-
Notifications
You must be signed in to change notification settings - Fork 6
/
eval.py
852 lines (723 loc) · 39.6 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
"""
model evaluation/sampling
"""
import math
import os
import torch
from typing import List, Optional, Tuple, Union
from tqdm import tqdm
from copy import deepcopy
import numpy as np
import diffusers
from diffusers import DiffusionPipeline, ImagePipelineOutput, DDIMScheduler
from diffusers.utils.torch_utils import randn_tensor
from utils import make_grid
from torchvision.utils import save_image
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
####################
# segmentation-guided DDPM
####################
def evaluate_sample_many(
sample_size,
config,
model,
noise_scheduler,
eval_dataloader,
device='cuda'
):
# for loading segs to condition on:
# setup for sampling
if config.model_type == "DDPM":
if config.segmentation_guided:
pipeline = SegGuidedDDPMPipeline(
unet=model.module, scheduler=noise_scheduler, eval_dataloader=eval_dataloader, external_config=config
)
else:
pipeline = diffusers.DDPMPipeline(unet=model.module, scheduler=noise_scheduler)
elif config.model_type == "DDIM":
if config.segmentation_guided:
pipeline = SegGuidedDDIMPipeline(
unet=model.module, scheduler=noise_scheduler, eval_dataloader=eval_dataloader, external_config=config
)
else:
pipeline = diffusers.DDIMPipeline(unet=model.module, scheduler=noise_scheduler)
sample_dir = test_dir = os.path.join(config.output_dir, "samples_many_{}".format(sample_size))
if not os.path.exists(sample_dir):
os.makedirs(sample_dir)
num_sampled = 0
# keep sampling images until we have enough
for bidx, seg_batch in tqdm(enumerate(eval_dataloader), total=len(eval_dataloader)):
if num_sampled < sample_size:
if config.segmentation_guided:
current_batch_size = [v for k, v in seg_batch.items() if k.startswith("seg_")][0].shape[0]
else:
current_batch_size = config.eval_batch_size
if config.segmentation_guided:
images = pipeline(
batch_size = current_batch_size,
seg_batch=seg_batch,
).images
else:
images = pipeline(
batch_size = current_batch_size,
).images
# save each image in the list separately
for i, img in enumerate(images):
if config.segmentation_guided:
# name base on input mask fname
img_fname = "{}/condon_{}".format(sample_dir, seg_batch["image_filenames"][i])
else:
img_fname = f"{sample_dir}/{num_sampled + i:04d}.png"
img.save(img_fname)
num_sampled += len(images)
print("sampled {}/{}.".format(num_sampled, sample_size))
def evaluate_generation(
config,
model,
noise_scheduler,
eval_dataloader,
class_label_cfg=None,
translate=False,
eval_mask_removal=False,
eval_blank_mask=False,
device='cuda'
):
"""
general function to evaluate (possibly mask-guided) trained image generation model in useful ways.
also has option to use CFG for class-conditioned sampling (otherwise, class-conditional models will be evaluated using naive class conditioning and sampling from both classes).
can also evaluate for image translation.
