-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkMeansDynamic.py
201 lines (173 loc) · 7.16 KB
/
kMeansDynamic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import sys
import functools
import numpy as np
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import configparser
from collections import defaultdict
from numpy import random
from mpl_toolkits.mplot3d import Axes3D
from PyQt4 import QtGui
__author__ = 'Marek'
def preMain() -> None:
app = QtGui.QApplication(sys.argv)
w = QtGui.QWidget()
w.resize(100, 100)
w.move(300, 300)
w.setWindowTitle("K-means")
label = QtGui.QLabel("Clusters: ", w)
label.move(5, 10)
txtbox = QtGui.QLineEdit(w)
txtbox.move(50, 5)
txtbox.setMaximumWidth(40)
txtbox.setMaximumHeight(25)
txtbox.setMaxLength(2)
txtbox.setText("10")
combo = QtGui.QComboBox(w)
combo.move(5, 35)
combo.addItem("a2.txt")
combo.addItem("yeast.txt")
btn = QtGui.QPushButton("Start", w)
btn.move(5, 65)
def call():
btn.setEnabled(False)
try:
tmp = int(txtbox.text())
if tmp < 1:
raise ValueError
return main(tmp, combo.currentText(), btn)
except ValueError:
error = QtGui.QMessageBox
error.about(None, "Error", "Provide positive integer.")
btn.setEnabled(True)
btn.clicked.connect(call)
w.show()
sys.exit(app.exec_())
def main(iClusters, file, btn) -> None:
try:
# open file with points
f = open(file, 'r')
vPoints = []
iDimensions = 0
bTemp = True
# create a list with read points
for sLine in f.readlines():
vLineSplit = sLine.split()
if bTemp:
iDimensions = len(vLineSplit)
bTemp = False
vPoints.append(tuple(float(x) for x in vLineSplit))
# count for minimum and maximum values of list
if file == 'yeast.txt':
vClusters = [tuple(random.uniform() for _ in range(iDimensions)) for _ in range(iClusters)]
elif file == 'a2.txt':
(iMinX, iMinY, iMaxX, iMaxY) = (
min(vPoints, key=lambda z: z[0])[0],
min(vPoints, key=lambda z: z[1])[1],
max(vPoints, key=lambda z: z[0])[0],
max(vPoints, key=lambda z: z[1])[1])
# generate random position of clusters
vClusters = [(random.randint(iMinX, iMaxX), random.randint(iMinY, iMaxY))
for _ in range(iClusters)]
# make old position of clusters very far away
vOldClusters = [tuple([float("inf")] * iDimensions)] * iClusters
# cluster belongings
dClusterPoints = defaultdict(list)
def new_cluster() -> None:
"""
:rtype : None
"""
dClusterPoints.clear()
for point in vPoints:
vDist = []
for c in vClusters:
vDiDist = []
for di in range(iDimensions):
vDiDist.append(point[di] - c[di])
vDiDist = [x**2 for x in vDiDist]
dist = np.sqrt(sum(vDiDist))
vDist.append(dist)
# cluster to which point belongs, based on minimum distance
iBelong = vDist.index(min(vDist))
# add this point to a list of points of any cluster
assert isinstance(point, tuple)
dClusterPoints[iBelong].append(point)
for n in range(iClusters):
dCPs = dClusterPoints
# try:
# vClusters[n] = tuple([sum([d[dim] for d in dCP[n]])/len(dCP[n]) for dim in range(iDimensions)])
# except ZeroDivisionError:10
# # if there is no points
# vClusters[n] = tuple([sum([d[dim] for d in vPoints])/len(vPoints) for dim in range(iDimensions)])
try:
vClusters[n] = tuple([functools.reduce(lambda b, m: b + m, [d[di] for d in dCPs[n]]) / len(dCPs[n])
for di in range(iDimensions)])
except TypeError:
vClusters[n] = tuple([functools.reduce(lambda b, m: b + m, [d[di] for d in vPoints]) / len(vPoints)
for di in range(iDimensions)])
fQuantisationError = 0.001
while True:
vbBreak = []
for i in range(iClusters):
vDimDist = []
for dim in range(iDimensions):
vDimDist.append(vOldClusters[i][dim] - vClusters[i][dim])
vDimDist = [x**2 for x in vDimDist]
fDiff = np.sqrt(sum(vDimDist))
if fDiff > fQuantisationError:
vbBreak.append(False)
break
else:
vbBreak.append(True)
if all(vbBreak):
break
vOldClusters = np.copy(vClusters)
new_cluster()
# drawing a scatter with points
if iDimensions == 2:
fig = plt.figure()
ax = fig.add_subplot(111)
colors = cm.rainbow(np.linspace(0, 1, iClusters))
for i, color in zip(range(iClusters), colors):
ax.scatter(*zip(*dClusterPoints[i]), marker='x', color=color)
for cluster, color in zip(vClusters, colors):
ax.scatter(*cluster, marker='o', color='black', s=150)
ax.scatter(*cluster, marker='o', color=color, s=100)
# neural network purpose
writeIni(dClusterPoints, iClusters)
elif iDimensions == 3:
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
colors = cm.rainbow(np.linspace(0, 1, iClusters))
for i, color in zip(range(iClusters), colors):
ax.scatter(*zip(*dClusterPoints[i]), marker='x', color=color)
for cluster, color in zip(vClusters, colors):
ax.scatter(*cluster, marker='o', color='black', s=150)
ax.scatter(*cluster, marker='o', color=color, s=100)
elif iDimensions > 3:
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
colors = cm.rainbow(np.linspace(0, 1, iClusters))
for i, color in zip(range(iClusters), colors):
dCP = dClusterPoints[i]
dCP = [x[:3] for x in dCP]
ax.scatter(*zip(*dCP), marker='x', color=color)
for cluster, color in zip(vClusters, colors):
cluster = cluster[:3]
ax.scatter(*cluster, marker='o', color='black', s=150)
ax.scatter(*cluster, marker='o', color=color, s=100)
plt.show()
btn.setEnabled(True)
except Exception as e:
QtGui.QMessageBox.about(None, "Error", "Something went wrong. Please try again.\n %s" % e)
btn.setEnabled(True)
def writeIni(data, iClusters):
config = configparser.RawConfigParser()
config.add_section("cluster_points")
config.set('cluster_points', 'clusters_number', iClusters)
for i in range(len(data)):
config.set('cluster_points', str(i), '#'.join(map(repr, data[i])))
with open('file.ini', 'w') as outfile:
config.write(outfile)
if __name__ == "__main__":
preMain()