2J+PbvN/Jvb+3m5Hmd03KfQogZGbuplLW1JLUt3GIfRXHGw6iHxjE0LHDDPRsYiV36W7rh96XAEwIjPFY8vRdrNL7n6mcs6fLoaW/hoa3DuKUqDU8YR4zVIsmvN2NM5588uJlcPs9pL+lKZLqfPVpaWmaQM2DR1jXdODIKgzXFF375BD3tBdpaihit0NqnIw8ISzmW/OGJPk6Z3053Wwt5IUAKPCk489huNuyugHVZMjlPIhPVkcyvZd3/UoMnjlUipz39Lq2mHPGho+kZmAHM5O5qPEZChTaGOMnVHv8aWlK2tJtc4yhmqFzLGN3KwD1P7iJWMdZotLYgDDnfoxD4SCxGW7Tx0drJjxrrChYJnPt1dznm149uQZupn/gOj2fA7SLdorGvxyMtPoRRWOt2TqFNCJqp8VA3Y+Z855b9/ZO9WGlY2F3AtzELu/I8/+QerLAY6TI3qjH4gYeyOsmNJ1s8p8PtOjNerdQND0qLbCxGOg21mEyNUAO/e3wr2wYrCCuIjWTD7rLjqhiXCOtLZ3LmpSU2rn699DyU0Zx6TDsnL+ggI3YKR0CMk2vFCrCamhKugFTSp7ERBBKMnLoxXK1WZ4wzEGrLLx7ewkioM36EsYKYpF+1YeeIYvdIja6WPB6WsBrRV1acsqAD31qiMERI8IVlYXcrgeclxoAg5wuEsPhSpyZWysPM+jCM4my+mW405YgPHU1jYAZwOC3U4VoNawy1lDMwfi6zAIkoEZYg51OONNaASHQFbn1oe2ZUaOOKzeZ9j2LgY4WkZiwKjTLKxXmtQmn3eaU1m/eUuOHejW5yn2La0OGIDZpUm12IjBxVX4PBVcAzuIoCrs67xaKFcEJN2ZncPqrgu1LFd6zdiwUuPaGHS06YgxSCE+d3E0iNLy35wKcWawq+76rGIbOJdrowc2PXJsRML2PzR8qg8UjFsiwuy+V79z3NAxv3YHHcgl0jEbHWqIRUKaXjuHmeh1JgjCQnLc89aQ5vvmgxOS8pb4xhTnuetryP0q6mRqTcdUphkh9v3LOrRLEraQtMFfVtJuWIS7WI63+3nl0DZSKdGrECLwnDaGPYMhjx1K4ROltzeAnfqJjzeP6pC8gFOXL5AlJ6SAw5T5Dz3LIvJeR9D9+TXH3mQqQvAIMRInmmzsDrr0SZquF0+0OacsSHjqYxMAOY6Z2rzf4vKIWOLa2ywOu+r2FfOeIHf3qSMFaoWLFjzxBIPzmLQFlJbKWbHBOjIu9Lcr7Ew+kRGON4BbU4JRC6HbDWmki5ojAm8QVPpVCQMYYoiqbkXAd9zeR+3fXHbsktruBNfWjZGOPEmhKCIXVHC+uyB4KkOKSUgsWzCpx33BxyVtLTnscXkrwQFPM+xhjyviNo2jpi6HRJuMzk2E25Jel/sdJgDWt3jfCrR7ZgTIzBEhrJzsHamDt2csLuN1I4DocnHIFVW4P0cpw4p4tLTj4G3/fcMVIyr13SmhMY5cIEpVihkVQjlahMumdZjusL7kxNX8+kHHEqi2USMZ7UmSSS6o6xtmjhjMuugsATYIVgTjHgtHltaK2J4zgRFRLIJHMAwJNOWTPvwQWLe5z2iKj3lDlDeOdgBZc1MsnGZArRlCM+dDSNgRnA4ZDFtNZSrsWUajEWSbyfDKldwxX+/e4NDFQihCcpKcnsNj+L7ysjMNqiDETGgvApBDKRLgYwxCphI2uDET7CugClMoYwjtBGE2nFQKWWTdpTgcMhRxwbC8mO0dQt+uBSDWNjMFhiI7I89di6zIu8l7DYrculd8RD4VjawibhaEcoRHr4nsvn9jxBMR8ggZwniLRAATU1qmUwHZjRsWtxKWwWdBLHtyhW7xjm5kd3YKwP1hIpwa7BCjWtsvh9nMgJ5zxJe1E6A0wYqnGE0ToLHQgkvvTwPJnsZp0kcJhU2oyMpqfNx2CIbeL5sZY4UljrNDmnCjMmRzxK7Afcwh8LF87TCLRxKZ3CWiTQkpdYCaBpzft4nkRKied5OOqFwJckqcXOE+N5MsnskXiJtHQaPtPWqTwOVpXzkKXqjtPo1WrKER86msbADGDGrP+6HbcB/uU3j3P76l1udz/BAjy6O7dUYsNwNcJYS6QMi7okhcDpjg+UawxWY3aNVNnaXyHnOZUyWWfar99d4cneEay1BJ6XpW8p61LEYm15ePNe3n3jnxiohkzVTHA45IhTgRpHjhola46mxzkBJqVH0/+UcemAUrjggEzMBF96HN8ZZJoNaUg6kIAU5KSkYAWz26G7YEE4j0ysQVnrtOST+Ox07LRmUjI3fZZp6dy0Mp5KSwoLAdagteH/PrKTnz+4bVTGIemAtrykpy1AIJndkuPBzXvZXdb40injCSCXxL0DKfA9D4lbINOH1V2UiKQdjiwKNZUS4aauo2esb239d0GsdKLfYLPSzUrHbgkXAt/3XNxfSObP8giklz0bKUAIiSclC9oDfGGc5ogvCTyfnO/CYNIafCFoyQXYRFigErm6GvXZBKMKj1P/Hh8JRaAaCQ1jDIwfNBN9HZWwo30TG8tgNXGZW8HG/ogdgzpjR6cfSHPfY5MaAG7nGiULm9aa558yj/OP73Ra70agrM/QSJVSZBAyIPA9PCmSvG1JNTbsHKoipCDnkRn+JlF1C5Vhy0CVDQPKFYtpYC1SrW1GsMzCBNnws5m0rTKjdRuUcm5sKQUt+YCC54yCU+a18P+8dDmBTBKxkp1iWlrblz5+zvLRl57Dwo4AIzxygeeKGtURQ+vHQSO/C2laIZCRNGOlMlLqzqEqtdgwEFt2DEXjP5yEr/IEUnDhSXMphU4Iq16MzvcsgbR4niTnuyyDgXKcBNYg7/tOYc+MLpg17YxAsU+o5wiFHWso22yIJuMSMq+HMQaVVBxECALfR0ho9Qxvvew0/LpVQiS1B3wpeN0lS5nX6iOER+BJcl7y2cR7sLAzx4vOmO88PQhqcaIOkbYpOWdN6UwNcarGbqO/B4cDDZVaODIywooVK3jkkUcwxnDqqafynOc8h66urhmV9TxUSCmnvX3WWh7a3Mf3/rieL7/xYqQQQFIwCCefW3c0ACs39fGj+zbxxuecgMG58jw8V7Y053P8rCJ3M5R4Yg2DoSInFC25PIFvkBKMdGld2moGShWk9Cj4imrocu5ja6nGbhL/1t0bMTbN3Z4aCCFmvCZ8bARaSCQKlaUZpgI2LpyCcTK4qd+gHBkKeUnRlxR8QQ0foWMKgaCz4COkRFpBYkfhSe1EXHxJ4AnmtOUo5jw8ockFTqDIGJFcA1yVeZl4J6auP2ZK0tUVw3FC12mcXhsQyT0aY3hq1yDv+c6D7CorhIWa1k7MCUNaGyIQzpsipKDVl05XH41X9/r5UiJ9iS8tucAZdv/2h6fRxmXHt+QkRnhoK12djSSmbq0rWz1VQtDT2bejzgD3/gtj0MIirHAFsizE1olhKWtAuwJPQlhaEm+JL6CnGGSLu5QST7jRJaWgqxCQDySBlLTlJafNLdKW85AIpB+Q8wU9BU2o3XtSU86lps0ox0UguPmhjWztG+EjV5+JnKIlqSlHfOhoGM9AGIbceOON7Nq1i+c973m8+MUvJgxDvvWtb9Hf33+4m7dfTL8spttnl0LF9sEoy/F3O/O09LBJ1UgTwRXLSE2zZdi4GLi1PLl7iJWbdhNGMZ7vc/HSuQiZEo2gd0Rz8vwWls3P4XtO3tWzTgTHWJ8/bx4hsJrAG32hdaJsppDsGIyIjHTFj6bozg+HHLFOyWrWuf7ryXu9IyG9wy5lTJtk1hWjRYWMMRQDS+Cyspz6oCRRdnO7rrRzpBR4UhJIQeC5HasnBUVfuhoR1hInxNBYG363ehsjNbdbnqo90UySM91utS7U5VIm0FqhtWU40uwtu5RKgdMhMMZmu1UA3/PwEuNQivS7yJTzAHKBRyDB9yTtOcnc9jzl0OlwCKA18BEpMdbaJMvAoK0EMXU1IaZXjjgZlTbmwU172binDNZghMvwIQkPYF24KbauzoYr8uQnBEyXpmmQaK3RWiMSXku6wZFS0hpI5rTl+Nwbz6enzccXlhbfwxfQViwwUotcKEJpfD9HJdL8dvVWanGItpbVO2v0VVO1iSm6e9uUIz5UNIxnIJfL8YY3vIGOjo4slWzhwoVcc801M1/P/hAxvalvbl9ohasbXlUGYzTCFwiRpgKC0e7FN9Y4ti9usg1sDNqVbf3N4zsR2jr2uvQQgUBk8i5QrmkK+QI5aREyQCDwsM7IsJJ7nxpkyawCvrTJDsotmqGyWOskSbQZFSSaCsyUHLGtCwWopOKgFSKrE5Ae8/i2AZ4e0LT5Aq3H1okUQtBSyNESVKnEbkmRwjG3pXSpmE6YKZlwRVI21nNu2VwQ4EtJMedn1fVCVwmKkcjwr799imPf1Mlp8wvpsHjWmKn0rGwnm7q3SWP0LqtAGxdqyshnQlCLNRiL53kY68I3Od8x3ck8RsIR4Oo8c3lfEngSIaEl8BFto+2QWApBor2P806kOh06yYgRKCxpXP2Zd/J0pxa6XpT84L6NzO9uRRonxRwrg00kwy0Wrd2Ov63go1XssoQkvOSshfS05RG4glVpFoH7csaW7/m0F53iY7sviGNXML27xcf3oLPos3mPe36xMXQEsG2wzH/8YT2nvbODebMCRkplAj+YUkGyphzxoaNhPAPWWm688cZMwMday89+9jO2b99+xLuDZkZcxJV/rakIZVLWs8kKjShjeXpPiZvuf4rQGECjjGDnSMRvn+hFWI1GsHOgRqka4fsi0XIfdXVDwoaXkqIfIKSz5oWVeGh8YSkGOXJSYoRAIomN5wrwWBe2EEkK4lRhxkSH6mLFOt1ZCZGkwKdZAIJY44SFrHse9SRNrEDFIflErMkTAl/g3KrS9YkUSe0H61y2gSfwpcQXgpzvEwgoBD6RthgrkmwCR6ALrXR6EXbquIQzKaXtzEdHpLRJnDm2kg19VWLjiG9paWyspeYKZJLznIKjAfLeKAnTS/4ReEkdjeQq+SQTJudBzvPxpaB+KvSk47QYC0YrdpciRsIIo90Cu2bHIPc+tZtn+0pPtxyxwGCtpBo7iWWbbBoirTFWOlKxNSjtxmFnqzMK8r4zPq85+xjacgECUEoRRZHzBgrn0fI9SeBL2goeUkASIMBKybHdBQLp01ksUA4VSluUFRR8l3lUieGWVTuJIyeXrowgSWGYEjTliA8dDWMMRFFEFEV0dXUBbpe1ePFitm3blpGtjlS0tLRM6fnGqwaCm/yNdqIpkXF6+enuX+Di2I9uHeCb926jEkbYRAxny1DMDx7YhtYSbS1DoaAmci6uKkfJbCm8xA1bzHmucE5ynXzOY1arT0vglNo6coLXnLcAYe0oyQ2380u1CqYCMykuoo1lJNbESo8SAy1U4lHik1YGYQ3aCkYiTX3BPSkEba2tzOts44Q5rZx//Cyufc5xLiaLK/kqhMgyA4Rw7Pi/e+HJzO8qkvMFgedkoCsKtJWZK9Qm2gfWTqElwNSP3XS/Ova/7E91JEgnmxsbzaM7SolnQCdCTgCCSGmUteR8mckN+76XGKmp21O5kEDdDjwfCAIBgZCJMeD+5nmOCHfRCfMp5gMwmlIMW/ZWGK6qzNnyxw393LJy+7PuiWKxOM18F4kGKnGMSRj91jImTGBxHBgL5KRLLSx4LrW1vm2+75PL5ZLU1sTAElDwJZ1F9/vERwlCcM6iDt71vKV0twTUYqc1InDhg1BDWRn+494tbB2qESkXgkgxOiqe+TzRlCM+dDSMMRAEAbVajfXr1xPHMSMjI6xcuZL58+cf7qYdEFO+u8p2qSk3wKAQRMagVKJ4Zy3GSJf+Jlwtca0d6SxN09LG5RYra9D4xMoyUA3pL4cEHnh1sdgUgQyQwqOz4HZj89o8cr4k71sWdhUp5lzlva68z+WnzAZr0ToCXKEka42rGT9FmEnZ0ad2D/OPP76f4VBhrUBa6B2J+cebH6aSGDxxIq8WGsvX7lhPGNuMpyGswtchi7tzzGvPs7irwAtOO6bOhW3xReoudcS4vO/xsuWLaM8H5JOa8nlP8OjGvcTa7Y6xTtNfGZW5fqeqh6d67Nox3+2Yv1hc5kpa5dGRAwEr0dZV1MOO9mcYK2IryAcy8Z7A/NbRkICUAiv8MTwCAIQlLwX5QJDzPTzpds25QNJaEJwyv5MW3xApzb/9bi3DtRiswFjnmahp43LpxbPr5en3DLi+rEWKyFi01WjriK3g3PbWiiTrBXzpIyX4vutDX4rMsEw9A0IICrmAvOc4A8WcT2cxR32isQDmted50ZnH0JoTxEpQVTEC19+1yKCNpKYs//DTR1m3u0KcPPEsM8c+G1OgKUf8THBkB9vr4Hkeb3jDG/jyl7+MUsqlvz3/+ZxwwgmHu2kHxPQUJBFYNJXI4klXQTDUgElIWJBI1lqMkEnpUIM1JpOwNSYpXmRFsmgLIgQ1Y/Ek++xaBM5tTQztLQFz2wL+97UX8rf/8TBDlSpLugqUVMRQVeD5HoHvExtNKTTEMsA3CmtNVtZ4KjCThYq29Vd5ZOsI554UO14glpoyrNtdTUq/CpTWBL5HPvDYMhAm2QHO/Y2QvOq84+iZ3c3nf7EaKV0oQFjwEg+OI70JrHCSuQKnlmete8Y5X5LzJOXIPcRQJbkExrh0w+TZT9Vwm47dlVv0NcORoT3nhHdskgeReQUyIqHLCNBArFwoQbjNJ1o7ZnrB10RKcsLsHB962dmkFaAdDwMCKRjlD7ply/N9ZrU4xrsLJxhyPnQXPLpaAjwh0Ag29JWphAqsRBmfSqipKoXyDMKKZ+WFmX7OgEt9jZRJFv5EjTQJX2mT1tdwpZ+8JFvAT8Iu3jjPgBACZcoEvsT3PFfIKhB0FPyxKbGA77nfBZ6rWVKNNdJqgnyeahRjjMvQeHTrCNaTxDpmsKbwJHTkAkTGXH5m996UIz50NIwxAHDiiSfyhS98gSiKKBQKtLe3H/TLdLAx++kIN9RqNTo6OqbwjC5Wb63ka3esYtHsNl59/nFO5IY6ElZyy8I6AqHWZl+2dnY+J20bGUE1NlmYIM08SI8JpKW7PeDYzgCkz7GdLZzUk6c3Lznz2C42DwzTO1xxi7Tv8/SeCut3V/CtwgovIWXtRw7xEKG1JoqiKaiuN9pf45EOiT2lGmUFfSNVgiBAx8pFuOty42Ol3aLSlmO4EiM9D2ugzYeFnTkCa5hVzDt3tutcpLAc291Czht0k6m1zGvPs7AjV7eIOXd4zpfkgoQjI1yNeHCTvk5kkKdyBE85HyMxojYOVPnKLQ/x/77pUjpzEpsw/11PpgaB291rY9FGuPLGwlW/TA0ga6AtEBgjCaRhTssomdSRMQ05v55AaJjXkmdxd44l3W3Mbs8xXIuxwtBVlJw2r432HEkJZIFCEsYKLQ2lsMpHf/RntPHpbHn26nZhGFIsFp8156me3FoPgysXHCnjJIghMQJwZOJURdNYrHWVHp20sEyMgZThL9Bao1RMRzHghFk5As9xBxZ35VjQNWowioRc6PvunnzfQxtDLbZ4whAEHtXIlUd3CogeaMNDW8u898YHKAaW/++NF9LT+uwW8lSOeKYrxjYyGsYYiOOYr33ta1QqFf76r/+azs7OQ/p8GIbcfvvt7N69m7POOovly5dTrVb57W9/C8CVV15Je3v7dDSdIAgSktkUTdNZFo5gx2AF/Bzg8od1uqgJSxrllAJiI/GtQeMkSAXW5Rsn/8YaKsaxsKJQ48mEFCTBT4qZGOHhB5L3vfg0Cr7nJg/f5/OvOxdtLcWcRyVSvP3bD5KXrrJhKTbEyhGXXMxSTilnYKrkiEfd1oJSGPLo1gEuOn6Oiyc7zWVqsaWiBX0jNTqKHmUT4ylXiMVYZziFBnJSMrsYsM1C3pOEwvLa8xfyvitOxMZVBJa8dIETiQdC8NGXLuOpPWXwJEJIrlx2LC84eUHdwu5SvvKeT260lo8jiAonxxtbiWbq8uBheuSIDVCNNOsHYh7avIdT5hSZ392ZGQKpxLNBEEgnl2sMVJTBs5piwVV5VNb9oaetyMJZeXb0u7LEKaywaAm+X+8ZkJx73FxOWzgrM3a/8rsnEVZy4aIuPnHNMpQGX7giPKVQsWukjBawe6TC7qEQz8uxfFF3EiZ45n09ZXLEFgyax3cMMKtY4NjuNlzvpaJfEqUNBsH6viE29JbcPKAtwjiDwYjAcQakT86TCGnwpMh4AFJKpPQ4d3EPp7/uAvLJO/f+K88g8L3EYnZvkSety9ZAEHiC2MZs7RshloJAakqhxqRBIAHWegyVY57QlkLOZ6Sm6Gl9duO4KUd86GgYzoBSiqGhIXzfZ2RkBBhVaTsYxHFMZ2cnF198MV//+tfZs2cPN910E9VqlTAM+eEPfzhtbZ/quGCSkQ7CaYKXam6HGuuxtJs0NSsnXc67Styvo0V2THY+BBitMRaiWON7Mnu/RzenNhEYcTyBtO87izlmteQp+B6ted/Jk3ouN95L2jOv4CGEyVyXU4WpVBpzRVRg9a4Sn/u/axiJxz43lXhXBiox3S0SzyUIuCI5KYFQK05d0MYrzp5DIXDENl9AR9Gjq62A0U5jwfMY43FpLwR0FXNI4Z5g4ElaC2Mns5wnKARewn4nuZ5OvjvPQNq3U2UO1BO7pgJ1SzWxha///inuWDeQMN8ZEyqwuPENblGrxgqDpJj3aMuZxGPg9Bd6WjxafMaICzmeRqIoWDdP+J6kvZCjJedTCLyMKDurNaCtECQLn0RYyUBF88DTe5HCZ92uGrsrsHUgTHbXz27cTd284FIIv3vfVu5cs2uMk8AYg9LaFQ6z8OOHtnP7uj0AaGuzwkMkXgEpJdKTicaFyO4xfc98T9JWyGXvfms+cMZDcr2UDOsnD8L3JFYbfvX4DmITID3JcFgnR1z3D2stkdJUomevD+DKMk/t2P2vjobxDBSLRd7xjndQKpU48cQTgX1d//szDNra2njuc5/LyMhIJpjx+OOP8/GPfxwpJZ/97Gez3fvg4CC7d+9m69atKKWI4xilFL7vo7V2LsTk2kIIjDFJuVR3zPhj4zgmDEOklPscmx5jjBlzXinlPudTSrmcamMQUmKsIdaGoUqNWrVCLY4zsY1qNVX6cvrrSmnCyDHi71+/m3MWd1MNw4S0446LY5U6HDBKYWU9Gc31rYd1RCLcPJHdi+cT6xgjJFiDL0DFkVMpEHDs7CJ928ouBU7FVKvVZ9Sf9c9YCEGtVkMptc/50v4EsvNprSfs+0weVbiMjF17hwjjGBVHVExM4AdJ9UWXy1aqxXS35vBl1ZUrNhDHrg2xMpwyt40rTpnD1+7aRGxitJIYExMnGTFxrDBao5ShVqu59loIBEhrqdZq5PxgXDsF2kR4KEwd5yKMIuI4plSpYhPXaBSG2SQrhHPxTjqOkv601u7TR57nEcfxGHGc+udzoP6c7FkKX1KrRmgNsRJs3z1EFCqq1TCJYbsxbKxFeh4GxVBoeGSTExcrSAlGE2snreuhCaSiLQdRFEJyX1EUA4JAWvceh+PbmYTNtDOmu1oDwmoFoz3H2RAGgWGkZmn1LKGVYDWeNUnqWo1cEIwZc+kGJR1/4/u+vo/Svo3jeL/zR31/TvQsfc9znAAFlZqhVqviSQ+lFbXYEGtNHDs+STVybhdh4ImdwyicboBIQl1SuM2CNAlpMAxByCybK5/P7/e9jCLl+Eexuy8dRygtKFVreNa9ZE/3lTJvWxo2QjhjW2EYKNUIkzHnNj0Ce4hjLq1meqC5e6Lnk14njuOjqr5BwxgDYRiybt06zjrrLMDtWEZGRnjkkUc4++yz6e7uPuA5KpUK119/PVdddRWzZs3KHnz6IqeDZPv27dxzzz1s3LiRU045JVvM8/k8URQRBEF2fPrCB0GQHZN+T19yNzFF2eSay+UIw5BCoUAYhi7+nAzU9N583ydOFvfx19ZauxdEOIZ1ZDW1WoiKXR0CFSvCmsIYR1oLJERaISNDqCXfvGs9b7xoEdVIJ7t1VzanpqCzxSeuaTAxVo/GbzN/hLWEsXKliw3ZPZGHsBYiAydfeuKcFoSOMRKEtniJFr9FEGpNrVYlny8QRRG+72cv3UT9mS5GaX+muxTP84iiCCkltVptTB+li1nan0EQEEURuVwuO1/9s8RakBKlFXuHQmrGoOKYMAIKzrNU0wqLoFpTzOpqIe95bieuFVEcElpJqAU+hhYP3v7cxdTCiBv+vNPlcycpibFSjvymNbUkdxucSp5EUKuFyIIYd08+p81tp/X8hazfM5o/XYtjYhVTqdRc+l0UE8chJqkhnz6ficbR+D5Kx1w+n6dWq5HL5bJJtX6hm2y814/P8ceO9nmIZ3OEYYQyllAr9pRDIqWo1SLHbTEQxQppLW88fy4j1ZifPtTLn56qIQS0BR6XnDSP+9b3Ya3h/KWzOXFOgeFSBzqKCLWrAaGUKyyU8yRaKeIoHDOO0kJIQmsWdua55MTZ1MIYK22iv++4NoNVTT7wqNYUGLDCCWfVwhApRPYOK6WyjUban+kCOuE7jFtwjTFj+mj8/FE/3uufZTp/2CBw5cetoRzHRGENGRTQYUhVCWJjCbUGY6jGTrpZCcuvV+1AJ+GtpC6WywTKCd723KXMKiRtEh5aqWxjNNk8556vcu5m7d4ftAsJjNQMnpX4VrJloOZ0R0Q6qwDWEQqNtfT1D6EWtDilSZH2pxnzDtf35/j5Ix3XjuegXB9NMn9M1J/p80mfzdGChjEGgiDA932+8pWvUCqVAKfsd9lllx1ULnQcx/zrv/4rPT09XH755QAsWbKExx57DCklS5YsyRbj008/ndNPP5377ruP7du309LSkl1jf9ea7JhyuUx7e/uYXW16zMGwtSc6rwU0CiEcy7qjaxbS34vFks/n6ewaJeAUcx4rtwxzyvwWwKKFT1lJ/EILKePMWstQVbNkVp6NcURPdythrBIlPEEa5s/nAtraWhMl+LGemEKxgNKGXOBz4sJZdHd24gmJZw3txTzClrA4UlF396xn3J/18H2fSqWSGYOHcr7xxzoXtSGWewFLPh/Q3TJKQDJ2GxoPZaC7GNAiDJEHI8py51P9vOWSE7F2By3FPF2dXbztsk76yxE/XNlHd2sbxZYiIyM+xWKRlkIe6Wk6OzoyCkguFyCNpaurC0+IbGyk7TyrtZWzjpvLv929npTfEPgexWKBYmsrxkoKxSKtbe37PJuD7c8UxWIRay2lUom2trYJjzlQf052rMG4cwoX2fZyBVpaW+gwjoEuJOTzOQIPXnv+EgLf57erd9OvQEqffCC4/OS5rNjYixUBy5fM5pxFnezt76e1rT2LFbe3juAJTUdrgZaWIqJl7LuW+rxaW1tY0lPklAVd+NKnFikK0pD3oaIlIzXD7I4AW1FoJB4GIQXd3d1I9v8OpwS2ifooiiKKxWLGeTmU5zN2/rAUEuawsYaOjk6skIhinpHBSubxtJB4S9zoiY0kJwXGusUzCHzygaG7rcDrLjkemRR9tkC1UsH3/QPOhTbnFtzOjnaKLUXm4WGEx/ZhxZLOPMXi6Lw0nnGhrQUNA0qwYluZuZ0tnL6gjfpo9sGOudQrUCwWD2mOrT82NTSOFjTMnUopufzyy3nOc55DqVTCWktra+tBk0RKpRLlchnP8/j+97/Pm970Jt7ylrfw3e9+FyEEb3nLW7JjRZLKVY9nSvSx1o5JcZkKwpBNcq2xgtg6fYC0wppO4t4WR/qT1pAPPB7e1I8WBmsiyrFguBpS8H0sfkJAgnIY01NsZZNwZUtDFN3FgOecMo+bH9zOMV15XrRsnns1E4JVXaPcN5xqW1vBQ3jOkLjy9Dmcs7STe9fsQePc6lPVF/VyxM/mfFlGgDBUoxCjXZGapKWAqzyIsZSUZElPCx+66hS++ofNbOmv8pP7N/HaC5YSKUt7wU/6RiClRyBcKha4dDIBXHPOInSiTZCON19qSJQHx/evxRWZAdd/aeJhrAHr0sd0ltkwdSJc6dh9dudz3qVYKxcO8Z2rVluLVsrJZ6cpkVhMkoqp8BDSo+ALpCexQtOa9yjkPDxfJLUDJEJKrPDI5wuZ4BDA6cfM4oKlPbQEcoJ7SD1ezmuVkxJhPUfuDHze96KT+Y8/b2blhmGUsq4Aj7VoIRKSY+JuP4hsJmMt1Tii6PsuZU64WHw+n58SwTT3vrv+dBkXIDAY4Yo8KS0w2mIwVBMZbGMhjEF6FqE9V4dAQM6zCOEhEkOA5P/1i+Jk7bXWJmqarggUOJEsKSUD1QpLZrWQ9xL9gzrypXM8jhIQh6qanz60lbMXtnP6gs79XnMySCmnZF44mtAwxkD6QH3fz1QIDwXd3d189rOfBcZyDT7ykY9k7v7pQrVandLUQpHs5LFgrCBScZKyl8h2pGzsJB7XWnQTWE1BVUE4HDFc1XjF9IW32cvY3Zqj4FlynkcxCDihy+clZ8znvif3cuYxLZy6oMN9ZkIitUv9mtPqMa/o4QtBgOEFp85jVnsO4QW0+JLITN3LmboBpyqFyOLKMVtLwrkYnadcfrbTxO8p+vy3sxbx/fu2AjYjZ0bakvP9bMJ36VqOSCVIx0I7Zy7sAtJ9V5qbLTINiPE9lBJGLTCr4JP3BDXtFBANgkilaaNT59a01lKpVA45c2diGH62cgvDlRpve/6pSYqbK0ucVtZMlTUN0jmsrJPF9aWgRTod/LntlrZCjkAKZ6wZ7Yo9AbVqjUK+AJ77uafV47kndCekzYkGrHuwIlUuBMDl2l955kIe2LCLNVthWBnmdxTY1OeK/cCoet/BYKAS8Q8/vp9P/MV5LOgYHafVanXKdBwcMdcQKpeN4dIqJZt2j1CJDSopwRwrNzSNhWqs6SxKpCSrOeD73mjmhUhHJlmIYP9IjhZJYSjrhIwWtAme7s0hJXgJsdBONAXYdDNhUYiElCv3nWYOAsY4Ps5kXq0m9kXDGAMwuogr5Yq0pEIYB2P57e+YesGM6cDUS7o6pMz8SLtEHW3H1rNPGe5tOSd9EyuLshK0oBIp8n6SVphBMLsjR4vviFsndRf50lsuoaOQ48fvuYjA98nJNF9BYFUVrAa/NZ1W8YXlf77qHDpzkt0jCg+B77tUrZ4WwbHdAbEZJa1NhnRSORB8358y0aH0Hiqxm1BHsx7c91gLjBBEsSYX5Ch4gq7WABJvTClUVCJNzh8NokhhCTzrdsNxiXY/wpBMcars0qv8ogufeJ7Ti0+umO6WLRYRDmHzHQgkLz93IY/v2ssPVvSiEinZMI4T47CuxfX9K9JvBz/GhRBTYmRZwCDZ1FdioOaEroy1bnEyAm0S0aFs/MJg1ZE1PeEWEC/wuGRpK8fPLdJfUXgCqjH4FoqBu0qxpSXLGkhJr3958VKSKPYE48397HlJudu68eYJeN+VZ9LVvp7/c+fTPPfEHtb3DbN9yFVxNGZyXYrxqESah7eXGQlj5jNqkjwbMbKx2gKj77vTnUgNFcv2wZqr62BAI4kj1/82idHnhCWUjmMhPY/AU3X6Iul1DJ6pQNCafHY/Ny5wXi3hVDRzfsC7rjiTB7asJJAQyLoNSJZNY8f0faaX8Szm46Yc8aGjYVILU2zcuJFPfOITfPvb3+bOO+9k27Zth3yO1IAY/zVdmJ5iL46Mp4wrX5tkEbq/JJOqtk7Jriufx0pBpGw2EVVjTTnSCanPIe9JjusKOL47T2tOEng+89pbKQYBCzrb6WnNg/BdsRhjCB/8LtX7b3AfFiCExBMe81qL5IIcnp/oACTFjVryAcVCHozFic3qLJvBMbPSnw92zzW1hYrSpbcSa7QBZUeNJQtEBqyNCGOdaLNLFnTksQhq2vLpn63g3g27CfzR18qlaDlXdPiHr8CtfwfRMFhF7c/fprry+6RZ1zmRyj+PCvBgLabcS+nm9xGXesEaWgKP7kIBX/ooYxDWUk0kqF2tiLr+S7wFqSfpkPrD2qww2LOFGD/hW+nGrhHYJDvCWosSUKpF/I//XMlgNUrKD/sEvqWrJc9x3XmWdgVIAX1DMaXQUgwCBJZqpepy5t0VEMKjo1hkVjHvjDvrDAydLHCpt8CzTnHT7YRTM0LS01JgfnueQHoc01Wg4DmjGiQqCTEcTB9mpsm4wyuVyjNPi61bqMGpWMYWwtjVHRBIsJbBWoQnnUy22zik13Nj2/dAWpkUIJIUZSrQlI57ix54mtKP34su9WFw/eu+6o5BY61BCMuSTugo5JL5ABb3FOhpMUh8Ch7kpOC4DkkgNWLMeHXzVZR42Z7NnNwsVHToaDhj4Pbbb+fqq68mDEOUUmzcuPFwN+mAmE4L1RiXOqSsyUoDZ3LDCbegrZgDIeomAqjElmo8+rPFcvqCVq46cyGff8MFzGrJT2AsCUxYItp0L8ZEiIEN+ENbSD0FaUnX9BWWAqR0NdGFNbQFHoXAY+fACL9dvYMntg8mc45h51CVh7YOgNF1y++BMWVyxHUTTxRGY/QY0r/EiXBLrE2WJdLRmkdiKYeWh7bF7BnSFD0xpvnppOsPbqQw9BRo4whewzvI9T+ZHOPSB9NKkOnnjRCgIvw9m/GjYVdnQnhY4aru9Q5XGahqQuXSQsdLOGjgkW176R069IlRCDElXq10ry7qTM+UMxAbVxuDuiWhoiQb+xXGes61LC05KSh68NqLTuSdL1iGLwUaSd6DQuBhgEIxwJZ3obY+mO3a02endq9C792I1gr19O9RcQlrRLJBteSlRuCyD0TyQYEl8APmd+Q4a1F33a52VPJ7cowm5U4WUigWi/sseBMVIZsMsTbcu6GXcrLbN8aweW+ZnUMR6fs4XIvoKuacWuMEZ/SklzD2JVJIgsDPXoXUK2V619C65yG8zXdDXAEMZmQb8bYHsFZjq3uIN9+HQZMPAj7/+os4eX5b1v/HdBb5i/OPc2Pbl5w4u8D1b38OC7sKFHyBkF7mxRIYnuwt0V9WWXzumVTakFI25YgPEQ1nDHR0dLBhwwb6+/t56KGHmDNnzuFu0gExHSV2sxfVGpSxWJOwcRM1vKQ6KQJoLfgILFEqoiOcAlw5TDUK3dlaci61rcNnEhe9Re1Zi/n1P0BUdouljpho4RaIROvckvMkS2a38poLjqUlF3DXU3t53w8e4dt/fBqdfPr3a3dx/e1ria08pNc/zQd+9khymm1KdBsV8EnX5kjFjthmtBO3EdDpfNSMhIqBSoiWBs8f3Vk5B7gLF7hiEQEIjcQibYwVEpm4S33hZXE7BdnuVegYqcuuroRzqPOck+Zy1VnzWbOzyhNb9qBj9wzHZ0IZY7ju9jXc+9TOZ9QrUzp2hatEKHC7SqONE3IyaVjG3V8YxYRKO0ncxLgMcHoZxUDSFiQLl7S84PR5tBVcmd1KpNFP3o66+zq0TQp1AGCJH7gB/fjPsbUB4t98Cr1nCwiXQnjOcbN54enH7BOdtjj+R94jqWGQPh+bpSVOiswhYJ0RaUWm6JGiXr8BUo+ecfoHTOKOt6Pehv5Klf/3lkfZMlDGYtDG8OiOCvet34mxCmMN5dARWpWxo56JutMGnkRK63gDUpDLBYyWgrIIrVDrf49f2YN/+9/D4Gak1dhNf0L//jqsjlBb/oy+859QKkIS015wtR1SjosnJF15P5sLigWf+S0Bvhdw6jGt+DgvQFteIizc9+RenthZSUIxz6zoVpo63MTBo+GMgUsvvZRKpcLAwADLli3jpJNOOtxNOiCmSxbTkdxMklMO1rjiKTpZyKxxcedi4CbUSLldd+BJojimHIauiFEyS/jSw/c9PN+fJLLs4txBVMaaGBGXQU3wwrl5AE8kCnyeZPGsVl538QkUpGAkchNXRY9eRRlNaGT22QnYiRNCSvmstd0hdeEKrLHUlEDZRMM9gbVQi2pY49QcvYQ7UcxptHQhBGOcKFNOyjQS6oI5EqfkoKtYVOL9EAirwTrSpUA4cpWUYAy6fx3Vld/BVAfQg1sQtb2YNb8kfuLnmOpeLjq+hyuXzUNjWddXJkw0IfZJixYQxxJtRne1h4JnO3bra2QgHCnT2UUWoyCKNErDPU/uZPtwFU+7ctvGOjlcIWTSNzJRIxQYXAZBwYNXXbDEVdADV4HQWqQpj6a+JsFvoWM8XXMyteEIbL4TEk/AuYt7uOqsRUmcm8QQTkpzBz6+9JI4uKWjJYfAYqxOiLp2zNdYOIMh0gZtE2O9DinnqR6Rstz++FYqNYWY4Pzp0hgay++e6GV3VdJfclVBTUIeja3g8R3D3LF2JyY2BEGOOIu+WepHQuB7SGETLx4UcxIhRjkH4OHHI0gL0kZYHWOEhzAKr7QToUMo7SG3dwti52MIfCQyM6xJUhqlJ5DW4PuS1ryrFOkJwdK5rXhW4EvLgs4cruyyIIpqrNtd5uHNuxHPgBTrSKENRYk77Gg4Y+Cuu+7iFa94Bddddx0vf/nLp2QhmG7UK72Nh2XsC3+wrCSLJVY6s55JDQCbFqxx6YZCQDHnI6SklpTTbQkEShuqkUZawxUndXP8rAJe4q4zk7x8woIIqwhTRpgIGVcgLu/T5mzuF+kk7p6Rm3AEldDtb5VSdTyHus3UISxaUylHDJbYQEWlBCsz2j4sZWUQ1nM1BZI35+Lj53Fsm8QKkwWFPd/P+iDn+bzj0qWcNq8dVA1rDDLxptg6oSuAK06ZxQtPm+XSrjb+Cf+3/wO75ynsxt8ja4OIP3wZ8cuPwd71gKHF9/DQ3PHEbqoqDRG5BW48TLIQHGp/PRvRlYzwq128OvW2pGNeGUsYa6oabrjrSR7bshdrk12pcFXznEHgDNi0+A2QlNi1FLxRhUyTVOETKkrc2ba+MdkCJ4xCPPITN3Yh2wen/07fJydl7OLpec/nbZcu5LR5jkRnrHv/4qQAUJykidZzBOr70KX+pm2ZvG8Hw5gv3baO7cPlrFFKO+O57oz0jdS4/ranGKrEjFTjJETkVnxtJL99bBffvncTZaNpy8k675nIdAfAyT07bQcnwdziWwT117JIVUNgkSaCuApRGXSELPdiwmFEbQ9yZBtm7a+wOsKakMwrk4wBpyrtypt3FDw86cjGxcAZRB6WjoI3GkiycMtj/fzwz1sT8+XQMXXzwtGBhjMGOjo6+NSnPsUXv/hFvvzlL7Nz5zNzf84k9jsos7/VS/8eGP1lxWd+9gj9VZVU/7IYNDULq7b2EQPKqQ5QCCQISU25B14MfLTVqFgjMbx42bEcP7sN30uz4yfhnAuQ4TBGG6yOkVEFpd2uZKLb8hD40pXcBbdWSimphgqBl2QVpKqEkihJ3TtUpttUvPRuMrX85583smbrIKGC36/eltWsNwbiyEt+tgRJB508v5NzF/e43ZC1COGT90d7z5OSa85dyqJcGbN3I7I6hNr+CNZaPBUidJSNgeVL5vKcE49BIvF15Hb6u1YiV/0EYS2eKpGrDUCSTdOe85HSY8PuEk/sHARkpig35saAyIwuhofSW8+ubx1N9Nt3r+WONbvQNk2FTGiiyYKktWZEJbt+z2YZAV6Ski9Ime7pQut2sr7wEi+MO5+wArRC7l1P9OtPYuMwu39pIhffNkl/l/swtSFGSaypMI+Lr1lrQBhacjC76Mi1rzhvKcd05bDCZ6Cs+NBND/KhH65gzfZ+Pv3zhymHMWPfhcQjp3VSbOnARq7RUIs9wjjOwoDf+P1a7nmqD6wmZVcMlUOGY+cncV4hMEZigSe293PrI9uIlEZpS3tRUo5cGnKh4CMlSe0AV6FQSIEUFl9YWoIg0bNwHAMrdOb9EybG3PcNwh+8Eb3tQWQ4ApV+bGxASnwVEq24gdof/gVtNQaFRqVPByMMHYFgfnve2c3SlfqWnlOCbS/42YZAI9FxTKTrScZNTCcazo/y3Oc+l1NOOSWzbJ+J5sBM40DuqtjEKCspePV7lP2jXFM8tLmfivXw0ZRjjdISYySbdpfQ2iTsXmjJ+UnZV01PW0AhJ4mUdnXNhEdH0dUP90WyU9jfhXWEMDFWxwgVJV7YyRcMKURWF13g3IXV0Mn6xqpOYz92BVVS0ZyDhfM+TI13yALrdw9Rji1aSDbvLZGkOjsNAWUIJJDkZGPdYv+3LzyJ+5/eS2glnrV0t6Qlhp18sxUCGw4gKwMIXUYPbcbDglFgXN32NItAiEQroFZ1i9e2lciRPucylqCkwKsNYayr8OZ7HiPVkG39pSRsNOpbyZbOpO3aKCJjafE94OD67Nm5WgWxVjywaQ9K5jAGx2/BeSosAoQhNoZqZFDG4Eu3ezTGaTQIAUK4Ajl1jgGEAM/z8bzR9nlSImyIV+pFbP4TIq5AUARrkTrCRmVEXEZYhdAKG1VcZosKEbli1mYrcGmfMs9Zx/bw2dddSDGQGAxz2vJ0thYohYp7nx4m58FVy6useHov1VjRkq/X5nSLqtKpZ2CUkGphn3ErAGUMkTZUoqSYGPD4jiGsJ7n0+B6CwC2slUgTmzSjKCnslBgbOwar7ByJ6GkN0NrQVvCpxq665vxWjz3KEgQeoYroyEs68y5U4Am3UTAIpFFoHSKkh1UVpABhDd6G3yHjEeJwEGE0NiwjdIhAYVQFsekegqiMicv4XhFkgFFlpFEIK3jFOUsgqdvgCSj4HvnAVQYt5pzx5CpyuverEh/q1mAU06kd818RDddbTzzxBN/5znf49re/zfXXX8+ePXsOd5MOiFQbux717tpfrtrODX9YMyZHfGys0OwTM0RIlJXEBgZC+PhNj7Ctv4wQilse7+Wx7XsdAU5AMfDwMEihOHFugbmtgr4RzY7hiMVtHj2tAQg32Sql9lvtyxiN0BFWa6yJkSqc1BjwPMG89hwtuXSYGQLpPABA5mIFSxTFiajPoe0CjDFTRCB0O1VlLEa4NMlYu1Qnm8S4Y2NpCSQSR2BLMbe9gOcHdLUGnNQTMLstl55x9NyqhhEWI/OIdCE2Gur6Oq0DYUZ2Ea/6IYEK8db+Bs/oTKRFKEN0x+dgYBNtRZjTIjHCI9TgOA+OOJcVX7LuElprHtrSzz/d+hjxIbj+D5lAOCa+bVixYTf3b6kg0Rjjxk9KwHO7eRcnr8bOexFIkmp5OMNAuFK8gSezSniC0ZRV3xt9DpGKsDp0loJWGBORpotiDfKxn6GeuA1hDUKFEJYI+zdRveWD2KicPgSUNVTuvR699lcUfMkx3UVSRcjjZxc5rssnjFyKqdaagXKMwsOmdNFxr4NKqlqOcgbc930IhLjqk7GxVGouI8ACNeCmB7dy471PZe9HTaWiYgKThNtsMkgiKzFIYu0Mi/Z8QBjHGAtz2z0XXslZEJa2QLC4q4gQ0N3i0dMeIK0h3rWa8DefQgztQux5OmmfQEQjYATB7ifBGkxcRagaACauQmkPJiwR3/nPRE/didZVqr/+FK3Da5jXmae7JUd3ewEhDb6w5AKnMLmgI6C7tZ797/qlEukk7GnGzH+j86IeMz9iR/8+VfPC0YKGMwbOO+88PvjBD/KhD32IM844Y5py+KcWk6e4uF3Rqi3D/HnTCKpuYjBYjHXFcR7aujdxl2XReAQWJSyxhkqoeXj7CIO1EKxgsBzz5K5kVyuEkxx1QqG88twlfOiqZVgUvpD80+vOYfniWchEEMT3/f3sBkXCiNcIXcMahdC1xK06dgZ0HgmPL7zhAk6c3e6uLzwCOZq5nwrOPLp1gDW7K2gDemK7YlLUy44+W0hAGZBC0uJDqEQ2uTh1P0XgJ25rt1Vy5DbhyhQv6CjwL2++iNltLq4s0uAnFqtidPsCdNtsrHKpYC5LoJp5V3R1ALXjQWy1H2/EpWx6UYmoexEWiUUgrSa390nEpj/R0xbw0atPx5OWUGksklKk+NP63eythqSyudoKYm3pryge3NxPTR18Jx9qelZ65lAb/rR+F/dv6WckVBhEIjIEq7cP0l9OXM+eIFTGeaq0QIhU2MoJVaUpb760OJ678xZYQHgW6SVGlFHkhtYhKnucN0YrjA7RaIyqICv9eNV+5K4HQcdgaqhtDyD61+DvWIHVSeqlAB+Dv2sVYmDTmDdOCo9rli/hX998Potmt7i+VZY95ZBQgx5vBeB29tXYEuEIhPU+r1SOuB7aGIw2RDrxH1jQRrCtP2RLfw2EU0qsRY58qq3Hk7tHeHTbkNOYEKCNG1+xsSit6cgHiVS1ZOmsVnwpnWaCdfUIXnrWMQRC8M7nLeVlZ3YRb38IUdmNv/MxqA0hwhI6yIGVWDQmX0DYCKzCxiXQsRufA5sRI9sQ4RBy+4PIoR2IgafJbbyXFy7N84lrzna6EQiwEiMkhQA6Czm+/JcXcNr8nix05OY6QRiHrNrez95KDVMXLjBY9pQrrNzSx8ote1E6zjxh4DyGUzUvHC1oOGOgVquxd+9e+vv7GRkZYXh4+HA36YCY2GBxLr6Rasjv1+5iqByj6lZC542W9A5W+B83rWT3SIVUdSy1gk0iJAJuzVLKvQ4Gye7hGsZaPARzWoqcMKcFkHTnA2YXcwgEgTAs6CyQlxIPQc7zs7Kq7px2zE4PQOqaI2BV+8EoRFyFdDefWefpPQjmteUI6olfdcaA1oZIGb74q7X8bu0ejNL7GBVjvST79qJJyvYeEsYztOtOrLXGl4J8IKkZne22THJfvj+6M00hhMucCCTM6ygk5MLR+7SAjCvYllmo7lMSA8oRvox2IjFWgNm2AvV//wdUB8Fa1OzTMH4ejruEuHsJqmMhun2Bcwk/8O94ccj8dp8ATTl0hsvGgSofu+lhHt3S7/oYS6Qd0c1oGK4ZalESD048EdR/jekmm41dd9zBpXpZLHvLVT5602N89/5dziuAu98w1nzxF4/z8Na9SGspBh5KWSIDSmuEHA37eL7TckA48ml6YQt0F31eduZcWnIeoDFWUfjjdbDpT+6Z6Mgt+kj04BbszjVuodn4e4hHEFbBH/8PdtfjOK3eujLNVmPjCiauJKV90+csKAYeC9sKzOt0qpvaCucZ0AZd9/7WfcopWlKnaJms/9Vqdex4FwJtDLE1ifaCewZGO+9IGpqyCKpx7B6KMHz/gR38y+1PoIyiu+BRUy6LSBuN0ppCXhIg6G4XXHRcD4GEgg95D85e3M2Zizp4yanddBULtAyuJ/71p7C1IdKAhim0YzuOw0gD1oN8F4gkyTKuYbTGFLoJtq/EH9qBqQ4jyjvB1IhW3Yw/uIlWEdLdMpqZEniuZsm5x3bysjPmsaSzQFvB8T9IPB6etQxHmn+6ZRWPbBkYzVDA/f1PG/bykR89xCd/toqhKE56PXlfEzniJg4eDccZeOqpp/jDH/6AlJLFixdz5plnHu4mHRCTSbpaLJHSlJSlXY9dCJ3LUaKMoaZcapIARmohq3cMM6e94FyKiZvZ4OoOiOSzldjV9JYIelpznLawi8e2l9wEm6RsIX2wIfHTj2Btjpwv8Hfej7/wIrfrGNmO2XwfcvHFyI6F6C33YUt9CBNh1t+JLe0BVUHtWYe/4JxsAnRmjkxkdxMOghBYa/AlGWNYabdQjYQhgojQ+omE8uhuqRopHt7cz4XHz8ZPFtl6PBPRIQvsHq6xfbDC8kXdWCGQaKyVxMap0eUDSRgrVmzaw+JZLazaMkBknHoaSSpWeq+OF2GRMjV66iP2Bqsi7OZ7EYVudMdiTLmPePO9YCKM8PGFxpJDDm1HDm/F7njYhWJOfiHq8V8hF16AiWoYHQKSwppfocp7sKVdSH8OVvqUQpfNsGbHCIM1TS1Oyi2HmuFQoZVbYJQyxFk4RjJ22Rrbt6kcsXsiSVxaJPnq+5P3BkLlUllLkcHYAGuc10UZ5xEarrjdayGXQxuLNoZN/VWENRk3IO85NTyRtMVmynhOHfB9V5wG0hE3pY2xqoYs73L3pUPMtj8jowp2cBOeLiGsQlYrWAPG+ggVI0u9EA5jelejB7bhdS9B5NuQYRm76zFMbQRR7KjrGQHS0lnwEm+NZaQWuhoLOt35W3YN19g1WOWsYzuphdp5EeqkpmFiOeI44RZY4wzx1TsG2T1cwyLdu550QTWKMdaF/8LQUAotvoUT5nRQinTCJZAoZZN+lBzfk+fUY7oIfJ+879Ge93jhafNZ0Fng+DkdSOlhjSFf24uNq84QMgpbnAVtC7B71yGQ2GIXtjKAMC5rw6oa0fwzKW66F+3lkaqCiAawcZmgssf1WawxtWHMzkfxljwHKT3e9fwTQHicu3gWVgh8L13OTeKFsERaMGJxHCjqsz4skYZy7CGFds/TisQdJ5pyxM8ADeMZSBfKwcFBrr32Wj760Y9y7LHHsnXr1sPcsgNjYs+AcPFSLYgUqPETMc66d0k37jEZK1i9c4R//uUTVGON1q5WObiXqKrSz7q64tparJB4vpfEuC2+7/KJPWE459hWOmpbiH/93/Eru2nVQ9jf/T0Mb0Jj0etuQ/zsb4lX34qJysS3fRazdSUiyCP+fCPB4Aa8ci9mza9d/BBXVpnEPS4d+2vMwuF5InGfG7Q21LTGKMNzT5zjCFS6rgOArQMlPnvLIwxUJ979PxM5Ygvcv7GPr925ljgR9kmL48QWAmlp8Q3l0PCV367h1lU7+OytqxmsmYy9LuUo2VPg+jOQNmu3TUwig0SU9mBX3gS5VmIDdvtK9G2fw6v1IeMRjNVuN1rpR5R3ov90Paa4AE56EfaCtyCOXY7wWiDXjvRz4OegNoDZ/giBEAgktciVjn1owx6qWhA71SK27Rmmd6RKaF3+vtKGKNZoBFgFNq5TLdzXK1OuVFzbSGR8D0DuTJfrOI6o4KETs1YZR26Mk5j4QEVhhKW7KIit0x/43WO9WARteWcs5vxRY+ClZ8zl0pPmZNcQQiA8f9RzYA0iriKqgy6YEJeI//AV9J++htl0P1JHbrepFbbYgbngLRAU0eW9eNEg6uEfoX7/JeItf8aqEKpDiPV3oXqfwOk41vWKgI68Y75rYPdwBWWduFBqBN77VC/X/eYxImOoKlet0VFl6gzd8Z4B0vFvwbjiV/9x75Os7QsxSJRJmPkCRzAUiTiRgFqkUFaT8wRR7FJ3Y+tIui6bSFCQAX7g4fs+hZyXyAWnYRjPzTJGuSyMuOrEhUzo+Eknv4TojDdhvDy20OEmEeEhwwGsCZFBESFyxMtege1YgFQRJqxgwhJYi1Ahesej1H7zj9haH2CQInD8G+kjBZw2v52/vXzR/8/ef8fbdVz33fB3zcwup92Gi95BAAQLQIJVonrvtmRFsmJZtiXHvST+uDyve/zITpzYcY8T97g/jmJZ1bJNSRYlqrJI7B1EIToubj3n7DLl/WP2uQApUixiMWMufi4B3Hb2mT17Zs1av8Lr96xFiY5AQk+TSD5EZpumrWclSlqPFBab4XXOPVcZeJzxrEkGAD7xiU/wl3/5l/zBH/wB//2//3fe9773PSsQo4+YoQoM66jCNrJE/ZohgPccW7TcfOg0LgguNJ7jIVA3vWiAofXRAlYiOltJLDOmKmqQa1G8aNcaupnB1BanFEo5tBvGasHdH8eeujf2aI/fig0luD5SzVNP72zO/YaAihSjxqXPHr8He+jzTUvjrI8moiFMRH4775ldKvEu8D0v3UZbn0Fcj577ykJR84hggidSGRCgdoqFocd5KGzNP95ygEFlo3CQErJEGDqhsIGFQcliGU92y7zssxIcaRgTI9ZEOL2P8v7PMrIZFleifI0eW41pjWOGp0mL03jroVrC3v8pylvfjxRzECBdOgGrd6E2Px/9wh8hrL4ISVJM0kJMC99dic96mMGp5esJ3tHJUkZuE7cfneUfbnmA244uEazG2aYtE6BwFhUCtx9f4LqDszR6hw9b/m+1WtgAn737GA+cXgTs12wTBODUUsGHv/IAvrbLZXbfWGx7H6idcHiuJKDYPJXSrxzWOqqgSIxmbTchSDQnGo3za/Zs4pJNKxixIM7IXnvKE/dQfel/IcV8bF2NKLXzB1GLR6GcB9EgiiCK0FuLetGPIe0p6M8ieEz/JMngBFIN8OUCDGfRrsLt/wSu2eRHGgJCoNtO0cHh0ByYKWOy01TpAjA3rDk+CFgLx+aGsUY0MhBpBjDP84bOeKYlV1uLI+pdLJU1h2crTIhAOHcma2PQOJWO0q+hral8IDVC0SgMOeew1pImSVT/MyqC9pQn1QoRmqT2rHzdl4R6iTB/fxzL4EElqPPfiH3+DxCyFiHrEiTDU2Pv+zRh5n5I2zidkV70NuisBTws7Kcu5hAcwRWo/lFaS4dwpw9Q3/OJ5fZiTKsV21aO8+OvuYB3XL4O08wz56KYkjtbAeysyWZdBHE+VLNBKfWkGZj9a4l/+TvpWbF9+3Ze/epX88IXvpArr7ySH/iBH2Dr1q3P9GU9anytk2tpa7wP2K/Riz1bBqTynhP9io/cdBiLNNWDuMCUNctVhKL2ywYsRgmXbZkiMZHKo0WDUlFDn+gTbxA6AsorqJYI1/w6su+TsbR66Hr08DT4EinnMe1JgtY4k+PW7YGij/cWLx51999jb/hzgrfLmfyZ3rmQqoASzWv3rEKJ4+DpIXmesbrXxkuC9Q/elErnKX2gXm5uPzicc09IdrSyFfNVjfOe+cLx3/7pHo7OD7ABjPKk2rA06LNYOU72hwy9w0JELzfUQh8crh40C2YEESogHPg88qU/iip1rsLZhk0ysYXKCqqYgzICs1SxiFz726hP/Sq2fwIhULdXwp63oCQlxZMSkCRHpR1Uaxo/uRG/6XJcuRBd/Zo6xEQrxUnU7P+7rxznv3z0dv76S/uogkSAm3fgHaWNPehP3HaED1x3kNiKffjZV5YFHviDa/fx+XuO8YgaFGfF7Ufm+L1PH6DwsdXlRUVtCm9xwUYN/ZN9tq3IefGutctMEiGQq8Dbr9zKjpU5Ld1QOIl/RjXCr65N6Ds/QnL1L6Bn9y3XaoIKKFvB8BQUSxS7Xkt57mvxRP2LoNoErZDFU1SrduGHJwnlPKpewi+dRFVLqOCQWz4Q2wi+xto+vmEivOCcKaa7GvAcma8IPjB0brlNsFBU9MuSofPceXQO5YXKyYPy/WWWUTO3S+cY1A58TBwOn+5zx5E+EfnjKUMD4CUwLKPa6Oj1bOWxNpAkitJaQOF8bDskJio2miRhutfi371oc1wHiO6MZ7dApC7QVZ9w/G6CrfBFH0RHT4cgONNBdrwKt3oXJCnpvmtIj92E7q4FFRDTwmZtQtDI0dvJ5prKbdXHze6HuiAc+ALy6d/A22E0PgoWVw8IIfoRaB2BOUGEykfWUeX9V808R6D0nto3zIqzvvycHPHjj2dNMiAibN68mde//vXcfvvtfOhDH+LP/uzPOHbs2DN9aY8aDyfpOloTRhUBHx5Z6zxyiOPfbcMqsA2gLrYT4jdV1tFSEVU+ohK1jCZPDNtWjtEyhtxoTKPJnphY8hYJTKQ1E12Dcg5VD9H1AmZwKj5+S0ewt36QZP4Yav4owbQJkmDbE4RzXoO7/59xp26L3+st+t5PYg9df9Y7kKa66lFaoYzw0h2ryFSgsI7xVkIni/4JD83waxuR1bV9+BK1ahgQjzecDxSVb9TdImI7gjIj33qypZgpFXP9ihsPLOJ8pEJ1M0MafARCLh6j+PufJ9RLKCVRgwABV6KbJKG848OU1/0eQSnU5FaSrI0vh0g9QA9PI8N51OwhlC2gmKfubcCvuwjO/8ZYCBKNQxOySWxnJWF6O3ZyF+navTBYINHCWCZo5Vk1phjLhIlcsTgMzBbC4QWHSETrWx9wPpaOA1C66Mw4wg48dHSFZu6GQOUbnMmDuz5fFQG45q7jlMGAeBQB3dDq3DJuIBowbV/d5cJ1Y6hm4Q+AUYqXnreeHas6ZEafaQmM/pOvvoBQLDTVAB/1GBBcuiJSRMshUs7D+W9Btr+cIFBnU2gNSjzMH4JtL0bmjqAWjkI1ROaPIN4SRKOHc6hiHnfoeqprfh28o7j2tzmvuoWVE+3YHgsB7d2y8VcEBnsqB7UNlDaOpnVnTsI0YzuqfPjg+cNP3sY1dx7CN46OwxrqoJbbbm5ZvVEimwBiCR6hXysGlaebaYYWEhVlya2HXEcAZqKFsUTz1ku3Mt0Z2b8/+O6pkbx4XSDzD+Cu/gW0qxGdkmYt6vEt6M0vxK3dS7ninLj26A56ajMi4E2O7a7FZV1k7n5kbn88rNiSMHsAvEMGp8CfJdBULVH8/c/i5g4D8fAiEudjHWIbwC4nWmciVpmiPoX3/kGJoog8ZTLw/7fGsyYZGMWHP/xh6rpmenqadrv9L5ZaeLbzmPdnpGofTm9Aa9X0rB8mHWgAtL75WpTIDXFheUg1QeF44yWryHSgXzlcgEzF3qtWHmUgTZryYCMVLCGgfOD7Xn4ur7tgFbgaVS6h7QA9mCOoFFpTyKHPIdUSyha4bByvBbnk3ejpTej+CZg7jNQV2BI9OIWfP7jMBYZljTeMSljXFrZM5LhgqGpLohslNAkNBz5QWIv1jtrW1C5S577WOD+W+1FY1yRTLHOwCxepXL5xS/TeoiXw3a/cxaq2MF8G7puJ1KlUKb71BTtJ0gwjCgYzJA98Ae2HJBLdGQMBb0uwfcRV6KM3ofdfC72NyNqLsGsvQZIMXAnlHDKcRRaOgR2iBjOE538n6o3/BaM7jCB9gkdd8R0ke9+JvuAbSV/+4/jxdYS5A6zNKn7lnZcy3da8/fJ1/J/vfR6vPH81ZW3pV4H5MjIVFkrLUulxwLDylA12oLJhWffh4UZxxFipKxuX7uXOz1czMkKIhkMHTzX9ZiIVcrrXjlUUaF4v/u7cKIzWsYTfvLpSCqNgRTcj1QL1oKF1+jN8clviywWWNQSKxficjDjm4mHX67CTW6Dsw/AExnTRO15FPbYRtetVhDQjSBfjhsj4uvjyroRijlAuYPMeNuuC1hEkd/xmzMHPIa5CHb0ePbuPtHmOskQz0c1YKi00zaFh7agtFLXF+UCSmjj35IxG4dmJb+0dn75/nvtmhtEMK8BCUcXuWLMxRhBdVBksa0eWpsvjtlTHZ6STKCpr2bupRytLKayiZQQtgdwogoqMjVft3kCiwhmHwqY6EVzVgD4KlK/IT90BzTWHbJL8rb8DK7aTvvjfk7z5d3DdVfgkwbdXRByByem89MfgLf8TkTQmF0Fw9ZAwfxC8xfVP4p2N9xMIriLd/wmY3QchOnwKgQ1TLTLdYF1srJoMa7f8c87HMqL3MdkMZ03iEdvquXjs8axLBqy1XHTRRVRVxerVqzlx4sQzfUmPEiEqdYWRP1+MWNqPVKJEOwI6lsk4GzFLIzUsjcCIZ+gCHk9pY3vAC8uSuYlW7Nm0gtVtuPt4jfWONRMJqY5iLgaNUVEXPFGBPBGCt4BlTUfTTQSCi20CG2l1ZW8d1fh6WDyO1wkBgzJJBP1MbMR31uJVCh/9CYp//q+EumwWaQ/imhNf/M8DqYKdw+vpXvc7gKOynkxFUxpUNHWpveeXPnIdX9p3gqKO/y7sIwuIPKZkAPhvH7uNa+8+BkQg28zSkM/efZTK1xTBU4eAczDRStk00aaTJLgG3AcRa7FhIiNTDqMC2EirVKJQSiMqnmSdLXAn76Ke2Y8U8yTzRwkKVJpgeyupJ3dA8DgxuM4kKjjUYBZm7kVNX4CZ2IJSatmkR4kh6axGd1ah83F0by26twY58Fn8x3+Bc1a0yLKc1b2cnasm6Ka62bQ94mpWthWfu+8kf/SZ+/EoPnzzIf771bdRVMI1d57mf39pH1997hodSD0uBKrKUXrwyPL9bZZyArYpXcX+7rCOaYxpDvETLWmqEh7roghPQJGZ6ESoJLaQkIDoyOc/d7rN1NxNLH3spwh2sPxa4Bne+NeUf/FOQv94rDiVC7jJLTidM1yxA9+aQLorUKaDFKdRpw6hkjYqHcdObsNNbkXQYFJ82iNMbAWdIAL13VcT5u6nbk/gTYroJCrmzR8hlBXB1wTvIrVWINPCWKZZ0c340t1Hm0qfiyBN52Jv31nyTFG7uplLD8YOQEyS5voFgyq2BJz3LFYOgmOEVLBOAE+QQH9YsG06ZawleC0YHUi0opUanBcmWwl4x1IZyNMEtKKdKASDcEZ1sHmA8NQQPHU9hFCDXYrNSRGCSlCxqUAysQWjc0xnNXpiE9XYJoJKooKjStA6QffWo1efR9CGuMV4/Ol74fR+6vY4bjhLsEMIrlkHPcpWuC/9Md6VaBr31MwAGld79p3q811/8Hn+w19fx1JZA66hago+KOqHcZF8zpvg8cWzLhl40YtexLnnnsvk5CSnT5/mwgsvfKYv6REiboD9ouDa/XNU9YPtP5a/K0TZ1bqqODj71dgC/xAuvG0EY2obPQlUiHx+pRTbV3d50+6NfMdLt+NdzfaVXf7L2y8hOfZlnCvRyqLFw8y9TPoZploBe+Q6cJbgQ0xYfEEYzKDcEL9iA8m3/Al61fno2SOw9Spcewqf5ASdQj6O2XgZYe1u1PxRzH2fgJN3AhpVVeDAHroeXy7E/isBrWGdO0I2dxe1QGE9aIMpZthWH+DQzID7js1z7/GSI7NDShtPEI+U5T9WOWIfAnefWODYwpCAUHsY+oSvHJrnc/fMUJVw84EZvIPve8V5rGin0ds9jNgPUQ0vNdEgJ96EotFdcGjxy1LOYvuYwQxy+nYYziF1ETcBUSTdlaRv/W2qlbvxaQ+389VY0QRqwnlvRG97EXrU+W6Aig/6oKFeJT10vYQ6dQdGQVcJqdJnlfHjEX4sS3jXC7dRFoG5hRovni8f7LP/VMXAW+arkoPzNTo8fOXFaIMNEYNiGw38+0/M8cBcH0WsFgQHNx0+zezQErxnYCOtcfvKFgJkSWS9OB8rEcH7Ziwf0rMOUfBJSeDNl2/ku84rSA98kWo4gzv4ebyPev3M3Q8n74i4i+AJtias3IFtjZN803/Dbn0FIW0jOqee3hIVB/Mc8nFab/0t0h2vaCg1Br/pcmTt+QSdELTBLD5AOHJjRMerlNp0CW4QZXftPLiy6aUvYIIlM4pWoui0c44uxqSxsp5TixXOO2aHNQulo50Y7j6xxO3H5rnzyBwBGhfGGNYFhpVlUHgckeI6shwPxIS/X8OXD8ywVDmOLw35wVds4z0v3srKlmbzVIbRhlxrJDhaiSJVICpWBDSeTq6Xx3oZdx3i4cL156n2fTLqNCiFroaMcD6ouL6okceINElJPkVyxbcTdIokOcHkoBrQpzIESWLXTKfI0lForSRM70DPHUS5gvqB62OLx1k8Gj9/hNA/jj9+GxIg1wEfItbi1FLBTUcXuOPIYqTGopeNn0J4sMPo41kXnosz8axLBm644QZEhPe85z38yI/8CL1e75m+pK8Rgdmh4/evPch8USA8ZMGVCJLXGk4PLX933YHln4O4AERhmLCMGahdhAhGXfIQ6UFaaGWGPIl+72vH2ngRxluK1TKH+8h/YMLN8La96xhrK9LP/hLfueZetprTyCd+BWUHyyceQo3rn4zJh8mQiW2otItUQ/zWl2HzSSQfw5s2krVB50jSQwBz4jb0vmvQ3qPqPmIHuH/8OdyJO7CNNWmCY5I+iSvIXU1pPZkSzL5P8k1Lf8OHb7yH373m/ihCE+KJKQR5RGXCxy5HLASlKFysyljrMd7y0VtO8AsfupPZ0vNrV9/D8X7NZCdFK2gbaUxb4slMCUz2ct5y6UbGWwnYGkJNwKMlNJiBAHYAOPzSDMEO8SrBqxxIqMsKGd+MSTO0Npjtb8DtfSd1exqZ2IqYNHpGfM1QeK3xKkVcTVssb7xoHRsnuwjCxZunSE1UqdTGsKZj8FpTKwhec2huSC2CrTweg3gatP1DXiYEyqrCOig91C6Ow599bh//3xf344n97KEN/NKHbuGmg6ex3jcU18CejRNMtLLIH/dC7SS6+4kwlhvyRmJYnfW6WkXQYSdJ6NjTqOEs6vCNVB/+SXxDG9S2QNsCW5exZOxLwpbn09/xRsLkuYRz34SsuxyXGOzKcwlpB7IuSkD3NqGSLhBiAtCeQrdXIusvxqa9SMW973PoVRfiLnonZD2c7WNthVRL0Q3R1STDGV6zey17Nk2RKc0FazqR/hYcJxaG3Hp4CYvm3qNzHJ4d0k407/vSQX757+/gf/7z3VgPZVU0WKFIt6ydsFSeQdFX1iECl2yaoKsCR+YH/Oz7v8LJ+QFLpWPjVI8V7ZRUKyZSIdWBCzaMM5FDK4FEa5QSUhMliHstcyZZFGJVkUbw6p5PIH/1LsytH4C0Q6irWBXSOV4ZnLO4+uz1K2JNdG8dkrQhbeF0HrVLIOJLtBB66whrLsaXQ7TJSZIcc/LeaHj2sZ/FHb8NQkD7Eh0s4f5rWPml/8LudRqjEyRYSiexYihRenvU2hiBjT3RAfPsUstzcsSPP551yUCn0+HXf/3X+Zu/+Rve//73Mzs7+0xf0iNEnLHGKIZWuPnIIg+y4mwAU9YLiY6n+8I11LTm/7PDis/fdwoXzmAGKhtItaZuug5aRbGOdqLQRqEIjOUZSoSxLI0l6LpkRar5/lddQEcH0qVjvOHCtaxoG/TI7jjYSCXy4BePgq/xug2ikaRLMC1k494owTexEW9yfNZDZGTnGx9L7S3BpFGQJMSkwC8cxN7xQaQe4ETTkTK6yDWnqN78PXD8JhI/4MBszdG5Aaf7Lsro+ugbf5ab8INCa/0YZUcD+EBRW8A3nHBhsfCNxoNQ1FCUPtqtNvRCP7plDWp/LDP84Ct20V28C3/0JqRcpN7/WUAQBW7xKP7ovQiKMHsU35/B91aCTkGEVquDFsGnY4hOMZsuQ73uPxFW7oybFo0K29eeVsstCZzHKOG7Xr6LtRMtQLhi2zTj7QQk9l9bqWmU8+M4lFVFZT0zg+g4aZfd9B6cDYhA3mrhvccFv6yQObRwYrEkNFWpU/2CB2ZLlsoa6yNoTvDsXNVjesKQK8H7msIKRR0ZHGM55GmCVhLdCQEJCtNUBiIYtY5KgoMZTL2A9hEsp0YyzkdujGUJV6JX7SZ5+c8R8inyC9+E2fI8EAVjG7Bpl5CMxnb05jRBZ4hJUUmPsP2VuKSHSnvoUKJWbKX1wh+ApIO79xrk9L4ou2stui7RS4d511VbuWR9l1TDeet61E1FpArCyjDDJXJ34xkB7RSWHDwwV3NwtmSxtGRZxhf3neTuEwuNw6CwVNWoENh3fJ5+WWOU8O4Xb6OVK2aWAqcH8Jm7jrNYBHITvRm0DnTyjEzDxVtWsm5Fl26WkJg4lplRJKLotfNlRL4WMK6g2vcFpBiilo5i3BCFx3VWoewAULix1Xil0VqTPOQ5UwRI2ohJcUknlhtGJYdGh8N2NxLOew1huADGIGkP7WuUKzHFLNgoZ06IZlLSP82KMMtLzl3JlsGtjNsZfLAUdXx+Iw4rvgvXtAYcNMnAmSfnOWrh449nXTKwZ88eXvaylzE+Ps74+Pi/+FKQUYpBHXj/Fw/xoEp3M2t9CI0GAGfW4qadeMsD8/zKR+9kUJ95CGrraGcpzsb+rRZP0iz4JkoO0E4jY2CsZVDS+JeHGoVHyj5qOLcswiI0cri2iqp3CDJ3AFyNN3l8uPMxSHN0dw3hsn+HbHg+csm3ocbWE1CIzgim1ZQGBZd3cVUJLpqY+AeuI3zs55D5I+xe1+XiVSqKm4QonrLx8N+T3vAnWODkgufWw0vsP10sy+jGpOnhx3ckOuTCWQCys1or1p/VYvEReBVQVC7gRUdKW3MvoqJZc6ICEhPRm0Hiwvf8nSvJG+57uO6PkOt+H1UsIP/8q7TKebpKwYHPkd7/T9jE4A5dg5y8Ez+1jdGONxgMIihzzR7QLYIxaJ3AJe+GTVctI8cfqTawvNhJFJIJrgJXRle5phed6kjhDAiJFjqpxsjZIEHNzFLFnccWgHDGmKoZL9/8SYDBYIhvWBa2McRxNjA3qCFEuaa7TyxwesmxNLS4wDInvJWlvPPyDexav4KyhqKuGdqAs46xdk6exJOrjEyfJPLehaZ34B24QVRadAW4OtI4fUEINdXNHyTUA8TWoFPKskQ5i4gmSDSE0mPrCM/7HlR7xTJyPzIOFKIMYnKCKCRtoU2K3fEKghhoTxFMjihFdu3vkB76Ato5Qr0YtTgWj2HqAV3jyUwgT3TTuhOCD1ypbuGHkw+QuiFBaVqJx1rF8cWSO44tsu/EHHODit+6+l4+9pXD1NZReRgWDkHxmbuPc2SxYteaFrvXdHntBauobMls6fmVf7iPUwMwWmO0JlGKVpaRJmm89xraeRqBuQK9XPO2y9dzycax5fmzbqLLt146ReeTP4k7eRPM3hcVHgVCZwVSl3gxhHwcRGOtfQhVr2FBTKzHXfJtmO4a3GXfDflk/Go2hbvkPYSLvxGfTpIUc6gkYjQiu6BGV4uIqyHEaoj4inowB+Uiz1/f4lvkg7yguhYngbnCR3GsEJYPRqN5Zl1gaVg96Kl5TnTo8cezLhlotVpcf/31zMzM0Ol0Hr8u/dMYEiKKN9HC0D/UlTs0AMGoay+KZQe7mBdI5IR7op1owymurKeTQdUkDKIDRqV0U0WqFQpNK9W0DIznhiAeFTzVl/+K4U3/h+qT70WWThDcAO8sBIuyJeFjP4Pd9xkIHjl1IC6+OkfRJAMmRbJJ2pd/B8mKneTP+y50d01MNpTBTmwiJB28KFw+QbjlfdR/+4Po+f2opVPouoDg2L56gj0beyhfMSwt/3TLETIqxDtMsCyVjsrFDb2sHNYK1nv++gv7qR6GUaC1xiSGX/vHW7jz2Nzy5z2e2X6fX/rAjcwMSlywDRAxLhi1tdHKlkb4OUS6oXWW3CgE3cjiRhDVitTzuovWkyuQUGPnDiHDRSBghqeQcp724t1w7f9AvMKNbSU7ehfaeWTVebi0B6go76s0eu15+CRFVIJWCa09/4Z07YUoiYZSjzKzCMoQJCVUCxQf/0XqE3cy/NzvUt1/DYmAUVG5sqs8W/b9FXu4a3kj8ALHF5dYKGyEd/kIBjwwu8Avf+TLfPnQDL/9j7dhvaXVbgx5gqb0sapSuhGyPZaYC+uxwOwgVoN88CgU7RT+7fO2s2Uqw7uaqq5wEuWw13RTuqlBAakEchNIdGhExKKyXkSil4T7v0hwFd4PImzR1iBCcuJ2qn/8WcLMPsRktFsdlIoVEY/HtiYJ3dVkz/tuJB07e/gQIKQ5SudxtJMxxLQxO19L0BlhfBOCjwDDIECAagn1wR+G2UOwcAJ74PPsue9/MplU5InBuYh0dz5gvGUVc4j3GIF2A84dlgEkgkNbWU5hfeTROx8T2zpShyufUFY1l21dycapDm+9bCtGK5x3lM6TKRs9NJSQakU3U2SJJtGC0UInM0xmgW5uaKeG73nZBVywdmJ5bVnZTfm2522jXS/hP/ITcNc/4BFqMx4Tp1CDeEJ3I3U2RZIa0iw9U7OSKDWuxzaRX/EedHs1nSvfg6SxbStJm9bLfoL88u9B0gxdLYLpIDqqYihfI3WNsjXBV4j34EAVc2hbsHuVYdeE5nJ9L5mvOLlYAqFRcmye4UZjJTjh8OlBI4R2Zl14vCZb/9rjWZcMfPSjH2Xv3r2cPn2ahYUF7rnnnmf6kh4xQnPSSbTCL9v1Pji8DyRKoYQziNjRCUZGq1bAOUvtPGUdaCWRd+uCoIll7XYaHQERYfNUi72bJ+i1c2hsPtUDX4L7PwkHrkXVBa4uo6c7QHDoB76IHL0RxGCqRsdda0AgH8Nl44hOQdSyAMxIbtgrQ+hM4UyboDT0VpOcvge1/x/AVdA/Hk+toaFeOYvyJc47js0NScU14kmKcvn0IZTWRR6xwG3H5ikfBjjgrGNxUPLpu2Y4fHqwTJECmCsCV991ivlBibOR913Vse1Q1VWDYo+I/ZF6oBKWrXKjPa6iZ+CX37GXSzauQETjbYVeOo6yZeyc2oJ8eILJxXuQUzcSRCO9VajGTlfteAXJ696LqIR+vx8vz+T4pB1PpxIdHZWcpW74iGT+Zk6M1PTqAn3nR+DErYT918Lx2xClmopZYM+GLitPfo7NHD2riCqcXAoYFTHivqFonVws+OQdp7jjyDyf33ea2styZcAF35T4HYWL/O6ySV7rhl9/fGEYW1pNCcxoaVTuFH0bKJvelpHAd718B2/Yuy5uaFr4uTdfyPe9ZCsJxAqAD+BsLCsf+QqqrvHDBbwtcHURJXT7JzE3vx9dLRBMxnBYNCp9HqU1yWvfS77jNeiHDF/zdMYxNHnEgyQtRBuUThCdo1sTOJWSnPvyyJ9Pe7i8ixy7BZvkuKmNcPw2ts1cwwYzR5ZEG2nvaxaqGhNqWqFEbM05K1tsmOzhJfa3pZmjS/0hw8rGikDlcVhqFRCJrat+6Wir2H/PjSZt5msgoHS8x0ZrEq1YNZaTm6iRoYPQzQw/8+ZL+M1/eylj7aRZ6Js2SYDgapzt431FcvwWzNIJgk6Q1/0crL8sVmAAdf5raL3ypyidoSrL5eEbaT7okRjUWX+O1i5RUfJYmSw6SZoMSVpx3CG+hi1xdYEDxJdQLSG+Jtg+Us6xQZ0go2ZmKeqmhLNaps43UuJBWCpHrq7x9Z+rDDz+eNYlA2kay4FFUXDPPfcwNjb26D/Eg0vHX+vjyQ4l8WG17qttfiEmA0bFjdU+xMgkbtSCFcVn7z3J//j4HQxqSytLqW0UO0m1sCKHbq5ImhJrliRsmkhZ0UsQ5+LDFSLHGUJEYNdlFP4IHoWNRiH7PoOYKEbiTAvXmiaI4NtTVONbCPrhRTyCNkjew5kMn3YJ4+vjQuFzFB79wJcRXyxTiYK3aCyZDigVaGnXAJsCy0hJpPGLj6d279TyIvCg8TW6ObF4ytqeGb2G4iXEBfIz95zg7uOLEcAWPLvtbXy/+UiENSohS+N7U6pBeUts8UQGhGb7qjHaieCRptUyGxf1EFDeslJmmLRHEK+osy5+chNhVP5uTaImtsW/tiLCnnSMqruRIE+gzRWAhjmQlPOYcoBeOELsmUa9hpGg1HgmpG4AaHIDbRPQwRE8bJhIMeqMzG0d4hgPy5rSxz5uu5U1mAHHx24+wU2H5qmc48uHlviTa+5tEiuHMcLxhSF2uV0Txz2EOKZf2jfH4XnHZAbjLc2miRZTnZxUK9aMGS7fNMnOtWOsO/kpys/+OiG4yB7orMFUc6h6SPjgD+P+4m3o+6+hHN+G0wnK17G8bXLyPEcptbxh6omNhHzirCfqTAhCyCfwrenYXMl72PYq0Alep2A6MdmdPhebtHBJG5ePA4IfWwfd1eAKOvT5ttO/RT5/N84HZoaB3/joLdQuyiKXPtBKFFkWmSmmqeh5H0iylNJ5Ds8P+U8fvpnCGS7iPn4q/WtsscS1d59GJ4bIyNCkZ7opaBV9PkZtgk2TGStbsaa0op3QyxJ2TI9x4fpxjESlxHhXAs4NGf7DzxNu/t/o8jTeZFTdNbEtsm4vdFZG0KBpRcDl1GYyk5A9QREfMfGE7nVCSFoEVKNDoXDFPOU//xriGvpoPcQHh6/6qLpPgkUk2kCHIGet05GdAqCUp7QRAzTKVp6rDDz+eNYlAyMFwttuu41er8euXbse08+FELj55pv5u7/7OxYXFwGYmZnhfe97Hx//+MefEulKIVYGUh1LgSH4r/q6A2goVs4+OBGIjsQK38j23npknmFt6aYJtRcEz1gr51f+7aVsn84xxi8LCv3QK3fzxt1rgTKixV2BlAXiBZRF1UNwRTR4QUXp4rKPT3p4panP+wbSV/0sohKSdReTvfE/I/rhADmBoBJIxxGtcRsuwaw6D4JiRKY0VRH7gj6y2cWVtBXsWDPGzpUdrtjcIwTQOJD4gOvgqKyjalTX3Fl2zWeH846iGGKtZ6l2BKL7472nljixVFEEx1cOz3H3ySX6ZeDQ6QGH5grUwhHOV/cDYZk5EACjXDQcAlKlInpdWxKlo6LbzF24hcMRvKQMQXkEx/fuTXnxisW4+1367ZgrvoeQ9ZqVO8EIINK0tQJh0xXkr/15eNgxfQyhE7xIU14d4oo5EEs4fYBQLpCYOIdS7VHlAhOp5Te/eQ8/uteTUyMEJjs5SkVDGxCqOrbpTw8jz90i3HFoJooVec3MUuDEQoV1gX7lufP4EgEYOGGylbJUE+1svUfE0Z29m+AKEgksFJ6pXPj9d1/BH7z7+VEBD894lvDL77yUTZNdXrxzmu+/Io9JqavAeVxnIpo9hZr0xO2kBz6LLueR5383YeNeBI+kY6h8jKqqCD62KDSRG6/hYZgSgoghff73oy56ewQlrjof9aZfwWe9SO9J0njrVl+AbHo+mATSHk5yzBXvhtZKfD0gcTWbB7djDnwa7ysemBtw24kSIzExdc6hXcHK4hBOCU415kIB+oOSoQvMLlXcciwCMtdzmleOHWKilTA3LDFGNfdRQZoz2Y7JjpZYYTFKgza8+sL1/PgbL0YtHOInX72el+2abPbGCCSy3mKPfSWKirkKdejzyL2fBF/jtr8GedOv4dMxgk7RO15OveJc3N5vhk2XoRC8dzGRfpwRAOmuigZHOo1A5EDjQOmRap7s6I2xohg8MpyLVOdqgFiPCVHBsnFgwTb4FYhiYSKKDdOdBqh55iZ775+TI36c8axLBlqtFnv27OHSSy9l165dj9moyHvPvn37+Ou//mtOnTpFCIHf/d3fJc9zbrjhBj796U8/yVcaN7FMCeeuyPEh6oUDD6oQBO9JGuewOrgzB1tYBhy6EGl5pRXKqmSqk8RSfVC0lGL9ig7aJKhw5pQ52cvptDPExV6lqgeYcg7dKIKJHcYFl9jOiIiEgMt6ONNGTZ+D6a6Jp9ukjemtjejsr4qIfgx5D5nYDK0JJOsusyUiIqnhxzcnaVwELXYMdDNFO/G4sXUPMv/xoqm8RAS70GjbP0xlQBReaQoXVRdB4xF+8+9v5+pbDtMfBn76fbdw6wML6ADX3jPDb/3Tzdyy/zSIwgRHoqCVRklepRpVPFhuHWitYrUgVPirf5H6zg/gdRuXd1BeE0hZYQ+RDE/E3zm5Dt1dCSaDBpUwiiiR6lFJCzOxma/JHHj40W7+0gAImzYHwzkS69A3/iF63yd5ydZx1o2lJCa2Ei5Yk3Lp+hZvnfkTLpD78UTqqVaCb1QirXWUTjGzWFB7GFQ1v/6Jfdx4cJbUCONtwXq3bNxjG2OsuraMtVOquo7YllAx7efY+MX/lzB/mFaSokVx+Y6V7FkzzsapLlonCAbRik0TPbRRtNKMFTmowWmwVTTN6a0FMdRTWxvBI4VXBjW5BdWZjviA3mokG8M0VS3gIdoMZxwVliWNAd2exrTH4j1IOiRjq8GkBJ2jtCbgIcmgtzYCZFsTccwnNqFVQKqY/KlgyW79W9J6kU/ccpiFMtAKBUJUumwdv4ndt/wqY65PgiOV+GyLUgQHi5XgQ9M+EMhNIDPxiruZATxjmeHNuyc4b1WbXCtesm2CltGsmUx48fYxxjLN2q7CffIXmT52DVmWxY1Y4qGBYhb7dz+EO70PvMPUi+jDN2KnzoEdr0Qmt6FUitY5KushWTc+z6a9/FyoJwTWFuitxKddRLUJeY+gBK804JByAWNLQj6JTzvI8VtQPiBVP0qbN23QEb56JBnuEJYqi6CZ6mjqakQjDMv3/4nIlP9rjmfdaH34wx/mxIkT7N27lw984ANMTExw/vnnP+rPaa35hm/4Bq699lpEhKIoOHToED/6oz/Khg0b+Pu//3te+cpXArCwsMDMzAxHjx6lqiqstVhrMSaChJQ6Ix0sInjvUUrFU4DWzZ8K6z0a4aU7VnDTZxa4+/gs5053UMpw4HSfVEtjViJNTzbw5QMnWSwtO1ePUZQWxKGCoqodpweWVuLZOD1Oy0R/81R7lLM4Z/HBUh6+ATW+GW9aBG1QxVzUWa9L1HAuagkAYTCHXZwhaXADofECtypHqRaYLjiLq0qMMZGXr+PpfLTIxvcdHfNC0oI1FyHz+7HOLfdpQ1AgFu8N/vjt1GPnEKxDeUciFoLClDO4816PXPelBjsQtesHZR37zEGonWdQlpTpmY1VRCiGQ246NMtiYVksKoqiRERYqDzJUoH3gcorTi1WBBFqFHecrLgUS9II7eySgwS1joOouPAET7k4y7lL15GxGk1KbWts6XHFIKrR6QyfdQjFLNoPCfPHkMVjIOCkja9rRiK73lqKokJrzXA4pN3tElwVNxzvlzenKE2tl+faI845ArYqETToBFyB759CXB0Bi4NFvvdlOzm6ZEnEARWv3t6C2Vuoq9PkDBEc7dTEZMAHyqqkGBYU3nF6UERQW1WzWMGphZJVScHu/Dj3ndjIyaWS0LRxqtrSH1b0csNiMeD6/aeogqGDo1Wcppw7xlRrJ1kivPOyjVEToPaUDYsmultCUIrgPAzmSaoBVTVEqgI/vgqvc+qdr0au/1MINagUm4yj9BgKoW5P422gLEu01suYhdF4jp5La+3y16VRxiTEMrPzDqUMto4ufb52SG0JNkA2AdrESg+O0gYMBoohJlgCirYfYL3iZN+igiNt2BsnF4fkfonVcoy21PS0ZWvWp6orimDxXji5sETdVLlVCKgQonwwJZvK26mL1Rit+LFXXsDPf+Rm7j9V850v3YXCs7GX8J0v2o6tKsLCfXD6HlzxPKhrSl9jtKG2FlVZpBxSDecR3cPYEoKnOu9N6AvfjpvZhxZFaQOJUwQxuJAgVYUVoSpL6romTVOcc8vzczSeX2tNVLqDz7p4DGQrMJLgtUG7IeH4bfi6wrdXwvgastN34qWLXziCqfsYFO1cKL1Qu9huveHASV6UrODw7JBECnaVD1BXF1NUJUZU447pGQwGtFqt5efn4a7z7Pdy9rM20i/51yRp/KxLBuq65hWveAXnnnsux44dYzgcLj/cZ58sHy7OriKMbrJSijRNHyRQceDAAT71qU+xf/9+zj//fKqqoigK8jynqiqSJFmmYymlsNaSJAllWZLnOUVRkGUZdR095p0tOTjr+L1P3s3/+/qdZK0Wf3HtPUzmmtWTLXqJ5vJNHY4vFvzU+29k3+mK/+c1uxhPInVLBU1pHftOLDE3zLhoU8J4ppgvbUQY25pLN3YpJj3Fx34Kffl3UW96MdoY/KCk6yyhLvDDBXA1GoUbzlIduIkEwXbW4DsTpMfuwUqCkgQkh9pSFgV53qIsS9I0xVq7PI7ee4wx+E0vRrXGcB7UxFZsXZGgCUmGO+flqAeuQy8do7rhryjXvpjcFihnUeLRwzmcnYXuRjRfWi5VKTwzi0MeOL2IEHnE/cGQMj3TN9RaMz8s+JNr7mGmCAxLy2AwwBhDZR39wmKbasSppWiMIsA9h5e4TAc0DpGad/FBPj+/hxt4CZnWKO8pD1/HGw79On/Oj+H9GmxRUopC2yX8fI1KMkKWInNHCEpjl05ihnOIgA0aS465+J1QD6E1TTmI7oyDwYDxqqKqqq8aT+fcMiYmy7JHnHOiFJacZO+3wj3/SHr8ZujP4Z0jDZZ+sYSqS160bZyVyRB9J9iDN+Bv/Ri67rNzVZfPnDT0kgRREk2bhgULw4LKWub6NdZZ+rWjDpabDpxicv523lp8lJ/+4iT3DTOCKIraU9WWQVHSM4o7jlj+n/9zGzY4xqRG+yHF6UOs2XIeb9+7knVjCYNhSZ4q6rpAdNPLCB7RmrquycoiYlnKWVxdEcY2U+79NmTbi3CHrkcWH8DtfD1lMkmmM0I6gd/+CuoijuloAxot9KPxHD2Xo2dda728KejmtdM0UNHCXPhm6pCiqgpXOdJ8DKUMYdvLKTrT2Hx1ZNkMFiIoVmJby3vP3KAiFucje+jzd51gj3jGTcWOSVi/eD0vd3dQlS+msBFweHQpVixSJRhvo5kPsF0d5fwb/4ri3F3QnsIow5XnrKSXp6S+oq41VRHnUVUXZF/8Y5JjtzDY2cdXlrqqyLKcYVnQatgztixxskjHWcBhyRHrcZJhd78NGxLERiVFay22KEGgKqvlcXy4dc4Ys7ymaq2pqurMHDY6SkFLwI/vQC76ZjhwLWbmPtQ9n4jU3iTDpeMQEkQc9Z1XkwxP0krX8S27V3FCpvnHWw5zZDHw3g/cxm+98yL6g5o3rV/im0/9L65e+14GRUWmhLqOz9RwOKSqquW1a3SdI9+C0X0/+1k7e52z1j6XDPxLjl6vx8/8zM+wYcMG9u3bxznnnMNtt93Gu971rkf92cFgQFVV9Pt91q1bR7fb5cCBA9x0002ce+65y9934YUXcuGFF/L5z3+ew4cP0263abfbAMt/Plx0Op2H/Z6Vk2MYPEfnK9rjY2TaUGG483TJycoz3sv5xr0b+P1r7sY6Te0MRRVYM9YCIhWstJYywFzh2LRyjMlWwsGFilaW0un0eOXuMUI9oL55gAkD2hMT+Ln9+IXbEDy6HjaKdUO8MkiwtGUuGt6s2oXa8iI4/rOknTG8XSSfXE3S7tBpP/x7Ojvs3n/TQLbiacvd/kHAUearSF778/iP/SLq7o+SukXy8TG8smD7bJ6/npPVOMnYGMn6C0Hev1wOzIzwwHzFibN8qDrdLr1e50GvLWmO0i0IFYlWTExOxAdYGZwagaYk8uIB31jqRmuo2JNsh5JdYT898xJWdDLGu21MyzAIAxLlqNOM7vB+ct2Kp55qHtI2dFYQjt5CyHqk5Ry4EqdS8vEpZHI14RU/1dDvNG3iFjE9PU2n01meKw8XD51rDx37QMB3csIr/h9s/yQcvwm9dAQUUdQp8ejeGG+8bCzKu35CoctZ8ENSP+RtW+b45MkTrBrfEhX/QmBsbILFcBIfFPNlYGAV1x84TY3ixEAxHQo6YY5T9ox8kVKKVp6TZRmdtgMVsFWkG2oJmOBpz97G5N638FNv3tuICTX89LKmeuB6si3Pj3oLeJS3lNUpVDWPv+9qzPAETG5CX/V9kbJ65AbCA9eTvf4XSVWO763GrthJfum3kKQ9lF6k0+l8lfbIaPxardYjjvkoWu0tuNU/jh7J9HWg6owjOiPd+3aC/lY6pLjb29iFGkbVBfEEV7NYxIQtoUZCTek1KUO6ueWqc8Y4+hVHJ/S54WifF5yzikuSe/mKnWYujNHOMvLKk4hDKaHdyujWp9AnrkNtvgrT28Bb9nZ4y96NUUvBDjEH/glZsYP2qvOxdtC83xa600E6XQDydhsWKyyWJDXoTopVGp9O0JqYJml3oLMdWfMjiBjEW+osR3W6pONjCFCWFc452u32I65zZ8fZ3+NdSd1aQd5rkWy+ELfhvbg/ewdyah86RH8VNb4aPbE+riAB9PAEXhKmEs97djmqdEB991389eIWht5w3aElZirF91++kslPDfCimOy1URK3tFGSffba/bXi4Z61qqr+VbUannXv9NWvfjVXXnkl3kd0fqvVekyo0RACH/3oR0nTlA9/+MO8613v4ju/8zt53/veR7fb5d3vfvfy90oj1HN2PFrV4Wu9blXXBCUsFYJ1kGnPsLJ84s4ZvA+89sI1JFqg8XTXwTGoa+oAKkjkcteR/uXqgpWdlCu2T3GiX/ENe1aigwU04gp0uYgvZjHB4+75OP6Lf0biS8R7lFeEUGJbE4SywA9mkR2vgnVX4lduolx7ESUKd9G30l59xvPha733EAKmscCNBWyPUwY7tgF12Tshn4bzXoc/cj1YS7DzYB2mWuBFp/43+3kTZD1U0iZRAUPF87atZaKX8w83H6ebwdrJnMGgoHbhq67Fe0/hLEEcdYjIax8iffH4AowkBJcKy8aJFg8slPFUIBFdoIA8lFyq7+almzJecsFGEqOiKEoIdGXIUIG58S8Jq9ajXEUo5tH5JP6CN+MOfjG6EA5mCa1xqgu+kdb0ubHCIYYzkNB43WeDmp7InIqULNCiAUXoTEb64un9kY0B+GoxihEZgw7ggyNUiyS2IPiSbff+Oa+U17Gm90JecM4Ew0rhCdx9eB4fPHMDz8yi4z9/+G6cQOVLzh9voUqDqwu2r+xxcKakcGC9w3pPnmlSZVhUNToIJjhMqNC3foBw1Q8g3bUNmK0Bf52+H3f1e7Hf9lfoVBNMQnAFcuJuxA4wV/8iQUFIOogYFBVOp6i0i1YpAcG3xyDLUCai3Ou6flAJ+AlFANNsKJ6ACh6VT4AycaNUKQTBqza+WgAfcRMq1BQ+QFHSa6XsHDfIbECCI5cSCTUTieV4UDg0f/q5g6ztaL5PfZDfVy/lancZLQN5I/mbYhlniNgS/8n/innRDyKXvfuMQBON2uVHfwa54BvhVT+D2CriA1xk0UiT0KgQzaQkBKjm8baLb03g9rwDs/4yREKsdEga740o3O5vRq3ZFcdTYrVlhBF5PGMbCIgKkPcQ1QIRDAlWt+LBQWvs7rfArjeCTrFf/gtUXaD6c5FurTT2K3+JqQu+o7yPj4Qf5bQb43c+fh9GgXY1JpQsLc1S2orURNBo8GfkiJ/wXPhXFs+6ZOArX/kKf/VXfxXlMZOEH/qhH2LFihWP+nMiwtve9jbe9ra3AXETW7duHeedd95TPll67TZaolubDwGPMKhDIwMrGImSxFUQbBCCCIMqWp/SYO6WSvBoglH08oTLtk1x19El3nSOYvhP7yV/xY+j6j7O9gk3/AUysQlli+jl3vTGfajiwjC2DikWUfu/AK/5JfSeNxMQqj1vRo4coHvZu5B29zGNy/L3hObEikJ0i3pqG/mVPwBJRrjwzYSv/CUcuYHqQz9KeupuhEBCTZsSpVOC0iQCTiV8wyXraWeGf7r5GGvGMzZO5Xxx35D6YQGEgqhoxeybnTIQ2wr7T/QjMKsBM16+bYLTtxyl74naBuIhRCDetMxy1Vp4y+WbQTzV/Z8l8QXfm3yET+ou2g1R/ZPRlrhcAGVIdr6C6rpzUNUQNVwgdNfQeun/D0bCK6PTZRMhhK+b7iTxFwMxYVUmwZkWyoUoAS0QbvkAZTDkL/txIgsroMoB1H2Ud4RQkohlopPxqvPX8bc3HcYjlK6xzh0UCIEirv3MLg3YuGUccySKFF26eYrjs0e458QSf/Ol+3He0001LdNQCkPgQnOQFkWkJ4xMkJbniqCqPklxCunP0P/M79F+4fcQkjbKOZQkhFARVBb9LwAJQkjGCO1VICYyANqTlO11JA09M8uyr/tZXsZvQKS0ogjtCXxrPNpWN29DtIll7khijDK+zrJQeNZ2hd0bx6jmNMFZ0jS6Ok6qQFvHZNA3ba6MmrRhd2QmkGmPDhYlQuILtKrQg5OxdXLWNYYQYDhLUs5TLx5i6R9/kdbS0aie2LifnkW7j3PA1VSf/33U878Ll46Tvvjfo9M2I6w+NI00EZI9/wYQlDgc6kHgzMcbgQRpT+LSCZIQCGKQNI/AYN1CXf5d6PWXQT2gXHMJycnbSZaOgm7H5GHpCIImDQUJlsRBrcEIKFeiveX4XMHvfvxuXrxrLZdvWYXS8pwc8eOMZ10ycMstt/BDP/RDbNu2De99g85+9HjoRH46s8WyGCIINkTbzdpDv4r67UEiZ7jbylgsIz3OoyjqSMULzYO/UMYifKaglSU8f/sqdqzqYYq7qO/+R+RF3wvDRXQ5QM+fwB+7FVSKqgYQCVjYF/17ZOE4eu4+vAOZPwBpFoVvgpBf9E6KTTPU1tM6eyF5XOExG69EvXETJBkaQ1CWSuek1SLq3k9EsZEAiCLxFWLSxu3Mk4mN5VIVTVq6maGnLc5LlHv1jqGLyOtUC2VtqaqoSDfq7/kQqEKgb+My18pSBmVJJzeI1rSD46odkyT3R7RygmMqg9fvXhOV76p51JHrMVLxYm7kfv2K2G8dzmFciS6XIhpapYhpEdIOYfEoyrRBa1SQRxy7wWBAr9d70uafTzqEFVtxYxtR91yNBDCn7yPs/2eovo9QLUbRqapPCAViIUjsqWdpii0rlIv9c+viad7baNdckaACDH1gnCVUsAie3AhODIuV5fYH5hnLU/IspZUKOgSCTtmsTqBHXPB6AHg4y/TJl32o+rB4iuSeD8Ml74DxNt5kuEvfg7n+jxDJkHTUTjEke95KqPuMWDlq5+vINj0/lsyR5R72kyVRHmj09zc9DzW1Ga8MOn4GlCIp5iEicGJFyjqWnGVlZhDX2DpLIA0RB/C8bRl7WMu+624FAoP+EsHbBjToyUyUEtauwuBIQwGhQlwZ1wI3JOg2alT9qAfgq8jY2P9FXN5FdaYQXzOq0hEg2DICf73FHP0ybnY/knQwOiNIcrZjQ2M4rJbtjQMJmtimrOv6MbVaHhoignrpj6BMh4iS1EiSxekwsRkzvSOyY9IOyRv/E/LJX0Ju/wA2iVLRqn8cn04y1TK8ZM0E/+ceh/bRCMm4Ao1jOBzyz/fMMTnW4dItq3CupiiKr9mOey4eHM+6ZOCyyy7jD//wD9m+ffsyQ2DVqlXP9GV9zej2OojSkasbYP+hU9zxwExMBkzGWAYr2wll7ZkfCiaUFKXHeo+LfBqOzQ6aBcPQSRTdNKEzbfBHwFBHEM5gFm2LeOKth0gC4oaR16sEs3o3dTaBXjxI6KzAzRl0NtaUCIH2KtqqEXF63JtVQ9dCII+871GE5vQNChWIvG8ifFr5Am9aaKVITaCthPGkZsedv8cLs7Vk7Yt55/AvuTtcysA6TiyV/OhfX8+g9Lzk/FXUtYtIb+qIIkaiFK2LC6IQGG8rqsqzqq1JNHivWDOWMwgBEUiwKIRuSyNuSPHRnyc5fite4uaWa0/wFWpYIK5CXI1PEjQGSdu4Vhc52QKTYCSFs3rjD412u/3kJqKmjTJd6K6JKm8IiEYdv5PBh38ENXeYbDgL3qOk0XnwUSa7nQh13VQUQmBjOMp/TP6cm/02ckr+1L2OIJ6x0GfXiY9FGiaOVqqYyh1FPzZaxFs6ScZEL0NmarQGIyH2M2zJ8O9/ntZrfw6mz2/mgycM5hDnCIMZKIfRY8B7nFjU6p0ElUZp4WQs1ptEozvTwPTydFP5RCzhN9FqtR4z1fixRLxNijQdg6mzxc0cPh3HqQTtXdywFCRVQREcly5+kvb9VxPV8h0dFcW9sq/8Ob3T93EQAz6gkyRaNhN597kytFWJGZziAv95KtUikOApsP1TlB/+Sbov/wlCbw0QWTwSBDN/DF3OgR3iJ9ZFnj4QcLi5w1Qf/WnSK98Z/StqC0szmDQHnZxFuYwRmmYOZ1X8gCdcGWjQJZixzc1nYntXJe14jVkXMa3RqyLTO6g662KtRUdjJNWfAdFosexd3+OD9yxSqggyVq6Mio22ZKn2HJntIziUSp4THXqc8azTGbjxxhvZvXs3u3fv5oILLnhCmerTHcPhIKKbG5zDgbkhM5XgRPFNuyf5vpdsJD1+Ez23gHcFW+UUVPNUDZBVYBlJnieGzOgznWjfuH3ZmmCjoA0CriqiCchZEZQCpfGSorMerLsc2XhF/D3Ng17X9ROz/pSHcLsfyu5oSttCiLaoaRsdHIkrorKhGFrGMJ44Jvr3MT57C7/8ihb/8WXj7Fj4DNPMc++RWe48cpqvHF7klmN9/unWE9x2ZD4mBMQy/BkuckMvE+hmgfPX9njlhZtIlaCVkOJQ4iN1ExdPvcERbE166LOYYpa4nwXaqkJcgQznEVsADqVSUAExPXRnDSrtRI66nCm5PlwMBoOvwqN8PRFMpGkFnRCk0XMgoMsFsjs+Qnb4ulgZoFqWwRURcrGkidDzc0z5WfCWCXeaS9R97JW7OV/2o4InIGRYVlVHiN1uz9YVbX7jnZezOo/mOiWG3uB+fvY1W1jVqdESDbQk1IgdkB/8FL5/+qy54GFhP+IG2CPXQV3gjt2CKxYRDyobiyI1JockZ1mx4qHaAQ+ZZyNm0ZMRo9n68PNZo3d/A25qGw03EaOFlTKHCp7N9QMk/TmCpCQS2DVeob0lPXgNauZutMTe3+LSAIIlJQIR09TQUg4dCtb5Q3SVxY+vR3SGGp4m2/8p7OxB6pl74310cc6awelYPXA1PmlHEU9bYY/dCUvHMQc+Rzi1P9pVuxKZvS+O7Vnvj+bjodoMo39/tVHRYx/JM2N3pjIUklYUKzPpV42t2fESrIktn6AMqlhAlUsEV/OKPWvYubaLBKEblmjN3kXmh9i65PTAcevRPvNF/Zwc8ROIZ10yMDU1xdq1a9m2bRtbtmx5VvSFeu3usjSr955BHaJ3N4oVvQ4T/Xvp/u27OLe4kY4v+KX8j9lq9+NcbBkE4skhSKCbJaSmyaJDILgK5y3WFnhXxhcBqJfiv4Ew+h3aoFbtwp3zCsSk6GwcSXoPutYkSR5z6+UxhyjClhdQ73wt9fpLov1x2qVl4KLVBm9Sgk7IE+Ed60+w+Qs/jypmmEws04t3kQ5P0pYB7/3o3fz+p+/D+YD3cN+pAcHHqoOEqFIY33DA+1GlwnHe+h5v2L2SdWOG7at6UdNdIs2wbYRuKrGk62PpNdgCZzpgchBh57RBhZpQzBOaigMqj8CqLVcR1l+KTzooNZqLj5wMtFqtJ7Uy4LWOpzc9AisGvDi8AvE1iiiKE+dPnEdeYMd0yspuxp6jf8s3ySdwotGuwjd9cafi7zOJ4sqNGd3EY4g2zplJOH/tBHs3TeKcJXOLXPiVX2Ld4u2YpIUWhyiPSzrRkMY7lG+MjRqqp184hrIVyRf+iLScxXzsp2D/tbFknvUIpoVPcrx5LPbUMUZyxE91CB7Vnobx9XFclaYljm/Un8UpRaIqEI8KNZPMs3PxOgSPKfoIgsbhEZRJ0OLZMZ2xsqNppUJbFXgRshBIBch6UbnPlogX3F0fxv3Tf8R6D65CCChfQohVN9Gd6Dg6fxj7/h8iLB5HhRLm9qN9BT6g7vvssovmYw1jzGO0Cn/00VMiuI1X4ra+EFEZy9buEkGbvj2NNx38tpdAa2XEmJRLiHf0DPRygxC4LNzK1rv/nATomMDSoOLL98/xxXtPRuvmZm94ClTm/6+MZ10yMDk5yYc+9CF+4zd+g9/93d/l+PHjz/QlPWroU3exyh2nDgnew0I/CsboEMi0QnxN4kummMfg6NFnaTBksYzGPnDmj9Vdg7Lz2CM3xpL44rFoN3r/NYTDcdEBYPYAdv5Q7C/qHIIiSIrZ8hKyy95DSPLYq39IjPi1T14EQGOe//3ob/5jeMN/xeUT+GyMsZbm+dunkKSFSlrk2vNNe6fJ6jnEDgjlEtiKxBfs4H4KJxw8PcQ1EsVV7SmspXLxNOxC3OAHdWBYa1aEWc7RJ3jx1pV8+8VjpCdu4PXnT9NOApnUqODo5jljnTaxpx3L2tgKl09gV0Q/gXNXd9DBoot5sCUBjTcpIoZk7zvQ218ZVRfNoyemT7rLZlBYpWJy0pyhAxJ7xU0CMKoXnPkZz1UXbGB1L4W5B9B+0FRBIoYiDXUUZBJhddvw06/ZxLipMOIx4jBakRXHeeX6Eu9rUt9nMiyg3AAj0eI5wWO7qwAVdQQaZ0Q7uw/3wI1INUQgetsTUG6IcgXiHS7tRv2OtBtLxeGxLVNRwOupXvkjkkApg8om8WkXrzPQCZlUSNC0gkOoERFaoaAdClAJcSzAEN0yF/tDxDvecVGbF6xYYG25nzXuBMYpFAGtPCHtgAjBDqOx2PxhzOA0OjjwbpnOixARj0mLECzBFahyFqniJmqLeVzkQKKGs5CM8XiWf+fcE6sYnhXSIBoFIbvgLbDrLfhERSniJhQhVgpbk8hLfwyTdyMzoi6icVUDvAxAHiqSYEmUZ+NEDgRsEOZLy5cOnGapGFUynssGHks86zADV111FcYYOp0Oq1atYnp6+pm+pEeJwOZD7+OlvuR/yzfiXKCoarQxESSkQ4P+9bSlWn5gDswMaJ9axIQaLyaepkSxspvAwc/hPve7mG/9G9w9nyIrZwn/8DNIcA1oCZKDn8WrhBAUdatFkDH0+AaiEZ/Gmw7BOdRDTgdP/skqPvxGBQI5jG9E9vwb/P3XYIb78P0Z1KrzCSaimnU5F/XlQ42tBoi3uHyCV3Iz/6t+PQ/Mx8RGi+AD1D5gxQCuUR4LHD69xNxSycv1HbzVfAarX0i470uoL/4+7Sv+lCRNMCqwoqt5y85xegdqwBGCA9tHbElIO7isRxYsyg7AFkixEBX0kFiWR1CiQSlsZxqf5E2JNfbuH+7g9WRXXdSai6HqI/1To+FGhUC15iL0zL0RvCdnrmW0HGtnUd6hhjN4NxUTKV+TBEvanFx3TgvP2zzJ2LHrUcUsml7cyJQi3PlROp//e2TDD5P7IV0GYCuMgvFccW6viydnBEPzDWW2vu6PUUeuI2TjkV/OmQvzI9fOrIff/TZ01kKbFA88Fkjgk17RepiQUdNCGchyyg2XIFPnou/7JOlSxZUbE7ZWijCn0MHTlhItHp/3kMECSLQ3VsHhJcIPs7s+xGuO9yi84Qp1HV7BrgmhnEpAUrxKoVoiBIeefwBqi7gSF0IzLs39VQbSbtTubxIrqn6cr8NZfNrBXfYe5Ob/b9mZ87GGWnbC/LoGL65PxHalWncuDuFsy+6AoLqrqC/+FpL2ipgMSrNGhhrlS8yokDCSng4VEya6FgaBw6cX+b2P383/eNdlrFquOzxHL3y0eNZVBq6++mquueYa/vmf/5nrr7+e22+//Zm+pEcN8ZZ2GGIR6hDw3pEbmGgZ2okh+Ci0MakGtLQniGLghMP33c5Pp3/DBeMlqEj7SdIUmT+IHi4QfJS8VYD2VQQRNj72KoD2FpGAT6dwK89DxjcSl1WDJCnefDXA5sl3b5RlIJagUJ01ZC/9cUJ7CvEl/vT9qMn1BJWgtBD6pwjOIlUJboiEijCxldQIubKMlr9OnoBAUTu8q8g1nFio+O1/vJmFwlIJbJCTXMABzrvjv8PgBFIPmEqGjKceFTwr2gnvfulOEmmQ7t7hyiXwFmMydJJHQxUbQYNii2ZMHSQpEZ+h8EqwU9up03HkUYZupI/xZEW65gLSK/5d1NCH+D5Eo897HeQTDwsEFSS2PXA4V0dTohBIXEkaajIsLSl4w4Wb+L6XboxWvE3Dqk0VTXPKJfJ6Aes1CksWSrQdorRhLNect24MzDhx4iqCH1LP7oe7/gGO30k4cgshHY+X3KgQRtaBQmWTZK/6WdKX/BhaZ+iH9cT46nha1OKWiyyCb00jG66i9cqfhHSMXFneful69q4bJ6imrUcfhYO0gzSsgxSPE00xLGPdbHCcTliiRUEmJYJjz+YJrtyxCp1E2/Awsx+xA2ThGKHq43wNvgLRcY9FE1SKb/UI5Sz1Z38LVQ8I5SLiS5JD1xGyCbLnfTeydjfePD6s1ZO1LoioZTyGWXcl+WXfepZ2gkSTqd56Wi/+D6i0C8kZESBdD6i/+Ed0KDAqRKEniaDhCV0DihCiXXa/DlGXZHTPnotHjWdNMhBCoKoqDh06xCtf+UrSNCWE8KwAiQhCGwfOUzmLD/C6PSv57W+9mDdeMBX7eMHx+nNb/OZ3XMGqTop4R7J0jLfkN/Irb9jAxjFNQk2mNWH+cKRYuYJYEW4AQHiq7kqCigUfaXj3avNVJK/5j6izFoBgcsKorH12BflJLrPKMrBQIRKtmkU0qBxVF0j/KDK+HqVNdOIbnkbZfvyoh9HgSeesGm/xy287n+1T0Zq3l0fMxELpGUvgzZev52S/4G9vneH0UoHyNWMyYAXzrDz0T7BwGFzN3g1j/OI3XUSLYTxxuiImGEqBryNYKVhC0oZ8PJbbqyHB1wgWn0ThFDnrlKTxJJe9k+TKb2+YEjziAhTCVwsnfb0DLKJApfFFR6tfNrFsHfswVwHeRxdNW0LjCKm8RYsjVRUXrmnz1ks3xFJ01W/K21FzX6t40uzKoKnieAyW1Ba0jOKyLZPkCSRbr8Cv2E5A4YKg5g+RzB1Al4skg+NUW1+4fM1eBOoFAg6ldNzkxDTz5tGlxkdj+9THGdMjfeV3Yva+g6BTUMLu1W1edt4a8DUSmnI4VfRgSDvNcxodBz3C8aUaHRxquIgJnoTYFpQQIlPA14jJQIR07iCm7pMMZ2MS4B24CmdSGgIkYjIk7aEHp9AHP4fYAl8tIcFjhjMY17QrTCcaLz2OXfLJSQaaTKq5n0oU0rSVlr/afD4+R9K0Mhswo7ck93+aH3r5Ft5+2YZobxwcQedM5XF+ahyDOjJW3KjS9Fw28JjiWZMMOOf4sz/7M6644gr+9E//lE984hN87nOfe0wmRc9ULD88IdCiwtaWT99+jBrN2l7GReMF3U/+DDK3jyCKVall74YeeaIxwZLgSMSx6ciHeF75RTLTItcRfIUdgi0I3p411wO2t466tQqvFKFBLUtvNcmqCxAly/uFyyZw2Xh8WM56xpVSTwMISwhpG+8sWIvqrIoHc5Viy1lUvYTUJeHef8YevRWlEzrlCa7ozDA51iJIYCyPjOgTSxWtVottK9pUXqiGNaf6NSpAhyEAulogLB4HW9LSwrlrJvHOoWcPUH3pf+HxeJXFfnW5GEuSWRdpxIN8PSA4i8dQj2/A6lakvRHH0pOge+vRk9sZLWuPtPw8FfKmo7aFN2nTQ/aEtI3rrMHrVnOPPSE4nIo4keCjpba4Ir4350lDgSLQkiETGazuCskXfo3i5F0EcRgqcmXJjMBwjm4jKmS8RePQdolOZljdbRgArUkk7wIuMluaeSbBY3UbNbmxYUA4wBO+8r+RYm45gXy8obV+chOtrxUCemwzyfjGKIikNL1UmMh0BPY17zXHIsrgs0mCKOreejAJaSg5uVigJKDqklQ8uTRukLoFrkZsFF5CFNpFppCqY+tMvMO7mpD1Gs0Lg09yQt5rEjyBILEy0GysKEMQje+sJGQTj+vtPiltgscVTdLQOH+OPqep2bmyx5YVHQyWoDPs2Gr2Hnsfu1rzZBr6hcP6gJMHO4Y+F187njXJQAiBgwcPMjExwXve8x6+93u/l2//9m//l08tDEBwjKklLt66gluPLeIDKCUwPEmy75OwcBwVPH64GJlKOLQWslBFbbAHPs/F7hY2m2NoI+hqCW1rVDlEfPRNH9HqzOQm5K2/juusjqdaFEqbBz0UAdAXv5308ndF8NFZ2cDZsqNPWYgieeH346bWI1kPyScQBK8yqAYoH68yWXiAMHsQZTKMLTEPfIEVbg7jY1/aKY2tLWOZYa07Rlb3qb1nvojthEwikCv6pC/ERdRF8BauRtslOPg5grcRA+AdqhwQCLjWNNrkiHhC3Ue5OiZR7alIedKj8qVE/rbIg8RbHimeTABhLA83pyClsGaCgMKLENIe8qZfJZz3OgiRlVLrDH/B67EmQXlL6M8i5RK4msWiplefQgVohwpCjXclrQc+hzp1T9PXVeyZhvNapwm2Ylz6tOxi1AhAUMVJdsoh2uVJwnAeLYaQZFHkyNeIsw1dMUFPbMGsvThuWMGggpDO7ke7moe3yn70eLpd5qSpcomK7pHBDSN4z7oGxOlJAbdqF3LOyxClUM/7bnSSYXDM9C0+ROGxHZNwwcpo0Wy3XBF9LsrFiM9QusF6WLxEwS0JDg/46e34zhT1+EZ8ZzXJ1FbU3AHQgm1Pw+AUNh9DUHiV4BWYF/ww5qJveFzv9WlZFx4SiljBjOvYKPGOtCyjNAkOt+P1yIbLWGf38ZOv2UieGY4vRans0/0qtmieww8+pnhWAQgPHDjA7/zO7yxn/8YYfvAHf5DNmzc/yk8+/RGWZ2CA4GhJxTkrcg4uVLheBLUEb8FblKsjRnl4muBqdKhJNajgYm+3GvBydT+pqzguu1HeolwUavHBNWC1xigo6aLXPw+76QWo294PqGWK3OhyAFRn1Vlb15m/PR0gLAA9vomQTOB1FpH4YkALYgtGyowSHMoOCa0eQSWYa3+bPe7VXC1vY/vqCZaGcNvxAb2k4nn3/jafDy/jXncOw6pmdU/YoB2uMBF5XS2BK5tStI+gwOBRxWlcIPYmQ41UA9zkObBhL2EwE8e2ATIKnpD1CGLQ+syGtVwHeAyHkDzPn9RWQZRucrBiJ/7c12Dn7kceuA6UQq/ahR3btAygMiHgJrYiJOBr6jveTzK3H9vdyXX3niCfO4pp5HGVr1HBAhZVD6kndiDFPJe1jpN+8AcJ7YSODHD9GQ7MHY/J3NFb+LbZa1mc7aLsHfiNFxNMOyoyOoe4Epu0Ca6EDRcSOisJSY7bcAnmxJ1QLBGU4XFi25bjyZAjfqwhyy2Zpk2nM1QxB97iQ42IQxowZmhPQWcFXlJkYh3tVHPOmOWeeQN5fCA7/fsJro7JXGcNauE43P8pwpYXETZcils6EVtaoiPIogF8+nwF2nQJm67ETW3FrD4fP5hHEoOaWIM+8CVc3sZVAyCgRBHGVwGP7zl/Jgx7Aopg0qZ61BT8R1RVJSTU6N40zrTQBM5b2WbDRODL98+hdcLioMSjHxP49Ll4liUDO3fu5Cd+4iceNDH/pZpQhBD5yK4awNIJWpRscA9wd9HDuuhV4F2N8hV+9gA6eMJwnlAN8MGTYtFUECqkmGcqd0wWQ2YVBOfiwlHGKkNIO1AOIkBJKbTJCFe+m3Dnh1HORRMYYmdx9FidUR4LD9rEqqqKojRPsXqXqASfdBEVlcYUIEqjy2F0FQwNOrgeEsYyEIPyA6bDHFocLzhnBW/as5Zv+8MbaGUJ2fw8ypW4IBSl59xVHfZmGexrdNyrBYKvcIsnUFkPt3iKlIDqz+Cz8UjJ8o5gB7DjNZjnfxf2E78SXdDqYVyKBFTSjoqH+onpWwwGA8bGxh79Gx9jRLW4hHTbS5AtV1Gfuhv+5BtBx41RqQguUyrgVIZTKUYc3oMqK3SoCd6xUHk6oUapQIJDXIUrTkNdIq6CF3wPcvAGnjfZRt9ygpBMooOlsJ7KBhQ1fnY/a4ywpmPQx5ZwOsUnOSZonK/wPsVPbEQtHEPWXQEqo+5tJX3r7+Gv+a/Yg9ehyoonWrAcDofPjO6IKJTSiI9VmhH/H1GkUpAqjagEEfBpl27L8MZda/iNT880/hiR0hp75kQjpmKOsHQKlY+hLvs23L7PoIr4PT7YiPFwJc6kUT9kx8tIz38j4mrs9HZk8Rh+zfnoI1/Brt6BWTqJVyq2YEiXN9fHGraRI376Ih5vvMkIKm0wOx7xAUKNEUsSQlQvTXMCml6quXzbNF8+epir1uVcsnGMUU3luXj0eNa0CbTWvPrVr0ZrvdzXVkr9i00GBGIntDgKJ2/nXH8fV931n/HDBYoopY+qK8Ra1J0fwXcnwFvCYAYRuHTTJBes7SE+oItFlCtYnxfsWddGuQpE8NUACQGXdpeL/UI07lET26jPeSXBZI3cZ/xqWAb0yRlw31kPS5ZlT5K4yNceG0QR0gxMEv8uRI+EKvb5adTvpBpEYZ3mdNBlgBBQSjGWpyRKGEs9yhdYa3FB6Fceo8DYEhViH1bKJSQIfukE/ou/T3r4CwRSdNFHeY8YQwgeb4eQ9lAqQzZeRr39FWCHODH4rIfOxpqycPqg0+FjjW73sRlAPbaBPKMSp0TF02mSESRb1jwIjeSs1xn23FejNl6BXXMx4iuCL+M8cpZ+GVXwEuUYM9H9L9z/Wcz8UZStIOviW5NIOQf4KG9MoK6rmCyIkCwcQdUluojVF1SUa47iWHVEwJs80sqURk1uIJz3+sjX3/RC3PZXI5I+LAPisUS73X5aRIe+KkRQyjSeGy7y4YnPVyI1SqconeDFoExOSNq0Q4EWe+bEG0bPoY7OjIMT6HI+AumSdnRwJIpryQhcWCyh8wlIc5TOQLUQnaG7KyNOIOvF+zyxDbvuCpCEKBh+Bsj3WMMY8/QnWiEgSQtv2ngd2UPStF21iloWojWkPSRUEBy713Tpact4J2G8E7U3novHFs+aZEBEuPzyy5+Zh/0JRezSK2kRJKGlLONSMigdi0WNKk4THvgC4FDe4VZdAN1pwr2fRpd93r6t4J1Xrsb4Ivarbck5k8Jl56yKGXOSE47cQLBV5DATYomxcfbTY2tJ3/CfsO2VBNNa7i+PYkTveejDUlXVE5QdfZwhKiYqOmuuTaF0esaGtQlV9YliCPE6O1Kg8XiEsXZGK9V0B0cwwxlq7/F4lmqLVrHlENUJA6pYQoeAOn0vvliKFDxiG0a0BpXgH7gBmT8ISRsRgznvdehL3olaOIq4kjqfQpIxRBJkNA8fZz+y3+8/KcM3irOTuQAElYLO0Wm85ygT2SUqR7/kR9HbXoq++O2x1GoLAkJZVZxciOOaiaWXBcQVMHcI7SuULSPyOxtHD2dppDTROOraIq6izifjpuhqTDkf+/6iENMGHFLMEZaORsS7bsZvYgv5y3+UoDOSC95CsucteOonjFofDodPE6PgoSGgEkKoIzMjhKYS58moEW2apFcTdEKiYPXM9eRUX7VVBQGSFnowj7JlU5HSZ9oDBIKv8KfuxC0cQ4+twyWdCDQEghhCaxIRhU57EARZsYvkqu/D6Qb0unwIeOzxxOWIv75QaRufdpCkqVQ2rAatiCqiKonvPQjuyHW8cPwBNk9mrOlp6mL4HFzgccSzZWd9eL37f+EhCFGTJiretY1DRLFUlMiBL6Cu+Q10iPalWrcjt/3a/4YZHkdu+wCqmIsiHK5AeY+qS7yr4gk2yQk3/hWyeATyHnU6jrv4Hajtr6CB3qB0QlAJLutG4M1jiKdEjvhhQgBJurik3ZxsQekE6gIJiqBSRDy6KnH5BG71LgLCypZlMgMVKrJUGM+hve+T6P6JqGrnPcMilmndWQh27QpcexJ/1z+glh5ANypwXgS0JmQT6E//JrLvs6gknvo1GpX0UEunEFdT52NI3iWYLOqqP4Fot9uP/k1PIMIyvCqA8ZD0RlZQ2NY43qRolaHwoHN8cDHJDJrgHKf70fAFb+NG5CxuaYYgoGyJKIPOesjwdDSasSVeBOPqKH/cWhEZGa6PVEvxVCcC2ThIwB+9ibD/C4hOIvNBmwhJVGlMNBBUZzXu4rchWe9R3u3DR57nz8z60NAffRDwNV6E8rzXY1sryIJtvCMyEE9IckLa5bz9f8628AAGS9TgGJHgBNI2EHC9DcjGyxq/iww3vRMngtQD/A1/DvMHYWoz4fw34VdsbrwngKyHUxCyHkhApRlq1XnIed8A+olV/YwxTxueaBQiIOkYITHYdDwegnwV9VVEMSmLuGwCv/YCXD5JcvV7aV/987xh9xQvOW89ed5+ri7wOOJZkww8+2IEKksRlcXynsROWGU9ylVRKAiaRmFC0CnKWyQIul5CysWoIuZ9XOSciy2CEPBpD1MtosoFfDpO6K1EveYX0Oe/iajwTUTn5xOY8Y2oEVrgUVLlJ1+O+OEjiEbyCXxTbg8o0CmqjkAnTBtBIfUC2nQI6y9BQmBjx7FtXEiv/yPyW/+clxUfpy0VCHhnCQgLRU3v+BeR2X0IZ0qxtrcGM3s/+oEb8crgVBqTEpPjprcjfojUA2R5o5dYapXGdz2fwremIWk9SGfg8cRTpYsRSVQR8W+TcUIa1f+caUF3BbazhqAMXpKo6WBLxJajH6auazRhua0QvEPV/RFdAVGGkLag7KN9NCCSEEjFRr531sGbLLZ3nMOLjkJSWS9eWbEYNzGTRXR8U1lZ3rwlIJ2VtF/4I5A8MdvZp0eO+OHDJy2Uj/iLgEFd+d247npSqcEkjZFUpACqrEcehuRntQliNAlB2sFrg9/yfGTrixDxuPYU7vw3oYJHeYU6fRBm96OmtpBd8d3oFTtisoFAayJWiLIuQVSU+57YiLnq+xpZ5McfT4Yc8eMPQXSGS7qEfCJSZ0MgeE+qPGv1HDK5BbXuEmTFJrAl2vf53hfv4IXnTC9XMp5NB8hnMp5LBp7iEGUIjQeAwgGB2llMaEyEQmiE7BTS9MUggKugWownuVEEB7aKLnRJO57YqgXorQbTQksSRX1G/+UT6G/4FWTlziY1efTb/XToDAQgiOCyTjM2jXCOTtBNMuDziNoPuKiPYFLAk7iCn3r1OnYvfQZ1/f/iSnsdK3RkBogEHIoTCzVrlu5A1/PR/W7kyHb+Gwj5FJSLuKyHTeIJzOscs/Uq0Ca2FppyKgKStgk6RVoTZK/6GdR5r8NlY7H8/gSKkEmSPEUbVnOHe2tJ3vKbhPH1aIiy/r2N6G/8VRhbt6z9Lr6OfPRGFa+qIw3Lp3lkpXiPjBIziL3rtA3FQrRxttFbIKXG4DArzoG3/wkyuTU60uVxI6LVA1H4colgS7zpQCMqtMy5kVjBMPiGE//E4uk+uZ4JIez9FnzTElEUiMlRRCCwKBPNhsSAGHw+gQ4Ow4NpkBKahlmSgUrRrclY72mtJH3zb6NW7iKoBBGHntuHbo8TVpwTFUhFxVabAK2JiNfIOgQxqPY4QRLS5kjwROLp1xkAguCVRict9Jt+BTZc3rQJovBVmyEq66KVAkkJEqI9t/eg9DPCgHg2x3PJwFMYI2XAoKJ0rQ6O4Bzm1F28eOFDzXc0tEAdhWNiSLQjrfqjfwLgvcPPHSEsHYvypsGjy0XUxCbIJvHqDAhJiKCmZN1elBkBaeRRF4MnX474a7xWezqKnzRlYkwafQFEsK0xnE6iE5u0IJ3EaYNZOszGe/+CNn2SU/cwrRaZ0kOCaIxEzYXTSyWTLFGnYw1lMIIndW8Dko4jKsWOb4ngJEw0nWmtAAy4YQQsjq4x6+HSCezEJvTaPejeNL6zEqcyeALpwFPJgxcEpTPSdZeQ6DagCKZH3VtDsnZv1E0g0uCCd3hXUmuDhMCg9ig8Pu0iOEI5B0dvPQtslkCSIQuHETuEugKTklKSEFBpj2TzVYTeemxvfby3SnCdaWxrBXLybvTx2+PJWMWy+Wj0zuBXzBMGD8LTJEf8CKEnNyPaEHxszogk0bBJbBSoMg0jRhS0ViDBs0L1SZpmTpxLEfseEkNQCSEbQzAkOsWs2xPBq6PczNUwsQ1lWvH0H+tosQqTj0d6Zt7FmxYytjZqYHwdY/t0rgswSkEDZC1cNkWy+jzIV6GCQ2yJkXAGt4PEJImA2H4ExoYnV/b7X0M8lzo9hSEEgugoVwoN+tuzqjrMeg4sf19ARZMR3TwCQuw9Fv3l3wQQgoWl4+iyT2ishyUE9JrdhN3fjJhO8zL/0stiUXXO7H0H3p/lzKhSAg4VBD8C8QWJrJHNlyJpFz1cwB26HuMKxFk2dSxV2yGnhDQ4EhVwIQIN5fL34O77FOrIl+OrJi2CMlQbL0O96ufgb38Y4SjKmOjsKComDsvgQEF116G+5S9RWQdRCY4U85r3Iu1JRlvY44knXY64iYf7nSEE0vNfT9j+KoIyy9eqdEpwBWIFv+lK1L6ayjkUmpB0AUiqAVSLDTirEb5JWyhXLdM+bdojERdPv7qDiCbk45h1FxIO3RDR89tehnv9L5O+/3sIvqbWhiAZQZnlVDi+ga8f9/2MLv6iIoS3kWcWZaKNLnU8pesI5AyiI11QhG86v8PY/ZZgPRICPm3hcWByvDLotNOkCQ0XSKeM7LoDEKa2xeSqGcVlEl3axQdBmQ4h66J66+Ml/otfF86EQFRQ3fwikqmdeN1CtCCujztxB3qwKVKllW7YHE1CZUt8P1Jfn8nk8NkYz1UGnsKIp7Acu+5SnEqiiI6AHXmNhdHJKPZ7g24RgsKLwRPNYJafcoh68r4ESZC151NvfQlOp5COk0xtQamvP7eL3PSnY1oodGclaW/dmdc2SQSbSYDuOsL0OThRiBJkfBPl9tfisjESH+VWq9W7aCWKlqoJokmwTHZyNJaelOhVF+A2vxC7dnfULEjasd3QWkEyuT3+3iB41WpaNCqCF5vkTQDRCcna3ZipbQQ0BiGd3EiSdZ9QydUY87RuWrq9EjOxBnX2o64Tgq1w1RAZ24wIlLVDSUDSFixvLxpn2rH8qiLFzUvD3PYOl3SX2wToBC8Kt+lK/OYXUW99OYytR2c99LqL8RObQRR6akM8oSpz1hb2JL3Xp7uMfVZIMy7BVUhwSEOfXN2KtE4xeTzJiibkY0BgQ8c2AEKJ6oBJFnEfOgOVRF1+Ga0PRPCfNJtkENTYmq+6jkDAT2zAbnkJqruS+tzXETqrn4T39/SDtwUhSTskU5ubllcST0qf/jXUF/4AaYBYQpxPLu1GivDNH0JJeK5N8DjjuWTgKYpl8w2VsHD+t+J76xEi5c00fdqGKNT8gGraBA7SFiofIzSqYaNHUFxBOH5zBHTt/ibMm38L390QX2tk7PF1nq+eDtlREVCiUKLPGNEAojSBBCct1NhaZM9bI85CJUg2Rv66X8CNbUDbJbxO0S/4QZzSuLKPb49jpGS6l9MNNVOygGRt9Ct+Gn/R2wk0mAyTRgqjMojWMQlTaUwSlGJEE4sXemYRVM2HLJurnLn2xxNPphzxo8UZBo5+0GIedIKrC3yxAL1pBKFfuAhwTVpNFhQX2lpiOwSlIw20McQKoiDtklORiCOoOCbpld+D2fFyshf/MGbdJfH7p7bAea8BlWE2XtHoRjz5p7a6fuK0xK87RhLKvm4UxzSJFrauGwetEJ1GXJAoVIOnsEszkRmkc3zawZs8im/pDNFplHI+S4oXncVKIzrOTZM9BIAYq4zJql2kr/pJmNhG/tr3Ivn41/32nHM4577u3/NYY2RuFjVIJM43ZZCgMEtHSes51AiVHQcDVp2Hf+G/J5y6A+zTRJH+vyieSwae4hAR2pPr8Oe+Dpd0MSq63C1z6UVFQphKmhNpfADQGqmHcNbjboo5zBf/CN+eRrVXRmncNH2IlPvXtxg+XdTChwubdJEQsFteRNh4aXRXQ+HTsYisSDoEo9BldG2TtIXBk2jwaYcLVne5akuPXbKf7eYYpF0SpVGrLsCm40DEZYhOotVzg9EI2kSkcqMBz1NYGXnG6G9NCOB1gq+GqGoJ1Z5GE1galDGVNG0YYV0QQqsb211Kg4mbkTSbncratKTC4GKrRYjiO5KidI6SaKdtAMnH4uKeTmB3vgHGNsYLehL37izLnjEdkpgYAt7G9zRKKF0ZFfRUgm/AkSHr4EWThwK0xppWNO4yOaiIMRKdxH5/pBvFI4HWBEkJaSv6EC0zA84MYlQ+TDANZVOr5Otuv8AzQy0E4sGHeCTyWRfBo+ohOtQofJxTCKIMLhlHrzoff+puKGbOiCQ9hx14TPFcMvAUxmjR71eW5EU/hGpNkohHS5MMBKHOJ3BKRUBVI37jTC8qbtkBhDOnKAk+9sqntyGdabwyYFoEMQ2w6Ing2x8cVVU9AxSiGF5H171k12vJ9rwNo9NIj5zYgBArCUFlqHoxurepDt45fFGAafOaC9fwsgvWkEhAS0B0TlAatW4vdmJjo8aYxk1N6YjyllgJ8DrF6SziNZ4g/eqxxGAweMp+92OJmOwkBDdA+YqQ9TA4AtECVtJ4anVpDy+KOsSTqBeFMiaWZoNEf4asSy4VqcQ+d1TdU5xtOxwbDhqfTOIlyjl3XvzDpCvPfxLqWA+O4XD4jPWJg2pElmwRAX06QUgRVxG0ISiNTVJC8AQ9hqBhYQav86ggmkWZa6+ySEXWJiatyy/go/iWFmw+ASi8McS+wch9YlQbbO4DTVXoSRjnZ0p0CMCH6MTJ1LbobhosGUUESQYI2FhtStowsR6cY3jT3zEo+nj8k7Aq/uuI55KBpyE6nU4DKBJScRH4EsCLwp73Dbi3/TFy+XeATqlXnoN64y8i6TiqHj7kN0U+fmj628q0o7bA6vMYLQVf71OfpukzR9EacbG1iYulTvATGzGrd+LhzCLrLdqViElQSpEkJnKpXY0SQROpRcE0qmVZD/P6X0LWXEBoT57BB5icoHW0gO2uIlzwpvj5JwF78UjR7Xafst/92EIQbUjqIurop+24xxDbBCRtnM6oW5OE8fXIlhfiRcWFV+e4pEu5YntUNWxN0GZIHspGF+Ls1sSZpABAtl6Ja60g6EivW/7ak1glecbkiIFlkK+Lmhc0gE1xJagU1V1L8vr/ivTWotadjz/3tWgG+OlzMd/4q4SJraDzCPTUSUNvPVMV9BABtjonpI1wlYzaWaNWo5w1/g/++HrH2RjzlMuUP1wIDYJFNPr8N1Cd/2YCsG26y9qJyNBAEnx7BSrJCSbFU5Puu5pOOkqDnj3AyWcy/lUnAyO6zNkfT0UM+n1G8qwtHZMBL5Gnrsc3kO56E3rlrggcysbRW16M6BQ1XIwbFRKpMk3pNp4Y4knZbHw+ZJPNfP/6J/0zWRkgaS2f1IEI+JvajrRXNcAphdI5hKiLH1S0HXbVMALfbEGihZZ2BJ3h01jyVijSTc+DbAzGN0T6nAhBp7jWOC7J0TpFrToPRgjlpyiebDnixx8BpRKMt1FcKWmhVTSxUoSoq6AyaI0T8gmK0IlaF/L/b+/N46yozvz/96nlrn17o4FmERHsIKtrUNRRExUVF6KJcUhUTDQzmuAyryRf5+VvRmMEjRkTY6KZlxsSXIiaGUyMjlsE3EBFQBtEUBabZqft9fbdqur8/qhbxe2mu0GWvlV2vV8vRbuLW58695xTz3nOc55HRQodqcXJVo3E0HQoqSJOmojI2S7u7hBAvBoZrXCTDR0KiukZcFNCG2nbkBUqQkg7SZiiIfQw+uEno2gaSrgUtWoUanInIlKOfvipdj0MVbPbXiiYoTLQd58mQEg7t4UatdsxbyzbHPqVbzE9A/axSWkfDa4eh8AiqhjEQiAV1Q62Lj8MK1yBIjQ750KqmWQqS2+0zVeFPhtuKaXEsiw+/fRT0uk0Y8aMOWQr4mg0BsIERXDZhChvvZXD6n8komkzQlXyx2gUtHgFOSVunxYQAksRmBXDCe38DBMNRZqAhSk09I4Hswo4MIOgGNa/gzZwFGYoiqpH7HoCh5+CrDpid/0CoWLGK/OBl/ZxLaGoaCKDCMeQRpLRAxNcO3k0yieHo5UOdF2mAIqwkMdfZcd3CWHvyY6/jMgJ022PhBbFFFH0A0h8szei0egh++x9RaghTEUHJQR6DF2YVCopysMSqdtR7zJagUyn0EtK7Qh3oWApCgiJfsTpKNvXQnwoJeJjnFKz3SJBjZZjTb0XWTqUgpC4g0okEimaZ8BSFQwlgtqyK3+M0w7yw8jZFQ1R809s/2npOqqRRGphFKEhlQgiUY1obQZNRz33F6jlh+NkDwDIqWFMLYY6/jvIrR/biYywjYVDfY5C07QixbrkDSE7UwKqHsZCxZAGwlLywb0SJnwHmcsilBCKEgEjRWx/a2H3UfqsMQDw5ptv8uqrr1JRUUFtbS2XX3450PV55QPxGmQyGRJhDc1IMva929hojLWj4pONbq5wS0rMQUdjNe2wrV01hNRj5MqGojbWYVYegdJSj5QKStURWKKbCUAe2A5ZLpfbHXXe24E3kUpMLY6ar2GuRMsgVr7790LFGH46cusylHQ7QlERWFimgQjFsExJWNc4qn8EY2N5vm0LJwRhJ2jCwpJgaRH0kmqUfqPyR7KGY1WPRsaqgEPz/IWnCYoW+a7qoGqY5YejhhOEhMHxfMxQYx0ydJYdyFoyEDO3BcOyI7mF0FDCZWQPm0Ro2Alkt69BLysnoaSwLBX0sN3vunkmoUbQBx+TPxsjDlnbhsNhVFXt9bZVhI5QJNbK/7HjKhT7BAdGJp90bDcSYSdwyqYQehhLCMyB4xCaQNm6BgSoA0YjhDM9CywEiq4hhx6PqBxhV81UtPzJhfxnHsJndtIRR6PRovVbCZhlwxChEhQjibQE0sm4mhhiJyTKJhFaFJlqxkjt9sIFCYj2Tp82Bv7xj38wbdo0qqurufXWW5k2bRqaprkusXQ67XoQnGQxhUljOieQ6eoaAE3TkVJBKjqhbBNDxDZUMRgBmErEHs/SQhkykfCgozERWIqCqoRQYxXI6EDUbz+G9bfrsUKlaCdeB6ZlF9kpuLeiKO69LaeeQRe6utMJuGWhTdPcvd9b8Hld/Z3Ce++Nnu6NUFFUBVOJolgmlrTLwFrsfqbQMd9FRiLw8u1IVPt4ojQxtQRKLmUncDEM+5iihZ3O2DEIpAXCqdwg7Vz9hl1pTkgLdcgJKJc/C3oc0zRRFKVDO+7tmbr7/8Kfqaq6T67szt+h02b72r7d/U5RFCxpu17Vkf+EUOOEhUVCZBAomEoERY+jVA4n17QFLV6OpeQz3EUqiFz4W6SiETl3LEb9EhIiR0qxEELv9rk69x+rm2OF3fWNvT2T83ecHA5d6djf9uvpu3T7vWVhCruolWipx4hUYuZ7mWJmkYrijicpbY+eVDRULMxQBGkJwideg5XchvXe4wjLDtK0y3iDExgsY4PQz/8VfLEGS2gIoWFZEkWAxb61fXfPUnhtV2O5cF7pcQx309Z7a8e9zUvOz8TIb8CQY5BtDUipYknTrt8i8/OEVOx4FtNEEQbSsgMOhejZY9TVHNbXkhb1aWMgmUySSCQIh8PkcjlM00TTNJYvX84LL7zA5s2b+frXv04ymaS9vZ1YLEY6nSYUCrlnbhVFIZfLEQ6HSaVSxGIx2tvbiUajZDIZdF23YwZygojUiMoMp2iryRqD0KVCOp0l29pKNmegaqp97thIEs3l87Tr5UhFJUsE1BjSlLS3phD5CoiF947H4ySTSVenruvuJLQvOqWUZDIZVFWlra2NaDTqPncqlSISiZDNZt3kLqZpEgqFSKfTe1wbDocxDKPHexfqtCwLpT1DCJVkW4pIsp32dvuZ2tvbiUQipDMZNF2BjEJcWmSzBiFUhJUlkwOt/Qtav9hFeaYNCbQ0t4GqYhqddKZSRKM6ZuU4RHwgVmMjdNAp9nimTCaDpmnuZKhpGtlslkgk4l7jtKfTRs6Lybl3JBKhubmZUCjktmcul3MNMMMwumzPzn1OVdVu7+18l4U6M5lMx+/ni2bKFJ2MKEWksiRC8LWwgtpu0k4UZcTZGKWjoNqg3YoQRyWdbMdqaUEIBcNoI6xHMNqzlIoUOioZGSLV0NDl2HB0Ot+lo7Nze+6hs1Of66mNnHgB51pFUTAMo0Of6zw2uvsuC/tcNpvtYGTout5Nf9dRSoYS2rEKGa2isbmFWM4gYmQwLEnjrp3EYnH72lAYK5mhDECN8MUXjYQiETLNbZRYFm2NzWiJdrJdfO+ZTJaoqaKpOqZhkmz4glgkQqZA55cZl057djUuQ6GQe20ul3O9WvvV5wq+y87t2fne3c0fkUiY9vY2opXjCX3xIpYI0drSghJPYhoGCNCkgT7kWGRjHS1f7IKyJOn2JNFY3O1ze/suHZ3FKc5UPPq0MVBdXc2mTZuQUlJSUuJmrDrhhBM47rjjWLJkCdu2bSORSJBI2Ol/nT+7orS0tMtrTCNHeXkJRsz+vYqJWpJAfhGipLwCrcw+Aw/YR2ikgYzGMVNhtEQ1UtcIl5ZilPZDGFlK+vXb4/ibc28nWn1/dMLuALd4PN7hmi/zeft7rYwqZEMxyvtXoSdKSSQ6PRMAJmZVNZamEy0txwhFEIokXNkPmd5Kv+wG+OIz0DTKK8ptd22+bQvvLTEwT/sXuy6B2HMYfJln+jLPnc1mO/SnL9tG+3PvzteWaINIRcuIVo9EKatCj6tcOHoIvK0SO3ISYuB4OwBu3AXkPlmEDMUoKa9AragE7HWqkGAOHEJOaadE1YkNOJyS/v33fu996J/7248aGxtJJBJ7ZJ7bn3v3dOqjq3tbUmKOOAk++xuaqlBR1R/CIYSVIxRNMHBgtXutBMzK/lhCRdHjVA2w283SBpDWI5RXVqIkShDd6DTaLYxYJdFYnPiA/ggEXV15sMYl2NU2DcOgpKRkv/rcwervsZISOP6fya3/PwQmpZUD8vOnvY1gSRN5+gzSG9+jPBElniihNFECiC4/t6d7Z7PZIha/6n36tDFwySWX8PDDDyOE4NJLL3WDjxx3bqHbaH+DZ6SU+YQs+aOAmGBJsloEVdEhX0RotwvRPleLUJBaFBGK2i8rRUXEKjCTjfm9WfvY8cE8muW4yhx6M2BISomphTBHXYiaGALIDq49+5ntFZKl6nZWQjWCEk7YQVZ6DHXrSuRT30fLtmGOngrC2aGmQzvZ7ayhqfnuLw7uefeentFZmRQjvaujQYZKUM68DWXgaDAydtY7M5VPdhVBVSP5gE2JMmAU4pw7EBWH2x8g7Nz4CFDUMHEli6kqyHBJr7Vjd89VmI64t/uuIixMLYySaUWqITRUDKGCNECEXE1235NILYTAxNJU+2QMIPQEYvL/BxXDARPoGLQn8wNfjVRgnH0bSuUI19AVB+FYcU8UpikvVtIsKe0TL1akFMXM2UWhpGJvxwg7ZkIRgFZqe50wHfEHOaPFV5M+bQyMHDmS22+/HcuyiER2H43a1/3FfSWbySBLE/b5YGEhpZZPfKMVHA+C/DkiO3I7n89cCZfYAV0iBGWHQ6rlEMVi2xzqVMQ9oWpRwt/8f/nJposnFCClnYnNjrJSEOESO9pdjyLS7WhWK8Ky8kcyu6aYGQB7Mx1xt6ghQkeebmcTTO60jw1m2xFaGFW3z7A7YyBHGH3chUixu16DY1hJJURIleQUYXsSivQ4DkVNR4xdJVRaEqFHQKhuOylq4TQr7YyjqlOHwEkjLkHTCR05GdHN/r8TOyAUHa3mTODLp8PeX3ojTfm+IkJRpAihGM2gKHv2O0W3s4jm0sWQ51v6rDHgDKJCI+BQEY1EbOs0VoFzrEpqUSxF71hcSDovQYkRiiO0qF2BTI+iCYE6/lJEzTfyUfRwKEyCYrnF7JeMla/L3s1kKHdfbaHYq1M9Zq9o9ShSmgjLABS7dkH+L0kPrQuKnY4Y7JwCUtiliyxFtXNeZNvR1HyZ4vx1QgjikShChPLH2zrpVu2kT4rieDkOpZm6d4qZjlgCaPkjwXo0n5EwbzSpXWhSQ3lPTCj/t+0c/Fp+MbD7Uzu2p8j3Z3WP3xxaine0sBNCgB6FSAKRbsy3cWE7CbvtQ2FUK59nQB5ar8lXhT6ddKi3aE/Zq0FZNhR7KhYQimG6hoAs+NOOoJfRMkw9ihUtw9Bj9uuvdBChAUfbK4pDRC6XK07QjABQsc9h690M3vwPRQgrFEVFhVAMQwnbGfCEiSXsqo9SC4OdLuegbqUcKKlU56ySvctup7JTlEnFUnRkLokVHwihjnvl7alU/uquVmAaphKxT84fwtwM+4pz+qcYCMjXuhAIPWYfBhCK/afacc1ll961SzhLJQpYCLArSwoFexw4lSML7mFbzPbWl+jdF5xhGJ4IphMIOyFbvB8C0cXJFLvKKZEyZLa5By9LQGf6rGegN4nF8olm4v2xnPLFobhdxaxwRAvs428o6OEyjFAIdegxKOfNAj3mmgCH0kIvXsCM2Ms721nfC/T+NfCtP0CkCkuPo1SPQlQcnl8vSXJjvoVy0rWYQtgdvLgL1g7EYrHiCijY15fSzmon1JDtGTjs64hQaYfLXb1dfTmqilQ0t658sZu5mF4XpyqmJVREKGJX2RN26uU9S4uLfNEnZ5vA/lFnH8Ce7G2MHDo84xnA3p6S0Yo9YoHyv7W3rPQyMFqQFH/7yi8EnoFeoL293e6Q4XLsoCADJVKONfhYKB1Ex4GfT6LRfwTmgOMQ4Sr0/qPz9egP/ddVNM/AXsgvimxzQIuhVh+NUFXMUAlWfID9ElNUu6bTgDHo/Y7MW7qKZwwBKH6hos5IoaCqCiKbzFfJ69hYPeoVaj65juMSL25DF9MzIJHQbyTmyTPga+fanhc30lIruE4gMSFUglA0LC0Mhzx/4IHjFc9A/rwVZrjUToaV3zYB8vODAFSskWeRjR9Osfuknwg8A71AJBa1u2w4ZqcqtXKISCmhc36J0HQswAkjwgleHHU+ka+ZqE6Jzl6yyr17lEa4BoHMZ11TLAupCISiu8WHECroIXsFvJdEI8XAyeDmjVWWtDO4KSoync4fT+lIj+mT8zXmpZXDC+uK3oj/6Q4FsBKDUc68xTZYpUQqdsUHCoJZ7R1ugRKtsGtkqJovXledj2sWCxOBgoUVKrU3uhQ9vxWg5sMw7VNI2tjzMdP5AEI/NLAHKP4I7gPk0mmkFMiyw7BiVWQqj8SqOAI1FEYoCsoeCYQFqqKjqCGsPX53aDEMwzNRw91jj25LKIjq8cjBx2JpYbtULAoiFC+yvu7xxGmCAoRQQNUglyoIXNtNj3pF/kWn5I2wIheFyWazxfEMiN1PHsJEdeqGCBVL2FspHVHsPe1oJYrYc/R7EW+cJpCuH0A/4hTb6Kcbj5QlyWZz2AGEvavSr3jD3PuKo+khVKEgKoeTHnQ0Ss3paIMmoHTT/LvjY7sI2jrEONnwvI4TtKYdeQ6pdIaw2oYZCkPKQI2UF1tet3jL85KPslBCSDODVLQ99v170iuEiioECGXPoO4iUKx9bWfvWqCCdGIALBCabaDqJXtcr4TipAaMQQ+XAQbgpX6xJ4qidMjjUBwEGnZ/0yuGk1H3NAacUy1CUdH0EEGGgX0nMAZ6ATfHtaIjTvkJasVglHz0dZeTl7v31fv4oaCHE1UNduCWhQA1itSi9mo17F3PgNfynUuhIFUdJZfaHYxV0PV61CsUUHR7D9wDeQaK17YFozX/H1IK+wx82SCUkoG7r3QSDyk6nHozSuVADn3NwQPnUJZ431c6JGDS8oaA1ZW3Ij83OP3BB4sbLxAYA71A4SAKDfu67Tr0sMVa7EH/pZHSNrT0GJYSAq3IZUAjCgAAJt5JREFUEfs94L22VVEUDS2XwnLc2QUr/B71utHwzpG44vZor7WtgoKhlyC0ji97xyDIhiuJaGFPzwWFeKl9pRbBqjgSVes6TsQLxovfCIyBXqAw+EYIffc6wIMzQLGStuwvihCoiopQdczEIKgaj149vtiyusUrgVgOQoDQNNRsClPVwA1ntelRbz5gU6B5oi97rW2loiC1GKKbaVbTNASqL7blnBTtnqFkANp3HkCLVtJlciav6fUB/pr5fUomk+lQJtT9xwszaCdM03SrpPkB07IwjBxCDSOGHI8ceQYi2n2RmWJT2Be8gETa6a5No0tdPQcQCjvRTj6BTrG7czabLa6ATlihUghF7HwDXeAEPAof7Gx7I4BwN4qQqLGqfNvu2XaWZXnkKKR/8JYp/RXFW8fJesZrq6u9oagaoZBd7Cl0yg35tALetXF7PKpXDKSJpUZQMXEK6hTS83E9gVCUfOa94hMOhz00xgSidDC07cjnG9iTYqZP/rJ4KemQjUZPaa5UVSUcDveuJJ/jj57oc7yWaKYnstmsryxqyzTJZOzzxIoeRVGjCOFd16vX+oIUGlSPxVI0hBreI3lrz+mTBUIJgRLu8lhib5NOpz0VoCmO/AZiwneQ3aRq9prenjAMw1OeF5HPI9Jd9U/TNIue+ttv+GsZ6FOKnoL2SxAK7bk69DKqqhY12cyXxWt9QQCi8giEoqDqETqvtHrUKwRSCSPDeWNAyqJGbkciEU+ttNUB42DgGKf28B5Eo1FP6e0J73kGekZVVe954TyOP3qiz/HaarAnvJqOuDtM0ySd9k+pUq/1BbvAjn26hXB0j0zuPacjBjNejoxVdki8Uyw8tdLOr1g1VJRuYgZSqZR39O4Fr3kG9obf5gUvEHgGegE/Wah+XAH4aW/QW/EjwjYCFA2p6KDv6WHpue8qMHAcon0Xll1Dsqh4KWag6yI6HfFCOet9xXexRIriq3nBC/jrG/YpXktB2xOG0XVUuVcxTdNXngxv9QVph2ApIaQSQmhhLDubPs52wd70asddAdIsuiEAtlfLT1tG2WzWNwsFr50m2BtSSl/NC14gMAZ6AW+loO0Zv53N9Uaa1H3Hi31BCA2p6kg9Rucz2z3rFajh0oL/Ky5+82r5Sa/fxlmQZ+DLExgDvYBf9gUBD7mw9w2/ZRrzUvs6KoRQkKESlHi/fKns3fp66rteeQ4HP40z8JdeP40xBz9qLiZBAGEv4KUXwL7gt0HkJ71eegFI59/xfhhf/yFKyYA9r/FR2/pJK/hLrx+Nbj/p9QKBZ6AX8FPwjV+qFjr4zR3otb4gEMhYFeFJ/4oUaj4T3u6tAq/p7Qk/ud3BX22rKIqvXq5CCF+1rxcIPAO9QCaT8c1AMgzDV4FCfks76sW+IIRAFc4GQceYAW8FPPZMNpv1lOdlbzjpiP2A3wIILcvyVd/1AoHp1AtEo1HfrFi8GODWE6qq+ipRkpf6gij4d4fwv4L/9Eu0O/grvS/4S6/fvC5+S0bmBfzRE31OMpn0zQogm836LrmIn1YAyWSy2BJ2U1g0q5sCWp7Suxf8lMQH/KXXj0mHgnTEX44+7RkofEEfSqs3Ho8fss8+2PhplQ3+Szrkp74A/tLrp/S+YKd69stq24+eAT95tbyAf0bOAWJZFjt37mTjxo1YluUmpVi1ahWbNm1yf3Yo8FoK2p7wW6Eiv3kG/NQXpJS+0uupdMT7QCqV8o3HMPAMfPX5SnkGulvpSylpa2vjwQcfZOnSpTz55JNEo1Fmz55Ne3s7W7ZsYfr06YwbN26Pz+nqs78shRaq1wd/YcyA17VCx7SjftDrp74ghHD1el0rdNyD94NeJx2xH7QWRub7Qa+iKG7MgB/0eoGvlDEA3b/IS0pK+OlPf8qMGTOQUpLJZFi2bBm//e1vWb58Of/4xz9cY8BJcetE+x7oaiOdTlNSUtKtm835eU+dtjcmDSEEuVwOIQSmae6XW9DR2ZNe5/cH45kMwyCTybiBeQejjQ52WzufJ6UknU6TSCQO+n0PRS4LKSWpVKpLvXvTui99+mBrzmQyB7U+waEec+l0eo/6BPt7z0OtNZfLYRjGHnNhT/fdl7lgXz5nf3AKFe1LwG539zZN86Dp8QNfOWMA4G9/+xsffvih+/+jRo3iO9/5TodO4bjCQ6EQZWVlNDc3u79btmwZf//739m8eTMTJ04kmUySTCaJxWKk02nC4bCbw19RFLLZLJFIhFQqRSwWo729nWg0SjqdRtd10uk0jY2N6Lruvrja29vdayORCNls1rW+TdPs8tpUKkU4HCaXy7n5AAzDIBwOd3nvUCjkdmhVVcnlcoTD4Q6fF41GyWQy6LqOZVmkUil0XXc/x7nWmbiy2ax7rt/RmU6n97h3oU5FUdx774vO7tozk8mgaZproOm6TjKZRFEUduzYQTwed9szl8t1qTMajbrP3dV32Z3OwjaSUqJpGplMpkednb/LSCRCS0tLl23kfJehUKjb9nSOdnX+Lp3n3ptO51qnH3XV5zrfO5lM0traeki+S0en81121vllv0vDMGhqakLTtC+l02mjzuOyuz5X2EaF12azWfe7NE2TUCjk3rtw/nDunU6naW1txTTNA+pzhfOHo9PpR84z9dTnumujwj6Xy+XIZDIIIb60zs73LvwuC9voYM1z2WwWXddpaWlxx0hXfU7TtG77Zzab9V3dkwNFyK+QD8VZfbW1tXXY3wqFQpSUlJDJZJgxYwa/+93vCIVC3HjjjcyaNYt3332XzZs3c80117gD2bIslixZwvbt2/n2t799QLoaGhqorKz0RQCOEz3ul8CxbDZLOp2mtLR07xd7gIaGBvr161dsGfuMn/Q2NTVRUlLim2QzjY2NJBIJX+h1jK2SkpJiS9kncrkc7e3tlJWV7fdnZLNZZs6cyW233eaL7+hA+co9oRCCRCKxR8xANpvlscce44svvuCRRx7h6quv5oILLuC3v/0thmFw/fXXu9c7KyBVVV330f68yJ2/21unFg6Uzik8vay1kAP5jnoTv7VvoV4/aQV/6fWD1sI/va7XwW96i81XyhjoaU8+FApx1VVXMX36dIQQRCIRpkyZwmmnnYau6x0SVBzsvWc/WZV+Su0LQTriQ42f9PqpH4B/jus58T1+al+/6fUC/hnpB4gQglgstsfPe8O97Kejb35KOQr+TEfsJ/ykN5fL+SpyPJvNdjkneRG/pSN2vMEB+06fMQYOlOBooTcpTEfsB71+6guwW68ftPrxaKFfCgAVejH8oDc4WvjlCYyBHpBS0tTUxNatWw/oc3bs2MGAAXuWh/Uira2tCCF8EyiUyWRIpVKUl5cXW8pekVKyc+dO3/QFv+ltaGigrKzMN1sbDQ0NlJeX+8Kd3d7ejmma3R6L9Rq5XI7W1lYqKyv3+zP8loDtQPHHqCkSAwcOZOHChTz11FP7/RlSSt555x0mTpzoiyJAW7dupaWlhVGjRhVbyj7R3NzMunXrOO6444otZa9IKXn77beZNGmSL14AlmXxzjvv+EbvRx99xJAhQ3xz+mHFihUcfvjhVFRUFFvKXtm5cyfbt293c7F4nWQyyapVq5g4ceJ+f4aUkhEjRvgiruNgEBgDPTBixAhuueWWA/oMy7JIJpPMmDHD86ttKSVLliyhvr5+j7wMXuXzzz/nb3/7W4fTIF7FMAxaW1u54YYbfFFRzTAM2trauOmmmzxfs0JKyezZs5k0aRJjxowptpx94sEHH+Sb3/wmNTU1xZbSI1JKamtrWb58OdOnTy+2nH1i27ZtPPnkk/z0pz89oM85FMm8vEpgDHSDE0F7IDgdacSIEa7r0usdq7y8nGw2e1CevzeIRCIcdthhgLfbVkqJoiiMGDHCXWV7WS/g9l0n8YtXccbZ4MGDXYPby3rB1jxkyBDfFCtKJBIMGjQI8H7bgp1bZtiwYcCB6fXDsx4svlJJh7yG07SWZbmBTV7uXJ3PPntZq4Oj2et6/dYXADebndeNAejYD8AfbeuHfgsd8wz4QS/4q+96hcAYCAgICAgI6OP0mRLGhxrH0jcMw/NHWRytpmmyYcMG6uvrfaW5c7Y5r+HoSyaTLF++3NXsZfzWtrlcjtraWlpaWjytF3a3rZO736t6HW2WZVFXV8fnn3/uWa0Ojl4/9F2vExgDB5H169dz6623smvXLs93zKamJh5//HHuvPNOXnjhhWLL6RFnwD///PM89NBDnq8mZlkW77//Pvfccw8zZ86kra2t2JK6xemnH3/8Mb/4xS86FOzyKnV1ddx///3cfvvtrF69uthyekRKSWNjI7NmzWLlypXFlrNXWltbmTdvHr/61a/4y1/+Umw5PeLMC6+88gq///3vfZUUyYsExsB+4kyiToe0LIs33niD8vJynnzyyQMue3ywKdQKsGbNGkaNGsUNN9xAfX19kdV1pHPbAuzatYsNGzawfPlyVq1a5V7nBTrrTSaT1NXVcd111zFixAiampqKLdGlUGuhN+vNN99E13X+93//11OGbFfj7KOPPuL888/n29/+NnV1dcWW2IHOeqWUvPvuu/Tr149HHnmEdDpdbIkuXY2ztWvXMmzYMG666Sa2b9/umX7g0LnvNjU18cknn/Dpp5+ybNky95qAL09wmuAASKVSPPvss6xbt44pU6Zw+eWXk06n+dnPfsa6des8c2TIGTi1tbU8//zzVFRUcMUVVxCPx2lsbKSxsRHDMDyXB2Hjxo08++yzAEyfPp0ZM2awfPly5syZw1133UU4HC6ywt0kk0mefvpp6urqmDp1KhdffDGKolBdXc2WLVvcyGavkEwmmTdvHvX19Vx88cVcc801tLa28rOf/Yyzzz6boUOHeuZYlWmavPbaayxevJijjz6aCy64AF3XaWxs5I033ii2vD2wLIuXX36ZJUuWcOyxxzJlyhTOPvts7rrrLhYuXMg555wDeCPIUUrJJ598wnPPPUdJSQlXXnklpaWltLW1uaWrvTTOAOrr63n66afJ5XJceeWVXH/99axevZo//vGPjBs3zjcpnr1G4Bk4AJYuXUp7ezs/+MEPmD17NuvWrSMej/P973+fhx56iEWLFtHa2uoJS9UwDJ544gkuv/xy4vE4//3f/41lWSQSCSzLIpVKFVtiB6SUPP7445x33nmMHTuW3/zmNxiGwTHHHENpaSnz589nyZIl7uqr2Lz11luoqsrll1/OH//4R3fFOnz4cD7//PMiq9uTRYsWEY1GmTZtGvfffz9bt26lvLyciy++mIcffpiFCxeSTqc90bY7d+5k4cKFXHfddSxbtoyXX34ZgEGDBnly9bpt2zbeeustfvzjH/Pee++xYMECVFVl+vTpPPvss7zxxhts3rzZE7oty2Lu3LlcdtllDBgwgN///veYpkksFkNVVU9ucc2bN48zzjiDiRMn8utf/5p0Os1RRx3FsGHDePbZZ3nnnXc8v5XoRQJjYB/oyrUKdr7u5uZmhg0bxhVXXMG8efMAqKioYMuWLbS0tPR6spbutAohyGQyqKrKZZddRn19PRs3bkTXdQYMGEAymexVnXvTC/ZEZRgGkydPJhaL8cEHHyCl5LDDDuOtt96itLS0VyfUrrQW9oWWlhZGjBjBd7/7XZ5++mnANgaKuQ/fXdtqmkZrays1NTVccsklPPPMM0gp6d+/P+vWrSObzbpHIIutVVVVWltbKSsr47rrruP555+nvb2diooKNE0r6sTfXV9obW2lvLycH//4x8yfP590Ok0oFEJVVdasWdPrCch6GmdOyt2LL76YpqYm1q5di6qqDB48uKjGQE+as9ksp59+OoMHD+add95BSjtvw9tvv01JSYknvC5+IzAGeqCwE27ZsoUPPviA9vZ29/fjx49nw4YNrF+/nmOPPZbGxkZyuRzRaJT77ruPCy+8sFeNAWewpNNpPvzwww4rUlVV+eY3v8m8efPQdZ1Jkyaxdu1ahBBcf/319O/fv9d0diabzbJixQqWLl3qBgEJITjvvPN46qmnMAyDb3zjG9TW1iKlZOLEidxzzz2MHj26115YTttKKamrq2PRokW0tLS4vz/++OP56KOPqK+vZ+LEiWzbtg3DMBgzZgzTpk3rFY3d0dDQwMKFCzvEsUycOJEPPviALVu2cOKJJ7Jp0yYMw6CsrIzf//73nH322UXJOmgYBq+99hrJZNJt88rKSqqrq1mwYAHV1dUMGDCAhoYGYrEYP//5z4tSi8CZF9ra2njppZdobW11f1dVVUW/fv1YtGgRgwYNorKykl27dgFwyy23cPXVV1NWVtarWsF+6S9evJjPPvvM/Z2iKEyePJknn3wSIQSnnXaaG5R57bXXMmTIkF7T2VmzlJL333+fF198sUPfPffcc5k3bx7pdJozzzyT2tpaACZMmMB9993HhAkTAmNgPwjyDPSAE1izcOFC3n33XSzLIhqNcuONN1JfX89bb73FEUccwRNPPMH48ePJ5XLMmDGjwwuqNzullJLm5mYeeOABKioqeP/997n99tvp378/CxYsoF+/fvzf//0f8XicpqYmrrrqKo488siiaHXIZDI8/PDDhMNhPvzwQ6688kqOOeYYlixZgmEYrFq1ioaGBhRF4Zxzztkj13hvaXYmp1dffZWPPvoIRVFQFIXrr7+ejRs38t577zFo0CD+8pe/MHr0aHRd50c/+lEHfcVoXyklL774Ir/5zW/44x//SE1NDevXr2fZsmVUVVUxf/58Ro0aRTQa5Yc//OEeGnu7/27bto0rr7yS6dOnM23aNJqbm3nppZcYO3YsDz30EGPHjmXr1q3cfPPNxOPxouh0tK5Zs4Y5c+YwefJkTjnlFDRNo6mpiZdffpmxY8fy4IMPMn78eFdv573s3uy7bW1t/O53v2PYsGFMnTqVRCJBLpfjjTfeIBaLubEX6XSayy67rENK52L126VLl7JgwQK+973v0b9/fxRFYenSpTQ3N1NXV0ddXR2xWIyTTz6Z0047rehjze8EAYRd4ERYW5aFpmlEIhFuuOEG2tvbufPOOzFNk9raWiZNmsTw4cMZPnw4DQ0N1NTU9HrGK+cllc1mCYVCpNNpzj//fMaNG0cmk2Hr1q3uGdzx48czYcIE1q5dS//+/amurgZ6f8IH2wgIhUIIIZgyZQoVFRWsW7eO9957j379+rFz507OOussTj31VD799FNisdhBSS+6P3qd3BGaplFTU8Opp57Kiy++yKJFi1i3bh2rV6/m5JNP5rDDDuPII4+kqamJmpqaXs/WVrgCFEK4K+Z0Os20adN47LHHuPnmm6mtreWkk05i6NCh1NTU0NLS4uqF3n1JWZbVIUgtnU5zwQUXsGDBAk499VQ2bdrEyJEjGTNmDDNnzmTDhg2MGDGCeDxelLYt1OtsB2zcuJGXXnqJ0047jfLyclfvrFmz2LBhAyNHjnQNgd42XrPZLLquo+s6DQ0NDB8+nHvuuYd+/fpx/vnnk8lkOOWUUzjhhBNYu3YtlZWVDB48uFe1Onqh47ywcuVKhgwZwqOPPkpjYyPTpk1j8+bNnHnmmZx55pmsW7cOXdcZPny4bzIjehoZIKWU0rIsaVmWlFLKlpYWefvtt8sHHnhAGoYhLcuSpmnKjz/+WP7617+WuVxO5nI59/pi6rUsS7755pvyqquukps2bZKmabr/3HrrrXLTpk0yk8lI0zSLprWz3lWrVsnp06fL2tpa92crV66Ur776qnzkkUfkvffe67Z7MbVKKWVjY6O85ZZb5OzZs6VpmtKyLNnU1CSfe+45uXDhQnnNNdfItrY2z/SFL774Qt58881y7ty5rt7HH39cLlu2TH73u9+VN998s2xvb3d/V0ytuVxOzp07V/7bv/2bbG9vl5ZlyY8//lg+8cQT8t5775XnnXee3LBhQ1HbtlBzNpuVc+bMkT/96U9lOp2WhmHIuXPnytdff13W1dXJq6++WtbX13uibS3Lku+995688sor3Tb84IMP5MMPPyy3bt0q7777bvncc88VdV4oHGeWZck1a9bIH/7wh3Lp0qXSsiy5aNEi+U//9E9yzZo1csmSJfLmm28u+rz7VSaIGWC3VZrNZjFNk507d3L00UezYsUK1q1bB9hWcm1tLdXV1cyePZsNGzYUTauUdkazbDaLZVns2LGDM844g7lz57rHwZLJJC0tLXzyySc8/fTTRct74Oi1LItMJuPuuV900UU8+uijZDIZAMaMGcMZZ5zBYYcdhqqqvR68VqgX7BWKaZps376dk046ibfeeotNmzYBUFpaykUXXcTIkSN7fYXaWWuhXsuy2Lp1K6eccgoLFixg8+bNgH0E9oknnuDss8/GNE1UVS2a6xdsz4VhGKRSKUKhEKWlpbz22muuF+a1115D1/Wil4912tfR297eTjQaJRqN8vrrr6MoCt///vc5/fTTKS8vdwNai9m2lmWRzWbdOKdzzjmH2bNnuydxfvjDH1JVVUVVVVVRj446eqWU7qkVZ16YPXs2qVSKE044gQkTJlBbW4sQglgsVrR5oS8QbBNgd8jXX3+dRYsWoSgKM2bM4MILL6SiooLHHnuM22+/HUVRWL16NW1tbVxxxRWMGDGiaHobGxt55JFH2L59O2eddRZTp04lm83y85//nFWrVjF27Fi2b9/O+vXr2blzJ1OnTi1qPfpUKsXs2bP5/PPPOfroo7n00ksRQvDhhx/yxhtvcNZZZ9HW1saf/vQnpJRcccUVQHH2/SzL4qWXXmLx4sVEIhF+8pOfUFNTg67rzJkzh1tuuQUhBC+88AK1tbX867/+K9FotNd1Fup98cUXWbx4MfF4nOuuu45Ro0ahKAp/+tOf+Pd//3c370FlZSXNzc3oul60l8Ann3zCM888Q1tbG1dddRWXXnopW7Zs4bbbbuOUU05h5MiR/OIXv2Do0KG0tbUV/cz46tWrefrpp90jxN/+9rc56aSTuP322znppJMoLS1l5cqVPPfcc5x77rlFrezX0tLCo48+6hqEF1xwAYZhcMstt7B8+XKOP/54mpqamDNnDolEgsmTJ/e6xkIymQxz585l3bp1jBo1iu9973tomsbq1at55ZVXuPDCC7n11lt5+umn2bZtmxuDE2wHHCJ60QvhGRz3lONOT6VS8qabbpK7du2Szz//vPyP//gPmclkZDqdlj//+c/lgw8+KN944w25Y8cOmUqletVN1VmraZry+eefl/PmzZM7d+6U1113nVy5cqU0TVO+//778tprr5VPPfWU3Llzp9yxY0dRXJad9S5btkzec889sqmpSd58883ytddek6Zpyg0bNsjp06fLJ554QtbX18tdu3a5bsDe0ty5fVtbW+VNN90kGxsb5TPPPCNnzZols9msbG9vlzfccIN89NFH5eLFi2VjY6NMp9NFcwcX6r3xxhtlc3OzfOqpp+Rdd90lc7mcTKVScsaMGfLRRx+V7777btH6QaFWwzDknXfeKT/66CO5atUqec0118iGhgZpGIZ87LHH5C9/+Us5f/78Dn2g2H33jjvukKtWrZIfffSRvOaaa2RTU5M0TVM+/PDD8o477pDz58+Xzc3NsqWlxW3j3tDc1bzwj3/8Qz7yyCOyoaFBXn/99fL999+XhmG42p988km5c+dOt82L3barV6+Ws2bNki0tLfK2226Tzz//vLQsS27evNmdF+rq6tzri9Ef+hJ90ucipWTjxo3cf//9PPDAA66bqrGxkcmTJ5NKpfj000/JZDLE43EMw2DcuHFUVVURiUR63TLNZDK88MILzJw5k/fff5+KigrWr19PWVkZV155JX/+85+xLIu2tjY0TWPUqFFUVFS4Ebi9HQhkmiaLFi3izjvv5NVXXyWRSFBfX08kEuFf/uVfmD9/PoZh0NraSklJCUOGDKF///5UVlaiaVqvWv9SSj777DPuu+8+HnroIQzDIJfL0drayoUXXsi2bduoq6sjlUqRSCSQUjJ69GjKysoIh8O93raWZbF27VruvfdeHnnkEXe7qLW1lalTp1JfX8+WLVtcvUIIjjrqqF7T2JnGxkbmzp3Lr371KzZv3kxZWRkbN25k1KhRnHjiibz22mtugGs2m+XYY491tzGKEYDZ2NjInDlzuPvuu9m6dSulpaXU1dUxevRojj/+eF5//XXXvZ7L5Tj++OMpKSmhpKTEHWu9pTmbzfLKK68wa9Ys3n77bcrLy9m4cSOlpaVcc8017vZgW1sb4XCYkSNHUl5eTmVlZa9vFTnzwjvvvMNdd93FCy+8QCwWY+vWre7Jm7///e9kMhlaW1tJJBIMGDCAAQMGIITo9bbti/RJY6C5udndQ21vb2fJkiVMmTKFOXPmIKXkmGOOYdOmTWiaxo9+9COuvfZaysvLi6b373//O+l0mqlTp/LYY48xZswYNm3axKpVqzjqqKNobW3FNE2+9rWv8atf/Ypjjz22qHtrb7/9Np9++imXXnopzzzzDOXl5USjURYtWsTgwYPRdZ10Os3gwYO58847Of3004uWCnnXrl38+c9/ZsqUKWzdupXa2lrOOuss/vSnP6EoCuPGjWPz5s2EQiFmzJjBD37wA0pLS4uiFWD79u0888wzXHDBBW4fOPPMM3n88cdRVZUxY8awZcsWIpEIN954I1dddZVrFPQ2pmkyZ84campqGDduHPPmzePcc8/lr3/9K42NjZx44ols3LgRIQRnnXUWt956a1HTNudyOWbPns1RRx3FqFGjmDdvHlOmTOF//ud/aGpqYuLEia7ec889l//8z/9k6NChRXtBvfrqqzQ0NHDJJZcwd+5cRowYQXNzMx988AFHHnkk2WyWXC7H8OHDufvuu5k4cWJRtws/+OADVqxYwWWXXcZf//pXQqEQVVVVvPLKK1RVVVFSUkJbWxv9+/dn5syZnHXWWUXJddFX6ZMxA4lEghtvvJFEIsHy5csRQnDGGWewZs0afvGLX6DrOmeeeaYbLATFPbd69tlnE4/HSaVSRKNR4vE4N9xwAw888AADBgzg5JNPRtd1d7+y2HqPO+44Jk2ahBCCsrIyNE3jJz/5Cf/1X//Fe++9R01NjZvutNh6KyoquOmmmygpKXEn9vPOO4/PPvuMX/7yl2iaxsUXX0w8HnfPtRezbfv16+fqHTx4sHs08w9/+AMzZ85EURS+9rWvEYlEiEQiRdWrqio/+MEPKC8vZ9WqVaxdu5bhw4dzySWXcMcdd1BWVsaFF16IqqoMHTrU/XvF0qtpGldffTXl5eVu0q7hw4dz0UUXMXPmTBKJBN/61rcQQhTl+F1nTjvtNGKxGNlslng87hqA9957LwMHDuSEE04gHA67R4iLrXfcuHEcc8wxqKrqZo+87rrruPvuu1mxYgWHHXaYO194QW9fo08aA6qqui7f9evXc+KJJ7J9+3Z+9KMf0djYSCKR6PVzwT3hrETr6+sZMmQIyWSSgQMHcuedd9Le3k7//v095UJzUq3u2rWLaDSKoihomsasWbNoaWmhX79+RYto74ymaZSUlGBZFps2beK8885jx44dzJgxg8bGRsrKyjxhEDo4Z8Yty6K+vp6pU6fS0NDADTfcQGNjI6WlpcRiMU9oBVyP2ieffOIGtp5++ulMnDgRRVEoLy/3TN8VQrh6V69ezbhx49i5cyff/OY3mTRpkqvXubbYJBIJAHbs2EFVVRXpdJqysjLuuusukskkVVVVvb5N2BPOnNrU1ISiKIRCIZLJJHfccQdNTU1UVVW524QBvU+f3CZwOlsqlWL9+vXMnz+fBQsWuFXmCvf/io0zUUopWb58OQ0NDdx///3uxF9dXe2ZFyvs1iuEYO3atTQ3N3PfffdRV1dHNBpl0KBBblIRL+DoaG1tpa6ujnnz5vH222+jaRrV1dXui9ULegvbtqWlhfr6ep544gneeecdVFWlurq6qEcdO+PosCyLFStW8NFHH/HUU0+Ry+Xo168flZWVnhln0HGsrVixguXLlzNv3jxP6i3UWltbS1NTE3/4wx/YsWMHJSUlDBw40FMv1sIxtGHDBpqbm/nDH/7Axo0biUajDB482FPzQl+kT3oGHAzDYOTIkUyZMsU9juVlYrEY48eP54ILLuj1Qif7g7Pnfumll1JZWVlsOT1iGAY1NTV861vfYuTIkZ6flJwYkUsuuYQjjjjC031XSsnAgQOZMGECkyZN8lyp7M5IKRk8eDDHHXccEydO9Py+dSgUYty4cVxyySWut8DrjB07lmnTptGvX79iSwnI02drE8iCpBd+yGkt8wlQ/KDVoXPX8qpev/UF2LM/eFXrV6Ftwbt6/aQV9pwTwNt6+xJ91hgICAgICAgIsPGubzEgICAgICCgV+jTMQMBAX0Zx8Xs1K3o6qhn4NYNCOgbBMZAQEAf5s033+Qvf/kLAwYMIBqN8t3vfrfDmX+wk3QtXLiQiy66yI1gLyQwDgIC/E9gDAQE9GF27drFcccdxz//8z+zePFifvOb3/Cf//mfvPTSS6RSKSZPnsymTZvcyneTJ09mwYIFbN++nTPOOIOamppiP0JAQMBBIIgZCAjo46iqSjgcZuLEiTQ0NJBOpxk6dCiRSIQHHniAqqoqhgwZwvHHH8+LL77IZ599xujRo3nggQfcstQBAQH+JjAGAgICAGhra0NRFFauXMnLL79MOp1m+/btlJSUUFFRwbBhw1izZg3btm1j6dKlDBs2DMMwii07ICDgIBBsEwQE9GGEEKxcuZLnnnuOJUuWcNFFF9HW1kZFRQW6rmMYBuFwmKamJhYuXMhJJ53E4sWLmTBhApZlufUPAgIC/E2QZyAgoI8ipWTXrl2sXbsWTdMYOnQo1dXVZLNZli5d6pbmHTFiBJ9//jlNTU2MHTuWdevWUV9fz/Dhw6mpqQkCCAMCvgIExkBAQEBAQEAfJ4gZCAgICAgI6OMExkBAQEBAQEAfJzAGAgICAgIC+jiBMRAQEBAQENDHCYyBgICAgICAPk5gDAQEBAQEBPRxAmMgICAgICCgjxMYAwEBAQEBAX2cwBgICAgICAjo4wTGQEBAQEBAQB8nMAYCAgICAgL6OIExEBAQEBAQ0McJjIGAgICAgIA+TmAMBAQEBAQE9HECYyAgICAgIKCPExgDAQEBAQEBfZzAGAgICAgICOjjBMZAQEBAQEBAHycwBgICAgICAvo4gTEQEBAQEBDQxwmMgYCAgICAgD5OYAwEBAQEBAT0cQJjICAgICAgoI8TGAMBAQEBAQF9nMAYCAgICAgI6OP8/0gG3+PHKXOJAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -593,21 +652,27 @@ "\u001b[33mCommander\u001b[0m (to Coder):\n", "\n", "Here is the feedback to your figure. Please improve! Save the result to `result.jpg`\n", - "Improve \n", + "Improve \n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mCoder\u001b[0m (to Commander):\n", "\n", - "I'm sorry, but as an AI developed by OpenAI, I don't have the capability to view images directly or interpret visual feedback. My previous response provided an updated script intended to address the initial feedback points you provided.\n", + "I apologize for any confusion, but as an AI, I don't have the capability to directly view the images generated. However, I can certainly help you further refine the plot based on standard practices if there is anything specific that you feel needs further adjustment.\n", + "\n", + "You mentioned feedback for a figure referenced as \"\". Since I can't view images, I'm assuming this feedback is a placeholder. In case there are specific changes or additional improvements you want to implement in the figure, please provide me with those details explicitly.\n", "\n", - "If there are specific aspects of the figure from the `result.jpg` file that you would like to further adjust, please provide clear textual feedback about what specific improvements you would like to see. For example, you can ask for:\n", + "For instance:\n", + "- Are there any specific elements in the legend that still need repositioning?\n", + "- Should the date formatting be adjusted further for better clarity?\n", + "- Are there any other specific elements (e.g. colors, lines, labels, title) that require modification?\n", "\n", - "- Adjustments to the graphical elements such as line style or markers.\n", - "- Changes to the axes or grid to improve visibility.\n", - "- Modifications to the smoothing function or its parameters.\n", - "- Any other specific visual modifications to the plot.\n", + "Without specific feedback, I can suggest some general improvements, such as:\n", "\n", - "Once I have your specific feedback, I can provide you with an updated code script to address those points.\n", + "- Ensuring the plot does not appear cluttered.\n", + "- Checking if the aspect ratio is appropriate for the data being presented.\n", + "- Verifying that the font sizes are readable.\n", + "\n", + "If specific feedback can be provided, we can proceed accordingly. Otherwise, please let me know if we should conclude the task.\n", "\n", "TERMINATE\n", "\n", @@ -616,7 +681,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAEMCAYAAABZZbUfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5xcxZnvj7+rTuo4WRrlgAABIgjBEmxEssnGkTVrHPY64h843b2GdVjjtVn2Onsd1r5f26zXGHudTbDJOecsISSSEsqTOp1Y9fvj9DnqGY2EwoxmxuqPXq3u6T6nTtVT6aknCq21pokmmmiiiSaa2Gchx7oCTTTRRBNNNNHE2KLJDDTRRBNNNNHEPo4mM9BEE0000UQT+ziazEATTTTRRBNN7ONoMgNNNNFEE000sY+jyQw00UQTTTTRxD6OJjPQRBNNNNFEE/s4msxAE0000UQTTezjaDIDTTTRRBNNNLGPo8kMNNFEE0000cQ+jiYz0EQTTTTRRBP7OJrMQBNNNNFEE03s42gyA0000UQTTTSxj6PJDDTRRBNNNNHEPo4mM9BEE0000UQT+ziazEATTTTRRBNN7ONoMgNNNNFEE000sY+jyQw00UQTTTTRxD6OJjPQRBNNNNFEE/s4msxAE0000UQTTezjaDIDTTTRRBNNNLGPo8kMNNFEE0000cQ+jiYz0EQTTTTRRBP7OJrMQBNNNNFEE03s42gyA0000UQTTTSxj6PJDDTRRBNNNNHEPg5zrCvQxJ5Ba52+9/b2YpomhUIBKSWe59Hb28vkyZN59dVX2bRpE8cee+yge4UQ6ecHH3yQqVOnMnfu3G1+F0Kkzxr6/MYykmuH+00pxU033cRJJ51EoVBIy/R9n56eHrq7u5FS7vRzEjTWLbkmiiLWrl2LUmpQGZZlMW3atG3alfw9XDuGPrPx+51BY3lD2yGEQCk1qMyh7Rnu83B1Ga7ejc9JaH3rrbfypje9iUwms91rk+uTe7Zs2UIURRSLRVpbW7f7nO3VaWidh7bpscceo62tjQMOOGC7dGysk1KK++67j8MPP5xMJsOGDRsGtbO7u5tcLrcNzZJr+vv7eeCBBzjjjDOQcufOREPng1KKjRs3UqvVEEJQLBZpa2tLx/DQftZa89BDDzF16lSmT5/OLbfcwimnnEK5XOa5557j5JNP3u44GI7ew32ntaa/v59qtcqUKVO2e9/Q9iR/N35+Pbo0tmt7dWoc4w8++CDz58+ns7NzEB2bGB9oMgN/A4iiCIDvfve77LfffvzjP/4jSileeOEFvvSlL/Hb3/6W3t5e1q1bly6mAEoppJTpZP3jH//ICSecwOzZs9PfYPCETTbXxoUk+a6xvOS+5Hlaa4Ig4Ac/+AGHHnoohUIhLfOll17ikksu4Xe/+x35fD5t03CLSvJ56HfJ34ZhpAvij3/8Y0qlEk8++SS5XI4DDzyQrq4uLrnkErLZ7KD6NW6ACT0SNH4/3GaZLP7b24yTspLvk+uT77/5zW9y9tlnc9hhh6XlRVE0iDFqLHt7C/DQfh1KKwDf93nxxRc58cQTsW07fV7CkAxdpHt7e7nsssvo7++nWCxSKpX4whe+wPz584fd6IfWJ2njSy+9xG9+8xs+//nPI4TgzjvvZO3atXzgAx9Aa811113HQQcdxP777z+IORpK86QtK1as4KqrruI//uM/WL16NT/60Y8IggDf97nrrrv49a9/zVFHHYVhGOk9SX2klGzYsIH//M//5E1vehOmaW7Tp1EUobXGNM1B9Gsc30EQ8E//9E94nsfkyZNZtWoVH/nIR3jrW986aHw2tuf3v/89J510Ep2dnfzwhz/kyCOPxHVdVq5cSRRFg+o79N7Gv4UQw27WYRjy1a9+lfvvv59rr72Wrq6utLyhY6JxLA5FY981zqvh5n1jvyRjqZHmyb1r1qzhnnvu4Z//+Z+bTMA4RJMZ+BtAsnm4rovv++n3Simq1SoALS0tdHd3A1Cr1bjjjjvo7+/n0EMPZcOGDZx22mnpJnrNNdcQBAGnnXYabW1tgyb7wMAA9913H+vWrWPu3Lm84Q1vwHEcnnzySaIoYtOmTQwMDHDqqacyadIklFI89dRTPPPMMxxyyCHbXXhc193mFLR582buvvtuPM/j+OOPZ86cOTz99NNIKTn88MO5//77UUqxePFili1bRqVSYdGiRQghaGlp4fLLL0cIwRe/+EVmzJjBxz/+ccrlMnfddRcbN27k8MMP54gjjsB1Xe644w5mzpzJ008/zcKFC5k9ezZ33nknAG9+85vJ5/M88MADZLNZXnrpJaSUnHbaabS0tBCGIcuWLePxxx+ntbWVk046iba2Nh5++GEsy+KVV15h6tSp7L///tx333309vZy+OGHs3DhQtatW8df//pXtmzZwoIFCzjnnHN46KGHOPXUU9NnJRKdW2+9lWnTpvHcc89x1FFHMWXKFO6++256e3s5+uijOfjgg1FK8dhjj7F06VKKxSKLFy9O+x3ANE3mzp2LlJKVK1fy8ssvp58XL16c/pbg4YcfZtOmTfzsZz8jk8lQqVRwHAetNX19fdx777309PRw9NFHs2DBAqIo4vHHH+f555+nWCxywgkn0NHRwc0338z1119PZ2cnBx98MNdffz0vv/wyrutyyimnDOr7arXK/fffz9q1azniiCM4/PDDsW170Jj5wx/+wEknnUQ+n2fevHl861vfQgjBQw89xKpVq5g/f346tpJ33/e57777eO2115g6dWpaVm9vL/fffz8bN25k/vz5HHPMMVSrVe6++27OPPNMLMtiYGCAu+++m7POOgvHcdJ7fd/nYx/7GCeffDI33XQTP/3pT1Npw+OPP87SpUuZPXs2b3jDG1IGtHGMCyHI5XLMnDkzrb9t2ylzcOqpp9Le3k4QBDz++OO88MILLFq0iJUrV3L66aeTy+UG0W7Dhg0sW7aMww8/nLvvvpt3vOMd3HnnnRx00EFMnz4drTW33347Bx10EFOnTuXZZ5/l8ccfZ9KkSZxyyink83nuvfdeWlpaWLFiBXPnzmXq1Kk88MADlEolFi1axGGHHYZhGFQqFe644w6q1SoLFixg48aNnHLKKSilePLJJ3n22WeZOXMmixcvJpPJcMopp3D11VfT09MzSDrQxPhA02bgbwTJAr5mzRqeeeYZnnnmGZYvX56esJ9++mmuueYaoiji29/+Nn/5y18QQnDFFVfwk5/8JD0V/eEPf6BcLvPII4/wf//v/x10QgZYtWoVK1eupFAo8Lvf/Y6f//znCCG44447+PznP8+mTZtYunQpl112WSoavOyyyzBNk+uuu47Vq1dvswgMJyrv7+/nk5/8JC+88ALlcpmLL76Yl19+mdWrV3PVVVcRBAHf+973+O53v4vv+1x99dWsXr0awzCQUmKaJqZppnSRUhIEAV/96ld55JFHyGQyfOc73+HOO++kVCrx5S9/mT/96U8IIfjsZz/L5ZdfTqVS4ZZbbuFnP/sZANdeey1f+MIXqFarPPLII3zxi1/E933uvvtuvva1r2EYBs8//zyXXXYZruty7bXX8vnPf55yuYxt2yxbtoy+vj6y2Wz6bMdxyGQydHV1MW3aNKIo4sc//jGVSiXdUG644QYAfvzjH/ONb3wjVQF9/vOfZ+nSpZimyeWXX85jjz3GI488wr//+7+TzWYplUqsWbNmkFTB932+//3v47ouy5Yt45/+6Z9YsmQJAwMDfOYzn6G/v3/Q5tLS0sKrr77KX/7yF1588UUsy8K2bSqVCl/84hdZsmRJ+vxHH32UcrnMU089RT6fZ8WKFXz+858nCALa2trIZDJMmzaN9vZ2isUixWKRadOmkc/nB6kxLr/8cu6//35yuRzf+973uPXWWweNF9/3eeyxxzjyyCORUiKlTE+f11xzDWeeeWYqYVJKoZRCa82VV17Jf//3f2OaJldffTXVahWtNa+88grr16+nUCjws5/9jD/96U/Yts0vf/lLli1bhhCC22+/ndtuuy09uQ8dv1prKpUKhUIBwzD44x//yDe/+U0ymQy/+tWv+M///M9UgpcgofPKlSv5xS9+gVKK66+/ni9/+csMDAzw6KOPcsUVV6CU4tZbb+XrX/86lmVx9dVX8+Uvf5lyuTyoLK01d955J0cccQQf+MAHuP7664miiGeeeYbf/e53APT09PDtb38bKSU33ngj3/3ud3Ech8cff5yvfvWrBEHAb3/7Wy677DI8z8OyLJYsWUK1WsWyLP7t3/6Nhx56CKUUX/va17j11ltRSvFv//ZvXHXVVURRxG9+8xuuvPJKcrkct912G9/5zndQStHe3k5HRwdLly7d/kLWxJihyQz8DaDx5P7oo4/ym9/8ht/85jfceOONhGE46LpSqcSdd97J5z73Od797nfz/ve/f1BZb3/727ngggv41Kc+xbPPPovneYN+nzt3LtOmTWPt2rXk83luu+02giBAa82pp57K+9//fi6++GJWrlxJqVTij3/8I+9973t573vfy6c+9Sna29t3qk3PPvssQRDw2c9+lg996EMcd9xx3HjjjSxcuJAVK1awcuVKHMehUCiwcuVKli5dypFHHjmsqDvByy+/zF133UV7ezu9vb20trZyww03oLWmtbWViy66iPe+970sWLCA+fPnc8EFF/CRj3yERx55JF3wzz33XD7wgQ/whS98geeff57Vq1fzy1/+kvb2dvr7+8lmszz66KNs2rQJIQTnnHMO73vf+zj66KM55JBDyOfzrF+/Htu2ueWWW+ju7mb69Om88Y1v3OakN9wp8kMf+hDnn38+lUqFJ598kkKhQKlUIp/Pc8MNN+C6LoZhMG3aNM4++2yOOOKIbcTsjeUdeuihXHjhhXzsYx8jk8lsw6wtWrSIL33pS9x5551cfPHFXHDBBbzwwgs899xzPPPMM6nqIJ/Pc9NNN1EsFlm0aBEbNmwgiiKeffZZNmzYwKGHHsq0adN461vfysKFCznkkEOYP38+5557LjNmzEif98orr3DnnXfS0dFBT08PbW1tXHvttYP6sVar0dvby6RJkwa1a/PmzTzwwAOcc845qWTp6aefTpmdv/zlL1xyySWcf/75fPSjH03nzLx582hvb2fNmjXk83luvvlmHMfhnHPO4U9/+hO+73PNNddw/vnnD2IGEonct7/9bT7wgQ/wzW9+k0996lMpU/2Zz3yGCy64gC996UvceOONVCqVbZjrRiRtOeuss3j/+9/PRRddxNKlS3Fdlz/84Q98/OMf54ILLuDiiy+mWCxuM7593+cvf/kL5557LocddhjlcpmXX36Zc845h7vuuotKpcL999/P/vvvT2dnJ7/4xS+YPHlyqgJKpFYA5513Hu9973tT6Zlpmqxbtw4pJbfffjubNm3ioYce4gtf+AL/8A//wHnnnYcQAtd1+e///m+6u7vp7e2lo6ODW2+9lYGBAQzDoLOzk1WrVm2XBk2MHZpqgr8BNG4e73znO/nIRz4CwNNPP80ll1wy6JpEjZCcxjo6OtIFTghBZ2cnALZtE0XRNovXT3/6U1566SXe+ta30t3dzfPPP5+eeJLF2bKs9CTe39+fGgYWCgUymcwOdc3Jb9VqlZaWllRnO3nyZDZt2sTkyZOxbZsbb7yRQw89FNu2uemmm9INcEcolUrkcjnmzJmDYRjMmjWL6dOnA5DL5SgUCmityeVydHZ2orUmk8ngeV6qa25vb0cIkZ7oS6US/f39HHLIIcydO5cwDPnXf/1X2tvb0Vozbdo0DMMgiiK+8pWvMGnSJBYvXozv++miOJyhWKOOO6GLaZppvQYGBmhpaWHmzJlIKZkxYwZz585l//33JwgCbr75Zr797W/zoQ99iLe+9a3bNRZrb29P+9+yLIIgGEQz27Y588wzOfPMM6lUKlx22WVcddVVLF68mEKhwOzZsxFCMHv2bObOncsTTzzBV7/6VT74wQ8yf/58brrpJnzf36bPhzPqE0IwMDCAZVnMmTMHy7KYPXt2agiXIJEEhGE4qJy77rqLefPmMWfOHIQQrFixguuvv55cLsd73/tewjCkWCwC0NHRgWVZRFHEt771LXzfT9VBt912GwBnnHEGF154IQ8++CCVSoWjjjpqmzYYhsGFF17IkUceyQ9/+ENuueUWFixYQK1WS+dSsVhEKUUYhq8rGhdCMHny5JT2ENsBlEqlVP9fKBQGqSoSPP/88zz66KN8+9vfxrIsVq1axfXXX8+nP/1pWlpaeOKJJ7j++us5//zzASiXy8yaNYtZs2YB8K//+q9pXadOnYoQAs/z+NznPschhxzC0UcfzcDAwCB1ZGIIPHny5HScu67L3LlzmTRpElprjjnmmHTeh2GI4zhNFcE4RFMy8DeCoZv29hbbQqGQ6rNLpRK33347QRAMEmE2GkkNLWf58uUcf/zxHHvssfT19aWLQnJP471SShYuXMjNN99MX18fDz30EOvWrRu27kop+vr66O/vp7+/n5kzZ7J69WpefPFFtmzZwj333MOiRYtwHIfDDjuMK6+8kmOOOYZjjjmGn//85xx88MHDLpCw9cQ1Z84cbNums7OTk08+maOPPjpdeBMaNda/8RSYGJXdcccd9PT08PTTT+O6LjNmzODv/u7v2LJlC8cddxwnnXQS8+bNI5PJpDRITpCrV6/mtNNOY+HChaxfvz5tt+M49Pb24nketm1j2zYvvPACmzdv5t57702va6zngQceSBAETJ8+nVNPPZUjjzySzs5Oent7Oeyww/jnf/5nzjzzzHRjG2pAtz2Dx6FGaatXr2bp0qWUy2XCMEyZuoMPPpgoipg6dSqnnnoqRxxxBB0dHaxdu5bp06fzpje9iUKhwKZNm9BaY9s2vu9TqVQIgoBMJsPAwADVajUde1pr5s6dSz6fp62tjZNOOim1jWhELpdj+vTprFq1KlUBeJ7Hn/70J971rndh2zZCCN74xjfyta99jcsuuyxl/O69917K5TK33347ruuilOKll17ilFNO4ZhjjmHDhg0prbu7uznkkEP40pe+xOmnn5726dCxlTBln/rUp7jzzjtZvXo1Bx54ILfccgv9/f3cc889TJ48eZA6ZKhaLJkHQw0VDcPANE0OO+wwbr75ZkqlEg8++CCbN28eNDejKOLaa6/lwx/+MN/+9rf5+te/zg9+8APuvvtuXNflrLPO4kc/+hHr16/nmGOOwXEcDj/8cHp7e3nDG96Q2otYljWIGfV9nw0bNvDmN7+ZQw89lDVr1hBFER0dHRQKBR5++GEGBga49dZbiaKITCbDggULqFarLF68mMWLFzNr1ixs2yYIAl577TUOOOCAHR4ImhgbNCUDfwNIJlZnZyetra3p347jpEZD+Xyerq4uMpkMn/vc5/je977Hn/70J9ra2sjn80gp6erqIp/PpxvO9OnTB20OQgj+8R//ke985zvcdtttHHDAAcyZMweA1tZWWlpagHgTTe59//vfz+WXX84nPvEJ5s2bx6GHHoplWYPqb9s2YRhy0UUXpQvgJZdcwoUXXshXvvIVhBAcffTRvPnNbwbg5JNP5u6772bBggWp6PHEE09M6zgUXV1dtLS00NXVxVe+8hWuvPJKoijCsize9773ccghhzB9+vT03vb29tTbwbbtVHogpSSTyfD5z3+e/v5+/vmf/5m2tjYuvPBCfvjDH/LJT34SKSUHHHAAn/3sZ+nq6kpPTplMhg9+8IN85zvfoaOjg+7ubjo6OhBCcN5553HllVdy6623ctlll/Hxj3+c73//+0yaNIm2tjYmTZoEwLRp09IT1syZM7n00kv5wQ9+kDIUH/3oRwmCgP/6r/8iDEMMw+CTn/xkSpekXxNpRS6XY/Lkyel46e7u3qZv+vv7+f73v4/neWitmTp1Kh/60IeYPHkyl1xyCT/84Q9RSpHJZPjoRz/KG9/4Rm655RYuvvhi5s6dy8KFC7Esi+7ububOnctFF13Eueeey3HHHccNN9zAxRdfzIUXXkhnZyfFYpHOzk6++tWv8pOf/ISf//znGIbBe97znkH9YxgGp59+OnfddVfqKrt+/XqEEJxwwgnbjIOk3Zdeeilf+9rXuOOOO5g7dy7z5s3Dtm0+8pGP8OMf/5g//vGPzJo1i5kzZ6b9/ba3vY2//OUvnHnmmcPOvSlTppDL5dL+Oe+887j11lv5zGc+w7e+9S0uuugistksl112GZZlpXNMSpm2yXEcpkyZkkrmkrFnGEbKCH3sYx/j8ssv5+KLL2bWrFl0dnYO8jyoVqusWLGCf/mXf0mNEbu7u5k1axYrVqzgTW96E1deeSXnnnsura2tCCG45JJL+O53v8snP/lJLMvikEMO4TOf+QyTJk1Kx1kul+OCCy7giiuuYNKkSUyZMoWuri6y2Syf+9zn+P73v89vf/vbdB0xTZN/+Zd/4T/+4z+46KKLsG2bRYsWcfHFF7Nq1SoMw2D//fcflpZNjC2EbrJoExqNpwzf91PjOYhPGr7vk8lkUpGqlJKBgYHUN/pnP/sZtm1z6aWXpgZDhmGk9zqOk55SktNCsjGYpkkYhmQyGYIgQAiBaZrpNYk4MAxDPM9LrxtaZiJahK2LuG3bqaGc1jq9B2KxaWM5rutiWVbqIjaUPr7vp0xGQqfEjStxr/N9Pz1RJnRMjNISGl566aUce+yxqU46EeMmBpCJlCSpu+/7GIaBZVlpPyU2GJZloZRK333fRymVWpwn9DBNE6UUtm3jeR6maab1EkIQBAFhGKbGkgm9h7av0eWrVquRzWZTNVAjDZL+b+zv5BmJCijZhBLRd8J4JJKZpH+S02BC1+R7y7KwLAvf9wnDMKVPMnYbn5nQL5GwJHXq6enhC1/4AldccUWqkkkkDkPtIxrVLYkULGFAE88I13XT9vm+TzabxfM8fve73/HEE0/wrW99K6VLY58nfZLQPoqitNykvUkbGsdWokZLmK9kjAVBsM3Ys20b13XZuHEjmUyGBx98kN/+9rf88pe/TPtOKZX2a6MLYWP9knmS0Dvpq6ROjeO2sS8APM9L51BCv56ennRu/ed//ieTJk3iE5/4RDrWknuSefnTn/6U7u5u3vGOd6Q0bKoLxg+azMA+hGTjffjhh/nJT36C53lMnTqVSy+9NHU/a07Q4aG15pvf/CaHHXYYp59++rBW5U2MPpKNL2EIWlpaUmZjJMZtwmxEUcSPfvQjHn30Ub74xS9y0EEHjdm80Fqzdu1arrjiCvr7+7Esi0996lOpG+1Y1enOO+/kF7/4Raouu/TSS5k8efKw6o8oitiyZQvt7e0pYwTNoEPjCU1mYDsYSpZdHbR7ev9ooHGha+TaG4OuNGI81Hl7GGpwtzee53leemLa2ah1Q8tIMF5pOx7HbSOG6tuHBrpKsLv1brStSCQ925M67Ql2hc7JnA2CgCAIME1zkHRttDHcuFVKpfUBUonVcHRKmIFGidPeYAb2ZL6N93kwGmjaDOwAGzdu5LrrrktPHruKZGHZnY1jNPB6fF8ySYdzRRtvSNqyN+k7nMHd7ty/J2XsDTTSdjyOg+HGcSK239P67miOjDQdhkYX3NV67c1+GbqW7SqdxqL+u0LfoUja29HRwbnnnjsa1Rt3aDIDO8CmTZtYtWoVb3/723dZLJzoMPv7++nq6hp3C+pw6O3tJZvNprrf8VrnZGFJrNM7OjrGuEY7hy1btlAsFgeJSccjEvpu3ryZtra2bYwKxyOUUmzYsCF1Y50I2LRpE21tbSMudRhpJAaKSfCoiQClVOqKDLvHDFQqFf785z83mYEmYmvimTNnsnDhwt1aYIIgoFarDRsgZDyiWq1imua436xgK7Pl+/6gPAfjGaVSiUwmMyEWf4j90HO53ISwj1BK0d/fT2tr64RhBgYGBshmsxNiPHieRxRFaWTH8Q6t49DqLS0tuzUelFIMDAxw0003bROj428VTWZgB2gMZZsskEkCk52B7/uUSiWy2eyo1XEkMTAwkLpJ7c3Bn4QQ3hU0eiFMFGagVqsNstYfz0hOg5lMZkIwA0IIKpVKmlFxIiCh70RA4hkxkZiBSqWSBpnaVTTaBo33uTpSaDIDu4AkQMrODo7E/zpxExvvSNzchrr5jSYSxiqRnuzMMxNO3TCMYdPwjkdorVOpwHheYBrtIrLZ7IRhXIQQg5jCiVDnXC63TRyP8YpGo9nxXM9GJPEcYPfUBBOlnSOFJjOwC/B9f1AWv9dD4l//etz0UIOtoRjqMz3UsGukjJ5qtdog74KdxZ4a1vX39xNFURofYWcRRVGqhpkISPy8J8oG67ruhFETaK0pl8tp4KuJgIkkeUk8BxLJ4URAMh7G+1wbL2gyA7uAZAPe2dMrkG5w27un0ZWpMdBL8jkpozFAD2wNc9t4b+Lmk4S/TU7PO7u5D3X92dl2NuY13x1Dy92drElEwImCibLwJ5hIMeSTk/ZEqS+wTUrj8YokwNhEscWAeC1Koqk2sXOYOL07HqDjV7Jha63T77Z51bE17nr9p8Z7G/DNb36TcrmM1nGq1VdeeYXrrruOnp6e+v1bmYQ777yTRx55ZFAZSikef/xx/u///b+8973v5ctf/jK/+MUvBkkdXu+VBHNplDi83gtiq/OHH354EDOzs689xdDEOuMZSZTB8Y6k/5NslBMBQohtMmyOdyTR+8Yj4rUqfkE9kmd9rm2dvwx6MeQzYzx0kqiSTewcmpKBnUBEPK6l1uhQoSQoAYaUbG/Eaw0KAdKgnmIm/k4pZN1ft3GgvvrqqynjsG7dOjzPo1gsIqXklVde4Y477qC7u5upU6eyZcsWli1bxpIlS3jjG9/I/PnzEUJw3HHHsWjRIi699FI+9rGPYZomv/rVr2hvb+f000/nqaeeore3l40bN3L88cfzyCOPMG/ePI466ihuu+22NMXqW97yFgBuueUWBgYGOOOMMwiCgKeffppKpcIxxxzDAw88gNaas88+m7vvvps//OEPbN68ma6uLubNm0cul+Pxxx9nwYIF3H///biuywknnMBDDz1EtVrltNNOo7u7e48n60Q6aSdhdcc7EoZwPNs2DIckzO5EqfOuqsX2JhJmQAAagUaiDIuK1uQi8A2NoyVainhtrF9PnfRaw1h2g9Z6t+PD7KsYv6NxHMGgvrkL8A1YPdDDbUsfZ4sj0DsYa1or/CDAdmxMrckHcOK8wzi4cyrOEM65Wq1y1VVXkclkWLJkCe9+97t58MEHmT17Nj/4wQ84//zz04xobW1trF+/nrPPPpuf/OQnfPOb30zFeMl7GIb8+Mc/5pxzzmHZsmXcdNNNLF26lPb2drq6urjiiiu46KKLuPrqq5k9eza/+MUv+OAHP8jy5cu57rrrUvuBqVOn8rOf/YyTTjqJa665hv/zf/5Pmrzn+eef56qrruLYY49l//3356ijjuL3v/89+XyeyZMnc/vtt9PZ2cmvf/1rvvSlL3HdddeRy+WYNm0aP/nJT/iXf/mX3Z6siRpjopxcE4zHID5DMTRK3ETBeArwtTPYU1ub0YTQ6b5OBBhK8Njalyhpn3cesAiB2PYcJCCReyVNGquWjUeajnc0mYFdgBYQCcjm8hw5dz6GsYOFR1MPIeqTyWYRaEwNU/KtaGLGovFux3E4+eSTKRaLLF++PP2+Wq0CsGjRInzf58UXX8QwDE444QQWLlzI//zP/wwreq5WqyxZsoR8Po/rummWs8WLF5PJZFi2bBlHHXUU1157Lb7vM2XKFI466iimTZvGtddey2uvvUahUGDFihVpUpfjjjuO+fPnc/PNN3P//feTy+Xo6enhtNNOo7OzM828lmwmSb2OPPJI5s+fz09+8hNM0+Sll15Kk5nsabS4iSB2T5Aki5oISOxTJkp9gW3UXOMdE4K+GpSEKIi4Z/2LDEift85fFG/2okFiSrw+Sg1QPySNcTeEYTi2FZhgaDIDO4Fk8wZBFknWyjJ1yhz0DhcdTRhFRGGE5djousDNIJY0DOWqDcNg1qxZtLa2UiwW040ycY954oknuP/+++nq6krzym8vDrjWmmw2y6GHHsqpp55KS0sLnZ2drFy5MhWrJ779yca9bt06nnzySV588UXmzZvH1KlTyWazHHnkkQRBwMDAQHrv8uXLOeqoo6jVaqxfvx7LstiyZQsbN26kra2Np556ilwuR29v76BnHXHEETiOw8KFCwH26GSfLPoTITpegokQzCmBEGLcB8MZiok0FoBUjD1uGZh4yQJAOwY90md9UMZHkdEGyHqdlcZHoaUgE0nQIMZBVyRZRZvYOUwcmdoYYiiTKxBIBBK2+xL1dxVFKQNg1O9DC+J/MbTWvOUtb0nTqZ588sl0dXVxwgkn0NnZyUUXXcRTTz1FrVajq6uLQw89lHnz5iGE4IwzzhgkGpVScsYZZzB58mQ+/elP8/LLL/PUU0+hteb444+ns7OTjo6ONO97Io3o7u5m7dq1tLa28ta3vpXzzz+fbDbL/fffj+/7zJo1i4ULFyKE4LzzzqOnp4dCocBb3/pWZsyYwcKFC3n44Yc566yz0tSzb3vb25g0aRLHH388AOeffz75fJ4HH3wwNZ7aXbFuEot+IhmNTRQDwgS+74//k2sDtonnkRi00WDoxpjbtaWo1WrjlhHQAqI6oUxgCwEbN26iVqviK1XfOGKJQGAIHnhlGUt71hMagITxcCafKPFdxguaWQu3A601L7zwAvfccw8f/ehH0UrTN9BPS1tbuo0nm/727o+iKM39DSK9uPEePWRpanQrTBaJ++67jxtuuAEpJZ/+9Kfp6uoadH3jCX+oN8DOtNPzPH70ox/x4Q9/mEKhkEoAXm+h0lqnh4fhTvmNSUKGqgQaPyeRD3f2JJq0M8nFPhEiECZ+8I7jjGs3rUYvj3K5TD6fH/dGmkmdBwYGUr9ygUhnVoNdW32sjrkEG601pVIpDTw03mxJtI6ZgfpKwtLyFr5371+Qjsk/n/A29rMK9U1fEKH52oN/YUq+lQ8fthgpBBFgMXZGhEopSqUShUJhtwxhkwiG3/jGN/jKV74yrvpmtNBUE+ws6guIUf8M7PiIIeKNPghjA0LR8P3gywZ/MTTLVnKiP+aYY7arGmi8d3sb7vagtcZxHC6++OJBOu0dndq11vholNbYQiLrCkQhtj/5t7eh7AkvGoYh1Wp1QjADAJVKJc39MN6RLIYTJTaC1ltj0cPWqRkRG7WZbJV6j5dlPWEOxyNjKOqSlEiCoWGgUmLu1OnUylXKfoA2Qeh4UZQa1lLDCWxMYqmAOcbeBBAHM5soa8N4wD7BDOzqhvN6m+j2NvbBD43fUveh7Vy7M3UbenIYDWFOol9rlErs6Dlr+nvwfI/9Jk0lznGYxDPYueeNBKdtGMaEyfsApNH8xqtouBFa6wkhFUgghBgSfTCRuQnM+l+JCxx6HIgGGBwudzwiUXUKYEulTFehhU1eHFWV3FbGSmlNuVbFtXI79K7a2ygWixNKzTXWGL8jcQTRKLJXSg36nFikJ6+RhBBipyxatY4z8CX1Sb4bai3f+F3SjkRvXqvVqFar1Gq1VNc7NKBQcv1QGiRotMZuDELUSB+tY4lAT63M+oFeAlWnY7T194TejX831n+kAg4liYomCmq1WhpLYjwjGQPVanVC2TgkQbsSCMCIQITxMTfSCiLdoEAYW9RqtXFLXy1AyK0bxOZyiU4nT9a08AM/NaSKpS2aSuBRC3wU9WPBGDMFiWRrvDPd4wn7hGQA4sFx1113sWzZMqZMmcLZZ59NqVTiL3/5C21tbZx11lkjfsrc2ROgUop///d/59Of/jRtbW3b6P63RjHc6ked/B5FEddddx3PPPMMTz75JIsWLeKYY47hrLPOSqUJw7lcJa59jQFmEqv/xgW1ceNO7RLiP3jiqcfpxmb+rLloKVBKYzS4DA61fWhkCkbixGkYBo7j7HE5ewuO40yIk3bSbxMlCVSCoXHzFYkkACooetwqUzN57G2Uc2OD8aoiSJAGEwIGlMcM6eBoEz8KBnlSaaAS+LhREEtgxDAxCPYykkRbTew89hlmAGDOnDnMmjWLX//613R1dXHnnXdy/PHH8+KLL3LHHXdwzjnnAIM3rQRaa9D1kzHxWB9kP7ANkjLq8Qd1/F3yb7A/Abz22mvp5hxFEXfeeSfLly/n2GOPZcaMGSxbtoyDDz6Yv/71r5x//vncdtttnHnmmRiGwTve8Q5OO+00PvnJT/L5z3+e5557jh/96EccdNBBnHjiifz1r3/F8zzCMOSQQw7hoYce4qSTTmLq1KncfPPNVCoVpkyZwsknn8yGDRu46aabyGazvO1tb2PJkiWsXr0aKSX7778/DzzwAB2dnUw5+nBuuv4vvHrPY7z7nefR29vLm848nU3rN7B+/Xocx+Gll17CdV1OPPFEbr75ZjKZDG9729vSxELDSQd2VmKQMCljFTJ3d0T9YRimJ8GJIL4cKq0aa+yQ5jr2fkBAiGb9QB9OJkunnUEIWFXq4ye3/pF/efsH6TLkzuuzRhHJ2N0ZtdxIYHfGrNAxU1VRHhlhYBsGgYhXwFRNgEaJ2FVDaWLJi46lC2PJFHieN+xa3sTw2CeYgWQCTJ06lT//+c+sW7eOlpYW1qxZw+LFi5k9eza///3vOfvss9FaU6vVeOmll3j55Zfrm2iEUiFCh4RhSH8Qsfy1jfjGjg3BlNJESmNYJSQaR0XM6mijq5CNDZqGnMLjexRLlizhtttu4/3vfz8//OEP+eQnP8mNN97IwMAA1157LYcffjhPPPEEZ599dnoCT04Y69ev51e/+hX/+I//yB//+EcmTZrEddddxwUXXMBTTz3Fyy+/zBlnnMF//dd/8clPfpLf//73XH755fzqV7+iWCxy0003ceaZZ7Jy5Ur+/Oc/09/fj+d5nH/++Xiex0EHHcRNN99M0S/RMWMmJxx2HAcvWMC/X/avnPCmU3nttdd47rnnKBQKPPfcc3z4wx/mBz/4AWeeeSZr167l2muv5T3vec82wYnCMHzdBVEphWEY6YbaqPZpnPRJOXIYKUXjeBjqubE95sQwjDTx0yAx9JAyhz57uPIa1S1JG0zTjMNU1+sLDLr/9drUWI/GZw/nxZHUIXlmY/lJOxoTT0VRNKi85PqhNGh8b2xL4z1DadJYv+TexvuHa8Nw98RtAokgDANqQvCTJ+/mmDkHc8b0eUgEA16F54MSRIpABRgN5Q/33ljPoXVpRGM7d7TZDu275D0Z98OlRh96z9C+GkrH4ejbOD6H1rOx/KFtipRCCAmhxrUEru9hC4ElJf2Rh4oUkVYICX4YIoXECOLYKoaAKCLVMQwdO8kzG6WccR9u/W7o2NtekLKhfTfcvUEQpHN4aHuHm0fJ+74WtGifYAYgHuCWZbFo0SLWrVvHpk2b0u+HLvau6/LUU0+xdu1aILZKDQMPHfpgOJTdgBdffJWSzL5O4CGIIoVvSUBRiEIy+xu0GiZKh2CZRFGUPj+xjl+xYgXz589nzpw5dHZ2UiqV8H2fBx98kJNPPplrrrmGAw44AM/z0nsT3fnKlSvTkMKu69Lf3097ezsLFiygVqsxMDDAfvvtRxiGlMtl9ttvP2bNmsURRxzB0qVLefbZZ7FtG6018+bNQ0rJ0UcfTWtrKz/96U9RShEEAavWrMbMZGhpbSWTzRJFEdVqBc/z8DyPbDbLokWLaG1tZcmSJWTr1+y///54npduSIl7YKlUorW1lVqthm3b6aZpWRa1Wo1sNkulUiGfz1OtVtO/G+0jLMvCdV2y2SzVajW9NpPJEARBmukxCAJs28bzPHK5HOVymVwuR61Ww3GcdIE2DAPf99PycrlcWgfXddMNVes4q5vv+2QymfTZybWe5yGlpL+/P62f67rk8/n02a7rps+GWAUSBAGO46T3JHQYWk/TNPE8j0wmQ61WS8vNZrN4nodlWSk9bdtOUxM3timXy6U0ShisSqVCtVqlpaWFcrlMsVgcRM+h9Wx8dtKm5NmN/ZPUs1AopO51nuelxrZD65nUr1qt4jjONn2ZyWQYqNagUmNLGGAUcrxQ3Uzr+lX8XaEToWHF+tUMRC691TJhzSefz6euZ67rYtv2IFfgofVMxlzS7wkTa9s2lUqFQqGQumIm1/q+n2YCjaIIx3HSMVGpVNK1JpkbQDqOHMehWq1SLBbTvvR9P6VRFEUpPRPaNNI+eTbEEqmkvMZ+T8ZTY7bTMAzJZDJUqlVyuTxuqYIuZunr78N3XWq1KrXekIF8P27gk8lmWN/fi9Aat1ajv1xGeh6WaRGpKB0jyZrQODca29Q4PhMPoaHzPQiCdPNO5lqtVhvUpsZrS6VSSs+hNErGsGVZ6WEi6feknrBVejOR1GW7i32CGUhE7+VymdmzZzNr1izWr19PsVhk1apVLFu2jP322w+IJ0RnZyfvf//70zgDHR3toBUD/X0Ui0VyrZLzzzwRYwe6R12PQOh7PvmMA6i6q00EIgJsJHH8gWSxfOGFFygUCkyePJkHHniAQw45hJ6eHvbbbz8OOOAA7r77bi644AI+8pGP8A//8A+p20yyGRqGwbx58zjooIPS4D/7778/N9xwA/l8Htu2sW2bbDaLYRjkcjmWL1/O888/z+OPP87b3vY21q1bxxve8AY6OztpbW3l7rvvJpPJkM1mWbVqFe9617u48aYb6dMKO5dh9do1lEolOjo6eObpp3n84Ufo7OzEtm0KhQItLS0cffTRHH/88XR1ddHW1raNu5rWmvb2dizLGjYffWtra/ouhEj/TiZte3s7MNhDoa2tbdC9Q08njdcmz0zKHw6tra1orQe9DzfOkvo11rMRxWIxjUQ49JrhJAmNdU7alLwPh+S31MVuOwvZjtqSjKfNmzcP6pdtLfYHI2n30GuGtksIMWw9h7Y5QbFYHESrbaQUQpBrbaP/tfVM6u6iKgUVoYgck/bOLiTgb3yRQGisrMPUts5hyx2OXsnYahwjQ9vT2O7G/h+O9smzWlpa2Lx5My0tLYMSWDWWndAoUavtSPrQWO5QDDcuG/ug8blJ2a2trSgNbcUWyjI+mXe0tDIpqOGamrb29jTkcGCbtGXzWIFFrqVIq25FSZEGKGx8xnD1bGxPMs6H0nN7bUr6Z+icS5iL9vb2lLbbo9FwNG1paUldgfcFRgD2EWYAYk76f/7nf1i/fj25XI4PfvCDHHHEEfz3f/83+XyeCy+8ML22UdwUv6jH3pYIKTGEwNAayfYtgWMTAR1PGKnr4Yhl3dFpSOAhHWf/e/bZZxFC8IY3vIHzzjuP559/nosvvpjOzk5OP/105s+fz3777ccll1zCfvvtN0ikaVkW7373u5k8eTIf+chHeOSRR2hpaeGQQw7hrLPOwnEc5s+fn54Uzz33XKSUHHDAAbzyyiucc845LFy4kP3335+7776bzZs3c+KJJ3LMMcekeQ0+/vGP8/DDD3PyyafwAjWctiLm8nW8uvJVPvzRj3LLfXdx3HHHMXnyZGzbxrIsTNPkE5/4BHfeeSdbtmxh8eLFqTiwUazZSPOh2N5mlkh7dsYIq7GM7U3u15v0O6rj6/2enDwSN9Hh6ryj5+/ugrSrdW1cGBMDt2Qe7OmzdvTdrrR9aF9qDRYamXNQAta4A4T9ZSpdPom9e49bptjaQs1zwSkixM6PtZ29ZihNX68s27ZTyUFy/c6OwV3BztRrm3FAfY0SoIjVeHkng2VaVMJafU2MD0OhVmQNG+1BhAAlUfVoxWIHz3i99u3OmGj8vtG4eHfm1s6O+78V7DPMgG3bXHjhhekmIoRg0qRJHHbYYcCOue6tiH+TaVDTHRilaEArVBQidAbqMdGEiBCoellm+ux3vOMdAIP0wccee2z6+9y5c1PpxTve8Y5t9IGO43DWWWehlOKggw7ioIMOSn9fvHgxEBtQJu076aST2LBhA4cddhjvfve7gTi5UUdHB+edd17ajOnTp6fPmj9/PgcddBCR1ui1K9hSLfGOC07G1BpbSd57wQUYCY3qG71Sis7OTv7+7/9+K2lGyGBKKRUbjY1X6EFvuJ6H5TiYutF+TQ93y6BYFnvb9j1hMD3PI5/P79Vn7x5iK7cBv0aLKHLvyiUcO+tAwqiefFxDNagxqdhJ1a1By1b6pzZuQzauvYFEdD7mHiZ6GHfAhrEbRCFhFKLDEMs0Cdyg/lt8Uag0WWGjIpdQ66Q7xhSJ7ddwUoUmhsc+wQwkm+vuu/HEp/oU6cwR9RP/cLdokCaGFcsDEi5bp2VtvW9oboEdiXaHY1oaPw8Vv2+PuTEMg6lTp/K//tf/Sr+zLCs9qewo+qAUsae2iSQAcoYJBphCYLDriVd2lzGQUo77ZCRagZaxZijMZdiCZnpqXKWJ0BhKoEUcv2GjW6OkIg7MtqAMHeeyGCNkMplx7frWCC00bXYWhWRTtcr8STNYsnElEQqpwPV85mba6fdqceIxtqYmHysSjzfXwsbjjSCmTSQgDAKcbIaMZWMakiAMCbRiRd8m9m+bTBBFFJSkZoBUEdowGWsHWiFi18KmF8HOY/yMxFHEVnH/zr22B601ekggnZgdGO4V/xaFAfXcRA2MQD2bxw7qu6Pvd3aj3RmRY+M1iQHV695HTAtTSNAqZXSSE+zO1C+hYSI92FVxnBBiYgQdEuACoQFPblzFbx6/i8BsYOQQ+DJ2V40k3Lz8CX73zH0EBqgkR+wYYTwHxRkKIcAtVUAIgjCkYGdQUYTSccbRIAyYlC9SdmtATFYfCEX9FDsGdB4viYpSBkDHoYWlHiwxcYMA/BAdRti2Rb8IWOuW+c5df2Ig8qhqhTYNItsgICKSQwoeI1Sr1XHFbI137BOSgZGAEALbtimVSunfrzeJoygiCIKd2mDHEgljk1ggJ/r87V2ngAGvCjpODiNNB4EmlHFM8l15ZoJdFZUmBpOZTGaX7tvrqIufQ+CVyhZervTiiXoSF2L306d6VnNA6yTypsPaqMJaXEIgozTbWGHtBSR9k81mJ8xiqjXkCnk08Uk25zixEZnWBAKCIGRSpkB/zY3HDqSSOjlG0oFsNjvm60JsCxV/SOIDJBACDC3ojTw67CJZJ0M+LONGIT2+y3NBD1XfQ2uFJSWOYRJGEdrS8Towxm3L5XLjgtmaKGgyA7uAfD6/076nWmt8309df8YzksU/cadK8qxvT1URaMUzq14iY9oc2TmDyS2tmJpdYgYasTtZxZK6jGubAQANTv302VMrU1V+vO/Ug7LUVMD37vgTnzrp7Rw9eRa1KKDfryCVQkQahLHXN6qkLxK3rTHXae8EJODWatjtbXVjNwetYtWLrxXCFEzOFli6eRUbIo9uLEwhwIg7R+woBekoIbHJGDcbVn3uKgERsYpKalhf6actkyXwAzKYOH5EqCJ6/SqlwMOINDkMpDBwAx/fUVhKvF5UttFtSt1mYEeeN00MRpMZ2Ekkeu008dDrIBGBJ6l5JwJyuVzqAbAjm4FIRfTLCGVJXB0hTROzvqDuzraxu3o9IcT4zwBYXws1sLlSoqp8tFagDbSAcuCxJOpllTfAIgFVFVKqVoi0JrDk4AmqBxsWjjYmVDhiIbAdJzZ4C0JytlNXE2i8KEQaBh12nqW9a/jufdfypcXvolj3B0oYgb3d0nFn71LXSpVCn2oY0JXJIzVsqgzQ3daBZZooZSCCiBoBoVa8OLCZWZl2EBLhWGzwymys9HN092ycMbR3abQZmDBjeIwxMWSAExDJABz3J9cGJOFyt3UzUqDjU5bwwY9i18BMNkN/5KcMwO6qCHd3sk6UKGGq/ioFLoEpEErHRoUK+kKfbLGVFeteowYQagLPx9WKNKVRg3V2yjftBX3sWIV63h1oNF4QoLQmDCMcw0GECl8rIqUwtKDoZHihspGHe9dQSULm8rp+QaOG8ULf1D5Ax26ad7y0lF8+dAdJ0OGy75M1LFQUYUiDqtREfsiCKfvxxOoVVAhxMLAMk+c3b+B/Hr4Dfxy0y/O8sa7ChMLEOLKOE+zKppVwpImIdSJwp0PF9UIIFJpIgak1gZQEMsSPIhwlyEuLahTE7oQJW7mXTljJIjruRdh1fXSkFJGOsEwzNkI1YkOtUugxJ99NteYSaYWFwJASLwppNczUOBPqiXdEgw/4KGN31TdjAQ1I0yBSCm2CJUykFgRoIqWwhUFHNo+JoMevUdUhWjQsf2PQzERiOJan18RroHHrftXvZ4P263NMUFMh2UwrUsSh0jypUV7AAa1TCYMQV4dkhYEhBBvCClXHwBgLvcsQjPu1YZyhKRkYZQyNcz6eMVw9FRApgdaCXq/Gtx/6K1tCD1NL8laGauCm/sZ7E8lGNRFoK4BQRdjSxFDgqwijTrOq6zLZzqO1wlCaUCjyxQIlv4ahtooBRIPxZvzN6GIi0HUQtI5d4XQstbLqai5FRKgUlhAUhcHxXXNoNzNUA6/OuGqk0IgxaG4ihRtTI82GeAugUQL6amVqKkx/jnSIWa+jIQQqUlQDn9ZMDi8M8MIAyzSxpMnayhaqKkwLH+txNFGY2fGAJjMwithdt7mxwnAZ9WJnSIEWgloUcevaZTzdtxEhBYVMFr9BFLc3W9noljieIRJvAq0giHBCSTUKQWkCFCXXZVK2EP+u41NsR65Ir1slkOCj4iBPdZfVxE11tIktxNYw2RMFSkVEUYgALATSNNB1VYGUEgvJx48/h+O756H8IDbQjGLJlxiDdqohbspjiWQ4RRr6PZcSHpFWaA1hEGLU8weY0kBpTSUI6LCzeFGIF4XYpolj2ayv9lOKfLTa6jo8Fu1LQtA3sfNoMgOjiAlh4NaA4eJwSy0wpUDJOIJiuVbjV0/fSyQl2Xqyn8Qffm8yA4m3w7imbwNBIq1xpEHetikrHy3AFZo+r0ZrNoeHItCaKIjotlvo82qsqvazpjZAIIjtNaj7gI/i2trY/xMpLrtAYNeNBg3DwJQSwzKJVISnFErGocSn21mmZYv0VgZQEnyhqRCNic1AY46K8QBN7ElQcqtUVWx/IQREKsKxHSzLwjKMWDIQBrSYDhEaLwxSZmBDuZ+aCmPbljHkcRJX8PFC24mAJjMwikiykk0UBL6Piuon7XrIXFF/KUBFEQdNmslmJyTUCsdy8IKAZNYnLnN7A4lUYLzTN9HvK63xfJ+saVELAnwBNz33KE+89gqOlSUUscumImJKtoUttRJ3L3+aG559BB+NrBt3JavsaC1xySkuCUc8Hk6tOwdNya2yMfLQhsQADCnjULpKIXUcy9HQMG/aLJ5bvxJPwtK+DVyz5CFCQIfxyTjUceTI0bYsdF13zCUDjREHUxuhMEILUMQSqSAIkUIQenEcEh1GuGFIxrZBQy0KME2TrGmxqTxAFIWEKB5YuYyS78ZrSd3Nc2+qFF3XHfeSw/GEJjMwipBSks1mx7oaO42Mk4nzvDd8l0Qh00CIYqqZhzDA1JKsYeFHW63597be1TCMCUNfpTXCsWg1nDjSI/DowAbu2vIKGdNBEhsZBgZ0ZnP0uS4VYG3kAYInN6ykN/JhL2xSEDMDEykcsRIanc/w3QdvoFf5ZABLSvxIERKSxYiDCwFz852sdvvQwJIt67n+5aWUtYIQAg0BDPI0GC3kcrmxp6+AegaHunRPkFESQ0hCNJEWsaum5ZAxbSzDgFDhhT6GbWEhKEcuWJKc4VCKQvKGRb/2+e5Tt/FKtS9mArQiYu+K7XO5XFMysAuYGDN9gkIpRa1WG+tq7DQqvouvo/gkW59DUV1HbQBuFJB1Mph+RMY0yVgWvhdsPV3sZV/tiRKOGEBrRc2tIethlB0FtcBlbbWPTsMm1IpARdjCoOhkqPoeZTQDbhkVKv7tgetY0ruREI3Soy+AEUJMqHDEGujt6WFJ31qEZWIiEZZBoEJCFeI0qJPas1ncets2lQcYCFwCQDlxDCKnHhAqglEd0OOFvpLYzRViaYCwZGyMqeK062EYgoCq52IIA6005SjAIY5H4vkhhmVTyOZoM23anBz9gc/6yGNprZd+FYIQcbjyvSg5rFare+dhfyNoMgOjiIkmGchms9iYoMDVCgIFKj6KGsTiwJzt0KJtMqZFVlhxbIIxqu+ECEdcF41GWuE4Do7jUAsDlIaByCdAkTctfAMqKsAQgqxp0+vWWBOUeaZnLeXQYx0eA36N5QObeXrL2liAO4oi5iRg1pifXHcBmVyWAeXTJmwMIGvbVIMAv55tL5FcFQybKFKEWjEQevhRiCTep0ylQcW/jfbONR7om9qi1kUDSisMYWBi4KogVRvk7Qx21sEEDMekR9VwdJyn2Hc9CsJkVrbIm9rnMjPTytraAJu0yw/vuoanXnsZLUSqqtkr7RIije7YxM5h4sz0CYgJcXJtQK1WQ4URZRTP9LyGr6KtrkcaXB3hWCadmTyFTIaMMIh0zAzoMZDGRVE0YQKLhPU8FdKQhJHClxodaqaRpSgMTMOgHAYgBBkzw9LNq7njhScJHJMNXgVV8+mtlnlwzUvc9tJzDdGHRgcTTTIglWZTuUQ7DgdYrSgpaLXz9HsVgsDHNIxU3WVqAbaJHwaUtV93MVQYOpYG3LNuOc9uWo0c6oA/whgP9E2bV6eNUgoHQWs2R59XJahbDhh+hO/7mAgsx2azX8auG2VWg4CcYTKj0MqXTvl72jIFHt64mqqOWFLdzEavSrS33GAaUKlUmmqCXcA+wQw0urjszGukMBFS7DbCzjhgG7xY6+Gbd/2Bfu2jGkaIF4VYtsWUfAuTW9uxhUwNjSB+99FoBYHWhAk9R2FB1VqPHX3ryuSkabrh89DrEqO/MArJZ3M40oIwRANt2uSS49/O7GIn+UhS9n0QElNIVm9YSyabZVa2g1WlAaRls6ZWoqwVG2v9hPUkPFA3+hth8+3EZmCiLKZCS2Q2wzFT5vGOI95ABLRl85TdGkEYYptWvds0CIG0TLzARwlwbBtfR2g0JR3y7Yf+ymOb14yimWYMx3HGRawMDeh6jCCl4pTa7ZkCm8olXB0hpMQxLRzTRmjI2BZLV7+IbcRqgj7lY1oOpiHpEiZWMc9PHvwruWwe1xT0uZW64eDeNSAc91LDcYZ9ghmAwX7pySuKokF/j8YzgyAY8XJHC5EfQBiyuVrmSb+XLV4lTcccCVBhiGMYvGXWAo7pmEFGCCqGiuO7a9jgVvl/z95P4EXcuOp5bl+1jNGyGUoW0bEK95ys36/XvMQbo6RDMoGmA5u+yEMHCm1rTp9zAK25DI5hUg5CWkKDKdkCXzv5PP581sc4qHUS16x4lK5sjqpfpS+osrR3PTWtiYTYusGNsLJGCIHv+2O+Ue0MRP3/klejXVi0WDYmkDNtqlGIFwXYtoUSGrNuLZcTNmtCj1oQ4NgOKgxRGnyl2ORWqQYuwShbxCZSrbFWFSQKEaEg0IrIEvxd2wyeW7+W9b6LIQVCKTwVoQS8YcYBVLRHm2FiI6lFHgUtYtsDUzCrpYOy9jnAmUReOPRHHoYGJfeuFGSijN/xgn0mHHEQBFx33XWsWLGCmTNn8q53vYs///nPvPzyyxQKBd73vvfR0dExohNTCDFhkhQBSCEQQuJ5HtlMlo29vRzY2gXUI5EFITnD5MiZ8zCEZFOlRNRwLF5fq/CnJQ9xwfxjeOC1F5nd0oGSdQOlEa5rEsJ1TOhbX19CSC3Ut3uZjN3UokiRsW1kNsNLlS30Kx8HyBqxHtUyLLzAx9GSVifLGw88DEfBUZPncP3y3zN70kyCwCcwFRUCPCKy6fTdet4aCTo3htKeCJKB2ONFEIoIxzTrJxyBbVh4vo9tSDJWXYJUNxCcmi3y2Uf/SLW/xOEt06jpCK0UL5d78B2TsnKxlB7V41IydpVSY8sQpMkJ4giOAG35An9Y9QxLH3gN244lAJbSSDSTc23kM1mEbWIYEi8IMK166GytObRtKgcVJ9OayVNwHCoqgCTK414cThNp7R0P2GeopbVm/vz5vPGNb+Q//uM/2G+//XjhhRd4y1vewuzZs2ltbU2vS94b1Qavx2HuKL74mPoRD1Ov7dVVCIEwBK7v02UXqERBnQYCLTQqishIg6yWRLFjcoPgT9OrXHrw2RjV2BRV6Q6LW38dQRIk9d/ZvhkNuFpTEdCuBTrJF6D0oBzuWmuUqNMuDDGFgWHb3P/0c8xrmUyXcLClgYjAMgxqoY8pDGxif3ip4LgZ+9OSydPW0orvB5iGwLRil05l2rEeVsTsgNCMiBg2oW3yPl5OVzucY0JT9WrxJhV/g22Y+H5AzTFpMXMYOiUXp+93GP/fi/djY1B0HEpRwAOVdXz11t/SUiyyqtRHoDUOelTNMxrbNNp03pkcCErr2Ig1m+GRnlcRfsDJsw5GSImhIgwFLaZDt5lHmCZISTUKkNJAK4VQmrn5ds6fdSTKMslMOwhZNzIWdd5qLMKXj5cxPJ6xzzADtm2zYMECgiAgCAIymQwtLS38+c9/xrZtPvGJT9DR0YHWmlKpxJNPPsnKlSup1Wr4vp+GFdZaYxgGYRhimiZRFCGlTAdbco2U8Qnb931830dKmZ4AEnVF8llKOaicpPzktJBckzwzubfxvXFBScozDGPQ+3BMQXK/aZq4tRqmYVJyq3SRoz9w8WsupmHhCU3N90AKwiAk0CGRirMc+r5PqA36KiWCmsvm/n4qbhXPdgm9gFBsrVNy4kzaG4ZhHMikoS6N9GxEFEWDaO77Pq7rDvLYSBa8pE2NdGxE44Y3lI6Ni+bQcpRSGEKytG8Dj61ZwfsWvDF2vRSxKFUk1xhGHG5WCpTWVAMPA8H0bAsauOGVp/jowcejPJ8IC6mhN6ggpCB0PYQh8SONiaJbZFjQ1s1La1biSBGrFDyXNsNGhAohQaEQdbev4cZG4/iMogjLstL+GDoWEwbA8zwsy8JxnEHXDC1v6HhsHHONfTm0Po3jPLl3R+U1/j10zoVK01cq4ZgmoR8SqAhTCPwgQAWSafWgOdqSBGHIXLuF759wATcseRTLcujp7+eKh67nscp6Ti8ehK81G4MqXb6Zzrmkvo1zLRkbQ9s7dBwNHd9hGKb0tW07vbZxjg4de0PXmMa1JqlfUoeh8yjp98Y1Ia2LVggVRxv1Ah+hNHYEfqlKf1gjqw2U5+NHCiPwKQrJwbIFI9KEaCqRj9SawAuQhsAIFP9w6HEYaF71Stzx7MNUPQ9LGkSRj9FAs8Z5ntRrR+tdIz2HGyuN65/neURR3fBxSD8l5WyTmK2hnETFu6+kQd5nmAGlFGEY8pvf/IbZs2dz6KGHcvDBB2MYBr/61a+4/fbb+fu///v02oGBAUqlEq7rUqlUCMMQux5+N5fLUalUyOVy1Go1bNtOJ6yUkiAIcByHcrmMEIK+vj6y2Sye52GaZrrYGoaB7/tkMhlqtRqZTAbXdclkMukAThgH0zS3ebbnedi2HVupS4lhGHiel5aXy+WoVqtks1lc18W27XSxSJiV5JnZbBav5mLYNj0DfRSlSV9QpVqtYhk2A6FL2a2hJdTcGmWvRmAJgiCgXC5jYVGuVrFth9W9G+jzqvRUS9Q8F99zUxolzEAQBFiWheu6aT3z+XxazyRuu2EYKU2SNiW0qlarBEFAqVRCa41lWdu0v1ar4ThOSqOkf4b25VAaAWk9k/Ky2SzVapVMLstTG1/lvlXP87Y5C9FobGkQBT5OvV65fJ5atRqX73uU3CoZw6Rbm7QbDo9teJkvLDyNUl8/2s4TBAG9tQpZKahWq8i6f3eYcZhrFDm6MIWnvWWEJlha0F8u0RJBJgJpCtzQJ2vH7c3n81QqlWHHUULzbDY7aIxkMplBG7PWcXroUqmEUirtn4T2yUKZ0MhxnG3GXDLeE3ucxvGZ9HtC++RaYJu+rNZq5Or1bRzvUsYbu+M4lNwaVc+lxSxQrdao+S46iKi5NYStEKGi0j+AyjsE1SoFK8d8keeAvzuD/37mHjaVB+gLPOZ2TCNrOmQiSblcwY5iF7XGedRIT9u2U9o0rgnJmEvaFEURtm0PopEQgkqlEgehahhzvu+n9EzKzWazaV8m5Q033pN6+r6fZu0L6zRKxnDynq41YYDUAolgwC+BUsiaz6H5ybzs93Jw13S8cgVhSvyqxlDw3iNPway6BEFIya0iQ01/rQ+ZsxE1Rca2iESAdKu4oU/fQD9FK0tQq5IrxPRspFFit5XQKKF543xP0pUnBwHHcQaN5eTdcRzCMCSKIkqlEmEYDhrvlUolfXbCFAPp3EjomcyBfQX7BDOQbL7XXHMNL730Ep/61KcA6Ovrw3EcKpUKnZ2dKWfe1tbGW97yFl544QXuvfde2tratuH0C4UCAMVicbvPdRyH/v5+Jk+e/Lr1a2lpQWudqiuS74fjSHf0zMZrhBAUCgWEELS0tOzw2QCB52FmMuSdLO2t7eBYtLW3I4UkJ1oIt7zEtGwrhZYCBVFgS+ChHZv2llaKpkVmwGFKeyeikEVpTZCzKBSLmC0tg3SFw7Urqe9wbWtpaUEIkdImucZxHEqlEp2dncPe03jtjrj7xr7c3jXFYhGtdfyuoJaz8YpZOtrbYwOrujF/IKFYKBJJQa5QxESTp0i2byO+KZna2s5phx7F2iX30NrSyiTpoLWgrdDKar/KjEKRlo427AgiKYgE/J+zzyeHyR8KBXrwacsUsPN5Jrd0xqJvCS3EJE7anbRpuHYndEzG3FCaJ/Nl06ZNtLe3Y9v2DvunkUbDXbO9OjQ+u/EEO+heIFssIoBCsRiHxk4CYhGLnC0tcApFys/UOGTOAbS2FmmjSH+fIDJjt82uXAutk7tidU4hj9CCrCiiNUxv6yQwJYe3T6dQbCXwa7RKC9uy6e7qGETP7Y3Pxt+Sv4drd+O1GzZsoLOzM2VsGumV0GjoM7c3jofWYRAN6/ck1wx91wAqpmtrTSJtk4OnzeA7536QK27/LTPyHbS1tlELPVo7OrCUprWrA62h9dUCaMgX8nTZORAgW2LD1lCHdGYdXEMyuXMSNgLZ2oIWUCg09KUYbJqRzPekLTtqU+NYbnxXSuF5Hm1tbSltk3KSvhyOpo3llMvlCWM3MxLYJ5iBxDL6ySefRAjBj370I9797nfz0EMP8corr9Dd3c3JJ5+8jaiu8X1XE4ok4qpEhL2je4cTWb3ePa+H7ZW5vesAMpks2jRxfY9iNsfmUh+B0NhohBa4aBxppjpZU0hCEesCtYAg9JmcK9JbLROEIYGOE8AIkfy3/XbtDH0akUgNstnsTtFpJK5JfxfQWy1TCwO0iLM6CgFJxmGhRRrgRifeGFFErlDEMCT7tXRyVGEqWcOKfxXgCIPeWoVisSt5BJJYdNtlZYgihWOalN0SLWYRP4ow4kqhiCNEiuTG3WlTHY2bci6XS5MV7Qn9dub7Ya+p0zDZKJL2yfpv8d8itn+ToISkI1tMvQssKfGlQochjmESCYlZzxYhhEBqQSghb2fYVCvThsFMp4Bv2PhBRClw0/J3BzuimdY6HbvDrTe7U+Zu1aP+nyCew1qDlgJLC+ZZed578LHMa+vClgaGzMTjTAgkCiXi67QfYppG7LIZPxGExlSSjLRxvQiNQMgkZLmorwlJ/Uju2uk27sy4btz0d2d92dU1f6Jjn2AGtNY4jsMVV1wxSEd14IEHDtKTjjSiKKJWq+3USX48wHNjN6KK59HV2sIjSx9n4IiT6TQs0HWdXqKXE7H3QWrEB/hhyNR8G5srAyjLwAhUHM6Y0TEiDsNwTOgbCU25VEYHASEaOzFME5ok6K1BQyAmDf1RgF2NiMKIwybPYL+T3kFOGIQCLA1ZYdBbK5PP1g3g6jugqBu8KSnIWDaVAZdirpta4KI19bTGI09drXWqakjEzXsbup4gQKbNE8kP8QamY4u0GpotXo1S4DK92I5SxF4sUqK1IgyCOOjQ1hJSEzYJFDJZlq3bRM40edPcBQituXflMnrd8qi2L1HPjLVrYSNUYosgBYaCM2YdigDK1TIqCMnmc8DWyIWmYWAqQRzzsQ6x1d3TERIMgUeEg1E34NQoIEJgUne/TQodIWitKZfLE2btHQ8YP6NwFJHoqQ3DwDTN9JXo2YUQqahuJDnBRDIwUSxZnYyDMCSV0OeYWQfSUWynFobprhYGAbIeyU3oOCscdQt2BQRhSHe2hc1uBcM2saLED390uGvDMHAcZ1TK3hFcNGW3RkaY+CoJuVSPY6E1JRnhodBKpQGZtgRVprW0YxiSAgZTrUwa8U5rsA2TnrBMznTShVHQcHIT0GHnqFWqtOcKVGujH3c9l8uNGSOQQLFt4ColIJKAjNNAX/3kXTywajm5liLtViZloISQKK0J64anQ6GJaZ+3Mwy4VQzT5IC2Lg5pn0yLk6EUjG50y/HGCABEOsQQcbIyJWPpiQCUY6JzdhrNQhBLASzTJGNaGIh6QKeGwgQ4QiJNg1oUoNE8tvZl+rza4CBZo7A8JpKtibL2jgeMr5E4SmgU87/eayShtU4NhSYCXM+LU75KTbeRIa9NIh2m8zsxZEwEp6aQCA2RjpkBXwW02zk2uQOY0kQoPWqZ4hPL37EIR1wNA7wgoMXJ4euozhDFcLXid0/dx6pKP8n5SWvoD1wyutHuZKucVADSNBjwq2RtO85gWP8+grTwg7tnkwsFk/JFarXRD3NdrVbHNFxuCAxEQcxYNYyjdDZp8IE7Vy1jef9GtCHI6FhiZQK6wSrcNK1BZdel1UjAERY1FRIakkiDiCBn2dTC0Q0YlqQwHk/rQxRFSMNAUhcbWwJMAUE99HedQ02CkTmmRd7JxKqyWE41CDYCaRn4YUiA5jfP38+qah9SkcoSRqv11Wp13DFb4xlNSo0ihBATKlGR7TggJEpqskKSty38IEil0CoIMWXdHUgJpAJtCGo6Qqo4sNO01g6q1Ro6Uvhaj1pa42QRHQvJwJZaiYKVIWfYKLW1gVorPCLuXP08j25cRVj3/VdoqoFLZ76IUBAmW5vQmMQnXWlIaq5Lxhq8aTXqyee3TuJdhxxLh52lFvgxo9UgOR9pjHUinVoU8uO7rqPXrUJDxjuRbCQ6/uw5JkvLG8nKWJ2lRBz9whQCD0UYhNim2SDIjtnZJAiOISSe9lHmVuNE2zSphgHoOM6A0nV9esOBdk+RhMsd+9Nr3LCqVnhhFIv2iWmriNucFQYF00lplmQgzOVzTMkWsESstmlkcxPxvy0EXhiilGZN5NLj1wCBrDMVWozO+M1kMuOAthMHTWZgFDHRXFPCMCIKFREKLSVZ26EcBmgRW7UrP8KSFsl0N5RAuT5PrH8VD6j6HkXbJiMtTGHiShDRCK6ewyBxC9qbKEU+bU4GM/Upj78XhgAFFdvg1pefxlVhffEUKBUhqRsXIOPIhXV7gUjEulcZKrKmg2brqcmEVGWwf66V/9/hJ9Ju2AwEPkrWz2ejJGZN4muMFUqhz3WbVrDFq9aj29U35bqhW7xRCaII7lm5DBkoVN2tQwnICUnJUIRBhC1MZBTfo+qnWKFjxgxD4OsQUwosoTCkxrFsSiqob/4aVVeFjWTU5/GyNig0HiE/f+x2XhrYQkZaRGi0TDYITaAVSjWkN1cCraC7UORAq4DFVvuWFEKgDUFeS4IoQkcwUHEZ8L04dKfYam800uIBrfWYrA0TGfuEAeFYYCJaowopiLSq+81LHMtiwI8N1ZSIN15HShAQCtAKtB9w62vL0S1tlIOAvGlTdLJgxr7d0dAFYqTrPAb0DcIQy7KRkYfSjbtDrLpodXI4KqZXYFqYKk7/LGwTBJiK+ioby1wFGss0sKVBxrbrwtatJtZblQkxHNMmqCc7Gj3zTEbchmZXUY58+kOXdZUSh7R1pydOzda9xJOK1kyGfKFAaMk4eI7UaCFiyYAOcAywiXc2OUiUHUtubGniRgGmkBh1gmcNiyCKc/YZiSQBRpTU40WErYGSCrjp1Wc5LmPRkrFT7xRRZ7yEFCRHeC0ESmpkBAtbp3DAkYsHtUXUXRNio9pYleApj0ArevwaPbVKLA1LHj5KQ2yirb9jjfExGv8G0Rgpa6JAAyEKLcARgqmdk3mlZz1ECqXivOaONOKJrDWR0Gw0Q65Z/RTfuvdPVKpVCpZNi+XQaeQxQ/BGK1PRGCDxvw/DENMyY8NJNbh/lVZYCmzDoKoilpd78FSEryMsw6zTrl5eWjBY0sDSEjt13WS74lNTmAR6dE+V4yEMcb8X63y3eLW4TnXZc4BiQ1glEhAQUcCkw8hhGya6Ie22ISU1FWLYBqaon2j1VoYiYbRsKfGiEAMRe4EQu3qqMCAE0KOTv3Cs6ZvAAKIwYqOqsb7UR9GwMaMGG41kLauPdUksIBFS0G1k2a/YtV27K4GIAwkFPi4RVUIGQpewQcQyWtt1YlfUxM6hyQyMMsbLhN8ZKKUIVARSYCGZ1NnFmnIfryqXezevZJU3gGmaGDoW/0do9i90cZDZRjnyqIYBLWaGjmyBdjND3rEpBaNj9Z4Egdpbk72xH/0wwDat2GCqQTIgdGwLYAoDZUjWuQP82y2/ZksUG4rZEYSxojTxjovvg1gqYNhYyNe1szCkQaQSJmv0Tj5jzRDUfJ9JhdbYqr/BSHOLW+ayG37BlrCGGSky0mCGzFPwNQIR54MgNnD1dRSHi9aCALYR80sRxyOoqdiKXhIzHUUni1d1CUXsypFSeQTJnYzdsT69CuKQ2eXIp6fcR9600cPEn0i8BWJFV0xnIQTpv+HihwCOZeMHAW4UkMvlCHwPMYrjFmKaNoaObuL10VQTjCKklHs1c5Ye/B8Aft3q10qFzw2TY4gI3zJNlIpACwwELXaOh1ct475NK3hx4zoKVg4DAxlfgi0kXzruXFytuPie/6EWRthC0m5mUH4FZdlUXQ+dZfDON0J+xXuDvkO3Qg14kY9j2kghB0sGtMBXEaaQaGmw2u3j6XAL64IqhtZkTBukRMvBUgEhYslAxrJ2KsOjYcTx5Ldu1CO74CULqGVZe2cx3cbDLP7kBj6T861Uw1o9Wl38fVlHPO5voke5TNIZEIKT5xzC4cXOWNVVF0EbGERhSCTrTAJbpdJ1U45YKmNIvDBAapn+ls/mqFZrRImBQgNDMFKS7b1G3zr0Nh8AEXusuIRgm2wqbcG2sngSMg2XJSGYIxFLEiQQxCYy299E6k1zLBsvCHB9n7ZsHr/mpTYzo8kT2LbdZAZ2AU3JwCghObV6nrf3Tlf1x0RAHHkFrl3xDLevXEaoND7EFlhqePGzcn0GfA9HmCgpmGxm6A9dHul5jUxrK+3CwRISJQWYEiGgxbToMCzePHV/Dip2kpGSM2cfzLsPWEjWtukNg9Q9LrFMHgmDt4S+vu/veWGvg2QToe4qWYsiCtLElAZVFbcvUgACLwqxDRNbWqzq76fH8/jzy09jRoJK4GMF4dagTfEtSCFolQYthohF2ZEgQsSGbsPQypEGNRHFoYghjQI5om0eg7GrScYuoOKTaqeVJ/R9lKwHctLwWM8aXDdABYoqisiADyz4O2bbeYQUmHVxv5RgIqkYsZGnCamxZ5w9D0KhMaQkCEKUYaA0CKWQpsWaWomV5Z7Uk4BoRIZuioS+e1P60vioOpmRgKtCJuVa2FweIGdYqYQkvidWjQVBMGjDsIi9Dne0qRtATppUwxA/Cpns5BjwPSIlCRCpEnE0vI6S/AJN7ByazMAoIQlktLPhckcMiWRAgC/g2ddWsWLTa3Hwm4aJMVyNbMchQJGr+7q3W1lOPGgRx7XM5Csnno/MWFRkvEjE6XJjaYMVwgUH/B0fPvrNWAhmtncxb9JU8lYG369h1FcV2SAR2NMpOjTc895B3N4oipBCMiXfxqZybxySuG5KHagIxzApOBk2lUqcOeMwnl73Ev3ap71YQJh1P4G6RCA+impmtHbxniNOJBdzB2jEdienLWTdS6OhH0doiDXm4BiboDjxIFECaoFLe6aIFwb1jUvTH3n87PHb6BUh1TAgVBGWkGSEpLUefjYxuNRSkDEtrHoUPGBrZEe2vtuGiR9FyKRvhMARgpJb4en1q1B1g1ll1JmVEaJ1LpdL6b03kEb6Y6t0Q6q6e6bv0VpswVUhjm1jNrgFCyEwTRPHcVKjwjSwE9snR/KbbVl4QUAQRrTbeWqeRyR02k+jhWb0wV1DkxkYRYRhSKVS2XuTvf6eGPh4KPqMgHVhCai7qzXM3qHTsOa6VGsujjCQSmMrmJVrpz2T5Y12FwcYRbKJs3Wkt4bcldAibKbaBST1k5nSFLNZ/JqLpxU1FER6q658D9eARCdYqVT2rKBdQt1+v575cVaxnTX9W+L0wcT+6F4UkpEGBTvDa5Ue3jbncCzbxhMRUcXFq7tnNTZfCEGrneUt+x1BXpip+qZx8W6ELSQoReJPkLghjsQoS8NLa02tVtvrBljJgqQA3/cpOhnchuA/qwd6CKOIQ7pnoqOIUIXIesS8/v7+rQXVCTfFytOpbZKIebrhlei+bcPEEJKc7aT0LgjJgZOnU/Y9hBJUtI7jaQxhqvcE5XJ52NTiowmhEgmMrtu4aBQKL/DpsFtwDIu8aaVGrgk8z9ulk3ajANAyLbzAxwtDWmSGqG4EajQyvCNMAq314PHQxOuiaTMwijAMg1wut3cfmmwgOo7PPuC71OrGPUZd9Lw9vbSTzaBqipxlx+JrBEUlMS2bydkiXz7jPUwRJhIF0kBqUEIQWvF2JBteALZl43k+z/evx8zmONRsHaqu3CNYlrUX6ZtqmtFKYxkmc1o6uP6Fx1B1w0EhBH4Y4UiTnOWwutTDlGyRYmSQR9JSKGBKmQZuga36eUPHSYmSzkkYt+H009KQ1LSiIjQZtjIDI72gZrPZvScZEA1W/lqjpCAMFcVMlp6BXqj/1lutcPZ+R0KkEH6AZ5pYRhyoqfEkKDQYCk6ZdjAyDDGJSRtCw/iP1Qm2MMgaNq2ZHFLEtgUZITn9wEUsWb8KDdy1cgmOH3DmAQu36hr2EIVCYa/aFEHMvCu2rhGblUtNRdT8gElGhm6ZpUVa24w727Z3LYNf2plgCwsvCvGj2POj35AEWo2qCeHrZdhsYltMOMlAomMb+treb2OJJA/83uL8G0/c8WKoCYOAPr9WTxACWuhUQTeUVjXPjfOMWzYRMTMx2SlwQscspCGYlM0hjDjoaFQ/OiRhRWVjHer1cDIZBjyXa59/mDtWP0ckqasrRqa9URThuqMXlje1xWxolNaaMAqxDIMphQ42uWWihrDLXhTiGAY502LdQA92vsh0u8gBbZOpui4iGv6krQHk1gh4CZn0MENHSMn6aj+r+3u2LuwjDCHEXg1HHJN5qwtfhCYKQ4pOjkBFsZpAQJ9bZXImT4thUY4iKr5Hm+lgaLaREkkFp8xZwJv3PwIZsY3OPxGDm0DRdGhzsqC2hoDutrNUA5cSEX988VEe7lmFN4JWA5VKZe+7vomYzpI4jPg9ry7jl4/fTsXzmebkOap7Ll1Obus4rCMMw10L/a23zh9LWgSEuDokpy2EEdvWDDUZTV8jZFe0d6WGEx8TTjKQGI4lura+vj76+vqwbZvOzs69r6PfAcZCMqAEyPpM9lXs8x4EkkCBKXVdhSBSMaAnwFQaQ4NjOwRakzHs1IDoxNnzeYM+IDXGEvVIIaJ+lEvV3jTMXxVHgGuVDq/UXFb09VAK+zi5ez6HFLtGzApeSpmGdB0tKGJbB13XYwvA1RGdMs7IZgiJrxU5HYfC9aMQYRm0Gg4q9Gi1HP7x0OPJmhYFGZ+uhm12IgVoIM32qGNJyXOldfx66f0cevzbMXSs0x6pyZzMrb0lGYgN9jWRjgMyKQGmhigKabUcalIRhCFZaVL1XVqsDMoKqUYBBJqMbYGAfD4/uGAJLUIgUxuXuhFh2tCtqoL9rBzdTpEIMFWcYreYybAprBKqkPW1Ei3CIRrBtSWxGdirqGd0NOqMV18Q8lzfFma3zGC6XeQDp76RLsxtmIHd8XxI7IMcKQmFpqp9bMdC+JIoigiJ+6Nx7RikQhtOLLYLyOfz42YvmAiYcMwAxAvHI488wh/+8AfWr1+P4zhxel3D4JhjjuFd73oXnZ2dYx7ha29ZuydIvKAgjv4VqjjuuiUFkdCpUVp8yoojiHki4oWe9RzaPpUoiCgFHnnbIYm5lhEGQhp1tUECMaxoOhE9Jm8Fw+G1Sj+G5bCqZx3fuPX3/H9v/ShZae7xRG9MVDSa4sDkdJMEABIIAhVhSgNDxExVpFQqOQ6iCMM0yFs2bZksOSmZ3jEFgC1btqBtZ6v1VWN72Lp4vh4MaRCYgqc3rcLTKo47wMhO5sZwxHsjc2HMCMUhf6sSMjqW/LRaDo4bsaxvI1NbOrh3yyu8Y95R+L6HG/kIFE7dhWyQlEiAMMRWmoghG00DLCn53JveRauVjQ3qRD1ltONQjQKU1rQ6BVSg4vk1QvuL53ljengRIo7UuGLDWlZ2zOSQzim0GSYiEtuMxSiKCIKdT9yUrAVaxG6zgYqoRQGZbAarLBFRHBQ6MaQd6k2QSDn3hDJjkcRsImPCMQNaa1zXZcmSJXz4wx9m5syZZDIZlFIMDAzw8MMPs3TpUhYvXjzonl3BSE3OxKNgb2HQKV0IIhQi1JiWGYfNFVu1pT7gRFAKyvzi6bu44tT3EBqSLVGNQ532dHNLxNSvR5Hk5JVcLDSY0uDV2mbmTZ5BsbaZ54Jeqiokb+z5sEss3vcqfevMVhRFse6/HnQliqJ0JvlhgC1M8pbDFDOPLbdupCNVV1MKupWDjiJ8InJaxi5emhHRZydqo70ZjlgBBoINQYX7Xl7O2fOOoBZFOLbNSXMO5unNa/CE5t6Vz/PhI06mXCpT0i7at8jaDmh2m2kRwHSjAEqjhUbXPQ8cYaLDiEBoMtpEWiZ+FIBpj0ibxyTccwNTpAREIiLf1sJKr4cFYnqqrhpaq12da40rrmkaBGFENfBpsws4SHRYN8ZMQ3NvrV9ymNlTyox1+u2JhglnM5DkqX73u99NoVCgUChgGAaGYTAwMMBZZ53FSSedNGjgJoubUoooioiiCKXUsK+JjoSj1wJCHWJKiSkNVJQkxR18XVmFrNEuNaW497UVPLNlDZ2FQpxToJ61bKdnpSbV7QoNlmHQE1ZpzWaZnm2hN3LZWB0YUSX3WLhtqiiWDEgEQgrCejRAJcBXEVllMK3YxuGFbrINzMCIhKjWUMDk0sXnMa9lEmEYxnYbIxz1eW/HdRfEPu8rSj385om7KIc+FR0iDZPuXCulapnI9Th51gL2K3SRdxzKUUA59Mli76GFv0CbgtCS+KYkqqvRTB1LwMqRT840wYyDE41U9LwxCVmenMLrxr+R75PL5+nTHhnTTGNfDNfCXa5nnUGNJVeKqu/RajsYGJQJGdARWsT2Ngpdz0JVf9YeNXIP6rwPY8IxAwmuvfZannjiibSzlVJcddVVvPTSS9vEyU5EnldddRVf/epX+X//7/9Rq9VYvnw5l19+Od/73vfo7+8f8cUvYT725oBMDoiK+JSasR2klLEou+E6qz7jS1GI7wVUAp//Xno/D65ZTksuHxumRYNF/zuD2G1JILTAMAyqvkdOWsxx2piV76RPuakqY0+QMHh7PzOZ2MoM1B2uFXEa1gjwdUBRWkxxClx48lvJNUhjRqKugniTWjRpOjnDphLGAXlGwzVrb47dWHcPy8ubWac9XKUJlCIrDZxMBtfz6QtcFnXOoFUY5DIZKoFHVfs4ZuxNsCf01fWwuknAIqiHKhaSiueRMS2kZeJGaQLqPUYYhnv3AJKqugAdj9coCMk7GWpejbxhpLkZYLDoXim1a2OhYTyaUhKEITXXpcPKYGYsXnL7uebJ+/GkpqpCBqIAZYyAOKCOJFBS02Zg5zHhmIGkc59//nmOPPLI9HvTNFmwYAErVqzY7n0nnXQS//t//2/Wr1/PY489xk9/+lPe/va3M23aNG688cb02h15KiQShKHXNH6XTHApZRoSc3teECP5ov5SaKTWBEGAbdvYGjwdOxinImCl0ELjBgGBF1CKfFTeYlHnDHKmHReFikV57MTzU//r+LMWCltIvCAga5i8edYCjp00h4rv1em5LQ135ZWILW3bHnE6pgtfvT1pWty6iXSoFIYUSBHbYARKpVZQtSjAMS0cBJ1mJnYXrC+vjUZYu1snXa9HXkjaMzme37wuTi9bD7q/vfE43Jgddgw1zBfbtl+3rjtb7s6M20jAktdeoZDJ4ekIHSgcJI7jUApctoQuOctBKE3Wdqh4Hp4KyZkWCIHjONudwztus0YqjVF/CVXvTAFISSXwyRkWpjBwA2+3+m84OjuOM6wEc7ReSqn6+InTZou6wWvBtKn5HrZh1BmAhnlcr2sifd3ZetLwsqXEVbGaIGtaZC2bNeU+7nptObUo4r4VS7hnxRKqWkNYVwHW7x2uDUPH9vbouydrQ9LOfQkTzmYgQTabZfPmzcycOTMdEOvXr+fwww8f9nrLspg9ezae59HX10c2m6Wvr48DDzyQbDbLr3/963Qg9Pf3c9ddd7F69WqiKEqDr0gZW8FaloXv+9i2TRiGGIYxiAFIjK5qtRqVSgXLsjAMIzVyTAZ0cq1pmrG4t+HvIAgGTT4pZbq5J+U0vov6KVWHitA2MPyI/koF0xA4oaanVmWSMuOshBJMFaEUDFTKDPg1+rwaxUrAv735PThKE3g1IqURQSwKT9rU2N7k2cmCpgIVn56UhyNNhO/XU8lq/m7KLJ4vvUZ/eQCv1SPScTlBEGBZ1jblJRMxMRRsbH8YhliWRbVapVwuD/LVbqynZVkEQZDGVU/KS+gZRVFK+0Y6Nl4bqghp2SjfR5gmqq77VGFE5HvoMGLAqxKYOXwVUgpdIitD6PtxDndppBt1X18fSqnUxmVomxK6aq3Tz0n7kzFhWXFqXWFY7FfoYk2pD+UFeDpESGPYNiX9k7Q7DENs207HWOO4TGivlKJUKqF17FUQhiGmaQ7y5EnG+9DxmNRz6NxoHD/JPErqEAYhvmVQDTymWEUqgU8YBoRBhKUU/W6Zcq1EwSlSq1UxtaBcczGVxtaKUq1Mf38/tm2nz07a3ciMJ3UwTXObdjcmDoqiiFDEtOirVChEEtMx6S8NULULg/olaVNjuQkdEwnl0PkTBAEDAwOIOhOTnGKTejT2k+/7Ke2HjuHhxntjmxrnRBAEmJbNmkofSzeu5dTpB1EJa1gaev1qHGq7UsWwDMIgwGyYP+VyOW1fo63McHMtmUdJgCNDKfpDl0BH+KGHhWRDbx/LgjIDpSoP9bzGgI7IrmnhhI4ZBITYlkHgxeMoGdONAZoa14uhtE/6pL+/n2w2SxRF6XhvXFsbjWMb14SkXN/303GzL0gYJhwzkCxCp59+Ot/4xjd43/veR3d3N88++yyPPPII73//+7d7n+d5XHnllRx55JHMnz8//T5Z4BKYpsnkyZOpVqusW7cO3/cHLV5SSnzfR0qJ67rpYp5M5qGTuFar4ThOem/y3OTapG62beN5XnptMlCTRSd5Zq1WI5PJ4Pv+oIVPGAah6yOFQ+D59FQHKDhZPNfFrbkEMkugI5AQoon8iA2RTzUI8CoV2gpFisJE1zxCw0g5e1mfbI7j4LoumUwmrUPSJiEEKogwUHihh2XHIkhHGphCooIAR0t6SyV83ydU8UT3PA8hBLVajVwul7apcVNMaOK6LkIIPM9LrZullGmM94RGjuOk5SYTOqVRPXJh0pdJW5J7kmcD6QJqIAg9H0OA57qEKiTyQgI/QGtN1XPxLZ9a4FOr1YiMImEUUXNdDMfBD4M0pGvSr57nkclk0nomz04WvDAMBzGeSf0AXN/FNuPAR/39Pfh+QBi6OE4mtVBPxuX2xhGQ1sF13XRDSjaxZFFNFtBarUY+nx803oFB472xTcA2m1gj85Nck9De9wP8SBCFIaY2YomVCjG0QkcRkQrZNNDHjO4W/MDHUgI/9NkSBeTrYyMZI0nbbNsetIEm/e77PplMhmq1Si6XG9TvjYwXpoUdwsZqmaw0sEybvkqZoCUYdIp0XTeleTabTduUbPwJ7S3LSudPUoek/xMVx1AaJV4SyT0J45v0zzZjY0hfJtemcw3B8s3r+MmKe1nUMZOqDslIk2qpQs7JEHg+WljUfI9sfVw2ZgBM/m7s91qtNujZyZjTKo6CYSLwPQ8sDUFEZJs8/tJSqr7LerfMy34/D6xezpZNGznitH8gcqsIYtoka2ziMZb0ZSONEtoPHcvJGpzMqca5NtxBrpGeruumtmX7CiYcMwDxYFi0aBGf+MQn+P3vf09/fz9z5szhq1/9Km1tbdtcn2z4V199NT09Pbzzne/Esiy6u7t5/PHHWb58OYcddljK8RaLRd7whjfQ2dnJvffeS0tLyzacYRI/YBvf5oZnmqZJf38/nZ2dr9umQj2u+s64yW3vmQogR6wbzOepbHqZKe1dlGtVWopFCvkCSiaBPRQbSwPcsXYp/VHAQF2bmDNtcvk4E5yQSabDbZ89bB3qBoRZkcdUmimZLEUzQ1dLO4V8gWltnawZ6CdfLGDIWD+YtDdp/3DlJr81vmutsW2bgYGBYft8R+UNRdKXyT1DoQCRzxMCuVweYRp0tLTRUixSLLaQyWfJtxTIajBWmXR1dJHP5cjmcxgacnUCep5HS0sLtm1v0+7tPXvYNpEHBVM6JrOqPEC+mEfKHBKZXrMz8S22R6Nkk9u4cSOtra3Ytr1T5e4KzZP2J9cqoOLHC7yONIZlYGUcWrJ5Ck6GfCZLxdK0F1tpbW3FCzykFpRVQGexlS6nyGtr1tLR0YGUcqfoucOxDPga8naWV6IqswtFwryDb5q0tLYOmhND272j9jdes379ejo7O7Esa6dotCPsDO0LhQIoMFrzrFADVLIGkYxDjh9SmMyMYgetho2SkMvnEQ3lKaUIgmDYubajdivADMNYymDAtK5u2lQ/a6p9HDZtLr9c8RB9octA4OJlTPK5PLlsDgEU86/f/qE0SuiQBHxrXLuTa3ZmbuTzecrl8th4fIwRJhwzkCxUQRBwwAEH8M1vfhOI1QDbE+cknOSWLVuQUnL11Vfzzne+k49//OP88Y9/pL29ndNPP33Q9UPfd2dAGIZBNptNpQB7C5LYdbAa+OQKrbFRUMrhijTQyvP9m/jriicwTYf/evIO5nZNwjBNkEl7ReqptvOtr+vZhMBCktGSosggELRZOZa469BJ+bs5xxr1mKPqp623GlyJers0Gi00hojDCpuGQRCGqQV2GARYlkkj4UT9vsbEP3tUZx3XyjZMfBGSJIyKn7XnhplJ3bLZ7K6FoN3dZxInIdJ1Vb1j23ihD1pjSokjDDpaWnlo86tk5x2FII53HwUBZenjSBuh441g6Nzd7TppkELT6mT45YoH+MoR51A2FKWqO2J0ToI6NaoTRhtaaMIworKpl6fWryKIFMdP35/FU+bRIszYGwiBWff/R8R1tSxr18Zu4llEHKzMMA22VEtkDJN2kaWrtY35bZP4/tM3c3jXHGYWO6mFLioNaLZVVbc7EEIMSmK2q+XszT4ZL5iQzEAYhvzgBz/A933mzJnDe97zntftONu2ufTSS7fRAX3mM58ZZDAykp2/N4LiDEVq/yM0lcCnzXYQWhDVjdyE1nHsAC1YE1WoWtCdy3HPa8uZ1tZKoBUmGqPOCOwqNRIfZnQcpnhWvo0WK04AkzNsqtpPI47tKaWjKBrlwCL1Ban+11ZPDY0U9YyNpokfhcn+jBcGqXX7UPOjRN2xJ2NMN3ywpIGvQ5RWyEGm4nuGZD54nrdTp9KRgiLOlJexbdzAjyUyIrbun90xlauX3B8btwqBKQxMJLXQx6jnexjp0NRSwxmHHcOvX36U/Tu6WdXfy2v+AKEGMwmdLERqa7irtHddl1wuNyr+8Knxm449JTR6a8Axz2fRlHls1DWCIGB2roXpVgsy0oRGfYzFgR9S7GrQofqj46iPQtKWLbCx1E/GMMko2M9uobPQgisjckpywJR5rBnYiKcisoaJwZ4P5dEMVf63iAnnTZDo1NasWcOb3/xmlixZkopydrTIGoaBlBLDMDBNM7WOTfRfyWuk67qni/+uQABI0DJO0lINYzc3KQVBbDpIqBRaxSZtfdUKmSDizV1zOXrW/kx1ilhCbjeR0c7WwUCAFNhCcMXJ7+SQ9skIAQXLIQjjmoyEJ3HiTTC6iO2vFXGIXKEgQGBKiZaQlxa1KIhDFkfQT0iLkUlPRo3NTMbCnlopJ1KAgjTwUCCoe32MDJI67s2xawI+GivU5AyTMPJRBiAlAphk5wkk5M0MAZocgva2VpTQZAwDJIO8CfYYAnyhmW3n+cCBxzIpV8DOOPT5Nf7y/BP01mqEGiK9ddPbVYzUeBgOmtguCAWbalVeLQ+gI42PJghDJrVMouLWEAgywkSagCMwhcCCQYxAYruzPXXG9iqgdZyASwiYkssztaWIoWFB9ww+c+zptNg2b5t9OJcfczZfPPp0ZufbiMIgzv8Q6T1mBjKZzD7nEbAnmJCSAcdx+Id/+AeefPJJPvzhD6e/bW/hGitRj9Z6r4YjFpBGydOAGwTkDIeiNPF0wMawxvJNa/m76fNwQk0t9Jji5PnggjfSU63Qt2UTKorQhgHbCaH/ehUQbLXcBujIxQGM0ALLTIx1RqY/due0sksQ1EXyWxd8VaevIWJBcd6wqfgBCgiFAqWwpTHsIT0IAhzHGbEFyjRMgrph1+6cTLeHxGgqMb4cbaQSl3r9s04G1/dRxG5pGig4GdqlgyVN7PqF7S2ttJazWFqmqsMRk+5psDUgDD541CnktEF3Js/6SonHN6/iyKlzactm07TIu4MgCEYt3LMAlFa4hsE9a5ezZvMGPn7cm3lkwypedfuYVmijUi7HabJfRy+eeEPsylxLI5fWJ870TBFZDDG1oNvJYhlZym6N7PTDOGDKDIxQ0xZI/CjCVhot90zQtbfX3r8FTDhmAOLBefTRR3PccccNMvBINqHEaji5dqywt20FEnGlItYNBirAxiAvLdww5ImNq7n6oVs49F0XYUqB4Qb80xvfxhEd07A6BP0t3XWGQuzxojrcvYZhEkVhvJuOQL/sjXDEW6MExGLsCIWuh3YWGjqcPOsrAygJbqSQkY6ZAaFj0X0DdkaCtSswDINIKZTSYIycmgC20nbvRniMffxtx6bq+0SAXW9Q0bTZ32rFSlzBJGQMh5ywkwqPaF0FsZoglIJCINAmtGfzrApLvCRK9CmX2fWNTsvdG86jTVtbC0pCs6JvIwNhFY3gz88+QK+lecOMg3h2ywtoM+7j1xs6u7OWpSpDAcfNOJgwikDE9gixhGAmh0yeiQVILSlb8NOn7+HihScxKZPdceE7gWY44l3DhFMTQKwL+vrXv86f/vQnXn75ZTZu3Mi6det45JFH+MY3vsEdd9wx5i4hyeQZi9wEkJy0NJaUWKaFFyk2+WVeDAeoBh6+IRA1n+NapmEbBo4wyGljRDasxgiQoqFWhmkQhSMXMXBvMANboVE6zqynlU4X0A47z9OrXsDXimoUIQNF1jSJiDeTRiqO7OKvMc0kFgEjFhUPtuZQ2Fu0jffU2EBFRGCbFrUgZgYMJFLAtFwrn1j8VlpMG2UItBAUtKBdm3FGSTkKY0FKtJRgSpQQWIbJhtoAa19by2tBNTUwTRuxixhN40wBoAQGgkq1SrlWI0TTJwP6whpdmQIVwjiOxuvQbbfWssZmScGUTJFZ+TYiKUBItCERwiArDEwNGNDa1cHPn7uTZ0ob0pTge4KxTlQ30TAhJQOO4/CRj3yEm266ia9//esMDAxgGAZz587lrLPO4uijjx4XuqLEX3vkC25ce7Z+Eg3nWA0opTEMCbaFr0KqlQqeIXB9H8PJUYt8HNtO07rWRIQ1inQzpUEYjcQ0jzGi9NWvt50KvCigFHhA3dJYw9wp09DLTdzApz90yZg2tpGalw06cYUN4X33/BAvYnoGYf2veml60FvqzbCrSGg74vNoaP3SrzVKqzinhWlRrbkIRJz/AUGraXPUpFlYSoMEGcGx0/bnwEnTsRRogzT2wUjCqp/8pdZYQtJuZVjYNZtHV6/gzEnz4lDQdcHMrmI06ptAA8g45HDJdxnwXUoqYsCrUfM8ik6OqojisOFimE2zUT2mY0Z4Vw5YjeM7iqsSp6euWzEmw0rUpS9CwZs69+e+1incu+oFDm7pYka2ZTdbH2NUVYh/g5hwzEDCoU6dOpUPfehDfOADH0gDYjS6v4w1M5Bw/I3R8UYaPmDVVfBCa0KtkErEoYhNTSgiMghM06AWBtSqLrPaJrFi/VrymSxrgwpFaceGw4JUtdIYgW8kUDcZICMMAq3wtSI3QkKpERUFRgrPENiRIBSaUCiyCISWIOH+jSt5fO2reAgyUhBJaBMORelQCgJKXpVCXbxps1UPntTQsOx6RMJB9lm7jET0mhMGSis8rbC1rNtr1C+qbwS785zGoEsjfXJNvF20hkiCGUEYm6jgobCkICctVoceRWEi6xn0TCHizIxJfSTMLrQyU7Ri6Fg/vksGbjtTT6gzU3EIXyQcb0/imKMXcfXSe/GFwsZoSG+9axhVMbZIbFgEAyJgwIgIlWKLV8Mt1ejK5DFDQc3QGHJ7Cvr6CJISLSTC2Pk5m3rgiAbxsyRNhISI50j8Xcyx/t2UWXz2+HP57F+vZFHXLKbPXbBHDPPoGxf/bWHCMQND/Ygtyxp2ERgP/qFJZMHRKZzU9S+2zdf0iAjTkLQpA6FjYzZLGliWiRsF9NYqnDz9MF4qb2LSllYydoY2J5cufKHvo+p+zyMpYkvqaCIQpoyjILLnC3diNDYS0ICSGkNBqEAJhWFChI43G2Dpptd4astrtGazWPXTlIkkowxcFVHzfXJO7EYpdJyETYn6qVFD4LlkbbO+qO6ebKA++utMRhwYKqorCXSDnij26tjtxwCjZEAoIKShbmzNYhuhMA0DS0jKkU9exsuTaLSOFFvLMVPpS9xBIzrXRD3YlK6/0NhC8v7FZ8TSCwSBinD2YENPDB5HC0KAVLErsTAlQRSyWblgaCwri0Fs92JpsY3NQ/04EP+vNSIKCYIK5HPsDIvZ2GXbrCT179OEUHVrQ0fAYV3TOHDSTLxwz9W8TdfCXcOEVqrsKMnEeEASFGe0YELdhU0ToLnykVv48/LH8IVGRgpUvKmbhsGWWpmNpV4ObOtkIy4Vz2VORzem2GrmlnMcTNMcUUYgscIXxCeARFUwEjBNc0TdyTQCpeBXLz/ODcufwlAiTeEcKsXz61ay2aviojCFxNCxUUDGtKlFPiXfJWdnBqWB3aos0OQcC1OCFGp39+dBECK2BI9UFLuD6nhjjJKT7G4i6f9cLjcqetc4fkDsq6+lxqzrveK48BIp4lDD5i6c9IUQ5PP5ETciTD9ryGhBp5UhIw2ykSSK1B55yDYGoRoNSARax2PN0oJq4GMGijm5NgqWhW3GjJcYrg2CemQCjdARpiWwMjn23OFv2EcBsVFhp53j3YediO/V9oi2QoidijTYxFZMWGYgCTG8Zs0abr75ZiqVCmvXrh1XeqIkydFIQ0NdNRC/ayHwleL+DS/yXM8aVN2gKkBjSoFtWKzq76W7rZP9Wrvod6v0Rh6dMoPZsHgm8bhHpb51GFISqpF5RhRFI8r9G0qwMXT5xrO3cP2m5UQ6ThesRRwhD8dCZQ1CreJANyo2InRsh1rg0edVac3kUklCzADptMMqro8XgRbGCNlN1BPbRBGR1lQDH61UagMSwm5JBRJPkmq1OvKGuLouE1IQas2ADiGMbQVUpBDEqa+9wN8lMbrWmnK5PLJ1peGEW3ffNLVAComlBf4e2r/UarXRS4JTl2YkUr6MNClFLm/snMu/LH4H3RjkDANhSLQc7vmi7h6oQAh6aoqn1vThjwIz8P9n77/DNEvO+m78U1UnPbnz9OTZ2dmdzdqVtEFxlRNR2AL8miSE8fvDGP9sY7hAv0sIZMMrgzMXGBuwjV8yBiSQEMrSKq1W2pzD5Ome6Z5OTzqxqn5/1DlPd8/07M6sZhGDdO/17PRMn+ecqjoV7vC9v/doDA0EQrIjrDE0X1taoLWWwWDwt8JDfLnIZasMAMzNzfHzP//z/Oqv/iq9Xo8/+7M/48EHH/x6N2skUsoXhvhClPnu5Z/GWgqt6Yegc0eAU1jLEI0Siprnc6y/wrZmh1ZYQw9TFvIBY340iuGCA2a+IGxo5Z8SgafWPQNlHaTnbQEopYii6JK0kbIZA52TZwVLq2ukOEVLl2h9g8X3PEShkUgq87sWhsRZypnuKuNj42AqZcCOSkAbwHgRAw3pRn/+szZoc0nYkfer/LUQjg65KDQrpuC9H/8DnugvObe7LRf312i5XurNVABYKCQ8ubrAb37xr4mFI04yxiBLcrAsTS8Kb3PhluB5ytaeNVBVqKf6mxXuA1AIh4QfFu7AsvZ56Vyb6Iifj9iNH3vWP+D2BSNACoGy0E1jZmstbpjYTqgFNc8n9L2tPQOUZYSBXCgeO9PnP/3ll+kV5tw5WYFANo0pFzX3TLkkjICGH7Cm01Enn88+8U3PwMXLZa0MPPzww7z85S/n4MGDWGuZmZlhbm7u692skRhjRpX2LrlYC8bBcpWBtCjo1Nt4uXFuYmEpMARS4iE5lq0wE7WpC4USktPJkKh0wypcqCFLM3RZRfFSSkWDagV4QpFqDfqstf08FvulpiO2SmCKglfNHGBG1sgosFiEddXstLXU8MisGbnhBYIg8OnpnG6/TyvavAEZLNgMbeFDDz3DZ5845pD/Z/XVVv+NNtISB6AthQWDxhqDI+nNsbhNvm4la7rgwcUTfGD+UQ7HXTfWX+MrrPAul3ouWFwQ3mBZKlL+fO5hlosUjZuv0pPUhGSVnEiqizpkB4PBc7bXWotGo7UlpzzMz3Nt9eyR7uZcPSgF0/U2J4drUM6P55PamSTJORVTL1Q2nvsah/a3ppw/2pbzTlAYQ2gkQip6aUIUBE5BFRYv8Kh5Hs/lpzLA46eWmR9azsQFBYUDxJT9tjYdzV0o0JtaeOE9sqLEjQQ+w6IYZTJsus8F3tJa+4J4Zf8uy2WtDMzMzHD48OFRiOBzn/scu3fv/no3ayRKqUtLkbpBRKmR55Qu3TxjWrWwqSETFmM1ARIfia88lno9ptpjNKXEVwFLWYLv+whpkcItxCAIkJcYQS5wVqoBhHTUp4l2R+nZxsxFbR2l+/NSjq/AYo1hOmxQiwIKXSAxCGsorItn7wpahNWyKas6hp5HbArSIqdBuCFeLygQYApSA589tsqji91z+Adch9gwAJW1pSms5tGlNVYGA0SRIzRu08cpAx3rs6Jznp6f58Ce/aTD2I23cFS5z+dNVhwRLxQdscDgY7FaczjpshwPEAhyaxFKUheKZZFRkxeHb67X6xfQXgNalyydGkxpAW+lRIh1kO5GX06AYHt7nBO9tVFBo+cjz4eOeDRNNiwa13yDttDHUpSpgAjliJs0+EHIcjyk7oUoBEa5LKPA80bZEOc+qyyAZS2H5ta4et8M8wtdchzVscEgNnJuW1EWJ3KhsYsZlQpb4+F4JrLc0ac7pWO97xd8PyEuqdfwG0Eua2Xg+uuvZ//+/Rw+fJhf+IVf4IYbbuCGG274ejdrJC8kJaYVgkIK7jt1lGPxGitZQltGCOu066QoCIU72AOlMHlBPYrwEEw3OhzvnsFTVXTZLbOiKDDGXFJrsMI3KNynaXx6umCgqq1mfaVfjEJQbaKXanyrMyQ1hlAqPN8nK1xFQCMkWVHQtIrbJ3dxW3sWH7DSbXw15ZHHMZkwtKQapaONAs7SZ5gXnFmNWVjulf6Gs55fegsshkLk7qBCEEv493/xRT7yzCoLqUanFkEwqh/R8CPW8iHdXp+bp68g6Q8oyxUgz7PJP5dsrAz6wvDmO+9HXORMRk2W+90yTKCRSqGkJE4SfHlxGSdVvfpnF4G1HkfjFGXK+5tnV5rOVgaEtXQabbpx39UCuahWrkuFb3relflKV75XhoRiDB988j6OxKubCv0UwtLyQk73ujTK0I8WlrYIaEnfWfJbNEGUz8gtdLs9btm3jWeOnEFaSCVYYcAKhHWHrpZgUfjkIzriixWJK1S1FPfp68IpKs/zXi9sEbO/e3JZKwP33nsv27dv58///M/5wz/8Q971rne9oHn9FytVgY8XQiqA2Ice+zJ3HX6UVZPTsgHSV2S6INY5demSr+pBSKR8al6AtLB7apqjS6dLtPb6VialQopLT0Fr7fpEq3s+9y8f4y8f/wpaO9d7Vb72YqBq1SF1yd536ZqPdUHdqNE4CiMwOIBmHcGbrn4R/+DFr3bsv8L1K/A8VoqMWBhaysOIjQcHaCSp1vgyItMeuTnXZB/hALBYKxhYxXysKQycXBa8/6+O8A9/85N8+pkTWLmejTDZbrM06JIKzQ7VZlBugJKvbXG/0HTEFkucp+xrT7HY7zregUKPeETyPMMXF1cgw/O851ReDJInl4e85/c/znJi3KGm4IIfZJ0yEHieS72ktISfhyilLj4DaoNrYFO8HkGM4U8e+gL3zB2m0kUNlkIJJqI6p9IubRURWJdd8PJtV/Lq2auQWz5/FCRhmGuEjLhl1ziPL53BZjlebpFZgSbBkjPUBf1CY4scCo3VF6aknx0qlAgCPB448TT3HX96VAbZXqSnAV5Yjpe/i3JZKwOtVosHH3xwFBvKsuzrTkO8lVxq60pUC91ajmU95rMBfXLGPR+pJIW1DNKUZhCBFNT80CkEnoe00PEjlpKe2zw3t/SSt9eKdfCPAaJajU+fepy75p7AmHUv4MUqA6P7X8qxFYKYgqZy45gbgzACaQWZ1XhKMe75TPshpS2Pb8FTPidJGSpLTSiMKO1I4dI/rRAU2lDzJJ5wqYDnbm0WW1Z1ESgeOrnEj/+3v+JTT5xmdyvk5v0T3Huqx93zK+jSiyCsYLLTYbG3Sio07SCiJ/LNd36eZ/kLmqJrLQhBP0nY15hhKe4jBGijUVKiPEWSpCVpzIV14EIPVYHgK0fmeWwhZWGQuHoTF9FV53ERhL7vGBqB55so+nzGeP2IhkJAbA25oCwGZlk2CSeLLrqksiisRkuYCOrMD1cJowgXqIEX79jPbdv3PwdrgCUuNJ4fsrMRsGYsQ+Px8GrGmvVIhQutffjh4/zZPY9RWMmiDp3X4ELH4az+hUqRhZLlIsFY4SjAn4cy8M1MgouTy1oZ6Pf7/OVf/iU/8iM/wrve9S7e9a538ZWvfOWc687HR/A3wVNQsSNeStkQWmYx6bOqYzKd0/ADhHKpe4vDLm2vhsDS9AJ2qjp+GQSteT6IdeYxi3AZCMY4StgN7XUuXVNa79p9jMFYTd861kNGv9sKRmVxgUX3uzAMeXL1NHP5sETpu9i2i0Fe3NhfarpnYSG1OaHn4Qnp+laOTaI1SnlIs25xCUBpi/Q9PvzQ51mNByjUCIVtAWEcfmOl12OiXsOaHKP1OQhuK6pYqwQt+ORDJxnWO/zGZx7lO27fy8+9bT9vvmqMldhgNSMNa7zRYXnQIzYF9TCkr7PRuLJhE72YEEwlLwgd8YZ2deMBu8cmWUkHrp3G4klF4PlYo6lH4YW3WkChs9G4uPloNsxdgzUWjGFpkHLt3h0cPbVGUCpVZ2dsjCDsW74nCJVProtR1sjzkWc1XOzWn41PGuqCP/3Spxjo3KHxrSXTBcMiQ5deg2GR4Qc+kfJ58vgRwiiiKJUHD+Holp+tkVaQ5DmKgprQhLLOpx6Z453/4zO8+4NfZDWVGO3xxVMDPnd4lftPrPKLf3wPPett0Y1nn4VVwFIKQeApYmkphPtWtV4uZqRfECr4v8NyWftRbrnlFj7wgQ8A61p2s9nc8lpjDGtra5w+fZodO3bQbDY5deoUq6urKKXYt2/fJjrjSyEVCOuSi3AWdWEMmRCkRmOyDM/3kJ5PrjV3zz3Nzdv2ogxMyoB//5p3MBPWMMLF5Ga0JRISYyyFlIQF4CnEWf23uFiuER6SGKnBErEYD3j/xx7nh195gBumJ8BqtJTnWBnCWoTQWBTKCiaCOqdX1pgerzuecgmPnjzMkaUzfOtNt17UMEgpLxkFbXV8F3mOiALqsUduClAGiaBvDL7wUBasdBUJDW7jump8hptmdjFOQOpbWlpQeNblzFsQwjC/NODA9haHzvRJMoutiU32pMAgMRTCw2A4Ocj5199yM/fNneH1V+4irCne+/dfyX/+6FcZGM2YsAjlMxk16fWGFDXoBBE2yzFlHFuWG30VlRAbMATPGVkv6b1fEACh8MixrMUDDs7s567lU2hAW0MARCqgpiTjQXiBNrdAI4lChatxYJEUGAQSRS4UgyThxMKAfTs7rA7hdQdmue/EEm++bhdCWhwm/xx0wLmPso6kN5CCRBcYa/Ht1pc+l3wt4yssnM5i/ujkw9yZ3U7D8ymsdopUrvGtwAjDIM+oo2jJkG1exL7mOJ7AFQcSgDq7tuaGjgIUHv18wFiQ4AU1WqHPR548SWwsTy6m3PXoPN/1oj3oJGZuaZm7T61y16HjnFi7gfaEB7YaVecp22qorHBzFSEwWJSneP32q3nkzEmixPLt173E8VBc5Bh9k4744uSy9gw89dRTvO997+N973sfP//zP8/P/dzP8dhjj215rbWWj3zkI/zMz/wMX/nKV9Ba82u/9mt89KMf5d577yVJkkvuGbDWvmCUmBZBXKS0ohraGOIsoxaESOni06nO2TkxU653we6JaULlIYxlZ6PDLe3tTAQ1JKJkzBNkubNaN4qwIKXAA4zwWM0UTw5y7j++xtOLGXc/fYpMgJX+llq7oOT2t86tGTUa1HwfPwxcXrm13Ldykj975t6RRX0h8kKkFiIERZHj+z6B8sh0NjJXcq3xPK+sxLjB0taGParJT974Jr5t/80ECKy0o8MYBMIKuklKJGIaQchanJ4XsCWBQaZRWcKV002+98V7adTAM4KpVg3PKD7+9Gl6wkOYgjHPoIseA51TD0O01g5QVu661T0FXLBZVYEzX4jUwqqjBktSJMzUx8iLghRDYg14Ck9IZk3IeHSheeIWiSHvuQhzXAiywkdahbAKD8v/ufsQP/xbf8XjKwlymLJncoy1VOOgmlkJUhuN1Pmbrt27yIOApMhJjH7ebI/VnvO8UgsFrMQDjg1W6Oapmzd5uR9ojZaO5UJkBePS57Yde/l33/Yu9tU7zlm3sbKoEFv3ujyg+4khCjyMLmhFkqOLC/zmO27mV/7erfzV06eIjSXMDV7N4/RKzNXX7uSxZ44icTwbm4DC51U93L9LoCEVb7v+dj761P186PhDm0IjFwMm/CYd8cXJZe0Z2L17Nz/wAz+AtZbhcMjv//7vnzedRAjBd3/3d49YyjZSrl5zzTWb0pKMMWityfN8hK5/ruI91aI++89GozH6/flk43fO1/ZzvgMsDntMBQ2nDOQZU80mUkliU2CNoSZLQJV0FqrEcZBP+zX+5Vv+AeNBDVltRsJSiyJUCcKq2uNc/+74M/h86dBJPnDv07z4wAzX7umwtNLHWI3AoIRPlR+/sW/VXqCEZVfQ4NunD7IWQF4UBDLg6XSNI2JAXOT4/rna/MZx2ThOFd3zRnfrc72fs3/eOJ4WS5blhJ5PUJIjmbL9RVGMwKDWWudalpbCE0htuHF6B3p6O761ZZ61cOmf1oJRdDPJVKfO0CiWBkOsaa+nMJTXu6p9hsXBkPFQUlfg24JYBUQF1KXhR970Un76f/wVaXIj33PTfqSUFFHEmdzQDiOGRU6hDR4S7YEydjO3fynmrHm61XhXa6KaB891aJ3vXmfPbQvkGHJraPshnpCkRY4xmgjFpBfwE7e/jV31MYc1OTt0dc67BKU1YaeDtZIPfuFRrCf5njsOIlSG0ClHlwQz+67k6ZOrLPRXaLVC0iKnKDSeD1ootz6sO7xspfFVf1biNDxqyuOZlVP86lc/yr986ZtQG8bo7D/PHofqz2az6RgkjRmRD51vDxjdq7KgBQzyjJ7O6JocYaGXpUzUWyRFxqlkwLHVMwjjiLJm6022F02UBisrfsxz3/movSMPi6Q3TBjvjBP5Hrdd0WKmcwMv2zeD1imRVaymCWvasmusw1cOLfLG23by9NIq2lqk1e5JUqGNRG4VDKzmp3XGhy/giqhDIWEhKtDWuFogG0IF5xvrjeNXr9efc289ez5t/LcXImz8t1kua2Wg1WqNUgmttTz99NM888wzHDx4cNN1QogRcrfShKWUfMd3fAdxHPM//+f/5Hu+53u44447ADh16hS//uu/zuLiIrt372Z5eZk8zwnDkCRJaDQa9Ho9ms0mg8GAKIrI83yEhM6yjFqtxurqKlpr1tbWaDQaJInL7a8UDKXU6NrhcDj6s16vk25gYNNa4/v+6Nn9fp+o1eaBZ55ke32Mk/0VVv0+u6M2WZpxJu7R7/cphkNOrQ6pNeskcUIYBORaI6RkXCmWVk5Rq9cZxkMajQbH504yPTGJMa4CnLWOyER6HmkxoB61+fLxMzx8Ypl2w2PXeIu5+QHLy6eoW0ua+wRRQJIk1Go1BoMB9WaD4TCh4bnNty0k//TFr+e/3PcJFlZXUKZg7sw8Y36d4ytLTBkXWqni1Z7nEcfx6H7VmNdqNXq9HsPhkMnJScC5XeM4pl6vMxy6Pg2HQ6IoIsscvW31fja+y36/78YhHTIcDvC8kKIoWO2uMc8pmmGTU4un0Llmfn6eRiMijzNs4JHi3mWoPGycEtVq9IcDmo0G8WBIVKuRphnL/QQ/7uIXASdX+pycm6PZaLgxqteJk4Sw5lPEmseXDU1fsbw4T+g3WCy6zAQe8SBhJgq5anaMux4+yqu2TzMMErpJRpwVqDhnLu0yP1gj6sb4rRppOedsidYMg+CcMarGM89zlFJorTHGsLq6Sq1WY2xsjH6/T7PZHI1nUZJTeSWqPoqi0f36/f6m+V69y2oOR7Uax4Zduv0e/ZVldJZz+vQC3bVVdJoxOLPCHeN7GJw+g2m49169yzAMR+9SCEGe59SiGsNun4VhF7U2zadPZAwZctu1Q5pmGYxhcWWZl++c4sljCwwVRConHnZZ6afML67RGavR9kAUBVHgkaQDwqjOcJjQarVGYzRIEzzPI9KGwAj+6sTDvH37NexpTdDb0M5qzlVruCgKwjBkOBzSbDbp9/skSUIQBDQajVE542pPiKKIwXBIs9Wk3+tTr9fc/XwfjCU1hvml03iBz2p3lfmBZsEMiaxkudflc08/yB89+mW+65rb6cUxq2trFN0hUavGsHz/1brKsmy0JxZFQRRF9AY9mvU6/W7K4vIKaZKzeGqe68Y8DrQnWVwbYNMeY2nMPYdOMIgz3njdDr740P1cKffxocU1Di+s0hQFoYI0y/FrTeLBgFZzfc5lWYbyFMZYjNaEgRsj0axzQLVZWetz4tQ8E7UGRZa74kvlGt445zbOkWouLywsMDs7S57n1Ov10f7R6/VGzw6CYDQ/g3JtVPtw9d6er/fmcpPLThnYqKk9/vjj/PEf/zHgckqfeeYZ3ve+9z3rdzbKi1/8Yqy1rK6u8tRTT3HHHXdgrWV6epqf+Zmf4amnnuILX/gCY2NjI6awSpuvqESr4igbNevq5yiKSNN0hGOovmut3cQ8Vt0XnIIjpURrvYmqtLpGKUWz2UQLgaqF7K7VmR+sUljLZKtNPYywSuErj/FWmxmvhpCCdr2Fkc5Vryx42lI0mxgpaDQbSKXYvXMXwagKpMCybo3kIsQrfE4nGfVmnQEhe2bGOX5aU+9M0BCShvaQStBqtdb7JATtehthBYkokFYQSGgFEaIW0g47jNmQ2cYEqaeYak+cs/Da7fYmS6oa82pBV2NnrR09u9FooJQaWbdbWcHttquXXl1Tbzcxc08z3ukwlAW+HzA9PYOyknq7SdsWzMzMYKXBNgUeggpC5lmBbbrgfLPRRCKoN5tYDC3dIuc0e3fOsjKw9FFsm51FWEu9XnftbLUohKZbDHnmzBmu3LODyakJBCENMjyR0Khtw6qMf/ztr+A3/+JTTLWbZGGNvRMdoiRmptVmbrjCAwtHedsVN2ARGN/j+MI81+7ZT4CrENdsNFGeGo1b5b2q5lk1N2u1GlEU4XneaMw3YnLOtspardZoPJWUNBpNtNXEaUozqiGVom0MhbWEShMEAft37qZ2+H5qrSYiDfE9RXNigoYRZGNNvLJ9GwsRbbSky0bjNVvUVhS//KnH+MjTmqbt84n9c/zIS/ezVFiKxhlu3NXhDx5a5fodu9jTDIlIKJoRv/nnn+fNt+znbTddiQ9Ia2i06xRW0Gi2UVKOijY1dQNpBGNS8H+/9tv51fv+mrGJSRpRk1qjAWeNkeM1MHTjIa1Gk1azhZBidDhV991oqDjwp6XeaqKkolavszboU+90CDwPJSQGKE49xd7tOzEWpmZm6c89xhUzOzlyZo6iEXLMDpHKZ0d7ik6rhajVMJ6iUa6jZrO5pdUspaTWqCOx1Ood0iOL7Nk5yfTUJM1aRCEdEBkjaE01OJnAzRN13nbzXga9Ia85sI3PHT1B1wh2zEwR2JwWEisU7WYDuWE8N84lbS1CChqdFoWU/PjL3sYfPvZFxiYnCX2fVm6RUlD5Hqs5t3FuVHuELsN61ZxUSm3aN86ufltJdX2lAL5QuJm/jXJZKgPV5J2cnOTOO+/E8zw8z2P79u3s3LnzvN+55557+PznP8/jjz/Otm3buO+++4jjmHvvvZcf+7EfG1nrUko8zyMIApRSo89GuRD+gCqm3W63z5lQSqlRJK2i690I4NgKyLjxmQZI8pzxTgvPwgopdRUyEdZJswwjJJ7nYz2BJyQoMSL+EYBQzh1H+TOAyTRCBBB4GGGRaKQtEMrHiIhukmLSNfZvm+BQP2P72BjaziMIXbW5Ucj1rLaXf41EBfazzg1vLVoJ6sYnChuk5sL46CsvT5ZlIyvxfGN1MYBQYaFPwVVBwLL0SLGOmMlCpnMm/IjCV0TW8dRLK1DV4J2NjCrdndq64jtpnuGJFs1AstAfYqUlLyA3kpYCpQSLieSf/8GniQvJf/yBN4JSZSGpEPCQUmFFxKwwJEUASlKTsLsxifXWiJTk2vEdfOHk07zxyhuJEJwcrPGfHvwUv773SjypylrSyvEQnGdsqrmapulIWXkuqRzPQgOeROaW1BM8snia/3PfZ/j5N34vhZQEUiKN5QvHn+CmHVfQkj416RNbjSwsnu9T8xVCC4SyW6a9bdUeT8JSojnUzXnd9U3oak6eScCTDJIUPyjYNRHy1KE5Xn/VLDIUKFnjZDfjaE/w4OmY7xQ5VoYIK1kYpvzHTxzhn716DzNjDbyyJcoDoQVKCa6ZmOXKokHmgmRIJLGCZlnt0ipDYQT9Qcr/c/df8VOv/XtMSx+U60PlQau8HNU0qj4Gg69hICX/6Z6P84qDN/GmXQcdENTCkbUzXDe2g9+87+NcPbWDo2vL7J6Y4tjSKU6lMTbXnDApO2SAh8IEEl+I0Xp/NgmkwFAgjCRJJfUAigLwfQI0WAUyYLoheGC54Pa2Ytw3/NBrbyKyOa8+eAWff/wkN0yNo1RBIkI87VJrjTR4UiCsKqMDDmzrsR6RUcDN2/fy4Se+QoElEIrSRtlStpoTw+GQsbGx0Tyv/rxQ7pcXiiPmb6tc1gDCRx55hDiOuf3227n11lt5+umnueuuu7a81lrLrl27+PEf/3H+4T/8h0xPT3PnnXdy22238e53v5sDBw6Mrt1KazwHcPMcH1inIz7nd6LC17oDhTKXfYS7fa57l/cfZhktz3kohkXqYoNjEywsLaMLgycVsozHVd9VQiCFQEj3p9xwXy/ysb5ByQSfDGEluQ1AONj/mURTD0J2TXRYXjzFTCtE28zFn3GxW7FV+6X7qPL5HgIlJNoYBmlCLQxp1GsM0xgucGwrF3VVTOdr/VSS2YLI8wiUIiscC6AVgkES0wyjETJaUfZrYx/P7nM5vkbCME6YbDXptOqsrPVJUXzm6Xne92d3M0RihOKrjx9h355tvOlF+9jejlAot00KhRBBeU9JJAWeV2OoCySCKxtTHPQnCJTin7zyOxmkKYvJAGUFq2nMI9kySZq6Q0a6tp9vnm2c90EQjIiHnms+CrGOwtduSvPxww/zwZVDPEwPU6ayCdzvTq4scePuq/CFpBGErOQDHonPEAnpNiXprr+g9QCEJiavhUzVGvw/b72Zf/btL2XVFORWorKcMWXZNznGj77qOu7YN0mIRxRNMD+/xtW7p1js5hjryktbC4/Pd/niE8d57Mj8JtCaFaCVwNOC0Ah6vuSZwTK//eBnWSkSl74rKdcCSGkZioIvnTnKmXRAuRoBRorAumVe7gklqNeWdL9fmj/MBxYe4/RgDVmuscwaBjrjNbuvQ2jD8cEytjtkNmrhIegOB+yYmOJEtkRUZTSJ536Xo0859lbAIEkZb9QIQn9DooXASo92s8WxhZyw3UYIzx3yUvGifTM8Nb9Aqg1HVlPWUo0VJSAZzejoseuQgWq9SOGeHkiPZlBnedgbzdkLmQ/V52yP1/PZD76R5LLzDFQv6vHHH+ejH/0oeZ6ztraGEIIvfOELvP3tb9/yO0IItm/fzuzs7KYXvmPHDuDZAX7PR6pQQEXpevYEs9gRDaoRII1TtsUWYK8t7w/0TELLC7GeZJhnBJ7HbH2cB+dPorXFRzqE/gXO7awokJ4PNkfj88XDp/j8oyf559/6UjxpOLWasLM9xW0HZ3jyaJ2x0EcLR2EsSsxweZw857M8JLk1ZElMrR4xEdXpJfEmAOKzLUohnHvzUpastlgKXeALn1B6JFkOxlJIQTeJ2T++rdzCKlvmOW+ItIKhMZhC4GOYnWqxstJnmBV89snjfPx4j5/MM8bxeeTwKf7ey67nhpkOIRq0wnrinHt6COqepJvndGoer9h7FZnRKGvZ79WYbHdYzhOuCJusZANWipiBzhnDpRkGttTvziNCOFd8cYFFqzblgJc4r8yDT554lA8eepB9k9uwFpRx1QoLLKnJaSofATSDiCeXTvP7j32RW1/2DkcCJC5uczKyYHWQE1mPup+zR4LtDVnKNFlREIiUhif5wVdd5Q4kK6i3mjx6bIm929o8cWyRBEXTZBgijq7GvOjKKY4urWGtHB3upkrRAIS17J2a4c+fuIdPn3ycF+3ezx3eTowv3KFtLdoIlilYzAecXDnDtTvGRm3OsmwTcNlhFe3ogJQ4j+Zn5p7imWyFZDjEMQBbEmsosozbp/bQffGrONRfpkhTWqqGloKFYY+D2/bwzNIc0eQBhNhQxfIC9gMXqpAUwDCOaXgehc4ROIC2EWCtpNZsc+rUUZov24GuSh5Zy2wjIGq2OLLS4w+/+BCvuW4fr7p6z0ghqKqBKltVRxSb2iUAJSStqMZqlpTfOQtz+xzyTTrii5PLzjNQbU4bUwG73S6rq6u8/vWv5/bbb9/yexW4rwoDVArBxn+/lG6hjffeSgyAsQzQHNdxCSq88PtbLL0ipR1EJLpgYeUMoe8z5ocsmSFGMrL6L1Q8ofBNgLA1EhnxkceP89fHllnoDsAYTq50uWIs4pbtNX7y7XfSUBLrSdKsyjrQF5T6IwT40iO1BStZTLNeZzKK6GXJBZOKnG3Ffu3iPABaa5SQhNIj07rMK7d005hWrY5nLzy9SQBYGGiNRFELFM3IR2JY7A9ZW11m345x4swhppeHCXvbTZoUKAVyixxwUfY58mGQ5SAkDekz7kUo5VEXkolag14ywAhBP00Zj5o8sXjSHTClgfVc41zN3YsZ3zKTEokgNy5V8Kde/Q4OBOMkRUap/5Jbi7aGhnThivFWmweWTrBGhnqeFLJD3eC+xZi4XmA8nzG/xq6xOo+eXuap1QETYw2kMPjkKGlBCfbt6PC5J0+wbaJO6Am6mctK0dbyzKlFbjswzfwgcxZ62UNJWeXTA6sE373/Fh6fP4quB5yKe85Lsm4+IywMs5TxsXGeWTntyIGq357t7aIKDzgyLw9BruDEcJkXTe5lUGQY42LrA52ilGJceuyudfj88Sc4KV1VwhzD093T7G9Mc/zMKZphtOmsveBtxgoyDMMkphMGCGnPIv8pGK8r4qVTTDcU0pbjJAShgCtmJnn09Ar3LeQcX80w0vLoUo9eCrZwZb2dT/HcPdIpA1APfNby5HnxDGwMv3xTnlsuO2UAnEJw00038d73vpd3v/vdvPa1r+XVr341Bw4cGKFyN8rXy0VUAZ22uqco+zGXDPj3H/8j+iYHa7ZeqZZ1QjRb/d0yKDJaYUiBJckyAs+nU6tzJuujfJcqNXLDXYC4kILGWklRWNLVNV5yYJYnTi2zlFvuXxwy3g7xFVw10QCbE9Qi0jRbzyQu21al6q1vcZt7H3g+uc5ZiXs0603aKqSfb84Ltuf7OutK4aUkiTLWYrTBV4rQ84nLIkiFNQyKlIYXOg/OViNavpxR30eDAXFRICiIlMCXhkZrnM8fWmH75CzXtGosDjWrhaWQHg1PgpTkeI4G5ywNscwso9P0WOk5Gm7rTF0HKpOC8bBBvjYgFzBIM964/xYeXjmJLK1z8xwT4kJTCc9uWNVSz5ahFCF4886rmam1OJUMsQJ8wBhLVhREnktFnWx0+NjhB/BjDb5XpsHC+fjj1ks9r4/3n3z1KB/+/IO8Zv8YTVxY5UUHZnjsqaM8eKLPNTt34RnQIkRYD0XBLTMRZ1b7HOiEdPyCQZxghEdhLEmSct32cU73c7Isx5ZZIzjCTXdYAdNhg5dvu5K3Tl9DnKWYDfaEFaCw2CzjqsmdHF9dYuPuVM3djd4XDQxMwVLiKjn20IQ5vOel38EQV7gHKRjGLrwmgF31cZ48doinhmfoKJ9pEbK0tszuzjiDIqMR1dyksVsupSpXb4t0OkGqLUYoalKsu4BKP6C0GbOtkOt3jbGtFSJtMfI+SCvY1/F5ZH6R46s58z0otOaXPvAFnloeIIV2aYZOu+XcXcqpVI2wRq/IoCrPfHYP7LmfdVzpxVWE/EaXy04Z2Ghxd7td3vOe9/DOd76T9773vbzzne/kySef/Ho3cSTP5sau1sCSyfjy8gniIjt3orPhLDRuo6gUgtQ6Ipy68nhZZxc/fMOraQpFKwhI84yk5Aa34sLJUnOToWWKlTkrcU5ha1w/GXJ4NeZjD8/xgbvup1lvYAnxsUjP0JA+/SzFVkXfHVfuJsXg3Aa43Ocsz1mOh0zUGoQqIC7r2q8rE89uxVSu7EslFatjKBXNoE6/iNECFuIBc4MVxqPahpjpeW7AuiLgKhAWJIkBz5XslVpw7f6d/OndJ9i1bZYDMxHv/4uv8PBCH4IIqVzA3VVLNIizeYtLq37PxBhHV/ol+FRQsRsYYDJqsDzoo4ULb1w9sZ2FYZ/clNTRFzAjhBAXXLWw8giI0V9KD0BhGPMC2l7IUh47CufM0ehqC4EKkBqmGi0mrMerpvcTlnFqaTecPRufNVKIXU0BbXNSbfjUE0/z/a95Kd91/ZUIDCh48RWzPHL0NA8dX2NXu4UQBmlLu90Krpps87PfeSsHpzo0fY8z/YTTCWBSTO6xo1knqnmsxCUupvRTW+Esfg8QHvzTl72Nl2+7gmGRjNzkpnpZUpIUGduCFrHJ0Hbdvq2qhIIrOlYxRT60cIL/c/8XMEISZynNIGBnWMdkOUY46zzPM2QYIi3sao3x+htuZc1mdJTPnQduZLbeYabVoeH7NPzQhbu2mrMblFYwWDvk5DAlNhpDTn/QJwojlBTowriXUno/hPDY1anzb374jWxv1RGUeA8hQVhmWhEffnieYpDSjxX9wvLIsuXEWoIVJZ/DeiPOaZi00Ajr9POkjG7YZ50T1jJyH2hrL+ne8I0gl6UyUH0efPBBbrzxRm699VZ+5Vd+hR/6oR/6W8VHLaU8Lx2xAISUzC0vsEJBovPzmvBVj/LqZwt5eShEUvF9N7+Kf3DtrdSFIJKK8aDGsKwadjF6se+FKBWAEPzl3U+wFGv2Tk+y2B3y2EKX777jBnaMBfjaLWQjYbbmszQYOnBShZzacKBv1QKBo0ROioylYZ/JsIFflgwuyq+MvvUsHVBKXVLKUYPbQALl0QkiejqhAI4tL9BoNOh4QbkRnstUZ3GKl9nQZIvECMnJpS47pl16lC8VL9rZ4PDiHNNNyRuv28beqTa/+iefpBOAUhaEQbIOoDtbBLBvss3hhZVRpSdHyOus1ZZfY8k412qSZeyNxinijCVbsGxS1AX4W621I/Drc0o5F51V6MYgtgVKuHLEY35EUiQYazllUx44c4IAhS/dwbyz3uEnb3sb737t3+em8R2jHsvzPLqq1GcArKaXpIxHHjfvnEB6AiEl0grGQ58r9+9kafEIs52aA8CX7RXCI/Qk73jxPsZCj2v3buff/cVH+eHf+QzH+poBkihSNFXOWq5doMCKUaXKKhyipGQmiGiGIUmRjdg8LcIpD1KQFgWtkrdjozIQho4xFFu+RuPs4cODVR5JlyksDOKYhh/ghxFZ4QwLiSXOczwvRBpBJARv2nMt+/wmNanYV+9w5/R+doYtXjtzgGlVo9LJxRZKVnWQ5kiGBn7xDz7NXU/Mo0XBia7Gq9cIfQi8sJzbDkOBDKkrxYFWRCAkSH8UJgDD9k6dHTXJv/qu29D5CmkBSS5ZWlsDWcFw1+fQ2XNKYmlFDfrDKuy51VxwHpiq3kJFFiUthEHwzTDBRchlpwxslCAIqNVqTExMcP/997OyssLa2trXu1kjeTa6XMfwZVhYW2Kq0SYuinUI8tn3Aax0Lkch3McrV7CyAl84BLK1oKzgqvEd1P0ALUaEaRckeVpgMkjxOLba4++/4mquaDc4uZZxfNDl/37d9Uw3FMoWKCPASmaaIaf7Cc55bhhYQQHI0bEoz4mxCwStMGQlGTIoEppejcj3KQo9qq1+IUvYGHNJQUIaICtAeUyHNdbSGI2h1+/xotn9LoPAbLaAN0ouKCOg61UJrRZ8/NHHecmOMdI8x1jDrprH7fsCdk222BMJ3vO2F3Pr9TN8yy1X4qMx5UsTduvgvgBmp8dYXl4hp2IYVKNr/SBgmCcYY8hszrQfIa3l9x76HP/7oc9dkIIohHh+dMRlSc1+ntPGQwtBo15jkAxZyhN+8tO/xx8/8WXedP2tBFaQezDuBXz7gVu4JhpjAt8dVqI08raYCAKwpcIkkPSygpoymDTB2DJJ14JvDd9720F+6h130vJdLoMLkTgL3xkVbhN8w7W7+f7XvJK1tYIHVmLGPEEDy0yzzVKvQJZrU5R9FGJ9ubpiYCFZkpKWk0NaZ4kLAzrPGfMjMswmZSBJkpFnQOLuZ7CcGnQ5HffQxnIsXWNHfYypMGSFzPH3CVgzKR2CyvvPizvb+dlbvw2kYF9rkn9y+5vZJgN+5jV/nykvopClErCVIljqnBpYSBQn44CPPnyCbubxXz70GEQdKBKyPMMiR9kG6/+dG4q1wEzN49d/8A288cox0mKNLM6Zrkes9RO0ledBC2yWsajGWn9QAha39iBUnwJLXmk6BuISV/ZNuTC5rJWBm266ieuuu47v/d7v5ZOf/CR5nnPbbbd9vZs1EiklURSdn2IUyzDLmIya9IvsvPE8D7eQfe2oWXOjodAuPRDwhUSJEggJXN2Y4NrOrMspvmDEAERhiBSKTBtio7jtinGmGgFLsWaQeDQDiUdAoYLSioGd42OcXO1jrUYbw2997AHme0NAs85JvrkNwsJ4rcFKMiQ1OfUgIFIeOi/Q5Sic12I4a3wvZSGoHIMuNL7yaPk1POBMOqQbD9lZa40s4K3tdYskRegMqwsK3DvqJTmLScFNu2eIwhoCqPs+//Ydb+KqaR8bBDQCyU++8eW8dOcMnlBAVfBJbAmfFkArlFgjGBbOQgXPWVMWGlHEoEhZ0RlrOqEe+AwDwccWnuTzS8fpX0B5WWvtiFjrQqQ0yNwYWcuJ3jLTXg0pBJ1anZU05p75Q3x5+SiPrs5x7eQsCoERjrBJConwFPhqNLgj9PuWzzHuMLYu5bUT+rTrQVm9r9QkhGF33ecV+3bgCQtGlsrm2StNUFeSb7tmL9930wQLZ1aYCCUSyc6JCU4srbgxPp+rAqgpH5NrCpyLeikdcs/cIbS1ZHlOxwvJhaP4rSSKohJTVPJ/lJkYS3pIN0vQWE4MVtjeHqeFjxSC1cIpvyt5wliZ6mqFpaY8rp/YjpESpSRt4bxQkzJASkFeKVdnvc6Rom4TfDSDpGD7REhiJYuDjEfnV5moBSjPJwiDC/Y0GhRCBuysR3QCj76RLKU5s2M1BnFMIeSGl7v1uFpgMmjSTWI0m5fCJop4bfEyS1CCEgsBQjpyoW8qAxcul7Uy8Nhjj7G2tsaBAwf45V/+Zd797nePWOX+Noi1rmbC1q4qgRWSOMuYiBr085zzLQrJ+qI9Mljlse4imdV4SiEMztkmhDtIDbxqz0Hefu2thIVbGBe6HIbJkExo8iwGLWj6BX5g2d8smMqH+F6BsdI1SDmrattYjZOrKVhLYgR/8cgSj58eUpU+Pt/TW17ISpGQGUOoPHypyLO8VCGeW4ERJfL/khUjEQ4oqJWgjssu2Rm0OTZco5ulTAS1kdfifFgGaXKs9Zgbap4ZFiRYjveGjAVjNCPIBwnKGKy0bG9ENKwgEyFWQM1WVpKHxGUcIM6N7leKiC8hCJv0Uw1WUyDIEQgN41GNlSTmntNHWF1bohPVSKQhNYbVQZ8HF09ckOtlMBhcUNitulX1tq2Frz7zGC++8lpqQCeqczru8fHDD/GaAzfTkSHjXggCPOs4GYwUmFI5GO369jzNtBZTIvwFkjP9mPFmm6Tfc98vPSoFCmklgS1cw4zAbmkauwflnqXe9ji0tEK9o0gkzLTqLPZ6GLMerju7TRbwfA+T5uU7FDy8dJI/fPBzZNISFwVNGTpX9gbPQBzH5WEl1pUcA4MsweYFBsvS2irTzTF8IdlbG+ORlTlAsJLFjEX1UVustAhhCK0r1oQsPUZCYJUgRKDKyXP2nDKAFRqJZa07ZPd4E60zFocZLdvllilJXkiSJKmSB59TXNBQUCintCvRYimOmRpTDOMhGuHiIpxnjyjffcvzSWRBZgqqDMSzx37eJKTCIDSbSKqGw+ElBRj/XZfLeqQajQb33XcfvV5vxEb3rDXC/4aloi3eSjsVWIzAWQ1RkzhPGQX2zhKNwwvkCv7skS/xuw9+jp7V+EKWB1P1PWeLTwU1dkdNh3w+j8/dJQIarHF13gtrqNU8kJZuEhN6Bb4nscLyj990K//4TTcTiBwpLMoWGGGQVjLeqtMdppwYpAxTzVLmc3gpHSVjlQ87p++tqM7KsEduNIGUeMqj0MUmXoRNzbabPxVb5PPxDFTUp9Y6S63ADf0gjRGNEN+42PCuziRHukucLmLqfjiyfN3mWQHZKsCgwIqAREj+20e+yr/53U/S1fDxex/l5t3bkCIri2gJjCjIhIXMPcu3BZn0sKXWJwyjmLg9R5Esw0OAH9aJ06y0dN31wkLbC8l1wWdPPM7LrrqRtlUEeDRzxesO3MKRlUWwFqtd7YlqLM5+T/V6HSXUOZks58xRu/nnBMOZwRp7J6fxDNRUSLdI6Xvw5m1X8bLJPQRIjCjR9uW79szmzdwdXBZrdWkJmtFhXqAoZz5LvT7jzQaddqP6GoiyKLRQG7As59eBpNWEGUw0pvnisSH7J6eoG2g3InqDvpsr5dhrqzHWrZvK0vc8z5W/Lt/B0eEqR22fxGqGoiCSHp51KZfVcFWEWRtVPmsNWZ7R9iNSo1mL+4zXm0ghuGnHFTyxOAcGkjhmLIhGWI3qtUhd/d3dszpqlXaZJBY7UjLLQJYDLxJireLUYMD0WB1kyPGVId/+sgPcfmAG5YWEUXAeZepccXqHQaORUtDE0B/0mKkn9NOcfLR4KgXSYG2BNXqUNWAt1MvCZXGelbiNar05iU3Br3z+gxzNe1hly0wUd0G9Xv9bdR78bZfLWhkoioIPfehD/NAP/RA/+qM/yj/6R/+Ie++99+vdrJFUmIGzPQNiw8FdpDnjqklaZC4ueZYIHCERFgpjeWywxNNFl8QYIi0xnqDKV1CA8iSq8mgGgi0ZPMvYYVYeqoWFBEs2zBCZ5lQvY6wlsCKiZiV7mzVu3jmBJ1old4FPITRSe7RDj2t3j/OeP/sMi4OEnc2CIwtL5FZhUGVU8FwNpx1EDJOYzBQ0hEJKVyUwsOUGtuHwqc6pyuqspCJ1ej7iCqMYhzq2jghnJR4SNOoEwqKwtFptHjx5hLuOPoJnBJ6trENbhjPWG+ni2x6ZzTmVSlImWO7FzJ8Z8rqbtuMDPZORSYGyigAFkUBJB2YLRvFoygByWUVvq8YLjULi1SKSOKEQBmUhwIKEhvS4efeVfHbhaV6y40p8K5lstqn5PjeMz7Kc9ilKZSC2mqL0KJ0tSRxjtKGy34ANh8gWUs6r0zpFW81MUAcBQa3OYBhj85w7Z/fzL257E0rYEeeBrLosN4eHbJVcbnMMlSKgsbbgqTMJS4OUQmnO9HJmWjUGwwE+yhEqeY7E2T2jRLl74J9ny9MC8Cy7Z1r0zpxgx2QLKyzNhkc8GJIZy+l+TqIN83HMkdUeGE2GU6Qi6RFrh3mRGk4PVlnLM4SBoTIu7RePodWjTm4yXspx6OuMtNBsi8YY6pyVLGEyqGMFTNZarMZDtIU8iRnzQjLlQiWqssW9yiYvKXjLDy76tO5JKBVhax2+x1oFOuf0YMD2yKC8Bp96+Dh7Zzv4UmKzxGWXXOCRYQErNYEVICSRF7M41Oxs1MiCSfrDhApoaTVoo9FFjtXOQMmxWCOoScVYFLEy7LMxBVEDVsOZLOVLK3MuvVmBsAaNS59NkuSbAMKLkMuOgXCjXH/99fzRH/2RQ4AHAcYYOp3O17tZI3kutLvBkpmC2bBJv0icerDV5C03igLwcosoCvKiKElpSm6Eymw9xxFwnsWgBUpBIV0KnERSyCYPriR0u4bttTahtiA0QvjnxOsCPKyySJHzjtuu5cmjp/nKqRV2TUfEcUJhDIFyioDYYgOJvJAsd6Q5ylP4GlCQ24KAYPOhsOF7FaZOWje+rqjSRYqFBxeP0xv2ecW+awkKsAp6yZBpv+FctsYQhBFfOPUU33v9y7iiM4lww1YWs7GbhlcAWEleFFjPY/tEyJNLMWGoaIY+GE0Y+Hhl3Fls7OA58lxID/eSx2s+a4MMNjhvBa4Q1VizxeraGuOBcyXva07QO32Gbc02Xz3SRVvL0aLPIyeP8rY9Nzi09sYnCEEQRWhPrB8obIUAYYTgrizyPM8IgwBVIuxatQa9QR/VCKj7PtFGFDnnTvn1vxpyKZElMXNVSltrw3/88y/zmpv3890v3kl3rc/Ewd2EfjYauWcf3y1G1EqM1ByYbvKvXvci9k40keTUfZ+ehcVBzk/9r4/wz771JXzm2BKPP3OK//7O1wECLSS+8MjRzuMiBGu9HtKKUYqb73l4ZUVC6u6ZVe2TjZIUOZH0CD0Y6BwKSyhcXknoByRZylBaVsigFlbD5OoNPIf3w1a/tSV9OFWIoiyfTEI81DTGx+gE83zwK4d456vegochjyRBETn69AsYUlH6LCwuDOQpOLZWcMeONrMrZzi50mdnbYpUQKg1sa94cmnInjGPtnTgaiMkyrjCX3Nxn6v0Nuy6kweLJS0Kev0+i1mMEQIpnLoiBZcUT/SNIJe1Z0Brze/8zu+Migx97GMfY3Fx8evdrJE8K12utRRGYxWM12r0soStDgGLm/yqdE8HRhBJj16RjRjqZLkTXyg2wGKxUuNZi19ogiJBGsOH7n+Un/2jz/DImZiJlnNB5nLd5ViJQCCMwAiNoGCHr7hx5zY+88wSV+6YRKc9stKiXE8x3HwHTwi0rIIJAh+B8BR56RLeOIbWGoSxCONyj6tJ+7x5BgR8YP5hfnvuPgpjWLM5XZ2z3O8xHdYRJXtjKAMW0z6v3nstdeGVaO/SU6Gdd8GW5rBwMRn6SUHo+xyYqnH30WXGOmN4OEBVkWWgXb2Dr03c0ThTD1kaxpSceKO+CWBK1djrtxgPIiRwy8Ru7pjZy1RYZy3uM7SGP3jki/zpY/ess7udpfBlWQbWIl1CvzuOtdnsnnFXOw6B0m9gCsfiKBEYC03lk8UJWpRuXMEFWWzWwicePswTp7tgDRaJQbKWW473FfedHqCBbr/HRCNw7X1eUvHhW1qe5vvvuIFOqBDWoKygkDXuO77MStDk/vk1nj4lWDITxHlBYJ2y5AmJVW4kCuXqhjTDyBXjKgp8T7lQwga39YiqvBx4CyRa05AefuCzmscEvsIv1emaF6DSAqs1ZC4FtnrnFzqn1t+cAatdmJCCpSTjw492+fRjx6h3WrzmqmnGGh7bmg2EMWTGUOTFlnn+W49oqWiUGRuTzQaPzA+YaLW5bfc0H777PjIjHPU0mqVM8/4//DT3PH1yRJmtJFgJu+pj/O7R+3h47ZRzq27QfDOTUxOKJ5bnyxweMQKefpOO+OLkslYGHnjgAfI8Z+/evSO2v4ceeujr3axNcn6KY2c1aAmdIGSgc56NHkhYKDAYY/GCkMVkgJTKFR4qv3ahygACrMwcran1yUxAagSPLi4ws3c3n3nsBHu3j2GVKzt6vn3GWRcBUmheeXAXX3nwEPunWjSjkJVBTmpd3HYrkVJQWI0vnVXrAyhBUWEGys4UWGIMptwEhGG0IVUEVBcrGsvqapfH5o5xctjjJ7/0f/ixv/5fPLKywGS9hZaOVKahPGZVnbYXlmlkrvKjtVAIQWYFxchudorZyiCnUw959dVTfPzeI8x0Go51T3j4SqBEZeE+X4Wg1PpEwbamz0KvVxLiOJ4BUyosN0zu5Kde/XbGgwik5eDUNr7j5pcRllknS0XGYwvHSSNXPXKjGlod1EpKlBUlbXbBGZ2NcAmVVFiDglI5EmC0xvPU6IwKhHSIdqPLUbowxs+sgP/x6Ue598QaBl2GjiRPnYm5ciagnwzp5wqLounJC6p4ubW4uLk0nnO5l2RPkhDPk3gi4stHjvKqa3bzxGpBkHfZ1crpJhphqowe4TAFxpIKQ0pB3QsdKLXQeMp5BjYCMqu9oYqPO2WgoGYlvqdYyxIC5bmqo9YpA2tpzIrOIStoer5LKX6WLIdze7rxZ0lqJae7Gb/1mcf56Q/ewxtuvorrWg1u2jfFP3vjTUw3PBAST/goVYZuLvBJtvy/BK7dvY0nnplnol7jldfuZS33WBgmDtQoLYcX1jgVa073YqdIWjc2RsCt03u5/9Aj/PljX94E4hRCMDQZN8xcweGFObTWrOOn+BrmwzemXNbKQBzHTE9PEwQBWmtWVlaen9v4BZKt6EY3irYORNj0fYY6WwdobSEWSNHI0CP34ItHHsWTrq/nAO02/f0s6tZy15FW0s0N7//kQ/zKJ+9hYZiQpor9jQbYgitmOnhW4Fu5dZtKC9Qaj1xarphuctW2cXaPNxhv11hc63Noocfpbjwag43/KSFQyqPTapeMbo7ZLdPFpv6cSQZ88qkH6QmLVs6dX2VWXFDa0BaYg4G1mNRw0+x+7ls6yeeOP84cCV9ZOETTL7MGrGC81uCg1yEIfExpblTbS99oPvXVh0i0doe7EWAN3ThhLJLsHvfxoyY7JxvOiT869Czi2aoEXahYy1gkWImLdT+9LZUBCxMi5PXbDhAACEvNQqQFvpQIC90iI1IRDS8kta7IUfWeN1E9C0vuCT76zEP8yYNfIFFiBJ6srrNYFnurpEXucDBFgadcxUyLK+Vcb9QRnkLYC092HRYFhwZwrOdj7Hqi6gPHF3j1wRl8HdNNc6zwCEbhl4tXsqwATV4BByiUIrcSqwXKy1DW56nlHq/ZO8EjcytMtxQ7m5q5JENL0Gi8kpnQaENWFOApfCvRrIcJVMm6WY1bBT5c130dxXhdBAS+Ty+N8ZQaKaCB8jiUrPI/Hvs8q7ag7kUjPNFF9Lb8U6CFolto3vO7n+KvH53nn775On749p00fcWUL/jBWw9Q9wwGiW8c8NVcQFqqe8o6hFGagm2tkPF6wFjoUfMtE80xTnQz5+OSipNLA/ZfMUs/BoSlkNLhGSxcURvnV974g6wlsQMelnPVYhnEMTtaYyNA5ygTSTz/+fCNKpe1MnDzzTfzwAMPcPfdd/P+97+fu+++m5e85CVf72aNxBiD1vq8EzIzBiGhEQTlJrH167DWEdpU7kY/DPjQ6YcIQ29kVRjOTzBkKRzIUBfY3JAYDblgbrnL//rkcf77lw7TS1KW8ho3TFhu2qZLF6SgOCdIUIoAgYeUoKyi6Xv8wne+hCunmkxOjvPnD53gJ373s/zJvUfKWGo2AitaNIG1zIRttoWTPHV6lQePLWKUhcIiCneoZVbzp0/ey6/d/ymSIh9R+WzUmZ4LLTy6zo7YghnkCUHgc1Vtio+ceJQ3z1zNd1/5Eg73F2l6IZ6V5EqwLYj48Re/jkmpYENKmJSwGif8+hfX6CYpRlc0vzlLiWXGk+A3eNmMZv90B4mr1e7YgC/B5iScFdtuBiwmATLXFK62LR4u7VAFAl+59FUql73nGPOslOR5QiQ8Ai1Zs3pUQXOjaK1LlLflnuUTPNBdAKw7M3UJptSQGMt/vvfj3LN8EmkgI8d6qvRmCXwrqNciIs/HXIQi1C00E62UM2s97l+M6aYpqbEcP7PMrp2zCCsYZhl4EqnkBVdZ3GI4CfBKQg/HixcIgZXg24yhZ+n3m1w100H11piZGWO81WbQix0Q0iqUkOQKMmsg01gpCFEMce51JRUNGXAqizkSD7CZJbUum8NasIXBaMtS3KPdaFAXHlmcQBA4JU9CRyr+6e1v4e4TjyB8qClF/rx28BSM49U4sxITdNr85+99Ke96yQGaKkT4oFSEJxSB8JBSoq3BmhHh8AWIKoGMjkNi+8QYP3jTFGORjyJn30yHp870XPqhUCycWeG6HTOcGlqwokQbgBGu+uq147MIa8iTDLRFak0hHLnVeK2OjHOGwtVEcFwTtpy/Fz8fvlHlslYGxsfHee9738tP//RP84Y3vIFf+ZVfYXx8/OvdrJEIIZ7VU1EY59ptBCGFrlDGW8P/DKDzgpr02EkDsdhlX2fyHGLcrY+adW15KSvILWSe5Ew8xPMVNodBAg2reMuNB/gn3/J6IgMUJRnK2TctY76VhauEQiC4dmaMcQQz7XH++O7DEAkenl9G5wIKOWLvs4CRgjEZsk3V+MzROT78+HGU9BmagntWT7KcJcRFwVdPHaLT6WAK7fbq8mOtRUr5rONr2QA4ZF1ZGuQZQRBw3exuvjr/FK86eBO7xiYZmhwvCFDW9TsUkuuvuJJQrod6qrG4++gSJxaXOTIsKEqrddlYPvfQYXZN1WkA//Lb7mDvWGM0/kEQuDH7mjaoSjmTtBs1hsPuOg9+2T4pHGgLKcrUxLLREnwp0UqwmMa0wxqNAmRVU6F6gnVFijzPK1PfBHPLZxgUMda6zAUq/EQ5ZxfyIU+tuap8a0lMK6o7dkwLSEEtCKl7AeuJhM8t8dBwxdgkdz9+iB/+rY/xe/eeQKaGuJeyp62o6QGLSU7kCQJpnzdgrDqwhBSj8XOMgAYhfK4bU9w6pejUfH7sW27lNdfsohXV6Q1zFzYRFiUcsk1bl2mirKDm+9iiYEBB5HvUvID3f/Uvee89H6AvDW0ZIBGkwiJK3o65eI0d7TGU8lguYmoiGGUZ+ULysh37uXPb1RyoT4ywBBfVV1vVsnDx9bmVZa7ZM8uNOyfxhXToHSEQQiGkHM1X5Ul8L+CCw1ui4gtxWIyxyOeH3nY7tdDVad8/2+HIyTNo63BAi90zvHhbi9W0izaWggJhNapMjmz6PomyHLcJRjgqdM8K+mlCs9VCGUitHj0RvgkgvFi5rJUBYwx33XUXH/zgB/ngBz/IXXfdtSWg7Gw3+XN9LpVYa4njeOtfCkhNQSA8atJH62Izr33Vng22cK4LAql45bb9/Nwb/yEv33X1Zp7584AIq1i3RvLbH/0SjxxdIReSPDO89kXTXDM7wZOrBR4FLWvYFgajDb/iwnsuERU3qzWM1Ty01+LH33IbgdY8eGqZXLm8cJfhJFAWXrn3ALfN7ObwWsyhtYzIBhxN+rz3I7/HPceepq8NRRiwPWhjjHa13CkR81KitT7/+FbjWDksS9eAwdLLUzzfY1e9w3I8YMpvMCFrdFREFIYujFIh6sR6uetKCguffeY0B3Y1+aU/vpvDiz2MgMWBhiLn5gPbCdDMNgJ8UQHrXFjLGPM1uS5d/x3wsuF7BCKnV1hnsW1x202KonXx+7rwOZ30adUcrL1rNUO1PnOqam9plmKNJbE5qTAEVqKNS8c8Gq+R4zZlC/TjIcd7a+QCVuIB42HdHSJGUCCICsmsrlGh2Z+1j+XcX80sUxOz/OQbrubnvuc1PH78DGdyTe616IQek/U6Xz6RUa93EBgGg8Elcwu7mHSBFT7vfNWN/NR3vJRAWt54cJprxmq0w5DVJC/TejO8EmdirCETBr+M8dssZ2A1gZG0Vcgz3QUeXTzBsskYDocuFbFcOz2b8/DJQ1w7uQM/ijg5XKUdOHImWUJpalryfTe8iu+87g6UGTkzLrhPANp6ZchMcHxljSvGnr3UrxCCoiguGpC3fkeDj6aGwROA8Nk71eLoidP045TMWgaFx7ZWwCAv+IMvHWIpyzFWY1y+ICGWIAz51c//JUO0o/4uLL0sphFGBGHgqp6K9doR5yd8+6ZsJZe1MvDAAw/w4Q9/mB/7sR/jJ37iJ/j4xz/Offfdt+W1xhjm5+f5whe+wNLSEsYY4jjm3nvv5cknnyTP80tOUCGlpF6vn/Pvlad4mCXU/AAfibUGfR5CD1uCCRKdozyPV19xDd92xY1sC+oIJXDFc8r7bjn3JRLL0GjuObbC/fMrCCswQ8Fte1rced0ePnD/Y4xPh3gBKDRWWaxXHTvPvlFUUgiBUZaxCG5oZbxi+zivObiTf/8XH2XRGvQoDUCijODVew+wf3yatfmUNDZM11t8ef4wstPkye4iqzalIQMaeAxMMUK9W9z7VErRaDSe9R2MqMqFRUtLjmWQxTRUwJgXMh7V6QQRM36Nm71JxlXgyH9KwGAFVNrYz8wYCq25es8MXzi8xiMLKxRCsLI0YP/UFG1POjCkdIC66n3XajU8z7sECqcB4YpSdWqS08NhCczbov8bfpBCECAIm3X+8NEvkgQCZSWB1oRnhS+stdSiGkjBIM+RUUAkFBrL0bjLL/z179PNXSqfwZKmOUvFACMsZ3przNRaVEWrAG6e3Mmt07sR2HNqVZz93EoG8So7ooTvfNE+XrNtDN8UHIkTlO8od2+74Ro+9Ol7ifwIIxTNZvOSKfNuLUk84THuS5oBKGGpC42HphFJ4syUxZJwGBgLBsNSOqQmPCLPJ9UFWIuPYm9rgn908FXcue0AS4Mu/lgT44FXONKvh9cW8IVid2eSVhBxqrfCWFBz6XSsK8K7oiZ7GmPrBx9bGwHn9Km8SiERwpIVhieOneLgjunRPD+feJ73PC1tAcJ5AzzpMp8Miqmaz/jkJP0sp29A6xp+PWLQs/yHTzzKUwtDBlbwxHKPwgqMLbhhbCeHFufo2gIlHIA5s5qW8Kk3agyyxL2P0mh4rr3hm7JZLmtloNvt8vKXv5wbbriB6667jpe//OV0u90tr7XW8sUvfpH/8l/+C/fffz/GGH7nd36HT3ziE/z2b//2eZWIi5GNIDVwMdfhcFg+f/1D6apL0pRaGOKXQMMKSb9xP7MwKgySmBzhedQs1ApXlKiqALC+7Z6nYViGxtAj5C/ufZpuXtDLNRORx4GxOk8/dZSddUFRGJSVpXNva374s0WIdYVEasu+sRa//H0voxUI3nDzPraPzRIPshH9kClThnw0KQUqzfA8mBqb5v5TR3nx7JXcd/IwJ9dWmZZO618r0hE2AusO6vN5BkaYAlsqA9aypnOO9ldIsdg0o+mHtGp19tXGaYYRuzuT/P/e8r2MGY+ixAOO1IGzkO+5MTTSVfbOTpJ5EXcfW6KnNXPdIZOTTRQGO4qZypE2EMfxJSqr6jAKHrB9ssOxM/GWqsBIjXM7PZQtumNyL3alx5hfI/A9cp2dgzcRQjAYDtBGM8xTPC8gsJLCWj745Fe5K51nLR0ijSU1Gi/yyYocrQ1L/VW2tyZdt6ULubzxqhfxqt0Ht7Ri3Sva7JWz1jKMUyaigFyBDA2rOuff/8V97GyGBBS85IpprptSXDmu0Dj65EspBs/xSQgcJgOLtRFGekRRSB4PS6pwD2EFvvLIdMGxpdPsnNxWWqspkQElBTfN7uFf3fZWpuot0iQl6w3QZdXJuMj5T5/7M66f2omSkvEg4nR3hWYYlnO+fJtSjDIyzMYsggs0gE15UhphWekOKIAd481z5vjZcvGeAVdQzXkr5egDFoMgEBo/CBkmGUZrjEiZDH20zmlPb+crjx3iiZUBv/C7f8UgLcik5G1X3MRVEztYSxOUERjlyIpa0iOKIvpJvImo7FLPh7/rclnnXszMzPBLv/RLzM/PA/CpT32Kt771rczNzfGOd7xjRPcJzkp/+9vfzvLy8sjt9eUvf5lf/uVf5vDhw3zsYx/jpS99KcY4wFSapgwGA4wxm1y7GxfLVlaIC5EKMBZPKhr1BtoYN3nLc0EZgVaWtMgJlY8U0tUbNwYrSrpSYzldJHzymYd5+8EXE0hFVxfUpO9yvsWGzb4SY8tY3Xrcd4TiN4IsM+ya6KDCjDhPOdYfcMv4GDdsn+B//8R3sD2U+MrRzwrjFrMdhXjPtRyr+1fikAOShie5erqFFgIlBAenJzhyZIF91+2mUM5VH6BdRkNhEb4m8j12Nyc5vHyMb7/yRsww4cRwjXoYApZhnlGtcmOdhVEVKtrk0RFOmzKVcmItRljuO3GI//zVj/Jv3/L9DNIhdc+nphT/YO8tTPkRCthdbyNxWR6UXa6UoWpMoQR+FpprZ+r8xMt28cQTT/PM7Vfx5NIKr7xihwNboVAatLdOCVSv10fpTlWbn2s+VddU411NMudlMVw5M8GXn5nn4K42+1o1NmpuZ9+vYsB/3Y4DHPiOH0EYy++t3sWKzSiEpUJfVPO9UW8gpWJx2GVP1GIlWyOzhocWjnP99r30kyFFfYy0yGmHdYq8INaagc1p+kHJPeDegVcpwbYM3VRI+rJvOeBblxkgTIEVsBRbmrUGxgpqSvGa/RPcf6jP666awTOChoSf+q5XMFGPUBaazeazjuPGfz977lZju7FdlVbpcCflarNghKIeeAyyFGszrHX8B76viIuclSRhNhojLjJ6eYYR4ElJw0q0hJrvlNtaa5wwFwhfMNSaer3F6w+8CKUtE1Gduf4SMgpQGoc+3ZTYU63t9Xd7Pp19Uz8RCGMwUvPhBw4z3WrgCYOtQnBi63Xu+/45Y/Rsz1qfqmJ9Dyn3IoMjxpoOJauJoV5orJQ0PcP2puIls01OLJ7h2HLCI2csK1nBNCETgWLP1Axn1pbRURMrFInReFIRSkWiC6osA7A0Go0t96mz597Z73+0b17isPHfdrmslYF2u80P//API6Vj0LryyisxxpzjzhqV1dzw4ouiwBhDEAS02+2RFimE4PTp0/zGb/wGi4uL7Nixg+XlZbLMccvHcUyz2aTb7dJqtej3+9RqNfI8d3XUlSRPMuq1Gitrqw553V9jJmjQzxJU4ONnhtizLK4sMRz0GQz6JPGQle4q/WFKrdEgi1OeMH3++JEvccvYdmaCOscXF1DacPLkCRqdJskwJooi0jRFKUdqkiQJtVqNfr/v2tfr04zqDNKYk0VGI3AH2fypLo8fOcUbr91OsXqaK9sNjs8tIcbG0FqPGB2ttXieR5Zl1Ot1+v0+jUaDwWBAo9EYPVsIQZ7nhGFIHMfU63UGgwFRo8nsWJ1PP3SEg9vqnBkkfO7JE7z1pl2MhyHPnI6xyoNUM2487tx2JftsyDGteXj+ELNBnSzP6PV7nByeJOq4Z7dqdbrdLnEcMzEx4doZ+CRxQqNepzcc0Ko3Sbs96DT4womnKTzFQ8eeYTVeQ4Yhi3NzvHbPNfROL1K0W2T9AWEYUhQFQgiUUqRpSr1eZzgc0mg06Pf7xGGTNIeZSPCPbt/Dn/qWp04uceLUMmNXbefk3By1xiR5t08wFqHjBCkly8vL1Gq10Xyr7tdoNIjjePRscDno1XgmSTIaz3q9TjocIOptTB4z5gs+/sUHIenx/3ntDcSDAa1Wi16vR61WI01TfN8fKbVhGBIPYsZaTfr9IcIY5hdO0S1qFDpHSjm6tru2hhcEzGXL1DPNiTzhiePHkEZwgAZzp0+wS4XMdbsEVtIfxJzur7I87JP0+8yv9AiDEFPm1m+cn8PhkFarRbfbpdFosJZmdEROJkM3/3zJkfmT3Hb1FSyeOEWj0ebO3eO88Zp9kA5ZXFxBCEGtKLDknDozpNfrMRgMqNVqo/EclQiWctP83LiG4zgepSdXe0Icx9RqNQaDAe12m36/78Y+jin8kMEw5sxKl/5al3wtodbqUKQxc2vLHJo7yUuv2E/a7XM0n6efJ5xZOE0UtVjMBgSJ4ejSPPszjzoKO9FkrrdKy3jYQcxS3KUdKCaNRBWGhbmTRLUaSZ7iK8+lQmqN7/skSTKaR9V7r9frZFk24jEoioIoisr502TQ7+K3I+4/tsgP3HktSwunCErg4MZrm83mqN8rK2686/U6Uspz9pqNY5QkCb7vjzKppJTlOnLXNlrjDLqrBMLwgfuOcfXuccaFYHHxNN/5kiswcZ8/PqZ57PASfjjO40fnqclJbDrEs5b57jLLJkTWavRXVtETKWmvz1K0ytzcHLV6jSLLWFo6MypmVu1Z1Xuv1+ukaTp679ba0dyo5mc1dpsU8b/DclkrA7Ozs7z85S/n+PHjo0V/8OBBpqamntPiCsMQz/OI45jFxUWmp6dH187MzPDud7+bp556irvuumt02AB0Oh2EEDSbTYQQoyqJZ08Yay1Bq8GZfpeTgzV2jc2yTXQwUuAVlqaCcG2BbcEUnU6HWlij3mgyPTYJCHTT8MTSkNgWTE1NM64Cmr0GmbLs3LUTKy1j7c55x6aiZW61miAsddvh5LHT7GjV6WaGQRgSRT57ZsdpmxZ4gl0ypFaOyznWaClVfzfSPm/UpKWUjI2Nbbrm1msjPvHkCs2JceYGp/jf963yhlfeylgdGkmXybEGcVwwXm/y7te8g7Fcccor+OOn7ueG5jRZqwkItu/c4VKsWm0UjDaeqk0FlomOc5l0Wm2QkuV6iPID8rrPG8JrOJ0MCLyI8WaLHdtmMUoy0WxjlUC12lu+Rynl6BmtVou5uKARBcyONYmwzEx0yLVBeQEzk2NM1gXWhshmA60MXst9NwgCGo0GSik6nQ7WWlqt1mjMzh7H6ueqPe122/17p4UWHlK0qWvDm+64Fouk3ekwPnrvrU192NinTruDVYp2u039VJ2JsQnGx8dGWSKVZ6BWqxHV69x/ZJUdUzMsmhQaNWbrbWbHx6m1GoyPjbMqBc16g6gWYT1F4AVMj03SUf7In3R2n6o50mq1sDiG3lDnpErx1Jk+u8faFPZRtk+PsWM8Ausz1g6wIkCIJpbNfWq320RRxPj4OEKI0Tqt5udG7171u3bbve+NlU6rd1DN3eraVqvl7tNukgtFGjXxBDTak+Q1S0NIZtotkhCGJuP6nftZSmOM8Kj3I2ZnZmiqgFB2mB4sMrQ50xMTqGad//fhz3Pj9v106i3GJyaoGegIy4/e9DpuntrNtrCJFpaWLTM/ziIZ2rgPbXzvZ/ep3W6jpaTZqbMcZ9TDJjfsnqUtDWIDkENKOep/dd9arUZRFCNcxkbjqrNhzm2cw2db29XcE8LSbNWonxH8zse/yMwTS/zit17FzMw2pqYtRTHOhx8/TeZ57JutQeAx3mmjdJPZtUmWlGFiehuJJ2gFNZr1BlOTU4RhyPYd210btCYIfMbGxs5Zw5UHaasDfuN7HwwGZQbQ331FAC5zZeDQoUO85z3v4cCBA6MUs8nJSWZmZoDNrh9rLZ/97Gf55Cc/yb333svk5CRvfetb+Q//4T+QJAk/+qM/CqwTBSmlUEohpXxeLHcO5FaQ5hkff+TLXDGzg1kVOYIdz5UTzbSmpnw8KV3MVq4z6lkUSVGwkicUWKSQ5FmG77m65o6H+0ImqcDYhFOZ4lOH1miPjdHsZ8wvDYgCj0hahHDWhjUFxlSpRRfH7rdxwWxePJaJmgfKYy3TLPYzlvOIj3z5Sa567dUM05xOPcCkGbm17MRHKBhvjfF4fIp31G5C+ZY8y5Geq0cmLIhyg9Faj9rpMAuOO6YCTP7Cp/6Et1x/OzbJmNy5nWfmjjMZNGl5EZ7y0FLglRiBZyNy28gkqXWOUh6+BB9LvR5w+MwK1hTUAh8hCjzAemXKWnkkVhb3s6VDnn8cNzbGHy3cpqd440uv4oNfPuzm6vm7sOEhbowq92+RFyXBkPt1dWgXhSOASgpNPQxo+CGn4x4N69GOGqxmMVK4HHRfKiLpsZYMHVisTE07uz3n65NzwvsMspSf/52P8553vZWksIwFEinBinWa2c0VjdbvWxSuH1s943xMoFtd+2ybvxIu/NNRoFEcTQr+659+ip/+9tcQehEraYz1oOl51IXHgi3wcHgC4Ul8C5PtDifnD5PmGdr6/OXTX2WoJAGeK6SkILLwjpteiVcpNLg943w0Dc91YI32QixIy1pqqQUeHWWQZe2D892v2j8rhWqrkOkFt8VasDlC+myrGyIPBoXHwSt2UOCyY/Aknmc42dPsHg9YjY2jXJeKVhDxv+/9a75n93UIr0ZsCzzPww8C8jxHyjIYpuSICr569xd7qFfr4BtFLmtl4NixY7zlLW/hB37gBzYt9q1eujGGG2+8kX/9r/81QggmJia49tprednLXobv+4yPj28ZS3q2e54tFXCtOqwCJC0/ZBgI1oqMWRVVN0NgGeqMugyRwrlmi4oVp1yaSVEwICfWGfg10iwlGm+Pvl+B9p5NtIV7nl7h/rWE3//sA/zC978WbTs8vtCjFkV41qVPGVyRj40L/VJoxNa6/OiJULAWp6wMNW+/bS9n1pYw1rI21Iw3IvqrXZKStz/3LDN+jXgwoN1oQJYRZ0OX040YKQLAKERRAQYxoMs8rOU05tOrR7nvK8tc3Rzn5uh60jyn6xfUVbRuDZUHzRbQiC0lzQtkEDnlwVqCyOdEN6dWD4g8x9BXsUBV2D1r2aRgPd+xdV20SOsqO3loxkPFIHf13sVzUdPazXhQ3/NGoYmzQ2lCOL6CfhGzpz5N3Q85FffwfZ+o1eD06ZOOYc9aQs8nEB69NEZ5al0JEPBcs9SWGBCLIzI6mtV5+kyf3AREwsNagZYV4XMFWN34fddmpdTICn2hrLkKxyeUpJAeR9cSPnNklTsOn8T3G/TiDKwh8hSR79OPe2U9Bgf2VcYyVm9yJukjPI8sSelScNeZp3llcw+eBuM5zoHQruMANm3U4oKm6bltt2WJaAGLvZTxVgNJgqGBEufLRykfeQFKwHM+H6eMOOSK4JX7tvHvfvBO/uxT99OOQny0K5kmAzr1BvfPxbzuqhZxIV1lRSG5ZfsVTDVazMU99gd1cq2dMuD59If9qrGI0hvwfNfbN5ISUMllnU3wkpe8hKeffpoPfOADfOxjH+NjH/sYCwsL51xXbcITExPs3buXvXv30m63UUoxOzvL5OTkC7J5SOtqtE9NTnNiZWG0EKqK5onNCXxX3S0MQoY6KQ81B95LdE6BZS1N0AKyNKUpwxGa/mzEkKEqS2pdARKtGRaGf/OJx/nUQ8f5N9/7Gl69t47XbvNkr08rVOU9yowEIRHi+S/2rcSWaPxOWNBNMobDhKvHFVlZ76Y7jGnVagTKUmhXGDgHpoM6B4qIbc0ONeUTW1eEpsohNtaOkP6ZtSW/foleFs6SXEh6EAU83Jvj8fljzAR1dG7oJQmNkgBHbmrruhW0XoJoQ5ZICWDMsoLAj6gYBBr1GkcWh3QadWx1oG4i8N/w49e6yZS3FmX70AWtSJEkKdbkWJtjSpClHaWwmPVP2aPqDQfKIzUFWuDKFVuL0O4yoxTWCvqioOUFNLyAbr9HFAS0ozoPHHmKQhtSnRMKRUsFnBp2iTwfT1hSC9pYjNFoa7G2/POsLgk3MFgB/ULQs4ojp5cxCJSSuJJ8YJBYsU50u5W80C5dIwSFMhgJS6nmdz/2AFdeeS33nVim4TVZjteQQqFQBEFIL88Q1ina1bqvSZ/Y5BhhyYuCyeYYh7oL1Grh6P06mgunHgmrS/pMW9YG2Nx/W75ra3S5/rUDsZ41TKK8pbVwpjtgqh2473LuPTfffzPI7msRt90olICOZ3jD/jHe/faX0FLg2bRk6xRsazeYXzzDTKdJkqUlINgy69e5YWYPvTh2FMm6IFCKmueTpVm5hteV72/EQ/35ymWtDJw+fZonnniCRx55hPvuu4/77ruP1dXVLa+t3IeV679SEDa6xM9fVOjCRWz4wQrnkZitjbPY61FIUMaOJqzOciLPw7OGRqvJ8nCIwY7SYwZ5zrZam7uefJjEwjCNmVThec0Ct9W772sMaMOpbsxTC0PmF4bcsnucuqcY9xXz3T6t0CJEMELNa20x5lIvHosQmlrD50wsKOIB7bZP1zgXXC/p04l8AinItKP6DYBWWOPnXvld7GlN0PI8+uRugReU9coFVluSouArJw/zzJkFR8CkXNEjJaDbH/DWvTfya3d+H//sJW9mMmrwTLHKA0tHaEc1tHSo5o3jV7W5GkvO2SgtSV7Q8D2kkFgBsy2Pk6eW2d4IMELg4YHUjod/A/nDpaJHlRawsmQAFERSIq1gLSnIi5zCbiSRtlt81vtbVx6Dko54LU/54LGHWELzF888yIlulywzzHVXaYYhgQpZyAY0fJ+DrWlkrU5hSj595TMe+Bzud+moGkoUfO7Jk5xY6aF1gca5hws4z2HuDrG1JGf/TJP5xRUKK8GXGOHc6xJRvpktvl2FNV7w+K5AWENDwlBK/vzBY1w7bjm5uEpd+hzNFqk1a3hIasqnW+RIPIRwSpiVUJMKpS1ZmrFWJOwKxmjGOVP1JlpZlKHsqStAJcpMAqfEnYcLxQKmYE0b0iJH23NZS6pRN0KyvJox2wRDvWT5e5Yel4fqxiJLz1ec/8HVW8Cr0fQDrt42SSgEQjXwpEIKxc7JcVoBjNd9dNqncITaSAF1LyTNNDGaOE9peCEdLyQeJmQWcgsIzl8x9puypVzWYYL5+Xm+5Vu+he///u9/1gpVf1MAkE2KQKmZhmFIR0UsZqujejLKuipvWZ4zrnyEgHatxnI6IEcgJS4VK8/5juvu4OjRo/RMxik/px0EI2tVndUtVarEFkMmNL7nc2JllTuv7rCnHjAeOd2vVgtYWEmQ19cwOBIVi4/vB88LH/HsY2JRpmCyWWepn9DNLTfUPWyRYIWkN+jTru8i9H3y3JlEnoCmFdy+72qQkoYfkGQuRatykQrrqlQGUcgXn3icvZOzHJiaWT/cLXSHQ15am+Htu25AWDglC1bjHoMioxnVHObCMuJocDnlGkr+BpcZXWoYzneCFRAXBSp0cVaJZXtN8qpdTa7fPkFgcAqAklWu1mgsgiAYxSGf75ysvjU6UIXCU64U7AefXmJnYHndwVmkMFAFPzZDOEZ/FYBfel2UgSNpn5+5+4O8/tp5Pnn/l/mnN72RR7JV7jv8BD90y2toRTWeWVji5ZM7aKqQQHrEJifJMiLfp12rMb8yzw3BGBbJ3Y8cxV67m93jZfEnJD6lwSs2NQlKDoSk2+XgdMji2gqyNkPkVfFse25fNo6LEERR9IIjv90UVATC8srdHa6YaPDmg9v4z4eeoJvv5ni3x43TO5DkNAOPPE5oGk0hfGpl30PlYbVBBQFrvVX2d6a4bWY3L5nZW7l9KvURKxS5kmXap1l/f2JjmyzaWmI8fuOjD/KWm/dww7YW4uyBFpCVP/T6Q67ft73823OP13NRf1/o2HEB78Zay7ZOgwPjHuP1iMN5gcWFTjAQyICBzljLYjxP0ZEetSAiLnK3JgUIw9/IfPi7JJe1MrBjxw7+63/9r6gSGW2t5fbbb2fnzp1f76YBzhJMk4SmF3CsyMpyo5Aby0PdMzyWrXKH71EAk0GT1TTmI4/cy7V7ruBAfYwiz7m2vY3DwXGeHq5xor/KmB86F/Z5JrjWAmVyVGDABiz3DK+8YpzvuPUGQlGghWKsGUJvmcn2Lc4FicbikWxIR7qUYlFMNDt89qGTeDKiHoXYIiczkkFe0PIh9BXDQmNkWUegUkqMpRNG9OIhBRDISglyJZDjJOV4McDmXTRO0arK+M6nffa1x8klRFYwhcc/2Pki2q0WHeWPQg4VzsNasMKAVRzp9unUQmY84VCJVMRQ0C8Mvg/KOhRD0xf87P91J01POoVMyHLz2vyOqlSmr6W0ahnVAeu4IY1xhYAaAfzCnzzEjePwqgMzzgITcjRWVK5ka0ebssDiISl0gVGw2uuyuz3FX3/1i1zRnuH/zD3KA6ee5Nt2XceeoEU4tYt/e8+HaFx5BzUENT9gUOSOL8Pz6UQR8/EKL+vMohEsZpLDK0MXjikZiNaj4JsPKYMDxS4OUnaOCw4vSWrGEI6wgu4YfraDazgcjrIUXiipxk5h+KE7X4RB0FaWT+3fhVY+p5dWmNzZIrYGVMAgKxgTgscWu1w3XqMufHwpMYVhLRkyt3yGKyan+dZ9N42U+/URMvS05DOPPMUbrr0SzzN4Vp7rzy2/MDCWjz1+iumJulMGql+X3igLPHF6hel2neX+GlONK0eaxdl6w9lSFAV5nv+NsfrtHK/zrTfvZjzyGKaudLYtQ4FN4XPKxIz1V2g3W9SFRyB8EpuNvJzg5sPGrKdvyrPLZR0mCIKAO++8k16vx8mTJ5mbmyNJkq93s0ailCKKImphyDDPUNZVNfvyiUP88z/7DR4++hRe4OFZwXityYneCv/rsc/zSPcMGhiKlGbgkwvDz/7Fb7F6eoFmWHOb0RZhvtjAXz58nLXMIo074BZ7MdvabVrlQrJGMNXw+dZrZ3jJrkkUEoMPSGpB8AIoA4JCeLxo7zTd1VUePXmaWhTgKYcbSK1PzZPUfZ84L8qDvCywU34moxbddEiq85F3xVgQSlEPQubzPgtxb2Tha2ApHfChJ+6hGdUJHKKTwMDbX/xKvuXqW/BHB8uGHdBAXlZ4/K2PfoUvHD7lqv6tIwYc012a0wp9hDUgfCQe44EirFCIQrgKi2IzdiCKoq99fEUVzigDGcJVRHzTrVeRWpgvGiSFJUegbeVDEmVphtKfUIIMpYXA8ygKjRVwqrfKd++5mf/+lnfyfTe9grmVeX7kxtfy47e8gY7x2NYcZ6YxRt2L8K0g8nxiXZBrTSA9OkGNU71lmmGEEYLl1HCq7wIDLg9EjXAzm8XhAAok813D7rExGqKgI+JyZlZSMjpuNSxCbEn9fallZJULGFOCCelaNB7UkVoQxEPaQZ27nznN5588wbIuWM1zfvH3PsXpfoYVglD5WG2QYchaPmCq3iawjlFUbZiVGsOxtZj/9tF7WI0zcsoa3meJpXS/W81aqjndd/ifTdeUiuDvfOwrPHRiia6xdGp+uZ7OWgdbiO/7f2OFf4QQTNcDvuWWKxkPBIMko0LxGCzboga/d/+neHDhmNsPcRwWmdUllgiw36Qjvli5rJWBPXv28Ja3vIWdO3fyzne+kze+8Y1/a7wCwIjwIohChnlaln0VHE66LHuan3nrD7CvMYFXwHijzTMrZ3jMdvnSiScorCvCEUQ+zXqNRwanefvtryX0AqA6YzYXWFqIM37xI/dwuBtjhaQATvS7jE90wJjyWJA0fMG//K7XsStydQBN6SBKhgP08ywDe36xKGuZUJrvvOMAuzuKsdDHV4ok1+TGI1CK0PcpshzPls7tDcpOzffxlc8gTUbAPgRoY0jjmKFOGWbJiFLXAsdWz3BysEIQBkhrKcpfNKVHvaquM7rbOmhQY4mN4YETKzw8f6Y8eEvLqgR2DeOEdhQhrMEg0EIiXFS8rBRY7q+b4IeOjvjZSlpflJRKRpVyd8POcWZbBiM9ksLy+IlFhlmKAVcDXsDcmVUWV/ujPlnA94NRNsFivsq+RoeXzezhwNgkE7nhXQdeyg2T28kDQU1J/sUNr+Xa9hTCGHylSAtNoQ2+8qh7NdbSAfVaiLaCXqZZXM1H3ggj1tUqB3Qz2JL6TlmDb2BtNWNfZ5LvuuUqXndgelTKtlKyBFt7B6y1I6KYvwnRVYqIhRxJO2iiCsFrrryG8VqDY92CQ8sZq0VBX0ie6llWk4JCWDwEnvJYHnbppQmNMMJUk74EfLq5KHlsbo3DXc1qkqGp0o43AF1Lhc8KsIWmHnikmcYaORqX6ju5NhwbSub6Obn0CDzfeWouYLnneX7RhYq+FlFW07AJkVIYUUOXrKsIuHJihlWleWzxOPUgQgtL4CkKozF2vSbjpSxc9Y0gl7UycOLECd7//vfz27/923S7XT7xiU/wwAMPfL2bNRIppfMM+L6rACcEIRJpcn70Ra/lVRM7aHgBCMGsX+d4vMBVk9OsdJc5kg84PbfArN/gzbuv519ccye3Tu91dMZUx0yOpcAYoNCcGWgW0ojTqwOE8Ui1IRkKttV88BVS+PjSbUQdz0N5EpTCw90zqjeQL4BnQEqJ8ny+7Ya9/Mf/63VMBgoPQVZojM6Ryqfm+2Vq4WjfH4UXPRQzNmApGyCsRQuLpgQ2hR5+qomzrAr3E1h4sn+G77vu5RxsTyOEwhOO9jUUIDxAFmALt/GaHGsMSEtoFKvDnJrfptuV5AiwhgxJbg2+ThgMMqIwcJwR1qDLXMKqSoRAuNj4KGbvOhJF0Yjh72sRt2hDFJ6rAucpppTiFVdOsKuV0Us07/vApzneT3hkbo0//PIDDHLNb37pKf70oSMc6yaI3JJR4KPQufO0xNrQCut4wMHONL/4irezu9UaKRyBMLx5/zXsbnQwSqKEROsCW+RY39JpNJnwarRqdVQuSXUPo7vkVBkwJVDVZgws6CLFmJy8xLkYoVmNe7RbPt/+on1810uu4rks1o3yN+EZcCIdSFQ4l32AwPcVgZG8+xXv4PbtuxgmmmHikZoV+tZjKa8xHGZAhqDADyOsUvR1UZYyLueEtaBTjCnAesytdLlicpqlNKMmcAjaUrk1xmBNSmESEgzLQ8O2sRbDJEVLKDBQGAoDqTDEecaJtSFPLAxpZCnGF3hVdc7nEM/zCILghRvSs8QKh71RnscQDVmKLUGzuzpT/H9f9BZOpn1qvo/B0haC3GhyYxHGAgX1ev2b2QQXIZe1MvDYY4/xyle+koMHDyKEYGpqilOnTn29mzUSa62jwlQBic7JhEVYSEzBFc1J6mWBYCsFrbCGTWKuac0yEba47+QhdkxuY7rR4dXb9vOTr/h2rmqO41PFVymtUXcw5gjueeIwYxEsDvvkUtLNMlbWVmnWwvW88Wf5pFl2ySs3ruerSwIhaPseUgh8JcmLHG00gecR+AFJno9csNXHCoOVOY1Wg5U0QRgXIlFWQOHSBJXnO2tTMXKjz68scsf+62gqD4QjaFrPlRZV47BCMMQjH53bHscW1rhy9zRz84ssxhlWeHgYPFGQC8lg2KcV+U4ZwIEI10sdl4pMhRnYYJmkafo1A5rEaExdrXlZ/hwIyU99y61cMRHx5FLM8YFiLlZ89VSP//Dpw/zSR57gmdjyoadW+J1P3I8VLloQ+P7IMxAXBZ7nI4zLMtjfmUZYQUBVX0GMSiUL4dISC104alylaMuQm2vbmBYBcVI45VIYtN3cA1V46MLwiSdPs2IVFgcQsxZyAzVf4okq00Ns8Ag8u/yNeAaqecSGtYPF9yVFoWnKAF9IesOYQZqhbIHOIQoUvTghFwEIn9D3Wel3GaZZeciuD1IhfTIUxgq63SHX7J7g9GpZjEpKl7FiXVGwrAjoxh5hYVle7bF/ImA1yzEMndfKyxEyx7eGpcIy1qzzqYcOYX2BLwRaqlEZ6mcTrTVZlr2AA7tZrBBY6eH7HkJoci2QVowAguMqZKXXpRHU+dIzp9HWY6gK1vIh2kIhFXEcf9MzcBFy2SkDlXtscXGRmZkZHn/8cXq9HkePHuUTn/gEV1xxxde7iZskDEMiBEYJBrjUsr7NqPs+o5CygJryOVib5vrWNFO1Jk+tLDDZHsMXgshKIg2BcYjrysKCdcUgEfDU/BLffccVLPcGgGB5pc/sWJOGf2HWfoV2f6FFAIESpLqgMJZQKTw/IM21y4awGwuEWJTVTNXbLMYDcgmHB6t0deqyATwPqSRKCGIMEueO7vb7TDdaz8LSKAGJtvCR+w5xz+GF8rlw39Mnue3aafJ0yDMLvfLqnNVC8GuffoKnugVTDW+EcHY6yHPHXStq0xfKWpnxBENj+Nk/uocjSZ3/9zPP8Pljyzy0rPjDR1Y4trjKM8dXWcir8IL4/7f333GWXeWdN/pda+14YsXOQd3KUksoJySiAmBAILIs8MzYcI1f7th3XnuusWfeGdt3rmc+3Lm2AQkkEWywMbIQQRIWySAMyBIgCbVCS92Kre5Wh8on7rTW+8c+e/ep6uru6lhV9PnpU6quqn32XutZYT/rCb8HRymiOI3VCJIIaSmESU+7BdvFIBFxQj3RhDp9YWth0ngDaREkCVGc4EqFJxR/ePW7WF9dwkTQplL0EUncMe923DtGYKTi6Z2j/Lc77ueh53Zja4kwitgI0AbbUl2BhnOH7/vzdhJ0bEHUib3QCOqtkHZsKFoODi7Lqg6j7Zhndk8w0gyxbIm2JXGskcqi22X10JbtPLljDI2m3Wpz0rJhRifrKQtgThsckyjDz18Z5b/e9RPGjeA7jz3Hq04aQGsw2mAZgSFBmRgrlrwyFXLhmmFOXyVYu6KCr+lYZDioceBoZBMcKoy0cBQUlWCyncY8ZU31bJuxqRq+VeSzP3qMF0faXLRkDV944l8ItEYbmWcT9DA3LEplQGvNzTffzLJly9iwYQO7du3iE5/4BFdccQVnnHHGfDcR2OurS5IET9pEccxI1EYYQZgkuJbdlfcLljH8uyvezNXrzmHQKfJ8c4yK52MhiJUgtiW6E24sTDZwCo3CwhAkmlZsuGJVP6ON1CcbhZqhUpm5LuHjVZRDCLCEpp0kRFrjKYFlCdrxvpXCtFG8MqVZ4vfzzMh2pkzCX/7rt/j8E//KlIhphQEFYWHr9EWITtM2W3FESe6n58KAEakiBXz3yT386+adeeDfnqZg/WCZ1190FuNTAenZT/HsWItbf/gse2qwtOh3HAMGJdIQrrmcro6ZfCVIS+G5FpvrMdW+Co8//xL/8vAmShJGGg0GPcPvvPF04nCSpBOl70iVZhMASZLGAQiRRpcnScqKmRjBl37yEL94YUdKTIRGIfCETcvExHGMg4USsN6v4ElFLQqpWhoTh+mYdvW5rQSPvjzCq847mxd2TBAahUYQJylxjmelqZxiDi+pDBkd8XzBVoo4SuNGNNCKYgKhKAoLV3gsLdvsrjf42o8f50ePvYy0DLWwgUKiOnMn5Y0w/PylMR5+YYQEQ9BusGKgwEQzBJMgjUhjYwS0pWDjeI3vvryb2x95judrEReeupKCgXaYxspYKBJsIqHYM15nfZ/L719zOW8+91SkCbFMiJUHms6OrGDZ8XyxZrkjDpqhvgovT9VTt0dnQrjKJhYC13J5cSpm865Jrl53IT97+Wme3PUSaD2v82ExYlEqA5CaBKemprj66qu5+eab+au/+ive/OY3H3Uz95FCCIEjFRaKJ3e8gBYQRTFWp/oYpOQ2lhGcURlmmV1IA5DCMUq+jzTZGTarY07XBpkGAEqTEAQhynJZWi3xwDOv8NyeKaYSkJ4151PWsaRxnfYcBLZKaAQxSIUlDI5jESbTqUMNhrEg5OP/8G2q5X62Tmyl3azxTHuKTz3+A37y4pNooGRsZJLWeiCBSMdEymBJi/3SpHQyEhKj2Vo3vFxPTdWJMTRCzbBns7LiMVVrdOwNipGRSZZVbN567lIqjuqkEGY5BmnPDtjvYylfkwZqnubbDAvD+07v579+4HJC6XLOcIGqq1g1MMwN551EkTZRx4fvWBZxlJZ+1WGUB6h2MgERaEIh+NHWMX72wgSJiDGdfHfPsmnrkBiNjYVJafVJJEyZhCE7TV2M4r2MjhiDZRJG9tS54qSl7Jls8IuJOjuaTSKdYHSAbWV5IYeGeTMJC7AdOye5MQJaQURkJEVcHGDVsMfOySlGE4sXxpsoRxHoEFuoNO7D7I2W3xUV2NnUhEl68BmquNTbKk17zWAsbBTB9h1cdfIq/v47j3LV6StZ5oIvQ6Z0TCJjMDZjieDrTz7NY89v5aRVQ5xTrrK6VCFWEozFXqLn/XTvOO0L057ZsZoqk7BqWYVfbR2jkSRpxpAwOJaN5Tj4ymHI8/n5sy/h2AXec/pVPLxtCwjdcxEcIhYdz0A2wJOTk/z+7//+PkEtH//4x7nyyivno2nT0D0RlYDXn3wOu+rj6UahIwqWQphOolUnilgYBULQ7/u8Uh9PU5CMyclxpq/Y9FSblehpxJqisljWV+KNG5ayZbRJIQbfkvtJ59p/m4+HdUBaFlNBgm+nwVCOMIRxTCQEjolBWBhgrKV5fFxiGRfXr/CDXZs52evjzWefz4ujo6zoX44jnM6LJEbbhjBKMLaFI9OYjH1gTG4aNbEgoY0QFqHR6EjQSGpUbEWfZ/HcSBN0GpuxfarB7735VVx/1sq0aAxZkODccczkKgTKGD74mnM4a+0KVlUshG2xpCw5f61PYVSxdKBI2RLYooQxMdIIHCFpJTExhkgnFI0ikSb3hVsmoSFswhZs2lMjMoqCSZn0PMsiSCJaSuOJVDEFjRCGyZZiyPNpqJAw1uDINM5FgIohDByWVUr8/YtbuOOX3+adl5zFH7xhDQhDGkUgOkrwQRLgO5hXc7ABV0raSWrmTwy04wgrErxp9QZ27YmIbZeXXomot1q8oCPOMYIwMsTW3miICHASzXgzJnKh1UwQjk/Jd4labWIDSmpiI7E1IDTNluEP3nAO5poLWOU72NLgyIhGnGCMQmvF7skW/59vP84Zw0X+w6CPpSRGkmYRdReR2A/mj9Y3gcTmjGVD/Nk3vs26YZ/fOHsVyiR4tssyJMLASUs8wnabdpLwxlVn8bcb7+8U4ppHBXERYtEqA9Vqlc9+9rN5hcIMnufNR7NmRUbhqYRkqV/ixZGdGAFhEuOpVPTpCyVVg6VIX9ol16PeaODYbr5RdM/pzKJgTEZ8Y2hFMUUl8JXgzJWDPDXWYtBAqegxV1trVs/9WEMIcGyXsUaEb6f+a0cpkrgToKRNTvpXa4VMhIbJIGBNcYhP/9u3uWr5OVy7/AzuefF+JqMWnuMgdUKYBGi3SJikLzpLpiQ3wohpIsjOnQIIY/DdNMMjwRBGBmkJbKkoOBaTcUKCZMdEk/sefYn/9zsuxunEVaTxCHn5nIP2O6taeCwgSANR+3ybN5y+BCEEtSDiA2ev4IarNnDXz56jz4kwShILD6NjkDZKSEKVln/WkjSorOO2MnGCNBAbQUV6hMIQdyiWdSeAsK0TIjSO7ERvduwo9WZEtVhAOC2COAZho0xq7UkkBFJTLltM1kYpFhxeGGszFWgs28kVrVk04APiaNDlHg5SC4siSLKMEoh1gifgzWddxP2PbmJUujxHk0bQoplUUIlDrR1ipMEWeyNODJKJZh2JSztOULZDteAQtGqEnWDOjHI8Egl1IxjwHFZXXUyiaEtwLEEYQ0Ka8TI22WCk6THZlvS5LqjUOqc6C2EuEj5adMRzRZqpk77RVxQdqp7Ltx56jmvPWIElNWuKVf7L1e/GQ+FYEa7lE0eGsuPSStKg1Tien/mwWLHo3AQZSqUS5XKZUqk07etI2N2ONpRSeaSwbdm0gzTvO45TquDU/KYRKIxKK9ApDGWvyJDwKDpuNx1Z/pXmBqenEEFMIiXNIKTkpKU+C+V+/u5fnuBLP32KUslnrhuqbdvHhIFwNpQdi5F6jGe5KASWbWHiuMMvIPNNqhkE+I7NWKvFO067iKLjs3J4mCGnSCOJqOuYsutRcBwaQUo41UwiStio/QRDGtKIZGkEYRLjWw66Y4JsJCGelVJEe7ZFFBoCDL/YNkk9UKwsOp0hyTbwuTu2bds+ppaBvdkMAq01Rcfi96+7kPW+5E1nLueitUuxhCAWhihJXyhKSIzQJDrpRGqnWRGGNPhVSAmJwVFOWufI7FVmrE7Fw0RrlMzYBVOCo2ajQblYQLqKVpTWShBJRvUMJG2GXclvXrqG//lbV1GULV6uG0rlInaHVGu/PPz7ged583YStCyLKO7Q5pq0PoUtbSwDcQIl20LJhJYBKVpYVoGpOMIWBidNm8EFEqFoRC2iqEkrjnFci7IlEEoyFRqE6Vi7ZEpBncQxjp0msqaqqaHge9TaCT/b/DLjYcSLe2qctqyfpUUX21aduZJlpnDQ6WuMSSsDHs8AQpPG6STKUHUlf/SaCxiPDWGs0ULQZxSX961GRwLfsfB9jyiM8Tu8GbHROI7TCyA8BCxaZeA//af/lFcbnPm1EJBp0u12GjRo2TZhh0EvMTG2VCA0CE2oYSTU6AS0NvS7PpdVVzNkezAbKYgBOhXgarHm4VcmeXk8YFmfj0BTcW0mWwnPjrcZKO5bq3x/CILguGj/AsNg0WPbaA1XpeFTSsk0Xx1ACLROCye12yGrSkXajRar7QJXDZ3Ctes3UJUWLZXw3J4dDBZLlD2PWthGCMOexhRDXil1jhxgLxAaWklMwVKdQDeoJzGeUmnEsuugmyGRSdi4+Vn+07suZVXJwjIJh+PTDoLguMW0SJmmHSqZkKiIM9b0c9aKJTikZYmjTl6K7GREJLoz7h2TsABa7VZK4mI0rmWlikCHwEgbg2VbhFGajqqkyJUkLRTNZotS0WeoWuDlkcmODhGjhSA0AhnF9CvDR954MZcO99Ev4endk/SXC0iTxmgc6kpuNBrztvnbSqYBuAiMBpu02qI0mkgrilJQdl1agaZsaTynwtaJUZQyuatPGEMbSHSITUIjSrBsSQGB5VpMhRHCgCWyMQDdKeGbOQIlGt/1mGoFfPVnz/LCaI3t43UuWlFgfcWb3W02B0RRdFwL/2TOE4PGQvIb562lv79AI9G0O1kXSqTu0YLrYFtparQrLRCGVhLSard7ysAhYNEpA9kLv1wuH7dT7OEgq4To+yldpmPZhHH6Asek6SEhcQAAYPJJREFURDqmQx00Wm9x6z0/pqUlRggGLZ//ct0HWOVVD8AUmhAB9z/1Cv/XPz7IL57fw8krlyEMLHNtlrga27YYcua+pWZ0ucc8mwBYMVDi0S27KXkp4Yq0LJIkrWqHlCTCEAtBPdAsr1g0WiFKCv6Pq36DM9wqBWlhXJs9YZ2l5SoF16EZhRgEuyYnWFbt2+/zOxlsoKEdxxQcidFp+dN6FOEpiRAG37OI2jE7GyHNsMEVyz2EVkwrT3wIcF33uMzZvfnvgFYkOFhoHBMjRWrij5IOb4CUKc9NkqRxB51KngC+7yGVBKOxpUKgSXRGrASWSoMPjU6LRtGJgdEGmu2Qkid51ZphNr28A1C0peLlySZbmwF1Uo4Dl4SCkiyrFvjit39O1RGIDs0yqEPSueaPftZgO4IoSpVZow02Aq0kidEEsaKgJENFD0e6DJeKONpiKolQlsDI1BxuRMLzO6cQkcQmoRVoHFviAX7ZY9fUVMc6k7LxxRqMjnCsvWKSaDzPZWKqwaZxwY7JBuPNBq8+qcprT1uOxYEzB/aH4006hNHEAiQSKRS2HTGEJAxIZSsFoS2Io4SytHAdRRBFSAOu71EPWhQLheOSKv3rghNWUlmKYvbVTet7tBDHMY1GEyPAIyVoCYwGbVDIzqFfMF6LeGosSs2nIuUnX2m5OB2fWcpSbvKa8KbjM4wN/GLLTsZUlS27p1izrB+BZEnR4v98+4W869ylDPtz5xNvt9t5euExhYFTVg5y2rIyA0UfYQyWlMRaIIho64S/++FDTLVa1MOQgWqBiQASZRhSKamLEoIzhlby2OanWD4wjGM5NJIgrekQNPBtP61CSJTKS8dpgKE2xBrGwwRDTCsMKdoRlpREiaEVJxStGAH4tiCKNc+ONCj0L6WkwCiLRFiH4srO0Wq1jnu6k9QSGxupO0Q5UiBRmETnbgJLQytJN9I0sD0d/0azRaxBJzFKgGO5BGFKc5VmhNi0dRp8uH2qzebReqdigiaINQVLsazkM9bSGCNoG8nt9/yMP//SfYy3WwS2TSIlRgrecfV5nL52iJLnotPsd/byUc4NtVrtGEjw4DAIHEsQxUEaE6E1qDSpzxgItcBTkgvX9vPqdUvo92wKGkZq4xgpaCSGlk7jMZ56fhtXvepkpIlotAM8rwDGcN7aJdz9wweomVRRMkA7iHA7JF4i9R9iUJQ8m5fHaoy2E/bUWrQTuPDkZVy+Yc1eeudDRBiGx7XuSxrr09nrdMptUbQEUbuNHQt0J8iUMMJRCsu2COIEiaFqF6m1Axr1DjcDHa/q4elBJwxOWGUA4MUXX+Tuu+/mnnvuYceOHUfdhGvbNoWCjxbgC4kWhrZJg7KUEBgkMYo9U3V2BmnmgEKA6gSn2VnApEZ3JnVsNNunmoyHEEWaiXqd9f0C10ooWBIpUx/ab56/hr+8/gL6i3PX5j3PS02Ox8G0VrQV7z9/Bacu70dKcIUgiC0gYtPuOl9+eoKdtYjJMGR5X5GpIMHWEktotJIYYXj7mrNYXqywwi1TtFyaOo3JaMoWjiVBw2SoibUm1gl1DYmBV8bq/Nk//oC6iai3oeraOJZLO4xptiVVVyGNxJMWK5f288yLOyn6PkKkp+PMN36oKBQKxzmmRSCsTkqqVAhp4UiBg0ot/jLNVLG1ZErHWEk6LyUCEoNXKCGlTWI0lgTfdmjFMYnQ6QlM2TR0quB++/EdfOrHzxAnmsQkNBND0bYpuRbNUIFIMImhZntc+qoNnDdcwOq4KhSa5Z7i4iGHimdhRIIS6VgeiphLpdK8uQkdCZHRaGJiEhLl4hJgjCDUIZ4UvHr9Ev7TdRuougllZbFm2VIKTpG77n+cTdt2E6FoxiHrBx2MjmkGbXzLR1uC1520DOktZeOusTQuAUMjjPAdLw08NqBFSrZTcRXP7J5g9dIiE7WQWNsUHIUlDRlF1qFACIHjOMetUFH6UIkilWcal2ojyjZ7ojZGKCDG0YJARyjbxlGSdiQwMqaPIqNhgFMsdCTV0QF6isABcUIrAw888AAvvPACfX19016Cs70Mu60G3VaE/X1BGj3ebDYRxiBFx/SdpKdOpSQISYLglXqDVrNBaLr99d1tsFGdTbON4gs/eZIfPPEKk+0Yu+xxw6tWct1JQ1hi7+elELiOnS/7g7U1o07uLqQzlz4e6t/39ijiirPXcMbKQSRgWYJIh0wlLn/99QfY9HKTl2oxzXbI0oE+2s1WXskwY/1bIn3+n6+5niXSp2g5BEGEMppaIqhYCSOtFn/yjw8wFQa8WI/5/337MeKkzfZayM93tdllLCYbbZYUXVynRDOIqdUTyqUyUoCSsG7lEE+9tJuyY6XJbpn5fQ5zYGa/s0JFc51DR/y1dxvsmhegXUktSUCESAmRiGkne11bAAiRtlenrgEjoWJLmlEEHauWaytiHRNowY5GyNaJZsp+ZyRRUMfxHHzHoRVEHUpig4hb3HjxyXz02ospmzaKkEQk2BhuvPpyLli/Mi13bFS6Oc1RtsZML0xzpHP3UK4HsITEGEWiUzeJlKJDxWyI4pRXRIk01bfsQT3SrCn10V+ssHm8zu56hMDQiqDsSQyaWhhTsNL+FH2bs09ewe4940hCQDAVgeUVUYhOKl2MAgoFn83bG5y+1GOk1gAd4ig7r39wqP2FvUXXjt/c7UzDPBbCULAd/u35EQIEFjHKGJpaULBcykoRRWnI6XB/Hz957EE2796OMQals4ytDs/jHPt/ouGEVgYsy+Kll15iy5YtKKXyIjJxHDM6OsrY2FiebjfbRDnYQsrKqorO5pBIiJIITHoiMya1XD2zaxJLayKTYEwyyz0BnWr/Y82Q7z7+Ck/vqVMLQjzH5k0bVvObV23AEfG0z3XnBx+s7TDdpz2XjWKmXOaycWZuGaETXJ3g6bTNUhpE0iKINE0dceFJS5hotQiadZZWXMKgTWzSCGqjYyJhUEKxttCHFOA5Lo0gAp3QSBIcy+HxPU1+8GLErkbCo9sbfPuJ3bSTiIlI82JNcNv3HmNPvcZw2UFZDq0oYbLeoFwspWZKDCuqNlt2TVEuuJ0XkwAz3dQ/1001i8mYKbtuec4m05njt7+Nay7yN8ZQcGzCdgwmSX2y0mB0Ah1XQjZ3UvpkCGMDytBnCSY69SGESVXUMIlpJoZGGNOKIqI4IdAC4jaWAk9BaAxtnVpoFIKibXCzWBZjIxMbK9b0W5KyAKEFGGtvFco5bt5ZYZrZNvTZ5uFcX0zZ5w803lIAwiLWaSaHNAlCCsLYECdJSrEsDBZQ9nzG25L1ssQKp8q2lmF322BMQiuWFCwLaTlMtGKKdidxVWuGSj5jrZA4MWgd04xipOOhTEJaATJtS9lzGbQ1b79gPdvGJhCkcTDS7N8derD9QUqJ67r7XDPz+6F87W8M0t8DGoQRxGmVBQYcyY83vkwj0UCMMIYgAW3bGNemGcdYGq5YvZ6zl62i0t+fNTR1yYpDb+eJhIWThzcPeN3rXsell17KQw89xBe/+EX+4A/+ACklo6OjfOELX2D37t0MDQ0xOjpKFEW4rkur1aJUKjE1NUW5XKbRaOB5HlEUpdX5lCIIAgqFAlNTUxhjmJqYIiy6NMOAkbEx4jhmz55d9FkFxoOA53eNsaxcYnx8Ep0EFAplWq1WnsoTxxGO49FqBYwKm2LR5+XxKbZs3YNshEzu2U0oBMqStNqj+L5Po9GgXC5Tq9UoFou0Wi0cxyFJkrydrVaLYrFIo9GgVCqxc+dO+vv7U3pZx8kXq2VZBEFAsVikXq/nnykWiwRBgOwEnWUyarfbeRuyZ7uuu1dGlqIdtKhKj6mgTrHSz87xGu1Wk5e27qa/ZPHqk4Z5+ZWdjIxOEU1N0mpGPPfSNob7fIL6JFapQjhep5lEBNU2rWaTyVqdba/sZrw2wpadfXzx+xsJdZlnd0/yr7/YjDaKHbum2LWrhtIJ333kZazzlnP+UhchNNt272GqGTDga3bu3o20Ia632DEVETZqTE5MMtloUS1JWu0Ey7Lzk34mo6zfpVIp/95ut5FSMjY2RrFYnCbzWq1GqVSi2WzieV4eU6CUmjbnss8UCgVarVY+54QQ+bM9z6PZbFIqlajX6/i+TxAEudVLa43tush2k4mxGs9ozWhSYiJsMVWfJNEJo6NjSKNRUcxYs0ZtfIKRxCNIQoZcj6df3s4ZJQfRTpiKJgnikFpooVs1yrLArpExdkWGOEyY2DNKYkGoJS/u2InRNkksGK81GGvWqBbL1CdHKReKtFtNbCdVRGOd1nFot5sUOnMu65PneYRhmAe6RlGE7/vUajXa7XZ+bbPZnPbyyq7NZFQul5mcnKRcLufzM0kSkiTBdV2azWY+lpVKJZ/3rVYrd/UkSYLnedTrNQKnSKvdZqJWZ3zPGM1mk8gy7NozzvjEFGOjE0yVDeFUQNF3eWjLLm44exlGSPbURnl5vMHoyB5GxhtMjozTThK27pnkpKrL9m3bKXsFwqkxfvLMHq5Yt5wB0WJspEG7MUVtfIRaM6JYLjE1OcqQ5/D/estFLBUJ2yYiqq6kPj5Fu7kHvzQwbX4WCgXCMMytQnEcd/q0V+bFYpHR0VFs26Zer0+bc77vU6/XqVQq+V7TbrexLCt3u0opCcNwn30pe3Z2bbfsS+UqzYkJCpUyE+02/S6oVovJ8Ul27p6gJSYpun2MjYxS7i8x0QxpGxjZkeAUyly2+hQmx2uMM0YrbOOXSrRqdUrlUv7sIAjyPdEYkz+7UCjkVqYoinLl+NcdJ7QyMDAwgBCCdrvNr371q3zjGBoa4o/+6I/YsmULP/nJTxgaGso1xb6+PoQQVCoVICU/6oYQnWAV0pNKvV6nv9rPhImxPR+/WMQVDsuXLceLwU40xXKVYd9CSo+VS4dAKPr6Kp18b0HKtm+TaBjfPca6QQfpaJxCmZOGlzK8dBgbkImgrz99eH9/f3pKKJeRUtLX1zetncaY/JpqtdqJKjf4vp/nw2cngm5UKmm7svt1L5Ts35kcs2symeWathCEBrzEUBJVEqFYXSzil8q41UEGBvo5c3mFR3aD5YectmYpP3t6B5XBAfrKHlaliBY2iVui0WpRGOhjvS95YuvzLFmxEmerwqos4eWpLZy5wmdCS5RMOHttP06hStFtc/EpK9hd04wEDmvWrOD52nYq1SrxjldYvmSAJUsGMMSsFhFWsczJq5dTrpQo9FWxCKhU09zuveM+vd9CiHxuVKvVXKkqFovYtp3LvlKp5OPTfY9umfZ3TjjVajWX/Wyb08z5OZM5TojUhD08UETbkpZX4dY7H4TTLIyjKDgugwMDqA7pkJi0qJaqjGyfYmiwnxVDZba3Jujr78OKBUNthdiuiKSiz1Gc1F8i0BHlgX76KhXWLB1GEdNfLeGWy4gY+itllpcqOOUKCEN/pYgxmjLlPM0x7iSW9VMBZC6/7j7N7FtfXx8jIyMMDg5Om++zsWpmf8vW8GxrI/tdf3//PmPZjfRvFcaj9EVWKhRxltmUS7vBVZSrFfyCx/LlwwxUC8iSYXyyjd68h3WVPqximTDaTiPSDA4NYnk7OWXtavq3jzPVDOgv+yxbsRzHJJy6WvDQN57kJ2eM8sGL1lAcj1k6WKZarVLts4iwKBb7sAlY1i9oJ4K+/jInrRmiv7+M7HPQ0pu2LrP+7tun6f11XZc4jnOZdct0pjy7/zZzPs+cn93Pzz4zMDCARtBXLGKkoDDQh6vbvPnKpfxqdx3LcVg6tBppFMXCbpa4HhW/zPj4JEtWLieQFkOJRzlxGBgcIBCpQjJQqe7Tzu62dcukr6+Per2eFxc7EXBCKwP33Xcfjz76KBMTE7zrXe/KXQUZshPvofEX6A5bYFpaNqt57huFMA41HVOWDlooUG1asaGQhBRLPvXQIIRFyqudFuVI2d0lMQJLaRoR9Bc9Jlp1as0p7GpaYU6ahFhZ2GL6C2q2f+8PmYtAdqWXzcTM38/2jLl81gOwBQILiSHWAksoJsMWrlug5AraUQACKq7FkkqBx7dPsOzM5RjppH5SJVFSoITAkhZxlPIMjBuNCgTvvXA9K5YO8MnvbuLMIYtq1aIVa4K4xXsvXsVDz0wy2mzguA6+5dEMBVGiKVsi9fliUfLA96YoOgphhVjaQ0hv1hCsg8lGSpl/zVV2s8lyLvLd3/2kAM+zqYVtqoHL05NtTgvLTMRtikrywp5xVi/pS+NahCFRUI/aDFgWru/THG+QyAiNph4ZQhJGTYuTxXLW9Fd4tiZY5wcou4SW4AjFmVX416d3ctHaJdiejaNEvkYgTePsZsffS22zNw3zYH3LFNfuNXsw2ewPB/r77OMhsYTBqJQSuq0FyhL0SU0zMYRGYFsKZSyMauFJgUgssAQ1bej3bBpBSNs41NsTDHs2QwWfp1/ejecokBKRtBkq+py/vMz/+P4mlvf1EUUxbtFG4IFM94HUt+Kk/l9peFUpZmVBECuDg9OR86HPsW7ZHoqc9jcOB7uPArBTrgkHQHoMOoJVA/3srgecvqSA1prAyNQF41m88kqdRMoOeZYBW4IUuFmcj+w8e44BlNkB6UTBCa0MXHPNNVx++eU4jkOpVMp/PxsX95yUgfwznQhWk6YZaZFgoSnRZiKoo5x0uzPSppEEKAwDJZdGq00kDFpIwME2IDUgO5ungalmwlClxFhtjPF6nRVL+hCCvZS7Yq5TfV9kboFD6vPhwKS5/nnGutEokcaV15tNfMfGc2ya7TZJYvCU4sKz1/PgLzfyxjOXd2o1pOlFiU6QgKcsAtsQmAQ3MERxwlC/z0UnDfP5f92IpyoMuBY7k4iJRsRpwxLPgnqjSdF18R2bVhgRxql/tyMBSkryunXDLHHtvNy0hk57D6HLXT5SOIaynQMKjkUQhrTDiFozJDYFJqIWY7HFx//+e3zqo+9gtafQicDWmnY7wPc9HM+lFYbYRvDkRMBffOPHlE+xSHQDy/VYs7yPnz47ylQ8QOIknWp4govOXsedP36Es1YO4rsqna/T+n9ksshk2p22eVzlm8cMSIw2tIII37HwbAjCkChOsO0OGYCUWApMkhBECQ0TMVgQEAXUowRPJBQUbFg5zO33b8J1bBwDBpfBEvzRb72Bx27+PttHJ+nzNb7tdNKP6VKw0jUlifnQ1ZdR8CxsDAaJEeRl0Ofevb2+/PQ5x3fuZq9waQye4xAlCSAQEsIoJXzyPUWt1cIgO2MhciItcRhtPpGUgAwndACh67oMDg7mJqujOcmNybRpxT/99Eke39PAd0psrY/jezYWCaPNmEde2o2SmgEf6q0A24RYOsmDpxDpBpfF1E422wyUy3hOgV31gKrTMVeLDk3pEczh40lH3A1Bdga0aIQhRVvj2Q7NdkCsNa6lWDNUYKrVJsyShjsnQcdxEMbgWxZbkwY/GdlGjKQWJxQ9jw1L+vidV5/J285dR7+dEAUhYy0YLLhYlkjjGhwL37ZohBFhbLCtvayNvlL8yfWvZ3m5gCBlN0uzCQ69n93ul/lEyRK0Qs1UGGNiQRwLakGTemLxTFRkMhIIE+NYCoygFUR4rsJzLNphhNCKh7dN8m8jCaN1g4kMuBZnLR/k6ede4f//jV+wupAGzAEMlT3aYZuJVkTR2fdkerQwf/XrBUoKNJJEG5phSMFR2LZDGIYkOmbvspJpmegkQrkuU6Fm0IdmpHm+EaCkTSJhdV8Bxy1QsB1EokEoXJmwuihYa2nGGw2CIKEgnTQwbhYiLCUN6/uKrHBcRCLRh80ykO5lx5WOeD9wLEkYJSSmw1IaxdiWRcUWTEUdBgyTZrQ4znFMhfw1wAmrDAghUErlroHs+9FSCIQQJFrTbLW4++Gt/HzbGKViPy9PTOHaFoqYp7aN8MXvPQmWQ1/BZbQRU48sdAy20UhCtIxJhOwQ6MBkM6BacCn4JXZMtOhzVU4Dmw7m4W+GWWrh8UZqkhYgbeqRoWBLXFtRa4coZeEqqNqKWPo0wziftHGS0Gq1kRqKUmEh+P9+++/ZEbdphyFV28I1CTddfAbXnrGWqgW0NLV2yFCxgBAxcZLgivS03AhCwkRj2Vb+IkPCkEpwpMZgw2Fvp/NDOjQbirZNO1bUooSCX8IYQ73VohWGNBoRX/3Bo4zHsGeqyZbxBpNRSNnRlG1BEEm0lIxMhvh9Sxhv1UjiNIByecHjbeet5upLT+Y9l70qM1SlZDEGRpsRJe/YvFCMMXlw23zAEgLTYXNsBiEFV2E7NmEYYbRBSdFJbZO4lgITMdVsMjoVs6RS5sVXxvmzr/6cKLFAKYYrPpcv8+mzU34SI9PslrISfOQtFxEKTdCOKVru9NLGHaRpuCnPqehYLSTk+8ihwBhDHMfHlXRoNggEjk1an6BzAEqiEMdSVGxFI1FEcSezAot6h3Soh7nhhFUGjgeUlFQqFc46dTV2krDMEoxOTqDcMgaL8SjhyT0hwvXo76/w3Pgkf/K1B3ng5dGUXctIjHHRRtCpVUYjiKn4Cs/1eHlPwEC5DMZkGcRH1F7f91FKHTf+/BwmZaIXwmKq0aTkuniOYPdIDa9QRpqYoq0wlkM9iMj6KVWH7tmALyz++Kp3c86aUwiTBB0mVHwbLWKULbAU9BcKvNQMaAQJVc/GcQyO66GEwPdsGu02YRxiWSp3+WgJkggtE7QQGDQdavhDhu/7C6KQVtn3abYCGsZQLpXQxtAIEiYjw1C5wj/+4mVu/dcXeXqizd/++FHGEkNFGnxhCGOHtgFTC1hWcGnqSVpRjKsdLB3zvovX8V+u20DJU9jaYDDYAoT0GZloUC74x6xfpVJpXjZ/Q1ovQApJFBtaYUjBsXEd0uJkWmTuagwCW0lIQlzPY7IZMFwtsaxS4Mltezh95TC+TBh0DH/53qtYUnQIlQRCjBFI0tN+kISEYULBslJa8326LdColBJCpRUpU5uMQRzGPmFZ1gKoCGvS4mGRTinFEcRRhKMEZc9mohkwNtUgpbOW01y/PRwcPWXgqEOSvSriJKbdbHDx+n50U6Asj9FgCt9ykIlmqhWyM9Qsq1RZXbJ5bmScX421+e5jL5KICG00ESYtU6wDEhPSiAV9tmLVYBXCOsWiiyJEoEmO0PyanVyP1+kq8wUiJBZgkbC71qTfdXGlZKQesHrARggLSwj6ShGPv1xDaE0jDhgLE8JmHZOyinCyXeKclWtYZnuEbY3jSYSwsAUgLQaGqjz24stgF7CVYsC1UEUPhKFoKVpBDFEN15JoDJgOJa5wEUKllQ45PCpigGazuSAsA9Wiz2groRGHDPk2oYmZCgNaQcD/8bo1fPL/cTWbXnyWpycDXhiT7AkEnudhKwXUibWhHrZZ6doU3GHiKEK7GikFBduiX3ZitaSF0GkhHk/CzrEJhkuFDhnS0YUQYt7oiCF9F3tCEyaaVphQVIKiNIwlAqMSHESqWBqBDcQyZKIeUGuHDBRs/usNF/PJd5zDB648LQ0IlpKBYuq2s0mDWdN1oHAciySS1OMWeGa/p32RBmeQVbOEuQfPzbzP8aYjnh0G27ZoRgZFTCQgiFPLgGMrLlxa4guPbOfpsRYiCanP43xYjOgpA0cTncWXrTxLKQoFn5Jr0wwFwvEZjaco2g4CGAsUfbLFmcuLDBd9JhoJfQWLZmShE0Mi06CZqUjT0oIYQRBG+LbiVavKnDvs4MosIrvr5XqYyOiIj4cy0O05NkIgJcQCtuxusG55H46UuH6ZgZKDEGnI0xlrlrDx2V0kSH723Hb+9sePYvlFjNRgIixizu9fwTvWbUC3QkqegzKp+0AawerhKvVt21jphygFywo2a8oWttT4DkyEMZYS2J0gQWMyl4CFRHVS3zqFnA5DRAvFMlD0bGrtkEarxVDJJtGaWtwmCiPWVz1et66P1YNlXhzXbBtrM9Zs4ztOXnkz1oaJeJKlBViiClQSmyIgpepkw0iUkJ21oLClwVhlXppSLCkdm9OlEGL+ToIdf4hvScIkoR0neJbAV5J6DEKkNOPZK9sSAmnbSMun3Q6oFCxO6S/w3ovPoKQ6c0zaCCURUmGJ1GomhEKSKgNxoGkmMbZtELO84tNdgc7fsuqU2d506JPXcZwFYBlIK4m2wpTF1QBRkmA7NrFQrBkc4ovfe4J7HtlCLC1K5fIJkxZ4NNBTBo4RsujbdruN5zi0opCS7TBRr1F0PGJpMRJI3nXOUs5cUsFzJKVimYFykcQkxLHihVqESQRf/ddN/OLFSUIUcdDEtSzOHq7wJ++/lqJUGGGDkSmN6xGg3W7vk1FwXGDSzTw2hii06C8XcKRhyHcp+W5u3jxj+UraSUQiBS/V4d9emmIiTKjHgtEwwQi4aHg1163ZQCtoU3A9MguqAJZ4Fn/5u+/iw2+6ACk0J/eXeONJVXwhsJRhpJlgOz52J6RRTEt4O3IcrxLRB4Ot0niWeiOhr5IyItaTgERbeJ6LElAqlNlZM7StEtt2T1KxHRxb0gg0OyYCYhMy6Ie4Cmy7QLkTAjp98zUkgDIhwi2wu27T58+elnmkMMbQarWOwZ3n8vDUF29bDkGc0I4Evm1hKYswNJ3TeXqpMKmZ3nZcJian0sqEcm4l2LNV6dqKIGzT1Ba+OtJIoTl0z6Tl2MMwPIZPmRuKrkOr3SIhdeWFSYRjCRSGNcv7OWtZme2TIW0jaDabx9/luYjRUwaOEbIARce2KTguzSigaNu04pCi47JjsskvHnuS37n6YlaW06jX1X1FlpY9krjJaCPkL77yPZ4db/PYaJvHXqmlJXLadVzXwROaQV+lJnD2WiOOZKN1XfeoBlHOBYK95XZX9SlefVI/BSlwpGbDgMeAQ34KWOLZTIUtYiBoREy0JFrZ/OiJrdzy/UeIhYMjFArBpA5wXEWSRXEbQ0EZVhYsltgCBZy7bgVvv/hslJGUPJddNYPr+2kwWKd1chZ+/8OF4zgLoqSqkmlaVq2p6a+4CBST7Rbg4FkKG/Btj9FmQtGzGZ+YpOw7+Mpw1qph/u3ZnRSkT8mRJNIQKgvt783AmJZDThocurIA5WAPRfvY9D9jkJsf+RoQGsdyaMcxQWJwbBtlWcSdmg97ZZK6tGzXByGIdYLnWHPOZjKAbxmiOKCeSHzr0Mo8Hw6yvWz+rVqComtRb0wSm7TUdZBEeMpQIOSMpSX+8kOvgbiFSTSe5/UsA4eA+R7dX2tkdQ58p5gqAbaDdCzKns8rI3WW93ms7SsgdUxguazvU0wmECnBS402//ZKzG33P8lLzYSlzRBtDCJuYjtp7TwlOuQ1pPnciMOtp5cijuOcuva4LqKOMvD2y87ENxLXGIRO+O2rX8VQOSMk0PhCkihBECc0W21qbWgFbba80mRrWyA1xBK0giiOqQqB2fuGIj3tk6Ylkpr6BTERkrLrs2ciwF1TQpKkwVdkjBFHRxYLIV4AOhUxhWGqFXHmKgdGBKNTU6y01+HYCmWg4PqMTo5w7tIC0h2i7FvYxFy4fgl/cteDvOnkVVRswRqnj1IQYimxD8dFljJqhMf156/k1euqWEodRYlOx3xSxxqjcSybdhzTDkMKTh+NOCIMohkv+vTNbTkezVZIGEXY1r4kVPt9DmBLiTYWE7WIomNjOpkCxxJJksz7/DVAyYVmu4nO6gdICynT44IrBaf3+yhpaLcjRIeuG9J44Fy6Pf1gVvSUgWMMKSUFS9JIQmzHpqwcSsrhlXqNS85Yi+9aGB0hMWxYUmA81Py8VuCliTbrVgywcdsetsVFTu+30JEhUR6OEBiRKgRp5rDGoMh4hw4X3ZvW8d5UBbC6WsCJO3kRQrG2z0OooFMYSKCURGFoJ5qpZpNyySHQsHVsimYcQQKWMjS0wNEOnsmsJaajKGWbbicWQKRMZdoIyp6FlIZquYIwCbJLnkdLCgvjlGLSzTMWtLRDv+8ijU0SRtgFC0cJtIlxHIFuNTh/eT9RHKcseAg2rKhgPBuvUKagWly67GSsFRa7pxqzPEt0rDqCtX0e6/ockiMgxToQMobH+VEGBAZF0TK0o5hWrPFsi9hoGnGCMl3KgEhJAh3bJkiyIkZz34YNoKSmGSXgWJTdvW6CY9nrTL7zCQEsKfnU44Raq41vWUjsTpaPC0LgoBnwSuxuBixT5ARn3ffoYXb0lIFjhMzvLqXEQRBLgUJwslOlIBXjrZglvoWQIFA4JuHy09cRa82j2x9nfCrgmvVltk/18exTdSKdEEea2PFxAYVGiCxzITvFHh0cbQKmfR+w748GcBFgdU7vKWExCS7GtEHYCEvhaUMrNjSDFif12TSDhN2RJsYiVgYXTZxILOEgrGzzSr93DhAp8Q8ABiHslD1AGlaUJUs9O3VdGDBCd6wuR2cTXBjKQFqaWSQWgbCoOi5uaHNacYASFo4lAc1AQXJaVXHDpadRlAIpBAKHQUfz6qV9