"""
# for loading segs to condition on:
eval_dataloader = iter(eval_dataloader)
if config.segmentation_guided:
seg_batch = next(eval_dataloader)
if eval_blank_mask:
# use blank masks
for k, v in seg_batch.items():
if k.startswith("seg_"):
seg_batch[k] = torch.zeros_like(v)
# setup for sampling
# After each epoch you optionally sample some demo images with evaluate() and save the model
if config.model_type == "DDPM":
if config.segmentation_guided:
pipeline = SegGuidedDDPMPipeline(
unet=model.module, scheduler=noise_scheduler, eval_dataloader=eval_dataloader, external_config=config
)
else:
pipeline = diffusers.DDPMPipeline(unet=model.module, scheduler=noise_scheduler)
elif config.model_type == "DDIM":
if config.segmentation_guided:
pipeline = SegGuidedDDIMPipeline(
unet=model.module, scheduler=noise_scheduler, eval_dataloader=eval_dataloader, external_config=config
)
else:
pipeline = diffusers.DDIMPipeline(unet=model.module, scheduler=noise_scheduler)
# sample some images
if config.segmentation_guided:
evaluate(config, -1, pipeline, seg_batch, class_label_cfg, translate)
else:
if config.class_conditional:
raise NotImplementedError("TODO: implement CFG and naive conditioning sampling for non-seg-guided pipelines, including for image translation")
evaluate(config, -1, pipeline)
# seg-guided specific visualizations
if config.segmentation_guided and eval_mask_removal:
plot_result_masks_multiclass = True
if plot_result_masks_multiclass:
pipeoutput_type = 'np'
else:
pipeoutput_type = 'pil'
# visualize segmentation-guided sampling by seeing what happens
# when segs removed
num_viz = config.eval_batch_size
# choose one seg to sample from; duplicate it
eval_same_image = False
if eval_same_image:
seg_batch = {k: torch.cat(num_viz*[v[:1]]) for k, v in seg_batch.items()}
result_masks = torch.Tensor()
multiclass_masks = []
result_imgs = []
multiclass_masks_shape = (config.eval_batch_size, 1, config.image_size, config.image_size)
# will plot segs + sampled images
for seg_type in seg_batch.keys():
if seg_type.startswith("seg_"):
#convert from tensor to PIL
seg_batch_plt = seg_batch[seg_type].cpu()
result_masks = torch.cat((result_masks, seg_batch_plt))
# sample given all segs
multiclass_masks.append(convert_segbatch_to_multiclass(multiclass_masks_shape, seg_batch, config, device))
full_seg_imgs = pipeline(
batch_size = num_viz,
seg_batch=seg_batch,
class_label_cfg=class_label_cfg,
translate=translate,
output_type=pipeoutput_type
).images
if plot_result_masks_multiclass:
result_imgs.append(full_seg_imgs)
else:
result_imgs += full_seg_imgs
# only sample from masks with chosen classes removed
chosen_class_combinations = None
#chosen_class_combinations = [ #for example:
# {"seg_all": [1, 2]}
#]
if chosen_class_combinations is not None:
for allseg_classes in chosen_class_combinations:
# remove all chosen classes
seg_batch_removed = deepcopy(seg_batch)
for seg_type in seg_batch_removed.keys():
# some datasets have multiple tissue segs stored in multiple masks
if seg_type.startswith("seg_"):
classes = allseg_classes[seg_type]
for mask_val in classes:
if mask_val != 0:
remove_mask = (seg_batch_removed[seg_type]*255).int() == mask_val
seg_batch_removed[seg_type][remove_mask] = 0
seg_batch_removed_plt = torch.cat([seg_batch_removed[seg_type].cpu() for seg_type in seg_batch_removed.keys() if seg_type.startswith("seg_")])
result_masks = torch.cat((result_masks, seg_batch_removed_plt))
multiclass_masks.append(convert_segbatch_to_multiclass(
multiclass_masks_shape,
seg_batch_removed, config, device))
# add images conditioned on some segs but not all
removed_seg_imgs = pipeline(
batch_size = config.eval_batch_size,
seg_batch=seg_batch_removed,
class_label_cfg=class_label_cfg,
translate=translate,
output_type=pipeoutput_type
).images
if plot_result_masks_multiclass:
result_imgs.append(removed_seg_imgs)
else:
result_imgs += removed_seg_imgs
else:
for seg_type in seg_batch.keys():
# some datasets have multiple tissue segs stored in multiple masks
if seg_type.startswith("seg_"):
seg_batch_removed = seg_batch
for mask_val in seg_batch[seg_type].unique():
if mask_val != 0:
remove_mask = seg_batch[seg_type] == mask_val
seg_batch_removed[seg_type][remove_mask] = 0
seg_batch_removed_plt = torch.cat([seg_batch_removed[seg_type].cpu() for seg_type in seg_batch.keys() if seg_type.startswith("seg_")])
