-
Notifications
You must be signed in to change notification settings - Fork 0
/
2-73.rkt
102 lines (83 loc) · 2.53 KB
/
2-73.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#lang racket
(define *op-table* (make-weak-hash))
(define (put op type proc)
(hash-set! *op-table* (list op type) proc))
(define (get op type)
(hash-ref *op-table* (list op type) #f))
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1)
(variable? v2)
(eq? v1 v2)))
(define (=number? exp num)
(and (number? exp) (= exp num)))
(define (install-standard-deriv-package)
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2))
(+ a1 a2))
(else (list '+ a1 a2))))
(define (make-product m1 m2)
(cond ((or (=number? m1 0)
(=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2))
(* m1 m2))
(else (list '* m1 m2))))
(define (deriv-of-sum operands var)
(make-sum (deriv (car operands) var)
(deriv (cadr operands) var)))
(define (deriv-of-product operands var)
(let ([multiplier (car operands)]
[multiplicand (cadr operands)])
(make-sum
(make-product
multiplier
(deriv multiplicand var))
(make-product
(deriv multiplier var)
multiplicand))))
(put 'deriv '+ deriv-of-sum)
(put 'deriv '* deriv-of-product)
'done)
(install-standard-deriv-package)
(define (install-exponents-derive-package)
(define (make-exponentiation b e)
(cond ((=number? e 0) 1)
((=number? e 1) b)
((and (number? b) (number? e))
(expt b e))
(else (list '** b e))))
(define (make-product m1 m2)
(cond ((or (=number? m1 0)
(=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2))
(* m1 m2))
(else (list '* m1 m2))))
(define (deriv-of-exponentiation operands var)
(let ([base (car operands)]
[exponent (cadr operands)])
(make-product
exponent
(make-exponentiation base (- exponent 1)))))
(put 'deriv '** deriv-of-exponentiation)
'done)
(install-exponents-derive-package)
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var)
1
0))
(else ((get 'deriv (operator exp))
(operands exp)
var))))
(define (operator exp) (car exp))
(define (operands exp) (cdr exp))
(deriv '(* (* x y) (+ x 3)) 'x)
(deriv '(* (* x y) (+ x 3)) 'x)
(deriv '(** x 3) 'x)