-
Notifications
You must be signed in to change notification settings - Fork 26
/
dynamic_fusion.py
306 lines (249 loc) · 13.4 KB
/
dynamic_fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import argparse
import os
from typing import Type
import numpy as np
from utils import print_args
import sys
from datasets.data_io import read_pfm
from plyfile import PlyData, PlyElement
from PIL import Image
import cv2
from multiprocessing import Pool
from functools import partial
parser = argparse.ArgumentParser(description='Filter and fuse depth maps')
parser.add_argument('--testpath', help='testing data path')
parser.add_argument('--tntpath', help='tnt data path')
parser.add_argument('--testlist', help='testing scan list')
parser.add_argument('--outdir', help='output dir')
parser.add_argument('--photo_threshold', type=float, default=0.3, help='photo threshold for filter confidence')
parser.add_argument('--display', action='store_true', help='display depth images and masks')
parser.add_argument('--test_dataset', choices=['dtu','tnt'], help='which dataset to evaluate')
parser.add_argument('--thres_view', type=int, default=3, help='threshold of num view')
# parse arguments and check
args = parser.parse_args()
print("argv:", sys.argv[1:])
print_args(args)
# read intrinsics and extrinsics
def read_camera_parameters(filename,scale,index,flag):
with open(filename) as f:
lines = f.readlines()
lines = [line.rstrip() for line in lines]
# extrinsics: line [1,5), 4x4 matrix
extrinsics = np.fromstring(' '.join(lines[1:5]), dtype=np.float32, sep=' ').reshape((4, 4))
# intrinsics: line [7-10), 3x3 matrix
intrinsics = np.fromstring(' '.join(lines[7:10]), dtype=np.float32, sep=' ').reshape((3, 3))
intrinsics[:2, :] *= scale
if (flag==0):
intrinsics[0,2]-=index
else:
intrinsics[1,2]-=index
return intrinsics, extrinsics
# read an image
def read_img(filename):
img = Image.open(filename)
# scale 0~255 to 0~1
np_img = np.array(img, dtype=np.float32) / 255.
return np_img
# save a binary mask
def save_mask(filename, mask):
assert mask.dtype == np.bool
mask = mask.astype(np.uint8) * 255
Image.fromarray(mask).save(filename)
# read a pair file, [(ref_view1, [src_view1-1, ...]), (ref_view2, [src_view2-1, ...]), ...]
def read_pair_file(filename):
data = []
with open(filename) as f:
num_viewpoint = int(f.readline())
for view_idx in range(num_viewpoint):
ref_view = int(f.readline().rstrip())
src_views = [int(x) for x in f.readline().rstrip().split()[1::2]]
if len(src_views) == 0:
continue
data.append((ref_view, src_views))
return data
# project the reference point cloud into the source view, then project back
def reproject_with_depth(depth_ref, intrinsics_ref, extrinsics_ref, depth_src, intrinsics_src, extrinsics_src):
width, height = depth_ref.shape[1], depth_ref.shape[0]
## step1. project reference pixels to the source view
# reference view x, y
x_ref, y_ref = np.meshgrid(np.arange(0, width), np.arange(0, height))
x_ref, y_ref = x_ref.reshape([-1]), y_ref.reshape([-1])
# reference 3D space
xyz_ref = np.matmul(np.linalg.inv(intrinsics_ref),
np.vstack((x_ref, y_ref, np.ones_like(x_ref))) * depth_ref.reshape([-1]))
# source 3D space
xyz_src = np.matmul(np.matmul(extrinsics_src, np.linalg.inv(extrinsics_ref)),
np.vstack((xyz_ref, np.ones_like(x_ref))))[:3]
# source view x, y
K_xyz_src = np.matmul(intrinsics_src, xyz_src)
xy_src = K_xyz_src[:2] / K_xyz_src[2:3]
## step2. reproject the source view points with source view depth estimation
# find the depth estimation of the source view
x_src = xy_src[0].reshape([height, width]).astype(np.float32)
y_src = xy_src[1].reshape([height, width]).astype(np.float32)
sampled_depth_src = cv2.remap(depth_src, x_src, y_src, interpolation=cv2.INTER_LINEAR)
