-
Notifications
You must be signed in to change notification settings - Fork 57
/
adamod.py
98 lines (82 loc) · 4.34 KB
/
adamod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# original repo https://github.com/lancopku/AdaMod/blob/master/adamod/adamod.py
import math
import torch
from torch.optim import Optimizer
class AdaMod(Optimizer):
"""Implements AdaMod algorithm with Decoupled Weight Decay (arxiv.org/abs/1711.05101)
It has been proposed in `Adaptive and Momental Bounds for Adaptive Learning Rate Methods`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
beta3 (float, optional): smoothing coefficient for adaptive learning rates (default: 0.9999)
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), beta3=0.999,
eps=1e-8, weight_decay=0):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
if not 0.0 <= beta3 < 1.0:
raise ValueError("Invalid beta3 parameter: {}".format(beta3))
defaults = dict(lr=lr, betas=betas, beta3=beta3, eps=eps,
weight_decay=weight_decay)
super(AdaMod, self).__init__(params, defaults)
def __setstate__(self, state):
super(AdaMod, self).__setstate__(state)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
'AdaMod does not support sparse gradients')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
# Exponential moving average of actual learning rates
state['exp_avg_lr'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq, exp_avg_lr = state['exp_avg'], state['exp_avg_sq'], state['exp_avg_lr']
beta1, beta2 = group['betas']
state['step'] += 1
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
denom = exp_avg_sq.sqrt().add_(group['eps'])
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
if group['weight_decay'] != 0:
p.data.add_(-group['weight_decay'] * group['lr'], p.data)
# Applies momental bounds on actual learning rates
step_size = torch.full_like(denom, step_size)
step_size.div_(denom)
exp_avg_lr.mul_(group['beta3']).add_(1 - group['beta3'], step_size)
step_size = torch.min(step_size, exp_avg_lr)
step_size.mul_(exp_avg)
p.data.add_(-step_size)
return loss