(base) D:\work\repos\autogen>conda create -n ag4 pip python=3.8.17 Collecting package metadata (current_repodata.json): done Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source. Collecting package metadata (repodata.json): done Solving environment: done ==> WARNING: A newer version of conda exists. <== current version: 4.12.0 latest version: 23.7.4 Please update conda by running $ conda update -n base -c defaults conda ## Package Plan ## environment location: C:\Users\riloynd.REDMOND\.conda\envs\ag4 added / updated specs: - pip - python=3.8.17 The following NEW packages will be INSTALLED: ca-certificates pkgs/main/win-64::ca-certificates-2023.08.22-haa95532_0 libffi pkgs/main/win-64::libffi-3.4.4-hd77b12b_0 openssl pkgs/main/win-64::openssl-3.0.11-h2bbff1b_2 pip pkgs/main/win-64::pip-23.2.1-py38haa95532_0 python pkgs/main/win-64::python-3.8.17-h1aa4202_0 setuptools pkgs/main/win-64::setuptools-68.0.0-py38haa95532_0 sqlite pkgs/main/win-64::sqlite-3.41.2-h2bbff1b_0 vc pkgs/main/win-64::vc-14.2-h21ff451_1 vs2015_runtime pkgs/main/win-64::vs2015_runtime-14.27.29016-h5e58377_2 wheel pkgs/main/win-64::wheel-0.41.2-py38haa95532_0 Proceed ([y]/n)? y Preparing transaction: done Verifying transaction: done Executing transaction: done # # To activate this environment, use # # $ conda activate ag4 # # To deactivate an active environment, use # # $ conda deactivate (base) D:\work\repos\autogen>git pull remote: Enumerating objects: 4, done. remote: Counting objects: 100% (4/4), done. remote: Total 4 (delta 3), reused 4 (delta 3), pack-reused 0 Unpacking objects: 100% (4/4), 414 bytes | 2.00 KiB/s, done. From https://github.com/microsoft/autogen 0217ed1..b6ffdf0 win -> origin/win Updating 0217ed1..b6ffdf0 Fast-forward test/test_code.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) (base) D:\work\repos\autogen>conda activate ag4 (ag4) D:\work\repos\autogen>pip install -e. Obtaining file:///D:/work/repos/autogen Installing build dependencies ... done Checking if build backend supports build_editable ... done Getting requirements to build editable ... done Preparing editable metadata (pyproject.toml) ... done Collecting openai (from pyautogen==0.1.3) Obtaining dependency information for openai from https://files.pythonhosted.org/packages/1e/9f/385c25502f437686e4aa715969e5eaf5c2cb5e5ffa7c5cdd52f3c6ae967a/openai-0.28.1-py3-none-any.whl.metadata Using cached openai-0.28.1-py3-none-any.whl.metadata (11 kB) Collecting diskcache (from pyautogen==0.1.3) Obtaining dependency information for diskcache from https://files.pythonhosted.org/packages/3f/27/4570e78fc0bf5ea0ca45eb1de3818a23787af9b390c0b0a0033a1b8236f9/diskcache-5.6.3-py3-none-any.whl.metadata Using cached diskcache-5.6.3-py3-none-any.whl.metadata (20 kB) Collecting termcolor (from pyautogen==0.1.3) Using cached termcolor-2.3.0-py3-none-any.whl (6.9 kB) Collecting flaml (from pyautogen==0.1.3) Obtaining dependency information for flaml from https://files.pythonhosted.org/packages/7b/09/9e499ac7caa4c07483fdb6177f704ffa3ea5cfad3228a8f878c0c335dd67/FLAML-2.1.0-py3-none-any.whl.metadata Using cached FLAML-2.1.0-py3-none-any.whl.metadata (15 kB) Collecting NumPy>=1.17.0rc1 (from flaml->pyautogen==0.1.3) Obtaining dependency information for NumPy>=1.17.0rc1 from https://files.pythonhosted.org/packages/69/65/0d47953afa0ad569d12de5f65d964321c208492064c38fe3b0b9744f8d44/numpy-1.24.4-cp38-cp38-win_amd64.whl.metadata Using cached numpy-1.24.4-cp38-cp38-win_amd64.whl.metadata (5.6 kB) Collecting requests>=2.20 (from openai->pyautogen==0.1.3) Obtaining dependency information for requests>=2.20 from https://files.pythonhosted.org/packages/70/8e/0e2d847013cb52cd35b38c009bb167a1a26b2ce6cd6965bf26b47bc0bf44/requests-2.31.0-py3-none-any.whl.metadata