|
| 1 | +from typing import Any, List, Mapping, Optional, Protocol, Sequence, Tuple, TypedDict, Union, runtime_checkable |
| 2 | + |
| 3 | +Metadata = Union[Mapping[str, Any], None] |
| 4 | +Vector = Union[Sequence[float], Sequence[int]] |
| 5 | +ItemID = Union[str, int] # chromadb doesn't support int ids, VikingDB does |
| 6 | + |
| 7 | + |
| 8 | +class Document(TypedDict): |
| 9 | + """A Document is a record in the vector database. |
| 10 | +
|
| 11 | + id: ItemID | the unique identifier of the document. |
| 12 | + content: str | the text content of the chunk. |
| 13 | + metadata: Metadata, Optional | contains additional information about the document such as source, date, etc. |
| 14 | + embedding: Vector, Optional | the vector representation of the content. |
| 15 | + """ |
| 16 | + |
| 17 | + id: ItemID |
| 18 | + content: str |
| 19 | + metadata: Optional[Metadata] |
| 20 | + embedding: Optional[Vector] |
| 21 | + |
| 22 | + |
| 23 | +"""QueryResults is the response from the vector database for a query/queries. |
| 24 | +A query is a list containing one string while queries is a list containing multiple strings. |
| 25 | +The response is a list of query results, each query result is a list of tuples containing the document and the distance. |
| 26 | +""" |
| 27 | +QueryResults = List[List[Tuple[Document, float]]] |
| 28 | + |
| 29 | + |
| 30 | +@runtime_checkable |
| 31 | +class VectorDB(Protocol): |
| 32 | + """ |
| 33 | + Abstract class for vector database. A vector database is responsible for storing and retrieving documents. |
| 34 | +
|
| 35 | + Attributes: |
| 36 | + active_collection: Any | The active collection in the vector database. Make get_collection faster. Default is None. |
| 37 | + type: str | The type of the vector database, chroma, pgvector, etc. Default is "". |
| 38 | +
|
| 39 | + Methods: |
| 40 | + create_collection: Callable[[str, bool, bool], Any] | Create a collection in the vector database. |
| 41 | + get_collection: Callable[[str], Any] | Get the collection from the vector database. |
| 42 | + delete_collection: Callable[[str], Any] | Delete the collection from the vector database. |
| 43 | + insert_docs: Callable[[List[Document], str, bool], None] | Insert documents into the collection of the vector database. |
| 44 | + update_docs: Callable[[List[Document], str], None] | Update documents in the collection of the vector database. |
| 45 | + delete_docs: Callable[[List[ItemID], str], None] | Delete documents from the collection of the vector database. |
| 46 | + retrieve_docs: Callable[[List[str], str, int, float], QueryResults] | Retrieve documents from the collection of the vector database based on the queries. |
| 47 | + get_docs_by_ids: Callable[[List[ItemID], str], List[Document]] | Retrieve documents from the collection of the vector database based on the ids. |
| 48 | + """ |
| 49 | + |
| 50 | + active_collection: Any = None |
| 51 | + type: str = "" |
| 52 | + |
| 53 | + def create_collection(self, collection_name: str, overwrite: bool = False, get_or_create: bool = True) -> Any: |
| 54 | + """ |
| 55 | + Create a collection in the vector database. |
| 56 | + Case 1. if the collection does not exist, create the collection. |
| 57 | + Case 2. the collection exists, if overwrite is True, it will overwrite the collection. |
| 58 | + Case 3. the collection exists and overwrite is False, if get_or_create is True, it will get the collection, |
| 59 | + otherwise it raise a ValueError. |
| 60 | +
|
| 61 | + Args: |
| 62 | + collection_name: str | The name of the collection. |
| 63 | + overwrite: bool | Whether to overwrite the collection if it exists. Default is False. |
| 64 | + get_or_create: bool | Whether to get the collection if it exists. Default is True. |
| 65 | +
|
| 66 | + Returns: |
| 67 | + Any | The collection object. |
| 68 | + """ |
| 69 | + ... |
| 70 | + |
| 71 | + def get_collection(self, collection_name: str = None) -> Any: |
| 72 | + """ |
| 73 | + Get the collection from the vector database. |
| 74 | +
|
| 75 | + Args: |
| 76 | + collection_name: str | The name of the collection. Default is None. If None, return the |
| 77 | + current active collection. |
| 78 | +
|
| 79 | + Returns: |
| 80 | + Any | The collection object. |
| 81 | + """ |
| 82 | + ... |
| 83 | + |
| 84 | + def delete_collection(self, collection_name: str) -> Any: |
| 85 | + """ |
| 86 | + Delete the collection from the vector database. |
| 87 | +
|
| 88 | + Args: |
| 89 | + collection_name: str | The name of the collection. |
| 90 | +
|
| 91 | + Returns: |
| 92 | + Any |
| 93 | + """ |
| 94 | + ... |
| 95 | + |
