forked from pyduan/amazonaccess
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_extraction.py
523 lines (438 loc) · 19 KB
/
feature_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
"""feature_extraction.py
Create the requested datasets.
Author: Paul Duan <[email protected]>
"""
from __future__ import division
import logging
import cPickle as pickle
import numpy as np
import math
from scipy import sparse
from sklearn import preprocessing
from external import greedy, ben
from helpers.data import save_dataset
from helpers.ml import get_dataset
logger = logging.getLogger(__name__)
subformatter = logging.Formatter("[%(asctime)s] %(levelname)s\t> %(message)s")
COLNAMES = ["resource", "manager", "role1", "role2", "department",
"title", "family_desc", "family"]
SELECTED_COLUMNS = [0, 1, 4, 5, 6, 7]
EXTERNAL_DATASETS = {
"greedy": greedy,
"greedy2": greedy,
"greedy3": greedy,
"bsfeats": ben
}
def sparsify(X, X_test):
"""Return One-Hot encoded datasets."""
enc = OneHotEncoder()
enc.fit(np.vstack((X, X_test)))
return enc.transform(X), enc.transform(X_test)
def create_datasets(X, X_test, y, datasets=[], use_cache=True):
"""
Generate datasets as needed with different sets of features
and save them to disk.
The datasets are created by combining a base feature set (combinations of
the original variables) with extracted feature sets, with some additional
variants.
The nomenclature is as follows:
Base datasets:
- basic: the original columns, minus role1, role2, and role_code
- tuples: all order 2 combinations of the original columns
- triples: all order 3 combinations of the original columns
- greedy[1,2,3]: three different datasets obtained by performing
greedy feature selection with different seeds on the triples
dataset
- effects: experimental. Created to try out a suggestion by Gxav
after the competition
Feature sets and variants:
(denoted by the letters after the underscore in the base dataset name):
- s: the base dataset has been sparsified using One-Hot encoding
- c: the rare features have been consolidated into one category
- f: extracted features have been appended, with a different set for
linear models than for tree-based models
- b: Benjamin's extracted features.
- d: interactions for the extracted feature set have been added
- l: the extracted features have been log transformed
"""
if use_cache:
# Check if all files exist. If not, generate the missing ones
DATASETS = []
for dataset in datasets:
try:
with open("cache/%s.pkl" % dataset, 'rb'):
pass
except IOError:
logger.warning("couldn't load dataset %s, will generate it",
dataset)
DATASETS.append(dataset.split('_')[0])
else:
DATASETS = ["basic", "tuples", "triples",
"greedy", "greedy2", "greedy3"]
# Datasets that require external code to be generated
for dataset, module in EXTERNAL_DATASETS.iteritems():
if not get_dataset(dataset):
module.create_features()
# Generate the missing datasets
if len(DATASETS):
bsfeats, bsfeats_test = get_dataset('bsfeats')
basefeats, basefeats_test = create_features(X, X_test, 3)
save_dataset("base_feats", basefeats, basefeats_test)
lrfeats, lrfeats_test = pre_process(*create_features(X, X_test, 0))
save_dataset("lrfeats", lrfeats, lrfeats_test)
feats, feats_test = pre_process(*create_features(X, X_test, 1))
save_dataset("features", feats, feats_test)
meta, meta_test = pre_process(*create_features(X, X_test, 2),
normalize=False)
save_dataset("metafeatures", meta, meta_test)
X = X[:, SELECTED_COLUMNS]
X_test = X_test[:, SELECTED_COLUMNS]
save_dataset("basic", X, X_test)
Xt = create_tuples(X)
Xt_test = create_tuples(X_test)
save_dataset("tuples", Xt, Xt_test)
Xtr = create_tuples(X)
Xtr_test = create_tuples(X_test)
save_dataset("triples", Xtr, Xtr_test)
Xe, Xe_test = create_effects(X, X_test, y)
save_dataset("effects", Xe, Xe_test)
feats_d, feats_d_test = pre_process(basefeats, basefeats_test,
create_divs=True)
bsfeats_d, bsfeats_d_test = pre_process(bsfeats, bsfeats_test,
create_divs=True)
feats_l, feats_l_test = pre_process(basefeats, basefeats_test,
log_transform=True)
lrfeats_l, lrfeats_l_test = pre_process(lrfeats, lrfeats_test,
log_transform=True)
bsfeats_l, bsfeats_l_test = pre_process(bsfeats, bsfeats_test,
log_transform=True)
