-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain_pretrain_mlm.py
328 lines (284 loc) · 11.8 KB
/
main_pretrain_mlm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
from utils.lib import *
from main_pretrain_task_specific import (
Dataset_Pretrain, LAVENDER_Pretrain,
Agent_Pretrain, get_dl)
from utils.dist import iter_tqdm
from utils.args import get_args
from utils.logger import LOGGER, add_log_to_file
from utils.dist import (
is_main_process,
get_rank, get_world_size, iter_tqdm,
NoOp)
class Dataset_Pretrain_MLM(Dataset_Pretrain):
def __init__(self, args, txt, dataset, split,
part=None, data_dir=None, tokzr=None):
super().__init__(
args, txt, dataset, split, part, data_dir,
tokzr=tokzr)
def str2txt(self, s):
txt, mask = super().str2txt(s)
txt, mask = self.append_mask_tok2txt(txt, mask)
return txt, mask
@property
def vtm_prompt_text(self):
return "is the video-text paired, true or false?"
def get_vtm_prompt(self):
return self.get_prompt(prompt_text=self.vtm_prompt_text)
@property
def cap_prompt_text(self):
return "write a description about the video."
def get_cap_prompt(self):
return self.get_prompt(prompt_text=self.cap_prompt_text)
class LAVENDER_Pretrain_MLM(LAVENDER_Pretrain):
def __init__(self, args, tokzr=None):
super(LAVENDER_Pretrain, self).__init__(args, tokzr)
self.patch_size = args.size_patch
bert = transformers.AutoModelForMaskedLM.from_pretrained(
self.args.tokenizer)
self.fc_mtm = bert.cls
del bert
self.vtm_batch = min(self.args.size_batch, 4)
self.task_tok2id = {"vtm": 0, "mc": 1, "oe": 2, "cap": 3}
self.emb_task = T.nn.Parameter(
0.02*T.randn(10, self.hidden_size))
def forward(self, batch):
batch = defaultdict(lambda: None, batch)
img, txt, mask = [
batch[key] for key in ["img", "txt", "mask"]]
vt_mask = batch["vt_mask"]
ans_mtm = batch["ans_mtm"]
(_B, _T, _, _H, _W), (_, _X) = img.shape, txt.shape
_h, _w = _H//self.patch_size, _W//self.patch_size
_O = min(_B, self.vtm_batch)
feat_img, mask_img, feat_txt, mask_txt = self.go_feat(
img, txt, mask, vt_mask=vt_mask)
out, _ = self.go_cross(feat_img, mask_img, feat_txt, mask_txt)
out_mtm = self.fc_mtm(out[:, (1+_h*_w)*_T:])
pdt_feat_img, pdt_mask_img, pdt_feat_txt, pdt_mask_txt = [], [], [], []
ans_vtm = []
for i in range(_B):
mt = mask_txt[i]
t = txt[i]
ft = feat_txt[i]
t, mt, ft = self.prepro_txt_inputs(
t, mt, ft, task_name="vtm",
prompt=batch["vtm_prompt"])
# mt[-1] = 1
pdt_feat_img.append(feat_img[i].unsqueeze(0))
pdt_mask_img.append(mask_img[i].unsqueeze(0))
pdt_feat_txt.append(ft.unsqueeze(0))
pdt_mask_txt.append(mt.unsqueeze(0))
gt_txt = T.ones_like(t)*-1
gt_txt[-1] = self.true_token_id
ans_vtm.append(gt_txt.unsqueeze(0))
neg = np.random.permutation(
[j for j in range(_B) if j != i])
for j in range(_O-1):
j = neg[j]
mt = mask_txt[j]
t = txt[j]
ft = feat_txt[j]
t, mt, ft = self.prepro_txt_inputs(
t, mt, ft, task_name="vtm",
prompt=batch["vtm_prompt"])
pdt_feat_img.append(feat_img[i].unsqueeze(0))
pdt_mask_img.append(mask_img[i].unsqueeze(0))
pdt_feat_txt.append(ft.unsqueeze(0))
pdt_mask_txt.append(mt.unsqueeze(0))
gt_txt = T.ones_like(t)*-1
gt_txt[-1] = self.false_token_id
ans_vtm.append(gt_txt.unsqueeze(0))
pdt_feat_img, pdt_mask_img, pdt_feat_txt, pdt_mask_txt, ans_vtm = [
T.cat(x, dim=0)
for x in [
pdt_feat_img, pdt_mask_img,
pdt_feat_txt, pdt_mask_txt, ans_vtm]]
out, _ = self.go_cross(
pdt_feat_img, pdt_mask_img,
