-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMain.py
114 lines (97 loc) · 3.16 KB
/
Main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import functools
from matplotlib.pyplot import scatter
from numpy import random
from numpy import sqrt
from pylab import show
rand = random
f = open('199607daily.txt')
maxT = []
wind = []
sea = []
minT = []
for i in f.readlines()[1:]:
try:
maxT.append(float(i.split(',')[2]))
except ValueError:
pass
try:
wind.append(float(i.split(',')[-7]))
except ValueError:
pass
try:
sea.append(float(i.split(',')[-8]))
except ValueError:
pass
try:
minT.append(float(i.split(',')[3]))
except ValueError:
pass
avg_maxT = functools.reduce(lambda x, y: x + y, maxT) / len(maxT)
max_wind = max(wind)
min_wind = min(wind)
sea_max = sorted(sea)[:5]
sea_min = sorted(sea)[-5:]
enum = range(len(minT))
c1 = (rand.random_integers(0, 14000), rand.random_integers(0, 100))
c2 = (rand.random_integers(0, 14000), rand.random_integers(0, 100))
c3 = (rand.random_integers(0, 14000), rand.random_integers(0, 100))
old_c1 = (-1000, -1000)
old_c2 = (-1000, -1000)
old_c3 = (-1000, -1000)
c1p = []
c1x = []
c1y = []
c2p = []
c2x = []
c2y = []
c3p = []
c3x = []
c3y = []
def new_cluster():
global c1
global c2
global c3
c1p.clear()
c1x.clear()
c1y.clear()
c2p.clear()
c2x.clear()
c2y.clear()
c3p.clear()
c3x.clear()
c3y.clear()
for point in enum:
x1 = point - c1[0]
y1 = minT[point] - c1[1]
dist1 = sqrt(x1**2 + y1**2)
x2 = point - c2[0]
y2 = minT[point] - c2[1]
dist2 = sqrt(x2**2 + y2**2)
x3 = point - c3[0]
y3 = minT[point] - c3[1]
dist3 = sqrt(x3**2 + y3**2)
c1p.append((point, minT[point])) if dist1 < dist2 and dist1 < dist3 else c2p.append((point, minT[point])) if dist2 < dist3 else c3p.append((point, minT[point]))
c1x.append(point) if dist1 < dist2 and dist1 < dist3 else c2x.append(point) if dist2 < dist3 else c3x.append(point)
c1y.append(minT[point]) if dist1 < dist2 and dist1 < dist3 else c2y.append(minT[point]) if dist2 < dist3 else c3y.append(minT[point])
# c1 = (functools.reduce(lambda x, y: x + y, c1x) / len(c1x), functools.reduce(lambda x, y: x + y, c1y) / len(c1y))
c1 = sum(c1x)/len(c1x), sum(c1y)/len(c1y)
c2 = (functools.reduce(lambda x, y: x + y, c2x) / len(c2x), functools.reduce(lambda x, y: x + y, c2y) / len(c2y))
c3 = (functools.reduce(lambda x, y: x + y, c3x) / len(c3x), functools.reduce(lambda x, y: x + y, c3y) / len(c3y))
quantisation_error = max(minT) * 0.01
while not (abs(old_c1[0] - c1[0]) < quantisation_error * 140
and abs(old_c1[1] - c1[1]) < quantisation_error
and abs(old_c2[0] - c2[0]) < quantisation_error * 140
and abs(old_c2[1] - c2[1]) < quantisation_error
and abs(old_c3[0] - c3[0]) < quantisation_error * 140
and abs(old_c3[1] - c3[1]) < quantisation_error):
old_c1 = c1
old_c2 = c2
old_c3 = c3
new_cluster()
scatter(*zip(*c1p), marker='x', c='red')
scatter(*zip(*c2p), marker='x', c='blue')
scatter(*zip(*c3p), marker='x', c='green')
scatter(*c1, marker='o', c='red', s=100)
scatter(*c2, marker='o', c='blue', s=100)
scatter(*c3, marker='o', c='green', s=100)
show()