for ds in DATASETS:
Xg, Xg_test = get_dataset(ds)
save_dataset(ds + '_b', Xg, Xg_test, bsfeats, bsfeats_test)
save_dataset(ds + '_f', Xg, Xg_test, feats, feats_test)
save_dataset(ds + '_fd', Xg, Xg_test, feats_d, feats_d_test)
save_dataset(ds + '_bd', Xg, Xg_test, bsfeats_d, bsfeats_d_test)
Xs, Xs_test = sparsify(Xg, Xg_test)
save_dataset(ds + '_sf', Xs, Xs_test, lrfeats, lrfeats_test)
save_dataset(ds + '_sfl', Xs, Xs_test, lrfeats_l, lrfeats_l_test)
save_dataset(ds + '_sfd', Xs, Xs_test, feats_d, feats_d_test)
save_dataset(ds + '_sb', Xs, Xs_test, bsfeats, bsfeats_test)
save_dataset(ds + '_sbl', Xs, Xs_test, bsfeats_l, bsfeats_l_test)
save_dataset(ds + '_sbd', Xs, Xs_test, bsfeats_d, bsfeats_d_test)
if issubclass(Xg.dtype.type, np.integer):
consolidate(Xg, Xg_test)
save_dataset(ds + '_c', Xg, Xg_test)
save_dataset(ds + '_cf', Xg, Xg_test, feats, feats_test)
save_dataset(ds + '_cb', Xg, Xg_test, bsfeats, bsfeats_test)
Xs, Xs_test = sparsify(Xg, Xg_test)
save_dataset(ds + '_sc', Xs, Xs_test)
save_dataset(ds + '_scf', Xs, Xs_test, feats, feats_test)
save_dataset(ds + '_scfl', Xs, Xs_test, feats_l, feats_l_test)
save_dataset(ds + '_scb', Xs, Xs_test, bsfeats, bsfeats_test)
save_dataset(ds + '_scbl', Xs, Xs_test,
bsfeats_l, bsfeats_l_test)
def create_effects(X_train, X_test, y):
"""
Create a dataset where the features are the effects of a
logistic regression trained on sparsified data.
This has been added post-deadline after talking with Gxav.
"""
from sklearn import linear_model, cross_validation
from itertools import izip
Xe_train = np.zeros(X_train.shape)
Xe_test = np.zeros(X_test.shape)
n_cols = Xe_train.shape[1]
model = linear_model.LogisticRegression(C=2)
X_train, X_test = sparsify(X_train, X_test)
kfold = cross_validation.KFold(len(y), 5)
for train, cv in kfold:
model.fit(X_train[train], y[train])
colindices = X_test.nonzero()[1]
for i, k in izip(cv, range(len(cv))):
for j in range(n_cols):
z = colindices[n_cols*k + j]
Xe_train[i, j] = model.coef_[0, z]
model.fit(X_train, y)
colindices = X_test.nonzero()[1]
for i in range(Xe_test.shape[0]):
for j in range(n_cols):
z = colindices[n_cols*i + j]
Xe_test[i, j] = model.coef_[0, z]
return Xe_train, Xe_test
def create_features(X_train, X_test, feature_set=0):
"""
Extract features from the training and test set.
Each feature set is defined as a list of lambda functions.
"""
logger.info("performing feature extraction (feature_set=%d)", feature_set)
features_train = []
features_test = []
dictionaries = get_pivottable(X_train, X_test)
dictionaries_train = get_pivottable(X_train, X_test, use='train')
dictionaries_test = get_pivottable(X_test, X_test, use='test')
# 0: resource, 1: manager, 2: role1, 3: role2, 4: department,
# 5: title, 6: family_desc, 7: family
feature_lists = [
[ # 0: LR features
lambda x, row, j:
x[COLNAMES[0]].get(row[0], 0) if j > 0 and j < 7 else 0,
lambda x, row, j:
x[COLNAMES[1]].get(row[1], 0) if j > 1 and j < 7 else 0,
lambda x, row, j:
x[COLNAMES[2]].get(row[2], 0) if j > 2 and j < 7 else 0,
lambda x, row, j:
x[COLNAMES[3]].get(row[3], 0) if j > 3 and j < 7 else 0,
lambda x, row, j:
x[COLNAMES[4]].get(row[4], 0) if j > 4 and j < 7 else 0,
lambda x, row, j:
x[COLNAMES[5]].get(row[5], 0) if j > 5 and j < 7 else 0,
lambda x, row, j:
x[COLNAMES[6]].get(row[6], 0) if j > 6 and j < 7 else 0,
lambda x, row, j:
x[COLNAMES[7]].get(row[7], 0) if j > 7 and j < 7 else 0,
lambda x, row, j:
x[COLNAMES[0]].get(row[0], 0)**2 if j in range(7) else 0,
lambda x, row, j:
x[COLNAMES[j]].get(row[0], 0)/x['total']
if j > 0 and j < 7 else 0,
lambda x, row, j:
x[COLNAMES[j]].get(row[j], 0)/len(x[COLNAMES[j]].values()),
lambda x, row, j:
x[COLNAMES[j]].get(row[j], 0) / dictionaries[j]['total'],
lambda x, row, j:
math.log(x[COLNAMES[0]].get(row[0], 0)) if j in range(5) else 0,
lambda x, row, j:
int(row[j] not in dictionaries_train[j]),
lambda x, row, j:
int(row[j] not in dictionaries_test[j]),
],
[ # 1: Tree features
lambda x, row, j:
x[COLNAMES[0]].get(row[0], 0),
lambda x, row, j:
x[COLNAMES[1]].get(row[1], 0),
lambda x, row, j:
x[COLNAMES[2]].get(row[2], 0),
lambda x, row, j:
x[COLNAMES[3]].get(row[3], 0),
lambda x, row, j:
x[COLNAMES[4]].get(row[4], 0),
lambda x, row, j:
