-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtarget_model.py
152 lines (107 loc) · 4.18 KB
/
target_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Based on PyTorch Tutorial form lecture
# and https://github.com/bentrevett/pytorch-image-classification/blob/master/1_mlp.ipynb
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# set seeds
SEED = 12
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
# torch.backends.cudnn.deterministic = True
class TargetModel(nn.Module):
def __init__(self, input_dim, output_dim):
super().__init__()
self.input_fc = nn.Linear(input_dim, 3000)
self.output_fc = nn.Linear(3000, output_dim)
def forward(self, x):
batch_size = x.shape[0]
x = x.view(batch_size, -1)
h = torch.sigmoid(self.input_fc(x))
output = self.output_fc(h)
return output, h
def calculate_accuracy(y_pred, y):
top_pred = y_pred.argmax(1, keepdim=True)
correct = top_pred.eq(y.view_as(top_pred)).sum()
acc = correct.float() / y.shape[0]
return acc
def train(mlp, iterator, optimizer, criterion, device):
epoch_loss = 0
epoch_acc = 0
mlp.train()
for (x, y) in iterator:
x = x.to(device)
y = y.to(device)
optimizer.zero_grad()
y_pred, _ = mlp(x)
loss = criterion(y_pred, y)
acc = calculate_accuracy(y_pred, y)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
def evaluate(mlp, iterator, criterion, device):
epoch_loss = 0
epoch_acc = 0
mlp.eval()
with torch.no_grad():
for (x, y) in iterator:
x = x.to(device)
y = y.to(device)
y_pred, _ = mlp(x)
loss = criterion(y_pred, y)
acc = calculate_accuracy(y_pred, y)
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
def train_target_model(epochs):
# if __name__ == '__main__':
# transfrom, wee need grayscale to convert the images to 1 channel
transform = transforms.Compose([
transforms.Grayscale(),
transforms.ToTensor(),
transforms.Normalize((0.5), (0.5))
])
# load dataset
atnt_faces = datasets.ImageFolder('ModelInversion/data_pgm', transform=transform)
# split dataset: 3 images of every class as validation set
i = [i for i in range(len(atnt_faces)) if i % 10 > 3]
i_val = [i for i in range(len(atnt_faces)) if i % 10 <= 3]
# load data
BATCH_SIZE = 64
train_dataset = torch.utils.data.Subset(atnt_faces, i)
train_data_loader = data.DataLoader(train_dataset,
shuffle=True,
batch_size=BATCH_SIZE)
validation_dataset = torch.utils.data.Subset(atnt_faces, i_val)
validation_data_loader = data.DataLoader(validation_dataset,
batch_size=BATCH_SIZE)
# define dimensions
INPUT_DIM = 112 * 92
OUTPUT_DIM = 40
# create model
mlp = TargetModel(INPUT_DIM, OUTPUT_DIM)
# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Using device: %s' % device)
mlp = mlp.to(device)
# set criterion and optimizer
criterion = nn.CrossEntropyLoss()
# criterion = criterion.to(device)
optimizer = optim.Adam(mlp.parameters())
# main loop
best_valid_loss = float('inf')
print('---Target Model Training Started---')
for epoch in range(epochs):
train_loss, train_acc = train(mlp, train_data_loader, optimizer, criterion, device)
valid_loss, valid_acc = evaluate(mlp, validation_data_loader, criterion, device)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
print(f'Epoch: {epoch + 1:02}')
print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc * 100:.2f}%')
print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc * 100:.2f}%')
torch.save(mlp.state_dict(), 'ModelInversion/atnt-mlp-model.pth')
print('---Target Model Training Done---')