Using cached requests-2.31.0-py3-none-any.whl.metadata (4.6 kB) Collecting tqdm (from openai->pyautogen==0.1.3) Obtaining dependency information for tqdm from https://files.pythonhosted.org/packages/00/e5/f12a80907d0884e6dff9c16d0c0114d81b8cd07dc3ae54c5e962cc83037e/tqdm-4.66.1-py3-none-any.whl.metadata Using cached tqdm-4.66.1-py3-none-any.whl.metadata (57 kB) Collecting aiohttp (from openai->pyautogen==0.1.3) Obtaining dependency information for aiohttp from https://files.pythonhosted.org/packages/68/6f/b9ff16bc6aef88cf20b021344b6570582f9eb00f3ed6ade38e1919729e1a/aiohttp-3.8.5-cp38-cp38-win_amd64.whl.metadata Using cached aiohttp-3.8.5-cp38-cp38-win_amd64.whl.metadata (8.0 kB) Collecting charset-normalizer<4,>=2 (from requests>=2.20->openai->pyautogen==0.1.3) Obtaining dependency information for charset-normalizer<4,>=2 from https://files.pythonhosted.org/packages/6b/b2/9d0c8fe83572a37bd66150399e289d8e96d62eca359ffa67c021b4120887/charset_normalizer-3.2.0-cp38-cp38-win_amd64.whl.metadata Using cached charset_normalizer-3.2.0-cp38-cp38-win_amd64.whl.metadata (31 kB) Collecting idna<4,>=2.5 (from requests>=2.20->openai->pyautogen==0.1.3) Using cached idna-3.4-py3-none-any.whl (61 kB) Collecting urllib3<3,>=1.21.1 (from requests>=2.20->openai->pyautogen==0.1.3) Obtaining dependency information for urllib3<3,>=1.21.1 from https://files.pythonhosted.org/packages/37/dc/399e63f5d1d96bb643404ee830657f4dfcf8503f5ba8fa3c6d465d0c57fe/urllib3-2.0.5-py3-none-any.whl.metadata Using cached urllib3-2.0.5-py3-none-any.whl.metadata (6.6 kB) Collecting certifi>=2017.4.17 (from requests>=2.20->openai->pyautogen==0.1.3) Obtaining dependency information for certifi>=2017.4.17 from https://files.pythonhosted.org/packages/4c/dd/2234eab22353ffc7d94e8d13177aaa050113286e93e7b40eae01fbf7c3d9/certifi-2023.7.22-py3-none-any.whl.metadata Using cached certifi-2023.7.22-py3-none-any.whl.metadata (2.2 kB) Collecting attrs>=17.3.0 (from aiohttp->openai->pyautogen==0.1.3) Using cached attrs-23.1.0-py3-none-any.whl (61 kB) Collecting multidict<7.0,>=4.5 (from aiohttp->openai->pyautogen==0.1.3) Using cached multidict-6.0.4-cp38-cp38-win_amd64.whl (28 kB) Collecting async-timeout<5.0,>=4.0.0a3 (from aiohttp->openai->pyautogen==0.1.3) Obtaining dependency information for async-timeout<5.0,>=4.0.0a3 from https://files.pythonhosted.org/packages/a7/fa/e01228c2938de91d47b307831c62ab9e4001e747789d0b05baf779a6488c/async_timeout-4.0.3-py3-none-any.whl.metadata Using cached async_timeout-4.0.3-py3-none-any.whl.metadata (4.2 kB) Collecting yarl<2.0,>=1.0 (from aiohttp->openai->pyautogen==0.1.3) Using cached yarl-1.9.2-cp38-cp38-win_amd64.whl (61 kB) Collecting frozenlist>=1.1.1 (from aiohttp->openai->pyautogen==0.1.3) Obtaining dependency information for frozenlist>=1.1.1 from https://files.pythonhosted.org/packages/41/63/84dfd1d1f07485785f8ec756cf1759a95246e18c1617274af243f9ac9a6f/frozenlist-1.4.0-cp38-cp38-win_amd64.whl.metadata Using cached frozenlist-1.4.0-cp38-cp38-win_amd64.whl.metadata (5.3 kB) Collecting aiosignal>=1.1.2 (from aiohttp->openai->pyautogen==0.1.3) Using cached aiosignal-1.3.1-py3-none-any.whl (7.6 kB) Collecting colorama (from tqdm->openai->pyautogen==0.1.3) Using cached colorama-0.4.6-py2.py3-none-any.whl (25 kB) Using cached diskcache-5.6.3-py3-none-any.whl (45 kB) Using cached FLAML-2.1.0-py3-none-any.whl (295 kB) Using cached openai-0.28.1-py3-none-any.whl (76 kB) Using cached numpy-1.24.4-cp38-cp38-win_amd64.whl (14.9 MB) Using cached requests-2.31.0-py3-none-any.whl (62 kB) Using cached aiohttp-3.8.5-cp38-cp38-win_amd64.whl (327 kB) Using cached tqdm-4.66.1-py3-none-any.whl (78 kB) Using cached async_timeout-4.0.3-py3-none-any.whl (5.7 kB) Using cached certifi-2023.7.22-py3-none-any.whl (158 kB) Using cached charset_normalizer-3.2.0-cp38-cp38-win_amd64.whl (96 kB) Using cached frozenlist-1.4.0-cp38-cp38-win_amd64.whl (44 kB) Using cached urllib3-2.0.5-py3-none-any.whl (123 kB) Building wheels for collected packages: pyautogen Building editable for pyautogen (pyproject.toml) ... done Created wheel for pyautogen: filename=pyautogen-0.1.3-0.editable-py3-none-any.whl size=13677 sha256=9d153bfc5285e51d2e6c58942a4306c579dc3c010071dd9f5ade59db72cb4a61 Stored in directory: C:\Users\riloynd.REDMOND\AppData\Local\Temp\pip-ephem-wheel-cache-d7gg9gxr\wheels\c8\be\41\c0f16a23d31c4664b6267473b1c6191e7a26b8d95541239e5c Successfully built pyautogen Installing collected packages: urllib3, termcolor, NumPy, multidict, idna, frozenlist, diskcache, colorama, charset-normalizer, certifi, attrs, async-timeout, yarl, tqdm, requests, flaml, aiosignal, aiohttp, openai, pyautogen Successfully installed NumPy-1.24.4 aiohttp-3.8.5 aiosignal-1.3.1 async-timeout-4.0.3 attrs-23.1.0 certifi-2023.7.22 charset-normalizer-3.2.0 colorama-0.4.6 diskcache-5.6.3 flaml-2.1.0 frozenlist-1.4.0 idna-3.4 multidict-6.0.4 openai-0.28.1 pyautogen-0.1.3 requests-2.31.0 termcolor-2.3.0 tqdm-4.66.1 urllib3-2.0.5 yarl-1.9.2 (ag4) D:\work\repos\autogen>pip freeze aiohttp==3.8.5 aiosignal==1.3.1 async-timeout==4.0.3 attrs==23.1.0 certifi==2023.7.22 charset-normalizer==3.2.0 colorama==0.4.6 diskcache==5.6.3 FLAML==2.1.0 frozenlist==1.4.0 idna==3.4 multidict==6.0.4 numpy==1.24.4 openai==0.28.1 -e git+https://github.com/microsoft/autogen.git@b6ffdf000a6b809f4b1dff3a1945c26fca759709#egg=pyautogen requests==2.31.0 termcolor==2.3.0 tqdm==4.66.1 urllib3==2.0.5 yarl==1.9.2 (ag4) D:\work\repos\autogen>python test/twoagent.py user_proxy (to assistant): Plot a chart of NVDA and TESLA stock price change YTD. -------------------------------------------------------------------------------- assistant (to user_proxy): Sure. To accomplish this, we can utilize the libraries: `yfinance`, `pandas` and `matplotlib`. First, we will download the historical stock prices of both NVDA and TESLA for this year to date (YTD) using Yahoo Finance (`yfinance`). Then, we will calculate the change in the stocks price compared to the beginning of this year. Lastly, we will plot these changes on the same chart using matplotlib. This is a step by step Python code to execute: ```python # Import the libraries import yfinance as yf import pandas as pd import matplotlib.pyplot as plt from datetime import date # Define this year to date (YTD) start_date = date(date.today().year, 1, 1) end_date = date.today() # Download NVDA stock price nvda = yf.download('NVDA', start=start_date, end=end_date) # Download TESLA stock price tsla = yf.download('TSLA', start=start_date, end=end_date) # Calculate the price change since the beginning of the period nvda_change = nvda['Close'].pct_change().cumsum() tsla_change = tsla['Close'].pct_change().cumsum() # Create a new DataFrame for the price changes data = pd.DataFrame({'NVDA': nvda_change, 'TESLA': tsla_change}) # Plot the price changes data.plot() plt.title('NVDA vs TESLA stock price change YTD') plt.show() ``` You just need to execute the above python code. If you have not installed `yfinance`, you can add `!pip install yfinance` as the first line. Please replace `!` with `pip` if you're not using Jupyter notebook. -------------------------------------------------------------------------------- Provide feedback to assistant. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: >>>>>>>> NO HUMAN INPUT RECEIVED. >>>>>>>> USING AUTO REPLY... >>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)... WARNING:root:SIGALRM is not supported on Windows. No timeout will be enforced. user_proxy (to assistant): exitcode: 1 (execution failed) Code output: Traceback (most recent call last): File ".