x[COLNAMES[5]].get(row[5], 0),
lambda x, row, j:
x[COLNAMES[6]].get(row[6], 0),
lambda x, row, j:
x[COLNAMES[7]].get(row[7], 0),
lambda x, row, j:
x[COLNAMES[j]].get(row[0], 0)/x['total'] if j > 0 else 0,
],
[ # 2: Metafeatures
lambda x, row, j:
dictionaries_train[j].get(row[j], {}).get('total', 0),
lambda x, row, j:
dictionaries_train[j].get(row[j], {}).get('total', 0) == 0,
],
[ # 3: Base features
lambda x, row, j:
x['total'] if j == 0 else 0,
lambda x, row, j:
x[COLNAMES[0]].get(row[0], 0) if j > 0 else 0,
lambda x, row, j:
x[COLNAMES[1]].get(row[1], 0) if j > 1 else 0,
lambda x, row, j:
x[COLNAMES[2]].get(row[2], 0) if j > 2 else 0,
lambda x, row, j:
x[COLNAMES[3]].get(row[3], 0) if j > 3 else 0,
lambda x, row, j:
x[COLNAMES[4]].get(row[4], 0) if j > 4 else 0,
lambda x, row, j:
x[COLNAMES[5]].get(row[5], 0) if j > 5 else 0,
lambda x, row, j:
x[COLNAMES[6]].get(row[6], 0) if j > 6 else 0,
lambda x, row, j:
x[COLNAMES[7]].get(row[7], 0) if j > 7 else 0,
lambda x, row, j:
x[COLNAMES[0]].get(row[0], 0)**2 if j in range(8) else 0,
],
]
feature_generator = feature_lists[feature_set]
# create feature vectors
logger.debug("creating feature vectors")
features_train = []
for row in X_train:
features_train.append([])
for j in range(len(COLNAMES)):
for feature in feature_generator:
feature_row = feature(dictionaries[j][row[j]], row, j)
features_train[-1].append(feature_row)
features_train = np.array(features_train)
features_test = []
for row in X_test:
features_test.append([])
for j in range(len(COLNAMES)):
for feature in feature_generator:
feature_row = feature(dictionaries[j][row[j]], row, j)
features_test[-1].append(feature_row)
features_test = np.array(features_test)
return features_train, features_test
def pre_process(features_train, features_test,
create_divs=False, log_transform=False, normalize=True):
"""
Take lists of feature columns as input, pre-process them (eventually
performing some transformation), then return nicely formatted numpy arrays.
"""
logger.info("performing preprocessing")
features_train = list(features_train.T)
features_test = list(features_test.T)
features_train = [list(feature) for feature in features_train]
features_test = [list(feature) for feature in features_test]
# remove constant features
for i in range(len(features_train) - 1, -1, -1):
if np.var(features_train[i]) + np.var(features_test[i]) == 0:
features_train.pop(i)
features_test.pop(i)
n_features = len(features_train)
# create some polynomial features
if create_divs:
for i in range(n_features):
for j in range(1):
features_train.append([round(a/(b + 1), 3) for a, b in zip(
features_train[i], features_train[j])])
features_test.append([round(a/(b + 1), 3) for a, b in zip(
features_test[i], features_test[j])])
features_train.append([round(a/(b + 1), 3) for a, b in zip(
features_train[j], features_train[i])])
features_test.append([round(a/(b + 1), 3) for a, b in zip(
features_test[j], features_test[i])])
features_train.append([a*b for a, b in zip(
features_train[j], features_train[i])])
features_test.append([a*b for a, b in zip(
features_test[j], features_test[i])])
if log_transform:
tmp_train = []
tmp_test = []
for i in range(n_features):
tmp_train.append([math.log(a + 1) if (a + 1) > 0 else 0
for a in features_train[i]])
tmp_test.append([math.log(a + 1) if (a + 1) > 0 else 0
for a in features_test[i]])
tmp_train.append([a**2 for a in features_train[i]])
tmp_test.append([a**2 for a in features_test[i]])
tmp_train.append([a**3 for a in features_train[i]])
tmp_test.append([a**3 for a in features_test[i]])
features_train = tmp_train
features_test = tmp_test
logger.info("created %d features", len(features_train))
features_train = np.array(features_train).T
features_test = np.array(features_test).T
# normalize the new features
if normalize:
normalizer = preprocessing.StandardScaler()
normalizer.fit(features_train)
features_train = normalizer.transform(features_train)
features_test = normalizer.transform(features_test)
return features_train, features_test
def get_pivottable(X_train, X_test, use='all'):
"""
Returns a list of dictionaries, one per feature in the
basic data, containing cross-tabulated counts
for each column and each value of the feature.
