From 8840a8cc95179dd945b1f4ab9eb08e34318ed2f4 Mon Sep 17 00:00:00 2001 From: Bagatur <22008038+baskaryan@users.noreply.github.com> Date: Tue, 16 Jan 2024 10:41:14 -0800 Subject: [PATCH] docs: tool-use use case (#15783) Co-authored-by: Harrison Chase --- docs/docs/use_cases/tool_use/agents.ipynb | 285 ++++++++++ .../tool_use/human_in_the_loop.ipynb | 274 +++++++++ docs/docs/use_cases/tool_use/index.ipynb | 53 ++ .../use_cases/tool_use/multiple_tools.ipynb | 259 +++++++++ docs/docs/use_cases/tool_use/parallel.ipynb | 197 +++++++ docs/docs/use_cases/tool_use/prompting.ipynb | 415 ++++++++++++++ docs/docs/use_cases/tool_use/quickstart.ipynb | 531 ++++++++++++++++++ .../tool_use/tool_error_handling.ipynb | 426 ++++++++++++++ .../langchain/chains/openai_functions/base.py | 11 +- .../langchain/output_parsers/openai_tools.py | 50 +- poetry.lock | 317 ++++++++++- pyproject.toml | 2 + 12 files changed, 2791 insertions(+), 29 deletions(-) create mode 100644 docs/docs/use_cases/tool_use/agents.ipynb create mode 100644 docs/docs/use_cases/tool_use/human_in_the_loop.ipynb create mode 100644 docs/docs/use_cases/tool_use/index.ipynb create mode 100644 docs/docs/use_cases/tool_use/multiple_tools.ipynb create mode 100644 docs/docs/use_cases/tool_use/parallel.ipynb create mode 100644 docs/docs/use_cases/tool_use/prompting.ipynb create mode 100644 docs/docs/use_cases/tool_use/quickstart.ipynb create mode 100644 docs/docs/use_cases/tool_use/tool_error_handling.ipynb diff --git a/docs/docs/use_cases/tool_use/agents.ipynb b/docs/docs/use_cases/tool_use/agents.ipynb new file mode 100644 index 0000000000000..f542e465a3652 --- /dev/null +++ b/docs/docs/use_cases/tool_use/agents.ipynb @@ -0,0 +1,285 @@ +{ + "cells": [ + { + "cell_type": "raw", + "id": "7b68af90-bfab-4407-93b6-d084cf948b4b", + "metadata": {}, + "source": [ + "---\n", + "sidebar_position: 1\n", + "---" + ] + }, + { + "cell_type": "markdown", + "id": "1925a807-fa01-44bc-8a03-d9907311c7f9", + "metadata": {}, + "source": [ + "## Agents\n", + "\n", + "Chains are great when we know the specific sequence of tool usage needed for any user input. But for certain use cases, how many times we use tools depends on the input. In these cases, we want to let the model itself decide how many times to use tools and in what order. [Agents](/docs/modules/agents/) let us do just this.\n", + "\n", + "LangChain comes with a number of built-in agents that are optimized for different use cases. Read about all the [agent types here](/docs/modules/agents/agent_types/).\n", + "\n", + "As an example, let's try out the OpenAI tools agent, which makes use of the new OpenAI tool-calling API (this is only available in the latest OpenAI models, and differs from function-calling in that the model can return multiple function invocations at once):" + ] + }, + { + "cell_type": "markdown", + "id": "c224a321-2f5a-410c-b466-a10d0199bad8", + "metadata": {}, + "source": [ + "## Setup\n", + "\n", + "We'll need to install the following packages:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f6303995-a8f7-4504-8b29-e227683f375e", + "metadata": {}, + "outputs": [], + "source": [ + "%pip install --upgrade --quiet langchain langchain-openai" + ] + }, + { + "cell_type": "markdown", + "id": "a33915ce-00c5-4379-8a83-c0053e471cdb", + "metadata": {}, + "source": [ + "And set these environment variables:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "54667a49-c226-486d-a887-33120c90cc91", + "metadata": {}, + "outputs": [], + "source": [ + "import getpass\n", + "import os\n", + "\n", + "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", + "\n", + "# If you'd like to use LangSmith, uncomment the below\n", + "# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n", + "# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()" + ] + }, + { + "cell_type": "markdown", + "id": "aaaad3ad-085b-494e-84aa-9cb3e983c80b", + "metadata": {}, + "source": [ + "## Create tools\n", + "\n", + "First, we need to create some tool to call. For this example, we will create custom tools from functions. For more information on creating custom tools, please see [this guide](/docs/modules/agents/tools/)." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "1c44ba79-6ab2-4d55-8247-82fca4d9b70c", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_core.tools import tool\n", + "\n", + "\n", + "@tool\n", + "def multiply(first_int: int, second_int: int) -> int:\n", + " \"\"\"Multiply two integers together.\"\"\"\n", + " return first_int * second_int\n", + "\n", + "\n", + "@tool\n", + "def add(first_int: int, second_int: int) -> int:\n", + " \"Add two integers.\"\n", + " return first_int + second_int\n", + "\n", + "\n", + "@tool\n", + "def exponentiate(base: int, exponent: int) -> int:\n", + " \"Exponentiate the base to the exponent power.\"\n", + " return base**exponent\n", + "\n", + "\n", + "tools = [multiply, add, exponentiate]" + ] + }, + { + "cell_type": "markdown", + "id": "a3d0c8ca-72bd-4187-b1e6-f5eef92eeb52", + "metadata": {}, + "source": [ + "## Create prompt" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "e27a4e1a-938b-4b60-8e32-25e4ee530274", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain import hub\n", + "from langchain.agents import AgentExecutor, create_openai_tools_agent\n", + "from langchain_openai import ChatOpenAI" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "bcc9536e-0328-4e29-9d3d-133f3e63e589", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "================================\u001b[1m System Message \u001b[0m================================\n", + "\n", + "You are a helpful assistant\n", + "\n", + "=============================\u001b[1m Messages Placeholder \u001b[0m=============================\n", + "\n", + "\u001b[33;1m\u001b[1;3m{chat_history}\u001b[0m\n", + "\n", + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "\u001b[33;1m\u001b[1;3m{input}\u001b[0m\n", + "\n", + "=============================\u001b[1m Messages Placeholder \u001b[0m=============================\n", + "\n", + "\u001b[33;1m\u001b[1;3m{agent_scratchpad}\u001b[0m\n" + ] + } + ], + "source": [ + "# Get the prompt to use - you can modify this!\n", + "prompt = hub.pull(\"hwchase17/openai-tools-agent\")\n", + "prompt.pretty_print()" + ] + }, + { + "cell_type": "markdown", + "id": "85e9875a-d8d4-4712-b3f0-b513c684451b", + "metadata": {}, + "source": [ + "## Create agent" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "a1c5319d-6609-449d-8dd0-127e9a600656", + "metadata": {}, + "outputs": [], + "source": [ + "# Choose the LLM that will drive the agent\n", + "# Only certain models support this\n", + "model = ChatOpenAI(model=\"gpt-3.5-turbo-1106\", temperature=0)\n", + "\n", + "# Construct the OpenAI Tools agent\n", + "agent = create_openai_tools_agent(model, tools, prompt)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "c86bfe50-c5b3-49ed-86c8-1fe8dcd0c83a", + "metadata": {}, + "outputs": [], + "source": [ + "# Create an agent executor by passing in the agent and tools\n", + "agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)" + ] + }, + { + "cell_type": "markdown", + "id": "448d5ef2-9820-44d0-96d3-ff1d648e4b01", + "metadata": {}, + "source": [ + "## Invoke agent" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "c098f8df-fd7f-4c13-963a-8e34194d3f84", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n", + "\u001b[32;1m\u001b[1;3m\n", + "Invoking: `exponentiate` with `{'base': 3, 'exponent': 5}`\n", + "\n", + "\n", + "\u001b[0m\u001b[38;5;200m\u001b[1;3m243\u001b[0m\u001b[32;1m\u001b[1;3m\n", + "Invoking: `add` with `{'first_int': 12, 'second_int': 3}`\n", + "\n", + "\n", + "\u001b[0m\u001b[33;1m\u001b[1;3m15\u001b[0m\u001b[32;1m\u001b[1;3m\n", + "Invoking: `multiply` with `{'first_int': 243, 'second_int': 15}`\n", + "\n", + "\n", + "\u001b[0m\u001b[36;1m\u001b[1;3m3645\u001b[0m\u001b[32;1m\u001b[1;3m\n", + "Invoking: `exponentiate` with `{'base': 3645, 'exponent': 2}`\n", + "\n", + "\n", + "\u001b[0m\u001b[38;5;200m\u001b[1;3m13286025\u001b[0m\u001b[32;1m\u001b[1;3mThe result of raising 3 to the fifth power and multiplying that by the sum of twelve and three, then squaring the whole result is 13,286,025.\u001b[0m\n", + "\n", + "\u001b[1m> Finished chain.\u001b[0m\n" + ] + }, + { + "data": { + "text/plain": [ + "{'input': 'Take 3 to the fifth power and multiply that by the sum of twelve and three, then square the whole result',\n", + " 'output': 'The result of raising 3 to the fifth power and multiplying that by the sum of twelve and three, then squaring the whole result is 13,286,025.'}" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "agent_executor.invoke(\n", + " {\n", + " \"input\": \"Take 3 to the fifth power and multiply that by the sum of twelve and three, then square the whole result\"\n", + " }\n", + ")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "poetry-venv", + "language": "python", + "name": "poetry-venv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.1" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/docs/use_cases/tool_use/human_in_the_loop.ipynb b/docs/docs/use_cases/tool_use/human_in_the_loop.ipynb new file mode 100644 index 0000000000000..137b3f5310406 --- /dev/null +++ b/docs/docs/use_cases/tool_use/human_in_the_loop.ipynb @@ -0,0 +1,274 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "b09b745d-f006-4ecc-8772-afa266c43605", + "metadata": {}, + "source": [ + "# Human-in-the-loop\n", + "\n", + "There are certain tools that we don't trust a model to execute on its own. One thing we can do in such situations is require human approval before the tool is invoked." + ] + }, + { + "cell_type": "markdown", + "id": "09178c30-a633-4d7b-88ea-092316f14b6f", + "metadata": {}, + "source": [ + "## Setup\n", + "\n", + "We'll need to install the following packages:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e44bec05-9aa4-47b1-a660-c0a183533598", + "metadata": {}, + "outputs": [], + "source": [ + "%pip install --upgrade --quiet langchain langchain-openai" + ] + }, + { + "cell_type": "markdown", + "id": "f09629b6-7f62-4879-a791-464739ca6b6b", + "metadata": {}, + "source": [ + "And set these environment variables:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2bed0ccf-20cc-4fd3-9947-55471dd8c4da", + "metadata": {}, + "outputs": [], + "source": [ + "import getpass\n", + "import os\n", + "\n", + "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", + "\n", + "# If you'd like to use LangSmith, uncomment the below:\n", + "# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n", + "# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()" + ] + }, + { + "cell_type": "markdown", + "id": "43721981-4595-4721-bea0-5c67696426d3", + "metadata": {}, + "source": [ + "## Chain\n", + "\n", + "Suppose we have the following (dummy) tools and tool-calling chain:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "0221fdfd-2a18-4449-a123-e6b0b15bb3d9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'type': 'count_emails', 'args': {'last_n_days': 5}, 'output': 10}]" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from operator import itemgetter\n", + "\n", + "from langchain.output_parsers import JsonOutputToolsParser\n", + "from langchain_community.tools.convert_to_openai import format_tool_to_openai_tool\n", + "from langchain_core.runnables import Runnable, RunnableLambda, RunnablePassthrough\n", + "from langchain_core.tools import tool\n", + "from langchain_openai import ChatOpenAI\n", + "\n", + "\n", + "@tool\n", + "def count_emails(last_n_days: int) -> int:\n", + " \"\"\"Multiply two integers together.\"\"\"\n", + " return last_n_days * 2\n", + "\n", + "\n", + "@tool\n", + "def send_email(message: str, recipient: str) -> str:\n", + " \"Add two integers.\"\n", + " return f\"Successfully sent email to {recipient}.\"\n", + "\n", + "\n", + "tools = [count_emails, send_email]\n", + "model = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0).bind(\n", + " tools=[format_tool_to_openai_tool(t) for t in tools]\n", + ")\n", + "\n", + "\n", + "def call_tool(tool_invocation: dict) -> Runnable:\n", + " \"\"\"Function for dynamically constructing the end of the chain based on the model-selected tool.\"\"\"\n", + " tool_map = {tool.name: tool for tool in tools}\n", + " tool = tool_map[tool_invocation[\"type\"]]\n", + " return RunnablePassthrough.assign(output=itemgetter(\"args\") | tool)\n", + "\n", + "\n", + "# .map() allows us to apply a function to a list of inputs.\n", + "call_tool_list = RunnableLambda(call_tool).map()\n", + "chain = model | JsonOutputToolsParser() | call_tool_list\n", + "chain.invoke(\"how many emails did i get in the last 5 days?\")" + ] + }, + { + "cell_type": "markdown", + "id": "258c1c7b-a765-4558-93fe-d0defbc29223", + "metadata": {}, + "source": [ + "## Adding human approval\n", + "\n", + "We can add a simple human approval step to our tool_chain function:" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "341fb055-0315-47bc-8f72-ed6103d2981f", + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "\n", + "\n", + "def human_approval(tool_invocations: list) -> Runnable:\n", + " tool_strs = \"\\n\\n\".join(\n", + " json.dumps(tool_call, indent=2) for tool_call in tool_invocations\n", + " )\n", + " msg = (\n", + " f\"Do you approve of the following tool invocations\\n\\n{tool_strs}\\n\\n\"\n", + " \"Anything except 'Y'/'Yes' (case-insensitive) will be treated as a no.\"\n", + " )\n", + " resp = input(msg)\n", + " if resp.lower() not in (\"yes\", \"y\"):\n", + " raise ValueError(f\"Tool invocations not approved:\\n\\n{tool_strs}\")\n", + " return tool_invocations" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "25dca07b-56ca-4b94-9955-d4f3e9895e03", + "metadata": {}, + "outputs": [ + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Do you approve of the following tool invocations\n", + "\n", + "{\n", + " \"type\": \"count_emails\",\n", + " \"args\": {\n", + " \"last_n_days\": 5\n", + " }\n", + "}\n", + "\n", + "Anything except 'Y'/'Yes' (case-insensitive) will be treated as a no. y\n" + ] + }, + { + "data": { + "text/plain": [ + "[{'type': 'count_emails', 'args': {'last_n_days': 5}, 'output': 10}]" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "chain = model | JsonOutputToolsParser() | human_approval | call_tool_list\n", + "chain.invoke(\"how many emails did i get in the last 5 days?