@@ -108,7 +108,8 @@ class LinearRegressionModel(LinearRegressionModelBase):
108108 ... LabeledPoint(3.0, [2.0]),
109109 ... LabeledPoint(2.0, [3.0])
110110 ... ]
111- >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), initialWeights=np.array([1.0]))
111+ >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10,
112+ ... initialWeights=np.array([1.0]))
112113 >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
113114 True
114115 >>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5
@@ -135,12 +136,13 @@ class LinearRegressionModel(LinearRegressionModelBase):
135136 ... LabeledPoint(3.0, SparseVector(1, {0: 2.0})),
136137 ... LabeledPoint(2.0, SparseVector(1, {0: 3.0}))
137138 ... ]
138- >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
139+ >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10,
140+ ... initialWeights=array([1.0]))
139141 >>> abs(lrm.predict(array([0.0])) - 0) < 0.5
140142 True
141143 >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
142144 True
143- >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=100 , step=1.0,
145+ >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10 , step=1.0,
144146 ... miniBatchFraction=1.0, initialWeights=array([1.0]), regParam=0.1, regType="l2",
145147 ... intercept=True, validateData=True)
146148 >>> abs(lrm.predict(array([0.0])) - 0) < 0.5
@@ -238,7 +240,7 @@ class LassoModel(LinearRegressionModelBase):
238240 ... LabeledPoint(3.0, [2.0]),
239241 ... LabeledPoint(2.0, [3.0])
240242 ... ]
241- >>> lrm = LassoWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
243+ >>> lrm = LassoWithSGD.train(sc.parallelize(data), iterations=10, initialWeights=array([1.0]))
242244 >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
243245 True
244246 >>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5
@@ -265,12 +267,13 @@ class LassoModel(LinearRegressionModelBase):
265267 ... LabeledPoint(3.0, SparseVector(1, {0: 2.0})),
266268 ... LabeledPoint(2.0, SparseVector(1, {0: 3.0}))
267269 ... ]
268- >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
270+ >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10,
271+ ... initialWeights=array([1.0]))
269272 >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
270273 True
271274 >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
272275 True
273- >>> lrm = LassoWithSGD.train(sc.parallelize(data), iterations=100 , step=1.0,
276+ >>> lrm = LassoWithSGD.train(sc.parallelize(data), iterations=10 , step=1.0,
274277 ... regParam=0.01, miniBatchFraction=1.0, initialWeights=array([1.0]), intercept=True,
275278 ... validateData=True)
276279 >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
@@ -321,7 +324,8 @@ class RidgeRegressionModel(LinearRegressionModelBase):
321324 ... LabeledPoint(3.0, [2.0]),
322325 ... LabeledPoint(2.0, [3.0])
323326 ... ]
324- >>> lrm = RidgeRegressionWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
327+ >>> lrm = RidgeRegressionWithSGD.train(sc.parallelize(data), iterations=10,
328+ ... initialWeights=array([1.0]))
325329 >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
326330 True
327331 >>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5
@@ -348,12 +352,13 @@ class RidgeRegressionModel(LinearRegressionModelBase):
348352 ... LabeledPoint(3.0, SparseVector(1, {0: 2.0})),
349353 ... LabeledPoint(2.0, SparseVector(1, {0: 3.0}))
350354 ... ]
351- >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
355+ >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10,
356+ ... initialWeights=array([1.0]))
352357 >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
353358 True
354359 >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
355360 True
356- >>> lrm = RidgeRegressionWithSGD.train(sc.parallelize(data), iterations=100 , step=1.0,
361+ >>> lrm = RidgeRegressionWithSGD.train(sc.parallelize(data), iterations=10 , step=1.0,
357362 ... regParam=0.01, miniBatchFraction=1.0, initialWeights=array([1.0]), intercept=True,
358363 ... validateData=True)
359364 >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
@@ -396,7 +401,7 @@ def _test():
396401 from pyspark import SparkContext
397402 import pyspark .mllib .regression
398403 globs = pyspark .mllib .regression .__dict__ .copy ()
399- globs ['sc' ] = SparkContext ('local[4 ]' , 'PythonTest' , batchSize = 2 )
404+ globs ['sc' ] = SparkContext ('local[2 ]' , 'PythonTest' , batchSize = 2 )
400405 (failure_count , test_count ) = doctest .testmod (globs = globs , optionflags = doctest .ELLIPSIS )
401406 globs ['sc' ].stop ()
402407 if failure_count :
0 commit comments