"""
dictionaries = []
if use == 'all':
X = np.vstack((X_train, X_test))
filename = "pivottable"
elif use == 'train':
X = X_train
filename = "pivottable_train"
else:
X = X_test
filename = "pivottable_test"
for i in range(len(COLNAMES)):
dictionaries.append({'total': 0})
try:
with open("cache/%s.pkl" % filename, 'rb') as f:
logger.debug("loading cross-tabulated data from cache")
dictionaries = pickle.load(f)
except IOError:
logger.debug("no cache found, cross-tabulating data")
for i, row in enumerate(X):
for j in range(len(COLNAMES)):
dictionaries[j]['total'] += 1
if row[j] not in dictionaries[j]:
dictionaries[j][row[j]] = {'total': 1}
for k, key in enumerate(COLNAMES):
dictionaries[j][row[j]][key] = {row[k]: 1}
else:
dictionaries[j][row[j]]['total'] += 1
for k, key in enumerate(COLNAMES):
if row[k] not in dictionaries[j][row[j]][key]:
dictionaries[j][row[j]][key][row[k]] = 1
else:
dictionaries[j][row[j]][key][row[k]] += 1
with open("cache/%s.pkl" % filename, 'wb') as f:
pickle.dump(dictionaries, f, pickle.HIGHEST_PROTOCOL)
return dictionaries
def create_tuples(X):
logger.debug("creating feature tuples")
cols = []
for i in range(X.shape[1]):
for j in range(i, X.shape[1]):
cols.append(X[:, i] + X[:, j]*3571)
return np.hstack((X, np.vstack(cols).T))
def create_triples(X):
logger.debug("creating feature triples")
cols = []
for i in range(X.shape[1]):
for j in range(i, X.shape[1]):
for k in range(j, X.shape[1]):
cols.append(X[:, i]*3461 + X[:, j]*5483 + X[:, k])
return np.hstack((X, np.vstack(cols).T))
def consolidate(X_train, X_test):
"""
Transform in-place the given dataset by consolidating
rare features into a single category.
"""
X = np.vstack((X_train, X_test))
relabeler = preprocessing.LabelEncoder()
for j in range(X.shape[1]):
relabeler.fit(X[:, j])
X[:, j] = relabeler.transform(X[:, j])
X_train[:, j] = relabeler.transform(X_train[:, j])
X_test[:, j] = relabeler.transform(X_test[:, j])
raw_counts = np.bincount(X[:, j])
indices = np.nonzero(raw_counts)[0]
counts = dict((x, raw_counts[x]) for x in indices)
max_value = np.max(X[:, j])
for i in range(X_train.shape[0]):
if counts[X_train[i, j]] <= 1:
X_train[i, j] = max_value + 1
for i in range(X_test.shape[0]):
if counts[X_test[i, j]] <= 1:
X_test[i, j] = max_value + 1
class OneHotEncoder():
"""
OneHotEncoder takes data matrix with categorical columns and
converts it to a sparse binary matrix.
"""
def __init__(self):
self.keymap = None
def fit(self, X):
self.keymap = []
for col in X.T:
uniques = set(list(col))
self.keymap.append(dict((key, i) for i, key in enumerate(uniques)))
def transform(self, X):
if self.keymap is None:
self.fit(X)
outdat = []
for i, col in enumerate(X.T):
km = self.keymap[i]
num_labels = len(km)
spmat = sparse.lil_matrix((X.shape[0], num_labels))
for j, val in enumerate(col):
if val in km:
spmat[j, km[val]] = 1
outdat.append(spmat)
outdat = sparse.hstack(outdat).tocsr()
return outdat