-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathmfi_dsk.cpp
281 lines (224 loc) · 8.86 KB
/
mfi_dsk.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
// license:BSD-3-Clause
// copyright-holders:Olivier Galibert
#include "mfi_dsk.h"
#include "ioprocs.h"
#include <zlib.h>
#include <cstring>
#include <functional>
#include <tuple>
/*
Mess floppy image structure:
- header with signature, number of cylinders, number of heads. Min
track and min head are considered to always be 0. The two top bits
of the cylinder count is the resolution: 0=tracks, 1=half tracks,
2=quarter tracks.
- vector of track descriptions, looping on cylinders with the given
resolution and sub-lopping on heads, each description composed of:
- offset of the track data in bytes from the start of the file
- size of the compressed track data in bytes (0 for unformatted)
- size of the uncompressed track data in bytes (0 for unformatted)
- track data
All values are 32-bits lsb first.
Track data is zlib-compressed independently for each track using the
simple "compress" function.
Track data consists of a series of 32-bits lsb-first values
representing magnetic cells. Bits 0-27 indicate the position,
delta-packed (e.g. difference with the previous position, starts at
0), and bits 28-31 the types. Type can be:
- 0, MG_F -> Flux orientation change
- 1, MG_N -> Non-magnetized zone (neutral)
- 2, MG_D -> Damaged zone, reads as neutral but cannot be changed by writing
- 3, MG_E -> End of zone
Tracks data is aligned so that the index pulse is at the start for soft-
sectored disks. For hard-sectored disks, the sector hole for the first
sector is at the start and the index hole is half a sector from the end
of the track.
The position is the angular position in units of 1/200,000,000th of
a turn. A size in such units, not coincidentally at all, is also
the flyover time in nanoseconds for a perfectly stable 300rpm drive.
That makes the standard cell size of a MFM 3.5" DD floppy at 2000
exactly for instance (2us). Smallest expected cell size is 500 (ED
density drives).
An unformatted track is equivalent to a pair (MG_N, 0), (MG_E,
199999999) but is encoded as zero-size.
The "track splice" information indicates where to start writing
if you try to rewrite a physical disk with the data. Some
preservation formats encode that information, it is guessed for
others. The write track function of fdcs should set it. The
representation is the angular position relative to the index, for
soft-sectored disks, and the first sector hole for hard-sectored
disks.
The media type is divided in two parts. The first half
indicate the physical form factor, i.e. all medias with that
form factor can be physically inserted in a reader that handles
it. The second half indicates the variants which are usually
detectable by the reader, such as density and number of sides.
TODO: big-endian support
*/
const char mfi_format::sign_old[16] = "MESSFLOPPYIMAGE"; // Includes the final \0
const char mfi_format::sign[16] = "MAMEFLOPPYIMAGE"; // Includes the final \0
mfi_format::mfi_format() : floppy_image_format_t()
{
}
const char *mfi_format::name() const noexcept
{
return "mfi";
}
const char *mfi_format::description() const noexcept
{
return "MAME floppy image";
}
const char *mfi_format::extensions() const noexcept
{
return "mfi";
}
bool mfi_format::supports_save() const noexcept
{
return true;
}
int mfi_format::identify(util::random_read &io, uint32_t form_factor, const std::vector<uint32_t> &variants) const
{
header h;
auto const [err, actual] = read_at(io, 0, &h, sizeof(header));
if (err || (sizeof(header) != actual))
return 0;
if((!memcmp(h.sign, sign, 16) || !memcmp(h.sign, sign_old, 16)) &&
(h.cyl_count & CYLINDER_MASK) <= 84 &&
(h.cyl_count >> RESOLUTION_SHIFT) < 3 &&
h.head_count <= 2 &&
(!form_factor || !h.form_factor || h.form_factor == form_factor))
return FIFID_SIGN|FIFID_STRUCT;
return 0;
}
bool mfi_format::load(util::random_read &io, uint32_t form_factor, const std::vector<uint32_t> &variants, floppy_image &image) const
{
std::error_condition err;
size_t actual;
header h;
std::tie(err, actual) = read_at(io, 0, &h, sizeof(header));
if(err || (sizeof(header) != actual))
return false;
int const resolution = h.cyl_count >> RESOLUTION_SHIFT;
h.cyl_count &= CYLINDER_MASK;
image.set_form_variant(h.form_factor, h.variant);
if(!h.cyl_count)
return true;
