-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
237 lines (205 loc) · 10 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
from functools import partial
import os
import argparse
import yaml
import torch
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from guided_diffusion.condition_methods import get_conditioning_method
from guided_diffusion.measurements import get_noise, get_operator
from guided_diffusion.unet import create_model
from guided_diffusion.gaussian_diffusion import create_sampler
from data.dataloader import get_dataset, get_dataloader
from util.img_utils import clip, clear_color,clear, mask_generator, center_crop
from util.logger import get_logger
from util.data_preprocessing import CenterCropLongEdge
def load_yaml(file_path: str) -> dict:
with open(file_path) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
return config
import numpy as np
from skimage.metrics import peak_signal_noise_ratio
import random
import os
import time
# for debug
def seed_torch(seed=0):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.enabled = False
seed_torch()
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model_config', default='configs/model_config.yaml', type=str)
parser.add_argument('--diffusion_config', default='configs/diffusion_config.yaml', type=str)
parser.add_argument('--task_config', default='configs/sr4_config.yaml', type=str)
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--save_dir', type=str, default='./saved_results')
parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
seed_torch(args.seed)
# logger
logger = get_logger()
# Device setting
device_str = f"cuda:{args.gpu}" if torch.cuda.is_available() else 'cpu'
logger.info(f"Device set to {device_str}.")
device = torch.device(device_str)
# Load configurations
model_config = load_yaml(args.model_config)
diffusion_config = load_yaml(args.diffusion_config)
task_config = load_yaml(args.task_config)
# Load model
model = create_model(**model_config)
if model_config['use_fp16']:
model.convert_to_fp16()
model = model.to(device)
model.eval()
# Prepare Operator and noise
measure_config = task_config['measurement']
operator = get_operator(device=device, **measure_config['operator'])
noiser = get_noise(**measure_config['noise'])
logger.info(f"Operation: {measure_config['operator']['name']} / Noise: {measure_config['noise']['name']}")
# Prepare conditioning method
cond_config = task_config['conditioning']
cond_method = get_conditioning_method(cond_config['method'], operator, noiser, **cond_config['params'])
measurement_cond_fn = cond_method.conditioning
logger.info(f"Conditioning method : {task_config['conditioning']['method']}")
# Load diffusion sampler
sampler = create_sampler(**diffusion_config)
sample_fn = partial(sampler.p_sample_loop, model=model, measurement_cond_fn=measurement_cond_fn)
# Working directory
out_path = os.path.join(args.save_dir, measure_config['operator']['name'])
out_path = os.path.join(args.save_dir, measure_config['operator']['name'], 'seed_{}'.format(args.seed))
os.makedirs(out_path, exist_ok=True)
for img_dir in ['input', 'recon', 'progress', 'truth']:
os.makedirs(os.path.join(out_path, img_dir), exist_ok=True)
# Prepare dataloader
data_config = task_config['data']
if data_config['name'] == 'imagenet' or data_config['name'] == 'cat':
transform = transforms.Compose([
CenterCropLongEdge(),
transforms.Resize(256),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
else:
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
dataset = get_dataset(**data_config, transforms=transform)
loader = get_dataloader(dataset, batch_size=1, num_workers=0, train=False)
## get degradation matrix ##
H_funcs = None
if measure_config['operator']['name'] == 'super_resolution':
if measure_config['operator']['type'] == 'standard':
ratio = measure_config['operator']['scale_factor']
from util.functions import SuperResolution
H_funcs = SuperResolution(3, 256, ratio, device)
elif measure_config['operator']['type'] == 'bicubic':
factor = measure_config['operator']['scale_factor']
ratio = factor
print('ratio: {}'.format(ratio))
from util.functions import SRConv
def bicubic_kernel(x, a=-0.5):
if abs(x) <= 1:
return (a + 2)*abs(x)**3 - (a + 3)*abs(x)**2 + 1
elif 1 < abs(x) and abs(x) < 2:
