-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathcotatron_trainer.py
72 lines (60 loc) · 2.47 KB
/
cotatron_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from argparse import ArgumentParser
from omegaconf import OmegaConf
from utils.utils import get_commit_hash
from cotatron import Cotatron
from utils.loggers import TacotronLogger
def main(args):
model = Cotatron(args)
hp_global = OmegaConf.load(args.config[0])
hp_cota = OmegaConf.load(args.config[1])
hp = OmegaConf.merge(hp_global, hp_cota)
save_path = os.path.join(hp.log.chkpt_dir, args.name)
os.makedirs(save_path, exist_ok=True)
checkpoint_callback = ModelCheckpoint(
filepath=os.path.join(hp.log.chkpt_dir, args.name),
monitor='val_loss',
verbose=True,
save_top_k=args.save_top_k, # save all
prefix=get_commit_hash(),
)
tb_logger = TacotronLogger(
save_dir=hp.log.log_dir,
name=args.name,
)
trainer = Trainer(
logger=tb_logger,
early_stop_callback=None,
checkpoint_callback=checkpoint_callback,
default_save_path=save_path,
gpus=-1 if args.gpus is None else args.gpus,
distributed_backend='ddp',
num_sanity_val_steps=1,
resume_from_checkpoint=args.checkpoint_path,
gradient_clip_val=hp.train.grad_clip,
fast_dev_run=args.fast_dev_run,
check_val_every_n_epoch=args.val_epoch,
progress_bar_refresh_rate=1,
max_epochs=10000,
)
trainer.fit(model)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('-c', '--config', type=str, nargs=2, required=True,
help="path of configuration yaml file")
parser.add_argument('-g', '--gpus', type=str, default=None,
help="Number of gpus to use (e.g. '0,1,2,3'). Will use all if not given.")
parser.add_argument('-n', '--name', type=str, required=True,
help="Name of the run.")
parser.add_argument('-p', '--checkpoint_path', type=str, default=None,
help="path of checkpoint for resuming")
parser.add_argument('-s', '--save_top_k', type=int, default=-1,
help="save top k checkpoints, default(-1): save all")
parser.add_argument('-f', '--fast_dev_run', type=bool, default=False,
help="fast run for debugging purpose")
parser.add_argument('--val_epoch', type=int, default=1,
help="run val loop every * training epochs")
args = parser.parse_args()
main(args)