-
Notifications
You must be signed in to change notification settings - Fork 6.6k
/
Copy pathcode_utils.py
609 lines (538 loc) · 24.2 KB
/
code_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
import logging
import os
import pathlib
import re
import subprocess
import sys
import time
from concurrent.futures import ThreadPoolExecutor, TimeoutError
from hashlib import md5
from typing import Callable, Dict, List, Optional, Tuple, Union
from autogen import oai
try:
import docker
except ImportError:
docker = None
DEFAULT_MODEL = "gpt-4"
FAST_MODEL = "gpt-3.5-turbo"
# Regular expression for finding a code block
# ```[ \t]*(\w+)?[ \t]*\r?\n(.*?)[ \t]*\r?\n``` Matches multi-line code blocks.
# The [ \t]* matches the potential spaces before language name.
# The (\w+)? matches the language, where the ? indicates it is optional.
# The [ \t]* matches the potential spaces (not newlines) after language name.
# The \r?\n makes sure there is a linebreak after ```.
# The (.*?) matches the code itself (non-greedy).
# The \r?\n makes sure there is a linebreak before ```.
# The [ \t]* matches the potential spaces before closing ``` (the spec allows indentation).
CODE_BLOCK_PATTERN = r"```[ \t]*(\w+)?[ \t]*\r?\n(.*?)\r?\n[ \t]*```"
WORKING_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "extensions")
UNKNOWN = "unknown"
TIMEOUT_MSG = "Timeout"
DEFAULT_TIMEOUT = 600
WIN32 = sys.platform == "win32"
PATH_SEPARATOR = WIN32 and "\\" or "/"
logger = logging.getLogger(__name__)
def content_str(content: Union[str, List, None]) -> str:
"""Converts `content` into a string format.
This function processes content that may be a string, a list of mixed text and image URLs, or None,
and converts it into a string. Text is directly appended to the result string, while image URLs are
represented by a placeholder image token. If the content is None, an empty string is returned.
Args:
- content (Union[str, List, None]): The content to be processed. Can be a string, a list of dictionaries
representing text and image URLs, or None.
Returns:
str: A string representation of the input content. Image URLs are replaced with an image token.
Note:
- The function expects each dictionary in the list to have a "type" key that is either "text" or "image_url".
For "text" type, the "text" key's value is appended to the result. For "image_url", an image token is appended.
- This function is useful for handling content that may include both text and image references, especially
in contexts where images need to be represented as placeholders.
"""
if content is None:
return ""
if isinstance(content, str):
return content
if not isinstance(content, list):
raise TypeError(f"content must be None, str, or list, but got {type(content)}")
rst = ""
for item in content:
if not isinstance(item, dict):
raise TypeError("Wrong content format: every element should be dict if the content is a list.")
assert "type" in item, "Wrong content format. Missing 'type' key in content's dict."
if item["type"] == "text":
rst += item["text"]
elif item["type"] == "image_url":
rst += "<image>"
else:
raise ValueError(f"Wrong content format: unknown type {item['type']} within the content")
return rst
def infer_lang(code):
"""infer the language for the code.
TODO: make it robust.
"""
if code.startswith("python ") or code.startswith("pip") or code.startswith("python3 "):
return "sh"
# check if code is a valid python code
try:
compile(code, "test", "exec")
return "python"
except SyntaxError:
# not a valid python code
return UNKNOWN
# TODO: In the future move, to better support https://spec.commonmark.org/0.30/#fenced-code-blocks
# perhaps by using a full Markdown parser.
def extract_code(
text: Union[str, List], pattern: str = CODE_BLOCK_PATTERN, detect_single_line_code: bool = False
) -> List[Tuple[str, str]]:
"""Extract code from a text.
Args:
text (str or List): The content to extract code from. The content can be
a string or a list, as returned by standard GPT or multimodal GPT.
pattern (str, optional): The regular expression pattern for finding the
code block. Defaults to CODE_BLOCK_PATTERN.
detect_single_line_code (bool, optional): Enable the new feature for
extracting single line code. Defaults to False.
Returns:
list: A list of tuples, each containing the language and the code.
If there is no code block in the input text, the language would be "unknown".
If there is code block but the language is not specified, the language would be "".