| 96 | + def insert_docs(self, docs: List[Document], collection_name: str = None, upsert: bool = False, **kwargs) -> None: |
| 97 | + """ |
| 98 | + Insert documents into the collection of the vector database. |
| 99 | +
|
| 100 | + Args: |
| 101 | + docs: List[Document] | A list of documents. Each document is a TypedDict `Document`. |
| 102 | + collection_name: str | The name of the collection. Default is None. |
| 103 | + upsert: bool | Whether to update the document if it exists. Default is False. |
| 104 | + kwargs: Dict | Additional keyword arguments. |
| 105 | +
|
| 106 | + Returns: |
| 107 | + None |
| 108 | + """ |
| 109 | + ... |
| 110 | + |
| 111 | + def update_docs(self, docs: List[Document], collection_name: str = None, **kwargs) -> None: |
| 112 | + """ |
| 113 | + Update documents in the collection of the vector database. |
| 114 | +
|
| 115 | + Args: |
| 116 | + docs: List[Document] | A list of documents. |
| 117 | + collection_name: str | The name of the collection. Default is None. |
| 118 | + kwargs: Dict | Additional keyword arguments. |
| 119 | +
|
| 120 | + Returns: |
| 121 | + None |
| 122 | + """ |
| 123 | + ... |
| 124 | + |
| 125 | + def delete_docs(self, ids: List[ItemID], collection_name: str = None, **kwargs) -> None: |
| 126 | + """ |
| 127 | + Delete documents from the collection of the vector database. |
| 128 | +
|
| 129 | + Args: |
| 130 | + ids: List[ItemID] | A list of document ids. Each id is a typed `ItemID`. |
| 131 | + collection_name: str | The name of the collection. Default is None. |
| 132 | + kwargs: Dict | Additional keyword arguments. |
| 133 | +
|
| 134 | + Returns: |
| 135 | + None |
| 136 | + """ |
| 137 | + ... |
| 138 | + |
| 139 | + def retrieve_docs( |
| 140 | + self, |
| 141 | + queries: List[str], |
| 142 | + collection_name: str = None, |
| 143 | + n_results: int = 10, |
| 144 | + distance_threshold: float = -1, |
| 145 | + **kwargs, |
| 146 | + ) -> QueryResults: |
| 147 | + """ |
| 148 | + Retrieve documents from the collection of the vector database based on the queries. |
| 149 | +
|
| 150 | + Args: |
| 151 | + queries: List[str] | A list of queries. Each query is a string. |
| 152 | + collection_name: str | The name of the collection. Default is None. |
| 153 | + n_results: int | The number of relevant documents to return. Default is 10. |
| 154 | + distance_threshold: float | The threshold for the distance score, only distance smaller than it will be |
| 155 | + returned. Don't filter with it if < 0. Default is -1. |
| 156 | + kwargs: Dict | Additional keyword arguments. |
| 157 | +
|
| 158 | + Returns: |
| 159 | + QueryResults | The query results. Each query result is a list of list of tuples containing the document and |
| 160 | + the distance. |
| 161 | + """ |
| 162 | + ... |
| 163 | + |
| 164 | + def get_docs_by_ids( |
| 165 | + self, ids: List[ItemID] = None, collection_name: str = None, include=None, **kwargs |
| 166 | + ) -> List[Document]: |
| 167 | + """ |
| 168 | + Retrieve documents from the collection of the vector database based on the ids. |
| 169 | +
|
| 170 | + Args: |
| 171 | + ids: List[ItemID] | A list of document ids. If None, will return all the documents. Default is None. |
| 172 | + collection_name: str | The name of the collection. Default is None. |
| 173 | + include: List[str] | The fields to include. Default is None. |
| 174 | + If None, will include ["metadatas", "documents"], ids will always be included. |
| 175 | + kwargs: dict | Additional keyword arguments. |
| 176 | +
|
| 177 | + Returns: |
| 178 | + List[Document] | The results. |
| 179 | + """ |
| 180 | + ... |
| 181 | + |
| 182 | + |
| 183 | +class VectorDBFactory: |
| 184 | + """ |
| 185 | + Factory class for creating vector databases. |
| 186 | + """ |
| 187 | + |
| 188 | + PREDEFINED_VECTOR_DB = ["chroma"] |
| 189 | + |
| 190 | + @staticmethod |
| 191 | + def create_vector_db(db_type: str, **kwargs) -> VectorDB: |
| 192 | + """ |
| 193 | + Create a vector database. |
| 194 | +
|
| 195 | + Args: |
| 196 | + db_type: str | The type of the vector database. |
| 197 | + kwargs: Dict | The keyword arguments for initializing the vector database. |
| 198 | +
|
| 199 | + Returns: |
| 200 | + VectorDB | The vector database. |
| 201 | + """ |
| 202 | + if db_type.lower() in ["chroma", "chromadb"]: |
| 203 | + from .chromadb import ChromaVectorDB |
| 204 | + |
| 205 | + return ChromaVectorDB(**kwargs) |
| 206 | + else: |
| 207 | + raise ValueError( |
| 208 | + f"Unsupported vector database type: {db_type}. Valid types are {VectorDBFactory.PREDEFINED_VECTOR_DB}." |
| 209 | + ) |
0 commit comments