-
Notifications
You must be signed in to change notification settings - Fork 3.9k
/
Copy pathgbdt.h
559 lines (490 loc) · 19.6 KB
/
gbdt.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
/*!
* Copyright (c) 2016 Microsoft Corporation. All rights reserved.
* Licensed under the MIT License. See LICENSE file in the project root for license information.
*/
#ifndef LIGHTGBM_BOOSTING_GBDT_H_
#define LIGHTGBM_BOOSTING_GBDT_H_
#include <LightGBM/boosting.h>
#include <LightGBM/objective_function.h>
#include <LightGBM/prediction_early_stop.h>
#include <LightGBM/cuda/vector_cudahost.h>
#include <LightGBM/utils/json11.h>
#include <LightGBM/utils/threading.h>
#include <string>
#include <algorithm>
#include <cstdio>
#include <fstream>
#include <map>
#include <memory>
#include <mutex>
#include <unordered_map>
#include <utility>
#include <vector>
#include "cuda/cuda_score_updater.hpp"
#include "score_updater.hpp"
namespace LightGBM {
using json11::Json;
/*!
* \brief GBDT algorithm implementation. including Training, prediction, bagging.
*/
class GBDT : public GBDTBase {
public:
/*!
* \brief Constructor
*/
GBDT();
/*!
* \brief Destructor
*/
~GBDT();
/*!
* \brief Initialization logic
* \param gbdt_config Config for boosting
* \param train_data Training data
* \param objective_function Training objective function
* \param training_metrics Training metrics
*/
void Init(const Config* gbdt_config, const Dataset* train_data,
const ObjectiveFunction* objective_function,
const std::vector<const Metric*>& training_metrics) override;
/*!
* \brief Merge model from other boosting object. Will insert to the front of current boosting object
* \param other
*/
void MergeFrom(const Boosting* other) override {
auto other_gbdt = reinterpret_cast<const GBDT*>(other);
// tmp move to other vector
auto original_models = std::move(models_);
models_ = std::vector<std::unique_ptr<Tree>>();
// push model from other first
for (const auto& tree : other_gbdt->models_) {
auto new_tree = std::unique_ptr<Tree>(new Tree(*(tree.get())));
models_.push_back(std::move(new_tree));
}
num_init_iteration_ = static_cast<int>(models_.size()) / num_tree_per_iteration_;
// push model in current object
for (const auto& tree : original_models) {
auto new_tree = std::unique_ptr<Tree>(new Tree(*(tree.get())));
models_.push_back(std::move(new_tree));
}
num_iteration_for_pred_ = static_cast<int>(models_.size()) / num_tree_per_iteration_;
}
void ShuffleModels(int start_iter, int end_iter) override {
int total_iter = static_cast<int>(models_.size()) / num_tree_per_iteration_;
start_iter = std::max(0, start_iter);
if (end_iter <= 0) {
end_iter = total_iter;
}
end_iter = std::min(total_iter, end_iter);
auto original_models = std::move(models_);
std::vector<int> indices(total_iter);
for (int i = 0; i < total_iter; ++i) {
indices[i] = i;
}
Random tmp_rand(17);
for (int i = start_iter; i < end_iter - 1; ++i) {
int j = tmp_rand.NextShort(i + 1, end_iter);
std::swap(indices[i], indices[j]);
}
models_ = std::vector<std::unique_ptr<Tree>>();
for (int i = 0; i < total_iter; ++i) {
for (int j = 0; j < num_tree_per_iteration_; ++j) {
int tree_idx = indices[i] * num_tree_per_iteration_ + j;
auto new_tree = std::unique_ptr<Tree>(new Tree(*(original_models[tree_idx].get())));
models_.push_back(std::move(new_tree));
}
}
}
/*!
* \brief Reset the training data
* \param train_data New Training data
* \param objective_function Training objective function
* \param training_metrics Training metrics
*/
void ResetTrainingData(const Dataset* train_data, const ObjectiveFunction* objective_function,
const std::vector<const Metric*>& training_metrics) override;
/*!