"""
text = content_str(text)
if not detect_single_line_code:
match = re.findall(pattern, text, flags=re.DOTALL)
return match if match else [(UNKNOWN, text)]
# Extract both multi-line and single-line code block, separated by the | operator
# `([^`]+)`: Matches inline code.
code_pattern = re.compile(CODE_BLOCK_PATTERN + r"|`([^`]+)`")
code_blocks = code_pattern.findall(text)
# Extract the individual code blocks and languages from the matched groups
extracted = []
for lang, group1, group2 in code_blocks:
if group1:
extracted.append((lang.strip(), group1.strip()))
elif group2:
extracted.append(("", group2.strip()))
return extracted
def generate_code(pattern: str = CODE_BLOCK_PATTERN, **config) -> Tuple[str, float]:
"""(openai<1) Generate code.
Args:
pattern (Optional, str): The regular expression pattern for finding the code block.
The default pattern is for finding a code block in a markdown file.
config (Optional, dict): The configuration for the API call.
Returns:
str: The generated code.
float: The cost of the generation.
"""
response = oai.Completion.create(**config)
return extract_code(oai.Completion.extract_text(response)[0], pattern), response["cost"]
_IMPROVE_FUNCTION_CONFIG = {
"prompt": """Improve the function '{func_name}' to achieve the objective '{objective}'.
The current implementation of the function is as follows:
{file_string}""",
"model": DEFAULT_MODEL,
"request_timeout": 600,
}
def improve_function(file_name, func_name, objective, **config):
"""(openai<1) Improve the function to achieve the objective."""
params = {**_IMPROVE_FUNCTION_CONFIG, **config}
# read the entire file into a str
with open(file_name, "r") as f:
file_string = f.read()
response = oai.Completion.create(
{"func_name": func_name, "objective": objective, "file_string": file_string}, **params
)
return oai.Completion.extract_text(response)[0], response["cost"]
_IMPROVE_CODE_CONFIG = {
"prompt": """Analyze the code in the following files and return a list of suggestions for improvement{followup}, to achieve the objective of '{objective}'.
{code}
""",
"model": DEFAULT_MODEL,
"request_timeout": 900,
}
def improve_code(files, objective, suggest_only=True, **config):
"""(openai<1) Improve the code to achieve a given objective.
Args:
files (list): A list of file names containing the source code.
objective (str): The objective to achieve.
suggest_only (bool): Whether to return only the suggestions or the improved code.
config (Optional, dict): The configuration for the API call.
Returns:
str: The improved code if suggest_only=False; a list of suggestions if suggest_only=True (default).
float: The cost of the generation.
"""
code = ""
for file_name in files:
# read the entire file into a string
with open(file_name, "r") as f:
file_string = f.read()
code += f"""{file_name}:
{file_string}
"""
params = {**_IMPROVE_CODE_CONFIG, **config}
followup = "" if suggest_only else " followed by the improved code"
response = oai.Completion.create({"objective": objective, "code": code, "followup": followup}, **params)
return oai.Completion.extract_text(response)[0], response["cost"]
def timeout_handler(signum, frame):
raise TimeoutError("Timed out!")
def _cmd(lang):
if lang.startswith("python") or lang in ["bash", "sh", "powershell"]:
return lang
if lang in ["shell"]:
return "sh"
if lang in ["ps1"]:
return "powershell"
raise NotImplementedError(f"{lang} not recognized in code execution")
def execute_code(
code: Optional[str] = None,
timeout: Optional[int] = None,
filename: Optional[str] = None,
work_dir: Optional[str] = None,
use_docker: Optional[Union[List[str], str, bool]] = None,
lang: Optional[str] = "python",
) -> Tuple[int, str, str]:
"""Execute code in a docker container.
This function is not tested on MacOS.
Args:
code (Optional, str): The code to execute.
If None, the code from the file specified by filename will be executed.
Either code or filename must be provided.
timeout (Optional, int): The maximum execution time in seconds.
If None, a default timeout will be used. The default timeout is 600 seconds. On Windows, the timeout is not enforced when use_docker=False.
filename (Optional, str): The file name to save the code or where the code is stored when `code` is None.