# mask = sampled_depth_src > 0
# source 3D space
# NOTE that we should use sampled source-view depth_here to project back
xyz_src = np.matmul(np.linalg.inv(intrinsics_src),
np.vstack((xy_src, np.ones_like(x_ref))) * sampled_depth_src.reshape([-1]))
# reference 3D space
xyz_reprojected = np.matmul(np.matmul(extrinsics_ref, np.linalg.inv(extrinsics_src)),
np.vstack((xyz_src, np.ones_like(x_ref))))[:3]
# source view x, y, depth
depth_reprojected = xyz_reprojected[2].reshape([height, width]).astype(np.float32)
K_xyz_reprojected = np.matmul(intrinsics_ref, xyz_reprojected)
xy_reprojected = K_xyz_reprojected[:2] / K_xyz_reprojected[2:3]
x_reprojected = xy_reprojected[0].reshape([height, width]).astype(np.float32)
y_reprojected = xy_reprojected[1].reshape([height, width]).astype(np.float32)
return depth_reprojected, x_reprojected, y_reprojected, x_src, y_src
def check_geometric_consistency(depth_ref, intrinsics_ref, extrinsics_ref, depth_src, intrinsics_src, extrinsics_src
):
width, height = depth_ref.shape[1], depth_ref.shape[0]
x_ref, y_ref = np.meshgrid(np.arange(0, width), np.arange(0, height))
depth_reprojected, x2d_reprojected, y2d_reprojected, x2d_src, y2d_src = reproject_with_depth(depth_ref,
intrinsics_ref,
extrinsics_ref,
depth_src,
intrinsics_src,
extrinsics_src)
# check |p_reproj-p_1| < 1
dist = np.sqrt((x2d_reprojected - x_ref) ** 2 + (y2d_reprojected - y_ref) ** 2)
# check |d_reproj-d_1| / d_1 < 0.01
depth_diff = np.abs(depth_reprojected - depth_ref)
relative_depth_diff = depth_diff / depth_ref
masks=[]
for i in range(2,11):
mask = np.logical_and(dist < i/4, relative_depth_diff < i/1300)
masks.append(mask)
vis_mask = np.logical_and(dist < 1, relative_depth_diff < 0.01)
depth_reprojected[~mask] = 0
return masks, mask, depth_reprojected, x2d_src, y2d_src, vis_mask
def filter_depth(scan_folder, out_folder, pair_path, plyfilename, photo_threshold):
# the pair file
pair_file = os.path.join(scan_folder, "pair.txt")
pair_file = pair_path
# for the final point cloud
vertexs = []
vertex_colors = []
pair_data = read_pair_file(pair_file)
for ref_view, src_views in pair_data:
# load the reference image
ref_img = read_img(os.path.join(scan_folder, 'images/{:0>8}.jpg'.format(ref_view)))
# load the estimated depth of the reference view
ref_depth_est = read_pfm(os.path.join(scan_folder, 'depth_est/{:0>8}.pfm'.format(ref_view)))[0]
# load the photometric mask of the reference view
confidence = read_pfm(os.path.join(scan_folder, 'confidence/{:0>8}.pfm'.format(ref_view)))[0]
scale=float(confidence.shape[0])/ref_img.shape[0]
index=int((int(ref_img.shape[1]*scale)-confidence.shape[1])/2)
index_p=(int(ref_img.shape[1]*scale)-confidence.shape[1])-index
flag=0
if (confidence.shape[1]/ref_img.shape[1]>scale):
scale=float(confidence.shape[1])/ref_img.shape[1]
index=int((int(ref_img.shape[0]*scale)-confidence.shape[0])/2)
index_p=(int(ref_img.shape[0]*scale)-confidence.shape[0])-index
flag=1
ref_img=cv2.resize(ref_img,(int(ref_img.shape[1]*scale),int(ref_img.shape[0]*scale)))
if (flag==0):
ref_img=ref_img[:,index:ref_img.shape[1]-index_p,:]
else:
ref_img=ref_img[index:ref_img.shape[0]-index_p,:,:]
# load the camera parameters
ref_intrinsics, ref_extrinsics = read_camera_parameters(
os.path.join(scan_folder, 'cams/{:0>8}_cam.txt'.format(ref_view)),scale,index,flag)
photo_mask = confidence > photo_threshold
all_srcview_depth_ests = []
# compute the geometric mask
geo_mask_sum = 0
geo_mask_sums=[]
vis_masks=[]
n=1
for src_view in src_views:
n+=1
ct = 0
for src_view in src_views:
ct = ct + 1
src_depth_est = read_pfm(os.path.join(scan_folder, 'depth_est/{:0>8}.pfm'.format(src_view)))[0]
src_intrinsics, src_extrinsics = read_camera_parameters(
os.path.join(scan_folder, 'cams/{:0>8}_cam.txt'.format(src_view)),scale,index,flag)
