-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmin_Heap.java
345 lines (285 loc) · 10.1 KB
/
min_Heap.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Scanner;
import java.util.HashMap;
// Implementation of Minimum Min heap
public class min_Heap {
private Storage[] MHeap;
private int size;
private int max;
private static int originalsize = 0;
private static final int FRONT = 1;
static HashMap<Integer,Storage> execution_time = new HashMap<Integer, Storage>();
static RBTree rbTree = new RBTree();
class MinHeapNode {
Storage executed_time = new Storage(0,0,0);
MinHeapNode(Storage element) {
this.executed_time = element;
}
}
public min_Heap(int max)
{
this.max = max;
this.size = 0;
MHeap = new Storage[this.max + 1];
MHeap[0] = new Storage(0,Integer.MIN_VALUE,0);
}
// Function for returning the position of the parentNode for the node currently at position
// public min_Heap() {}
//getting the size of the min heap
public int getSize() {
return originalsize;
}
// parent node retrieval
private int parentNode(int pos)
{
return pos / 2;
}
// returning the position of the left child for the node currently at position
private int leftChildNode(int pos)
{
return (2 * pos);
}
// returning the position of the right child for the node currently at position
private int rightChildNode(int pos)
{
return (2 * pos) + 1;
}
/* checking if the node is a leaf node or not */
private String[] leaf_node(int pos)
{
String[] present = new String[2];
if(leftChildNode(pos) > size)
{
present[0] = "true";
present[1] = "0";
}
else if(leftChildNode(pos) <= size && rightChildNode(pos) <= size)
{
present[0] = "false";
present[1] = "2";
}
else
{
present[0] = "false";
present[1] = "1";
}
return present;
}
/* heapify the node at position*/
private void heapify(int pos)
{
Storage temp;
String[] leaf_nodeHolder = leaf_node(pos);
if(leaf_nodeHolder[0].equals("false") && leaf_nodeHolder[1].equals("2"))
{
if(MHeap[pos].Executed_time < MHeap[leftChildNode(pos)].Executed_time)
{
if(MHeap[rightChildNode(pos)].Executed_time == MHeap[pos].Executed_time)
{
if(MHeap[rightChildNode(pos)].Building_Numbers < MHeap[pos].Building_Numbers)
{
temp = MHeap[pos];
MHeap[pos] = MHeap[rightChildNode(pos)];
MHeap[rightChildNode(pos)] = temp;
heapify(rightChildNode(pos));
}
}
else if(MHeap[rightChildNode(pos)].Executed_time < MHeap[pos].Executed_time)
{
temp = MHeap[pos];
MHeap[pos] = MHeap[rightChildNode(pos)];
MHeap[rightChildNode(pos)] = temp;
heapify(rightChildNode(pos));
}
}
else if ( MHeap[pos].Executed_time > MHeap[leftChildNode(pos)].Executed_time || MHeap[pos].Executed_time > MHeap[rightChildNode(pos)].Executed_time )
{
if (MHeap[leftChildNode(pos)].Executed_time == MHeap[rightChildNode(pos)].Executed_time)
{
if(MHeap[leftChildNode(pos)].Building_Numbers < MHeap[rightChildNode(pos)].Building_Numbers)
{
temp = MHeap[pos];
MHeap[pos] = MHeap[leftChildNode(pos)];
MHeap[leftChildNode(pos)] = temp;
heapify(leftChildNode(pos));
}
else
{
temp = MHeap[pos];
MHeap[pos] = MHeap[rightChildNode(pos)];
MHeap[rightChildNode(pos)] = temp;
heapify(rightChildNode(pos));
}
}
else if(MHeap[leftChildNode(pos)].Executed_time > MHeap[rightChildNode(pos)].Executed_time)
{
temp = MHeap[pos];
MHeap[pos] = MHeap[rightChildNode(pos)];
MHeap[rightChildNode(pos)] = temp;
heapify(rightChildNode(pos));
}
else
{
temp = MHeap[pos];