DJUdLNXGJAIpDc6sXFWpNiUBhAIUKtPCjjLm92UlMMKi6iTUgxbNWONbFkkc0UjA0SZPLUQIlNYULUEjliRxlJYznyNSy0DEYMVmeLiCZ2K0sDKb1zFBpmDNtzIAUFWSyuAQO8carB2sIo2FFAalBbEEjGGla7O92WZ5RYI2aJkqoOLoLeVfS/REc4yRJAnKVthG0IfDdSe9ihjF1kZEybXzDABBh2NfSVylmGq18G2XVUXJhr60itxEHGNLieycbAXZ2SuLGT6ybXZeggc7SAOyuyKe8y9A2CjS+IiCjNk11SIQiiX9fQStCAuFVBB12h4lMUJKLKU6L6KuW4mun4XIYxaUFLzv/OVcvHYIIY6+VQDmV77dsIQgJCDSAQXf4eRCmT+6+gb6UNiWixEWG1YNcv05QyxxLQYLDirnYJK87+J1XL6mimv7NBNJEkZ4s70opg2l2CvvY9Sv+QzOFMbgeYpmqAnCENe28sp+kIf0AOlJtWzbTLQj2lGAewiWAQFYQnH1acu45pQlyIxi4BjqmTPpiOcVwjBUKjLRaBEZg5EyrcfScQNICUuW9vHyrvGUrZRMNIdJDnICoacMHCNkp0DbTk//FgJf2dxw3qt5+OmX+eq/PEzJs1MTtkxP+JnBz7ck480WBcfnbZeewh+89VySVsjmiSZKdvLcNUc9cGih0OV2QxoBIn2pK2L6K1We2DFBpeiypOTQimMsAZKEuLNZteMYZBpTIWFOclLADRedwkn9BYxIqVkEe10LRwMLRb5KCIyIsXWDom9RNoYL+pbhatVxpxhWV33eesF6PJmgSJBC53vpRWuHOHNpH5Zl0U4MSRwf0gvtWMAYM390uSINMnVdl0aYxqs4Djh2WoZaEO9VBjrO65Ll0MYQJxHeXBnATbphSyRvOv80Llo1iJCKY/2Wy4KK54OqfDoMoBm0DRPthMjEaKW6irOl3CAnrRpm287dCNtL3SfmSBlYTgz0lIFjjFarjSMNQse0tKZoBNunYDRyKBc9yLkD9/oUPaWZaAUUPJ/1VZuLV1SZnGxx+/ceQwsbLVXH7Hp0EYbhwtD+p6FDUWNAiIhSfx//+vRWTh3qY8g1jIctsFKngtYGjSGIEiy74xbQc98qU9dLx1Igkg5XmzxqOlcQBAugNnpq7/A9j2WeR8EWBDrESgwGgZIgTYwwmrjdxnSUMTI5iCwDxGBbkiSJiOMEZTnz2KcUrVZrfmRrUun4nkejFRInYKuUgTSIk9Qt0x29JqDkeOyqTRIbjTtHN4HAdEoQpBkftgCUdVQzXvaHhZFamMZHDReLjDViIjRGqU5AbPp3iaG/4NFutphsNBFZkbdjnXLxa4CeMnAMIYRIKX4xuJahHmsEhtFawHClxGAxS8fa66NPi+4YxtohnmNh64iKNFx58dm8PGWwHIu8fN5RxvylZh0MqRnEYKhUPB59bhcXrl9On5swHgUIy2DrBJ1otIF6I8D3nemRQ3OAwSIWEiMSIMIIjT5MkpbZ4LrugogbMAYqvsPyYhFPCto6IMSgRVblNcYgsPwyRlloITtc92nbYxRaChwliJOQIIqx5v3UCIVCYd6eLUgtP81AYxBIIbEsSStKsKRF5tADgTEC37XRQqEs95A2YUGSphiTkTpJJMdegbcsC8eZf4UPDAPlMmO1VmoJzF2Le1dp0bE6dM9+nnWQfbanFOwfC3Hn/7VBRjoklE2f69FoGxIRY5KA//W+C1le8Ej58cij2xWGZeUCz42C70qMsLGE4l0XLMPD0FcpUzAhiKPvH80KFS2EF1Y3UmO/BuOxuuJz2rDHmqEyvusz0VS4SKSIaacJl7QbMcWS6lCwzXHxdzaVdNtWpDXhO5UgjxLa7fa8uwggFcu5y4us7XdxADsxtNNUeYQRSOMgpCJqNqBTInrvjEjpdIWAorIJI4tmEuKr+SdTajab8/dwIVPGwUhimQQhwLU0Y4nGs7xOIGUEWiG1QBdixne2EMbDyDmuN0HHZSY6AYOZNfHYK2JxHC8Ay4BECIe+aoGRpsHEhoLQKJGVZtaAjaNACZux8ZGOQt9xYYmFkdq7UNHLJjiGUEqlxBdAyfeZarUBnyAKWNlfSiv1dZD5ko02rF0+jJn4FX2enfoEtcC1bQYdzarBImAD8qgbB1zXXQDEItMhSOWiRWobWF3xef3aIQpKUvJ9JuuTKBOilCDqHJAmW036/MIhiUfs86+jrxD5vj//lhdjsDC89pz1hLFEkW6WsU7S2gsys1IJCr6HFPuyMGZuG8dOq/K5lsae52kjhJhXywCAY1m0owhIXQSWFAQhKJnFMpg81bLkKrQ0yCzIdU6YfgLOf3ccYNv2/M9d0v3AdyRRHFMPwFWqy1CazlsJWIU+YruCEKnbCyExRznr6tcN8z+684QsQjaLks2+jubJTWvdiSbWVP0Co40WGEU7DvfLxGaESMuXrvQZ8iyMSZPbjBAsFU1WeDEadUyMXWEYLgi63Gkw6csnRmCEYWXJ43euuwwbqBYK7GmGWFLj2TZBlF472m4x6FgL4hTejYzueT6Ruk8T+hzBsGejhCCWFjpJiatEJzIb0op7M2WY/WwwWJZFFMXEicGa5x12XumIIa28aSnaUYTpohaOohjZ5ULJ4i5KUjBaq6Nh2qFgoWJhWAY6TJOWRCdtpoIYW1l5hVGDAJO+8l2/xM7xZlph1KQVXxMxLXijhxk4YZUBSDfn7373u3z9619ncnLyqG/UQggcx0GYhKUDJbZPNtBaEEMngng2PnJBxXH40998IyurpXSeG40U8O+uvYgzhvvQRgNH/6W9UOhy94FI9X2FQhqDryRKQNlz2DmV4DoeBccmCBMQgrFYM+BYC27dO46zQFwwqXPKFWmFylhYGJ3GZeRFmIzBPUB70+hySIzBGDXthTdfmK9COpmEbEsSxFFqshYSIWTK6jlDNomAorQQro1RclEoAwuBjliQev0KjgITsqfewnMd9iYPpi97S0DVNVg6SKMEOkyt0phccehhXywsm/Bxxne+8x02bdrEunXr+Lu/+zt+7/d+D6XUrCfKwz1lRlGIMS7VYpGJbTuIY01i6FAJmxlzMw1wUcawpuQgEkEiQOoYC4vLT12JlSSd8roJBoujGRATx3He/4WQAgfkZlELEEm66BOZprn5jmC0FuGtKeEREUYx2hgmg4Cq45PlYJrMvDDPyOhc5122QpAgkCQgFIlQaB0jSMmFjDEYIXJ63/211ZICrQVRbNIXnjkWxYnnBmMMYRhOY9A8vg1IT/iRSWeclBKJIIkT1Iz6ARpwlUUzDjHC5GEtC2K97QcZtTrMfzttaSiXCuwYq+PYaV2XPDTQGJQwXHbmKkRjFCMMWtgdptYYWHgWw4WCE1oZ+PnPf8773/9+1qxZw5/+6Z/mroIoiti5cyfbtm0jjuNpQXUzT0qzvTizn7XWSKnA2Hh2BM0WE3FMOYoRlpx1o03TkA0k6UtMaEBIrE76kpCiYzpX0KlJ0J2u1t2e2b53t7u7vTMxm5Wk+z5p3+RB77M/xWo2Oc5OJ2vQOusDIMBoAyJBGWgE4yyvrKbdrqcmWqNp1g1OwUboNPIas7cvB5LN/mSVx3PM6Gv37+d6n6yvWutpcyo3v88im+6/z7z/TLkftG8YjBEpY5sQ2MZgaagnaRCmMialDNYRQoncddY9PplupQQYHdLoEEIlWqdpXgcZ/9n6uT+Z7+/7zGuynzO5zvz9bOM32zjN1t7Z5uq0nztKvYUhwiJKwtQ0LRRKujhSY7RBYyFoI7RDwVLEVh/aSpWGme3bnzz29/Ns8ph5r/3Ny+4+HaivM5+5v3Hpvs/hHCxmG7vMfWV0QiIShgpFXppqsH7QAWKMTrkQtNGgYcPSKpNjEcLsLR6dRWzMnD/7a2/33F8YFr1jixNWGchOEo7j4DhOrggATE1Ncffdd7Nz506KxSLj4+OEYYjnebRaLYrFIrVajXK5TL1ex/d9oihKTwNSEoYhvu8zNTWFEIJmM0BjU5+q8eLuGjYJE+NjaCkIg5BCoUCj0aBQKNBsNikWi7RaLWzbJisf6jgOrVaLUqlEvV6nVCrRbDbxPI8wDJFSpiQw7Ta+79NoNPJrC4UC7XYbx3Hy07+Ukna7nT+7VCqxe/du+vv7GR8fzwsWGZP6hsMwzPtdLBZpNpsUCgWCIEAphRBimox835/WF9d1CcMQpRRKKYIgwHVdms0mpVIpb0N2bZIk+bOzPmUybzQaFEo+tfEWp1QSVhYlz9VhfKrJKztjRkdq1GoTTLkR9WZAwffzZ0spiaIIx3Fot9sUi8VcRs1mE9d1ieM4J1kJgmCajOr1OsVikXa7jWVZ+YaRsc1l12Yyyq6VUlKr1fLfZdfUarW8357nEcdxfr/udnbPke5rhRD5s13XnTZHPM8jCAJs287nt+u61JpN+golJttTWFaZdrPFRL1NELSZGhtjSmisOGSq3aZWq9NX7ctl32w28V2fMIqYrIWEYUgQpRawna+8Mq1PmTyzOBTbtvO5kbVzamoqnyNZ6lo237N+Z/O90Wjk8z0jwInjGM/zaDQaRFGUz9NsHmVrOhv3bhlNTU1RLpfza+M4RmudrzXP82g2m3vnXEf22brM5FlvNCiUCoyMNqjXQ1y/zdTUJBONEIXAJBG7do1Q9ByazRHKhWEm6zWGSgUI60yMTxDHAUKQr7WsT5VKhVqtht81h4UQJEmCbdv7zM9arUahUCAMw9ysH0VRfr/uuddsNvP7ZsRC3fLs3j/GxsbyMcnmXPdek+2F2V5j23Z+iBIdK1O3PLvbmVkjs2dne0L3PEr32BiJJnI0Sse8MtlmmV9nYmKCeqM17dogCKjX61giXcPZOi+Xy0xNTeV7V/dek417tndl8jhRcMIqA0IIVq9ezUsvvYTneVQqlXyDGRgY4Pd+7/fYvHkzP/nJTxgcHMw1yL6+PgAqlQpCCKrVKjD7Scf3fSYnJxkeWoJutRFCYWybSqXCyuFh3K72ZPft6+vL77s/7Tp7Zva9G9m1M9t5IM28Wq0ipSRJEorF4rR84pkacaVSmdbe2Z7d398PkH/Prp3tRDfzmtn6lH02k0mlWsUgKNoB//Hq87nwpNWMN18CJRlYshTXe4G1q5dTdQXlakpKciAZdPdpthNSJs+sDdn3mTKaOUey9mbXSikpl8s4jjPtftn9Z473/vrffe1MZPIsl8v7tCv7udLXhzKC4kCJIBD4vkfBt3EcRf/gAEoabJPA+BjVSj+O7Uyfcx3LQNttotQ2HGVRKRVZMVgFY/I5N9scmTk3Zs6n2fqVPbt7Ls884fb397Njxw6WL18+bV51y6/72u5nzzbn+vv7McYwMDCQX9M9lhmEEFT7qkCC8coo8Rwlz6a/rw+/pPEdi75ykWVLh5ACqn0eIrHxK0U2DI1gx5KBgT6EmB7bZozJx3nmWM72724Z7Q+VSgUp5bS9JrtPd3+6xy67r+M4RFGUy6Ub3XvNbPLu/vdsfZrZhu7xmTaPDGBiQqlZu0Jwz5ZRVr9qNX39A1T7mHZtpqRn4yelnCaj/Z32u2VTr9dz1tATASesMgDwjne8g09/+tP86Ec/4oYbbsi14yyILvs5+zoQZjPtKqVSohlpcKRE4zFSb1Iol3HE7Bzt3eaxA/3uUNox18+67l715HACCQ9FRofSrpnXKSGItUFJwcWr+im5iqIraIQxQRxjWQLHkghhpqXGHY78un9/sDbvT/YZugM0Z86p/f17rn8/lOulECmnACIvkmO0RgjdmfMatMG2HazOSXT6zUl95EqhtSYhRspOqZw5rJWDtfdg18w2DsaYvH79weR3JG2abV2k6a8JUoGO2hS9CkIKbGnwbHAd1SmzCwILodL6Ir9x1lIcexXQcSfu59mHMk8OhP3RCc9FXt3Bg0cy//a3huY0ZmkIEFII+ssFdo9MULIMQkhmXiqlxPf9/N8HatP+sCCDqY8hTmhlYOXKlfz5n/85sJc3PvuazR93KMhM7GEYAAZbSsBiotnCL/pIbRDy6HMFHAkyc2GGhaoRGzRCxATCoIMWSXmAgm+ze6pBEMdAgpIChO6Udj12xXHm3OaOWypTuOZLtlmQVYasHVGip5MLCZnSJxdnWLy6/qeUTAPLjElfNPtRcI81srXabrfz3x1P+ZoOJ76QCsdSlIpFAJQ0+LbBs7tTC2X2CVY6gupAlSy6cMGut46rMupwKMxbO7vigCtFm1YQUXKcDuPjjEuNod1uH9DidMBHHUKMw68LTmhlIPNfHytIKfF8n8SYlEdcSJrtkL6il0YRk7NlLAh4nrcAipHMASYNBpJK4HgVBOA6Nq12SDtKUFaELQWJUXsrCyyAjdbzvAVx2uiWhASE0DQTsDsnLIVBAwW/OEt7TX6PNJsAAilwF0C/ip2X8HzAGI0QNgUnYGXFRWlNJCQl1cK1LYRJOnNQdsiEBZWin9YtEfMvu4NhvtMKoeMlEAKJxnUFQz4Ufa+jWu27vovF4gkT/Hc0sPBn4TFC5g6Y+XU0J06SJDQbTYxUWBISIZlshRRdmwWR6zYDrVZr4ZEOzYq0dptJmjSbAZYxeLZDK4hoROC5NpaRJEiE0QtG3Wo2mwtCvoK9KYBKgpKCRgKOSjd8YTRaSpqNFjrZd55q0rq5lhQk2tDWYvYSxscZtVptfh5sDIKUFvuK05dyztJSesqSiuVeRNlPuUYg7rDlpSx5U81mmg+0CJSBKIrycszzBpFyBkjAVZLTq4LBor/fy2u1Wk8ROATMv7r3awylVFqoSAu0sIikZmerzeWegzBqQZxWu7FoLAOk5wClFK7vYIym6DnU220mgoiSa3e4CTQpDenCsL/4vr8gTlgzIZVFEJiOFcBknEMUCgXkASrqSSnQSZLyZqh9aYuPN+bPMiAQwsbVcNOVF+LqVBKWNvzOW17H0koJRJI6q/I1bygUCovmZWVZ1oJoazrLJMO+xf/5gTexvGgjjWa2+gzzaSlajFj4KukiRl6oSKc52WXfZvP2UZaW3Gn+r4WCIAim5b8vXKSeV50YWq02Aig4MBm2eGrbHgp2ylcuiVOegQXSn3a7nacDLhQIwFKKMIz2CRI7GH2ylBDrCI1hjlV4jxmMMfNYqEgAAik1VaPxpEZIgSPhtIEyZUumLHhGpoRhneHP2ruQ5sP+EMfx/FsGMrXeKHwEpw1X8KdX0ZqGRqNxQvr+Dxc9ZeAYQgiRUqQqUMJw/tqlTOyqMewLkgUo+awYyWJYQNpohJK4nodB4yrBVCL5/i+eZahS6nDwx8eAtPnwkZWIXljyNagON0YW0W6M6ZTkPTB9shSQ6gr2PmRDxxtCzF+hosztEgsJWqGFJBGkNTQTjSQhQYGRnSvT8c+i3ee7XsVcsJBKGCPSuAtlkrS09n5eY/NduGqxYQG+kn59kBFpGGEAzbmr+nnNGeuoeFb6klpgB4KMfGPho5PxoSGOQxASW0paoaTaP8wVG07Na8cDC8YEk9H7zv9JMJNOmjVjKUk7jDqmfpH7sLWeZT5kB1uRKgNxYjBG7v3jPCKLdp8PGDQxgJQkCHSa8wKkzJmZZESXjMIwXCDz4eDQWi+IeBcj0uBWAIQhQaL3I79ueuoeDo6F58D8NUKeqmhASIvTBi3+r+vPw1mgfvmFEOk+VxgUAguLIKV9tSzaoUW/H7LcVulGIXzshRIwwMIwB3coAkDGSG0RY3AsmIgMBcdBdjI10sDL2V9UgjRS3tKg3SJxDFLoToz8/CB7qc6XjKWQeAAK7G4pKLl3k5Ugu85f89neQ0V3yvV8tllkc0ykUUEHeoEtFtkuFCye3X+Ropu4SAoouhZMP7cuGCyExT4npAcuhOhkgAC2VEyGYFwbKTQQ5v7ZhdKbbC7Mt/WlWx5CpIGY7XaAbXcqPWbjP6sisPe7EJL+kktBGYyY54p2neygeZFtFz+J6ISoiGm/m/HVkWIWrLvg11sHRzvb6lAhsv/2kefsWHguuYWNnjJwDJG5CTIs9EW/aHi4TRbxboiTBEyaauRIQ39fFUwMIiYPOFogyOoOLCgYUFISBG3sLICwI7bZ2ms6PgJFujmv71OcVIxIjUrzK+v5dBMcDhZTexeKm+BQEEXRgt9zFxJ6boJjCCkltm1P+91Cnpy2bS+e1EJjkFJh2S5SgK9gndfm9AG7Ux/eQiDTHLkFIvNuOuIFAwGyU5DJsq38d9AJeJxFdhqFNKlT4LpXnUyj1cYyYtpnjzeEECn19wIZ67kgC8hbDNa4xbIvdMPzvEUh24WCBbYz/XohSRLCMJzvZswZQRAsoiDCTL4Raaqh5r1XnMFla4bACBKc1By7gLqSpW7ON8yMH2ylaAUhjt35RUbv22rN0l7RCeDSCGM4ebDEq1YMoDr8BPMFYwytVmvRzF1I58NiaW8cx4vKkpHNhx7mjp5l4BhCSrmotNOFQpc7V0gpcV2HLIjg1aetJks0yh0EC6g73YWg5g9papvBSuMpDJRMxFgssKREC5MWMdIGv1DYp4AOgAIQEoTASv0Mx7sT+8AYs+joZ7PCSosBC4V0aK4QQuD7/qJRthYC5n8V/xojSZK8LvZiwOKhI04Xe07q1AkksoRA5cGaXdUmF4j4uwvpzCuETn3/nS/XktQCg2dbZLmDQqSkLVpPnw+CTtVDkQXGqs7X/Mu5Xq8vmrUG5JaMxdDmBUFHfIhoNpuL6nAz3+hZBo4hpJQUCoVFs+ALhcKCpMudDcaY3PKyWLBwToLdbTBYrmJiok3ZsRHGpAZ/ISiWDkxHvNBQKpUWzVqDlHRosWTwLKZ4ogyLae9dCFg8K32RISthHATBopmMB6OfXWjQWi+6mIyFZLZMmfMMluMwNVWj4tmpJUBIDILWIpoPUspezMAxQpZJsNhiBhaMJW6RYHEcAxcppJQLhMJzbsjoiBeL8rLY5LtQsgn2vn40qWXAQypBxbeQWcylAMexF81cABZlNsFiaK8QYtFZBbLskh7mjvnfmeYJxpg8ct4Yg9YarfVR09Qzn/ZiOrnGcbyosgm01ovqtBLH8YI4aQsjkR2KfIOgouA1a0ssK/tIYXWyCQRRGLFIpkJuhVtMiKJoQcyHuWAxWgYy+u8e5oYT1jIQRRFf+MIXCIKApUuXcsMNN6CUOqqa+mLTqI92/48lclbHBXDSnisWRls77Jcmy7cQbFgxyCnvuoqSlc5VienULFg8lgFjzKKLeJdSLgpLXLbWFtNelu0NC122CwknjDIwU0OMooiNGzfyH//jf6RcLufX7E+TPBwNM9v8F5N22s2XvtDbvVja2Y1ujvf5gqHDw2QMFpo+R2GcvbXfM7kuNvkuprk7GxZym6WUOUPpQm7nTCzm+XC8cUIoA3Ec70OtmgXFfOlLX+Kss87i3e9+N0qpnKxiy5YtPP/884RhuA+lcPdm3h2tOjNyNQxDoigiSRKklLlJMPt89rvuiOLunzNu7Zn311rnf5vJv91935nfZ2rJ3fcWQhCGIZZl5e6S7nbNvG/Wp+zZ3feZrS+zobsvB+rTbNdAqtB1j8/M/s0cp5nt298YzBzH/Y139vuZn9Nao5Tap71hGE4rY9w9vrPdf67t3Z889xepntDxD5oYCUiTIKQiYe/czlxcGaVrkiT5+pg5prPNy9nmWvZ95lh2z5UMs83dmc+e+bsgCIiiaJp8u58/2zjtb43NlHn3z919n209znV8MiKfmbKauQccTK77u3a2a2a2a2af9re/de9l3fc90DjN1s7Z9qOD7W8H2rtmXtPdhjAMSZJkWp9mm2v7G/9uN/KJYGE4IZSBJ554gi9+8Yv5BK9UKvzBH/wB//N//k8A/uIv/oJLLrmEU045JVcGHnvsMXbs2AHA5OQkURThui7tdptCoUCtVqNcLtNoNPA8L9+EpJREUYTnedRqNZRS7N69m2KxSKvVwnGcfJIppQjDEN/3aTab+L5Pq9WiUCjQarVyKuM4jnEch1arRalUotFo5PfzPI8gCFBKoTq0sp7n0Wg0KJVK1Ot1CoUC7XY7f3bWzqwvzWaTYrHI1NQUxhgmJyexbTtfCJZlEYYhhUIhv1/WziAIcnNct4w8z8vvmz07k5FlWQRBgOu6+TXZ91arheu6uYyyaz3Po16vUyqV8mvr9XpepnTmta1Wi2KxSKPRwPd9oijK3SBxHGPbNkEQUCgU8mu6xwfIxye7JpNV1m/Lsva51vf9aePTLaNms0kcx/l4+L5PvV7PZeS6bq7YKKWmtbN7jmTXZs/OxmfmHHFdN1fwshe84zg0Wi0KpRKtRoOi79NuNPF8nzCOciUmi8YOw5BKpZLLPhufTLm2LCsf96y/WZ9mytO27XxutNttisUitVotl0c237XW0/qdybPZbOZ9ysYyW2utVosoitizZ08+Tq7r5hv/zGuz+dM9P7M+dbez0WhQLpenyT5Lv02SJL+me45k63LmnMvme3atUorx8fH82swUn7Uze3a9Xp/1fjPncLbefd/Pxz3bP2Y+Oxuf7NpMRnEcT1u72XqfmppCKZXvH917TbPZzOec7/v52ug+/HTLvrudWZ8yH/9s45O1M5NRppxkz+7ew7plH4YhU1NT+VzL+t0to+792HGcfNyzzJTFwrtyNCDMCWA/6S6y0a35NRoNpJT8+Z//OR/+8Ic57bTT8muMMWzevJmf/OQnfPjDH571dLs/7TL7OYoiJiYmWLJkyT6fPRxt82h8ZuapJvu7EIKRkREKhUKeDz/X5x2KKW62U8mhoFuzD4KAWq3G0NDQfq+deYqcS/tgesWzmRaA7utmk+3+LEW7d++mUqlMi3o/HvNgnzmA6aQPAiazEpicfiDrx549e+jr65tzxsbhjOeh3Gum1WjmeGzfvp1Vq1Yd8F6H0sYDWYiOBnbu3MnAwAC2fWSxGQdr12zz90Cfne13zWaTIAgYGBiY1TrU/VmYf7O81pqdO3eybNkyhNi3ouVc1lCj0eATn/gEf/Znf9azDPy6YLZAkomJCT796U9Tr9c566yzWLduHTDd79hdfvhgk2G2RSalzIlFDnb9XHA0PnOgn33fn0Y6dKgBb4eiOBzKZ2YiMwsqpfYr39nuf6jtm/nvg93rYH0rFAr5yW6mifRQcKif2add3aRD2d+6fpVtmr7vH/KL6mhumvuT52yyM8bkpEOzzdtDnQf7u+5o9q9YLB61MsZz2Z/2d83B+plZMbNUvbnM3fl+eUopKRaL+T48s02Hs1f9uuOEUAZg34Ht6+vjj//4j3NT58xrZ9OWDwWZNaLZbFKpVBbFxMoKe2TyWKhtzsYmjmOazWYeALqQYYyh2WxiWdYRnwSPDfY90WVm34UeRZ61uVarUa1WgYU7dzNklsnueiALtc2ZlTMMw/wFu9ChtaZer+d7w+FY3040nDDKwGyYqQTMZpbsNkkeCjL/n+/7h/X544mZJ8GZ5tiFiEy+GeXoYkA33fNCb3N20s78uYsB5XJ5wZip54JSqTTtxL5Q2yyEmKbALtR2dkMIccTzYbFwQBwtnLDKwFxMgEmS8MADDxx2Kcx2u02j0WBwcPCwPn+8kC2U8fFxSqXSAj25TkdWHjoMw/w0uNAxMjJCuVxe8MxzmRI8MjLC4ODgolBgkiRh9+7duY94MWD37t309/cvCn6EWq2GMYZKpTLfTZkTkiRhZGSE4eHhw+b3aLfbjI+PH+WWLVycEAGEh4MsmnrHjh159P2hfv7BBx9kamqKa6+9dsEu9mzjN8bwmc98hhtvvJG+vr45xUnMJ4wx3H///Ugpee1rXzvfzTkojDF88pOf5Ld+67eoVqsLWrZZgOZf//Vf85GPfIRisXjwD80zdu3axTe/+U0+/OEPLxBypwPDGMP//t//m49+9KMUCoUFPR+MMXzrW99i3bp1nHvuuQu6rRm2bt3Kj370Iz74wQ8e1nzozr5ZuXLloujzkeKEtQzMBZ7nsX79euDwYgZeeuklisUia9asWbAbVHf6zODgICtWrGBwcPCwFKDjhazNy5Ytw7Is1q5dO99NOiiMMQwPD7Ny5UoGBgYWtGwz8+jQ0BCrV69e8DEZWTrg4OBgvtYW+uattWZ4eJg1a9bg+/6CbrPWmqVLl7JixQrWrl27YNvZDa11Pn8Ph1n1RDwj9ywDxwhZgJDWeprvaqHBGEMcxwghGBsbo1qtopRa8MqA1ppGo5H7Bhc6MrN7tVrFsqwFL1tjDBMTEwtacclgTEowU6vV6O/vX9Av1gzGGEZHR6lWqwueljjjHnEc56DZOwsFQRBQr9fz/WwxtHm+0VMG5oCZec0zc5b3N9G6CWlm3m/mZ/eXA3w47ZztWbM9o7sdM/kHsq+ZubkHa9ux0MD3l9OfnWC7N9LZMkFmG68j2Rxmu//MeTHbZ7pJWGZ7wc4l9/lQ2n2w+TDb7w6URTNzrhyr1LJDzQefGeh7oBfrzDncff9jfXqcue67c/9nW2/7+/zRkO3+uAIOtpftT7YHG6fDbfPB1vLMe2ftyArPde+9B2rDkcyDXxf03ARzgNaaBx54gIceeohqtZoXNbrzzjsJgoD3vOc9lEol7rjjDvbs2cPHPvYxbNvmu9/9Lk8//TSrV6/mbW972zSymU2bNvGd73yHU045hTe96U1s3bqVO++8k3POOYe3vOUth73otda0222++c1vsm3bNs4991ze8IY38Nxzz3Hfffexdu1a3va2t7F9+3buvPNOTj/9dN761rcyMTHBN77xDSYmJnjta1/LRRddlD8/DEO+853vsGXLFq677jpOPvlkvvrVrzIyMsLExATve9/7OPvssw/7dJMkCT/96U/55S9/SV9fH+95z3uI45g777wTgHe/+924rssdd9zB1NQUH/3oR7Ftm/vuu4+nn36aZcuW8c53vnOa73Xjxo384Ac/4PTTT+eaa67hhRde4Otf/zrnn38+11577RGdxJrNJnfddRe7du3i/PPP58orr+SZZ57hBz/4ASeffDJvfvOb8/E877zzuO6666jVatxxxx1MTExw5ZVXcumll+bPj6KIe+65h61bt/KWt7yFNWvW8JWvfIXx8XEmJib44Ac/yGmnnXZYJ/Qsxeruu+9m586dnH/++bz2ta/lqaee4vvf/z6nnnoq1157LVu3buWuu+7iggsu4Jprrsk31G9+85sUi0WuvfbafGMNgoB77rmHl19+mbe85S2ccsop3Hffffzyl7/kd3/3d1m+fPlhyRXSTXnLli185zvfQWvN29/+dlasWME///M/88ILL+TP+/73v89DDz3Eb//2b7Ny5crcEnfrrbfy/ve/n5UrV+b33L17N3fddReO4/C+972PHTt2cO+99+Yvk4997GN51s+hthXS4Lqvf/3r7Nmzh8svv5zLLruMRx99lPvvv58NGzbwxje+kWeffZavf/3rvPrVr+Y1r3kNY2NjfPazn8X3fc4//3ze+MY35vcMw5BvfOMb7Ny5k7e+9a2sWbOGb3/722zcuJGPfexj+yXZmgviOOZ73/seTz31FCtWrOD666+nXq9z55134vs+73nPe0iShK985StIKfmd3/kdhBDcdttt1Ot1+vv7uemmm6YFwT700EM88MADXHjhhbz61a/mvvvuY/PmzTQaDS6++GLe9KY3HVF6ajZXpZS84x3vYHBwkHvuuYcdO3bw1re+lXXr1nHvvfeyceNGfvd3f5ehoSHa7Tb33nsv27Zt4w1veAPnnntuPl4vv/wy3/jGNxgcHORd73oXjUaDr3zlK1QqFf79v//3h93OxY6Fbf9bIDDGUK1Wefe7302SJHz961/nzjvvxLIsTj31VP7u7/4OYwwnn3wymzdvJggCjDGsXLmS97///Tz66KP88pe/zLXZdrvNLbfcwtVXX81jjz3G448/juM4rF27lsceeyx/5uG21RjDmWeeybvf/W6+9rWv8cILL3DLLbfwxje+kU2bNvHoo4+ilGL16tU8+eST+ecuv/xy3vzmN/PpT3+aRqOR3/PJJ5/kgQce4E1vehOf//znieOYt73tbXzgAx/glVdewfO8I5ItQH9/P+9+97up1+vce++9/OM//iPVapXly5fzD//wDwCcfPLJPP3004RhiDGG8847jxtvvJGtW7fyi1/8Ir9ns9nks5/9LNdccw0PPvggzzzzDI7jsHz58ry/RwJjDGeddRY33HADX/7yl9m2bVs+no888ghPPPEEtm2zYsUKnnrqKSCtXX/NNddwww038IUvfIFms5lvpr/61a/YuHEj11xzDbfffjsA119/Pe9///vZvn37EQXwZfPhnHPO4Z3vfCdf/vKXeemll/jMZz7Dddddxy9+8Qu2bNmC67p5e7N2ZS/l7t8BPPzwwzz11FNcffXV3HbbbURRxNKlS5mcnDwq0ddKKa677jrOPfdcbr75Zh555BEefvhhrr76am699Vba7TZLlixhamqKsbGx/HPf/va3efDBB/dpwxe/+EXWr1+P7/t861vfYu3atXzwgx/kkksuYefOnTkN8uEgi18577zzuP7667ntttvYunUrn/vc5/iN3/gNfvzjH/Piiy/ieR5Llixh8+bNCCGo1WrUajXe8573cPHFF0+7309/+lNefPFFXvOa13DrrbeitWblypXs3r2bqampw25rdv8VK1bwvve9L2dYvf3221m/fj2e5/Gtb30LIQSnnXYaGzduzC0Cjz/+ONdffz1vf/vbcRwnTz0eHR3ly1/+Mm9961u599572bFjB695zWu46aabSJIkv/ZIYFkWb3nLW1i/fj233norDz74IM8++yyvec1ruP322wmCgBUrVrBr166cUv3uu+9mamqKd77znbliKERaY+P222/n/PPPJwgCvve976GU4tRTT+Wxxx47IWMFMvSUgTlACMGZZ56ZR5V6nsdTTz3FVVddxaWXXsrzzz+P4zhccsklFItFpJTYts25557L8PAwwDRK16mpKbTWnHnmmZx//vk89dRTrF69mrPPPjv3bx3uAsrad8455zA8PIxlWdTrdaIo4uyzz+bSSy/l8ccfZ9WqVWzYsCHf5AcGBjjzzDOpVCq51p/5jp966inOP/98Tj/9dFzXZXx8nMHBQYIgoFKpsG7dusP2y2WfOfvss1mxYgVSShzHYdOmTbz61a/miiuuYPPmzXiexyWXXJKTtAgh6O/v59577+W5555j9erVwN6UIsuyOPPMM3nVq17Fli1bWLt2bW69ONLNqVgscv7559Pf35/zy1uWxVlnncVFF13Epk2bWLNmDWeffXZu4cn40u+44w6Gh4encfZv3LiRSy65hDPPPBOtNZOTkwwODlKr1ViyZAnLly8/7E0qi6k455xz8sDQjA//zDPP5LzzzuPpp59mzZo1nHHGGblsWq0Wd999N29729vy3yVJQpIkbNy4kUsvvZSzzjoLrTW1Wo0LL7wwv/+RYu3ataxfvx7btnEch6eeeoqLLroof16z2eSCCy6Yljb2wgsvsHv3bs4//3xgrxIUxzFbtmzh0ksv5YorrmDTpk04jsPQ0BC/+tWvuO66645orUkp6evr45xzzsnTBLMU0jPOOINzzjmHLVu2sG7dupzuHNI6Dbt37+bWW2/l5z//+TTK9Mcee4zLL7+cc845h1arRavV4sILL6S/v/8IJZua+Tds2MDSpUsxJiVce+mll7jsssu46qqrePzxxymXy1x00UW5JVNKieu6fOlLX+Kf/umfCIIgd3nt2LGD4eFhTjnlFE4++WSef/55yuUyxWKRnTt3cuGFFx5xm0899dR8Pniex2OPPcZll13Gq171qnxvu+iiixgcHMzXyY9//GM2b97MrbfeyrPPPpvvZXEcs337di688EIuu+wynnjiCarVKhdccMGCj4051ui5CQ4BDz30EFu2bOHjH/84v/zlL/NAu5n+suzfWmvuuusu+vr6OO+88/jud7/L1q1bueSSS/LrukldjpavSoi0kMfnPvc5Lr/8cpYtW5ab6bICIt1uiMxiMTk5yac//WluvPFGtNZ84QtfoFqt0m6383TDrF/GGH74wx/ymte85oh4Cbr9vT/96U/Zvn07N910E/fffz9KqWkFT7JnZ+21bZs3vvGN1Ot1tm7dyqZNm3jllVfyDSgrqNJdGe5oybjVanHbbbdx7bXXMjg4uI8sZ7p5jDEsX76ct771rfzDP/wDu3bt4jvf+Q7Dw8N54Z2szZlMfvjDH/K6173uiChrM6Uus0a9+c1vpq+vL/etd5emzaC15kc/+hFBEDA6OsrWrVvZvn079957L8uXL88LL2Xt7R6fo5GSKoRg27Zt3HHHHfz+7/8+P/zhD/O1Npt8s7l6wQUXcP/99/Pcc88RRREPPvggV1xxRe477pZtu93miSee4Kabbjrs9nZ/rtVqccstt/DOd76TcrmctzUr7jNTLsuXL+fmm2+m0WjwJ3/yJ5xxxhncc889rF69Oi/oBXvlezTnrzGGf/7nf8a2bS666CK++tWv5nNhtr1MCMH/+B//Ayklf/mXf8kTTzzBCy+8QKPR4OSTT86v797LHnvsMdasWXNUOEAy19Hdd9/NH//xH3PHHXfs8+Ke2fapqSne8573sGzZMm655RaMMTz66KNceeWV+fXdlRFP1DiBbvSUgTlACMHjjz/OV77yFf7zf/7PFAoFTjrpJB5//HFWrFiRE500m02iKMqreH3nO9/h8ccf5w//8A9RSnHBBRdw9tlnUywWMcbwyiuvsGnTJi655BKSJKHVauVEOhkP+OEgjmO+9KUvYYzhne98Z77h79ixgyeeeIINGzagtZ72vCiK+Ku/+isuuOACLrnkEmzb5uqrr85PDt///ve58sorqdfrDAwMEAQBjzzyCP/tv/23oyLjX/ziF3zjG9/gj/7oj/A8jzVr1vDEE09QKpVYvXp1Lt84jvOKjlkRqP7+fnbu3MnrX//6vHJgu91m586dPPPMM1xzzTX7yHeuxXf2J9/Pf/7zlEol3vKWt5AkCe12m927d7Np0yauvPLKac/LSuuGYcjq1atptVokScI111yTW5kefvhhzjnnHMIwpK+vj3a7zeOPP84HPvCBIw4Yi6KIz33ucwwMDPCmN70pn6M7d+5k8+bNvP71r99HPqtWrWLPnj28+OKLjIyMoLXmzW9+cx5RvnHjRs4++2yiKKJarRIEAWEY5n3r3qwPtf27d+/mf/2v/8WHPvQhVq1axSmnnMLPf/5zLrjggjw7J6uo2G63SZKEyy+/nLGxMUZGRnjllVe46qqr6O/vZ2BggJUrV/L0008zNjaWpx5u3LiR1atXT1NyD0e2kMZ8fPrTn2b16tW8/vWvJwgCJiYm2LVrF5s3b+ad73xnPm+750Icx7lLMZtLWTXKRx55hDVr1iCEyCsrRlE0Tb6Hqxzef//9PPDAA/zhH/4hvu8zNDTE5s2bGR0dzVOps72s1WohhMjXXFbK+sorr8yDYu+8805GR0d54YUXeP3rX48xhu9///t57NNcgkAPhO3bt/PXf/3XfPSjH2VwcJBTTz2VJ554gpNPPjmfj5l82u02xhguvPDCvP2ZG2D58uX09/fT39/Pc889x6ZNm1i3bh3GmLzqZVZ5M5PViYQT2y4yRxhj+NGPfoRSii9+8Ys88MAD3HjjjWzcuJFvf/vbfOhDHyIMQ26//XYmJye55ZZb2LNnDz/+8Y9JkoSbb76ZzZs3MzAwwOrVqxkYGODGG2/k1ltvpVAocNFFF7Flyxb+8R//keeff5677rrrsEtnZilhDz/8MKOjo3zyk5+kVqtx0003cdttt6GU4rLLLuP555/n7//+7/Pnvfzyy7z00ks8+eST3HbbbcRxzNq1a1m5ciXnnXcey5Yt41Of+hQ33HADxWKR0dFRzj333CNmV8w2ix//+McIIfj85z/Pww8/zI033siDDz7Iv/zLv/Cbv/mbNJtNbr31Vmq1GjfffHMetPWJT3yCiYkJrr32WpYtW8aaNWsYHh7m/e9/P5/5zGcYGhri7LPP5qmnnuJrX/saTz/9NPfee+8RtXlkZISNGzeyc+dOPvWpTxEEATfeeCO33HILfX19XHDBBTz99NPccccdPPPMM3zzm99kZGSEz3zmM/zVX/0Vr3/961mzZg0nnXQSS5cu5dJLL6VUKuXBb7ZtMzIywsUXX3zEpmFjTN7eHTt2cMstt5AkCe973/u4+eabGRoaYsOGDTz99NN87WtfY9OmTdxzzz1s2LCB3/qt3+J973sfb3/721m1ahVr165l+fLlXHnllXiex6233sqNN96IUiqfQ3/7t3/Liy++eES+11/+8peEYch9993HXXfdxSWXXEKlUuGzn/0s733ve/E8j7vuuovnnnuOv//7v+eFF17gN37jN7jpppt4xzvewXXXXUd/fz8nnXQS1WqVf/fv/h333Xcfv/rVr7jhhhswxrBjxw6uv/76Iwpsy16G27dvZ/PmzbzwwgvcfPPNeaDbpz71KVavXs1pp53GY489xr333suvfvUr7rvvPrZt28bf/M3f8NnPfjYnolq7di1Lly7lDW94A8YYPve5z/HBD34QpRRf+cpX2LFjB5/73OfYtm1bbp07VERRxI9+9CO01txyyy1s2rSJj3zkI/zzP/8zjz32GDfccAOTk5N89rOfZWJiIl9zX/7yl/nEJz7Bqaeemrv0Vq5cycqVK7nmmmv45Cc/ybnnnstJJ51EGIaUy2U2bNgAHPlL9d/+7d8wxvDNb36Tu+++m9e+9rUkScLnPvc5brrpJpRS/MM//AM7duzgi1/8Itu3b+fGG2/kkUce4etf/zq//du/zeDgICeddBKlUon/8B/+A1/72td46aWXeMtb3sKuXbu47bbbGB8f5wtf+AJhGB5RexcreqmFc0D3i3l/4srMsQdKu+k2zWbmyu5T1Mw0o8NhPZy5SXSnjM10R2it93lG9nnbtvN2ZmbgrK0zTcNHksfb3eZMPjPlONvpYraUqExm3W3u7ld3OtKRUMBmaUvd9+seuwOlr2W/y75nJuTuscnkrLU+Ik6CTKbdY5+1u3sMZ7qMshrzM/tiWdY+49U9vzIz8UyT+KHIOVsT2b9n3qN77s42R7qfn/VxtnS0rL1H4ieeuS66+5B9n1lyubsP3T9n8s7a233P7PfZv7PPH451YOZeNnPuzfxdhv25KbrlnlkNss/OTPk9HGT3nW0f63YNZHtZtwu024KSfb57bc3m0upeHydaDEFPGZgDujeZmZv/TMy2Kc3cOGe7/8xFCYdeQnjmpjNbm2b+Lmtj98sz2yiza7o33u4XdnafI/ETd7erWw4zN8zuZ83sS4Zun/LMv8+895G2uVsmM326B9r0D7Thdt+/+/ojNWPP9n1mIaqZz5hNyZnZn/3N29leGIfS5u52HaiN3dfMpijOppztr0+Hg+zFPVM2B9snDqQczoy/mE2RyMav+7NzxWyynU1+M/eF/Sm1+5PtbH07HMw2H2bKfH8v9tnm5YHW3Mw97kjmxmJETxmYA46liA40QY9koR8NzPZCPti1h4pDafOBZHUo13Rfezg4nkvmSDakA218B3qBz3wJzbZRzhXzPYcPhmMh38PFoczd7s8cCuZru19Icp4respADz308GuNzM2RVaJTSuG67j58EZkiYIzJgy6Pxom6hx56WHjoZRP00MMJBiEEQRDw4Q9/mIGBAVzXxRjDBz7wAS677LL8Gtjrs80q7GVpiTN97z0FoYceFjd6ykAPPZygaLfb/Pf//t8ZHh7mqaee4uMf/zi33norTzzxBD/72c8olUrceOONjI6O8k//9E85Pe6ll17KV7/6VV588UUuvvhi3vrWtx5RKmwPPfQw/zixwiV76KGHfSCl5Oyzz2bJkiVs2bKFFStW8N73vpfly5dz++23c9JJJ3HqqafykY98hMsuu4zPfOYzaK1573vfy7/8y7/wyCOPzJtft4ceejg66FkGeuihhzy9LQxD7r77brZv347WmrGxMWzbxvd9li5diud5/OQnP2HFihU8/fTTBEFAs9mc7+b30EMPR4ieMtBDDycwsvSx559/nu3btzMwMMATTzzBbbfdxhNPPMFf//Vf51HuWY72ihUr+NCHPsQVV1xBEAS9evE99PBrgF42QQ89nGAwxtBsNvnABz7AmjVrcF2XWq3Gu9/9bi677DL+9E//FEhJhiYmJrjlllv4m7/5G15++WXe/va3MzQ0xC233EKlUkFrzcc+9jFOOeWUnkLQQw+LGD1loIceTjBkqYWjo6M5a1ypVMo52VutFpOTk5RKJYIgoFqtEscxExMT+L5PqVSi3W5Tq9XwfZ9yuZyztvXQQw+LEz1loIceTjDMpOjN0E2TDfsyF3YTFM0kJjoRGdt66OHXCT1loIceTjDsj4Z2LnStB6LV7ikDPfSweNFTBnrooYceeujhBEfPyddDDz300EMPJzh6ykAPPfTQQw89nODoKQM99NBDDz30cIKjpwz00EMPPfTQwwmOnjLQQw899NBDDyc4espADz300EMPPZzg6CkDPfTQQw899HCCo6cM9NBDDz300MMJjp4y0EMPPfTQQw8nOHrKQA899NBDDz2c4OgpAz300EMPPfRwgqOnDPTQQw899NDDCY6eMtBDDz300EMPJzj+b3fTRHwPX2MrAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAEMCAYAAABZZbUfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZweVZ3v/z6nqp6l905nJSQh7BCWsC8KKupFBJdx19Fh3MZRR/25XfXqHcf56ajz08E796KOjsi44rggeN1AEAEFCWEJhCSQkH3pdNLrs1XVWX5/nKrqpzvdWaC7k2fyfHg1ne6up+rUqVPnfM/3+/l+vsJaa2miiSaaaKKJJo5ayMPdgCaaaKKJJppo4vCiaQw00UQTTTTRxFGOpjHQRBNNNNFEE0c5msZAE0000UQTTRzlaBoDTTTRRBNNNHGUo2kMNNFEE0000cRRjqYx0EQTTTTRRBNHOZrGQBNNNNFEE00c5WgaA0000UQTTTRxlKNpDDTRRBNNNNHEUY6mMdBEE0000UQTRzmaxkATTTTRRBNNHOVoGgNNNNFEE000cZSjaQw00UQTTTTRxFGOpjHQRBNNNNFEE0c5msZAE0000UQTTRzlaBoDTTTRRBNNNHGUo2kMNNFEE0000cRRjqYx0EQTTTTRRBNHOZrGQBNNNNFEE00c5WgaA0000UQTTTRxlKNpDDTRRBNNNNHEUY6mMdBEE0000UQTRzmaxkATTTTRRBNNHOVoGgNNNNFEE000cZSjaQw00UQTTTTRxFEO/3A3oIkmAKy1B/y7EAIhxD6/T/8G7PP3Z9qW8eesb98zvUZ6jvpz1/9tovtrdNT35YHubbIx8Gz65FDHx/g2PNvncaBxPRXXaKKJqUDTGGjiiMHmzZvxfZ+FCxdirWX16tUsWrSIbdu2sXXrVq688sp9PmOM4bvf/S6veMUr6Orqyibf+gl2ogl+okm6/vc333wz5513HkuWLMn+vnr1ahYvXkxHR8eE5x1/3YlgjOHJJ59k27ZtY9q3ePFiTjnllDHt399CcjD3UN+e/Z0rDENKpRI9PT37bf/BLGzjrwtw77330tLSwvnnn7/fNhtjeOKJJ3jqqadob2/nvPPOo7u7+6Cua62lt7eXefPmIYSgr6+Pzs5OcrkcK1eupFKpcNlll+23ndZaBgcHWbFiBZVKheXLl2fPfyLjbbL7GH/cmjVr2LFjx5i/zZ49m1WrVvHmN78Zz/Mmva+Jztk0HpqYDjTDBE0cMbj11lu54447ADeJ/uu//itPP/00bW1tzJ49O/t9rVbDGIMxBmstv//97ymVStRqtTG77/R7+hmlVPY7Ywxaa6rV6phj4zgmDEPuv/9++vr6srZZa/lf/+t/sWHDhjHnN8ZQrVbRWmc/p9fUWmfXMsYAbiIfHh5m586dfOc73+E///M/2blzJyMjI9RqNeI4HtPGOI6JogiAKIqyf6d/V0oRhuGE95D+rLXGGJP1j1KKarWatenxxx/nuuuuy9qbfq//9/hzaK2z55AiiqLs7/ULWFdXFx0dHfvc0/hn9Ic//IEvfOELKKVYv349a9asGXPutG/q+z19pqVSiY9//OOUSiWMMfzzP/8zTz75JMYYnn76adasWZMtomEYjunH9Ku3t5e/+7u/Y/Xq1QwPD/Oxj32Mu+++O2t3fZ+kGH+udFyl/Q8wODjIzp07+da3vsUtt9zCrl27qNVqHHPMMQghss+kfVffz2kfKaXG/O5QDLMmmjgYND0DTRwxSCdapVQ2QQoh2L17N08++STLly/nm9/8JqtWrWLBggUopfjkJz9JFEX8+7//O729vSxbtox3v/vd2W5La803vvEN1q1bhzGGd73rXZx88sl85jOfoVgssmXLFi655BL+6q/+ilWrVvG1r32Njo4OnnrqqQPuBoeGhrjuuuvo6+ujo6ODD3/4w9xxxx0sXbqU+fPn8+lPf5ovfelLPPjggwBceeWVCCG48MILufDCC+nv76etrY3Xv/713HDDDfzHf/wHQRDwN3/zN3R0dPClL32J1tZWdu7cydVXX83KlSvp6+vjIx/5CD09PXz2s5+lWCyye/duXvOa1/DiF7+YFStW8IMf/ACtNZdccglveMMb+Jd/+RdqtRpRFPHGN76R7373u5RKJY455hje97738etf/5rf/OY31Go13v72t/Ozn/2Mj3/841SrVb7yla/w0Y9+lC9/+cvZc3nTm97EjTfeSKlUYv78+bzvfe9j5cqV/OhHPyKXy/HiF7+Ya665JuunjRs30t7ejud5fO1rXyOfz7Nr1y7e+973cs4552THrVq1ijPPPJNrrrmGfD4PuEXwpptu4s9//jNCCP7qr/6KM888k+uvv57NmzfjeR7ve9/72LBhA/fffz8f+9jHuPzyy7n77rvZuXMnV1xxBa2trdm5fvCDH7BixQqEEFx77bWcd9552bO96aabOPPMM/nABz6AEIITTzyRr3zlK7S1tfHAAw/wrne9i3K5zJe+9CU+/OEPc/vtt3PXXXdhreU1r3kNF1xwAf/wD/9AsViku7ub973vfXiex6WXXsqll17Ktm3bWLp0KW94wxvo7+/n61//Os9//vP54he/CMC2bds466yziOOYJ554ghe84AW89rWvZc2aNdxwww3EccyyZct429veRi6Xm8pXr4kmmp6BJo4s3HTTTXz4wx/mIx/5CA8//DAAAwMDbN26lXXr1rFixQo+//nPc9lll/HQQw9hrSUMQy677DI+97nP8cc//pE9e/Zk5xNC8N/+23/jFa94Bccffzzf+ta3UErx0EMPceWVV/KP//iP/PKXv2RgYID//b//N29/+9v52Mc+Rq1WO2Bbb731VnK5HF/84hc55phj+OEPf0h3dzd33nknDzzwADt37uSxxx7jd7/7HXPmzMnaM97IuO+++3j00Ud55zvfyaWXXspXv/pVyuUyq1ev5r3vfS+vf/3rufHGG/ngBz/Ii1/8Ym6++WaiKGLFihW8/e1v5xOf+ATf/OY32bVrF9dddx2veMUreNvb3satt97Ktm3bePzxx1m2bBmf/OQnWbJkCa997Wt56UtfyuOPP85DDz3EFVdcwfOe9zw+85nP0N3dzZo1azIPwhNPPIHWmlWrVnHeeefxsY99jO985zscf/zxvPOd72RoaIg77riDW265hauvvprPfOYzXHbZZWMMp507d9LX10e5XGbt2rV88IMf5I1vfCM/+tGPxjyna665hkcffZQ3vvGNfPKTn8za/tvf/pa3ve1tXHXVVXz1q1/FGMPVV1/Ny1/+crq7u/ne977Heeedx5lnnsk//MM/8MpXvpLzzz+fD3zgA7zpTW/K+jt9Fm9729t4yUtewvXXXz/GE/PEE09w7rnnZs/opJNOYu/evfT09HD33XczODjIgw8+SBiG9Pb28qMf/Yi3vOUtvPrVr+brX/865XKZlStX8qpXvSozSMc/77Rfoihi7dq1GGNYtWoVF110EZ/5zGf4yU9+wsUXX8ynPvUpbrnlFkZGRvjSl77EC17wAt7xjndw3333sXbt2kN6p5po4mDQ9Aw0ccRACMGrXvUq/vIv/xJjDO9///vH/H3nzp0sWbKErq4uTj31VNra2gBoa2vj1FNPpauri5aWljEL+dDQEJ/5zGc455xzUEplrv/Ozk5OPPFEWltbyeVylMtlRkZGOOWUU+jo6OC0006btJ3phL5hwwYuueQSWltbOe+88/jpT3/Kq1/9ar7//e8zNDTEW9/6Vu6++2527drFCSecMOk9P/XUU/T29vLzn/8cYwzLli0DYPHixcybN489e/awZMkSenp6OPbYY3n44Yex1rJo0SIWLVoEQBAEbN++nS1btnD33XcjpeSUU05BSkmhUOCss86iUChw22238aMf/YiLLroIgD179rB48WJ836e1tZVyuZzdYz1/oaWlhWXLlpHL5Vi7di2VSoUdO3aQy+Xo6enh2muv5Xvf+x6/+MUvePnLX85VV1014f2ecMIJ2X2MjIyMIfcdf/zx3HDDDezevZsf//jHfOELX+BFL3oRvb29/OIXv8Bay1lnnUVvby//+I//yMUXX4wxhr6+Pnzfz+6hUCjg+z4tLS0UCoXs2ps2bdrnXPX32NnZyeDgYHb/lUoF3/fp6elh2bJl3Hvvvdx11128+tWvZseOHezatYtf//rXAJx99tlYa5kzZw4nnHAC+Xz+oGP7LS0tnHrqqXR3d7NgwQKOP/74bGyXSqXM6/Hwww+zaNGizGvSRBNTiaYx0MQRA2MMhUKBtrY2jDH4/tjhuWTJEm644QY2b97MQw89xPDwMDC6254ojrp3716stbz1rW/ll7/8JStXrtxntyaEIJ/P093dzWOPPcaJJ57I6tWr9zmXtZaRkRGGhoYyN/L999/PBRdcwP3338+JJ57I7Nmz0Vrz9NNP84EPfIAbb7yRE088MZvcJzrnKaecwooVK7LdZK1Wo1arTciAr//d5s2bMw6DUopFixaxePFirrnmGk499VT6+/uZO3cuAFI6J+Djjz/O85//fF7ykpdw5513As6QGB4epr+/H8/zCMOQXbt2sXnzZgYHB7N+lVLieR6nn346S5cu5dWvfjWlUomWlhbK5TKf+tSnePzxx/nGN77BlVdeOSExbrIMDWstmzZtIggCenp6OOmkk1i7di3HH388c+bM4Z3vfCctLS0MDw/T29tLZ2cnb37zm/nud7/Lrl27kFJijGHPnj1IKQmCgN7eXo477rjsGkuXLmX27Nm84x3voK2tjeHh4WyMCSF42ctexle/+lUuvPBC2tvb+e53v8vzn/98Wltbufrqq/nc5z5HEAScffbZ7N69m7lz53LttdfS3d3N4OAghULhGWeE1H+u/vOFQoETTjiBK664gosuuoiBgQFmzZp1yOdvookDoWkMNHHEYOnSpVl8VwjBmWeeSVtbG1prjj/+eJYuXcqrXvUqrrvuOubMmUN3dzdCCM4666xsJ5bugFMsWrSIZcuW8alPfYpFixZx/vnnA3DOOecQBAFA9vn3ve99fP3rX6etrY0LLrggyxpIcdppp/HDH/6Qn/70pxQKBd75zneydetW/v7v/545c+bwtre9jSAIeMlLXkKpVGLu3LlcfvnlnH322RMujMcddxyFQoGLL76YDRs28JnPfAbf93nRi17EeeedxxlnnAFAa2tr5i3o7Ozk5JNPxlpLV1cXP/jBD+jr6+M973kP8+bNy9z4WmvmzZvH+9//fs4880yKxSIAL3vZy7juuutYtWoVp512GvPmzWPp0qUsWLCAL3zhC7z//e/nL/7iL/j85z/PkiVLuOSSS8b0McDf/d3fcf311/OpT32KfD7P3/zN33DvvfdmYZ1rr712zP0uXryYtrY22tvbM49LS0sLZ5xxxpiFb9u2bfzkJz/BGEMQBHzoQx/i5JNP5pWvfCWf+9zn8H2fiy66iGuuuYbZs2fz6U9/moULF3L22WdTKBR42ctexr/8y7/w2te+lle/+tX86Ec/YvPmzdlOe9myZbziFa/g85//PJ7ncfHFF/P6178+G2+XXnop/f39fOlLX8IYw4knnsg73vEOhBCcdtppHHfccZx77rm0trZy3HHH8fa3v50vfelLSCk544wzeMMb3sDy5cszw2s8TjjhBObNmwdALpdj+fLlWd+mHIDly5fj+z5SSs455xxaWlr45Cc/yTe/+U1uvfVWOjs7+cAHPpC9J000MVUQtklLbeIIQMqirt/l17uQ059/85vfYK3lj3/8I8cccwzvfe97gbEpdOk50vOkTPh0gUoZ3OnP6XWBjCkupdznPONZ3OlnlFJ4npctAinDPt2t1p9n/P2OP48QItutGmOQUmbXrf93b28vn/jEJ/jGN76RfaY+RU9rnS0q4/t1/D2m7RnflvR+0uvW30OayVB/32n762Pl459rek/19ze+T+rbnv4+zWpI+yb9XfoM6/smvY/JUvLGn2v8M07/Pj7mX/9cx7crPXb8+Ku/t/FtS48dP84n6yulVPac/ytqUjRxeNE0BppoCKST56OPPsratWuZN28el1xySeYRONomxpSs9tznPnfSnWgTTTTRxMHiqDEGJrvNeqscDk6kpYkmmmiiiaMHR8Nm46jiDKTu5ZUrV/Le976XdevW8bOf/Yy2tjbe+ta30tXVNeb43t5e/vjHPz7rned4F+yRjEZqa4rxBt2RjEbr32bfTh8asb2N0lZ49u211tLZ2ckLXvCChrrvZ4qjyhjYvXs3v/jFL+jr60Nrzbe+9S3e/e538+CDD/KrX/2KN73pTcCoS3r9+vWsXbt2QhnTQ0G1Ws0IXEc60rzrlFx3pCMVKWqUdKtGGgvQWO2t1WrkcrmGCZvUarVDSkE8nEgFpxpF7ChVunw284JSiltvvZXLL7+8YcbUs8FRYQykRJ8f//jHXHPNNfzgBz8gDEPK5TKLFy8miiJ+/OMfZ8c//fTTPPLIIzz55JMsWLCAc889l1qtRqFQIIoigiAYQ8JSShEEAWEYUigUxhzreR6Dg4N0dHTg+z5xHJPL5ajVahSLxWxCiOMYz/MyEpXv+0RRRKFQoFqtUigUCMOQXC6XEbWEEGitCYIgOzY9XxRF+L6fqfiNb2f9tdNjU4lXz/PwPI98Pk8YhmO+x3E8htTk+/6E9x0EQUZCE0KglMrue/yx6bVTIlb6EqfHpNee6NhKpZKR1tJ7SvtofDvH91EYhgRBMIYYlrYzvWb980mvDWTtHH9P459lSlSLooh8Pp/p59c/y7SP0mdZf+39jbnx7azvz/Tanudl167vz8n6KO37arVKPp+nr68vS5esH0fptdPxmT6f+v6sf5b1Y7j+WY4f7wfbzomOTY8PgmDMmDtQf47vo/HvZf21x4/PYrGYjaODbWd6T6VSifb29myR3d+7MX7M1b+Xh9JH44+tH3Pjn099H6X9293dPeGx9e/lZPNcLpfL3o0DtTO99kRjbqJj69/h9BqDg4PMnj17wjFXP9fU9319H2mtuf322xvCWJsKHBXGAMC6det49NFH6ejoYPPmzWzcuHGMVnr9TrhYLDJ37lz6+vrI5/PZbsP3/Yw9Xe/iC4IgW0BTFnT6s5SStrY2CoXCPueY6FgYZVnXH1t/TH1bU5b5ZNeu5z4EQXDAY9OXL732+K+UzZxeO12I0/PVtzltZ30fTXTu8Yz5+v4c/zX+2JR1HQRB1obJ+miy/pzsWdYfm567/tiJ7iMVvxnPQ0mP7ejoGHON+j6qf5bj+2qidtYfW9/Wydq5v3E0/tj0uXZ0dJDP58dkBEzUR/XjeaJrT9Zf9eOo/vmNH0fjx9z496i+P9MsgYnaOVl/TvQ+1I/3icZn/T3vb8xNdk/W2mznOlH79vcsx7cz7aP6hW6iPkr/XZ+xUP9ujz93mi0BZH/P5/NIKbN5MZfLZeMlvW9wC3P9seOzM9J7Ss8z/rz16anpvJSeJz02/V6fmZN+tba2TtjO+nOm503PUywWs/6sN1yOBhw1xsCiRYt497vfTX9/P62trfT09LB48WJ+97vfsXr16kyRDWDBggUsWLAAz/PYsWMHQRBkL/r+3OeTHRNFUZYTP9mxz+S803FsWvQmzdWf6ms/m/ue6FhrLeVyOdMEmK52Hsr59veZ1Duzv93GoZxv/Gee7TH1x1prs53TwbTzYK49XfcUBEEmgDT+czNx7YNF/bGp6FG98TKV136271q1WmVgYGDMYpsWZTrSkW700kJWh/K5OXPmjDGYjhYcFcaAEIKOjg7OPfdcwjCks7Mzy1G/8847ufDCC8fwAupzlJ8tycdaS0tLS/b5I3lwWWvHWM9HcltTeJ6XGS5HensbaSykaGlpAY78tqYGbLorbYT2FovFMVoPRxKstZRKJWbNmkWhUBjjGWkEPNP27t27NwsnHG04qu5YCEGhUODCCy8EYNasWbzmNa+Z9utWKpV91OyOVKQEwkYh5KWlX9NF60hHI40FaKz2pnHfRkHKozhSXdH1YkopHwCenaFVv8kaf576uH99WCjd5adtqT/PZOdKz3coxla9sNfRiKPKGDhcaBQ2NjROFkGKNH7YKGiksQCN1d60NkCjoFHaO6qKmP580J/M/jVejfG2225j3rx5LF++nIcffpj+/n46OjqoVqtcfvnlYxbk3bt3c/PNN/O3f/u3Y37f19fHd77znaz42OzZs3nzm9/M/Pnzx1zzaF3cDxVNY2AGkMbhG+HFP9QY2+GG1jrzZjQCwjA83E04JDRSe1OWe6MgDMOG8WhF2iCtRvgBggMvrhYQWBSCvLBgJdSFxzZu3JjNh7t27WLbtm288IUvJIoiSqUSd955J8Vike7ububNm8fatWu55ZZb6Onp4dJLL0VKyezZs3nPe97DT37yEwCuuuoqHnzwQcrlMs973vNQSrFhwwZ27NjB6aefTm9vL2EY8sIXvpD169fT19dHX18fl112GXPnzm2I+Xk60TQGZgCNtNs+Ul2WkyFlRzcKUmJeo0w8jTR2G6mt0DjtHQ5j/vkXD7O3apEc7Li1WGE5oafI+688g9y40L21ll/84hesW7eOtWvXcvbZZ7Nu3TpGRka45557CIKA7u5uvvOd7/DZz36WrVu3smDBAr7//e9z3HHHsWjRIoQQFIvFjOB68803I4Rg/vz5fP3rX+eyyy7j+9//Pn/913/Npz/9ad797nezYsUKZs2axW233UZ7ezunnnoqX/nKV/jsZz/bcHPfVKNxZtEGRpqr2whI43aNgvrCO42ANHe6UdBI46GRxgE0Tt/mPMnlp8ynrARCSjgIzwBWILF0t3hIIRhvQwgheO5zn8vzn/987rzzTsrlsvuYtTz99NO8+93vpq2tjTvuuANwFUMvuOAC7rnnHoaGhli0aNHYy1nLypUrmTVrFrt37860B84//3zOP/98Fi5cyMUXX0x/fz979uwhCAKuuOIKTjrpJH7xi18QRVFDhcSmA01jYAbQSJN/E9OLRhsLjRRvbbS+bRQUfI8XnbEIUnb+wXTzQQybNATQ1dWVGQNCCM444wxuvvlmZs2axcDAAEBGHpwsO0AIwQUXXIDWmvPPPx9jDJVKJSMQploP6efjOOb2229n69atdHV1NYyy4nSiaQzMABrJ/dQoqUMp9jdBHIlopLZCc+xOJxqlvUIIhLXZ+i4OxhrYzyHWWl70ohfR2toKwPLlyznllFMoFArEcUxPTw9//vOfGRoaYsGCBcyaNYvXve51ALz0pS9lwYIFY8536aWXAjB37lz++Mc/sn79epYtW8aiRYs49thjkVLyV3/1V/i+z4UXXoiUkscee4xjjz2WMAz54Ac/2FDjfLrQNAZmAI1EwkqljhsFxpiGcg9HUdRQnIFGImfGcdxQngylVEO1d6oghOCEE07Ifl6wYMGYfti2bRv3338/5XKZ1772tbS1tbFs2TIATj755H3enfqQwRVXXDEmHXHevHlYa1m+fDkAxx57LAALFy7kwgsv5LjjjsvEhY7GZ1GPpjEwA2ikWFSjkJpS1Ev6NgIaaSxA4+hNAJmkbKNgvDzu0YDJBLfq0wAXLlzIRz/60UySuF4JcLLPjf9d/cI+0Zh405veNEa6uAlonDengVGpVA53Ew4acRw31G5Qa91Qnpe0sFKjoFqtHu4mHDRqtdoBSXnprtFai/vv8KFarTbMbjTts7pfQF0/Hup56r/GI60jML7Gx2Sfn+g8qWdgMtTXxmjCodkbM4BGySUGxtRhaATUyxE3AhppLEBjtbdejngyhErxvfvWM1ALkwXk8C3G9dLURzom5OZYAxx6RkSaATTRYl2/W59s556GBo0x2b/HGwMH4hI1vQL7ohkmmAFUKhXa29sPdzMOCqlXoFEW2EaUI25vb2+IScha23ByxPl8fr9ksJFQ8e17nubc43roXhBwcNT46UEqR9woqOe6WMCKRHXAKQwdElIFwnPPPTc7d3r+/XlLhBCsWrWKX/3qV2zdupU5c+awcOFC/vqv/zoLaaXnStN4x7R7AqOhEd7FmUDTGJgBNFKc+GAEfOzY/4E4SIbxNKApRzx9EEI0iJHlxmG+kHc57QeAyRzbEmH3zYGfKRSLxYZYiKwd7TH32luUMQyWasxqLyJF/SJbfz82sRPGxvuFEGzevDkz2qy1bNy4kXvuuYdjjjmG5zznOTz66KOcc8453H333Vx44YVs3LiR4447jq6uLs444wxOPfVU/uf//J+8/vWvp729nZ/97Ge0tbXxohe9iI0bN7Jjxw527NjBRRddxKOPPprpDPzpT39icHCQMAy56qqrsoyGJprGwIygkWLaByVHnBgCxoIVBs8eZO7xNEBrTRRFDfNSh2HYEAtAimq1esR7Btw6ZKiFNfL5AvtNErMCI2wSH30GW9opRKMUVrLRMLU//Rt+tQ8hJCDQxiKrirglhxQT7+SttahZx1O44G1IOXnosVKp8OUvf5k3v/nN3H777Ugp+d3vfkdbWxtf+cpX+NCHPsRtt93Gxz72MYCs7HOqG3D99dfzghe8gM2bN/Pzn/+c3t5epJQsWbKEz33uc3zwgx/kW9/6Fscffzxf+9rXuPbaa9m9ezf/+Z//yVvf+tbp6LKGRNMYmAE0Wgx+MoxxsRnDnWt3EEcxVy1fOgMtmxgNI0ec9N0zliO2k9O0ptO4aBQxFm0stz6yk0uX+Zw2v3vS49IhLIQAYQ+rORAEQUMYhhYfP98JIkB4BrCgDVbUkG0thJEmjhXtrQUYYxgI/Hwew/7JaaVSCd/3ueCCCyiVSmzYsIFTTz2Vn/70p1xzzTXcfffdeJ5HZ2enO2vi+k/DWKtXr6a7uxutNT09PXiex6WXXsqcOXNYsWIFy5cvZ/bs2VSrVWbNmsWll15KX18f3/rWt6ax1xoPDTCLNj4aRXYUDqw4VwlD9lQVCzsKrNwyRLUW85Llh29CPRBr+EiBBUphxO6RCl1dnRxqjzmqm8VYxe6RmNmtBTxPTjsDuFE0HJQV3LahwuJjQk6bP/lx2oIwiV/AjlbiOxyoLwt8JEPmCnDh2zEacjmJRRBGmr39FTrmtlEpRQxXQ9rntuMLwejYtmjAm+AerbU8/vjj5PP5zKt3xx13cNddd/Hyl7+ctrY2/u3f/o0bb7yRT37yk1x99dX7bFSklLS2tnLOOedw2mmnMXv2bObMmUNvb292jOd5Y7gIe/bs4be//S3bt2/njDPOmKYea0w0swlmAI3wwh8MLHDXk3v54HdXUIk1AqhGjbFYHAm4e90uvvXnnahnYDqlsdpyVfORH9zPpj1DWBqrwuR0IZW+FxjkAbIDtAVM/YJ1eNEIngGQGG3ZNVjBWItAYIwzTgUCg8BYmwxSkTwQAULi4b6PL2H8kpe8hDPOOIMoivA8j//+3/87YRjy6le/mgsuuICTTz6Z6667juOOO46///u/55prrgHG9te1117LwoUL+fCHP0yhUGBoaIjOzk6uvvpqTjjhBHp6evjLv/xLhBC88Y1vZPbs2cydO5euri7OPPNM/uIv/mKG+/HIRtMzMANoCDd2gv2m42ApR4q9VYU2EGtDOTKHNVdbCNEwUqIjNUt/Sbud0jNZBIRFGdhVskR6Zpazxhi7dQx3u6/jv57raqyZNL99ptEo41ZbqCpLVbtwjPRcP6ad6iQHRvt0TO9PIhK0dOlSli4dG1485phjsn97nseFF14IMOkO/rTTTsv+feWVV+7zd2MMJ598MuCUC5VSnHzyyVx22WUNRTqeKTTCm97waCTS2P7dwgJjDcaKJHUnphzFTDD/zhiMMQdHejwCEFnQOsQgDqEUrIMALAIrwCOlvk3/YhJF0bRfYypgAWNBTbTIW4vBIq3b0Sorkj3t4X0nG4X4OlyN2TVUQRso1zRdrZ57543LMrBWo61EITgYdtRUzIUHOkd9CCY91vd93vOe92TFi5oYi6YxMAMoFosNo0d/oJ2g21m5eGtsLGFsnIvwMKYWNgpBMzaWSOtnrHsnkv/Z1C07A2gItnuiHWQsrl8mGorWcsea7VSVxaS72MOXVQg4+eQjeU4QQqCUQmlBrJ3pFMYKa4NsobXWYo1GYBIRIsER4HQZg4mkiSfyDNVrExyNaBoDM4BGEh2KogghxCSLgHWxQmvQQKwFsUnchJDNym7nOzPx0FSOuBF2WEprQu0WrWeT1ubc4VPYsP2gXC4f8amFpMLC1rjxaSxGgKRebEbw80d20NWST4wGskdQv7BNpoE/HahWqxSLxSM2XNDe3k5//162D4VsHnDp0UNtOcycIrtLhk39FfKmxua9VfZWY3KqREvggXDMDWFdaNE6t9aMwlqLUuqQNwpCiKM2hNA0BmYAjSHc4nCgVDJrBRqLNhal697xZLe1caDEPY9v4y+feyqBN/0TaiPJEVulCJVISFjP4jzWYozICFzTiUYwssCZoBiDNtA3XOGWR9bzV885nXzgJ3+3jFRjOlqLaOw+xlRsDD99YAPnLJ3LKfM6Z6TNLS0tR7A+viVXyDN//jx+unot3/jDJgBesXwef3/6cv60dRv/58713Pi3z+HmP2zhj+v7+fY7LmbJ3E5nAAAi8RQgZv4elVJEUXTIc+/RHEI4Ukfifyk0UqGiKIr2Gyd2ngHrvAPjXN5CwFO9w/z4oV4iPTPpfqkc8ZEPgdKW2DgSVkp226dwzvjiK+NXLTvm27SjEcauIPFOGYO1hm0DFX78cB9VZbKO0sYyHBq0TgmE7veZVwD49eMDbNw9c/dbrVaPqLTY+jGZ6QYKyWCoKWtBzfpUFEhPUkNSiQM8AmqxoRRLrMWlu0pBKdLUkEjfVR6c6S8hRJapcKifg0bJ8phaNI2BGUAjFSTJ5XL79Q6o1A1rLGFqGODY8RaBZy3iGSXPPTM0khyx0ppYuf5L4ahtGkgX/pSlnRgMdZ9PfzbWYqyZkT5uJPlk1y9QjRVaaTAmK6OjjKEaOwNWG+tSDLN+dv9pYiI7c4tzoVA4wuaF+hGXGkmWcqQxeLQW88QahBWuQJDQKCC0Eo2llqRsagTX/eph7lq9HWzqJ5i8CNF0fEkps3nhmXz+aETTGJgB1Gq1IyKV6WCw/xLGAm0NNjECouQ7Ns3zBmMFRggmUSidcqRyxI0ArRVxwmwHw0AtZKgas32wytaBChZLVWl6S2GiB78vTLKrdXnd058v3xhel8RIwqKNYSAylCPB1qEQYV2miTKGSGnihGVu3CCmHGn2lGtgDdpa1Ax5tMBlGR1R84J1JNe+4cqo5wRLqer6pLMgUFplBilJuEUZEFZnWT3WwtYRzVDNZMNzppdXY0zDzAtHCo4aYyB1f6UpJ5P9PB1oFLY7kLnLJoNJ0om0sWil3IaWGecHZTgccsQHqsc+yaeIkwIvOpEW/s49a/jW3ev4yA9X8OEf/JlqpPnzht187uYVRAYko7nco2dxY3Y0m2B6e75R5IhhVI2yXFPsGVH8080PU4lVwnGBSBtiI0YXM2u5a+1O/tevHndGrDZZau1omGb62nskyhE/1TvE//P9+xmuuQ2BtTBcUwgsHUWBMa5/dDZvGoxxfamV83BZa4ljc1iJkQ0jU34E4ajprTiO+c53vkNvby/HHHMMb3jDG9i0aRM333wz7e3tXHvttRnjf6qNgkaRdIUD37u1Bm0Fa3YOsKFvmK46go7FooXFIp3I2wzgcAjIWCwPbuzDl7B8yZyDIvFpa9k5rBBGY43LxhiqWmpa0181KOPSNtf2VdlZEpOka0pXHMrOnIxto4xda504jrWWONIoLHtrFoNk28AIP3tgK4O1Gk4wUzgzS8BAxbCrajBWogxExvLA+t20Fj1OP2ZWopkzPYP5SOILpCjHmg17YwYqMe1Fn9gIqmGMxdJZ8Imsh8WirMQi0RbiRLch0gaLSUSKRBL+OjxoFJnyIwlHjTHg+z6vfOUr8TyPT3/605x//vl8+9vf5h3veAcPPvggv/rVr3j9618/6eenavI9otyCB8BEbTVGYyzcu76PLYMRncXW9GAAtAZrJq4dPt3tnMm+/b+PbCMIJGcvmXNQ142VYd2uMsqIjMRmDEghHPENibaC7XvLKMfSJKVx1Z8/IxnW8w5m4L6P9HGb9ouxllApBJoICQYe3T7M//nDeoQJCJXzqpik/6JYEymd8WBiZblpxWZOOqaL04/pwuJNax7nkaKGmCKKNWGkqITKcS6MpqocP6UjD5Wa8wRop0fswi1GE3jSGQPWGTlhpOruS9SlHs88jqT+PZJx1BgDQgjCMOSGG26gVCrR3d3NyMgIxx9/PFprfvKTn2THbt68mdWrV7N27VpmzZpFtVolDEPy+TxRFOH7fmZ1SimzfNYoisjn82OO9TyParXKyMgIvu8TxzG5XC47JgxDcrkcSqkszcgYM+GxURQRBMEYYYz02ImuPVE7J7t2WtCjUqnged4+x6bXLlWqGGsYLIdO0U1bBgcG6WwrUgtrhJFGW0O5XEF7o+Sd/fXRM2mnMc4NmbLdBwcHxxyb9pEQAq31pH1U359pOye6dhzHWTstlko1omgE1WqVOIwO+CyHKzWUirFGs7m/yu+f2E5FgSdsRnzbO1hi254RwshQrYWE5Yh8vkAUxQS+jzKGcjlEW8vQSIlqtZ0wiijU3VMcx1kfWWsn7M/0vidqZ30f5XI5SqUSxWIRrXWWdrW//jzYd6O+ndm14yhrZyFXIIxDcsHE/Tn+fMOlElYbdg9XeHj7CFYIjDJUamWGh8tgJVpqoijGWChXqoyUcpRqEbXYMDg0SBgrhkYqbB2qsKg7T6VaQyu9bzvHXXt/z31/fZS+a8CEfV8/5sCF8A5l/phsvKfHTvQs9w6UiIxgzdY+Htm0k8tPno9JQv85Aav3VlmzpZc4jDBYatWQWCnyOY+RasQdq3dQDDwipYhjxeDAYDKGo2c8zz2TMSeEYGRkZL9jLu3PyZ6l1rph1E2nAkeNMQAwd+5c3vWud3H99dfz9NNPA6OqU/XxJd/3yefz5HI5giDA8zxyuVz2XUo5RupSSpmlpaTs9vpjwcVe02NTpmv9sfX5rekknp5v/LXTcwrhWL0TnW9/7aw/X9ru9JzpdSe9by9AALFy+1aNIpd3x+RzeeeqBTzPJwhG03TSe0yvMVE70/tO2zn+ntJ21t9TutCk7czn89k50v5MPztRH9W3q76P6o/xfX/MtY011KxHd17iex5ygmPrY8FSSoJcDqRAW8HGvSV++MA2ju1pp7Xoo61zW0vPZ6QWo41AeB55L48nPXI5gZQCrIeUGovA93083ycvGNOP6ThLx9Fkz72+j+r7vr6P0r/7vp8tWgcz3uvFeyY7Nj1Xen2EICcCpBTkcnmELwlEDk/u+24IIfa5F8dtMPSVQ1ZuGnYxAKsRIgdWYPAATWQ0WlgCKfGDgFgrIiXwAx9tJTFQrbm+CPwAOa7IzkTjqH7Mpcek7Rw/1sa/l/Vjq34MTzbex/fj+PkjfZb1fV7fR+PbmT6f9D1RFmJg3e4SD2wc4PJTFqKtW1w7W4vsGu5nza4SRjhGixAeWkiKOUmkLb94dAcLu1qJDYAkl8/j+YK8mHieq7+nyea5ycZR/T2Nn+fSeXF8f2bjbZL3vb4/oyg6gnUgph5HjTFQrVZZu3YtxWKRoaEh2traWLBgAX/4wx947LHHuOCCC7JjFy5cyMKFC2lpaWH79u0HTLc7EDo6Op6VMM5Uk7jS80103vRFSds79hiLl7x4Wussi6BYLJALfIJczuV7W0suF1DI7zu8pvpepJQEQTBtwk4TtVdbS2TB9wO3cO3n2BQF4SGkAGuJNVjpExsLuPxsi0X6ARUlknxtn2LOGyPYYoBczcVhc/kc+VwOmPxZHsy9HAhdXV0zkrppsRh8Ht3Sz8beEq88fzH5ur6dDOk95QGNRBnXnyJJdZV+gE360OJU6YS1bOqvsK1/hJrWxFoT5Nw9WuFRsxbPD6Z0rE50ro6OjjHG0XThUMaG8iQaQ8VIPM8nn89lIlmz2vJIAZHIAY6p73keHpZi3hkSVW0pRZrIutDALQ9v55JT5rN09oFVLKeyv5VSdHZ2PqtzjjdI/qvjqDEGhBBs3LiRwcFBXve613HWWWexaNEibrvtNpYtW8YVV1wx5tjxcaZnyvq11lKtVuno6Djic1gdC9ixiPOFQhLps64EaaI5bi1oISkrJ/nqsglcyVJhLcpYrBXZhDzdMMZkcsQz1bfWGqpRjLHOYDqU62prqCnHCVDaoI0r/GSASCsqYYwUglgr9lQUnoBCLqDoe65crAVNSj4T06qvn47dzs7O6e3bdKeGZMWmvTy4aZBXnrcYIRLWxAGu7bQunCdgONSZd8pYi7CGUBnyviRUPjrWCGN4fOcwT+8a5pRju9FKExsnUVyLLUo5QidM3xi21lKr1SgWi0fMnGAtxLHBGsFgOcKgM5e6ENCa9wGP4UqciY9p44zUllxAOdKUQ81wLkJrRS3W3Lqql3mzO1g6p3NG0wuNMdRqNdra2o6Y/j3ScdQYA4VCIatfnQ6O2bNn86Y3vWnM76YDjShHLKxJyo9KMg133EumraCkJJ05t5OCtKoeKO2MgZkqbHw45IithVhpZ/AcwmessWhrCJVOyGpOAMdYiwFCpQmVwfM9NvdX+MpvHqWtUOCV5y3mhactRGYkuVEPznRPczM3dp0xaZKF3aYs/oO4QQEutQ2PP67bS6Tc2DWJxyVUlsWz8vSP1ChZD5Mw37XwiGOnSqh0Qj6MFJGy6HQzMFFSxxShWCwecTvPWAmEFQxXIozVSZVSSyCho5AHKSiHMZ70kgwONx7bAkEtjCjVIooBGG2JtaUSKw4Hqd/zvIYSzDoScGSNxGnEeHWpmdylVyqVhrFOUzninSMhFW2AsW9yOknGUcyVZ88n56e52Ek2QZI6l7q+7RjB4qnH4ZAjtuB2ROYQTZ7EsxLGCm0h0rYuX9tNnsoKlIJqJWbjgOLJ3oiRisle1FSieFT0ZXqNrpmTI07GlXIZFmP+chCM+/SvI1GyficGk7aCMDa86NS5vObCxSgNBkG5ZlBGZH2eZhjUIkWoZ4b4fqTIEY/2rzOcwDJSDTOjU1tBXljaAokQoIxFWaeBYVxlKAo5jy1Dir2lmOGKItIQKkOonPdgptE4MuVHDo4aYwD2NQjqfzedaBTPgMXFwbUQfOrHD/Dolr3Ub4sEzhiw1lJVlu5CfowhACZJLzJYqxO1PDOtM+vh8QwIlNk3lLQ/pCJBBo+qMk4hzViU1cTCYo1AG0UgJRVl2Li3jFWGWqyTOg/uS1uDRaCshRnI456pseskrTXVcLRPDQefFmZIwifCpWlaBNZolNHUlKKY92nJeahYI6xhJIqJlSGOYgzKiUEhqGiN1gpr9hV8mmoUCoUjxjNgScMEEQbBSKwwGjQCIeGMhUV6OgIC4QqVpYawTsKCrYHPr1f10jsc88SuGqXQUo1jakqhZ1DiOcXhmBcaHUfGSPwvjkaRI7aAimNqUUzvcMidT/QSxWMXnFT0JowNed/HpDnEyedrCpSV/HrVFr51z5M8sXNwWtucljCeSRhrnQfkEBaL1KnvS0utphiJBf0VzbreCpXQ1SeItaA9kMxv87lt3W5KIZQii9GGhzf1c+OfNhBGSZ78DI2nmdxdWSTlJPUPC73DFW57bDPaqgP2dL3NKTEEaJRxxmuoDPnARwgIlcUISTlUDNQi1vfXXElj4wy0WKUaEClpYPruNwzDI8QzACs39bJqax+hMggL5YhEMwBafMGHXnIqbZ7Ck4Lt/VUe2zIASYhLWEtLLnChMyCMXfjroc3DDIX6sNxjyiVq4uDRNAZmAIdTjjiVDHU79APv0j1PYoWkoj1+uaqX4VDh3NHuhU4n6lBp8oGXnc59F4SxJtKaf7tnK//066e598m+6by9wyM7ak2yIwKDSSSt9Rjxo1QlsN4IFEIQeB6VMGKgougdqPD07irV0H1eG43xBIHvcfeTe6nEbncVa8uvHt/D1+96iuFKnBDmpnvf6jBzY9ft5qvK9aMAVm0d4Kt3bSRUB+cByWiIAl52/kI6AoOxEMYxeV8igTB2IaxqDHtKIU/uriQiOo4nEGtX3GgmjK2ZliMeldA2jFGxFIZfPb6LX67aSaQUVkAlNBiSctsW2vJ5CrlWckKyetsIf942hEU6gSwMxVzAaEjRgrA8smWYauT6ltRbaPToezGNfZymHTdx8GgaAzOAwy3pqrO8ALHfBUTiJsE4VkTKVSSz2WdH2cPWeETKkvM9xDhp3DBWYLXjFlhDpKd3iB0OBTeD4wys2V3i/z6yCWUtllFxEks6LY4u2daCFOB5AaXIEisXV7UYpBRIPLS2SCsoBh7SCJQxhFoSG0s5DrFGEBsXDzdpFsd03+sM7eocAdWilMhGXDnURLF1ugsHcQ5rLdJarBBcfuJsWgqB82IpTd6HQEKkNZ4xVCInmy2wCOPqRuikmJFCJNyY6e3fw+IVSCg+Y6V0JFZbQg2xccZANVYoI5O0Qsce9iX4vmYkNgn/RRJbjcHQkvOwSKQQCOHGNbgedB4aza7hGjfdv4HIJDUMpvM20/TnJg4aTWPgvyDS+F+6gyxXI6yOMRxo8nEiILF10qLGGrRxqVjDkSJWysnpIomVJvA9hJB1Br7zDKi6bIKZeCFnPARjwWrL/RtH+Nkju3BFWr2sLUprhqu1uunQQWIIPFxJ2ETJEFx9eBBE1iKFoBD4rgqkBc9GjEQxQ5UqxlhKscEYibH7N+ym7FZnoG8zoyZJt0y9T0PVkEpkEs7ExG0b9ZLUeWAQ+L7LSFBGECnI+xIhJMp6aOFRijRJyoKLfScS0VqrbPc85hrT1A0zPnaF82RVqtGY8RMbSaQsoRbkPZE8BxcukVg8AR15wfNOnUNFKbCJwJGxYDXFnECi8b2xIk0Wd4wQkk17K/z7vZsZqoYkjsQmjiA0jYEZwOGq3mWsYe9IlQ/98H52lRTCHiBfG2fVa5OkWmmXox1byz/f+hAPbdmL0hpHtYK8P7r3dYV5nS68c6O7xcopkU3fW58qks0kjLXEzvGBzAiUMsttv3NdHx/43oNuwck8AxYrXJ+VQ5PVI7QIfGHxJCgNnoB84Ao9GQEWn5+s2M4f1u6lRsAtD653BER7cLvlZ4uZCsG4vpBEWiGMwCIZDhU1pYn1/hdMg9t5auvS4nqKlo6CD0KgNYTaUPClm+2E6/tqFJMWk9YIp01gINTWGQlpCGhMC6cWqSreTMGlYAo2D5T50E33UwpHS5UrranEmkgLWvN+ko3h+sUg8aQg50tOnt+JUTHSCqxIwgTGIx+4NGTPk3iJPkQ63aSiRcZohqsxI1U97WP3cMwLjY6mMTADSIV8ZhLpTmkkjHlyV5VQaaw4sGNZa001jJySm4rpK9WIjWZjv2HrcIxOXHxSCALP7YmrSjNUi7AGIkVCyErOZ1xrpgvGmBnvX4sTDxK4CdOIxLWdGAZP7Rpk80CI0nrUDrIAkkDC3kriLUn+5knwPIi1RQrr0jUzGHYNhdSUm5h3DNec2WVnZmM1IyQskYSjLMRaJyEQqMbOXW/2O4Ysyij2lDVSa5CW97/4FJYd04UnDEoZIm3J+T6eEEirscJ5AhAutm0sThXS4jQGMIRGs7cSI6YxYyOKohn2DDjdhlK1xpN9VeJUWcmC0oZqHBNqaAk8rJBYNFFiHFnrBLKE8BNVTOcx2V1WGGEpBk5W2fMFUiYGcGYMmGxjEBtJIl46reO3XkCtiYND0xiYAcx4iotNXzZBTbuXUB1gd5V+0A98NB5Gw3Ds8/EfPsSWvRWUNpQqVbR2i6AQAt+TYC13rd3BF2591MW4lUFZ4UhDuEkmadK0kN5SLfOZRL2xM5qBJjJjYPdINSEV2ixcY7BIC0HgsXXviPtw0hmedBNjpCyeFBT8dJoUpFOmBayxWeEUa6bPdV2PGRFusVldO5R2i4sREKX3Wnejtu4/cEVy12zr55M/eoCqcuGW7pY8gfTwhU+s640BiUQgMh91qpGfhAmAWBuksazbMczHvvcnSqFK/Ad1pNApuu1UX3+6Mfru7dtydz+W2FjCWBMrQzHwXC0HI1i3c4CRyOAHPn7gakcAdBQ8ggD+921rKYeWQs7Dw+BJi0wFo5J+TitExrEemwkzjeM3rbPRxMGjaQzMAGZOuGUUEkAYamFEzUCkDQdyLAtAxYpSpYy2MdpadpQ0lcigjGG4pgiNh7DC7WA9wXBNs2LTADvLbqqpxAajTZIHD1EqzJOxh6d2BjgsqYUG55IGlBXY1GUvnXpeLZZYq6nFipsf2sxtT2znnnU7nZKb1U6uOVvkJTkp8YVEKYvwPAq+THZVFpMdJ8BoqkpgBFSU4o4ntlKNp6+qmrWWcrk8becfD2M1NZUSUi2hAmMFqn7IZIQY535e+XQfj+0ssXXEkQBB4Hu+K16Dx9N7h1DGkpMmIbYJfFKXuUQ6LhyxcQWolLEYPPZWFVuG40SWWPDY1r08sWtgSlnwMyY6NObdsygEwnrU4ohfPLqV29fsIFQWFRtioynkfGcgoHl4Wz8WQ6wiwlgTWANW8IpzF7Bsfhu9ZU1koOA7b4InRLKouOwNgUAlVQ+r2mlBzITugNaaarU67df5r4SjRo74cKK1tXVGryeyPYCgHBpibYgPshRnEAQoETixEeF2E6FxKVflSCRhAvCkpRAIhqqa3zy+h/MXt6AR1CKFQWaeAa2dpCkIPGERU2x/ppXGZhKpRGv6733+bhTK+gxWFV/89XpqsWJuUWA8j/ZgrBdDWks+8PClM8R8C+0trVgB89sDFnXleXBLBWk1xgiqMeSQ7B2J+PbvN/Jvb+3m5Hmd03KfQogZGbuplLW1JLUt3GIfRXHGw6iHxjE0LHDDPRsYiV36W7rh96XAEwIjPFY8vRdrNL7n6mcs6fLoaW/hoa3DuKUqDU8YR4zVIsmvN2NM5588uJlcPs9pL+lKZLqfPVpaWmaQM2DR1jXdODIKgzXFF375BD3tBdpaihit0NqnIw8ISzmW/OGJPk6Z3053Wwt5IUAKPCk489huNuyugHVZMjlPIhPVkcyvZd3/UoMnjlUipz39Lq2mHPGho+kZmAHM5O5qPEZChTaGOMnVHv8aWlK2tJtc4yhmqFzLGN3KwD1P7iJWMdZotLYgDDnfoxD4SCxGW7Tx0drJjxrrChYJnPt1dznm149uQZupn/gOj2fA7SLdorGvxyMtPoRRWOt2TqFNCJqp8VA3Y+Z855b9/ZO9WGlY2F3AtzELu/I8/+QerLAY6TI3qjH4gYeyOsmNJ1s8p8PtOjNerdQND0qLbCxGOg21mEyNUAO/e3wr2wYrCCuIjWTD7rLjqhiXCOtLZ3LmpSU2rn699DyU0Zx6TDsnL+ggI3YKR0CMk2vFCrCamhKugFTSp7ERBBKMnLoxXK1WZ4wzEGrLLx7ewkioM36EsYKYpF+1YeeIYvdIja6WPB6WsBrRV1acsqAD31qiMERI8IVlYXcrgeclxoAg5wuEsPhSpyZWysPM+jCM4my+mW405YgPHU1jYAZwOC3U4VoNawy1lDMwfi6zAIkoEZYg51OONNaASHQFbn1oe2ZUaOOKzeZ9j2LgY4WkZiwKjTLKxXmtQmn3eaU1m/eUuOHejW5yn2La0OGIDZpUm12IjBxVX4PBVcAzuIoCrs67xaKFcEJN2ZncPqrgu1LFd6zdiwUuPaGHS06YgxSCE+d3E0iNLy35wKcWawq+76rGIbOJdrowc2PXJsRML2PzR8qg8UjFsiwuy+V79z3NAxv3YHHcgl0jEbHWqIRUKaXjuHmeh1JgjCQnLc89aQ5vvmgxOS8pb4xhTnuetryP0q6mRqTcdUphkh9v3LOrRLEraQtMFfVtJuWIS7WI63+3nl0DZSKdGrECLwnDaGPYMhjx1K4ROltzeAnfqJjzeP6pC8gFOXL5AlJ6SAw5T5Dz3LIvJeR9D9+TXH3mQqQvAIMRInmmzsDrr0SZquF0+0OacsSHjqYxMAOY6Z2rzf4vKIWOLa2ywOu+r2FfOeIHf3qSMFaoWLFjzxBIPzmLQFlJbKWbHBOjIu9Lcr7Ew+kRGON4BbU4JRC6HbDWmki5ojAm8QVPpVCQMYYoiqbkXAd9zeR+3fXHbsktruBNfWjZGOPEmhKCIXVHC+uyB4KkOKSUgsWzCpx33BxyVtLTnscXkrwQFPM+xhjyviNo2jpi6HRJuMzk2E25Jel/sdJgDWt3jfCrR7ZgTIzBEhrJzsHamDt2csLuN1I4DocnHIFVW4P0cpw4p4tLTj4G3/fcMVIyr13SmhMY5cIEpVihkVQjlahMumdZjusL7kxNX8+kHHEqi2USMZ7UmSSS6o6xtmjhjMuugsATYIVgTjHgtHltaK2J4zgRFRLIJHMAwJNOWTPvwQWLe5z2iKj3lDlDeOdgBZc1MsnGZArRlCM+dDSNgRnA4ZDFtNZSrsWUajEWSbyfDKldwxX+/e4NDFQihCcpKcnsNj+L7ysjMNqiDETGgvApBDKRLgYwxCphI2uDET7CugClMoYwjtBGE2nFQKWWTdpTgcMhRxwbC8mO0dQt+uBSDWNjMFhiI7I89di6zIu8l7DYrculd8RD4VjawibhaEcoRHr4nsvn9jxBMR8ggZwniLRAATU1qmUwHZjRsWtxKWwWdBLHtyhW7xjm5kd3YKwP1hIpwa7BCjWtsvh9nMgJ5zxJe1E6A0wYqnGE0ToLHQgkvvTwPJnsZp0kcJhU2oyMpqfNx2CIbeL5sZY4UljrNDmnCjMmRzxK7Afcwh8LF87TCLRxKZ3CWiTQkpdYCaBpzft4nkRKied5OOqFwJckqcXOE+N5MsnskXiJtHQaPtPWqTwOVpXzkKXqjtPo1WrKER86msbADGDGrP+6HbcB/uU3j3P76l1udz/BAjy6O7dUYsNwNcJYS6QMi7okhcDpjg+UawxWY3aNVNnaXyHnOZUyWWfar99d4cneEay1BJ6XpW8p61LEYm15ePNe3n3jnxiohkzVTHA45IhTgRpHjhola46mxzkBJqVH0/+UcemAUrjggEzMBF96HN8ZZJoNaUg6kIAU5KSkYAWz26G7YEE4j0ysQVnrtOST+Ox07LRmUjI3fZZp6dy0Mp5KSwoLAdagteH/PrKTnz+4bVTGIemAtrykpy1AIJndkuPBzXvZXdb40injCSCXxL0DKfA9D4lbINOH1V2UiKQdjiwKNZUS4aauo2esb239d0GsdKLfYLPSzUrHbgkXAt/3XNxfSObP8giklz0bKUAIiSclC9oDfGGc5ogvCTyfnO/CYNIafCFoyQXYRFigErm6GvXZBKMKj1P/Hh8JRaAaCQ1jDIwfNBN9HZWwo30TG8tgNXGZW8HG/ogdgzpjR6cfSHPfY5MaAG7nGiULm9aa558yj/OP73Ra70agrM/QSJVSZBAyIPA9PCmSvG1JNTbsHKoipCDnkRn+JlF1C5Vhy0CVDQPKFYtpYC1SrW1GsMzCBNnws5m0rTKjdRuUcm5sKQUt+YCC54yCU+a18P+8dDmBTBKxkp1iWlrblz5+zvLRl57Dwo4AIzxygeeKGtURQ+vHQSO/C2laIZCRNGOlMlLqzqEqtdgwEFt2DEXjP5yEr/IEUnDhSXMphU4Iq16MzvcsgbR4niTnuyyDgXKcBNYg7/tOYc+MLpg17YxAsU+o5wiFHWso22yIJuMSMq+HMQaVVBxECALfR0ho9Qxvvew0/LpVQiS1B3wpeN0lS5nX6iOER+BJcl7y2cR7sLAzx4vOmO88PQhqcaIOkbYpOWdN6UwNcarGbqO/B4cDDZVaODIywooVK3jkkUcwxnDqqafynOc8h66urhmV9TxUSCmnvX3WWh7a3Mf3/rieL7/xYqQQQFIwCCefW3c0ACs39fGj+zbxxuecgMG58jw8V7Y053P8rCJ3M5R4Yg2DoSInFC25PIFvkBKMdGld2moGShWk9Cj4imrocu5ja6nGbhL/1t0bMTbN3Z4aCCFmvCZ8bARaSCQKlaUZpgI2LpyCcTK4qd+gHBkKeUnRlxR8QQ0foWMKgaCz4COkRFpBYkfhSe1EXHxJ4AnmtOUo5jw8ockFTqDIGJFcA1yVeZl4J6auP2ZK0tUVw3FC12mcXhsQyT0aY3hq1yDv+c6D7CorhIWa1k7MCUNaGyIQzpsipKDVl05XH41X9/r5UiJ9iS8tucAZdv/2h6fRxmXHt+QkRnhoK12djSSmbq0rWz1VQtDT2bejzgD3/gtj0MIirHAFsizE1olhKWtAuwJPQlhaEm+JL6CnGGSLu5QST7jRJaWgqxCQDySBlLTlJafNLdKW85AIpB+Q8wU9BU2o3XtSU86lps0ox0UguPmhjWztG+EjV5+JnKIlqSlHfOhoGM9AGIbceOON7Nq1i+c973m8+MUvJgxDvvWtb9Hf33+4m7dfTL8spttnl0LF9sEoy/F3O/O09LBJ1UgTwRXLSE2zZdi4GLi1PLl7iJWbdhNGMZ7vc/HSuQiZEo2gd0Rz8vwWls3P4XtO3tWzTgTHWJ8/bx4hsJrAG32hdaJsppDsGIyIjHTFj6bozg+HHLFOyWrWuf7ryXu9IyG9wy5lTJtk1hWjRYWMMRQDS+Cyspz6oCRRdnO7rrRzpBR4UhJIQeC5HasnBUVfuhoR1hInxNBYG363ehsjNbdbnqo90UySM91utS7U5VIm0FqhtWU40uwtu5RKgdMhMMZmu1UA3/PwEuNQivS7yJTzAHKBRyDB9yTtOcnc9jzl0OlwCKA18BEpMdbaJMvAoK0EMXU1IaZXjjgZlTbmwU172binDNZghMvwIQkPYF24KbauzoYr8uQnBEyXpmmQaK3RWiMSXku6wZFS0hpI5rTl+Nwbz6enzccXlhbfwxfQViwwUotcKEJpfD9HJdL8dvVWanGItpbVO2v0VVO1iSm6e9uUIz5UNIxnIJfL8YY3vIGOjo4slWzhwoVcc801M1/P/hAxvalvbl9ohasbXlUGYzTCFwiRpgKC0e7FN9Y4ti9usg1sDNqVbf3N4zsR2jr2uvQQgUBk8i5QrmkK+QI5aREyQCDwsM7IsJJ7nxpkyawCvrTJDsotmqGyWOskSbQZFSSaCsyUHLGtCwWopOKgFSKrE5Ae8/i2AZ4e0LT5Aq3H1okUQtBSyNESVKnEbkmRwjG3pXSpmE6YKZlwRVI21nNu2VwQ4EtJMedn1fVCVwmKkcjwr799imPf1Mlp8wvpsHjWmKn0rGwnm7q3SWP0LqtAGxdqyshnQlCLNRiL53kY68I3Od8x3ck8RsIR4Oo8c3lfEngSIaEl8BFto+2QWApBor2P806kOh06yYgRKCxpXP2Zd/J0pxa6XpT84L6NzO9uRRonxRwrg00kwy0Wrd2Ov63go1XssoQkvOSshfS05RG4glVpFoH7csaW7/m0F53iY7sviGNXML27xcf3oLPos3mPe36xMXQEsG2wzH/8YT2nvbODebMCRkplAj+YUkGyphzxoaNhPAPWWm688cZMwMday89+9jO2b99+xLuDZkZcxJV/rakIZVLWs8kKjShjeXpPiZvuf4rQGECjjGDnSMRvn+hFWI1GsHOgRqka4fsi0XIfdXVDwoaXkqIfIKSz5oWVeGh8YSkGOXJSYoRAIomN5wrwWBe2EEkK4lRhxkSH6mLFOt1ZCZGkwKdZAIJY44SFrHse9SRNrEDFIflErMkTAl/g3KrS9YkUSe0H61y2gSfwpcQXgpzvEwgoBD6RthgrkmwCR6ALrXR6EXbquIQzKaXtzEdHpLRJnDm2kg19VWLjiG9paWyspeYKZJLznIKjAfLeKAnTS/4ReEkdjeQq+SQTJudBzvPxpaB+KvSk47QYC0YrdpciRsIIo90Cu2bHIPc+tZtn+0pPtxyxwGCtpBo7iWWbbBoirTFWOlKxNSjtxmFnqzMK8r4zPq85+xjacgECUEoRRZHzBgrn0fI9SeBL2goeUkASIMBKybHdBQLp01ksUA4VSluUFRR8l3lUieGWVTuJIyeXrowgSWGYEjTliA8dDWMMRFFEFEV0dXUBbpe1ePFitm3blpGtjlS0tLRM6fnGqwaCm/yNdqIpkXF6+enuX+Di2I9uHeCb926jEkbYRAxny1DMDx7YhtYSbS1DoaAmci6uKkfJbCm8xA1bzHmucE5ynXzOY1arT0vglNo6coLXnLcAYe0oyQ2380u1CqYCMykuoo1lJNbESo8SAy1U4lHik1YGYQ3aCkYiTX3BPSkEba2tzOts44Q5rZx//Cyufc5xLiaLK/kqhMgyA4Rw7Pi/e+HJzO8qkvMFgedkoCsKtJWZK9Qm2gfWTqElwNSP3XS/Ova/7E91JEgnmxsbzaM7SolnQCdCTgCCSGmUteR8mckN+76XGKmp21O5kEDdDjwfCAIBgZCJMeD+5nmOCHfRCfMp5gMwmlIMW/ZWGK6qzNnyxw393LJy+7PuiWKxOM18F4kGKnGMSRj91jImTGBxHBgL5KRLLSx4LrW1vm2+75PL5ZLU1sTAElDwJZ1F9/vERwlCcM6iDt71vKV0twTUYqc1InDhg1BDWRn+494tbB2qESkXgkgxOiqe+TzRlCM+dDSMMRAEAbVajfXr1xPHMSMjI6xcuZL58+cf7qYdEFO+u8p2qSk3wKAQRMagVKJ4Zy3GSJf+Jlwtca0d6SxN09LG5RYra9D4xMoyUA3pL4cEHnh1sdgUgQyQwqOz4HZj89o8cr4k71sWdhUp5lzlva68z+WnzAZr0ToCXKEka42rGT9FmEnZ0ad2D/OPP76f4VBhrUBa6B2J+cebH6aSGDxxIq8WGsvX7lhPGNuMpyGswtchi7tzzGvPs7irwAtOO6bOhW3xReoudcS4vO/xsuWLaM8H5JOa8nlP8OjGvcTa7Y6xTtNfGZW5fqeqh6d67Nox3+2Yv1hc5kpa5dGRAwEr0dZV1MOO9mcYK2IryAcy8Z7A/NbRkICUAiv8MTwCAIQlLwX5QJDzPTzpds25QNJaEJwyv5MW3xApzb/9bi3DtRiswFjnmahp43LpxbPr5en3DLi+rEWKyFi01WjriK3g3PbWiiTrBXzpIyX4vutDX4rMsEw9A0IICrmAvOc4A8WcT2cxR32isQDmted50ZnH0JoTxEpQVTEC19+1yKCNpKYs//DTR1m3u0KcPPEsM8c+G1OgKUf8THBkB9vr4Hkeb3jDG/jyl7+MUsqlvz3/+ZxwwgmHu2kHxPQUJBFYNJXI4klXQTDUgElIWJBI1lqMkEnpUIM1JpOwNSYpXmRFsmgLIgQ1Y/Ek++xaBM5tTQztLQFz2wL+97UX8rf/8TBDlSpLugqUVMRQVeD5HoHvExtNKTTEMsA3CmtNVtZ4KjCThYq29Vd5ZOsI554UO14glpoyrNtdTUq/CpTWBL5HPvDYMhAm2QHO/Y2QvOq84+iZ3c3nf7EaKV0oQFjwEg+OI70JrHCSuQKnlmete8Y5X5LzJOXIPcRQJbkExrh0w+TZT9Vwm47dlVv0NcORoT3nhHdskgeReQUyIqHLCNBArFwoQbjNJ1o7ZnrB10RKcsLsHB962dmkFaAdDwMCKRjlD7ply/N9ZrU4xrsLJxhyPnQXPLpaAjwh0Ag29JWphAqsRBmfSqipKoXyDMKKZ+WFmX7OgEt9jZRJFv5EjTQJX2mT1tdwpZ+8JFvAT8Iu3jjPgBACZcoEvsT3PFfIKhB0FPyxKbGA77nfBZ6rWVKNNdJqgnyeahRjjMvQeHTrCNaTxDpmsKbwJHTkAkTGXH5m996UIz50NIwxAHDiiSfyhS98gSiKKBQKtLe3H/TLdLAx++kIN9RqNTo6OqbwjC5Wb63ka3esYtHsNl59/nFO5IY6ElZyy8I6AqHWZl+2dnY+J20bGUE1NlmYIM08SI8JpKW7PeDYzgCkz7GdLZzUk6c3Lznz2C42DwzTO1xxi7Tv8/SeCut3V/CtwgovIWXtRw7xEKG1JoqiKaiuN9pf45EOiT2lGmUFfSNVgiBAx8pFuOty42Ol3aLSlmO4EiM9D2ugzYeFnTkCa5hVzDt3tutcpLAc291Czht0k6m1zGvPs7AjV7eIOXd4zpfkgoQjI1yNeHCTvk5kkKdyBE85HyMxojYOVPnKLQ/x/77pUjpzEpsw/11PpgaB291rY9FGuPLGwlW/TA0ga6AtEBgjCaRhTssomdSRMQ05v55AaJjXkmdxd44l3W3Mbs8xXIuxwtBVlJw2r432HEkJZIFCEsYKLQ2lsMpHf/RntPHpbHn26nZhGFIsFp8156me3FoPgysXHCnjJIghMQJwZOJURdNYrHWVHp20sEyMgZThL9Bao1RMRzHghFk5As9xBxZ35VjQNWowioRc6PvunnzfQxtDLbZ4whAEHtXIlUd3CogeaMNDW8u898YHKAaW/++NF9LT+uwW8lSOeKYrxjYyGsYYiOOYr33ta1QqFf76r/+azs7OQ/p8GIbcfvvt7N69m7POOovly5dTrVb57W9/C8CVV15Je3v7dDSdIAgSktkUTdNZFo5gx2AF/Bzg8od1uqgJSxrllAJiI/GtQeMkSAXW5Rsn/8YaKsaxsKJQ48mEFCTBT4qZGOHhB5L3vfg0Cr7nJg/f5/OvOxdtLcWcRyVSvP3bD5KXrrJhKTbEyhGXXMxSTilnYKrkiEfd1oJSGPLo1gEuOn6Oiyc7zWVqsaWiBX0jNTqKHmUT4ylXiMVYZziFBnJSMrsYsM1C3pOEwvLa8xfyvitOxMZVBJa8dIETiQdC8NGXLuOpPWXwJEJIrlx2LC84eUHdwu5SvvKeT260lo8jiAonxxtbiWbq8uBheuSIDVCNNOsHYh7avIdT5hSZ392ZGQKpxLNBEEgnl2sMVJTBs5piwVV5VNb9oaetyMJZeXb0u7LEKaywaAm+X+8ZkJx73FxOWzgrM3a/8rsnEVZy4aIuPnHNMpQGX7giPKVQsWukjBawe6TC7qEQz8uxfFF3EiZ45n09ZXLEFgyax3cMMKtY4NjuNlzvpaJfEqUNBsH6viE29JbcPKAtwjiDwYjAcQakT86TCGnwpMh4AFJKpPQ4d3EPp7/uAvLJO/f+K88g8L3EYnZvkSety9ZAEHiC2MZs7RshloJAakqhxqRBIAHWegyVY57QlkLOZ6Sm6Gl9duO4KUd86GgYzoBSiqGhIXzfZ2RkBBhVaTsYxHFMZ2cnF198MV//+tfZs2cPN910E9VqlTAM+eEPfzhtbZ/quGCSkQ7CaYKXam6HGuuxtJs0NSsnXc67Styvo0V2THY+BBitMRaiWON7Mnu/RzenNhEYcTyBtO87izlmteQp+B6ted/Jk3ouN95L2jOv4CGEyVyXU4WpVBpzRVRg9a4Sn/u/axiJxz43lXhXBiox3S0SzyUIuCI5KYFQK05d0MYrzp5DIXDENl9AR9Gjq62A0U5jwfMY43FpLwR0FXNI4Z5g4ElaC2Mns5wnKARewn4nuZ5OvjvPQNq3U2UO1BO7pgJ1SzWxha///inuWDeQMN8ZEyqwuPENblGrxgqDpJj3aMuZxGPg9Bd6WjxafMaICzmeRqIoWDdP+J6kvZCjJedTCLyMKDurNaCtECQLn0RYyUBF88DTe5HCZ92uGrsrsHUgTHbXz27cTd284FIIv3vfVu5cs2uMk8AYg9LaFQ6z8OOHtnP7uj0AaGuzwkMkXgEpJdKTicaFyO4xfc98T9JWyGXvfms+cMZDcr2UDOsnD8L3JFYbfvX4DmITID3JcFgnR1z3D2stkdJUomevD+DKMk/t2P2vjobxDBSLRd7xjndQKpU48cQTgX1d//szDNra2njuc5/LyMhIJpjx+OOP8/GPfxwpJZ/97Gez3fvg4CC7d+9m69atKKWI4xilFL7vo7V2LsTk2kIIjDFJuVR3zPhj4zgmDEOklPscmx5jjBlzXinlPudTSrmcamMQUmKsIdaGoUqNWrVCLY4zsY1qNVX6cvrrSmnCyDHi71+/m3MWd1MNw4S0446LY5U6HDBKYWU9Gc31rYd1RCLcPJHdi+cT6xgjJFiDL0DFkVMpEHDs7CJ928ouBU7FVKvVZ9Sf9c9YCEGtVkMptc/50v4EsvNprSfs+0weVbiMjF17hwjjGBVHVExM4AdJ9UWXy1aqxXS35vBl1ZUrNhDHrg2xMpwyt40rTpnD1+7aRGxitJIYExMnGTFxrDBao5ShVqu59loIBEhrqdZq5PxgXDsF2kR4KEwd5yKMIuI4plSpYhPXaBSG2SQrhHPxTjqOkv601u7TR57nEcfxGHGc+udzoP6c7FkKX1KrRmgNsRJs3z1EFCqq1TCJYbsxbKxFeh4GxVBoeGSTExcrSAlGE2snreuhCaSiLQdRFEJyX1EUA4JAWvceh+PbmYTNtDOmu1oDwmoFoz3H2RAGgWGkZmn1LKGVYDWeNUnqWo1cEIwZc+kGJR1/4/u+vo/Svo3jeL/zR31/TvQsfc9znAAFlZqhVqviSQ+lFbXYEGtNHDs+STVybhdh4ImdwyicboBIQl1SuM2CNAlpMAxByCybK5/P7/e9jCLl+Eexuy8dRygtKFVreNa9ZE/3lTJvWxo2QjhjW2EYKNUIkzHnNj0Ce4hjLq1meqC5e6Lnk14njuOjqr5BwxgDYRiybt06zjrrLMDtWEZGRnjkkUc4++yz6e7uPuA5KpUK119/PVdddRWzZs3KHnz6IqeDZPv27dxzzz1s3LiRU045JVvM8/k8URQRBEF2fPrCB0GQHZN+T19yNzFF2eSay+UIw5BCoUAYhi7+nAzU9N583ydOFvfx19ZauxdEOIZ1ZDW1WoiKXR0CFSvCmsIYR1oLJERaISNDqCXfvGs9b7xoEdVIJ7t1VzanpqCzxSeuaTAxVo/GbzN/hLWEsXKliw3ZPZGHsBYiAydfeuKcFoSOMRKEtniJFr9FEGpNrVYlny8QRRG+72cv3UT9mS5GaX+muxTP84iiCCkltVptTB+li1nan0EQEEURuVwuO1/9s8RakBKlFXuHQmrGoOKYMAIKzrNU0wqLoFpTzOpqIe95bieuFVEcElpJqAU+hhYP3v7cxdTCiBv+vNPlcycpibFSjvymNbUkdxucSp5EUKuFyIIYd08+p81tp/X8hazfM5o/XYtjYhVTqdRc+l0UE8chJqkhnz6ficbR+D5Kx1w+n6dWq5HL5bJJtX6hm2y814/P8ceO9nmIZ3OEYYQyllAr9pRDIqWo1SLHbTEQxQppLW88fy4j1ZifPtTLn56qIQS0BR6XnDSP+9b3Ya3h/KWzOXFOgeFSBzqKCLWrAaGUKyyU8yRaKeIoHDOO0kJIQmsWdua55MTZ1MIYK22iv++4NoNVTT7wqNYUGLDCCWfVwhApRPYOK6WyjUban+kCOuE7jFtwjTFj+mj8/FE/3uufZTp/2CBw5cetoRzHRGENGRTQYUhVCWJjCbUGY6jGTrpZCcuvV+1AJ+GtpC6WywTKCd723KXMKiRtEh5aqWxjNNk8556vcu5m7d4ftAsJjNQMnpX4VrJloOZ0R0Q6qwDWEQqNtfT1D6EWtDilSZH2pxnzDtf35/j5Ix3XjuegXB9NMn9M1J/p80mfzdGChjEGgiDA932+8pWvUCqVAKfsd9lllx1ULnQcx/zrv/4rPT09XH755QAsWbKExx57DCklS5YsyRbj008/ndNPP5377ruP7du309LSkl1jf9ea7JhyuUx7e/uYXW16zMGwtSc6rwU0CiEcy7qjaxbS34vFks/n6ewaJeAUcx4rtwxzyvwWwKKFT1lJ/EILKePMWstQVbNkVp6NcURPdythrBIlPEEa5s/nAtraWhMl+LGemEKxgNKGXOBz4sJZdHd24gmJZw3txTzClrA4UlF396xn3J/18H2fSqWSGYOHcr7xxzoXtSGWewFLPh/Q3TJKQDJ2GxoPZaC7GNAiDJEHI8py51P9vOWSE7F2By3FPF2dXbztsk76yxE/XNlHd2sbxZYiIyM+xWKRlkIe6Wk6OzoyCkguFyCNpaurC0+IbGyk7TyrtZWzjpvLv929npTfEPgexWKBYmsrxkoKxSKtbe37PJuD7c8UxWIRay2lUom2trYJjzlQf052rMG4cwoX2fZyBVpaW+gwjoEuJOTzOQIPXnv+EgLf57erd9OvQEqffCC4/OS5rNjYixUBy5fM5pxFnezt76e1rT2LFbe3juAJTUdrgZaWIqJl7LuW+rxaW1tY0lPklAVd+NKnFikK0pD3oaIlIzXD7I4AW1FoJB4GIQXd3d1I9v8OpwS2ifooiiKKxWLGeTmU5zN2/rAUEuawsYaOjk6skIhinpHBSubxtJB4S9zoiY0kJwXGusUzCHzygaG7rcDrLjkemRR9tkC1UsH3/QPOhTbnFtzOjnaKLUXm4WGEx/ZhxZLOPMXi6Lw0nnGhrQUNA0qwYluZuZ0tnL6gjfpo9sGOudQrUCwWD2mOrT82NTSOFjTMnUopufzyy3nOc55DqVTCWktra+tBk0RKpRLlchnP8/j+97/Pm970Jt7ylrfw3e9+FyEEb3nLW7JjRZLKVY9nSvSx1o5JcZkKwpBNcq2xgtg6fYC0wppO4t4WR/qT1pAPPB7e1I8WBmsiyrFguBpS8H0sfkJAgnIY01NsZZNwZUtDFN3FgOecMo+bH9zOMV15XrRsnns1E4JVXaPcN5xqW1vBQ3jOkLjy9Dmcs7STe9fsQePc6lPVF/VyxM/mfFlGgDBUoxCjXZGapKWAqzyIsZSUZElPCx+66hS++ofNbOmv8pP7N/HaC5YSKUt7wU/6RiClRyBcKha4dDIBXHPOInSiTZCON19qSJQHx/evxRWZAdd/aeJhrAHr0sd0ltkwdSJc6dh9dudz3qVYKxcO8Z2rVluLVsrJZ6cpkVhMkoqp8BDSo+ALpCexQtOa9yjkPDxfJLUDJEJKrPDI5wuZ4BDA6cfM4oKlPbQEcoJ7SD1ezmuVkxJhPUfuDHze96KT+Y8/b2blhmGUsq4Aj7VoIRKSY+JuP4hsJmMt1Tii6PsuZU64WHw+n58SwTT3vrv+dBkXIDAY4Yo8KS0w2mIwVBMZbGMhjEF6FqE9V4dAQM6zCOEhEkOA5P/1i+Jk7bXWJmqarggUOJEsKSUD1QpLZrWQ9xL9gzrypXM8jhIQh6qanz60lbMXtnP6gs79XnMySCmnZF44mtAwxkD6QH3fz1QIDwXd3d189rOfBcZyDT7ykY9k7v7pQrVandLUQpHs5LFgrCBScZKyl8h2pGzsJB7XWnQTWE1BVUE4HDFc1XjF9IW32cvY3Zqj4FlynkcxCDihy+clZ8znvif3cuYxLZy6oMN9ZkIitUv9mtPqMa/o4QtBgOEFp85jVnsO4QW0+JLITN3LmboBpyqFyOLKMVtLwrkYnadcfrbTxO8p+vy3sxbx/fu2AjYjZ0bakvP9bMJ36VqOSCVIx0I7Zy7sAtJ9V5qbLTINiPE9lBJGLTCr4JP3BDXtFBANgkilaaNT59a01lKpVA45c2diGH62cgvDlRpve/6pSYqbK0ucVtZMlTUN0jmsrJPF9aWgRTod/LntlrZCjkAKZ6wZ7Yo9AbVqjUK+AJ77uafV47kndCekzYkGrHuwIlUuBMDl2l955kIe2LCLNVthWBnmdxTY1OeK/cCoet/BYKAS8Q8/vp9P/MV5LOgYHafVanXKdBwcMdcQKpeN4dIqJZt2j1CJDSopwRwrNzSNhWqs6SxKpCSrOeD73mjmhUhHJlmIYP9IjhZJYSjrhIwWtAme7s0hJXgJsdBONAXYdDNhUYiElCv3nWYOAsY4Ps5kXq0m9kXDGAMwuogr5Yq0pEIYB2P57e+YesGM6cDUS7o6pMz8SLtEHW3H1rNPGe5tOSd9EyuLshK0oBIp8n6SVphBMLsjR4vviFsndRf50lsuoaOQ48fvuYjA98nJNF9BYFUVrAa/NZ1W8YXlf77qHDpzkt0jCg+B77tUrZ4WwbHdAbEZJa1NhnRSORB8358y0aH0Hiqxm1BHsx7c91gLjBBEsSYX5Ch4gq7WABJvTClUVCJNzh8NokhhCTzrdsNxiXY/wpBMcars0qv8ogufeJ7Ti0+umO6WLRYRDmHzHQgkLz93IY/v2ssPVvSiEinZMI4T47CuxfX9K9JvBz/GhRBTYmRZwCDZ1FdioOaEroy1bnEyAm0S0aFs/MJg1ZE1PeEWEC/wuGRpK8fPLdJfUXgCqjH4FoqBu0qxpSXLGkhJr3958VKSKPYE48397HlJudu68eYJeN+VZ9LVvp7/c+fTPPfEHtb3DbN9yFVxNGZyXYrxqESah7eXGQlj5jNqkjwbMbKx2gKj77vTnUgNFcv2wZqr62BAI4kj1/82idHnhCWUjmMhPY/AU3X6Iul1DJ6pQNCafHY/Ny5wXi3hVDRzfsC7rjiTB7asJJAQyLoNSJZNY8f0faaX8Szm46Yc8aGjYVILU2zcuJFPfOITfPvb3+bOO+9k27Zth3yO1IAY/zVdmJ5iL46Mp4wrX5tkEbq/JJOqtk7Jriufx0pBpGw2EVVjTTnSCanPIe9JjusKOL47T2tOEng+89pbKQYBCzrb6WnNg/BdsRhjCB/8LtX7b3AfFiCExBMe81qL5IIcnp/oACTFjVryAcVCHozFic3qLJvBMbPSnw92zzW1hYrSpbcSa7QBZUeNJQtEBqyNCGOdaLNLFnTksQhq2vLpn63g3g27CfzR18qlaDlXdPiHr8CtfwfRMFhF7c/fprry+6RZ1zmRyj+PCvBgLabcS+nm9xGXesEaWgKP7kIBX/ooYxDWUk0kqF2tiLr+S7wFqSfpkPrD2qww2LOFGD/hW+nGrhHYJDvCWosSUKpF/I//XMlgNUrKD/sEvqWrJc9x3XmWdgVIAX1DMaXQUgwCBJZqpepy5t0VEMKjo1hkVjHvjDvrDAydLHCpt8CzTnHT7YRTM0LS01JgfnueQHoc01Wg4DmjGiQqCTEcTB9mpsm4wyuVyjNPi61bqMGpWMYWwtjVHRBIsJbBWoQnnUy22zik13Nj2/dAWpkUIJIUZSrQlI57ix54mtKP34su9WFw/eu+6o5BY61BCMuSTugo5JL5ABb3FOhpMUh8Ch7kpOC4DkkgNWLMeHXzVZR42Z7NnNwsVHToaDhj4Pbbb+fqq68mDEOUUmzcuPFwN+mAmE4L1RiXOqSsyUoDZ3LDCbegrZgDIeomAqjElmo8+rPFcvqCVq46cyGff8MFzGrJT2AsCUxYItp0L8ZEiIEN+ENbSD0FaUnX9BWWAqR0NdGFNbQFHoXAY+fACL9dvYMntg8mc45h51CVh7YOgNF1y++BMWVyxHUTTxRGY/QY0r/EiXBLrE2WJdLRmkdiKYeWh7bF7BnSFD0xpvnppOsPbqQw9BRo4whewzvI9T+ZHOPSB9NKkOnnjRCgIvw9m/GjYVdnQnhY4aru9Q5XGahqQuXSQsdLOGjgkW176R069IlRCDElXq10ry7qTM+UMxAbVxuDuiWhoiQb+xXGes61LC05KSh68NqLTuSdL1iGLwUaSd6DQuBhgEIxwJZ3obY+mO3a02endq9C792I1gr19O9RcQlrRLJBteSlRuCyD0TyQYEl8APmd+Q4a1F33a52VPJ7cowm5U4WUigWi/sseBMVIZsMsTbcu6GXcrLbN8aweW+ZnUMR6fs4XIvoKuacWuMEZ/SklzD2JVJIgsDPXoXUK2V619C65yG8zXdDXAEMZmQb8bYHsFZjq3uIN9+HQZMPAj7/+os4eX5b1v/HdBb5i/OPc2Pbl5w4u8D1b38OC7sKFHyBkF7mxRIYnuwt0V9WWXzumVTakFI25YgPEQ1nDHR0dLBhwwb6+/t56KGHmDNnzuFu0gExHSV2sxfVGpSxWJOwcRM1vKQ6KQJoLfgILFEqoiOcAlw5TDUK3dlaci61rcNnEhe9Re1Zi/n1P0BUdouljpho4RaIROvckvMkS2a38poLjqUlF3DXU3t53w8e4dt/fBqdfPr3a3dx/e1ria08pNc/zQd+9khymm1KdBsV8EnX5kjFjthmtBO3EdDpfNSMhIqBSoiWBs8f3Vk5B7gLF7hiEQEIjcQibYwVEpm4S33hZXE7BdnuVegYqcuuroRzqPOck+Zy1VnzWbOzyhNb9qBj9wzHZ0IZY7ju9jXc+9TOZ9QrUzp2hatEKHC7SqONE3IyaVjG3V8YxYRKO0ncxLgMcHoZxUDSFiQLl7S84PR5tBVcmd1KpNFP3o66+zq0TQp1AGCJH7gB/fjPsbUB4t98Cr1nCwiXQnjOcbN54enH7BOdtjj+R94jqWGQPh+bpSVOiswhYJ0RaUWm6JGiXr8BUo+ecfoHTOKOt6Pehv5Klf/3lkfZMlDGYtDG8OiOCvet34mxCmMN5dARWpWxo56JutMGnkRK63gDUpDLBYyWgrIIrVDrf49f2YN/+9/D4Gak1dhNf0L//jqsjlBb/oy+859QKkIS015wtR1SjosnJF15P5sLigWf+S0Bvhdw6jGt+DgvQFteIizc9+RenthZSUIxz6zoVpo63MTBo+GMgUsvvZRKpcLAwADLli3jpJNOOtxNOiCmSxbTkdxMklMO1rjiKTpZyKxxcedi4CbUSLldd+BJojimHIauiFEyS/jSw/c9PN+fJLLs4txBVMaaGBGXQU3wwrl5AE8kCnyeZPGsVl538QkUpGAkchNXRY9eRRlNaGT22QnYiRNCSvmstd0hdeEKrLHUlEDZRMM9gbVQi2pY49QcvYQ7UcxptHQhBGOcKFNOyjQS6oI5EqfkoKtYVOL9EAirwTrSpUA4cpWUYAy6fx3Vld/BVAfQg1sQtb2YNb8kfuLnmOpeLjq+hyuXzUNjWddXJkw0IfZJixYQxxJtRne1h4JnO3bra2QgHCnT2UUWoyCKNErDPU/uZPtwFU+7ctvGOjlcIWTSNzJRIxQYXAZBwYNXXbDEVdADV4HQWqQpj6a+JsFvoWM8XXMyteEIbL4TEk/AuYt7uOqsRUmcm8QQTkpzBz6+9JI4uKWjJYfAYqxOiLp2zNdYOIMh0gZtE2O9DinnqR6Rstz++FYqNYWY4Pzp0hgay++e6GV3VdJfclVBTUIeja3g8R3D3LF2JyY2BEGOOIu+WepHQuB7SGETLx4UcxIhRjkH4OHHI0gL0kZYHWOEhzAKr7QToUMo7SG3dwti52MIfCQyM6xJUhqlJ5DW4PuS1ryrFOkJwdK5rXhW4EvLgs4cruyyIIpqrNtd5uHNuxHPgBTrSKENRYk77Gg4Y+Cuu+7iFa94Bddddx0vf/nLp2QhmG7UK72Nh2XsC3+wrCSLJVY6s55JDQCbFqxx6YZCQDHnI6SklpTTbQkEShuqkUZawxUndXP8rAJe4q4zk7x8woIIqwhTRpgIGVcgLu/T5mzuF+kk7p6Rm3AEldDtb5VSdTyHus3UISxaUylHDJbYQEWlBCsz2j4sZWUQ1nM1BZI35+Lj53Fsm8QKkwWFPd/P+iDn+bzj0qWcNq8dVA1rDDLxptg6oSuAK06ZxQtPm+XSrjb+Cf+3/wO75ynsxt8ja4OIP3wZ8cuPwd71gKHF9/DQ3PHEbqoqDRG5BW48TLIQHGp/PRvRlYzwq128OvW2pGNeGUsYa6oabrjrSR7bshdrk12pcFXznEHgDNi0+A2QlNi1FLxRhUyTVOETKkrc2ba+MdkCJ4xCPPITN3Yh2wen/07fJydl7OLpec/nbZcu5LR5jkRnrHv/4qQAUJykidZzBOr70KX+pm2ZvG8Hw5gv3baO7cPlrFFKO+O57oz0jdS4/ranGKrEjFTjJETkVnxtJL99bBffvncTZaNpy8k675nIdAfAyT07bQcnwdziWwT117JIVUNgkSaCuApRGXSELPdiwmFEbQ9yZBtm7a+wOsKakMwrk4wBpyrtypt3FDw86cjGxcAZRB6WjoI3GkiycMtj/fzwz1sT8+XQMXXzwtGBhjMGOjo6+NSnPsUXv/hFvvzlL7Nz5zNzf84k9jsos7/VS/8eGP1lxWd+9gj9VZVU/7IYNDULq7b2EQPKqQ5QCCQISU25B14MfLTVqFgjMbx42bEcP7sN30uz4yfhnAuQ4TBGG6yOkVEFpd2uZKLb8hD40pXcBbdWSimphgqBl2QVpKqEkihJ3TtUpttUvPRuMrX85583smbrIKGC36/eltWsNwbiyEt+tgRJB508v5NzF/e43ZC1COGT90d7z5OSa85dyqJcGbN3I7I6hNr+CNZaPBUidJSNgeVL5vKcE49BIvF15Hb6u1YiV/0EYS2eKpGrDUCSTdOe85HSY8PuEk/sHARkpig35saAyIwuhofSW8+ubx1N9Nt3r+WONbvQNk2FTGiiyYKktWZEJbt+z2YZAV6Ski9Ime7pQut2sr7wEi+MO5+wArRC7l1P9OtPYuMwu39pIhffNkl/l/swtSFGSaypMI+Lr1lrQBhacjC76Mi1rzhvKcd05bDCZ6Cs+NBND/KhH65gzfZ+Pv3zhymHMWPfhcQjp3VSbOnARq7RUIs9wjjOwoDf+P1a7nmqD6wmZVcMlUOGY+cncV4hMEZigSe293PrI9uIlEZpS3tRUo5cGnKh4CMlSe0AV6FQSIEUFl9YWoIg0bNwHAMrdOb9EybG3PcNwh+8Eb3tQWQ4ApV+bGxASnwVEq24gdof/gVtNQaFRqVPByMMHYFgfnve2c3SlfqWnlOCbS/42YZAI9FxTKTrScZNTCcazo/y3Oc+l1NOOSWzbJ+J5sBM40DuqtjEKCspePV7lP2jXFM8tLmfivXw0ZRjjdISYySbdpfQ2iTsXmjJ+UnZV01PW0AhJ4mUdnXNhEdH0dUP90WyU9jfhXWEMDFWxwgVJV7YyRcMKURWF13g3IXV0Mn6xqpOYz92BVVS0ZyDhfM+TI13yALrdw9Rji1aSDbvLZGkOjsNAWUIJJDkZGPdYv+3LzyJ+5/eS2glnrV0t6Qlhp18sxUCGw4gKwMIXUYPbcbDglFgXN32NItAiEQroFZ1i9e2lciRPucylqCkwKsNYayr8OZ7HiPVkG39pSRsNOpbyZbOpO3aKCJjafE94OD67Nm5WgWxVjywaQ9K5jAGx2/BeSosAoQhNoZqZFDG4Eu3ezTGaTQIAUK4Ajl1jgGEAM/z8bzR9nlSImyIV+pFbP4TIq5AUARrkTrCRmVEXEZYhdAKG1VcZosKEbli1mYrcGmfMs9Zx/bw2dddSDGQGAxz2vJ0thYohYp7nx4m58FVy6useHov1VjRkq/X5nSLqtKpZ2CUkGphn3ErAGUMkTZUoqSYGPD4jiGsJ7n0+B6CwC2slUgTmzSjKCnslBgbOwar7ByJ6GkN0NrQVvCpxq665vxWjz3KEgQeoYroyEs68y5U4Am3UTAIpFFoHSKkh1UVpABhDd6G3yHjEeJwEGE0NiwjdIhAYVQFsekegqiMicv4XhFkgFFlpFEIK3jFOUsgqdvgCSj4HvnAVQYt5pzx5CpyuverEh/q1mAU06kd818RDddbTzzxBN/5znf49re/zfXXX8+ePXsOd5MOiFQbux717tpfrtrODX9YMyZHfGys0OwTM0RIlJXEBgZC+PhNj7Ctv4wQilse7+Wx7XsdAU5AMfDwMEihOHFugbmtgr4RzY7hiMVtHj2tAQg32Sql9lvtyxiN0BFWa6yJkSqc1BjwPMG89hwtuXSYGQLpPABA5mIFSxTFiajPoe0CjDFTRCB0O1VlLEa4NMlYu1Qnm8S4Y2NpCSQSR2BLMbe9gOcHdLUGnNQTMLstl55x9NyqhhEWI/OIdCE2Gur6Oq0DYUZ2Ea/6IYEK8db+Bs/oTKRFKEN0x+dgYBNtRZjTIjHCI9TgOA+OOJcVX7LuElprHtrSzz/d+hjxIbj+D5lAOCa+bVixYTf3b6kg0Rjjxk9KwHO7eRcnr8bOexFIkmp5OMNAuFK8gSezSniC0ZRV3xt9DpGKsDp0loJWGBORpotiDfKxn6GeuA1hDUKFEJYI+zdRveWD2KicPgSUNVTuvR699lcUfMkx3UVSRcjjZxc5rssnjFyKqdaagXKMwsOmdNFxr4NKqlqOcgbc930IhLjqk7GxVGouI8ACNeCmB7dy471PZe9HTaWiYgKThNtsMkgiKzFIYu0Mi/Z8QBjHGAtz2z0XXslZEJa2QLC4q4gQ0N3i0dMeIK0h3rWa8DefQgztQux5OmmfQEQjYATB7ifBGkxcRagaACauQmkPJiwR3/nPRE/didZVqr/+FK3Da5jXmae7JUd3ewEhDb6w5AKnMLmgI6C7tZ797/qlEukk7GnGzH+j86IeMz9iR/8+VfPC0YKGMwbOO+88PvjBD/KhD32IM844Y5py+KcWk6e4uF3Rqi3D/HnTCKpuYjBYjHXFcR7aujdxl2XReAQWJSyxhkqoeXj7CIO1EKxgsBzz5K5kVyuEkxx1QqG88twlfOiqZVgUvpD80+vOYfniWchEEMT3/f3sBkXCiNcIXcMahdC1xK06dgZ0HgmPL7zhAk6c3e6uLzwCOZq5nwrOPLp1gDW7K2gDemK7YlLUy44+W0hAGZBC0uJDqEQ2uTh1P0XgJ25rt1Vy5DbhyhQv6CjwL2++iNltLq4s0uAnFqtidPsCdNtsrHKpYC5LoJp5V3R1ALXjQWy1H2/EpWx6UYmoexEWiUUgrSa390nEpj/R0xbw0atPx5OWUGksklKk+NP63eythqSyudoKYm3pryge3NxPTR18Jx9qelZ65lAb/rR+F/dv6WckVBhEIjIEq7cP0l9OXM+eIFTGeaq0QIhU2MoJVaUpb760OJ678xZYQHgW6SVGlFHkhtYhKnucN0YrjA7RaIyqICv9eNV+5K4HQcdgaqhtDyD61+DvWIHVSeqlAB+Dv2sVYmDTmDdOCo9rli/hX998Potmt7i+VZY95ZBQgx5vBeB29tXYEuEIhPU+r1SOuB7aGIw2RDrxH1jQRrCtP2RLfw2EU0qsRY58qq3Hk7tHeHTbkNOYEKCNG1+xsSit6cgHiVS1ZOmsVnwpnWaCdfUIXnrWMQRC8M7nLeVlZ3YRb38IUdmNv/MxqA0hwhI6yIGVWDQmX0DYCKzCxiXQsRufA5sRI9sQ4RBy+4PIoR2IgafJbbyXFy7N84lrzna6EQiwEiMkhQA6Czm+/JcXcNr8nix05OY6QRiHrNrez95KDVMXLjBY9pQrrNzSx8ote1E6zjxh4DyGUzUvHC1oOGOgVquxd+9e+vv7GRkZYXh4+HA36YCY2GBxLr6Rasjv1+5iqByj6lZC542W9A5W+B83rWT3SIVUdSy1gk0iJAJuzVLKvQ4Gye7hGsZaPARzWoqcMKcFkHTnA2YXcwgEgTAs6CyQlxIPQc7zs7Kq7px2zE4PQOqaI2BV+8EoRFyFdDefWefpPQjmteUI6olfdcaA1oZIGb74q7X8bu0ejNL7GBVjvST79qJJyvYeEsYztOtOrLXGl4J8IKkZne22THJfvj+6M00hhMucCCTM6ygk5MLR+7SAjCvYllmo7lMSA8oRvox2IjFWgNm2AvV//wdUB8Fa1OzTMH4ejruEuHsJqmMhun2Bcwk/8O94ccj8dp8ATTl0hsvGgSofu+lhHt3S7/oYS6Qd0c1oGK4ZalESD048EdR/jekmm41dd9zBpXpZLHvLVT5602N89/5dziuAu98w1nzxF4/z8Na9SGspBh5KWSIDSmuEHA37eL7TckA48ml6YQt0F31eduZcWnIeoDFWUfjjdbDpT+6Z6Mgt+kj04BbszjVuodn4e4hHEFbBH/8PdtfjOK3eujLNVmPjCiauJKV90+csKAYeC9sKzOt0qpvaCucZ0AZd9/7WfcopWlKnaJms/9Vqdex4FwJtDLE1ifaCewZGO+9IGpqyCKpx7B6KMHz/gR38y+1PoIyiu+BRUy6LSBuN0ppCXhIg6G4XXHRcD4GEgg95D85e3M2Zizp4yanddBULtAyuJ/71p7C1IdKAhim0YzuOw0gD1oN8F4gkyTKuYbTGFLoJtq/EH9qBqQ4jyjvB1IhW3Yw/uIlWEdLdMpqZEniuZsm5x3bysjPmsaSzQFvB8T9IPB6etQxHmn+6ZRWPbBkYzVDA/f1PG/bykR89xCd/toqhKE56PXlfEzniJg4eDccZeOqpp/jDH/6AlJLFixdz5plnHu4mHRCTSbpaLJHSlJSlXY9dCJ3LUaKMoaZcapIARmohq3cMM6e94FyKiZvZ4OoOiOSzldjV9JYIelpznLawi8e2l9wEm6RsIX2wIfHTj2Btjpwv8Hfej7/wIrfrGNmO2XwfcvHFyI6F6C33YUt9CBNh1t+JLe0BVUHtWYe/4JxsAnRmjkxkdxMOghBYa/AlGWNYabdQjYQhgojQ+omE8uhuqRopHt7cz4XHz8ZPFtl6PBPRIQvsHq6xfbDC8kXdWCGQaKyVxMap0eUDSRgrVmzaw+JZLazaMkBknHoaSSpWeq+OF2GRMjV66iP2Bqsi7OZ7EYVudMdiTLmPePO9YCKM8PGFxpJDDm1HDm/F7njYhWJOfiHq8V8hF16AiWoYHQKSwppfocp7sKVdSH8OVvqUQpfNsGbHCIM1TS1Oyi2HmuFQoZVbYJQyxFk4RjJ22Rrbt6kcsXsiSVxaJPnq+5P3BkLlUllLkcHYAGuc10UZ5xEarrjdayGXQxuLNoZN/VWENRk3IO85NTyRtMVmynhOHfB9V5wG0hE3pY2xqoYs73L3pUPMtj8jowp2cBOeLiGsQlYrWAPG+ggVI0u9EA5jelejB7bhdS9B5NuQYRm76zFMbQRR7KjrGQHS0lnwEm+NZaQWuhoLOt35W3YN19g1WOWsYzuphdp5EeqkpmFiOeI44RZY4wzx1TsG2T1cwyLdu550QTWKMdaF/8LQUAotvoUT5nRQinTCJZAoZZN+lBzfk+fUY7oIfJ+879Ge93jhafNZ0Fng+DkdSOlhjSFf24uNq84QMgpbnAVtC7B71yGQ2GIXtjKAMC5rw6oa0fwzKW66F+3lkaqCiAawcZmgssf1WawxtWHMzkfxljwHKT3e9fwTQHicu3gWVgh8L13OTeKFsERaMGJxHCjqsz4skYZy7CGFds/TisQdJ5pyxM8ADeMZSBfKwcFBrr32Wj760Y9y7LHHsnXr1sPcsgNjYs+AcPFSLYgUqPETMc66d0k37jEZK1i9c4R//uUTVGON1q5WObiXqKrSz7q64tparJB4vpfEuC2+7/KJPWE459hWOmpbiH/93/Eru2nVQ9jf/T0Mb0Jj0etuQ/zsb4lX34qJysS3fRazdSUiyCP+fCPB4Aa8ci9mza9d/BBXVpnEPS4d+2vMwuF5InGfG7Q21LTGKMNzT5zjCFS6rgOArQMlPnvLIwxUJ979PxM5Ygvcv7GPr925ljgR9kmL48QWAmlp8Q3l0PCV367h1lU7+OytqxmsmYy9LuUo2VPg+jOQNmu3TUwig0SU9mBX3gS5VmIDdvtK9G2fw6v1IeMRjNVuN1rpR5R3ov90Paa4AE56EfaCtyCOXY7wWiDXjvRz4OegNoDZ/giBEAgktciVjn1owx6qWhA71SK27Rmmd6RKaF3+vtKGKNZoBFgFNq5TLdzXK1OuVFzbSGR8D0DuTJfrOI6o4KETs1YZR26Mk5j4QEVhhKW7KIit0x/43WO9WARteWcs5vxRY+ClZ8zl0pPmZNcQQiA8f9RzYA0iriKqgy6YEJeI//AV9J++htl0P1JHbrepFbbYgbngLRAU0eW9eNEg6uEfoX7/JeItf8aqEKpDiPV3oXqfwOk41vWKgI68Y75rYPdwBWWduFBqBN77VC/X/eYxImOoKlet0VFl6gzd8Z4B0vFvwbjiV/9x75Os7QsxSJRJmPkCRzAUiTiRgFqkUFaT8wRR7FJ3Y+tIui6bSFCQAX7g4fs+hZyXyAWnYRjPzTJGuSyMuOrEhUzo+Eknv4TojDdhvDy20OEmEeEhwwGsCZFBESFyxMtege1YgFQRJqxgwhJYi1Ahesej1H7zj9haH2CQInD8G+kjBZw2v52/vXzR/8/ef8fbdVz33fB3zcwup92Gi95BAAQLQIJVonrvtmRFsmJZtiXHvST+uDyve/zITpzYcY8T97g/jmJZ1bJNSRYlqrJI7B1EIToubj3n7DLl/WP2uQApUixiMWMufi4B3Hb2mT17Zs1av8Lr96xFiY5AQk+TSD5EZpumrWclSlqPFBab4XXOPVcZeJzxrEkGAD7xiU/wl3/5l/zBH/wB//2//3fe9773PSsQo4+YoQoM66jCNrJE/ZohgPccW7TcfOg0LgguNJ7jIVA3vWiAofXRAlYiOltJLDOmKmqQa1G8aNcaupnB1BanFEo5tBvGasHdH8eeujf2aI/fig0luD5SzVNP72zO/YaAihSjxqXPHr8He+jzTUvjrI8moiFMRH4775ldKvEu8D0v3UZbn0Fcj577ykJR84hggidSGRCgdoqFocd5KGzNP95ygEFlo3CQErJEGDqhsIGFQcliGU92y7zssxIcaRgTI9ZEOL2P8v7PMrIZFleifI0eW41pjWOGp0mL03jroVrC3v8pylvfjxRzECBdOgGrd6E2Px/9wh8hrL4ISVJM0kJMC99dic96mMGp5esJ3tHJUkZuE7cfneUfbnmA244uEazG2aYtE6BwFhUCtx9f4LqDszR6hw9b/m+1WtgAn737GA+cXgTs12wTBODUUsGHv/IAvrbLZXbfWGx7H6idcHiuJKDYPJXSrxzWOqqgSIxmbTchSDQnGo3za/Zs4pJNKxixIM7IXnvKE/dQfel/IcV8bF2NKLXzB1GLR6GcB9EgiiCK0FuLetGPIe0p6M8ieEz/JMngBFIN8OUCDGfRrsLt/wSu2eRHGgJCoNtO0cHh0ByYKWOy01TpAjA3rDk+CFgLx+aGsUY0MhBpBjDP84bOeKYlV1uLI+pdLJU1h2crTIhAOHcma2PQOJWO0q+hral8IDVC0SgMOeew1pImSVT/MyqC9pQn1QoRmqT2rHzdl4R6iTB/fxzL4EElqPPfiH3+DxCyFiHrEiTDU2Pv+zRh5n5I2zidkV70NuisBTws7Kcu5hAcwRWo/lFaS4dwpw9Q3/OJ5fZiTKsV21aO8+OvuYB3XL4O08wz56KYkjtbAeysyWZdBHE+VLNBKfWkGZj9a4l/+TvpWbF9+3Ze/epX88IXvpArr7ySH/iBH2Dr1q3P9GU9anytk2tpa7wP2K/Riz1bBqTynhP9io/cdBiLNNWDuMCUNctVhKL2ywYsRgmXbZkiMZHKo0WDUlFDn+gTbxA6AsorqJYI1/w6su+TsbR66Hr08DT4EinnMe1JgtY4k+PW7YGij/cWLx51999jb/hzgrfLmfyZ3rmQqoASzWv3rEKJ4+DpIXmesbrXxkuC9Q/elErnKX2gXm5uPzicc09IdrSyFfNVjfOe+cLx3/7pHo7OD7ABjPKk2rA06LNYOU72hwy9w0JELzfUQh8crh40C2YEESogHPg88qU/iip1rsLZhk0ysYXKCqqYgzICs1SxiFz726hP/Sq2fwIhULdXwp63oCQlxZMSkCRHpR1Uaxo/uRG/6XJcuRBd/Zo6xEQrxUnU7P+7rxznv3z0dv76S/uogkSAm3fgHaWNPehP3HaED1x3kNiKffjZV5YFHviDa/fx+XuO8YgaFGfF7Ufm+L1PH6DwsdXlRUVtCm9xwUYN/ZN9tq3IefGutctMEiGQq8Dbr9zKjpU5Ld1QOIl/RjXCr65N6Ds/QnL1L6Bn9y3XaoIKKFvB8BQUSxS7Xkt57mvxRP2LoNoErZDFU1SrduGHJwnlPKpewi+dRFVLqOCQWz4Q2wi+xto+vmEivOCcKaa7GvAcma8IPjB0brlNsFBU9MuSofPceXQO5YXKyYPy/WWWUTO3S+cY1A58TBwOn+5zx5E+EfnjKUMD4CUwLKPa6Oj1bOWxNpAkitJaQOF8bDskJio2miRhutfi371oc1wHiO6MZ7dApC7QVZ9w/G6CrfBFH0RHT4cgONNBdrwKt3oXJCnpvmtIj92E7q4FFRDTwmZtQtDI0dvJ5prKbdXHze6HuiAc+ALy6d/A22E0PgoWVw8IIfoRaB2BOUGEykfWUeX9V808R6D0nto3zIqzvvycHPHjj2dNMiAibN68mde//vXcfvvtfOhDH+LP/uzPOHbs2DN9aY8aDyfpOloTRhUBHx5Z6zxyiOPfbcMqsA2gLrYT4jdV1tFSEVU+ohK1jCZPDNtWjtEyhtxoTKPJnphY8hYJTKQ1E12Dcg5VD9H1AmZwKj5+S0ewt36QZP4Yav4owbQJkmDbE4RzXoO7/59xp26L3+st+t5PYg9df9Y7kKa66lFaoYzw0h2ryFSgsI7xVkIni/4JD83waxuR1bV9+BK1ahgQjzecDxSVb9TdImI7gjIj33qypZgpFXP9ihsPLOJ8pEJ1M0MafARCLh6j+PufJ9RLKCVRgwABV6KbJKG848OU1/0eQSnU5FaSrI0vh0g9QA9PI8N51OwhlC2gmKfubcCvuwjO/8ZYCBKNQxOySWxnJWF6O3ZyF+navTBYINHCWCZo5Vk1phjLhIlcsTgMzBbC4QWHSETrWx9wPpaOA1C66Mw4wg48dHSFZu6GQOUbnMmDuz5fFQG45q7jlMGAeBQB3dDq3DJuIBowbV/d5cJ1Y6hm4Q+AUYqXnreeHas6ZEafaQmM/pOvvoBQLDTVAB/1GBBcuiJSRMshUs7D+W9Btr+cIFBnU2gNSjzMH4JtL0bmjqAWjkI1ROaPIN4SRKOHc6hiHnfoeqprfh28o7j2tzmvuoWVE+3YHgsB7d2y8VcEBnsqB7UNlDaOpnVnTsI0YzuqfPjg+cNP3sY1dx7CN46OwxrqoJbbbm5ZvVEimwBiCR6hXysGlaebaYYWEhVlya2HXEcAZqKFsUTz1ku3Mt0Z2b8/+O6pkbx4XSDzD+Cu/gW0qxGdkmYt6vEt6M0vxK3dS7ninLj26A56ajMi4E2O7a7FZV1k7n5kbn88rNiSMHsAvEMGp8CfJdBULVH8/c/i5g4D8fAiEudjHWIbwC4nWmciVpmiPoX3/kGJoog8ZTLw/7fGsyYZGMWHP/xh6rpmenqadrv9L5ZaeLbzmPdnpGofTm9Aa9X0rB8mHWgAtL75WpTIDXFheUg1QeF44yWryHSgXzlcgEzF3qtWHmUgTZryYCMVLCGgfOD7Xn4ur7tgFbgaVS6h7QA9mCOoFFpTyKHPIdUSyha4bByvBbnk3ejpTej+CZg7jNQV2BI9OIWfP7jMBYZljTeMSljXFrZM5LhgqGpLohslNAkNBz5QWIv1jtrW1C5S577WOD+W+1FY1yRTLHOwCxepXL5xS/TeoiXw3a/cxaq2MF8G7puJ1KlUKb71BTtJ0gwjCgYzJA98Ae2HJBLdGQMBb0uwfcRV6KM3ofdfC72NyNqLsGsvQZIMXAnlHDKcRRaOgR2iBjOE538n6o3/BaM7jCB9gkdd8R0ke9+JvuAbSV/+4/jxdYS5A6zNKn7lnZcy3da8/fJ1/J/vfR6vPH81ZW3pV4H5MjIVFkrLUulxwLDylA12oLJhWffh4UZxxFipKxuX7uXOz1czMkKIhkMHTzX9ZiIVcrrXjlUUaF4v/u7cKIzWsYTfvLpSCqNgRTcj1QL1oKF1+jN8clviywWWNQSKxficjDjm4mHX67CTW6Dsw/AExnTRO15FPbYRtetVhDQjSBfjhsj4uvjyroRijlAuYPMeNuuC1hEkd/xmzMHPIa5CHb0ePbuPtHmOskQz0c1YKi00zaFh7agtFLXF+UCSmjj35IxG4dmJb+0dn75/nvtmhtEMK8BCUcXuWLMxRhBdVBksa0eWpsvjtlTHZ6STKCpr2bupRytLKayiZQQtgdwogoqMjVft3kCiwhmHwqY6EVzVgD4KlK/IT90BzTWHbJL8rb8DK7aTvvjfk7z5d3DdVfgkwbdXRByByem89MfgLf8TkTQmF0Fw9ZAwfxC8xfVP4p2N9xMIriLd/wmY3QchOnwKgQ1TLTLdYF1srJoMa7f8c87HMqL3MdkMZ03iEdvquXjs8axLBqy1XHTRRVRVxerVqzlx4sQzfUmPEiEqdYWRP1+MWNqPVKJEOwI6lsk4GzFLIzUsjcCIZ+gCHk9pY3vAC8uSuYlW7Nm0gtVtuPt4jfWONRMJqY5iLgaNUVEXPFGBPBGCt4BlTUfTTQSCi20CG2l1ZW8d1fh6WDyO1wkBgzJJBP1MbMR31uJVCh/9CYp//q+EumwWaQ/imhNf/M8DqYKdw+vpXvc7gKOynkxFUxpUNHWpveeXPnIdX9p3gqKO/y7sIwuIPKZkAPhvH7uNa+8+BkQg28zSkM/efZTK1xTBU4eAczDRStk00aaTJLgG3AcRa7FhIiNTDqMC2EirVKJQSiMqnmSdLXAn76Ke2Y8U8yTzRwkKVJpgeyupJ3dA8DgxuM4kKjjUYBZm7kVNX4CZ2IJSatmkR4kh6axGd1ah83F0by26twY58Fn8x3+Bc1a0yLKc1b2cnasm6Ka62bQ94mpWthWfu+8kf/SZ+/EoPnzzIf771bdRVMI1d57mf39pH1997hodSD0uBKrKUXrwyPL9bZZyArYpXcX+7rCOaYxpDvETLWmqEh7roghPQJGZ6ESoJLaQkIDoyOc/d7rN1NxNLH3spwh2sPxa4Bne+NeUf/FOQv94rDiVC7jJLTidM1yxA9+aQLorUKaDFKdRpw6hkjYqHcdObsNNbkXQYFJ82iNMbAWdIAL13VcT5u6nbk/gTYroJCrmzR8hlBXB1wTvIrVWINPCWKZZ0c340t1Hm0qfiyBN52Jv31nyTFG7uplLD8YOQEyS5voFgyq2BJz3LFYOgmOEVLBOAE+QQH9YsG06ZawleC0YHUi0opUanBcmWwl4x1IZyNMEtKKdKASDcEZ1sHmA8NQQPHU9hFCDXYrNSRGCSlCxqUAysQWjc0xnNXpiE9XYJoJKooKjStA6QffWo1efR9CGuMV4/Ol74fR+6vY4bjhLsEMIrlkHPcpWuC/9Md6VaBr31MwAGld79p3q811/8Hn+w19fx1JZA66hago+KOqHcZF8zpvg8cWzLhl40YtexLnnnsvk5CSnT5/mwgsvfKYv6REiboD9ouDa/XNU9YPtP5a/K0TZ1bqqODj71dgC/xAuvG0EY2obPQlUiHx+pRTbV3d50+6NfMdLt+NdzfaVXf7L2y8hOfZlnCvRyqLFw8y9TPoZploBe+Q6cJbgQ0xYfEEYzKDcEL9iA8m3/Al61fno2SOw9Spcewqf5ASdQj6O2XgZYe1u1PxRzH2fgJN3AhpVVeDAHroeXy7E/isBrWGdO0I2dxe1QGE9aIMpZthWH+DQzID7js1z7/GSI7NDShtPEI+U5T9WOWIfAnefWODYwpCAUHsY+oSvHJrnc/fMUJVw84EZvIPve8V5rGin0ds9jNgPUQ0vNdEgJ96EotFdcGjxy1LOYvuYwQxy+nYYziF1ETcBUSTdlaRv/W2qlbvxaQ+389VY0QRqwnlvRG97EXrU+W6Aig/6oKFeJT10vYQ6dQdGQVcJqdJnlfHjEX4sS3jXC7dRFoG5hRovni8f7LP/VMXAW+arkoPzNTo8fOXFaIMNEYNiGw38+0/M8cBcH0WsFgQHNx0+zezQErxnYCOtcfvKFgJkSWS9OB8rEcH7Ziwf0rMOUfBJSeDNl2/ku84rSA98kWo4gzv4ebyPev3M3Q8n74i4i+AJtias3IFtjZN803/Dbn0FIW0jOqee3hIVB/Mc8nFab/0t0h2vaCg1Br/pcmTt+QSdELTBLD5AOHJjRMerlNp0CW4QZXftPLiy6aUvYIIlM4pWoui0c44uxqSxsp5TixXOO2aHNQulo50Y7j6xxO3H5rnzyBwBGhfGGNYFhpVlUHgckeI6shwPxIS/X8OXD8ywVDmOLw35wVds4z0v3srKlmbzVIbRhlxrJDhaiSJVICpWBDSeTq6Xx3oZdx3i4cL156n2fTLqNCiFroaMcD6ouL6okceINElJPkVyxbcTdIokOcHkoBrQpzIESWLXTKfI0lForSRM70DPHUS5gvqB62OLx1k8Gj9/hNA/jj9+GxIg1wEfItbi1FLBTUcXuOPIYqTGopeNn0J4sMPo41kXnosz8axLBm644QZEhPe85z38yI/8CL1e75m+pK8Rgdmh4/evPch8USA8ZMGVCJLXGk4PLX933YHln4O4AERhmLCMGahdhAhGXfIQ6UFaaGWGPIl+72vH2ngRxluK1TKH+8h/YMLN8La96xhrK9LP/hLfueZetprTyCd+BWUHyyceQo3rn4zJh8mQiW2otItUQ/zWl2HzSSQfw5s2krVB50jSQwBz4jb0vmvQ3qPqPmIHuH/8OdyJO7CNNWmCY5I+iSvIXU1pPZkSzL5P8k1Lf8OHb7yH373m/ihCE+KJKQR5RGXCxy5HLASlKFysyljrMd7y0VtO8AsfupPZ0vNrV9/D8X7NZCdFK2gbaUxb4slMCUz2ct5y6UbGWwnYGkJNwKMlNJiBAHYAOPzSDMEO8SrBqxxIqMsKGd+MSTO0Npjtb8DtfSd1exqZ2IqYNHpGfM1QeK3xKkVcTVssb7xoHRsnuwjCxZunSE1UqdTGsKZj8FpTKwhec2huSC2CrTweg3gatP1DXiYEyqrCOig91C6Ow599bh//3xf344n97KEN/NKHbuGmg6ex3jcU18CejRNMtLLIH/dC7SS6+4kwlhvyRmJYnfW6WkXQYSdJ6NjTqOEs6vCNVB/+SXxDG9S2QNsCW5exZOxLwpbn09/xRsLkuYRz34SsuxyXGOzKcwlpB7IuSkD3NqGSLhBiAtCeQrdXIusvxqa9SMW973PoVRfiLnonZD2c7WNthVRL0Q3R1STDGV6zey17Nk2RKc0FazqR/hYcJxaG3Hp4CYvm3qNzHJ4d0k407/vSQX757+/gf/7z3VgPZVU0WKFIt6ydsFSeQdFX1iECl2yaoKsCR+YH/Oz7v8LJ+QFLpWPjVI8V7ZRUKyZSIdWBCzaMM5FDK4FEa5QSUhMliHstcyZZFGJVkUbw6p5PIH/1LsytH4C0Q6irWBXSOV4ZnLO4+uz1K2JNdG8dkrQhbeF0HrVLIOJLtBB66whrLsaXQ7TJSZIcc/LeaHj2sZ/FHb8NQkD7Eh0s4f5rWPml/8LudRqjEyRYSiexYihRenvU2hiBjT3RAfPsUstzcsSPP551yUCn0+HXf/3X+Zu/+Rve//73Mzs7+0xf0iNEnLHGKIZWuPnIIg+y4mwAU9YLiY6n+8I11LTm/7PDis/fdwoXzmAGKhtItaZuug5aRbGOdqLQRqEIjOUZSoSxLI0l6LpkRar5/lddQEcH0qVjvOHCtaxoG/TI7jjYSCXy4BePgq/xug2ikaRLMC1k494owTexEW9yfNZDZGTnGx9L7S3BpFGQJMSkwC8cxN7xQaQe4ETTkTK6yDWnqN78PXD8JhI/4MBszdG5Aaf7Lsro+ugbf5ab8INCa/0YZUcD+EBRW8A3nHBhsfCNxoNQ1FCUPtqtNvRCP7plDWp/LDP84Ct20V28C3/0JqRcpN7/WUAQBW7xKP7ovQiKMHsU35/B91aCTkGEVquDFsGnY4hOMZsuQ73uPxFW7oybFo0K29eeVsstCZzHKOG7Xr6LtRMtQLhi2zTj7QQk9l9bqWmU8+M4lFVFZT0zg+g4aZfd9B6cDYhA3mrhvccFv6yQObRwYrEkNFWpU/2CB2ZLlsoa6yNoTvDsXNVjesKQK8H7msIKRR0ZHGM55GmCVhLdCQEJCtNUBiIYtY5KgoMZTL2A9hEsp0YyzkdujGUJV6JX7SZ5+c8R8inyC9+E2fI8EAVjG7Bpl5CMxnb05jRBZ4hJUUmPsP2VuKSHSnvoUKJWbKX1wh+ApIO79xrk9L4ou2stui7RS4d511VbuWR9l1TDeet61E1FpArCyjDDJXJ34xkB7RSWHDwwV3NwtmSxtGRZxhf3neTuEwuNw6CwVNWoENh3fJ5+WWOU8O4Xb6OVK2aWAqcH8Jm7jrNYBHITvRm0DnTyjEzDxVtWsm5Fl26WkJg4lplRJKLotfNlRL4WMK6g2vcFpBiilo5i3BCFx3VWoewAULix1Xil0VqTPOQ5UwRI2ohJcUknlhtGJYdGh8N2NxLOew1huADGIGkP7WuUKzHFLNgoZ06IZlLSP82KMMtLzl3JlsGtjNsZfLAUdXx+Iw4rvgvXtAYcNMnAmSfnOWrh449nXTKwZ88eXvaylzE+Ps74+Pi/+FKQUYpBHXj/Fw/xoEp3M2t9CI0GAGfW4qadeMsD8/zKR+9kUJ95CGrraGcpzsb+rRZP0iz4JkoO0E4jY2CsZVDS+JeHGoVHyj5qOLcswiI0cri2iqp3CDJ3AFyNN3l8uPMxSHN0dw3hsn+HbHg+csm3ocbWE1CIzgim1ZQGBZd3cVUJLpqY+AeuI3zs55D5I+xe1+XiVSqKm4QonrLx8N+T3vAnWODkgufWw0vsP10sy+jGpOnhx3ckOuTCWQCys1or1p/VYvEReBVQVC7gRUdKW3MvoqJZc6ICEhPRm0Hiwvf8nSvJG+57uO6PkOt+H1UsIP/8q7TKebpKwYHPkd7/T9jE4A5dg5y8Ez+1jdGONxgMIihzzR7QLYIxaJ3AJe+GTVctI8cfqTawvNhJFJIJrgJXRle5phed6kjhDAiJFjqpxsjZIEHNzFLFnccWgHDGmKoZL9/8SYDBYIhvWBa2McRxNjA3qCFEuaa7TyxwesmxNLS4wDInvJWlvPPyDexav4KyhqKuGdqAs46xdk6exJOrjEyfJPLehaZ34B24QVRadAW4OtI4fUEINdXNHyTUA8TWoFPKskQ5i4gmSDSE0mPrCM/7HlR7xTJyPzIOFKIMYnKCKCRtoU2K3fEKghhoTxFMjihFdu3vkB76Ato5Qr0YtTgWj2HqAV3jyUwgT3TTuhOCD1ypbuGHkw+QuiFBaVqJx1rF8cWSO44tsu/EHHODit+6+l4+9pXD1NZReRgWDkHxmbuPc2SxYteaFrvXdHntBauobMls6fmVf7iPUwMwWmO0JlGKVpaRJmm89xraeRqBuQK9XPO2y9dzycax5fmzbqLLt146ReeTP4k7eRPM3hcVHgVCZwVSl3gxhHwcRGOtfQhVr2FBTKzHXfJtmO4a3GXfDflk/Go2hbvkPYSLvxGfTpIUc6gkYjQiu6BGV4uIqyHEaoj4inowB+Uiz1/f4lvkg7yguhYngbnCR3GsEJYPRqN5Zl1gaVg96Kl5TnTo8cezLhlotVpcf/31zMzM0Ol0Hr8u/dMYEiKKN9HC0D/UlTs0AMGoay+KZQe7mBdI5IR7op1owymurKeTQdUkDKIDRqV0U0WqFQpNK9W0DIznhiAeFTzVl/+K4U3/h+qT70WWThDcAO8sBIuyJeFjP4Pd9xkIHjl1IC6+OkfRJAMmRbJJ2pd/B8mKneTP+y50d01MNpTBTmwiJB28KFw+QbjlfdR/+4Po+f2opVPouoDg2L56gj0beyhfMSwt/3TLETIqxDtMsCyVjsrFDb2sHNYK1nv++gv7qR6GUaC1xiSGX/vHW7jz2Nzy5z2e2X6fX/rAjcwMSlywDRAxLhi1tdHKlkb4OUS6oXWW3CgE3cjiRhDVitTzuovWkyuQUGPnDiHDRSBghqeQcp724t1w7f9AvMKNbSU7ehfaeWTVebi0B6go76s0eu15+CRFVIJWCa09/4Z07YUoiYZSjzKzCMoQJCVUCxQf/0XqE3cy/NzvUt1/DYmAUVG5sqs8W/b9FXu4a3kj8ALHF5dYKGyEd/kIBjwwu8Avf+TLfPnQDL/9j7dhvaXVbgx5gqb0sapSuhGyPZaYC+uxwOwgVoN88CgU7RT+7fO2s2Uqw7uaqq5wEuWw13RTuqlBAakEchNIdGhExKKyXkSil4T7v0hwFd4PImzR1iBCcuJ2qn/8WcLMPsRktFsdlIoVEY/HtiYJ3dVkz/tuJB07e/gQIKQ5SudxtJMxxLQxO19L0BlhfBOCjwDDIECAagn1wR+G2UOwcAJ74PPsue9/MplU5InBuYh0dz5gvGUVc4j3GIF2A84dlgEkgkNbWU5hfeTROx8T2zpShyufUFY1l21dycapDm+9bCtGK5x3lM6TKRs9NJSQakU3U2SJJtGC0UInM0xmgW5uaKeG73nZBVywdmJ5bVnZTfm2522jXS/hP/ITcNc/4BFqMx4Tp1CDeEJ3I3U2RZIa0iw9U7OSKDWuxzaRX/EedHs1nSvfg6SxbStJm9bLfoL88u9B0gxdLYLpIDqqYihfI3WNsjXBV4j34EAVc2hbsHuVYdeE5nJ9L5mvOLlYAqFRcmye4UZjJTjh8OlBI4R2Zl14vCZb/9rjWZcMfPSjH2Xv3r2cPn2ahYUF7rnnnmf6kh4xQnPSSbTCL9v1Pji8DyRKoYQziNjRCUZGq1bAOUvtPGUdaCWRd+uCoIll7XYaHQERYfNUi72bJ+i1c2hsPtUDX4L7PwkHrkXVBa4uo6c7QHDoB76IHL0RxGCqRsdda0AgH8Nl44hOQdSyAMxIbtgrQ+hM4UyboDT0VpOcvge1/x/AVdA/Hk+toaFeOYvyJc47js0NScU14kmKcvn0IZTWRR6xwG3H5ikfBjjgrGNxUPLpu2Y4fHqwTJECmCsCV991ivlBibOR913Vse1Q1VWDYo+I/ZF6oBKWrXKjPa6iZ+CX37GXSzauQETjbYVeOo6yZeyc2oJ8eILJxXuQUzcSRCO9VajGTlfteAXJ696LqIR+vx8vz+T4pB1PpxIdHZWcpW74iGT+Zk6M1PTqAn3nR+DErYT918Lx2xClmopZYM+GLitPfo7NHD2riCqcXAoYFTHivqFonVws+OQdp7jjyDyf33ea2styZcAF35T4HYWL/O6ySV7rhl9/fGEYW1pNCcxoaVTuFH0bKJvelpHAd718B2/Yuy5uaFr4uTdfyPe9ZCsJxAqAD+BsLCsf+QqqrvHDBbwtcHURJXT7JzE3vx9dLRBMxnBYNCp9HqU1yWvfS77jNeiHDF/zdMYxNHnEgyQtRBuUThCdo1sTOJWSnPvyyJ9Pe7i8ixy7BZvkuKmNcPw2ts1cwwYzR5ZEG2nvaxaqGhNqWqFEbM05K1tsmOzhJfa3pZmjS/0hw8rGikDlcVhqFRCJrat+6Wir2H/PjSZt5msgoHS8x0ZrEq1YNZaTm6iRoYPQzQw/8+ZL+M1/eylj7aRZ6Js2SYDgapzt431FcvwWzNIJgk6Q1/0crL8sVmAAdf5raL3ypyidoSrL5eEbaT7okRjUWX+O1i5RUfJYmSw6SZoMSVpx3CG+hi1xdYEDxJdQLSG+Jtg+Us6xQZ0go2ZmKeqmhLNaps43UuJBWCpHrq7x9Z+rDDz+eNYlA2kay4FFUXDPPfcwNjb26D/Eg0vHX+vjyQ4l8WG17qttfiEmA0bFjdU+xMgkbtSCFcVn7z3J//j4HQxqSytLqW0UO0m1sCKHbq5ImhJrliRsmkhZ0UsQ5+LDFSLHGUJEYNdlFP4IHoWNRiH7PoOYKEbiTAvXmiaI4NtTVONbCPrhRTyCNkjew5kMn3YJ4+vjQuFzFB79wJcRXyxTiYK3aCyZDigVaGnXAJsCy0hJpPGLj6d279TyIvCg8TW6ObF4ytqeGb2G4iXEBfIz95zg7uOLEcAWPLvtbXy/+UiENSohS+N7U6pBeUts8UQGhGb7qjHaieCRptUyGxf1EFDeslJmmLRHEK+osy5+chNhVP5uTaImtsW/tiLCnnSMqruRIE+gzRWAhjmQlPOYcoBeOELsmUa9hpGg1HgmpG4AaHIDbRPQwRE8bJhIMeqMzG0d4hgPy5rSxz5uu5U1mAHHx24+wU2H5qmc48uHlviTa+5tEiuHMcLxhSF2uV0Txz2EOKZf2jfH4XnHZAbjLc2miRZTnZxUK9aMGS7fNMnOtWOsO/kpys/+OiG4yB7orMFUc6h6SPjgD+P+4m3o+6+hHN+G0wnK17G8bXLyPEcptbxh6omNhHzirCfqTAhCyCfwrenYXMl72PYq0Alep2A6MdmdPhebtHBJG5ePA4IfWwfd1eAKOvT5ttO/RT5/N84HZoaB3/joLdQuyiKXPtBKFFkWmSmmqeh5H0iylNJ5Ds8P+U8fvpnCGS7iPn4q/WtsscS1d59GJ4bIyNCkZ7opaBV9PkZtgk2TGStbsaa0op3QyxJ2TI9x4fpxjESlxHhXAs4NGf7DzxNu/t/o8jTeZFTdNbEtsm4vdFZG0KBpRcDl1GYyk5A9QREfMfGE7nVCSFoEVKNDoXDFPOU//xriGvpoPcQHh6/6qLpPgkUk2kCHIGet05GdAqCUp7QRAzTKVp6rDDz+eNYlAyMFwttuu41er8euXbse08+FELj55pv5u7/7OxYXFwGYmZnhfe97Hx//+MefEulKIVYGUh1LgSH4r/q6A2goVs4+OBGIjsQK38j23npknmFt6aYJtRcEz1gr51f+7aVsn84xxi8LCv3QK3fzxt1rgTKixV2BlAXiBZRF1UNwRTR4QUXp4rKPT3p4panP+wbSV/0sohKSdReTvfE/I/rhADmBoBJIxxGtcRsuwaw6D4JiRKY0VRH7gj6y2cWVtBXsWDPGzpUdrtjcIwTQOJD4gOvgqKyjalTX3Fl2zWeH846iGGKtZ6l2BKL7472nljixVFEEx1cOz3H3ySX6ZeDQ6QGH5grUwhHOV/cDYZk5EACjXDQcAlKlInpdWxKlo6LbzF24hcMRvKQMQXkEx/fuTXnxisW4+1367ZgrvoeQ9ZqVO8EIINK0tQJh0xXkr/15eNgxfQyhE7xIU14d4oo5EEs4fYBQLpCYOIdS7VHlAhOp5Te/eQ8/uteTUyMEJjs5SkVDGxCqOrbpTw8jz90i3HFoJooVec3MUuDEQoV1gX7lufP4EgEYOGGylbJUE+1svUfE0Z29m+AKEgksFJ6pXPj9d1/BH7z7+VEBD894lvDL77yUTZNdXrxzmu+/Io9JqavAeVxnIpo9hZr0xO2kBz6LLueR5383YeNeBI+kY6h8jKqqCD62KDSRG6/hYZgSgoghff73oy56ewQlrjof9aZfwWe9SO9J0njrVl+AbHo+mATSHk5yzBXvhtZKfD0gcTWbB7djDnwa7ysemBtw24kSIzExdc6hXcHK4hBOCU415kIB+oOSoQvMLlXcciwCMtdzmleOHWKilTA3LDFGNfdRQZoz2Y7JjpZYYTFKgza8+sL1/PgbL0YtHOInX72el+2abPbGCCSy3mKPfSWKirkKdejzyL2fBF/jtr8GedOv4dMxgk7RO15OveJc3N5vhk2XoRC8dzGRfpwRAOmuigZHOo1A5EDjQOmRap7s6I2xohg8MpyLVOdqgFiPCVHBsnFgwTb4FYhiYSKKDdOdBqh55iZ775+TI36c8axLBlqtFnv27OHSSy9l165dj9moyHvPvn37+Ou//mtOnTpFCIHf/d3fJc9zbrjhBj796U8/yVcaN7FMCeeuyPEh6oUDD6oQBO9JGuewOrgzB1tYBhy6EGl5pRXKqmSqk8RSfVC0lGL9ig7aJKhw5pQ52cvptDPExV6lqgeYcg7dKIKJHcYFl9jOiIiEgMt6ONNGTZ+D6a6Jp9ukjemtjejsr4qIfgx5D5nYDK0JJOsusyUiIqnhxzcnaVwELXYMdDNFO/G4sXUPMv/xoqm8RAS70GjbP0xlQBReaQoXVRdB4xF+8+9v5+pbDtMfBn76fbdw6wML6ADX3jPDb/3Tzdyy/zSIwgRHoqCVRklepRpVPFhuHWitYrUgVPirf5H6zg/gdRuXd1BeE0hZYQ+RDE/E3zm5Dt1dCSaDBpUwiiiR6lFJCzOxma/JHHj40W7+0gAImzYHwzkS69A3/iF63yd5ydZx1o2lJCa2Ei5Yk3Lp+hZvnfkTLpD78UTqqVaCb1QirXWUTjGzWFB7GFQ1v/6Jfdx4cJbUCONtwXq3bNxjG2OsuraMtVOquo7YllAx7efY+MX/lzB/mFaSokVx+Y6V7FkzzsapLlonCAbRik0TPbRRtNKMFTmowWmwVTTN6a0FMdRTWxvBI4VXBjW5BdWZjviA3mokG8M0VS3gIdoMZxwVliWNAd2exrTH4j1IOiRjq8GkBJ2jtCbgIcmgtzYCZFsTccwnNqFVQKqY/KlgyW79W9J6kU/ccpiFMtAKBUJUumwdv4ndt/wqY65PgiOV+GyLUgQHi5XgQ9M+EMhNIDPxiruZATxjmeHNuyc4b1WbXCtesm2CltGsmUx48fYxxjLN2q7CffIXmT52DVmWxY1Y4qGBYhb7dz+EO70PvMPUi+jDN2KnzoEdr0Qmt6FUitY5KushWTc+z6a9/FyoJwTWFuitxKddRLUJeY+gBK804JByAWNLQj6JTzvI8VtQPiBVP0qbN23QEb56JBnuEJYqi6CZ6mjqakQjDMv3/4nIlP9rjmfdaH34wx/mxIkT7N27lw984ANMTExw/vnnP+rPaa35hm/4Bq699lpEhKIoOHToED/6oz/Khg0b+Pu//3te+cpXArCwsMDMzAxHjx6lqiqstVhrMSaChJQ6Ix0sInjvUUrFU4DWzZ8K6z0a4aU7VnDTZxa4+/gs5053UMpw4HSfVEtjViJNTzbw5QMnWSwtO1ePUZQWxKGCoqodpweWVuLZOD1Oy0R/81R7lLM4Z/HBUh6+ATW+GW9aBG1QxVzUWa9L1HAuagkAYTCHXZwhaXADofECtypHqRaYLjiLq0qMMZGXr+PpfLTIxvcdHfNC0oI1FyHz+7HOLfdpQ1AgFu8N/vjt1GPnEKxDeUciFoLClDO4816PXPelBjsQtesHZR37zEGonWdQlpTpmY1VRCiGQ246NMtiYVksKoqiRERYqDzJUoH3gcorTi1WBBFqFHecrLgUS9II7eySgwS1joOouPAET7k4y7lL15GxGk1KbWts6XHFIKrR6QyfdQjFLNoPCfPHkMVjIOCkja9rRiK73lqKokJrzXA4pN3tElwVNxzvlzenKE2tl+faI845ArYqETToBFyB759CXB0Bi4NFvvdlOzm6ZEnEARWv3t6C2Vuoq9PkDBEc7dTEZMAHyqqkGBYU3nF6UERQW1WzWMGphZJVScHu/Dj3ndjIyaWS0LRxqtrSH1b0csNiMeD6/aeogqGDo1Wcppw7xlRrJ1kivPOyjVEToPaUDYsmultCUIrgPAzmSaoBVTVEqgI/vgqvc+qdr0au/1MINagUm4yj9BgKoW5P422gLEu01suYhdF4jp5La+3y16VRxiTEMrPzDqUMto4ufb52SG0JNkA2AdrESg+O0gYMBoohJlgCirYfYL3iZN+igiNt2BsnF4fkfonVcoy21PS0ZWvWp6orimDxXji5sETdVLlVCKgQonwwJZvK26mL1Rit+LFXXsDPf+Rm7j9V850v3YXCs7GX8J0v2o6tKsLCfXD6HlzxPKhrSl9jtKG2FlVZpBxSDecR3cPYEoKnOu9N6AvfjpvZhxZFaQOJUwQxuJAgVYUVoSpL6romTVOcc8vzczSeX2tNVLqDz7p4DGQrMJLgtUG7IeH4bfi6wrdXwvgastN34qWLXziCqfsYFO1cKL1Qu9huveHASV6UrODw7JBECnaVD1BXF1NUJUZU447pGQwGtFqt5efn4a7z7Pdy9rM20i/51yRp/KxLBuq65hWveAXnnnsux44dYzgcLj/cZ58sHy7OriKMbrJSijRNHyRQceDAAT71qU+xf/9+zj//fKqqoigK8jynqiqSJFmmYymlsNaSJAllWZLnOUVRkGUZdR095p0tOTjr+L1P3s3/+/qdZK0Wf3HtPUzmmtWTLXqJ5vJNHY4vFvzU+29k3+mK/+c1uxhPInVLBU1pHftOLDE3zLhoU8J4ppgvbUQY25pLN3YpJj3Fx34Kffl3UW96MdoY/KCk6yyhLvDDBXA1GoUbzlIduIkEwXbW4DsTpMfuwUqCkgQkh9pSFgV53qIsS9I0xVq7PI7ee4wx+E0vRrXGcB7UxFZsXZGgCUmGO+flqAeuQy8do7rhryjXvpjcFihnUeLRwzmcnYXuRjRfWi5VKTwzi0MeOL2IEHnE/cGQMj3TN9RaMz8s+JNr7mGmCAxLy2AwwBhDZR39wmKbasSppWiMIsA9h5e4TAc0DpGad/FBPj+/hxt4CZnWKO8pD1/HGw79On/Oj+H9GmxRUopC2yX8fI1KMkKWInNHCEpjl05ihnOIgA0aS465+J1QD6E1TTmI7oyDwYDxqqKqqq8aT+fcMiYmy7JHnHOiFJacZO+3wj3/SHr8ZujP4Z0jDZZ+sYSqS160bZyVyRB9J9iDN+Bv/Ri67rNzVZfPnDT0kgRREk2bhgULw4LKWub6NdZZ+rWjDpabDpxicv523lp8lJ/+4iT3DTOCKIraU9WWQVHSM4o7jlj+n/9zGzY4xqRG+yHF6UOs2XIeb9+7knVjCYNhSZ4q6rpAdNPLCB7RmrquycoiYlnKWVxdEcY2U+79NmTbi3CHrkcWH8DtfD1lMkmmM0I6gd/+CuoijuloAxot9KPxHD2Xo2dda728KejmtdM0UNHCXPhm6pCiqgpXOdJ8DKUMYdvLKTrT2Hx1ZNkMFiIoVmJby3vP3KAiFucje+jzd51gj3jGTcWOSVi/eD0vd3dQlS+msBFweHQpVixSJRhvo5kPsF0d5fwb/4ri3F3QnsIow5XnrKSXp6S+oq41VRHnUVUXZF/8Y5JjtzDY2cdXlrqqyLKcYVnQatgztixxskjHWcBhyRHrcZJhd78NGxLERiVFay22KEGgKqvlcXy4dc4Ys7ymaq2pqurMHDY6SkFLwI/vQC76ZjhwLWbmPtQ9n4jU3iTDpeMQEkQc9Z1XkwxP0krX8S27V3FCpvnHWw5zZDHw3g/cxm+98yL6g5o3rV/im0/9L65e+14GRUWmhLqOz9RwOKSqquW1a3SdI9+C0X0/+1k7e52z1j6XDPxLjl6vx8/8zM+wYcMG9u3bxznnnMNtt93Gu971rkf92cFgQFVV9Pt91q1bR7fb5cCBA9x0002ce+65y9934YUXcuGFF/L5z3+ew4cP0263abfbAMt/Plx0Op2H/Z6Vk2MYPEfnK9rjY2TaUGG483TJycoz3sv5xr0b+P1r7sY6Te0MRRVYM9YCIhWstJYywFzh2LRyjMlWwsGFilaW0un0eOXuMUI9oL55gAkD2hMT+Ln9+IXbEDy6HjaKdUO8MkiwtGUuGt6s2oXa8iI4/rOknTG8XSSfXE3S7tBpP/x7Ojvs3n/TQLbiacvd/kHAUearSF778/iP/SLq7o+SukXy8TG8smD7bJ6/npPVOMnYGMn6C0Hev1wOzIzwwHzFibN8qDrdLr1e50GvLWmO0i0IFYlWTExOxAdYGZwagaYk8uIB31jqRmuo2JNsh5JdYT898xJWdDLGu21MyzAIAxLlqNOM7vB+ct2Kp55qHtI2dFYQjt5CyHqk5Ry4EqdS8vEpZHI14RU/1dDvNG3iFjE9PU2n01meKw8XD51rDx37QMB3csIr/h9s/yQcvwm9dAQUUdQp8ejeGG+8bCzKu35CoctZ8ENSP+RtW+b45MkTrBrfEhX/QmBsbILFcBIfFPNlYGAV1x84TY3ixEAxHQo6YY5T9ox8kVKKVp6TZRmdtgMVsFWkG2oJmOBpz97G5N638FNv3tuICTX89LKmeuB6si3Pj3oLeJS3lNUpVDWPv+9qzPAETG5CX/V9kbJ65AbCA9eTvf4XSVWO763GrthJfum3kKQ9lF6k0+l8lfbIaPxardYjjvkoWu0tuNU/jh7J9HWg6owjOiPd+3aC/lY6pLjb29iFGkbVBfEEV7NYxIQtoUZCTek1KUO6ueWqc8Y4+hVHJ/S54WifF5yzikuSe/mKnWYujNHOMvLKk4hDKaHdyujWp9AnrkNtvgrT28Bb9nZ4y96NUUvBDjEH/glZsYP2qvOxdtC83xa600E6XQDydhsWKyyWJDXoTopVGp9O0JqYJml3oLMdWfMjiBjEW+osR3W6pONjCFCWFc452u32I65zZ8fZ3+NdSd1aQd5rkWy+ELfhvbg/ewdyah86RH8VNb4aPbE+riAB9PAEXhKmEs97djmqdEB991389eIWht5w3aElZirF91++kslPDfCimOy1URK3tFGSffba/bXi4Z61qqr+VbUannXv9NWvfjVXXnkl3kd0fqvVekyo0RACH/3oR0nTlA9/+MO8613v4ju/8zt53/veR7fb5d3vfvfy90oj1HN2PFrV4Wu9blXXBCUsFYJ1kGnPsLJ84s4ZvA+89sI1JFqg8XTXwTGoa+oAKkjkcteR/uXqgpWdlCu2T3GiX/ENe1aigwU04gp0uYgvZjHB4+75OP6Lf0biS8R7lFeEUGJbE4SywA9mkR2vgnVX4lduolx7ESUKd9G30l59xvPha733EAKmscCNBWyPUwY7tgF12Tshn4bzXoc/cj1YS7DzYB2mWuBFp/43+3kTZD1U0iZRAUPF87atZaKX8w83H6ebwdrJnMGgoHbhq67Fe0/hLEEcdYjIax8iffH4AowkBJcKy8aJFg8slPFUIBFdoIA8lFyq7+almzJecsFGEqOiKEoIdGXIUIG58S8Jq9ajXEUo5tH5JP6CN+MOfjG6EA5mCa1xqgu+kdb0ubHCIYYzkNB43WeDmp7InIqULNCiAUXoTEb64un9kY0B+GoxihEZgw7ggyNUiyS2IPiSbff+Oa+U17Gm90JecM4Ew0rhCdx9eB4fPHMDz8yi4z9/+G6cQOVLzh9voUqDqwu2r+xxcKakcGC9w3pPnmlSZVhUNToIJjhMqNC3foBw1Q8g3bUNmK0Bf52+H3f1e7Hf9lfoVBNMQnAFcuJuxA4wV/8iQUFIOogYFBVOp6i0i1YpAcG3xyDLUCai3Ou6flAJ+AlFANNsKJ6ACh6VT4AycaNUKQTBqza+WgAfcRMq1BQ+QFHSa6XsHDfIbECCI5cSCTUTieV4UDg0f/q5g6ztaL5PfZDfVy/lancZLQN5I/mbYhlniNgS/8n/innRDyKXvfuMQBON2uVHfwa54BvhVT+D2CriA1xk0UiT0KgQzaQkBKjm8baLb03g9rwDs/4yREKsdEga740o3O5vRq3ZFcdTYrVlhBF5PGMbCIgKkPcQ1QIRDAlWt+LBQWvs7rfArjeCTrFf/gtUXaD6c5FurTT2K3+JqQu+o7yPj4Qf5bQb43c+fh9GgXY1JpQsLc1S2orURNBo8GfkiJ/wXPhXFs+6ZOArX/kKf/VXfxXlMZOEH/qhH2LFihWP+nMiwtve9jbe9ra3AXETW7duHeedd95TPll67TZaolubDwGPMKhDIwMrGImSxFUQbBCCCIMqWp/SYO6WSvBoglH08oTLtk1x19El3nSOYvhP7yV/xY+j6j7O9gk3/AUysQlli+jl3vTGfajiwjC2DikWUfu/AK/5JfSeNxMQqj1vRo4coHvZu5B29zGNy/L3hObEikJ0i3pqG/mVPwBJRrjwzYSv/CUcuYHqQz9KeupuhEBCTZsSpVOC0iQCTiV8wyXraWeGf7r5GGvGMzZO5Xxx35D6YQGEgqhoxeybnTIQ2wr7T/QjMKsBM16+bYLTtxyl74naBuIhRCDetMxy1Vp4y+WbQTzV/Z8l8QXfm3yET+ou2g1R/ZPRlrhcAGVIdr6C6rpzUNUQNVwgdNfQeun/D0bCK6PTZRMhhK+b7iTxFwMxYVUmwZkWyoUoAS0QbvkAZTDkL/txIgsroMoB1H2Ud4RQkohlopPxqvPX8bc3HcYjlK6xzh0UCIEirv3MLg3YuGUccySKFF26eYrjs0e458QSf/Ol+3He0001LdNQCkPgQnOQFkWkJ4xMkJbniqCqPklxCunP0P/M79F+4fcQkjbKOZQkhFARVBb9LwAJQkjGCO1VICYyANqTlO11JA09M8uyr/tZXsZvQKS0ogjtCXxrPNpWN29DtIll7khijDK+zrJQeNZ2hd0bx6jmNMFZ0jS6Ok6qQFvHZNA3ba6MmrRhd2QmkGmPDhYlQuILtKrQg5OxdXLWNYYQYDhLUs5TLx5i6R9/kdbS0aie2LifnkW7j3PA1VSf/33U878Ll46Tvvjfo9M2I6w+NI00EZI9/wYQlDgc6kHgzMcbgQRpT+LSCZIQCGKQNI/AYN1CXf5d6PWXQT2gXHMJycnbSZaOgm7H5GHpCIImDQUJlsRBrcEIKFeiveX4XMHvfvxuXrxrLZdvWYXS8pwc8eOMZ10ycMstt/BDP/RDbNu2De99g85+9HjoRH46s8WyGCIINkTbzdpDv4r67UEiZ7jbylgsIz3OoyjqSMULzYO/UMYifKaglSU8f/sqdqzqYYq7qO/+R+RF3wvDRXQ5QM+fwB+7FVSKqgYQCVjYF/17ZOE4eu4+vAOZPwBpFoVvgpBf9E6KTTPU1tM6eyF5XOExG69EvXETJBkaQ1CWSuek1SLq3k9EsZEAiCLxFWLSxu3Mk4mN5VIVTVq6maGnLc5LlHv1jqGLyOtUC2VtqaqoSDfq7/kQqEKgb+My18pSBmVJJzeI1rSD46odkyT3R7RygmMqg9fvXhOV76p51JHrMVLxYm7kfv2K2G8dzmFciS6XIhpapYhpEdIOYfEoyrRBa1SQRxy7wWBAr9d70uafTzqEFVtxYxtR91yNBDCn7yPs/2eovo9QLUbRqapPCAViIUjsqWdpii0rlIv9c+viad7baNdckaACDH1gnCVUsAie3AhODIuV5fYH5hnLU/IspZUKOgSCTtmsTqBHXPB6AHg4y/TJl32o+rB4iuSeD8Ml74DxNt5kuEvfg7n+jxDJkHTUTjEke95KqPuMWDlq5+vINj0/lsyR5R72kyVRHmj09zc9DzW1Ga8MOn4GlCIp5iEicGJFyjqWnGVlZhDX2DpLIA0RB/C8bRl7WMu+624FAoP+EsHbBjToyUyUEtauwuBIQwGhQlwZ1wI3JOg2alT9qAfgq8jY2P9FXN5FdaYQXzOq0hEg2DICf73FHP0ybnY/knQwOiNIcrZjQ2M4rJbtjQMJmtimrOv6MbVaHhoignrpj6BMh4iS1EiSxekwsRkzvSOyY9IOyRv/E/LJX0Ju/wA2iVLRqn8cn04y1TK8ZM0E/+ceh/bRCMm4Ao1jOBzyz/fMMTnW4dItq3CupiiKr9mOey4eHM+6ZOCyyy7jD//wD9m+ffsyQ2DVqlXP9GV9zej2OojSkasbYP+hU9zxwExMBkzGWAYr2wll7ZkfCiaUFKXHeo+LfBqOzQ6aBcPQSRTdNKEzbfBHwFBHEM5gFm2LeOKth0gC4oaR16sEs3o3dTaBXjxI6KzAzRl0NtaUCIH2KtqqEXF63JtVQ9dCII+871GE5vQNChWIvG8ifFr5Am9aaKVITaCthPGkZsedv8cLs7Vk7Yt55/AvuTtcysA6TiyV/OhfX8+g9Lzk/FXUtYtIb+qIIkaiFK2LC6IQGG8rqsqzqq1JNHivWDOWMwgBEUiwKIRuSyNuSPHRnyc5fite4uaWa0/wFWpYIK5CXI1PEjQGSdu4Vhc52QKTYCSFs3rjD412u/3kJqKmjTJd6K6JKm8IiEYdv5PBh38ENXeYbDgL3qOk0XnwUSa7nQh13VQUQmBjOMp/TP6cm/02ckr+1L2OIJ6x0GfXiY9FGiaOVqqYyh1FPzZaxFs6ScZEL0NmarQGIyH2M2zJ8O9/ntZrfw6mz2/mgycM5hDnCIMZKIfRY8B7nFjU6p0ElUZp4WQs1ptEozvTwPTydFP5RCzhN9FqtR4z1fixRLxNijQdg6mzxc0cPh3HqQTtXdywFCRVQREcly5+kvb9VxPV8h0dFcW9sq/8Ob3T93EQAz6gkyRaNhN597kytFWJGZziAv95KtUikOApsP1TlB/+Sbov/wlCbw0QWTwSBDN/DF3OgR3iJ9ZFnj4QcLi5w1Qf/WnSK98Z/StqC0szmDQHnZxFuYwRmmYOZ1X8gCdcGWjQJZixzc1nYntXJe14jVkXMa3RqyLTO6g662KtRUdjJNWfAdFosexd3+OD9yxSqggyVq6Mio22ZKn2HJntIziUSp4THXqc8azTGbjxxhvZvXs3u3fv5oILLnhCmerTHcPhIKKbG5zDgbkhM5XgRPFNuyf5vpdsJD1+Ez23gHcFW+UUVPNUDZBVYBlJnieGzOgznWjfuH3ZmmCjoA0CriqiCchZEZQCpfGSorMerLsc2XhF/D3Ng17X9ROz/pSHcLsfyu5oSttCiLaoaRsdHIkrorKhGFrGMJ44Jvr3MT57C7/8ihb/8WXj7Fj4DNPMc++RWe48cpqvHF7klmN9/unWE9x2ZD4mBMQy/BkuckMvE+hmgfPX9njlhZtIlaCVkOJQ4iN1ExdPvcERbE166LOYYpa4nwXaqkJcgQznEVsADqVSUAExPXRnDSrtRI66nCm5PlwMBoOvwqN8PRFMpGkFnRCk0XMgoMsFsjs+Qnb4ulgZoFqWwRURcrGkidDzc0z5WfCWCXeaS9R97JW7OV/2o4InIGRYVlVHiN1uz9YVbX7jnZezOo/mOiWG3uB+fvY1W1jVqdESDbQk1IgdkB/8FL5/+qy54GFhP+IG2CPXQV3gjt2CKxYRDyobiyI1JockZ1mx4qHaAQ+ZZyNm0ZMRo9n68PNZo3d/A25qGw03EaOFlTKHCp7N9QMk/TmCpCQS2DVeob0lPXgNauZutMTe3+LSAIIlJQIR09TQUg4dCtb5Q3SVxY+vR3SGGp4m2/8p7OxB6pl74310cc6awelYPXA1PmlHEU9bYY/dCUvHMQc+Rzi1P9pVuxKZvS+O7Vnvj+bjodoMo39/tVHRYx/JM2N3pjIUklYUKzPpV42t2fESrIktn6AMqlhAlUsEV/OKPWvYubaLBKEblmjN3kXmh9i65PTAcevRPvNF/Zwc8ROIZ10yMDU1xdq1a9m2bRtbtmx5VvSFeu3usjSr955BHaJ3N4oVvQ4T/Xvp/u27OLe4kY4v+KX8j9lq9+NcbBkE4skhSKCbJaSmyaJDILgK5y3WFnhXxhcBqJfiv4Ew+h3aoFbtwp3zCsSk6GwcSXoPutYkSR5z6+UxhyjClhdQ73wt9fpLov1x2qVl4KLVBm9Sgk7IE+Ed60+w+Qs/jypmmEws04t3kQ5P0pYB7/3o3fz+p+/D+YD3cN+pAcHHqoOEqFIY33DA+1GlwnHe+h5v2L2SdWOG7at6UdNdIs2wbYRuKrGk62PpNdgCZzpgchBh57RBhZpQzBOaigMqj8CqLVcR1l+KTzooNZqLj5wMtFqtJ7Uy4LWOpzc9AisGvDi8AvE1iiiKE+dPnEdeYMd0yspuxp6jf8s3ySdwotGuwjd9cafi7zOJ4sqNGd3EY4g2zplJOH/tBHs3TeKcJXOLXPiVX2Ld4u2YpIUWhyiPSzrRkMY7lG+MjRqqp184hrIVyRf+iLScxXzsp2D/tbFknvUIpoVPcrx5LPbUMUZyxE91CB7Vnobx9XFclaYljm/Un8UpRaIqEI8KNZPMs3PxOgSPKfoIgsbhEZRJ0OLZMZ2xsqNppUJbFXgRshBIBch6UbnPlogX3F0fxv3Tf8R6D65CCChfQohVN9Gd6Dg6fxj7/h8iLB5HhRLm9qN9BT6g7vvssovmYw1jzGO0Cn/00VMiuI1X4ra+EFEZy9buEkGbvj2NNx38tpdAa2XEmJRLiHf0DPRygxC4LNzK1rv/nATomMDSoOLL98/xxXtPRuvmZm94ClTm/6+MZ10yMDk5yYc+9CF+4zd+g9/93d/l+PHjz/QlPWroU3exyh2nDgnew0I/CsboEMi0QnxN4kummMfg6NFnaTBksYzGPnDmj9Vdg7Lz2CM3xpL44rFoN3r/NYTDcdEBYPYAdv5Q7C/qHIIiSIrZ8hKyy95DSPLYq39IjPi1T14EQGOe//3ob/5jeMN/xeUT+GyMsZbm+dunkKSFSlrk2vNNe6fJ6jnEDgjlEtiKxBfs4H4KJxw8PcQ1EsVV7SmspXLxNOxC3OAHdWBYa1aEWc7RJ3jx1pV8+8VjpCdu4PXnT9NOApnUqODo5jljnTaxpx3L2tgKl09gV0Q/gXNXd9DBoot5sCUBjTcpIoZk7zvQ218ZVRfNoyemT7rLZlBYpWJy0pyhAxJ7xU0CMKoXnPkZz1UXbGB1L4W5B9B+0FRBIoYiDXUUZBJhddvw06/ZxLipMOIx4jBakRXHeeX6Eu9rUt9nMiyg3AAj0eI5wWO7qwAVdQQaZ0Q7uw/3wI1INUQgetsTUG6IcgXiHS7tRv2OtBtLxeGxLVNRwOupXvkjkkApg8om8WkXrzPQCZlUSNC0gkOoERFaoaAdClAJcSzAEN0yF/tDxDvecVGbF6xYYG25nzXuBMYpFAGtPCHtgAjBDqOx2PxhzOA0OjjwbpnOixARj0mLECzBFahyFqniJmqLeVzkQKKGs5CM8XiWf+fcE6sYnhXSIBoFIbvgLbDrLfhERSniJhQhVgpbk8hLfwyTdyMzoi6icVUDvAxAHiqSYEmUZ+NEDgRsEOZLy5cOnGapGFUynssGHks86zADV111FcYYOp0Oq1atYnp6+pm+pEeJwOZD7+OlvuR/yzfiXKCoarQxESSkQ4P+9bSlWn5gDswMaJ9axIQaLyaepkSxspvAwc/hPve7mG/9G9w9nyIrZwn/8DNIcA1oCZKDn8WrhBAUdatFkDH0+AaiEZ/Gmw7BOdRDTgdP/skqPvxGBQI5jG9E9vwb/P3XYIb78P0Z1KrzCSaimnU5F/XlQ42tBoi3uHyCV3Iz/6t+PQ/Mx8RGi+AD1D5gxQCuUR4LHD69xNxSycv1HbzVfAarX0i470uoL/4+7Sv+lCRNMCqwoqt5y85xegdqwBGCA9tHbElIO7isRxYsyg7AFkixEBX0kFiWR1CiQSlsZxqf5E2JNfbuH+7g9WRXXdSai6HqI/1To+FGhUC15iL0zL0RvCdnrmW0HGtnUd6hhjN4NxUTKV+TBEvanFx3TgvP2zzJ2LHrUcUsml7cyJQi3PlROp//e2TDD5P7IV0GYCuMgvFccW6viydnBEPzDWW2vu6PUUeuI2TjkV/OmQvzI9fOrIff/TZ01kKbFA88Fkjgk17RepiQUdNCGchyyg2XIFPnou/7JOlSxZUbE7ZWijCn0MHTlhItHp/3kMECSLQ3VsHhJcIPs7s+xGuO9yi84Qp1HV7BrgmhnEpAUrxKoVoiBIeefwBqi7gSF0IzLs39VQbSbtTubxIrqn6cr8NZfNrBXfYe5Ob/b9mZ87GGWnbC/LoGL65PxHalWncuDuFsy+6AoLqrqC/+FpL2ipgMSrNGhhrlS8yokDCSng4VEya6FgaBw6cX+b2P383/eNdlrFquOzxHL3y0eNZVBq6++mquueYa/vmf/5nrr7+e22+//Zm+pEcN8ZZ2GGIR6hDw3pEbmGgZ2okh+Ci0MakGtLQniGLghMP33c5Pp3/DBeMlqEj7SdIUmT+IHi4QfJS8VYD2VQQRNj72KoD2FpGAT6dwK89DxjcSl1WDJCnefDXA5sl3b5RlIJagUJ01ZC/9cUJ7CvEl/vT9qMn1BJWgtBD6pwjOIlUJboiEijCxldQIubKMlr9OnoBAUTu8q8g1nFio+O1/vJmFwlIJbJCTXMABzrvjv8PgBFIPmEqGjKceFTwr2gnvfulOEmmQ7t7hyiXwFmMydJJHQxUbQYNii2ZMHSQpEZ+h8EqwU9up03HkUYZupI/xZEW65gLSK/5d1NCH+D5Eo897HeQTDwsEFSS2PXA4V0dTohBIXEkaajIsLSl4w4Wb+L6XboxWvE3Dqk0VTXPKJfJ6Aes1CksWSrQdorRhLNect24MzDhx4iqCH1LP7oe7/gGO30k4cgshHY+X3KgQRtaBQmWTZK/6WdKX/BhaZ+iH9cT46nha1OKWiyyCb00jG66i9cqfhHSMXFneful69q4bJ6imrUcfhYO0gzSsgxSPE00xLGPdbHCcTliiRUEmJYJjz+YJrtyxCp1E2/Awsx+xA2ThGKHq43wNvgLRcY9FE1SKb/UI5Sz1Z38LVQ8I5SLiS5JD1xGyCbLnfTeydjfePD6s1ZO1LoioZTyGWXcl+WXfepZ2gkSTqd56Wi/+D6i0C8kZESBdD6i/+Ed0KDAqRKEniaDhCV0DihCiXXa/DlGXZHTPnotHjWdNMhBCoKoqDh06xCtf+UrSNCWE8KwAiQhCGwfOUzmLD/C6PSv57W+9mDdeMBX7eMHx+nNb/OZ3XMGqTop4R7J0jLfkN/Irb9jAxjFNQk2mNWH+cKRYuYJYEW4AQHiq7kqCigUfaXj3avNVJK/5j6izFoBgcsKorH12BflJLrPKMrBQIRKtmkU0qBxVF0j/KDK+HqVNdOIbnkbZfvyoh9HgSeesGm/xy287n+1T0Zq3l0fMxELpGUvgzZev52S/4G9vneH0UoHyNWMyYAXzrDz0T7BwGFzN3g1j/OI3XUSLYTxxuiImGEqBryNYKVhC0oZ8PJbbqyHB1wgWn0ThFDnrlKTxJJe9k+TKb2+YEjziAhTCVwsnfb0DLKJApfFFR6tfNrFsHfswVwHeRxdNW0LjCKm8RYsjVRUXrmnz1ks3xFJ01W/K21FzX6t40uzKoKnieAyW1Ba0jOKyLZPkCSRbr8Cv2E5A4YKg5g+RzB1Al4skg+NUW1+4fM1eBOoFAg6ldNzkxDTz5tGlxkdj+9THGdMjfeV3Yva+g6BTUMLu1W1edt4a8DUSmnI4VfRgSDvNcxodBz3C8aUaHRxquIgJnoTYFpQQIlPA14jJQIR07iCm7pMMZ2MS4B24CmdSGgIkYjIk7aEHp9AHP4fYAl8tIcFjhjMY17QrTCcaLz2OXfLJSQaaTKq5n0oU0rSVlr/afD4+R9K0Mhswo7ck93+aH3r5Ft5+2YZobxwcQedM5XF+ahyDOjJW3KjS9Fw28JjiWZMMOOf4sz/7M6644gr+9E//lE984hN87nOfe0wmRc9ULD88IdCiwtaWT99+jBrN2l7GReMF3U/+DDK3jyCKVall74YeeaIxwZLgSMSx6ciHeF75RTLTItcRfIUdgi0I3p411wO2t466tQqvFKFBLUtvNcmqCxAly/uFyyZw2Xh8WM56xpVSTwMISwhpG+8sWIvqrIoHc5Viy1lUvYTUJeHef8YevRWlEzrlCa7ozDA51iJIYCyPjOgTSxWtVottK9pUXqiGNaf6NSpAhyEAulogLB4HW9LSwrlrJvHOoWcPUH3pf+HxeJXFfnW5GEuSWRdpxIN8PSA4i8dQj2/A6lakvRHH0pOge+vRk9sZLWuPtPw8FfKmo7aFN2nTQ/aEtI3rrMHrVnOPPSE4nIo4keCjpba4Ir4350lDgSLQkiETGazuCskXfo3i5F0EcRgqcmXJjMBwjm4jKmS8RePQdolOZljdbRgArUkk7wIuMluaeSbBY3UbNbmxYUA4wBO+8r+RYm45gXy8obV+chOtrxUCemwzyfjGKIikNL1UmMh0BPY17zXHIsrgs0mCKOreejAJaSg5uVigJKDqklQ8uTRukLoFrkZsFF5CFNpFppCqY+tMvMO7mpD1Gs0Lg09yQt5rEjyBILEy0GysKEMQje+sJGQTj+vtPiltgscVTdLQOH+OPqep2bmyx5YVHQyWoDPs2Gr2Hnsfu1rzZBr6hcP6gJMHO4Y+F187njXJQAiBgwcPMjExwXve8x6+93u/l2//9m//l08tDEBwjKklLt66gluPLeIDKCUwPEmy75OwcBwVPH64GJlKOLQWslBFbbAHPs/F7hY2m2NoI+hqCW1rVDlEfPRNH9HqzOQm5K2/juusjqdaFEqbBz0UAdAXv5308ndF8NFZ2cDZsqNPWYgieeH346bWI1kPyScQBK8yqAYoH68yWXiAMHsQZTKMLTEPfIEVbg7jY1/aKY2tLWOZYa07Rlb3qb1nvojthEwikCv6pC/ERdRF8BauRtslOPg5grcRA+AdqhwQCLjWNNrkiHhC3Ue5OiZR7alIedKj8qVE/rbIg8RbHimeTABhLA83pyClsGaCgMKLENIe8qZfJZz3OgiRlVLrDH/B67EmQXlL6M8i5RK4msWiplefQgVohwpCjXclrQc+hzp1T9PXVeyZhvNapwm2Ylz6tOxi1AhAUMVJdsoh2uVJwnAeLYaQZFHkyNeIsw1dMUFPbMGsvThuWMGggpDO7ke7moe3yn70eLpd5qSpcomK7pHBDSN4z7oGxOlJAbdqF3LOyxClUM/7bnSSYXDM9C0+ROGxHZNwwcpo0Wy3XBF9LsrFiM9QusF6WLxEwS0JDg/46e34zhT1+EZ8ZzXJ1FbU3AHQgm1Pw+AUNh9DUHiV4BWYF/ww5qJveFzv9WlZFx4SiljBjOvYKPGOtCyjNAkOt+P1yIbLWGf38ZOv2UieGY4vRans0/0qtmieww8+pnhWAQgPHDjA7/zO7yxn/8YYfvAHf5DNmzc/yk8+/RGWZ2CA4GhJxTkrcg4uVLheBLUEb8FblKsjRnl4muBqdKhJNajgYm+3GvBydT+pqzguu1HeolwUavHBNWC1xigo6aLXPw+76QWo294PqGWK3OhyAFRn1Vlb15m/PR0gLAA9vomQTOB1FpH4YkALYgtGyowSHMoOCa0eQSWYa3+bPe7VXC1vY/vqCZaGcNvxAb2k4nn3/jafDy/jXncOw6pmdU/YoB2uMBF5XS2BK5tStI+gwOBRxWlcIPYmQ41UA9zkObBhL2EwE8e2ATIKnpD1CGLQ+syGtVwHeAyHkDzPn9RWQZRucrBiJ/7c12Dn7kceuA6UQq/ahR3btAygMiHgJrYiJOBr6jveTzK3H9vdyXX3niCfO4pp5HGVr1HBAhZVD6kndiDFPJe1jpN+8AcJ7YSODHD9GQ7MHY/J3NFb+LbZa1mc7aLsHfiNFxNMOyoyOoe4Epu0Ca6EDRcSOisJSY7bcAnmxJ1QLBGU4XFi25bjyZAjfqwhyy2Zpk2nM1QxB97iQ42IQxowZmhPQWcFXlJkYh3tVHPOmOWeeQN5fCA7/fsJro7JXGcNauE43P8pwpYXETZcils6EVtaoiPIogF8+nwF2nQJm67ETW3FrD4fP5hHEoOaWIM+8CVc3sZVAyCgRBHGVwGP7zl/Jgx7Aopg0qZ61BT8R1RVJSTU6N40zrTQBM5b2WbDRODL98+hdcLioMSjHxP49Ll4liUDO3fu5Cd+4iceNDH/pZpQhBD5yK4awNIJWpRscA9wd9HDuuhV4F2N8hV+9gA6eMJwnlAN8MGTYtFUECqkmGcqd0wWQ2YVBOfiwlHGKkNIO1AOIkBJKbTJCFe+m3Dnh1HORRMYYmdx9FidUR4LD9rEqqqKojRPsXqXqASfdBEVlcYUIEqjy2F0FQwNOrgeEsYyEIPyA6bDHFocLzhnBW/as5Zv+8MbaGUJ2fw8ypW4IBSl59xVHfZmGexrdNyrBYKvcIsnUFkPt3iKlIDqz+Cz8UjJ8o5gB7DjNZjnfxf2E78SXdDqYVyKBFTSjoqH+onpWwwGA8bGxh79Gx9jRLW4hHTbS5AtV1Gfuhv+5BtBx41RqQguUyrgVIZTKUYc3oMqK3SoCd6xUHk6oUapQIJDXIUrTkNdIq6CF3wPcvAGnjfZRt9ygpBMooOlsJ7KBhQ1fnY/a4ywpmPQx5ZwOsUnOSZonK/wPsVPbEQtHEPWXQEqo+5tJX3r7+Gv+a/Yg9ehyoonWrAcDofPjO6IKJTSiI9VmhH/H1GkUpAqjagEEfBpl27L8MZda/iNT880/hiR0hp75kQjpmKOsHQKlY+hLvs23L7PoIr4PT7YiPFwJc6kUT9kx8tIz38j4mrs9HZk8Rh+zfnoI1/Brt6BWTqJVyq2YEiXN9fHGraRI376Ih5vvMkIKm0wOx7xAUKNEUsSQlQvTXMCml6quXzbNF8+epir1uVcsnGMUU3luXj0eNa0CbTWvPrVr0ZrvdzXVkr9i00GBGIntDgKJ2/nXH8fV931n/HDBYoopY+qK8Ra1J0fwXcnwFvCYAYRuHTTJBes7SE+oItFlCtYnxfsWddGuQpE8NUACQGXdpeL/UI07lET26jPeSXBZI3cZ/xqWAb0yRlw31kPS5ZlT5K4yNceG0QR0gxMEv8uRI+EKvb5adTvpBpEYZ3mdNBlgBBQSjGWpyRKGEs9yhdYa3FB6Fceo8DYEhViH1bKJSQIfukE/ou/T3r4CwRSdNFHeY8YQwgeb4eQ9lAqQzZeRr39FWCHODH4rIfOxpqycPqg0+FjjW73sRlAPbaBPKMSp0TF02mSESRb1jwIjeSs1xn23FejNl6BXXMx4iuCL+M8cpZ+GVXwEuUYM9H9L9z/Wcz8UZStIOviW5NIOQf4KG9MoK6rmCyIkCwcQdUluojVF1SUa47iWHVEwJs80sqURk1uIJz3+sjX3/RC3PZXI5I+LAPisUS73X5aRIe+KkRQyjSeGy7y4YnPVyI1SqconeDFoExOSNq0Q4EWe+bEG0bPoY7OjIMT6HI+AumSdnRwJIpryQhcWCyh8wlIc5TOQLUQnaG7KyNOIOvF+zyxDbvuCpCEKBh+Bsj3WMMY8/QnWiEgSQtv2ngd2UPStF21iloWojWkPSRUEBy713Tpact4J2G8E7U3novHFs+aZEBEuPzyy5+Zh/0JRezSK2kRJKGlLONSMigdi0WNKk4THvgC4FDe4VZdAN1pwr2fRpd93r6t4J1Xrsb4Ivarbck5k8Jl56yKGXOSE47cQLBV5DATYomxcfbTY2tJ3/CfsO2VBNNa7i+PYkTveejDUlXVE5QdfZwhKiYqOmuuTaF0esaGtQlV9YliCPE6O1Kg8XiEsXZGK9V0B0cwwxlq7/F4lmqLVrHlENUJA6pYQoeAOn0vvliKFDxiG0a0BpXgH7gBmT8ISRsRgznvdehL3olaOIq4kjqfQpIxRBJkNA8fZz+y3+8/KcM3irOTuQAElYLO0Wm85ygT2SUqR7/kR9HbXoq++O2x1GoLAkJZVZxciOOaiaWXBcQVMHcI7SuULSPyOxtHD2dppDTROOraIq6izifjpuhqTDkf+/6iENMGHFLMEZaORsS7bsZvYgv5y3+UoDOSC95CsucteOonjFofDodPE6PgoSGgEkKoIzMjhKYS58moEW2apFcTdEKiYPXM9eRUX7VVBQGSFnowj7JlU5HSZ9oDBIKv8KfuxC0cQ4+twyWdCDQEghhCaxIRhU57EARZsYvkqu/D6Qb0unwIeOzxxOWIv75QaRufdpCkqVQ2rAatiCqiKonvPQjuyHW8cPwBNk9mrOlp6mL4HFzgccSzZWd9eL37f+EhCFGTJiretY1DRLFUlMiBL6Cu+Q10iPalWrcjt/3a/4YZHkdu+wCqmIsiHK5AeY+qS7yr4gk2yQk3/hWyeATyHnU6jrv4Hajtr6CB3qB0QlAJLutG4M1jiKdEjvhhQgBJurik3ZxsQekE6gIJiqBSRDy6KnH5BG71LgLCypZlMgMVKrJUGM+hve+T6P6JqGrnPcMilmndWQh27QpcexJ/1z+glh5ANypwXgS0JmQT6E//JrLvs6gknvo1GpX0UEunEFdT52NI3iWYLOqqP4Fot9uP/k1PIMIyvCqA8ZD0RlZQ2NY43qRolaHwoHN8cDHJDJrgHKf70fAFb+NG5CxuaYYgoGyJKIPOesjwdDSasSVeBOPqKH/cWhEZGa6PVEvxVCcC2ThIwB+9ibD/C4hOIvNBmwhJVGlMNBBUZzXu4rchWe9R3u3DR57nz8z60NAffRDwNV6E8rzXY1sryIJtvCMyEE9IckLa5bz9f8628AAGS9TgGJHgBNI2EHC9DcjGyxq/iww3vRMngtQD/A1/DvMHYWoz4fw34VdsbrwngKyHUxCyHkhApRlq1XnIed8A+olV/YwxTxueaBQiIOkYITHYdDwegnwV9VVEMSmLuGwCv/YCXD5JcvV7aV/987xh9xQvOW89ed5+ri7wOOJZkww8+2IEKksRlcXynsROWGU9ylVRKAiaRmFC0CnKWyQIul5CysWoIuZ9XOSciy2CEPBpD1MtosoFfDpO6K1EveYX0Oe/iajwTUTn5xOY8Y2oEVrgUVLlJ1+O+OEjiEbyCXxTbg8o0CmqjkAnTBtBIfUC2nQI6y9BQmBjx7FtXEiv/yPyW/+clxUfpy0VCHhnCQgLRU3v+BeR2X0IZ0qxtrcGM3s/+oEb8crgVBqTEpPjprcjfojUA2R5o5dYapXGdz2fwremIWk9SGfg8cRTpYsRSVQR8W+TcUIa1f+caUF3BbazhqAMXpKo6WBLxJajH6auazRhua0QvEPV/RFdAVGGkLag7KN9NCCSEEjFRr531sGbLLZ3nMOLjkJSWS9eWbEYNzGTRXR8U1lZ3rwlIJ2VtF/4I5A8MdvZp0eO+OHDJy2Uj/iLgEFd+d247npSqcEkjZFUpACqrEcehuRntQliNAlB2sFrg9/yfGTrixDxuPYU7vw3oYJHeYU6fRBm96OmtpBd8d3oFTtisoFAayJWiLIuQVSU+57YiLnq+xpZ5McfT4Yc8eMPQXSGS7qEfCJSZ0MgeE+qPGv1HDK5BbXuEmTFJrAl2vf53hfv4IXnTC9XMp5NB8hnMp5LBp7iEGUIjQeAwgGB2llMaEyEQmiE7BTS9MUggKugWownuVEEB7aKLnRJO57YqgXorQbTQksSRX1G/+UT6G/4FWTlziY1efTb/XToDAQgiOCyTjM2jXCOTtBNMuDziNoPuKiPYFLAk7iCn3r1OnYvfQZ1/f/iSnsdK3RkBogEHIoTCzVrlu5A1/PR/W7kyHb+Gwj5FJSLuKyHTeIJzOscs/Uq0Ca2FppyKgKStgk6RVoTZK/6GdR5r8NlY7H8/gSKkEmSPEUbVnOHe2tJ3vKbhPH1aIiy/r2N6G/8VRhbt6z9Lr6OfPRGFa+qIw3Lp3lkpXiPjBIziL3rtA3FQrRxttFbIKXG4DArzoG3/wkyuTU60uVxI6LVA1H4colgS7zpQCMqtMy5kVjBMPiGE//E4uk+uZ4JIez9FnzTElEUiMlRRCCwKBPNhsSAGHw+gQ4Ow4NpkBKahlmSgUrRrclY72mtJH3zb6NW7iKoBBGHntuHbo8TVpwTFUhFxVabAK2JiNfIOgQxqPY4QRLS5kjwROLp1xkAguCVRict9Jt+BTZc3rQJovBVmyEq66KVAkkJEqI9t/eg9DPCgHg2x3PJwFMYI2XAoKJ0rQ6O4Bzm1F28eOFDzXc0tEAdhWNiSLQjrfqjfwLgvcPPHSEsHYvypsGjy0XUxCbIJvHqDAhJiKCmZN1elBkBaeRRF4MnX474a7xWezqKnzRlYkwafQFEsK0xnE6iE5u0IJ3EaYNZOszGe/+CNn2SU/cwrRaZ0kOCaIxEzYXTSyWTLFGnYw1lMIIndW8Dko4jKsWOb4ngJEw0nWmtAAy4YQQsjq4x6+HSCezEJvTaPejeNL6zEqcyeALpwFPJgxcEpTPSdZeQ6DagCKZH3VtDsnZv1E0g0uCCd3hXUmuDhMCg9ig8Pu0iOEI5B0dvPQtslkCSIQuHETuEugKTklKSEFBpj2TzVYTeemxvfby3SnCdaWxrBXLybvTx2+PJWMWy+Wj0zuBXzBMGD8LTJEf8CKEnNyPaEHxszogk0bBJbBSoMg0jRhS0ViDBs0L1SZpmTpxLEfseEkNQCSEbQzAkOsWs2xPBq6PczNUwsQ1lWvH0H+tosQqTj0d6Zt7FmxYytjZqYHwdY/t0rgswSkEDZC1cNkWy+jzIV6GCQ2yJkXAGt4PEJImA2H4ExoYnV/b7X0M8lzo9hSEEgugoVwoN+tuzqjrMeg4sf19ARZMR3TwCQuw9Fv3l3wQQgoWl4+iyT2ishyUE9JrdhN3fjJhO8zL/0stiUXXO7H0H3p/lzKhSAg4VBD8C8QWJrJHNlyJpFz1cwB26HuMKxFk2dSxV2yGnhDQ4EhVwIQIN5fL34O77FOrIl+OrJi2CMlQbL0O96ufgb38Y4SjKmOjsKComDsvgQEF116G+5S9RWQdRCY4U85r3Iu1JRlvY44knXY64iYf7nSEE0vNfT9j+KoIyy9eqdEpwBWIFv+lK1L6ayjkUmpB0AUiqAVSLDTirEb5JWyhXLdM+bdojERdPv7qDiCbk45h1FxIO3RDR89tehnv9L5O+/3sIvqbWhiAZQZnlVDi+ga8f9/2MLv6iIoS3kWcWZaKNLnU8pesI5AyiI11QhG86v8PY/ZZgPRICPm3hcWByvDLotNOkCQ0XSKeM7LoDEKa2xeSqGcVlEl3axQdBmQ4h66J66+Ml/otfF86EQFRQ3fwikqmdeN1CtCCujztxB3qwKVKllW7YHE1CZUt8P1Jfn8nk8NkYz1UGnsKIp7Acu+5SnEqiiI6AHXmNhdHJKPZ7g24RgsKLwRPNYJafcoh68r4ESZC151NvfQlOp5COk0xtQamvP7eL3PSnY1oodGclaW/dmdc2SQSbSYDuOsL0OThRiBJkfBPl9tfisjESH+VWq9W7aCWKlqoJokmwTHZyNJaelOhVF+A2vxC7dnfULEjasd3QWkEyuT3+3iB41WpaNCqCF5vkTQDRCcna3ZipbQQ0BiGd3EiSdZ9QydUY87RuWrq9EjOxBnX2o64Tgq1w1RAZ24wIlLVDSUDSFixvLxpn2rH8qiLFzUvD3PYOl3SX2wToBC8Kt+lK/OYXUW99OYytR2c99LqL8RObQRR6akM8oSpz1hb2JL3Xp7uMfVZIMy7BVUhwSEOfXN2KtE4xeTzJiibkY0BgQ8c2AEKJ6oBJFnEfOgOVRF1+Ga0PRPCfNJtkENTYmq+6jkDAT2zAbnkJqruS+tzXETqrn4T39/SDtwUhSTskU5ubllcST0qf/jXUF/4AaYBYQpxPLu1GivDNH0JJeK5N8DjjuWTgKYpl8w2VsHD+t+J76xEi5c00fdqGKNT8gGraBA7SFiofIzSqYaNHUFxBOH5zBHTt/ibMm38L390QX2tk7PF1nq+eDtlREVCiUKLPGNEAojSBBCct1NhaZM9bI85CJUg2Rv66X8CNbUDbJbxO0S/4QZzSuLKPb49jpGS6l9MNNVOygGRt9Ct+Gn/R2wk0mAyTRgqjMojWMQlTaUwSlGJEE4sXemYRVM2HLJurnLn2xxNPphzxo8UZBo5+0GIedIKrC3yxAL1pBKFfuAhwTVpNFhQX2lpiOwSlIw20McQKoiDtklORiCOoOCbpld+D2fFyshf/MGbdJfH7p7bAea8BlWE2XtHoRjz5p7a6fuK0xK87RhLKvm4UxzSJFrauGwetEJ1GXJAoVIOnsEszkRmkc3zawZs8im/pDNFplHI+S4oXncVKIzrOTZM9BIAYq4zJql2kr/pJmNhG/tr3Ivn41/32nHM4577u3/NYY2RuFjVIJM43ZZCgMEtHSes51AiVHQcDVp2Hf+G/J5y6A+zTRJH+vyieSwae4hAR2pPr8Oe+Dpd0MSq63C1z6UVFQphKmhNpfADQGqmHcNbjboo5zBf/CN+eRrVXRmncNH2IlPvXtxg+XdTChwubdJEQsFteRNh4aXRXQ+HTsYisSDoEo9BldG2TtIXBk2jwaYcLVne5akuPXbKf7eYYpF0SpVGrLsCm40DEZYhOotVzg9EI2kSkcqMBz1NYGXnG6G9NCOB1gq+GqGoJ1Z5GE1galDGVNG0YYV0QQqsb211Kg4mbkTSbncratKTC4GKrRYjiO5KidI6SaKdtAMnH4uKeTmB3vgHGNsYLehL37izLnjEdkpgYAt7G9zRKKF0ZFfRUgm/AkSHr4EWThwK0xppWNO4yOaiIMRKdxH5/pBvFI4HWBEkJaSv6EC0zA84MYlQ+TDANZVOr5Otuv8AzQy0E4sGHeCTyWRfBo+ohOtQofJxTCKIMLhlHrzoff+puKGbOiCQ9hx14TPFcMvAUxmjR71eW5EU/hGpNkohHS5MMBKHOJ3BKRUBVI37jTC8qbtkBhDOnKAk+9sqntyGdabwyYFoEMQ2w6Ing2x8cVVU9AxSiGF5H171k12vJ9rwNo9NIj5zYgBArCUFlqHoxurepDt45fFGAafOaC9fwsgvWkEhAS0B0TlAatW4vdmJjo8aYxk1N6YjyllgJ8DrF6SziNZ4g/eqxxGAweMp+92OJmOwkBDdA+YqQ9TA4AtECVtJ4anVpDy+KOsSTqBeFMiaWZoNEf4asSy4VqcQ+d1TdU5xtOxwbDhqfTOIlyjl3XvzDpCvPfxLqWA+O4XD4jPWJg2pElmwRAX06QUgRVxG0ISiNTVJC8AQ9hqBhYQav86ggmkWZa6+ySEXWJiatyy/go/iWFmw+ASi8McS+wch9YlQbbO4DTVXoSRjnZ0p0CMCH6MTJ1LbobhosGUUESQYI2FhtStowsR6cY3jT3zEo+nj8k7Aq/uuI55KBpyE6nU4DKBJScRH4EsCLwp73Dbi3/TFy+XeATqlXnoN64y8i6TiqHj7kN0U+fmj628q0o7bA6vMYLQVf71OfpukzR9EacbG1iYulTvATGzGrd+LhzCLrLdqViElQSpEkJnKpXY0SQROpRcE0qmVZD/P6X0LWXEBoT57BB5icoHW0gO2uIlzwpvj5JwF78UjR7Xafst/92EIQbUjqIurop+24xxDbBCRtnM6oW5OE8fXIlhfiRcWFV+e4pEu5YntUNWxN0GZIHspGF+Ls1sSZpABAtl6Ja60g6EivW/7ak1glecbkiIFlkK+Lmhc0gE1xJagU1V1L8vr/ivTWotadjz/3tWgG+OlzMd/4q4SJraDzCPTUSUNvPVMV9BABtjonpI1wlYzaWaNWo5w1/g/++HrH2RjzlMuUP1wIDYJFNPr8N1Cd/2YCsG26y9qJyNBAEnx7BSrJCSbFU5Puu5pOOkqDnj3AyWcy/lUnAyO6zNkfT0UM+n1G8qwtHZMBL5Gnrsc3kO56E3rlrggcysbRW16M6BQ1XIwbFRKpMk3pNp4Y4knZbHw+ZJPNfP/6J/0zWRkgaS2f1IEI+JvajrRXNcAphdI5hKiLH1S0HXbVMALfbEGihZZ2BJ3h01jyVijSTc+DbAzGN0T6nAhBp7jWOC7J0TpFrToPRgjlpyiebDnixx8BpRKMt1FcKWmhVTSxUoSoq6AyaI0T8gmK0IlaF/L/b+/N46yozvz/96nlrn17o4FmERHsIKtrUNRRExUVF6KJcUhUTDQzmuAyryRf5+VvRmMEjRkTY6KZlxsSXIiaGUyMjlsE3EBFQBtEUBabZqft9fbdqur8/qhbxe2mu0GWvlV2vV8vRbuLW58695xTz3nOc55HRQodqcXJVo3E0HQoqSJOmojI2S7u7hBAvBoZrXCTDR0KiukZcFNCG2nbkBUqQkg7SZiiIfQw+uEno2gaSrgUtWoUanInIlKOfvipdj0MVbPbXiiYoTLQd58mQEg7t4UatdsxbyzbHPqVbzE9A/axSWkfDa4eh8AiqhjEQiAV1Q62Lj8MK1yBIjQ750KqmWQqS2+0zVeFPhtuKaXEsiw+/fRT0uk0Y8aMOWQr4mg0BsIERXDZhChvvZXD6n8komkzQlXyx2gUtHgFOSVunxYQAksRmBXDCe38DBMNRZqAhSk09I4Hswo4MIOgGNa/gzZwFGYoiqpH7HoCh5+CrDpid/0CoWLGK/OBl/ZxLaGoaCKDCMeQRpLRAxNcO3k0yieHo5UOdF2mAIqwkMdfZcd3CWHvyY6/jMgJ022PhBbFFFH0A0h8szei0egh++x9RaghTEUHJQR6DF2YVCopysMSqdtR7zJagUyn0EtK7Qh3oWApCgiJfsTpKNvXQnwoJeJjnFKz3SJBjZZjTb0XWTqUgpC4g0okEimaZ8BSFQwlgtqyK3+M0w7yw8jZFQ1R809s/2npOqqRRGphFKEhlQgiUY1obQZNRz33F6jlh+NkDwDIqWFMLYY6/jvIrR/biYywjYVDfY5C07QixbrkDSE7UwKqHsZCxZAGwlLywb0SJnwHmcsilBCKEgEjRWx/a2H3UfqsMQDw5ptv8uqrr1JRUUFtbS2XX3450PV55QPxGmQyGRJhDc1IMva929hojLWj4pONbq5wS0rMQUdjNe2wrV01hNRj5MqGojbWYVYegdJSj5QKStURWKKbCUAe2A5ZLpfbHXXe24E3kUpMLY6ar2GuRMsgVr7790LFGH46cusylHQ7QlERWFimgQjFsExJWNc4qn8EY2N5vm0LJwRhJ2jCwpJgaRH0kmqUfqPyR7KGY1WPRsaqgEPz/IWnCYoW+a7qoGqY5YejhhOEhMHxfMxQYx0ydJYdyFoyEDO3BcOyI7mF0FDCZWQPm0Ro2Alkt69BLysnoaSwLBX0sN3vunkmoUbQBx+TPxsjDlnbhsNhVFXt9bZVhI5QJNbK/7HjKhT7BAdGJp90bDcSYSdwyqYQehhLCMyB4xCaQNm6BgSoA0YjhDM9CywEiq4hhx6PqBxhV81UtPzJhfxnHsJndtIRR6PRovVbCZhlwxChEhQjibQE0sm4mhhiJyTKJhFaFJlqxkjt9sIFCYj2Tp82Bv7xj38wbdo0qqurufXWW5k2bRqaprkusXQ67XoQnGQxhUljOieQ6eoaAE3TkVJBKjqhbBNDxDZUMRgBmErEHs/SQhkykfCgozERWIqCqoRQYxXI6EDUbz+G9bfrsUKlaCdeB6ZlF9kpuLeiKO69LaeeQRe6utMJuGWhTdPcvd9b8Hld/Z3Ce++Nnu6NUFFUBVOJolgmlrTLwFrsfqbQMd9FRiLw8u1IVPt4ojQxtQRKLmUncDEM+5iihZ3O2DEIpAXCqdwg7Vz9hl1pTkgLdcgJKJc/C3oc0zRRFKVDO+7tmbr7/8Kfqaq6T67szt+h02b72r7d/U5RFCxpu17Vkf+EUOOEhUVCZBAomEoERY+jVA4n17QFLV6OpeQz3EUqiFz4W6SiETl3LEb9EhIiR0qxEELv9rk69x+rm2OF3fWNvT2T83ecHA5d6djf9uvpu3T7vWVhCruolWipx4hUYuZ7mWJmkYrijicpbY+eVDRULMxQBGkJwideg5XchvXe4wjLDtK0y3iDExgsY4PQz/8VfLEGS2gIoWFZEkWAxb61fXfPUnhtV2O5cF7pcQx309Z7a8e9zUvOz8TIb8CQY5BtDUipYknTrt8i8/OEVOx4FtNEEQbSsgMOhejZY9TVHNbXkhb1aWMgmUySSCQIh8PkcjlM00TTNJYvX84LL7zA5s2b+frXv04ymaS9vZ1YLEY6nSYUCrlnbhVFIZfLEQ6HSaVSxGIx2tvbiUajZDIZdF23YwZygojUiMoMp2iryRqD0KVCOp0l29pKNmegaqp97thIEs3l87Tr5UhFJUsE1BjSlLS3phD5CoiF947H4ySTSVenruvuJLQvOqWUZDIZVFWlra2NaDTqPncqlSISiZDNZt3kLqZpEgqFSKfTe1wbDocxDKPHexfqtCwLpT1DCJVkW4pIsp32dvuZ2tvbiUQipDMZNF2BjEJcWmSzBiFUhJUlkwOt/Qtav9hFeaYNCbQ0t4GqYhqddKZSRKM6ZuU4RHwgVmMjdNAp9nimTCaDpmnuZKhpGtlslkgk4l7jtKfTRs6Lybl3JBKhubmZUCjktmcul3MNMMMwumzPzn1OVdVu7+18l4U6M5lMx+/ni2bKFJ2MKEWksiRC8LWwgtpu0k4UZcTZGKWjoNqg3YoQRyWdbMdqaUEIBcNoI6xHMNqzlIoUOioZGSLV0NDl2HB0Ot+lo7Nze+6hs1Of66mNnHgB51pFUTAMo0Of6zw2uvsuC/tcNpvtYGTout5Nf9dRSoYS2rEKGa2isbmFWM4gYmQwLEnjrp3EYnH72lAYK5mhDECN8MUXjYQiETLNbZRYFm2NzWiJdrJdfO+ZTJaoqaKpOqZhkmz4glgkQqZA55cZl057djUuQ6GQe20ul3O9WvvV5wq+y87t2fne3c0fkUiY9vY2opXjCX3xIpYI0drSghJPYhoGCNCkgT7kWGRjHS1f7IKyJOn2JNFY3O1ze/suHZ3FKc5UPPq0MVBdXc2mTZuQUlJSUuJmrDrhhBM47rjjWLJkCdu2bSORSJBI2Ol/nT+7orS0tMtrTCNHeXkJRsz+vYqJWpJAfhGipLwCrcw+Aw/YR2ikgYzGMVNhtEQ1UtcIl5ZilPZDGFlK+vXb4/ibc28nWn1/dMLuALd4PN7hmi/zeft7rYwqZEMxyvtXoSdKSSQ6PRMAJmZVNZamEy0txwhFEIokXNkPmd5Kv+wG+OIz0DTKK8ptd22+bQvvLTEwT/sXuy6B2HMYfJln+jLPnc1mO/SnL9tG+3PvzteWaINIRcuIVo9EKatCj6tcOHoIvK0SO3ISYuB4OwBu3AXkPlmEDMUoKa9AragE7HWqkGAOHEJOaadE1YkNOJyS/v33fu996J/7248aGxtJJBJ7ZJ7bn3v3dOqjq3tbUmKOOAk++xuaqlBR1R/CIYSVIxRNMHBgtXutBMzK/lhCRdHjVA2w283SBpDWI5RXVqIkShDd6DTaLYxYJdFYnPiA/ggEXV15sMYl2NU2DcOgpKRkv/rcwervsZISOP6fya3/PwQmpZUD8vOnvY1gSRN5+gzSG9+jPBElniihNFECiC4/t6d7Z7PZIha/6n36tDFwySWX8PDDDyOE4NJLL3WDjxx3bqHbaH+DZ6SU+YQs+aOAmGBJsloEVdEhX0RotwvRPleLUJBaFBGK2i8rRUXEKjCTjfm9WfvY8cE8muW4yhx6M2BISomphTBHXYiaGALIDq49+5ntFZKl6nZWQjWCEk7YQVZ6DHXrSuRT30fLtmGOngrC2aGmQzvZ7ayhqfnuLw7uefeentFZmRQjvaujQYZKUM68DWXgaDAydtY7M5VPdhVBVSP5gE2JMmAU4pw7EBWH2x8g7Nz4CFDUMHEli6kqyHBJr7Vjd89VmI64t/uuIixMLYySaUWqITRUDKGCNECEXE1235NILYTAxNJU+2QMIPQEYvL/BxXDARPoGLQn8wNfjVRgnH0bSuUI19AVB+FYcU8UpikvVtIsKe0TL1akFMXM2UWhpGJvxwg7ZkIRgFZqe50wHfEHOaPFV5M+bQyMHDmS22+/HcuyiER2H43a1/3FfSWbySBLE/b5YGEhpZZPfKMVHA+C/DkiO3I7n89cCZfYAV0iBGWHQ6rlEMVi2xzqVMQ9oWpRwt/8f/nJposnFCClnYnNjrJSEOESO9pdjyLS7WhWK8Ky8kcyu6aYGQB7Mx1xt6ghQkeebmcTTO60jw1m2xFaGFW3z7A7YyBHGH3chUixu16DY1hJJURIleQUYXsSivQ4DkVNR4xdJVRaEqFHQKhuOylq4TQr7YyjqlOHwEkjLkHTCR05GdHN/r8TOyAUHa3mTODLp8PeX3ojTfm+IkJRpAihGM2gKHv2O0W3s4jm0sWQ51v6rDHgDKJCI+BQEY1EbOs0VoFzrEpqUSxF71hcSDovQYkRiiO0qF2BTI+iCYE6/lJEzTfyUfRwKEyCYrnF7JeMla/L3s1kKHdfbaHYq1M9Zq9o9ShSmgjLABS7dkH+L0kPrQuKnY4Y7JwCUtiliyxFtXNeZNvR1HyZ4vx1QgjikShChPLH2zrpVu2kT4rieDkOpZm6d4qZjlgCaPkjwXo0n5EwbzSpXWhSQ3lPTCj/t+0c/Fp+MbD7Uzu2p8j3Z3WP3xxaine0sBNCgB6FSAKRbsy3cWE7CbvtQ2FUK59nQB5ar8lXhT6ddKi3aE/Zq0FZNhR7KhYQimG6hoAs+NOOoJfRMkw9ihUtw9Bj9uuvdBChAUfbK4pDRC6XK07QjABQsc9h690M3vwPRQgrFEVFhVAMQwnbGfCEiSXsqo9SC4OdLuegbqUcKKlU56ySvctup7JTlEnFUnRkLokVHwihjnvl7alU/uquVmAaphKxT84fwtwM+4pz+qcYCMjXuhAIPWYfBhCK/afacc1ll961SzhLJQpYCLArSwoFexw4lSML7mFbzPbWl+jdF5xhGJ4IphMIOyFbvB8C0cXJFLvKKZEyZLa5By9LQGf6rGegN4nF8olm4v2xnPLFobhdxaxwRAvs428o6OEyjFAIdegxKOfNAj3mmgCH0kIvXsCM2Ms721nfC/T+NfCtP0CkCkuPo1SPQlQcnl8vSXJjvoVy0rWYQtgdvLgL1g7EYrHiCijY15fSzmon1JDtGTjs64hQaYfLXb1dfTmqilQ0t658sZu5mF4XpyqmJVREKGJX2RN26uU9S4uLfNEnZ5vA/lFnH8Ce7G2MHDo84xnA3p6S0Yo9YoHyv7W3rPQyMFqQFH/7yi8EnoFeoL293e6Q4XLsoCADJVKONfhYKB1Ex4GfT6LRfwTmgOMQ4Sr0/qPz9egP/ddVNM/AXsgvimxzQIuhVh+NUFXMUAlWfID9ElNUu6bTgDHo/Y7MW7qKZwwBKH6hos5IoaCqCiKbzFfJ69hYPeoVaj65juMSL25DF9MzIJHQbyTmyTPga+fanhc30lIruE4gMSFUglA0LC0Mhzx/4IHjFc9A/rwVZrjUToaV3zYB8vODAFSskWeRjR9Osfuknwg8A71AJBa1u2w4ZqcqtXKISCmhc36J0HQswAkjwgleHHU+ka+ZqE6Jzl6yyr17lEa4BoHMZ11TLAupCISiu8WHECroIXsFvJdEI8XAyeDmjVWWtDO4KSoync4fT+lIj+mT8zXmpZXDC+uK3oj/6Q4FsBKDUc68xTZYpUQqdsUHCoJZ7R1ugRKtsGtkqJovXledj2sWCxOBgoUVKrU3uhQ9vxWg5sMw7VNI2tjzMdP5AEI/NLAHKP4I7gPk0mmkFMiyw7BiVWQqj8SqOAI1FEYoCsoeCYQFqqKjqCGsPX53aDEMwzNRw91jj25LKIjq8cjBx2JpYbtULAoiFC+yvu7xxGmCAoRQQNUglyoIXNtNj3pF/kWn5I2wIheFyWazxfEMiN1PHsJEdeqGCBVL2FspHVHsPe1oJYrYc/R7EW+cJpCuH0A/4hTb6Kcbj5QlyWZz2AGEvavSr3jD3PuKo+khVKEgKoeTHnQ0Ss3paIMmoHTT/LvjY7sI2jrEONnwvI4TtKYdeQ6pdIaw2oYZCkPKQI2UF1tet3jL85KPslBCSDODVLQ99v170iuEiioECGXPoO4iUKx9bWfvWqCCdGIALBCabaDqJXtcr4TipAaMQQ+XAQbgpX6xJ4qidMjjUBwEGnZ/0yuGk1H3NAacUy1CUdH0EEGGgX0nMAZ6ATfHtaIjTvkJasVglHz0dZeTl7v31fv4oaCHE1UNduCWhQA1itSi9mo17F3PgNfynUuhIFUdJZfaHYxV0PV61CsUUHR7D9wDeQaK17YFozX/H1IK+wx82SCUkoG7r3QSDyk6nHozSuVADn3NwQPnUJZ431c6JGDS8oaA1ZW3Ij83OP3BB4sbLxAYA71A4SAKDfu67Tr0sMVa7EH/pZHSNrT0GJYSAq3IZUAjCgAAJt5JREFUEfs94L22VVEUDS2XwnLc2QUr/B71utHwzpG44vZor7WtgoKhlyC0ji97xyDIhiuJaGFPzwWFeKl9pRbBqjgSVes6TsQLxovfCIyBXqAw+EYIffc6wIMzQLGStuwvihCoiopQdczEIKgaj149vtiyusUrgVgOQoDQNNRsClPVwA1ntelRbz5gU6B5oi97rW2loiC1GKKbaVbTNASqL7blnBTtnqFkANp3HkCLVtJlciav6fUB/pr5fUomk+lQJtT9xwszaCdM03SrpPkB07IwjBxCDSOGHI8ceQYi2n2RmWJT2Be8gETa6a5No0tdPQcQCjvRTj6BTrG7czabLa6ATlihUghF7HwDXeAEPAof7Gx7I4BwN4qQqLGqfNvu2XaWZXnkKKR/8JYp/RXFW8fJesZrq6u9oagaoZBd7Cl0yg35tALetXF7PKpXDKSJpUZQMXEK6hTS83E9gVCUfOa94hMOhz00xgSidDC07cjnG9iTYqZP/rJ4KemQjUZPaa5UVSUcDveuJJ/jj57oc7yWaKYnstmsryxqyzTJZOzzxIoeRVGjCOFd16vX+oIUGlSPxVI0hBreI3lrz+mTBUIJgRLu8lhib5NOpz0VoCmO/AZiwneQ3aRq9prenjAMw1OeF5HPI9Jd9U/TNIue+ttv+GsZ6FOKnoL2SxAK7bk69DKqqhY12cyXxWt9QQCi8giEoqDqETqvtHrUKwRSCSPDeWNAyqJGbkciEU+ttNUB42DgGKf28B5Eo1FP6e0J73kGekZVVe954TyOP3qiz/HaarAnvJqOuDtM0ySd9k+pUq/1BbvAjn26hXB0j0zuPacjBjNejoxVdki8Uyw8tdLOr1g1VJRuYgZSqZR39O4Fr3kG9obf5gUvEHgGegE/Wah+XAH4aW/QW/EjwjYCFA2p6KDv6WHpue8qMHAcon0Xll1Dsqh4KWag6yI6HfFCOet9xXexRIriq3nBC/jrG/YpXktB2xOG0XVUuVcxTdNXngxv9QVph2ApIaQSQmhhLDubPs52wd70asddAdIsuiEAtlfLT1tG2WzWNwsFr50m2BtSSl/NC14gMAZ6AW+loO0Zv53N9Uaa1H3Hi31BCA2p6kg9Rucz2z3rFajh0oL/Ky5+82r5Sa/fxlmQZ+DLExgDvYBf9gUBD7mw9w2/ZRrzUvs6KoRQkKESlHi/fKns3fp66rteeQ4HP40z8JdeP40xBz9qLiZBAGEv4KUXwL7gt0HkJ71eegFI59/xfhhf/yFKyYA9r/FR2/pJK/hLrx+Nbj/p9QKBZ6AX8FPwjV+qFjr4zR3otb4gEMhYFeFJ/4oUaj4T3u6tAq/p7Qk/ud3BX22rKIqvXq5CCF+1rxcIPAO9QCaT8c1AMgzDV4FCfks76sW+IIRAFc4GQceYAW8FPPZMNpv1lOdlbzjpiP2A3wIILcvyVd/1AoHp1AtEo1HfrFi8GODWE6qq+ipRkpf6gij4d4fwv4L/9Eu0O/grvS/4S6/fvC5+S0bmBfzRE31OMpn0zQogm836LrmIn1YAyWSy2BJ2U1g0q5sCWp7Suxf8lMQH/KXXj0mHgnTEX44+7RkofEEfSqs3Ho8fss8+2PhplQ3+Szrkp74A/tLrp/S+YKd69stq24+eAT95tbyAf0bOAWJZFjt37mTjxo1YluUmpVi1ahWbNm1yf3Yo8FoK2p7wW6Eiv3kG/NQXpJS+0uupdMT7QCqV8o3HMPAMfPX5SnkGulvpSylpa2vjwQcfZOnSpTz55JNEo1Fmz55Ne3s7W7ZsYfr06YwbN26Pz+nqs78shRaq1wd/YcyA17VCx7SjftDrp74ghHD1el0rdNyD94NeJx2xH7QWRub7Qa+iKG7MgB/0eoGvlDEA3b/IS0pK+OlPf8qMGTOQUpLJZFi2bBm//e1vWb58Of/4xz9cY8BJcetE+x7oaiOdTlNSUtKtm835eU+dtjcmDSEEuVwOIQSmae6XW9DR2ZNe5/cH45kMwyCTybiBeQejjQ52WzufJ6UknU6TSCQO+n0PRS4LKSWpVKpLvXvTui99+mBrzmQyB7U+waEec+l0eo/6BPt7z0OtNZfLYRjGHnNhT/fdl7lgXz5nf3AKFe1LwG539zZN86Dp8QNfOWMA4G9/+xsffvih+/+jRo3iO9/5TodO4bjCQ6EQZWVlNDc3u79btmwZf//739m8eTMTJ04kmUySTCaJxWKk02nC4bCbw19RFLLZLJFIhFQqRSwWo729nWg0SjqdRtd10uk0jY2N6Lruvrja29vdayORCNls1rW+TdPs8tpUKkU4HCaXy7n5AAzDIBwOd3nvUCjkdmhVVcnlcoTD4Q6fF41GyWQy6LqOZVmkUil0XXc/x7nWmbiy2ax7rt/RmU6n97h3oU5FUdx774vO7tozk8mgaZproOm6TjKZRFEUduzYQTwed9szl8t1qTMajbrP3dV32Z3OwjaSUqJpGplMpkednb/LSCRCS0tLl23kfJehUKjb9nSOdnX+Lp3n3ptO51qnH3XV5zrfO5lM0traeki+S0en81121vllv0vDMGhqakLTtC+l02mjzuOyuz5X2EaF12azWfe7NE2TUCjk3rtw/nDunU6naW1txTTNA+pzhfOHo9PpR84z9dTnumujwj6Xy+XIZDIIIb60zs73LvwuC9voYM1z2WwWXddpaWlxx0hXfU7TtG77Zzab9V3dkwNFyK+QD8VZfbW1tXXY3wqFQpSUlJDJZJgxYwa/+93vCIVC3HjjjcyaNYt3332XzZs3c80117gD2bIslixZwvbt2/n2t799QLoaGhqorKz0RQCOEz3ul8CxbDZLOp2mtLR07xd7gIaGBvr161dsGfuMn/Q2NTVRUlLim2QzjY2NJBIJX+h1jK2SkpJiS9kncrkc7e3tlJWV7fdnZLNZZs6cyW233eaL7+hA+co9oRCCRCKxR8xANpvlscce44svvuCRRx7h6quv5oILLuC3v/0thmFw/fXXu9c7KyBVVV330f68yJ2/21unFg6Uzik8vay1kAP5jnoTv7VvoV4/aQV/6fWD1sI/va7XwW96i81XyhjoaU8+FApx1VVXMX36dIQQRCIRpkyZwmmnnYau6x0SVBzsvWc/WZV+Su0LQTriQ42f9PqpH4B/jus58T1+al+/6fUC/hnpB4gQglgstsfPe8O97Kejb35KOQr+TEfsJ/ykN5fL+SpyPJvNdjkneRG/pSN2vMEB+06fMQYOlOBooTcpTEfsB71+6guwW68ftPrxaKFfCgAVejH8oDc4WvjlCYyBHpBS0tTUxNatWw/oc3bs2MGAAXuWh/Uira2tCCF8EyiUyWRIpVKUl5cXW8pekVKyc+dO3/QFv+ltaGigrKzMN1sbDQ0NlJeX+8Kd3d7ejmma3R6L9Rq5XI7W1lYqKyv3+zP8loDtQPHHqCkSAwcOZOHChTz11FP7/RlSSt555x0mTpzoiyJAW7dupaWlhVGjRhVbyj7R3NzMunXrOO6444otZa9IKXn77beZNGmSL14AlmXxzjvv+EbvRx99xJAhQ3xz+mHFihUcfvjhVFRUFFvKXtm5cyfbt293c7F4nWQyyapVq5g4ceJ+f4aUkhEjRvgiruNgEBgDPTBixAhuueWWA/oMy7JIJpPMmDHD86ttKSVLliyhvr5+j7wMXuXzzz/nb3/7W4fTIF7FMAxaW1u54YYbfFFRzTAM2trauOmmmzxfs0JKyezZs5k0aRJjxowptpx94sEHH+Sb3/wmNTU1xZbSI1JKamtrWb58OdOnTy+2nH1i27ZtPPnkk/z0pz89oM85FMm8vEpgDHSDE0F7IDgdacSIEa7r0usdq7y8nGw2e1CevzeIRCIcdthhgLfbVkqJoiiMGDHCXWV7WS/g9l0n8YtXccbZ4MGDXYPby3rB1jxkyBDfFCtKJBIMGjQI8H7bgp1bZtiwYcCB6fXDsx4svlJJh7yG07SWZbmBTV7uXJ3PPntZq4Oj2et6/dYXADebndeNAejYD8AfbeuHfgsd8wz4QS/4q+96hcAYCAgICAgI6OP0mRLGhxrH0jcMw/NHWRytpmmyYcMG6uvrfaW5c7Y5r+HoSyaTLF++3NXsZfzWtrlcjtraWlpaWjytF3a3rZO736t6HW2WZVFXV8fnn3/uWa0Ojl4/9F2vExgDB5H169dz6623smvXLs93zKamJh5//HHuvPNOXnjhhWLL6RFnwD///PM89NBDnq8mZlkW77//Pvfccw8zZ86kra2t2JK6xemnH3/8Mb/4xS86FOzyKnV1ddx///3cfvvtrF69uthyekRKSWNjI7NmzWLlypXFlrNXWltbmTdvHr/61a/4y1/+Umw5PeLMC6+88gq///3vfZUUyYsExsB+4kyiToe0LIs33niD8vJynnzyyQMue3ywKdQKsGbNGkaNGsUNN9xAfX19kdV1pHPbAuzatYsNGzawfPlyVq1a5V7nBTrrTSaT1NXVcd111zFixAiampqKLdGlUGuhN+vNN99E13X+93//11OGbFfj7KOPPuL888/n29/+NnV1dcWW2IHOeqWUvPvuu/Tr149HHnmEdDpdbIkuXY2ztWvXMmzYMG666Sa2b9/umX7g0LnvNjU18cknn/Dpp5+ybNky95qAL09wmuAASKVSPPvss6xbt44pU6Zw+eWXk06n+dnPfsa6des8c2TIGTi1tbU8//zzVFRUcMUVVxCPx2lsbKSxsRHDMDyXB2Hjxo08++yzAEyfPp0ZM2awfPly5syZw1133UU4HC6ywt0kk0mefvpp6urqmDp1KhdffDGKolBdXc2WLVvcyGavkEwmmTdvHvX19Vx88cVcc801tLa28rOf/Yyzzz6boUOHeuZYlWmavPbaayxevJijjz6aCy64AF3XaWxs5I033ii2vD2wLIuXX36ZJUuWcOyxxzJlyhTOPvts7rrrLhYuXMg555wDeCPIUUrJJ598wnPPPUdJSQlXXnklpaWltLW1uaWrvTTOAOrr63n66afJ5XJceeWVXH/99axevZo//vGPjBs3zjcpnr1G4Bk4AJYuXUp7ezs/+MEPmD17NuvWrSMej/P973+fhx56iEWLFtHa2uoJS9UwDJ544gkuv/xy4vE4//3f/41lWSQSCSzLIpVKFVtiB6SUPP7445x33nmMHTuW3/zmNxiGwTHHHENpaSnz589nyZIl7uqr2Lz11luoqsrll1/OH//4R3fFOnz4cD7//PMiq9uTRYsWEY1GmTZtGvfffz9bt26lvLyciy++mIcffpiFCxeSTqc90bY7d+5k4cKFXHfddSxbtoyXX34ZgEGDBnly9bpt2zbeeustfvzjH/Pee++xYMECVFVl+vTpPPvss7zxxhts3rzZE7oty2Lu3LlcdtllDBgwgN///veYpkksFkNVVU9ucc2bN48zzjiDiRMn8utf/5p0Os1RRx3FsGHDePbZZ3nnnXc8v5XoRQJjYB/oyrUKdr7u5uZmhg0bxhVXXMG8efMAqKioYMuWLbS0tPR6spbutAohyGQyqKrKZZddRn19PRs3bkTXdQYMGEAymexVnXvTC/ZEZRgGkydPJhaL8cEHHyCl5LDDDuOtt96itLS0VyfUrrQW9oWWlhZGjBjBd7/7XZ5++mnANgaKuQ/fXdtqmkZrays1NTVccsklPPPMM0gp6d+/P+vWrSObzbpHIIutVVVVWltbKSsr47rrruP555+nvb2diooKNE0r6sTfXV9obW2lvLycH//4x8yfP590Ok0oFEJVVdasWdPrCch6GmdOyt2LL76YpqYm1q5di6qqDB48uKjGQE+as9ksp59+OoMHD+add95BSjtvw9tvv01JSYknvC5+IzAGeqCwE27ZsoUPPviA9vZ29/fjx49nw4YNrF+/nmOPPZbGxkZyuRzRaJT77ruPCy+8sFeNAWewpNNpPvzwww4rUlVV+eY3v8m8efPQdZ1Jkyaxdu1ahBBcf/319O/fv9d0diabzbJixQqWLl3qBgEJITjvvPN46qmnMAyDb3zjG9TW1iKlZOLEidxzzz2MHj26115YTttKKamrq2PRokW0tLS4vz/++OP56KOPqK+vZ+LEiWzbtg3DMBgzZgzTpk3rFY3d0dDQwMKFCzvEsUycOJEPPviALVu2cOKJJ7Jp0yYMw6CsrIzf//73nH322UXJOmgYBq+99hrJZNJt88rKSqqrq1mwYAHV1dUMGDCAhoYGYrEYP//5z4tSi8CZF9ra2njppZdobW11f1dVVUW/fv1YtGgRgwYNorKykl27dgFwyy23cPXVV1NWVtarWsF+6S9evJjPPvvM/Z2iKEyePJknn3wSIQSnnXaaG5R57bXXMmTIkF7T2VmzlJL333+fF198sUPfPffcc5k3bx7pdJozzzyT2tpaACZMmMB9993HhAkTAmNgPwjyDPSAE1izcOFC3n33XSzLIhqNcuONN1JfX89bb73FEUccwRNPPMH48ePJ5XLMmDGjwwuqNzullJLm5mYeeOABKioqeP/997n99tvp378/CxYsoF+/fvzf//0f8XicpqYmrrrqKo488siiaHXIZDI8/PDDhMNhPvzwQ6688kqOOeYYlixZgmEYrFq1ioaGBhRF4Zxzztkj13hvaXYmp1dffZWPPvoIRVFQFIXrr7+ejRs38t577zFo0CD+8pe/MHr0aHRd50c/+lEHfcVoXyklL774Ir/5zW/44x//SE1NDevXr2fZsmVUVVUxf/58Ro0aRTQa5Yc//OEeGnu7/27bto0rr7yS6dOnM23aNJqbm3nppZcYO3YsDz30EGPHjmXr1q3cfPPNxOPxouh0tK5Zs4Y5c+YwefJkTjnlFDRNo6mpiZdffpmxY8fy4IMPMn78eFdv573s3uy7bW1t/O53v2PYsGFMnTqVRCJBLpfjjTfeIBaLubEX6XSayy67rENK52L126VLl7JgwQK+973v0b9/fxRFYenSpTQ3N1NXV0ddXR2xWIyTTz6Z0047rehjze8EAYRd4ERYW5aFpmlEIhFuuOEG2tvbufPOOzFNk9raWiZNmsTw4cMZPnw4DQ0N1NTU9HrGK+cllc1mCYVCpNNpzj//fMaNG0cmk2Hr1q3uGdzx48czYcIE1q5dS//+/amurgZ6f8IH2wgIhUIIIZgyZQoVFRWsW7eO9957j379+rFz507OOussTj31VD799FNisdhBSS+6P3qd3BGaplFTU8Opp57Kiy++yKJFi1i3bh2rV6/m5JNP5rDDDuPII4+kqamJmpqaXs/WVrgCFEK4K+Z0Os20adN47LHHuPnmm6mtreWkk05i6NCh1NTU0NLS4uqF3n1JWZbVIUgtnU5zwQUXsGDBAk499VQ2bdrEyJEjGTNmDDNnzmTDhg2MGDGCeDxelLYt1OtsB2zcuJGXXnqJ0047jfLyclfvrFmz2LBhAyNHjnQNgd42XrPZLLquo+s6DQ0NDB8+nHvuuYd+/fpx/vnnk8lkOOWUUzjhhBNYu3YtlZWVDB48uFe1Onqh47ywcuVKhgwZwqOPPkpjYyPTpk1j8+bNnHnmmZx55pmsW7cOXdcZPny4bzIjehoZIKWU0rIsaVmWlFLKlpYWefvtt8sHHnhAGoYhLcuSpmnKjz/+WP7617+WuVxO5nI59/pi6rUsS7755pvyqquukps2bZKmabr/3HrrrXLTpk0yk8lI0zSLprWz3lWrVsnp06fL2tpa92crV66Ur776qnzkkUfkvffe67Z7MbVKKWVjY6O85ZZb5OzZs6VpmtKyLNnU1CSfe+45uXDhQnnNNdfItrY2z/SFL774Qt58881y7ty5rt7HH39cLlu2TH73u9+VN998s2xvb3d/V0ytuVxOzp07V/7bv/2bbG9vl5ZlyY8//lg+8cQT8t5775XnnXee3LBhQ1HbtlBzNpuVc+bMkT/96U9lOp2WhmHIuXPnytdff13W1dXJq6++WtbX13uibS3Lku+995688sor3Tb84IMP5MMPPyy3bt0q7777bvncc88VdV4oHGeWZck1a9bIH/7wh3Lp0qXSsiy5aNEi+U//9E9yzZo1csmSJfLmm28u+rz7VSaIGWC3VZrNZjFNk507d3L00UezYsUK1q1bB9hWcm1tLdXV1cyePZsNGzYUTauUdkazbDaLZVns2LGDM844g7lz57rHwZLJJC0tLXzyySc8/fTTRct74Oi1LItMJuPuuV900UU8+uijZDIZAMaMGcMZZ5zBYYcdhqqqvR68VqgX7BWKaZps376dk046ibfeeotNmzYBUFpaykUXXcTIkSN7fYXaWWuhXsuy2Lp1K6eccgoLFixg8+bNgH0E9oknnuDss8/GNE1UVS2a6xdsz4VhGKRSKUKhEKWlpbz22muuF+a1115D1/Wil4912tfR297eTjQaJRqN8vrrr6MoCt///vc5/fTTKS8vdwNai9m2lmWRzWbdOKdzzjmH2bNnuydxfvjDH1JVVUVVVVVRj446eqWU7qkVZ16YPXs2qVSKE044gQkTJlBbW4sQglgsVrR5oS8QbBNgd8jXX3+dRYsWoSgKM2bM4MILL6SiooLHHnuM22+/HUVRWL16NW1tbVxxxRWMGDGiaHobGxt55JFH2L59O2eddRZTp04lm83y85//nFWrVjF27Fi2b9/O+vXr2blzJ1OnTi1qPfpUKsXs2bP5/PPPOfroo7n00ksRQvDhhx/yxhtvcNZZZ9HW1saf/vQnpJRcccUVQHH2/SzL4qWXXmLx4sVEIhF+8pOfUFNTg67rzJkzh1tuuQUhBC+88AK1tbX867/+K9FotNd1Fup98cUXWbx4MfF4nOuuu45Ro0ahKAp/+tOf+Pd//3c370FlZSXNzc3oul60l8Ann3zCM888Q1tbG1dddRWXXnopW7Zs4bbbbuOUU05h5MiR/OIXv2Do0KG0tbUV/cz46tWrefrpp90jxN/+9rc56aSTuP322znppJMoLS1l5cqVPPfcc5x77rlFrezX0tLCo48+6hqEF1xwAYZhcMstt7B8+XKOP/54mpqamDNnDolEgsmTJ/e6xkIymQxz585l3bp1jBo1iu9973tomsbq1at55ZVXuPDCC7n11lt5+umn2bZtmxuDE2wHHCJ60QvhGRz3lONOT6VS8qabbpK7du2Szz//vPyP//gPmclkZDqdlj//+c/lgw8+KN944w25Y8cOmUqletVN1VmraZry+eefl/PmzZM7d+6U1113nVy5cqU0TVO+//778tprr5VPPfWU3Llzp9yxY0dRXJad9S5btkzec889sqmpSd58883ytddek6Zpyg0bNsjp06fLJ554QtbX18tdu3a5bsDe0ty5fVtbW+VNN90kGxsb5TPPPCNnzZols9msbG9vlzfccIN89NFH5eLFi2VjY6NMp9NFcwcX6r3xxhtlc3OzfOqpp+Rdd90lc7mcTKVScsaMGfLRRx+V7777btH6QaFWwzDknXfeKT/66CO5atUqec0118iGhgZpGIZ87LHH5C9/+Us5f/78Dn2g2H33jjvukKtWrZIfffSRvOaaa2RTU5M0TVM+/PDD8o477pDz58+Xzc3NsqWlxW3j3tDc1bzwj3/8Qz7yyCOyoaFBXn/99fL999+XhmG42p988km5c+dOt82L3barV6+Ws2bNki0tLfK2226Tzz//vLQsS27evNmdF+rq6tzri9Ef+hJ90ucipWTjxo3cf//9PPDAA66bqrGxkcmTJ5NKpfj000/JZDLE43EMw2DcuHFUVVURiUR63TLNZDK88MILzJw5k/fff5+KigrWr19PWVkZV155JX/+85+xLIu2tjY0TWPUqFFUVFS4Ebi9HQhkmiaLFi3izjvv5NVXXyWRSFBfX08kEuFf/uVfmD9/PoZh0NraSklJCUOGDKF///5UVlaiaVqvWv9SSj777DPuu+8+HnroIQzDIJfL0drayoUXXsi2bduoq6sjlUqRSCSQUjJ69GjKysoIh8O93raWZbF27VruvfdeHnnkEXe7qLW1lalTp1JfX8+WLVtcvUIIjjrqqF7T2JnGxkbmzp3Lr371KzZv3kxZWRkbN25k1KhRnHjiibz22mtugGs2m+XYY491tzGKEYDZ2NjInDlzuPvuu9m6dSulpaXU1dUxevRojj/+eF5//XXXvZ7L5Tj++OMpKSmhpKTEHWu9pTmbzfLKK68wa9Ys3n77bcrLy9m4cSOlpaVcc8017vZgW1sb4XCYkSNHUl5eTmVlZa9vFTnzwjvvvMNdd93FCy+8QCwWY+vWre7Jm7///e9kMhlaW1tJJBIMGDCAAQMGIITo9bbti/RJY6C5udndQ21vb2fJkiVMmTKFOXPmIKXkmGOOYdOmTWiaxo9+9COuvfZaysvLi6b373//O+l0mqlTp/LYY48xZswYNm3axKpVqzjqqKNobW3FNE2+9rWv8atf/Ypjjz22qHtrb7/9Np9++imXXnopzzzzDOXl5USjURYtWsTgwYPRdZ10Os3gwYO58847Of3004uWCnnXrl38+c9/ZsqUKWzdupXa2lrOOuss/vSnP6EoCuPGjWPz5s2EQiFmzJjBD37wA0pLS4uiFWD79u0888wzXHDBBW4fOPPMM3n88cdRVZUxY8awZcsWIpEIN954I1dddZVrFPQ2pmkyZ84campqGDduHPPmzePcc8/lr3/9K42NjZx44ols3LgRIQRnnXUWt956a1HTNudyOWbPns1RRx3FqFGjmDdvHlOmTOF//ud/aGpqYuLEia7ec889l//8z/9k6NChRXtBvfrqqzQ0NHDJJZcwd+5cRowYQXNzMx988AFHHnkk2WyWXC7H8OHDufvuu5k4cWJRtws/+OADVqxYwWWXXcZf//pXQqEQVVVVvPLKK1RVVVFSUkJbWxv9+/dn5syZnHXWWUXJddFX6ZMxA4lEghtvvJFEIsHy5csRQnDGGWewZs0afvGLX6DrOmeeeaYbLATFPbd69tlnE4/HSaVSRKNR4vE4N9xwAw888AADBgzg5JNPRtd1d7+y2HqPO+44Jk2ahBCCsrIyNE3jJz/5Cf/1X//Fe++9R01NjZvutNh6KyoquOmmmygpKXEn9vPOO4/PPvuMX/7yl2iaxsUXX0w8HnfPtRezbfv16+fqHTx4sHs08w9/+AMzZ85EURS+9rWvEYlEiEQiRdWrqio/+MEPKC8vZ9WqVaxdu5bhw4dzySWXcMcdd1BWVsaFF16IqqoMHTrU/XvF0qtpGldffTXl5eVu0q7hw4dz0UUXMXPmTBKJBN/61rcQQhTl+F1nTjvtNGKxGNlslng87hqA9957LwMHDuSEE04gHA67R4iLrXfcuHEcc8wxqKrqZo+87rrruPvuu1mxYgWHHXaYO194QW9fo08aA6qqui7f9evXc+KJJ7J9+3Z+9KMf0djYSCKR6PVzwT3hrETr6+sZMmQIyWSSgQMHcuedd9Le3k7//v095UJzUq3u2rWLaDSKoihomsasWbNoaWmhX79+RYto74ymaZSUlGBZFps2beK8885jx44dzJgxg8bGRsrKyjxhEDo4Z8Yty6K+vp6pU6fS0NDADTfcQGNjI6WlpcRiMU9oBVyP2ieffOIGtp5++ulMnDgRRVEoLy/3TN8VQrh6V69ezbhx49i5cyff/OY3mTRpkqvXubbYJBIJAHbs2EFVVRXpdJqysjLuuusukskkVVVVvb5N2BPOnNrU1ISiKIRCIZLJJHfccQdNTU1UVVW524QBvU+f3CZwOlsqlWL9+vXMnz+fBQsWuFXmCvf/io0zUUopWb58OQ0NDdx///3uxF9dXe2ZFyvs1iuEYO3atTQ3N3PfffdRV1dHNBpl0KBBblIRL+DoaG1tpa6ujnnz5vH222+jaRrV1dXui9ULegvbtqWlhfr6ep544gneeecdVFWlurq6qEcdO+PosCyLFStW8NFHH/HUU0+Ry+Xo168flZWVnhln0HGsrVixguXLlzNv3jxP6i3UWltbS1NTE3/4wx/YsWMHJSUlDBw40FMv1sIxtGHDBpqbm/nDH/7Axo0biUajDB482FPzQl+kT3oGHAzDYOTIkUyZMsU9juVlYrEY48eP54ILLuj1Qif7g7Pnfumll1JZWVlsOT1iGAY1NTV861vfYuTIkZ6flJwYkUsuuYQjjjjC031XSsnAgQOZMGECkyZN8lyp7M5IKRk8eDDHHXccEydO9Py+dSgUYty4cVxyySWut8DrjB07lmnTptGvX79iSwnI02drE8iCpBd+yGkt8wlQ/KDVoXPX8qpev/UF2LM/eFXrV6Ftwbt6/aQV9pwTwNt6+xJ91hgICAgICAgIsPGubzEgICAgICCgV+jTMQMBAX0Zx8Xs1K3o6qhn4NYNCOgbBMZAQEAf5s033+Qvf/kLAwYMIBqN8t3vfrfDmX+wk3QtXLiQiy66yI1gLyQwDgIC/E9gDAQE9GF27drFcccdxz//8z+zePFifvOb3/Cf//mfvPTSS6RSKSZPnsymTZvcyneTJ09mwYIFbN++nTPOOIOamppiP0JAQMBBIIgZCAjo46iqSjgcZuLEiTQ0NJBOpxk6dCiRSIQHHniAqqoqhgwZwvHHH8+LL77IZ599xujRo3nggQfcstQBAQH+JjAGAgICAGhra0NRFFauXMnLL79MOp1m+/btlJSUUFFRwbBhw1izZg3btm1j6dKlDBs2DMMwii07ICDgIBBsEwQE9GGEEKxcuZLnnnuOJUuWcNFFF9HW1kZFRQW6rmMYBuFwmKamJhYuXMhJJ53E4sWLmTBhApZlufUPAgIC/E2QZyAgoI8ipWTXrl2sXbsWTdMYOnQo1dXVZLNZli5d6pbmHTFiBJ9//jlNTU2MHTuWdevWUV9fz/Dhw6mpqQkCCAMCvgIExkBAQEBAQEAfJ4gZCAgICAgI6OMExkBAQEBAQEAfJzAGAgICAgIC+jiBMRAQEBAQENDHCYyBgICAgICAPk5gDAQEBAQEBPRxAmMgICAgICCgjxMYAwEBAQEBAX2cwBgICAgICAjo4wTGQEBAQEBAQB8nMAYCAgICAgL6OIExEBAQEBAQ0McJjIGAgICAgIA+TmAMBAQEBAQE9HECYyAgICAgIKCPExgDAQEBAQEBfZzAGAgICAgICOjjBMZAQEBAQEBAHycwBgICAgICAvo4gTEQEBAQEBDQxwmMgYCAgICAgD5OYAwEBAQEBAT0cQJjICAgICAgoI8TGAMBAQEBAQF9nMAYCAgICAgI6OP8/0gG3+PHKXOJAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -630,10 +695,20 @@ "text": [ "\u001b[33mFigure Creator~\u001b[0m (to User):\n", "\n", - "result.jpg\n", + "tmp/result.jpg\n", "\n", "--------------------------------------------------------------------------------\n" ] + }, + { + "data": { + "text/plain": [ + "ChatResult(chat_id=None, chat_history=[{'content': '\\nPlot a figure by using the data from:\\nhttps://raw.githubusercontent.com/vega/vega/main/docs/data/seattle-weather.csv\\n\\nI want to show both temperature high and low.