* \brief Reset Boosting Config
* \param gbdt_config Config for boosting
*/
void ResetConfig(const Config* gbdt_config) override;
/*!
* \brief Adding a validation dataset
* \param valid_data Validation dataset
* \param valid_metrics Metrics for validation dataset
*/
void AddValidDataset(const Dataset* valid_data,
const std::vector<const Metric*>& valid_metrics) override;
/*!
* \brief Perform a full training procedure
* \param snapshot_freq frequency of snapshot
* \param model_output_path path of model file
*/
void Train(int snapshot_freq, const std::string& model_output_path) override;
void RefitTree(const std::vector<std::vector<int>>& tree_leaf_prediction) override;
/*!
* \brief Training logic
* \param gradients nullptr for using default objective, otherwise use self-defined boosting
* \param hessians nullptr for using default objective, otherwise use self-defined boosting
* \return True if cannot train any more
*/
bool TrainOneIter(const score_t* gradients, const score_t* hessians) override;
/*!
* \brief Rollback one iteration
*/
void RollbackOneIter() override;
/*!
* \brief Get current iteration
*/
int GetCurrentIteration() const override { return static_cast<int>(models_.size()) / num_tree_per_iteration_; }
/*!
* \brief Can use early stopping for prediction or not
* \return True if cannot use early stopping for prediction
*/
bool NeedAccuratePrediction() const override {
if (objective_function_ == nullptr) {
return true;
} else {
return objective_function_->NeedAccuratePrediction();
}
}
/*!
* \brief Get evaluation result at data_idx data
* \param data_idx 0: training data, 1: 1st validation data
* \return evaluation result
*/
std::vector<double> GetEvalAt(int data_idx) const override;
/*!
* \brief Get current training score
* \param out_len length of returned score
* \return training score
*/
const double* GetTrainingScore(int64_t* out_len) override;
/*!
* \brief Get size of prediction at data_idx data
* \param data_idx 0: training data, 1: 1st validation data
* \return The size of prediction
*/
int64_t GetNumPredictAt(int data_idx) const override {
CHECK(data_idx >= 0 && data_idx <= static_cast<int>(valid_score_updater_.size()));
data_size_t num_data = train_data_->num_data();
if (data_idx > 0) {
num_data = valid_score_updater_[data_idx - 1]->num_data();
}
return static_cast<int64_t>(num_data) * num_class_;
}
/*!
* \brief Get prediction result at data_idx data
* \param data_idx 0: training data, 1: 1st validation data
* \param result used to store prediction result, should allocate memory before call this function
* \param out_len length of returned score
*/
void GetPredictAt(int data_idx, double* out_result, int64_t* out_len) override;
/*!
* \brief Get number of prediction for one data
* \param start_iteration Start index of the iteration to predict
* \param num_iteration number of used iterations
* \param is_pred_leaf True if predicting leaf index
* \param is_pred_contrib True if predicting feature contribution
* \return number of prediction
*/
inline int NumPredictOneRow(int start_iteration, int num_iteration, bool is_pred_leaf, bool is_pred_contrib) const override {
int num_pred_in_one_row = num_class_;
if (is_pred_leaf) {
int max_iteration = GetCurrentIteration();
start_iteration = std::max(start_iteration, 0);
start_iteration = std::min(start_iteration, max_iteration);
if (num_iteration > 0) {
num_pred_in_one_row *= static_cast<int>(std::min(max_iteration - start_iteration, num_iteration));
} else {
num_pred_in_one_row *= (max_iteration - start_iteration);
}
} else if (is_pred_contrib) {
num_pred_in_one_row = num_tree_per_iteration_ * (max_feature_idx_ + 2); // +1 for 0-based indexing, +1 for baseline
}
return num_pred_in_one_row;
}
void PredictRaw(const double* features, double* output,
const PredictionEarlyStopInstance* earlyStop) const override;
void PredictRawByMap(const std::unordered_map<int, double>& features, double* output,
const PredictionEarlyStopInstance* early_stop) const override;
void Predict(const double* features, double* output,
const PredictionEarlyStopInstance* earlyStop) const override;
void PredictByMap(const std::unordered_map<int, double>& features, double* output,
const PredictionEarlyStopInstance* early_stop) const override;
void PredictLeafIndex(const double* features, double* output) const override;
void PredictLeafIndexByMap(const std::unordered_map<int, double>& features, double* output) const override;
void PredictContrib(const double* features, double* output) const override;
void PredictContribByMap(const std::unordered_map<int, double>& features,
std::vector<std::unordered_map<int, double>>* output) const override;
/*!