pdt_feat_txt, pdt_mask_txt)
out_vtm = self.fc_mtm(out[:, (1+_h*_w)*_T:])
output = {"out_vtm": out_vtm, "out_mtm": out_mtm,
"ans_vtm": ans_vtm, "ans_mtm": ans_mtm}
return output
class Agent_Pretrain_MLM(Agent_Pretrain):
def __init__(self, args, model):
super().__init__(args, model)
def cal_vtm_loss(self, txt, out, ans, is_train=True):
if is_train:
out = out.flatten(0, len(out.shape)-2)
ans = ans.flatten(0, len(ans.shape)-1)
ls = self.loss_func(out, ans)
return ls
else:
_B, _ = txt.shape
p_true = out[:, :, self.true_token_id]
p_false = out[:, :, self.false_token_id]
out_vtm = p_true / (p_true+p_false)
ans_vtm = ans
out_vtm = out_vtm[ans_vtm != -1].view(_B, -1)
ans_vtm = ans_vtm[ans_vtm != -1].view(_B, -1)
out_vtm = T.argmax(out_vtm, dim=-1)
ans_vtm_idx = (ans_vtm == self.true_token_id).nonzero()[:, 1]
ac = float((out_vtm == ans_vtm_idx).float().sum() / _B)
return ac
def step(self, batch, is_train=True):
if is_train:
self.model.train()
else:
self.model.eval()
with T.cuda.amp.autocast(enabled=not self.args.deepspeed):
out = self.forward_step(batch)
(out_mtm, out_vtm) = (
out[key] for key in [
"out_mtm", "out_vtm"])
(ans_mtm, ans_vtm) = (
out[key] for key in [
"ans_mtm", "ans_vtm"])
ls_mtm = self.loss_func(
out_mtm.flatten(0, len(out_mtm.shape)-2),
ans_mtm.flatten(0, len(ans_mtm.shape)-1))
ls_vtm = self.cal_vtm_loss(
batch["txt"], out_vtm, ans_vtm, is_train)
ls = ls_mtm + ls_vtm
if is_train:
self.backward_step(ls)
return {
'mtm': ls_mtm.item(),
'vtm': ls_vtm.item()}
else:
out_mtm = T.argmax(out_mtm, dim=-1)
ac_mtm = (
float((out_mtm == ans_mtm).sum() / (ans_mtm != -1).sum())
if (ans_mtm != -1).sum() > 0 else -1)
res = {'mtm': ac_mtm, 'vtm': ls_vtm}
return res
def masking(self, txt, mask, p_mask=0.15):
(_B, _X) = txt.shape
spc_txt = T.logical_or(
T.logical_or(txt == self.cls_token_id, txt == self.sep_token_id),
T.logical_or(txt == self.pad_token_id, txt == self.mask_token_id))
ans_mtm = T.ones(txt.shape).long() * -1
if p_mask <= 0:
return {
"txt": txt, "mask": mask,
"ans_mtm": ans_mtm}
for i in range(_B):
mask_mtm = T.where(T.logical_and(
T.logical_not(spc_txt[i]), T.rand(_X) < p_mask))[0]
for p in mask_mtm:
ans_mtm[i][p], txt[i][p] = txt[i][p], self.mask_token_id
return {"txt": txt, "mask": mask,
"ans_mtm": ans_mtm}
def go_dl(self, ep, dl, is_train):
if is_train:
self.model.train()
else:
self.model.eval()
ret = defaultdict(list) # {'mtm': [], 'vtm': []}
idx = 0
for idx, batch in enumerate(dl):
batch = defaultdict(lambda: None, batch)
if idx % self.args.logging_steps == 0 and is_train:
LOGGER.info(self.log_memory(ep, idx+1))
img, txt, mask = [
batch[key] for key in ["img", "txt", "mask"]]
masked_batch = self.masking(txt, mask)
batch.update(masked_batch)
if self.args.enable_prompt:
batch["vtm_prompt"] = dl.dataset.get_vtm_prompt()
batch["cap_prompt"] = dl.dataset.get_cap_prompt()
batch = self.prepare_batch(batch)
r = self.step(batch, is_train)
ret = {k: ret[k]+[l] for k, l in r.items()}
if idx % self.args.logging_steps != 0 and is_train:
LOGGER.info(self.log_memory(ep, idx+1))
ret = {
k: self.reduce_mean(
float(np.average(
[v for v in l if not math.isnan(v)])))
for k, l in ret.items()}
return ret
if __name__ == '__main__':
args = get_args()
for d in args.dataset:
args.task += f"-{d}"
args.path_output = '%s/_%s_%s' % (
args.path_output, args.task,
datetime.now().strftime('%Y%m%d%H%M%S'))
LOGGER.info("Loading Data....")
