-
Notifications
You must be signed in to change notification settings - Fork 3
/
readBeforeTraining.txt
25 lines (18 loc) · 1.37 KB
/
readBeforeTraining.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
This is a code of the paper "Hyperspectral anomaly change detection based on autoencoder" implemented on PyTorch.
Pytorch is needed for running this code.
-=-=-=-=-=-=-=-=-=-=-=-=-=-==-=-=-=-=-==-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
[Dataset]: "Viareggio 2013" with de-striping, noise-whitening and spectrally binning
1. img_data.mat:
img_1(D1F12H1); img_2(D1F12H2); img_3(D2F22H2)
链接:https://pan.baidu.com/s/1sRmdjsT-xl6DQJeoPIBNYA
提取码:qdqf
2. pretrain_samples:
un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2; [acquired from the pre-detection result of USFA, Wu C, Zhang L, Du B. Hyperspectral anomaly change detection with slow feature analysis[J]. Neurocomputing, 2015, 151: 175-187.]
3. groundtruth_samples:
un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2;
4. random_samples: un_idx_train1,un_idx_valid1,un_idx_train2,un_idx_valid2;
-=-=-=-=-=-=-=-=-=-=-=-=-=-==-=-=-=-=-==-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
[Usage]: maincode.py
-=-=-=-=-=-=-=-=-=-=-=-=-=-==-=-=-=-=-==-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
If you use this code for your research, please cite our papers:
Hu M, Wu C, Zhang L, et al. Hyperspectral anomaly change detection based on autoencoder[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3750-3762.