result_masks = torch.cat((result_masks, seg_batch_removed_plt))
multiclass_masks.append(convert_segbatch_to_multiclass(
multiclass_masks_shape,
seg_batch_removed, config, device))
# add images conditioned on some segs but not all
removed_seg_imgs = pipeline(
batch_size = config.eval_batch_size,
seg_batch=seg_batch_removed,
class_label_cfg=class_label_cfg,
translate=translate,
output_type=pipeoutput_type
).images
if plot_result_masks_multiclass:
result_imgs.append(removed_seg_imgs)
else:
result_imgs += removed_seg_imgs
if plot_result_masks_multiclass:
multiclass_masks = np.squeeze(torch.cat(multiclass_masks).cpu().numpy())
multiclass_masks = (multiclass_masks*255).astype(np.uint8)
result_imgs = np.squeeze(np.concatenate(np.array(result_imgs), axis=0))
# reverse interleave
plot_imgs = np.zeros_like(result_imgs)
plot_imgs[0:len(plot_imgs)//2] = result_imgs[0::2]
plot_imgs[len(plot_imgs)//2:] = result_imgs[1::2]
plot_masks = np.zeros_like(multiclass_masks)
plot_masks[0:len(plot_masks)//2] = multiclass_masks[0::2]
plot_masks[len(plot_masks)//2:] = multiclass_masks[1::2]
fig, axs = plt.subplots(
2, len(plot_masks),
figsize=(len(plot_masks), 2),
dpi=600
)
for i, img in enumerate(plot_imgs):
if config.dataset == 'breast_mri':
colors = ['black', 'white', 'red', 'blue']
elif config.dataset == 'ct_organ_large':
colors = ['black', 'blue', 'green', 'red', 'yellow', 'magenta']
else:
raise ValueError('Unknown dataset')
cmap = ListedColormap(colors)
axs[0,i].imshow(plot_masks[i], cmap=cmap, vmin=0, vmax=len(colors)-1)
axs[0,i].axis('off')
axs[1,i].imshow(img, cmap='gray')
axs[1,i].axis('off')
plt.subplots_adjust(wspace=0, hspace=0)
plt.savefig('ablated_samples_{}.pdf'.format(config.dataset), bbox_inches='tight')
plt.show()
else:
# Make a grid out of the images
cols = num_viz
rows = math.ceil(len(result_imgs) / cols)
image_grid = make_grid(result_imgs, rows=rows, cols=cols)
# Save the images
test_dir = os.path.join(config.output_dir, "samples")
os.makedirs(test_dir, exist_ok=True)
image_grid.save(f"{test_dir}/mask_removal_imgs.png")
save_image(result_masks, f"{test_dir}/mask_removal_masks.png", normalize=True,
nrow=cols*len(seg_batch.keys()) - 2)
def convert_segbatch_to_multiclass(shape, segmentations_batch, config, device):
# NOTE: this generic function assumes that segs don't overlap
# put all segs on same channel
segs = torch.zeros(shape).to(device)
for k, seg in segmentations_batch.items():
if k.startswith("seg_"):
seg = seg.to(device)
segs[segs == 0] = seg[segs == 0]
if config.use_ablated_segmentations:
# randomly remove class labels from segs with some probability
segs = ablate_masks(segs, config)
return segs
def ablate_masks(segs, config, method="equal_weighted"):
# randomly remove class label(s) from segs with some probability
if method == "equal_weighted":
"""
# give equal probability to each possible combination of removing non-background classes
# NOTE: requires that each class has a value in ({0, 1, 2, ...} / 255)
# which is by default if the mask file was saved as {0, 1, 2 ,...} and then normalized by default to [0, 1] by transforms.ToTensor()
# num_segmentation_classes
"""
class_removals = (torch.rand(config.num_segmentation_classes - 1) < 0.5).int().bool().tolist()
for class_idx, remove_class in enumerate(class_removals):
if remove_class:
segs[(255 * segs).int() == class_idx + 1] = 0
elif method == "by_class":
class_ablation_prob = 0.3
for seg_value in segs.unique():
if seg_value != 0:
# remove seg with some probability
if torch.rand(1).item() < class_ablation_prob:
segs[segs == seg_value] = 0
else:
raise NotImplementedError
return segs
def add_segmentations_to_noise(noisy_images, segmentations_batch, config, device):
"""
concat segmentations to noisy image
"""
if config.segmentation_channel_mode == "single":
multiclass_masks_shape = (noisy_images.shape[0], 1, noisy_images.shape[2], noisy_images.shape[3])
segs = convert_segbatch_to_multiclass(multiclass_masks_shape, segmentations_batch, config, device)
# concat segs to noise
noisy_images = torch.cat((noisy_images, segs), dim=1)
elif config.segmentation_channel_mode == "multi":
raise NotImplementedError
return noisy_images
####################
# general DDPM
####################
def evaluate(config, epoch, pipeline, seg_batch=None, class_label_cfg=None, translate=False):