dataloaders = {}
txt_data = {}
dl_tr_len = 0
tokzr = transformers.AutoTokenizer.from_pretrained(args.tokenizer)
for dataset in args.dataset:
if isinstance(args.dataset, dict):
data_dir = args.dataset[dataset]
else:
data_dir = args.data_dir
txt_data[dataset] = json.load(
open(f'{data_dir}/txt_{dataset}.json', 'r'))
ds = Dataset_Pretrain_MLM(
args, txt_data[dataset], dataset, 'val',
data_dir=data_dir, tokzr=tokzr)
dataloaders[f"{dataset}-val"] = get_dl(
ds, args, worker_init_fn=ds.read_tsv, collate_fn=ds.collate_batch)
size_part = (
args.size_part
if isinstance(args.size_part, int)
else args.size_part[dataset])
true_token_id = ds.true_token_id
false_token_id = ds.false_token_id
ds = Dataset_Pretrain_MLM(
args, txt_data[dataset],
dataset, 'train', 0, data_dir=data_dir)
dataloaders[f"{dataset}-train-0"] = get_dl(
ds, args, worker_init_fn=ds.read_tsv,
collate_fn=ds.collate_batch)
dl_tr_len += len(dataloaders[f"{dataset}-train-0"]) * size_part
args.max_iter = dl_tr_len * args.size_epoch # estimated
model = LAVENDER_Pretrain_MLM(args, tokzr)
model.load_ckpt(args.path_ckpt)
model.cuda()
if args.distributed:
LOGGER.info(f"n_gpu: {args.num_gpus}, rank: {get_rank()},"
f" world_size: {get_world_size()}")
agent = Agent_Pretrain_MLM(args, model)
if args.distributed:
agent.prepare_dist_model()
agent.save_training_meta()
if is_main_process():
add_log_to_file('%s/stdout.txt' % (args.path_output))
else:
LOGGER = NoOp()
LOGGER.info("Saved training meta infomation, start training ...")
for e in iter_tqdm(range(args.size_epoch)):
for dataset in args.dataset:
dl_vl = dataloaders[f"{dataset}-val"]
size_part = (
args.size_part
if isinstance(args.size_part, int)
else args.size_part[dataset])
for part in iter_tqdm(range(size_part)):
dl_key = f"{dataset}-train-{part}"
if dl_key in dataloaders:
dl_tr = dataloaders[dl_key]
else:
ds = Dataset_Pretrain_MLM(
args, txt_data[dataset],
dataset, 'train', part,
data_dir=dataloaders[
f"{dataset}-train-0"].dataset.data_dir,
tokzr=tokzr)
dl_tr = get_dl(
ds, args, worker_init_fn=ds.read_tsv,
collate_fn=ds.collate_batch)
if args.distributed:
dl_tr.sampler.set_epoch(e+1)
ls_tr = agent.go_dl(e+1, dl_tr, True)
ac_vl = agent.go_dl(e+1, dl_vl, False)
for k in ls_tr:
agent.log[dataset]['ls_%s' % (k)].append(ls_tr[k])
agent.log[dataset]['ac_%s' % (k)].append(ac_vl[k])
agent.save_model(e+1, dataset, part)
LOGGER.info(f'Ep {e+1}, dataset {dataset}, part {part}: '
f'{json.dumps(ls_tr)}, {json.dumps(ac_vl)}')