\", line 2, in import yfinance as yf ModuleNotFoundError: No module named 'yfinance' -------------------------------------------------------------------------------- assistant (to user_proxy): From the error message, it seems like the `yfinance` library is not installed. This library is essential for getting the price data. Let's install it using pip through the following command: ```python !pip install yfinance ``` After successfully installing `yfinance`, you can then proceed to execute the previous block of code again. -------------------------------------------------------------------------------- Provide feedback to assistant. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: >>>>>>>> NO HUMAN INPUT RECEIVED. >>>>>>>> USING AUTO REPLY... >>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)... WARNING:root:SIGALRM is not supported on Windows. No timeout will be enforced. user_proxy (to assistant): exitcode: 1 (execution failed) Code output: File ".\", line 1 !pip install yfinance ^ SyntaxError: invalid syntax -------------------------------------------------------------------------------- assistant (to user_proxy): I apologize for the confusion. That was indeed my mistake. The `!` symbol is used in Jupyter Notebook to run shell commands. If you're not using Jupyter notebook, you should omit the `!` symbol and run the pip command in your terminal or command prompt. Please open your terminal/command prompt and execute the following command: ```sh pip install yfinance ``` After you've installed the `yfinance` Python module, you can proceed to run the Python code that I provided earlier. -------------------------------------------------------------------------------- Provide feedback to assistant. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: >>>>>>>> NO HUMAN INPUT RECEIVED. >>>>>>>> USING AUTO REPLY... >>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is sh)... WARNING:root:SIGALRM is not supported on Windows. No timeout will be enforced. user_proxy (to assistant): exitcode: 1 (execution failed) Code output: .\ : File cannot be loaded because running scripts is disabled on this system. For more information, see about_Execution_Policies at https:/go.microsoft.com/fwlink/?LinkID=135170. At line:1 char:1 + .\ + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + CategoryInfo : SecurityError: (:) [], PSSecurityException + FullyQualifiedErrorId : UnauthorizedAccess -------------------------------------------------------------------------------- assistant (to user_proxy): Sorry for the confusion. It appears you're running these commands on a PowerShell terminal on Windows. The error message tells us that the script cannot execute because your system’s default ExecutionPolicy settings disallow it. However, we can try another approach using Python. In this scenario, we need to install the `yfinance` module that can be done using Python itself. Use the following Python code to install the `yfinance` module. ```python import sys !{sys.executable} -m pip install yfinance ``` After the successful installation, we can proceed to execute the initial Python code block that retrieves the stock price information and generates the plot. -------------------------------------------------------------------------------- Provide feedback to assistant. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: >>>>>>>> NO HUMAN INPUT RECEIVED. >>>>>>>> USING AUTO REPLY... >>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)... WARNING:root:SIGALRM is not supported on Windows. No timeout will be enforced. user_proxy (to assistant): exitcode: 1 (execution failed) Code output: File ".