-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmodels.py
143 lines (121 loc) · 5.22 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os, sys
import torch
import torch.nn as nn
import torchvision.models as models
import torch.autograd.variable as Variable
import numpy as np
import scipy.io as sio
class HED(nn.Module):
def __init__(self):
super(HED, self).__init__()
self.conv1_1 = nn.Conv2d(3, 64, 3, padding=21)
self.conv1_2 = nn.Conv2d(64, 64, 3, padding=1)
self.conv2_1 = nn.Conv2d(64, 128, 3, padding=1)
self.conv2_2 = nn.Conv2d(128, 128, 3, padding=1)
self.conv3_1 = nn.Conv2d(128, 256, 3, padding=1)
self.conv3_2 = nn.Conv2d(256, 256, 3, padding=1)
self.conv3_3 = nn.Conv2d(256, 256, 3, padding=1)
self.conv4_1 = nn.Conv2d(256, 512, 3, padding=1)
self.conv4_2 = nn.Conv2d(512, 512, 3, padding=1)
self.conv4_3 = nn.Conv2d(512, 512, 3, padding=1)
self.conv5_1 = nn.Conv2d(512, 512, 3, padding=1)
self.conv5_2 = nn.Conv2d(512, 512, 3, padding=1)
self.conv5_3 = nn.Conv2d(512, 512, 3, padding=1)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.score_dsn1 = nn.Conv2d(64, 1, 1)
self.score_dsn2 = nn.Conv2d(128, 1, 1)
self.score_dsn3 = nn.Conv2d(256, 1, 1)
self.score_dsn4 = nn.Conv2d(512, 1, 1)
self.score_dsn5 = nn.Conv2d(512, 1, 1)
self.score_final = nn.Conv2d(5, 1, 1)
def forward(self, x):
# VGG
img_H, img_W = x.shape[2], x.shape[3]
conv1_1 = self.relu(self.conv1_1(x))
conv1_2 = self.relu(self.conv1_2(conv1_1))
pool1 = self.maxpool(conv1_2)
conv2_1 = self.relu(self.conv2_1(pool1))
conv2_2 = self.relu(self.conv2_2(conv2_1))
pool2 = self.maxpool(conv2_2)
conv3_1 = self.relu(self.conv3_1(pool2))
conv3_2 = self.relu(self.conv3_2(conv3_1))
conv3_3 = self.relu(self.conv3_3(conv3_2))
pool3 = self.maxpool(conv3_3)
conv4_1 = self.relu(self.conv4_1(pool3))
conv4_2 = self.relu(self.conv4_2(conv4_1))
conv4_3 = self.relu(self.conv4_3(conv4_2))
pool4 = self.maxpool(conv4_3)
conv5_1 = self.relu(self.conv5_1(pool4))
conv5_2 = self.relu(self.conv5_2(conv5_1))
conv5_3 = self.relu(self.conv5_3(conv5_2))
so1 = self.score_dsn1(conv1_2)
so2 = self.score_dsn2(conv2_2)
so3 = self.score_dsn3(conv3_3)
so4 = self.score_dsn4(conv4_3)
so5 = self.score_dsn5(conv5_3)
weight_deconv2 = make_bilinear_weights(4, 1).cuda()
weight_deconv3 = make_bilinear_weights(8, 1).cuda()
weight_deconv4 = make_bilinear_weights(16, 1).cuda()
weight_deconv5 = make_bilinear_weights(32, 1).cuda()
upsample2 = torch.nn.functional.conv_transpose2d(so2, weight_deconv2, stride=2)
upsample3 = torch.nn.functional.conv_transpose2d(so3, weight_deconv3, stride=4)
upsample4 = torch.nn.functional.conv_transpose2d(so4, weight_deconv4, stride=8)
upsample5 = torch.nn.functional.conv_transpose2d(so5, weight_deconv5, stride=16)
so1 = crop(so1, img_H, img_W)
so2 = crop(upsample2, img_H, img_W)
so3 = crop(upsample3, img_H, img_W)
so4 = crop(upsample4, img_H, img_W)
so5 = crop(upsample5, img_H, img_W)
fusecat = torch.cat((so1, so2, so3, so4, so5), dim=1)
fuse = self.score_final(fusecat)
results = [so1, so2, so3, so4, so5, fuse]
results = [torch.sigmoid(r) for r in results]
return results
def crop(variable, th, tw):
h, w = variable.shape[2], variable.shape[3]
x1 = int(round((w - tw) / 2.))
y1 = int(round((h - th) / 2.))
return variable[:, :, y1 : y1 + th, x1 : x1 + tw]
# make a bilinear interpolation kernel
def upsample_filt(size):
factor = (size + 1) // 2
if size % 2 == 1:
center = factor - 1
else:
center = factor - 0.5
og = np.ogrid[:size, :size]
return (1 - abs(og[0] - center) / factor) * \
(1 - abs(og[1] - center) / factor)
# set parameters s.t. deconvolutional layers compute bilinear interpolation
# N.B. this is for deconvolution without groups
def interp_surgery(in_channels, out_channels, h, w):
weights = np.zeros([in_channels, out_channels, h, w])
if in_channels != out_channels:
raise ValueError("Input Output channel!")
if h != w:
raise ValueError("filters need to be square!")
filt = upsample_filt(h)
weights[range(in_channels), range(out_channels), :, :] = filt
return np.float32(weights)
def make_bilinear_weights(size, num_channels):
factor = (size + 1) // 2
if size % 2 == 1:
center = factor - 1
else:
center = factor - 0.5
og = np.ogrid[:size, :size]
filt = (1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor)
# print(filt)
filt = torch.from_numpy(filt)
w = torch.zeros(num_channels, num_channels, size, size)
w.requires_grad = False
for i in range(num_channels):
for j in range(num_channels):
if i == j:
w[i, j] = filt
return w
def upsample(input, stride, num_channels=1):
kernel_size = stride * 2
kernel = make_bilinear_weights(kernel_size, num_channels).cuda()
return torch.nn.functional.conv_transpose2d(input, kernel, stride=stride)