-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Fractional_knapsack.cpp
78 lines (64 loc) · 1.98 KB
/
Fractional_knapsack.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
// C/C++ program to solve fractional Knapsack Problem
#include <bits/stdc++.h>
using namespace std;
// Structure for an item which stores weight and corresponding
// value of Item
struct Item
{
int value, weight;
// Constructor
Item(int value, int weight) : value(value), weight(weight)
{}
};
// Comparison function to sort Item according to val/weight ratio
bool cmp(struct Item a, struct Item b)
{
double r1 = (double)a.value / a.weight;
double r2 = (double)b.value / b.weight;
return r1 > r2;
}
// Main greedy function to solve problem
double fractionalKnapsack(int W, struct Item arr[], int n)
{
// sorting Item on basis of ratio
sort(arr, arr + n, cmp);
// Uncomment to see new order of Items with their ratio
/*
for (int i = 0; i < n; i++)
{
cout << arr[i].value << " " << arr[i].weight << " : "
<< ((double)arr[i].value / arr[i].weight) << endl;
}
*/
int curWeight = 0; // Current weight in knapsack
double finalvalue = 0.0; // Result (value in Knapsack)
// Looping through all Items
for (int i = 0; i < n; i++)
{
// If adding Item won't overflow, add it completely
if (curWeight + arr[i].weight <= W)
{
curWeight += arr[i].weight;
finalvalue += arr[i].value;
}
// If we can't add current Item, add fractional part of it
else
{
int remain = W - curWeight;
finalvalue += arr[i].value * ((double) remain / arr[i].weight);
break;
}
}
// Returning final value
return finalvalue;
}
// driver program to test above function
int main()
{
int W = 50; // Weight of knapsack
Item arr[] = {{60, 10}, {100, 20}, {120, 30}};
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Maximum value we can obtain = "
<< fractionalKnapsack(W, arr, n);
return 0;
}