\", line 2 !{sys.executable} -m pip install yfinance ^ SyntaxError: invalid syntax -------------------------------------------------------------------------------- assistant (to user_proxy): Apologies for the confusion. There might be restrictions in your environment. Let's try another approach. Could you please execute the following Python code? ```python import subprocess import sys def install(package): subprocess.check_call([sys.executable, "-m", "pip", "install", package]) # Install the yfinance package install('yfinance') ``` Once you have successfully executed this code and installed the `yfinance` package, you can proceed with the initial code provided for plotting the NVDA and TESLA stock price changes. -------------------------------------------------------------------------------- Provide feedback to assistant. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: >>>>>>>> NO HUMAN INPUT RECEIVED. >>>>>>>> USING AUTO REPLY... >>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)... WARNING:root:SIGALRM is not supported on Windows. No timeout will be enforced. user_proxy (to assistant): exitcode: 0 (execution succeeded) Code output: Collecting yfinance Obtaining dependency information for yfinance from https://files.pythonhosted.org/packages/60/bf/70efe5138327c7ccf34f0a870ac97d41d3c06fecb2ec8dc2060ff39aadc9/yfinance-0.2.30-py2.py3-none-any.whl.metadata Downloading yfinance-0.2.30-py2.py3-none-any.whl.metadata (11 kB) Collecting pandas>=1.3.0 (from yfinance) Obtaining dependency information for pandas>=1.3.0 from https://files.pythonhosted.org/packages/c3/6c/ea362eef61f05553aaf1a24b3e96b2d0603f5dc71a3bd35688a24ed88843/pandas-2.0.3-cp38-cp38-win_amd64.whl.metadata Using cached pandas-2.0.3-cp38-cp38-win_amd64.whl.metadata (18 kB) Requirement already satisfied: numpy>=1.16.5 in c:\users\riloynd.redmond\.conda\envs\ag4\lib\site-packages (from yfinance) (1.24.4) Requirement already satisfied: requests>=2.31 in c:\users\riloynd.redmond\.conda\envs\ag4\lib\site-packages (from yfinance) (2.31.0) Collecting multitasking>=0.0.7 (from yfinance) Downloading multitasking-0.0.11-py3-none-any.whl (8.5 kB) Collecting lxml>=4.9.1 (from yfinance) Obtaining dependency information for lxml>=4.9.1 from https://files.pythonhosted.org/packages/7a/2f/61afbbb627e910d83613f198ceea270376f6708f52a95b534db10c67b4eb/lxml-4.9.3-cp38-cp38-win_amd64.whl.metadata Using cached lxml-4.9.3-cp38-cp38-win_amd64.whl.metadata (3.8 kB) Collecting appdirs>=1.4.4 (from yfinance) Using cached appdirs-1.4.4-py2.py3-none-any.whl (9.6 kB) Collecting pytz>=2022.5 (from yfinance) Obtaining dependency information for pytz>=2022.5 from https://files.pythonhosted.org/packages/32/4d/aaf7eff5deb402fd9a24a1449a8119f00d74ae9c2efa79f8ef9994261fc2/pytz-2023.3.post1-py2.py3-none-any.whl.metadata Using cached pytz-2023.3.post1-py2.py3-none-any.whl.metadata (22 kB) Collecting frozendict>=2.3.4 (from yfinance) Downloading frozendict-2.3.8-cp38-cp38-win_amd64.whl (35 kB) Collecting peewee>=3.16.2 (from yfinance) Downloading peewee-3.16.3.tar.gz (928 kB) -------------------------------------- 928.0/928.0 kB 8.3 MB/s eta 0:00:00 Installing build dependencies: started Installing build dependencies: finished with status 'done' Getting requirements to build wheel: started Getting requirements to build wheel: finished with status 'done' Preparing metadata (pyproject.toml): started Preparing metadata (pyproject.toml): finished with status 'done' Collecting beautifulsoup4>=4.11.1 (from yfinance) Using cached beautifulsoup4-4.12.2-py3-none-any.whl (142 kB) Collecting html5lib>=1.1 (from