diff --git a/autogen/agentchat/chat.py b/autogen/agentchat/chat.py index 885defd54f58..26ac5c57f90f 100644 --- a/autogen/agentchat/chat.py +++ b/autogen/agentchat/chat.py @@ -137,20 +137,20 @@ def initiate_chats(chat_queue: List[Dict[str, Any]]) -> List[ChatResult]: Args: chat_queue (List[Dict]): a list of dictionaries containing the information about the chats. - Each dictionary should contain the input arguments for `ConversableAgent.initiate_chat`. For example: - "sender": the sender agent. - "recipient": the recipient agent. - "clear_history" (bool): whether to clear the chat history with the agent. Default is True. - "silent" (bool or None): (Experimental) whether to print the messages in this conversation. Default is False. - "cache" (Cache or None): the cache client to use for this conversation. Default is None. - "max_turns" (int or None): maximum number of turns for the chat. If None, the chat will continue until a termination condition is met. Default is None. - "summary_method" (str or callable): a string or callable specifying the method to get a summary from the chat. Default is DEFAULT_summary_method, i.e., "last_msg". - "summary_args" (dict): a dictionary of arguments to be passed to the summary_method. Default is {}. - "message" (str, callable or None): if None, input() will be called to get the initial message. - **context: additional context information to be passed to the chat. - "carryover": It can be used to specify the carryover information to be passed to this chat. - If provided, we will combine this carryover with the "message" content when generating the initial chat - message in `generate_init_message`. + Each dictionary should contain the input arguments for [`ConversableAgent.initiate_chat`](/docs/reference/agentchat/conversable_agent#initiate_chat). For example: + - "sender": the sender agent. + - "recipient": the recipient agent. + - "clear_history" (bool): whether to clear the chat history with the agent. Default is True. + - "silent" (bool or None): (Experimental) whether to print the messages in this conversation. Default is False. + - "cache" (Cache or None): the cache client to use for this conversation. Default is None. + - "max_turns" (int or None): maximum number of turns for the chat. If None, the chat will continue until a termination condition is met. Default is None. + - "summary_method" (str or callable): a string or callable specifying the method to get a summary from the chat. Default is DEFAULT_summary_method, i.e., "last_msg". + - "summary_args" (dict): a dictionary of arguments to be passed to the summary_method. Default is {}. + - "message" (str, callable or None): if None, input() will be called to get the initial message. + - **context: additional context information to be passed to the chat. + - "carryover": It can be used to specify the carryover information to be passed to this chat. + If provided, we will combine this carryover with the "message" content when generating the initial chat + message in `generate_init_message`. Returns: (list): a list of ChatResult objects corresponding to the finished chats in the chat_queue. diff --git a/autogen/agentchat/conversable_agent.py b/autogen/agentchat/conversable_agent.py index b42973652bb9..838af6e7df70 100644 --- a/autogen/agentchat/conversable_agent.py +++ b/autogen/agentchat/conversable_agent.py @@ -296,18 +296,18 @@ def register_reply( from both sync and async chats. However, an async reply function will only be triggered from async chats (initiated with `ConversableAgent.a_initiate_chat`). If an `async` reply function is registered and a chat is initialized with a sync function, `ignore_async_in_sync_chat` determines the behaviour as follows: - - if `ignore_async_in_sync_chat` is set to `False` (default value), an exception will be raised, and - - if `ignore_async_in_sync_chat` is set to `True`, the reply function will be ignored. + if `ignore_async_in_sync_chat` is set to `False` (default value), an exception will be raised, and + if `ignore_async_in_sync_chat` is set to `True`, the reply function will be ignored. Args: trigger (Agent class, str, Agent instance, callable, or list): the trigger. - - If a class is provided, the reply function will be called when the sender is an instance of the class. - - If a string is provided, the reply function will be called when the sender's name matches the string. - - If an agent instance is provided, the reply function will be called when the sender is the agent instance. - - If a callable is