masks, geo_mask, depth_reprojected, x2d_src, y2d_src, vis_mask= check_geometric_consistency(ref_depth_est, ref_intrinsics,
ref_extrinsics,
src_depth_est,
src_intrinsics, src_extrinsics)
vis_masks.append(vis_mask*src_view)
if (ct==1):
for i in range(2,n):
geo_mask_sums.append(masks[i-2].astype(np.int32))
else :
for i in range(2,n):
geo_mask_sums[i-2]+=masks[i-2].astype(np.int32)
geo_mask_sum+=geo_mask.astype(np.int32)
all_srcview_depth_ests.append(depth_reprojected)
# Modify
# geo_mask=geo_mask_sum>=n
geo_mask=geo_mask_sum>=args.thres_view
for i in range (2,n):
geo_mask=np.logical_or(geo_mask,geo_mask_sums[i-2]>=i)
print(geo_mask.mean())
depth_est_averaged = (sum(all_srcview_depth_ests) + ref_depth_est) / (geo_mask_sum + 1)
if (not isinstance(geo_mask, bool)):
final_mask = np.logical_and(photo_mask, geo_mask)
os.makedirs(os.path.join(out_folder, "mask"), exist_ok=True)
save_mask(os.path.join(out_folder, "mask/{:0>8}_photo.png".format(ref_view)), photo_mask)
save_mask(os.path.join(out_folder, "mask/{:0>8}_geo.png".format(ref_view)), geo_mask)
save_mask(os.path.join(out_folder, "mask/{:0>8}_final.png".format(ref_view)), final_mask)
print("processing {}, ref-view{:0>2}, photo/geo/final-mask:{}/{}/{}".format(scan_folder, ref_view,
photo_mask.mean(),
geo_mask.mean(),
final_mask.mean()))
if args.display:
cv2.imshow('ref_img', ref_img[:, :, ::-1])
cv2.imshow('ref_depth', ref_depth_est / 800)
cv2.imshow('ref_depth * photo_mask', ref_depth_est * photo_mask.astype(np.float32) / 800)
cv2.imshow('ref_depth * geo_mask', ref_depth_est * geo_mask.astype(np.float32) / 800)
cv2.imshow('ref_depth * mask', ref_depth_est * final_mask.astype(np.float32) / 800)
cv2.waitKey(0)
height, width = depth_est_averaged.shape[:2]
x, y = np.meshgrid(np.arange(0, width), np.arange(0, height))
valid_points = final_mask
print("valid_points", valid_points.mean())
x, y, depth = x[valid_points], y[valid_points], depth_est_averaged[valid_points]
color = ref_img[:, :, :][valid_points]
xyz_ref = np.matmul(np.linalg.inv(ref_intrinsics),
np.vstack((x, y, np.ones_like(x))) * depth)
xyz_world = np.matmul(np.linalg.inv(ref_extrinsics),
np.vstack((xyz_ref, np.ones_like(x))))[:3]
vertexs.append(xyz_world.transpose((1, 0)))
vertex_colors.append((color * 255).astype(np.uint8))
vertexs = np.concatenate(vertexs, axis=0)
vertex_colors = np.concatenate(vertex_colors, axis=0)
vertexs = np.array([tuple(v) for v in vertexs], dtype=[('x', 'f4'), ('y', 'f4'), ('z', 'f4')])
vertex_colors = np.array([tuple(v) for v in vertex_colors], dtype=[('red', 'u1'), ('green', 'u1'), ('blue', 'u1')])
vertex_all = np.empty(len(vertexs), vertexs.dtype.descr + vertex_colors.dtype.descr)
for prop in vertexs.dtype.names:
vertex_all[prop] = vertexs[prop]
for prop in vertex_colors.dtype.names:
vertex_all[prop] = vertex_colors[prop]
el = PlyElement.describe(vertex_all, 'vertex')
PlyData([el]).write(plyfilename)
print("saving the final model to", plyfilename)
def worker(scan):
scan_folder = os.path.join(args.testpath, scan)
out_folder = os.path.join(args.outdir, scan)
pair_path = os.path.join(args.tntpath, f"{scan}/pair.txt")
if (args.test_dataset=='dtu'):
scan_id = int(scan[4:])
photo_threshold=0.3
filter_depth(scan_folder, out_folder, pair_path, os.path.join(args.outdir, 'mvsnet_{:0>3}_l3.ply'.format(scan_id) ), photo_threshold)
if (args.test_dataset=='tnt'):
photo_threshold=args.photo_threshold
filter_depth(scan_folder, out_folder, pair_path, os.path.join(args.outdir, scan + '.ply'), photo_threshold)
if __name__ == '__main__':
with open(args.testlist) as f:
scans = f.readlines()
scans = [line.rstrip() for line in scans]
partial_func = partial(worker)
p = Pool(8)
p.map(partial_func, scans)
p.close()
p.join()