yfinance) Downloading html5lib-1.1-py2.py3-none-any.whl (112 kB) ---------------------------------------- 112.2/112.2 kB ? eta 0:00:00 Collecting soupsieve>1.2 (from beautifulsoup4>=4.11.1->yfinance) Obtaining dependency information for soupsieve>1.2 from https://files.pythonhosted.org/packages/4c/f3/038b302fdfbe3be7da016777069f26ceefe11a681055ea1f7817546508e3/soupsieve-2.5-py3-none-any.whl.metadata Using cached soupsieve-2.5-py3-none-any.whl.metadata (4.7 kB) Collecting six>=1.9 (from html5lib>=1.1->yfinance) Using cached six-1.16.0-py2.py3-none-any.whl (11 kB) Collecting webencodings (from html5lib>=1.1->yfinance) Using cached webencodings-0.5.1-py2.py3-none-any.whl (11 kB) Collecting python-dateutil>=2.8.2 (from pandas>=1.3.0->yfinance) Using cached python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB) Collecting tzdata>=2022.1 (from pandas>=1.3.0->yfinance) Using cached tzdata-2023.3-py2.py3-none-any.whl (341 kB) Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\riloynd.redmond\.conda\envs\ag4\lib\site-packages (from requests>=2.31->yfinance) (3.2.0) Requirement already satisfied: idna<4,>=2.5 in c:\users\riloynd.redmond\.conda\envs\ag4\lib\site-packages (from requests>=2.31->yfinance) (3.4) Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\riloynd.redmond\.conda\envs\ag4\lib\site-packages (from requests>=2.31->yfinance) (2.0.5) Requirement already satisfied: certifi>=2017.4.17 in c:\users\riloynd.redmond\.conda\envs\ag4\lib\site-packages (from requests>=2.31->yfinance) (2023.7.22) Downloading yfinance-0.2.30-py2.py3-none-any.whl (65 kB) ---------------------------------------- 65.4/65.4 kB 3.7 MB/s eta 0:00:00 Using cached lxml-4.9.3-cp38-cp38-win_amd64.whl (3.9 MB) Using cached pandas-2.0.3-cp38-cp38-win_amd64.whl (10.8 MB) Using cached pytz-2023.3.post1-py2.py3-none-any.whl (502 kB) Using cached soupsieve-2.5-py3-none-any.whl (36 kB) Building wheels for collected packages: peewee Building wheel for peewee (pyproject.toml): started Building wheel for peewee (pyproject.toml): finished with status 'done' Created wheel for peewee: filename=peewee-3.16.3-py3-none-any.whl size=135547 sha256=3b7b0600f80e0a67f19091fda76d63636ee5d198d6e339af0edb3d1257e24771 Stored in directory: c:\users\riloynd.redmond\appdata\local\pip\cache\wheels\eb\31\a5\684700b27651dbb25fc4c259f3764ce676ab65ff7f6ff59eb4 Successfully built peewee Installing collected packages: webencodings, pytz, peewee, multitasking, appdirs, tzdata, soupsieve, six, lxml, frozendict, python-dateutil, html5lib, beautifulsoup4, pandas, yfinance Successfully installed appdirs-1.4.4 beautifulsoup4-4.12.2 frozendict-2.3.8 html5lib-1.1 lxml-4.9.3 multitasking-0.0.11 pandas-2.0.3 peewee-3.16.3 python-dateutil-2.8.2 pytz-2023.3.post1 six-1.16.0 soupsieve-2.5 tzdata-2023.3 webencodings-0.5.1 yfinance-0.2.30 -------------------------------------------------------------------------------- assistant (to user_proxy): Great! Now that the `yfinance` package is installed successfully, let's proceed with extracting the stock price data and plotting the chart. Please execute the following python code: ```python # Import the libraries import yfinance as yf import pandas as pd import matplotlib.pyplot as plt from datetime import date # Define this year to date (YTD) start_date = date(date.today().year, 1, 1) end_date = date.today() # Download NVDA stock price nvda = yf.download('NVDA', start=start_date, end=end_date) # Download TESLA stock price tsla = yf.download('TSLA', start=start_date, end=end_date) # Calculate the price change since the beginning of the period nvda_change = nvda['Close'].pct_change().cumsum() tsla_change = tsla['Close'].pct_change().cumsum() # Create a new DataFrame for the price changes data = pd.DataFrame({'NVDA': nvda_change, 'TESLA': tsla_change}) # Plot the price changes data.plot() plt.title('NVDA vs TESLA stock price change YTD') plt.show() ``` -------------------------------------------------------------------------------- Provide feedback to assistant. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: >>>>>>>> NO HUMAN INPUT RECEIVED. >>>>>>>> USING AUTO REPLY... >>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)... WARNING:root:SIGALRM is not supported on Windows. No timeout will be enforced. user_proxy (to assistant): exitcode: 1 (execution failed) Code output: Traceback (most recent call last): File ".\", line 4, in import matplotlib.pyplot as plt ModuleNotFoundError: No module named 'matplotlib' -------------------------------------------------------------------------------- assistant (to user_proxy): I apologize for the missed detail. The error indicates that `matplotlib` isn't installed in your system. Let's install the `matplotlib` package in your Python environment using the following Python script: ```python import subprocess import sys def install(package): subprocess.check_call([sys.executable, "-m", "pip", "install", package]) # Install the matplotlib package install('matplotlib') ``` After the `matplotlib` package is installed successfully, please proceed with executing the initial Python code to plot the stock price changes. -------------------------------------------------------------------------------- Provide feedback to assistant. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: >>>>>>>> NO HUMAN INPUT RECEIVED. >>>>>>>> USING AUTO REPLY... >>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)... WARNING:root:SIGALRM is not supported on Windows. No timeout will be enforced. user_proxy (to assistant): exitcode: 0 (execution succeeded) Code output: Collecting matplotlib Obtaining dependency information for matplotlib from https://files.pythonhosted.org/packages/a3/d2/4ce53fc825adfb38b97d91aa1bb99df7b10637c0044302807c00cdee3ad5/matplotlib-3.7.3-cp38-cp38-win_amd64.whl.metadata Using cached matplotlib-3.7.3-cp38-cp38-win_amd64.whl.metadata (5.8 kB) Collecting contourpy>=1.0.1 (from matplotlib) Obtaining dependency information for contourpy>=1.0.1 from https://files.pythonhosted.org/packages/96/1b/b05cd42c8d21767a0488b883b38658fb9a45f86c293b7b42521a8113dc5d/contourpy-1.1.1-cp38-cp38-win_amd64.whl.metadata Downloading contourpy-1.1.1-cp38-cp38-win_amd64.whl.metadata (5.9 kB) Collecting cycler>=0.10 (from matplotlib) Using cached cycler-0.11.0-py3-none-any.whl (6.4 kB) Collecting fonttools>=4.22.0 (from matplotlib) Obtaining dependency information for fonttools>=4.22.0 from https://files.pythonhosted.org/packages/ee/d1/405b6d7a84cfd43cad518bf3d243433d637ada0add65e93110f5f480f86a/fonttools-4.42.1-cp38-cp38-win_amd64.whl.metadata Using cached fonttools-4.42.1-cp38-cp38-win_amd64.whl.metadata (154 kB) Collecting kiwisolver>=1.0.1 (from matplotlib) Obtaining dependency information for kiwisolver>=1.0.1 from https://files.pythonhosted.org/packages/1e/93/9dc4ca136063707f12eb56f4c8c294a940dd23f8512834573b201df83f88/kiwisolver-1.4.5-cp38-cp38-win_amd64.whl.metadata Using cached kiwisolver-1.4.5-cp38-cp38-win_amd64.whl.metadata (6.5 kB) Requirement already satisfied: numpy<2,>=1.20 in c:\users\riloynd.redmond\.conda\envs\ag4\lib\site-packages (from matplotlib) (1.24.4) Collecting packaging>=20.0 (from matplotlib) Using cached packaging-23.1-py3-none-any.whl (48 kB) Collecting pillow>=6.2.0 (from matplotlib) Obtaining dependency information for pillow>=6.2.0 from https://files.pythonhosted.org/packages/c9/b6/2f5559c68deb840715b8f8bf1f33c75e02339aa3e5725d82775b9325d4af/Pillow-10.0.1-cp38-cp38-win_amd64.whl.metadata