provided, the reply function will be called when the callable returns True. - - If a list is provided, the reply function will be called when any of the triggers in the list is activated. - - If None is provided, the reply function will be called only when the sender is None. - Note: Be sure to register `None` as a trigger if you would like to trigger an auto-reply function with non-empty messages and `sender=None`. + If a class is provided, the reply function will be called when the sender is an instance of the class. + If a string is provided, the reply function will be called when the sender's name matches the string. + If an agent instance is provided, the reply function will be called when the sender is the agent instance. + If a callable is provided, the reply function will be called when the callable returns True. + If a list is provided, the reply function will be called when any of the triggers in the list is activated. + If None is provided, the reply function will be called only when the sender is None. + Note: Be sure to register `None` as a trigger if you would like to trigger an auto-reply function with non-empty messages and `sender=None`. reply_func (Callable): the reply function. The function takes a recipient agent, a list of messages, a sender agent and a config as input and returns a reply message. position: the position of the reply function in the reply function list. @@ -880,66 +880,71 @@ def initiate_chat( silent (bool or None): (Experimental) whether to print the messages for this conversation. Default is False. cache (Cache or None): the cache client to be used for this conversation. Default is None. max_turns (int or None): the maximum number of turns for the chat between the two agents. One turn means one conversation round trip. Note that this is different from - [max_consecutive_auto_reply](#max_consecutive_auto_reply) which is the maximum number of consecutive auto replies; and it is also different from [max_rounds in GroupChat](./groupchat#groupchat-objects) which is the maximum number of rounds in a group chat session. - If max_turns is set to None, the chat will continue until a termination condition is met. Default is None. - summary_method (string or callable) : a method to get a summary from the chat. Default is DEFAULT_SUMMARY_METHOD, i.e., "last_msg". - - Supported string are "last_msg" and "reflection_with_llm": - when set "last_msg", it returns the last message of the dialog as the summary. - when set "reflection_with_llm", it returns a summary extracted using an llm client. - `llm_config` must be set in either the recipient or sender. - "reflection_with_llm" requires the llm_config to be set in either the sender or the recipient. - - A callable summary_method should take the recipient and sender agent in a chat as input and return a string of summary. E.g, - ```python - def my_summary_method( - sender: ConversableAgent, - recipient: ConversableAgent, - summary_args: dict, - ): - return recipient.last_message(sender)["content"] - ``` + [max_consecutive_auto_reply](#max_consecutive_auto_reply) which is the maximum number of consecutive auto replies; and it is also different from [max_rounds in GroupChat](./groupchat#groupchat-objects) which is the maximum number of rounds in a group chat session. + If max_turns is set to None, the chat will continue until a termination condition is met. Default is None. + summary_method (str or callable): a method to get a summary from the chat. Default is DEFAULT_SUMMARY_METHOD, i.e., "last_msg". + + Supported strings are "last_msg" and "reflection_with_llm": + - when set to "last_msg", it returns the last message of the dialog as the summary. + - when set to "reflection_with_llm", it returns a summary extracted using an llm client. + `llm_config` must be set in either the recipient or sender. + + A callable summary_method should take the recipient and sender agent in a chat as input and return a string of summary. E.g., + + ```python + def my_summary_method( + sender: ConversableAgent, + recipient: ConversableAgent, + summary_args: dict, + ): + return recipient.last_message(sender)["content"] + ``` summary_args (dict): a dictionary of arguments to be passed to the summary_method. - E.g., a string of text used to prompt a LLM-based agent (the sender or receiver agent) to reflext - on the conversation and extract a summary when summary_method is "reflection_with_llm". - Default is DEFAULT_SUMMARY_PROMPT, i.e., "Summarize takeaway from the conversation. Do not add any introductory