\")" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "f558f2cd-847b-4ef9-a770-3961082b540c", + "metadata": {}, + "outputs": [ + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Do you approve of the following tool invocations\n", + "\n", + "{\n", + " \"type\": \"send_email\",\n", + " \"args\": {\n", + " \"message\": \"What's up homie\",\n", + " \"recipient\": \"sally@gmail.com\"\n", + " }\n", + "}\n", + "\n", + "Anything except 'Y'/'Yes' (case-insensitive) will be treated as a no. no\n" + ] + }, + { + "ename": "ValueError", + "evalue": "Tool invocations not approved:\n\n{\n \"type\": \"send_email\",\n \"args\": {\n \"message\": \"What's up homie\",\n \"recipient\": \"sally@gmail.com\"\n }\n}", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[32], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mchain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mSend sally@gmail.com an email saying \u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mWhat\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43ms up homie\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/langchain/libs/core/langchain_core/runnables/base.py:1774\u001b[0m, in \u001b[0;36mRunnableSequence.invoke\u001b[0;34m(self, input, config)\u001b[0m\n\u001b[1;32m 1772\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1773\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, step \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msteps):\n\u001b[0;32m-> 1774\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[43mstep\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1775\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1776\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;66;43;03m# mark each step as a child run\u001b[39;49;00m\n\u001b[1;32m 1777\u001b[0m \u001b[43m \u001b[49m\u001b[43mpatch_config\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1778\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_child\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mseq:step:\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mi\u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1779\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1780\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1781\u001b[0m \u001b[38;5;66;03m# finish the root run\u001b[39;00m\n\u001b[1;32m 1782\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n", + "File \u001b[0;32m~/langchain/libs/core/langchain_core/runnables/base.py:3074\u001b[0m, in \u001b[0;36mRunnableLambda.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 3072\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Invoke this runnable synchronously.\"\"\"\u001b[39;00m\n\u001b[1;32m 3073\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfunc\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n\u001b[0;32m-> 3074\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_with_config\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 3075\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_invoke\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3076\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3077\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_config\u001b[49m\u001b[43m(\u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3078\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3079\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3080\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 3081\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\n\u001b[1;32m 3082\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot invoke a coroutine function synchronously.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 3083\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUse `ainvoke` instead.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 3084\u001b[0m )\n", + "File \u001b[0;32m~/langchain/libs/core/langchain_core/runnables/base.py:975\u001b[0m, in \u001b[0;36mRunnable._call_with_config\u001b[0;34m(self, func, input, config, run_type, **kwargs)\u001b[0m\n\u001b[1;32m 971\u001b[0m context \u001b[38;5;241m=\u001b[39m copy_context()\n\u001b[1;32m 972\u001b[0m context\u001b[38;5;241m.\u001b[39mrun(var_child_runnable_config\u001b[38;5;241m.\u001b[39mset, child_config)\n\u001b[1;32m 973\u001b[0m output \u001b[38;5;241m=\u001b[39m cast(\n\u001b[1;32m 974\u001b[0m Output,\n\u001b[0;32m--> 975\u001b[0m \u001b[43mcontext\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 976\u001b[0m \u001b[43m \u001b[49m\u001b[43mcall_func_with_variable_args\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 977\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# type: ignore[arg-type]\u001b[39;49;00m\n\u001b[1;32m 978\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# type: ignore[arg-type]\u001b[39;49;00m\n\u001b[1;32m 979\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 980\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 981\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 982\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m,\n\u001b[1;32m 983\u001b[0m )\n\u001b[1;32m 984\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 985\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e)\n", + "File \u001b[0;32m~/langchain/libs/core/langchain_core/runnables/config.py:323\u001b[0m, in \u001b[0;36mcall_func_with_variable_args\u001b[0;34m(func, input, config, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m run_manager \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m accepts_run_manager(func):\n\u001b[1;32m 322\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_manager\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m run_manager\n\u001b[0;32m--> 323\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/langchain/libs/core/langchain_core/runnables/base.py:2950\u001b[0m, in \u001b[0;36mRunnableLambda._invoke\u001b[0;34m(self, input, run_manager, config, **kwargs)\u001b[0m\n\u001b[1;32m 2948\u001b[0m output \u001b[38;5;241m=\u001b[39m chunk\n\u001b[1;32m 2949\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 2950\u001b[0m output \u001b[38;5;241m=\u001b[39m \u001b[43mcall_func_with_variable_args\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2951\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m 2952\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2953\u001b[0m \u001b[38;5;66;03m# If the output is a runnable, invoke it\u001b[39;00m\n\u001b[1;32m 2954\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(output, Runnable):\n", + "File \u001b[0;32m~/langchain/libs/core/langchain_core/runnables/config.py:323\u001b[0m, in \u001b[0;36mcall_func_with_variable_args\u001b[0;34m(func, input, config, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m run_manager \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m accepts_run_manager(func):\n\u001b[1;32m 322\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_manager\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m run_manager\n\u001b[0;32m--> 323\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "Cell \u001b[0;32mIn[30], line 11\u001b[0m, in \u001b[0;36mhuman_approval\u001b[0;34m(tool_invocations)\u001b[0m\n\u001b[1;32m 9\u001b[0m resp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28minput\u001b[39m(msg)\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m resp\u001b[38;5;241m.\u001b[39mlower() \u001b[38;5;129;01min\u001b[39;00m (\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124myes\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124my\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n\u001b[0;32m---> 11\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTool invocations not approved:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mtool_strs\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 12\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m tool_invocations\n", + "\u001b[0;31mValueError\u001b[0m: Tool invocations not approved:\n\n{\n \"type\": \"send_email\",\n \"args\": {\n \"message\": \"What's up homie\",\n \"recipient\": \"sally@gmail.com\"\n }\n}" + ] + } + ], + "source": [ + "chain.invoke(\"Send sally@gmail.com an email saying 'What's up homie'\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e938d8f1-df93-4726-a465-78e596312246", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "poetry-venv", + "language": "python", + "name": "poetry-venv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.1" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/docs/use_cases/tool_use/index.ipynb b/docs/docs/use_cases/tool_use/index.ipynb new file mode 100644 index 0000000000000..0ca033e3c1925 --- /dev/null +++ b/docs/docs/use_cases/tool_use/index.ipynb @@ -0,0 +1,53 @@ +{ + "cells": [ + { + "cell_type": "raw", + "id": "451cda29-bed0-4558-9ed7-099bdd12ad60", + "metadata": {}, + "source": [ + "---\n", + "sidebar_position: 2\n", + "---" + ] + }, + { + "cell_type": "markdown", + "id": "14b94240", + "metadata": {}, + "source": [ + "# Tool use\n", + "\n", + "An exciting use case for LLMs is building natural language interfaces for other \"tools\", whether those are APIs, functions, databases, etc. LangChain is great for building such interfaces because it has:\n", + "\n", + "- Good model output parsing, which makes it easy to extract JSON, XML, OpenAI function-calls, etc. from model outputs.\n", + "- A large collection of built-in [Tools](/docs/integrations/tools).\n", + "- Provides a lot of flexibility in how you call these tools.\n", + "\n", + "There are two main ways to use tools: [chains](/docs/modules/chains) and [agents](/docs/modules/agents/). Chains lets you create a pre-defined sequence of tool usage(s). Agents let the model use tools in a loop, so that it can decide how many times to use tools.\n", + "\n", + "To get started with both approaches, head to the [Quickstart](/docs/use_cases/tool_use/quickstart) page." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "poetry-venv", + "language": "python", + "name": "poetry-venv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.1" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/docs/use_cases/tool_use/multiple_tools.ipynb b/docs/docs/use_cases/tool_use/multiple_tools.ipynb new file mode 100644 index 0000000000000..fd520a951a5de --- /dev/null +++ b/docs/docs/use_cases/tool_use/multiple_tools.ipynb @@ -0,0 +1,259 @@ +{ + "cells": [ + { + "cell_type": "raw", + "id": "1ea1fe24-fe1e-463b-a52c-79f0ef02328e", + "metadata": {}, + "source": [ + "---\n", + "sidebar_position: 2\n", + "---" + ] + }, + { + "cell_type": "markdown", + "id": "95982bf1-7d9d-4dd6-a4ad-9de0719fe17f", + "metadata": {}, + "source": [ + "# Choosing between multiple tools\n", + "\n", + "In our [Quickstart](/docs/use_cases/tool_use/quickstart) we went over how to build a Chain that calls a single `multiply` tool. Now let's take a look at how we might augment this chain so that it can pick from a number of tools to call. We'll focus on Chains since [Agents](/docs/use_cases/tool_use/agents) can route between multiple tools by default." + ] + }, + { + "cell_type": "markdown", + "id": "3fafec38-443a-42ad-a913-5be7667e3734", + "metadata": {}, + "source": [ + "## Setup\n", + "\n", + "We'll need to install the following packages for this guide:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "78411bf1-0117-4f33-a3d7-f3d77a97bb78", + "metadata": {}, + "outputs": [], + "source": [ + "%pip install --upgrade --quiet langchain langchain-openai" + ] + }, + { + "cell_type": "markdown", + "id": "59d08fd0-ddd9-4c74-bcea-a5ca3a86e542", + "metadata": {}, + "source": [ + "And set these environment variables:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4185e74b-0500-4cad-ace0-bac37de466ac", + "metadata": {}, + "outputs": [], + "source": [ + "import getpass\n", + "import os\n", + "\n", + "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", + "\n", + "# If you'd like to use LangSmith, uncomment the below\n", + "# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n", + "# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()" + ] + }, + { + "cell_type": "markdown", + "id": "d28159f5-b7d0-4385-aa44-4cd1b64507bb", + "metadata": {}, + "source": [ + "## Tools\n", + "\n", + "Recall we already had a `multiply` tool:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "e13ec98c-8521-4d63-b521-caf92da87b70", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_core.tools import tool\n", + "\n", + "\n", + "@tool\n", + "def multiply(first_int: int, second_int: int) -> int:\n", + " \"\"\"Multiply two integers together.\"\"\"\n", + " return first_int * second_int" + ] + }, + { + "cell_type": "markdown", + "id": "3de233af-b3bd-4f0c-8b1a-83527143a8db", + "metadata": {}, + "source": [ + "And now we can add to it a `exponentiate` and `add` tool:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "e93661cd-a2ba-4ada-91ad-baf1b60879ec", + "metadata": {}, + "outputs": [], + "source": [ + "@tool\n", + "def add(first_int: int, second_int: int) -> int:\n", + " \"Add two integers.\"\n", + " return first_int + second_int\n", + "\n", + "\n", + "@tool\n", + "def exponentiate(base: int, exponent: int) -> int:\n", + " \"Exponentiate the base to the exponent power.\"\n", + " return base**exponent" + ] + }, + { + "cell_type": "markdown", + "id": "bbea4555-ed10-4a18-b802-e9a3071f132b", + "metadata": {}, + "source": [ + "The main difference between using one Tool and many, is that in the case of many we can't be sure which Tool the model will invoke. So we cannot hardcode, like we did in the [Quickstart](/docs/use_cases/tool_use/quickstart), a specific tool into our chain. Instead we'll add `call_tool_list`, a `RunnableLambda` that takes the `JsonOutputToolsParser` output and actually builds the end of the chain based on it, meaning it appends the Tools that were envoked to the end of the chain at runtime. We can do this because LCEL has the cool property that in any Runnable (the core building block of LCEL) sequence, if one component returns more Runnables, those are run as part of the chain." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "c35359ae-a740-48c5-b5e7-1a377fb25aa2", + "metadata": {}, + "outputs": [], + "source": [ + "from operator import itemgetter\n", + "from typing import Union\n", + "\n", + "from langchain.output_parsers import JsonOutputToolsParser\n", + "from langchain_community.tools.convert_to_openai import (\n", + " format_tool_to_openai_tool,\n", + ")\n", + "from langchain_core.runnables import (\n", + " Runnable,\n", + " RunnableLambda,\n", + " RunnableMap,\n", + " RunnablePassthrough,\n", + ")\n", + "from langchain_openai import ChatOpenAI\n", + "\n", + "model = ChatOpenAI(model=\"gpt-3.5-turbo\")\n", + "tools = [multiply, exponentiate, add]\n", + "model_with_tools = model.bind(tools=[format_tool_to_openai_tool(t) for t in tools])\n", + "tool_map = {tool.name: tool for tool in tools}\n", + "\n", + "\n", + "def call_tool(tool_invocation: dict) -> Union[str, Runnable]:\n", + " \"\"\"Function for dynamically constructing the end of the chain based on the model-selected tool.\"\"\"\n", + " tool = tool_map[tool_invocation[\"type\"]]\n", + " return RunnablePassthrough.assign(output=itemgetter(\"args\") | tool)\n", + "\n", + "\n", + "# .map() allows us to apply a function to a list of inputs.