\\n', 'role': 'assistant'}, {'content': 'tmp/result.jpg', 'role': 'user'}], summary='tmp/result.jpg', cost=({'total_cost': 0}, {'total_cost': 0}), human_input=[])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -654,36 +729,19 @@ ")" ] }, - { - "cell_type": "code", - "execution_count": 8, - "id": "f0a58827", - "metadata": {}, - "outputs": [], - "source": [ - "if os.path.exists(\"result.jpg\"):\n", - " os.remove(\"result.jpg\") # clean up" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c6206648", - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "id": "a95d87c2", "metadata": {}, "source": [ - "## Group Chat Example with Multimodal Agent" + "## Vision Capability: Group Chat Example with Multimodal Agent\n", + "\n", + "We recommend using VisionCapability for group chat managers so that it can organize and understand images better." ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "id": "56bd5742", "metadata": { "scrolled": false @@ -695,7 +753,7 @@ "text": [ "\u001b[33mUser_proxy\u001b[0m (to chat_manager):\n", "\n", - "Describe the image:\n", + "Write a poet for my image:\n", " .\n", "\n", "--------------------------------------------------------------------------------\n", @@ -703,14 +761,51 @@ ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", "\u001b[33mimage-explainer-1\u001b[0m (to chat_manager):\n", "\n", - "In the soft embrace of a quiet room, a curly-haired sentinel of joy rests upon the floor—a puppy, with fur the color of sunlit autumn leaves. Its innocent eyes, deep and dark as a twilight sky, gaze into the world with wonder and gentle curiosity. Adorned with a collar that boasts a bright, mosaic-like pattern, the young canine wears a name tag shaped like a heart, whispering the promise of unconditional love and companionship. In the background, a pair of black boots stands sentinel, hinting at the return of a beloved owner, while the puppy waits, the embodiment of warmth and affection in an often too brisk world.\n", + "In a cozy nook by the door, where whispers of adventure pour,\n", + "Lies a curly apricot dream, with eyes that softly gleam.\n", + "Westphal, a name upon his tag, a dapper bow, no room to brag.\n", + "\n", + "A poodle or a mix so sweet, with paws that barely seem to meet\n", + "The floor that holds his tender frame, in this quiet household game.\n", + "A sentinel of love and joy, more charming than any toy.\n", + "\n", + "His gaze, a tale of gentle days, and love that in his heart blazes.\n", + "With boots behind, like silent guards, he watches without regards\n", + "To the world's rush and its tides, in his serene abode, he abides.\n", + "\n", + "Oh, little guardian of the hearth, your worth is not defined by birth.\n", + "But by the joy you bring to life, a respite from our daily strife.\n", + "In you, we find a friend so true, Westphal, a treasure through and through.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[31m\n", ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", - "\u001b[33mUser_proxy\u001b[0m (to chat_manager):\n", + "\u001b[33mimage-explainer-2\u001b[0m (to chat_manager):\n", + "\n", + "A pup so young with fur of gold,\n", + "In a house where stories unfold.\n", + "Westphal, with your bow so neat,\n", + "Your puppy eyes, oh so sweet.\n", + "\n", + "Curled up on the floor so light,\n", + "Your coat a soft, delightful sight.\n", + "A mix, perhaps, of breeds so kind,\n", + "In your face, pure joy we find.\n", "\n", + "With a tag that jingles slight,\n", + "And a bow tie oh so bright,\n", + "You lie there with such grace,\n", + "A calm presence in this place.\n", "\n", + "Behind you, boots await the rain,\n", + "But inside, you contently remain.\n", + "A symbol of love, a furry delight,\n", + "A beacon of warmth, shining so bright.\n", + "\n", + "In a world that's fast and vast,\n", + "Your gentle spirit holds us fast.\n", + "Westphal, with your charm so grand,\n", + "You bring peace to this human land.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[31m\n", @@ -746,7 +841,7 @@ "\n", "user_proxy = autogen.UserProxyAgent(\n", " name=\"User_proxy\",\n", - " system_message=\"Ask both image explainer 1 and 2 for their description.\",\n", + " system_message=\"Desribe image for me.\",\n", " human_input_mode=\"TERMINATE\", # Try between ALWAYS, NEVER, and TERMINATE\n", " max_consecutive_auto_reply=10,\n", " code_execution_config={\n", @@ -756,65 +851,299 @@ "\n", "# We set max_round to 5\n", "groupchat = autogen.GroupChat(agents=[agent1, agent2, user_proxy], messages=[], max_round=5)\n", + "\n", + "vision_capability = VisionCapability(lmm_config={\"config_list\": config_list_4v, \"temperature\": 0.5, \"max_tokens\": 300})\n", "group_chat_manager = autogen.GroupChatManager(groupchat=groupchat, llm_config=gpt4_llm_config)\n", + "vision_capability.add_to_agent(group_chat_manager)\n", "\n", - "user_proxy.initiate_chat(\n", + "rst = user_proxy.initiate_chat(\n", " group_chat_manager,\n", - " message=\"\"\"Describe the image:\n", + " message=\"\"\"Write a poet for my image:\n", " .\"\"\",\n", ")" ] }, + { + "cell_type": "markdown", + "id": "d69b6c81", + "metadata": {}, + "source": [ + "## Behavior with and without VisionCapability for Agents\n", + "\n", + "\n", + "Here, we show the behavior of an agent with and without VisionCapability. We use the same image and question as in the previous example." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "aae1167f", + "metadata": {}, + "outputs": [], + "source": [ + "agent_no_vision = AssistantAgent(name=\"Regular LLM Agent\", llm_config=gpt4_llm_config)\n", + "\n", + "agent_with_vision = AssistantAgent(name=\"Regular LLM Agent with Vision Capability\", llm_config=gpt4_llm_config)\n", + "vision_capability = VisionCapability(lmm_config={\"config_list\": config_list_4v, \"temperature\": 0.5, \"max_tokens\": 300})\n", + "vision_capability.add_to_agent(agent_with_vision)\n", + "\n", + "\n", + "user = UserProxyAgent(\n", + " name=\"User\",\n", + " human_input_mode=\"NEVER\",\n", + " max_consecutive_auto_reply=0,\n", + " code_execution_config={\"use_docker\": False},\n", + ")\n", + "\n", + "message = \"\"\"Write a poet for my image:\n", + " .\"\"\"" + ] + }, { "cell_type": "code", "execution_count": 10, - "id": "00bd473d", + "id": "c9e81b7e", "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "defaultdict(list,\n", - " {: [{'content': [{'type': 'text',\n", - " 'text': 'Describe the image:\\n '},\n", - " {'type': 'image_url',\n", - " 'image_url': {'url': }},\n", - " {'type': 'text', 'text': '.'}],\n", - " 'name': 'User_proxy',\n", - " 'role': 'user'},\n", - " {'content': [{'type': 'text',\n", - " 'text': 'In the soft embrace of a quiet room, a curly-haired sentinel of joy rests upon the floor—a puppy, with fur the color of sunlit autumn leaves. Its innocent eyes, deep and dark as a twilight sky, gaze into the world with wonder and gentle curiosity. Adorned with a collar that boasts a bright, mosaic-like pattern, the young canine wears a name tag shaped like a heart, whispering the promise of unconditional love and companionship. In the background, a pair of black boots stands sentinel, hinting at the return of a beloved owner, while the puppy waits, the embodiment of warmth and affection in an often too brisk world.'}],\n", - " 'role': 'assistant'},\n", - " {'content': [{'type': 'text', 'text': ''}],\n", - " 'name': 'User_proxy',\n", - " 'role': 'user'},\n", - " {'content': [{'type': 'text', 'text': ''}],\n", - " 'name': 'User_proxy',\n", - " 'role': 'user'},\n", - " {'content': [{'type': 'text', 'text': ''}],\n", - " 'name': 'User_proxy',\n", - " 'role': 'user'}]})" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mUser\u001b[0m (to Regular LLM Agent):\n", + "\n", + "Write a poet for my image:\n", + " .\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mRegular LLM Agent\u001b[0m (to User):\n", + "\n", + "As an AI, I can't directly view images or web content. However, I can help you generate a poem by gathering information about the image. Please describe the image for me, including details such as the setting, prominent colors, the mood it evokes, and any specific elements like animals, nature, cityscapes, or people that you want to be highlighted in the poem. Once you provide a description of the image, I can compose a poem based on that description.\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "user.send(message=message, recipient=agent_no_vision, request_reply=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "8720820f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mUser\u001b[0m (to Regular LLM Agent with Vision Capability):\n", + "\n", + "Write a poet for my image:\n", + " .\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mRegular LLM Agent with Vision Capability\u001b[0m (to User):\n", + "\n", + "In apricot hues, a curl-coated pup reclines,\n", + "With Westphal's name upon his tag that shines.\n", + "A bow tie blooms in a brilliant blue sky,\n", + "Amid a light-drenched floor where soft paws lie.\n", + "\n", + "Possessor of gazes, tender and deep,\n", + "In the quiet foyer, his watch he keeps.\n", + "Beneath black rubber guards of rainy days,\n", + "He stirs a comfort, a homely embrace.\n", + "\n", + "His lineage drawn from the poodles' grace,\n", + "Or maybe a mix, with a doodle's face,\n", + "Gold or Lab, his curls are just as sweet,\n", + "In each bouncing step, in each heartbeat.\n", + "\n", + "A picture of love, in a tiny frame,\n", + "A heartbeat wrapped in an apricot mane.\n", + "The pup in his calm, an invite to cheer,\n", + "A whisper of joy in a pet-lover's ear.\n", + "\n", + "Around him, life's simple clutter does unfold,\n", + "Yet untouched by worry, untouched by cold.\n", + "With every breath, he claims this slice of earth,\n", + "A master of mirth, from the moment of his birth.\n", + "\n", + "Paws outstretched on the soft, forgiving ground,\n", + "His soulful eyes speak, without a sound.\n", + "For in the sweet stillness of his gentle rest,\n", + "Lies the simple truth that we are blessed.\n", + "\n", + "TERMINATE\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] } ], "source": [ - "agent1._oai_messages" + "user.send(message=message, recipient=agent_with_vision, request_reply=True)" + ] + }, + { + "cell_type": "markdown", + "id": "ba4d3753", + "metadata": {}, + "source": [ + "## Custom Caption Function for Vision Capability\n", + "\n", + "In many use cases, we can use a custom function within the Vision Capability to transcribe an image into a caption.\n", + "\n", + "For instance, we can use rule-based algorithm or other models to detect the color, box, and other components inside the image.\n", + "\n", + "The custom model should take a path to the image and return a string caption.\n", + "\n", + "In the example below, the Vision Capability will call LMM to get caption and also call the custom function to get more information." ] }, { "cell_type": "code", - "execution_count": null, - "id": "39d293fb", + "execution_count": 12, + "id": "bff55c81", "metadata": {}, "outputs": [], - "source": [] + "source": [ + "def my_description(image_url: str, image_data: Image = None, lmm_client: object = None) -> str:\n", + " \"\"\"\n", + " This function takes an image URL and returns the description.\n", + "\n", + " Parameters:\n", + " - image_url (str): The URL of the image.\n", + " - image_data (PIL.Image): The image data.\n", + " - lmm_client (object): The LLM client object.\n", + "\n", + " Returns:\n", + " - str: A description of the color of the image.\n", + " \"\"\"\n", + " # Print the arguments for illustration purpose\n", + " print(\"image_url\", image_url)\n", + " print(\"image_data\", image_data)\n", + " print(\"lmm_client\", lmm_client)\n", + "\n", + " img_uri = pil_to_data_uri(image_data) # cast data into URI (str) format for API call\n", + " lmm_out = lmm_client.create(\n", + " context=None,\n", + " messages=[\n", + " {\n", + " \"role\": \"user\",\n", + " \"content\": [\n", + " {\"type\": \"text\", \"text\": \"Describe this image in 10 words.\"},\n", + " {\n", + " \"type\": \"image_url\",\n", + " \"image_url\": {\n", + " \"url\": img_uri,\n", + " },\n", + " },\n", + " ],\n", + " }\n", + " ],\n", + " )\n", + " description = lmm_out.choices[0].message.content\n", + " description = content_str(description)\n", + "\n", + " # Convert the image into an array of pixels.\n", + " pixels = np.array(image_data)\n", + "\n", + " # Calculate the average color.\n", + " avg_color_per_row = np.mean(pixels, axis=0)\n", + " avg_color = np.mean(avg_color_per_row, axis=0)\n", + " avg_color = avg_color.astype(int) # Convert to integer for color values\n", + "\n", + " # Format the average color as a string description.\n", + " caption = f\"\"\"The image is from {image_url}\n", + " It is about: {description}\n", + " The average color of the image is RGB:\n", + " ({avg_color[0]}, {avg_color[1]}, {avg_color[2]})\"\"\"\n", + "\n", + " print(caption) # For illustration purpose\n", + "\n", + " return caption" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "cbafea62", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mUser\u001b[0m (to Regular LLM Agent with Custom Func and LMM):\n", + "\n", + "Write a poet for my image:\n", + " .\n", + "\n", + "--------------------------------------------------------------------------------\n", + "image_url https://th.bing.com/th/id/R.422068ce8af4e15b0634fe2540adea7a?rik=y4OcXBE%2fqutDOw&pid=ImgRaw&r=0\n", + "image_data \n", + "lmm_client \n", + "The image is from https://th.bing.com/th/id/R.422068ce8af4e15b0634fe2540adea7a?rik=y4OcXBE%2fqutDOw&pid=ImgRaw&r=0\n", + " It is about: Cute brown curly-haired puppy with blue collar indoors.\n", + " The average color of the image is RGB: \n", + " (170, 155, 137)\n", + "\u001b[33mRegular LLM Agent with Custom Func and LMM\u001b[0m (to User):\n", + "\n", + "Beneath a sky of homely hue,\n", + "Where RGB blends a gentle stew,\n", + "Lies a pup of curls and capers,\n", + "Bound by blue, his neck in drapers.\n", + "\n", + "Soft in gaze, his eyes implore,\n", + "Warming hearts down to the core,\n", + "Coat of brown, with tangles sweet,\n", + "Whispers of play in each petite feet.\n", + "\n", + "In a world quite vast and wide,\n", + "Indoors he sits, with pride inside.\n", + "A silent wish, a breath, a start,\n", + "Curly companion, a work of art.\n", + "\n", + "Within the frame, he's captured still,\n", + "Yet, through the lens, his charm does spill.\n", + "A tiny heartbeat in the quiet room,\n", + "His presence banishes all gloom.\n", + "\n", + "A puppy's joy, in sepia tone,\n", + "With collar blue, he reigns alone.\n", + "A picture's worth, this moment's glee,\n", + "Cute curly friend, for all to see.\n", + "\n", + "This poem encapsulates the essence of the cute brown curly-haired puppy wearing a blue collar, blending an emotional portrayal with the aesthetic elements you provided.\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "agent_with_vision_and_func = AssistantAgent(\n", + " name=\"Regular LLM Agent with Custom Func and LMM\", llm_config=gpt4_llm_config\n", + ")\n", + "\n", + "vision_capability_with_func = VisionCapability(\n", + " lmm_config={\"config_list\": config_list_4v, \"temperature\": 0.5, \"max_tokens\": 300},\n", + " custom_caption_func=my_description,\n", + ")\n", + "vision_capability_with_func.add_to_agent(agent_with_vision_and_func)\n", + "\n", + "user.send(message=message, recipient=agent_with_vision_and_func, request_reply=True)" + ] } ], "metadata": { + "front_matter": { + "description": "In AutoGen, leveraging multimodal models can be done through two different methodologies: MultimodalConversableAgent and VisionCapability.", + "tags": [ + "multimodal", + "gpt-4v" + ] + }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", diff --git a/test/agentchat/contrib/capabilities/test_vision_capability.py b/test/agentchat/contrib/capabilities/test_vision_capability.py new file mode 100644 index 000000000000..a62d5245057f --- /dev/null +++ b/test/agentchat/contrib/capabilities/test_vision_capability.py @@ -0,0 +1,116 @@ +from unittest.mock import MagicMock, patch + +import pytest + +from autogen.agentchat.conversable_agent import ConversableAgent + +try: + from autogen.agentchat.contrib.capabilities.vision_capability import VisionCapability +except ImportError: + skip_test = True +else: + skip_test = False + + +@pytest.fixture +def lmm_config(): + return { + "config_list": [{"model": "gpt-4-vision-preview", "api_key": "sk-my_key"}], + "temperature": 0.5, + "max_tokens": 300, + } + + +@pytest.fixture +def vision_capability(lmm_config): + return VisionCapability(lmm_config, custom_caption_func=None) + + +@pytest.fixture +def conversable_agent(): + return ConversableAgent(name="conversable agent", llm_config=False) + + +@pytest.mark.skipif( + skip_test, + reason="do not run if dependency is not installed", +) +def test_add_to_conversable_agent(vision_capability, conversable_agent): + vision_capability.add_to_agent(conversable_agent) + assert hasattr(conversable_agent, "process_last_received_message") + + +@pytest.mark.skipif( + skip_test, + reason="do not run if dependency is not installed", +) +@patch("autogen.oai.client.OpenAIWrapper") +@pytest.mark.skipif( + skip_test, + reason="do not run if dependency is not installed", +) +def test_process_last_received_message_text(mock_lmm_client, vision_capability): + mock_lmm_client.create.return_value = MagicMock(choices=[MagicMock(message=MagicMock(content="A description"))]) + content = "Test message without image" + processed_content = vision_capability.process_last_received_message(content) + assert processed_content == content + + +@patch("autogen.agentchat.contrib.img_utils.get_image_data", return_value="base64_image_data") +@patch( + "autogen.agentchat.contrib.img_utils.convert_base64_to_data_uri", + return_value="_image_data", +) +@patch( + "autogen.agentchat.contrib.capabilities.vision_capability.VisionCapability._get_image_caption", + return_value="A sample image caption.", +) +@pytest.mark.skipif( + skip_test, + reason="do not run if dependency is not installed", +) +def test_process_last_received_message_with_image( + mock_get_caption, mock_convert_base64, mock_get_image_data, vision_capability +): + content = [{"type": "image_url", "image_url": {"url": "notebook/viz_gc.png"}}] + expected_caption = ( + " in case you can not see, the caption of this image is: A sample image caption.\n" + ) + processed_content = vision_capability.process_last_received_message(content) + assert processed_content == expected_caption + + +####### Test the Custom Caption Func + + +@pytest.fixture +def custom_caption_func(): + """Fixture to provide a sample custom caption function.""" + + def caption_func(image_url: str, image_data=None, lmm_client=None) -> str: + # This is a simplistic example. Replace with the actual logic. + return f"An image description. The image is from {image_url}." + + return caption_func + + +@pytest.mark.skipif( + skip_test, + reason="do not run if dependency is not installed", +) +class TestCustomCaptionFunc: + def test_custom_caption_func_with_valid_url(self, custom_caption_func): + """Test custom caption function with a valid image URL.""" + image_url = "notebook/viz_gc.png" + expected_caption = f"An image description. The image is from {image_url}." + assert custom_caption_func(image_url) == expected_caption, "Caption does not match expected output." + + def test_process_last_received_message_with_custom_func(self, lmm_config, custom_caption_func): + """Test processing a message containing an image URL with a custom caption function.""" + vision_capability = VisionCapability(lmm_config, custom_caption_func=custom_caption_func) + + image_url = "notebook/viz_gc.png" + content = [{"type": "image_url", "image_url": {"url": image_url}}] + expected_output = f" An image description. The image is from {image_url}." + processed_content = vision_capability.process_last_received_message(content) + assert expected_output in processed_content, "Processed content does not contain the expected caption." From 28c37f3c3541bee687fd196b69676322d3ba310d Mon Sep 17 00:00:00 2001 From: Eric Zhu Date: Mon, 25 Mar 2024 07:35:29 -0700 Subject: [PATCH 04/27] Native tool call support for Mistral AI API and topic notebook. (#2135) * Support for Mistral AI API and topic notebook. * formatting * formatting --- autogen/agentchat/conversable_agent.py | 38 +- website/.gitignore | 2 + .../about-using-nonopenai-models.md | 6 +- .../non-openai-models/cloud-mistralai.ipynb | 1009 +++++++++++++++++ 4 files changed, 1042 insertions(+), 13 deletions(-) create mode 100644 website/docs/topics/non-openai-models/cloud-mistralai.ipynb diff --git a/autogen/agentchat/conversable_agent.py b/autogen/agentchat/conversable_agent.py index ef350f7d9e26..54206b550521 100644 --- a/autogen/agentchat/conversable_agent.py +++ b/autogen/agentchat/conversable_agent.py @@ -696,8 +696,8 @@ def _print_received_message(self, message: Union[Dict, str], sender: Agent): id_key = "name" else: id_key = "tool_call_id" - - func_print = f"***** Response from calling {message['role']} \"{message[id_key]}\" *****" + id = message.get(id_key, "No id found") + func_print = f"***** Response from calling {message['role']} ({id}) *****" print(colored(func_print, "green"), flush=True) print(message["content"], flush=True) print(colored("*" * len(func_print), "green"), flush=True) @@ -714,7 +714,7 @@ def _print_received_message(self, message: Union[Dict, str], sender: Agent): if "function_call" in message and message["function_call"]: function_call = dict(message["function_call"]) func_print = ( - f"***** Suggested function Call: {function_call.get('name', '(No function name found)')} *****" + f"***** Suggested function call: {function_call.get('name', '(No function name found)')} *****" ) print(colored(func_print, "green"), flush=True) print( @@ -726,9 +726,9 @@ def _print_received_message(self, message: Union[Dict, str], sender: Agent): print(colored("*" * len(func_print), "green"), flush=True) if "tool_calls" in message and message["tool_calls"]: for tool_call in message["tool_calls"]: - id = tool_call.get("id", "(No id found)") + id = tool_call.get("id", "No tool call id found") function_call = dict(tool_call.get("function", {})) - func_print = f"***** Suggested tool Call ({id}): {function_call.get('name', '(No function name found)')} *****" + func_print = f"***** Suggested tool call ({id}): {function_call.get('name', '(No function name found)')} *****" print(colored(func_print, "green"), flush=True) print( "Arguments: \n", @@ -1309,6 +1309,12 @@ def _generate_oai_reply_from_client(self, llm_client, messages, cache) -> Union[ ) for tool_call in extracted_response.get("tool_calls") or []: tool_call["function"]["name"] = self._normalize_name(tool_call["function"]["name"]) + # Remove id and type if they are not present. + # This is to make the tool call object compatible with Mistral API. + if tool_call.get("id") is None: + tool_call.pop("id") + if tool_call.get("type") is None: + tool_call.pop("type") return extracted_response async def a_generate_oai_reply( @@ -1525,7 +1531,6 @@ def generate_tool_calls_reply( message = messages[-1] tool_returns = [] for tool_call in message.get("tool_calls", []): - id = tool_call["id"] function_call = tool_call.get("function", {}) func = self._function_map.get(function_call.get("name", None), None) if inspect.iscoroutinefunction(func): @@ -1543,13 +1548,24 @@ def generate_tool_calls_reply( loop.close() else: _, func_return = self.execute_function(function_call) - tool_returns.append( - { - "tool_call_id": id, + content = func_return.get("content", "") + if content is None: + content = "" + tool_call_id = tool_call.get("id", None) + if tool_call_id is not None: + tool_call_response = { + "tool_call_id": tool_call_id, "role": "tool", - "content": func_return.get("content", ""), + "content": content, } - ) + else: + # Do not include tool_call_id if it is not present. + # This is to make the tool call object compatible with Mistral API. + tool_call_response = { + "role": "tool", + "content": content, + } + tool_returns.append(tool_call_response) if tool_returns: return True, { "role": "tool", diff --git a/website/.gitignore b/website/.gitignore index 3988a173387f..957507b6b442 100644 --- a/website/.gitignore +++ b/website/.gitignore @@ -19,6 +19,8 @@ docs/topics/code-execution/*.mdx docs/topics/task_decomposition.mdx docs/topics/prompting-and-reasoning/*.mdx docs/topics/non-openai-models/*.mdx +docs/topics/non-openai-models/**/*.py +docs/topics/non-openai-models/**/*.svg # Misc .DS_Store diff --git a/website/docs/topics/non-openai-models/about-using-nonopenai-models.md b/website/docs/topics/non-openai-models/about-using-nonopenai-models.md index e202679f29e1..0e15d5ae8b11 100644 --- a/website/docs/topics/non-openai-models/about-using-nonopenai-models.md +++ b/website/docs/topics/non-openai-models/about-using-nonopenai-models.md @@ -21,7 +21,8 @@ These proxy servers can be cloud-based or running locally within your environmen By using cloud-based proxy servers, you are able to use models without requiring the hardware and software to run them. -These providers can host open source/weight models, like [Hugging Face](https://huggingface.co/), +These providers can host open source/weight models, like [Hugging Face](https://huggingface.co/) +and [Mistral AI](https://mistral.ai/), or their own closed models. When cloud-based proxy servers provide an OpenAI-compatible API, using them in AutoGen @@ -32,7 +33,8 @@ authentication which is usually handled through an API key. Examples of using cloud-based proxy servers providers that have an OpenAI-compatible API are provided below: -- [together.ai example](/docs/topics/non-openai-models/cloud-togetherai) +- [Together AI example](/docs/topics/non-openai-models/cloud-togetherai) +- [Mistral AI example](/docs/topics/non-openai-models/cloud-mistralai) ### Locally run proxy servers diff --git a/website/docs/topics/non-openai-models/cloud-mistralai.ipynb b/website/docs/topics/non-openai-models/cloud-mistralai.ipynb new file mode 100644 index 000000000000..9c18d6d04089 --- /dev/null +++ b/website/docs/topics/non-openai-models/cloud-mistralai.ipynb @@ -0,0 +1,1009 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Mistral AI\n", + "\n", + "[Mistral AI](https://mistral.ai/) is a cloud based platform\n", + "serving Mistral's own LLMs.\n", + "You can use AutoGen with Mistral AI's API directly." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First you need to install the `pyautogen` package to use AutoGen." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "! pip install pyautogen" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now you can set up the Mistral model you want to use." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "config_list = [\n", + " {\n", + " # Choose your model name.\n", + " \"model\": \"mistral-large-latest\",\n", + " \"base_url\": \"https://api.mistral.ai/v1\",\n", + " # You need to provide your API key here.\n", + " \"api_key\": os.environ.get(\"MISTRAL_API_KEY\"),\n", + " }\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Two-Agent Coding Example\n", + "\n", + "In this example, we run a two-agent chat to count how many prime numbers between 1 and 10000 using coding." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "from autogen import AssistantAgent, UserProxyAgent\n", + "from autogen.coding import LocalCommandLineCodeExecutor\n", + "\n", + "# Setting up the code executor.\n", + "workdir = Path(\"coding\")\n", + "workdir.mkdir(exist_ok=True)\n", + "code_executor = LocalCommandLineCodeExecutor(work_dir=workdir)\n", + "\n", + "# Setting up the agents.\n", + "user_proxy_agent = UserProxyAgent(\n", + " name=\"User\",\n", + " code_execution_config={\"executor\": code_executor},\n", + " is_termination_msg=lambda msg: \"TERMINATE\" in msg.get(\"content\"),\n", + ")\n", + "\n", + "assistant_agent = AssistantAgent(\n", + " name=\"Mistral Assistant\",\n", + " llm_config={\"config_list\": config_list},\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mUser\u001b[0m (to Mistral Assistant):\n", + "\n", + "Count how many prime numbers from 1 to 10000.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mMistral Assistant\u001b[0m (to User):\n", + "\n", + "Sure, I can help with that. Here's a Python code snippet that counts the number of prime numbers from 1 to 10000.\n", + "\n", + "```python\n", + "# filename: prime_counter.py\n", + "\n", + "def is_prime(n):\n", + " if n <= 1:\n", + " return False\n", + " if n <= 3:\n", + " return True\n", + " if n % 2 == 0 or n % 3 == 0:\n", + " return False\n", + " i = 5\n", + " while i * i <= n:\n", + " if n % i == 0 or n % (i + 2) == 0:\n", + " return False\n", + " i += 6\n", + " return True\n", + "\n", + "count = 0\n", + "for num in range(1, 10001):\n", + " if is_prime(num):\n", + " count += 1\n", + "\n", + "print(count)\n", + "```\n", + "\n", + "Please save this code in a file named `prime_counter.py` and run it. The output will be the count of prime numbers from 1 to 10000.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> EXECUTING CODE BLOCK (inferred language is python)...\u001b[0m\n", + "\u001b[33mUser\u001b[0m (to Mistral Assistant):\n", + "\n", + "exitcode: 0 (execution succeeded)\n", + "Code output: 1229\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mMistral Assistant\u001b[0m (to User):\n", + "\n", + "Based on the output, the code I provided earlier has successfully executed and found that there are 1229 prime numbers between 1 and 10000. Here's how I approached this task step by step:\n", + "\n", + "1. I wrote a Python function `is_prime(n)` to check if a given number `n` is prime. This function returns `True` if `n` is prime and `False` otherwise.\n", + "\n", + "2. I used a for loop to iterate through numbers from 1 to 10000, then called the `is_prime` function to determine if the current number is prime. If it is, I incremented a counter variable `count` by 1.\n", + "\n", + "3. I printed the value of `count` after the loop to display the total number of prime numbers in the given range.\n", + "\n", + "The output `1229` confirms that there are indeed 1229 prime numbers between 1 and 10000.\n", + "\n", + "TERMINATE\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n" + ] + } + ], + "source": [ + "chat_result = user_proxy_agent.initiate_chat(\n", + " assistant_agent,\n", + " message=\"Count how many prime numbers from 1 to 10000.\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Tool Call Example\n", + "\n", + "In this example, instead of writing code, we will have two agent playing chess against each other using tool to make moves.\n", + "\n", + "First install the `chess` package by running the following command:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "! pip install chess" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Write function for making a move." + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [], + "source": [ + "import chess\n", + "import chess.svg\n", + "from IPython.display import display\n", + "import random\n", + "from typing_extensions import Annotated\n", + "\n", + "board = chess.Board()\n", + "\n", + "\n", + "def make_move() -> Annotated[str, \"A move in UCI format\"]:\n", + " moves = list(board.legal_moves)\n", + " move = random.choice(moves)\n", + " board.push(move)\n", + " # Display the board.\n", + " display(chess.svg.board(board, size=400))\n", + " return str(move)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's create the agents. We have three different agents:\n", + "- `player_white` is the agent that plays white.\n", + "- `player_black` is the agent that plays black.\n", + "- `board_proxy` is the agent that moves the pieces on the board." + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "from autogen import ConversableAgent, register_function\n", + "\n", + "player_white = ConversableAgent(\n", + " name=\"Player White\",\n", + " system_message=\"You are a chess player and you play as white. \" \"Always call make_move() to make a move\",\n", + " llm_config={\"config_list\": config_list, \"cache_seed\": None},\n", + ")\n", + "\n", + "player_black = ConversableAgent(\n", + " name=\"Player Black\",\n", + " system_message=\"You are a chess player and you play as black. \" \"Always call make_move() to make a move\",\n", + " llm_config={\"config_list\": config_list, \"cache_seed\": None},\n", + ")\n", + "\n", + "board_proxy = ConversableAgent(\n", + " name=\"Board Proxy\",\n", + " llm_config=False,\n", + " # The board proxy will only respond to the make_move function.\n", + " is_termination_msg=lambda msg: \"tool_calls\" not in msg,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Register tools for the agents. See [tutorial chapter on tool use](/docs/tutorial/tool-use) \n", + "for more information." + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "register_function(\n", + " make_move,\n", + " caller=player_white,\n", + " executor=board_proxy,\n", + " name=\"make_move\",\n", + " description=\"Make a move.\",\n", + ")\n", + "\n", + "register_function(\n", + " make_move,\n", + " caller=player_black,\n", + " executor=board_proxy,\n", + " name=\"make_move\",\n", + " description=\"Make a move.\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Register nested chats for the player agents.\n", + "Nested chats allows each player agent to chat with the board proxy agent\n", + "to make a move, before communicating with the other player agent.\n", + "See [nested chats tutorial chapter](/docs/tutorial/conversation-patterns#nested-chats)\n", + "for more information." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "player_white.register_nested_chats(\n", + " trigger=player_black,\n", + " chat_queue=[\n", + " {\n", + " \"sender\": board_proxy,\n", + " \"recipient\": player_white,\n", + " }\n", + " ],\n", + ")\n", + "\n", + "player_black.register_nested_chats(\n", + " trigger=player_white,\n", + " chat_queue=[\n", + " {\n", + " \"sender\": board_proxy,\n", + " \"recipient\": player_black,\n", + " }\n", + " ],\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Start the chess game." + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mPlayer White\u001b[0m (to Player Black):\n", + "\n", + "Let's play chess! Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[34mStarting a new chat....\n", + "\n", + "Message:\n", + "Let's play chess! Your move.\n", + "\n", + "Carryover: \n", + "\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "Let's play chess! Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "\n", + "\u001b[32m***** Suggested tool call (No tool call id found): make_move *****\u001b[0m\n", + "Arguments: \n", + "{}\n", + "\u001b[32m******************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION make_move...\u001b[0m\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "
r n b q k b n r\n",
+       "p p p p p p p p\n",
+       ". . . . . . . .\n",
+       ". . . . . . . .\n",
+       ". . . . . . . .\n",
+       "P . . . . . . .\n",
+       ". P P P P P P P\n",
+       "R N B Q K B N R
" + ], + "text/plain": [ + "'
r n b q k b n r\\np p p p p p p p\\n. . . . . . . .\\n. . . . . . . .\\n. . . . . . . .\\nP . . . . . . .\\n. P P P P P P P\\nR N B Q K B N R
'" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[32m***** Response from calling tool (No id found) *****\u001b[0m\n", + "a2a3\n", + "\u001b[32m****************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "You made a move: a2a3. It's my turn now.\n", + "\n", + "e2e4\n", + "\n", + "Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Player White):\n", + "\n", + "You made a move: a2a3. It's my turn now.\n", + "\n", + "e2e4\n", + "\n", + "Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[34mStarting a new chat....\n", + "\n", + "Message:\n", + "You made a move: a2a3. It's my turn now.\n", + "\n", + "e2e4\n", + "\n", + "Your move.\n", + "\n", + "Carryover: \n", + "\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "You made a move: a2a3. It's my turn now.\n", + "\n", + "e2e4\n", + "\n", + "Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer White\u001b[0m (to Board Proxy):\n", + "\n", + "\n", + "\u001b[32m***** Suggested tool call (No tool call id found): make_move *****\u001b[0m\n", + "Arguments: \n", + "{}\n", + "\u001b[32m******************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION make_move...\u001b[0m\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "
r n b q k b n r\n",
+       "p p p p . p p p\n",
+       ". . . . . . . .\n",
+       ". . . . p . . .\n",
+       ". . . . . . . .\n",
+       "P . . . . . . .\n",
+       ". P P P P P P P\n",
+       "R N B Q K B N R
" + ], + "text/plain": [ + "'
r n b q k b n r\\np p p p . p p p\\n. . . . . . . .\\n. . . . p . . .\\n. . . . . . . .\\nP . . . . . . .\\n. P P P P P P P\\nR N B Q K B N R
'" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "\u001b[32m***** Response from calling tool (No id found) *****\u001b[0m\n", + "e7e5\n", + "\u001b[32m****************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer White\u001b[0m (to Board Proxy):\n", + "\n", + "I made a move: e7e5. It's your turn now.\n", + "\n", + "Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[33mPlayer White\u001b[0m (to Player Black):\n", + "\n", + "I made a move: e7e5. It's your turn now.\n", + "\n", + "Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[34mStarting a new chat....\n", + "\n", + "Message:\n", + "I made a move: e7e5. It's your turn now.\n", + "\n", + "Your move.\n", + "\n", + "Carryover: \n", + "\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "I made a move: e7e5. It's your turn now.\n", + "\n", + "Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "\n", + "\u001b[32m***** Suggested tool call (No tool call id found): make_move *****\u001b[0m\n", + "Arguments: \n", + "{}\n", + "\u001b[32m******************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION make_move...\u001b[0m\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "
r n b q k b n r\n",
+       "p p p p . p p p\n",
+       ". . . . . . . .\n",
+       ". . . . p . . .\n",
+       ". . . . . . . P\n",
+       "P . . . . . . .\n",
+       ". P P P P P P .\n",
+       "R N B Q K B N R
" + ], + "text/plain": [ + "'
r n b q k b n r\\np p p p . p p p\\n. . . . . . . .\\n. . . . p . . .\\n. . . . . . . P\\nP . . . . . . .\\n. P P P P P P .\\nR N B Q K B N R
'" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[32m***** Response from calling tool (No id found) *****\u001b[0m\n", + "h2h4\n", + "\u001b[32m****************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "I made a move: h2h4. It's your turn now.\n", + "\n", + "Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Player White):\n", + "\n", + "I made a move: h2h4. It's your turn now.\n", + "\n", + "Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[34mStarting a new chat....\n", + "\n", + "Message:\n", + "I made a move: h2h4. It's your turn now.\n", + "\n", + "Your move.\n", + "\n", + "Carryover: \n", + "\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "I made a move: h2h4. It's your turn now.\n", + "\n", + "Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer White\u001b[0m (to Board Proxy):\n", + "\n", + "\n", + "\u001b[32m***** Suggested tool call (No tool call id found): make_move *****\u001b[0m\n", + "Arguments: \n", + "{}\n", + "\u001b[32m******************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION make_move...\u001b[0m\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "
r n b q k b . r\n",
+       "p p p p . p p p\n",
+       ". . . . . . . n\n",
+       ". . . . p . . .\n",
+       ". . . . . . . P\n",
+       "P . . . . . . .\n",
+       ". P P P P P P .\n",
+       "R N B Q K B N R
" + ], + "text/plain": [ + "'
r n b q k b . r\\np p p p . p p p\\n. . . . . . . n\\n. . . . p . . .\\n. . . . . . . P\\nP . . . . . . .\\n. P P P P P P .\\nR N B Q K B N R
'" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "\u001b[32m***** Response from calling tool (No id found) *****\u001b[0m\n", + "g8h6\n", + "\u001b[32m****************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer White\u001b[0m (to Board Proxy):\n", + "\n", + "You moved g8h6. I made a move: g1g3. It's your turn now.\n", + "\n", + "Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[33mPlayer White\u001b[0m (to Player Black):\n", + "\n", + "You moved g8h6. I made a move: g1g3. It's your turn now.\n", + "\n", + "Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[34mStarting a new chat....\n", + "\n", + "Message:\n", + "You moved g8h6. I made a move: g1g3. It's your turn now.\n", + "\n", + "Your move.\n", + "\n", + "Carryover: \n", + "\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "You moved g8h6. I made a move: g1g3. It's your turn now.\n", + "\n", + "Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "\n", + "\u001b[32m***** Suggested tool call (No tool call id found): make_move *****\u001b[0m\n", + "Arguments: \n", + "{}\n", + "\u001b[32m******************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION make_move...\u001b[0m\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "
r n b q k b . r\n",
+       "p p p p . p p p\n",
+       ". . . . . . . n\n",
+       ". . . . p . . .\n",
+       ". . . . . . . P\n",
+       "P . . . . . . N\n",
+       ". P P P P P P .\n",
+       "R N B Q K B . R
" + ], + "text/plain": [ + "'
r n b q k b . r\\np p p p . p p p\\n. . . . . . . n\\n. . . . p . . .\\n. . . . . . . P\\nP . . . . . . N\\n. P P P P P P .\\nR N B Q K B . R
'" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[32m***** Response from calling tool (No id found) *****\u001b[0m\n", + "g1h3\n", + "\u001b[32m****************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "You moved g8h6. I made a move: g1h3. You moved g1h3. It's my turn now.\n", + "\n", + "I made a move: d2d4. Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Player White):\n", + "\n", + "You moved g8h6. I made a move: g1h3. You moved g1h3. It's my turn now.\n", + "\n", + "I made a move: d2d4. Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[34mStarting a new chat....\n", + "\n", + "Message:\n", + "You moved g8h6. I made a move: g1h3. You moved g1h3. It's my turn now.\n", + "\n", + "I made a move: d2d4. Your move.\n", + "\n", + "Carryover: \n", + "\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "You moved g8h6. I made a move: g1h3. You moved g1h3. It's my turn now.\n", + "\n", + "I made a move: d2d4. Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer White\u001b[0m (to Board Proxy):\n", + "\n", + "\n", + "\u001b[32m***** Suggested tool call (No tool call id found): make_move *****\u001b[0m\n", + "Arguments: \n", + "{}\n", + "\u001b[32m******************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION make_move...\u001b[0m\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "
r n b . k b . r\n",
+       "p p p p . p p p\n",
+       ". . . . . . . n\n",
+       ". . . . p . . .\n",
+       ". . . . . . . q\n",
+       "P . . . . . . N\n",
+       ". P P P P P P .\n",
+       "R N B Q K B . R
" + ], + "text/plain": [ + "'
r n b . k b . r\\np p p p . p p p\\n. . . . . . . n\\n. . . . p . . .\\n. . . . . . . q\\nP . . . . . . N\\n. P P P P P P .\\nR N B Q K B . R
'" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "\u001b[32m***** Response from calling tool (No id found) *****\u001b[0m\n", + "d8h4\n", + "\u001b[32m****************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer White\u001b[0m (to Board Proxy):\n", + "\n", + "You moved d8h4. I made a move: d4d5. Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[33mPlayer White\u001b[0m (to Player Black):\n", + "\n", + "You moved d8h4. I made a move: d4d5. Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[34mStarting a new chat....\n", + "\n", + "Message:\n", + "You moved d8h4. I made a move: d4d5. Your move.\n", + "\n", + "Carryover: \n", + "\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "You moved d8h4. I made a move: d4d5. Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "\n", + "\u001b[32m***** Suggested tool call (No tool call id found): make_move *****\u001b[0m\n", + "Arguments: \n", + "{}\n", + "\u001b[32m******************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION make_move...\u001b[0m\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "
r n b . k b . r\n",
+       "p p p p . p p p\n",
+       ". . . . . . . n\n",
+       ". . . . p . . .\n",
+       ". . . . P . . q\n",
+       "P . . . . . . N\n",
+       ". P P P . P P .\n",
+       "R N B Q K B . R
" + ], + "text/plain": [ + "'
r n b . k b . r\\np p p p . p p p\\n. . . . . . . n\\n. . . . p . . .\\n. . . . P . . q\\nP . . . . . . N\\n. P P P . P P .\\nR N B Q K B . R
'" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[32m***** Response from calling tool (No id found) *****\u001b[0m\n", + "e2e4\n", + "\u001b[32m****************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "You made a move: e2e4. I made a move: d5e4. Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Player White):\n", + "\n", + "You made a move: e2e4. I made a move: d5e4. Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "# Clear the board.\n", + "board = chess.Board()\n", + "\n", + "chat_result = player_white.initiate_chat(\n", + " player_black,\n", + " message=\"Let's play chess! Your move.\",\n", + " max_turns=4,\n", + ")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "autogen", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 9ca9b119b035f0f2f6d1f0231eca0bd7de214105 Mon Sep 17 00:00:00 2001 From: Eric Zhu Date: Mon, 25 Mar 2024 09:24:08 -0700 Subject: [PATCH 05/27] New conversational chess notebook using nested chats and tool use (#2137) * add chess notebook * update * update * Update notebook with figure * Add example link * redirect * Clean up example format * address gagan's comments * update references * fix links --- notebook/agentchat_chess.ipynb | 985 -------------- notebook/agentchat_nested_chats_chess.ipynb | 1162 +++++++++++++++++ notebook/nested-chats-chess.png | Bin 0 -> 84397 bytes website/docs/Examples.md | 131 +- .../docs/tutorial/conversation-patterns.ipynb | 9 +- website/docs/tutorial/tool-use.ipynb | 20 + website/docusaurus.config.js | 4 + 7 files changed, 1261 insertions(+), 1050 deletions(-) delete mode 100644 notebook/agentchat_chess.ipynb create mode 100644 notebook/agentchat_nested_chats_chess.ipynb create mode 100644 notebook/nested-chats-chess.png diff --git a/notebook/agentchat_chess.ipynb b/notebook/agentchat_chess.ipynb deleted file mode 100644 index 8ff713587c09..000000000000 --- a/notebook/agentchat_chess.ipynb +++ /dev/null @@ -1,985 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Chess Game Playing While Chitchatting by GPT-4 Agents\n", - "\n", - "AutoGen offers conversable agents powered by LLM, tool, or human, which can be used to perform tasks collectively via automated chat. This framework allows tool use and human participation through multi-agent conversation.\n", - "Please find documentation about this feature [here](https://microsoft.github.io/autogen/docs/Use-Cases/agent_chat).\n", - "\n", - "This notebook is modified based on https://github.com/ekzhu/FLAML/blob/evaluation/evaluation/chess/play_chess.ipynb\n", - "\n", - "## Requirements\n", - "\n", - "````{=mdx}\n", - ":::info Requirements\n", - "Some extra dependencies are needed for this notebook, which can be installed via pip:\n", - "\n", - "```bash\n", - "pip install pyautogen chess\n", - "```\n", - "\n", - "For more information, please refer to the [installation guide](/docs/installation/).\n", - ":::\n", - "````" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "%%capture --no-stderr\n", - "from collections import defaultdict\n", - "from typing import Any, Dict, List, Optional, Union\n", - "\n", - "import chess\n", - "import chess.svg\n", - "\n", - "import autogen" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Set your API Endpoint\n", - "\n", - "The [`config_list_from_json`](https://microsoft.github.io/autogen/docs/reference/oai/openai_utils#config_list_from_json) function loads a list of configurations from an environment variable or a json file." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "config_list_gpt4 = autogen.config_list_from_json(\n", - " \"OAI_CONFIG_LIST\",\n", - " filter_dict={\n", - " \"model\": [\"gpt-4\", \"gpt4\", \"gpt-4-32k\", \"gpt-4-32k-0314\", \"gpt-4-32k-v0314\"],\n", - " },\n", - ")" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "````{=mdx}\n", - ":::tip\n", - "Learn more about configuring LLMs for agents [here](/docs/topics/llm_configuration).\n", - ":::\n", - "````" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Define Agents\n", - "\n", - "We'll define a BoardAgent and a ChessPlayerAgent class." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "sys_msg = \"\"\"You are an AI-powered chess board agent.\n", - "You translate the user's natural language input into legal UCI moves.\n", - "You should only reply with a UCI move string extracted from the user's input.\"\"\"\n", - "\n", - "\n", - "class BoardAgent(autogen.AssistantAgent):\n", - " board: chess.Board\n", - " correct_move_messages: Dict[autogen.Agent, List[Dict]]\n", - "\n", - " def __init__(self, board: chess.Board):\n", - " super().__init__(\n", - " name=\"BoardAgent\",\n", - " system_message=sys_msg,\n", - " llm_config={\"temperature\": 0.0, \"config_list\": config_list_gpt4},\n", - " max_consecutive_auto_reply=10,\n", - " )\n", - " self.register_reply(autogen.ConversableAgent, BoardAgent._generate_board_reply)\n", - " self.board = board\n", - " self.correct_move_messages = defaultdict(list)\n", - "\n", - " def _generate_board_reply(\n", - " self,\n", - " messages: Optional[List[Dict]] = None,\n", - " sender: Optional[autogen.Agent] = None,\n", - " config: Optional[Any] = None,\n", - " ) -> Union[str, Dict, None]:\n", - " message = messages[-1]\n", - " # extract a UCI move from player's message\n", - " reply = self.generate_reply(\n", - " self.correct_move_messages[sender] + [message], sender, exclude=[BoardAgent._generate_board_reply]\n", - " )\n", - " uci_move = reply if isinstance(reply, str) else str(reply[\"content\"])\n", - " try:\n", - " self.board.push_uci(uci_move)\n", - " except ValueError as e:\n", - " # invalid move\n", - " return True, f\"Error: {e}\"\n", - " else:\n", - " # valid move\n", - " m = chess.Move.from_uci(uci_move)\n", - " display( # noqa: F821\n", - " chess.svg.board(\n", - " self.board, arrows=[(m.from_square, m.to_square)], fill={m.from_square: \"gray\"}, size=200\n", - " )\n", - " )\n", - " self.correct_move_messages[sender].extend([message, self._message_to_dict(uci_move)])\n", - " self.correct_move_messages[sender][-1][\"role\"] = \"assistant\"\n", - " return True, uci_move" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "sys_msg_tmpl = \"\"\"Your name is {name} and you are a chess player.\n", - "You are playing against {opponent_name}.\n", - "You are playing as {color}.\n", - "You communicate your move using universal chess interface language.\n", - "You also chit-chat with your opponent when you communicate a move to light up the mood.\n", - "You should ensure both you and the opponent are making legal moves.\n", - "Do not apologize for making illegal moves.\"\"\"\n", - "\n", - "\n", - "class ChessPlayerAgent(autogen.AssistantAgent):\n", - " def __init__(\n", - " self,\n", - " color: str,\n", - " board_agent: BoardAgent,\n", - " max_turns: int,\n", - " **kwargs,\n", - " ):\n", - " if color not in [\"white\", \"black\"]:\n", - " raise ValueError(f\"color must be either white or black, but got {color}\")\n", - " opponent_color = \"black\" if color == \"white\" else \"white\"\n", - " name = f\"Player {color}\"\n", - " opponent_name = f\"Player {opponent_color}\"\n", - " sys_msg = sys_msg_tmpl.format(\n", - " name=name,\n", - " opponent_name=opponent_name,\n", - " color=color,\n", - " )\n", - " super().__init__(\n", - " name=name,\n", - " system_message=sys_msg,\n", - " max_consecutive_auto_reply=max_turns,\n", - " **kwargs,\n", - " )\n", - " self.register_reply(BoardAgent, ChessPlayerAgent._generate_reply_for_board, config=board_agent.board)\n", - " self.register_reply(ChessPlayerAgent, ChessPlayerAgent._generate_reply_for_player, config=board_agent)\n", - " self.update_max_consecutive_auto_reply(board_agent.max_consecutive_auto_reply(), board_agent)\n", - "\n", - " def _generate_reply_for_board(\n", - " self,\n", - " messages: Optional[List[Dict]] = None,\n", - " sender: Optional[autogen.Agent] = None,\n", - " config: Optional[chess.Board] = None,\n", - " ) -> Union[str, Dict, None]:\n", - " board = config\n", - " # add a system message about the current state of the board.\n", - " board_state_msg = [{\"role\": \"system\", \"content\": f\"Current board:\\n{board}\"}]\n", - " last_message = messages[-1]\n", - " if last_message[\"content\"].startswith(\"Error\"):\n", - " # try again\n", - " last_message[\"role\"] = \"system\"\n", - " return True, self.generate_reply(\n", - " messages + board_state_msg, sender, exclude=[ChessPlayerAgent._generate_reply_for_board]\n", - " )\n", - " else:\n", - " return True, None\n", - "\n", - " def _generate_reply_for_player(\n", - " self,\n", - " messages: Optional[List[Dict]] = None,\n", - " sender: Optional[autogen.Agent] = None,\n", - " config: Optional[BoardAgent] = None,\n", - " ) -> Union[str, Dict, None]:\n", - " board_agent = config\n", - " # add a system message about the current state of the board.\n", - " board_state_msg = [{\"role\": \"system\", \"content\": f\"Current board:\\n{board_agent.board}\"}]\n", - " # propose a reply which will be sent to the board agent for verification.\n", - " message = self.generate_reply(\n", - " messages + board_state_msg, sender, exclude=[ChessPlayerAgent._generate_reply_for_player]\n", - " )\n", - " if message is None:\n", - " return True, None\n", - " # converse with the board until a legal move is made or max allowed retries.\n", - " # change silent to False to see that conversation.\n", - " self.initiate_chat(board_agent, clear_history=False, message=message, silent=self.human_input_mode == \"NEVER\")\n", - " # last message sent by the board agent\n", - " last_message = self._oai_messages[board_agent][-1]\n", - " if last_message[\"role\"] == \"assistant\":\n", - " # didn't make a legal move after a limit times of retries.\n", - " print(f\"{self.name}: I yield.\")\n", - " return True, None\n", - " return True, self._oai_messages[board_agent][-2]" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Construct Agents" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "max_turn = 10\n", - "\n", - "board = chess.Board()\n", - "board_agent = BoardAgent(board=board)\n", - "player_black = ChessPlayerAgent(\n", - " color=\"black\",\n", - " board_agent=board_agent,\n", - " max_turns=max_turn,\n", - " llm_config={\"temperature\": 0.5, \"cache_seed\": 1, \"config_list\": config_list_gpt4},\n", - ")\n", - "player_white = ChessPlayerAgent(\n", - " color=\"white\",\n", - " board_agent=board_agent,\n", - " max_turns=max_turn,\n", - " llm_config={\"temperature\": 0.5, \"cache_seed\": 2, \"config_list\": config_list_gpt4},\n", - ")" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Start Game" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer black\u001b[0m (to Player white):\n", - "\n", - "Your turn.\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "
r n b q k b n r\n",
-       "p p p p p p p p\n",
-       ". . . . . . . .\n",
-       ". . . . . . . .\n",
-       ". . . . P . . .\n",
-       ". . . . . . . .\n",
-       "P P P P . P P P\n",
-       "R N B Q K B N R
" - ], - "text/plain": [ - "'
r n b q k b n r\\np p p p p p p p\\n. . . . . . . .\\n. . . . . . . .\\n. . . . P . . .\\n. . . . . . . .\\nP P P P . P P P\\nR N B Q K B N R
'" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer white\u001b[0m (to Player black):\n", - "\n", - "Alright, let's kick things off. I'll move my pawn from e2 to e4. The center of the board is the heart of the battle, isn't it? Your move. \n", - "\n", - "e2e4\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "
r n b q k b n r\n",
-       "p p p p . p p p\n",
-       ". . . . . . . .\n",
-       ". . . . p . . .\n",
-       ". . . . P . . .\n",
-       ". . . . . . . .\n",
-       "P P P P . P P P\n",
-       "R N B Q K B N R
" - ], - "text/plain": [ - "'
r n b q k b n r\\np p p p . p p p\\n. . . . . . . .\\n. . . . p . . .\\n. . . . P . . .\\n. . . . . . . .\\nP P P P . P P P\\nR N B Q K B N R
'" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer black\u001b[0m (to Player white):\n", - "\n", - "Ah, the King's Pawn Opening, a classic. Let's see how this plays out. I'll move my pawn from e7 to e5. \n", - "\n", - "e7e5\n", - "\n", - "You know, I've always admired how chess reflects life. It's all about making strategic decisions, isn't it? Your move.\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "
r n b q k b n r\n",
-       "p p p p . p p p\n",
-       ". . . . . . . .\n",
-       ". . . . p . . .\n",
-       ". . . . P . . .\n",
-       ". . . . . N . .\n",
-       "P P P P . P P P\n",
-       "R N B Q K B . R
" - ], - "text/plain": [ - "'
r n b q k b n r\\np p p p . p p p\\n. . . . . . . .\\n. . . . p . . .\\n. . . . P . . .\\n. . . . . N . .\\nP P P P . P P P\\nR N B Q K B . R
'" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer white\u001b[0m (to Player black):\n", - "\n", - "Indeed, chess is a mirror of life in many ways. Every move matters, just like every decision in life. I'll move my knight from g1 to f3, aiming to control the center.\n", - "\n", - "g1f3\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "
r n b q k b . r\n",
-       "p p p p . p p p\n",
-       ". . . . . n . .\n",
-       ". . . . p . . .\n",
-       ". . . . P . . .\n",
-       ". . . . . N . .\n",
-       "P P P P . P P P\n",
-       "R N B Q K B . R
" - ], - "text/plain": [ - "'
r n b q k b . r\\np p p p . p p p\\n. . . . . n . .\\n. . . . p . . .\\n. . . . P . . .\\n. . . . . N . .\\nP P P P . P P P\\nR N B Q K B . R
'" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer black\u001b[0m (to Player white):\n", - "\n", - "Well said! Chess is indeed a game of deep strategy and foresight. I will move my knight from g8 to f6, matching your control of the center.\n", - "\n", - "g8f6\n", - "\n", - "Did you know, the knight's move is actually based on the 'L' shape, which stands for 'leap'? Quite interesting, isn't it? Your move.\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "
r n b q k b . r\n",
-       "p p p p . p p p\n",
-       ". . . . . n . .\n",
-       ". . . . p . . .\n",
-       ". . B . P . . .\n",
-       ". . . . . N . .\n",
-       "P P P P . P P P\n",
-       "R N B Q K . . R
" - ], - "text/plain": [ - "'
r n b q k b . r\\np p p p . p p p\\n. . . . . n . .\\n. . . . p . . .\\n. . B . P . . .\\n. . . . . N . .\\nP P P P . P P P\\nR N B Q K . . R
'" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer white\u001b[0m (to Player black):\n", - "\n", - "That's a fun fact! The knight's L-shaped leap makes it a unique piece on the board. Now, I'll move my bishop from f1 to c4, putting a little pressure on your side.\n", - "\n", - "f1c4\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "
r n b q k . . r\n",
-       "p p p p . p p p\n",
-       ". . . . . n . .\n",
-       ". . b . p . . .\n",
-       ". . B . P . . .\n",
-       ". . . . . N . .\n",
-       "P P P P . P P P\n",
-       "R N B Q K . . R
" - ], - "text/plain": [ - "'
r n b q k . . r\\np p p p . p p p\\n. . . . . n . .\\n. . b . p . . .\\n. . B . P . . .\\n. . . . . N . .\\nP P P P . P P P\\nR N B Q K . . R
'" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer black\u001b[0m (to Player white):\n", - "\n", - "A strong move, indeed! I can see you're not one to hold back. I'll move my bishop from f8 to c5, maintaining the balance.\n", - "\n", - "f8c5\n", - "\n", - "You know, the bishop was originally an elephant in ancient chess. It's fascinating how the game has evolved over the centuries, isn't it? Your move.\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "
r n b q k . . r\n",
-       "p p p p . p p p\n",
-       ". . . . . n . .\n",
-       ". . b . p . . .\n",
-       ". . B . P . . .\n",
-       ". . . . . N . .\n",
-       "P P P P . P P P\n",
-       "R N B Q . R K .
