@@ -54,7 +54,7 @@ class ResNetBackbone(FeaturePyramidBackbone):
5454 include_rescaling: boolean. If `True`, rescale the input using
5555 `Rescaling` and `Normalization` layers. If `False`, do nothing.
5656 Defaults to `True`.
57- input_image_shape : tuple. The input shape without the batch size.
57+ image_shape : tuple. The input shape without the batch size.
5858 Defaults to `(None, None, 3)`.
5959 pooling: `None` or str. Pooling mode for feature extraction. Defaults
6060 to `"avg"`.
@@ -107,7 +107,7 @@ def __init__(
107107 block_type ,
108108 use_pre_activation = False ,
109109 include_rescaling = True ,
110- input_image_shape = (None , None , 3 ),
110+ image_shape = (None , None , 3 ),
111111 pooling = "avg" ,
112112 data_format = None ,
113113 dtype = None ,
@@ -139,7 +139,7 @@ def __init__(
139139 num_stacks = len (stackwise_num_filters )
140140
141141 # === Functional Model ===
142- image_input = layers .Input (shape = input_image_shape )
142+ image_input = layers .Input (shape = image_shape )
143143 if include_rescaling :
144144 x = layers .Rescaling (scale = 1 / 255.0 , dtype = dtype )(image_input )
145145 x = layers .Normalization (
@@ -254,7 +254,7 @@ def __init__(
254254 self .block_type = block_type
255255 self .use_pre_activation = use_pre_activation
256256 self .include_rescaling = include_rescaling
257- self .input_image_shape = input_image_shape
257+ self .image_shape = image_shape
258258 self .pooling = pooling
259259 self .pyramid_outputs = pyramid_outputs
260260
@@ -268,7 +268,7 @@ def get_config(self):
268268 "block_type" : self .block_type ,
269269 "use_pre_activation" : self .use_pre_activation ,
270270 "include_rescaling" : self .include_rescaling ,
271- "input_image_shape " : self .input_image_shape ,
271+ "image_shape " : self .image_shape ,
272272 "pooling" : self .pooling ,
273273 }
274274 )
0 commit comments