-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtrainer.py
144 lines (129 loc) · 5.46 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from lightning_model import Wavegrad2
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from omegaconf import OmegaConf as OC
import os
import argparse
import datetime
from glob import glob
from pytorch_lightning.callbacks.base import Callback
import torch
from pytorch_lightning.utilities import rank_zero_only
from copy import deepcopy
from utils.tblogger import TensorBoardLoggerExpanded
# Other DDPM/Score-based model applied EMA
# In our works, there are no significant difference
class EMACallback(Callback):
def __init__(self, filepath, alpha=0.999, k=3):
super().__init__()
self.alpha = alpha
self.filepath = filepath
self.k = 3 #max_save
self.queue = []
self.last_parameters = None
@rank_zero_only
def _del_model(self, removek):
if os.path.exists(self.filepath.format(epoch=removek)):
os.remove(self.filepath.format(epoch=removek))
@rank_zero_only
def on_train_batch_start(self, trainer, pl_module,batch, batch_idx,dataloader_idx):
if hasattr(self, 'current_parameters'):
self.last_parameters = self.current_parameters
else:
self.last_parameters = deepcopy(pl_module.state_dict())
@rank_zero_only
def on_train_batch_end(self, trainer, pl_module,outputs, batch, batch_idx,dataloader_idx):
self.current_parameters = deepcopy(pl_module.state_dict())
for k, v in self.current_parameters.items():
self.current_parameters[k].copy_(self.alpha * v +
(1. - self.alpha) *
self.last_parameters[k])
del self.last_parameters
return
@rank_zero_only
def on_epoch_end(self, trainer, pl_module):
if hasattr(self, 'current_parameters'):
self.queue.append(trainer.current_epoch)
torch.save(self.current_parameters,
self.filepath.format(epoch=trainer.current_epoch))
pl_module.print(
f'{self.filepath.format(epoch = trainer.current_epoch)} is saved')
while len(self.queue) > self.k:
self._del_model(self.queue.pop(0))
else:
self.current_parameters = deepcopy(pl_module.state_dict())
return
def train(args):
hparams = OC.load('hparameter.yaml')
now = datetime.datetime.now().strftime('%m_%d_%H')
hparams.name = f"{hparams.log.name}_{now}"
os.makedirs(hparams.log.tensorboard_dir, exist_ok=True)
os.makedirs(hparams.log.checkpoint_dir, exist_ok=True)
model = Wavegrad2(hparams)
tblogger = TensorBoardLoggerExpanded(hparams)
ckpt_path = f'{hparams.log.name}_{now}_{{epoch}}'
checkpoint_callback = ModelCheckpoint(dirpath=hparams.log.checkpoint_dir,
filename=ckpt_path,
verbose=True,
save_last=True,
save_top_k=3,
monitor='val/loss',
mode='min',
prefix='')
if args.restart:
ckpt = torch.load(glob(
os.path.join(hparams.log.checkpoint_dir,
f'*_epoch={args.resume_from}.ckpt'))[-1],
map_location='cpu')
ckpt_sd = ckpt['state_dict']
sd = model.state_dict()
for k, v in sd.items():
if k in ckpt_sd:
if ckpt_sd[k].shape == v.shape:
sd[k].copy_(ckpt_sd[k])
if args.ema:
ckpt = torch.load(glob(
os.path.join(hparams.log.checkpoint_dir,
f'*_epoch={args.resume_from}_EMA'))[-1],
map_location='cpu')
print(ckpt.keys())
sd = model.state_dict()
for k, v in sd.items():
if k in ckpt:
if ckpt[k].shape == v.shape:
sd[k].copy_(ckpt[k])
args.resume_from = None
trainer = Trainer(
checkpoint_callback=checkpoint_callback,
gpus=hparams.train.gpus,
accelerator='ddp' if hparams.train.gpus > 1 else None,
#plugins='ddp_sharded',
amp_backend='apex', #
amp_level='O2', #
#num_sanity_val_steps = -1,
check_val_every_n_epoch=2,
gradient_clip_val = 1.0,
max_epochs=200000,
logger=tblogger,
progress_bar_refresh_rate=4,
callbacks=[
EMACallback(os.path.join(hparams.log.checkpoint_dir,
f'{hparams.name}_epoch={{epoch}}_EMA'))
],
resume_from_checkpoint=None
if args.resume_from == None or args.restart else sorted(
glob(
os.path.join(hparams.log.checkpoint_dir,
f'*_epoch={args.resume_from}.ckpt')))[-1])
trainer.fit(model)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-r', '--resume_from', type =int,\
required = False, help = "Resume Checkpoint epoch number")
parser.add_argument('-s', '--restart', action = "store_true",\
required = False, help = "Significant change occured, use this")
parser.add_argument('-e', '--ema', action = "store_true",\
required = False, help = "Start from ema checkpoint")
args = parser.parse_args()
#torch.backends.cudnn.benchmark = False
train(args)