-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_trainer.py
41 lines (30 loc) · 1.46 KB
/
model_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import cv2
import numpy as np
from PIL import Image #pillow package
import os
def train_model():
#newpath = r"C:\\Users\\santo\\OneDrive\\Documents\\PythonFiles\\Python_Projects\\Face_login\\trainer"
newpath = r"trainer"
if not os.path.exists(newpath):
os.makedirs(newpath)
path='samples' #path of the samples which were taken
recognizer=cv2.face.LBPHFaceRecognizer_create() #Local Binary Patterns Hisstogram
detector=cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
def Images_And_Labels(path): # function to fetch the images and labels
imagePaths=[os.path.join(path,f) for f in os.listdir(path)]
faceSamples=[]
ids=[]
for imagePath in imagePaths: #to iterate particular image path
gray_img=Image.open(imagePath).convert('L') #convert it to grayscale
img_arr=np.array(gray_img,'uint8') #creating an array
id=int(os.path.split(imagePath)[-1].split(".")[1])
faces=detector.detectMultiScale(img_arr)
for(x,y,w,h) in faces:
faceSamples.append(img_arr[y:y+h,x:x+w])
ids.append(id)
return faceSamples, ids
print("Training faces. This will take a few moments...")
faces, ids=Images_And_Labels(path)
recognizer.train(faces,np.array(ids))
recognizer.write('trainer/trainer.yml') #Save the trained as trainer.yml
print("Model Trained. Now we can recognize youe face for future logins.")