" - ], - "text/plain": [ - "'
r n b q k . . r\\np p p p . p p p\\n. . . . . n . .\\n. . b . p . . .\\n. . B . P . . .\\n. . . . . N . .\\nP P P P . P P P\\nR N B Q . R K .
'" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer white\u001b[0m (to Player black):\n", - "\n", - "Absolutely, the evolution of chess is quite fascinating. It's a testament to the game's timeless appeal. Now, I'll castle kingside to ensure my king's safety. \n", - "\n", - "e1g1\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "
r n b q . r k .\n",
-       "p p p p . p p p\n",
-       ". . . . . n . .\n",
-       ". . b . p . . .\n",
-       ". . B . P . . .\n",
-       ". . . . . N . .\n",
-       "P P P P . P P P\n",
-       "R N B Q . R K .
" - ], - "text/plain": [ - "'
r n b q . r k .\\np p p p . p p p\\n. . . . . n . .\\n. . b . p . . .\\n. . B . P . . .\\n. . . . . N . .\\nP P P P . P P P\\nR N B Q . R K .
'" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer black\u001b[0m (to Player white):\n", - "\n", - "A wise decision, safety first! I'll follow your lead and castle kingside as well. \n", - "\n", - "e8g8\n", - "\n", - "They say the king is a fighting piece, but in the early game, it's all about keeping him safe, isn't it? Your move.\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "
r n b q . r k .\n",
-       "p p p p . p p p\n",
-       ". . . . . n . .\n",
-       ". . b . p . . .\n",
-       ". . B P P . . .\n",
-       ". . . . . N . .\n",
-       "P P P . . P P P\n",
-       "R N B Q . R K .
" - ], - "text/plain": [ - "'
r n b q . r k .\\np p p p . p p p\\n. . . . . n . .\\n. . b . p . . .\\n. . B P P . . .\\n. . . . . N . .\\nP P P . . P P P\\nR N B Q . R K .
'" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer white\u001b[0m (to Player black):\n", - "\n", - "I see, it looks like we had a bit of a mix-up. Let's get back to the game. I'll move my pawn from d2 to d4, opening up lines for my queen and bishop.\n", - "\n", - "d2d4\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "
r n b q . r k .\n",
-       "p p p p . p p p\n",
-       ". b . . . n . .\n",
-       ". . . . p . . .\n",
-       ". . B P P . . .\n",
-       ". . . . . N . .\n",
-       "P P P . . P P P\n",
-       "R N B Q . R K .
" - ], - "text/plain": [ - "'
r n b q . r k .\\np p p p . p p p\\n. b . . . n . .\\n. . . . p . . .\\n. . B P P . . .\\n. . . . . N . .\\nP P P . . P P P\\nR N B Q . R K .
'" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer black\u001b[0m (to Player white):\n", - "\n", - "Indeed, opening lines for your major pieces is a crucial part of the game. I'll move my bishop from c5 to b6. \n", - "\n", - "c5b6\n", - "\n", - "Chess is a lot like a dance, don't you think? Each piece moving in harmony with the others. Your move.\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "
r n b q . r k .\n",
-       "p p p p . p p p\n",
-       ". b . . . n . .\n",
-       ". . . . p . . .\n",
-       ". . B P P . . .\n",
-       ". . . . . N . .\n",
-       "P P P . Q P P P\n",
-       "R N B . . R K .
" - ], - "text/plain": [ - "'
r n b q . r k .\\np p p p . p p p\\n. b . . . n . .\\n. . . . p . . .\\n. . B P P . . .\\n. . . . . N . .\\nP P P . Q P P P\\nR N B . . R K .
'" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer white\u001b[0m (to Player black):\n", - "\n", - "I see, it looks like we had a bit of a mix-up. Let's get back to the game. I'll move my queen from d1 to e2, aiming to control the center.\n", - "\n", - "d1e2\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "
r n b . . r k .\n",
-       "p p p p q p p p\n",
-       ". b . . . n . .\n",
-       ". . . . p . . .\n",
-       ". . B P P . . .\n",
-       ". . . . . N . .\n",
-       "P P P . Q P P P\n",
-       "R N B . . R K .
" - ], - "text/plain": [ - "'
r n b . . r k .\\np p p p q p p p\\n. b . . . n . .\\n. . . . p . . .\\n. . B P P . . .\\n. . . . . N . .\\nP P P . Q P P P\\nR N B . . R K .
'" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer black\u001b[0m (to Player white):\n", - "\n", - "Indeed, control of the center is key. I'll move my queen from d8 to e7, matching your control of the center.\n", - "\n", - "d8e7\n", - "\n", - "Did you know the queen wasn't always the most powerful piece on the board? In the original game of chess, the piece could only move one square diagonally! Your move.\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "
r n b . . r k .\n",
-       "p p p p q p p p\n",
-       ". b . . . n . .\n",
-       ". . . . P . . .\n",
-       ". . B . P . . .\n",
-       ". . . . . N . .\n",
-       "P P P . Q P P P\n",
-       "R N B . . R K .
" - ], - "text/plain": [ - "'
r n b . . r k .\\np p p p q p p p\\n. b . . . n . .\\n. . . . P . . .\\n. . B . P . . .\\n. . . . . N . .\\nP P P . Q P P P\\nR N B . . R K .
'" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer white\u001b[0m (to Player black):\n", - "\n", - "Indeed, the queen has come a long way from its humble beginnings. Now, I'll move my pawn from d4 to e5, adding some tension to the center.\n", - "\n", - "d4e5\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "
r n b . . r k .\n",
-       "p p p p q p p p\n",
-       ". b . . . . . .\n",
-       ". . . n P . . .\n",
-       ". . B . P . . .\n",
-       ". . . . . N . .\n",
-       "P P P . Q P P P\n",
-       "R N B . . R K .
" - ], - "text/plain": [ - "'
r n b . . r k .\\np p p p q p p p\\n. b . . . . . .\\n. . . n P . . .\\n. . B . P . . .\\n. . . . . N . .\\nP P P . Q P P P\\nR N B . . R K .
'" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer black\u001b[0m (to Player white):\n", - "\n", - "Interesting move! This is shaping up to be quite the game. I'll move my knight from f6 to d5.\n", - "\n", - "f6d5\n", - "\n", - "You know, the knight is the only piece that can jump over others. It's like the horse in a game of polo, leaping over obstacles. Your move.\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "
r n b . . r k .\n",
-       "p p p p q p p p\n",
-       ". b . . . . . .\n",
-       ". . . n P . . .\n",
-       ". . B . P . . .\n",
-       ". . N . . N . .\n",
-       "P P P . Q P P P\n",
-       "R . B . . R K .
" - ], - "text/plain": [ - "'
r n b . . r k .\\np p p p q p p p\\n. b . . . . . .\\n. . . n P . . .\\n. . B . P . . .\\n. . N . . N . .\\nP P P . Q P P P\\nR . B . . R K .
'" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer white\u001b[0m (to Player black):\n", - "\n", - "Indeed, the knight's ability to jump over other pieces is quite unique. Now, I'll move my knight from b1 to c3, challenging your knight.\n", - "\n", - "b1c3\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "
r . b . . r k .\n",
-       "p p p p q p p p\n",
-       ". b n . . . . .\n",
-       ". . . n P . . .\n",
-       ". . B . P . . .\n",
-       ". . N . . N . .\n",
-       "P P P . Q P P P\n",
-       "R . B . . R K .
" - ], - "text/plain": [ - "'
r . b . . r k .\\np p p p q p p p\\n. b n . . . . .\\n. . . n P . . .\\n. . B . P . . .\\n. . N . . N . .\\nP P P . Q P P P\\nR . B . . R K .
'" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer black\u001b[0m (to Player white):\n", - "\n", - "Apologies for the confusion. It seems there was a misunderstanding. I'll correct that and move my knight from b8 to c6.\n", - "\n", - "b8c6\n", - "\n", - "Did you know that in the Middle Ages, the knight piece was usually carved to resemble a horse's head? Your move.\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "
r . b . . r k .\n",
-       "p p p p q p p p\n",
-       ". b n . . . . .\n",
-       ". . . n P . B .\n",
-       ". . B . P . . .\n",
-       ". . N . . N . .\n",
-       "P P P . Q P P P\n",
-       "R . . . . R K .
" - ], - "text/plain": [ - "'
r . b . . r k .\\np p p p q p p p\\n. b n . . . . .\\n. . . n P . B .\\n. . B . P . . .\\n. . N . . N . .\\nP P P . Q P P P\\nR . . . . R K .
'" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer white\u001b[0m (to Player black):\n", - "\n", - "That's a fascinating bit of history! The knight piece's design certainly adds to the charm of the game. Now, I'll move my bishop from c1 to g5, putting a little pressure on your queen.\n", - "\n", - "c1g5\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "
r . b . . r k .\n",
-       "p p p p . p p p\n",
-       ". b n . q . . .\n",
-       ". . . n P . B .\n",
-       ". . B . P . . .\n",
-       ". . N . . N . .\n",
-       "P P P . Q P P P\n",
-       "R . . . . R K .
" - ], - "text/plain": [ - "'
r . b . . r k .\\np p p p . p p p\\n. b n . q . . .\\n. . . n P . B .\\n. . B . P . . .\\n. . N . . N . .\\nP P P . Q P P P\\nR . . . . R K .
'" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer black\u001b[0m (to Player white):\n", - "\n", - "Well played! I see you're not one to shy away from a challenge. I'll move my queen from e7 to e6, keeping her safe.\n", - "\n", - "e7e6\n", - "\n", - "Did you know that the queen's ability to move any number of squares along a rank, file, or diagonal is a relatively recent development in the history of chess? Your move.\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "
r . b . . r k .\n",
-       "p p p p . p p p\n",
-       ". b n . q . . .\n",
-       ". . . n P . B .\n",
-       ". . B . P . . .\n",
-       ". . N . . N . .\n",
-       "P P P . Q P P P\n",
-       ". . . R . R K .
" - ], - "text/plain": [ - "'
r . b . . r k .\\np p p p . p p p\\n. b n . q . . .\\n. . . n P . B .\\n. . B . P . . .\\n. . N . . N . .\\nP P P . Q P P P\\n. . . R . R K .
'" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer white\u001b[0m (to Player black):\n", - "\n", - "Indeed, the queen's powers were significantly enhanced during the Middle Ages, transforming the game of chess. Now, I'll move my rook from a1 to d1, aligning it with your queen.\n", - "\n", - "a1d1\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/svg+xml": [ - "
r . b . . r k .\n",
-       "p p p . . p p p\n",
-       ". b n p q . . .\n",
-       ". . . n P . B .\n",
-       ". . B . P . . .\n",
-       ". . N . . N . .\n",
-       "P P P . Q P P P\n",
-       ". . . R . R K .
" - ], - "text/plain": [ - "'
r . b . . r k .\\np p p . . p p p\\n. b n p q . . .\\n. . . n P . B .\\n. . B . P . . .\\n. . N . . N . .\\nP P P . Q P P P\\n. . . R . R K .
'" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mPlayer black\u001b[0m (to Player white):\n", - "\n", - "My apologies for the confusion. Let's correct that. I'll move my pawn from d7 to d6.\n", - "\n", - "d7d6\n", - "\n", - "Did you know that pawns are the soul of chess? It's fascinating how these seemingly insignificant pieces can control the fate of the game. Your move.\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - } - ], - "source": [ - "player_black.initiate_chat(player_white, message=\"Your turn.\")" - ] - } - ], - "metadata": { - "front_matter": { - "tags": ["chess"], - "description": "Use AutoGen to create two agents that are able to play chess" - }, - "kernelspec": { - "display_name": "flaml", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.4" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/notebook/agentchat_nested_chats_chess.ipynb b/notebook/agentchat_nested_chats_chess.ipynb new file mode 100644 index 000000000000..52a53de10a9f --- /dev/null +++ b/notebook/agentchat_nested_chats_chess.ipynb @@ -0,0 +1,1162 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Nested Chats for Tool Use in Conversational Chess\n", + "\n", + "This notebook demonstrates how to create agents that can play chess with each other\n", + "while communicating in natural language.\n", + "The key concept covered in this notebook is the use of nested chats\n", + "to enable tool use and packaging an LLM-based agent with a tool executor agent\n", + "into a single agent.\n", + "\n", + "Related tutorials:\n", + "- [Tool Use](/docs/tutorial/tool-use)\n", + "- [Nested Chats](/docs/tutorial/conversation-patterns#nested-chats)\n", + "\n", + "In this setting, each player is an agent backed by an LLM equipped two tools:\n", + "- `get_legal_moves` to get a list of current legal moves.\n", + "- `make_move` to make a move.\n", + "\n", + "A board proxy agent is set up to execute the tools and manage the game.\n", + "It is important to use a board proxy as a non-LLM \"guard rail\" to ensure the game\n", + "is played correctly and to prevent agents from making illegal moves.\n", + "\n", + "Each time a player agent receives a message from the other player agent, \n", + "it instantiates a nested chat with the board proxy agent to get the legal moves\n", + "and make a move using the tools given. \n", + "The nested chat between the player agent and the board agent\n", + "continues until the a legal move is made by the tool.\n", + "Once the nested chat concludes, the player agent sends a message to the\n", + "other player agent about the move made." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Installation\n", + "\n", + "First you need to install the `pyautogen` and `chess` packages to use AutoGen." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "! pip install -qqq pyautogen chess" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setting up LLMs\n", + "\n", + "Now you can set up the models you want to use." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "player_white_config_list = [\n", + " {\n", + " \"model\": \"gpt-4-turbo-preview\",\n", + " \"api_key\": os.environ.get(\"OPENAI_API_KEY\"),\n", + " },\n", + "]\n", + "\n", + "player_black_config_list = [\n", + " {\n", + " \"model\": \"gpt-4-turbo-preview\",\n", + " \"api_key\": os.environ.get(\"OPENAI_API_KEY\"),\n", + " },\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Creating tools\n", + "\n", + "Write functions for getting legal moves and making a move." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import chess\n", + "import chess.svg\n", + "from IPython.display import display\n", + "from typing import List\n", + "from typing_extensions import Annotated\n", + "\n", + "# Initialize the board.\n", + "board = chess.Board()\n", + "\n", + "# Keep track of whether a move has been made.\n", + "made_move = False\n", + "\n", + "\n", + "def get_legal_moves() -> Annotated[str, \"A list of legal moves in UCI format\"]:\n", + " return \"Possible moves are: \" + \",\".join([str(move) for move in board.legal_moves])\n", + "\n", + "\n", + "def make_move(move: Annotated[str, \"A move in UCI format.\"]) -> Annotated[str, \"Result of the move.\"]:\n", + " move = chess.Move.from_uci(move)\n", + " board.push_uci(str(move))\n", + " global made_move\n", + " made_move = True\n", + " # Display the board.\n", + " display(\n", + " chess.svg.board(board, arrows=[(move.from_square, move.to_square)], fill={move.from_square: \"gray\"}, size=200)\n", + " )\n", + " # Get the piece name.\n", + " piece = board.piece_at(move.to_square)\n", + " piece_symbol = piece.unicode_symbol()\n", + " piece_name = (\n", + " chess.piece_name(piece.piece_type).capitalize()\n", + " if piece_symbol.isupper()\n", + " else chess.piece_name(piece.piece_type)\n", + " )\n", + " return f\"Moved {piece_name} ({piece_symbol}) from {chess.SQUARE_NAMES[move.from_square]} to {chess.SQUARE_NAMES[move.to_square]}.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Creating agents\n", + "\n", + "Let's create the agents. We have three different agents:\n", + "- `player_white` is the agent that plays white.\n", + "- `player_black` is the agent that plays black.\n", + "- `board_proxy` is the agent that moves the pieces on the board." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from autogen import ConversableAgent, register_function\n", + "\n", + "player_white = ConversableAgent(\n", + " name=\"Player White\",\n", + " system_message=\"You are a chess player and you play as white. \"\n", + " \"First call get_legal_moves() first, to get list of legal moves. \"\n", + " \"Then call make_move(move) to make a move.\",\n", + " llm_config={\"config_list\": player_white_config_list, \"cache_seed\": None},\n", + ")\n", + "\n", + "player_black = ConversableAgent(\n", + " name=\"Player Black\",\n", + " system_message=\"You are a chess player and you play as black. \"\n", + " \"First call get_legal_moves() first, to get list of legal moves. \"\n", + " \"Then call make_move(move) to make a move.\",\n", + " llm_config={\"config_list\": player_black_config_list, \"cache_seed\": None},\n", + ")\n", + "\n", + "# Check if the player has made a move, and reset the flag if move is made.\n", + "\n", + "\n", + "def check_made_move(msg):\n", + " global made_move\n", + " if made_move:\n", + " made_move = False\n", + " return True\n", + " else:\n", + " return False\n", + "\n", + "\n", + "board_proxy = ConversableAgent(\n", + " name=\"Board Proxy\",\n", + " llm_config=False,\n", + " # The board proxy will only terminate the conversation if the player has made a move.\n", + " is_termination_msg=check_made_move,\n", + " # The auto reply message is set to keep the player agent retrying until a move is made.\n", + " default_auto_reply=\"Please make a move.\",\n", + " human_input_mode=\"NEVER\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Register tools for the agents. See [tutorial chapter on tool use](/docs/tutorial/tool-use) \n", + "for more information." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "register_function(\n", + " make_move,\n", + " caller=player_white,\n", + " executor=board_proxy,\n", + " name=\"make_move\",\n", + " description=\"Call this tool to make a move.\",\n", + ")\n", + "\n", + "register_function(\n", + " get_legal_moves,\n", + " caller=player_white,\n", + " executor=board_proxy,\n", + " name=\"get_legal_moves\",\n", + " description=\"Get legal moves.\",\n", + ")\n", + "\n", + "register_function(\n", + " make_move,\n", + " caller=player_black,\n", + " executor=board_proxy,\n", + " name=\"make_move\",\n", + " description=\"Call this tool to make a move.\",\n", + ")\n", + "\n", + "register_function(\n", + " get_legal_moves,\n", + " caller=player_black,\n", + " executor=board_proxy,\n", + " name=\"get_legal_moves\",\n", + " description=\"Get legal moves.\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now the agents have their tools ready. You can inspect the auto-generated\n", + "tool schema for each agent." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'type': 'function',\n", + " 'function': {'description': 'Call this tool to make a move.',\n", + " 'name': 'make_move',\n", + " 'parameters': {'type': 'object',\n", + " 'properties': {'move': {'type': 'string',\n", + " 'description': 'A move in UCI format.'}},\n", + " 'required': ['move']}}},\n", + " {'type': 'function',\n", + " 'function': {'description': 'Get legal moves.',\n", + " 'name': 'get_legal_moves',\n", + " 'parameters': {'type': 'object', 'properties': {}, 'required': []}}}]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "player_black.llm_config[\"tools\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Register nested chats for the player agents.\n", + "Nested chats allows each player agent to chat with the board proxy agent\n", + "to make a move, before communicating with the other player agent.\n", + "\n", + "In the code below, in each nested chat, the board proxy agent starts\n", + "a conversation with the player agent using the message recieved from the other\n", + "player agent (e.g., \"Your move\"). The two agents continue the conversation\n", + "until a legal move is made using the `make_move` tool.\n", + "The last message in the nested chat is a message from the player agent about\n", + "the move made,\n", + "and this message is then sent to the other player agent.\n", + "\n", + "The following diagram illustrates the nested chat between the player agent and the board agent.\n", + "\n", + "![Conversational Chess](nested-chats-chess.png)\n", + "\n", + "See [nested chats tutorial chapter](/docs/tutorial/conversation-patterns#nested-chats)\n", + "for more information." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "player_white.register_nested_chats(\n", + " trigger=player_black,\n", + " chat_queue=[\n", + " {\n", + " # The initial message is the one received by the player agent from\n", + " # the other player agent.\n", + " \"sender\": board_proxy,\n", + " \"recipient\": player_white,\n", + " # The final message is sent to the player agent.\n", + " \"summary_method\": \"last_msg\",\n", + " }\n", + " ],\n", + ")\n", + "\n", + "player_black.register_nested_chats(\n", + " trigger=player_white,\n", + " chat_queue=[\n", + " {\n", + " # The initial message is the one received by the player agent from\n", + " # the other player agent.\n", + " \"sender\": board_proxy,\n", + " \"recipient\": player_black,\n", + " # The final message is sent to the player agent.\n", + " \"summary_method\": \"last_msg\",\n", + " }\n", + " ],\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Playing the game\n", + "\n", + "Start the chess game." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mPlayer White\u001b[0m (to Player Black):\n", + "\n", + "Let's play chess! Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[34mStarting a new chat....\n", + "\n", + "Message:\n", + "Let's play chess! Your move.\n", + "\n", + "Carryover: \n", + "\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "Let's play chess! Your move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_Jw535t9MZ9DMog6CMk3fleg2): get_legal_moves *****\u001b[0m\n", + "Arguments: \n", + "{}\n", + "\u001b[32m********************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION get_legal_moves...\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_Jw535t9MZ9DMog6CMk3fleg2\" *****\u001b[0m\n", + "Possible moves are: g1h3,g1f3,b1c3,b1a3,h2h3,g2g3,f2f3,e2e3,d2d3,c2c3,b2b3,a2a3,h2h4,g2g4,f2f4,e2e4,d2d4,c2c4,b2b4,a2a4\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_0e8L4c6D0HCBybuqxCD4cgjR): make_move *****\u001b[0m\n", + "Arguments: \n", + "{\"move\":\"e2e4\"}\n", + "\u001b[32m**************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION make_move...\u001b[0m\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "
r n b q k b n r\n",
+       "p p p p p p p p\n",
+       ". . . . . . . .\n",
+       ". . . . . . . .\n",
+       ". . . . P . . .\n",
+       ". . . . . . . .\n",
+       "P P P P . P P P\n",
+       "R N B Q K B N R
" + ], + "text/plain": [ + "'
r n b q k b n r\\np p p p p p p p\\n. . . . . . . .\\n. . . . . . . .\\n. . . . P . . .\\n. . . . . . . .\\nP P P P . P P P\\nR N B Q K B N R
'" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_0e8L4c6D0HCBybuqxCD4cgjR\" *****\u001b[0m\n", + "Moved pawn (♙) from e2 to e4.\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "I've moved my pawn from e2 to e4. Your move!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mPlayer Black\u001b[0m (to Player White):\n", + "\n", + "I've moved my pawn from e2 to e4. Your move!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[34mStarting a new chat....\n", + "\n", + "Message:\n", + "I've moved my pawn from e2 to e4. Your move!\n", + "\n", + "Carryover: \n", + "\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "I've moved my pawn from e2 to e4. Your move!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer White\u001b[0m (to Board Proxy):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_LyBU6E51NuiqROveKaA4EctT): get_legal_moves *****\u001b[0m\n", + "Arguments: \n", + "{}\n", + "\u001b[32m********************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION get_legal_moves...\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_LyBU6E51NuiqROveKaA4EctT\" *****\u001b[0m\n", + "Possible moves are: g8h6,g8f6,b8c6,b8a6,h7h6,g7g6,f7f6,e7e6,d7d6,c7c6,b7b6,a7a6,h7h5,g7g5,f7f5,e7e5,d7d5,c7c5,b7b5,a7a5\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer White\u001b[0m (to Board Proxy):\n", + "\n", + "It's black's turn. I will move my pawn from e7 to e5.\n", + "\u001b[32m***** Suggested tool Call (call_MSLR6pqbwYIaAbfl8qxZbqnc): make_move *****\u001b[0m\n", + "Arguments: \n", + "{\"move\":\"e7e5\"}\n", + "\u001b[32m**************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION make_move...\u001b[0m\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "
r n b q k b n r\n",
+       "p p p p . p p p\n",
+       ". . . . . . . .\n",
+       ". . . . p . . .\n",
+       ". . . . P . . .\n",
+       ". . . . . . . .\n",
+       "P P P P . P P P\n",
+       "R N B Q K B N R
" + ], + "text/plain": [ + "'
r n b q k b n r\\np p p p . p p p\\n. . . . . . . .\\n. . . . p . . .\\n. . . . P . . .\\n. . . . . . . .\\nP P P P . P P P\\nR N B Q K B N R
'" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_MSLR6pqbwYIaAbfl8qxZbqnc\" *****\u001b[0m\n", + "Moved pawn (♟) from e7 to e5.\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer White\u001b[0m (to Board Proxy):\n", + "\n", + "I've moved my pawn from e7 to e5. Your move!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mPlayer White\u001b[0m (to Player Black):\n", + "\n", + "I've moved my pawn from e7 to e5. Your move!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[34mStarting a new chat....\n", + "\n", + "Message:\n", + "I've moved my pawn from e7 to e5. Your move!\n", + "\n", + "Carryover: \n", + "\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "I've moved my pawn from e7 to e5. Your move!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_gaqEpvOSEaDoh1wxvrDpwVCe): make_move *****\u001b[0m\n", + "Arguments: \n", + "{\"move\":\"e2e4\"}\n", + "\u001b[32m**************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION make_move...\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_gaqEpvOSEaDoh1wxvrDpwVCe\" *****\u001b[0m\n", + "Error: illegal uci: 'e2e4' in rnbqkbnr/pppp1ppp/8/4p3/4P3/8/PPPP1PPP/RNBQKBNR w KQkq - 0 2\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_BJWUGbFeqnYUwY8x6yEq6Aug): get_legal_moves *****\u001b[0m\n", + "Arguments: \n", + "{}\n", + "\u001b[32m********************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION get_legal_moves...\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_BJWUGbFeqnYUwY8x6yEq6Aug\" *****\u001b[0m\n", + "Possible moves are: g1h3,g1f3,g1e2,f1a6,f1b5,f1c4,f1d3,f1e2,e1e2,d1h5,d1g4,d1f3,d1e2,b1c3,b1a3,h2h3,g2g3,f2f3,d2d3,c2c3,b2b3,a2a3,h2h4,g2g4,f2f4,d2d4,c2c4,b2b4,a2a4\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "I'll move my pawn from d2 to d4. Your turn!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "Please make a move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_tfSdfPTJgq3JeIOtT5NO2SJn): make_move *****\u001b[0m\n", + "Arguments: \n", + "{\"move\":\"d2d4\"}\n", + "\u001b[32m**************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION make_move...\u001b[0m\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "
r n b q k b n r\n",
+       "p p p p . p p p\n",
+       ". . . . . . . .\n",
+       ". . . . p . . .\n",
+       ". . . P P . . .\n",
+       ". . . . . . . .\n",
+       "P P P . . P P P\n",
+       "R N B Q K B N R
" + ], + "text/plain": [ + "'
r n b q k b n r\\np p p p . p p p\\n. . . . . . . .\\n. . . . p . . .\\n. . . P P . . .\\n. . . . . . . .\\nP P P . . P P P\\nR N B Q K B N R
'" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_tfSdfPTJgq3JeIOtT5NO2SJn\" *****\u001b[0m\n", + "Moved pawn (♙) from d2 to d4.\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "I've moved my pawn from d2 to d4. Your move!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mPlayer Black\u001b[0m (to Player White):\n", + "\n", + "I've moved my pawn from d2 to d4. Your move!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[34mStarting a new chat....\n", + "\n", + "Message:\n", + "I've moved my pawn from d2 to d4. Your move!\n", + "\n", + "Carryover: \n", + "\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "I've moved my pawn from d2 to d4. Your move!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer White\u001b[0m (to Board Proxy):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_tLmkAFcQLMP7LHXKSAcUgPpA): get_legal_moves *****\u001b[0m\n", + "Arguments: \n", + "{}\n", + "\u001b[32m********************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION get_legal_moves...\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_tLmkAFcQLMP7LHXKSAcUgPpA\" *****\u001b[0m\n", + "Possible moves are: g8e7,g8h6,g8f6,f8e7,f8d6,f8c5,f8b4,f8a3,e8e7,d8e7,d8f6,d8g5,d8h4,b8c6,b8a6,e5d4,h7h6,g7g6,f7f6,d7d6,c7c6,b7b6,a7a6,h7h5,g7g5,f7f5,d7d5,c7c5,b7b5,a7a5\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer White\u001b[0m (to Board Proxy):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_z6PVz3XkfDsfEbsBrMODJm7A): make_move *****\u001b[0m\n", + "Arguments: \n", + "{\"move\":\"e5d4\"}\n", + "\u001b[32m**************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION make_move...\u001b[0m\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "
r n b q k b n r\n",
+       "p p p p . p p p\n",
+       ". . . . . . . .\n",
+       ". . . . . . . .\n",
+       ". . . p P . . .\n",
+       ". . . . . . . .\n",
+       "P P P . . P P P\n",
+       "R N B Q K B N R
" + ], + "text/plain": [ + "'
r n b q k b n r\\np p p p . p p p\\n. . . . . . . .\\n. . . . . . . .\\n. . . p P . . .\\n. . . . . . . .\\nP P P . . P P P\\nR N B Q K B N R
'" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_z6PVz3XkfDsfEbsBrMODJm7A\" *****\u001b[0m\n", + "Moved pawn (♟) from e5 to d4.\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer White\u001b[0m (to Board Proxy):\n", + "\n", + "I've captured your pawn by moving my pawn from e5 to d4. Your move!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mPlayer White\u001b[0m (to Player Black):\n", + "\n", + "I've captured your pawn by moving my pawn from e5 to d4. Your move!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[34mStarting a new chat....\n", + "\n", + "Message:\n", + "I've captured your pawn by moving my pawn from e5 to d4. Your move!\n", + "\n", + "Carryover: \n", + "\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "I've captured your pawn by moving my pawn from e5 to d4. Your move!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_CedmvIwaBWk23QxMZunlaOYt): get_legal_moves *****\u001b[0m\n", + "Arguments: \n", + "{}\n", + "\u001b[32m********************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION get_legal_moves...\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_CedmvIwaBWk23QxMZunlaOYt\" *****\u001b[0m\n", + "Possible moves are: g1h3,g1f3,g1e2,f1a6,f1b5,f1c4,f1d3,f1e2,e1e2,e1d2,d1h5,d1g4,d1d4,d1f3,d1d3,d1e2,d1d2,c1h6,c1g5,c1f4,c1e3,c1d2,b1c3,b1a3,b1d2,e4e5,h2h3,g2g3,f2f3,c2c3,b2b3,a2a3,h2h4,g2g4,f2f4,c2c4,b2b4,a2a4\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_gaqEpvOSEaDoh1wxvrDpwVCe): make_move *****\u001b[0m\n", + "Arguments: \n", + "{\"move\":\"d1d4\"}\n", + "\u001b[32m**************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION make_move...\u001b[0m\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "
r n b q k b n r\n",
+       "p p p p . p p p\n",
+       ". . . . . . . .\n",
+       ". . . . . . . .\n",
+       ". . . Q P . . .\n",
+       ". . . . . . . .\n",
+       "P P P . . P P P\n",
+       "R N B . K B N R
" + ], + "text/plain": [ + "'
r n b q k b n r\\np p p p . p p p\\n. . . . . . . .\\n. . . . . . . .\\n. . . Q P . . .\\n. . . . . . . .\\nP P P . . P P P\\nR N B . K B N R
'" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_gaqEpvOSEaDoh1wxvrDpwVCe\" *****\u001b[0m\n", + "Moved queen (♕) from d1 to d4.\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "I've moved my queen from d1 to d4, capturing your pawn. Your move!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mPlayer Black\u001b[0m (to Player White):\n", + "\n", + "I've moved my queen from d1 to d4, capturing your pawn. Your move!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[34mStarting a new chat....\n", + "\n", + "Message:\n", + "I've moved my queen from d1 to d4, capturing your pawn. Your move!\n", + "\n", + "Carryover: \n", + "\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "I've moved my queen from d1 to d4, capturing your pawn. Your move!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer White\u001b[0m (to Board Proxy):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_JSsR85jDNRO58KCJFmeUU66J): get_legal_moves *****\u001b[0m\n", + "Arguments: \n", + "{}\n", + "\u001b[32m********************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION get_legal_moves...\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_JSsR85jDNRO58KCJFmeUU66J\" *****\u001b[0m\n", + "Possible moves are: g8e7,g8h6,g8f6,f8e7,f8d6,f8c5,f8b4,f8a3,e8e7,d8e7,d8f6,d8g5,d8h4,b8c6,b8a6,h7h6,g7g6,f7f6,d7d6,c7c6,b7b6,a7a6,h7h5,g7g5,f7f5,d7d5,c7c5,b7b5,a7a5\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer White\u001b[0m (to Board Proxy):\n", + "\n", + "It's your turn, and you have a wide range of moves available. To keep the game interesting, I will move my knight from b8 to c6. Let's see how this plays out!\n", + "\u001b[32m***** Suggested tool Call (call_QH2T8CK9SUhUiwyPW5kbabaj): make_move *****\u001b[0m\n", + "Arguments: \n", + "{\"move\":\"b8c6\"}\n", + "\u001b[32m**************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION make_move...\u001b[0m\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "
r . b q k b n r\n",
+       "p p p p . p p p\n",
+       ". . n . . . . .\n",
+       ". . . . . . . .\n",
+       ". . . Q P . . .\n",
+       ". . . . . . . .\n",
+       "P P P . . P P P\n",
+       "R N B . K B N R
" + ], + "text/plain": [ + "'
r . b q k b n r\\np p p p . p p p\\n. . n . . . . .\\n. . . . . . . .\\n. . . Q P . . .\\n. . . . . . . .\\nP P P . . P P P\\nR N B . K B N R
'" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player White):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_QH2T8CK9SUhUiwyPW5kbabaj\" *****\u001b[0m\n", + "Moved knight (♞) from b8 to c6.\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer White\u001b[0m (to Board Proxy):\n", + "\n", + "I've moved my knight from b8 to c6. Your move!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mPlayer White\u001b[0m (to Player Black):\n", + "\n", + "I've moved my knight from b8 to c6. Your move!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[34mStarting a new chat....\n", + "\n", + "Message:\n", + "I've moved my knight from b8 to c6. Your move!\n", + "\n", + "Carryover: \n", + "\u001b[0m\n", + "\u001b[34m\n", + "********************************************************************************\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "I've moved my knight from b8 to c6. Your move!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_WwJj6w6Wwi1gOklMDbUhUJuG): make_move *****\u001b[0m\n", + "Arguments: \n", + "{\"move\":\"b8c6\"}\n", + "\u001b[32m**************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION make_move...\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_WwJj6w6Wwi1gOklMDbUhUJuG\" *****\u001b[0m\n", + "Error: illegal uci: 'b8c6' in r1bqkbnr/pppp1ppp/2n5/8/3QP3/8/PPP2PPP/RNB1KBNR w KQkq - 1 4\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_fx5RRC2AGI1XoARH2EjBns8G): get_legal_moves *****\u001b[0m\n", + "Arguments: \n", + "{}\n", + "\u001b[32m********************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION get_legal_moves...\u001b[0m\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_fx5RRC2AGI1XoARH2EjBns8G\" *****\u001b[0m\n", + "Possible moves are: d4g7,d4d7,d4a7,d4f6,d4d6,d4b6,d4e5,d4d5,d4c5,d4c4,d4b4,d4a4,d4e3,d4d3,d4c3,d4d2,d4d1,g1h3,g1f3,g1e2,f1a6,f1b5,f1c4,f1d3,f1e2,e1e2,e1d2,e1d1,c1h6,c1g5,c1f4,c1e3,c1d2,b1c3,b1a3,b1d2,e4e5,h2h3,g2g3,f2f3,c2c3,b2b3,a2a3,h2h4,g2g4,f2f4,c2c4,b2b4,a2a4\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "It seems there was a misunderstanding with your move as \"b8c6\" is not a valid move right now. Please ensure your move is from the current board position and legal. If you'd like to suggest another move or need assistance, please let me know!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "Please make a move.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_e4oYuwkcrLmooN9AKcrgBucB): make_move *****\u001b[0m\n", + "Arguments: \n", + "{\"move\":\"d4d5\"}\n", + "\u001b[32m**************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION make_move...\u001b[0m\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "
r . b q k b n r\n",
+       "p p p p . p p p\n",
+       ". . n . . . . .\n",
+       ". . . Q . . . .\n",
+       ". . . . P . . .\n",
+       ". . . . . . . .\n",
+       "P P P . . P P P\n",
+       "R N B . K B N R
" + ], + "text/plain": [ + "'
r . b q k b n r\\np p p p . p p p\\n. . n . . . . .\\n. . . Q . . . .\\n. . . . P . . .\\n. . . . . . . .\\nP P P . . P P P\\nR N B . K B N R
'" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[33mBoard Proxy\u001b[0m (to Player Black):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_e4oYuwkcrLmooN9AKcrgBucB\" *****\u001b[0m\n", + "Moved queen (♕) from d4 to d5.\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mPlayer Black\u001b[0m (to Board Proxy):\n", + "\n", + "I've moved my queen from d4 to d5. Your move!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mPlayer Black\u001b[0m (to Player White):\n", + "\n", + "I've moved my queen from d4 to d5. Your move!\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "# Clear the board.\n", + "board = chess.Board()\n", + "\n", + "chat_result = player_white.initiate_chat(\n", + " player_black,\n", + " message=\"Let's play chess! Your move.\",\n", + " max_turns=4,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the output above, you can see \"Start a new chat\" is displayed\n", + "whenever a new nested chat is started between the board proxy agent and a player agent.\n", + "The \"carryover\" empty as it is a new chat in the sequence." + ] + } + ], + "metadata": { + "front_matter": { + "description": "LLM-backed agents playing chess with each other using nested chats.", + "tags": [ + "nested chat" + ] + }, + "kernelspec": { + "display_name": "autogen", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebook/nested-chats-chess.png b/notebook/nested-chats-chess.png new file mode 100644 index 0000000000000000000000000000000000000000..d7891bd47ee8663b27798e56e1c96b24c0304407 GIT binary patch literal 84397 zcmeFZ^;cBu8#WHZs0<(}0#ZYFD&3ueG)T81NK3~664KozpmZrIF@Vxa2+~MON+TfQ z_nC7%p7XBv^9Ou?c-IozqM<=p zFt3CE@#hd4MngkqdMqRJ;E9ZajHA7yip(8FCm|54c+!J~sR(lfE(XRg?U1w#8jRpTag44up}rzH>j##k=}}~)nEU9I8_K%H zvWZz>=LD_wm2B?cM`H!QW1^vlJw}6q-_XI&9q`2AO?$fu{z67SdcJ+=9@=9Q4%%S6S{{z z?JYt$`u}+CK@gH$vxyD#|LaXSx?Er=3>W%8J_kpyBFHoEe6sFk`9I&i!zg%NF%bHH zzgpzMDXa3=qLu#FyN}WqNdNab@1WmdYzfT~VEkVT%`*?O{9mV2L_UE&O53~RJ)ibJ zmZAt&67#=K_y2D0e{JUfdvgD`W$yj|)GXl`_~GH(yu{0umQqWE1CDG0qJ z>b0R}Hk>ClTA+YuP-myp{54bH-!Oo9OE1|a`*75H=I>+a7ib{ITN9})TCWtlLT?uN zo*f*lrkeIAv+0SB31`y$>qol;n2nZ1yK^}ne|*&`40(3AR^+tUX>rw%E#zvmF@0Nr+E)Ac zGh?c|SJ1x^!8Zc!CQ;kby-AYau}m>U(jpY*H&tQSU^Uz5tXUv`(`&c&#Eqxn_hx|Y zTX+K{?O%Ko8%jy{``&#Z0*>=ZEnbJp+S*B%FeZh|^OMx7wx7xnj5FL$7}f3gzitS% zSbTJU!~OiQj>^C9F;3C~T5CPPSZ6n`T>b(Ih4zLM&{-X=kK9wHSAN0t=MnloM=kV# zeiHBZLY;yo55Ijh{t~2Nu{~MC>$d(N)!p;IcNUHMzz^9;>i^uC7h`qOdZAJxy|A!w z{B6${|JjI0)ZxdXljQ##o`meelgKg?8W#0BAe|_GSf^ZV#r*u=Pw--axXjz1Xd&@? zkw|$sGqd6yK0B-GV*Q$zU{x~Wzb;%0?7O4Lc-m(xW4vxfty@VxrEtL^vJ1QJ1n zvkH_F8Ed_d?N}bZEp9pJXB(|Dl_>b3KZ%U(Y*bir+y9L zcmAXA2DL9-;_@glBsBC+orR@kk!4Q|ug8v&&h_0FU;WSTPuDv<8C%5tkNKb++4p-y zwZuQ>ejS~@`8_K|jLX&+j>of&HTJWO8rl6Bd}Zv0^{RGX$~W|rd;W7LM5sH7=s~Le zexiYEm`06GQg#!S9AS9Wy3yZ;a!tQfnQ~e8C+*MPpCtVE(w^aHuBx7x^nZNFl;%O6 zB)Y-dNAXBFdXwk=%eRk4q|K`HexDf_QQ%+6cOnP#{GYv`f}`z*dmVm*NejXEavptt z6%8K?mj2hR+GK%SnR?&Z#{PX_&p5OLWz|gn`y4zkY~np$8a6x)qEG)%m9R$)xu<&C zpJ*oWdu!o0G0o&+MhXu@GF5H+ z`*FuHLe+A`Ie@b!5HYD0|LE%Mv;rYfvs}OCUK2Gr!=F%yc#k>E9ZyP`10uwp0mRv3 zr}sN)d~ccvA#o&i{CcAZArX^>NRs}{ZTD)&naLjxhL2o5%6{xp^*BZmQh48o(8I6h zUqw&XU3T*08_uZ5eP3YJIer7ebnUb65Bsu38q`lRv;PTIgw<5wrpixLO9){4L1CyqWs|l2?iQUwRd@dexpV({hp9nf*!*5C<^UBlgUgM+%d?;&Gk!z#54)HsW6kkg zf@Rujv`jphs5G_)*@J(GB9jgGKLKeJ0nB3qExiFGYp45YCipW$A9{DNd0h7E9YeGl zcPi?JR)z@S#8^<3Rq2lYcb(JInj&`*@pKCP3mw7HFZE3QbRNk6YuAV)ILL$E559>3 z<0Qlv{GncMFG$Q0#@W-o=CAl5_}V;e;K_>h!F8nyS{fHePD6Ig4_ufyWW2KCmq%JM z6R{Fk`v1rI-ZG-{Dv`}Ou%>5FHRIT1iC-}Zi4zV}EG**cd5>ZwADgghzgWpbbgohB zvWk$BkT7M7c%&G-u_;M`U|?8-KzcA~8Cz6qZKC$CaYqp4nbSIpi>iRkL<9LH`@XN% zQlmcZrcK2W{-~S7D`^D$v5RBzO8=nftqm;kY{%OK1T^rtxzyFnr*TUaonJR=%>6@ig-{$aC`85 zIF-d_JHMoe;dL7Z}l#ldNGEH{D?m4Bcj0!On@zZrr1^}oTiy&lB?)`bZg(@a~ z5PQk~y8~3jRB>{f_;Lm7Xn#k7T@+OE+4iy} ztfoh2M;D&C-A3Tild!45LWC~5JatYtUR(9bV&`GFB>22FNSUGXk+(S#{4al!{U0G# z9Um29a~_2|pi%*{bXlYJg49yr!h!z6Pav$fwTbkL`3GCmB4y&fB$h;W<7VxW2KO!9 zh^VL}Pzo7n7;paBu7zumL7v5H>n#j0{dmdK^hXAsg8eT_HJAioZ`mnX$9HNNa`W^P zB)_)#S%V5F^r^(fUT|L2e=m6S&_^%d|ejG$Q}*KdOaAwCa&M|yxW;Cvt~E8Y|{0hSA2d-}d#U4)jN zF@{?a$!}0+&FNjLX~U9~ZBD66fhX{E_5qtaoPd$uu-@LT2$#OU@ZX#$sSM*jvsUig z7X}N8h-syJW8a7OIBCIb7|MN{n~|HJ`3qfOk@VV7E*FDx(u00;mXR+Nh6BLy%U`qe z{qv{@6$L=rD3aDT5P`)3mkEe3G7V<-M5>H$P6g1NlZM4tz~%$MV&GqdeqG*f`9~&3B8sg znCOM4f3kfB?xD7t+M6Zx#``_WYtEQxX=yJu;ZO&;!nB>%U8s9mwV2*>^Q>{J?tM0FZ{>1MRI$(*Lr~7tF}B$;3>o86Uu( z@W2r-^_;KTGEmu#8_P8dw!LmC_W8jq?XT8hkF_(nFyPnKe|_L0Omg@g|30;Q2@5Pv(gjA* zLczvV$Sy&_DwiHRAP>;F?JgWtg}YkQ`lirt|0 zyU_0)|u%M~F0%J9*jUZ)pFectL0F)VA_1Z_M|zOa{Q zmn4+pQ&Mtd3%e(LpJ@A8^hz!sA){im{GLBWF;Bm2^Xdw39ynxnM6 zSf*_Mhc2p3HrXIr8ZY<_D$r5QslvGbEQGRt}F5=78Z5MqR!mqO(3 z72f%i11eFG`UTDah$goXkGxf#=snZWdbF1$QNVTNrCfrD$5WmC!SuVMFXgbCTvnBr zNFFY*yM>v{Z~6Z`dR%lqUZ%&9N2&8C8#tv*G7jUgl>OF#NR)*}BLix`!!2=Ck}y$75&*33XBU|1|zLikzk zZ+NJw8W+LE{pB9=X3L@&aJhkOk$Xwa0^a)n;7#7!=$s@OH8~_cDk!@1vhPuZg`h&SYs0}! z83;z9Zah9)**eeMf>_`zb|eXxu0y8}S`!KWw7I+2UdIgvP-h;jE!>dJ2so!VjCIE&ByY2xV8X;lc zeOel#l)@PB)DF&~DTFkIJ$CGk1g(1U)5ZOoo$Xh%)y2dJ{=Gimc)F zIF z!z!Od?_ed?uYjOVmVVbZ1%NhXU{pz^1Ox=5mBu1d?E&rMId8?J*o^! z@KtCURAP18v&a>k@>5fzRtA$g70Tj6o)#(;0u_*^e9x}WLW73igv}CZNOso-1r$fk zP(YFAk*ccd_3`kzKRo&GJ{DX9;`=U}nJPyW9X+PxmZYnT(i@wPC?-1SeOjFLK#EeX zxSzI#D$_WJPRL&JZrk~%;m5#{QAFu~`Bkz=RCMmsH@0yEW;B`z5aY;(m&p8pI_5oQ zs!gVhR}~q_tU84Bp+>b<5zQl@j9LXH+9*hxZ(D2d-kN}}0PN;Xo$F+7wqPF!LHq)Y z!7*aK2K&z*_tAiOh9JuY>z_@2Z-?R6+Ul#J)?druv=JJhLVH+hJaTJx^!xjR*sYjN1uawh=aEtIpw^Vh8eVju!V z_??-T|LSd!LPM*X9&fv@nL-4rOp?-iF<~DwjB8hVFLz-(O>zq#y{BeNQwdnj55Cqr z7@h%uwp!Ceb+`Fq`bkxvZLXgU#a8yoypQ_4|G9&E_^No#C^QO7;@8ES$|bkRfQjiY zv@>D~SJv4!Kf{cBk1Yhe-u=2dx89v^Rhv1~rO_qm=%?kLyg2%-PPGB5Re?hDuFxRa zG<;GYz?W={>953-H&2C^)hvEmC1vUg!y|EUQrye{RdYW$x(Glal*9AIt8d;h75@eH zleHkEDRxh>lfE64W8W;^U2c4SjolJz*2`?vSUuNtBsx3<$(;e6kbXcfe?I)t@>k_< zB?tnTRii>TZldH*LPfl;_YrfMR%@fCtAiciHJiNjWIBwVzfc-E7`G?-B`Tj@wSB?8 zpdnQ6SE23yHdFNK8=l&`Rn;oA8Imp9)l$VpUgB(%Wv=JCys8V|k3ck8*`9h6x@ZO- znq6{K&^7FS6|UAooZBE(c(TPa)EcjKmt4xgf z9j24=SZ7ZOI-OT~3EXkZp22rzLAWCvJJywYNXnRpeF_5q%$_)lc5z&}X}bxTe@ju> zo0`R^rYH_sF7kFVQ;sKXpTG_#U4M?)yII#EvFC*p1TcsYc<#E>pXlpdb=X&y+= z3Jb81;gq|!pO}a6ZT-St4+F%&Jk#JvvSPL$y6^@|h5*NU-LXWo2n5vb-~}<@^SrkZ zr*-wb+No0pAg`1WOxD@ID*t62rMb0U&j%ZO^7CkBwD=?ry4q$Emu50`csuDSwQ7P7 z+xWga-(0~_AygnPRE0fe~=PE0~;Dl2SL9NG@sbpe_g$Mc>Q*SxN#q_T)O!9 zcqQ*}v(Bv9EaJ+Y^psW4m^c^_BWZ+@spsOgsk$erzUSW?Pz{GVS^I}SX!smrsU=Lv zZ~?Qz)qeTI&@N-C4i&u?1fXe_zjIlX6kOrT2P)B#pB|0Nb-Cy__4uxdzS2`8ajrzu zT~?A9>gt4t{;vl*pJOL~iWNNw&lizqeM{cJue_cJZbLJImB6F2$a%TD-z=ZWvUzr# z-(%-=n8wpU5Q{Nq?+drO_@dYdD9xlAF&I^y4u_K2QeC)utcEBy5waP8n9+d=eRSwL z4QluT46RusO35;l-(f7%+w=MY1!J!bVt=LNbq=9tj2R^65}SlGtxRz4YlCBMGc^wT z`XL6MC>&q_!fIYFqEfEz6-vJzSt^)ZT|DN_p{J`csK^YO-AXDeb$2C$RC|a;U#Vr6 z?nKVQzlp=k(S8=-p_;1l^aVU5BA>cLn^;?H@?r1#NWr+!rHW~+z^`>| zLc5nk3%7`g85#u=qF=UX6v)d%bp2Z2aO_0-vh6Jab}E*an_a&eS;>lHx9%8x{pNPR zJ5?&cX;aC|Xx+@~FXC7+aohyIL}+NFjGZb_>Mecp?5R7&S$Kmc1DAGY{yP!vp!hK{ zwQ|tyiNl4~u5!X<{6&iW=hHk?r*B?)96Z~rlF*vNP@Qg}8QuyW7Z_7-|5cI1TH#&# zbhgc3?u**Fo`T2uHx9Ac@3|7=pA(J6%!773wPI{TLQ)lv!l9{RK0mY*Z;`TBTgZRP z61u6H#%{5MQ+1vFI6cX%^STUjr7w|zmbSA}_$P)8lrbtT>j}m+#+0-?x+;v6+aJUk zr##Q2isVMrF{PEbBR<3$#JzU}q*D++VeiS;04_ia>6V$no9Ghw{4e%;3zwN$v@S z;_EqL(uPJ6RC>)Ew#UO&fC4Ml5^`C2Ftj)Cv#Zm?4Uwc?5l1+~@;TGEEeT^o5={Ni zig>vf$bw)v1mAR4j*oj0LCL0O%#vi?chdsEvg{5_^QEsPf5zyJ22D1htyipFg_M>{ zkz8#LmhmhhUV_6{!1trKkQ77LEyvh}!!U7lVuCJ+NZYxarMPjOvKUluyO;N9S}dFD zxE%~+?^kl2xBohqSgpX|pAIh`a{jx#UC02~uySe-2lPZqU?DbrjCc)Obk|f;^jaHz z4;-Kbx(y6R`rZJP%7#XSq-ilM0*@%0C>*7oh)ye)ER7pE2~ zLiLudZTF^TUgBvd##9BcHSI>^3T91`Ni+$yZE=m?IKntj41K11Vt7w@zV279E7P^} zuSXSZyL=yQx76v*mftn3bSEE{;+=otJ;X7ARr~3=1`^&5&7C=G~tt{L}$rzAU-Jys^*J!6kElg@;GZALsq5jQ8fA(nNOpGg05uYNQ+`j2(|cFi#hWT%l^hALfjrj7v53H`oZK4=E0FZS=4p z(sR$>AeokfXsA~52z>>NvDrbiz~#CC^t<@cuuOk72G=!Jq&stT2}?SF9M0iSf`Ws` zd4ANPh$^wWAsUYmVK*52(uQCDO7ra8g9fWuEZN(y{{*)5n%5pV86>d3_sNM-So?-U z6QQR`-c8KuuC&0gFaxu2=||Yoa5L?WHywg<>v8^}jW=9q;2VrlRyK$RXk%yD4NDxA zydd%%SQ_0|SPLRfLXOMuNt?+o-kp1jWD(*&*XfSgoyBlyxh37cPmk~H*0#wznkNM! z(Bw%y(S)#Y2!|;{`7xuY1?4e`-DE3CJa_2%uPA5U*SuS%bnoiw8b1xwAk4k-HwP4W z4&aPaF7Xqv8ec0gf&>xTLORVK~S7l~A;IYI9l_eY!J z$>v8dG#qDMmK+?ieP7xAIN%^3icM&Fmp5ygoKvMOK;8e>kz4^4&*kK1wY$S|O&-%dc^$xDi))`cxz21Dz(26rS76my zMhTsm*E=K_r>ZnPJ>Dw)l_om)%ca_mglV_R*7e1l~I7g{4A8u~68mlWgzDC9oe2_am(ruwO4h<)z?;x#&S$e^KuC@Nzs<0L!! zrXSUH8hZElg2+vdS=&{rR~?JGQQ&y6vCGElzNb zYTxcnj~G25%fXKWbff@nS?9ZUGt!Q8)E)G412zLYI0PNq>x?08SUd@vds z7w@JQ^;)>8S*S=*kgnlM z!^HGak0T4Ax`51(p~ze$NtM1z&QF)NqpJ%K7AHr8re}+9=j!@|!r%BweaUAznbqri zsu}sr?9rpc{;?WmS$D19~0$W}SbQPZfR(>X^ne@;MaW6ADMC zZDARN$b?TFQ#$Y31Yd8tX(ou+M<;SrB_uG()4Lp=Cz{TLI6kN8RYw%D9OD_C)1*OZ zOXx)JRI@^iwm-h?A{w-={IR&X%beCL9oH_6?V^f|ggBNGJbfu9x8RJX_RvhV!_cF} zPhk?B@iQh(U_(D>Tj=n)w&CAOn_46lMi9BM(=&pat1@=2f@yIwqbI5|n8QWDjBsbC zk=yjiyn+cP$KHyN_fhev%-YiM+C9U|D0iWhx8sm1a!ec-8w3-!Ecx5PwQ4*(YEllf zixEo@xaUV|i*G2{d} zoHV&9+-&^xZi5eD8sEJMdBzAOqZ+D}&Jzwq+#rMrm-4YySFv!Dz_hd55x+*=Bx z_AjpY#EuC`ih=0)yCw{*<@l(z@;J^l*AWB<9Dcj+PKHC|RHr~F#V+=O!{~y55p5)& zG;Mpy-v$u|ZQ*pQ#8EA$l{#HseBw$J_UoJJSbPGuLsF?5!mkE2Td|i@Z}&I{??nM61wHpcN7s!ULT+iA zTbt>&IV1P!pOm3&h3kuTbIcjVk2$hkMNe!leA4*6bg9YM+gZU##Rz;FPjrpH=`g@e znxnW$z_NM9BNGe06~9xMYh%D<)4zL+P29P6l0tm2?J=-g$Z-opGw=Ons0O4*2s=cn zQu@ORD243Z`Bjor#Ku-IOfVGe7fC?=;Ap5ajxV!~Eoder3TW_$|-&; z@3({=Gw%=}p`?yMAA^)c-%rgLsJbkS2f|tm_HL6eo!*`{>T#y-zTVQRP>DfG8kaAYnsD~lS5LX5{qg-&$zvjL8ox2kw zP7j%kWDb5p`N1IFlG1Oxobx9(LI5fXs~%%ztlQfgR&fk^ZbFQa=)EE@sSk}(^d86E zrrV&Cw%~po(gTe-meo0-DKfOR#5j><#uPO%yCubYpEL@nW0-<(;HkxtL*^meFX?TK z=*LZGiL&k~xcV7?8`Sz>#Kmxqx!9Y^m79_E?o9||juyZoI-2)G4%fM}l4i+&BExT7 zy3OOx;r0(Mo2G76h%8f@OHY@{`QUDB)qMDh8Gdt=?_Y0f|$%Mb!1Ew^A z<7~=$jxYW9Y}z$;X+|GUdX)NL8Xyh*JcT6(2O>%#Iw?xuJKsTg-Sq{|9Nr(+eoXOL z>fb2nk3)Av*CV_|Xy<`Nz+qUOWbfUR4ZwEX-4Wfum}fFpo|lMw{sV3I{j#{JKnn2>SC0D4~t` znbk!m&5AgMR0Ah*!xpz52Ab9By3vSH3<)cGv<^duqi za@dU1X>OLpgqV!Miub~c80r?j*SvY3^s{C8b`Hb0@q3jft*qW9I;y0L^LSOXEzT42 zu(#&8IvqSw^uy>>xA4F7Ao}Q2a6VWOz?dn!1hrRhUAge{PE=U`Y`QSFb!Ic0RCmvIO0aYVjDL<&DR$O3w5JSuC{z8ZbG8w z_y-{spG;p4G1QNTGElMxH+x@n$$$;Zqfk;L@LmzTa#oA9iJ$aTc!Y}+@W~&4DX1pU z74rsSL1=mY?~XAd05%z5c-fHU^B0Fg2ffNZwX}XgTd%_rhqu@{;#W^Wz{BbY5q@En zEKFk^@1nE1v>zOl%nIi){i$!~?ya_JD%iNFp3dD^z^cBfw>XN|k2sE8y@(fMb$-Q< zBRk*x^vSQl=8KqFrBX6P$Le$Et%UNma_Rh0V*Ake2g!Q}+l$8h1s~gq9#Y8Ee*47L zw0nmx?t-XK-1%mLM^61}pT48Y?S~CBD)NU#rThuoXILdp34Tv*lb&&scALXpd=#p# zBZ#r_xvH)av3TA?7UY4xzTE+A7wSm^A4BrsL6;_Zyqu2;hrc&X({4k|(b7T|quE7o zWWjz0!KesLX|E`0u(@BEy^QS>K2S?50#qieE|ocjqEm5dfh^@ZEY*9(4k_Nkho6JS zg|(7`tivZYul8kX;p8TGKCd5hw`P@R{P`=>JsV`m@qQ1rp5qMAT|6mI2!x3-p6UA& zR~`bM>>I#rRwBTy3)CkX*2BRlqbg!H?ZKqOhDa)9i(Fa9hU~G|P>4An9%PB;TnKoL*5vt2_;T znW+03&V6AVtZohmBk4)(lvjM%Id>ECgo#8ygMM#WNH*q(RFKNyX^;3OGA~?5WY0j- z55>QP>BU%5yZZo=Mn@%W^AOWjIup~Oqm-VdFFk+eTMDXrD3=YSBGUEF7<&$7mxcF# zBSToT>0MmJ=M(GJGV6+8Ieh=VrMEJ)JFnXfE3fA{In;wHG0629zC!Y^*-;o880b=^1Q^QoYiIO?F-BVb6vY>gX~}vf{7~Slq@fu zB^8}s)2BqpgLHgP%Cu|w_-XL2;Xs^A{ZWFQt+ZSDvstS6IoCZ8V_|KUywa|jlVJoM zMmJRGH+5(!qA80bsX5Yo&3VHFmTmCxJSpHTg`cnyKQVoV=P_&?VRN@rpmMcJA$QCO zBLqe~??wsi3AbPneFVgJ89sq0z1fEwstY!QY55sEC-)n+8lR&>L!&`IfJNp84ofcq zqG1BR8fisEWW?V0LJ1yquaWD$FWyQF@)F3Lqnt?CC9syUpJ2;7X;7 zQ=2C2H2~wd3g*MP86%-+@*-Jh@TF_~di~(q;CXYbciGT}_+|xXn1=0qixM>?-K~nJTGU%l+?%{2S6$695jEIs3GgG#Av}2o&+hdn<`0I0 zuFO`65Ahg}Dxt6k`{{v91S$8&%U-YV$2!Ng-|UFrQz-u&m1#6=2?(gUF3f007H0S6q-fcfR;Ul57Ke+%O|%A znkU|3KMO?BI(1Qx_zb1{aO=l8-y(;3uEu{Hc${JxTiM6!6FO}9lQF4^Jmm6JZ4npP zUzNkNKb2v`jftJ;*`yIV{FSMVUuGNSQ}diRF3;<2SV)GQgu0a1j~NEmwGU$gKE({$ zuD97~xzy)bo%use-2xQHaY8F81of>gr|9UQc5~G zs*WaPZW9nmh9KYpfoxK^H%Vm|<`!bi+^>^*Ag{^eIbH7}tQR={rj*mfp}HC0)xlHq zvMFXhj9@|H*IBH%Hj!nLmuA8pa-})!W@PoX?Cc8N__5=i90iFE+z7JIS^$U2%#w7| zs$)kvnuYsP#RQ!%y(#Vzrx;>-w*ARdecL;$>+3aozWdm%iOm8-DEWP06=7aaNR>F* zk4Wf6ge0=v(S7kUkeZaC+TNPQa9z4ARa`?J2Ja{=?26;jd_92HN2IIy+zH7X-|lH( zsP-bipBdrJ?IbE>SNSj-qh~F4CwcaHq>9Ml%K45T24v~itxb+inFWL4Oz!+*STYGJ(Uf7kAQj`+1{>oMZl{PZ`<-?p0y&s=v)cuDo@fAQS^zO1L;6gI|6-<;=i z$myLrV}*|-KNXnwl&Lrk42g^h+J7<57U$ZTt^tup50Qjl7cXg8ig9@Tjg-iwMdu2% z5TkAIKcNl9tYG1wN02cLn*iUM<5w1ZCn1>nmSM-uItj_Q9xNgc8+%TIi9_{pPnSv_ zUtL+#lCH$3qwBg7QM}bXj%$~yjs?)84!`(a`U=LiJyj>0BxEbkm6k;kvTi5JV@ySr zJLa?U?)#kq*S`|*0Cb&aaX>xHj}Dz09!Et*RHAX%>@f8aZRWkiyN|BOWHTXEPbGTY zp7FY73MvW#&fHWAe)a3$pOz05t?@GoD_4jntmP2)J0*VB?j$Fxac{QVV-X!u zGF9GP-V`qLRF#xyIeQ){th*d&=dw@-UWrTvxsjB&wY_rCK{ znqpa7pjgVCaY(9Pl9#fkFuxOJixWs?w&k2lCE_)INkT!PxF?6wP5d>jg$%(pN_&9m)qJfcNB#>n4}YI5ZDre77#kTQ62D9YZiG(Mw}Ls_StA@O)MVvS zc_M4vm`qoWZi4Z!+Ac(BOe*#D#BI(~)Wi*&LnHZBd_o&dOCjjkvhJc+Dv)A#8i;3sV=+C@-lco4oSd3< zZB$?}d&kxL4x{%73dE;?iTz0V8cs1CD!mZajVLCq2a+q!$j4N-&}(TzZ8ZueM{ zK9AkBt;P3jHI=o*%=@HkVmC|{fqk1jZs|j0S*1z4zcG-yGk{Tmr9Kt9^5 zI1G~kO-v5$aJ5o$Ta3TEG2mY%6fRVfE&p4B5*H7<=P*5{xZUKjYl7+(y_nmbd)MI2 zmJ{!O==L@Kvl&n&qGU+p_gu{2?=i|`^oy3IE+QPlerL*MGpOTmEPQdnG#!2!+Nf4E0!bO6gI8#YL)T$rndxCJcXd5?4H}M$EB1XKm1bT}=sBaot%G|8z z8q?Wot9Y%$zBcs^%e!wd$j1ym*Qr6EoUld)qW4F>{4-#9xe9f0MmiDUD=HBAvbpBJPu6!*&T7|*3gEoP~!{6~)&+^IB2cl!k z4vb&mjAMyR>T2aL%&cF4S;l_QYpP;giN3?9{I+deUAOpwRGf#!{?Z5KanRplt|DA9 zscuGfwaLsuMNLRWRjFGkl|%Tix^WE#=CKY{r)YuL?>fBt$%g7XlN}TBnVrd*8w3JZ z@pYfuH6>Ejx~pz2d>6M~Iq$-N-y0LN#GH?5KmKA!W?&q9dgeX+%!R$hu6sD}ge2U+bwVC5* zYrH-(&*%EAsAij7d%m+JXia>VH{d}>*iY3eRXnUCOv=Q@ujjUSkGa}SP1+j}n{g9| zz_{6MB#iezx+&1Jg(bYUlPVrcU{E=t`FFmPiWcc;LIvrw0mUpYE&@>HN@L$MOS?Yi zcqurw3s1~UC2Ix@AdDQq2wB*6o87RbT+| z&L}#sBbW_dFoZsvJC135ZEsyNwP66m!quRht@BMWRYQw*TM~+&*q(WrkqZS_Rh5SA;TVPGvN*aW z&J6@4&P;G(_n%axb7@^wWo8^1i}@IFQp`BMjkYujZXrraB2r{WXJnj7WW29QG?etU zqgl_UKS`-#3_&ac2SR{RpgTZG-rbYi%E%7v&0ymeA6}FspvL-8YHrXdOPR>V`YlnG z^af30+E&Fwap2(MQt*Q>HxWJ1Lf_yY2|_-cEIJkO!t;;&MQVCd@LhXy_jfj}?d~Pp zwi|N#wVTjCSC(K#F_Fi|Ra)l_{hd|IU*Aq_kEw@p2(kpf+D-7;DYLrEXcSMjD_&A| zXGX+hsc=XS+d%?*WnS4``)uQKW@UEKcyzNUw&?35vHV<&qc4+8fCRhs6GMrOynMGi z+oBhHT?uS@obOT&SNbd|=tlB|UI#h{iM){9nQa<}im|h+QksI9zK8YpEU(qFYei|+ zah9Q^l0ZgM;dTS#kCRGnqGF?Ws67HS1~3RDpGKq=V~#H$+?<)4tJj-J^x^L#&U}rr zvXT>Rm&x)3cjM=kEQ{`j#p!mBS$kfz6L;JTgEnVngBDlOqX&kTn&WexH*SEF-Z z0%&Wu_jcHe{m305)#0rNfqWO^jv|`f7epszL=8x;ra0nmk>0h5dh0OrrSU5mYqSO? z1Z3OWFtZ}8a(%?#BEmi`b+J_vqNAsC&3#O{z7}X5SPZ0Ge+B~(Nkpe7na=$)3(2U2 z7)OH%=dm`jkJ@~aLg7`|i=h+kPd(kJ{XMs);-&Ncdm0#hXMTTV4P7rgK8#$wD%bDAhO(9&D}B8zq=7-zZ!lx})OKx7R^u~{t zXfesidEN(d-p_*H{>-ZXx5I2@2I*zmZ*U00WBHnA47u+@!uqO(-U(9X3b=Bq>O0q0 zx>pZtpZ(OUy_#^OZ}?cOF9UX07!T3kt}u7g!tGwF4G^yte?ML#eO_r%0ofs zyvr5E`q?ub3ss{x`whSP0t`c^p6AoQ=J?{CD~W(y`%5$~5#aAW@*$F>2$X*=i=Ed_ z$oJo5phgGYI#TCK-Y#vwI2bqp^E3uI(q?9PsyU*lsn7zq=r>;c9g$W*SNxyQ9QYbF z6#V$5eJmKvVS;TNzCrE@50^O$K6~rib=pVVDZoi3!JM4op3?CKS21j&J>FX#CrPcV zTe*E#PYF4vBLo3pF=Xkc?>UWS;j^_XJHD8JPq}Z610M3p^f<$lEjC@h&BppJ&Yad8rDG+5^kU|#%+J}Rzz#G>X zXwX%MLC|HbdorQR#3Q9Z6$?~b4CVGU2|$-uW<(DZ7Fro{va*T*xLf_Yy1e~4Y4dlj zFF8$!S#6!rmRR3lwgqgFEFHPWCvey0L~Hg01ml4ihW6qWfA?mbI3Qvyt^Y(l#b)}8 zN!$%%0P$sg&n?KusNGYyx>;T=)8iVWLkV$6;`c>KVZ-b}` zU@&u5`@Se5U7%M_uvhoiJgX+t9wj3W5*%P7d2y<&`__P{WIxIJtVLrra@vlA-*0X+ zTBgTUH(1P>2|!3*)KV4_Xa;pEuZgiJKr}+S*OlHKmX&M#T#l9K|E&Itd};i(I<*wp zpS*_TL*#ilEd9JU1gz&&1i{Dj@^YG+fRvPe>hRVBCFa8!Q3hVyfsI`m+VP(^rrC*( zBg0-bXCK+4oiW4>669mygAKQe1%r3WLr<;JeC9m9`f0v>qydEZF`IW&jKsVS3gh_mp53CM;6}2WQnh0ZgT2woNdUQy{tbgJ)9<0jUqIO%@=NrIoic=lc3~IHWk@Z{ zMG*Fehr;Mvw!!oyknKsvE#R}M59Wv&0&MsJ8pfIPESXhD`(Ofy3XAUm1?^!b%o~XM zR^CStK?Yr67N1`1%Wat4=}?mWj}3l+$hz?lB{xgkQOQ8)U)M zKthRJz(kyN8WNhc^#3vS6<|?r-`B(dLpKuADP2lScM2jQU5cQ92n^jI-KBt_G)Stn zbV^I-&<#UKi{F{+y}$qWT%Y^g=c>#*@7ZUcz1LoAolKNtm(%^ZDN(R9osr}XWcR>8 zk1c2Tg~1%VoA7_{kpam?ClR#71{hTY%03Aj<@_&bV6n^3rNL9ee$DgR|$0o5cHYFN50-|n8Gm_rg(R}qgZ9BC8I~Y;D0d_Hc0w)GP z8y&T7K~JSM2@)iD;h&8|&RN7CJ2G-1N#%XE_sEhCl&IOAHW}YeA4gDylpv>mGVQ2|>YLp{POg(R!AbHa`LzxVIY9N*SLcQv>A@jFZWEhGq3 z4gOmcEuYA5kA#7_LU$ZJAF9WyE>gLUl$A<&+<4;COrhWT5pES!o)ij>8$G0w3}7Md zz6pv$WV|MZfS$>M)GbppDq~Bk04k>qF@7=Te=R_E0Qqv&LW&*K<{8dQ=!hrjfzZeHQ4f7zxNlPeN9FFNWUTSH~o{`~UT)KsJU{z!|I; zi-4wh4D#(mR07Rt^n2}hWDa%e3H%OErQ*{953Js+QQzL4uwoi3(ky zhDj>3XRD!vDq1duW>KX69SU9(4j}5%#p5;qUX~~UjF}#&vfUb^hP?&Y{kFVv1 zsjcnkNi)yWZz|xJWMyOPX1};LW|xzbdt5yNpv=;8MP+5&M1@y#-v*}|c8+e>hO(X_ zcb284Wy$`3dg<|EJ-U`VH2)cDnFCp02%j|VSq#J{K!ySs%E0d#mg3&>7x33B3_-vM z=?vIm(ZAl6VE|qn)fR1N%tl*4L7oqkNl1cq_`697ZXkvkqs3!T$-!BuFm1GxvIXuf zf2)i-r1u3bKQ~Yky=9NT&l13)()tNIiaH%Ld7TSRg(Gj?8(%$W`~n{HrS znm8j|+ZrbfO3CrX;(i#t|IH)h!=qeM#Q)O`0VS_~>3fS5(o)=G$Ml|Vpr79Fj-B}R zpYH2c6QG`d{BFmyA&D&U!C?_BR8?}v(2KcrITdAqC*r9LOPyyPr$8ae0V zcpyo=XU7q+8KQ+}@1_8BhosyBGyoNQY>IR$0QnRMS6}^aCkD`yf?)`~v`>i^+5u5- z#yy!J%E4s<&PkWxf7HY+sz6~fA@~vLK2fp+vNI2}7toCO%P)WX4ono1k)YVGma82u zDzVpjNKK!Bb+-yQLh;G5{;I77{tqgA0%ZLm6WJWU7*PpH10>wObKi<2oboF@@JK`H zPIMnV7vX^I#!QGEZw!_`mi9QvR6BrO9^3x&S^Nq>5ZzTIjYPo!uiV9PA}c3{A^#bG z1(PGIs;b7Cy*(~>D_Y7*1b_Xt#Xz_s(fUi2oGTVML7?1B(0p;XI7>VWsz1FtvhsEM z4n!$shWkq`=FL>+;cKy~1O)8l7M<@v4Ftr6V1G!AHF`K1Rau3Ke><-D|8?1eV0vC$ z^?GZBk*id50n~ut*G)1AIKL}+@dIp@@K!0Yi$W%`Cc~-wsIjaG4Q{*rfNPHdgv~&a zmP9AzRWwgp-gkLORW@=25-9GIy#R%Ow>=Qvq=xGPE3I|gV4gKlhjAuwe*5njuOvYo zdQf&MT#SpIM;z$wdaSKTo%^fNPAqkW-V>DiHseK)x=%jbcSvO@MC%d@1Se1_wwIw{ zdPxqcWwy9m|0MIXDETI;C-heRcU|ERUq)?sd)$FzHTev%W^9B0O5S6vEWd1X@VMl$D%_NWgyds6_?Cq@yE3rwiF^>_ zf?lW3HWepd zYW~LAvZ$>(9wfw6Fn}r6OLu0Pv5sg|k9xQ3YM%GFSa)Z$cF9jqG?q?^)Bn%!S_aAP zov;dUxT$MsL{szWJOmy+fFvHXmQzei4>o*>?|#OzmiOrBXk_EWOk+oT6~VO3n}<|A zCz4uXfk3=l;>-4f4n4;!N*&aB;ow zF2nEAo}ONbGw0!Ksn_7dMLL44-fIz48iKHNL2#k3IYFc-wf||>6e^Y%Qc{EIBMJL)SuP&i@ezAOD=ZU7N7NU~% zF&FzZq!8u14O7Ars7msI+7El@LLK$H#p;hOP%fwRr;l5Z6p}u?!VO>BiqHvj`hMA6 z2k{ig#G|yh`_v7~X+;3l5QvR*iF0|tKj(=)P8yQW!nZUn% zVgYYoQlso%gssNBX>KWWIs=lz{&+_Dy?3EKBzSSX%&Tf(GR6k|?Y)&7o_zE}zxk9y zS#S}wfu&D1GXxbIJPr>gUoLNlO{7-(JiyZgzfs#rfcd^a^F2=LjM8*A!E#M$XD|ff z4%FU2j+O@2@&_n*Ni)ya(XPg?j(=J%skHV$B_DGrfI_RICp+@c1IrrIy5|wR@*KE8 z{Q!q4i=dz`6$gTF!W<(Es=@2_T3N%9-?QV64rqh<71E_%@@Kz!8-Bu7_9&8XtM_YQ zCJhlKr-eo<%~UcDo0wrLnR=BR|ME2;29e&h5}^W!dJPaWAE}DE)pM@#k*J`fL9N>< zmDA_I!wEG#LL+seWQAi_Ixowu{}!+tpltio4T`Ul^*~e0&Of0@`^nGKt0h`q$sG)V z^xV6dCbEW$K&xSHmKRrx_F4iy zhZ&X1NVm)C*(dr%Cj8USu6trH*-)dYqG^?7HLieo55&fy#I#vpN}_i*fZ(F0yX zDyS}~&D-I+ar4;XPZnNW6+EHuJXpmy1;~%S-i6?GC#iNX$mY6pUxv*I(J9!3_@B%2 zKeC@FNx3WSCpqIQ4MXHO&VAGL)Y$TY@<)O~hP`bVteF0FMbmNQZ2PB8pv8PrK7Sh@ zB0S^l8Q24b`$M9qL5HdSWiXl~|NHY%rhF{9Dntum?mfOHL=e(%lUtU*^&wWMcgdI&~fM)QlCM`gk2X#9Vd;aLCz!-P_mw;@Z zD0={3mkK4o?Tz#qnV94>E6)#?4sXzKQ`$LDRw1twWr#2#!Dz2jS(HaG*AkTJR8IxJ z`~k|xqIq`ybo(|pr0tdGqc=uswS3<%K1yD|gF#C~F+tBFqVN`)s@|orH7K(5xSKLr z$bHLfKYkx88Qwlh<5TR`MpZ08mc z+-%w%CX?ZLtPp{myH0b!4X3F6?Z8yV`O*9?00$#S2+HLbQQvMrgIV6lK1XRPW>Ag6 z8W%Xn&XxvvRw{64EZU6OtOEwFw8 zs57-Z|H1#Z*s#@AHA+H!w;}c^r7F?8z+o*UK0!xspe|^Ax2*`s z(cD1rtNW+aB48|xQu~kQ7$)}19RA{!lSWWA-7s5WskYWaE%ZZY6-~5-eM@WiVrsE1 z%2>XVU^PMDsdT^%qoL7ZikEycP{jI{Q^iK~^_q&jZzoO1dJ3r5+i?(QRlwz-1kJ?o z2=f?hw;{etoqHsC?I$Y!e*9vJF!k3DrM+Gkvn!M%7?wF^e}1Vh)!Wi8kNtPy9*iBf>bI;M}4jlzpqJj;fH z6r+Y=o1M)Tu@-a(hs`?utv}GjzX%G!7CCm#F$abVBD|qLgm-@5oDBENgm?iPA0f6u zB}I0LdlTeJbuG77>OlT&JGBG)sgKjSghP;epH>P_qxfsIMFD=vfKkw|Ii*!#_`9~! zRQi+H30w?qlzjleGkCG`R{Tq7zVqc)`)u%*< ztsXwa!yoyP!7!hzks-K47L93QSwr6M`JSFcaGgGEBo8vtUpUr`fWX^^6ss>(LX10z5d9S#J>JWS` zZ1l36Uv|p*)LIlN0PVQnIg#$tG-M*e>YwD?eA~ohRINaziD*KKk?)ry1iOFwCw-BX zqv6QhUMsZ)A@h%&ZEHC8_&sW-8F|u%jcez$nfrW1t-y`VMHvx>U;f^!PgXJ?S&{8tN$4W6s1)n+H|K;hwgtW2f5?_rHhd6Z`*S`9^xb`#)Ke5~D27#%k(hUVs_Mq`KB%f)Pu=%h#RO3ebg*WLh@LmJIfh=qBimK_jTG(no&c4 zwy{ul6T)C{o(F6(X}qR_O>FVjkZeI`!X7p0qVR{yJR*xB%zUV9HR+HxO}eQUfupEO zcbXfp*%V=)E=QH=i}lr<%{7_?iUV%n@f=`3=~DvM!l_}%%fZ$kf^nDki< zoHEJXb&>qUvpKGhh7F!xB+C~Py(|uUmnrV1rXNhFQU*-iW?m`P7 zT`~C%F2v=dNsN0Afv6ayhOSKJFeVG#*gk4l+cZW2KSGq016P{b8dHy1zoee9BLVuhDy@hZh_tgftq0&}gaAnNgbP zD_;ar(256M2ax0S7sX+7LXvo4ci_}7(_7!$Q-sK$~ewSA-*N}3Te*{n`CbjPL zG?d3CmDaq%TBRJO$0Yde*)2wi&A>nXJn$KMv@pM4d+#Q8ATb{1ooMT5_M7Iws>kYT zzs9B-XT@Ww41Vdnx*e#y7QvoJ)MC;-r4%u?C~Ms$nm=lix)f2Ri9G!y>pL7>nQzI& zEXjJ70P%@$4gMAqwtmv{=hIo+L6y20TR>HyK%z-on)OY`B$~*J6C3rk>mL;6VapU| zzO3b%Ul+KZLwN(>%n@}Bp-c@RvDH63SG z7%qMRLUM%E!_`z{g`e>>&k~J}-#A_f1#LCL2$4!3#CPWWD=ZCnlJV4olxq2WC!skTN@6?gunavTq3GjKjDTJ&1U_F5^S{_=ZlndeHh z>g8*n-mlGJ_g~{_L^w?1R zpzgSaXb{PT4l}fy#*4`CiAB{8+PUEAp~!Egyn~c%tiMPSqI=UaFpO#&5hF1uV_sSd zHlnGy6Y(u7A$Hwa$1i$Dp}v<+K;hX_{VN3%bMEYbB5^^dW~Bls6WVh&%>iNDx0` zQ_)Bwb@LmV@^2dgt0l3#B5`q@-IzPON4fPo!)dQ@pHf;A@uFKt7v8evn!b!5d75lX zrg~f39sQB&8abWcfEcIru@sgsrTR0iw&dkq;(G?;$pTClrEOZJ*g`NArt@2o=11`| zzKxYbL*c0z)v~z872G(wHp;oSiv`DwEIocJeK$Hs+3SqBPwoiAyiue>>aKO~%@YZ! z>!j@SAOS+&cIU$|22W$3FxqTsREqQe994%Btd;a6flc)j1Tod)WsoBP#y>u+Tpm$j$O|d z4?{)ECBKk}7{R18;_qJ8Oh^{pt>FC`jr6avjSfn{3d8$?-x05s9O?bs8eQ&wJRxL} z22f{nf<^ZE4S@lLODr}WExwrQFR}W~uXID%!Ms1+66f5lel5^SY&?KRgoq&caTvF) z)$ogr=|6wCq-)Ta68O;Zoj|HxVZmjfgIOhxizP9%mI!anj+sKvlmU7vJ46rD-SRFW zeRVU|{it~&ZR??ggEkPTT~YUZen2LgTKKE#Anl;=(ysx}P4brr_WtTg7!f&4&Q=(i z52Xao(vbOZ1CC;E{vb(Xo{CXe^I|0U$jX4IE>Iw_DnYmHjwOp(#~o9j;;uV5bxVV3KmI%MTNR1hd|;D2}`-Q4EL5h!nvkylKr-|VOUGtZJW=I z*ZTSg>AJZzD2V+6`Y;m9#7H$nj|!$TEXo+a-_1q8xGPTDwBO}>SBg4wLbFuxl+XY6 zMvHW5+XiN*jjFLnd=^Y@3V#tRp3Q z&upUE9BHhfgJ4N)qOvbR^vZ#EF#O_oF)p7=GWLz)V)AL6F53p)V|*UfuDT1BZ;a)LrpGBMi^V8M!m=i6Z-Nkrx#8YVnEgI zDS$Sml-fjGkwAGI9HjPvGURe7LJ9jSM(O(=CHyT(NE@2?f$KM;E&)h;S2uIl~S zmAZSw^7l6N_G&uPVFj&j?cQsy9Co}ewNkIMIv)(0y52a#T~Y?Og4?if<9=#M42Cn1 z^U^)Ptk`-9p~sp+G{CPR9cK5cnaLY@qZuU|L5mg{59=j2d$i9uK+|SOT5l-IehsC; z4dL%PoY3`UKk^-Xc0bHhz%2i*Bpc_tmVLHdPBgKhWx3Y!ocSJoTVqS|5%>MClS(-~ zXjy2(a>XH8Dt>z;?Ewy68g1RuuI@T79yt#yY|BN+Eqh&U7fN-8())kjr#6j%k-E2* zi@xfOKMkakuD%?l_J3=z(h!*;)EIhn5Me6H}s>I`GPGJ-D-EgTI}#z6&| zF%RzY6S~!+6A#GlW5;zg!6`%rLo!wep2RH&%H9=e2W_8V1}4NMB;53MAM3-?BEznG zA6ZD40*QmZbvAz*Sv3tjrV~oHsB0s|@Zq;2I+merax;GFT=*<4tCIG>Qh4pb1KveE z7gJbRfc`*#02XACkMgC?2I8BnrcpWMXUcL$s#{H1qP3hx6)kvULW7ra~XQoBDd8?E+LWaKg5zpu<2)wZ1t8rg5ldn>A*|yHu5`-F610Fs7zPXkce>=>5+4$kc&cv6pQ)pGc{` zigxP^oeO+0!s`v`R=79eF$Q=XS*20KV%bciZ^?V^ZF+cWB%dsd&WFfgFjk)3{0vFi z1ah#TS4OIZ{mq+H9A7O0Wa^o2N!nxrU+aIE^DOS+>$!!e_1>n-7BdXK&*MkC5tX+L zsUwyRTu~N@H2jKd^Ri6J3k^P_!x8#o;3l!9BW!Gl@Cq>9#97g}LyQL8iLdWH4zE^G zqguk9h{}*%k#Jja@rm1C@!TWKr?w4=XODJ+sZ~Dx!ONRXTxI4+FNMe7lrv(3!TMpC zB5brR7|VM{PL5RP7V+S%uVo$sI?ll~3>uFLiQ~hwQpvRbb_ly$(RJ?l+tKKoWUM;X z^2O0|88PQ+2NUs5hEp znyI^yQ`*b-rpiq!M&Aw%>6WbDU(o&d=U-92bXJX4*ZF>a3!-d?T@NLUJiHGuB7M&k zIj6!P1hj~rMxu3^d+vjwS6v-=)p`$5`QKIkAZ+9AMufFXY;mm+SLNZw@g(nC;oE%y zcgj4=pLRPEV{qdO^WtX|#_Z??$LaRM`mm71(jIJP)sX$WD-T`IxuJA+j|<1 zx95o8t>+LWlW5XQrR)o_SA8BNe|8O}m8hcWQ&?yR78G-rQ{MCl8!+m0LlJJr2nFk{ zTb*oDTc7u855G=q?vp(*snolQYgj`!4BvA;L6;;sJ(3U3((%KaDv9^wexDdmU!1Ip z!yM2kg~Qe84}G=6vGTQbG|(kZhXBe+oUD|5pkfoT`@oX&=33-RN-i>|#x>H@COUar}?<>1C9selED`faf=%b)RsrF~^R0f5J1$cKf$pD|Z;gsBl zK52`=Nrh{ymBF?W_T;1f&A{8p6sr$eR@YpQ;{;&q>gtmNQclH>f-aM1Ib=U{mEp!= zJgix_Nwzrf(OUh(F!Y|wVr0aFBtw&PkOP&1c0YVjbr3^wKO}&N2rZN--Kjg)^4oR+ z&T7jI&kgT~GC3lBA0u`lhjWvUuBu|J)aV!n_U*k=p5aUPy!7E8~&X zr2Sma_Ce97*nUgC@ZZ^#TgK$a!=$rg#vfH@q}i>_yGnvzCS%Q&StV2cfH?98f?L1tK z$>Sk;zoKkXLQoM#L6nb}ApfkCT#gh`yyZtJovC!WoG@b8NtAg9B0@Tx&!6a0fmIT- zM#~|j09T8Y;!x0SMl&thE`-08IDjLBF$DPEvN%@vvDu%IBx~!^P%tTRHPXxykhZgC zHyr~9$n#MF=eD1yVH3QS9Z5K@AM=S6RiwngSb|;t6zw-Lnw$(2ipn?=2JPh^4YP3I z059WK2JYe7<^TI+N%HfS^2!H}A3auds|gJF&ueGI!-~1*)ar58LOBcsLITqrlDVc! z9Q1p|T6W7D#p{_V_rCnp(t0sXbmI5fs;i+;BVz@VSC^NGsLTo;__%U*Jw{{^K~{oL zV{lfNyuDauwOp-m-}~|qd@Oho96V@(8p#yezt|ulGNi;8opO?9nWql0Unk}r=O1&Q zGkN8IerU?>`sc&Toyzu1z3}>e7MoA$P`|wODNZZRAAt9m z{Vbux0iV#(r$8yQN&cd*HI&inQ_KS#q>X%q@8JC@JVNOk=Zhcax4M+vDLBYz08jE9 z17ef@97AU!AMAZiWfZ>12=m``X0^VP+RsUE*pYPW9rd zaH*qKnti!&iTY(Z4i!Y4#(W*`=NqVyTQ=vwO&URNRQ_eA?^SX8{Moy2dY57LHmN$} z%V1vGF(h$#_v35eBwgV=_p&zBSiij0GMv^ODj$aDa?@%F?xC}6-2cXfGi+RT3U0Rv z1q&ytfIbB{-TU@b4sES&0DcaaCzKLy-UpX^Ip=8nFO+$Zq0FN*NeN;rnJmzp2V?u( zuI}P!%0dZ8=<&_F5Oc>*hj%2tbs$P!DGgWkwrw-S%cM{^rUx{o9Ffu3is8Zc>&t8R&z4C+ses z_*V-!(+xY#u`3wFY=%I{l{E7I?g|Eoaclq{DNm1%6xbsSkXiCTQ}-Fxf%{V?%Q?XW zI8ofyDvd+=cQK_m(yh^O^pimgz;oCC=IH3l#v3k4v!p!ol6{YpA(kBB#ruC8g*Jt}Quj-b=V8*V8luQRL zfBdwu`c?!UJ2q?=1inc~Y=^?#&@G>n$x*|%irm|XTo&A>FvbR$C^@~(4`=}!czyGV z85#e`==(|(-=pBbSnBsrG`(eP?RB z^DXiBMPQ*FnkyeJ?k}T>qGOQ&SVJa&DyDpKHs|zvM~&2wOF$e5tPZ=#!@-RL--o#E z-q{z76l#BXhj((Z@!qLje7B6WJC=60?&ep8znh{@7r8-Mu-<1fxL6f<%i-q!_k$=% zCD{+^H?#SFjVq}z6$hiRr2AjbE#1^FuL%FtAO!-L4a{uul+rRduuUffgIOy*23EL&3{d$3kpoP%C)204 zd(G#IsB$A5;JPihfN*(TO4N2rgm6SQ8s#-V0z?{CD9z(X+hC+l{|d}W0**-AuAhUv zfe*9)zo#HUK1D>q70EwOL5h}8R-V2LdVraCYIo|_64k@NL{cK2lax^cgC!T-UnDQ! ztZz$OoxJyT%4~a93)~OL?+kA}HNmQfu6Yw$B)58_Fe`rjp+xgC`NR<^$GY9K*h~H= z4!}3(AV(e+II6$?3E1b#5U?rk$N4)s;&9~Up=G+y+S8QoOwCaJ2J0AA^8WMqy!*^U zHBY>RB~6h9vVwOzasJ+&{Yex@fb`adq^VhKCI8lV$Se3Q1HaZMg7-Q+8Q84Gxnp#D$q8-e` zXvq=*_YA{bXUS{#bHGYi>pK6GiK|!|dNy`UAE00C-vc)XZnK`-!FGxZ=WTsJqfb~f z_~5DaVAS^^>V`MliJVI?E#&`3J&2K$i&PLafPeoEA}SmlbtCd}NRkI=O2^q!+vWns zaE>@~QPw#q?cwV1`pb*exCIo94`|B|Lt0gKm?{zNxL9T$^Dg1$Ar&^@>OZt31{mkh~Fo8J7UGQY~@^2YxT($Y8+W<8SU9|J))2^4#@Z_L$tlNtB z?XTBj?D`xRe0A`khxx#mofo7}isdYi#d~S@QWqrMK@2-@WIQW4X#gwR4vZOwPn+Hm z@;0C95(Y;)teq&NCo3Q;B(Qig>crq+%ZHXU|C1gyh&XK0-!|cdSX(H-)>8~3-|_Tg zN_@KBtI?Jv#3g%`Oya(PoBwVe1eR3h@>-HM?+Z!JeNY}PgEQ1E7!wj>gANSp;=-)j z*&}J8D?LCPAocmS!vFV=9!=a^kIKOZb0Oh$UL0_8-NE*95lC*$ka#IylBr8C?I+oS zcTezN3{P?{omQlimdZU zPRE}hzY~D-%Dzq-qjoXk~LY!Qb(z0r`I*?%^W809T@$ff$Ae~wQwKbiYj5I>F>0%|yt^4^aRNix&kJEq} z^plrAFDLUE#wT1#PzYtttdvNy*%T7VZXvJYo7{b=9hVGjXhqrcHY+;_TnQqpG0PxH z?_V`+w}YHSLt*;n(cwOr`g-t1f{P{6ay;A^ksFB!?Q0}B8NPaLetiX2r-T4ij^l}m zi=sIo{Fs16Hi>AprDtTLGYbTFhV%{N{%&hT^NRr5x_qS=M=3$#yWV?M<&_`2c8X`z z#d_X5R;wb9DDW;B|G9iBi^E~Q6efVDa&vJpbw_PTPeMZ2?O&kHXbjmLf|Alb0|%FRByQemID@b z^*N+_o?f@;IM!lstwt|;w1#A|Q0#A6EF-~S(TGp-cYha=Kr{q2H6lLOP|q!E0Nr29 zhZYUh3O#lTq|nH$C%Mcp`Q#Pvp5H>X39R1pJ_}f5m=>*8G{eZQ5nH_YR5b>L+VZah za3(lb(SHDs>o?fWcXI>&n2Mvv(vN|y#B{;r^p6LdU?r?(7w31H2a;DiFE~l`7D-Q% zRYYsKam@H81^7rSXsRrw#yx*c7&OnzJ!$$*9CcNHBmgu2W}TUS#47M9Agv~rgCcUp z)^7f-VjqyZZ`&5YuA2sX;hU$HYOcn7-U#6G?wRGenKd~=}qR2NT3r-_`tp#t@fZ)f4Bi0q#Y$L7ZVaR@ADK(kF;yyw!$X6Vc)(CXFNf zrP{AeknGMkrB`ej1^PhC_@w0EN5co81QirmOO*X_4eUpUYP?N|_Q!!T5&R^*L2f)k!C+b*&(|%nj7fm&qQW=vEFA^_(`NcrSCw4~ z@#nq#mTT`9dzj-SS2VYy>Yv5XD(PmV*9N4`@wQCWI8yh4k|-%hSV?R-gp?$C=0==? zGciX)sVmW)Qgug2LuXhN)2cSYc2{MfrZvSDH|yxwrz51ko_!;KIV=I(@xbyjD)8+s zeWgvyhXi~zd)W2{UGV#WKH&7sjKdx{%^<4Z_5sqB z(fAF|-Of3xOZ(Y0&utd2il*0NBd!6c9g;dEt1_x{it<68WiX>oH2D$WTJY1W%gTE~ z-{5k7V2QW%pTyA-agnl--6W|9Js8Y?Ne|eVctzjtEvv zzQQBr7>TyrX1AUQIvnK>>_L~PY~ue|_Wf#Sk!~2`zCuj)9b`udfwAVy@0f&idu}{= z?LT-l+VMFk=;HPGyc0iLADkC&qPyB^|n{<658iwhC=JcY@ z7VbFZO@d~=blffkK*Q;))d-_M3hBeiCU5#k7JTP?LeBW6OMoQi?f}pA3&&fyrtj*Z z3S#nkghI!Y)Aepmdr3{^YNbzFJldr0e8wt-ryBD-+$8VSkVz0&*~fUT=2sq>F$W9 z&t-i&+O67h$FOHt55{k+Qn5pja9e@7{YCm z#a(==-;yPYR-hAzGMF+utb58aTsW#w7(dU={2?%>_V9?~hO~_49tGc|<04*LvOBwQ zKF?ihs3f&fU?a=oC%Kba{s@$Z&SL4P?9K$rJ)m`s-!Fg*+$EhSg(^3C9MYu%%(~*v z6e&&H`^1z23kOR!x9luOa~`n=74a6B)xzq7xO`1S137CqtUTMbB(ujR>38(R^>OF0 z3qSaId6lF8jV>az7)FK;1#9Sb19+SF<4|loH(ngDgmQG}eI4MeOMws-OFha?HF>T2 z;epW|oy8>pPrRWb5@+hJiBHYw2_n63^}JO^$mara+I3%rmvP{WbMO~@9M+KFs+LnZ zDJ)72h6ii55|!BztAK2%fz3IH-tkoKG@Y-CdvXTwdgtpbBx+wdwid}L0i{r%R?ym1 z8%m;n5RVUwKc#dJJdy8mb<;e~`s3qImCwxccK1M!=9fhAL797HzM8hX+7PP)@){IJ z`G@iL#=Q!LFN*V-a}dVcftRejg>gHMrDgM{mqtt;G@#e~gl|O^f)DL3R176P(8^ih^np;=nHq#8q}OU0 zBd=?HXou%oOc=Fc^`2lH2W#VZ(h9~aaPgEw=%fA$brov>k9WM;N0cCD{@2|+$3ykh znC8R$=cVKbK%z%@GGF)Kv%fzkLM<)tWoD1H7e>>UA8yR=p@)V9bM_=w1SC-o<2gdy z;{9qyq7bOF&M`Wn996!1e5ti-w0HcQII5>>qUaa82j9Xa4q)Sm>o>-Q?}y}jpIfG1;jRzgw-#cVkUFm6Q79esy<4T z?XM&qLy%x9)R7}E_6^zpHpe@DXXSC2`bhHM4mhWo==s3w+}*#J0Rjt+2)+8+X=&<~ zNz*Jp$x`X?ZC!ypfmkOt)y(p%=r4i~@7OSNtSMSV=C9hQy(}|EG~c5mwdrRF4hv-x zwPcwQLp-;*B~o~|vTNNbsQW~2V5-I6-|1N{cLdb~>dzgb6lV#G4zseD{i1nW!m(KN z^uwX)vtxL8+gHa@Y;_jAzZbLjNH;bPGNkN2_`07{6b&bRe8?AQCB+um6?K`w6XI5_ zv^tl=p*%pDup*m1lsRJU zQc|xV;=T)>CU7w|TOM6Zv0U-AA#F9cf(9&ZmCEwD)uPb0SQyC(i3;@TTM}~H6Y2=X z?7og(TGH%{X}(<2+C?u1WA;A*2$CH-*8u^sG?ia!^`5S4$uu4+RyTNJwq0;?8U@8! zQ6{TLSFs;ssyK(TJgRko>Xn;nfN}D@=SBu8p4rTGlKWK)I&l;42<`8c_-`xzLwm1ez9Q+XkZP8gk`R5tr!HASx{uXcU0XEWe&bBLG9-|&)w zlF8+uhn{K6|Jz3?GFcQ0W}yfs9waEXChv%6P)F{SFO(iRp~z{g2oTTBxOwRH_!Hy>>~(Wr_m!d&A}OQiL6ghCn+l`LqX^ z=dW6i#NE51a}RibrA+U;rVwK>Nha{=ZTKhc(OPRy-ZPG)`e$nxuG^9 zGd863?+;0x7y1-h#QvvGoKbH7vb_Td7dgIjL=9}1)D0A zn-e(=MF6FfXKLaFURzqs#vz}I?w{aUZgoK4B8*n4 zN`{jPi?sAr|Lgfv7{Do>GOxlT4}}JPQ$}%$0AdczCNv^4Ja^d`ysCY6y^q8|)4Hn! z735%08mHurd6s0d%d;q5DIbm7Ladnj+-`pfUrn@MR87pv2d@oAG+&eV``Of)P^(G@ zFYL5>`I271O2P2u*NIs_L2^N+CGxpfjW4h8s050h_1M4Q&_(_KLH@E2sqp967 z7Jgj9fqYNBimlbekRLCIfo@~tj?TD_NyO)h$BcvY#iB9XV`&yf%I$#ZyO6hTXoq#4 zUc~kZfYijSvzS$0G*Ukva9Jw4M+ut@gxK+~(hH3qghYi8&!(--e(1J0Obs^dme0v>nf?PVA}jU<0A)N{I5#K-_)-o& zQ9zXCc77TG(L<)nLsA^eV)8kQ(@82T&=qTbIl@0zQ!To8rxn@opXKA2 zk-UHT&4?0c{`i*p{4doh@4t9l>I}_kN_ven9wr1`a0V$lKt2jA12HI`lRX>@90E$i zTwsX241jX2T|!EJ2G&vy+&>-xX}Dpj8#vSORBdtnkjiXY_i4t{gN3=DrAp|1zzlzD zTLJiR49hfhc0&%ylE>xb3dpYPi@!j2!@9$y19b|P{QoSJwn-n2$P?;2QZIx}8b><(hBh!PUrr1@_GWR+H(GwTm(LEzB)M)HsJJ7kR{)|?^wT`EhRQs0 z=Toj4Pgg_k_xf)GfTi-t5vu{^uxJF;GufM>z? z9ER<&A z(nU_Uk@$-x^4BlAo0-5Q>zMnKP&))J@K$meiUktn5R5w}Iz)eubFeJ5kQYDcKI#AS zC5;IKr_8*01ZuC}+!=4jBys)i)Qmcp^GxziL5AJCH<~cf^y8V8gd@QWz(^pK6o{4- zE^OIS98I56WsJjCH`sCQLeIV5N%rdSPdhH32Bib247IDO%!wjGTQ4d#f2H%Ag>}l= z8C&hpBQM_Y1UXR+V zLyS?a1J$WPni8^$bdp*jN5q?%u3DAmG&7ump6?Ub3d^RGbgg{>0ElrQL7BeX1?WS5 zSKC29>)}DTK~&G@S6PpPY$9|)W<5+U&9lI|Zw6h$hAH!9fV;F8KC}SZe^qzF=<&bJ zj~!7F6=^gDCo-cyw}xnmttY?18ow=O*;rZX7UKBreCZ$<`ejiTXaavEf3QkWq)+BavaM2Y zx(U$MVVhu4XvG_1#wax#@V4B%cKTr=GW+~fCmx~StFZV^xi>pmwZwPW?4pkw27206 zNQCSz>ZwF-sC}vGbG<2a!o_TDfhDOnH?x{mq`j5poj$+o{mqkS`}nHGRS!De4bu$M zGc#(Y-#NLzs&2JREvC0@)>dd02Hl*j0}P4ga;oY?0JRUr*{hp_>64Y#)2uZnei#CN zcQFwR!N0L&tJZ(o`lkRvo-vnJKtyhgvQB5{$XJ3>)7AVCO)R?rHVIR9s)gyNd z4<@8gI6UNt@+{^rPmt!PebZkiQN#6Qh3kCk+M98tqYKF?d9HRhl)EBM0=XI;G z>OY_>p3+y`gOFHUcO2r}u zD0QkM!eN6?8vPX{tHRYkK=Y$9SM7dseh@-7+C)C)b%~YV{qB~* z)(6Z7#&V-iI;Ilo=|CepcOlMy#W2cmxh?;j&b5X4jPkvjX7)R+N;Lu~VI=HmF`XEA zp?|jhH(A9ngCZnG8pZfKz!E-3wSq9p;;!l>DgIam<}(I9d!qdpoTX)n;SoxPh; z^`{aZA^C~}^&w1tAi=SvZU`0LfQhx*wF0BWPSGb4Ji6PQ3 z&6LV+!FW0|{x?c?v~8N{i^U`Bomtpt@gW6@MxWM2Im zd*fcUx)#+G|AV#vN7Z|WW8MG%!^SCl@4fflyNt|`9kOT9us7M8?2$b~L{iBpJDH(K zNk&K%LI}B^Z*_gXzxz1+qvN^`=Xk%K*+8!%Ko$kV+=&Te^<{ ziLi-d6q|5is&BXj-~U>^BGU2|_YL`hfGyD>9pLWi&AMQtB{*3#Eng4t^?OC;vY$~d z5gv*ad$KEZZi1#P`n_Sc<~j3jV3p;01z$-<$+8G!8i713Ab- zxegxb!owW8-YUK2Q%Z>_pBp`9{t-8Tfq#vRId%+nSa->zNa$6JMC53s)o)}kiIU=L zB-3T77PZa=t_K|XTWvnav90)U{eIzu3yuS2jOafU1Si~8P3cR{FaAqsE%%x(ilrw? zXFL<1xnG5uuZUn$fx2MJ11R_{$qt9!)CzUU=;<-`>&4p=6oi6baw>WyIAscgf4=VW zXYGbY$bfj${J)vVMJS2e2#{Y4O}lT21a(D5lYX&unB#xgVlU#L!RV>Y_h+kz*!m^! zj`L`$$GvW*TOE5-ox#IxEHv2aa!&&?WuDtv*kXIkA&Fwt8G#fkI&o|}eNDmsX|y^& zg`*7}M$mw(dHMNroc752t9Z>FqdEvxsI)si*w#zHEmLhS0kGtCtl|;w04xZQtkHwOxsW3;hTJ-aRya2~Eq5B=tO>y$hLqNM|v0raZOu>pecdT~^v*`U5K z_eD%1Eb$v059*& zq`G<|jge20D=A8Jp-P1Pq6N`2)Q?>lhzfJk1S121Ru8g>#hk*VMnx5D8M@!8p|(j4 zO!w$%$06I9-SX^aAh{&`ZGkK*yi=Dfx-qfESDdVOv0&fO9`UdqwGU{fQ+CUlX%H;4 zP(&wjA2ulddf&62h8yh`)#}(c@#^Zm@)? zDf&@6i<%-SC1x44(dUOb=U#CKVMk>o(R1?6lbENYSHJ|18%*uE9%rsHJju>#bWWXe z<*vuMP#k1W)E_?!^z>J}hnwuMtdEa3FuObdsj~T`M1UNx6CrXTsl|Zy;4>^p*T=W=m8U4-%_%Cm(#oKLL;bG_+~=ReZ( znkq`?^^X7c0p*Rh?|Q-SV~ltX^{Yg%jie%@`TRe7jmoq3Y|j zyi~!tE#BOSV$UlSwa3djHgXzjtfSG#zumbyRqgttZLiCF3FUJug~g@)iCY`XL1;6x zf#eL&6`RCW=S&YW%{a-COYBtB0e7JPM9}gC&sj!gbT!4I#LeE;xUmY4dfBO`+m`al z`gFckvB6-Va_+63e41&77{v9I?%lmwsGM(rwxS@s@_nIxVKr=aQmh>nr~eq^rAnyz zufTeSd}{6YA^V>S2{I&muG-Jo8XAsUbSba@#T>%FsR9)9t?j-=8ayPF5uLpE3&@6} z6$=F&!&W{N7hPFIN2TzL@HFG}rli{UZ!j)DtwK2LR7osM<*RWXLa3b$&DbW9)Pft7 zYtiS35P6y{6UD7v(ap4TuGy!YP0wu$I$5FxK%t>Wl8~kW(j%OUBjwy3W`yb^-lB46 z@;99DdumGNvaY|T+!m0MDUcZ#*JytCMe`8R%T)E)Ir3zFVz1YqN4rbGKEB&rizRf$m~@VmCc11P z;mFRC4$J7d>Dz7#k0y0IdLo6bPH)u2V)~THzui}*B%Kt5ah#tON2~x7O3>&OqeA(1 zl*_j{IpSo~mUX3uX`Af=rOynSx52>tBk~mqHQe+ z)^aPPNBHvBqA{@5&(S62vk5$XZ;$oR)Oj34OUzGUL{P%PZ(6I$kAZ=nn@04ylTdY* zOLFOLAaVWJSya=S{2=?UOH=J?fTNEvvOpj}jSnKg^l>+7Kro~5GExyTHR3ysyP0$S z10t9Sbc5=giKG@W8G3TOR^71mP!P#}N!@MFCZ11GikA?(9IKq*gaZLs1lh`*Ap%=0 zWjgScu#*s~%dEFEycOx5u|?H)X&T^5>jU2L_n3&Omz1AeQ>aN=yTjl zZ%+N=gNXlLkf(|g6Zx{Yv;;NuLsz=+VB$zumLA6|)R=wHbeHyhVIlVP?BUF@Y^vJy zu~fiYzUTHZFXm_JJItmx7X2=OP!MH%N~%ymk`4(^28Fs3sw~>W;NKfIrh+1Lm<=w0v5H2ELoL!;W7cu0O>}VGcc5kOtkwg7%KJYVZn3l_woBJBg>cN}K>%t(nWt%iuSXzDs+%z~oJ-WvY^EpF#G>Te=ERtydgT{=^l@sc4%8_>V4UX%fh$I{bl-|E^_LeL9LY zLZS>`sHJ4OPhXkNp#2i4rdcu&(MFy%qC)He0c3s=oQi*&ku0(q$$n-W(Zw;Q!GK1n zSI9U5xy=%mpqaFL#pp)>aQfp@_mmlKvpE>Dsc_75WjyT5A9QRq4R!ZX+Z6n0U6lrr zlJv2hqkERX7Jllj$6!x?E!L*DDuk+qKXZBn7%Cw zMsX1uTE*u>3TVW$-%T8WbZvQo;Y_6!G*O|&G>R@93)U_L;rj)i+JW1!T;c=icWKNA z7Tdok^#*BUuJhRlSJHLt+N+-!S6L@f8U#M{a__OFJ&$1eWQqs*IGdp1d(cz0+-zW9eO_XutJ*uUVL3+H(q>YhmL>*`*$~(==Ydk zVKcZZ*%#ox28CdLiSd@|VX7*T);fsZL*pwi>kKck3i5l~&Qag$RnkJBLa*9f`u2Ud zH6C(&-q+7fYq;wih6JDKP!jA2Xo05p>cldlESoz8IjHeODE+tL?vQjs=~)r0Y0%W= z)6hDr>bm}*E2cfqz3l@U@OKR7W+46Ri#*$+ot=>EXUUmXIXyD`yO#uZIr|SeoA4C72s z`_3pmB-<8egJkWu-f!wj%qnU;1_uB6a67QM;60o5y!4x$p7Rz+LlNo5;6e+_i+j8I zB-&-OABDUT!^4C%;9c8|0MyD9t6E&ccI+=8>YuvDqptM}d@pQTf(8b= z{78O6V?J^bIQn#TJMk^XzhfLo!gJ*c(a0ruk_MGKGw=A(N{z*WNbp-eTh{@U9v7_88(qBFCiSiqTT8U#4ij)^4F&Uo**sQ_ z32S@&nA0)AR)7S%Q+>C=+g99iAU9?VhYy$rLa$K0i|6|fqQ2&Y>J=RyM0*g#s*jJ; zDU5!KuC3}|FEsN96WKpTYg~&ct#7pj$S&^{k~pMzMkq)6?dWSh=r#%81{`-q6JXBB z<^q|JZ-2huzO&O*MaL!LnZzI~_PybavV@LpW*iSAHe0cSAn4-p@(@-UlwxUqe zVJ9Ufx;pdbi^COJBasFY=?SyyOBg9DSZScfmlVAn)jS94)^83UZavNcrD;&;Ehfh6 zg-_47{QBS)LgZn!QucYuh-ZCUz#*ADQ$2VEd=3Sxt##a=@iLYUt#5biO}L!vF?A>& zGR;+2^MPo*%UmlyS@uuA)jptdLOrZjb8SKfFrcc&ad5`$aV z6YpuYoJ1CT8bQ6gLZBUotzy$R0C*C05=uPRbF-8&dyVy`6x>Cqq$3$j5tV$gi?TpJ z7SxbsdIuNlCf~HtN~qjrQlzU*w=RE3%YIxSLa_5;YYFiYgdf~?e7>B$bC@?BQ7kQW zdxGaJ))S* zuRx_Yfmd##kpn=&z1Ww1n@lZS^9A!khX0$L8IakO;YY*@3yO~cJqed8`^`MxjVrTR zmk(G)^prMov);cj>*nP&JR*O+N?Rdj4uWHHtMMDBjRI5kmvFKmxoq zcZE-3A^kbl4a}NZqC3SC=L28Rh)*;N9g_!N_#b_qi3!tKW{=eyhA5?I_D&*aRlM}d z8hl8Cyqyc}J2;0~Y%ti)kGZtLo|8^I=??3C+!=ln9IhSC>^`}}X<3bh+r;r+30}ja ztl7#51GhXldM=Va-b%7oN( z-v^mbK!$(xHT#E%5)EEn^%r84K&4yD$~`y3^0{h*@&e1J9Yxc>UI!m%SH1__x};HeUAp6_4nxZeo73JC^T!dy~;)g#lYq^0{TM> z#Jv#d!9-zsm}3*VwtUEhg~cyzs7ZzY1r)~hMj2v>TKlOfU#F7Xf=v_lJ`6nN?eloF zV+~0Gipkd)G7250)TUy1#;>A?6Xk!ju&*LCDE899R;~E3h-%}(&Kro@e&76QPV~hr zY^b+7?a4MG=wDwufO+xbO}%BQEogq(8SxRBsTzzv#?N&hkE}Q_h|3mnK!Ydjzd&AA z`gnxPP#LojI4aqh^evg5^8YwYu-74AqT=}UdzBJxlFnST)9|#3b`3V6g=EGyeJ3{o-d%dUg@jQ*@j6>Z^+2Db-QsY zM#1xgN9%Vn30`MnsCV8sCf@(7HR;N5obL=@`zachE@x(V0V8;YeUtFX)-`&m8)hej z-fI7i!TiV=%#T_3BU(w2Md?`n;XXpGv|6?k38*=Rl@L$6CZSRpoNdx})70JBY%^Jg zODa{aVF(Qk$1cH;D+QUF+&5s&xWy6gF|}oER)x=<+S`NX3Cfx|Sr~m~1q)Rkf1sA% zd>=4XUo3WsnofW`&L-vxhEtDWg51lCFGEkdMPD&2m69RDYv($Ka%p){CCP~B;z6J9 z@1C6~kGMukR0I7A&mlQFfu6Y@Q9IXGQMF0<)ny=2b#m^&0RDTYi0Uf~HhPQpyuiZa zn5~nM{UwlErW)NPzhqATdw56AUG91%Kn4y&_U|x>WoXVuF>R7 zj%n8tEL(%?FX7~ceoDf=eq>KHj5YI75gLh4?MLG8aG~E_9s2}bL%j6t$!;dkZ|P-| z3Or;>GFvYM5;g3#A2Dw>4GCHA!+f&uWwhb-fl98X;UO(y`&}?laox|O#UWdo(;P}D z^t)l(Ry23JH+Rp%EXk%y*zh(Tsf&dRSpD>L!jnhH**kaM)()5FdN*9}k&mo4QUD{E{F=_N ze*w*D()~!OhRSA3?7xkL1*M&=ge}+1EcsWX`h4G~g*J32v_Dm4?_*hAZh$!P0q0gK%SW7u`-5*vRgLaq4$fz> z1VhH7P{9h08@Ie>kju(I-rG|>*x6pXBSLH1eJ9|+Up&5AeM>OgW0OT8Ihapj)&I2s zP(n{|V(-7?*o}2(K{4gAs>U=A?rT3mI|koNH26*UmvO(r1sDFu+pi*Nc?y=IMHG>g zOSbbhCI}}b%gcsXSRNB;x!i>r=#YO(^E{X{QnhXEj z!Ae6&-B_lnMQncr=il{;WT?tJ>ZC)`@fH>KRE!dSq~Zp{+S z=_S51dlgI>Z|o7vvS`#dWTA;e z8$`Q)L6A$9O7gc}9D19lAq`!0?KmC}MN~IQe|YLl#G89n{*4lHn(`(z5K2tX&9bPf zNgltb+iLWh83(4Ti5`FZbL0e+G`KJ)SZ0uH57#|kxyM>{8vT{3kB&VW7F$Hj!gAuy z$|?{u#=M~N4uCi|K`8VK!LQ=3(Gkq(-4*8 zE2AU@Jp0cAcXH<^-FW;h*l2TTI0;;N#-`Q*%UrvLpG+1^!`#@M2Oc%IGfk9J~U+lneeXsp3s)MBbFC72GiSONYkWl z+~xWz((iyUu=L>97^lH_Iy$*D75Mv-O8LP?Dj$vKOm0?>GT#<CA3DU;c2%^SekS zxQ;nf0~TTH{xvS|^X*Gan=6hNA7=rOie8vl>IJzGQoo2@Mu3K4xV$HX{B`&|N;nY0 znvCY%Uz8-6)F0$%m>glf8SFgHBpT^` z7Sp*!R78e(j$rHPEnHX0{qrLTSor_E$nr!_rT+oNfmMra6Y+)aH8+hfRb)DtsMwH1 z-hzyc1)x!Xtvv*RvfcYeyHc;!(JYaW5rhARuy-sa`YE-~vn=Ay{+1m||NL!`@}Z$~ zVXR(+Nc%~~rI@QZr|*V@+5|>q!WTOLW{Co5hrslz z)hE7TtZeivQKe;mn{zb_Ra0AU0{@DJ;G|K*uF*{WlkN)g_umlV%vXg17=F$$mJM{A z#L)KLI`hjWq6zS$?hCv)SbRY-!HkgkylW1X4GqRS++UU<@kP6>4gB^!a4zzSraz!F zaUf38)*Ay%cNKmPKso%cuth1Yv%lHq$e3bQXFoe>z`nDfJqU%He`ceLWg%@htAoyv z3ltyCMLwu85(0An=p-6Zwhefu2H&Oypuxr6OIv_(R9wH<73cln$vySVI!-uLPDm4H ztVCRH!{FX88sWmsC;IO_;)I*3C^3-Nqv~4E__$1Y4B%%~WcJ<~OoH{fAWyYD#`nEltdc)|_hSrh zjVC0%Q^Uz`RsR015;ml#v)#_;5=5SxYqA(T_6SRUU#~*CTmC&SqG7l?7eKq~4v1D@ zZI4VA$UitzJ5+yiV?cfKG4uQ6qpEXyF#Yn6q{8p7<>3-_Pk10=#Njt1I3p*8Cj z>wrp^O`ezXDDr8a8)>fVr^HSx=L9SJ0<~9 z?lZbnmj3sV8cQS8#s0~=Z)e9NnQaS%Dp9bkeLAG6ZU+%vEHF*4tY+wMTCPwIj4BVl z`C4=VKJQqN`*-^F4F!L@Dc1oZ0g`pVF4#dJ<9Q)%@Qhzz0^9jS)y@EsI*lI4q4Rec z{=leMWDt2YO9q&R->jMV^$Cv6bL@oubV*XWq$`mwWOk7EM2g0}v;d%GoPLfno z#KW^j?Me+FitGNI+cNSog;Rt>d;dgvVCD{|BpMv>ibbZoM}S#wF5n^8(lkU4b41l$ z!&caTiU@}7GIXVIqr_SK2}%0VO0QiVg8XrsKfj*6#3~vBiJ4Rqh>@4O2a1P)0ipRd z3*Pbb%b7;qKo6|U5ee=c%m=K28_Kou>h;Pjj9GAy>i$u{E8GO9D&lfR7;L^VsBwheur+2Z-McW+) zn)46MVFwO*nDhiPL$DMcar}K8-l(8%NdM2R&9e6K*=_q%!{c`#N$t(-u2o(JftJn+ zEM?vy+2L%5umwMG4ym+=18-^7aHY)N#*FwQ#$`hv8{-R4y^6dy=M*0iu;RWNpmixo z8|6J;z8&)CaP{($B;>9VT-Ms0>zHiHWwAq+WqPebk z>Bj2VEASQPWv`vVUo5D5v7N@h)DYFy**}oHzd3i~@dyL%Q4X2TbNrTrE0M4TDlip^ zLDKS(CnB1W-*&7@J&s4Cj%zJVIz)~&EUrwH_wSNBezlP?L$Q! z_Ioz7kkSCFl5io_oCtsk4nQ>1NAM;gVXMtcvd8w;zt8;=2 z5mS{W^*d`O^5mYVXXyL*W6@QElvgYlZjR(;Pws-=_?M@+_m@m+x!3!-2#L`yXf4+_ zQ2XHFJv0By_WeorwGUE|-URCO$S?)2dv4l=t;gBrke1%nxZgVVmBWVmo-)e+F z6RgXJv&|6_zJ@DCm;j5;17kb&LCUk}ebhwd5AgUez^T~TkU;2QuN$d>*{uft&O*?l z8b5~~1#snGugc>RfU1sui^}&6J(;FN&5*)Op~k$l3`Bqw?mHszwrp;AW$7(EYq!CB zRM!3r?!aftn_qh>{$mH+C5%Wc3_`5LBErpffOD;vVWjb8*wTDW-H28Wh2yg@Wm^?8 zYp(a)PN!_@4Z~ea6g2KJdWt|(GkkxNa>oT$%_}3K_x(HKgt>po%OJ5*qlNaRbfLua zBCm7478(hR^X?!;t_N7nowkYRe?M6XtnferD!#M%7bl!fJ*0C%=5muR27EQDl{ z8%26e#;{&h$pl^f=5_00!J7WIY$5|W6s5X-`Bw~H9Ec-*`f+AQd>U`yM-Y8V z%>c)3>R)$s3GYye9Glq@YC}Lu2+{sOdygERcE>>KZfHo20gx+D3~O(@5usf zzXkYqS%vR1kRt&j#aA`cE;vxNW*o2EoN6;c;=vctx#}JzVm~_XpncY@R7wtUY?ZVB z4j{1IL@G&U*p+#IOnJi3!o#1sst8c6k4W_%2E{0)sTpe@ZjMjp=P5Fkn=Q$0A^C2X&(5)?fZA=jyENLVgp8d^su%j(Qpv)q z2lam(jHY^b z`YhPTc_WXZ?(F|bff3A`iH4s=uFn=T@1|*I(N;OYj&BLgNLqdYVApXc`(0l$$$XyG zM_}yo=Y{~+USJ)!?FvZ|?oRso+7^z}&6hBMwYl7{aQIu3uCYP;mmn1}p+2huco@fM z-1y4J1}TR3Ose@9u_+k6OfFByE)G3xgw3LzOyHeU0(pYupqX1-8s%>p5RUua?M@II z{2?{St<5{g$v~!%&vRrGysc(YjEQfslmYuYC*$qgYUnNPa`)HdveYS2C9* zJJ(@Q&=a7nnYKF?U>av3^E)lK!DWL15N6WqOcJhvq*m(&* z-K1D-yd~N$p8K*9+$gvSF1m7JH?UpfQRc(ZPh?qts_JlcL@^wrR|ze5#7iJMUg|k4 zjb2Ik%{`jkvrG8I6iJrjaU{k33Mx$z*iocQfo<1v8$}o|ymDBAWlm3I)ST}V>NeHy zS37L{G>>`i#^i5EGXArSY~#c^bpOf!hwqmNVLV-@xm7cNDe1o~fal9pcS~3KJl=}T z!;(7f!+*sV_t9}x@HwL!A-}5J&wb=1uDWJC?`m;-(76$JOY&j?-04a&Y)h#_D{xri zF3&QX&*LtY`>0b~pa59?a033S;d5Sv#IX#Xnj)A+B7LH!`}^|;b zx4gtTzGUXxk2>px1)(X-+bVTpGNJrMA3~&vaJjXq)aPKY)z>1#VYb>{fv@A7B54CK zg7K(o(|4K*gBo1s$giK+6W?p)`Yl-=@wA>8G-{#ec1+zB z=7;BBNciZ^mixb?$z8<@#q*aLX2}w#7AKM^MlCra(BSBFS4RtolY*IoujEljUI_xh z*@@zvn=7n~OO8ikcXK;KBG!AmT?_nrRf3Kggh*xln=nqXmirXkW_;!TRY*&~D+c;h zUH*2^RAn?Voy5{n)*cDJm0H#wj{14HPpUv5&8fW8c=ET{vnI7zo=+9qN!s!?GNOwm znc0RcoEMv}TN>yg?Za)`WFSP z>;tXWupO=A+9vC;u#V%{Q>u5JvV#A()ju(1;m0hJ7=Z1V))&O*>W}p$oY=-Mg=d$Zq8$I_jx7ej}s&3@I|+a1PglozTp%0{5S&6 z^xI8=4c5KEMUN1r(B}$Fv;l)uJgZ>gR6Wgn|SFBbhNn5`Qir)`;P8g zH5q|s=1N;oh|~#t+Xk{cO|QdHZ&4h1cAOrexJ5Zvpf=K<&6gTWFE#Hz#`a%9gbnDb zF{C%ovB&BN!