-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathinfer_age.py
executable file
·209 lines (192 loc) · 7.47 KB
/
infer_age.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#! /usr/bin/env python
import dendropy
import sys, pickle
from LECA.functions import flatten
from LECA.parsers import phylome_parser
alternate_names = {'ASPFC': 'ASPFU',
'BACT4': 'BACTN',
'CAEBR': 'CAEEL',
'CANAW': 'CANAL',
'CANAX': 'CANAL',
'CHLTA': 'CHLTR',
'CRYNE': 'CRYNJ',
'GEOSN': 'GEOSL',
'HALS3': 'HALSA',
'LEPIR': 'LEPIN',
'MYCTO': 'MYCTX',
'MYCTU': 'MYCTX',
'NEUCS': 'NEUCR',
'PHAND': 'PHANO',
'PSEA7': 'PSEAE',
'STRCH': 'STRCO',
'SULSF': 'SULSO',
'THEMT': 'THEMA',
'USTMD': 'USTMA',
'YARLL': 'YARLI',
'YEASX': 'YEAST'}
Archaea = ["THECO","METAC","METJA","HALSA","SULSO"]
# Shared Functions
def get_dendropy_tree(tree_source,format='nexus',source_type='file'):
'''Read in a tree using dendropy. Tree should have node labels for ancestral nodes that will be
used for aging. They should be of format: [&age: "Metazoa"]'''
format,source = format.lower(),source_type.lower()
tree_funcD = {'string':dendropy.Tree.get_from_string,
'file':dendropy.Tree.get_from_path,
'stream':dendropy.Tree.get_from_stream}
tree = tree_funcD[source_type](tree_source,format,extract_comment_metadata=True)
return tree
# From a single database
def _stream_from_phylome(infile,type_filter=["many-to-many","many-to-one","one-to-many","one-to-one"]):
'''Return stream of (protein,(species1,species2)) from a phylomeDB orthologs file.
species output: if call is Phy003II51_MACMU , MACMU will be returned.
type_filter: list of what kinds of orthology relationship to consider.'''
return flatten(((i["gene"],i["ortholog"].split("_")[1]) for i in phylome_parser(infile,type_filter=type_filter)))
def age_generator(src,tree_source,conversion_dictionary=None,as_clades=False,tree_format='nexus'):
'''Takes in a stream of (prot,[taxon1,taxon2]) tuples, and returns a stream
of (protein,age) tuples calculated by phylostratigraphy on a supplied tree.'''
tree = get_dendropy_tree(tree_source,tree_format)
strTaxonSet = [i.label for i in tree.taxon_namespace] # get strings of taxa in tree
count = 0
for prot, taxa in src:
callSet = set([i for i in taxa if i in strTaxonSet]+["HUMAN"]) # ignore taxa not in tree
if len(callSet) <=1:
print "nothing found for %s" % prot
continue
ageNode = tree.mrca(taxon_labels=callSet).label # can be None
if as_clades: # use clade names instead of numerical internal node labels
ageNode = conversion_dictionary[ageNode]
if ageNode == "Cellular_organisms":
for i in callSet:
if i in Archaea:
break
else:
ageNode = "Euk+Bac"
yield prot, ageNode
count +=1
if count % 100 == 0:
sys.stderr.write(str(count)+"\n")
# from DataBase comparison files (Claire's format)
def read_dbComp(infile):
'''Read in one of Claire's ortholog X database files, and return the name of the human protein and
a dictionary mapping each database to a list of the species with identified orthologs.'''
split_header = infile.split("-")
if split_header[0] == 'nan':
if split_header[2] != 'nan':
protein = split_header[2] # is Ensembl
else:
protein = split_header[0] # is Uniprot, or both
with open(infile) as f:
header = f.readline().strip().split(",")
dbList = header[5:]
dbDict = {dbname:[] for dbname in dbList}
for line in f:
line = line.strip().split(",")
try:
species = line[3]
if species == 'nan':
continue
except IndexError:
raise Exception("bad format: %s, species %s" % (infile, line[1]))
if species in alternate_names:
species = alternate_names[species]
for db,value in zip(dbList,line[5:]):
if value == "1":
dbDict[db].append(species)
return protein, dbDict
def get_db_age_nodes(infile,tree,as_clades=False,conversion_dictionary=None):
'''Open one of Claire's DBcomp files and infer the age of the protein for each database therein.