If None, a file with a randomly generated name will be created.
The randomly generated file will be deleted after execution.
The file name must be a relative path. Relative paths are relative to the working directory.
work_dir (Optional, str): The working directory for the code execution.
If None, a default working directory will be used.
The default working directory is the "extensions" directory under
"path_to_autogen".
use_docker (Optional, list, str or bool): The docker image to use for code execution.
If a list or a str of image name(s) is provided, the code will be executed in a docker container
with the first image successfully pulled.
If None, False or empty, the code will be executed in the current environment.
Default is None, which will be converted into an empty list when docker package is available.
Expected behaviour:
- If `use_docker` is explicitly set to True and the docker package is available, the code will run in a Docker container.
- If `use_docker` is explicitly set to True but the Docker package is missing, an error will be raised.
- If `use_docker` is not set (i.e., left default to None) and the Docker package is not available, a warning will be displayed, but the code will run natively.
If the code is executed in the current environment,
the code must be trusted.
lang (Optional, str): The language of the code. Default is "python".
Returns:
int: 0 if the code executes successfully.
str: The error message if the code fails to execute; the stdout otherwise.
image: The docker image name after container run when docker is used.
"""
if all((code is None, filename is None)):
error_msg = f"Either {code=} or {filename=} must be provided."
logger.error(error_msg)
raise AssertionError(error_msg)
# Warn if use_docker was unspecified (or None), and cannot be provided (the default).
# In this case the current behavior is to fall back to run natively, but this behavior
# is subject to change.
if use_docker is None:
if docker is None:
use_docker = False
logger.warning(
"execute_code was called without specifying a value for use_docker. Since the python docker package is not available, code will be run natively. Note: this fallback behavior is subject to change"
)
else:
# Default to true
use_docker = True
timeout = timeout or DEFAULT_TIMEOUT
original_filename = filename
if WIN32 and lang in ["sh", "shell"] and (not use_docker):
lang = "ps1"
if filename is None:
code_hash = md5(code.encode()).hexdigest()
# create a file with a automatically generated name
filename = f"tmp_code_{code_hash}.{'py' if lang.startswith('python') else lang}"
if work_dir is None:
work_dir = WORKING_DIR
filepath = os.path.join(work_dir, filename)
file_dir = os.path.dirname(filepath)
os.makedirs(file_dir, exist_ok=True)
if code is not None:
with open(filepath, "w", encoding="utf-8") as fout:
fout.write(code)
# check if already running in a docker container
in_docker_container = os.path.exists("/.dockerenv")
if not use_docker or in_docker_container:
# already running in a docker container
cmd = [
sys.executable if lang.startswith("python") else _cmd(lang),
f".\\{filename}" if WIN32 else filename,
]
if WIN32:
logger.warning("SIGALRM is not supported on Windows. No timeout will be enforced.")
result = subprocess.run(
cmd,
cwd=work_dir,
capture_output=True,
text=True,
)
else:
with ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(
subprocess.run,
cmd,
cwd=work_dir,
capture_output=True,
text=True,
)
try:
result = future.result(timeout=timeout)
except TimeoutError:
if original_filename is None:
os.remove(filepath)
return 1, TIMEOUT_MSG, None
if original_filename is None:
os.remove(filepath)
if result.returncode:
logs = result.stderr
if original_filename is None:
abs_path = str(pathlib.Path(filepath).absolute())
logs = logs.replace(str(abs_path), "").replace(filename, "")
else:
abs_path = str(pathlib.Path(work_dir).absolute()) + PATH_SEPARATOR
logs = logs.replace(str(abs_path), "")
else:
logs = result.stdout
return result.returncode, logs, None
# create a docker client
client = docker.from_env()
image_list = (
["python:3-alpine", "python:3", "python:3-windowsservercore"]