entry entries[84*2*4];
std::tie(err, actual) = read_at(io, sizeof(header), &entries, (h.cyl_count << resolution)*h.head_count*sizeof(entry));
if(err || (((h.cyl_count << resolution)*h.head_count*sizeof(entry)) != actual))
return false;
std::function<void (const std::vector<uint32_t> &src, std::vector<uint32_t> &track)> converter;
if(!memcmp(h.sign, sign, 16)) {
converter = [] (const std::vector<uint32_t> &src, std::vector<uint32_t> &track) {
uint32_t ctime = 0;
for(uint32_t mg : src) {
ctime += mg & TIME_MASK;
track.push_back((mg & MG_MASK) | ctime);
}
};
} else {
converter = [] (const std::vector<uint32_t> &src, std::vector<uint32_t> &track) {
unsigned int cell_count = src.size();
uint32_t mg = src[0] & MG_MASK;
uint32_t wmg = src[cell_count - 1] & MG_MASK;
if(mg != wmg && (mg == OLD_MG_A || mg == OLD_MG_B) && (wmg == OLD_MG_A || wmg == OLD_MG_B))
// Flux change at 0, add it
track.push_back(MG_F | 0);
uint32_t ctime = 0;
for(unsigned int i=0; i != cell_count; i++) {
uint32_t nmg = src[i] & MG_MASK;
if(nmg == OLD_MG_N || nmg == OLD_MG_D) {
track.push_back((nmg == OLD_MG_N ? MG_N : MG_D) | ctime);
ctime += src[i] & TIME_MASK;
track.push_back(MG_E | (ctime-1));
nmg = 0xffffffff;
} else {
if(mg != 0xffffffff && mg != nmg)
track.push_back(MG_F | ctime);
ctime += src[i] & TIME_MASK;
}
mg = nmg;
}
};
}
std::vector<uint8_t> compressed;
std::vector<uint32_t> uncompressed;
entry *ent = entries;
for(unsigned int cyl=0; cyl <= (h.cyl_count - 1) << 2; cyl += 4 >> resolution)
for(unsigned int head=0; head != h.head_count; head++) {
image.set_write_splice_position(cyl >> 2, head, ent->write_splice, cyl & 3);
if(ent->uncompressed_size == 0) {
// Unformatted track
image.get_buffer(cyl >> 2, head, cyl & 3).clear();
ent++;
continue;
}
unsigned int cell_count = ent->uncompressed_size/4;
compressed.resize(ent->compressed_size);
uncompressed.resize(cell_count);
std::tie(err, actual) = read_at(io, ent->offset, &compressed[0], ent->compressed_size); // FIXME: check for errors and premature EOF
uLongf size = ent->uncompressed_size;
if(uncompress((Bytef *)uncompressed.data(), &size, &compressed[0], ent->compressed_size) != Z_OK) {
fprintf(stderr, "fail1\n");
return false;
}
std::vector<uint32_t> &trackbuf = image.get_buffer(cyl >> 2, head, cyl & 3);
trackbuf.clear();
converter(uncompressed, trackbuf);
ent++;
}
return true;
}
bool mfi_format::save(util::random_read_write &io, const std::vector<uint32_t> &variants, const floppy_image &image) const
{
int tracks, heads;
image.get_actual_geometry(tracks, heads);
int resolution = image.get_resolution();
int max_track_size = 0;
for(int track=0; track <= (tracks-1) << 2; track += 4 >> resolution)
for(int head=0; head<heads; head++) {
int tsize = image.get_buffer(track >> 2, head, track & 3).size();
if(tsize > max_track_size)
max_track_size = tsize;
}
header h;
entry entries[84*2*4];
memcpy(h.sign, sign, 16);
h.cyl_count = tracks | (resolution << RESOLUTION_SHIFT);
h.head_count = heads;
h.form_factor = image.get_form_factor();
h.variant = image.get_variant();
write_at(io, 0, &h, sizeof(header)); // FIXME: check for errors
memset(entries, 0, sizeof(entries));
int pos = sizeof(header) + (tracks << resolution)*heads*sizeof(entry);
int epos = 0;
auto precomp = std::make_unique<uint32_t []>(max_track_size);
auto postcomp = std::make_unique<uint8_t []>(max_track_size*4 + 1000);
for(int track=0; track <= (tracks-1) << 2; track += 4 >> resolution)
for(int head=0; head<heads; head++) {
const std::vector<uint32_t> &buffer = image.get_buffer(track >> 2, head, track & 3);
int tsize = buffer.size();
if(!tsize) {
epos++;
continue;
}
uint32_t ctime = 0;
for(int i=0; i != tsize; i++) {
precomp[i] = (buffer[i] & MG_MASK) | ((buffer[i] & TIME_MASK) - ctime);
ctime = buffer[i] & TIME_MASK;
}
uLongf csize = max_track_size*4 + 1000;
if(compress(postcomp.get(), &csize, (const Bytef *)precomp.get(), tsize*4) != Z_OK)
return false;
entries[epos].offset = pos;
entries[epos].uncompressed_size = tsize*4;
entries[epos].compressed_size = csize;
entries[epos].write_splice = image.get_write_splice_position(track >> 2, head, track & 3);
epos++;
write_at(io, pos, postcomp.get(), csize); // FIXME: check for errors
pos += csize;
}
write_at(io, sizeof(header), entries, (tracks << resolution)*heads*sizeof(entry)); // FIXME: check for errors
return true;
}
const mfi_format FLOPPY_MFI_FORMAT;