Uses a species tree with annotated interior nodes and returns a dictionary mapping each database
name to the ancestral node representing the inferred age.
Calls read_dbComp'''
prot, dbD = read_dbComp(infile)
ageD = {}
for db in dbD:
species_set = set(dbD[db])
if len(species_set) == 0: # shouldn't be, maybe some error handling is in order here.
ageD[db] = None
continue
try:
ageNode = tree.mrca(taxon_labels=species_set).label
if ageNode == None:
ageD[db] = None
continue
except KeyError:
taxon_labels = [i.label for i in tree.taxon_set]
es = [i for i in species_set if i not in taxon_labels]
print "Couldn't find taxon %s in protein %s" % (str(es),prot)
return prot, None
if as_clades: # use clade names instead of numerical internal node labels
ageNode = conversion_dictionary[ageNode]
if ageNode == "Cellular_organisms":
for i in species_set:
if i in Archaea:
break
else:
ageNode = "Euk+Bac"
ageD[db] = ageNode
return prot, ageD
def serialize_dbAgeNodes(infile_stream,tree_source,as_clades=False,conversion_dictionary=None):
'''Pickle the output of get_db_age_nodes to a file <prot>.p'''
tree = get_dendropy_tree(tree_source)
convD = None
if as_clades:
assert conversion_dictionary != None, \
"Must supply a dictionary converting age nodes to taxa"
with open(conversion_dictionary) as f:
convD = pickle.load(f)
for f in infile_stream:
prot, ageD = get_db_age_nodes(f,tree,as_clades,convD)
if ageD == None:
continue
with open(prot+".p",'w') as out:
pickle.dump(ageD,out)
print prot
def ages_from_tables(infile_stream,tree_source,as_clades=False,conversion_dictionary=None,dbs=None):
'''
Create a csv file of ages for each gene from age call tables.
Takes a stream of infiles (e.g. from iglob) and a species tree as input
By default outputs node labels as ages, but if you want to bin these nodes into clades,
must supply a conversion dictionary mapping each node to its clade and set as_clades=True
'''
if dbs == None:
dbs = ["InParanoid","InParanoidCore","OMA_Groups","OMA_Pairs","PANTHER8_LDO","RSD","EggNOG",
"Orthoinspector","Hieranoid_2","EnsemblCompara_v2","PANTHER8_all","Metaphors","PhylomeDB"]
tree = get_dendropy_tree(tree_source)
convD = None
if as_clades:
assert conversion_dictionary != None, \
"Must supply a dictionary converting age nodes to taxa"
with open(conversion_dictionary) as f:
convD = pickle.load(f)
yield ",".join(['']+dbs)
for f in infile_stream:
prot, ageD = get_db_age_nodes(f,tree,as_clades,convD)
if ageD == None:
continue
yield ",".join([prot]+[str(ageD[i]) for i in dbs])
def count_lossTaxa(infile_stream,tree_source,dbs=None):
'''
Create csv file of taxa that have lost an ortholgous group for each database and gene. The losses are
calculated by subtracting the number of species with orthologs from the total number of descendants of
the ancestral node. Note that this is not the same as number of loss events.
'''
if dbs == None:
dbs = ["InParanoid","InParanoidCore","OMA_Groups","OMA_Pairs","PANTHER8_LDO","RSD",
"Orthoinspector","Hieranoid_2","EnsemblCompara_v2","PANTHER8_all","Metaphors","PhylomeDB"]
tree = get_dendropy_tree(tree_source)
yield ",".join(['']+dbs)
for f in infile_stream:
lossD = {}
prot, parsed = read_dbComp(f)
prot, ageD = get_db_age_nodes(f,tree)
if ageD == None:
continue
for db in dbs:
assert db in ageD, "Database %s not found in %s" % (db,f)
node = ageD[db]
nodeObj = tree.find_node_with_label(node)
assert nodeObj != None, "Internal label %s not found" % node
numDescendants = len(set((i.taxon.label for i in nodeObj.leaf_nodes())))
numOrthologs = len(set(parsed[db]))
lossD[db] = numDescendants - numOrthologs
yield ",".join([prot]+[str(lossD[i]) for i in dbs])