forked from daisybio/PPI_prediction_study
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_esm.py
192 lines (156 loc) · 6.66 KB
/
extract_esm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#!/usr/bin/env python3 -u
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import pathlib
import torch
from torch.distributed import init_process_group
import socket
from fairscale.nn import enable_wrap, wrap
from fairscale.nn.data_parallel import FullyShardedDataParallel as FSDP
from esm import Alphabet, FastaBatchedDataset, ProteinBertModel, pretrained, MSATransformer
def create_parser():
parser = argparse.ArgumentParser(
description="Extract per-token representations and model outputs for sequences in a FASTA file" # noqa
)
parser.add_argument(
"model_location",
type=str,
help="PyTorch model file OR name of pretrained model to download (see README for models)",
)
parser.add_argument(
"fasta_file",
type=pathlib.Path,
help="FASTA file on which to extract representations",
)
parser.add_argument(
"output_dir",
type=pathlib.Path,
help="output directory for extracted representations",
)
parser.add_argument("--toks_per_batch", type=int, default=4096, help="maximum batch size")
parser.add_argument(
"--repr_layers",
type=int,
default=[-1],
nargs="+",
help="layers indices from which to extract representations (0 to num_layers, inclusive)",
)
parser.add_argument(
"--include",
type=str,
nargs="+",
choices=["mean", "per_tok", "bos", "contacts"],
help="specify which representations to return",
required=True,
)
parser.add_argument(
"--truncation_seq_length",
type=int,
default=1022,
help="truncate sequences longer than the given value",
)
parser.add_argument("--nogpu", action="store_true", help="Do not use GPU even if available")
return parser
def find_free_port():
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind(('',0))
return s.getsockname()[1]
def run(args):
print("Initializing distributed training")
print(torch.cuda.is_available())
free_port = find_free_port()
url = f"tcp://localhost:{free_port}"
torch.distributed.init_process_group(backend="nccl", init_method=url, world_size=2, rank=0)
# Download model data from the hub
print("Downloading model data")
model_name = args.model_location
model_data, regression_data = pretrained._download_model_and_regression_data(model_name)
# Initialize the model with FSDP wrapper
print("Initializing model wrapper")
fsdp_params = dict(
mixed_precision=True,
flatten_parameters=True,
state_dict_device=torch.device("cpu"), # reduce GPU mem usage
cpu_offload=True, # enable cpu offloading
)
print("wrapping model")
with enable_wrap(wrapper_cls=FSDP, **fsdp_params):
model, alphabet = pretrained.load_model_and_alphabet_core(
model_name, model_data, regression_data
)
batch_converter = alphabet.get_batch_converter()
model.eval()
# Wrap each layer in FSDP separately
for name, child in model.named_children():
if name == "layers":
for layer_name, layer in child.named_children():
wrapped_layer = wrap(layer)
setattr(child, layer_name, wrapped_layer)
model = wrap(model)
if torch.cuda.is_available() and not args.nogpu:
model = model.cuda()
print("Transferred model to GPU")
print("Loading FASTA file")
dataset = FastaBatchedDataset.from_file(args.fasta_file)
batches = dataset.get_batch_indices(args.toks_per_batch, extra_toks_per_seq=1)
data_loader = torch.utils.data.DataLoader(
dataset, collate_fn=alphabet.get_batch_converter(args.truncation_seq_length), batch_sampler=batches
)
print(f"Read {args.fasta_file} with {len(dataset)} sequences")
args.output_dir.mkdir(parents=True, exist_ok=True)
return_contacts = "contacts" in args.include
assert all(-(model.num_layers + 1) <= i <= model.num_layers for i in args.repr_layers)
repr_layers = [(i + model.num_layers + 1) % (model.num_layers + 1) for i in args.repr_layers]
with torch.no_grad():
for batch_idx, (labels, strs, toks) in enumerate(data_loader):
print(
f"Processing {batch_idx + 1} of {len(batches)} batches ({toks.size(0)} sequences)"
)
if torch.cuda.is_available() and not args.nogpu:
toks = toks.to(device="cuda", non_blocking=True)
out = model(toks, repr_layers=repr_layers, return_contacts=return_contacts)
logits = out["logits"].to(device="cpu")
representations = {
layer: t.to(device="cpu") for layer, t in out["representations"].items()
}
if return_contacts:
contacts = out["contacts"].to(device="cpu")
for i, label in enumerate(labels):
args.output_file = args.output_dir / f"{label}.pt"
args.output_file.parent.mkdir(parents=True, exist_ok=True)
result = {"label": label}
truncate_len = min(args.truncation_seq_length, len(strs[i]))
# Call clone on tensors to ensure tensors are not views into a larger representation
# See https://github.com/pytorch/pytorch/issues/1995
if "per_tok" in args.include:
result["representations"] = {
layer: t[i, 1 : truncate_len + 1].clone()
for layer, t in representations.items()
}
if "mean" in args.include:
result["mean_representations"] = {
layer: t[i, 1 : truncate_len + 1].mean(0).clone()
for layer, t in representations.items()
}
if "bos" in args.include:
result["bos_representations"] = {
layer: t[i, 0].clone() for layer, t in representations.items()
}
if return_contacts:
result["contacts"] = contacts[i, : truncate_len, : truncate_len].clone()
torch.save(
result,
args.output_file,
)
def main():
parser = create_parser()
args = parser.parse_args()
run(args)
if __name__ == "__main__":
main()