return a*abs(x)**3 - 5*a*abs(x)**2 + 8*a*abs(x) - 4*a
else:
return 0
k = np.zeros((factor * 4))
for i in range(factor * 4):
x = (1/factor)*(i- np.floor(factor*4/2) + 0.5)
k[i] = bicubic_kernel(x)
k = k / np.sum(k)
kernel = torch.from_numpy(k).float().to(device)
H_funcs = SRConv(kernel / kernel.sum(),model.in_channels, model.image_size, device, stride = factor)
else:
print("ERROR: super_resolution type not supported")
quit()
elif measure_config['operator']['name'] == 'deblur':
if measure_config['operator']['type'] == 'gaussian':
from util.functions import Deblurring
sigma = measure_config['operator']['intensity']
pdf = lambda x: torch.exp(torch.Tensor([-0.5 * (x / sigma) ** 2]))
size = (measure_config['operator']['kernel_size']+1)//2
temp_value = torch.linspace(-(size-1)/2, (size-1)/2, steps=size)
gauss_pdf = torch.zeros(len(temp_value))
for id in range(len(temp_value)):
gauss_pdf[id] = pdf(temp_value[id])
kernel = gauss_pdf.to(device)
# kernel = torch.Tensor([pdf(-2), pdf(-1), pdf(0), pdf(1), pdf(2)]).to(device)
H_funcs = Deblurring(kernel / kernel.sum(), model.in_channels, model.image_size, device)
ratio = 1
elif measure_config['operator']['type'] == 'uniform':
from util.functions import Deblurring
H_funcs = Deblurring(torch.Tensor([1/9] * 9).to(device), model.in_channels, model.image_size, device)
elif measure_config['operator']['type'] == 'aniso':
from util.functions import Deblurring2D
sigma = measure_config['operator']['intensity']
pdf = lambda x: torch.exp(torch.Tensor([-0.5 * (x/sigma)**2]))
kernel2 = torch.Tensor([pdf(-4), pdf(-3), pdf(-2), pdf(-1), pdf(0), pdf(1), pdf(2), pdf(3), pdf(4)]).to(device)
sigma = measure_config['operator']['intensity']
pdf = lambda x: torch.exp(torch.Tensor([-0.5 * (x/sigma)**2]))
kernel1 = torch.Tensor([pdf(-4), pdf(-3), pdf(-2), pdf(-1), pdf(0), pdf(1), pdf(2), pdf(3), pdf(4)]).to(device)
H_funcs = Deblurring2D(kernel1 / kernel1.sum(), kernel2 / kernel2.sum(), model.in_channels, model.image_size, device)
else:
print("ERROR: deblur type not supported")
quit()
ratio = 1
elif measure_config['operator']['name'] == 'color':
from util.functions import Colorization
H_funcs = Colorization(model.image_size, device)
ratio = 1
elif measure_config['operator']['name'] == 'denoise':
from util.functions import Denoising
H_funcs = Denoising(model.in_channels, model.image_size, device)
ratio = 1
else:
print("ERROR: The task type not supported")
quit()
# Do Inference
start_time = time.time()
Num_count = 0
psnr_results = []
for i, ref_img in enumerate(loader):
logger.info(f"Inference for image {i}")
fname = str(i).zfill(5) + '.png'
ref_img = ref_img.to(device)
Num_count += 1
y_x = H_funcs.H(ref_img) # forward linear measurements
y_n = y_x + noiser.sigma * torch.randn_like(y_x)
# General-Purpose Posterior Sampling via DMPS and output the results
DMPS_start_time = time.time()
x_start = torch.randn(ref_img.shape, device=device).requires_grad_()
sample = sample_fn(x_start=x_start, measurement=y_n, H_funcs=H_funcs, noise_std = noiser.sigma, record=True, save_root=out_path)
DMPS_end_time = time.time()
print('DMPS running time: {}'.format(DMPS_end_time - DMPS_start_time))
psnr = peak_signal_noise_ratio(ref_img.cpu().numpy(),sample.cpu().numpy())
psnr_results.append([psnr])
print('PSNR: {}'.format(psnr))
if measure_config['operator']['name'] == 'color':
y_n = y_n.reshape(1,1,model.image_size,model.image_size)
plt.imsave(os.path.join(out_path, 'input', fname), clear(y_n),cmap='gray')
else:
input_size = int(model.image_size/ratio)
y_n = y_n.reshape(1,model.in_channels,input_size,input_size)
plt.imsave(os.path.join(out_path, 'input', fname), clear_color(y_n))
plt.imsave(os.path.join(out_path, 'truth', fname), clear_color(ref_img))
plt.imsave(os.path.join(out_path, 'recon', fname), clear_color(sample))
end_time = time.time()
running_time = end_time - start_time
save_results = np.zeros(3)
save_results[0] = measure_config['noise']['sigma']
save_results[1] = running_time
save_results[2] = Num_count
np.savetxt(os.path.join(out_path, 'saved_results.csv'),save_results)
np.savetxt(os.path.join(out_path, 'psnr_results.csv'),np.array(psnr_results))
print('Total # imges:{}, total running Time: {}'.format(Num_count,end_time - start_time))
if __name__ == '__main__':
main()