if use_docker is True
else [use_docker]
if isinstance(use_docker, str)
else use_docker
)
for image in image_list:
# check if the image exists
try:
client.images.get(image)
break
except docker.errors.ImageNotFound:
# pull the image
print("Pulling image", image)
try:
client.images.pull(image)
break
except docker.errors.DockerException:
print("Failed to pull image", image)
# get a randomized str based on current time to wrap the exit code
exit_code_str = f"exitcode{time.time()}"
abs_path = pathlib.Path(work_dir).absolute()
cmd = [
"sh",
"-c",
f"{_cmd(lang)} {filename}; exit_code=$?; echo -n {exit_code_str}; echo -n $exit_code; echo {exit_code_str}",
]
# create a docker container
container = client.containers.run(
image,
command=cmd,
working_dir="/workspace",
detach=True,
# get absolute path to the working directory
volumes={abs_path: {"bind": "/workspace", "mode": "rw"}},
)
start_time = time.time()
while container.status != "exited" and time.time() - start_time < timeout:
# Reload the container object
container.reload()
if container.status != "exited":
container.stop()
container.remove()
if original_filename is None:
os.remove(filepath)
return 1, TIMEOUT_MSG, image
# get the container logs
logs = container.logs().decode("utf-8").rstrip()
# commit the image
tag = filename.replace("/", "")
container.commit(repository="python", tag=tag)
# remove the container
container.remove()
# check if the code executed successfully
exit_code = container.attrs["State"]["ExitCode"]
if exit_code == 0:
# extract the exit code from the logs
pattern = re.compile(f"{exit_code_str}(\\d+){exit_code_str}")
match = pattern.search(logs)
exit_code = 1 if match is None else int(match.group(1))
# remove the exit code from the logs
logs = logs if match is None else pattern.sub("", logs)
if original_filename is None:
os.remove(filepath)
if exit_code:
logs = logs.replace(f"/workspace/{filename if original_filename is None else ''}", "")
# return the exit code, logs and image
return exit_code, logs, f"python:{tag}"
_GENERATE_ASSERTIONS_CONFIG = {
"prompt": """Given the signature and docstring, write the exactly same number of assertion(s) for the provided example(s) in the docstring, without assertion messages.
func signature:
{definition}
assertions:""",
"model": FAST_MODEL,
"max_tokens": 256,
"stop": "\n\n",
}
def generate_assertions(definition: str, **config) -> Tuple[str, float]:
"""(openai<1) Generate assertions for a function.
Args:
definition (str): The function definition, including the signature and docstr.
config (Optional, dict): The configuration for the API call.
Returns:
str: The generated assertions.
float: The cost of the generation.
"""
params = {**_GENERATE_ASSERTIONS_CONFIG, **config}
response = oai.Completion.create(
{"definition": definition},
**params,
)
assertions = oai.Completion.extract_text(response)[0]
return assertions, response["cost"]
def _remove_check(response):
"""Remove the check function from the response."""
# find the position of the check function
pos = response.find("def check(")
if pos == -1:
return response
return response[:pos]
def eval_function_completions(
responses: List[str],
definition: str,
test: Optional[str] = None,
entry_point: Optional[str] = None,
assertions: Optional[Union[str, Callable[[str], Tuple[str, float]]]] = None,
timeout: Optional[float] = 3,
use_docker: Optional[bool] = True,
) -> Dict:
"""(openai<1) Select a response from a list of responses for the function completion task (using generated assertions), and/or evaluate if the task is successful using a gold test.
Args:
responses (list): The list of responses.
definition (str): The input definition.
test (Optional, str): The test code.
entry_point (Optional, str): The name of the function.
assertions (Optional, str or Callable): The assertion code which serves as a filter of the responses, or an assertion generator.
When provided, only the responses that pass the assertions will be considered for the actual test (if provided).
timeout (Optional, float): The timeout for executing the code.
Returns:
dict: The success metrics.