\n", + "call_tool_list = RunnableLambda(call_tool).map()\n", + "chain = model_with_tools | JsonOutputToolsParser() | call_tool_list" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "ea6dbb32-ec9b-4c70-a90f-a2db93978cf1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'type': 'multiply',\n", + " 'args': {'first_int': 23, 'second_int': 7},\n", + " 'output': 161}]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "chain.invoke(\"What's 23 times 7\")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "b1c6c0f8-6d04-40d4-a40e-8719ca7b27c2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'type': 'add',\n", + " 'args': {'first_int': 1000000, 'second_int': 1000000000},\n", + " 'output': 1001000000}]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "chain.invoke(\"add a million plus a billion\")" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "ce76f299-1a4d-421c-afa4-a6346e34285c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'type': 'exponentiate',\n", + " 'args': {'base': 37, 'exponent': 3},\n", + " 'output': 50653}]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "chain.invoke(\"cube thirty-seven\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "poetry-venv", + "language": "python", + "name": "poetry-venv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.1" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/docs/use_cases/tool_use/parallel.ipynb b/docs/docs/use_cases/tool_use/parallel.ipynb new file mode 100644 index 0000000000000..241e1582c3d95 --- /dev/null +++ b/docs/docs/use_cases/tool_use/parallel.ipynb @@ -0,0 +1,197 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "95982bf1-7d9d-4dd6-a4ad-9de0719fe17f", + "metadata": {}, + "source": [ + "# Chains with parallel tool use\n", + "\n", + "In the [Chains with multiple tools](/docs/use_cases/tool_use/multiple_tools) guide we saw how to build function-calling chains that select between multiple tools. Some models, like the OpenAI models released in Fall 2023, also support parallel function calling, which allows you to invoke multiple functions (or the same function multiple times) in a single model call. Our previous chain from the multiple tools guides actually already supports this, we just need to use an OpenAI model capable of parallel function calling." + ] + }, + { + "cell_type": "markdown", + "id": "3fafec38-443a-42ad-a913-5be7667e3734", + "metadata": {}, + "source": [ + "## Setup\n", + "\n", + "We'll need to install the following packages for this guide:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "78411bf1-0117-4f33-a3d7-f3d77a97bb78", + "metadata": {}, + "outputs": [], + "source": [ + "%pip install --upgrade --quiet langchain langchain-openai" + ] + }, + { + "cell_type": "markdown", + "id": "59d08fd0-ddd9-4c74-bcea-a5ca3a86e542", + "metadata": {}, + "source": [ + "And set these environment variables:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4185e74b-0500-4cad-ace0-bac37de466ac", + "metadata": {}, + "outputs": [], + "source": [ + "import getpass\n", + "import os\n", + "\n", + "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", + "\n", + "# If you'd like to use LangSmith, uncomment the below\n", + "# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n", + "# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()" + ] + }, + { + "cell_type": "markdown", + "id": "d28159f5-b7d0-4385-aa44-4cd1b64507bb", + "metadata": {}, + "source": [ + "## Tools" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "e13ec98c-8521-4d63-b521-caf92da87b70", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_core.tools import tool\n", + "\n", + "\n", + "@tool\n", + "def multiply(first_int: int, second_int: int) -> int:\n", + " \"\"\"Multiply two integers together.\"\"\"\n", + " return first_int * second_int\n", + "\n", + "\n", + "@tool\n", + "def add(first_int: int, second_int: int) -> int:\n", + " \"Add two integers.\"\n", + " return first_int + second_int\n", + "\n", + "\n", + "@tool\n", + "def exponentiate(base: int, exponent: int) -> int:\n", + " \"Exponentiate the base to the exponent power.\"\n", + " return base**exponent" + ] + }, + { + "cell_type": "markdown", + "id": "119d419c-1c61-4e0d-834a-5dabb72f5514", + "metadata": {}, + "source": [ + "# Chain\n", + "\n", + "Notice we use an `-1106` model, which as of this writing is the only kind that supports parallel function calling:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "c35359ae-a740-48c5-b5e7-1a377fb25aa2", + "metadata": {}, + "outputs": [], + "source": [ + "from operator import itemgetter\n", + "from typing import Union\n", + "\n", + "from langchain.output_parsers import JsonOutputToolsParser\n", + "from langchain_community.tools.convert_to_openai import (\n", + " format_tool_to_openai_tool,\n", + ")\n", + "from langchain_core.runnables import (\n", + " Runnable,\n", + " RunnableLambda,\n", + " RunnableMap,\n", + " RunnablePassthrough,\n", + ")\n", + "from langchain_openai import ChatOpenAI\n", + "\n", + "model = ChatOpenAI(model=\"gpt-3.5-turbo-1106\")\n", + "tools = [multiply, exponentiate, add]\n", + "model_with_tools = model.bind(tools=[format_tool_to_openai_tool(t) for t in tools])\n", + "tool_map = {tool.name: tool for tool in tools}\n", + "\n", + "\n", + "def call_tool(tool_invocation: dict) -> Union[str, Runnable]:\n", + " \"\"\"Function for dynamically constructing the end of the chain based on the model-selected tool.\"\"\"\n", + " tool = tool_map[tool_invocation[\"type\"]]\n", + " return RunnablePassthrough.assign(output=itemgetter(\"args\") | tool)\n", + "\n", + "\n", + "# .map() allows us to apply a function to a list of inputs.\n", + "call_tool_list = RunnableLambda(call_tool).map()\n", + "chain = model_with_tools | JsonOutputToolsParser() | call_tool_list" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "ea6dbb32-ec9b-4c70-a90f-a2db93978cf1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'type': 'multiply',\n", + " 'args': {'first_int': 23, 'second_int': 7},\n", + " 'output': 161},\n", + " {'type': 'add', 'args': {'first_int': 5, 'second_int': 18}, 'output': 23},\n", + " {'type': 'add',\n", + " 'args': {'first_int': 1000000, 'second_int': 1000000000},\n", + " 'output': 1001000000},\n", + " {'type': 'exponentiate',\n", + " 'args': {'base': 37, 'exponent': 3},\n", + " 'output': 50653}]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "chain.invoke(\n", + " \"What's 23 times 7, and what's five times 18 and add a million plus a billion and cube thirty-seven\"\n", + ")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "poetry-venv", + "language": "python", + "name": "poetry-venv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.1" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/docs/use_cases/tool_use/prompting.ipynb b/docs/docs/use_cases/tool_use/prompting.ipynb new file mode 100644 index 0000000000000..2b30bf2ec6491 --- /dev/null +++ b/docs/docs/use_cases/tool_use/prompting.ipynb @@ -0,0 +1,415 @@ +{ + "cells": [ + { + "cell_type": "raw", + "id": "3243cb05-8243-421f-99fa-98201abb3094", + "metadata": {}, + "source": [ + "---\n", + "sidebar_position: 3\n", + "---" + ] + }, + { + "cell_type": "markdown", + "id": "14b94240", + "metadata": {}, + "source": [ + "# Prompting for tool use\n", + "\n", + "In this guide we'll build a Chain that does not rely on any special model APIs (like function-calling, which we showed in the [Quickstart](/docs/use_cases/tool_use/quickstart)) and instead just prompts the model directly to invoke tools." + ] + }, + { + "cell_type": "markdown", + "id": "a0a22cb8-19e7-450a-9d1b-6848d2c81cd1", + "metadata": {}, + "source": [ + "## Setup\n", + "\n", + "We'll need to install the following packages:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8c556c5e-b785-428b-8e7d-efd34a2a1adb", + "metadata": {}, + "outputs": [], + "source": [ + "%pip install --upgrade --quiet langchain langchain-openai" + ] + }, + { + "cell_type": "markdown", + "id": "5e727d22-f861-4eee-882a-688f8efc885e", + "metadata": {}, + "source": [ + "And set these environment variables:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "527ef906-0104-4872-b4e5-f371cf73feba", + "metadata": {}, + "outputs": [], + "source": [ + "import getpass\n", + "import os\n", + "\n", + "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", + "\n", + "# If you'd like to use LangSmith, uncomment the below:\n", + "# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n", + "# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()" + ] + }, + { + "cell_type": "markdown", + "id": "68946881", + "metadata": {}, + "source": [ + "## Create a tool\n", + "\n", + "First, we need to create a tool to call. For this example, we will create a custom tool from a function. For more information on all details related to creating custom tools, please see [this guide](/docs/modules/agents/tools/)." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "90187d07", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_core.tools import tool\n", + "\n", + "\n", + "@tool\n", + "def multiply(first_int: int, second_int: int) -> int:\n", + " \"\"\"Multiply two integers together.\"\"\"\n", + " return first_int * second_int" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "d7009e1a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "multiply\n", + "multiply(first_int: int, second_int: int) -> int - Multiply two integers together.\n", + "{'first_int': {'title': 'First Int', 'type': 'integer'}, 'second_int': {'title': 'Second Int', 'type': 'integer'}}\n" + ] + } + ], + "source": [ + "print(multiply.name)\n", + "print(multiply.description)\n", + "print(multiply.args)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "be77e780", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "20" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "multiply.invoke({\"first_int\": 4, \"second_int\": 5})" + ] + }, + { + "cell_type": "markdown", + "id": "15dd690e-e54d-4209-91a4-181f69a452ac", + "metadata": {}, + "source": [ + "## Creating our prompt\n", + "\n", + "We'll want to write a prompt that specifies the tools the model has access to, the arguments to those tools, and the desired output format of the model. In this case we'll instruct it to output a JSON blob of the form `{\"name\": \"...\", \"arguments\": {...}}`." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "c64818f0-9364-423c-922e-bdfb8f01e726", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'multiply: multiply(first_int: int, second_int: int) -> int - Multiply two integers together.'" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from langchain.tools.render import render_text_description\n", + "\n", + "rendered_tools = render_text_description([multiply])\n", + "rendered_tools" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "63552d4d-8bd6-4aca-8805-56e236f6552d", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_core.prompts import ChatPromptTemplate\n", + "\n", + "system_prompt = f\"\"\"You are an assistant that has access to the following set of tools. Here are the names and descriptions for each tool:\n", + "\n", + "{rendered_tools}\n", + "\n", + "Given the user input, return the name and input of the tool to use. Return your response as a JSON blob with 'name' and 'arguments' keys.\"\"\"\n", + "\n", + "prompt = ChatPromptTemplate.from_messages(\n", + " [(\"system\", system_prompt), (\"user\", \"{input}\")]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "14df2cd5-b6fa-4b10-892d-e8692c7931e5", + "metadata": {}, + "source": [ + "## Adding an output parser\n", + "\n", + "We'll use the `JsonOutputParser` for parsing our models output to JSON." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f129f5bd-127c-4c95-8f34-8f437da7ca8f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'name': 'multiply', 'arguments': {'first_int': 13, 'second_int': 4}}" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from langchain_core.output_parsers import JsonOutputParser\n", + "from langchain_openai import ChatOpenAI\n", + "\n", + "model = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n", + "chain = prompt | model | JsonOutputParser()\n", + "chain.invoke({\"input\": \"what's thirteen times 4\"})" + ] + }, + { + "cell_type": "markdown", + "id": "8e29dd4c-8eb5-457f-92d1-8add076404dc", + "metadata": {}, + "source": [ + "## Invoking the tool\n", + "\n", + "We can invoke the tool as part of the chain by passing along the model-generated \"arguments\" to it:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "0555b384-fde6-4404-86e0-7ea199003d58", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "52" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from operator import itemgetter\n", + "\n", + "chain = prompt | model | JsonOutputParser() | itemgetter(\"arguments\") | multiply\n", + "chain.invoke({\"input\": \"what's thirteen times 4\"})" + ] + }, + { + "cell_type": "markdown", + "id": "8d60b2cb-6ce0-48fc-8d18-d2337161a53d", + "metadata": {}, + "source": [ + "## Choosing from multiple tools\n", + "\n", + "Suppose we have multiple tools we want the chain to be able to choose from:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "95c86d32-ee45-4c87-a28c-14eff19b49e9", + "metadata": {}, + "outputs": [], + "source": [ + "@tool\n", + "def add(first_int: int, second_int: int) -> int:\n", + " \"Add two integers.\"\n", + " return first_int + second_int\n", + "\n", + "\n", + "@tool\n", + "def exponentiate(base: int, exponent: int) -> int:\n", + " \"Exponentiate the base to the exponent power.\"\n", + " return base**exponent" + ] + }, + { + "cell_type": "markdown", + "id": "748405ff-4c85-4bd7-82e1-30458b5a4106", + "metadata": {}, + "source": [ + "With function calling, we can do this like so:" + ] + }, + { + "cell_type": "markdown", + "id": "eb3aa89e-40e1-45ec-b1f3-ab28cfc8e42d", + "metadata": {}, + "source": [ + "If we want to run the model selected tool, we can do so using a function that returns the tool based on the model output. Specifically, our function will action return it's own subchain that gets the \"arguments\" part of the model output and passes it to the chosen tool:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "db254773-5b8e-43d0-aabe-c21566c154cd", + "metadata": {}, + "outputs": [], + "source": [ + "tools = [add, exponentiate, multiply]\n", + "\n", + "\n", + "def tool_chain(model_output):\n", + " tool_map = {tool.name: tool for tool in tools}\n", + " chosen_tool = tool_map[model_output[\"name\"]]\n", + " return itemgetter(\"arguments\") | chosen_tool" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "ad9f5cff-b86a-45fc-9ce4-b0aa9025a378", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1135" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rendered_tools = render_text_description(tools)\n", + "system_prompt = f\"\"\"You are an assistant that has access to the following set of tools. Here are the names and descriptions for each tool:\n", + "\n", + "{rendered_tools}\n", + "\n", + "Given the user input, return the name and input of the tool to use. Return your response as a JSON blob with 'name' and 'arguments' keys.