* \brief Dump model to json format string
* \param start_iteration The model will be saved start from
* \param num_iteration Number of iterations that want to dump, -1 means dump all
* \param feature_importance_type Type of feature importance, 0: split, 1: gain
* \return Json format string of model
*/
std::string DumpModel(int start_iteration, int num_iteration,
int feature_importance_type) const override;
/*!
* \brief Translate model to if-else statement
* \param num_iteration Number of iterations that want to translate, -1 means translate all
* \return if-else format codes of model
*/
std::string ModelToIfElse(int num_iteration) const override;
/*!
* \brief Translate model to if-else statement
* \param num_iteration Number of iterations that want to translate, -1 means translate all
* \param filename Filename that want to save to
* \return is_finish Is training finished or not
*/
bool SaveModelToIfElse(int num_iteration, const char* filename) const override;
/*!
* \brief Save model to file
* \param start_iteration The model will be saved start from
* \param num_iterations Number of model that want to save, -1 means save all
* \param feature_importance_type Type of feature importance, 0: split, 1: gain
* \param filename Filename that want to save to
* \return is_finish Is training finished or not
*/
bool SaveModelToFile(int start_iteration, int num_iterations,
int feature_importance_type,
const char* filename) const override;
/*!
* \brief Save model to string
* \param start_iteration The model will be saved start from
* \param num_iterations Number of model that want to save, -1 means save all
* \param feature_importance_type Type of feature importance, 0: split, 1: gain
* \return Non-empty string if succeeded
*/
std::string SaveModelToString(int start_iteration, int num_iterations, int feature_importance_type) const override;
/*!
* \brief Restore from a serialized buffer
*/
bool LoadModelFromString(const char* buffer, size_t len) override;
/*!
* \brief Calculate feature importances
* \param num_iteration Number of model that want to use for feature importance, -1 means use all
* \param importance_type: 0 for split, 1 for gain
* \return vector of feature_importance
*/
std::vector<double> FeatureImportance(int num_iteration, int importance_type) const override;
/*!
* \brief Calculate upper bound value
* \return upper bound value
*/
double GetUpperBoundValue() const override;
/*!
* \brief Calculate lower bound value
* \return lower bound value
*/
double GetLowerBoundValue() const override;
/*!
* \brief Get max feature index of this model
* \return Max feature index of this model
*/
inline int MaxFeatureIdx() const override { return max_feature_idx_; }
/*!
* \brief Get feature names of this model
* \return Feature names of this model
*/
inline std::vector<std::string> FeatureNames() const override { return feature_names_; }
/*!
* \brief Get index of label column
* \return index of label column
*/
inline int LabelIdx() const override { return label_idx_; }
/*!
* \brief Get number of weak sub-models
* \return Number of weak sub-models
*/
inline int NumberOfTotalModel() const override { return static_cast<int>(models_.size()); }
/*!
* \brief Get number of tree per iteration
* \return number of tree per iteration
*/
inline int NumModelPerIteration() const override { return num_tree_per_iteration_; }
/*!
