-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathevaluation_student.py
188 lines (166 loc) · 8.91 KB
/
evaluation_student.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
import utils
import argparse
import numpy as np
from tqdm import tqdm
from torch.utils.data import DataLoader
from datasets.generators import DatasetGenerator
from model.students import FineGrainedStudent, CoarseGrainedStudent
@torch.no_grad()
def calculate_similarities_to_queries(model, queries, target, args):
similarities = []
batch_sz = 2048 if 'batch_sz_sim' not in args else args.batch_sz_sim
for i, query in enumerate(queries):
if query.device.type == 'cpu':
query = query.to(args.gpu_id)
sim = []
for b in range(target.shape[0]//batch_sz + 1):
batch = target[b*batch_sz: (b+1)*batch_sz]
if batch.shape[0] >= 4:
sim.append(model.calculate_video_similarity(query, batch))
sim = torch.mean(torch.cat(sim, 0))
similarities.append(sim.cpu().numpy())
return similarities
@torch.no_grad()
def query_vs_target(model, dataset, args):
# Create a video generator for the queries
generator = DatasetGenerator(args.dataset_hdf5, dataset.get_queries())
loader = DataLoader(generator, num_workers=args.workers, collate_fn=utils.collate_eval)
# Extract features of the queries
all_db, queries, queries_ids = set(), [], []
print('\n> Extract features of the query videos')
for video in tqdm(loader):
video_features = video[0][0]
video_id = video[2][0]
if video_id:
features = model.index_video(video_features.to(args.gpu_id))
if 'load_queries' in args and not args.load_queries: features = features.cpu()
all_db.add(video_id)
queries.append(features)
queries_ids.append(video_id)
# Create a video generator for the database video
generator = DatasetGenerator(args.dataset_hdf5, dataset.get_database())
loader = DataLoader(generator, num_workers=args.workers, collate_fn=utils.collate_eval)
# Calculate similarities between the queries and the database videos
similarities = dict({query: dict() for query in queries_ids})
print('\n> Calculate query-target similarities')
for video in tqdm(loader):
video_features = video[0][0]
video_id = video[2][0]
if video_id:
features = model.index_video(video_features.to(args.gpu_id))
sims = calculate_similarities_to_queries(model, queries, features, args)
all_db.add(video_id)
for i, s in enumerate(sims):
similarities[queries_ids[i]][video_id] = float(s)
print('\n> Evaluation on {}'.format(dataset.name))
return dataset.evaluate(similarities, all_db)
@torch.no_grad()
def queries_vs_database(model, dataset, args):
# Create a video generator for the queries
generator = DatasetGenerator(args.dataset_hdf5, dataset.get_queries())
loader = DataLoader(generator, batch_size=args.batch_sz, num_workers=args.workers, collate_fn=utils.collate_eval)
# Extract features of the queries
all_db, queries, queries_ids = set(), [], []
print('\n> Extract features of the query videos')
for video in tqdm(loader):
video_id = np.array(video[2])
video_features = video[0][video_id != '']
video_mask = video[1][video_id != '']
video_id = video_id[video_id != '']
if len(video_id) > 0:
video_features = model.index_video(video_features.to(args.gpu_id), video_mask.to(args.gpu_id))
all_db.update(video_id)
queries.append(video_features)
queries_ids.extend(video_id)
queries = torch.cat(queries, 0)
# Create a video generator for the database video
generator = DatasetGenerator(args.dataset_hdf5, dataset.get_database())
loader = DataLoader(generator, batch_size=args.batch_sz, num_workers=args.workers, collate_fn=utils.collate_eval)
# Extract features of the targets
targets, targets_ids = [], []
print('\n> Extract features of the target videos')
for video in tqdm(loader):
video_id = np.array(video[2])
video_features = video[0][video_id != '']
video_mask = video[1][video_id != '']
video_id = video_id[video_id != '']
if len(video_id) > 0:
video_features = model.index_video(video_features.to(args.gpu_id), video_mask.to(args.gpu_id))
all_db.update(video_id)
targets.append(video_features)
targets_ids.extend(video_id)
targets = torch.cat(targets, 0)
# Calculate similarities between the queries and the database videos
print('\n> Calculate query-target similarities')
sims = model.calculate_video_similarity(queries, targets).cpu().numpy()
similarities = dict({query: dict() for query in queries_ids})
for i in range(sims.shape[0]):
for j in range(sims.shape[1]):
similarities[queries_ids[i]][targets_ids[j]] = float(sims[i, j])
print('\n> Evaluation on {}'.format(dataset.name))
return dataset.evaluate(similarities, all_db)
if __name__ == '__main__':
formatter = lambda prog: argparse.ArgumentDefaultsHelpFormatter(prog, max_help_position=80)
parser = argparse.ArgumentParser(description='This is the code for the evaluation of the trained student on five datasets.', formatter_class=formatter)
parser.add_argument('--dataset', type=str, required=True, choices=["FIVR-200K", "FIVR-5K", "CC_WEB_VIDEO", "SVD", "EVVE"],
help='Name of evaluation dataset.')
