From a78c2e85efc8fb650af1e3ab28b702da8639204e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Humeiqi=E8=83=A1=E7=BE=8E=E7=90=AA-=E6=AD=A6=E6=B1=89?= =?UTF-8?q?=E5=A4=A7=E5=AD=A6?= <104488679+meiqihu@users.noreply.github.com> Date: Sun, 5 Feb 2023 22:42:34 +0800 Subject: [PATCH] Update README.md --- README.md | 59 +++++++++++++++++++++++++++++++++++-------------------- 1 file changed, 38 insertions(+), 21 deletions(-) diff --git a/README.md b/README.md index 469d3cb..3d43390 100644 --- a/README.md +++ b/README.md @@ -1,31 +1,48 @@ -# ACDA +# Hyperspectral anomaly change detection based on autoencoder +Pytorch implementation of JSTARS paper "Hyperspectral anomaly change detection based on autoencoder". +![image](https://github.com/meiqihu/ACDA/blob/main/Figure_ACDA.png) +# Paper +[Hyperspectral anomaly change detection based on autoencoder](https://ieeexplore.ieee.org/document/9380336) + +Please cite our paper if you find it useful for your research. + +>@ARTICLE{9380336, + author={Hu, Meiqi and Wu, Chen and Zhang, Liangpei and Du, Bo}, + journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing}, + title={Hyperspectral Anomaly Change Detection Based on Autoencoder}, + year={2021}, + volume={14}, + number={}, + pages={3750-3762}, + doi={10.1109/JSTARS.2021.3066508}} + +# Installation +Install Pytorch 1.10.2 with Python 3.6 +# Dataset +Download the [dataset of Viareggio 2013](https://pan.baidu.com/s/1sRmdjsT-xl6DQJeoPIBNYA),passcode提取密码:qdqf -This is a code of the paper "Hyperspectral anomaly change detection based on autoencoder" implemented on PyTorch. -Pytorch is needed for running this code. +[Dataset]: "Viareggio 2013" with de-striping, noise-whitening and spectrally binning -Paper is available on https://ieeexplore.ieee.org/abstract/document/9380336 +>img_data.mat: -My personal google web:https://scholar.google.com.hk/citations?hl=zh-CN&user=jxyAHdkAAAAJ +>>img_1(D1F12H1); img_2(D1F12H2); img_3(D2F22H2) --=-=-=-=-=-=-=-=-=-=-=-=-=-==-=-=-=-=-==-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- -[Dataset]: "Viareggio 2013" with de-striping, noise-whitening and spectrally binning -1. img_data.mat: -img_1(D1F12H1); img_2(D1F12H2); img_3(D2F22H2) +>pretrain_samples: + +>>un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2; [acquired from the pre-detection result of USFA, Wu C, Zhang L, Du B. Hyperspectral anomaly change detection with slow feature analysis[J]. Neurocomputing, 2015, 151: 175-187.] + +>groundtruth_samples: + +>>un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2; + +>random_samples: un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2; +# Usage +maincode.py -链接:https://pan.baidu.com/s/1sRmdjsT-xl6DQJeoPIBNYA -提取码:qdqf +# More +[My personal google web](https://scholar.google.com.hk/citations?hl=zh-CN&user=jxyAHdkAAAAJ) -2. pretrain_samples: -un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2; [acquired from the pre-detection result of USFA, Wu C, Zhang L, Du B. Hyperspectral anomaly change detection with slow feature analysis[J]. Neurocomputing, 2015, 151: 175-187.] -3. groundtruth_samples: -un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2; -4. random_samples: un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2; --=-=-=-=-=-=-=-=-=-=-=-=-=-==-=-=-=-=-==-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- -[Usage]: maincode.py --=-=-=-=-=-=-=-=-=-=-=-=-=-==-=-=-=-=-==-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- -If you use this code for your research, please cite our papers: -Hu M, Wu C, Zhang L, et al. Hyperspectral anomaly change detection based on autoencoder[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3750-3762.