-
Notifications
You must be signed in to change notification settings - Fork 0
/
2-57.rkt
83 lines (73 loc) · 2.22 KB
/
2-57.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#lang racket
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1)
(variable? v2)
(eq? v1 v2)))
(define (=number? exp num)
(and (number? exp) (= exp num)))
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2))
(+ a1 a2))
((and (list? a2) (= (length a2) 1)) (list '+ a1 (car a2)))
(else (list '+ a1 a2))))
(define (sum? x)
(and (pair? x) (eq? (car x) '+)))
(define (addent s) (cadr s))
(define (augend s)
(let ([rest (cddr s)])
(if (= (length rest) 1)
(car rest)
(make-sum (car rest) (cdr rest)))))
(define (make-product m1 m2)
(cond ((or (=number? m1 0)
(=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2))
(* m1 m2))
((and (list? m2) (= (length m2) 1) (list '* m1 (car m2))))
(else (list '* m1 m2))))
(define (product? x)
(and (pair? x) (eq? (car x) '*)))
(define (multiplier p) (cadr p))
(define (multiplicand p)
(let ([rest (cddr p)])
(if (= (length rest) 1)
(car rest)
(make-product (car rest) (cdr rest)))))
(define (make-exponentiation b e)
(cond ((=number? e 0) 1)
((=number? e 1) b)
((and (number? b) (number? e))
(expt b e))
(else (list '** b e))))
(define (exponentiation? exp)
(and (pair? exp) (eq? (car exp) '**)))
(define (base exp) (cadr exp))
(define (exponent exp) (caddr exp))
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addent exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product
(multiplier exp)
(deriv (multiplicand exp) var))
(make-product
(deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp)
(make-product
(exponent exp)
(make-exponentiation (base exp) (- (exponent exp) 1))))
(else (error "unknown expression type: DERIV" exp))))
(define f '(* x y (+ x 3)))
(deriv f 'x)
(deriv '(* x y 2) 'x)