\"\"\"\n", + "\n", + "prompt = ChatPromptTemplate.from_messages(\n", + " [(\"system\", system_prompt), (\"user\", \"{input}\")]\n", + ")\n", + "\n", + "chain = prompt | model | JsonOutputParser() | tool_chain\n", + "chain.invoke({\"input\": \"what's 3 plus 1132\"})" + ] + }, + { + "cell_type": "markdown", + "id": "b4a9c5aa-f60a-4017-af6f-1ff6e04bfb61", + "metadata": {}, + "source": [ + "## Returning tool inputs\n", + "\n", + "It can be helpful to return not only tool outputs but also tool inputs. We can easily do this with LCEL by `RunnablePassthrough.assign`-ing the tool output. This will take whatever the input is to the RunnablePassrthrough components (assumed to be a dictionary) and add a key to it while still passing through everything that's currently in the input:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "45404406-859d-4caa-8b9d-5838162c80a0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'name': 'add',\n", + " 'arguments': {'first_int': 3, 'second_int': 1132},\n", + " 'output': 1135}" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from langchain_core.runnables import RunnablePassthrough\n", + "\n", + "chain = (\n", + " prompt | model | JsonOutputParser() | RunnablePassthrough.assign(output=tool_chain)\n", + ")\n", + "chain.invoke({\"input\": \"what's 3 plus 1132\"})" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "poetry-venv", + "language": "python", + "name": "poetry-venv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.1" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/docs/use_cases/tool_use/quickstart.ipynb b/docs/docs/use_cases/tool_use/quickstart.ipynb new file mode 100644 index 0000000000000..3d31c5231bc64 --- /dev/null +++ b/docs/docs/use_cases/tool_use/quickstart.ipynb @@ -0,0 +1,531 @@ +{ + "cells": [ + { + "cell_type": "raw", + "id": "500e8846-91c2-4716-9bd6-b9672c6daf78", + "metadata": {}, + "source": [ + "---\n", + "sidebar_position: 0\n", + "---" + ] + }, + { + "cell_type": "markdown", + "id": "14b94240", + "metadata": {}, + "source": [ + "# Quickstart\n", + "\n", + "In this guide, we will go over the basic ways to create Chains and Agents that call Tools. Tools can be just about anything — APIs, functions, databases, etc. Tools allow us to extend the capabilities of a model beyond just outputting text/messages. The key to using models with tools is correctly prompting a model and parsing its response so that it chooses the right ools and provides the right inputs for them." + ] + }, + { + "cell_type": "markdown", + "id": "e6b79a42-0349-42c6-9ce8-72220e838e8d", + "metadata": {}, + "source": [ + "## Setup\n", + "\n", + "We'll need to install the following packages for this guide:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f2274266-755a-4e90-b257-5180fb089af2", + "metadata": {}, + "outputs": [], + "source": [ + "%pip install --upgrade --quiet langchain langchain-openai" + ] + }, + { + "cell_type": "markdown", + "id": "36a9c6fc-8264-462f-b8d7-9c7bbec22ef9", + "metadata": {}, + "source": [ + "And set these environment variables:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "57a81b7a-4fd9-4f28-bc32-7b98b522e1b0", + "metadata": {}, + "outputs": [], + "source": [ + "import getpass\n", + "import os\n", + "\n", + "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", + "\n", + "# If you'd like to use LangSmith, uncomment the below\n", + "# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n", + "# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()" + ] + }, + { + "cell_type": "markdown", + "id": "68946881", + "metadata": {}, + "source": [ + "## Create a tool\n", + "\n", + "First, we need to create a tool to call. For this example, we will create a custom tool from a function. For more information on creating custom tools, please see [this guide](/docs/modules/agents/tools/)." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "90187d07", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_core.tools import tool\n", + "\n", + "\n", + "@tool\n", + "def multiply(first_int: int, second_int: int) -> int:\n", + " \"\"\"Multiply two integers together.\"\"\"\n", + " return first_int * second_int" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "d7009e1a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "multiply\n", + "multiply(first_int: int, second_int: int) -> int - Multiply two integers together.\n", + "{'first_int': {'title': 'First Int', 'type': 'integer'}, 'second_int': {'title': 'Second Int', 'type': 'integer'}}\n" + ] + } + ], + "source": [ + "print(multiply.name)\n", + "print(multiply.description)\n", + "print(multiply.args)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "be77e780", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "20" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "multiply.invoke({\"first_int\": 4, \"second_int\": 5})" + ] + }, + { + "cell_type": "markdown", + "id": "19ba4d63", + "metadata": {}, + "source": [ + "## Chains\n", + "\n", + "If we know that we only need to use a tool a fixed number of times, we can create a chain for doing so. Let's create a simple chain that just multiplies user-specified numbers.\n", + "\n", + "### Function calling\n", + "One of the most reliable ways to use tools with LLMs is with function calling APIs (also sometimes called tool calling or parallel function calling). This only works with models that explicitly support function calling, like OpenAI models.\n", + "\n", + "First we'll define our model and tools. We'll start with just a single tool, `multiply`." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "9bce8935-1465-45ac-8a93-314222c753c4", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_openai.chat_models import ChatOpenAI\n", + "\n", + "model = ChatOpenAI(model=\"gpt-3.5-turbo-1106\")" + ] + }, + { + "cell_type": "markdown", + "id": "c22e6f0f-c5ad-4c0f-9514-e626704ea51c", + "metadata": {}, + "source": [ + "Next we'll convert our LangChain Tool to an OpenAI format JSONSchema function, and bind this as the `tools` argument to be passed to all ChatOpenAI calls. Since we only have a single Tool and in this initial chain we want to make sure it's always used, we'll also specify `tool_choice`. See the [OpenAI chat API reference](https://platform.openai.com/docs/api-reference/chat/create#chat-create-tool_choice) for more on these parameters." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "2babd759-bccd-4d50-95ad-365a07347926", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'type': 'function',\n", + " 'function': {'name': 'multiply',\n", + " 'description': 'multiply(first_int: int, second_int: int) -> int - Multiply two integers together.',\n", + " 'parameters': {'title': 'multiplySchemaSchema',\n", + " 'type': 'object',\n", + " 'properties': {'first_int': {'title': 'First Int', 'type': 'integer'},\n", + " 'second_int': {'title': 'Second Int', 'type': 'integer'}},\n", + " 'required': ['first_int', 'second_int']}}}]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from langchain_community.tools.convert_to_openai import (\n", + " format_tool_to_openai_tool,\n", + ")\n", + "\n", + "formatted_tools = [format_tool_to_openai_tool(multiply)]\n", + "formatted_tools" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "3bfe2cdc-7d72-457c-a9a1-5fa1e0bcde55", + "metadata": {}, + "outputs": [], + "source": [ + "model_with_tools = model.bind(\n", + " tools=formatted_tools,\n", + " # We specify tool_choice to enforce that the 'multiply' function is called by the model.\n", + " tool_choice={\"type\": \"function\", \"function\": {\"name\": \"multiply\"}},\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "9fa2ba14-9a97-4960-a6c7-422edecdaf4b", + "metadata": {}, + "source": [ + "Now we'll compose out tool-calling model with a `JsonOutputToolsParser`, a built-in LangChain output parser that converts an OpenAI function-calling response to a list of `{\"type\": \"TOOL_NAME\", \"args\": {...}}` dicts with the tools to invoke and arguments to invoke them with." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "5518aba4-c44d-4896-9b63-fc9d56c245df", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'type': 'multiply', 'args': {'first_int': 4, 'second_int': 23}}]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from langchain.output_parsers import JsonOutputToolsParser\n", + "\n", + "chain = model_with_tools | JsonOutputToolsParser()\n", + "chain.invoke(\"What's four times 23\")" + ] + }, + { + "cell_type": "markdown", + "id": "7f712d8d-0314-4d3d-b563-378b72fd8bb5", + "metadata": {}, + "source": [ + "Since we know we're always invoking the `multiply` tool, we can simplify our output a bit to return only the args for the `multiply` tool using the `JsonoutputKeyToolsParser`. To further simplify we'll specify `return_single=True`, so that instead of a list of tool invocations our output parser returns only the first tool invocation." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "cfacfcdc-8a45-4c60-a175-7efe9534f83e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'first_int': 4, 'second_int': 23}" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from langchain.output_parsers import JsonOutputKeyToolsParser\n", + "\n", + "chain = model_with_tools | JsonOutputKeyToolsParser(\n", + " key_name=\"multiply\", return_single=True\n", + ")\n", + "chain.invoke(\"What's four times 23\")" + ] + }, + { + "cell_type": "markdown", + "id": "8ba1764d-0272-4f98-adcf-b48cb2c0a315", + "metadata": {}, + "source": [ + "### Invoking the tool\n", + "\n", + "Great! We're able to generate tool invocations. But what if we want to actually call the tool? To do that we just need to pass them to the tool:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "4f5325ca-e5dc-4d1a-ba36-b085a029c90a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "92" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from operator import itemgetter\n", + "\n", + "# Note: the `.map()` at the end of `multiply` allows us to pass in a list of `multiply` arguments instead of a single one.\n", + "chain = (\n", + " model_with_tools\n", + " | JsonOutputKeyToolsParser(key_name=\"multiply\", return_single=True)\n", + " | multiply\n", + ")\n", + "chain.invoke(\"What's four times 23\")" + ] + }, + { + "cell_type": "markdown", + "id": "0521d3d5", + "metadata": {}, + "source": [ + "## Agents\n", + "\n", + "Chains are great when we know the specific sequence of tool usage needed for any user input. But for certain use cases, how many times we use tools depends on the input. In these cases, we want to let the model itself decide how many times to use tools and in what order. [Agents](/docs/modules/agents/) let us do just this.\n", + "\n", + "LangChain comes with a number of built-in agents that are optimized for different use cases. Read about all the [agent types here](/docs/modules/agents/agent_types/).\n", + "\n", + "As an example, let's try out the OpenAI tools agent, which makes use of the new OpenAI tool-calling API (this is only available in the latest OpenAI models, and differs from function-calling in that the model can return multiple function invocations at once):" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "id": "21723cf4-9421-4a8d-92a6-eeeb8f4367f1", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain import hub\n", + "from langchain.agents import AgentExecutor, create_openai_tools_agent\n", + "from langchain_openai import ChatOpenAI" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "id": "6be83879-9da3-4dd9-b147-a79f76affd7a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=[], template='You are a helpful assistant')),\n", + " MessagesPlaceholder(variable_name='chat_history', optional=True),\n", + " HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['input'], template='{input}')),\n", + " MessagesPlaceholder(variable_name='agent_scratchpad')]" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Get the prompt to use - you can modify this!\n", + "prompt = hub.pull(\"hwchase17/openai-tools-agent\")\n", + "prompt.messages" + ] + }, + { + "cell_type": "markdown", + "id": "616f9714-5b18-4eed-b88a-d38e4cb1de99", + "metadata": {}, + "source": [ + "Agents are also great because they make it easy to use multiple tools. To learn how to build Chains that use multiple tools, check out the [Chains with multiple tools](/docs/use_cases/tool_use/multiple_tools) page." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "95c86d32-ee45-4c87-a28c-14eff19b49e9", + "metadata": {}, + "outputs": [], + "source": [ + "@tool\n", + "def add(first_int: int, second_int: int) -> int:\n", + " \"Add two integers.\"\n", + " return first_int + second_int\n", + "\n", + "\n", + "@tool\n", + "def exponentiate(base: int, exponent: int) -> int:\n", + " \"Exponentiate the base to the exponent power.\"\n", + " return base**exponent\n", + "\n", + "\n", + "tools = [multiply, add, exponentiate]" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "id": "17b09ac6-c9b7-4340-a8a0-3d3061f7888c", + "metadata": {}, + "outputs": [], + "source": [ + "# Choose the LLM that will drive the agent\n", + "# Only certain models support this\n", + "model = ChatOpenAI(model=\"gpt-3.5-turbo-1106\", temperature=0)\n", + "\n", + "# Construct the OpenAI Tools agent\n", + "agent = create_openai_tools_agent(model, tools, prompt)" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "id": "675091d2-cac9-45c4-a5d7-b760ee6c1986", + "metadata": {}, + "outputs": [], + "source": [ + "# Create an agent executor by passing in the agent and tools\n", + "agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)" + ] + }, + { + "cell_type": "markdown", + "id": "a6099ab6-2fa6-452d-b73c-7fb65daab451", + "metadata": {}, + "source": [ + "With an agent, we can ask questions that require arbitrarily-many uses of our tools:" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "id": "f7dbb240-809e-4e41-8f63-1a4636e8e26d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n", + "\u001b[32;1m\u001b[1;3m\n", + "Invoking: `exponentiate` with `{'base': 3, 'exponent': 5}`\n", + "\n", + "\n", + "\u001b[0m\u001b[38;5;200m\u001b[1;3m243\u001b[0m\u001b[32;1m\u001b[1;3m\n", + "Invoking: `add` with `{'first_int': 12, 'second_int': 3}`\n", + "\n", + "\n", + "\u001b[0m\u001b[33;1m\u001b[1;3m15\u001b[0m\u001b[32;1m\u001b[1;3m\n", + "Invoking: `multiply` with `{'first_int': 243, 'second_int': 15}`\n", + "\n", + "\n", + "\u001b[0m\u001b[36;1m\u001b[1;3m3645\u001b[0m\u001b[32;1m\u001b[1;3m\n", + "Invoking: `exponentiate` with `{'base': 3645, 'exponent': 2}`\n", + "\n", + "\n", + "\u001b[0m\u001b[38;5;200m\u001b[1;3m13286025\u001b[0m\u001b[32;1m\u001b[1;3mThe result of raising 3 to the fifth power and multiplying that by the sum of twelve and three, then squaring the whole result is 13,286,025.\u001b[0m\n", + "\n", + "\u001b[1m> Finished chain.\u001b[0m\n" + ] + }, + { + "data": { + "text/plain": [ + "{'input': 'Take 3 to the fifth power and multiply that by the sum of twelve and three, then square the whole result',\n", + " 'output': 'The result of raising 3 to the fifth power and multiplying that by the sum of twelve and three, then squaring the whole result is 13,286,025.'}" + ] + }, + "execution_count": 95, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "agent_executor.invoke(\n", + " {\n", + " \"input\": \"Take 3 to the fifth power and multiply that by the sum of twelve and three, then square the whole result\"\n", + " }\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "b0e4b7f4-58ce-4ca0-a986-d05a436a7ccf", + "metadata": {}, + "source": [ + "## Next steps\n", + "\n", + "Here we've gone over the basic ways to use Tools with Chains and Agents. We recommend the following sections to explore next:\n", + "\n", + "- [Agents](/docs/modules/agents/): Everything related to Agents.\n", + "- [Choosing between multiple tools](/docs/use_cases/tool_use/multiple_tools): How to make tool chains that select from multiple tools.\n", + "- [Prompting for tool use](/docs/use_cases/tool_use/prompting): How to make tool chains that prompt models directly, without using function-calling APIs.