-
Notifications
You must be signed in to change notification settings - Fork 0
/
face_recognition.py
69 lines (53 loc) · 2.31 KB
/
face_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import cv2
from main import MainThread
def face_recog():
# Local Binary Patterns Histogram
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('trainer/trainer.yml') # load trained model
cascadePath = "haarcascade_frontalface_default.xml"
# initializing haar cascade for object detection approach
faceCascade = cv2.CascadeClassifier(cascadePath)
font = cv2.FONT_HERSHEY_SIMPLEX # denotes the fonr type
id = 2 # number of people you want to limit recognition for login
# names,leave first empty, bcz counter starts from 0
names = ['', 'Master User']
cam = cv2.VideoCapture(0, cv2.CAP_DSHOW) # cv2.CAP_DSHOW is to remove warning
cam.set(3, 640) # set vdo Frame Width
cam.set(4, 480) # set vdo Frame Height
# Define min window size to be recognized as a face
minW = 0.1*cam.get(3)
minH = 0.1*cam.get(4)
while True:
ret, img = cam.read() # read the frames using above created object
# the function converts img to grayscale
converted_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
converted_image,
scaleFactor=1.2,
minNeighbors=5,
minSize=(int(minW), int(minH)),
)
for (x, y, w, h) in faces:
# used to draw a rectangle around the detected face
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
# to predict to person to be logged in on every single image which is being iterated
id, accuracy = recognizer.predict(converted_image[y:y+h, x:x+w])
if accuracy < 60:
id = names[id]
accuracy = " {0}%".format(round(100-accuracy))
# MainThread.TaskExecution()
else:
id = "Unknown"
accuracy = " {0}%".format(round(100-accuracy))
break
cv2.putText(img, str(id), (x+5, y-5), font, 1, (255, 255, 255), 2)
cv2.putText(img, str(accuracy), (x+5, y+h-5),
font, 1, (255, 255, 0), 1)
cv2.imshow('camera', img)
k = cv2.waitKey(10) & 0xff
if k == 27: # Press esc to exit the vdo
break
# Do cleanup
print("Thank You for using this program")
cam.release()
cv2.destroyAllWindows()