# Either generate or translate images,
# possibly mask guided and/or class conditioned.
# The default pipeline output type is `List[PIL.Image]`
if config.segmentation_guided:
images = pipeline(
batch_size = config.eval_batch_size,
seg_batch=seg_batch,
class_label_cfg=class_label_cfg,
translate=translate
).images
else:
images = pipeline(
batch_size = config.eval_batch_size,
# TODO: implement CFG and naive conditioning sampling for non-seg-guided pipelines (also needed for translation)
).images
# Make a grid out of the images
cols = 4
rows = math.ceil(len(images) / cols)
image_grid = make_grid(images, rows=rows, cols=cols)
# Save the images
test_dir = os.path.join(config.output_dir, "samples")
os.makedirs(test_dir, exist_ok=True)
image_grid.save(f"{test_dir}/{epoch:04d}.png")
# save segmentations we conditioned the samples on
if config.segmentation_guided:
for seg_type in seg_batch.keys():
if seg_type.startswith("seg_"):
save_image(seg_batch[seg_type], f"{test_dir}/{epoch:04d}_cond_{seg_type}.png", normalize=True, nrow=cols)
# as well as original images that the segs belong to
img_og = seg_batch['images']
save_image(img_og, f"{test_dir}/{epoch:04d}_orig.png", normalize=True, nrow=cols)
# custom diffusers pipelines for sampling from segmentation-guided models
class SegGuidedDDPMPipeline(DiffusionPipeline):
r"""
Pipeline for segmentation-guided image generation, modified from DDPMPipeline.
generates both-class conditioned and unconditional images if using class-conditional model without CFG, or just generates
conditional images guided by CFG.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Parameters:
unet ([`UNet2DModel`]):
A `UNet2DModel` to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
[`DDPMScheduler`], or [`DDIMScheduler`].
eval_dataloader ([`torch.utils.data.DataLoader`]):
Dataloader to load the evaluation dataset of images and their segmentations. Here only uses the segmentations to generate images.
"""
model_cpu_offload_seq = "unet"
def __init__(self, unet, scheduler, eval_dataloader, external_config):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
self.eval_dataloader = eval_dataloader
self.external_config = external_config # config is already a thing
@torch.no_grad()
def __call__(
self,
batch_size: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
num_inference_steps: int = 1000,
output_type: Optional[str] = "pil",
return_dict: bool = True,
seg_batch: Optional[torch.Tensor] = None,
class_label_cfg: Optional[int] = None,
translate = False,
) -> Union[ImagePipelineOutput, Tuple]:
r"""
The call function to the pipeline for generation.
Args:
batch_size (`int`, *optional*, defaults to 1):
The number of images to generate.