phrases. If the intended request is NOT properly addressed, please point it out." + One example key is "summary_prompt", and value is a string of text used to prompt a LLM-based agent (the sender or receiver agent) to reflect + on the conversation and extract a summary when summary_method is "reflection_with_llm". + The default summary_prompt is DEFAULT_SUMMARY_PROMPT, i.e., "Summarize takeaway from the conversation. Do not add any introductory phrases. If the intended request is NOT properly addressed, please point it out." message (str, dict or Callable): the initial message to be sent to the recipient. Needs to be provided. Otherwise, input() will be called to get the initial message. - - If a string or a dict is provided, it will be used as the initial message. `generate_init_message` is called to generate the initial message for the agent based on this string and the context. - If dict, it may contain the following reserved fields (either content or function_call need to be provided). - 1. "content": content of the message, can be None. - 2. "function_call": a dictionary containing the function name and arguments. (deprecated in favor of "tool_calls") - 3. "tool_calls": a list of dictionaries containing the function name and arguments. - 4. "role": role of the message, can be "assistant", "user", "function". - This field is only needed to distinguish between "function" or "assistant"/"user". - 5. "name": In most cases, this field is not needed. When the role is "function", this field is needed to indicate the function name. - 6. "context" (dict): the context of the message, which will be passed to - [OpenAIWrapper.create](../oai/client#create). - - If a callable is provided, it will be called to get the initial message in the form of a string or a dict. If the returned value is a dict, it should contain the following reserved fields: + - If a string or a dict is provided, it will be used as the initial message. `generate_init_message` is called to generate the initial message for the agent based on this string and the context. + If dict, it may contain the following reserved fields (either content or tool_calls need to be provided). + + 1. "content": content of the message, can be None. + 2. "function_call": a dictionary containing the function name and arguments. (deprecated in favor of "tool_calls") + 3. "tool_calls": a list of dictionaries containing the function name and arguments. + 4. "role": role of the message, can be "assistant", "user", "function". + This field is only needed to distinguish between "function" or "assistant"/"user". + 5. "name": In most cases, this field is not needed. When the role is "function", this field is needed to indicate the function name. + 6. "context" (dict): the context of the message, which will be passed to + [OpenAIWrapper.create](../oai/client#create). + + - If a callable is provided, it will be called to get the initial message in the form of a string or a dict. If the returned type is dict, it may contain the reserved fields mentioned above. Example of a callable message (returning a string): - ```python - def my_message(sender: ConversableAgent, recipient: ConversableAgent, context: dict) -> Union[str, Dict]: - carryover = context.get("carryover", "") - if isinstance(message, list): - carryover = carryover[-1] - final_msg = "Write a blogpost." + "\nContext: \n" + carryover - return final_msg - ``` + + ```python + def my_message(sender: ConversableAgent, recipient: ConversableAgent, context: dict) -> Union[str, Dict]: + carryover = context.get("carryover", "") + if isinstance(message, list): + carryover = carryover[-1] + final_msg = "Write a blogpost." + "\\nContext: \\n" + carryover + return final_msg + ``` Example of a callable message (returning a dict): - ```python - def my_message(sender: ConversableAgent, recipient: ConversableAgent, context: dict) -> Union[str, Dict]: - final_msg = {} - carryover = context.get("carryover", "") - carryover = context.get("carryover", "") - if isinstance(message, list): - carryover = carryover[-1] - final_msg["content"] = "Write a blogpost." + "\nContext: \n" + carryover - final_msg["context"] = {"prefix": "Today I feel"} - return final_msg - ``` + + ```python + def my_message(sender: ConversableAgent, recipient: ConversableAgent, context: dict) -> Union[str, Dict]: + final_msg = {} + carryover = context.get("carryover", "") + if isinstance(message, list): + carryover = carryover[-1] + final_msg["content"] = "Write a blogpost." + "\\nContext: \\n" + carryover + final_msg["context"] = {"prefix": "Today I feel"} + return final_msg + ``` **context: any context information. It has the following reserved fields: - "carryover": a string or a list of string to specify the carryover information to be passed to this chat. - If provided, we will combine this carryover (by attaching a "context: "string and the carryover content after the message content) with the "message" content when generating the initial chat + - "carryover": a string or a list of string to specify the carryover information to be passed to this chat. + If provided, we will combine this carryover (by attaching a "context: " string and the carryover content after the message content) with the "message" content when generating the initial chat message in `generate_init_message`. Raises: diff --git a/autogen/version.py b/autogen/version.py index 04d1c7c53109..198d6db62730 100644 --- a/autogen/version.py +++ b/autogen/version.py @@ -1 +1 @@ -__version__ = "0.2.19" +__version__ = "0.2.20" diff --git a/test/agentchat/test_async_chats.py b/test/agentchat/test_async_chats.py index 8ad0216a7686..95a54f4cf54d 100755 --- a/test/agentchat/test_async_chats.py +++ b/test/agentchat/test_async_chats.py @@ -1,15 +1,14 @@ #!/usr/bin/env python3 -m pytest -from autogen import AssistantAgent, UserProxyAgent -from autogen import GroupChat, GroupChatManager -import asyncio -from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST import pytest -from conftest import skip_openai +import sys +import os import autogen -from typing import Literal -from typing_extensions import Annotated -from autogen import initiate_chats +from autogen import AssistantAgent, UserProxyAgent +from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST + +sys.path.append(os.path.join(os.path.dirname(__file__), "..")) +from conftest import skip_openai # noqa: E402 @pytest.mark.skipif(skip_openai, reason="requested to skip openai tests") @@ -31,6 +30,7 @@ async def test_async_chats(): financial_assistant_1 = AssistantAgent( name="Financial_assistant_1", llm_config={"config_list": config_list}, + system_message="You are a knowledgeable AI Assistant.", ) financial_assistant_2 = AssistantAgent( name="Financial_assistant_2", @@ -60,7 +60,7 @@ async def test_async_chats(): ) def my_summary_method(recipient, sender, summary_args): - return recipient.chat_messages[sender][0].get("content", "") + return recipient.chat_messages[sender][-1].get("content", "") chat_res = await user.a_initiate_chats( [ @@ -78,6 +78,7 @@ def my_summary_method(recipient, sender, summary_args): "message": financial_tasks[1], "silent": True, "summary_method": "reflection_with_llm", + "max_turns": 3, }, { "chat_id": 3, diff --git a/test/agentchat/test_conversable_agent.py b/test/agentchat/test_conversable_agent.py index b48279ac6282..5c5676dd1c91 100755 --- a/test/agentchat/test_conversable_agent.py +++ b/test/agentchat/test_conversable_agent.py @@ -10,7 +10,6 @@ from unittest.mock import MagicMock import pytest -from unittest.mock import patch from pydantic import BaseModel, Field from typing_extensions import Annotated import autogen @@ -19,16 +18,12 @@ from autogen.agentchat.conversable_agent import register_function from autogen.exception_utils import InvalidCarryOverType, SenderRequired from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST -from conftest import MOCK_OPEN_AI_API_KEY, skip_openai -try: - import openai -except ImportError: - skip = True -else: - skip = False or skip_openai +sys.path.append(os.path.join(os.path.dirname(__file__), "..")) +from conftest import MOCK_OPEN_AI_API_KEY, skip_openai # noqa: E402 here = os.path.abspath(os.path.dirname(__file__)) +REASON = "requested to skip openai tests" @pytest.fixture @@ -921,8 +916,8 @@ def exec_python(cell: Annotated[str, "Valid Python cell to execute."]) -> str: @pytest.mark.skipif( - skip or not sys.version.startswith("3.10"), - reason="do not run if openai is not installed or py!=3.10", + skip_openai, + reason=REASON, ) def test_function_registration_e2e_sync() -> None: config_list = autogen.config_list_from_json( @@ -998,8 +993,8 @@ def stopwatch(num_seconds: Annotated[str, "Number of seconds in the stopwatch."] @pytest.mark.skipif( - skip or not sys.version.startswith("3.10"), - reason="do not run if openai is not installed or py!