Using cached Pillow-10.0.1-cp38-cp38-win_amd64.whl.metadata (9.6 kB) Collecting pyparsing>=2.3.1 (from matplotlib) Obtaining dependency information for pyparsing>=2.3.1 from https://files.pythonhosted.org/packages/39/92/8486ede85fcc088f1b3dba4ce92dd29d126fd96b0008ea213167940a2475/pyparsing-3.1.1-py3-none-any.whl.metadata Using cached pyparsing-3.1.1-py3-none-any.whl.metadata (5.1 kB) Requirement already satisfied: python-dateutil>=2.7 in c:\users\riloynd.redmond\.conda\envs\ag4\lib\site-packages (from matplotlib) (2.8.2) Collecting importlib-resources>=3.2.0 (from matplotlib) Obtaining dependency information for importlib-resources>=3.2.0 from https://files.pythonhosted.org/packages/65/6e/09d8816b5cb7a4006ef8ad1717a2703ad9f331dae9717d9f22488a2d6469/importlib_resources-6.1.0-py3-none-any.whl.metadata Downloading importlib_resources-6.1.0-py3-none-any.whl.metadata (4.1 kB) Collecting zipp>=3.1.0 (from importlib-resources>=3.2.0->matplotlib) Obtaining dependency information for zipp>=3.1.0 from https://files.pythonhosted.org/packages/d9/66/48866fc6b158c81cc2bfecc04c480f105c6040e8b077bc54c634b4a67926/zipp-3.17.0-py3-none-any.whl.metadata Using cached zipp-3.17.0-py3-none-any.whl.metadata (3.7 kB) Requirement already satisfied: six>=1.5 in c:\users\riloynd.redmond\.conda\envs\ag4\lib\site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0) Using cached matplotlib-3.7.3-cp38-cp38-win_amd64.whl (7.5 MB) Downloading contourpy-1.1.1-cp38-cp38-win_amd64.whl (477 kB) ---------------------------------------- 477.9/477.9 kB 2.1 MB/s eta 0:00:00 Using cached fonttools-4.42.1-cp38-cp38-win_amd64.whl (1.5 MB) Downloading importlib_resources-6.1.0-py3-none-any.whl (33 kB) Using cached kiwisolver-1.4.5-cp38-cp38-win_amd64.whl (56 kB) Using cached Pillow-10.0.1-cp38-cp38-win_amd64.whl (2.5 MB) Using cached pyparsing-3.1.1-py3-none-any.whl (103 kB) Using cached zipp-3.17.0-py3-none-any.whl (7.4 kB) Installing collected packages: zipp, pyparsing, pillow, packaging, kiwisolver, fonttools, cycler, contourpy, importlib-resources, matplotlib Successfully installed contourpy-1.1.1 cycler-0.11.0 fonttools-4.42.1 importlib-resources-6.1.0 kiwisolver-1.4.5 matplotlib-3.7.3 packaging-23.1 pillow-10.0.1 pyparsing-3.1.1 zipp-3.17.0 -------------------------------------------------------------------------------- assistant (to user_proxy): Great! Now that the `matplotlib` package is installed successfully, let's proceed with extracting the stock price data and plotting the chart. Please execute the following python code: ```python # Import the libraries import yfinance as yf import pandas as pd import matplotlib.pyplot as plt from datetime import date # Define this year to date (YTD) start_date = date(date.today().year, 1, 1) end_date = date.today() # Download NVDA stock price nvda = yf.download('NVDA', start=start_date, end=end_date) # Download TESLA stock price tsla = yf.download('TSLA', start=start_date, end=end_date) # Calculate the price change since the beginning of the period nvda_change = nvda['Close'].pct_change().cumsum() tsla_change = tsla['Close'].pct_change().cumsum() # Create a new DataFrame for the price changes data = pd.DataFrame({'NVDA': nvda_change, 'TESLA': tsla_change}) # Plot the price changes data.plot() plt.title('NVDA vs TESLA stock price change YTD') plt.show() ``` -------------------------------------------------------------------------------- Provide feedback to assistant. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: >>>>>>>> NO HUMAN INPUT RECEIVED. >>>>>>>> USING AUTO REPLY... >>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)... WARNING:root:SIGALRM is not supported on Windows. No timeout will be enforced.