MHeap[pos] = MHeap[leftChildNode(pos)];
MHeap[leftChildNode(pos)] = temp;
heapify(leftChildNode(pos));
}
}
else if(MHeap[pos].Executed_time == MHeap[leftChildNode(pos)].Executed_time)
{
if(MHeap[pos].Executed_time != MHeap[rightChildNode(pos)].Executed_time)
{
if(MHeap[leftChildNode(pos)].Building_Numbers < MHeap[pos].Building_Numbers)
{
temp = MHeap[pos];
MHeap[pos] = MHeap[ leftChildNode(pos)];
MHeap[ leftChildNode(pos)] = temp;
heapify(leftChildNode(pos));
}
}
else
{
if(MHeap[rightChildNode(pos)].Building_Numbers > MHeap[leftChildNode(pos)].Building_Numbers)
{
if(MHeap[pos].Building_Numbers > MHeap[leftChildNode(pos)].Building_Numbers)
{
temp = MHeap[pos];
MHeap[pos] = MHeap[ leftChildNode(pos)];
MHeap[ leftChildNode(pos)] = temp;
heapify(leftChildNode(pos));
}
}
else
{
if(MHeap[pos].Building_Numbers > MHeap[rightChildNode(pos)].Building_Numbers )
{
temp = MHeap[pos];
MHeap[pos] = MHeap[ rightChildNode(pos)];
MHeap[ rightChildNode(pos)] = temp;
heapify(rightChildNode(pos));
}
}
}
}
}
else if((leaf_nodeHolder[0].equals("false") && leaf_nodeHolder[1].equals("1")))
{
if((float)pos == Math.ceil((float) getSize()/2) )
{
if(MHeap[pos].Executed_time == MHeap[leftChildNode(pos)].Executed_time)
{
if(MHeap[leftChildNode(pos)].Building_Numbers < MHeap[pos].Building_Numbers )
{
temp = MHeap[pos];
MHeap[pos] = MHeap[ leftChildNode(pos)];
MHeap[ leftChildNode(pos)] = temp;
heapify(leftChildNode(pos));
}
}
else if(MHeap[pos].Executed_time > MHeap[leftChildNode(pos)].Executed_time)
{
temp = MHeap[pos];
MHeap[pos] = MHeap[ leftChildNode(pos)];
MHeap[ leftChildNode(pos)] = temp;
heapify(leftChildNode(pos));
}
}
}
}
/* insertion of a node into the minimum heap*/
public Storage insertion(Storage element)
{
if(size < max)
{
MHeap[++size] = element;
int current = size;
Storage temp;
while (MHeap[current].Executed_time < MHeap[parentNode(current)].Executed_time)
{
temp = MHeap[current];
MHeap[current] = MHeap[ parentNode(current)];
MHeap[ parentNode(current)] = temp;
current = parentNode(current);
}
originalsize++;
for(int i=1; i <= getSize(); i++)
{
rbTree.setptr(MHeap[i].getBuildingNums(), i);
execution_time.put(MHeap[i].getBuildingNums(), MHeap[i]);
}
}
else
{
System.out.println("Size is bigger than max size");
}
return MHeap[size];
}
/* building the minimum heap using heapify.*/
public Storage minHeap()
{
for(int pos = (size / 2); pos >= 1; pos--)
{
heapify(pos);
}
for(int i=1; i <= getSize(); i++)
{
rbTree.setptr(MHeap[i].getBuildingNums(), i);
}
return MHeap[1];
}
/* removing and returning the minimum element from the heap */
public void remove(int buildingNum)
{
int position = rbTree.getValueFromptr(buildingNum);
position_removal(position);
}
public void position_removal(int index)
{
if(index == 1)
{
Storage pop = MHeap[FRONT];
if(getSize() == 1)
{
MHeap[FRONT] = MHeap[size--];
originalsize--;
}
if(getSize()>1)
{
MHeap[FRONT] = MHeap[size--];
originalsize--;
heapify(FRONT);
rbTree.deleteFromptr(pop.getBuildingNums());
for(int i=1; i<= getSize(); i++)
{
rbTree.setptr(MHeap[i].getBuildingNums(), i);
}
}
}
else
{
if(size==2)
{
Storage pop = MHeap[size];
size--;
originalsize--;
}
else if(size>2)
{
Storage pop = MHeap[index];
MHeap[index] = MHeap[size--];
originalsize--;
minHeap();
}
}
}
//for getting the min heap
public Storage fetchNode(int position) {
return MHeap[position];
}
}