generator (`torch.Generator`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
num_inference_steps (`int`, *optional*, defaults to 1000):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
seg_batch (`torch.Tensor`, *optional*, defaults to None):
batch of segmentations to condition generation on
class_label_cfg (`int`, *optional*, defaults to `None`):
class label to condition generation on using CFG, if using class-conditional model
OPTIONS FOR IMAGE TRANSLATION:
translate (`bool`, *optional*, defaults to False):
whether to translate images from the source domain to the target domain
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
returned where the first element is a list with the generated images
"""
# Sample gaussian noise to begin loop
if self.external_config.segmentation_channel_mode == "single":
img_channel_ct = self.unet.config.in_channels - 1
elif self.external_config.segmentation_channel_mode == "multi":
img_channel_ct = self.unet.config.in_channels - len([k for k in seg_batch.keys() if k.startswith("seg_")])
if isinstance(self.unet.config.sample_size, int):
image_shape = (
batch_size,
img_channel_ct,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
if self.external_config.segmentation_channel_mode == "single":
image_shape = (batch_size, self.unet.config.in_channels - 1, *self.unet.config.sample_size)
elif self.external_config.segmentation_channel_mode == "multi":
image_shape = (batch_size, self.unet.config.in_channels - len([k for k in seg_batch.keys() if k.startswith("seg_")]), *self.unet.config.sample_size)
# initiate latent variable to sample from
if not translate:
# normal sampling; start from noise
if self.device.type == "mps":
# randn does not work reproducibly on mps
image = randn_tensor(image_shape, generator=generator)
image = image.to(self.device)
else:
image = randn_tensor(image_shape, generator=generator, device=self.device)
else:
# image translation sampling; start from source domain images, add noise up to certain step, then being there for denoising
trans_start_t = int(self.external_config.trans_noise_level * self.scheduler.config.num_train_timesteps)
trans_start_images = seg_batch["images"]
# Sample noise to add to the images
noise = torch.randn(trans_start_images.shape).to(trans_start_images.device)
timesteps = torch.full(
(trans_start_images.size(0),),
trans_start_t,
device=trans_start_images.device
).long()
image = self.scheduler.add_noise(trans_start_images, noise, timesteps)
# set step values
self.scheduler.set_timesteps(num_inference_steps)
for t in self.progress_bar(self.scheduler.timesteps):
if translate:
# if doing translation, start at chosen time step given partially-noised image
# skip all earlier time steps (with higher t)
if t >= trans_start_t:
continue
# 1. predict noise model_output
# first, concat segmentations to noise
image = add_segmentations_to_noise(image, seg_batch, self.external_config, self.device)
if self.external_config.class_conditional:
if class_label_cfg is not None:
class_labels = torch.full([image.size(0)], class_label_cfg).long().to(self.device)
model_output_cond = self.unet(image, t, class_labels=class_labels).sample
if self.external_config.use_cfg_for_eval_conditioning:
# use classifier-free guidance for sampling from the given class
if self.external_config.cfg_maskguidance_condmodel_only:
image_emptymask = torch.cat((image[:, :img_channel_ct, :, :], torch.zeros_like(image[:, img_channel_ct:, :, :])), dim=1)
model_output_uncond = self.unet(image_emptymask, t,
class_labels=torch.zeros_like(class_labels).long()).sample
else:
model_output_uncond = self.unet(image, t,
class_labels=torch.zeros_like(class_labels).long()).sample
# use cfg equation
model_output = (1. + self.external_config.cfg_weight) * model_output_cond - self.external_config.cfg_weight * model_output_uncond
else:
# just use normal conditioning
model_output = model_output_cond
else:
# or, just use basic network conditioning to sample from both classes
if self.external_config.class_conditional:
# if training conditionally, evaluate source domain samples
class_labels = torch.ones(image.size(0)).long().to(self.device)
model_output = self.unet(image, t, class_labels=class_labels).sample
else:
model_output = self.unet(image, t).sample
# output is slightly denoised image
# 2. compute previous image: x_t -> x_t-1
# but first, we're only adding denoising the image channel (not seg channel),
# so remove segs
image = image[:, :img_channel_ct, :, :]
image = self.scheduler.step(model_output, t, image, generator=generator).prev_sample
# if training conditionally, also evaluate for target domain images
# if not using chosen class for CFG
if self.external_config.class_conditional and class_label_cfg is None:
image_target_domain = randn_tensor(image_shape, generator=generator, device=self._execution_device, dtype=self.unet.dtype)
# set step values
self.scheduler.set_timesteps(num_inference_steps)
for t in self.progress_bar(self.scheduler.timesteps):
# 1. predict noise model_output
# first, concat segmentations to noise
# no masks in target domain so just use blank masks
image_target_domain = torch.cat((image_target_domain, torch.zeros_like(image_target_domain)), dim=1)
if self.external_config.class_conditional:
# if training conditionally, also evaluate unconditional model and target domain (no masks)
class_labels = torch.cat([torch.full([image_target_domain.size(0) // 2], 2), torch.zeros(image_target_domain.size(0)) // 2]).long().to(self.device)
model_output = self.unet(image_target_domain, t, class_labels=class_labels).sample
else:
model_output = self.unet(image_target_domain, t).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
# but first, we're only adding denoising the image channel (not seg channel),
# so remove segs
image_target_domain = image_target_domain[:, :img_channel_ct, :, :]
image_target_domain = self.scheduler.step(
model_output, t, image_target_domain, generator=generator
).prev_sample
image = torch.cat((image, image_target_domain), dim=0)
# will output source domain images first, then target domain images
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
class SegGuidedDDIMPipeline(DiffusionPipeline):
r"""
Pipeline for image generation, modified for seg-guided image gen.