=3.10", + skip_openai, + reason=REASON, ) @pytest.mark.asyncio() async def test_function_registration_e2e_async() -> None: @@ -1075,7 +1070,7 @@ def stopwatch(num_seconds: Annotated[str, "Number of seconds in the stopwatch."] stopwatch_mock.assert_called_once_with(num_seconds="5") -@pytest.mark.skipif(skip_openai, reason="requested to skip openai tests") +@pytest.mark.skipif(skip_openai, reason=REASON) def test_max_turn(): config_list = autogen.config_list_from_json(OAI_CONFIG_LIST, KEY_LOC) @@ -1097,7 +1092,7 @@ def test_max_turn(): assert len(res.chat_history) <= 6 -@pytest.mark.skipif(skip, reason="openai not installed OR requested to skip") +@pytest.mark.skipif(skip_openai, reason=REASON) def test_message_func(): import random @@ -1153,7 +1148,7 @@ def my_message_play(sender, recipient, context): print(chat_res_play.summary) -@pytest.mark.skipif(skip, reason="openai not installed OR requested to skip") +@pytest.mark.skipif(skip_openai, reason=REASON) def test_summary(): import random diff --git a/website/docs/topics/prompting-and-reasoning/reflection.ipynb b/website/docs/topics/prompting-and-reasoning/reflection.ipynb index a042c45e8135..24fcb6a0f249 100644 --- a/website/docs/topics/prompting-and-reasoning/reflection.ipynb +++ b/website/docs/topics/prompting-and-reasoning/reflection.ipynb @@ -8,7 +8,9 @@ "source": [ "# LLM Reflection\n", "\n", - "AutoGen supports different LLM prompting and reasoning strategies, such as ReAct, Reflection/Self-Critique, and more. This notebook demonstrates how to realize general LLM reflection with AutoGen. Reflection is a general prompting strategy which involves having LLMs analyze their own outputs, behaviors, knowledge, or reasoning processes." + "AutoGen supports different LLM prompting and reasoning strategies, such as ReAct, Reflection/Self-Critique, and more. This notebook demonstrates how to realize general LLM reflection with AutoGen. Reflection is a general prompting strategy which involves having LLMs analyze their own outputs, behaviors, knowledge, or reasoning processes.\n", + "\n", + "This example leverages a generic interface [nested chats](/docs/tutorial/conversation-patterns#nested-chats) to implement the reflection using multi-agents." ] }, { diff --git a/website/docs/tutorial/conversation-patterns.ipynb b/website/docs/tutorial/conversation-patterns.ipynb index c3da6fda0580..2763787bd73e 100644 --- a/website/docs/tutorial/conversation-patterns.ipynb +++ b/website/docs/tutorial/conversation-patterns.ipynb @@ -1524,9 +1524,9 @@ "metadata": {}, "source": [ "The implementation of the nested chats handler makes use of the\n", - "[`registered_reply`](../reference/agentchat/conversable_agent/#register_reply)\n", + "[`register_reply`](../reference/agentchat/conversable_agent/#register_reply)\n", "method, which allows you to make extensive customization to\n", - " `ConversableAgent`." + " `ConversableAgent`. The GroupChatManager uses the same mechanism to implement the group chat." ] }, { @@ -1537,7 +1537,7 @@ "\n", "In this chapter, we covered two-agent chat, sequential chat, group chat,\n", "and nested chat patterns. You can compose these patterns like LEGO blocks to \n", - "create complex workflows.\n", + "create complex workflows. You can also use [`register_reply`](../reference/agentchat/conversable_agent/#register_reply) to create new patterns.\n", "\n", "This is the last chapter on basic AutoGen concepts. \n", "In the next chatper, we will give you some tips on what to do next." diff --git a/website/sidebars.js b/website/sidebars.js index f88e660f6abe..1abe16d682b7 100644 --- a/website/sidebars.js +++ b/website/sidebars.js @@ -11,7 +11,17 @@ module.exports = { docsSidebar: [ - 'Getting-Started', + 'Getting-Started', + { + type: "category", + label: "Installation", + collapsed: true, + items: ["installation/Docker", "installation/Optional-Dependencies"], + link: { + type: 'doc', + id: "installation/Installation" + }, + }, { type: 'category', label: 'Tutorial', @@ -48,16 +58,7 @@ } ], }, - { - type: "category", - label: "Installation", - collapsed: true, - items: ["installation/Docker", "installation/Optional-Dependencies"], - link: { - type: 'doc', - id: "installation/Installation" - }, - }, + {'Use Cases': [{type: 'autogenerated', dirName: 'Use-Cases'}]}, { type: 'category', label: 'Topics', @@ -67,8 +68,8 @@ description: 'Learn about various topics in AutoGen', slug: 'topics', }, - items: [{type: 'autogenerated', dirName: 'topics'}]}, - {'Use Cases': [{type: 'autogenerated', dirName: 'Use-Cases'}]}, + items: [{type: 'autogenerated', dirName: 'topics'}] + }, 'Contribute', 'Research', {'Ecosystem': [{type: 'autogenerated', dirName: 'ecosystem'}]}, @@ -89,6 +90,5 @@ id: "notebooks" }, }, - ] };