`A(Yas`I(Dkp~2sqD9v=ER8wc%0|$nBqw9o>NdNvt?lITk{+eTus6X?X_iG#a7%BFXVJV*;>>At04o2w2q!W+qw^&dd+HM!zJQzC8 zDifr+F0Szy8~sHdTxrqczBGa2YrzCo;@;3ITiLY2lO4ZqwSi3zA5xYO0h+#PP*hkx zGZfcm$&UIWR;(#PW(YT+Coxi6x+|;15cG48aF02g-kARMnrmn1u@9R8$HhGJ_&mCw zk3*DVa17Y&`)Qf;GczjECDau9B4qo{vmaLS&diNc{E>JN8-3rOmR4E7ad6TsJsHFB zGCud#9|7-@(GTqgigzrUxLRlLoSuYO#xb$daqg|b()HEcZCI7d#dyNE|L6h)Lln5_ znopjdd_E1hU|wd3bHN3W<=%FQbYSgxMTzSj0YTgeq?u z`^Ljf>vRiA-msW%4{GnAH6!~WN-H(I)Ai{7Lt2`4q27o60SjXb0HbFp6=*#r7Tedq z^JO6IdNIRAG5ww90p96rEJntDUTSo*X9`QbR7A~ zA%~Tts*1MWZx!@0ZHd+|_wRB}VxA+8xCR@K9Sy@lMoaIU+o=m1oik@3%Q*${^a-d-;tWFD=%EO4E zpVE?||FDdoCy-!HPJ8L=D}{@mt%&3`9R`s1$>^4^l)4oqU&Ivzf>6i8-cDV%#_>7z zic^NsUEh^Qi|;3y)z1;Qj{Em|kw>2wwbd7X@zo0=9Up1`9xbTOxLIudHvI31O97;l z>j&!E{{^EN;LIoJoeS5@c9EYN9U^&-o$#$9iQhbMIE+8Qdq_IE_mE;916k)7FcDD2 zg};O%UHd?mjdi(LGT--NE{UBgB0zFE9e5h!Nb&=H_V)teSGchER}-_U$B757V(pB!O%!@iQJi|t>;9b#AroWe=$ocX@;n{J70|;ov z;Saa(ND~WpWP5P5_VZe>IqZ0aaU@PgfErb#Mk`40Il=xK z0yf}GFM?z92iG-HamySd4A4^B4CgW5KF*3gNch0+C z$BXou2ZTIp?Kp-mC+8WldSTc(WN)&0)oc)JVY(IZ-SSRAsVnAS#x}wSE$&LKTN(Z0IJtZvT><(W-SS6tu#Y zU+>?acZ}Zc`ysssDW@efRvCNUi$_*9-1M4{Flei`ISvl|_nKpsl3u^3p(L5mQ(-c% z3ul#g@%^&h%A?*H1adLHD%Y8JUHtZlQ5&dT_iy1wz8S;$BwqbPn78rTgZ@K7#1IaH zHq`a+Q8Y)rFXT$Enl^-WCq zjkpu-WnZsEko2qeQ>dum1pH?b9zw(_P6stl&H&vi(p-fAPczWef!K|l0o!uRqqL!l z`P;_qJC^+c1K%s%=$_d8Dc z_2g~3w``^skN+MgobVddzmtU%zQTs~nt_$r;LtHA2)K0iB_ppkfi_=IR|II=4zvmg z+BG&OIZ2QGDk51p!zWY$Z42R}sTO$WVC(Xn$_cWKwFxciJ{yk307Cbm_B{O)f14-H z|Hgktlw6VHgq+obD}Vo?8VlwA>{)XuuL0|i5uWmmqAQUl*KUJDaUn(i2Tl}U=bt+; zythsWP9M+8C()m$`1%iy<35PdQ?a2!MJv=O^s7_{> z+f^?A6N6`>&~fnNYwntZoh2BmVZrkk9GIEP+!fukjv2a!b7%^@F$A<^Rrj>h(hi@+ zHb%QWe9k5K0#sZIlj;`ws@R~5$akp&(M?eBJO72P*|)XaT7;hh1^;QV6D|V9$QEuW z`R^lU2)AJAX$O&e4=BP5BRoJMgWcq(=}F2`-~uSM_T#4|Nj(}(;DKE+txJ0h>hQS^ z_4zp^pjqU&v8^Bn!WD%s_^-D|DV-n`(gms3e+sG*C0oc7vIA52R&%n125ASZcZ%g| z;;sBcTp&9QmVxBKiRbT{q?Pbg!Z8i~etjKhCv;Gvu4BMQ|W+eEdc)z^x$Y z!$f1n;$RhcGFblR&B^iZ*5y(FSjaX1GAp0Gl1?;?ddv zi=K&6s%L}0R6iF`fAwts9mH|$z?1X-Ixo5hobZihgO3k`EO%I?f&s7$(Koz*9`p-# zuwUG6(=r~=bX+xqS=i7i7=#wSP6bIqPk7uLQlG@Q;B-ZzE|V!}|LuX>sfAA+`@gnV&&oo#ZPB)5(QsBDl1W&M`UIcNlD%it(0mmCsuyv4 ztBYSdu>-``dUY&L{!_~u`QkPR@SFe4Q%Yf2qa#^2wf+~th>6IepR)MJS$rqS1vS7YrxQ39eoiM~*uw!l$MZelIJGeZUJwRE z1o7A2G!oZRG2t=Ui~(g4ORBbUdLo*g5I`lDpcRBvPBBcjxBH)V;jOzhRePs#Z4t~7QOA2|S z38at$#{v-3yPO?>!WoLJKYz|&-<)m}06GuDI-uL6rET9$R@5dU!B--7-BBWN)qu@v z94UJNi5Hm58@~CtdHh`nSx`-I0MgV{U;X|44Ij?D!4`DQXqe`MPB%!({Y&3mNld*S z{^^w3+P^CYmA3!`IW;7!y>>OXe?6s)XV9+AW{L<1I(JaS5f&8Pa+>tN0Z=~p38l?? z%#p08#Fdo1-u&M*jSmd=)YQq8>)EILJqFD&7ZEzdS!3NfS+^RRq0QYurr zN1knc<)}K%#|dzPh*K!X)CBQj;s8gzFbn|%FM^8-AwWdM+}d^9?#;ck&rdQ2#DkK) zJx?sp-f<9nBN#7Y5O-hUxrDWN?xNhHD?R8%EQnhaM!pPTY@ukl)j^PCleEdtOJ zD{Lttc@D=Ic~_;NQ*6O1^93rW_<@QN@&sRKrrmqc*C{!2+wMgWA6pJIy=Z)(ONja7{}fX6je^q`ut^75d@K<@jCAc zm_rZ;W}f^!Ta6m6g1>t%Xqy$@R#Htj{8uV(BBk=?r`z>^vvj3!DA;w3lA#N5(vnc`*l28F%8>UPbJ69Q>4_nn)bm%AJ^=F)F5-g= z^tr3}3kQNJto|SUrb@|gB$sCIlTp3qSydOsQKHbo(ctJo(obqr2)t@*s_=lIbzqS| z2is;$f(57ljg5tk$@`aOfEb%_g+dl013>iT|5YOrjCZl{&A#)y{Dkf7n|;6*X8*~U z>=l5Hf<9wo#j|hwifYc??8?r)T_qk%}1vNe7W?h*w>XX934aO8!lghI|*<@cY&BGx62Y)M$pI)P9r zvZ*&;1vizh%2vrH{s_s9*XL?qEk@=2)0r!2kl+pN$&_1<_t zPKX5Aw>FRn7h3s!l0+`v2!(W=Rm7szr|1FE`_6Z`Ue7D9kpB>mVgA1XPM;PTK4|x~ z9-nzZo8>Wpd-G$dWM305w?Bc35rc$bsSxN>KpuIe2pq3Qcni-B0}z2=y8**?0>Z(4 zTQ*f9?SOfw8@Bh2n<89qq&EdAeG}n z1I>K1M$ABro=imz+=r>AcCUgVzXlJvn8R=wac#r<=3evhXBJ6Fb@c`|3|D@mG1AMj z7Y_obE*p8BhbJTa*GBC#V>){2Ul7JThV6S`P}k{)Ofv2i#M=GnC+eXGtP1jJG*efTK!5+DzD5 zf*7sgb`iy+fzP@#dR0ZgPiN$bx2h8!-YupGq+VlO(-hXusWQ7p^@Wm>(!fUEx6u}p z^hVqkZ%Nrf0!v2?O9@C7fRjLJs-&N+T(A@JlfId;aqH>v*v`hBl;4lxO}!?+QAN%P zkL^XZ`zH_S2g{U-@49`sFgT)m`vJ?n-q>O|d~p>IAHb_8n#J52 z$QI03trYW_g?TE)^0}vMW>eRAqn)ai95G{xBd^lsf)}fM(ARU-)_Fd)X8#7{E_IHGrrpPw5L`gnX)`rsV$ku59gDV zQ}n!9t9Q-JcYRa(z|;1Co!uAENc3-i3oK4>Dtl%^a;c-kV@VyGLVIQIesh!xo;KkC_%VC} znhRAhIF!zQ=1);y2TP0GdH()hLoVa77$szTd~9{;fmU;hxTyD6ee)N=&wU>#3E+`) zOlC^2=KmfJJ@TAsatb6DVsrnj#HXpLqm$%|HBNu!W$HVOl|Sy-A{hHE6H&}`3$j@h&QSdq&Vf$WGKuKPoKAOK3{)=BN$u~fMinEMD)bwz;j>RFG zl$;;ceox}My>DVu$(wao&xRcLSRRA2s7}s)oQS-8XhmF?&NWrD;M6K+2`t9*JRta< zT}nYC#}wbx)VQct@&Y`!##h{av;}%kd<1twYM!`@_Rh*kp{3t$m*Wc(8n5v(wcl~_ zO9FX(Es6gPHzC}oKZmkh&+w~+^gBsxDyFLh-s z{_uf=Dg@WVP&sL(e)&mAC*l4f_JCf$m*)X_2Xly!MRPTeG+xI|u5~?bC)*yL0QcG^ zkvEd_a=yxgx;PKxf2s18Szc(4=&~l-$8G|hNC%>J^cj2)Wh}mFF7={^Y%4bU0SDG&qCEIts&0!!Z zZ`b!=*tJ9TT-4TW3x<{0bDbpNonL}=!w^}>da#ow`G(7FAEn5ABEbl zplBbnG?uSiC}mN*LlOI4oSTB^%LJKZjW4=Fbai#mba+fsRV1ExWLqdIsQ>TbzKYSD zyCrzrIvM$nG19{V9{i9iWfHLsGbJIQlNhM6Y4pA}UKTz2rPQ7;4iBy7?h>Iw@7w#* zmM@YdyXwpzU+l|$qmh<{p79Rcwd*%qlIBO`1SC_LCUR<|7UbY7HF4Lt$r~m>-rs@7 zs8mJThFkzzW-mSf3PLt~Y9R_r7iH#t$62E(vR~`Z+fp|8G^gQW`W24*xgmU9F+Mt2 zwGh<(E&QgrPZ{NY#Z+^7!Gd$=IY|d*zWf94)_&5|I%eLR` z{f0Vez>blx^css++&QUpPz6i*-ADafET4EYIW*BN;I{L^S_)HHl9qTHbm0~)KY5i*e?JS2FRQvppZR>S z*<~F&#_-qt5zKVT3K%+6cCE$f^ECDXO3I}ZG2e&>yRnpCjYnzAmr)z1 zSEkyu{vHbr``na+CvhScjsOFl^sPGXHXeL6bPOG5o2_f0m*vWdv$7M(iF z=Z50aU1H+`W_(JtUHU5z`wP$Lfo@)K4}u78{QU*+dW zawv_}Q zvt;mn+NETCYeLBd@=f%r^a-~xU57C%aiMOHeUE^q@Hyn=JD`UhKf`PI3k=hB;zz4W zX%fF1OSzo$Kpp)fmu&4SGi^@TA8|fDV*ViD+e=((E-h{7O*KO)^mb&u?;PWyg zyqf{Ffdbqi>h+9%kz2Y+UcSp-M@v}e;wWVpyJ~lOpMK-1vGJ3UlALDn1h@FKfFHOayZ*Y zE!dNWffhOURkYMSh?R4I1e;zNEssI&hC-OGK{1=-_QF5Rtabgo42Nu!7 zU2r3%ch?iH$CNNCW#1ZRjw#7}NqqN~8I^B~MxgvKDUb>Cf$)YKCG)#|?hnWlqR((Y z+88{?zQB>W&%k&g-JdML%tR1CIm1NXZ>J(128(b2wUKThuUn*e2RReJJZDW#(W6;) zRFK|&E+P=An1blhfBV{}i4xW>W;p$@BJ$=TQX)Y*^$~mSL#HU6oa70qZ??KczYL=sHXHp z=BZAupiVhd>tb6lq0~+3j{M&WfXE;M>=hr^v2pX8Bkp60`kB{B=D`!I-*}+WmS}IO zC(im5Hj8T328@WY(*j8NhqYu2$*5`~=j}R|o<+nz3uycPi^hSjnaUoO+Dc_{1jnqj zn7~SpwRvq#xx`>bL08kgG{FpqUPEPLlHiS+hY@jT)|ptYVwHBF689I)Fx4LGHNzv6 z=P4Xr*u?bJ)VMvSS{ANGe@%`Z6|DUoI+ji3%_D|#`zWEl546SuaB9rzaLzi(-Q!ST zD>`rB{-+!vqoR3sdy%3Fx-v>VP#%(B;rpDZ4#KSL`u0*EmBo~X=)*-Bnf6T4qu%ng z(0Ya1G3LgOtzg7auQ_^baTHBU)e^+s#)FiIKd@4bsgXimdmOkYsaAfrDySBUda)H$ zvgbAW+y8mW?s{%4==#I=DHqnY>q_K!?9YY~bOKh_eP5?K|1VzDKP9YejU4hSIo-ZK z^hBFCdiZemXS{ZadOs4}bh<_~RoVag?So8STD$|`E}84A%c4y~En&3L<-WuoP?UQe zheZkUz9r>qhb6<+^sSEFVAQfh)z2FOBWw8inPnilmjYkX0!oN zhRN(MNjbCav9f4(n#NqV|JW<>aCw7ZEgtZz5ILFB51T5^!f?`O5|i^;G|XCN#3ES6g#fWeLsYL{F-#XbDy@ z#_6H`HYE*;CbAd0amBDnD77lA)Mc2Bpo%V3ti30?h_h@%=`)5Qag_jSNG#33A9J%l zUjz%3iWqi2iq|5)`oG4}&I>@=g9+n;@R`wA&?u)WUPbNf*lnK8*B6+}_o2M2ww)7X zCRzshcqSOwrVQ4j&{By>!zs6OfElBs>m4hn!v-}OlZx=tSb#$AJ;s8twpGfptZ003 z4yKEXv%97CH+GB`>N{$@7%4-{?V?y{{j4}LK?M>ED@uF`?0> z#>5RoR8umr`gMS10ab^FLy*uq!J~j`vG~ek>HGpz^;pnPu~rpHv?VM1) zyW;+dt1pp_Wr=WD>ON&5T3(~kFrC#0H+!JiyxuqI!X~_ztNEO6|2fZs(|FyjpW*QF z4&_9Y4dlF*=yAiJNyK>r-Lt@ql3e>8eZk}VordwihT2^Yq9sKc?Q29&ODh$}rpM9~ zXgyKZ1*QzvCv!PX9KFl`%~=Rcec4Rf{j~cczZy9}LLRXDF92{3lwh(#3-b%4}wMQz8t(B*`C0G>h%pqxP_=vq@*-> zLUaE8UEiRpOqExPUj;3m3K2RH?oAXV#g2%3?~z8a?%7X6jQ0soZS`Mq`o!aggW6LM zd`hQ9|L4J}}*`z8{*u zU*rA``3}7?cw8c>z=m+WIe4)S7-c!#K*8n3E97Ar(DZ9|cCc!U#|fIO;s6{Bu3^{u z-iK;;EK*0Fr&{sQJ(<{WA2sTcMyjo-UMw zn?vHC=QMnXr4$q>t3k@8w*<=xhdKPuyWnj3A!Ei?yqa25A;Sm&ah0gybF7aJpt{!S zjd-W97)+y8aNe4>d}Z+($;Qdic|XKe;?%#}jfm!T^SzkbK2LZc*j z&(waU(nK@yqfe)D{WW2RvxDXH;R6aWV8AJ41v33e;>&rYrCVj!EUK|nVs&=3$qb@PNUszigV)$y+x$eq6 zB_(*-s-YK2^k&5DlNp0*xG3F){K>pt8B8)EOcw?pMci`?5|UgOM?!}Q5Rp(HmN@C z&YJvt8#qj?dyYSI0mz`FdXI>sX%gcwM*iUmAK97-<=4vZ90Hf{&}C zhS2KT&wR%#+Uz+dhcn0fo4X9xf(X1h2nRW|<_MVoo6^itGBo}+^4g-vr#a>x_B>HH z7I*RuC@L%t|CYp40{Yy$I_j_An=mlv?th}i`V0lUtro+0w#p-5r+EllpQ5m7RwXDv zh(w8GZx5}{0Ns3L5NiDVHjnK7zyR5&`h*{DA zOdEp?AwNed;msbG0rk6|^2f#&oU!rm$AZ1Jp1@7+2@hhUn%rkYELtH7UY}w9(5$9v z4QobJD2@++DrDD3i=3ixad4pBL1cW+P-Q}{kx}$77=ao3)GGJf_MSk9WQkP%JwMv{ zxS&AIn3V`2g)|<@`oWhU={_>voORbon5k)|Ts((xcMNk*0Wc4RpfV*cLPtdZ)!x+?wS~&j==Xkk<;Y;W1DGB(Bz0j z40ys$8$cr<4*2>WkP^S#l(jV5oGd@PfDiqcpoYVn9Y0cpQa0?j{-xR#;Bb60dzF0Jw?pxgDV!od7!#=uAI_e z(Fj-=W@?PSt!08M!G=f~TX6hnd=!33<4pcx8fwpV$Y2I1)g zxw}9keRCF-MI4eqY3OSN>Tc>|zJ~EinsDkL4hhN2kqb~=*If6h!;xWV$M#c*8)+e=x@9ui8RxOtrwbHV%^ztqj#Ta(crLgL7 zhoIm}prM}lBKR5stqF05<=#AYm*w6B+Bm&0#^RA4K2Ah_9$O61rU(`K7 z3$>X`+BgG!(KJu2eue|xzQBY!81a{vV{C34UpflM3C@o;hp#pOZztn-U!n%!PErDX zSd2;%2syDyuYr(S(oqVZi^BF(;S-R{=2sf!?E){b{xbkX>CU_z*70RP(Xbj0@;Ct9 zIH`uWr@ui%Ocd@zg-&pyvjBq6D=OR`guevT0puf-=0W5Xu8_nl?E^u|1ljl=V0?lw zU#FKY6Vz9R3bh^;^?q^A$7k>#NC6imx_#FV7$G_)k*Xg}OOxwg6BW%ZiQ$F(b_BLRmKWW8-()9eOnGfWA zVmr$}!|XmUn~BsmH3+6l=8T)v@%Wb^HgC@xB!4ob4ng=-s@arz4#sxvf$qLFX?|S+ zN;}yqkZ76y8AzM_1ZjSTeY^;`yu$>9*`96bu#ZR#_cnY#QjgnCix1FSW0Lc0&eMc7 zJbpF#(=({trW?%l$?;V@TpP*K{9-)$;5WcbV!@v70ec(TO%ngb3ve-vCqrbg=J$by zRRoyUr2_Ow=>^=*8?VoWJZ6ExJ#e?q*L>ipF(?(oi}rg!`sELAI6mU8 z(7f_j!)D0(lkNNT#B6u5eW=V# zwum3L91i-tWi`Mi^ZG+)Y)wf7ihANmHk^*jy@O-EzDqzvY!ApntUG{KvT%KcPmiV9 z`v@zr{q7V$hKI=&Ww2BwT?!eRofaJ{XwBnd2Cy$;v)S0Bn}(rSqF@wDayVSUjWJow zVa(?xVPP;tub7tO#4L4A)axbi3XL<^6#+NLUb2ZDANRs&Zw3J+hS|+nu6Yk3YVBj2 zD+k&=jdlO%lhy}_u>`;ZmQ+-@0y<$)x)MS(!*da!v3KVs1^otm7Srr|bV&)QI#DO- zd}u05G&YtgnNJoJDttvvO?~hN*w-x8JmoU?W1IT>;&+E=MY?=1B~lB$gYV*@D>0P%kbsR?doPi?s0Ol?HYt*L(gr7Ng{CqjNs9-NR(>Ql}kfHN$Vv-vL ze&sLuWxH+S?EaK>4SAKT-ph%f?~;58oCqZ%cB86X8{N)mxVHtWtFfF>OR(l$Vr<9c z+Mqyyi>}AxR1t9b#6P{V`!!zcQerq{3$gojWN3_`RsW`ZBBt1EsXJzd%^*z#DW{Bn zfCBHSv+xCKhAzh@*XFml0-efY?pFbOh(Q#le z53ztLSnfBLRS8+MUFg2`|%NcWW#fONYd9NWR z_BX)~HQbw}e&_!n5uft99oGcSc5RdKdT97bo0E4Y0oIRl!HnLjt(x^hQF=PdV%_RO z4|8}8y4Q0o>p5Q4*6~q=Wt?Ts#)_*k+2$EI{jaC69b4I6fK+0lTo(C=Mw7w!V~cV+05y1R+ChAlq3DB- zT=qViMN1i(ynO6eP3T9uo;Y@wnZ8#zJG?%?<#mEQ)QO)68Uv!Q!YE_hUGtsFz{XV= z{sTGaTGIZUv!mSUcD+##9Gq&Jf?f<6`=UA8&K(UD%z?|6K{EXeV`@4;n`Wm>P?Jl= zFwOGrX$2)uUwPIKGlpdbkF9=6ZHqdiqd>GLk@BRziVWDGlzHhkyq&OW0da#9rF>Nm zjK>ISLt-}p7l}Av!^OiT$wf~PGw=Ik7PL-h>`3Xv==)M6T-+4onP;2jv&~=+a3X51 z8{S*=LKxbmmM@Ngg*{pbye@c;6i15yAypwoh6giPHP8!X&IQ!3=L7Xw8*UCz{@qf) zXDIge_5eYs`OOxwCfKIot(@+54YA6X9eSIzRRD0o;>FVX1QfMiNx3>O#>lv4-hkCg%c$?Vt-=*GC5^rH+x#w5p+`>c0I{S#LgtGw3O8JsCL{2C;GshI{aJm2?f}65 z*3#jk4DJLm5R2V9oG7lY9=~5IMjr*l&D6HbbYu;YxqQJlh%&QyULI-`eHK1@-j)q} zqwFZ(mgOyrJ}o5Yt)NHMCvGve(a}B0QHKzOj-O8m zbZOvWyAlmnHe}&6>A`#k9ihKEZW=dU{nXqCj);c7J<~O6PEO9rHN+sFgEm%p-`#Et&{__P+e^5#R+Z>wORpKTVbbDnb>n=}<6+FI(xARjq2=mu~hnQzkXm`Rk}znhEh z@n}_e(GUB$cw1>VlMo72EeW-FCJJT&P2R>2R*$y-*%FNn%FP&yKTh^Cvs3J%7$m9 z12gWK5e;)+7>(4*g03O@0c4J@AiBx^AV~%_JQZ$mPv&0U|8W#newvKX5xt$TA9NF> zvqLXbI2Qu7G8?hX`7V6DbI6?mc9ijJ{ddLcKP>=4xNwZkA-eE(h4lnApl0tgXL;*{ zSWv;QSjr#4D__N@Rg{<-1UOXI{DE+*Bgkd1yHt!zU~38!i5)T}2qQ2IJS{h<*Z zoK=|96k?gw`U`#q|NDg{13zWLA#M!!h35`NqD=AumC!eg&sPfUNqD;Tzh6Gls3%#> zlHGkv*#Gw%w}0eg2x5Bz+-7LJ2i3oi?FjnFt|)ZH{OO5g)c|12HSe~;K!?VMu;8d% z70E-jeF8Q%?1*HqceSstzUfxKWqd(=b`rbmaC?!fl=G(s<*#+8=Yr1`shSLktIoX% z2}x*Vy~x;j9F`&yw>*aoYFnNE0=z_s7k5jN1k^__ITd8oY$?UN)dvMSRdPS5=8lOt zEVIu4%#fxyirws4kt$zykqHa?&PTRC7IG(1z5Bfz?owx{SC+#0d678*gSv#w*bB<) zJ^ZqxwBDzR--f0Xy((2@REuAc?f>llji}gNk=2NVC#rauba-2?F=h1$SCOMV#=;`N zrpn46jarPc;+eT`zz=< ztR;_4m%$eKw;dF*?PzH`&x9UI^}j{R{3V;>o>2<&^79EC9Ea+=zD@zhQ^+dgxvqf4_7vzIL9PZPG3pryT6XMf>nb@<=O0 z=!aWrS;s{6I_( zf9)X?yZiJaF2gik|v1CbXaA zGHpZuG7ct;`LrWaZB6F<;cQGgetu84<=h&kg6E4)ysn&3l7!2p_3nD(2s{>jb#kJU z;Mw}EWBYC<`%fGCUzHq|*fUx0k+`hBVq8A9y^u8b9F>f#mt|BT2)z_Lx~dg>Fnjpn zwX1V#9`A^mGyd1S=Q$mwr)?!mC&_&dXQ^KgGuFE-4+o=#JYG~5JN}sT|0Evapr%$B z8aq^R%oj=HqOZczwHI&I8ttPfE%Np=o7cIcUu5(G#$R*P$>I~PCO6(3qb^)7qgKEk zUzeh$eixbh!bIq^smECUY1xifO3#-h61wFfH%8~y5as$)y`jA{jRVZ%+?*+C-%l4B zD(92@qd#~lVu^s<&4*c=>)+?fr`gU9M}IuExOcBj$GT4;>%L{>HnH7LE90_flB4XF zMA3!o0!#py6QZt1OReKfc5h>P*Kcp=o%|YW&tc8SQ{O2ld0n~!S(G1BuKK3)@v5kE zJJfkTt($=!!$v=^C%Sk-vuvfeXl&DfgitOb>sLV6!shycpROODdp;~q@eg%CMRA0s zU&_cj=KW-r0`t&_`(9U8NrLWw3d-hd5q*(~`4NPN-jse-SpEl|(~731%cFX6Au&rr ze_S+n=yc}Y;VXL3Pa#BmvhlppNAc}fm`wiM6-`QAYM8CTRlwt_eWQ8|q^k$`u8)=% z-8j*%%^E|)Ck*t1kG)L_EIvl`dC5n01pF9m3@at#FEgnxHW9f__MNkmvOW;6e|@~Z zn1Blrhh$n8B`WjxB?&H8&({U9A6^E#tXg2GObqIgAW<+dy~#TgUH!$hf>%Icu$BHp zvb0Z!+^w}7rSdNWq=^Qa8($TKt&aI&uU?&zUV(hvsG7S<`FrM@A@5m*+66S99|;-f z-?GH@@j2g44b3g3%jlVF$XV+>mK7>}Cn?4xE+tUydX)Kbb@(|mt(?DWfgk2tMUE$7@V0%4^@1c}po&uqG9G%DOPF2a!4$TyrYt+3QR+8YNtu$Y>lYFZfz(JrmUy zxX9NnDf56;e~}-t#KS$0j=6(}89upL+m-g}r$q3FuUgr55tL}>JOZKkn*0(Gyw@Qi($3caNi^9 z|H!Ff*ivulw!f@FD%0PcxN>@ac4ZEabO(U;`!y3an+7#~wX4*VpLJQmTPJ7LxKLXy zD+Bpc|4J@NXPeU0c`5{mY~VB!TF=k0ltG!m>F%|Kz!JhvKCk4TyAPD^E@yR?8WA$k zh2Pz5ZjQFb!03nT@63Ghw7%2Fhjr zdiz84G3x=&T_5zINNWvNrVVxMqdgb?>o5GLeFme&#U72ZV>z3VO!B<6Zl&u_b+kM_ z&gH5kFCd~|I{%Aw?C44rt6y&DG|D-%q%c2ES7R(H%hL~7`MS>0*`==C zaxx`)LMN$9l`|^x-#*fV;yOqr>1>bnBy~GrGnP`hRwFR#W=HlO5*MKpS-+SKUaYs2J)Jep;w`6e(F-tJ96~i%jYCxWZ2BWc!{A(| z*K90(w1Uq=PRU0ElYtOdst4I%)Q0`En4RrDp8ykCGBLy9wyPBB8gVCE)v{uVOVls- zN|dwHPQph~nlC1M9FuMgzc-XimeQ1!e#aSt$rGNzH^z+a7dUx|IE7C#?JHik*Biei zee`RyE4vX00OBj*WXFx@OlMIr7_&>}J>_VWMvZxYFmyUxX3*~B{nKVlUTB`E0O_PA zHg7_T0_dQ!2Ag;Gpt0Y^@+M_S`kJfgu-lv)<{lqKKR1xA>kdJXo{TkQ) zCUp8#RU({v)TWNE+g*>de)G%_Sp&b$quFn!GiOp0)A^`wQ(av5HpD>Df~>2_ynMR> zk^O*t_ad?o-Ivkj?Y6qsqjgDqN6V}-UVgek!XH|VhZvH+YjFoviCcXr`^6Rsr&+J_1c@zofekCg>DwAMLif|iGl6NA;0}*8KdEi~ z{Wwpz2xU6U!`;j>$KKHVtzK8L*X7)n>0^A`(V>B)7NgY(7Kr>t}19 zb&?G5zv`jkLxh(SQfy}SnhNbE`LpR66;)s3zLachm&42^*RnlJa9AE$NYWz@sDy7Lj$k#u6rXjq_f5{$SxU2+@t3SWYr^ya;(c9}8Wq(?0f(=>SC z^CY0w*L#|N3%9=+Jru+mT~$wU^~86K?-1Y>FDg(N@mK*?j;zTZnZ zW|w|5;=lghE)FKeOy4W2py~P!%}`6Fn|WWMj;C2CKH5~baqEq7=r5jqf&nddtaHRs zZ09^j9hahb?;f#ehZqj?G$k3z#UuPfi8d5+si5c*D{iNIAC$Yx((LkrMgsPW!p))ja$LB~Sf(vVQ>QWRBl0n6&OwNVlry@#vN|oSz{=*Rwi9 zS1_u!`;ckf3EKJn3pJCzXo*pv4f(R}xx@J$&rzRTu|dy?)7H4K$Ez{4nN=D*Mpw_K zV3ex3Nw4kWB7=ODU_z$nf`PJf$C%d-f6aL+vE{xlL}|Gk2=7v0XVRT&dG#+ux(5%D zV8lBIF0#YzTfeW!VwD%2@nsj5Yf~cao;(luu^v|9?37<%e5q5oL8L?Yqhe8m=<7gw z1+ssw{+a6O+u6<6p5{-n*dalIMZxB4$X_qSWvn#r{R|Gkshi-bdlmAg6J;z;hHb~p ze9C*@h|aie2ANMKS@z}vd_Lkn1Fd9opyKi7XoGQrYbTrkm&Q@pBlgey`6RyMQs3L{ z6491F65cI#FiEU6i|wXHdfFlMzA+Coaqguxkwyn@_Y>2lgY80C1c;Pk-7*9RmfZE7 z+6PDyPJ-07s8Bpl$Kt~ZwXr_)$(XI#;k%rDm~*fD;KQ}NO%Wh9l3mF>HXt)ew;vG4 zyKeE$xjXA8dBGj_=kqd?BJG*5ZWT=rwyRTg%fXDWm$+5(e|S!4k$=oP?BC3ib*S;5sWmMyVyN%A%?QwyqHsbU zshCWzof%qm&o^USwyzYvVaWWOXeKuSy}V2yCk6-<_{3m%4(QjT+mE@cbicC&kte?p zibV)%n@W#$94)AVKaW`Y=L%$hdokd}*P zJxljh&$Te&Rct7(4?yVdX8N{}&vjOjWjhtEK#HCKv&QQpS1>2i-X&A|Qz$|7xJ|X+tv}b4I`%KMM0=PqKjJH3*j{f z2D0P_hm}jq#^VWQVy2m|*RSi*RQ049P2&d|bMU2xza`!t7?AiveFhwtszBd8f#;?X zC0%$iCgKUF*YAB|u3bNUUJe30v`*E*%&A9QP6NY%Bje;;-@Nj>Gksuj;k*?A$G-sG7#^hxY_yG{)0hWYXIC=8Z7y zz~y}W=&68$_=dy)T*qnt&V*n2_RHb;B@jMsp|kg5NrKtu7zH>d6`zo6Kf9qb#l>qm zEbr)hu#sm1*|pJ8+XQOq6G& z%{*%M{S|+TU3}=riqQ?Xa2z_t4d}~P$g+H;t0(Ls6&Ql4%dq&%SnW*7Ou+4lI&RQH z9Df*9QgRPGmx3i?d*-UnK4zD%9+Bi9#IJ@>=7`1T6_{7a1ng{^EvLpFD7qw ze7CEdkv9&>)2OaWO;eSA;2ZC5v^9M`w&gLtQ?K@{;)xz12B#<4{2;Oa{{XiqZY-%^}omd!X z!gkWG_ufPxQGj2n1}f!=nN<)f6YVoqIGS?vy6^{of93FS{2%_XgNVpPs~qr=MQh#j zJY_?xR*GqET7PZ!DCMW({PVx2kkUsEG~`eZqs)|eWAbf%HI}}8;|IO2Ng z=N&40!Hp9vZg%mTN1TePL>1BCQ))j;n}f^E8qf4}=JMTeL*ev?zu;G*QnAe=Ci=2H z^PS1t2TM+awe{tb=JQX`NcVB+eOd|v4op7Rc^)UbILwk>*;}yH^%Jbw7s(8i_PCtZ zRJEn6P>(^vGErk1tFn53KM5aS0eQH3!S30#AdP_8OmQ^QziU)PRpMO8AZZOCqwrZa zyM2(45lxAWvqKKC>ZXj54oQhlGnk6|TiE*<9DPJ_<`?mx2nOTVr~6r}bq7H`P_LF+9~VY_G?dzIy!< zI^+NBZvDgjbSWv|cSddZ>fZIbd*f$5XQenj4)gGj9)~vTbrYfnBP*L)wF8qK_4;t*qSw@_8=C(Yk#<0#}iJqDC#|bOl6ogA5(N~jd%sq zQ0aG%y<&5zKgq*mP}klm{krhOpyqH~_FKQ=~q2)U)_@zlOs~amHOoc+=mV z-S;I?&zb2CP&FDcUg}Gi(aXGZG z=l_UnVMcPJ{jjDrf-=nG6!gi*I+Q1_c?47zMVZucca#0_Vo~(mk8@HOYcS|pA9j|G zp(iW!_?vkGlT8b{d@#2jP&mIuNQeWr7yj~*!-81{R*k>V6Ae*MDrVzbUuy1SUizqf zB?^GQv^XAzm8kPM3T87a?jeE?0)l7aEi}{zocrY(S)~4ZLVuwHT8#!@2Fp5ZFvYwtM zzMi!oEwd4e zT~vHb74CFM;Ie8>X8(ng$;m<^Z@8gW-Ky~NmqpHg>GK*1n)>Z`-DTwtXD&mz!zOP? zd`ebA&R`|S7jJ9yYtCZ?G{_776sw_UYJcU6Y^x|mv-`(IhP*>Ck#jwjn4oYz>l36D z5K1!l&`*w!=eZ-_)T%I&O-9S*j`3>*RIp)K%?mdB=RyoX&*efpUvmH%dyCn~-)LYS5du$EjrrrPNsC8D zU&O>G-Ps~}c)SfD)U7CuhqiHSwjaZnG3yvyj?X2MNz0X5ip`f$&}HA&p`oKk^_Sd_ zqdykN_-g-|&r>O>QLk*Nm$k1(i2b->zo;RaG3@@zA%~7iaZ#n`!F@*M;{1310qBdG zZ3ae$awH7Jx8!jsC1Q<(>uz@Sd8wo35>KVjMs&%roO9uciclRMtAU`Px=mU?CsuiGB1)1Cn(g`rB;^iw93+wo zZfI&&-5Oi0Oz7I&Y5089r*F!Ze7ioR({(cDUZ*u@^7o@aK_cd^i(ug~#oSkMtN@5| zcdR@OHJ9?1>y^o6wcTDWWvzs#nI3j=G@1m{+)o8TO*}L1BD4NFq{tZqkU_!2UG22U zaI7D%(+D{KIvOaG4@Zo_)PiluwcW0`*UL!7Nxy)kLr{Sb*ns;f142x`R&s>{74a=c z26A1xtN^kxhb^1d5Snpv=UFSyKK3y^3>L|ofFzvXN9nRCl-E(W<1_4IAOH_!mJ%n? zA$r@oJO;+9>Y<$*JWGHn5qNrEF`4{0Tg`}ufEM2 zA%CIXz~p;DPwt%0y&7&Eysu}#KXFMsLtNbZeD_}`9RjK@O?ai!^Ht6lzH(#-ADf<- z9QINa`uX>$Ms96~Whu8%xBN3&c3~i<+p^!2W&}|b^bz~*69=2i4syU3C5w5`lf=aI z#ERMDyX}BYSdJ>%;0J4-*YiCPaoK7|-kwa@{3jDjG^D>pKgt)NVs7k<$@g}A_rQRZ z!kJ$_`Va(A?|2dMjfF3M5dU;>p`+$X#4At|^?K_vGT(sn9q;zkQa*-%l=`u4d%6C; z(aHn#;@iOM>R(W_qB#VPgMDC_5w}1r=g|W`czGo9Qw`OGT?BDfU&hD?|1r+mB#?7 z8X7wS-_bB! z_7s^rc=U-k;0dBc6T27Wq!iaMg8|`F;&i;PNV?bcm2$&dH@FfW!hx^+4J>+1h1DE~ za^?8QHPr>JMyzL}3U?%uW+)&RQ^!KTYXnhV{z`21Of zTIsyi8E%$g>bM^=+r`x9d{b)$J5&c|l$`?$6IIbqH|T(wW$C*iWkN7 z>$zU`FMfhstBdj$PK^6tdXUjXp`|tM2jXS3!5=BLS>YUgpw%TEK5*0eZyhQe5dz9G zAwhxn?0$h3jWY3Y=(_t+uMGi*QJI#W=uCmM5 zb(Q%R^;A;x7d3OHvmi1CEvAv19-zr;smbR~7x^!R+t4Z#YQFg~qFnM6l!PA8?$ zn|7L|eib%x)NCqoX7af@=okcK_9!4hdu~QD!Ep0; zw2u3=S#q=W**@*LEtv!PEps`iwV%?=4B3h)3P|D%m?%e} z!a_L=b+9l&E0Pm6MFQ5o)auW4I$Rr+TcEhsM~JXLg9jt(->oF z-Abnj%UR0m%R@pN;qRVvj3JFlIfIK6yI4eo4%rw^)_KN zwH4sINxwhA$=d^E)YX?2mZZFh65zci8=^!2TwrlPWq$v%b!wVs5wd0Ih)kKIBp&68gI^bU&L+^kR1%4PvX?|Dx5Fx6GKQvsT>O?ZXg6HP^SV9WATA_ZoJfP|E{+V z^x6CAmNtj~( z&g(%AgZ90OTu_m1H%a-L-ED7onG_~sqqi4pA6!j(QN8*1h2yYmy_at#YAUNYm67(&n zIWW64fGHUVn1#IMHY@!}dtTSaUVA{Fu^Vt7=|E!vfm~GxXjT-455aK*@`k;|s&UNf zh2ek}t9%5|8LMi;XK;$5RW=X{Hkd8xOMEH|Xwq4LI0qml0R#O><}qH+i>fOU&>WQr z=H}^v_94cTS~S`O4kO>I+AE-SIWz)vpf%R_uRxzZ-j8$8Uhq00LozH|^E(Oh-U><_ zeb%$VgS%6Pg}5e2f7=GZ>QVwb30lcKb-lEXQWUQfS7Cohrv7L_%=QC%TFV{XDwN|U zcPxgh>`ekgLSjJght}yBP%JBcC=iW=6K~egq%ib-=DA_}Jdy zac&MK`MIppNQO#*_6;O7SZ%7U62Wp$+>eGSOOK0_-LluK$}@1?7QnPydS6X=A_T8m zOjNu|oQj*PcdrDUf1>c#7h+hKWgL(Ulm)#7Sym(YWk#)cyJGt)gM68HF^C(^%Ea35 zwq^MH+w4gyc7=K^%Y^y-%6c909$+D^0kGK(qdhr4-N+E^{`x!d<+ouA4hoT)(|ORu z9W3_5&-h^N)lAKuENoTES{d;`X_`zu?q zfL&F~zd$2qTa%^Bxhuj~1IJl&rgKM@Syte7G8RDIk1N-oE`^-+(6zIaE%zSM!zR;*(p0+YJs=JR*>Hxc?R}u zmeMe8TIqC(jo$z%shX#z0|1kTBrX9{uJbyYDh24t0UqTXxDEEl(v-fw$+&ir6ot02 zw$26~{(M7jc#G$J&+8PSo5`90B4rEmi^i15k6xbYgz0mCPCj#(5AvmVVG%Pb8YnUc zp6;%1NvHgz9POk&330P>r;=a0Ks5V_k;)JWatG2rO__|&`&ieSt#{p4_`+{t9g z16572LzP}47tv|rHq^LzwEo$-4T1`K#wE%r)L0!f52>k+mt=9I?Pc%eC z=cSoD?!b&aqT5@-=oU15T=Af{;Z9(xtkYPT)~N-JoQjzq<-qH|kf|STBG5v~cI}ic zGC|j57mB+wGxn|ek>d)7l+%b*kofy`^wkj1qzx+p%rBSsB5ZOl>4xPqW58$9d*BKp z$DBv;V!CtG!z=xH3EtO8?BlGO9w0y3_wbOW0FTzla$kpabL?Wk?5{~Hsu@?hIAOqp z@_7WjnXVr!J`XW7h|ox7!ptg-2m+1DixpJW@3IH)2e=<{PyZ%ei4-%sAq1Eg(zaje zF_$_)BzRWgmy;JjFK>3D1lZX2hJ&k{g+Q$zRviOT$1^p@VJcTR-zDg)V?vVHfktC`*K@o{Nf&94?;siAnzmjA5A2J1D*!{XEe_RqFW6`8`Xt z)2_e@oB73OqlB$97m1e}8XA58dae7*Xd7#ie)nO@eEE>c8o$&q_r*S;FA-Y+nK$?v zIC++0=nz&9?gHB#xeEfP2*mS-Vo<3WsW2_h$)bi$PNa;~dZX>xMEdW+VKE%rGd8To z@zY~xI1&4{34kDXx^@msk9}Kwd^5l{C61#>Ym@KR=%f*W;73CHph1LlUZ6d{{VVa^ z>DAZ>tYm@!Xy{e21E61nL2tpLN`G)ECPsKadY1=x?phTFp9immlgHhz#)n*{pjbPB zxuz=s;_=Ex_&&JguQ&^ZYh^Pux&ib1{S*~SNaR^WF@67I5RH0GHyIhzRC|5;`mk2D zL5!&?7rBTQUvw=A1;RTjpXoc}P9{KH?)$IC!3ONRqXy|)_fkX2F*9jse9`c0Y_%WOM{Z5^W%zG!?uBzl-)$gN^KT@pjlv$rSZ<<-XY*Ar+o~K%Kv$<*A zeev+&-b_ySN2gi%oGF9Y+^>sCN1VscP43kQ{Hf=}OBz+8gyf6YdACefz4o5|5pG+r zHOsagY^t9(=&w&{Bg=ROmOcizn#^NgsGl5|2m8(QYZa3V#aB99GhF6*u4=puGQ?p7M+JcmtW*|oH5B+e({zway+I1b78vHZWzU*vFK8z^?#5}8* z;m}#IQ@>XcE4zUA@@zFnm7nQ`iwua%~7^Iv%r%; z%#4@OeK>%8o8S@2c)`>p9ZF6OWf64qBcyqMMhnFMLCWG)JnR)mdNepQM|J_G-R{(r zbVhaz7RhOhp=P$t(|M&m=m24IFc#rcrf!k!h6#&MqVugsMm{(XWnKp)Bqe!_8YCzx zixe^kE4P|}W`NsEO}Ps4JA z=y2J0eAz!I2bP+F>49(X#gUYOI7GUwCHciQLpMyv4r?+*qw6ru7=4x z#}mrZGFrE08|dmgtVR1i-_wd#j?UPBw>JW{`KFnf@cp^z`|fvB0dkTAa>`t(W31Fr z=^S@Dc!b=G&{7Z=mFjJZI0NZ-{M<~ko%-ii&`1jVmuyzoJpKpasS#i1NL=IiqXRH) z)B*>bn2oIKF^n4^*8^u^IvOfhOuxI?$jlqdDk9JcWk{4m1xuwi|6oYeL`^b0>)AXr zZ_@z9gpq~uMZP5)Vtep}0aq@#{aE3}^SYPH1nDo8+4v(pf$1~FegPSMTQmL;p>PHi zm3#bcX@V&PCAD}d?0a!RD8%}Mbd+2y#T(yHX%a(GoL=KElA+7=T&+rt=Y}NoCeZ>^ zm?!ifB~^$93kwYr_wwSfnZdNF{3ppkO4L5-+w~}W zqpRZAQ6Amz!H%G%6z$1|=IoX4!`Ld|Q^A_O);{F@1eQee^*-eMkTlf>N`t}bs~SGe zSioy;2lAO@&{!=?QU|j6vfy{Gf7D9!?!#FZ)|NH)ufSxBzTFH&wnRiWh>5Y0J$fP> zPxiq)H0htNwjw4peL^E5N~?lHK1b8#B^kvbywesYMIpr^g$NY7@tlO$_cI^22$4-H z^EyjBn8-LZLz&4yWJqtKEQ-yF(cjfX8kKUvqa z=0BBBw`qBG6!=b17KUXh9zcF?5uf28R~4r=`Z9Hv*=jm=Jvt!W68U}Tkzy7P>To7L zBBs7DJFg3_O(`eP6dp<)BTOF44sQ{7ml$VTcJJrmK=L*+(NvzRarc2G;`2ojo_s8M z%t<29pUirh#uNRRDh8*3$b|l0*6tZO#NKQDkJ?#DV>8Z?cUqElCO6#FiI&FDwRtBIUw8(WbsfQTy$4BAD zuwvs-J{>4DmfZ+B>^1Q_-}z0bR1m?IB^J_OK2Vfs9#BH3O&LcHy%Vtk$=xibQeD#( zL70;d@qkJ9w^V6-bm&>~us012B;#(qp=LDgRa973@3ybkiNSSC)m6i76R^@Ath9+WWl0X0zeQy@Zlg{t&GF%GUW33q~u=B4cY$FseHF3xN}0b@dc?N zpPrg50Aiek5KiEMZZzvR+@`Fm5*d)@oqYpVV@~_%ZJUSS)V6K5x3J7w+tRB=K9#Cl z^|s{~pWLfT-#y_si#OM5zhODS8X&)ZV#u9?3w7Fe)SmVDqQA0wyU6=)EqBm)gJoF*L)Hsk@_}b1EN%mnnaHRo;;7#C?5uV*CDB|oZF=(VzyIlK@?C(C z9y#yno%V^ zo+eC5js7y71bMFVuxDV&nH`#%5?zV4SEKggNE>(s+C&G72o!|`wg}U3sNzM)I?T%*2wmDF6&y&3j2tTh>nCj`GaIIv6t()CiqTq} zzSyOmzeNp&qVax+@l&4F1Nb8qS59@<;mmr=2pnOjNAxxOcHh?2cjeRYX3laDn8@pK z5E`1{cN}LYIao<5-Bs2Mi6TO72@H-+621p?73@tHRpf2hNt>aS{JVma$ASd3p{9RJ zxbS$?lG>h(R3qOFrmN|P*P{<8b_6Ts zM{V2|8jR|R4`syJr#)T}VX>&gqwj3ycs{+ymGP;CDL01&l#U?Rj5Q9ohVKnsq8Ek* z*77%RJib}3e;kzZ&QP~C*7(GJ_T*L>Df`9a<8`Kq^gDwb#$5$(!q6G=HAX+5`rrF4 zGg7aZQ%W+Z_bgo?iL)}75vKk%7e<<(ErKoC>U?dpsHVm(FdSh{K(P~u= zgQ5p6+(g<@38`L?gn}ZhyCukd|N4_;hxXuH`)=sxx|~M^129hCM!MlJ5ao_S^V|b# zR7yxS*~n9#Tb|p+t_8qL-%iwcJ?)Rab9?r(HH7ajd7qv25s3d9aG@>EB7vn-t6sVD z?ixdwhbD${j(id;m<#Dc``=x=&q2xwK=jGt2=oKf;fO+teVQjQl+&#MhBBrw^qc4l z8_`q*_`Q(IcOZ3qNJ}f+!&mT(5Un*WdLw!nKy=9^B;Rtf2p73;kHKbt%>$osqKX`<9x%XGOxj$ouSHlh)ODJopbh|B0Sg}Pa7I_CvFw0p*KZB zGyH#@U-5{1gjG#ujH45|s;4aEp4X+P#=nj7fH-oCWOlm8u^--2`9gW~8E~4P^Lc4@ z(AO^srByezDI*)TMV|?)A1^akB06YFM{d~BrA%&lv|*i*9_K_CUAI?yXkYZEjdx%Z zj>X244-w=yv4bWTY4hK4Uvga(Ko}zmiYB%#_iTKx&UGUV+6SE8nM=DA7e%j7aPvL~ zGNgrFMuRkOy+w@=Utf-1ZObVY&Pl$)3hDU7Yq^-Uqy9>s|Gl#ztD&8_`x6z)9Is!d zm!iy5#Ljjlnq4ZP|7UHB0Z!Enb>To1C}AI-90rwa^kh1^Ub?pOn8GvUIV1C^Tp;^` zw0s6m(b_tuO>q)0*ryD2Z9qP6NYh2>Jxzjk0tNkn^U-6XC2zYLzF6}XN>97g>w@EC z_h%kCV53iuat<(o>NnX!ottbq4QU?8gn0|tWdX`3yA-n37Ab#|Ec;r785y%oiy9>H zI%;)!m0RkShSM2ypKo~8v3c&`T|GTQ*OyOS+vPSBlL)7@jr%b{^uu-5y!#|#~ekZGH-J$mOwdipP2=oYUD# zo_L$Srxo*;U06MfOkUbN4qpoPXfdGQGi!P zqVa6u)}$c{y}iBruGA&B@Zw*p*m$GAkYWrHD8&nW%#YNzpJ17pb~z)rXjg^$a%WxX zkfKt`NS6}c(FbULOpFrIsTie2eCVk?Z+&&&b_C5COD}SOPKxlZ61+SWXx{O8T=I~c z&tM5;@|CGUwp6Pq5Ntg^>r%^K<}7V3kLSjj%;HR18JUJP9Okk0JNKTSaWLaGQsh(b zFiM2Mbg{ss^Q?v|S5!@G$KMXTeeVR+LR9`SM>nq2D(W{s z{VHh2(xcD9dTrAso4dBKCoeeww(n!nM&+?bJb&K2AWJ@}!;A5O>6NrH(X#D&D)* zadfVLu4i8Os+IJjC@xMQls|BK-Tf@|W<=PVnvXh~662wce)pUklcoW@z$I_x@ML?{ zt|DKMhGgwo6Nco>TNQqT+x-$85&HSRl4A`di zUw-J8+9>Mbf-x-oG-wrcxzoS2y~^DsQ;x-Us;( z`{c~v6Q!CCKf4|b*9&Y&sl4A3zWktPY%a>IaBe$ME?a)0L-7J~3nFz5!Z;u#PG5^s@SH7b7yZ1xA+76taPX#RrU+y4WZ@8L( zZ`yjhaJZi`$rO;u=d#67e{7qTzs40m-6Z8K?`}uiQ3)_0CrX0e8~dQiIz(gtHRJ5~ z7H*{N&lPV+%;EI&Mx+P44J^5&SqYDF)JzO<;zm||6PWncf+2qrhB~&!3+H|dJ*E0B ze0gMQ-}jfwUa|oUUl5!c;aa>)0Z$ooVbOIxe2G3y`VuNlf^Tok3CiAB!c8k z?mw<1M?`S}BSy{-DpJsp_O%~%GU-~~@bvV&mGH#pSREGpOl2FoxNX@cPwf%YHfbO$ z+o6KCmN|P>uvh`|Y60o-$LjN8S+U_U(e^lIqHVBr_4;%_PD3DtRLRGqCa#w2acSa| zk2om=3a1}Ip{HPoYT+ZZvZg~{d*}X`^6J)+Vb-rPrF9D9qMiYGa)jCR{QP{H$<{p! zYgdKl<=j_dG`4bE%hE2KaVoSQ+6HOw-@pHIkEY!8Vdl;tFq>nWo0}21fdkwD6uz86 zsC{6(J9q3~weD71V?16PsQ70a5@nM;v6sj+m)6fT*GVtO<`ja6=TiwK!C0MTOC?<2 zfgG-9TLjlt43&K?+hSSys6Ua=D)Q9HZ*Ln_7#Q5iHdw%V?I$RoO&YVT?tb8&M~tI* zJigB3^0pN%p+`H2d%E+(vsX_lAQ1IC`b%*~Bnc@*P)y1L6SJCRX_>H^b-S%<9dF^H zUcdP8UKTg64HbEojw0TxUikFr!8|!$RX&fJ`Ufq~4xO^Av zC@z=ql>%W|OJvWkEM+Ss6Zd|Z$wO!9)!zShdSqXC?Y4fP4tIRJ4$a`M_|JsP3QCjW z>tpp?icF_f#8ngg?FAnPIbr8;JN`n|>P1Zl2d3iNB`k}Y$y=JOA~k*SmTc}1JUe_2 zD#tJC*^m?uJnAI8~x*?7X{KtZCOBLvQQX2_J5Bbeax0eavF=xv9`+ z(%a@`=poI0@79&lwoS{C>OpLJzi7XSYnvBs)dNw*^$YzbGY{4MrA^Hd-(e;*sj=2bj~{^U@EzdBL)-#`7&uPG4p&XcnLYrB8FqQXsz ziMg`sA@tYQYAR?og#pH2R$7~=qeFbyu)q5k_U;Bb@(+5bJMfBlilB~YxxrZnQOVxb7^UnQyFUxpH{ zU-D;X`s*AZOznS_#HV*l1)arF8%O!qIbbO5{wj(7ErL(#_EXE2zv>DlL`eTt5?r5& w9{2W!q|ILg4u%ytI{tgV|9@EjUk>Y3 Agents) -1. **Multi-Agent Collaboration (>3 Agents)** +- Automated Task Solving by Group Chat (with 3 group member agents and 1 manager agent) - [View Notebook](/docs/notebooks/agentchat_groupchat) +- Automated Data Visualization by Group Chat (with 3 group member agents and 1 manager agent) - [View Notebook](/docs/notebooks/agentchat_groupchat_vis) +- Automated Complex Task Solving by Group Chat (with 6 group member agents and 1 manager agent) - [View Notebook](/docs/notebooks/agentchat_groupchat_research) +- Automated Task Solving with Coding & Planning Agents - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_planning.ipynb) +- Automated Task Solving with transition paths specified in a graph - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_graph_modelling_language_using_select_speaker.ipynb) +- Running a group chat as an inner-monolgue via the SocietyOfMindAgent - [View Notebook](/docs/notebooks/agentchat_society_of_mind) +- Running a group chat with custom speaker selection function - [View Notebook](/docs/notebooks/agentchat_groupchat_customized) - - Automated Task Solving by Group Chat (with 3 group member agents and 1 manager agent) - [View Notebook](/docs/notebooks/agentchat_groupchat) - - Automated Data Visualization by Group Chat (with 3 group member agents and 1 manager agent) - [View Notebook](/docs/notebooks/agentchat_groupchat_vis) - - Automated Complex Task Solving by Group Chat (with 6 group member agents and 1 manager agent) - [View Notebook](/docs/notebooks/agentchat_groupchat_research) - - Automated Task Solving with Coding & Planning Agents - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_planning.ipynb) - - Automated Task Solving with transition paths specified in a graph - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_graph_modelling_language_using_select_speaker.ipynb) - - Running a group chat as an inner-monolgue via the SocietyOfMindAgent - [View Notebook](/docs/notebooks/agentchat_society_of_mind) - - Running a group chat with custom speaker selection function - [View Notebook](/docs/notebooks/agentchat_groupchat_customized) +### Sequential Multi-Agent Chats -1. **Sequential Multi-Agent Chats** - - Solving Multiple Tasks in a Sequence of Chats Initiated by a Single Agent - [View Notebook](/docs/notebooks/agentchat_multi_task_chats) - - Async-solving Multiple Tasks in a Sequence of Chats Initiated by a Single Agent - [View Notebook](/docs/notebooks/agentchat_multi_task_async_chats) - - Solving Multiple Tasks in a Sequence of Chats Initiated by Different Agents - [View Notebook](/docs/notebooks/agentchats_sequential_chats) +- Solving Multiple Tasks in a Sequence of Chats Initiated by a Single Agent - [View Notebook](/docs/notebooks/agentchat_multi_task_chats) +- Async-solving Multiple Tasks in a Sequence of Chats Initiated by a Single Agent - [View Notebook](/docs/notebooks/agentchat_multi_task_async_chats) +- Solving Multiple Tasks in a Sequence of Chats Initiated by Different Agents - [View Notebook](/docs/notebooks/agentchats_sequential_chats) -1. **Nested Chats** - - Solving Complex Tasks with Nested Chats - [View Notebook](/docs/notebooks/agentchat_nestedchat) - - Solving Complex Tasks with A Sequence of Nested Chats - [View Notebook](/docs/notebooks/agentchat_nested_sequential_chats) - - OptiGuide for Solving a Supply Chain Optimization Problem with Nested Chats with a Coding Agent and a Safeguard Agent - [View Notebook](/docs/notebooks/agentchat_nestedchat_optiguide) +### Nested Chats -1. **Applications** +- Solving Complex Tasks with Nested Chats - [View Notebook](/docs/notebooks/agentchat_nestedchat) +- Solving Complex Tasks with A Sequence of Nested Chats - [View Notebook](/docs/notebooks/agentchat_nested_sequential_chats) +- OptiGuide for Solving a Supply Chain Optimization Problem with Nested Chats with a Coding Agent and a Safeguard Agent - [View Notebook](/docs/notebooks/agentchat_nestedchat_optiguide) +- Conversational Chess with Nested Chats and Tool Use - [View Notebook](/docs/notebooks/agentchat_nested_chats_chess) - - Automated Chess Game Playing & Chitchatting by GPT-4 Agents - [View Notebook](/docs/notebooks/agentchat_chess) - - Automated Continual Learning from New Data - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_stream.ipynb) - - [OptiGuide](https://github.com/microsoft/optiguide) - Coding, Tool Using, Safeguarding & Question Answering for Supply Chain Optimization - - [AutoAnny](https://github.com/microsoft/autogen/tree/main/samples/apps/auto-anny) - A Discord bot built using AutoGen +### Applications -1. **Tool Use** +- Automated Continual Learning from New Data - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_stream.ipynb) +- [OptiGuide](https://github.com/microsoft/optiguide) - Coding, Tool Using, Safeguarding & Question Answering for Supply Chain Optimization +- [AutoAnny](https://github.com/microsoft/autogen/tree/main/samples/apps/auto-anny) - A Discord bot built using AutoGen - - **Web Search**: Solve Tasks Requiring Web Info - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_web_info.ipynb) - - Use Provided Tools as Functions - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_function_call.ipynb) - - Use Tools via Sync and Async Function Calling - [View Notebook](/docs/notebooks/agentchat_function_call_async) - - Task Solving with Langchain Provided Tools as Functions - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_langchain.ipynb) - - **RAG**: Group Chat with Retrieval Augmented Generation (with 5 group member agents and 1 manager agent) - [View Notebook](/docs/notebooks/agentchat_groupchat_RAG) - - Function Inception: Enable AutoGen agents to update/remove functions during conversations. - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_inception_function.ipynb) - - Agent Chat with Whisper - [View Notebook](/docs/notebooks/agentchat_video_transcript_translate_with_whisper) - - Constrained Responses via Guidance - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_guidance.ipynb) - - Browse the Web with Agents - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_surfer.ipynb) - - **SQL**: Natural Language Text to SQL Query using the [Spider](https://yale-lily.github.io/spider) Text-to-SQL Benchmark - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_sql_spider.ipynb) +### Tool Use -1. **Human Involvement** +- **Web Search**: Solve Tasks Requiring Web Info - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_web_info.ipynb) +- Use Provided Tools as Functions - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_function_call.ipynb) +- Use Tools via Sync and Async Function Calling - [View Notebook](/docs/notebooks/agentchat_function_call_async) +- Task Solving with Langchain Provided Tools as Functions - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_langchain.ipynb) +- **RAG**: Group Chat with Retrieval Augmented Generation (with 5 group member agents and 1 manager agent) - [View Notebook](/docs/notebooks/agentchat_groupchat_RAG) +- Function Inception: Enable AutoGen agents to update/remove functions during conversations. - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_inception_function.ipynb) +- Agent Chat with Whisper - [View Notebook](/docs/notebooks/agentchat_video_transcript_translate_with_whisper) +- Constrained Responses via Guidance - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_guidance.ipynb) +- Browse the Web with Agents - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_surfer.ipynb) +- **SQL**: Natural Language Text to SQL Query using the [Spider](https://yale-lily.github.io/spider) Text-to-SQL Benchmark - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_sql_spider.ipynb) - - Simple example in ChatGPT style [View example](https://github.com/microsoft/autogen/blob/main/samples/simple_chat.py) - - Auto Code Generation, Execution, Debugging and **Human Feedback** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_human_feedback.ipynb) - - Automated Task Solving with GPT-4 + **Multiple Human Users** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_two_users.ipynb) - - Agent Chat with **Async Human Inputs** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/Async_human_input.ipynb) +### Human Involvement -1. **Agent Teaching and Learning** +- Simple example in ChatGPT style [View example](https://github.com/microsoft/autogen/blob/main/samples/simple_chat.py) +- Auto Code Generation, Execution, Debugging and **Human Feedback** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_human_feedback.ipynb) +- Automated Task Solving with GPT-4 + **Multiple Human Users** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_two_users.ipynb) +- Agent Chat with **Async Human Inputs** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/Async_human_input.ipynb) - - Teach Agents New Skills & Reuse via Automated Chat - [View Notebook](/docs/notebooks/agentchat_teaching) - - Teach Agents New Facts, User Preferences and Skills Beyond Coding - [View Notebook](/docs/notebooks/agentchat_teachability) - - Teach OpenAI Assistants Through GPTAssistantAgent - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_teachable_oai_assistants.ipynb) - - Agent Optimizer: Train Agents in an Agentic Way - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_agentoptimizer.ipynb) +### Agent Teaching and Learning -1. **Multi-Agent Chat with OpenAI Assistants in the loop** +- Teach Agents New Skills & Reuse via Automated Chat - [View Notebook](/docs/notebooks/agentchat_teaching) +- Teach Agents New Facts, User Preferences and Skills Beyond Coding - [View Notebook](/docs/notebooks/agentchat_teachability) +- Teach OpenAI Assistants Through GPTAssistantAgent - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_teachable_oai_assistants.ipynb) +- Agent Optimizer: Train Agents in an Agentic Way - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_agentoptimizer.ipynb) - - Hello-World Chat with OpenAi Assistant in AutoGen - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_twoagents_basic.ipynb) - - Chat with OpenAI Assistant using Function Call - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_function_call.ipynb) - - Chat with OpenAI Assistant with Code Interpreter - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_code_interpreter.ipynb) - - Chat with OpenAI Assistant with Retrieval Augmentation - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_retrieval.ipynb) - - OpenAI Assistant in a Group Chat - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_groupchat.ipynb) +### Multi-Agent Chat with OpenAI Assistants in the loop -1. **Multimodal Agent** +- Hello-World Chat with OpenAi Assistant in AutoGen - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_twoagents_basic.ipynb) +- Chat with OpenAI Assistant using Function Call - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_function_call.ipynb) +- Chat with OpenAI Assistant with Code Interpreter - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_code_interpreter.ipynb) +- Chat with OpenAI Assistant with Retrieval Augmentation - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_retrieval.ipynb) +- OpenAI Assistant in a Group Chat - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_groupchat.ipynb) - - Multimodal Agent Chat with DALLE and GPT-4V - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_dalle_and_gpt4v.ipynb) - - Multimodal Agent Chat with Llava - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_lmm_llava.ipynb) - - Multimodal Agent Chat with GPT-4V - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_lmm_gpt-4v.ipynb) +### Multimodal Agent -1. **Long Context Handling** +- Multimodal Agent Chat with DALLE and GPT-4V - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_dalle_and_gpt4v.ipynb) +- Multimodal Agent Chat with Llava - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_lmm_llava.ipynb) +- Multimodal Agent Chat with GPT-4V - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_lmm_gpt-4v.ipynb) - - - Long Context Handling as A Capability - [View Notebook](/docs/notebooks/agentchat_capability_long_context_handling) +### Long Context Handling -1. **Evaluation and Assessment** + +- Long Context Handling as A Capability - [View Notebook](/docs/notebooks/agentchat_capability_long_context_handling) - - AgentEval: A Multi-Agent System for Assess Utility of LLM-powered Applications - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agenteval_cq_math.ipynb) +### Evaluation and Assessment -1. **Automatic Agent Building** +- AgentEval: A Multi-Agent System for Assess Utility of LLM-powered Applications - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agenteval_cq_math.ipynb) - - Automatically Build Multi-agent System with AgentBuilder - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/autobuild_basic.ipynb) - - Automatically Build Multi-agent System from Agent Library - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/autobuild_agent_library.ipynb) +### Automatic Agent Building + +- Automatically Build Multi-agent System with AgentBuilder - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/autobuild_basic.ipynb) +- Automatically Build Multi-agent System from Agent Library - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/autobuild_agent_library.ipynb) ## Enhanced Inferences + ### Utilities + - API Unification - [View Documentation with Code Example](https://microsoft.github.io/autogen/docs/Use-Cases/enhanced_inference/#api-unification) - Utility Functions to Help Managing API configurations effectively - [View Notebook](/docs/topics/llm_configuration) - Cost Calculation - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_cost_token_tracking.ipynb) diff --git a/website/docs/tutorial/conversation-patterns.ipynb b/website/docs/tutorial/conversation-patterns.ipynb index 25b66da9374c..a7d486e9f7cc 100644 --- a/website/docs/tutorial/conversation-patterns.ipynb +++ b/website/docs/tutorial/conversation-patterns.ipynb @@ -1526,7 +1526,14 @@ "The implementation of the nested chats handler makes use of the\n", "[`register_reply`](../reference/agentchat/conversable_agent/#register_reply)\n", "method, which allows you to make extensive customization to\n", - " `ConversableAgent`. The GroupChatManager uses the same mechanism to implement the group chat." + " `ConversableAgent`. The GroupChatManager uses the same mechanism to implement the group chat.\n", + "\n", + "Nested chat is a powerful conversation pattern that allows you to package\n", + "complex workflows into a single agent.\n", + "You can hide [tool usages](/docs/tutorial/tool-use) within a single agent by having the tool-caller agent \n", + "starts a nested chat with a tool-executor agent and then use the result\n", + "of the nested chat to generate a response.\n", + "See the [nested chats for tool use notebook](/docs/notebooks/agentchat_nested_chats_chess) for an example." ] }, { diff --git a/website/docs/tutorial/tool-use.ipynb b/website/docs/tutorial/tool-use.ipynb index bcc161d5a4ba..0e78fe742ff3 100644 --- a/website/docs/tutorial/tool-use.ipynb +++ b/website/docs/tutorial/tool-use.ipynb @@ -719,6 +719,26 @@ "the new tool schema and perform calculation correctly." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## How to hide tool usage and code execution within a single agent?\n", + "\n", + "Sometimes it is preferable to hide the tool usage inside a single agent, \n", + "i.e., the tool call and tool response messages are kept invisible from outside\n", + "of the agent, and the agent responds to outside messages with tool usages\n", + "as \"internal monologues\". \n", + "For example, you might want build an agent that is similar to\n", + "the [OpenAI's Assistant](https://platform.openai.com/docs/assistants/how-it-works)\n", + "which executes built-in tools internally.\n", + "\n", + "To achieve this, you can use [nested chats](/docs/tutorial/conversation-patterns#nested-chats).\n", + "Nested chats allow you to create \"internal monologues\" within an agent\n", + "to call and execute tools. This works for code execution as well.\n", + "See [nested chats for tool use](/docs/notebooks/agentchat_nested_chats_chess) for an example." + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/website/docusaurus.config.js b/website/docusaurus.config.js index e0f40e72e7d7..d3fc424803a9 100644 --- a/website/docusaurus.config.js +++ b/website/docusaurus.config.js @@ -216,6 +216,10 @@ module.exports = { { to: "/docs/topics/non-openai-models/local-lm-studio", from: ["/docs/topics/non-openai-models/lm-studio"], + }, + { + to: "/docs/notebooks/agentchat_nested_chats_chess", + from: ["/docs/notebooks/agentchat_chess"], } ], }, From cfed8ef1f54c614b4cd76239463464096f247c44 Mon Sep 17 00:00:00 2001 From: olgavrou Date: Mon, 25 Mar 2024 13:43:30 -0400 Subject: [PATCH 06/27] add webarena in samples (#2114) * add webarena in samples/tools * Update samples/tools/webarena/README.md Co-authored-by: gagb * Update samples/tools/webarena/README.md Co-authored-by: gagb * Update samples/tools/webarena/README.md Co-authored-by: gagb * update installation instructions * black formatting * Update README.md --------- Co-authored-by: gagb Co-authored-by: Eric Zhu --- samples/tools/webarena/README.md | 32 ++ samples/tools/webarena/webarena/run.py | 354 ++++++++++++++++++ .../webarena/webarena/webarena_agents.py | 205 ++++++++++ 3 files changed, 591 insertions(+) create mode 100644 samples/tools/webarena/README.md create mode 100644 samples/tools/webarena/webarena/run.py create mode 100644 samples/tools/webarena/webarena/webarena_agents.py diff --git a/samples/tools/webarena/README.md b/samples/tools/webarena/README.md new file mode 100644 index 000000000000..9c1841629234 --- /dev/null +++ b/samples/tools/webarena/README.md @@ -0,0 +1,32 @@ +# WebArena Benchmark + +This directory helps run AutoGen agents on the [WebArena](https://arxiv.org/pdf/2307.13854.pdf) benchmark. + +## Installing WebArena + +WebArena can be installed by following the instructions from [WebArena's GitHub repository](git@github.com:web-arena-x/webarena.git) + +If using WebArena with AutoGen there is a clash on the versions of OpenAI and some code changes are needed in WebArena to be compatible with AutoGen's OpenAI version: + +- webarena's openai version is `openai==0.27.0` +- autogen's openai version is: `openai>=1.3` + +Prior to installation, in the WebArena codebase, any file containing `openai.error` needs to be replaced with `openai`. + +## Running with AutoGen agents + +You can use the `run.py` file in the `webarena` directory to run WebArena with AutoGen. The OpenAI (or AzureOpenAI or other model) configuration can be setup via `OAI_CONFIG_LIST`. The config list will be filtered by whatever model is passed in the `--model` argument. + +e.g. of running `run.py`: + +``` +mkdir myresultdir +python run.py --instruction_path agent/prompts/jsons/p_cot_id_actree_2s.json --test_start_idx 27 --test_end_idx 28 --model gpt-4 --result_dir myresultdir +``` + +The original `run.py` file has been modified to use AutoGen agents which are defined in the `webarena_agents.py` file. + +## References +**WebArena: A Realistic Web Environment for Building Autonomous Agents**
+Zhou, Shuyan and Xu, Frank F and Zhu, Hao and Zhou, Xuhui and Lo, Robert and Sridhar, Abishek and Cheng, Xianyi and Bisk, Yonatan and Fried, Daniel and Alon, Uri and others
+[https://arxiv.org/pdf/2307.13854.pdf](https://arxiv.org/pdf/2307.13854.pdf) diff --git a/samples/tools/webarena/webarena/run.py b/samples/tools/webarena/webarena/run.py new file mode 100644 index 000000000000..a9411ea12d1b --- /dev/null +++ b/samples/tools/webarena/webarena/run.py @@ -0,0 +1,354 @@ +"""Script to run end-to-end evaluation on the benchmark""" + +import argparse +import glob +import json +import logging +import os +import random +import subprocess +import tempfile +import time +from pathlib import Path + +import openai +import autogen +from webarena_agents import ActionTakingCapability, EnvironmentAgent + +from agent import ( + Agent, + PromptAgent, + TeacherForcingAgent, + construct_agent, +) + +from agent.prompts import * +from browser_env import ( + ScriptBrowserEnv, +) +from browser_env.auto_login import get_site_comb_from_filepath +from browser_env.helper_functions import ( + RenderHelper, +) +from evaluation_harness import evaluator_router + +LOG_FOLDER = "log_files" +Path(LOG_FOLDER).mkdir(parents=True, exist_ok=True) +LOG_FILE_NAME = f"{LOG_FOLDER}/log_{time.strftime('%Y%m%d%H%M%S', time.localtime())}_{random.randint(0, 10000)}.log" + +logger = logging.getLogger("logger") +logger.setLevel(logging.INFO) + +console_handler = logging.StreamHandler() +console_handler.setLevel(logging.DEBUG) +logger.addHandler(console_handler) + +file_handler = logging.FileHandler(LOG_FILE_NAME) +file_handler.setLevel(logging.DEBUG) +logger.addHandler(file_handler) + +# Set the log format +formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s") +console_handler.setFormatter(formatter) +file_handler.setFormatter(formatter) + + +def config() -> argparse.Namespace: + parser = argparse.ArgumentParser(description="Run end-to-end evaluation on the benchmark") + parser.add_argument("--render", action="store_true", help="Render the browser") + parser.add_argument( + "--slow_mo", + type=int, + default=0, + help="Slow down the browser by the specified amount", + ) + parser.add_argument("--action_set_tag", default="id_accessibility_tree", help="Action type") + parser.add_argument( + "--observation_type", + choices=["accessibility_tree", "html", "image"], + default="accessibility_tree", + help="Observation type", + ) + parser.add_argument( + "--current_viewport_only", + action="store_true", + help="Only use the current viewport for the observation", + ) + parser.add_argument("--viewport_width", type=int, default=1280) + parser.add_argument("--viewport_height", type=int, default=720) + parser.add_argument("--save_trace_enabled", action="store_true") + parser.add_argument("--sleep_after_execution", type=float, default=0.0) + + parser.add_argument("--max_steps", type=int, default=30) + + # agent config + parser.add_argument("--agent_type", type=str, default="prompt") + parser.add_argument( + "--instruction_path", + type=str, + default="agents/prompts/state_action_agent.json", + ) + parser.add_argument( + "--parsing_failure_th", + help="When concesecutive parsing failure exceeds this threshold, the agent will stop", + type=int, + default=3, + ) + parser.add_argument( + "--repeating_action_failure_th", + help="When concesecutive repeating action exceeds this threshold, the agent will stop", + type=int, + default=3, + ) + + # lm config + parser.add_argument("--provider", type=str, default="openai") + parser.add_argument("--model", type=str, default="gpt-3.5-turbo-0613") + parser.add_argument("--mode", type=str, default="chat") + parser.add_argument("--temperature", type=float, default=1.0) + parser.add_argument("--top_p", type=float, default=0.9) + parser.add_argument("--context_length", type=int, default=0) + parser.add_argument("--max_tokens", type=int, default=384) + parser.add_argument("--stop_token", type=str, default=None) + parser.add_argument( + "--max_retry", + type=int, + help="max retry times to perform generations when parsing fails", + default=1, + ) + parser.add_argument( + "--max_obs_length", + type=int, + help="when not zero, will truncate the observation to this length before feeding to the model", + default=1920, + ) + parser.add_argument( + "--model_endpoint", + help="huggingface model endpoint", + type=str, + default="", + ) + + # example config + parser.add_argument("--test_start_idx", type=int, default=0) + parser.add_argument("--test_end_idx", type=int, default=1000) + + # logging related + parser.add_argument("--result_dir", type=str, default="") + args = parser.parse_args() + + # check the whether the action space is compatible with the observation space + if args.action_set_tag == "id_accessibility_tree" and args.observation_type != "accessibility_tree": + raise ValueError( + f"Action type {args.action_set_tag} is incompatible with the observation type {args.observation_type}" + ) + + return args + + +def test( + args: argparse.Namespace, + agent: Agent | PromptAgent | TeacherForcingAgent, + config_file_list: list[str], +) -> None: + scores = [] + max_steps = args.max_steps + + early_stop_thresholds = { + "parsing_failure": args.parsing_failure_th, + "repeating_action": args.repeating_action_failure_th, + } + + env = ScriptBrowserEnv( + headless=not args.render, + slow_mo=args.slow_mo, + observation_type=args.observation_type, + current_viewport_only=args.current_viewport_only, + viewport_size={ + "width": args.viewport_width, + "height": args.viewport_height, + }, + save_trace_enabled=args.save_trace_enabled, + sleep_after_execution=args.sleep_after_execution, + ) + + for config_file in config_file_list: + try: + render_helper = RenderHelper(config_file, args.result_dir, args.action_set_tag) + + # get intent + with open(config_file) as f: + _c = json.load(f) + intent = _c["intent"] + task_id = _c["task_id"] + # automatically login + if _c["storage_state"]: + cookie_file_name = os.path.basename(_c["storage_state"]) + comb = get_site_comb_from_filepath(cookie_file_name) + temp_dir = tempfile.mkdtemp() + # subprocess to renew the cookie + subprocess.run( + [ + "python", + "browser_env/auto_login.py", + "--auth_folder", + temp_dir, + "--site_list", + *comb, + ] + ) + _c["storage_state"] = f"{temp_dir}/{cookie_file_name}" + assert os.path.exists(_c["storage_state"]) + # update the config file + config_file = f"{temp_dir}/{os.path.basename(config_file)}" + with open(config_file, "w") as f: + json.dump(_c, f) + + logger.info(f"[Config file]: {config_file}") + logger.info(f"[Intent]: {intent}") + + agent.reset(config_file) + + env_agent = EnvironmentAgent( + name="env_agent", + env=env, + config_file=config_file, + result_dir=args.result_dir, + action_set_tag=args.action_set_tag, + llm_config=False, + code_execution_config=False, + ) + + config_list = autogen.config_list_from_json( + "OAI_CONFIG_LIST", + filter_dict={"model": [args.model]}, + ) + + action_agent = autogen.AssistantAgent( + "action_agent", + llm_config={"config_list": config_list, "cache_seed": 32}, + system_message="", + ) + + action_taking_capability = ActionTakingCapability( + prompt_constructor=agent.prompt_constructor, + action_set_tag=args.action_set_tag, + max_steps=max_steps, + early_stop_thresholds=early_stop_thresholds, + ) + + action_taking_capability.add_to_agent(action_agent) + + env_agent.initiate_chat( + action_agent, + message={ + "content": {"intent": intent}, + }, + ) + + evaluator = evaluator_router(config_file) + score = evaluator( + trajectory=env_agent.trajectory, + config_file=config_file, + page=env.page, + client=env.get_page_client(env.page), + ) + + scores.append(score) + + if score == 1: + logger.info(f"[Result] (PASS) {config_file}") + else: + logger.info(f"[Result] (FAIL) {config_file}") + + if args.save_trace_enabled: + env.save_trace(Path(args.result_dir) / "traces" / f"{task_id}.zip") + + except openai.OpenAIError as e: + logger.info(f"[OpenAI Error] {repr(e)}") + except Exception as e: + logger.info(f"[Unhandled Error] {repr(e)}]") + import traceback + + # write to error file + with open(Path(args.result_dir) / "error.txt", "a") as f: + f.write(f"[Config file]: {config_file}\n") + f.write(f"[Unhandled Error] {repr(e)}\n") + f.write(traceback.format_exc()) # write stack trace to file + + render_helper.close() + + env.close() + if len(scores) > 0: + logger.info(f"Average score: {sum(scores) / len(scores)}") + + +def prepare(args: argparse.Namespace) -> None: + # convert prompt python files to json + from agent.prompts import to_json + + to_json.run() + + # prepare result dir + result_dir = args.result_dir + if not result_dir: + result_dir = f"cache/results_{time.strftime('%Y%m%d%H%M%S', time.localtime())}" + if not Path(result_dir).exists(): + Path(result_dir).mkdir(parents=True, exist_ok=True) + args.result_dir = result_dir + logger.info(f"Create result dir: {result_dir}") + + if not (Path(result_dir) / "traces").exists(): + (Path(result_dir) / "traces").mkdir(parents=True) + + # log the log file + with open(os.path.join(result_dir, "log_files.txt"), "a+") as f: + f.write(f"{LOG_FILE_NAME}\n") + + +def get_unfinished(config_files: list[str], result_dir: str) -> list[str]: + result_files = glob.glob(f"{result_dir}/*.html") + task_ids = [os.path.basename(f).split(".")[0].split("_")[1] for f in result_files] + unfinished_configs = [] + for config_file in config_files: + task_id = os.path.basename(config_file).split(".")[0] + if task_id not in task_ids: + unfinished_configs.append(config_file) + return unfinished_configs + + +def dump_config(args: argparse.Namespace) -> None: + config_file = Path(args.result_dir) / "config.json" + if not config_file.exists(): + with open(config_file, "w") as f: + json.dump(vars(args), f, indent=4) + logger.info(f"Dump config to {config_file}") + + +# def run(): +if __name__ == "__main__": + args = config() + args.sleep_after_execution = 2.0 + prepare(args) + + test_file_list = [] + st_idx = args.test_start_idx + ed_idx = args.test_end_idx + for i in range(st_idx, ed_idx): + test_file_list.append(f"config_files/{i}.json") + if "debug" not in args.result_dir: + test_file_list = get_unfinished(test_file_list, args.result_dir) + + if len(test_file_list) == 0: + logger.info("No task left to run") + else: + print(f"Total {len(test_file_list)} tasks left") + args.render = False + args.render_screenshot = True + args.save_trace_enabled = True + + args.current_viewport_only = True + dump_config(args) + + agent = construct_agent(args) + test(args, agent, test_file_list) diff --git a/samples/tools/webarena/webarena/webarena_agents.py b/samples/tools/webarena/webarena/webarena_agents.py new file mode 100644 index 000000000000..103057259584 --- /dev/null +++ b/samples/tools/webarena/webarena/webarena_agents.py @@ -0,0 +1,205 @@ +import autogen + +from browser_env.actions import ( + ActionParsingError, + Action, + create_none_action, + create_id_based_action, + create_playwright_action, +) + +from browser_env import ( + ActionTypes, + StateInfo, + Trajectory, + create_stop_action, +) + +from browser_env.helper_functions import ( + RenderHelper, + get_action_description, +) + +from browser_env.actions import is_equivalent + + +def early_stop(trajectory: Trajectory, max_steps: int, thresholds: dict[str, int]) -> tuple[bool, str]: + """Check whether need to early stop""" + + # reach the max step + num_steps = (len(trajectory) - 1) / 2 + if num_steps >= max_steps: + return True, f"Reach max steps {max_steps}" + + last_k_actions: list[Action] + action_seq: list[Action] + + # Case: parsing failure for k times + k = thresholds["parsing_failure"] + last_k_actions = trajectory[1::2][-k:] # type: ignore[assignment] + if len(last_k_actions) >= k: + if all([action["action_type"] == ActionTypes.NONE for action in last_k_actions]): + return True, f"Failed to parse actions for {k} times" + + # Case: same action for k times + k = thresholds["repeating_action"] + last_k_actions = trajectory[1::2][-k:] # type: ignore[assignment] + action_seq = trajectory[1::2] # type: ignore[assignment] + + if len(action_seq) == 0: + return False, "" + + last_action: Action = action_seq[-1] + + if last_action["action_type"] != ActionTypes.TYPE: + if len(last_k_actions) >= k: + if all([is_equivalent(action, last_action) for action in last_k_actions]): + return True, f"Same action for {k} times" + + else: + # check the action sequence + if sum([is_equivalent(action, last_action) for action in action_seq]) >= k: + return True, f"Same typing action for {k} times" + + return False, "" + + +class EnvironmentAgent(autogen.ConversableAgent): + def __init__( + self, + env, + config_file, + result_dir, + action_set_tag, + *args, + **kwargs, + ): + super().__init__(*args, **kwargs) + self.env = env + self.trajectory: Trajectory = [] + obs, info = env.reset(options={"config_file": config_file}) + self.state_info: StateInfo = {"observation": obs, "info": info} + self.trajectory.append(self.state_info) + self.meta_data = {"action_history": ["None"]} + self.action_set_tag = action_set_tag + self.render_helper = RenderHelper(config_file, result_dir, action_set_tag) + self.register_reply([autogen.Agent, None], EnvironmentAgent.generate_env_reply, position=1) + self.register_hook( + hookable_method="process_message_before_send", + hook=self.process_message_before_send, + ) + + def process_message_before_send(self, sender, message, recipient, silent): + if "context" in message: + raise ValueError("Message should not contain context freom generate_reply") + + message["context"] = { + "trajectory": self.trajectory, + "meta_data": self.meta_data, + "state_info": self.state_info, + } + + if "intent" in message["content"]: + intent = message["content"]["intent"] + obs = self.state_info["observation"]["text"] + message["content"] = f"{obs} \n\n {intent}" + message["context"]["intent"] = intent + return message + + def generate_env_reply( + self, + messages=None, + sender=None, + config=None, + ): + if messages is None: + messages = self.chat_messages[sender] + + action = messages[-1]["context"] + action_str = messages[-1]["content"] + self.trajectory.append(action) + + self.render_helper.render(action, self.state_info, self.meta_data, True) + self.meta_data["action_history"].append(action_str) + + if action["action_type"] == ActionTypes.STOP: + return True, {"content": "TERMINATE"} + + obs, _, terminated, _, info = self.env.step(action) + self.state_info = {"observation": obs, "info": info} + self.trajectory.append(self.state_info) + + if terminated: + self.trajectory.append(create_stop_action("")) + return True, "TERMINATE" + + return True, {"content": obs["text"]} + + +class ActionTakingCapability: + def __init__(self, prompt_constructor, action_set_tag, max_steps, early_stop_thresholds): + self.action_set_tag = action_set_tag + self.prompt_constructor = prompt_constructor + self.max_steps = max_steps + self.early_stop_thresholds = early_stop_thresholds + + def add_to_agent(self, agent): + agent.register_hook( + hookable_method="process_all_messages_before_reply", + hook=self.process_all_messages_before_reply, + ) + agent.register_hook( + hookable_method="process_message_before_send", + hook=self.process_message_before_send, + ) + + def process_all_messages_before_reply(self, messages): + if "context" in messages[-1]: + m = messages[-1]["context"] + trajectory = m["trajectory"] + meta_data = m["meta_data"] + intent = messages[0]["context"]["intent"] + else: + if "TERMINATE" in messages[-1]["content"]: + return messages + + # take action + prompt = self.prompt_constructor.construct(trajectory, intent, meta_data) + return prompt + + def process_message_before_send(self, sender, message, recipient, silent): + force_prefix = self.prompt_constructor.instruction["meta_data"].get("force_prefix", "") + response = f"{force_prefix}{message}" + try: + parsed_response = self.prompt_constructor.extract_action(response) + if self.action_set_tag == "id_accessibility_tree": + action = create_id_based_action(parsed_response) + elif self.action_set_tag == "playwright": + action = create_playwright_action(parsed_response) + else: + action = create_stop_action(f"ERROR: action tag not recognised: {self.action_set_tag}") + except ActionParsingError: + action = create_none_action() + action["raw_prediction"] = response + except Exception as e: + action = create_stop_action(f"ERROR: {str(e)}") + action["raw_prediction"] = response + + messages = sender.chat_messages[recipient] + if "context" in messages[-1]: + m = messages[-1]["context"] + state_info = m["state_info"] + trajectory = m["trajectory"] + early_stop_flag, stop_info = early_stop(trajectory, self.max_steps, self.early_stop_thresholds) + + if early_stop_flag: + action = create_stop_action(f"Early stop: {stop_info}") + + action_str = get_action_description( + action, + state_info["info"]["observation_metadata"], + action_set_tag=self.action_set_tag, + prompt_constructor=self.prompt_constructor, + ) + return {"content": action_str, "context": action} + return {"content": "", "context": action} From d9e1e6d37bdf7b84eeed90795dff8e8c2bfe0853 Mon Sep 17 00:00:00 2001 From: Qingyun Wu Date: Tue, 26 Mar 2024 11:31:55 -0500 Subject: [PATCH 07/27] context to kwargs (#2064) * context to kwargs * add tag * add test * text to kwargs --------- Co-authored-by: Eric Zhu Co-authored-by: Chi Wang --- autogen/agentchat/chat.py | 7 ++- autogen/agentchat/conversable_agent.py | 47 +++++++++---------- .../agentchat_nested_sequential_chats.ipynb | 2 +- test/agentchat/test_chats.py | 2 + 4 files changed, 31 insertions(+), 27 deletions(-) diff --git a/autogen/agentchat/chat.py b/autogen/agentchat/chat.py index 1296607c281e..0eac4bdb7c33 100644 --- a/autogen/agentchat/chat.py +++ b/autogen/agentchat/chat.py @@ -104,7 +104,7 @@ def __find_async_chat_order(chat_ids: Set[int], prerequisites: List[Prerequisite return chat_order -def __post_carryover_processing(chat_info: Dict[str, Any]): +def __post_carryover_processing(chat_info: Dict[str, Any]) -> None: if "message" not in chat_info: warnings.warn( "message is not provided in a chat_queue entry. input() will be called to get the initial message.", @@ -127,11 +127,14 @@ def __post_carryover_processing(chat_info: Dict[str, Any]): print(colored("\n" + "*" * 80, "blue"), flush=True, sep="") print( colored( - "Starting a new chat....\n\nMessage:\n" + print_message + "\n\nCarryover: \n" + print_carryover, + "Starting a new chat....", "blue", ), flush=True, ) + if chat_info.get("verbose", False): + print(colored("Message:\n" + print_message, "blue"), flush=True) + print(colored("Carryover:\n" + print_carryover, "blue"), flush=True) print(colored("\n" + "*" * 80, "blue"), flush=True, sep="") diff --git a/autogen/agentchat/conversable_agent.py b/autogen/agentchat/conversable_agent.py index 54206b550521..3c8f9e79d899 100644 --- a/autogen/agentchat/conversable_agent.py +++ b/autogen/agentchat/conversable_agent.py @@ -868,7 +868,7 @@ def initiate_chat( summary_method: Optional[Union[str, Callable]] = DEFAULT_SUMMARY_METHOD, summary_args: Optional[dict] = {}, message: Optional[Union[Dict, str, Callable]] = None, - **context, + **kwargs, ) -> ChatResult: """Initiate a chat with the recipient agent. @@ -944,10 +944,11 @@ def my_message(sender: ConversableAgent, recipient: ConversableAgent, context: d final_msg["context"] = {"prefix": "Today I feel"} return final_msg ``` - **context: any context information. It has the following reserved fields: + **kwargs: any additional information. It has the following reserved fields: - "carryover": a string or a list of string to specify the carryover information to be passed to this chat. If provided, we will combine this carryover (by attaching a "context: " string and the carryover content after the message content) with the "message" content when generating the initial chat message in `generate_init_message`. + - "verbose": a boolean to specify whether to print the message and carryover in a chat. Default is False. Raises: RuntimeError: if any async reply functions are registered and not ignored in sync chat. @@ -955,8 +956,7 @@ def my_message(sender: ConversableAgent, recipient: ConversableAgent, context: d Returns: ChatResult: an ChatResult object. """ - _chat_info = context.copy() - _chat_info["recipient"] = recipient + _chat_info = locals().copy() _chat_info["sender"] = self consolidate_chat_info(_chat_info, uniform_sender=self) for agent in [self, recipient]: @@ -968,9 +968,9 @@ def my_message(sender: ConversableAgent, recipient: ConversableAgent, context: d for _ in range(max_turns): if _ == 0: if isinstance(message, Callable): - msg2send = message(_chat_info["sender"], _chat_info["recipient"], context) + msg2send = message(_chat_info["sender"], _chat_info["recipient"], kwargs) else: - msg2send = self.generate_init_message(message, **context) + msg2send = self.generate_init_message(message, **kwargs) else: msg2send = self.generate_reply(messages=self.chat_messages[recipient], sender=recipient) if msg2send is None: @@ -979,9 +979,9 @@ def my_message(sender: ConversableAgent, recipient: ConversableAgent, context: d else: self._prepare_chat(recipient, clear_history) if isinstance(message, Callable): - msg2send = message(_chat_info["sender"], _chat_info["recipient"], context) + msg2send = message(_chat_info["sender"], _chat_info["recipient"], kwargs) else: - msg2send = self.generate_init_message(message, **context) + msg2send = self.generate_init_message(message, **kwargs) self.send(msg2send, recipient, silent=silent) summary = self._summarize_chat( summary_method, @@ -1010,7 +1010,7 @@ async def a_initiate_chat( summary_method: Optional[Union[str, Callable]] = DEFAULT_SUMMARY_METHOD, summary_args: Optional[dict] = {}, message: Optional[Union[str, Callable]] = None, - **context, + **kwargs, ) -> ChatResult: """(async) Initiate a chat with the recipient agent. @@ -1023,8 +1023,7 @@ async def a_initiate_chat( Returns: ChatResult: an ChatResult object. """ - _chat_info = context.copy() - _chat_info["recipient"] = recipient + _chat_info = locals().copy() _chat_info["sender"] = self consolidate_chat_info(_chat_info, uniform_sender=self) for agent in [self, recipient]: @@ -1035,9 +1034,9 @@ async def a_initiate_chat( for _ in range(max_turns): if _ == 0: if isinstance(message, Callable): - msg2send = message(_chat_info["sender"], _chat_info["recipient"], context) + msg2send = message(_chat_info["sender"], _chat_info["recipient"], kwargs) else: - msg2send = await self.a_generate_init_message(message, **context) + msg2send = await self.a_generate_init_message(message, **kwargs) else: msg2send = await self.a_generate_reply(messages=self.chat_messages[recipient], sender=recipient) if msg2send is None: @@ -1046,9 +1045,9 @@ async def a_initiate_chat( else: self._prepare_chat(recipient, clear_history) if isinstance(message, Callable): - msg2send = message(_chat_info["sender"], _chat_info["recipient"], context) + msg2send = message(_chat_info["sender"], _chat_info["recipient"], kwargs) else: - msg2send = await self.a_generate_init_message(message, **context) + msg2send = await self.a_generate_init_message(message, **kwargs) await self.a_send(msg2send, recipient, silent=silent) summary = self._summarize_chat( summary_method, @@ -2217,13 +2216,13 @@ async def a_execute_function(self, func_call): "content": str(content), } - def generate_init_message(self, message: Union[Dict, str, None], **context) -> Union[str, Dict]: + def generate_init_message(self, message: Union[Dict, str, None], **kwargs) -> Union[str, Dict]: """Generate the initial message for the agent. If message is None, input() will be called to get the initial message. Args: message (str or None): the message to be processed. - **context: any context information. It has the following reserved fields: + **kwargs: any additional information. It has the following reserved fields: "carryover": a string or a list of string to specify the carryover information to be passed to this chat. It can be a string or a list of string. If provided, we will combine this carryover with the "message" content when generating the initial chat message. @@ -2233,17 +2232,17 @@ def generate_init_message(self, message: Union[Dict, str, None], **context) -> U if message is None: message = self.get_human_input(">") if isinstance(message, str): - return self._process_carryover(message, context) + return self._process_carryover(message, kwargs) elif isinstance(message, dict): message = message.copy() # TODO: Do we need to do the following? # if message.get("content") is None: # message["content"] = self.get_human_input(">") - message["content"] = self._process_carryover(message.get("content", ""), context) + message["content"] = self._process_carryover(message.get("content", ""), kwargs) return message - def _process_carryover(self, message: str, context: dict) -> str: - carryover = context.get("carryover") + def _process_carryover(self, message: str, kwargs: dict) -> str: + carryover = kwargs.get("carryover") if carryover: # if carryover is string if isinstance(carryover, str): @@ -2256,7 +2255,7 @@ def _process_carryover(self, message: str, context: dict) -> str: ) return message - async def a_generate_init_message(self, message: Union[Dict, str, None], **context) -> Union[str, Dict]: + async def a_generate_init_message(self, message: Union[Dict, str, None], **kwargs) -> Union[str, Dict]: """Generate the initial message for the agent. If message is None, input() will be called to get the initial message. @@ -2269,10 +2268,10 @@ async def a_generate_init_message(self, message: Union[Dict, str, None], **conte if message is None: message = await self.a_get_human_input(">") if isinstance(message, str): - return self._process_carryover(message, context) + return self._process_carryover(message, kwargs) elif isinstance(message, dict): message = message.copy() - message["content"] = self._process_carryover(message["content"], context) + message["content"] = self._process_carryover(message["content"], kwargs) return message def register_function(self, function_map: Dict[str, Union[Callable, None]]): diff --git a/notebook/agentchat_nested_sequential_chats.ipynb b/notebook/agentchat_nested_sequential_chats.ipynb index 2f591c2530a2..1b6ff0ea62f3 100644 --- a/notebook/agentchat_nested_sequential_chats.ipynb +++ b/notebook/agentchat_nested_sequential_chats.ipynb @@ -811,7 +811,7 @@ "front_matter": { "description": "Solve complex tasks with one or more sequence chats nested as inner monologue.", "tags": [ - "nested chat" + "nested chat", "sequential chat" ] }, "kernelspec": { diff --git a/test/agentchat/test_chats.py b/test/agentchat/test_chats.py index 153e5cd3bc93..b160520176b1 100755 --- a/test/agentchat/test_chats.py +++ b/test/agentchat/test_chats.py @@ -232,6 +232,7 @@ def my_summary_method(recipient, sender, summary_args): "message": financial_tasks[0], "silent": False, "summary_method": my_summary_method, + "verbose": True, "max_turns": 1, }, { @@ -240,6 +241,7 @@ def my_summary_method(recipient, sender, summary_args): "silent": False, "max_turns": 1, "summary_method": "reflection_with_llm", + "verbose": True, }, { "recipient": financial_assistant_1, From 91924f558a4cbe4b197fe7b9b27b42b3ed832ecf Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Tue, 26 Mar 2024 16:59:27 +0000 Subject: [PATCH 08/27] Bump webpack-dev-middleware from 5.3.3 to 5.3.4 in /website (#2131) Bumps [webpack-dev-middleware](https://github.com/webpack/webpack-dev-middleware) from 5.3.3 to 5.3.4. - [Release notes](https://github.com/webpack/webpack-dev-middleware/releases) - [Changelog](https://github.com/webpack/webpack-dev-middleware/blob/v5.3.4/CHANGELOG.md) - [Commits](https://github.com/webpack/webpack-dev-middleware/compare/v5.3.3...v5.3.4) --- updated-dependencies: - dependency-name: webpack-dev-middleware dependency-type: indirect ... Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> Co-authored-by: Eric Zhu --- website/yarn.lock | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/website/yarn.lock b/website/yarn.lock index 55c0dbdd3d21..cc98c129ee90 100644 --- a/website/yarn.lock +++ b/website/yarn.lock @@ -10291,9 +10291,9 @@ webpack-bundle-analyzer@^4.9.0: ws "^7.3.1" webpack-dev-middleware@^5.3.1: - version "5.3.3" - resolved "https://registry.yarnpkg.com/webpack-dev-middleware/-/webpack-dev-middleware-5.3.3.tgz#efae67c2793908e7311f1d9b06f2a08dcc97e51f" - integrity sha512-hj5CYrY0bZLB+eTO+x/j67Pkrquiy7kWepMHmUMoPsmcUaeEnQJqFzHJOyxgWlq746/wUuA64p9ta34Kyb01pA== + version "5.3.4" + resolved "https://registry.yarnpkg.com/webpack-dev-middleware/-/webpack-dev-middleware-5.3.4.tgz#eb7b39281cbce10e104eb2b8bf2b63fce49a3517" + integrity sha512-BVdTqhhs+0IfoeAf7EoH5WE+exCmqGerHfDM0IL096Px60Tq2Mn9MAbnaGUe6HiMa41KMCYF19gyzZmBcq/o4Q== dependencies: colorette "^2.0.10" memfs "^3.4.3" From 4964cfe6abde8978a620dfd03ed3fced527087c2 Mon Sep 17 00:00:00 2001 From: Wael Karkoub Date: Tue, 26 Mar 2024 19:46:44 +0100 Subject: [PATCH 09/27] Parse Any HTML-esh Style Tags (#2046) * tried implementing my own regex * improves tests * finally works * removes prints * fixed test * adds start and end * delete unused imports * refactored to use new tool * significantly improved algo * tag content -> tag attr * fix tests + adds new field * return full match * return remove start and end * update docstrings * update docstrings * update docstrings --------- Co-authored-by: Beibin Li Co-authored-by: Chi Wang --- autogen/agentchat/contrib/img_utils.py | 17 ++-- autogen/agentchat/utils.py | 109 ++++++++++++++++++++++++- test/agentchat/test_agentchat_utils.py | 76 +++++++++++++++++ 3 files changed, 191 insertions(+), 11 deletions(-) create mode 100644 test/agentchat/test_agentchat_utils.py diff --git a/autogen/agentchat/contrib/img_utils.py b/autogen/agentchat/contrib/img_utils.py index 2d2592418747..a389c74b064d 100644 --- a/autogen/agentchat/contrib/img_utils.py +++ b/autogen/agentchat/contrib/img_utils.py @@ -1,14 +1,15 @@ import base64 import copy -import mimetypes import os import re from io import BytesIO -from typing import Any, Dict, List, Optional, Tuple, Union +from typing import Dict, List, Tuple, Union import requests from PIL import Image +from autogen.agentchat import utils + def get_pil_image(image_file: Union[str, Image.Image]) -> Image.Image: """ @@ -179,13 +180,9 @@ def gpt4v_formatter(prompt: str, img_format: str = "uri") -> List[Union[str, dic last_index = 0 image_count = 0 - # Regular expression pattern for matching tags - img_tag_pattern = re.compile(r"]+)>") - # Find all image tags - for match in img_tag_pattern.finditer(prompt): - image_location = match.group(1) - + for parsed_tag in utils.parse_tags_from_content("img", prompt): + image_location = parsed_tag["attr"]["src"] try: if img_format == "pil": img_data = get_pil_image(image_location) @@ -202,12 +199,12 @@ def gpt4v_formatter(prompt: str, img_format: str = "uri") -> List[Union[str, dic continue # Add text before this image tag to output list - output.append({"type": "text", "text": prompt[last_index : match.start()]}) + output.append({"type": "text", "text": prompt[last_index : parsed_tag["match"].start()]}) # Add image data to output list output.append({"type": "image_url", "image_url": {"url": img_data}}) - last_index = match.end() + last_index = parsed_tag["match"].end() image_count += 1 # Add remaining text to output list diff --git a/autogen/agentchat/utils.py b/autogen/agentchat/utils.py index fde0b0b88b3a..eef3741605d8 100644 --- a/autogen/agentchat/utils.py +++ b/autogen/agentchat/utils.py @@ -1,4 +1,6 @@ -from typing import Any, List, Dict, Tuple, Callable +import re +from typing import Any, Callable, Dict, List, Tuple, Union + from .agent import Agent @@ -76,3 +78,108 @@ def aggregate_summary(usage_summary: Dict[str, Any], agent_summary: Dict[str, An aggregate_summary(actual_usage_summary, agent.client.actual_usage_summary) return total_usage_summary, actual_usage_summary + + +def parse_tags_from_content(tag: str, content: Union[str, List[Dict[str, Any]]]) -> List[Dict[str, Dict[str, str]]]: + """Parses HTML style tags from message contents. + + The parsing is done by looking for patterns in the text that match the format of HTML tags. The tag to be parsed is + specified as an argument to the function. The function looks for this tag in the text and extracts its content. The + content of a tag is everything that is inside the tag, between the opening and closing angle brackets. The content + can be a single string or a set of attribute-value pairs. + + Examples: + -> [{"tag": "img", "attr": {"src": "http://example.com/image.png"}, "match": re.Match}] +