modified from diffusers.DDIMPipeline.
generates both-class conditioned and unconditional images if using class-conditional model without CFG, or just generates
conditional images guided by CFG.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Parameters:
unet ([`UNet2DModel`]):
A `UNet2DModel` to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
[`DDPMScheduler`], or [`DDIMScheduler`].
eval_dataloader ([`torch.utils.data.DataLoader`]):
Dataloader to load the evaluation dataset of images and their segmentations. Here only uses the segmentations to generate images.
"""
model_cpu_offload_seq = "unet"
def __init__(self, unet, scheduler, eval_dataloader, external_config):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler, eval_dataloader=eval_dataloader, external_config=external_config)
# ^ some reason necessary for DDIM but not DDPM.
self.eval_dataloader = eval_dataloader
self.external_config = external_config # config is already a thing
# make sure scheduler can always be converted to DDIM
scheduler = DDIMScheduler.from_config(scheduler.config)
@torch.no_grad()
def __call__(
self,
batch_size: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
eta: float = 0.0,
num_inference_steps: int = 50,
use_clipped_model_output: Optional[bool] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
seg_batch: Optional[torch.Tensor] = None,
class_label_cfg: Optional[int] = None,
translate = False,
) -> Union[ImagePipelineOutput, Tuple]:
r"""
The call function to the pipeline for generation.
Args:
batch_size (`int`, *optional*, defaults to 1):
The number of images to generate.
generator (`torch.Generator`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. A value of `0` corresponds to
DDIM and `1` corresponds to DDPM.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
use_clipped_model_output (`bool`, *optional*, defaults to `None`):
If `True` or `False`, see documentation for [`DDIMScheduler.step`]. If `None`, nothing is passed
downstream to the scheduler (use `None` for schedulers which don't support this argument).
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
seg_batch (`torch.Tensor`, *optional*):
batch of segmentations to condition generation on
class_label_cfg (`int`, *optional*, defaults to `None`):
class label to condition generation on using CFG, if using class-conditional model
OPTIONS FOR IMAGE TRANSLATION:
translate (`bool`, *optional*, defaults to False):
whether to translate images from the source domain to the target domain
Example:
```py
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
returned where the first element is a list with the generated images
"""
# Sample gaussian noise to begin loop
if self.external_config.segmentation_channel_mode == "single":
img_channel_ct = self.unet.config.in_channels - 1
elif self.external_config.segmentation_channel_mode == "multi":
img_channel_ct = self.unet.config.in_channels - len([k for k in seg_batch.keys() if k.startswith("seg_")])
if isinstance(self.unet.config.sample_size, int):
if self.external_config.segmentation_channel_mode == "single":
image_shape = (
batch_size,
self.unet.config.in_channels - 1,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
elif self.external_config.segmentation_channel_mode == "multi":
image_shape = (
batch_size,
self.unet.config.in_channels - len([k for k in seg_batch.keys() if k.startswith("seg_")]),
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
if self.external_config.segmentation_channel_mode == "single":
image_shape = (batch_size, self.unet.config.in_channels - 1, *self.unet.config.sample_size)
elif self.external_config.segmentation_channel_mode == "multi":
image_shape = (batch_size, self.unet.config.in_channels - len([k for k in seg_batch.keys() if k.startswith("seg_")]), *self.unet.config.sample_size)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
# initiate latent variable to sample from
if not translate:
# normal sampling; start from noise
image = randn_tensor(image_shape, generator=generator, device=self._execution_device, dtype=self.unet.dtype)
else:
# image translation sampling; start from source domain images, add noise up to certain step, then being there for denoising
trans_start_t = int(self.external_config.trans_noise_level * self.scheduler.config.num_train_timesteps)
