-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathasa121.cpp
executable file
·263 lines (239 loc) · 5.21 KB
/
asa121.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
//-------------------------------------------------------------------------------------
//
// Modified from: http://people.sc.fsu.edu/~burkardt/cpp_src/asa121/asa121.C
// Obtained on April 15th, 2010
//
// This file (and the website it comes from) don't contain any information about
// its licensing. It is probably in the public domain.
//
// The author is John Burkardt, closely based on the publication by Schneider.
// He (Burkardt) is working at Virginia Tech. The website has been updated recently,
// but there is no contact information.
//
// Accuracy: According to the paper, should be at least 6 digits.
//
//-------------------------------------------------------------------------------------
# include <cstdlib>
# include <iostream>
# include <iomanip>
# include <ctime>
using namespace std;
# include "asa121.hpp"
//****************************************************************************80
void timestamp ( void )
//****************************************************************************80
//
// Purpose:
//
// TIMESTAMP prints the current YMDHMS date as a time stamp.
//
// Example:
//
// 31 May 2001 09:45:54 AM
//
// Modified:
//
// 24 September 2003
//
// Author:
//
// John Burkardt
//
// Parameters:
//
// None
//
{
# define TIME_SIZE 40
static char time_buffer[TIME_SIZE];
const struct tm *tm;
size_t len;
time_t now;
now = time ( NULL );
tm = localtime ( &now );
len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm );
cout << time_buffer << "\n";
return;
# undef TIME_SIZE
}
//****************************************************************************80
double trigam ( double x, int *ifault )
//****************************************************************************80
//
// Purpose:
//
// TRIGAM calculates trigamma(x) = d**2 log(gamma(x)) / dx**2
//
// Modified:
//
// 19 January 2008
//
// Author:
//
// BE Schneider
// Modifications by John Burkardt
//
// Reference:
//
// BE Schneider,
// Algorithm AS 121:
// Trigamma Function,
// Applied Statistics,
// Volume 27, Number 1, pages 97-99, 1978.
//
// Parameters:
//
// Input, double X, the argument of the trigamma function.
// 0 < X.
//
// Output, int *IFAULT, error flag.
// 0, no error.
// 1, X <= 0.
//
// Output, double TRIGAM, the value of the trigamma function at X.
//
{
double a = 0.0001;
double b = 5.0;
double b2 = 0.1666666667;
double b4 = -0.03333333333;
double b6 = 0.02380952381;
double b8 = -0.03333333333;
double value;
double y;
double z;
//
// Check the input.
//
if ( x <= 0.0 )
{
*ifault = 1;
value = 0.0;
return value;
}
*ifault = 0;
z = x;
//
// Use small value approximation if X <= A.
//
if ( x <= a )
{
value = 1.0 / x / x;
return value;
}
//
// Increase argument to ( X + I ) >= B.
//
value = 0.0;
while ( z < b )
{
value = value + 1.0 / z / z;
z = z + 1.0;
}
//
// Apply asymptotic formula if argument is B or greater.
//
y = 1.0 / z / z;
value = value + 0.5 *
y + ( 1.0
+ y * ( b2
+ y * ( b4
+ y * ( b6
+ y * b8 )))) / z;
return value;
}
//****************************************************************************80
void trigamma_values ( int *n_data, double *x, double *fx )
//****************************************************************************80
//
// Purpose:
//
// TRIGAMMA_VALUES returns some values of the TriGamma function.
//
// Discussion:
//
// In Mathematica, the function can be evaluated by:
//
// PolyGamma[1,x]
//
// TriGamma(X) = d^2 ln ( Gamma ( X ) ) / d X^2
//
// Modified:
//
// 16 September 2004
//
// Author:
//
// John Burkardt
//
// Reference:
//
// Milton Abramowitz, Irene Stegun,
// Handbook of Mathematical Functions,
// National Bureau of Standards, 1964,
// ISBN: 0-486-61272-4,
// LC: QA47.A34.
//
// Stephen Wolfram,
// The Mathematica Book,
// Fourth Edition,
// Cambridge University Press, 1999,
// ISBN: 0-521-64314-7,
// LC: QA76.95.W65.
//
// Parameters:
//
// Input/output, int *N_DATA. The user sets N_DATA to 0 before the
// first call. On each call, the routine increments N_DATA by 1, and
// returns the corresponding data; when there is no more data, the
// output value of N_DATA will be 0 again.
//
// Output, double *X, the argument of the function.
//
// Output, double *FX, the value of the function.
//
{
# define N_MAX 11
double fx_vec[N_MAX] = {
0.1644934066848226E+01,
0.1433299150792759E+01,
0.1267377205423779E+01,
0.1134253434996619E+01,
0.1025356590529597E+01,
0.9348022005446793E+00,
0.8584318931245799E+00,
0.7932328301639984E+00,
0.7369741375017002E+00,
0.6879720582426356E+00,
0.6449340668482264E+00 };
double x_vec[N_MAX] = {
1.0E+00,
1.1E+00,
1.2E+00,
1.3E+00,
1.4E+00,
1.5E+00,
1.6E+00,
1.7E+00,
1.8E+00,
1.9E+00,
2.0E+00 };
if ( *n_data < 0 )
{
*n_data = 0;
}
*n_data = *n_data + 1;
if ( N_MAX < *n_data )
{
*n_data = 0;
*x = 0.0;
*fx = 0.0;
}
else
{
*x = x_vec[*n_data-1];
*fx = fx_vec[*n_data-1];
}
return;
# undef N_MAX
}