"""
n = len(responses)
if assertions is None:
# no assertion filter
success_list = []
for i in range(n):
response = _remove_check(responses[i])
code = (
f"{response}\n{test}\ncheck({entry_point})"
if response.startswith("def")
else f"{definition}{response}\n{test}\ncheck({entry_point})"
)
success = execute_code(code, timeout=timeout, use_docker=use_docker)[0] == 0
success_list.append(success)
return {
"expected_success": 1 - pow(1 - sum(success_list) / n, n),
"success": any(s for s in success_list),
}
if callable(assertions) and n > 1:
# assertion generator
assertions, gen_cost = assertions(definition)
else:
assertions, gen_cost = None, 0
if n > 1 or test is None:
for i in range(n):
response = responses[i] = _remove_check(responses[i])
code = (
f"{response}\n{assertions}" if response.startswith("def") else f"{definition}{response}\n{assertions}"
)
succeed_assertions = execute_code(code, timeout=timeout, use_docker=use_docker)[0] == 0
if succeed_assertions:
break
else:
# just test, no need to check assertions
succeed_assertions = False
i, response = 0, responses[0]
if test is None:
# no test code
return {
"index_selected": i,
"succeed_assertions": succeed_assertions,
"gen_cost": gen_cost,
"assertions": assertions,
}
code_test = (
f"{response}\n{test}\ncheck({entry_point})"
if response.startswith("def")
else f"{definition}{response}\n{test}\ncheck({entry_point})"
)
success = execute_code(code_test, timeout=timeout, use_docker=use_docker)[0] == 0
return {
"index_selected": i,
"succeed_assertions": succeed_assertions,
"success": success,
"gen_cost": gen_cost,
"assertions": assertions,
}
_FUNC_COMPLETION_PROMPT = "# Python 3{definition}"
_FUNC_COMPLETION_STOP = ["\nclass", "\ndef", "\nif", "\nprint"]
_IMPLEMENT_CONFIGS = [
{"model": FAST_MODEL, "prompt": _FUNC_COMPLETION_PROMPT, "temperature": 0, "cache_seed": 0},
{"model": FAST_MODEL, "prompt": _FUNC_COMPLETION_PROMPT, "stop": _FUNC_COMPLETION_STOP, "n": 7, "cache_seed": 0},
{"model": DEFAULT_MODEL, "prompt": _FUNC_COMPLETION_PROMPT, "temperature": 0, "cache_seed": 1},
{"model": DEFAULT_MODEL, "prompt": _FUNC_COMPLETION_PROMPT, "stop": _FUNC_COMPLETION_STOP, "n": 2, "cache_seed": 2},
{"model": DEFAULT_MODEL, "prompt": _FUNC_COMPLETION_PROMPT, "stop": _FUNC_COMPLETION_STOP, "n": 1, "cache_seed": 2},
]
class PassAssertionFilter:
def __init__(self, assertions):
self._assertions = assertions
self.cost = 0
self.metrics = self.responses = None
def pass_assertions(self, context, response, **_):
"""(openai<1) Check if the response passes the assertions."""
responses = oai.Completion.extract_text(response)
metrics = eval_function_completions(responses, context["definition"], assertions=self._assertions)
self._assertions = metrics["assertions"]
self.cost += metrics["gen_cost"]
self.metrics = metrics
self.responses = responses
return metrics["succeed_assertions"]
def implement(
definition: str,
configs: Optional[List[Dict]] = None,
assertions: Optional[Union[str, Callable[[str], Tuple[str, float]]]] = generate_assertions,
) -> Tuple[str, float]:
"""(openai<1) Implement a function from a definition.
Args:
definition (str): The function definition, including the signature and docstr.
configs (list): The list of configurations for completion.
assertions (Optional, str or Callable): The assertion code which serves as a filter of the responses, or an assertion generator.
Returns:
str: The implementation.
float: The cost of the implementation.
int: The index of the configuration which generates the implementation.
"""
cost = 0
configs = configs or _IMPLEMENT_CONFIGS
if len(configs) > 1 and callable(assertions):
assertions, cost = assertions(definition)
assertion_filter = PassAssertionFilter(assertions)
response = oai.Completion.create(
{"definition": definition}, config_list=configs, filter_func=assertion_filter.pass_assertions
)
cost += assertion_filter.cost + response["cost"]
return assertion_filter.responses[assertion_filter.metrics["index_selected"]], cost, response["config_id"]
# for i, config in enumerate(configs):
# response = oai.Completion.create({"definition": definition}, **config)
# cost += oai.Completion.cost(response)
# responses = oai.Completion.extract_text(response)
# metrics = eval_function_completions(responses, definition, assertions=assertions)
# assertions = metrics["assertions"]
# cost += metrics["gen_cost"]
# if metrics["succeed_assertions"] or i == len(configs) - 1:
# return responses[metrics["index_selected"]], cost, i