trans_start_images = seg_batch["images"].to(self._execution_device)
# Sample noise to add to the images
noise = torch.randn(trans_start_images.shape).to(trans_start_images.device)
timesteps = torch.full(
(trans_start_images.size(0),),
trans_start_t,
device=trans_start_images.device
).long()
image = self.scheduler.add_noise(trans_start_images, noise, timesteps)
# set step values
self.scheduler.set_timesteps(num_inference_steps)
for t in self.progress_bar(self.scheduler.timesteps):
if translate:
# if doing translation, start at chosen time step given partially-noised image
# skip all earlier time steps (with higher t)
if t >= trans_start_t:
continue
# 1. predict noise model_output
# first, concat segmentations to noise
image = add_segmentations_to_noise(image, seg_batch, self.external_config, self.device)
if self.external_config.class_conditional:
if class_label_cfg is not None:
class_labels = torch.full([image.size(0)], class_label_cfg).long().to(self.device)
model_output_cond = self.unet(image, t, class_labels=class_labels).sample
if self.external_config.use_cfg_for_eval_conditioning:
# use classifier-free guidance for sampling from the given class
if self.external_config.cfg_maskguidance_condmodel_only:
image_emptymask = torch.cat((image[:, :img_channel_ct, :, :], torch.zeros_like(image[:, img_channel_ct:, :, :])), dim=1)
model_output_uncond = self.unet(image_emptymask, t,
class_labels=torch.zeros_like(class_labels).long()).sample
else:
model_output_uncond = self.unet(image, t,
class_labels=torch.zeros_like(class_labels).long()).sample
# use cfg equation
model_output = (1. + self.external_config.cfg_weight) * model_output_cond - self.external_config.cfg_weight * model_output_uncond
else:
model_output = model_output_cond
else:
# or, just use basic network conditioning to sample from both classes
if self.external_config.class_conditional:
# if training conditionally, evaluate source domain samples
class_labels = torch.ones(image.size(0)).long().to(self.device)
model_output = self.unet(image, t, class_labels=class_labels).sample
else:
model_output = self.unet(image, t).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
# but first, we're only adding denoising the image channel (not seg channel),
# so remove segs
image = image[:, :img_channel_ct, :, :]
image = self.scheduler.step(
model_output, t, image, eta=eta, use_clipped_model_output=use_clipped_model_output, generator=generator
).prev_sample
# if training conditionally, also evaluate for target domain images
# if not using chosen class for CFG
if self.external_config.class_conditional and class_label_cfg is None:
image_target_domain = randn_tensor(image_shape, generator=generator, device=self._execution_device, dtype=self.unet.dtype)
# set step values
self.scheduler.set_timesteps(num_inference_steps)
for t in self.progress_bar(self.scheduler.timesteps):
# 1. predict noise model_output
# first, concat segmentations to noise
# no masks in target domain so just use blank masks
image_target_domain = torch.cat((image_target_domain, torch.zeros_like(image_target_domain)), dim=1)
if self.external_config.class_conditional:
# if training conditionally, also evaluate unconditional model and target domain (no masks)
class_labels = torch.cat([torch.full([image_target_domain.size(0) // 2], 2), torch.zeros(image_target_domain.size(0) // 2)]).long().to(self.device)
model_output = self.unet(image_target_domain, t, class_labels=class_labels).sample
else:
model_output = self.unet(image_target_domain, t).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
# but first, we're only adding denoising the image channel (not seg channel),
# so remove segs
image_target_domain = image_target_domain[:, :img_channel_ct, :, :]
image_target_domain = self.scheduler.step(
model_output, t, image_target_domain, eta=eta, use_clipped_model_output=use_clipped_model_output, generator=generator
).prev_sample
image = torch.cat((image, image_target_domain), dim=0)
# will output source domain images first, then target domain images
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)