parser.add_argument('--dataset_hdf5', type=str, required=True,
help='Path to hdf5 file containing the features of the evaluation dataset')
parser.add_argument('--student_path', type=str, default=None,
help='Path to a trained student network. If it is not provided, then the pretrained weights are used with the default architecture.')
parser.add_argument('--student_type', type=str, default='fine-grained', choices=['fine-grained', 'coarse-grained'],
help='Type of the student network.')
parser.add_argument('--attention', type=utils.bool_flag, default=False,
help='Boolean flag indicating whether a Fine-grained Attention Student will be used.')
parser.add_argument('--binarization', type=utils.bool_flag, default=False,
help='Boolean flag indicating whether a Fine-grained Binarization Student will be used.')
parser.add_argument('--batch_sz', type=int, default=32,
help='Number of videos processed in each batch. Aplicable only with Coarse-greained Students.')
parser.add_argument('--batch_sz_sim', type=int, default=2048,
help='Number of feature tensors in each batch during similarity calculation.')
parser.add_argument('--gpu_id', type=int, default=0,
help='ID of the GPU used for the student evaluation.')
parser.add_argument('--load_queries', type=utils.bool_flag, default=True,
help='Boolean flag indicating whether the query features will be loaded to the GPU memory. Aplicable only for Fine-grained Students.')
parser.add_argument('--workers', type=int, default=8,
help='Number of workers used for video loading.')
args = parser.parse_args()
if 'CC_WEB' in args.dataset:
from datasets import CC_WEB_VIDEO
dataset = CC_WEB_VIDEO()
elif 'FIVR' in args.dataset:
from datasets import FIVR
dataset = FIVR(version=args.dataset.split('-')[1].lower())
elif 'EVVE' in args.dataset:
from datasets import EVVE
dataset = EVVE()
elif 'SVD' in args.dataset:
from datasets import SVD
dataset = SVD()
print('\n> Loading network')
if args.student_path is not None:
d = torch.load(args.student_path, map_location='cpu')
student_args = d['args']
if student_args.student_type == 'fine-grained':
model = FineGrainedStudent(**vars(student_args))
eval_function = query_vs_target
elif student_args.student_type == 'coarse-grained':
model = CoarseGrainedStudent(**vars(student_args))
eval_function = queries_vs_database
model.load_state_dict(d['model'])
else:
if args.student_type == 'fine-grained':
if not args.attention and not args.binarization:
raise Exception('No pretrained network for the given inputs. Provide either `--attention` or `--binarization` arguments as true for the pretrained fine-grained students.')
model = FineGrainedStudent(attention=args.attention,
binarization=args.binarization,
pretrained=True)
eval_function = query_vs_target
elif args.student_type == 'coarse-grained':
model = CoarseGrainedStudent(pretrained=True)
eval_function = queries_vs_database
model = model.to(args.gpu_id)
model.eval()
print(model)
eval_function(model, dataset, args)