* \brief Get number of classes
* \return Number of classes
*/
inline int NumberOfClasses() const override { return num_class_; }
inline void InitPredict(int start_iteration, int num_iteration, bool is_pred_contrib) override {
num_iteration_for_pred_ = static_cast<int>(models_.size()) / num_tree_per_iteration_;
start_iteration = std::max(start_iteration, 0);
start_iteration = std::min(start_iteration, num_iteration_for_pred_);
if (num_iteration > 0) {
num_iteration_for_pred_ = std::min(num_iteration, num_iteration_for_pred_ - start_iteration);
} else {
num_iteration_for_pred_ = num_iteration_for_pred_ - start_iteration;
}
start_iteration_for_pred_ = start_iteration;
if (is_pred_contrib) {
#pragma omp parallel for schedule(static)
for (int i = 0; i < static_cast<int>(models_.size()); ++i) {
models_[i]->RecomputeMaxDepth();
}
}
}
inline double GetLeafValue(int tree_idx, int leaf_idx) const override {
CHECK(tree_idx >= 0 && static_cast<size_t>(tree_idx) < models_.size());
CHECK(leaf_idx >= 0 && leaf_idx < models_[tree_idx]->num_leaves());
return models_[tree_idx]->LeafOutput(leaf_idx);
}
inline void SetLeafValue(int tree_idx, int leaf_idx, double val) override {
CHECK(tree_idx >= 0 && static_cast<size_t>(tree_idx) < models_.size());
CHECK(leaf_idx >= 0 && leaf_idx < models_[tree_idx]->num_leaves());
models_[tree_idx]->SetLeafOutput(leaf_idx, val);
}
/*!
* \brief Get Type name of this boosting object
*/
const char* SubModelName() const override { return "tree"; }
bool IsLinear() const override { return linear_tree_; }
inline std::string ParserConfigStr() const override {return parser_config_str_;}
protected:
virtual bool GetIsConstHessian(const ObjectiveFunction* objective_function) {
if (objective_function != nullptr) {
return objective_function->IsConstantHessian();
} else {
return false;
}
}
/*!
* \brief Print eval result and check early stopping
*/
virtual bool EvalAndCheckEarlyStopping();
/*!
* \brief reset config for bagging
*/
void ResetBaggingConfig(const Config* config, bool is_change_dataset);
/*!
* \brief Implement bagging logic
* \param iter Current interation
*/
virtual void Bagging(int iter);
virtual data_size_t BaggingHelper(data_size_t start, data_size_t cnt,
data_size_t* buffer);
data_size_t BalancedBaggingHelper(data_size_t start, data_size_t cnt,
data_size_t* buffer);
/*!
* \brief calculate the object function
*/
virtual void Boosting();
/*!
* \brief updating score after tree was trained
* \param tree Trained tree of this iteration
* \param cur_tree_id Current tree for multiclass training
*/
virtual void UpdateScore(const Tree* tree, const int cur_tree_id);
/*!
* \brief eval results for one metric
*/
virtual std::vector<double> EvalOneMetric(const Metric* metric, const double* score, const data_size_t num_data) const;
/*!