\n", + "- [Parallel tool use](/docs/use_cases/tool_use/parallel): How to make tool chains that invoke multiple tools at once." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "poetry-venv", + "language": "python", + "name": "poetry-venv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.1" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/docs/use_cases/tool_use/tool_error_handling.ipynb b/docs/docs/use_cases/tool_use/tool_error_handling.ipynb new file mode 100644 index 0000000000000..81800a9fa495d --- /dev/null +++ b/docs/docs/use_cases/tool_use/tool_error_handling.ipynb @@ -0,0 +1,426 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "5d60cbb9-2a6a-43ea-a9e9-f67b16ddd2b2", + "metadata": {}, + "source": [ + "# Tool error handling\n", + "\n", + "Using a model to invoke a tool has some obvious potential failure modes. Firstly, the model needs to return a output that can be parsed at all. Secondly, the model needs to return tool arguments that are valid.\n", + "\n", + "We can build error handling into our chains to mitigate these failure modes." + ] + }, + { + "cell_type": "markdown", + "id": "712c774f-27c7-4351-a196-39900ca155f5", + "metadata": {}, + "source": [ + "## Setup\n", + "\n", + "We'll need to install the following packages:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "63056c24-9834-4e3d-8bc5-54b1e6c5df86", + "metadata": {}, + "outputs": [], + "source": [ + "%pip install --upgrade --quiet langchain langchain-openai" + ] + }, + { + "cell_type": "markdown", + "id": "68107597-0c8c-4bb5-8c12-9992fabdf71a", + "metadata": {}, + "source": [ + "And set these environment variables:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "08785b6d-722d-4620-b6ec-36deb3842c69", + "metadata": {}, + "outputs": [], + "source": [ + "import getpass\n", + "import os\n", + "\n", + "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", + "\n", + "# If you'd like to use LangSmith, uncomment the below:\n", + "# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n", + "# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()" + ] + }, + { + "cell_type": "markdown", + "id": "0a50f93a-5d6f-4691-8f98-27239a1c2f95", + "metadata": {}, + "source": [ + "## Chain\n", + "\n", + "Suppose we have the following (dummy) tool and tool-calling chain. We'll make our tool intentionally convoluted to try and trip up the model." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "1d20604e-c4d1-4d21-841b-23e4f61aec36", + "metadata": {}, + "outputs": [], + "source": [ + "# Define tool\n", + "from langchain_core.tools import tool\n", + "\n", + "\n", + "@tool\n", + "def complex_tool(int_arg: int, float_arg: float, dict_arg: dict) -> int:\n", + " \"\"\"Do something complex with a complex tool.\"\"\"\n", + " return int_arg * float_arg" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "553c2c13-28c8-4451-8a3a-6c31d52dc31d", + "metadata": {}, + "outputs": [], + "source": [ + "# Define model and bind tool\n", + "from langchain_community.tools.convert_to_openai import format_tool_to_openai_tool\n", + "from langchain_openai import ChatOpenAI\n", + "\n", + "model = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n", + "model_with_tools = model.bind(\n", + " tools=[format_tool_to_openai_tool(complex_tool)],\n", + " tool_choice={\"type\": \"function\", \"function\": {\"name\": \"complex_tool\"}},\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "802b2eca-9f79-4d6c-8257-85139ca5c752", + "metadata": {}, + "outputs": [], + "source": [ + "# Define chain\n", + "from operator import itemgetter\n", + "\n", + "from langchain.output_parsers import JsonOutputKeyToolsParser\n", + "from langchain_core.runnables import Runnable, RunnableLambda, RunnablePassthrough\n", + "\n", + "chain = (\n", + " model_with_tools\n", + " | JsonOutputKeyToolsParser(key_name=\"complex_tool\", return_single=True)\n", + " | complex_tool\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "c34f005e-63f0-4841-9461-ca36c36607fc", + "metadata": {}, + "source": [ + "We can see that when we try to invoke this chain with even a fairly explicit input, the model fails to correctly call the tool (it forgets the `dict_arg` argument)." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "d354664c-ac44-4967-a35f-8912b3ad9477", + "metadata": {}, + "outputs": [ + { + "ename": "ValidationError", + "evalue": "1 validation error for complex_toolSchemaSchema\ndict_arg\n field required (type=value_error.missing)", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValidationError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[6], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mchain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43muse complex tool. the args are 5, 2.1, empty dictionary. don\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mt forget dict_arg\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 3\u001b[0m \u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/langchain/libs/core/langchain_core/runnables/base.py:1774\u001b[0m, in \u001b[0;36mRunnableSequence.invoke\u001b[0;34m(self, input, config)\u001b[0m\n\u001b[1;32m 1772\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1773\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, step \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msteps):\n\u001b[0;32m-> 1774\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[43mstep\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1775\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1776\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;66;43;03m# mark each step as a child run\u001b[39;49;00m\n\u001b[1;32m 1777\u001b[0m \u001b[43m \u001b[49m\u001b[43mpatch_config\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1778\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_child\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mseq:step:\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mi\u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1779\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1780\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1781\u001b[0m \u001b[38;5;66;03m# finish the root run\u001b[39;00m\n\u001b[1;32m 1782\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n", + "File \u001b[0;32m~/langchain/libs/core/langchain_core/tools.py:210\u001b[0m, in \u001b[0;36mBaseTool.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 203\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvoke\u001b[39m(\n\u001b[1;32m 204\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 205\u001b[0m \u001b[38;5;28minput\u001b[39m: Union[\u001b[38;5;28mstr\u001b[39m, Dict],\n\u001b[1;32m 206\u001b[0m config: Optional[RunnableConfig] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 207\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m 208\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Any:\n\u001b[1;32m 209\u001b[0m config \u001b[38;5;241m=\u001b[39m ensure_config(config)\n\u001b[0;32m--> 210\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 211\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 212\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcallbacks\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 213\u001b[0m \u001b[43m \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtags\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 214\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmetadata\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 215\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrun_name\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 216\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 217\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/langchain/libs/core/langchain_core/tools.py:315\u001b[0m, in \u001b[0;36mBaseTool.run\u001b[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, **kwargs)\u001b[0m\n\u001b[1;32m 301\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrun\u001b[39m(\n\u001b[1;32m 302\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 303\u001b[0m tool_input: Union[\u001b[38;5;28mstr\u001b[39m, Dict],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 312\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m 313\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Any:\n\u001b[1;32m 314\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Run the tool.\"\"\"\u001b[39;00m\n\u001b[0;32m--> 315\u001b[0m parsed_input \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_parse_input\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtool_input\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 316\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mverbose \u001b[38;5;129;01mand\u001b[39;00m verbose \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 317\u001b[0m verbose_ \u001b[38;5;241m=\u001b[39m verbose\n", + "File \u001b[0;32m~/langchain/libs/core/langchain_core/tools.py:250\u001b[0m, in \u001b[0;36mBaseTool._parse_input\u001b[0;34m(self, tool_input)\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 249\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m input_args \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 250\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43minput_args\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparse_obj\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtool_input\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 251\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m {\n\u001b[1;32m 252\u001b[0m k: \u001b[38;5;28mgetattr\u001b[39m(result, k)\n\u001b[1;32m 253\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m k, v \u001b[38;5;129;01min\u001b[39;00m result\u001b[38;5;241m.\u001b[39mdict()\u001b[38;5;241m.\u001b[39mitems()\n\u001b[1;32m 254\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m k \u001b[38;5;129;01min\u001b[39;00m tool_input\n\u001b[1;32m 255\u001b[0m }\n\u001b[1;32m 256\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m tool_input\n", + "File \u001b[0;32m~/langchain/.venv/lib/python3.9/site-packages/pydantic/v1/main.py:526\u001b[0m, in \u001b[0;36mBaseModel.parse_obj\u001b[0;34m(cls, obj)\u001b[0m\n\u001b[1;32m 524\u001b[0m exc \u001b[38;5;241m=\u001b[39m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m expected dict not \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mobj\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 525\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ValidationError([ErrorWrapper(exc, loc\u001b[38;5;241m=\u001b[39mROOT_KEY)], \u001b[38;5;28mcls\u001b[39m) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n\u001b[0;32m--> 526\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mobj\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/langchain/.venv/lib/python3.9/site-packages/pydantic/v1/main.py:341\u001b[0m, in \u001b[0;36mBaseModel.__init__\u001b[0;34m(__pydantic_self__, **data)\u001b[0m\n\u001b[1;32m 339\u001b[0m values, fields_set, validation_error \u001b[38;5;241m=\u001b[39m validate_model(__pydantic_self__\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m, data)\n\u001b[1;32m 340\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m validation_error:\n\u001b[0;32m--> 341\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m validation_error\n\u001b[1;32m 342\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 343\u001b[0m object_setattr(__pydantic_self__, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m__dict__\u001b[39m\u001b[38;5;124m'\u001b[39m, values)\n", + "\u001b[0;31mValidationError\u001b[0m: 1 validation error for complex_toolSchemaSchema\ndict_arg\n field required (type=value_error.missing)" + ] + } + ], + "source": [ + "chain.invoke(\n", + " \"use complex tool. the args are 5, 2.1, empty dictionary. don't forget dict_arg\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "890d989d-2d39-4571-9a55-d3496b9b5d27", + "metadata": {}, + "source": [ + "## Try/except tool call\n", + "\n", + "The simplest way to more gracefully handle errors is to try/except the tool-calling step and return a helpful message on errors:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "8fedb550-683d-45ae-8876-ae7acb332019", + "metadata": {}, + "outputs": [], + "source": [ + "from typing import Any\n", + "\n", + "from langchain_core.runnables import RunnableConfig\n", + "\n", + "\n", + "def try_except_tool(tool_args: dict, config: RunnableConfig) -> Runnable:\n", + " try:\n", + " complex_tool.invoke(tool_args, config=config)\n", + " except Exception as e:\n", + " return f\"Calling tool with arguments:\\n\\n{tool_args}\\n\\nraised the following error:\\n\\n{type(e)}: {e}\"\n", + "\n", + "\n", + "chain = (\n", + " model_with_tools\n", + " | JsonOutputKeyToolsParser(key_name=\"complex_tool\", return_single=True)\n", + " | try_except_tool\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "71a2c98d-c0be-4c0a-bb3d-41ad4596526c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Calling tool with arguments:\n", + "\n", + "{'int_arg': 5, 'float_arg': 2.1}\n", + "\n", + "raised the following error:\n", + "\n", + ": 1 validation error for complex_toolSchemaSchema\n", + "dict_arg\n", + " field required (type=value_error.missing)\n" + ] + } + ], + "source": [ + "print(\n", + " chain.invoke(\n", + " \"use complex tool. the args are 5, 2.1, empty dictionary. don't forget dict_arg\"\n", + " )\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "3b2f6393-cb47-49d0-921c-09550a049fe4", + "metadata": {}, + "source": [ + "## Fallbacks\n", + "\n", + "We can also try to fallback to a better model in the event of a tool invocation error. In this case we'll fall back to an identical chain that uses `gpt-4-1106-preview` instead of `gpt-3.5-turbo`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "02cc4223-35fa-4240-976a-012299ca703c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "10.5" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "chain = (\n", + " model_with_tools\n", + " | JsonOutputKeyToolsParser(key_name=\"complex_tool\", return_single=True)\n", + " | complex_tool\n", + ")\n", + "better_model = ChatOpenAI(model=\"gpt-4-1106-preview\", temperature=0).bind(\n", + " tools=[format_tool_to_openai_tool(complex_tool)],\n", + " tool_choice={\"type\": \"function\", \"function\": {\"name\": \"complex_tool\"}},\n", + ")\n", + "better_chain = (\n", + " better_model\n", + " | JsonOutputKeyToolsParser(key_name=\"complex_tool\", return_single=True)\n", + " | complex_tool\n", + ")\n", + "\n", + "chain_with_fallback = chain.with_fallbacks([better_chain])\n", + "chain_with_fallback.invoke(\n", + " \"use complex tool. the args are 5, 2.1, empty dictionary. don't forget dict_arg\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "412f8c4e-cc83-4d87-84a1-5ba2f8edb1e9", + "metadata": {}, + "source": [ + "Looking at the [Langsmith trace](https://smith.langchain.com/public/241e1266-8555-4d49-99dc-b8df46109c39/r) for this chain run, we can see that the first chain call fails as expected and it's the fallback that succeeds." + ] + }, + { + "cell_type": "markdown", + "id": "304b59cd-cd25-4205-9769-36595c8f3b59", + "metadata": {}, + "source": [ + "## Retry with exception\n", + "\n", + "To take things one step further, we can try to automatically re-run the chain with the exception passed in, so that the model may be able to correct its behavior:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "b5659956-9454-468a-9753-a3ff9052b8f5", + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "from typing import Any\n", + "\n", + "from langchain_core.messages import AIMessage, HumanMessage, ToolMessage\n", + "from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n", + "from langchain_core.runnables import RunnablePassthrough\n", + "\n", + "\n", + "class CustomToolException(Exception):\n", + " \"\"\"Custom LangChain tool exception.