* \brief Print metric result of current iteration
* \param iter Current iteration
* \return best_msg if met early_stopping
*/
std::string OutputMetric(int iter);
double BoostFromAverage(int class_id, bool update_scorer);
/*! \brief current iteration */
int iter_;
/*! \brief Pointer to training data */
const Dataset* train_data_;
/*! \brief Config of gbdt */
std::unique_ptr<Config> config_;
/*! \brief Tree learner, will use this class to learn trees */
std::unique_ptr<TreeLearner> tree_learner_;
/*! \brief Objective function */
const ObjectiveFunction* objective_function_;
/*! \brief Store and update training data's score */
std::unique_ptr<ScoreUpdater> train_score_updater_;
/*! \brief Metrics for training data */
std::vector<const Metric*> training_metrics_;
/*! \brief Store and update validation data's scores */
std::vector<std::unique_ptr<ScoreUpdater>> valid_score_updater_;
/*! \brief Metric for validation data */
std::vector<std::vector<const Metric*>> valid_metrics_;
/*! \brief Number of rounds for early stopping */
int early_stopping_round_;
/*! \brief Only use first metric for early stopping */
bool es_first_metric_only_;
/*! \brief Best iteration(s) for early stopping */
std::vector<std::vector<int>> best_iter_;
/*! \brief Best score(s) for early stopping */
std::vector<std::vector<double>> best_score_;
/*! \brief output message of best iteration */
std::vector<std::vector<std::string>> best_msg_;
/*! \brief Trained models(trees) */
std::vector<std::unique_ptr<Tree>> models_;
/*! \brief Max feature index of training data*/
int max_feature_idx_;
/*! \brief Parser config file content */
std::string parser_config_str_ = "";
#if defined(USE_CUDA) || defined(USE_CUDA_EXP)
/*! \brief First order derivative of training data */
std::vector<score_t, CHAllocator<score_t>> gradients_;
/*! \brief Second order derivative of training data */
std::vector<score_t, CHAllocator<score_t>> hessians_;
#else
/*! \brief First order derivative of training data */
std::vector<score_t, Common::AlignmentAllocator<score_t, kAlignedSize>> gradients_;
/*! \brief Second order derivative of training data */
std::vector<score_t, Common::AlignmentAllocator<score_t, kAlignedSize>> hessians_;
#endif
/*! \brief Pointer to gradient vector, can be on CPU or GPU */
score_t* gradients_pointer_;
/*! \brief Pointer to hessian vector, can be on CPU or GPU */
score_t* hessians_pointer_;
/*! \brief Whether boosting is done on GPU, used for cuda_exp */
bool boosting_on_gpu_;
#ifdef USE_CUDA_EXP
/*! \brief Buffer for scores when boosting is on GPU but evaluation is not, used only with cuda_exp */
mutable std::vector<double> host_score_;
/*! \brief Buffer for scores when boosting is not on GPU but evaluation is, used only with cuda_exp */
mutable CUDAVector<double> cuda_score_;
/*! \brief Buffer for bag_data_indices_ on GPU, used only with cuda_exp */
CUDAVector<data_size_t> cuda_bag_data_indices_;
#endif // USE_CUDA_EXP
/*! \brief Store the indices of in-bag data */
std::vector<data_size_t, Common::AlignmentAllocator<data_size_t, kAlignedSize>> bag_data_indices_;
/*! \brief Number of in-bag data */
data_size_t bag_data_cnt_;
/*! \brief Number of training data */
data_size_t num_data_;
/*! \brief Number of trees per iterations */
int num_tree_per_iteration_;
/*! \brief Number of class */
int num_class_;
/*! \brief Index of label column */
data_size_t label_idx_;
/*! \brief number of used model */
int num_iteration_for_pred_;
/*! \brief Start iteration of used model */
int start_iteration_for_pred_;
/*! \brief Shrinkage rate for one iteration */
double shrinkage_rate_;
/*! \brief Number of loaded initial models */
int num_init_iteration_;
/*! \brief Feature names */
std::vector<std::string> feature_names_;
std::vector<std::string> feature_infos_;
std::unique_ptr<Dataset> tmp_subset_;
bool is_use_subset_;
std::vector<bool> class_need_train_;
bool is_constant_hessian_;
std::unique_ptr<ObjectiveFunction> loaded_objective_;
bool average_output_;
bool need_re_bagging_;
bool balanced_bagging_;
std::string loaded_parameter_;
std::vector<int8_t> monotone_constraints_;
const int bagging_rand_block_ = 1024;
std::vector<Random> bagging_rands_;
ParallelPartitionRunner<data_size_t, false> bagging_runner_;
Json forced_splits_json_;
bool linear_tree_;
};
} // namespace LightGBM
#endif // LightGBM_BOOSTING_GBDT_H_