\"\"\"\n", + "\n", + " def __init__(self, tool_call: dict, exception: Exception) -> None:\n", + " super().__init__()\n", + " self.tool_call = tool_call\n", + " self.exception = exception\n", + "\n", + "\n", + "def tool_custom_exception(tool_call: dict, config: RunnableConfig) -> Runnable:\n", + " try:\n", + " return complex_tool.invoke(tool_call[\"args\"], config=config)\n", + " except Exception as e:\n", + " raise CustomToolException(tool_call, e)\n", + "\n", + "\n", + "def exception_to_messages(inputs: dict) -> dict:\n", + " exception = inputs.pop(\"exception\")\n", + " tool_call = {\n", + " \"type\": \"function\",\n", + " \"function\": {\n", + " \"name\": \"complex_tool\",\n", + " \"arguments\": json.dumps(exception.tool_call[\"args\"]),\n", + " },\n", + " \"id\": exception.tool_call[\"id\"],\n", + " }\n", + "\n", + " # Add historical messages to the original input, so the model knows that it made a mistake with the last tool call.\n", + " messages = [\n", + " AIMessage(content=\"\", additional_kwargs={\"tool_calls\": [tool_call]}),\n", + " ToolMessage(tool_call_id=tool_call[\"id\"], content=str(exception.exception)),\n", + " HumanMessage(\n", + " content=\"The last tool calls raised exceptions. Try calling the tools again with corrected arguments.\"\n", + " ),\n", + " ]\n", + " inputs[\"last_output\"] = messages\n", + " return inputs\n", + "\n", + "\n", + "# We add a last_output MessagesPlaceholder to our prompt which if not passed in doesn't\n", + "# affect the prompt at all, but gives us the option to insert an arbitrary list of Messages\n", + "# into the prompt if needed. We'll use this on retries to insert the error message.\n", + "prompt = ChatPromptTemplate.from_messages(\n", + " [(\"human\", \"{input}\"), MessagesPlaceholder(\"last_output\", optional=True)]\n", + ")\n", + "chain = (\n", + " prompt\n", + " | model_with_tools\n", + " | JsonOutputKeyToolsParser(\n", + " key_name=\"complex_tool\", return_id=True, return_single=True\n", + " )\n", + " | tool_custom_exception\n", + ")\n", + "\n", + "# If the initial chain call fails, we rerun it withe the exception passed in as a message.\n", + "self_correcting_chain = chain.with_fallbacks(\n", + " [exception_to_messages | chain], exception_key=\"exception\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "4c45f5bd-cbb4-47d5-b4b6-aec50673c750", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "10.5" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "self_correcting_chain.invoke(\n", + " {\n", + " \"input\": \"use complex tool. the args are 5, 2.1, empty dictionary. don't forget dict_arg\"\n", + " }\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "50d269a9-3cab-4a37-ba2f-805296453627", + "metadata": {}, + "source": [ + "And our chain succeeds! Looking at the [LangSmith trace](https://smith.langchain.com/public/b780b740-daf5-43aa-a217-6d4600aba41b/r), we can see that indeed our initial chain still fails, and it's only on retrying that the chain succeeds." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "poetry-venv", + "language": "python", + "name": "poetry-venv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.1" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/libs/langchain/langchain/chains/openai_functions/base.py b/libs/langchain/langchain/chains/openai_functions/base.py index 426a41a513150..e94f1fded2433 100644 --- a/libs/langchain/langchain/chains/openai_functions/base.py +++ b/libs/langchain/langchain/chains/openai_functions/base.py @@ -9,6 +9,7 @@ Union, ) +from langchain_core._api import deprecated from langchain_core.output_parsers import ( BaseGenerationOutputParser, BaseLLMOutputParser, @@ -106,7 +107,7 @@ def create_openai_fn_runnable( from typing import Optional - from langchain.chains.openai_functions import create_openai_fn_chain + from langchain.chains.openai_functions import create_openai_fn_runnable from langchain_community.chat_models import ChatOpenAI from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel, Field @@ -180,7 +181,7 @@ def create_structured_output_runnable( from typing import Optional - from langchain.chains.openai_functions import create_structured_output_chain + from langchain.chains.openai_functions import create_structured_output_runnable from langchain_community.chat_models import ChatOpenAI from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel, Field @@ -200,7 +201,7 @@ class Dog(BaseModel): ("human", "Tip: Make sure to answer in the correct format"), ] ) - chain = create_structured_output_chain(Dog, llm, prompt) + chain = create_structured_output_runnable(Dog, llm, prompt) chain.invoke({"input": "Harry was a chubby brown beagle who loved chicken"}) # -> Dog(name="Harry", color="brown", fav_food="chicken") """ # noqa: E501 @@ -236,6 +237,7 @@ class _OutputFormatter(BaseModel): """ --- Legacy --- """ +@deprecated(since="0.1.1", removal="0.2.0", alternative="create_openai_fn_runnable") def create_openai_fn_chain( functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable]], llm: BaseLanguageModel, @@ -336,6 +338,9 @@ class RecordDog(BaseModel): return llm_chain +@deprecated( + since="0.1.1", removal="0.2.0", alternative="create_structured_output_runnable" +) def create_structured_output_chain( output_schema: Union[Dict[str, Any], Type[BaseModel]], llm: BaseLanguageModel, diff --git a/libs/langchain/langchain/output_parsers/openai_tools.py b/libs/langchain/langchain/output_parsers/openai_tools.py index 3c8127c8fb123..bea4b12a3c2bf 100644 --- a/libs/langchain/langchain/output_parsers/openai_tools.py +++ b/libs/langchain/langchain/output_parsers/openai_tools.py @@ -1,5 +1,6 @@ import copy import json +from json import JSONDecodeError from typing import Any, List, Type from langchain_core.exceptions import OutputParserException @@ -13,6 +14,16 @@ class JsonOutputToolsParser(BaseGenerationOutputParser[Any]): """Parse tools from OpenAI response.""" + strict: bool = False + """Whether to allow non-JSON-compliant strings. + + See: https://docs.python.org/3/library/json.html#encoders-and-decoders + + Useful when the parsed output may include unicode characters or new lines. + """ + return_id: bool = False + """Whether to return the tool call id.""" + def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any: generation = result[0] if not isinstance(generation, ChatGeneration): @@ -26,16 +37,30 @@ def parse_result(self, result: List[Generation], *, partial: bool = False) -> An return [] final_tools = [] + exceptions = [] for tool_call in tool_calls: if "function" not in tool_call: - pass - function_args = tool_call["function"]["arguments"] - final_tools.append( - { - "type": tool_call["function"]["name"], - "args": json.loads(function_args), - } - ) + continue + try: + function_args = json.loads( + tool_call["function"]["arguments"], strict=self.strict + ) + except JSONDecodeError as e: + exceptions.append( + f"Function {tool_call['function']['name']} arguments:\n\n" + f"{tool_call['function']['arguments']}\n\nare not valid JSON. " + f"Received JSONDecodeError {e}" + ) + continue + parsed = { + "type": tool_call["function"]["name"], + "args": function_args, + } + if self.return_id: + parsed["id"] = tool_call["id"] + final_tools.append(parsed) + if exceptions: + raise OutputParserException("\n\n".join(exceptions)) return final_tools @@ -44,10 +69,17 @@ class JsonOutputKeyToolsParser(JsonOutputToolsParser): key_name: str """The type of tools to return.""" + return_single: bool = False + """Whether to return only the first tool call.""" def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any: results = super().parse_result(result) - return [res["args"] for res in results if results["type"] == self.key_name] + results = [res for res in results if res["type"] == self.key_name] + if not self.return_id: + results = [res["args"] for res in results] + if self.return_single: + return results[0] if results else None + return results class PydanticToolsParser(JsonOutputToolsParser): diff --git a/poetry.lock b/poetry.lock index bd91830a98f9c..6cb99a0e57466 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.6.1 and should not be changed by hand. [[package]] name = "aiohttp" @@ -742,6 +742,17 @@ files = [ {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"}, ] +[[package]] +name = "distro" +version = "1.9.0" +description = "Distro - an OS platform information API" +optional = false +python-versions = ">=3.6" +files = [ + {file = "distro-1.9.0-py3-none-any.whl", hash = "sha256:7bffd925d65168f85027d8da9af6bddab658135b840670a223589bc0c8ef02b2"}, + {file = "distro-1.9.0.tar.gz", hash = "sha256:2fa77c6fd8940f116ee1d6b94a2f90b13b5ea8d019b98bc8bafdcabcdd9bdbed"}, +] + [[package]] name = "dnspython" version = "2.4.2" @@ -1036,6 +1047,62 @@ files = [ docs = ["Sphinx"] test = ["objgraph", "psutil"] +[[package]] +name = "h11" +version = "0.14.0" +description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" +optional = false +python-versions = ">=3.7" +files = [ + {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, + {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, +] + +[[package]] +name = "httpcore" +version = "1.0.2" +description = "A minimal low-level HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpcore-1.0.2-py3-none-any.whl", hash = "sha256:096cc05bca73b8e459a1fc3dcf585148f63e534eae4339559c9b8a8d6399acc7"}, + {file = "httpcore-1.0.2.tar.gz", hash = "sha256:9fc092e4799b26174648e54b74ed5f683132a464e95643b226e00c2ed2fa6535"}, +] + +[package.dependencies] +certifi = "*" +h11 = ">=0.13,<0.15" + +[package.extras] +asyncio = ["anyio (>=4.0,<5.0)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +trio = ["trio (>=0.22.0,<0.23.0)"] + +[[package]] +name = "httpx" +version = "0.26.0" +description = "The next generation HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpx-0.26.0-py3-none-any.whl", hash = "sha256:8915f5a3627c4d47b73e8202457cb28f1266982d1159bd5779d86a80c0eab1cd"}, + {file = "httpx-0.26.0.tar.gz", hash = "sha256:451b55c30d5185ea6b23c2c793abf9bb237d2a7dfb901ced6ff69ad37ec1dfaf"}, +] + +[package.dependencies] +anyio = "*" +certifi = "*" +httpcore = "==1.*" +idna = "*" +sniffio = "*" + +[package.extras] +brotli = ["brotli", "brotlicffi"] +cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] + [[package]] name = "idna" version = "3.4" @@ -1627,7 +1694,7 @@ files = [ [[package]] name = "langchain" -version = "0.0.352" +version = "0.1.0" description = "Building applications with LLMs through composability" optional = false python-versions = ">=3.8.1,<4.0" @@ -1639,9 +1706,9 @@ aiohttp = "^3.8.3" async-timeout = {version = "^4.0.0", markers = "python_version < \"3.11\""} dataclasses-json = ">= 0.5.7, < 0.7" jsonpatch = "^1.33" -langchain-community = ">=0.0.2,<0.1" -langchain-core = "^0.1" -langsmith = "~0.0.70" +langchain-community = ">=0.0.9,<0.1" +langchain-core = ">=0.1.7,<0.2" +langsmith = "~0.0.77" numpy = "^1" pydantic = ">=1,<3" PyYAML = ">=5.3" @@ -1657,7 +1724,7 @@ cli = ["typer (>=0.9.0,<0.10.0)"] cohere = ["cohere (>=4,<5)"] docarray = ["docarray[hnswlib] (>=0.32.0,<0.33.0)"] embeddings = ["sentence-transformers (>=2,<3)"] -extended-testing = ["aiosqlite (>=0.19.0,<0.20.0)", "aleph-alpha-client (>=2.15.0,<3.0.0)", "anthropic (>=0.3.11,<0.4.0)", "arxiv (>=1.4,<2.0)", "assemblyai (>=0.17.0,<0.18.0)", "atlassian-python-api (>=3.36.0,<4.0.0)", "beautifulsoup4 (>=4,<5)", "bibtexparser (>=1.4.0,<2.0.0)", "cassio (>=0.1.0,<0.2.0)", "chardet (>=5.1.0,<6.0.0)", "cohere (>=4,<5)", "couchbase (>=4.1.9,<5.0.0)", "dashvector (>=1.0.1,<2.0.0)", "databricks-vectorsearch (>=0.21,<0.22)", "datasets (>=2.15.0,<3.0.0)", "dgml-utils (>=0.3.0,<0.4.0)", "esprima (>=4.0.1,<5.0.0)", "faiss-cpu (>=1,<2)", "feedparser (>=6.0.10,<7.0.0)", "fireworks-ai (>=0.9.0,<0.10.0)", "geopandas (>=0.13.1,<0.14.0)", "gitpython (>=3.1.32,<4.0.0)", "google-cloud-documentai (>=2.20.1,<3.0.0)", "gql (>=3.4.1,<4.0.0)", "hologres-vector (>=0.0.6,<0.0.7)", "html2text (>=2020.1.16,<2021.0.0)", "javelin-sdk (>=0.1.8,<0.2.0)", "jinja2 (>=3,<4)", "jq (>=1.4.1,<2.0.0)", "jsonschema (>1)", "lxml (>=4.9.2,<5.0.0)", "markdownify (>=0.11.6,<0.12.0)", "motor (>=3.3.1,<4.0.0)", "msal (>=1.25.0,<2.0.0)", "mwparserfromhell (>=0.6.4,<0.7.0)", "mwxml (>=0.3.3,<0.4.0)", "newspaper3k (>=0.2.8,<0.3.0)", "numexpr (>=2.8.6,<3.0.0)", "openai (<2)", "openai (<2)", "openapi-pydantic (>=0.3.2,<0.4.0)", "pandas (>=2.0.1,<3.0.0)", "pdfminer-six (>=20221105,<20221106)", "pgvector (>=0.1.6,<0.2.0)", "praw (>=7.7.1,<8.0.0)", "psychicapi (>=0.8.0,<0.9.0)", "py-trello (>=0.19.0,<0.20.0)", "pymupdf (>=1.22.3,<2.0.0)", "pypdf (>=3.4.0,<4.0.0)", "pypdfium2 (>=4.10.0,<5.0.0)", "pyspark (>=3.4.0,<4.0.0)", "rank-bm25 (>=0.2.2,<0.3.0)", "rapidfuzz (>=3.1.1,<4.0.0)", "rapidocr-onnxruntime (>=1.3.2,<2.0.0)", "requests-toolbelt (>=1.0.0,<2.0.0)", "rspace_client (>=2.5.0,<3.0.0)", "scikit-learn (>=1.2.2,<2.0.0)", "sqlite-vss (>=0.1.2,<0.2.0)", "streamlit (>=1.18.0,<2.0.0)", "sympy (>=1.12,<2.0)", "telethon (>=1.28.5,<2.0.0)", "timescale-vector (>=0.0.1,<0.0.2)", "tqdm (>=4.48.0)", "upstash-redis (>=0.15.0,<0.16.0)", "xata (>=1.0.0a7,<2.0.0)", "xmltodict (>=0.13.0,<0.14.0)"] +extended-testing = ["aiosqlite (>=0.19.0,<0.20.0)", "aleph-alpha-client (>=2.15.0,<3.0.0)", "anthropic (>=0.3.11,<0.4.0)", "arxiv (>=1.4,<2.0)", "assemblyai (>=0.17.0,<0.18.0)", "atlassian-python-api (>=3.36.0,<4.0.0)", "beautifulsoup4 (>=4,<5)", "bibtexparser (>=1.4.0,<2.0.0)", "cassio (>=0.1.0,<0.2.0)", "chardet (>=5.1.0,<6.0.0)", "cohere (>=4,<5)", "couchbase (>=4.1.9,<5.0.0)", "dashvector (>=1.0.1,<2.0.0)", "databricks-vectorsearch (>=0.21,<0.22)", "datasets (>=2.15.0,<3.0.0)", "dgml-utils (>=0.3.0,<0.4.0)", "esprima (>=4.0.1,<5.0.0)", "faiss-cpu (>=1,<2)", "feedparser (>=6.0.10,<7.0.0)", "fireworks-ai (>=0.9.0,<0.10.0)", "geopandas (>=0.13.1,<0.14.0)", "gitpython (>=3.1.32,<4.0.0)", "google-cloud-documentai (>=2.20.1,<3.0.0)", "gql (>=3.4.1,<4.0.0)", "hologres-vector (>=0.0.6,<0.0.7)", "html2text (>=2020.1.16,<2021.0.0)", "javelin-sdk (>=0.1.8,<0.2.0)", "jinja2 (>=3,<4)", "jq (>=1.4.1,<2.0.0)", "jsonschema (>1)", "langchain-openai (>=0.0.2,<0.1)", "lxml (>=4.9.2,<5.0.0)", "markdownify (>=0.11.6,<0.12.0)", "motor (>=3.3.1,<4.0.0)", "msal (>=1.25.0,<2.0.0)", "mwparserfromhell (>=0.6.4,<0.7.0)", "mwxml (>=0.3.3,<0.4.0)", "newspaper3k (>=0.2.8,<0.3.0)", "numexpr (>=2.8.6,<3.0.0)", "openai (<2)", "openai (<2)", "openapi-pydantic (>=0.3.2,<0.4.0)", "pandas (>=2.0.1,<3.0.0)", "pdfminer-six (>=20221105,<20221106)", "pgvector (>=0.1.6,<0.2.0)", "praw (>=7.7.1,<8.0.0)", "psychicapi (>=0.8.0,<0.9.0)", "py-trello (>=0.19.0,<0.20.0)", "pymupdf (>=1.22.3,<2.0.0)", "pypdf (>=3.4.0,<4.0.0)", "pypdfium2 (>=4.10.0,<5.0.0)", "pyspark (>=3.4.0,<4.0.0)", "rank-bm25 (>=0.2.2,<0.3.0)", "rapidfuzz (>=3.1.1,<4.0.0)", "rapidocr-onnxruntime (>=1.3.2,<2.0.0)", "requests-toolbelt (>=1.0.0,<2.0.0)", "rspace_client (>=2.5.0,<3.0.0)", "scikit-learn (>=1.2.2,<2.0.0)", "sqlite-vss (>=0.1.2,<0.2.0)", "streamlit (>=1.18.0,<2.0.0)", "sympy (>=1.12,<2.0)", "telethon (>=1.28.5,<2.0.0)", "timescale-vector (>=0.0.1,<0.0.2)", "tqdm (>=4.48.0)", "upstash-redis (>=0.15.0,<0.16.0)", "xata (>=1.0.0a7,<2.0.0)", "xmltodict (>=0.13.0,<0.14.0)"] javascript = ["esprima (>=4.0.1,<5.0.0)"] llms = ["clarifai (>=9.1.0)", "cohere (>=4,<5)", "huggingface_hub (>=0,<1)", "manifest-ml (>=0.0.1,<0.0.2)", "nlpcloud (>=1,<2)", "openai (<2)", "openlm (>=0.0.5,<0.0.6)", "torch (>=1,<3)", "transformers (>=4,<5)"] openai = ["openai (<2)", "tiktoken (>=0.3.2,<0.6.0)"] @@ -1670,7 +1737,7 @@ url = "libs/langchain" [[package]] name = "langchain-community" -version = "0.0.6" +version = "0.0.11" description = "Community contributed LangChain integrations." optional = false python-versions = ">=3.8.1,<4.0" @@ -1680,7 +1747,7 @@ develop = true [package.dependencies] aiohttp = "^3.8.3" dataclasses-json = ">= 0.5.7, < 0.7" -langchain-core = "^0.1" +langchain-core = ">=0.1.8,<0.2" langsmith = "~0.0.63" numpy = "^1" PyYAML = ">=5.3" @@ -1690,7 +1757,7 @@ tenacity = "^8.1.0" [package.extras] cli = ["typer (>=0.9.0,<0.10.0)"] -extended-testing = ["aiosqlite (>=0.19.0,<0.20.0)", "aleph-alpha-client (>=2.15.0,<3.0.0)", "anthropic (>=0.3.11,<0.4.0)", "arxiv (>=1.4,<2.0)", "assemblyai (>=0.17.0,<0.18.0)", "atlassian-python-api (>=3.36.0,<4.0.0)", "beautifulsoup4 (>=4,<5)", "bibtexparser (>=1.4.0,<2.0.0)", "cassio (>=0.1.0,<0.2.0)", "chardet (>=5.1.0,<6.0.0)", "cohere (>=4,<5)", "dashvector (>=1.0.1,<2.0.0)", "databricks-vectorsearch (>=0.21,<0.22)", "datasets (>=2.15.0,<3.0.0)", "dgml-utils (>=0.3.0,<0.4.0)", "esprima (>=4.0.1,<5.0.0)", "faiss-cpu (>=1,<2)", "feedparser (>=6.0.10,<7.0.0)", "fireworks-ai (>=0.9.0,<0.10.0)", "geopandas (>=0.13.1,<0.14.0)", "gitpython (>=3.1.32,<4.0.0)", "google-cloud-documentai (>=2.20.1,<3.0.0)", "gql (>=3.4.1,<4.0.0)", "gradientai (>=1.4.0,<2.0.0)", "hologres-vector (>=0.0.6,<0.0.7)", "html2text (>=2020.1.16,<2021.0.0)", "javelin-sdk (>=0.1.8,<0.2.0)", "jinja2 (>=3,<4)", "jq (>=1.4.1,<2.0.0)", "jsonschema (>1)", "lxml (>=4.9.2,<5.0.0)", "markdownify (>=0.11.6,<0.12.0)", "motor (>=3.3.1,<4.0.0)", "msal (>=1.25.0,<2.0.0)", "mwparserfromhell (>=0.6.4,<0.7.0)", "mwxml (>=0.3.3,<0.4.0)", "newspaper3k (>=0.2.8,<0.3.0)", "numexpr (>=2.8.6,<3.0.0)", "openai (<2)", "openapi-pydantic (>=0.3.2,<0.4.0)", "oracle-ads (>=2.9.1,<3.0.0)", "pandas (>=2.0.1,<3.0.0)", "pdfminer-six (>=20221105,<20221106)", "pgvector (>=0.1.6,<0.2.0)", "praw (>=7.7.1,<8.0.0)", "psychicapi (>=0.8.0,<0.9.0)", "py-trello (>=0.19.0,<0.20.0)", "pymupdf (>=1.22.3,<2.0.0)", "pypdf (>=3.4.0,<4.0.0)", "pypdfium2 (>=4.10.0,<5.0.0)", "pyspark (>=3.4.0,<4.0.0)", "rank-bm25 (>=0.2.2,<0.3.0)", "rapidfuzz (>=3.1.1,<4.0.0)", "rapidocr-onnxruntime (>=1.3.2,<2.0.0)", "requests-toolbelt (>=1.0.0,<2.0.0)", "rspace_client (>=2.5.0,<3.0.0)", "scikit-learn (>=1.2.2,<2.0.0)", "sqlite-vss (>=0.1.2,<0.2.0)", "streamlit (>=1.18.0,<2.0.0)", "sympy (>=1.12,<2.0)", "telethon (>=1.28.5,<2.0.0)", "timescale-vector (>=0.0.1,<0.0.2)", "tqdm (>=4.48.0)", "upstash-redis (>=0.15.0,<0.16.0)", "xata (>=1.0.0a7,<2.0.0)", "xmltodict (>=0.13.0,<0.14.0)"] +extended-testing = ["aiosqlite (>=0.19.0,<0.20.0)", "aleph-alpha-client (>=2.15.0,<3.0.0)", "anthropic (>=0.3.11,<0.4.0)", "arxiv (>=1.4,<2.0)", "assemblyai (>=0.17.0,<0.18.0)", "atlassian-python-api (>=3.36.0,<4.0.0)", "azure-ai-documentintelligence (>=1.0.0b1,<2.0.0)", "beautifulsoup4 (>=4,<5)", "bibtexparser (>=1.4.0,<2.0.0)", "cassio (>=0.1.0,<0.2.0)", "chardet (>=5.1.0,<6.0.0)", "cohere (>=4,<5)", "dashvector (>=1.0.1,<2.0.0)", "databricks-vectorsearch (>=0.21,<0.22)", "datasets (>=2.15.0,<3.0.0)", "dgml-utils (>=0.3.0,<0.4.0)", "esprima (>=4.0.1,<5.0.0)", "faiss-cpu (>=1,<2)", "feedparser (>=6.0.10,<7.0.0)", "fireworks-ai (>=0.9.0,<0.10.0)", "geopandas (>=0.13.1,<0.14.0)", "gitpython (>=3.1.32,<4.0.0)", "google-cloud-documentai (>=2.20.1,<3.0.0)", "gql (>=3.4.1,<4.0.0)", "gradientai (>=1.4.0,<2.0.0)", "hologres-vector (>=0.0.6,<0.0.7)", "html2text (>=2020.1.16,<2021.0.0)", "javelin-sdk (>=0.1.8,<0.2.0)", "jinja2 (>=3,<4)", "jq (>=1.4.1,<2.0.0)", "jsonschema (>1)", "lxml (>=4.9.2,<5.0.0)", "markdownify (>=0.11.6,<0.12.0)", "motor (>=3.3.1,<4.0.0)", "msal (>=1.25.0,<2.0.0)", "mwparserfromhell (>=0.6.4,<0.7.0)", "mwxml (>=0.3.3,<0.4.0)", "newspaper3k (>=0.2.8,<0.3.0)", "numexpr (>=2.8.6,<3.0.0)", "openai (<2)", "openapi-pydantic (>=0.3.2,<0.4.0)", "oracle-ads (>=2.9.1,<3.0.0)", "pandas (>=2.0.1,<3.0.0)", "pdfminer-six (>=20221105,<20221106)", "pgvector (>=0.1.6,<0.2.0)", "praw (>=7.7.1,<8.0.0)", "psychicapi (>=0.8.0,<0.9.0)", "py-trello (>=0.19.0,<0.20.0)", "pymupdf (>=1.22.3,<2.0.0)", "pypdf (>=3.4.0,<4.0.0)", "pypdfium2 (>=4.10.0,<5.0.0)", "pyspark (>=3.4.0,<4.0.0)", "rank-bm25 (>=0.2.2,<0.3.0)", "rapidfuzz (>=3.1.1,<4.0.0)", "rapidocr-onnxruntime (>=1.3.2,<2.0.0)", "requests-toolbelt (>=1.0.0,<2.0.0)", "rspace_client (>=2.5.0,<3.0.0)", "scikit-learn (>=1.2.2,<2.0.0)", "sqlite-vss (>=0.1.2,<0.2.0)", "streamlit (>=1.18.0,<2.0.0)", "sympy (>=1.12,<2.0)", "telethon (>=1.28.5,<2.0.0)", "timescale-vector (>=0.0.1,<0.0.2)", "tqdm (>=4.48.0)", "upstash-redis (>=0.15.0,<0.16.0)", "xata (>=1.0.0a7,<2.0.0)", "xmltodict (>=0.13.0,<0.14.0)", "zhipuai (>=1.0.7,<2.0.0)"] [package.source] type = "directory" @@ -1698,7 +1765,7 @@ url = "libs/community" [[package]] name = "langchain-core" -version = "0.1.3" +version = "0.1.8" description = "Building applications with LLMs through composability" optional = false python-versions = ">=3.8.1,<4.0" @@ -1724,7 +1791,7 @@ url = "libs/core" [[package]] name = "langchain-experimental" -version = "0.0.47" +version = "0.0.48" description = "Building applications with LLMs through composability" optional = false python-versions = ">=3.8.1,<4.0" @@ -1732,8 +1799,8 @@ files = [] develop = true [package.dependencies] -langchain = ">=0.0.350,<0.1" -langchain-core = "^0.1" +langchain = "^0.1" +langchain-core = "^0.1.7" [package.extras] extended-testing = ["faker (>=19.3.1,<20.0.0)", "jinja2 (>=3,<4)", "presidio-analyzer (>=2.2.33,<3.0.0)", "presidio-anonymizer (>=2.2.33,<3.0.0)", "sentence-transformers (>=2,<3)", "vowpal-wabbit-next (==0.6.0)"] @@ -1742,15 +1809,34 @@ extended-testing = ["faker (>=19.3.1,<20.0.0)", "jinja2 (>=3,<4)", "presidio-ana type = "directory" url = "libs/experimental" +[[package]] +name = "langchain-openai" +version = "0.0.2" +description = "An integration package connecting OpenAI and LangChain" +optional = false +python-versions = ">=3.8.1,<4.0" +files = [] +develop = true + +[package.dependencies] +langchain-core = ">=0.1.7,<0.2" +numpy = "^1" +openai = "^1.6.1" +tiktoken = "^0.5.2" + +[package.source] +type = "directory" +url = "libs/partners/openai" + [[package]] name = "langsmith" -version = "0.0.74" +version = "0.0.79" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = ">=3.8.1,<4.0" files = [ - {file = "langsmith-0.0.74-py3-none-any.whl", hash = "sha256:5d573dae3c59c84aca9e4d30a79ef49906151a32bf43830ff83863a825993ac2"}, - {file = "langsmith-0.0.74.tar.gz", hash = "sha256:249dae3625580fc9c1477be447ecd8dc1db76d1c8b59d0296abc027a37a0ce0b"}, + {file = "langsmith-0.0.79-py3-none-any.whl", hash = "sha256:be0374e913c36d9f6a13dd6b6e20a506066d5a0f3abfd476f9cf9e0b086ed744"}, + {file = "langsmith-0.0.79.tar.gz", hash = "sha256:d32639ccd18a92533b302f6f482255619afc8eb007fff91e37ee699d947c5e29"}, ] [package.dependencies] @@ -2354,6 +2440,29 @@ sphinx = ">=1.8" [package.extras] testing = ["matplotlib", "pytest", "pytest-cov"] +[[package]] +name = "openai" +version = "1.7.0" +description = "The official Python library for the openai API" +optional = false +python-versions = ">=3.7.1" +files = [ + {file = "openai-1.7.0-py3-none-any.whl", hash = "sha256:2282e8e15acb05df79cccba330c025b8e84284c7ec1f3fa31f167a8479066333"}, + {file = "openai-1.7.0.tar.gz", hash = "sha256:f2a8dcb739e8620c9318a2c6304ea72aebb572ba02fa1d586344405e80d567d3"}, +] + +[package.dependencies] +anyio = ">=3.5.0,<5" +distro = ">=1.7.0,<2" +httpx = ">=0.23.0,<1" +pydantic = ">=1.9.0,<3" +sniffio = "*" +tqdm = ">4" +typing-extensions = ">=4.7,<5" + +[package.extras] +datalib = ["numpy (>=1)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)"] + [[package]] name = "overrides" version = "7.4.0" @@ -3034,6 +3143,108 @@ files = [ attrs = ">=22.2.0" rpds-py = ">=0.7.0" +[[package]] +name = "regex" +version = "2023.12.25" +description = "Alternative regular expression module, to replace re." +optional = false +python-versions = ">=3.7" +files = [ + {file = "regex-2023.12.25-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0694219a1d54336fd0445ea382d49d36882415c0134ee1e8332afd1529f0baa5"}, + {file = "regex-2023.12.25-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b014333bd0217ad3d54c143de9d4b9a3ca1c5a29a6d0d554952ea071cff0f1f8"}, + {file = "regex-2023.12.25-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d865984b3f71f6d0af64d0d88f5733521698f6c16f445bb09ce746c92c97c586"}, + {file = "regex-2023.12.25-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1e0eabac536b4cc7f57a5f3d095bfa557860ab912f25965e08fe1545e2ed8b4c"}, + {file = "regex-2023.12.25-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c25a8ad70e716f96e13a637802813f65d8a6760ef48672aa3502f4c24ea8b400"}, + {file = "regex-2023.12.25-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a9b6d73353f777630626f403b0652055ebfe8ff142a44ec2cf18ae470395766e"}, + {file = "regex-2023.12.25-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9cc99d6946d750eb75827cb53c4371b8b0fe89c733a94b1573c9dd16ea6c9e4"}, + {file = "regex-2023.12.25-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:88d1f7bef20c721359d8675f7d9f8e414ec5003d8f642fdfd8087777ff7f94b5"}, + {file = "regex-2023.12.25-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:cb3fe77aec8f1995611f966d0c656fdce398317f850d0e6e7aebdfe61f40e1cd"}, + {file = "regex-2023.12.25-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7aa47c2e9ea33a4a2a05f40fcd3ea36d73853a2aae7b4feab6fc85f8bf2c9704"}, + {file = "regex-2023.12.25-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:df26481f0c7a3f8739fecb3e81bc9da3fcfae34d6c094563b9d4670b047312e1"}, + {file = "regex-2023.12.25-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:c40281f7d70baf6e0db0c2f7472b31609f5bc2748fe7275ea65a0b4601d9b392"}, + {file = "regex-2023.12.25-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:d94a1db462d5690ebf6ae86d11c5e420042b9898af5dcf278bd97d6bda065423"}, + {file = "regex-2023.12.25-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ba1b30765a55acf15dce3f364e4928b80858fa8f979ad41f862358939bdd1f2f"}, + {file = "regex-2023.12.25-cp310-cp310-win32.whl", hash = "sha256:150c39f5b964e4d7dba46a7962a088fbc91f06e606f023ce57bb347a3b2d4630"}, + {file = "regex-2023.12.25-cp310-cp310-win_amd64.whl", hash = "sha256:09da66917262d9481c719599116c7dc0c321ffcec4b1f510c4f8a066f8768105"}, + {file = "regex-2023.12.25-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:1b9d811f72210fa9306aeb88385b8f8bcef0dfbf3873410413c00aa94c56c2b6"}, + {file = "regex-2023.12.25-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d902a43085a308cef32c0d3aea962524b725403fd9373dea18110904003bac97"}, + {file = "regex-2023.12.25-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d166eafc19f4718df38887b2bbe1467a4f74a9830e8605089ea7a30dd4da8887"}, + {file = "regex-2023.12.25-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c7ad32824b7f02bb3c9f80306d405a1d9b7bb89362d68b3c5a9be53836caebdb"}, + {file = "regex-2023.12.25-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:636ba0a77de609d6510235b7f0e77ec494d2657108f777e8765efc060094c98c"}, + {file = "regex-2023.12.25-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0fda75704357805eb953a3ee15a2b240694a9a514548cd49b3c5124b4e2ad01b"}, + {file = "regex-2023.12.25-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f72cbae7f6b01591f90814250e636065850c5926751af02bb48da94dfced7baa"}, + {file = "regex-2023.12.25-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:db2a0b1857f18b11e3b0e54ddfefc96af46b0896fb678c85f63fb8c37518b3e7"}, + {file = "regex-2023.12.25-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:7502534e55c7c36c0978c91ba6f61703faf7ce733715ca48f499d3dbbd7657e0"}, + {file = "regex-2023.12.25-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:e8c7e08bb566de4faaf11984af13f6bcf6a08f327b13631d41d62592681d24fe"}, + {file = "regex-2023.12.25-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:283fc8eed679758de38fe493b7d7d84a198b558942b03f017b1f94dda8efae80"}, + {file = "regex-2023.12.25-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:f44dd4d68697559d007462b0a3a1d9acd61d97072b71f6d1968daef26bc744bd"}, + {file = "regex-2023.12.25-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:67d3ccfc590e5e7197750fcb3a2915b416a53e2de847a728cfa60141054123d4"}, + {file = "regex-2023.12.25-cp311-cp311-win32.whl", hash = "sha256:68191f80a9bad283432385961d9efe09d783bcd36ed35a60fb1ff3f1ec2efe87"}, + {file = "regex-2023.12.25-cp311-cp311-win_amd64.whl", hash = "sha256:7d2af3f6b8419661a0c421584cfe8aaec1c0e435ce7e47ee2a97e344b98f794f"}, + {file = "regex-2023.12.25-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8a0ccf52bb37d1a700375a6b395bff5dd15c50acb745f7db30415bae3c2b0715"}, + {file = "regex-2023.12.25-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c3c4a78615b7762740531c27cf46e2f388d8d727d0c0c739e72048beb26c8a9d"}, + {file = "regex-2023.12.25-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ad83e7545b4ab69216cef4cc47e344d19622e28aabec61574b20257c65466d6a"}, + {file = "regex-2023.12.25-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7a635871143661feccce3979e1727c4e094f2bdfd3ec4b90dfd4f16f571a87a"}, + {file = "regex-2023.12.25-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d498eea3f581fbe1b34b59c697512a8baef88212f92e4c7830fcc1499f5b45a5"}, + {file = "regex-2023.12.25-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:43f7cd5754d02a56ae4ebb91b33461dc67be8e3e0153f593c509e21d219c5060"}, + {file = "regex-2023.12.25-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:51f4b32f793812714fd5307222a7f77e739b9bc566dc94a18126aba3b92b98a3"}, + {file = "regex-2023.12.25-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ba99d8077424501b9616b43a2d208095746fb1284fc5ba490139651f971d39d9"}, + {file = "regex-2023.12.25-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:4bfc2b16e3ba8850e0e262467275dd4d62f0d045e0e9eda2bc65078c0110a11f"}, + {file = "regex-2023.12.25-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8c2c19dae8a3eb0ea45a8448356ed561be843b13cbc34b840922ddf565498c1c"}, + {file = "regex-2023.12.25-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:60080bb3d8617d96f0fb7e19796384cc2467447ef1c491694850ebd3670bc457"}, + {file = "regex-2023.12.25-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b77e27b79448e34c2c51c09836033056a0547aa360c45eeeb67803da7b0eedaf"}, + {file = "regex-2023.12.25-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:518440c991f514331f4850a63560321f833979d145d7d81186dbe2f19e27ae3d"}, + {file = "regex-2023.12.25-cp312-cp312-win32.whl", hash = "sha256:e2610e9406d3b0073636a3a2e80db05a02f0c3169b5632022b4e81c0364bcda5"}, + {file = "regex-2023.12.25-cp312-cp312-win_amd64.whl", hash = "sha256:cc37b9aeebab425f11f27e5e9e6cf580be7206c6582a64467a14dda211abc232"}, + {file = "regex-2023.12.25-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:da695d75ac97cb1cd725adac136d25ca687da4536154cdc2815f576e4da11c69"}, + {file = "regex-2023.12.25-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d126361607b33c4eb7b36debc173bf25d7805847346dd4d99b5499e1fef52bc7"}, + {file = "regex-2023.12.25-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4719bb05094d7d8563a450cf8738d2e1061420f79cfcc1fa7f0a44744c4d8f73"}, + {file = "regex-2023.12.25-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5dd58946bce44b53b06d94aa95560d0b243eb2fe64227cba50017a8d8b3cd3e2"}, + {file = "regex-2023.12.25-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:22a86d9fff2009302c440b9d799ef2fe322416d2d58fc124b926aa89365ec482"}, + {file = "regex-2023.12.25-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2aae8101919e8aa05ecfe6322b278f41ce2994c4a430303c4cd163fef746e04f"}, + {file = "regex-2023.12.25-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:e692296c4cc2873967771345a876bcfc1c547e8dd695c6b89342488b0ea55cd8"}, + {file = "regex-2023.12.25-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:263ef5cc10979837f243950637fffb06e8daed7f1ac1e39d5910fd29929e489a"}, + {file = "regex-2023.12.25-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:d6f7e255e5fa94642a0724e35406e6cb7001c09d476ab5fce002f652b36d0c39"}, + {file = "regex-2023.12.25-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:88ad44e220e22b63b0f8f81f007e8abbb92874d8ced66f32571ef8beb0643b2b"}, + {file = "regex-2023.12.25-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:3a17d3ede18f9cedcbe23d2daa8a2cd6f59fe2bf082c567e43083bba3fb00347"}, + {file = "regex-2023.12.25-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d15b274f9e15b1a0b7a45d2ac86d1f634d983ca40d6b886721626c47a400bf39"}, + {file = "regex-2023.12.25-cp37-cp37m-win32.whl", hash = "sha256:ed19b3a05ae0c97dd8f75a5d8f21f7723a8c33bbc555da6bbe1f96c470139d3c"}, + {file = "regex-2023.12.25-cp37-cp37m-win_amd64.whl", hash = "sha256:a6d1047952c0b8104a1d371f88f4ab62e6275567d4458c1e26e9627ad489b445"}, + {file = "regex-2023.12.25-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:b43523d7bc2abd757119dbfb38af91b5735eea45537ec6ec3a5ec3f9562a1c53"}, + {file = "regex-2023.12.25-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:efb2d82f33b2212898f1659fb1c2e9ac30493ac41e4d53123da374c3b5541e64"}, + {file = "regex-2023.12.25-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b7fca9205b59c1a3d5031f7e64ed627a1074730a51c2a80e97653e3e9fa0d415"}, + {file = "regex-2023.12.25-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:086dd15e9435b393ae06f96ab69ab2d333f5d65cbe65ca5a3ef0ec9564dfe770"}, + {file = "regex-2023.12.25-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e81469f7d01efed9b53740aedd26085f20d49da65f9c1f41e822a33992cb1590"}, + {file = "regex-2023.12.25-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:34e4af5b27232f68042aa40a91c3b9bb4da0eeb31b7632e0091afc4310afe6cb"}, + {file = "regex-2023.12.25-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9852b76ab558e45b20bf1893b59af64a28bd3820b0c2efc80e0a70a4a3ea51c1"}, + {file = "regex-2023.12.25-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ff100b203092af77d1a5a7abe085b3506b7eaaf9abf65b73b7d6905b6cb76988"}, + {file = "regex-2023.12.25-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:cc038b2d8b1470364b1888a98fd22d616fba2b6309c5b5f181ad4483e0017861"}, + {file = "regex-2023.12.25-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:094ba386bb5c01e54e14434d4caabf6583334090865b23ef58e0424a6286d3dc"}, + {file = "regex-2023.12.25-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:5cd05d0f57846d8ba4b71d9c00f6f37d6b97d5e5ef8b3c3840426a475c8f70f4"}, + {file = "regex-2023.12.25-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:9aa1a67bbf0f957bbe096375887b2505f5d8ae16bf04488e8b0f334c36e31360"}, + {file = "regex-2023.12.25-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:98a2636994f943b871786c9e82bfe7883ecdaba2ef5df54e1450fa9869d1f756"}, + {file = "regex-2023.12.25-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:37f8e93a81fc5e5bd8db7e10e62dc64261bcd88f8d7e6640aaebe9bc180d9ce2"}, + {file = "regex-2023.12.25-cp38-cp38-win32.whl", hash = "sha256:d78bd484930c1da2b9679290a41cdb25cc127d783768a0369d6b449e72f88beb"}, + {file = "regex-2023.12.25-cp38-cp38-win_amd64.whl", hash = "sha256:b521dcecebc5b978b447f0f69b5b7f3840eac454862270406a39837ffae4e697"}, + {file = "regex-2023.12.25-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:f7bc09bc9c29ebead055bcba136a67378f03d66bf359e87d0f7c759d6d4ffa31"}, + {file = "regex-2023.12.25-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e14b73607d6231f3cc4622809c196b540a6a44e903bcfad940779c80dffa7be7"}, + {file = "regex-2023.12.25-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9eda5f7a50141291beda3edd00abc2d4a5b16c29c92daf8d5bd76934150f3edc"}, + {file = "regex-2023.12.25-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc6bb9aa69aacf0f6032c307da718f61a40cf970849e471254e0e91c56ffca95"}, + {file = "regex-2023.12.25-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:298dc6354d414bc921581be85695d18912bea163a8b23cac9a2562bbcd5088b1"}, + {file = "regex-2023.12.25-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2f4e475a80ecbd15896a976aa0b386c5525d0ed34d5c600b6d3ebac0a67c7ddf"}, + {file = "regex-2023.12.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:531ac6cf22b53e0696f8e1d56ce2396311254eb806111ddd3922c9d937151dae"}, + {file = "regex-2023.12.25-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:22f3470f7524b6da61e2020672df2f3063676aff444db1daa283c2ea4ed259d6"}, + {file = "regex-2023.12.25-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:89723d2112697feaa320c9d351e5f5e7b841e83f8b143dba8e2d2b5f04e10923"}, + {file = "regex-2023.12.25-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0ecf44ddf9171cd7566ef1768047f6e66975788258b1c6c6ca78098b95cf9a3d"}, + {file = "regex-2023.12.25-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:905466ad1702ed4acfd67a902af50b8db1feeb9781436372261808df7a2a7bca"}, + {file = "regex-2023.12.25-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:4558410b7a5607a645e9804a3e9dd509af12fb72b9825b13791a37cd417d73a5"}, + {file = "regex-2023.12.25-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:7e316026cc1095f2a3e8cc012822c99f413b702eaa2ca5408a513609488cb62f"}, + {file = "regex-2023.12.25-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:3b1de218d5375cd6ac4b5493e0b9f3df2be331e86520f23382f216c137913d20"}, + {file = "regex-2023.12.25-cp39-cp39-win32.whl", hash = "sha256:11a963f8e25ab5c61348d090bf1b07f1953929c13bd2309a0662e9ff680763c9"}, + {file = "regex-2023.12.25-cp39-cp39-win_amd64.whl", hash = "sha256:e693e233ac92ba83a87024e1d32b5f9ab15ca55ddd916d878146f4e3406b5c91"}, + {file = "regex-2023.12.25.tar.gz", hash = "sha256:29171aa128da69afdf4bde412d5bedc335f2ca8fcfe4489038577d05f16181e5"}, +] + [[package]] name = "requests" version = "2.31.0" @@ -3675,6 +3886,58 @@ tornado = ">=6.1.0" docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] test = ["pre-commit", "pytest (>=7.0)", "pytest-timeout"] +[[package]] +name = "tiktoken" +version = "0.5.2" +description = "tiktoken is a fast BPE tokeniser for use with OpenAI's models" +optional = false +python-versions = ">=3.8" +files = [ + {file = "tiktoken-0.5.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8c4e654282ef05ec1bd06ead22141a9a1687991cef2c6a81bdd1284301abc71d"}, + {file = "tiktoken-0.5.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:7b3134aa24319f42c27718c6967f3c1916a38a715a0fa73d33717ba121231307"}, + {file = "tiktoken-0.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6092e6e77730929c8c6a51bb0d7cfdf1b72b63c4d033d6258d1f2ee81052e9e5"}, + {file = "tiktoken-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:72ad8ae2a747622efae75837abba59be6c15a8f31b4ac3c6156bc56ec7a8e631"}, + {file = "tiktoken-0.5.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:51cba7c8711afa0b885445f0637f0fcc366740798c40b981f08c5f984e02c9d1"}, + {file = "tiktoken-0.5.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:3d8c7d2c9313f8e92e987d585ee2ba0f7c40a0de84f4805b093b634f792124f5"}, + {file = "tiktoken-0.5.2-cp310-cp310-win_amd64.whl", hash = "sha256:692eca18c5fd8d1e0dde767f895c17686faaa102f37640e884eecb6854e7cca7"}, + {file = "tiktoken-0.5.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:138d173abbf1ec75863ad68ca289d4da30caa3245f3c8d4bfb274c4d629a2f77"}, + {file = "tiktoken-0.5.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7388fdd684690973fdc450b47dfd24d7f0cbe658f58a576169baef5ae4658607"}, + {file = "tiktoken-0.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a114391790113bcff670c70c24e166a841f7ea8f47ee2fe0e71e08b49d0bf2d4"}, + {file = "tiktoken-0.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca96f001e69f6859dd52926d950cfcc610480e920e576183497ab954e645e6ac"}, + {file = "tiktoken-0.5.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:15fed1dd88e30dfadcdd8e53a8927f04e1f6f81ad08a5ca824858a593ab476c7"}, + {file = "tiktoken-0.5.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:93f8e692db5756f7ea8cb0cfca34638316dcf0841fb8469de8ed7f6a015ba0b0"}, + {file = "tiktoken-0.5.2-cp311-cp311-win_amd64.whl", hash = "sha256:bcae1c4c92df2ffc4fe9f475bf8148dbb0ee2404743168bbeb9dcc4b79dc1fdd"}, + {file = "tiktoken-0.5.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b76a1e17d4eb4357d00f0622d9a48ffbb23401dcf36f9716d9bd9c8e79d421aa"}, + {file = "tiktoken-0.5.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:01d8b171bb5df4035580bc26d4f5339a6fd58d06f069091899d4a798ea279d3e"}, + {file = "tiktoken-0.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42adf7d4fb1ed8de6e0ff2e794a6a15005f056a0d83d22d1d6755a39bffd9e7f"}, + {file = "tiktoken-0.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c3f894dbe0adb44609f3d532b8ea10820d61fdcb288b325a458dfc60fefb7db"}, + {file = "tiktoken-0.5.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:58ccfddb4e62f0df974e8f7e34a667981d9bb553a811256e617731bf1d007d19"}, + {file = "tiktoken-0.5.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58902a8bad2de4268c2a701f1c844d22bfa3cbcc485b10e8e3e28a050179330b"}, + {file = "tiktoken-0.5.2-cp312-cp312-win_amd64.whl", hash = "sha256:5e39257826d0647fcac403d8fa0a474b30d02ec8ffc012cfaf13083e9b5e82c5"}, + {file = "tiktoken-0.5.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8bde3b0fbf09a23072d39c1ede0e0821f759b4fa254a5f00078909158e90ae1f"}, + {file = "tiktoken-0.5.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2ddee082dcf1231ccf3a591d234935e6acf3e82ee28521fe99af9630bc8d2a60"}, + {file = "tiktoken-0.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35c057a6a4e777b5966a7540481a75a31429fc1cb4c9da87b71c8b75b5143037"}, + {file = "tiktoken-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c4a049b87e28f1dc60509f8eb7790bc8d11f9a70d99b9dd18dfdd81a084ffe6"}, + {file = "tiktoken-0.5.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5bf5ce759089f4f6521ea6ed89d8f988f7b396e9f4afb503b945f5c949c6bec2"}, + {file = "tiktoken-0.5.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0c964f554af1a96884e01188f480dad3fc224c4bbcf7af75d4b74c4b74ae0125"}, + {file = "tiktoken-0.5.2-cp38-cp38-win_amd64.whl", hash = "sha256:368dd5726d2e8788e47ea04f32e20f72a2012a8a67af5b0b003d1e059f1d30a3"}, + {file = "tiktoken-0.5.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a2deef9115b8cd55536c0a02c0203512f8deb2447f41585e6d929a0b878a0dd2"}, + {file = "tiktoken-0.5.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2ed7d380195affbf886e2f8b92b14edfe13f4768ff5fc8de315adba5b773815e"}, + {file = "tiktoken-0.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c76fce01309c8140ffe15eb34ded2bb94789614b7d1d09e206838fc173776a18"}, + {file = "tiktoken-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60a5654d6a2e2d152637dd9a880b4482267dfc8a86ccf3ab1cec31a8c76bfae8"}, + {file = "tiktoken-0.5.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:41d4d3228e051b779245a8ddd21d4336f8975563e92375662f42d05a19bdff41"}, + {file = "tiktoken-0.5.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c1cdec2c92fcde8c17a50814b525ae6a88e8e5b02030dc120b76e11db93f13"}, + {file = "tiktoken-0.5.2-cp39-cp39-win_amd64.whl", hash = "sha256:84ddb36faedb448a50b246e13d1b6ee3437f60b7169b723a4b2abad75e914f3e"}, + {file = "tiktoken-0.5.2.tar.gz", hash = "sha256:f54c581f134a8ea96ce2023ab221d4d4d81ab614efa0b2fbce926387deb56c80"}, +] + +[package.dependencies] +regex = ">=2022.1.18" +requests = ">=2.26.0" + +[package.extras] +blobfile = ["blobfile (>=2)"] + [[package]] name = "tinycss2" version = "1.2.1" @@ -3746,6 +4009,26 @@ files = [ {file = "tornado-6.3.3.tar.gz", hash = "sha256:e7d8db41c0181c80d76c982aacc442c0783a2c54d6400fe028954201a2e032fe"}, ] +[[package]] +name = "tqdm" +version = "4.66.1" +description = "Fast, Extensible Progress Meter" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tqdm-4.66.1-py3-none-any.whl", hash = "sha256:d302b3c5b53d47bce91fea46679d9c3c6508cf6332229aa1e7d8653723793386"}, + {file = "tqdm-4.66.1.tar.gz", hash = "sha256:d88e651f9db8d8551a62556d3cff9e3034274ca5d66e93197cf2490e2dcb69c7"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[package.extras] +dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] +notebook = ["ipywidgets (>=6)"] +slack = ["slack-sdk"] +telegram = ["requests"] + [[package]] name = "traitlets" version = "5.11.1" @@ -3998,4 +4281,4 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "p [metadata] lock-version = "2.0" python-versions = ">=3.8.1,<4.0" -content-hash = "581c178796dbb76589632e687d353a336ca23b3cdda7075720660b479dc85fa2" +content-hash = "0ee5840cf8fda328bd967f6bd3c9be4e698ccfdd4b8b14c970bad7f2d338ec81" diff --git a/pyproject.toml b/pyproject.toml index b133ad83c374c..1220209cb7fdb 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -34,6 +34,7 @@ langchain-core = { path = "libs/core/", develop = true } langchain-community = { path = "libs/community/", develop = true } langchain = { path = "libs/langchain/", develop = true } langchain-experimental = { path = "libs/experimental/", develop = true } +langchain-openai = { path = "libs/partners/openai", develop = true } [tool.poetry.group.codespell.dependencies] codespell = "^2.2.0" @@ -44,6 +45,7 @@ langchain-core = { path = "libs/core/", develop = true } langchain-community = { path = "libs/community/", develop = true } langchain = { path = "libs/langchain/", develop = true } langchain-experimental = { path = "libs/experimental/", develop = true } +langchain-openai = { path = "libs/partners/openai", develop = true } [tool.poetry.group.test.dependencies]